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Abstract

In recent years, the field of machine learning has undergone a paradigm
shift with the rise of large models pre-trained on web-scale data. These
models, collectively known as foundation models, have demonstrated re-
markable performance on a wide range of downstream tasks. Despite the
promising performance, inherent safety risks of these large pre-trained
models can potentially manifest in downstream tasks, causing profound
social impacts in safety-critical applications such as financial services, au-
tonomous driving, and medical diagnosis. Understanding and mitigat-
ing these risks is critical for the deployment of these models in the open
world, where models can encounter novel inputs with various distribu-
tional shifts. In this thesis, we investigate two representative tasks for
reliable machine learning in the open world: out-of-distribution (OOD)
detection and out-of-distribution generalization.

This doctoral thesis makes significant contributions to the field of re-
liable machine learning in the open world, with a focus on two central as-
pects underlying the success of modern foundation models: contrastive
representation learning with hyperspherical embeddings, and learning
with multiple modalities. The thesis is divided into three parts: Part I
presents algorithmic foundations of reliable machine learning on the hy-
persphere. In this part, we present CIDER for OOD detection (Chapter
3) and HYPO for OOD generalization (Chapter 4). In Part II, we dive into
the multi-modal paradigm and develop new algorithms and theories of
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reliable multi-modal models with hyperspherical embeddings. In partic-
ular, we investigate the zero-shot scheme in Chapter 5 and the parameter-
efficient fine-tuning scheme in Chapter 6. We conclude this part with
the retrieval-augmented adaptation scheme in Chapter 7. In Part III, we
move beyond the conventional vision-language models and discuss reli-
able multi-modal models for document understanding (Chapter 8). We
also propose a novel OOD detection benchmark that tackles the effect of
spurious correlation (Appendix A). We conclude this part with supple-
mentary materials for the preceding chapters.

This thesis presents both novel practical algorithms and theoretical in-
sights that enhance the reliability of foundation models in the open world.
We hope this work will serve as a springboard, facilitating a deeper un-
derstanding and design of algorithms that adapt foundation models to a
broad array of real-world applications.
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Chapter 1

Introduction

Traditional machine learning approaches often operate under the closed-
world assumption, where the test distribution is assumed to be the same
as the training distribution (He et al., 2016; Huang et al., 2017). In con-
trast, when deploying machine learning models in the open world, it is
important to ensure that the model remains reliable in the presence of
out-of-distribution (OOD) inputs—samples that deviate from the train-
ing distribution.

A variety of distributional shifts can occur, where covariate and se-
mantic shifts have received significant research attention in recent years,
giving rise to the tasks of out-of-distribution (OOD) generalization and
OOD detection, respectively.

As a motivating example, machine learning models are often utilized
in identifying and filtering offensive language for content moderation on
social media platforms. Imagine a scenario where a model has been trained
on a dataset composed of common offensive expressions. However, as
internet culture evolves, new slang emerges that conveys harmful mean-
ings similar to those the model was trained on. This evolution represents
a covariate shift: the fundamental task of identifying offensive content
remains unchanged, but the specific language expressions have altered.
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This gives rise to the task of OOD generalization, where the model is ex-
pected to adapt and recognize these forms as harmful.

Additionally, the model may face samples with semantic shifts, such
as memes using a novel combination of images and text to convey offen-
sive messages that the model has not been trained to recognize. We expect
reliable models can detect these new meme formats as unknown, which
gives rise to the task of OOD detection. Addressing both covariate and
semantic shifts is crucial for machine learning models developed in the
open world. The models are expected not only to adapt to new variations
within previously understood categories of offensive content (covariate
shift) but also to recognize and respond to entirely new categories of po-
tentially harmful content (semantic shift).

This thesis introduces novel theoretical analysis and effective algo-
rithms that significantly contribute to the field of OOD detection and
OOD generalization. Section 1.1 provides an overview of advancements
in OOD detection and Section 1.2 offers an overview of our contributions
to OOD generalization. This thesis encompasses a broad spectrum of
contemporary topics, covering general machine learning models in Part I
(Chapters 2 to 4), and delving into recent foundation models across mul-
tiple modalities (Bommasani et al., 2021; Zhou et al., 2023) in Part II and
Part III (Chapters 5 to 8).

1.1 Out-of-Distribution Detection
The task of out-of-distribution (OOD) detection is centered on address-
ing semantic shifts. At inference time, we desire models that are not only
accurate when an input is drawn from the training distribution, but also
raise alarms when encountering inputs from outside the training distri-
bution. OOD detection can be framed as a binary classification problem,
where the goal is to determine whether an input belongs to in-distribution
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(ID) or not (OOD).
This thesis presents recent advances on OOD detection in the con-

text of modern neural networks. Different from the classic anomalous
detection problem in statistics, OOD detection is non-trivial for deep neu-
ral networks, which often exhibit overconfident predictions on OOD in-
puts (Nguyen et al., 2015).

The majority of works for OOD detection focuses on the supervised
setting, where the goal is to derive a binary ID-OOD classifier along with
a multi-class classification model for ID classification. An illustration of
a typical workflow of OOD detection is shown in Figure 1.1. At infer-
ence time, the model will encounter a mixture of ID and OOD samples.
Ideally, an open-world classifier f(·) is expected to achieve good perfor-
mance on dual tasks: (1) ID classification which is often a multi-class
classification problem; (2) OOD detection which is a binary classification
problem. The OOD detector G(·) usually depends on a scoring function
S(·) that indicates the likelihood of an input being ID.

Figure 1.1: A typical workflow of OOD detection in the supervised set-
ting. At inference time, the model will encounter a mixture of ID and
OOD inputs. f(·) is the open-world classifier. G(·) denotes an OOD de-
tector that depends on a scoring function S(·). λ is the threshold for clas-
sifying an input as ID.

A plethora of OOD detection algorithms have been developed in re-
cent years, among which distance-based methods demonstrate promising
performance (Lee et al., 2018; Xing et al., 2020; Tack et al., 2020; Sehwag
et al., 2021; Sun et al., 2022). Distance-based methods leverage feature
embeddings extracted from a pre-trained model, and operate under the
assumption that the OOD samples are relatively far away from the clus-
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ters of ID data. These approaches circumvent the shortcoming of alterna-
tive OOD scores that utilize the model’s outputs or logits, which can be
overconfident for OOD inputs.

Arguably, the efficacy of distance-based approaches can depend largely
on the quality of feature embeddings. In this thesis, we will dive into
one popular and successful representation learning paradigm that learns
embeddings in the hyperspherical space. For example, contrastive learn-
ing (van den Oord et al., 2019; Khosla et al., 2020; Chen et al., 2020a) aims
to learn a discriminative embedding where positive samples are aligned
while negative ones are dispersed. The embeddings are ℓ2-normalized
which indicates that they reside on a unit hypersphere.

Recent works (Tack et al., 2020; Sehwag et al., 2021; Sun et al., 2022)
directly employ off-the-shelf contrastive losses for OOD detection and
demonstrate promising performance on a wide range of tasks. However,
existing training objectives produce embeddings that suffice for classify-
ing ID samples, but may remain sub-optimal in the open world. In Part
I of this thesis, we will address a fundamental research question: how
to exploit hyperspherical embeddings for OOD detection? We will intro-
duce CIDER (Ming et al., 2023), a novel representation learning frame-
work designed for open-world classification with hyperspherical embed-
dings.

Despite increasing attention, the vast majority of OOD detection meth-
ods are driven by single-modal learning (Hendrycks et al., 2020; Hsu
et al., 2020; Jin et al., 2022; Shen et al., 2021; Xu et al., 2021a; Zhan et al.,
2021; Zheng et al., 2020; Zhou et al., 2021b). For example, labels are typ-
ically encoded as one-hot vectors in image classification, leaving the se-
mantic information encapsulated in texts largely unexploited. OOD de-
tection relying on pure visual information can inherit the limitations, e.g.,
when an OOD input is visually similar to in-distribution (ID) data yet
semantically different from any ID class.
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In Part II of this thesis, we will delve into a new landscape for OOD
detection, departing from the classic single-modal toward a multi-modal
regime. While the motivation is appealing, a core challenge remains:
how to effectively utilize joint vision-language features for OOD detec-
tion? Successful distance-based OOD detection approaches in the visual
domain do not directly translate into the multi-modal regime. Recent
vision-language pre-training schemes such as CLIP (Radford et al., 2021)
and ALIGN (Jia et al., 2021) have emerged as promising paradigms that
surpass single-modal representation learning. The main idea is to align
an image with its corresponding textual description in the hyperspheri-
cal feature space. While the resulting representations are powerful, OOD
detection based on such aligned multi-modal features is still in its infancy.

We will introduce a series of pioneering works (Ming et al., 2022a;
Ming and Li, 2023) that explore distance-based OOD detection with multi-
modal hyperspherical embeddings. We start from the zero-shot setting,
where we propose a new OOD detection method that leverages the com-
patibility between visual features and textual features of pre-trained CLIP.
By defining the textual features as the “concept prototypes” for each ID
class, we characterize OOD uncertainty by the distance from the visual
feature to the closest ID prototype. By a proper scaling of the distance, our
proposed Maximum Concept Matching (MCM) score achieves strong ID-
OOD separability and achieves significant performance gain compared to
OOD scores that only use (single-modal) visual features on challenging
benchmarks.

Subsequently, we depart from the zero-shot setting and delve into the
fine-tuning scheme of vision-language models. In particular, we focus on
recent developments in parameter-efficient fine-tuning methods tailored
for large-scale models such as prompt learning (Zhou et al., 2022b; Khat-
tak et al., 2023) and adaptor tuning (Zhang et al., 2022b; Udandarao et al.,
2023). We will present a comprehensive study to understand how fine-



6

tuning impact OOD detection for few-shot downstream tasks. By framing
OOD detection as multi-modal concept matching, we establish a connec-
tion between fine-tuning methods and various OOD scores. Our results
suggest that a proper choice of OOD scores is essential for CLIP-based
fine-tuning. In particular, the maximum concept matching (MCM) score
provides a promising solution consistently. We also show that prompt
learning demonstrates the state-of-the-art OOD detection performance
over the zero-shot counterpart.

While the concept of OOD inputs is intuitive, the precise definition of
OOD is often left in vagueness in the literature and falls short of the de-
sired notion of OOD in reality. In Part III of this thesis, we provide a finer-
grained definition of OOD that incorporates both the invariant and envi-
ronmental (spurious) features (Ming et al., 2022c). We reveal insights on
detection methods that are more effective in reducing the impact of spuri-
ous correlation, and provide theoretical analysis on why reliance on envi-
ronmental features leads to high OOD detection error. Based on our anal-
ysis, we introduce a novel OOD detection benchmark named Spurious
OOD detection.

Through rigorous theoretical analysis and algorithmic development,
we hope the collections of works presented in this thesis will foster a
deeper understanding of distance-based OOD detection and serve as a
cornerstone for future advancements in open-world machine learning,
particularly with multi-modal foundation models.

1.2 Out-of-Distribution Generalization
In contrast to the task of OOD detection which primarily focuses on se-
mantic shifts, OOD generalization focuses on covariate shifts. As a con-
crete example, in medical diagnosis with machine learning models, the
task is to analyze X-ray images to identify various conditions such as
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pneumonia, fractures, or tumors. These models are often trained on in-
distribution (ID) data consisting of X-ray images from a specific demo-
graphic or from certain types of equipment. However, when deployed in
different geographic regions or with X-ray machines, the model may en-
counter inputs with covariate shifts due to differences in image quality,
contrast levels, or patient demographics, which were not present in the
training data. Under such circumstances, the model is expected to gener-
alize to OOD data, accurately diagnosing conditions despite variations in
the image characteristics.

A plethora of OOD generalization algorithms has been developed in
recent years (see Zhou et al. (2022a) for a comprehensive survey), where
a central theme is to learn domain-invariant representations—features
that are consistent and meaningful across different environments1 and
can generalize to the unseen test environment. Theoretically, Ye et al.
(2021) showed that the OOD generalization error can be bounded in terms
of intra-class variation and inter-class separation. Intra-class variation mea-
sures the stability of representations across different environments, while
inter-class separation assesses the dispersion of features among different
classes. Ideally, features should display low variation and high separa-
tion, in order to generalize well to OOD data. Despite the theoretical
analysis, a research question remains open in the field: How to design
a practical learning algorithm that directly achieves these two properties,
and what theoretical guarantees can the algorithm offer?

In Part I of the thesis, we address this question by introducing a new
learning framework HYPO (HYPerspherical OOD generalization), which
provably learns domain-invariant representations in the hyperspherical
space with unit norm. Our key idea is to promote low variation (align-
ing representation across domains for every class) and high separation
(separating prototypes across different classes) in the feature space. Ge-

1In the literature, the term environment and domain are used interchangeably.
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ometrically, we show that our loss function can be understood through
the lens of maximum likelihood estimation under the classic von Mises-
Fisher distribution. Empirically, HYPO advances the state-of-the-art on a
wide range of OOD and generalization benchmarks.

While Part I discusses algorithms and theories under the general rep-
resentation learning setting, Part II focuses on the multi-modal scheme
with foundation models. In particular, we consider contrastive vision-
language models, which often struggle on fine-trained datasets with cat-
egories not adequately represented during pre-training. Recent works
have shown promising results by utilizing samples from web-scale databases
for retrieval-augmented adaptation (Udandarao et al., 2023). Despite the
empirical success, understanding how retrieval impacts the adaptation of
vision-language models remains an open research question. In this thesis,
we adopt a reflective perspective and will present a comprehensive and
systematic empirical study to understand the roles of key components in
retrieval-augmented adaptation. In addition, we further present a novel
theoretical framework that directly support our empirical observations.
We aim to provide a better understanding on the impact of semantic shifts
during multi-modal retrieval for CLIP-based adaptation.

1.3 Thesis Outline
This doctoral thesis focuses on two key research topics: algorithmic foun-
dations of reliable machine learning on the hypersphere (Part I) and reli-
able multi-modal models with hyperspherical embeddings (Part II). The
primary goal of this thesis is to facilitate the understanding and design of
algorithms that help adapting foundation models to diverse downstream
tasks in the real world. An outline of this thesis is illustrated in Figure 1.2.

Part I consists of Chapter 2, Chapter 3, and Chapter 4, which provide
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Figure 1.2: Thesis outline for Part I, II, and III.

the algorithmic foundations of reliable machine learning with a focus on
hyperspherial embeddings.

Chapter 2 offers a holistic introduction on the background and pre-
liminaries. We start with a detailed description on contrastive learning
with hyperspherical embeddings, one of the most successful paradigms
in modern multi-modal foundation models. Next, we formally introduce
the problem setup on OOD detection and OOD generalization.

Chapter 3 introduces CIDER, a learning algorithm that exploits hy-
perspherical embeddings for OOD detection. In this chapter, we ana-
lyze and establish the unexplored relationship between OOD detection
and the embedding properties in the hyperspherical space. Theoretically,



10

CIDER formalizes the latent representations as von Mises-Fisher distri-
butions, thereby providing a theoretical interpretation of hyperspherical
embeddings. Empirically, CIDER establishes superior performance on
common benchmarks, outperforming the latest rival by a significant mar-
gin. The content of this chapter is primarily based on Ming et al. (2023).

Chapter 4 introduces HYPO, a learning algorithm that provably learns
domain-invariant representations in the hyperspherical space. In this chap-
ter, we introduce two guiding principles for shaping hyperspherical em-
beddings: intra-class variation and inter-class separation. In the ideal
case, features from the same class (across different training domains) are
closely aligned with their class prototypes, while different class proto-
types are maximally separated. This chapter also provides theoretical jus-
tifications on how the prototypical learning objective improves the OOD
generalization bound. The content of this chapter is primarily based on
Ming et al. (2024).

Inspired by the recent success of vision-language pre-training, Part II
extends the landscape of reliable machine learning from single-modal to
multi-modal regimes. In this part, we explore the principles of reliable
multi-modal models with hyperspherical embeddings. This part consists
of Chapter 5, Chapter 6, and Chapter 7.

Chapter 5 introduces Maximum Concept Matching (MCM), a simple
yet effective zero-shot OOD detection method based on aligning visual
features with textual concepts. We contribute in-depth analysis and the-
oretical insights to understand the effectiveness of MCM. Extensive ex-
periments demonstrate that MCM achieves superior performance on a
wide variety of real-world tasks. The content of this chapter is primarily
based on Ming et al. (2022a).
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Chapter 6 extends Chapter 5 and aims to address an underexplored
research question “How does fine-tuning impact out-of-distribution de-
tection for Vision-Language Models?” In this chapter, we present a com-
prehensive study to understand how fine-tuning impact OOD detection
for few-shot downstream tasks. By framing OOD detection as multi-modal
concept matching, we establish a connection between fine-tuning meth-
ods and various OOD scores. Our results suggest that a proper choice
of OOD scores is essential for CLIP-based fine-tuning. In particular, the
maximum concept matching (MCM) score provides a promising solution
consistently. The content of this chapter is primarily based on Ming and
Li (2023).

Chapter 7 complements previous chapters and explores another pop-
ular paradigm where one has access to an external knowledge base for
retrieval. In this chapter, we investigate an open research question: “How
does retrieval impact the adaptation of vision-language models?” We
adopt a reflective perspective by presenting a systematic study to under-
stand the roles of key components in retrieval-augmented adaptation. We
unveil new insights on uni-modal and cross-modal retrieval and highlight
the critical role of logit ensemble for effective adaptation. We also present
theoretical underpinnings that support our empirical observations.

Part III includes Appendices and supplementary materials for previ-
ous chapters. In addition, we provide extensions in Chapter 8 where we
move beyond vision-language models with aligned feature space.

Chapter 8 presents a pioneering work on OOD detection for document
understanding. Documents are multi-modal in nature yet no analogues
of paired image-text pairs exist for documents. This chapter explores
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if and how multi-modal information in documents can be exploited for
OOD detection. We provide a systematic and in-depth analysis on OOD
detection for document understanding models. We study the effects of
model modality, pre-training, and fine-tuning across various types of OOD
inputs. In particular, we find that spatial information is critical for docu-
ment OOD detection. To better exploit spatial information, we propose a
spatial-aware adapter, which serves as a parameter-efficient add-on mod-
ule to adapt transformer-based language models to the document do-
main. The content of this chapter is primarily based on Gu et al. (2023).



13

Chapter 2

Background

In this chapter, we formally introduce the concept of representation learn-
ing, with a focus on learning hyperspherical representations. We also in-
troduce the problem setup of out-of-distribution detection and out-of-distribution
generalization as representative tasks for reliable machine learning in the
open world. This chapter lays the foundation for subsequent chapters
where we dive deeper into OOD detection and generalization problems
in various contexts, especially with pre-trained foundation models.

2.1 Preliminaries

2.1.1 Representation Learning

Learning generalizable representations has been one of the central themes
in the field of deep learning. In this work, we mainly focus on represen-
tation learning paradigms with hyperspherical embeddings.

Unit hypersphere. A hypersphere is a topological space that is home-
omorphic to a standard n-sphere, which is the set of points in (n + 1)-
dimensional Euclidean space that are located at a constant distance from
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the center. When the sphere has a unit radius, it is called the unit hyper-
sphere. Formally, an n-dimensional unit-hypersphere

Sn := {z ∈ Rn+1|∥z∥2 = 1}

Geometrically, hyperspherical embeddings lie on the surface of a hyper-
sphere.

Hyperspherical learning with a single modality. We denote the input
space of the given modality (e.g., image or text) as X . In general, the
model architecture consists of two components: (1) a deep neural net-
work encoder f : X 7→ Re that maps the augmented input x to a high di-
mensional feature embedding f(x) (often referred to as the penultimate
layer features); (2) a classification head that maps the high dimensional
embedding f(x) to logits for classification. The loss is typically applied
to the normalized feature embedding z := f(x)/∥f(x)∥2. The normal-
ized embeddings are also referred to as hyperspherical embeddings, since
they are on a unit hypersphere.

Hyperspherical learning with multiple modalities. We introduce the
pioneering framework CLIP (Contrastive Language-Image Pre-Training) (Rad-
ford et al., 2021). CLIP adopts a simple dual-stream architecture with one
text encoder T : t → Rd (e.g., Transformer (Vaswani et al., 2017)) and one
image encoder I : x → Rd (e.g., ViT (Dosovitskiy et al., 2021)). CLIP is
pre-trained on million text-image pairs with a simple contrastive loss that
aligns the embeddings from different modalities in the latent space. The
loss is applied to the normalized feature embedding for both modalities.
To simplify notations, we also denote the encoder f := {I, T }.
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2.1.2 Out-of-Distribution Detection

When deploying a machine model in the real world, a reliable classifier
should not only accurately classify known in-distribution (ID) samples,
but also identify as “unknown” any OOD input. This can be achieved by
having an OOD detector, where OOD detection can be viewed as a binary
classification problem. In the following, we first introduce the classical
view of OOD detection, where models are trained from scratch. Next, we
introduce OOD detection with models pre-trained on large-scale data,
which are commonly employed in modern foundation models.

OOD detection with models trained from scratch. We consider multi-
class classification, where X denotes the input space and Y in = {1, 2, ..., C}
denotes the ID labels. The training set Din

tr = {(xi, yi)}N
i=1 is drawn i.i.d.

from PX Y in . Let PX denote the marginal distribution over X , which is
called the in-distribution (ID).

At test time, the goal of OOD detection is to decide whether a sample
x ∈ X is from PX (ID) or not (OOD). In practice, OOD is often defined by
a distribution that simulates unknowns encountered during deployment,
such as samples from an irrelevant distribution whose label set has no
intersection with Y in and therefore should not be predicted by the model.
Mathematically, let Dood

test denote an OOD test set where the label space
Yood ∩ Y in = ∅. The decision can be made via a level set estimation:

Gλ(x; Yin, f) = 1{S(x; Yin, f) ≥ λ},

where samples with a higher OOD score S(x) are classified as ID and vice
versa. The threshold λ is typically chosen so that a high fraction of ID data
(e.g. 95%) is correctly classified.

Remarks: In this formulation, Gλ(·) is the OOD detector, and S(·) is
also known as the scoring function. By convention, 1 represents the positive
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class (ID) and 0 indicates OOD. Therefore, OOD detection can also be
written as:

Gλ(x; Yin, f) =

1 S(x; Yin, f) ≥ λ

0 S(x; Yin, f) < λ
,

Alternatively, we can rewrite the above expression as follows:

Gλ(x; Yin, f) =

ID S(x; Yin, f) ≥ λ

OOD S(x; Yin, f) < λ
,

Both formulations are common in the literature. We will discuss OOD
detection with hyperspherical embeddings in Chapter 3.

OOD detection with pre-trained models. Given a pre-trained model
f , a (downstream) classification task is typically defined by a set of class
labels/names Yin, which we refer to as the known (ID) classes. Here ID
classes are defined w.r.t. the classification task of interest, instead of the
classes used in pre-training. Accordingly, OOD is defined w.r.t. the ID
classes, not the data distribution during pre-training. The goal of OOD
detection is to (1) detect samples that do not belong to any of the known
classes; (2) otherwise, assign test samples to one of the known classes.
Therefore, the OOD detector can be viewed as a “safeguard” for the clas-
sification model. In particular, for pre-trained CLIP models, OOD detec-
tion can be performed based on only the names of the given classes in Yin.
Different from standard supervised learning, there is no training on the
ID samples involved. We denote such setting as zero-shot OOD detec-
tion. Further discussions are provided in Chapter 5 and Chapter 6.
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2.1.3 Out-of-Distribution Generalization

Next, we introduce another important task for reliable machine learning
in the open world: out-of-distribution generalization. As before, we con-
sider multi-class classification where the input x ∈ X ⊂ Rd and the cor-
responding label y ∈ Y := {1, 2, · · · , C}. The joint distribution of X and
Y is unknown and represented by PXY . The goal is to learn a predictor
function, f : X → RC , that can accurately predict the label y for an input
x, where (x, y) ∼ PXY .

Unlike in standard supervised learning tasks, the out-of-distribution
(OOD) generalization problem is challenged by the fact that one cannot
sample directly from PXY . Instead, we can only sample (X, Y ) under lim-
ited environmental conditions, each of which corrupts or varies the data
differently. For example, in autonomous driving, these environmental
conditions may represent different weathering conditions such as snow,
rain, etc. We formalize this notion of environmental variations with a
set of environments or domains Eall. Sample pairs (Xe, Y e) are randomly
drawn from environment e. In practice, we may only have samples from a
finite subset of available environments Eavail ⊂ Eall. Given Eavail, the goal is to
learn a predictor f that can generalize across all possible environments.

The problem can be formally described as follows. Let Eavail ⊂ Eall

be a set of training environments, and assume that for each environment
e ∈ Eavail, we have a dataset De = {(xe

j , ye
j )}ne

j=1, sampled i.i.d. from an
unknown distribution Pe

XY . The goal of OOD generalization is to find
a classifier f ∗, using the data from the datasets De, that minimizes the
worst-case risk over the entire family of environments Eall:

min
f∈F

max
e∈Eall

EPe
XY

ℓ(f(Xe), Y e), (2.1)

where F is hypothesis space and l(·, ·) is the loss function.
The problem is challenging since we do not have access to data from
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domains outside Eavail. In particular, the task is commonly referred to as
multi-source domain generalization when |Eavail| > 1. We will discuss
OOD generalization with hyperspherical embeddings in Chapter 4.
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2.2 Common Notations
In this section, we present the common notations used in the thesis. In
each chapter, we will introduce additional notations when necessary.

Symbols Descriptions
[n] the set {1, ..., n}
1{·} Indicator function
∥ · ∥1 l1 norm of a matrix or a vector
∥ · ∥2 l2 norm of a matrix or a vector
∥ · ∥F The Frobenius norm of a matrix

1n n-dimensional vector with all 1
0n n-dimensional vector with all 0
In Identity matrix with shape n × n

A(i,j)/Aij The value at i-th row and j-th column of a matrix A
Ak,(i,j) The value at i-th row and j-th column of a matrix Ak

A† Moore-Penrose inverse of matrix A
⟨u, v⟩ / u⊤v The inner product between u and v

N (µ, σ2) Univariate Normal (Gaussian) distribution with mean µ and variance σ2

N (µ, Σ) Multivariate Gaussian distribution with mean µ and covariance matrix Σ
∇f(x) Gradient of f at x

∂f
∂x

Partial derivative of f with respect to x
Sn n-dimensional unit-hypersphere Sn := {z ∈ Rn+1 | ∥z∥2 = 1}

Table 2.1: List of common notations.
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Chapter 3

How to Exploit Hyperspherical
Embeddings for
Out-of-Distribution Detection?

Publication Statement. This chapter is a joint work with Yiyou Sun,
Ousmane Dia, Yixuan Li. The paper version of this chapter appeared in
ICLR 2023 (Ming et al., 2023).

Out-of-distribution (OOD) detection is a critical task for reliable ma-
chine learning. Recent advances in representation learning give rise to
distance-based OOD detection, where testing samples are detected as OOD
if they are relatively far away from the centroids or prototypes of in-distribution
(ID) classes. However, prior methods directly take off-the-shelf contrastive
losses that suffice for classifying ID samples, but are not optimally de-
signed when test inputs contain OOD samples. In this chapter, we in-
troduce CIDER, a novel representation learning framework that exploits
hyperspherical embeddings for OOD detection. CIDER jointly optimizes
two losses to promote strong ID-OOD separability: a dispersion loss that
promotes large angular distances among different class prototypes, and
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a compactness loss that encourages samples to be close to their class pro-
totypes. We analyze and establish the unexplored relationship between
OOD detection performance and the embedding properties in the hyper-
spherical space, and demonstrate the importance of dispersion and com-
pactness. CIDER establishes superior performance, outperforming the
latest rival by 13.33% in FPR95. Code is available at https://github.
com/deeplearning-wisc/cider.

3.1 Introduction
When deploying machine learning models in the open world, it is im-
portant to ensure the reliability of the model in the presence of out-of-
distribution (OOD) inputs—samples from an unknown distribution that
the network has not been exposed to during training, and therefore should
not be predicted with high confidence at test time. We desire models that
are not only accurate when the input is drawn from the known distribu-
tion, but are also aware of the unknowns outside the training categories.
This gives rise to the task of OOD detection, where the goal is to deter-
mine whether an input is in-distribution (ID) or not.

A plethora of OOD detection algorithms have been developed recently,
among which distance-based methods demonstrated promise (Lee et al.,
2018; Xing et al., 2020). These approaches circumvent the shortcoming
of using the model’s confidence score for OOD detection, which can be
abnormally high on OOD samples (Nguyen et al., 2015) and hence not
distinguishable from ID data. Distance-based methods leverage feature
embeddings extracted from a model, and operate under the assumption
that the test OOD samples are relatively far away from the clusters of ID
data.

Arguably, the efficacy of distance-based approaches can depend largely
on the quality of feature embeddings. Recent works including SSD+ (Se-

https://github.com/deeplearning-wisc/cider
https://github.com/deeplearning-wisc/cider
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hwag et al., 2021) and KNN+ (Sun et al., 2022) directly employ off-the-shelf
contrastive losses for OOD detection. In particular, these works use the
supervised contrastive loss (SupCon) (Khosla et al., 2020) for learning the
embeddings, which are then used for OOD detection with either para-
metric Mahalanobis distance (Lee et al., 2018; Sehwag et al., 2021) or non-
parametric KNN distance (Sun et al., 2022). However, existing training
objectives produce embeddings that suffice for classifying ID samples,
but remain sub-optimal for OOD detection. For example, when trained
on CIFAR-10 using SupCon loss, the average angular distance between ID
and OOD data is only 29.86 degrees in the embedding space, which is too
small for effective ID-OOD separation. This raises the important question:

How to exploit representation learning methods that maximally benefit OOD
detection?

In this work, we propose CIDER, a Compactness and DispErsion Regularized
learning framework designed for OOD detection. Our method is moti-
vated by the desirable properties of hyperspherical embeddings, which
can be naturally modeled by the von Mises-Fisher (vMF) distribution.
vMF is a classical and important distribution in directional statistics (Mar-
dia et al., 2000), is analogous to spherical Gaussian distributions for fea-
tures with unit norms. Our key idea is to design an end-to-end trainable
loss function that enables optimizing hyperspherical embeddings into a
mixture of vMF distributions, which satisfy two properties simultane-
ously: (1) each sample has a higher probability assigned to the correct
class in comparison to incorrect classes, and (2) different classes are far
apart from each other. To formalize our idea, CIDER introduces two losses:
a dispersion loss that promotes large angular distances among different
class prototypes, along with a compactness loss that encourages samples to
be close to their class prototypes. These two terms are complementary to
shape hyperspherical embeddings for both OOD detection and ID clas-
sification purposes. Unlike previous contrastive loss, CIDER explicitly
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formalizes the latent representations as vMF distributions, thereby pro-
viding a direct theoretical interpretation of hyperspherical embeddings.

In particular, we show that promoting large inter-class dispersion is
key to strong OOD detection performance, which has not been explored
in previous literature. Previous methods including SSD+ directly use off-
the-shelf SupCon loss, which produces embeddings that lack sufficient
inter-class dispersion needed for OOD detection. CIDER mitigates the
issue by explicitly optimizing for large inter-class margins and leads to
more desirable hyperspherical embeddings. Noticeably, when trained on
CIFAR-10, CIDER displays a relative 42.36% improvement of ID-OOD sep-
arability compared to SupCon. We further show that CIDER’s strong rep-
resentation can benefit different distance-based OOD scores, outperform-
ing recent competitive methods SSD+ (Sehwag et al., 2021) and KNN+ (Sun
et al., 2022) by a significant margin. Our key results and contributions are:

1. We propose CIDER, a novel representation learning framework de-
signed for OOD detection. Compared to the latest rival (Sun et al.,
2022), CIDER produces superior embeddings that lead to 13.33% er-
ror reduction (in FPR95) on the challenging CIFAR-100 benchmark.

2. We are the first to establish the unexplored relationship between
OOD detection performance and the embedding quality in the hy-
perspherical space, and provide measurements based on the notion
of compactness and dispersion. This allows future research to quan-
tify the embedding in the hyperspherical space for effective OOD
detection.

3. We offer new insights on the design of representation learning for
OOD detection. We also conduct extensive ablations to understand
the efficacy and behavior of CIDER, which remains effective and com-
petitive under various settings, including the ImageNet dataset.
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Figure 3.1: Overview of our compactness and dispersion regularized (CIDER)
learning framework for OOD detection. We jointly optimize two complementary
terms to encourage desirable properties of the embedding space: (1) a dispersion
loss to encourage larger angular distances among different class prototypes, and
(2) a compactness loss to encourage samples to be close to their class prototypes.

3.2 Preliminaries
We consider multi-class classification, where X denotes the input space
and Y in = {1, 2, ..., C} denotes the ID labels. The training set Din

tr =
{(xi, yi)}N

i=1 is drawn i.i.d. from PX Y in . Let PX denote the marginal dis-
tribution over X , which is called the in-distribution (ID).

Out-of-distribution detection. OOD detection can be viewed as a bi-
nary classification problem. At test time, the goal of OOD detection is to
decide whether a sample x ∈ X is from PX (ID) or not (OOD). In practice,
OOD is often defined by a distribution that simulates unknowns encoun-
tered during deployment, such as samples from an irrelevant distribution
whose label set has no intersection with Y in and therefore should not be
predicted by the model. Mathematically, let Dood

test denote an OOD test set
where the label space Yood ∩ Y in = ∅. The decision can be made via a
level set estimation: Gλ(x) = 1{S(x) ≥ λ}, where samples with higher
scores S(x) are classified as ID and vice versa. The threshold λ is typically
chosen so that a high fraction of ID data (e.g. 95%) is correctly classified.
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Hyperspherical embeddings. A hypersphere is a topological space that
is homeomorphic to a standard n-sphere, which is the set of points in
(n+1)-dimensional Euclidean space that are located at a constant distance
from the center. When the sphere has a unit radius, it is called the unit
hypersphere. Formally, an n-dimensional unit-hypersphere

Sn := {z ∈ Rn+1|∥z∥2 = 1}

Geometrically, hyperspherical embeddings lie on the surface of a hyper-
sphere.

3.3 Method
Overview. Our framework CIDER is illustrated in Figure 3.1. The gen-
eral architecture consists of two components: (1) a deep neural network
encoder f : X 7→ Re that maps the augmented input x̃ to a high di-
mensional feature embedding f(x̃) (often referred to as the penultimate
layer features); (2) a projection head h : Re 7→ Rd that maps the high di-
mensional embedding f(x̃) to a lower dimensional feature representation
z̃ := h(f(x̃)). The loss is applied to the normalized feature embedding
z := z̃/∥z̃∥2. The normalized embeddings are also referred to as hyper-
spherical embeddings, since they are on a unit hypersphere. Our goal is to
shape the hyperspherical embedding space so that the learned embed-
dings can be mostly effective for distinguishing ID vs. OOD data.

3.3.1 Model Hyperspherical Embeddings

The hyperspherical embeddings can be naturally modeled by the von
Mises-Fisher (vMF) distribution, a classical and important distribution
in directional statistics (Mardia et al., 2000). In particular, vMF is anal-
ogous to spherical Gaussian distributions for features z with unit norms
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(∥z∥2 = 1). The probability density function for a unit vector z ∈ Rd in
class c is defined as:

pd(z;µc, κ) = Zd(κ) exp
(
κµ⊤

c z
)

, (3.1)

where µc is the class prototype with unit norm, κ ≥ 0 indicates the tight-
ness of the distribution around the mean direction µc, and Zd(κ) is the
normalization factor. The larger value of κ, the stronger the distribution
is concentrated in the mean direction. In the extreme case of κ = 0, the
sample points are distributed uniformly on the hypersphere.

Under this probability model, an embedding vector z is assigned to
class c with the following normalized probability:

P(y = c|z; {κ,µj}C
j=1) =

Zd (κ) exp
(
κµ⊤

c z
)

∑C
j=1 Zd (κ) exp

(
κµ⊤

j z
) (3.2)

=
exp

(
µ⊤

c z/τ
)

∑C
j=1 exp

(
µ⊤

j z/τ
) , (3.3)

where κ = 1
τ
. Next, we outline our proposed training method that pro-

motes class-conditional vMF distributions for OOD detection.

3.3.2 How to Optimize Hyperspherical Embeddings?

Training objective. Our key idea is to design a trainable loss function that
enables optimizing hyperspherical embeddings into a mixture of vMF
distributions, which satisfy two properties simultaneously: (1) each sam-
ple has a higher probability assigned to the correct class in comparison to
incorrect classes, and (2) different classes are far apart from each other.

To achieve 1 , we can perform maximum likelihood estimation (MLE)
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on the training data:

argmaxθ

N∏
i=1

p(yi|zi; {κj,µj}C
j=1), (3.4)

where i is the index of the embedding and N is the size of the training set.
By taking the negative log-likelihood, the objective function is equivalent
to minimizing the following loss:

Lcomp = − 1
N

N∑
i=1

log
exp

(
z⊤

i µc(i)/τ
)

∑C
j=1 exp

(
z⊤

i µj/τ
) , (3.5)

where c(i) denotes the class index of a sample xi, and τ is the temperature
parameter. We term this compactness loss, since it encourages samples to
be closely aligned with its class prototype.

To promote property 2 , we propose the dispersion loss, optimizing
large angular distances among different class prototypes:

Ldis = 1
C

C∑
i=1

log 1
C − 1

C∑
j=1

1{j ̸= i}eµ
⊤
i µj/τ . (3.6)

While prototypes with larger pairwise angular distances may not im-
pact ID classification accuracy, they are crucial for OOD detection, as we
will show later in Section 3.4.2. Since the embeddings of OOD samples lie
in-between ID clusters, optimizing large inter-class margin benefits OOD
detection. The importance of inter-class dispersion can also be explained
in Figure 3.2, where samples in the fox class (OOD) are semantically close
to cat (ID) and dog (ID). A larger angular distance (i.e. smaller cosine
similarity) between ID classes cat and dog in the hyperspherical space
improves the separability from fox, and allows for more effective detec-
tion. We investigate this phenomenon quantitatively in Section 3.4.

Formally, our training objective CIDER (compactness and dispersion



29

Figure 3.2: Illustration of desirable hyperspherical embeddings for OOD
detection. As OOD samples lie between ID clusters, optimizing a large
angular distance among ID clusters benefits OOD detection.

regularized learning) is:

LCIDER = Ldis + λcLcomp, (3.7)

where λc is the co-efficient modulating the relative importance of two
losses. These two terms are complementary to shape hyperspherical em-
beddings for both ID classification and OOD detection.

Prototype estimation and update. During training, an important step
is to estimate the class prototype µc for each class c ∈ {1, 2, ..., C}. One
canonical way to estimate the prototypes is to use the mean vector of all
training samples for each class and update it frequently during training.
Despite its simplicity, this method incurs a heavy computational toll and
causes undesirable training latency. Instead, the class-conditional proto-
types can be effectively updated in an exponential-moving-average man-
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ner (EMA) (Li et al., 2020b):

µc := Normalize(αµc + (1 − α)z), ∀c ∈ {1, 2, . . . , C} (3.8)

where the prototype µc for class c is updated during training as the mov-
ing average of all embeddings with label c, and z denotes the normalized
embedding of samples of class c. We ablate the effect of prototype up-
date factor α in Section B.3. The pseudo-code for our method is in Ap-
pendix B.1.

Remark 1: Differences w.r.t. SSD+. We highlight three fundamental
differences w.r.t. SSD+, in terms of training objective, test-time OOD de-
tection, and theoretical interpretation. (1) At training time, SSD+ directly
uses off-the-shelf SupCon loss (Khosla et al., 2020), which produces em-
beddings that lack sufficient inter-class dispersion needed for OOD detection.
For example, when trained on CIFAR-10 using SupCon loss, the average
angular distance between ID and OOD data is only 29.86 degrees in the
embedding space. In contrast, CIDER enforces the inter-class dispersion
by explicitly maximizing the angular distances among different ID class
prototypes. As we will show in Section 3.4.2, CIDER displays a relative
42.36% improvement of ID-OOD separability compared to SSD+, due to
the explicit inter-class dispersion. (2) At test time, SSD+ uses the Maha-
lanobis distance (Lee et al., 2018), which imposes a strong Gaussian distri-
bution assumption on hyperspherical embeddings. In contrast, CIDER al-
leviates this assumption with a non-parametric distance score. (3) Lastly,
CIDER explicitly models the latent representations as vMF distributions,
providing a direct and clear geometrical interpretation of hyperspherical
embeddings.

Remark 2: Differences w.r.t. Proxy-based methods. Our work also
bears significant differences w.r.t. proxy-based metric learning methods.
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(1) Our primary task is OOD detection, whereas deep metric learning is
commonly used for face verification and image retrieval tasks; (2) Prior
methods such as ProxyAnchor (Kim et al., 2020) lack explicit prototype-
to-prototype dispersion, which we show is crucial for OOD detection.
Moreover, ProxyAnchor initializes the proxies randomly and updates through
gradients, while we estimate prototypes directly from sample embed-
dings using EMA. We provide experimental comparisons next.

3.4 Experiments

3.4.1 Common Setup

Datasets and training details. Following the common benchmarks in the
literature, we consider CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009)
as in-distribution datasets. For OOD test datasets, we use a suite of natu-
ral image datasets including SVHN (Netzer et al., 2011), Places365 (Zhou
et al., 2017), Textures (Cimpoi et al., 2014), LSUN (Yu et al., 2015), and
iSUN (Xu et al., 2015). In our main experiments, we use ResNet-18 as
the backbone for CIFAR-10 and ResNet-34 for CIFAR-100. We train the
model using stochastic gradient descent with momentum 0.9, and weight
decay 10−4. To demonstrate the simplicity and effectiveness of CIDER, we
adopt the same hyperparameters as in SSD+ (Sehwag et al., 2021) with
the SupCon loss: the initial learning rate is 0.5 with cosine scheduling, the
batch size is 512, and the training time is 500 epochs. We choose the de-
fault weight λc = 2, so that the value of different loss terms are similar
upon model initialization. Following the literature (Khosla et al., 2020),
we use the embedding dimension of 128 for the projection head. The
temperature τ is 0.1. We adjust the prototype update factor α, batch size,
temperature, loss weight, prototype update factor, and model architec-
ture in our ablation study (Appendix B.3). We report the ID classifica-
tion results for SSD+ and CIDER following the common linear evaluation
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protocol (Khosla et al., 2020), where a linear classifier is trained on top
of the normalized penultimate layer features. More experimental details
are provided in Appendix B.2. Code and data is released publicly for re-
producible research.

OOD detection scores. During test time, we employ a distance-based
method for OOD detection. An input x is considered OOD if it is rela-
tively far from the ID data in the embedding space. By default, we adopt
a simple non-parametric KNN distance (Sun et al., 2022), which does
not impose any distributional assumption on the feature space. Here the
distance is the cosine similarity with respect to the k-th nearest neigh-
bor, which is equivalent to the (negated) Euclidean distance as all fea-
tures have unit norms. In the ablation study, we also consider the com-
monly used Mahalanobis score (Lee et al., 2018) for a fair comparison
with SSD+ (Sehwag et al., 2021).

Evaluation metrics. We report the following metrics: (1) the false pos-
itive rate (FPR95) of OOD samples when the true positive rate of ID sam-
ples is at 95%, (2) the area under the receiver operating characteristic
curve (AUROC), and (3) ID classification accuracy (ID ACC).

3.4.2 Main Results and Analysis

CIDER outperforms competitive approaches. Table 3.1 contains a wide
range of competitive methods for OOD detection. All methods are trained
on ResNet-34 using CIFAR-100, without assuming access to auxiliary out-
lier datasets. For clarity, we divide the methods into two categories: trained
with and without contrastive losses. For pre-trained model-based scores
such as MSP (Hendrycks and Gimpel, 2017), ODIN (Liang et al., 2018),
Mahalanobis (Lee et al., 2018), and Energy (Liu et al., 2020), the model
is trained with the softmax cross-entropy (CE) loss. GODIN (Hsu et al.,
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Table 3.1: OOD detection performance for CIFAR-100 (ID) with ResNet-
34. Training with CIDER significantly improves OOD detection perfor-
mance.

Method
OOD Dataset AverageSVHN Places365 LSUN iSUN Texture

FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑

Without Contrastive Learning
MSP 78.89 79.80 84.38 74.21 83.47 75.28 84.61 74.51 86.51 72.53 83.12 75.27
ODIN 70.16 84.88 82.16 75.19 76.36 80.10 79.54 79.16 85.28 75.23 78.70 79.11
Mahalanobis 87.09 80.62 84.63 73.89 84.15 79.43 83.18 78.83 61.72 84.87 80.15 79.53
Energy 66.91 85.25 81.41 76.37 59.77 86.69 66.52 84.49 79.01 79.96 70.72 82.55
GODIN 74.64 84.03 89.13 68.96 93.33 67.22 94.25 65.26 86.52 69.39 87.57 70.97
LogitNorm 59.60 90.74 80.25 78.58 81.07 82.99 84.19 80.77 86.64 75.60 78.35 81.74

With Contrastive Learning
ProxyAnchor 87.21 82.43 70.10 79.84 37.19 91.68 70.01 84.96 65.64 84.99 66.03 84.78
CE + SimCLR 24.82 94.45 86.63 71.48 56.40 89.00 66.52 83.82 63.74 82.01 59.62 84.15
CSI 44.53 92.65 79.08 76.27 75.58 83.78 76.62 84.98 61.61 86.47 67.48 84.83
SSD+ 31.19 94.19 77.74 79.90 79.39 85.18 80.85 84.08 66.63 86.18 67.16 85.90
KNN+ 39.23 92.78 80.74 77.58 48.99 89.30 74.99 82.69 57.15 88.35 60.22 86.14
CIDER 23.09 95.16 79.63 73.43 16.16 96.33 71.68 82.98 43.87 90.42 46.89 87.67

2020) is trained using the DeConf-C loss, while LogitNorm (Wei et al.,
2022) modifies CE loss via logit normalization. For methods involving
contrastive losses, we consider ProxyAnchor (Kim et al., 2020), SimCLR (Winkens
et al., 2020), CSI (Tack et al., 2020), SSD+ (Sehwag et al., 2021), and KNN+ (Sun
et al., 2022). Both SSD+ and KNN+ use the SupCon loss in training. We use
the same network structure and embedding dimension, while varying the
training objective.

As shown in Table 3.1, OOD detection performance is significantly
improved with CIDER. Three trends can be observed: (1) Compared to
SSD+ and KNN+, CIDER explicitly optimizes for inter-class dispersion and
leads more desirable embeddings. Moreover, CIDER alleviates the class-
conditional Gaussian assumptions for OOD detection. Instead, a sim-
ple non-parametric distance-based score suffices. Specifically, CIDER out-
performs the competitive methods SSD+ by 20.3% and KNN+ by 13.3% in
FPR95; (2) While CSI (Tack et al., 2020) relies on sophisticated data aug-
mentations and ensembles in testing, CIDER only uses the default data
augmentations and thus is simpler in practice. Performance wise, CIDER
reduces the average FPR95 by 20.6% compared to CSI; (3) Lastly, as a re-
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sult of the improved embedding quality, CIDER improves the ID accuracy
by 0.76% compared to training with the CE loss (Table B.5). We provide
results on the less challenging task (CIFAR-10 as ID) in Appendix B.5,
where CIDER’s strong performance remains.

CIDER benefits different distance-based scores. We show that CIDER’s
strong representation can benefit different distance-based OOD scores.
We consider the Mahalanobis score (denoted as Maha) due to its com-
monality, and to ensure a fair comparison with SSD+ under the same OOD
score. The results are shown in Table 3.2. Under both KNN (non-parametric)
and Maha (parametric) scores, CIDER consistently improves the OOD de-
tection performance compared to training with SupCon. For example,
CIDER with KNN significant reduces FPR95 by 13.33% compared to Sup-
Con+KNN. Moreover, compared to SSD+ (SupCon+Maha), CIDER+Maha
reduces FPR95 by 22.77%. This further highlights the improved represen-
tation quality and generality of CIDER.

Table 3.2: Ablation on OOD detection score. Results are FPR95 on CIFAR-
100 (ID) with ResNet-34. We evaluate both Mahalanobis and KNN score
(K = 300).

Method OOD Dataset AVG FPR95SVHN Places365 LSUN iSUN Texture
SupCon+Maha (SSD+) 31.19 77.74 79.39 80.85 66.63 67.16
CIDER+Maha 16.68 80.34 11.07 73.82 40.06 44.39
SupCon+KNN (KNN+) 39.23 80.74 48.99 74.99 57.15 60.22
CIDER+KNN 23.09 79.63 16.16 71.68 43.87 46.89

Inter-class dispersion is key to strong OOD detection. Here we ex-
amine the effects of loss components on OOD detection. As shown in
Table 3.3, we have the following observations: (1) For ID classification,
training with Lcomp alone leads to an accuracy of 75.19%, similar to the
ID accuracy of SSD+ (75.11%). This suggests that promoting intra-class
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compactness and a moderate level of inter-class dispersion (as a result
of sample-to-prototype negative pairs in Lcomp) are sufficient to discrim-
inate different ID classes; (2) For OOD detection, further inter-class dis-
persion is critical, which is explicitly encouraged through the dispersion
loss Ldis. As a result, adding Ldis improved the average AUROC by 2%.
However, promoting inter-class dispersion via Ldis alone without Lcomp

is not sufficient for neither ID classification nor OOD detection. Our ab-
lation suggests that Ldis and Lcomp work synergistically to improve the
hyperspherical embeddings that are desirable for both ID classification
and OOD detection.

Table 3.3: Ablation study on loss component. Results (in AUROC) are
based on CIFAR-100 trained with ResNet-34. Training with only Lcomp
suffices for ID classification. Inter-class dispersion induced by Ldis is key
to OOD detection.

Loss Components AUROC↑ ID ACC↑
Lcomp Ldis Places365 LSUN iSUN Texture SVHN AVG
✓ 79.63 85.75 84.45 87.21 91.33 85.67 75.19

✓ 54.76 69.81 54.99 44.26 46.48 54.06 2.03
✓ ✓ 73.43 96.33 82.98 90.42 95.16 87.67 75.35

3.4.3 Characterizing and Understanding Embedding
Quality

CIDER learns distinguishable representations. We visualize the learned
feature embeddings in Figure 3.3 using UMAP (McInnes et al., 2018),
where the colors encode different class labels. A salient observation is
that embeddings obtained with CIDER enjoy much better compactness
compared to embeddings trained with the CE loss (3.3a). Moreover, the
classes are distributed more uniformly in the space, highlighting the effi-
cacy of the dispersion loss.
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(a) ID embeddings of CE (left) and CIDER (right)
(b) ID & OOD of
CE (top) and CIDER
(down)

Figure 3.3: (a): UMAP (McInnes et al., 2018) visualization of the fea-
tures when the model is trained with CE vs. CIDER for CIFAR-10 (ID).
(b): CIDER makes OOD samples more separable from ID compared to CE
(c.f. Table 3.4).

CIDER improves inter-class dispersion and intra-class compactness. Be-
yond visualization, we also quantitatively measure the embedding qual-
ity. We propose two measurements: inter-class dispersion and intra-class
compactness:

Dispersion(µ) = 1
C

C∑
i=1

1
C − 1

C∑
j=1

µ⊤
i µj1{j ̸= i}.

Compactness(Din
tr ,µ) = 1

C

C∑
j=1

1
n

n∑
i=1

z⊤
i µj1{yi = j},

where Din
tr = {xi, yi}N

i=1, and zi is the normalized embedding of xi for
all 1 ≤ i ≤ N . Dispersion is measured by the average cosine similarity
among pair-wise class prototypes. The compactness can be interpreted
as the average cosine similarity between each feature embedding and its
corresponding class prototype.

To make the measurements more interpretable, we convert cosine sim-
ilarities to angular degrees. Hence, a higher inter-class dispersion (in de-
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grees) indicates more separability among class prototypes, which is desir-
able. Similarly, lower intra-class compactness (in degrees) is better. The
results are shown in Table 3.4 based on the CIFAR-10 test set. Compared
to SSD+ (with SupCon loss), CIDER significantly improves the inter-class
dispersion by 12.03 degrees. Different from SupCon, CIDER explicitly opti-
mizes the inter-class dispersion, which especially benefits OOD detection.

Table 3.4: Compactness and dispersion of CIFAR-10 feature embedding,
along with the separability w.r.t. each OOD test set. We convert cosine
similarity to angular degrees for better readability.

Training Loss Dispersion (ID)↑ Compactness (ID)↓ ID-OOD Separability↑ (in degree)
(in degree) (in degree) CIFAR-100 LSUN iSUN Texture SVHN AVG

Cross-Entropy 67.17 24.53 7.11 14.57 13.70 13.76 11.08 12.04
SSD+ (SupCon loss) 75.50 22.08 23.90 28.55 25.70 33.45 37.70 29.86
CIDER (ours) 87.53 21.35 31.41 48.37 41.54 39.60 51.65 42.51

CIDER improves ID-OOD separability. Next, we quantitatively mea-
sure how the feature embedding quality affects the ID-OOD separability.
We introduce a separability score, which measures on average how close
the embedding of a sample from the OOD test set is to the closest ID class
prototype, compared to that of an ID sample. The traditional notion of
“OOD being far away from ID classes” is now translated to “OOD being
somewhere between ID clusters on the hypersphere”. A higher separabil-
ity score indicates that the OOD test set is easier to be detected. Formally,
we define the separability measurement as:

↑ Separability = 1
|Dood

test |
∑

x∈Dood
test

max
j∈[C]

z⊤
xµj − 1

|Din
test|

∑
x′∈Din

test

max
j∈[C]

z⊤
x′µj, (3.9)

where Dood
test is the OOD test dataset and zx denotes the normalized em-

bedding of sample x. Table 3.4 shows that CIDER leads to higher sepa-
rability and consequently superior OOD detection performance (c.f. Ta-
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ble 3.1). Averaging across 5 OOD test datasets, our method displays a rel-
ative 42.36% improvement of ID-OOD separability compared to SupCon.
This further verifies the effectiveness of CIDER for improving OOD detec-
tion.

SUN Places365 Textures iNaturalist
Dataset
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Figure 3.4: Fine-tuning pre-trained ResNet-34 on ImageNet-100 (ID).

3.4.4 Additional Ablations and Analysis

CIDER is competitive on large-scale datasets. To further examine the
performance of CIDER on real-world tasks, we evaluate the performance
of CIDER on the more challenging large-scale benchmarks. Specifically,
we use ImageNet-100 as ID, a subset of ImageNet (Deng et al., 2009) con-
sisting of 100 randomly sampled classes. For OOD test datasets, we use
the same ones in (Huang and Li, 2021), including subsets of iNatural-
ist (Van Horn et al., 2018), Sun (Xiao et al., 2010), Places (Zhou et al.,
2017), and Texture (Cimpoi et al., 2014). For each OOD dataset, the cat-
egories do not overlap with the ID dataset. For computational efficiency,
we fine-tune pre-trained ResNet-34 with CIDER and SupCon losses for 10
epochs with an initial learning rate of 0.01. For each loss, we update the
weights of the last residual block and the nonlinear projection head, while
freezing the parameters in the first three residual blocks. At test time, we
use the same detection score (KNN) to evaluate representation quality.
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The performance (in AUROC) is shown in Figure 3.4 (more results are in
Appendix B.4). We can see that CIDER remains very competitive on all
the OOD test sets where CIDER consistently outperforms SupCon. This
further verifies the benefits of explicitly promoting inter-class dispersion
and intra-class compactness.

Ablation studies on weight scale, prototype update factor, learning rate,
temperature, batch size, and architecture. We provide comprehensive
ablation studies to understand the impact of various factors in Appendix B.3.
For example, as shown in Figure 3.5, CIDER consistently outperforms
SupCon across different batch sizes.
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Figure 3.5: OOD Detection performance across different batch sizes..

3.5 Related Works
Out-of-distribution detection. The majority of works in the OOD detec-
tion literature focus on the supervised setting, where the goal is to derive
a binary ID-OOD classifier along with a classification model for the in-
distribution data. Compared to generative model-based methods (Kirichenko
et al., 2020; Nalisnick et al., 2019; Ren et al., 2019; Serrà et al., 2020; Xiao
et al., 2020), OOD detection based on supervised discriminative models
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typically yield more competitive performance. For deep neural networks-
based methods, most OOD detection methods derive confidence scores
either based on the output (Bendale and Boult, 2016; Hendrycks and Gim-
pel, 2017; Hsu et al., 2020; Huang and Li, 2021; Liang et al., 2018; Liu et al.,
2020; Sun et al., 2021; Ming et al., 2022b), gradient information (Huang
et al., 2021a), or the feature embeddings (Lee et al., 2018; Sastry and Oore,
2020; Tack et al., 2020; Zhou et al., 2021c; Sehwag et al., 2021; Sun et al.,
2022; Ming et al., 2022a; Du et al., 2022a). Our method can be categorized
as a distance-based OOD detection method by exploiting the hyperspher-
ical embedding space.

Contrastive representation learning. Contrastive representation learn-
ing (van den Oord et al., 2019) aims to learn a discriminative embedding
where positive samples are aligned while negative ones are dispersed.
It has demonstrated remarkable success for visual representation learn-
ing in unsupervised (Chen et al., 2020a,b; He et al., 2020; Robinson et al.,
2021), semi-supervised (Assran et al., 2021), and supervised settings (Khosla
et al., 2020). Recently, Li et al. (2021b) propose a prototype-based con-
trastive loss for unsupervised learning where prototypes are generated
via a clustering algorithm, while our method is supervised where proto-
types are updated based on labels. Li et al. (2021a) incorporate a prototype-
based loss to tackle data noise. Wang and Isola (2020) analyze the asymp-
totic behavior of contrastive losses theoretically, while Wang and Liu
(2021) empirically investigate the properties of contrastive losses for clas-
sification. Recently, Bucci et al. (2022) investigates contrastive learning
for open-set domain adaptation. However, none of the works focus on
OOD detection. We aim to fill the gap and facilitate the design and un-
derstanding of contrastive losses for OOD detection.

Representation learning for OOD detection. Self-supervised learning
has been shown to improve OOD detection. Prior works (Sehwag et al.,
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2021; Winkens et al., 2020) verify the effectiveness of directly applying
the off-the-shelf multi-view contrastive losses such as SupCon and SimCLR
for OOD detection. CSI (Tack et al., 2020) investigates the type of data
augmentations that are particularly beneficial for OOD detection. Dif-
ferent from prior works, we focus on hyperspherical embeddings and
propose to explicitly encourage the desirable properties for OOD detec-
tion, and thus alleviate the dependence on specific data augmentations or
self-supervision. Moreover, CIDER explicitly models the latent represen-
tations as vMF distributions, providing a direct and clear geometrical in-
terpretation of hyperspherical embeddings. Closest to our work, Du et al.
(2022a) recently explores shaping representations into vMF distributions
for object-level OOD detection. However, they do not consider the inter-
class dispersion loss, which we show is crucial to achieving strong OOD
detection performance.

Deep metric learning. Learning a desirable embedding is a fundamen-
tal goal in the deep metric learning community. Various losses have been
proposed for face verification (Deng et al., 2019; Liu et al., 2017; Wang
et al., 2018), person re-identification (Chen et al., 2017; Xiao et al., 2017),
and image retrieval (Kim et al., 2019; Movshovitz-Attias et al., 2017; Oh Song
et al., 2016; Teh et al., 2020). However, none of the works focus on desir-
able embeddings for OOD detection. The difference between CIDER and
proxy-based methods has been discussed in Remark 2.

3.6 Conclusion and Outlook
In this work, we propose CIDER, a novel representation learning frame-
work that exploits hyperspherical embeddings for OOD detection. CIDER
jointly optimizes the dispersion and compactness losses to promote strong
ID-OOD separability. We show that CIDER achieves superior performance
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on common OOD benchmarks, including large-scale OOD detection tasks.
Moreover, we introduce new measurements to quantify the hyperspher-
ical embedding, and establish the relationship with OOD detection per-
formance. We conduct extensive ablations to understand the efficacy and
behavior of CIDER under various settings and hyperparameters. We hope
our work can inspire future methods of exploiting hyperspherical repre-
sentations for OOD detection.
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Chapter 4

Hyperspherical
Out-of-Distribution
Generalization

Publication Statement. This chapter is a joint work with Haoyue Bai,
Julian Katz-Samuels, and Yixuan Li. The paper version of this chapter
appeared in ICLR 2024 (Ming et al., 2024).

Out-of-distribution (OOD) generalization is critical for machine learn-
ing models deployed in the real world. However, achieving this can be
fundamentally challenging, as it requires the ability to learn invariant fea-
tures across different domains or environments. In this chapter, we intro-
duce a novel framework HYPO (HYPerspherical OOD generalization)
that provably learns domain-invariant representations in a hyperspheri-
cal space. In particular, our hyperspherical learning algorithm is guided
by intra-class variation and inter-class separation principles—ensuring
that features from the same class (across different training domains) are
closely aligned with their class prototypes, while different class proto-
types are maximally separated. We further provide theoretical justifica-
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tions on how our prototypical learning objective improves the OOD gen-
eralization bound. Through extensive experiments on challenging OOD
benchmarks, we demonstrate that our approach outperforms competi-
tive baselines and achieves superior performance. Code is available at
https://github.com/deeplearning-wisc/hypo.

4.1 Introduction
Deploying machine learning models in real-world settings presents a crit-
ical challenge of generalizing under distributional shifts. These shifts are
common due to mismatches between the training and test data distri-
butions. For instance, in autonomous driving, a model trained on in-
distribution (ID) data collected under sunny weather conditions is ex-
pected to perform well in out-of-distribution (OOD) scenarios, such as
rain or snow. This underscores the importance of the OOD generalization
problem, which involves learning a predictor that can generalize across all
possible environments, despite being trained on a finite subset of training
environments.

A plethora of OOD generalization algorithms has been developed in
recent years (Zhou et al., 2022a), where a central theme is to learn domain-
invariant representations—features that are consistent and meaningful
across different environments (domains) and can generalize to the un-
seen test environment. Recently, Ye et al. (2021) theoretically showed that
the OOD generalization error can be bounded in terms of intra-class vari-
ation and inter-class separation. Intra-class variation measures the stability
of representations across different environments, while inter-class sepa-
ration assesses the dispersion of features among different classes. Ideally,
features should display low variation and high separation, in order to gen-
eralize well to OOD data (formally described in Section 4.3). Despite the
theoretical analysis, a research question remains open in the field:

https://github.com/deeplearning-wisc/hypo
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RQ: How to design a practical learning algorithm that directly
achieves these two properties, and what theoretical guarantees can
the algorithm offer?

To address the question, this chapter presents a learning framework
HYPO (HYPerspherical OOD generalization), which provably learns domain-
invariant representations in the hyperspherical space with unit norm (Sec-
tion 4.4). Our key idea is to promote low variation (aligning represen-
tation across domains for every class) and high separation (separating
prototypes across different classes). In particular, the learning objective
shapes the embeddings such that samples from the same class (across
all training environments) gravitate towards their corresponding class
prototype, while different class prototypes are maximally separated. The
two losses in our objective function can be viewed as optimizing the key
properties of intra-class variation and inter-class separation, respectively.
Since samples are encouraged to have a small distance with respect to
their class prototypes, the resulting embedding geometry can have a small
distribution discrepancy across domains and benefits OOD generaliza-
tion. Geometrically, we show that our loss function can be understood
through the lens of maximum likelihood estimation under the classic von
Mises-Fisher distribution.

Empirical contribution. Empirically, we demonstrate strong OOD gen-
eralization performance by extensively evaluating HYPO on common bench-
marks (Section 4.5). On the CIFAR-10 (ID) vs. CIFAR-10-Corruption
(OOD) task, HYPO substantially improves the OOD generalization accu-
racy on challenging cases such as Gaussian noise, from 78.09% to 85.21%.
Furthermore, we establish superior performance on popular domain gen-
eralization benchmarks, including PACS, Office-Home, VLCS, etc. For ex-
ample, we achieve 88.0% accuracy on PACS which outperforms the best
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loss-based method by 1.1%. This improvement is non-trivial using stan-
dard stochastic gradient descent optimization. When coupling our loss
with specialized optimization SWAD (Cha et al., 2021), the accuracy is
further increased to 89%. We provide visualization and quantitative anal-
ysis to verify that features learned by HYPO indeed achieve low intra-
class variation and high inter-class separation.

Theoretical insight. We provide theoretical justification for how HYPO
can guarantee improved OOD generalization, supporting our empirical
findings. Our theory complements Ye et al. (2021), which does not pro-
vide a loss for optimizing the intra-class variation or inter-class separa-
tion. Thus, a key contribution of this chapter is to provide a crucial link between
provable understanding and a practical algorithm for OOD generalization in the
hypersphere. In particular, our Theorem 4.6 shows that when the model
is trained with our loss function, we can upper bound intra-class varia-
tion, a key quantity to bound OOD generalization error. For a learnable
OOD generalization task, the upper bound on generalization error is de-
termined by the variation estimate on the training environments, which is
effectively reduced by our loss function under sufficient sample size and
expressiveness of the neural network.

4.2 Problem Setup
We consider a multi-class classification task that involves a pair of random
variables (X, Y ) over instances x ∈ X ⊂ Rd and corresponding labels
y ∈ Y := {1, 2, · · · , C}. The joint distribution of X and Y is unknown and
represented byPXY . The goal is to learn a predictor function, f : X → RC ,
that can accurately predict the label y for an input x, where (x, y) ∼ PXY .

Unlike in standard supervised learning tasks, the out-of-distribution
(OOD) generalization problem is challenged by the fact that one cannot
sample directly from PXY . Instead, we can only sample (X, Y ) under lim-
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ited environmental conditions, each of which corrupts or varies the data
differently. For example, in autonomous driving, these environmental
conditions may represent different weathering conditions such as snow,
rain, etc. We formalize this notion of environmental variations with a
set of environments or domains Eall. Sample pairs (Xe, Y e) are randomly
drawn from environment e. In practice, we may only have samples from a
finite subset of available environments Eavail ⊂ Eall. Given Eavail, the goal is to
learn a predictor f that can generalize across all possible environments.
The problem is stated formally below.

Definition 4.1 (OOD Generalization). Let Eavail ⊂ Eall be a set of training
environments, and assume that for each environment e ∈ Eavail, we have a dataset
De = {(xe

j , ye
j )}ne

j=1, sampled i.i.d. from an unknown distribution Pe
XY . The goal

of OOD generalization is to find a classifier f ∗, using the data from the datasets
De, that minimizes the worst-case risk over the entire family of environments Eall:

min
f∈F

max
e∈Eall

EPe
XY

ℓ(f(Xe), Y e), (4.1)

where F is hypothesis space and l(·, ·) is the loss function.

The problem is challenging since we do not have access to data from
domains outside Eavail. In particular, the task is commonly referred to as
multi-source domain generalization when |Eavail| > 1.

4.3 Motivation of Algorithm Design
Our work is motivated by the theoretical findings in Ye et al. (2021), which
shows that the OOD generalization performance can be bounded in terms
of intra-class variation and inter-class separation with respect to various
environments. The formal definitions are given as follows.
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Definition 4.2 (Intra-class variation). The variation of feature ϕ across a do-
main set E is

V(ϕ, E) = max
y∈Y

sup
e,e′∈E

ρ
(
P(ϕe|y),P(ϕe′ |y)

)
, (4.2)

where ρ(P,Q) is a symmetric distance (e.g., Wasserstein distance, total variation,
Hellinger distance) between two distributions, and P(ϕe|y) denotes the class-
conditional distribution for features of samples in environment e.

Definition 4.3 (Inter-class separation1). The separation of feature ϕ across
domain set E is

Iρ(ϕ, E) = 1
C(C − 1)

∑
y ̸=y′

y,y′∈Y

min
e∈E

ρ
(
P(ϕe|y),P(ϕe|y′)

)
. (4.3)

The intra-class variation V(ϕ, E) measures the stability of feature ϕ

over the domains in E and the inter-class separation I(ϕ, E) captures the
ability of ϕ to distinguish different labels. Ideally, features should display
high separation and low variation.

Definition 4.4. The OOD generalization error of classifier f is defined as fol-
lows:

err(f) = max
e∈Eall

EPe
XY

ℓ(f(Xe), Y e) − max
e∈Eavail

EPe
XY

ℓ(f(Xe), Y e)

which is bounded by the variation estimate on Eavail with the following theorem.

Theorem 4.5 (OOD error upper bound, informal (Ye et al., 2021)). Sup-
pose the loss function ℓ(·, ·) is bounded by [0, B]. For a learnable OOD gener-
alization problem with sufficient inter-class separation, the OOD generalization

1Referred to as “Informativeness” in Ye et al. (2021).
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error err(f) can be upper bounded by

err(f) ≤ O
((

Vsup(h, Eavail)
) α2

(α+d)2
)

, (4.4)

for some α > 0, and Vsup (h, Eavail ) ≜ supβ∈Sd−1 V
(
β⊤h, Eavail

)
is the inter-

class variation, h(·) ∈ Rd is the feature vector, and β is a vector in unit hyper-
sphere Sd−1 =

{
β ∈ Rd : ∥β∥2 = 1

}
, and f is a classifier based on normalized

feature h.

Remarks. The Theorem above suggests that both low intra-class vari-
ation and high inter-class separation are desirable properties for theoret-
ically grounded OOD generalization. Note that in the full formal Theo-
rem (see Appendix C.3), maintaining the inter-class separation is neces-
sary for the learnability of the OOD generalization problem (Def. C.9). In
other words, when the learned embeddings exhibit high inter-class sep-
aration, the problem becomes learnable. In this context, bounding intra-
class variation becomes crucial for reducing the OOD generalization er-
ror.

Despite the theoretical underpinnings, it remains unknown to the field
how to design a practical learning algorithm that directly achieves these
two properties, and what theoretical guarantees can the algorithm offer.
This motivates our work.

To reduce the OOD generalization error, our key motivation is to
design a hyperspherical learning algorithm that directly promotes
low variation (aligning representation across domains for every
class) and high separation (separating prototypes across different
classes).
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4.4 Method
Following the motivation in Section 4.3, we now introduce the details
of the learning algorithm HYPO (HYPerspherical OOD generalization),
which is designed to promote domain invariant representations in the
hyperspherical space. The key idea is to shape the hyperspherical em-
bedding space so that samples from the same class (across all training
environments Eavail) are closely aligned with the corresponding class pro-
totype. Since all points are encouraged to have a small distance with re-
spect to the class prototypes, the resulting embedding geometry can have
a small distribution discrepancy across domains and hence benefits OOD
generalization. In what follows, we first introduce the learning objective
(Section 4.4.1), and then we discuss the geometrical interpretation of the
loss and embedding (Section 4.4.2). We will provide theoretical justifica-
tion for HYPO in Section 4.6, which leads to a provably smaller intra-class
variation, a key quantity to bound OOD generalization error.

4.4.1 Hyperspherical Learning for OOD Generalization

Loss function. The learning algorithm is motivated to directly optimize
the two criteria: intra-class variation and inter-class separation. At a high
level, HYPO aims to learn embeddings for each sample in the training en-
vironments by maintaining a class prototype vector µc ∈ Rd for each class
c ∈ {1, 2, ..., C}. To optimize for low variation, the loss encourages the fea-
ture embedding of a sample to be close to its class prototype. To optimize
for high separation, the loss encourages different class prototypes to be
far apart from each other.

Specifically, we consider a deep neural network h : X 7→ Rd that maps
an input x̃ ∈ X to a feature embedding z̃ := h(x̃). The loss operates on
the normalized feature embedding z := z̃/∥z̃∥2. The normalized embed-
dings are also referred to as hyperspherical embeddings, since they are on
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a unit hypersphere, denoted as Sd−1 := {z ∈ Rd | ∥z∥2 = 1}. The loss is
formalized as follows:

L = − 1
N

∑
e∈Eavail

|De|∑
i=1

log
exp

(
ze

i
⊤µc(i)/τ

)
∑C

j=1 exp
(
ze

i
⊤µj/τ

)
︸ ︷︷ ︸

Lvar: ↓ variation

+ 1
C

C∑
i=1

log 1
C − 1

∑
j ̸=i,j∈Y

exp
(
µ⊤

i µj/τ
)

︸ ︷︷ ︸
↑ separation

,

where N is the number of samples, τ is the temperature, z is the nor-
malized feature embedding, and µc is the prototype embedding for class
c. While hyperspherical learning algorithms have been studied in other
context (Mettes et al., 2019; Khosla et al., 2020; Ming et al., 2023), none of
the prior works explored its provable connection to domain generalization, which
is our distinct contribution. We will theoretically show in Section 4.6 that mini-
mizing our loss function effectively reduces intra-class variation, a key quantity
to bound OOD generalization error.

The training objective in Equation 4.5 can be efficiently optimized end-
to-end. During training, an important step is to estimate the class proto-
type µc for each class c ∈ {1, 2, ..., C}. The class-conditional prototypes
can be updated in an exponential-moving-average manner (EMA) (Li
et al., 2020b):

µc := Normalize(αµc + (1 − α)z), ∀c ∈ {1, 2, . . . , C} (4.5)

where the prototype µc for class c is updated during training as the mov-
ing average of all embeddings with label c, and z denotes the normal-
ized embedding of samples of class c. An end-to-end pseudo algorithm
is summarized in Appendix C.1.

Class prediction. In testing, classification is conducted by identifying
the closest class prototype: ŷ = arg maxc∈[C] fc(x), where fc(x) = z⊤µc

and z = h(x)
∥h(x)∥2

is the normalized feature embedding.
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4.4.2 Geometrical Interpretation of Loss and Embedding

Geometrically, the loss function above can be interpreted as learning em-
beddings located on the surface of a unit hypersphere. The hyperspheri-
cal embeddings can be modeled by the von Mises-Fisher (vMF) distribu-
tion, a well-known distribution in directional statistics (Jupp and Mardia,
2009). For a unit vector z ∈ Rd in class c, the probability density function
is defined as

p(z | y = c) = Zd(κ) exp(κµ⊤
c z), (4.6)

where µc ∈ Rd denotes the mean direction of the class c, κ ≥ 0 denotes
the concentration of the distribution around µc, and Zd(κ) denotes the
normalization factor. A larger κ indicates a higher concentration around
the class center. In the extreme case of κ = 0, the samples are distributed
uniformly on the hypersphere.

Figure 4.1: Illustration of hyperspherical embeddings. Images are from
PACS (Li et al., 2017a).

Under this probabilistic model, an embedding z is assigned to the class
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c with the following probability

p(y = c | z; {κ,µj}C
j=1) = Zd(κ) exp(κµ⊤

c z)∑C
j=1 Zd(κ) exp(κµ⊤

j z)

= exp(µ⊤
c z/τ)∑C

j=1 exp(µ⊤
j z/τ)

, (4.7)

where τ = 1/κ denotes a temperature parameter.
Maximum likelihood view. Notably, minimizing the first term in our loss
(cf. Eq. 4.5) is equivalent to performing maximum likelihood estimation
under the vMF distribution:

argmaxθ

N∏
i=1

p(yi | xi; {κ,µj}C
j=1), where (xi, yi) ∈

⋃
e∈Etrain

De

where i is the index of sample, j is the index of the class, and N is the size
of the training set. In effect, this loss encourages each ID sample to have a
high probability assigned to the correct class in the mixtures of the vMF
distributions.

4.5 Experiments
In this section, we show that HYPO achieves strong OOD generalization
performance in practice, establishing competitive performance on several
benchmarks. In what follows, we describe the experimental setup in Sec-
tion 4.5.1, followed by main results and analysis in Section 4.5.2.

4.5.1 Experimental Setup

Datasets. Following the common benchmarks in literature, we use CIFAR-
10 (Krizhevsky et al., 2009) as the in-distribution data. We use CIFAR-
10-C (Hendrycks and Dietterich, 2019) as OOD data, with 19 different
common corruption applied to CIFAR-10. In addition to CIFAR-10, we
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conduct experiments on popular benchmarks including PACS (Li et al.,
2017a), Office-Home (Gulrajani and Lopez-Paz, 2021), and VLCS (Gul-
rajani and Lopez-Paz, 2021) to validate the generalization performance.
PACS contains 4 domains/environments (photo, art painting, cartoon,
sketch) with 7 classes (dog, elephant, giraffe, guitar, horse, house,
person). Office-Home comprises four different domains: art, clipart, prod-
uct, and real. Results on additional OOD datasets Terra Incognita (Gulra-
jani and Lopez-Paz, 2021), and ImageNet can be found in Appendix C.6
and Appendix C.7.

Evaluation metrics. We report the following two metrics: (1) ID classi-
fication accuracy (ID Acc.) for ID generalization, and (2) OOD classifi-
cation accuracy (OOD Acc.) for OOD generalization.

Experimental details. In our main experiments, we use ResNet-18 for
CIFAR-10 and ResNet-50 for PACS, Office-Home, and VLCS. For these
datasets, we use stochastic gradient descent with momentum 0.9, and
weight decay 10−4. For CIFAR-10, we train the model from scratch for 500
epochs using an initial learning rate of 0.5 and cosine scheduling, with a
batch size of 512. Following common practice for contrastive losses (Chen
et al., 2020a; Khosla et al., 2020; Yao et al., 2022), we use an MLP projection
head with one hidden layer to obtain features. The embedding (output)
dimension is 128 for the projection head. We set the default tempera-
ture τ as 0.1 and the prototype update factor α as 0.95. For PACS, Office-
Home, and VLCS, we follow the common practice and initialize the net-
work using ImageNet pre-trained weights. We fine-tune the network for
50 epochs. The embedding dimension is 512 for the projection head. We
adopt the leave-one-domain-out evaluation protocol and use the train-
ing domain validation set for model selection (Gulrajani and Lopez-Paz,
2021), where the validation set is pooled from all training domains. De-
tails on other hyperparameters are in Appendix C.4.
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Algorithm PACS Office-Home VLCS Average Acc. (%)
ERM (Vapnik, 1999) 85.5 67.6 77.5 76.7
CORAL (Sun and Saenko, 2016) 86.2 68.7 78.8 77.9
DANN (Ganin et al., 2016) 83.7 65.9 78.6 76.1
MLDG (Li et al., 2018a) 84.9 66.8 77.2 76.3
CDANN (Li et al., 2018c) 82.6 65.7 77.5 75.3
MMD (Li et al., 2018b) 84.7 66.4 77.5 76.2
IRM (Arjovsky et al., 2019) 83.5 64.3 78.6 75.5
GroupDRO (Sagawa et al., 2019) 84.4 66.0 76.7 75.7
I-Mixup (Wang et al., 2020) 84.6 68.1 77.4 76.7
RSC (Huang et al., 2020) 85.2 65.5 77.1 75.9
ARM (Zhang et al., 2021a) 85.1 64.8 77.6 75.8
MTL (Blanchard et al., 2021) 84.6 66.4 77.2 76.1
VREx (Krueger et al., 2021) 84.9 66.4 78.3 76.5
Mixstyle (Zhou et al., 2021a) 85.2 60.4 77.9 74.5
SelfReg (Kim et al., 2021a) 85.6 67.9 77.8 77.1
SagNet (Nam et al., 2021) 86.3 68.1 77.8 77.4
GVRT (Min et al., 2022) 85.1 70.1 79.0 78.1
VNE (Kim et al., 2023a) 86.9 65.9 78.1 77.0
HYPO (Ours) 88.0±0.4 71.7±0.3 78.2±0.4 79.3

Table 4.1: Comparison with domain generalization methods on the PACS,
Office-Home, and VLCS. All methods are trained on ResNet-50. The model se-
lection is based on a training domain validation set. To isolate the effect of loss
functions, all methods are optimized using standard SGD. We report the average
and std of our method. ±x denotes the rounded standard error.

4.5.2 Main Results and Analysis
HYPO excels on common corruption benchmarks. As shown in Fig-
ure 4.2, HYPO achieves consistent improvement over the ERM baseline
(trained with cross-entropy loss), on a variety of common corruptions.
Our evaluation includes different corruptions including Gaussian noise,
Snow, JPEG compression, Shot noise, Zoom blur, etc. The model is trained
on CIFAR-10, without seeing any type of corruption data. In particular,
our method brings significant improvement for challenging cases such as
Gaussian noise, enhancing OOD accuracy from 78.09% to 85.21% (+7.12%).
Complete results on all 19 different corruption types are in Appendix C.5.
HYPO establishes competitive performance on popular benchmarks.



56

Gau
ss

ian
 N

ois
e

Sno
w

JP
EG C

om
p.

Sho
t N

ois
e

Zoo
m B

lur
Fros

t

Moti
on

 B
lur

Im
pu

lse
 N

ois
e

Pixe
lat

e

Spe
ck

le 
Nois

e

Elas
tic

 Tran
sfo

rm

Satu
rat

e Avg

75

80

85

90

95
A

cc
ERM
Ours

Figure 4.2: Our method HYPO significantly improves the OOD generalization
performance compared to ERM on various OOD datasets w.r.t. CIFAR-10 (ID).
Full results can be seen in Appendix C.5.

Our method delivers superior results in the popular domain generaliza-
tion tasks, as shown in Table 4.1. HYPO outperforms an extensive collec-
tion of common OOD generalization baselines on popular domain gen-
eralization datasets, including PACS, Office-Home, VLCS. For instance,
on PACS, HYPO improves the best loss-based method by 1.1%. Notably,
this enhancement is non-trivial since we are not relying on specialized
optimization algorithms such as SWAD (Cha et al., 2021). Later in our
ablation, we show that coupling HYPO with SWAD can further boost the
OOD generalization performance, establishing superior performance on
this challenging task.

With multiple training domains, we observe that it is desirable to em-
phasize hard negative pairs when optimizing the inter-class separation.
As depicted in Figure 4.3, the embeddings of negative pairs from the
same domain but different classes (such as dog and elephant in art paint-
ing) can be quite close on the hypersphere. Therefore, it is more infor-
mative to separate such hard negative pairs. This can be enforced by a
simple modification to the denominator of our variation loss (Eq. C.4 in
Appendix C.4), which we adopt for multi-source domain generalization
tasks.
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Figure 4.3: Illustration of hard negative pairs that share the same domain
(art painting) but have different class labels.

Relations to PCL. PCL (Yao et al., 2022) adapts a proxy-based contrastive
learning framework for domain generalization. We highlight several no-
table distinctions from ours: (1) While PCL offers no theoretical insights,
HYPO is guided by theory. We provide a formal theoretical justification
that our method reduces intra-class variation which is essential to bound-
ing OOD generalization error (see Section 4.6); (2) Our loss function for-
mulation is different and can be rigorously interpreted as shaping vMF
distributions of hyperspherical embeddings (see Section 4.4.2), whereas
PCL can not; (3) Unlike PCL (86.3% w/o SWAD), HYPO is able to achieve
competitive performance (88.0%) without heavy reliance on special op-
timization SWAD (Cha et al., 2021), a dense and overfit-aware stochastic
weight sampling (Izmailov et al., 2018) strategy for OOD generalization.
As shown in Table 4.2, we also conduct experiments in conjunction with
SWAD. Compared to PCL, HYPO achieves superior performance with
89% accuracy, which further demonstrates its advantage.

Visualization of embedding. Figure 4.4 shows the UMAP (McInnes
et al., 2018) visualization of feature embeddings for ERM (left) vs. HYPO
(right). The embeddings are extracted from models trained on PACS. The
red, orange, and green points are from the in-distribution, corresponding
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Algorithm Art painting Cartoon Photo Sketch Average Acc. (%)
PCL w/ SGD (Yao et al., 2022) 88.0 78.8 98.1 80.3 86.3
HYPO w/ SGD (Ours) 87.2 82.3 98.0 84.5 88.0
PCL w/ SWAD (Yao et al., 2022) 90.2 83.9 98.1 82.6 88.7
HYPO w/ SWAD (Ours) 90.5 84.6 97.7 83.2 89.0

Table 4.2: Results for comparing PCL and HYPO with SGD-based and SWAD-
based optimizations on the PACS benchmark. (*The performance reported in
the original PCL paper Table 3 is implicitly based on SWAD).

to art painting (A), photo (P), and sketch (S) domains. The violet points
are from the unseen OOD domain cartoon (C). There are two salient
observations: (1) for any given class, the embeddings across domains
Eall become significantly more aligned (and invariant) using our method
compared to the ERM baseline. This directly verifies the low variation
(cf. Equation 4.2) of our learned embedding. (2) The embeddings are
well separated across different classes, and distributed more uniformly
in the space than ERM, which verifies the high inter-class separation (cf.
Equation 4.3) of our method. Overall, our observations well support the
efficacy of HYPO.

Quantitative verification of intra-class variation. We provide empir-
ical verification on intra-class variation in Figure 4.5, where the model
is trained on PACS. We measure the intra-class variation with Sinkhorn
divergence (entropy regularized Wasserstein distance). The horizontal
axis (0)-(6) denotes different classes, and the vertical axis denotes differ-
ent pairs of training domains (‘P’, ‘A’, ‘S’). Darker color indicates lower
Sinkhorn divergence. We can see that our method results in significantly
lower intra-class variation compared to ERM, which aligns with our the-
oretical insights in Section 4.6.

Additional ablation studies. We provide additional experiments and
ablations in the Appendix, including (1) results on other tasks from Do-



59

Dog

Elephant Giraffe

Guitar

Horse

House

Person

A
P

S
C

A (train)

P (train)

S (train)
C (test)

(a) ERM (high variation)

Dog

Elephant

Giraffe
Guitar

Horse

House

Person

A (train)

P (train)

S (train)
C (test)

(b) HYPO (low variation)

Figure 4.4: UMAP (McInnes et al., 2018) visualization of the features when the
model is trained with CE vs. HYPO for PACS. The red, orange, and green points are
from the in-distribution, which denote art painting (A), photo (P), and sketch
(S). The violet points are from the unseen OOD domain cartoon (C).

Figure 4.5: Intra-class variation for ERM (left) vs. HYPO (right) on PACS. For
each class y, we measure the Sinkhorn Divergence between the embeddings of
each pair of domains. Our method results in significantly lower intra-class vari-
ation across different pairs of training domains compared to ERM.

mainBed (Appendix C.6); (2) results on large-scale benchmarks such as
ImageNet-100 (Appendix C.7); (3) ablation of different loss terms (Ap-
pendix C.8); (4) an analysis on the effect of τ and α (Appendix C.9).
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4.6 Why HYPO Improves Out-of-Distribution
Generalization?

In this section, we provide a formal justification of the loss function. Our
main Theorem 4.6 gives a provable understanding of how the learning
objective effectively reduces the variation estimate Vsup(h, Eavail), thus di-
rectly reducing the OOD generalization error according to Theorem 4.5.
For simplicity, we assume τ = 1 and denote the prototype vectorsµ1, . . . ,µC ∈
Sd−1. Let H ⊂ {h : X 7→ Sd−1} denote the function class induced by the
neural network.

Theorem 4.6 (Variation upper bound using HYPO). When samples are
aligned with class prototypes such that 1

N

∑N
j=1 µ

⊤
c(j)zj ≥ 1 − ϵ for some ϵ ∈

(0, 1), then ∃δ ∈ (0, 1), with probability at least 1 − δ,

Vsup(h, Eavail) ≤ O(ϵ1/3+(ln(2/δ)
N

)1/6+(ED[ 1
N
Eσ1,...,σN

sup
h∈H

N∑
i=1

σiz⊤
i µc(i)])1/3),

where zj = h(xj)
∥h(xj)∥2

, σ1, . . . , σN are Rademacher random variables and O(·)
suppresses dependence on constants and |Eavail|.

Implications. In Theorem 4.6, we can see that the upper bound con-
sists of three factors: the optimization error, the Rademacher complex-
ity of the given neural network, and the estimation error which becomes
close to 0 as the number of samples N increases. Importantly, the term ϵ

reflects how sample embeddings are aligned with their class prototypes
on the hyperspherical space (as we have 1

N

∑N
j=1 µ

⊤
c(j)zj ≥ 1 − ϵ), which is

directly minimized by our proposed loss in Equation 4.5. The above Theorem
implies that when we train the model with the HYPO loss, we can ef-
fectively upper bound the intra-class variation, a key term for bounding
OOD generation performance by Theorem 4.5. In Section C.8, we pro-
vide empirical verification of our bound by estimating ϵ̂, which is indeed
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close to 0 for models trained with HYPO loss. We defer proof details to
Appendix C.3.

Necessity of inter-class separation loss. We further present a theoret-
ical analysis in Appendix C.10 explaining how our loss promotes inter-
class separation, which is necessary to ensure the learnability of the OOD
generalization problem. We provide a brief summary in Appendix C.3
and discuss the notion of OOD learnability, and would like to refer read-
ers to Ye et al. (2021) for an in-depth and formal treatment. Empirically,
to verify the impact of inter-class separation, we conducted an ablation
study in Appendix C.8, where we compare the OOD performance of our
method (with separation loss) vs. our method (without separation loss).
We observe that incorporating separation loss indeed achieves stronger
OOD generalization performance, echoing the theory.

4.7 Related Works
Out-of-distribution generalization. OOD generalization is an impor-
tant problem when the training and test data are sampled from different
distributions. Compared to domain adaptation (Daume III and Marcu,
2006; Ben-David et al., 2010; Tzeng et al., 2017; Kang et al., 2019; Wang
et al., 2022e), OOD generalization is more challenging (Blanchard et al.,
2011; Muandet et al., 2013; Gulrajani and Lopez-Paz, 2021; Bai et al., 2021b;
Zhou et al., 2021a; Koh et al., 2021; Bai et al., 2021a; Wang et al., 2022d; Ye
et al., 2022; Cha et al., 2022; Kim et al., 2023a; Guo et al., 2023; Dai et al.,
2023; Tong et al., 2023), which aims to generalize to unseen distributions
without any sample from the target domain. In particular, A popular di-
rection is to extract domain-invariant feature representation. Prior works
show that the invariant features from training domains can help discover
invariance on target domains for linear models (Peters et al., 2016; Rojas-
Carulla et al., 2018). IRM (Arjovsky et al., 2019) and its variants (Ahuja
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et al., 2020; Krueger et al., 2021) aim to find invariant representation from
different training domains via an invariant risk regularizer. Mahajan et al.
(2021) propose a causal matching-based algorithm for domain general-
ization. Other lines of works have explored the problem from various per-
spectives such as causal discovery (Chang et al., 2020), distributional ro-
bustness (Sagawa et al., 2019; Zhou et al., 2020), model ensembles (Chen
et al., 2023c; Rame et al., 2023), and test-time adaptation (Park et al., 2023;
Chen et al., 2023b). In this chapter, we focus on improving OOD general-
ization via hyperspherical learning, and provide a new theoretical analy-
sis of the generalization error.

Theory for OOD generalization. Although the problem has attracted
great interest, theoretical understanding of desirable conditions for OOD
generalization is under-explored. Generalization to arbitrary OOD is im-
possible since the test distribution is unknown (Blanchard et al., 2011;
Muandet et al., 2013). Numerous general distance measures exist for
defining a set of test domains around the training domain, such as KL
divergence (Joyce, 2011), MMD (Gretton et al., 2006), and EMD (Rubner
et al., 1998). Based on these measures, some prior works focus on analyz-
ing the OOD generalization error bound. For instance, Albuquerque et al.
(2019) obtain a risk bound for linear combinations of training domains.
Ye et al. (2021) provide OOD generalization error bounds based on the
notation of variation. In this work, we provide a hyperspherical learning
algorithm that provably reduces the variation, thereby improving OOD
generalization both theoretically and empirically.

Contrastive learning for domain generalization Contrastive learning
methods have been widely explored in different learning tasks. For exam-
ple, Wang and Isola (2020) analyze the relation between the alignment
and uniformity properties on the hypersphere for unsupervised learn-
ing, while we focus on supervised learning with domain shift. Tapaswi
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et al. (2019) investigates a contrastive metric learning approach for hy-
perspherical embeddings in video face clustering, which differs from our
objective of OOD generalization. Von Kügelgen et al. (2021) provide
theoretical justification for self-supervised learning with data augmenta-
tions. Recently, contrastive losses have been adopted for OOD general-
ization. For example, CIGA (Chen et al., 2022) captures the invariance
of graphs to enable OOD generalization for graph data. CNC (Zhang
et al., 2022a) is specifically designed for learning representations robust
to spurious correlation by inferring pseudo-group labels and performing
supervised contrastive learning. SelfReg (Kim et al., 2021a) proposes a
self-supervised contrastive regularization for domain generalization with
non-hyperspherical embeddings, while we focus on hyperspherical fea-
tures with theoretically grounded loss formulations.

4.8 Conclusion
In this chapter, we present a theoretically justified algorithm for OOD gen-
eralization via hyperspherical learning. HYPO facilitates learning domain-
invariant representations in the hyperspherical space. Specifically, we
encourage low variation via aligning features across domains for each
class and promote high separation by separating prototypes across differ-
ent classes. Theoretically, we provide a provable understanding of how
our loss function reduces the OOD generalization error. Minimizing our
learning objective can reduce the variation estimates, which determine
the general upper bound on the generalization error of a learnable OOD
generalization task. Empirically, HYPO achieves superior performance
compared to competitive OOD generalization baselines. We hope our
work can inspire future research on OOD generalization and provable
understanding.
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Chapter 5

Delving into Out-of-Distribution
Detection with Vision-Language
Representations

Publication Statement. This chapter is a joint work with Ziyang Cai,
Jiuxiang Gu, Yiyou Sun, Wei Li, and Yixuan Li. The paper version of this
chapter appeared in NeurIPS 2022 (Ming et al., 2022a).

Recognizing out-of-distribution (OOD) samples is critical for machine
learning systems deployed in the open world. The vast majority of OOD
detection methods are driven by a single modality (e.g., either vision or
language), leaving the rich information in multi-modal representations
untapped. Inspired by the recent success of vision-language pre-training,
this work enriches the landscape of OOD detection from a single-modal
to a multi-modal regime. Particularly, we propose Maximum Concept
Matching (MCM), a simple yet effective zero-shot OOD detection method
based on aligning visual features with textual concepts. We contribute in-
depth analysis and theoretical insights to understand the effectiveness of
MCM. Extensive experiments demonstrate that MCM achieves superior



66

performance on a wide variety of real-world tasks. MCM with vision-
language features outperforms a common baseline with pure visual fea-
tures on a hard OOD task with semantically similar classes by 56.60%
(FPR95). Code is available at https://github.com/deeplearning-wisc/
MCM.

5.1 Introduction
Out-of-distribution (OOD) detection is critical for deploying machine learn-
ing models in the wild, where samples from novel classes can naturally
emerge and should be flagged for caution. Despite increasing attention,
the vast majority of OOD detection methods are driven by single-modal
learning (Hendrycks et al., 2020; Hsu et al., 2020; Jin et al., 2022; Shen
et al., 2021; Xu et al., 2021a; Zhan et al., 2021; Zheng et al., 2020; Zhou
et al., 2021b). For example, labels are typically encoded as one-hot vectors
in image classification, leaving the semantic information encapsulated in
texts largely unexploited. OOD detection relying on pure visual infor-
mation can inherit the limitations, e.g., when an OOD input is visually
similar to in-distribution (ID) data yet semantically different from any ID
class.

In this chapter, we delve into a new landscape for OOD detection, de-
parting from the classic single-modal toward a multi-modal regime. While
the motivation is appealing, a core challenge remains: how to effectively uti-
lize joint vision-language features for OOD detection? In the visual domain,
existing methods typically require good feature representations (Sehwag
et al., 2021; Tack et al., 2020), and a distance metric under which OOD
data points are relatively far away from the in-distribution (ID) data (Lee
et al., 2018; Sun et al., 2022). These approaches, however, do not directly
translate into the multi-modal regime. On the representation learning
side, recent vision-language pre-training schemes such as CLIP (Radford

https://github.com/deeplearning-wisc/MCM
https://github.com/deeplearning-wisc/MCM
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et al., 2021) and ALIGN (Jia et al., 2021) have emerged as promising al-
ternatives for visual representation learning. The main idea is to align
an image with its corresponding textual description in the feature space.
While the resulting representations are powerful, OOD detection based
on such aligned multi-modal features is still in its infancy.

We bridge the gap by exploring a distance-based OOD detection ap-
proach, leveraging the joint vision-language representations. Our method
capitalizes on the compatibility between visual features and textual fea-
tures. By defining the textual features as the “concept prototypes” for each
ID class, we characterize OOD uncertainty by the distance from the vi-
sual feature to the closest ID prototype. That is, images closer to one of
the textual embeddings of ID classes are more likely to be ID and vice
versa. By a proper scaling of the distance, our proposed Maximum Con-
cept Matching (MCM) score achieves strong ID-OOD separability (see
Figure 5.1). MCM stands in contrast with the previous distance-based
approaches, such as Mahalanobis (Lee et al., 2018), which defines class
prototypes based on pure visual embeddings. Indeed, we show later in
Section 5.5 that MCM (with multi-modal vision-language features) is far
more competitive than Mahalanobis (with single-modal visual features).
Moreover, while prior works of CLIP-based OOD detection (Esmaeilpour
et al., 2022; Fort et al., 2021) rely on a set of candidate OOD labels, MCM
is OOD-agnostic and alleviates the need for any prior information about
test inputs.

Our work also advances the field by showcasing the promise of zero-
shot OOD detection, which offers strong performance and generality with-
out training on the ID samples. In particular, classic OOD detection meth-
ods often require training from scratch (Chen et al., 2021; Hendrycks et al.,
2018) or fine-tuning (Fort et al., 2021; Huang and Li, 2021) on a given
ID dataset. In this setting, a classifier and its companion OOD detector
are good at only one task. Every new task (ID dataset) requires addi-



68

Figure 5.1: Overview of the proposed zero-shot OOD detection frame-
work. The ID classification task is defined by a set of class labels Yin. The
goal of OOD detection is to detect samples that do not belong to Yin. We
view the textual embeddings of ID classes (wrapped by text templates)
as concept prototypes. The OOD uncertainty of an input image can be
characterized by the distance from visual features to the closest ID pro-
totype. By properly scaling the distance, the MCM score achieves strong
ID-OOD separability. See Section 5.3 for details.

tional training and brings additional computation and storage costs. In
contrast, we show for the first time that: (1) MCM achieves superior
performance across a wide variety of real-world tasks—with just one sin-
gle pre-trained model. This is encouraging given that there is no training
or any OOD information involved. (2) On the challenging ImageNet-
1k benchmark, MCM’s zero-shot OOD detection performance favorably
matches and even outperforms strong task-specific baselines fine-tuned
on BiT (Huang and Li, 2021) and ViT models (Fort et al., 2021). (3)
MCM remains robust against hard OOD inputs, including both semanti-
cally hard OODs (Winkens et al., 2020) and spurious OODs (Ming et al.,
2022c).

We summarize our main contributions as follows:

1. We propose MCM, a simple yet effective OOD detection method
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based on aligned vision-language features. MCM offers several com-
pelling advantages over other OOD detection methods: generaliz-
able (one model supports many tasks), OOD-agnostic (no informa-
tion required from OOD data), training-free (no downstream fine-
tuning required), and scalable to large real-world tasks.

2. We conduct extensive experiments and show that MCM achieves
superior performance on a wide range of real-world tasks. On ImageNet-
1k, MCM achieves an average AUROC of 91.49%, outperforming
methods that require training. Moreover, MCM remains compet-
itive under challenging hard OOD evaluation tasks.

3. We provide in-depth empirical and theoretical analysis, providing
insights to understand the effectiveness of MCM. We hope that this
work will serve as a springboard for future works on OOD detection
with multi-modal features.

5.2 Preliminaries
Contrastive vision-language pre-training. Compared to visual repre-
sentation learning models such as ViT (Dosovitskiy et al., 2021), vision-
language representation learning demonstrates superior performance on
image classification tasks. For instance, CLIP (Radford et al., 2021) adopts
a self-supervised contrastive objective (i.e., InfoNCE loss (Van den Oord
et al., 2018)) to align an image with its corresponding textual description
in the feature space. Specifically, CLIP adopts a simple dual-stream ar-
chitecture with one text encoder T : t → Rd (e.g., Transformer (Vaswani
et al., 2017)) and one image encoder I : x → Rd (e.g., ViT (Dosovitskiy
et al., 2021)). After pre-training on a dataset of 400 million text-image
pairs, the joint vision-language embeddings of CLIP well associate objects
in different modalities. Despite the promise, existing CLIP-like models
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perform zero-shot classification in a closed-world setting. That is, it will
match an input into a fixed set of categories, even if it is irrelevant (e.g.,
a tree being predicted as a bird in Figure 5.1). This motivates our work
to leverage the multi-modal representation for OOD detection, which is
largely unexplored.

Zero-shot OOD detection. Given a pre-trained model, a classification
task of interest is defined by a set of class labels/names Yin, which we
refer to as the known (ID) classes. Here ID classes are defined w.r.t. the
classification task of interest, instead of the classes used in pre-training.
Accordingly, OOD is defined w.r.t. the ID classes, not the data distribution
during pre-training. The goal of OOD detection is to (1) detect samples
that do not belong to any of the known classes; (2) otherwise, assign test
samples to one of the known classes. Therefore, the OOD detector can be
viewed as a “safeguard” for the classification model. Formally, we denote
the OOD detector as a binary function:

G(x; Yin, T , I) : X → {in, out}

, where x ∈ X denotes a test image. Our method is based on only the
names of the given classes in Yin, and a pre-trained model. Different from
standard supervised learning, there is no training on the ID samples in-
volved, hence zero-shot.

5.3 OOD Detection via Concept Matching
We illustrate our approach in Figure 5.1, which derives the OOD detec-
tor G(·) based on concept matching. For a given task with label set Yin =
{y1, y2, ..., yK}, we can construct a collection of concept vectors T (ti), i ∈
{1, 2, ..., K}, where ti is the text prompt “this is a photo of a ⟨yi⟩” for
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a label yi. The concept vectors are represented by the embeddings of the
text prompts.

For any test input image x′, we can calculate the label-wise matching
score based on the cosine similarity between the image feature I(x′) and
the concept vector T (ti): si(x′) = I(x′)·T (ti)

∥I(x′)∥·∥T (ti)∥ . Formally, we define the
maximum concept matching (MCM) score as:

SMCM(x′; Yin, T , I) = max
i

esi(x′)/τ∑K
j=1 esj(x′)/τ

, (5.1)

where τ is the temperature. For ID data, it will be matched to one of the
concept vectors (textual prototypes) with a high score; and vice versa.
Formally, our OOD detection function can be formulated as:

G(x′; Yin, T , I) =

1 SMCM(x′; Yin, T , I) ≥ λ

0 SMCM(x′; Yin, T , I) < λ
,

where by convention 1 represents the positive class (ID) and 0 indicates
OOD. λ is chosen so that a high fraction of ID data (e.g., 95%) is above the
threshold. For samples that are classified as ID, one can obtain the class
prediction based on the closest concept: ŷ = arg maxi∈[K] si.

Remark: (1) Our work differs from (and is complementary to) CLIP
by focusing on OOD detection rather than (closed-world) zero-shot clas-
sification. We show new theoretical insights that softmax scaling plays a
unique role in zero-shot OOD detection—improving the separability be-
tween ID and OOD data. This role has not been studied rigorously for
zero-shot OOD detection. Readers familiar with CLIP may notice that
MCM can be used for zero-shot classification in the closed world. This
also makes MCM practically convenient for dual goals: detect OOD sam-
ples and assign ID data to one of the known classes. (2) Our method
in principle is not limited to CLIP; it can be generally applicable for con-
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trastive vision-language pre-training models that promote multi-modal
feature alignment.

New insights on softmax scaling for zero-shot OOD detection. We
provide theoretical justifications that softmax scaling improves the sepa-
rability between ID and OOD data for CLIP-based OOD detection, which
is contrary to models trained with cross-entropy (CE) loss. In partic-
ular, CLIP-like models are trained with a multi-modal contrastive loss,
which maximizes the cosine similarity between an image and its textual
description in the feature space. The resulting cosine similarity scores dis-
play strong uniformity1 across labels, as evidenced in Figure 5.2 (right).
Compared to OOD inputs, the gap between the maximum cosine simi-
larity and the average is larger for ID inputs. However, the gap can be
small when the number of ID classes increases where ID samples occur
with lower highest cosine similarity. As a result, the highest cosine sim-
ilarity for ID samples and OOD samples can be highly close (c.f. Fig-
ure 5.2 (left)).

Motivated by these observations, MCM employs softmax as a post hoc
mechanism to magnify the difference. This is fundamentally different from
the softmax score derived from a model trained with cross-entropy loss, which
inherently maximizes the posterior p(y|x) for the ground-truth label, and
minimizes the probability for other labels. Unlike CLIP-like models, logit
scores displaying uniformity would be heavily penalized by the CE loss.
As a result, the logit score corresponding to the ground-truth label can
already be significantly higher than other labels. Applying softmax on

1This can be explained both theoretically (Wang and Isola, 2020) and empirically
(Wang and Liu, 2021). It has been shown that self-supervised contrastive learning with
a smaller temperature (e.g., initialized as 0.07 for CLIP) promotes uniform distribu-
tion for L2-normalized features. Moreover, as CLIP features lie on a high-dimensional
space (512 for CLIP-B/16 and 768 for CLIP-L/14), uniformly distributed points in a high-
dimensional sphere tend to be equidistant to each other (Vershynin, 2018). Therefore,
for OOD inputs, we observe approximately uniform cosine similarity with concept vec-
tors.
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Figure 5.2: Left: Maximum cosine similarity for ID and OOD inputs.
There exists overlapping regions (shown in yellow); Right: Cosine sim-
ilarities between OOD inputs and ID concept vectors. For OOD inputs,
the cosine similarities display uniformity.

the logit scores can exacerbate overconfident predictions, and reduce the
separability between ID and OOD data (Liang et al., 2018). Indeed, for
a model trained with cross-entropy loss, a logit-based score such as En-
ergy (Liu et al., 2020) is shown to be much more effective than the softmax
score.

Interestingly, for CLIP-like models, the trend is the opposite—applying
softmax helps sharpen the uniform-like inner product scores, and increases
the separability between ID and OOD data. To help readers better under-
stand the insights, we first formalize our observations that OOD inputs
trigger similar cosine similarities across ID concepts (Figure 5.2, right) as
the following assumption:

Assumption 5.1. Let z := 1{y ∈ Yin}. Qx denotes the out-of-distribution
Px|z=0 (marginal distribution of x conditioned on z = 0). Assume ∃ δ > 0 such
that

Qx

 1
K − 1

∑
i ̸=ŷ

[sŷ2(x) − si(x)] < δ

 = 1,

where ŷ := argmaxi∈[K]si(x) and ŷ2 := argmaxi ̸=ŷ,i∈[K]si(x) denote the indices
of the largest and second largest cosine similarities for an OOD input x.
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Now we provide formal guarantees that using softmax can provably
reduce the false positive rate (FPR) compared to that without softmax.

Theorem 5.2. Given a task with ID label set Yin = {y1, y2, ..., yK} and a pre-
trained CLIP-like model (T , I). If Qx satisfies Assumption 5.1, then there exists
a constant T = λ(K−1)(λwo+δ−sŷ2)

Kλ−1 such that for any temperature τ > T , we have

FPR(τ, λ) ≤ FPRwo(λwo),

where FPR(τ, λ) is the false positive rate based on softmax scaling with temper-
ature τ and detection threshold λ; FPRwo(λwo) is the false positive rate without
softmax scaling based on threshold λwo. This suggests that applying softmax scal-
ing with a moderate temperature results in superior OOD detection performance
compared to that without softmax scaling. The proof is in Appendix D.1. Later
in Section 5.5, we empirically verify on a real-world ImageNet dataset that our
bound can indeed be satisfied in CLIP where the thresholds are chosen at 95%
true positive rate.

What MCM offers: Beyond theoretical insights, we would like to high-
light several compelling advantages of our zero-shot OOD detection ap-
proach, owing to the strong pre-trained CLIP model:

• Generalizable to many tasks: Traditional OOD detection methods
are based on a task-specific model. As a result, the OOD detector
is not suitable for a realistic online scenario where the task changes
from one to another. In contrast, we will show in Section 5.4 that
MCM can perform a wide variety of OOD detection tasks, with just
one single model. For a new task, only the names of the task’s visual
concepts Yin are required.

• OOD-agnostic: Our method does not rely on any OOD informa-
tion, and thus suits many real-world scenarios where one cannot
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anticipate what the unknowns would be ahead of time. This also
mitigates the shortcoming of a recent approach (Fort et al., 2021),
which assumes that a set of unseen labels are given as some weak
information about OOD data.

• Training-free: MCM enables OOD detection in a zero-shot fashion.
This stands in contrast to the vast majority of OOD detection liter-
ature, which often requires training from scratch or fine-tuning to
achieve competitive performance.

• Scalable: The contrastive vision-language pre-training paradigm
makes MCM scalable to a large number of class labels and realis-
tic high-resolution images.

We now proceed to the experimental results, demonstrating these ad-
vantages on real-world tasks.

5.4 A Comprehensive Analysis of MCM

5.4.1 Datasets and Implementation Details

Datasets. Most previous works on OOD detection only focus on small-
scale datasets with blurry images such as CIFAR (Krizhevsky et al., 2009)
and TinyImageNet (Le and Yang, 2015). With pre-trained models such
as CLIP, OOD detection can be extended to more realistic and complex
datasets. In this work, we scale up evaluations in terms of (1) image res-
olution, (2) dataset variety, and (3) number of classes. We consider the
following ID datasets: Cub-200 (Wah et al., 2011), Stanford-Cars (Krause
et al., 2013), Food-101 (Bossard et al., 2014), Oxford-Pet (Parkhi et al.,
2012) and variants of ImageNet (Deng et al., 2009). For OOD test datasets,
we use the same ones in (Huang and Li, 2021), including subsets of iNat-
uralist (Van Horn et al., 2018), Sun (Xiao et al., 2010), Places (Zhou et al.,
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2017), and Texture (Cimpoi et al., 2014). For each OOD dataset, the
categories are not overlapping with the ID dataset. We also use sub-
sets of ImageNet-1k for fine-grained analysis. For example, we construct
ImageNet-10 that mimics the class distribution of CIFAR-10 but with high-
resolution images. For hard OOD evaluation, we curate ImageNet-20,
which consists of 20 classes semantically similar to ImageNet-10 (e.g., dog
(ID) vs. wolf (OOD)).

Model. In our experiments, we adopt CLIP (Radford et al., 2021) as the
target pre-trained model, which is one of the most popular and publicly
available vision-language models. Note that our method is not limited to
CLIP; it can generally be applicable for contrastive vision-language pre-
training models that promote multi-modal feature alignment. Specifi-
cally, we mainly use CLIP-B/16, which consists of a ViT-B/16 Transformer
as the image encoder and a masked self-attention Transformer (Vaswani
et al., 2017) as the text encoder. To indicate the input patch size in ViT
models, we append “/x” to model names. We prepend -B, -L to indicate
Base and Large versions of the corresponding architecture. For instance,
ViT-B/16 implies the Base variant with an input patch resolution of 16×16.
We also use CLIP-L/14 which is based on ViT-L/14 as a representative of
large models. Unless specified otherwise, the temperature τ is 1 for all
experiments. Details of the datasets, experimental setup, and hyperpa-
rameters are provided in Appendix D.2.

Metrics. For evaluation, we use the following metrics: (1) the false pos-
itive rate (FPR95) of OOD samples when the true positive rate of in-
distribution samples is at 95%, (2) the area under the receiver operat-
ing characteristic curve (AUROC), and (3) ID classification accuracy (ID
ACC).
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Table 5.1: Zero-shot OOD detection with MCM score based on CLIP-B/16 with
various ID datasets.

ID Dataset
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CUB-200 9.83 98.24 4.93 99.10 6.65 98.57 6.97 98.75 7.09 98.66
Stanford-Cars 0.05 99.77 0.02 99.95 0.24 99.89 0.02 99.96 0.08 99.89
Food-101 0.64 99.78 0.90 99.75 1.86 99.58 4.04 98.62 1.86 99.43
Oxford-Pet 2.85 99.38 1.06 99.73 2.11 99.56 0.80 99.81 1.70 99.62
ImageNet-10 0.12 99.80 0.29 99.79 0.88 99.62 0.04 99.90 0.33 99.78
ImageNet-20 1.02 99.66 2.55 99.50 4.40 99.11 2.43 99.03 2.60 99.32
ImageNet-100 18.13 96.77 36.45 94.54 34.52 94.36 41.22 92.25 32.58 94.48

5.4.2 Main Results

MCM supports a diverse collection of tasks while being zero-shot. We
first show that zero-shot OOD detection with MCM is effective across a
wide variety of tasks—with just one single pre-trained model. To showcase
the versatility of MCM, we consider the seven ID datasets here. To the best
of our knowledge, this is among the first attempts to showcase the efficacy
under an expansive and diverse collection of ID datasets. The zero-shot
OOD detection performance is summarized in Table 5.1. A salient obser-
vation is that MCM can achieve superior detection performance on many
tasks. For example, using Stanford-Cars as ID, MCM yields an average
FPR95 of 0.08%. Considering that there are no training samples or OOD
information involved, these results are very encouraging.

It can be also seen from Table 5.1 that MCM is promising, especially
when the number of samples per ID class is limited in the training set. For
example, there are only around 40 samples per class for Stanford-Cars,
100 for Oxford-Pet, and 30 for CUB-200. The sample scarcity makes OOD
detection methods that rely on fine-tuning difficult. For example, after
fine-tuning on Food-101, while the ID accuracy is increased from 86.3%
to 92.5% ↑, OOD detection based on MSP is on par with MCM (99.5% vs.
99.4% in AUROC).
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Table 5.2: OOD detection performance for ImageNet-1k (Deng et al., 2009) as
ID.

Method
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

Requires training (or w. fine-tuning)
MOS(BiT) 9.28 98.15 40.63 92.01 49.54 89.06 60.43 81.23 39.97 90.11
Fort et al. (ViT-B) 15.07 96.64 54.12 86.37 57.99 85.24 53.32 84.77 45.12 88.25
Fort et al. (ViT-L) 15.74 96.51 52.34 87.32 55.14 86.48 51.38 85.54 43.65 88.96
Energy (CLIP-B) 21.59 95.99 34.28 93.15 36.64 91.82 51.18 88.09 35.92 92.26
Energy (CLIP-L) 10.62 97.52 30.46 93.83 32.25 93.01 44.35 89.64 29.42 93.50
MSP (CLIP-B) 40.89 88.63 65.81 81.24 67.90 80.14 64.96 78.16 59.89 82.04
MSP (CLIP-L) 34.54 92.62 61.18 83.68 59.86 84.10 59.27 82.31 53.71 85.68

Zero-shot (no training required)
MCM (CLIP-B) 30.91 94.61 37.59 92.57 44.69 89.77 57.77 86.11 42.74 90.77
MCM (CLIP-L) 28.38 94.95 29.00 94.14 35.42 92.00 59.88 84.88 38.17 91.49

MCM scales effectively to large datasets. To examine the scalability
of MCM, we compare it with recent competitive OOD detection meth-
ods (Fort et al., 2021; Huang and Li, 2021) on the ImageNet-1k dataset
(ID) in Table 5.2. We observe the following trends:

• Larger models lead to superior performance. Compared with CLIP-
B, MCM based on CLIP-L reduces FPR95 by 4.57%. Zero-shot ID
classification accuracy is also improved by 6.27% with the larger
model, reaching 73.28% (see Appendix D.4). This suggests that
larger models are endowed with a better representation quality, which
benefits both ID classification and OOD detection with MCM. Our
finding echos with the recent observations (Vaze et al., 2022) that
higher ID classification accuracy is correlated with stronger OOD
detection performance.

• MOS (Huang and Li, 2021) recently demonstrated competitive per-
formance on ImageNet-1k, which requires model fine-tuning based
on BiT (Kolesnikov et al., 2020). In contrast, we show that MCM
(CLIP-L) outperforms MOS by 1.38% in AUROC while being zero-
shot (training-free).

• MCM shares a softmax scaling function with the classic (visual)
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confidence-based score MSP (Hendrycks and Gimpel, 2017). To im-
plement MSP, we adopt the commonly used linear probe approach
by fine-tuning a linear layer on frozen visual features of CLIP. Af-
ter fine-tuning, ID accuracy significantly improves, reaching 84.12%
(CLIP-L). Interestingly, the OOD detection performance of MSP is
worse than MCM by 15.54% in FPR95. Under the same model fine-
tuned with linear probing, we observe that the Energy score outper-
forms MSP, corroborating findings in (Liu et al., 2020). We investi-
gate more in Section 5.5.

• Recently, Fort et al. (Fort et al., 2021) explore small-scale OOD de-
tection by fine-tuning the full ViT model. When extended to large-
scale tasks, we find that MCM still yields superior performance un-
der the same image encoder configuration (ViT-B or ViT-L). This
further highlights the advantage of utilizing vision-language joint
embeddings for large-scale visual OOD detection.

MCM benefits hard OOD detection. Going beyond, we investigate whether
MCM is still effective for hard OOD inputs. We consider the following
two categories of hard OOD:

• Semantically hard OOD: OOD samples that are semantically sim-
ilar to ID samples are particularly challenging for OOD detection
algorithms (Winkens et al., 2020). To evaluate hard OOD detec-
tion tasks in realistic settings, here we consider ImageNet-10 (ID)
vs. ImageNet-20 (OOD) and vice versa. The pair consists of high-
resolution images with semantically similar categories such as dog
versus wolf. As shown in Table 5.3, MCM outperforms Mahalanobis (Lee
et al., 2018) by 73.32% in FPR95 for ImageNet-10 (ID) vs. ImageNet-
20 (OOD) and 30.12% vice versa.
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Table 5.3: Performance comparison on hard OOD detection tasks. MCM is
competitive on all three hard OOD tasks without training involved. MSP (based
on fine-tuned CLIP) does not further improve performance.

Method ID ImageNet-10 ImageNet-20 Waterbirds
OOD ImageNet-20 ImageNet-10 Spurious OOD

FPR95 / AUROC FPR95 / AUROC FPR95 / AUROC
MSP (fine-tuning) 9.38 / 98.31 12.51 / 97.70 39.57 / 90.99
Mahalanobis (visual only) 78.32 / 85.60 43.03 / 89.94 2.21 / 99.55
MCM (zero-shot) 5.00 / 98.71 12.91 / 98.09 5.87 / 98.36

• Spurious OOD: Modern neural networks can exploit spurious cor-
relations for predictions (Beery et al., 2018). For example, in the
Waterbirds dataset (Sagawa et al., 2019), there exist spurious cor-
relations between the habitat (e.g., water) and bird types. A re-
cent work (Ming et al., 2022c) proposes a new type of hard OOD
named spurious OOD and shows that most OOD detection meth-
ods perform much worse for spurious OOD inputs compared to
non-spurious inputs. The spurious OOD inputs are created to share
the same background (i.e., water) as ID data but have different ob-
ject labels (e.g., a boat rather than a bird). See Appendix D.3 for
illustrations. The results are shown in Table 5.3. It has been shown
that CLIP representations are robust to distributional shifts (Rad-
ford et al., 2021). Therefore, while prior works (Ming et al., 2022c)
show that spurious OOD inputs are challenging for methods based
on ResNet (He et al., 2016), MCM and Mahalanobis scores based
on pre-trained CLIP perform much better. On the other hand, fine-
tuning exposes the model to the training set containing spurious
correlations. As a result, MSP performs much worse than MCM
(39.57% vs. 5.87% in FPR95).

MCM outperforms CLIP-based baselines. Two recent works also use
CLIP embeddings for OOD detection (Esmaeilpour et al., 2022; Fort et al.,
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Figure 5.3: Comparison with a candidate label-based score ZO-CLIP on
ImageNet-20, based on our implementation of (Esmaeilpour et al., 2022).
Implementation details are deferred to Appendix D.5.1.

2021). However, fundamental limitations exist for both works. Fort et
al. (Fort et al., 2021) assume that a candidate OOD label set YC is known,
and used ∑y∈YC

p̂(y|x) for OOD detection. Here the predictive probabil-
ity p̂(y|x) is obtained by normalizing the inner products over |Yin| + |YC |
classes. While applying softmax converts any vector to probabilities, as
we show in Section 5.3, the converted probabilities do not necessarily cor-
respond to P(OOD|x). Moreover, obtaining such an OOD label set is
typically not feasible, which fundamentally limits its applicability. A re-
cent work (Esmaeilpour et al., 2022) realizes this idea by training an extra
text decoder on top of CLIP’s image encoder to generate candidate labels.
However, Esmaeilpour et al. (2022) cannot guarantee the generated labels
are non-overlapping with the ID labels.

We enhance the baseline with a stronger decoder and a filter module
(see Appendix D.5.1). As shown in Figure 5.3, MCM outperforms the en-
hanced baseline on all OOD datasets. Moreover, MCM is much simpler
to use—alleviating the need for an OOD label set or training an addi-
tional caption generator. In contrast, the caption generator’s performance
largely affects OOD detection. Poor caption quality degenerates the OOD
detection performance of candidate label-based methods. Moreover, ob-
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taining a reliable caption generator for any input image can significantly
increase the computational overhead.

5.5 Discussion: A Closer Look at MCM
Empirical verification on the role of softmax. In Section 5.3, we prove
that softmax scaling on cosine similarity scores with a moderate τ im-
proves the ID-OOD separability. Here we empirically verify our theo-
retical results. As shown in Figure 5.4, compared to directly using the
maximum cosine similarity without softmax (leftmost figure), softmax
scaling with a temperature τ = 1 significantly improves the performance
by 22.6% in FPR95, and further increasing τ (e.g., τ = 10) leads to similar
performance. The results are based on ImageNet-100 (ID) versus iNatu-
ralist (OOD).

Now, we verify if our theoretical bound (c.f. Theorem 5.2) is satisfied
empirically as well in Figure 5.4. From the leftmost figure, we can estimate
λwo ≈ 0.26, δ ≈ 0.03, and sŷ2 ≈ 0.23. By checking the third figure (τ = 1
is the temperature value we use for most experiments), we approximate
λ ≈ 0.011. As K = 100, we plug in the values and obtain the lower bound

T = λ(K − 1) (λwo + δ − sŷ2)
Kλ − 1 ≈ 0.65

. Since τ = 1 > 0.65, by Theorem 5.2, applying softmax scaling with τ = 1
is provably superior to without softmax scaling for OOD detection.

Are vision-language features better than visual feature alone? MCM
can be interpreted as a distance-based approach—images that are closer
to one of the K class prototypes are more likely to be ID and vice versa.
Here the class prototypes are defined based on a textual encoder. Al-
ternatively, one can define the class prototypes based on visual features.
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Figure 5.4: The influence of softmax scaling and temperature. We use
ImgeNet-100 (ID) vs. iNaturalist (OOD). Softmax scaling with a moder-
ate temperature significantly improves FPR95.
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Figure 5.5: MCM vs. Mahalanobis (Maha) score on ImageNet-1k.

For example, Mahalanobis (Lee et al., 2018) defines a class prototype as
the average of visual embeddings for images belonging to the same class.
This raises the question whether MCM (with multi-modal vision-language
features) is better than Mahalanobis (with single-modal visual feature).
For a fair comparison, we use the same ViT image encoder from CLIP-
B. Both MCM and Mahalanobis extract visual features from the penul-
timate layer. On ImageNet-1k, Mahalanobis displays a limited perfor-
mance, with 73.14% AUROC averaged across four OOD test datasets (90.77%
for MCM), as shown in Figure 5.5. From a practical perspective, Maha-
lanobis requires computing the inverse covariance matrix, which can be
both computationally expensive and inaccurate when the number of sam-
ples is scarce and the number of ID classes grows. In contrast, MCM is
easier to use and more robust.
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Table 5.4: Zero-shot OOD detection of Swo
MCM based on CLIP-B/16.

ID Dataset
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

Stanford-Cars 0.00 100 0.02 99.99 0.26 99.94 0.00 100 0.07 99.98
Food-101 0.56 99.86 0.09 99.95 0.49 99.88 8.33 97.44 2.37 99.28
Oxford-Pet 0.02 99.98 0.05 99.97 0.20 99.94 0.27 99.91 0.14 99.95
ImageNet-10 2.40 99.42 1.79 99.55 2.83 99.32 1.86 99.56 2.22 99.46
ImageNet-20 14.96 97.87 13.10 97.97 14.21 97.67 13.46 97.32 13.93 97.71
ImageNet-1k 61.66 89.31 64.39 87.43 63.67 85.95 86.61 71.68 69.08 83.59

MCM without softmax scaling. In Section 5.3, we provide theoretical
justifications for the necessity of softmax scaling for CLIP-like models.
To further verify our observations empirically, we show OOD detection
performance based on the maximum cosine similarity score

Swo
MCM(x′; Yin, T , I) := max

i∈[K]
si(x′)

. The results are shown in Table 5.4. For easy tasks such as Food-101 (Krause
et al., 2013), Stanford-Cars (Krause et al., 2013), and Oxford-Pet (Parkhi
et al., 2012) as ID, the performance of maximum cosine similarity score
is similar to MCM (see Table 5.1 and Table 5.2). However, for more chal-
lenging tasks such as ImageNet-20 and ImageNet-1k, MCM significantly
outperforms that without softmax scaling. For example, the average FPR95
is improved by 11.33% on ImageNet-20 and 26.34% on ImageNet-1k, which
highlights the necessity of a proper scaling function for CLIP-based OOD
detection.

MCM for ResNet-based CLIP models. Our main results are based on
the CLIP model with ViT image encoder. We additionally investigate the
effectiveness of MCM on ResNet-based CLIP. Specifically, we use RN50x4
(178.3M), which shares a similar number of parameters as CLIP-B/16
(149.6M). The results are shown in Table 5.5. We can see that MCM still
shows promising results with ResNet-based CLIP models, and the per-
formance is comparable between RN50x4 and CLIP-B/16 (89.97 vs. 90.77
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in AUROC).

Table 5.5: Comparison with ResNet-based CLIP models on ImageNet-1k
(ID).

Model
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

RN50x4 44.51 91.51 35.11 92.84 43.74 89.60 57.73 85.93 45.27 89.97
CLIP-B/16 30.91 94.61 37.59 92.57 44.69 89.77 57.77 86.11 42.74 90.77

A photo of a <label>.
A blurry photo of a <label>.
A photo of many <label>.
A photo of the large <label>.
A photo of the small <label>.

Table 5.6: The five prompt
templates.

Effect of prompt ensembling. We exam-
ine MCM’s performance with prompt en-
sembling. For example, Radford et al. (Rad-
ford et al., 2021) create 80 possible prompts
according to the image modalities and nu-
ances in ImageNet. We experiment with the
two prompt sets, one of size 80 as in (Rad-
ford et al., 2021), and our own set of 5
prompts. Ensembles are obtained by averaging the textual features. As
expected, using ensembles increases the ID classification accuracy on
ImageNet-1k (2% with CLIP-B and 3% with CLIP-L). For OOD detec-
tion, the average FPR95 is reduced from 38.17% with the default prompt
to 35.23%↓ with an ensemble of five prompts shown in Table 5.6. In ad-
dition, the detection performance with 5 prompts is slightly better than
with 80 prompts. Note that prompt ensembling does not increase the
inference-time cost, as the textual embeddings (across many prompts)
can be pre-calculated and averaged into a single embedding.

5.6 Related Works
OOD detection in computer vision. For open-world multi-class classi-
fication, the goal of OOD detection is to derive a binary ID-OOD classifier



86

along with a multi-class classification model for visual inputs. A plethora
of methods has been proposed for deep neural networks (Yang et al.,
2021b), including generative model-based methods (Cai and Li, 2023;
Ge et al., 2017; Kirichenko et al., 2020; Nalisnick et al., 2019; Neal et al.,
2018; Oza and Patel, 2019; Ren et al., 2019; Serrà et al., 2020; Xiao et al.,
2020), and discriminative-model based methods. For the latter category,
an OOD score can be derived based on the softmax output (Bendale and
Boult, 2016; DeVries and Taylor, 2018; Hein et al., 2019; Hendrycks and
Gimpel, 2017; Hsu et al., 2020; Huang and Li, 2021; Liang et al., 2018; Yang
et al., 2021a), energy-based score (Du et al., 2022b; Liu et al., 2020; Ming
et al., 2022b; Sun et al., 2021; Sun and Li, 2022; Wang et al., 2021), gradient
information (Huang et al., 2021a), or the feature embeddings (Du et al.,
2022a; Lee et al., 2018; Sastry and Oore, 2020; Sehwag et al., 2021; Sun
et al., 2022; Tack et al., 2020; Winkens et al., 2020) of a model. Morteza et
al. (Morteza and Li, 2022), Fang et al. (Fang et al., 2022), and Bitterwolf et
al. (Bitterwolf et al., 2022) provided theoretical analysis for OOD detec-
tion. Recent works (Roy et al., 2022; Wang et al., 2022c) also explored
OOD detection for long-tailed distributions. Works insofar have mostly
focused on OOD detection for a task-specific model using only visual in-
formation. In contrast, we explore a novel paradigm of zero-shot OOD
detection that incorporates rich textual information and can perform a
wide variety of tasks.

OOD detection in natural language processing. Distribution shifts can
occur due to the change of topics and domains, unexpected user utter-
ances, etc. Challenging benchmarks (Koh et al., 2021) and characteriza-
tion of distributional shifts (Arora et al., 2021) have been proposed in
recent years. Compared to early language models such as ConvNets and
LSTM (Hochreiter and Schmidhuber, 1997), pre-trained language mod-
els are more robust to distribution shifts and more effective at identifying
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OOD instances (Hendrycks et al., 2020; Podolskiy et al., 2021; Xu et al.,
2021a). Various algorithmic solutions are proposed to handle OOD de-
tection, including outlier exposure (Hu and Khan, 2021), model ensem-
bling (Li et al., 2021d), data augmentation (Chen and Yu, 2021; Zhan
et al., 2021; Zheng et al., 2020), contrastive learning (Jin et al., 2022; Zhou
et al., 2021b), and an auxiliary module that incorporates domain labels (Shen
et al., 2021). Tan et al. (Tan et al., 2019) also explore zero-shot OOD de-
tection for text classification tasks. However, prior works focus on pure
natural language processing (NLP) settings, while we explore utilizing
textual embeddings for zero-shot visual OOD detection.

Vision-language models. Utilizing large-scale pre-trained vision-language
models for multimodal downstream tasks has become an emerging paradigm
with remarkable performance (Gu et al., 2020; Uppal et al., 2022). In gen-
eral, two types of architectures exist: single-stream models like Visual-
BERT (Li et al., 2019) and ViLT (Kim et al., 2021b) feed the concatenated
text and visual features into a single transformer-based encoder; dual-
stream models such as CLIP (Radford et al., 2021), ALIGN (Jia et al.,
2021), and FILIP (Yao et al., 2021) use separate encoders for text and im-
age and optimize with contrastive objectives to align semantically simi-
lar features in different modalities. In particular, CLIP enjoys popularity
due to its simplicity and strong performance. CLIP-like models inspire
numerous follow-up works (Li et al., 2022c; Zhang et al., 2021b; Zhou
et al., 2022b), which aim to improve data efficiency and better adaptation
to downstream tasks. This chapter adopts CLIP as the target pre-trained
model, but our approach can be generally applicable to contrastive mod-
els that promote vision-language alignment.

Multi-modal OOD detection. Exploring textual information for visual
OOD detection is a new area with limited existing works. Fort et al. (Fort
et al., 2021) propose to feed the potential OOD labels to the textual en-
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coder of CLIP (Radford et al., 2021). Recently, Esmaeilpour et al. (Es-
maeilpour et al., 2022) propose to train a label generator based on the
visual encoder of CLIP and use the generated labels for OOD detection.
While both works rely on a set of candidate OOD labels, MCM is OOD-
agnostic and alleviates the need for prior information on OOD. Moreover,
prior works (Esmaeilpour et al., 2022; Radford et al., 2021) only focus on
small-scale inputs. We largely expand the scope to a wide range of large-
scale realistic datasets, and show new theoretical insights.

5.7 Conclusion
In this work, we delve into a new landscape for OOD detection, departing
from the classic single-modal toward a multi-modal regime. By viewing
the textual features as the “concept prototypes”, we explore a new OOD
detection approach MCM, based on the joint vision-language representa-
tions. Unlike the majority of OOD detection methods, MCM offers several
compelling advantages: training-free, generalizable to many tasks, scal-
able to hundreds of classes, and does not require any prior information on
OOD inputs. Moreover, we provide theoretical guarantees on how soft-
max scaling provably improves zero-shot OOD detection. We investigate
the effectiveness of MCM on a wide range of large-scale realistic tasks,
including several types of hard OOD datasets. Lastly, we demonstrate
the advantage of vision-language features over pure visual features for
OOD detection. We hope our work will inspire future research toward
multi-modal OOD detection.
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Chapter 6

How Does Fine-Tuning Impact
Out-of-Distribution Detection for
Vision-Language Models?

Publication Statement. This chapter is a joint work with Yixuan Li. The
paper version of this chapter appeared in IJCV 2023 (Ming and Li, 2023).

Recent large vision-language models such as CLIP have shown re-
markable out-of-distribution (OOD) detection and generalization perfor-
mance. However, their zero-shot in-distribution (ID) accuracy is often
limited for downstream datasets. Recent CLIP-based fine-tuning meth-
ods such as prompt learning have demonstrated significant improvements
in ID classification and OOD generalization where OOD labels are avail-
able. Nonetheless, it remains unclear whether the model is reliable to
semantic shifts without OOD labels. In this chapter, we aim to bridge the
gap and present a comprehensive study to understand how fine-tuning
impact OOD detection for few-shot downstream tasks. By framing OOD
detection as multi-modal concept matching, we establish a connection be-
tween fine-tuning methods and various OOD scores. Our results suggest
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that a proper choice of OOD scores is essential for CLIP-based fine-tuning.
In particular, the maximum concept matching (MCM) score provides
a promising solution consistently. We also show that prompt learning
demonstrates the state-of-the-art OOD detection performance over the
zero-shot counterpart.

6.1 Introduction
Machine learning (ML) is undergoing a paradigm shift with the rise of
models that are trained on massive data and are adaptable to a wide range
of downstream tasks. Popular pre-trained large vision-language mod-
els (Radford et al., 2021; Jia et al., 2021; Yao et al., 2021; Li et al., 2022c)
demonstrate remarkable performance, and allow researchers without ex-
tensive computation power to benefit from these models. It is now the
common practice of the ML community to adopt pre-trained models for
transfer learning on downstream tasks rather than learning from scratch.
Despite the promise, the safety risks of these large pre-trained models can
be potentially inherited by all the fine-tuned models. Without appropri-
ately understanding the safety risks, development on top of pre-trained
models can exacerbate and propagate safety concerns writ large, causing
profound impacts on society.

In response to these urgent challenges, the overall objective of this
chapter is to systematically understand the out-of-distribution risks of
learning with pre-trained vision-language models. This chapter seeks to
address the research question that arises in building responsible and eth-
ical AI models: How does fine-tuning influence out-of-distribution (OOD) de-
tection for large vision-language models? Detecting OOD samples is crucial
for machine learning models deployed in the open world, where sam-
ples from unseen classes naturally emerge, and failure to detect them
can have severe consequences. Despite increasing attention (Yang et al.,
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2021b), OOD detection research for large vision-language models has
been scant. Among the most recent works, Ming et al. (2022a) investi-
gated training-free OOD detection based on the pre-trained CLIP model.
However, the impact of fine-tuning on OOD detection has been unex-
plored in the vision-language literature.

In this chapter, we bridge the gap by investigating how fine-tuning
large vision-language models affects OOD detection. Parameter-efficient
fine-tuning methods have been popularized in recent years. In particu-
lar, prompt learning (Zhou et al., 2022b,c) optimizes learnable word em-
beddings of the prompts, while adaptors directly optimize the internal
feature representations (Gao et al., 2023; Zhang et al., 2022b). Both meth-
ods are parameter-efficient as image and text encoders are frozen dur-
ing fine-tuning, and have shown significant improvement for few-shot in-
distribution (ID) classification. Complementary to existing research, we
focus on OOD detection for fine-tuned models using multi-modal con-
cept matching. At the core of the concept matching framework, we use
the few-shot ID training set and textual descriptions of the labels to de-
rive a set of visual and textual features that represent the typical features
for each ID class. We can measure OOD uncertainty based on the distance
between the input feature and the nearest ID prototype.

Based on the concept matching framework, we then present a compre-
hensive and systematic study to explore how different parameter-efficient
fine-tuning methods impact OOD detection performance, and contribute
unexplored findings to the community. We disentangle various aspects
such as adaptation methods and OOD scoring functions. Interestingly,
we observe that parameter-efficient fine-tuning can significantly improve
OOD reliability compared to zero-shot CLIP models. In particular, prompt
learning methods exhibit very competitive performance when coupled
with the maximum concept matching (MCM) score (Ming et al., 2022a).

Furthermore, we delve deeper into prompt learning and analyze how
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the pre-trained features are modified during fine-tuning, and how it im-
pacts OOD detection as a consequence. We study the impact of shots, ar-
chitectures, and explore the effects of prompt learning on various down-
stream tasks, including the challenging ImageNet-1k (ID) benchmark.
Our results demonstrate that prompt learning perturbs the pre-trained
feature space that benefits both ID and OOD performance. More encour-
agingly, the trend holds consistently across different settings, highlight-
ing its potential for reliable fine-tuning in vision-language modeling.

We summarize the contributions of this work as follows:

• We provide a timely and systematic study on how CLIP-based fine-
tuning influences OOD detection in the few-shot setting. Our study
disentangles various factors, including adaptation methods and OOD
scoring functions.

• We present novel evidence that parameter-efficient fine-tuning does
not deteriorate pre-trained features. Instead, they can improve both
ID and OOD performance with a proper OOD scoring function, es-
pecially the MCM score. We show that prompt learning consistently
demonstrates the state-of-the-art OOD detection performance over
the zero-shot counterpart.

• We provide an in-depth analysis of prompt learning’s impact on the
feature space for OOD detection and conduct comprehensive abla-
tions across datasets, architectures, and the number of shots with
various OOD detection scores.

6.2 Related works
Parameter-efficient fine-tuning of vision-language models. Large-scale
vision-language models have shown impressive performance on various
downstream tasks (Radford et al., 2021; Jia et al., 2021; Yao et al., 2021; Li
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et al., 2022c). These models learn transferable feature representations via
pre-training on web-scale heterogeneous datasets. However, as down-
stream datasets can have a limited number of samples, adapting these
large models in a parameter and data-efficient manner is crucial for effec-
tive knowledge transfer. Recent works propose various ways to tackle this
challenge. Zhou et al. (2022c) propose to tune a set of soft prompts (Li
and Liang, 2021; Lester et al., 2021) while freezing the encoders of CLIP.
Zhou et al. (2022b) aims to improve the generalization ability of CoOp by
introducing a meta-network that learns input-dependent tokens. Huang
et al. (2022a) propose to learn prompts in an unsupervised manner while
TPT (Manli et al., 2022) uses test-time prompt tuning to learn adaptive
prompts on the fly. Beyond textual prompt learning, Bahng et al. (2022)
propose to tune visual prompts for CLIP-based fine-tuning. Another line
of work focuses on adaptor-style fine-tuning, where instead of tuning
prompts, the feature embedding is directly optimized using an adaptor
module (Gao et al., 2023; Zhang et al., 2022b; Udandarao et al., 2023).
Prior works demonstrate significant improvement over zero-shot CLIP
for few-shot ID classification and OOD generalization where OOD labels
are given. However, it is unclear how reliable these parameter-efficient
fine-tuning methods are for OOD detection tasks. Our work bridges this
gap and explores how fine-tuning impacts OOD detection for few-shot
downstream datasets.

OOD detection with vision-language representations. A plethora of
OOD detection methods have been proposed on visual inputs (Lee et al.,
2018; Liang et al., 2018; Hendrycks et al., 2019; Tack et al., 2020; Sun et al.,
2022; Ming et al., 2022b; Du et al., 2022a; Wang et al., 2022b; Ming et al.,
2023). With the rise of large-scale pre-trained models on vision language
inputs, an increasing number of works utilize textual information for vi-
sual OOD detection and demonstrate promising performance. Fort et al.
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(2021) propose a scheme where pre-trained CLIP models are provided
with candidate OOD labels for each target dataset, and show that the out-
put probabilities summed over the OOD labels effectively capture OOD
uncertainty. Without the assumption of OOD labels, Esmaeilpour et al.
(2022) propose to train a decoder based on the visual encoder of CLIP to
generate candidate labels for OOD detection. However, training a high-
quality decoder incurs significant computational costs and requires extra
data. While both Esmaeilpour et al. (2022) and Radford et al. (2021) fo-
cus on small-scale inputs, Ming et al. (2022a) propose an OOD label-free
method MCM which demonstrates promising results on a wide range of
large-scale and challenging tasks (Ming et al., 2022c). However, Ming
et al. (2022a) only investigate pre-trained CLIP models. For multi-modal
OOD detection benchmarks, Bitterwolf et al. (2023) curate a new OOD
test set for ImageNet-1k while Gu et al. (2023) provide new OOD datasets
for document understanding. In contrast, our work focuses on the impact
of parameter-efficient fine-tuning methods for OOD detection in few-shot
downstream tasks, which has not been explored.

6.3 Preliminaries
Contrastive vision-language models. Recent large vision-language mod-
els have shown great potential for various computer vision tasks. In this
chapter, we focus on CLIP-like models (Radford et al., 2021; Yao et al.,
2021), which adopt a dual-stream architecture with one text encoder f :
t → Rd and one image encoder g : x → Rd. CLIP is pre-trained on a mas-
sive web-scale image-caption dataset with a multi-modal contrastive loss
that promotes the alignment of features from different modalities. CLIP
learns transferable feature representations and demonstrates promising
zero-shot generalization performance (Fort et al., 2021). Despite the promise,
existing vision-language models perform zero-shot classification in a closed-
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Figure 6.1: A unified pipeline for OOD detection with parameter-efficient
fine-tuning of CLIP models on few-shot datasets. Given ID text labels Yin
and a few-shot training set, we view the textual and visual embeddings
of ID classes as concept prototypes in the feature space. The OOD un-
certainty of an input image can be characterized by the distance from its
visual feature to the closest ID prototype from both modalities. See Sec-
tion 6.4 for details.

world setting. That is, it will match an input into a fixed set of categories,
even if it is irrelevant. For example, a bird in Figure 6.1 can be blindly pre-
dicted as one of the in-distribution classes Yin ={headphone, cat, flamingo,
butterfly}. This motivates the importance of OOD detection for vision-
language models.

OOD detection for vision-language models. In the open-world setting,
the goal of OOD detection is to detect samples that do not belong to ID
classes Yin. Here ID classes are defined w.r.t. the classification task of
interest, instead of the classes used in pre-training. Accordingly, OOD is
defined w.r.t. the ID classes, not the data distribution during pre-training.
Ming et al. (2022a) explore the zero-shot OOD detection for the pre-trained
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CLIP model, without adapting to the ID dataset. Instead, we focus on the
setting where CLIP models are fine-tuned on a few-shot dataset Din, and
hence are better adapted to the downstream ID task. We evaluate the fine-
tuned CLIP model on a combination of ID and OOD datasets Din ∪ Dout,
where Dout = {xi, yout

i }m
i=1 contains inputs with semantically different cat-

egories yout /∈ Yin. Formally, given an input x, OOD detection can be
formulated as:

G(x; f, g) =

1 S(x; f, g) ≥ λ

−1 S(x; f, g) < λ
,

where S(·) is a scoring function that measures OOD uncertainty. In prac-
tice, λ is chosen so that a high fraction of ID data (e.g., 95%) is above the
threshold.

Parameter-efficient fine-tuning. To improve the performance on down-
stream tasks, parameter-efficient approaches are proposed to fine-tune
CLIP on datasets of interest. Prompt learning and adaptor tuning have
recently gained popularity and demonstrated improved results over zero-
shot settings. In particular, prompt learning optimizes the word embed-
dings of the prompts, while adaptors directly optimize the internal fea-
ture representations. Both methods are parameter-efficient as image and
text encoders are frozen during fine-tuning. In what follows, we intro-
duce prompt-based and adaptor-based methods respectively.

For a downstream dataset with K in-distribution classes Yin = {y1, y2, ..., yK},
prompt learning method such as CoOp (Zhou et al., 2022c) introduces M

learnable context vectors vi ∈ Re to replace hand-engineered text prompts
such as “this is a photo of”, where e is the dimension of word embed-
dings. For each class yk, we obtain its contextualized representation

tk = [v1, v2, · · · , vM , wk]
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by concatenating the context vectors and the word embedding wk ∈ Re of
the label (upper left, Figure 6.1). To avoid overfitting and improve gen-
eralization performance, CoCoOp (Zhou et al., 2022b) further introduces
instance-conditional prompts via a meta-network which produces a meta
token m(x) given the visual feature of the input x. The meta token is
added to each context token vi(x) = vi + m(x) for i ∈ {1, 2, · · · , M}.
Therefore, the prompt for class k is conditioned on each input:

tk(x) = [v1(x), v2(x), · · · , vM(x), wk]

. To learn the context vectors, the cross-entropy loss is used in fine-tuning:

p(yk | x) = exp (sk(x)/τ)∑K
i=1 exp (si(x)/τ)

, (6.1)

where sk(x) = g(x)·f(tk)
∥g(x)∥·∥f(tk)∥ is the cosine similarity of input x with the k-th

label, and τ is the temperature.
Alternatively, adaptor-based methods directly optimize the feature rep-

resentations g(x) instead of learning context vectors. Specifically, given
a K-way-D-shot ID training set (consisting of K classes with D exam-
ples per class), Zhang et al. (2022b) propose a training-free adaptation
method TipAdaptor which extracts all the visual features

Wg = [g(x1,1), g(x1,2), · · · , g(xK,D)] ∈ RKD×d

from the few-shot training dataset. For each input x, we can obtain K ×
D cosine similarities sk,d(x) = g(x)·g(xk,d)

∥g(x)∥·∥g(xk,d)∥ . The cosine similarities are
scaled by an exponential function s̃ : s 7→ exp(−β + βs) with a hy-
perparameter β that modulates the sharpness. Therefore, we can ob-
tain an average similarity vector for each class based on visual features,
s̃k(x) = 1

D

∑D
d=1 s̃k,d(x). The final similarity for class k is a weighted sum

of similarities from the two modalities αs̃k(x) + sk(x). To achieve bet-
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ter few-shot ID performance, Zhang et al. (2022b) set visual features Wg

as learnable parameters and denote the method as TipAdaptorF, where
F stands for fine-tuning. Despite the stronger downstream classification
performance, it remains unknown if fine-tuning leads to more reliable
OOD detection at test time. We aim to provide a comprehensive under-
standing in this chapter.

6.4 Method

6.4.1 OOD detection with fine-tuning

We investigate OOD detection with parameter-efficient fine-tuning on down-
stream tasks. We present a unified framework in Figure 6.1, where the
learnable part of the CLIP model is marked with an “unlock” icon while
the frozen part is marked with a “lock” icon. For prompt learning meth-
ods such as CoOp and CoCoOp, the cosine similarity of the input feature
with the k-th class sk(x) = g(x)·f(tk)

∥g(x)∥·∥f(tk)∥ is derived based on the adapted
textual feature vector tk. Alternatively, adaptor-based methods such as
TipAdaptor and TipAdaptorF first scale the cosine similarities of visual
prototypes and perform a weighted sum with the similarities of textual
prototypes. Therefore, we can view TipAdaptor as an ensemble method
that utilizes multi-modal prototypes.

To summarize, for each adaptation algorithm A, OOD detection can
be performed by:

GA(x; f, g) =

ID S(x; f, g) ≥ λ

OOD S(x; f, g) < λ
,

where A can be instantiated by an adaptation method such as CoOp, CoCoOp,
TipAdaptor, or TipAdaptorF. Therefore, the OOD detector GA(·) can be
viewed as a “safeguard” for the classification model. Next, we introduce
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various OOD score functions S(x; f, g) assuming GA(x; f, g) is defined
implicitly as each score function corresponds to an OOD detector G.

6.4.2 OOD score for vision-language models

Recently, Ming et al. (2022a) propose a conceptual framework of CLIP-
based OOD detection via concept matching, where the textual feature
f(tk) is viewed as the concept prototype for ID class k ∈ {1, 2, ..., K}.
OOD uncertainty is then characterized by the distance from the visual
feature of the input to the closest ID textual prototype. That is, images
closer to one of the ID prototypes are more likely to be ID and vice versa.
Ming et al. (2022a) suggest that softmax scaling with a proper temper-
ature τ provably leads to state-of-the-art performance under the zero-
shot (training-free) setting. Specifically, the maximum concept matching
(MCM) score is defined as:

SMCM(x) = max
k∈[K]

esk(x)/τ∑K
j=1 esj(x)/τ

, (6.2)

where the temperature τ needs to be tuned on the downstream dataset.
As a special case of MCM, we use MSP to denote the MCM score when
the temperature τd is set as default for CLIP models at inference time (e.g.,
100 for CLIP-B/16).

Additionally, we consider a simpler scoring function based on the max-
imum similarity (MS) among ID prototypes before applying softmax scal-
ing:

SMS(x) = max
k∈[K]

sk(x), (6.3)

which does not require any hyperparameter tuning. We show in Sec-
tion 6.5 that the MS score demonstrates strong OOD detection perfor-
mance with fine-tuning, especially for fine-grained ID datasets. We now
proceed to experiments where we investigate the impact of fine-tuning on
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real-world tasks.

6.5 Experiments

6.5.1 Setup

Datasets. Following Ming et al. (2022a), we consider a wide range of
real-world ID datasets with various semantics and number of classes:
Caltech-101, Stanford-Cars (Krause et al., 2013), Food-101 (Bossard et al.,
2014), Oxford-Pets (Parkhi et al., 2012) and ImageNet-1k (Deng et al.,
2009). For each ID dataset, we follow Zhou et al. (2022b) and construct
the training set with D random samples per class, while the original test
set is used for testing. We use D = 16 by default and study the impact of
shots as ablations in Section 6.5.3. For OOD test datasets, we use the same
ones in Huang and Li (2021), including subsets of iNaturalist (Van Horn
et al., 2018), Sun (Xiao et al., 2010), Places (Zhou et al., 2017), and Tex-
ture (Cimpoi et al., 2014). For each OOD dataset, the categories do not
overlap with the ID dataset. For ImageNet-1k as ID, we also consider
two additional OOD datasets ImageNet-O (Hendrycks et al., 2021) and
OpenImage-O (Wang et al., 2022b).

Models and training details. For pre-trained models, we use CLIP-B/16
as the default backbone for main experiments, which uses ViT-B/16 (Doso-
vitskiy et al., 2021) as the image encoder. The impact of backbones is
included in the ablation studies. We use ZOCLIP to denote pre-trained
CLIP without fine-tuning. For each method, we closely follow the origi-
nal implementations. Specifically, for CoOp and CoCoOp, the context length
is set to 4, and the context vectors are initialized using the pre-trained
word embeddings of “a photo of a”. CoCoOp is trained with a batch size
of 1 for 10 epochs using SGD, while CoOp is trained for 100 epochs with
a batch size of 32. TipAdapterF is trained with a batch size 256 using
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AdamW (Loshchilov and Hutter, 2019) for 20 epochs. Cosine scheduling
is used for all methods and the data preprocessing protocol consists of
random re-sizing, cropping, and random horizontal flip.

Evaluation metrics. We consider the following evaluation metrics: (1)
the false positive rate (FPR95) of OOD samples when the true positive
rate of in-distribution samples is at 95%, (2) the area under the receiver
operating characteristic curve (AUROC), and (3) ID classification accu-
racy (ID ACC).

6.5.2 Main results and discussions

In this section, we first present novel evidence that parameter-efficient
fine-tuning generally improves OOD performance over the zero-shot coun-
terpart with a simple OOD scoring function. Next, we investigate the
effects of various OOD scoring functions in the parameter-efficient fine-
tuning setting. In particular, we will show that the MCM score consis-
tently demonstrates the most promising performance compared to alter-
native OOD scores when coupled with prompt learning.

How does parameter-efficient fine-tuning impact OOD detection? We
evaluate the OOD detection performance on various ID datasets. The re-
sults are summarized in Table 6.1. We show that adapted CLIP models
demonstrate nearly perfect OOD detection performance for ID datasets
with fine-grained categories such as Stanford-Cars and Oxford-Pets. More-
over, when the ID dataset contains a diverse collection of categories such
as Caltech-1011, parameter-efficient fine-tuning still significantly improves
the OOD detection performance on average compared to ZOCLIP. In par-
ticular, CoCoOp yields the best performance among other adaptation meth-
ods on Caltech-101 (ID). It achieves an average FPR95 of 5.94% using

1Similar trends also hold for ImageNet-1k as ID.
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Table 6.1: OOD detection performance based on SMS score (w.o. softmax
scaling). When ID datasets contain finer-grained categories semantically
different from OOD categories, the pre-trained CLIP model demonstrates
nearly perfect OOD detection performance. More encouragingly, after
adapting the model to downstream datasets, OOD detection performance
remains competitive.

ID Dataset Method SUN Places Textures iNaturalist Average
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

Training not required

Food-101

ZOCLIP 0.04 99.92 0.12 99.93 4.63 98.29 0.15 99.87 1.24 99.50
TipAdaptor 0.00 99.94 0.04 99.95 2.87 98.85 0.06 99.90 0.74 99.66

Requires training
TipAdaptorF 0.00 99.94 0.03 99.95 3.16 98.77 0.05 99.91 0.81 99.64
CoOp 0.01 99.97 0.00 99.98 1.45 99.68 0.00 99.97 0.36 99.90
CoCoOp 0.00 99.98 0.00 99.98 1.97 99.51 0.01 99.97 0.49 99.86

Training not required

Oxford-Pets

ZOCLIP 0.03 99.99 0.14 99.96 0.12 99.95 0.00 100.00 0.07 99.97
TipAdaptor 0.01 100.00 0.07 99.98 0.07 99.99 0.00 100.00 0.04 99.99

Requires training
TipAdaptorF 0.02 100.00 0.07 99.98 0.09 99.98 0.00 100.00 0.04 99.99
CoOp 0.02 100.00 0.18 99.97 0.25 99.92 0.00 100.00 0.11 99.97
CoCoOp 0.03 99.99 0.19 99.96 0.11 99.96 0.00 100.00 0.08 99.98

Training not required

Stanford-Cars

ZOCLIP 0.02 99.99 0.24 99.94 0.00 100.00 0.00 100.00 0.07 99.98
TipAdaptor 0.01 100.00 0.08 99.98 0.00 100.00 0.00 100.00 0.02 100.00

Requires training
TipAdaptorF 0.01 100.00 0.06 99.98 0.00 100.00 0.00 100.00 0.02 100.00
CoOp 0.01 100.00 0.07 99.97 0.00 100.00 0.00 100.00 0.02 99.99
CoCoOp 0.01 100.00 0.07 99.97 0.00 100.00 0.00 100.00 0.02 99.99

Training not required

Caltech-101

ZOCLIP 32.03 94.06 33.01 93.39 54.66 89.29 32.14 94.30 37.96 92.76
TipAdaptor 9.69 98.07 11.25 97.84 20.90 96.68 13.62 97.72 13.86 97.58

Requires training
TipAdaptorF 10.20 97.76 11.60 97.42 23.32 95.54 14.01 97.36 14.78 97.02
CoOp 5.53 98.56 9.88 97.50 13.10 97.10 4.89 98.76 8.35 97.98
CoCoOp 2.86 99.19 6.42 98.37 8.81 98.09 5.68 98.68 5.94 98.58

SMS, improving by 32.02% over ZOCLIP. While prior works suggest that
parameter-efficient fine-tuning methods improve ID accuracy on few-shot
datasets, our results complement their findings and show that fine-tuning
also improves the OOD detection performance with proper OOD scoring
functions.

Effects of OOD scoring functions. We investigate the effect of OOD
scoring functions under fine-tuned vision-language models. In Table 6.2,
we contrast the OOD detection performance using MCM (Ming et al.,
2022a) vs. MS on Caltech-101 (ID). Our findings suggest that: (1) SMCM

performs on par with SMS for fine-grained ID tasks across a wide range of
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Table 6.2: OOD detection performance with SMS and SMCM score when the
ID dataset contains diverse categories. Prompt learning methods display
clear advantages over zero-shot models. The results are based on Caltech-
101 (ID).

OOD Score Method SUN Places Textures iNaturalist Average
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

SMS

ZOCLIP 32.03 94.06 33.01 93.39 54.66 89.29 32.14 94.30 37.96 92.76
TipAdaptor 9.69 98.07 11.25 97.84 20.90 96.68 13.62 97.72 13.86 97.58
TipAdaptorF 10.20 97.76 11.60 97.42 23.32 95.54 14.01 97.36 14.78 97.02
CoOp 5.53 98.56 9.88 97.50 13.10 97.10 4.89 98.76 8.35 97.98
CoCoOp 2.86 99.19 6.42 98.37 8.81 98.09 5.68 98.68 5.94 98.58

SMCM

ZOCLIP 14.83 97.20 20.45 96.00 14.98 97.35 10.84 97.76 15.28 97.08
TipAdaptor 5.12 98.83 8.05 98.34 4.65 99.05 6.94 98.77 6.19 98.75
TipAdaptorF 4.83 98.79 8.09 98.07 6.41 98.11 4.94 98.98 6.07 98.49
CoOp 3.62 99.01 8.15 97.89 6.29 98.62 7.57 98.35 6.41 98.47
CoCoOp 4.26 98.94 6.76 98.00 4.33 98.88 4.71 98.68 5.02 98.62

Table 6.3: OOD detection performance based on SMCM score.

ID Dataset Method SUN Places Textures iNaturalist Average
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

Food-101

ZOCLIP 1.75 99.46 2.04 99.35 5.54 98.05 2.80 99.17 3.03 99.01
TipAdaptor 0.63 99.75 0.64 99.71 3.76 98.59 1.32 99.55 1.59 99.40
TipAdaptorF 1.77 99.57 1.57 99.53 4.43 98.34 1.85 99.40 2.40 99.21
CoOp 2.00 99.46 1.60 99.47 5.85 98.39 1.37 99.54 2.71 99.22
CoCoOp 1.06 99.69 1.01 99.63 4.17 98.42 1.40 99.53 1.91 99.32

Oxford-Pets

ZOCLIP 1.18 99.73 3.37 99.28 1.37 99.73 6.17 98.84 3.02 99.40
TipAdaptor 0.05 99.97 0.62 99.87 0.17 99.96 0.11 99.87 0.24 99.92
TipAdaptorF 0.48 99.89 1.74 99.66 0.43 99.88 0.93 99.53 0.90 99.74
CoOp 0.06 99.96 0.55 99.85 0.39 99.90 2.07 99.37 0.77 99.77
CoCoOp 0.08 99.95 0.53 99.85 0.25 99.91 1.12 99.55 0.49 99.82

Stanford-Cars

ZOCLIP 0.02 99.96 0.31 99.89 0.02 99.96 0.10 99.74 0.11 99.89
TipAdaptor 0.01 99.98 0.11 99.94 0.00 99.97 0.00 99.84 0.03 99.93
TipAdaptorF 0.03 99.98 0.19 99.94 0.00 99.99 0.00 99.93 0.06 99.96
CoOp 0.01 99.98 0.17 99.93 0.00 99.98 0.02 99.84 0.05 99.93
CoCoOp 0.02 99.98 0.15 99.93 0.00 99.97 0.00 99.87 0.04 99.94

Caltech-101

ZOCLIP 14.83 97.20 20.45 96.00 14.98 97.35 10.84 97.76 15.28 97.08
TipAdaptor 5.12 98.83 8.05 98.34 4.65 99.05 6.94 98.77 6.19 98.75
TipAdaptorF 4.83 98.79 8.09 98.07 6.41 98.11 4.94 98.98 6.07 98.49
CoOp 3.62 99.01 8.15 97.89 6.29 98.62 7.57 98.35 6.41 98.47
CoCoOp 4.26 98.94 6.76 98.00 4.33 98.88 4.71 98.68 5.02 98.62

adaptation methods (Table 6.3). (2) However, when ID contains diverse
categories, utilizing SMCM generally leads to better performance compared
to using SMS for most adaptation methods (Table 6.2). (3) In particular,
prompt learning methods such as CoCoOp demonstrate very competitive
results with both OOD scores (an average FPR95 of 5.02% with SMCM and
5.94% with SMS in Table 6.2).
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Effects of softmax scaling. Previously, Ming et al. (2022a) observed that
the commonly used maximum softmax score (SMSP) is suboptimal for
zero-shot OOD detection with vision-language models. We investigate
whether MSP is competitive for OOD detection with fine-tuned models.
To better illustrate the effects, we plot the score distributions for Stanford-
Cars (ID) vs. SUN (OOD) in Figure 6.2 when the model is fine-tuned
with CoOp, CoCoOp, and TipAdaptorF respectively. For each fine-tuning
method, we can clearly see that the SMS leads to superior ID-OOD sepa-
rability, while SMSP displays significant overlapping. Quantitatively, com-
pared to SMSP, the average FPR95 is significantly decreased with SMS (Ta-
ble E.4). Our findings highlight that directly applying MSP is not com-
petitive for fine-tuned vision-language models.
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Figure 6.2: The impact of softmax scaling. We use Stanford-Cars (ID) vs.
SUN (OOD) for illustration. Applying softmax scaling significantly de-
creases ID-OOD separability for CoOp (top row), CoCoOp (second row),
and TipAdaptorF (last row), resulting in worse OOD detection perfor-
mance.
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6.5.3 Delving into parameter-efficient fine-tuning for
OOD detection

The impact of fine-tuning on feature geometry. To better understand
how fine-tuning leads to improved OOD detection performance, we ex-
amine the geometry of the feature representations. For illustration, we
use the simple SMS score as it provides an intuitive geometric interpreta-
tion. For each test input, SMS captures the angular distance between its
visual features and the closest ID prototype. Figure 6.3 shows SMS for
ID and each OOD test dataset, where radians are converted to degrees
for better readability. Intuitively, one desires to learn compact ID clusters
such that ID inputs are closer to the nearest ID prototypes than OOD in-
puts. We illustrate the effects of prompt learning in Figure 6.4. Compared
to zero-shot CLIP, CoOp and CoCoOp decrease the angular distance for ID
inputs to the nearest concept prototype while simultaneously increasing
the angular distance for OOD inputs. In particular, CoCoOp decreases the
angular distance for ID inputs more significantly, resulting in better ID-
OOD separability. Although prompt learning methods introduce pertur-
bations to the feature space, the overall effect is modest, with only a slight
deviation of a few degrees from the pre-trained model2. Nonetheless,
these perturbations play a crucial role in enhancing both ID classification
and OOD detection performance.

Exploring prompt learning for OOD detection on challenging large-
scale benchmarks In previous sections, we show that prompt learning
with both SMS and SMCM scores display competitive performance. Next,
we consider a more challenging large-scale benchmark ImageNet-1k (ID).
The results in FPR95 and AUROC are shown in Figure 6.5 and Figure 6.6.
While SMS outperforms SMSP score, we can clearly see that SMCM is par-
ticularly advantageous compared to the simpler SMS baseline. In partic-

2Similar observations can also be verified for adaptor-based methods.
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Figure 6.3: Average SMS for ID (Caltech-101) and OOD test sets. Prompt
learning methods decrease the angular distance for ID inputs while in-
creasing the angular distance for OOD inputs to the nearest concept pro-
totype, leading to better ID-OOD separability (Figure 6.4).
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Figure 6.4: Illustration of how prompt learning methods impact the hy-
perspherical features. Left: feature of an ID sample and its nearest ID
prototype; Right: feature of an OOD sample and its nearest ID prototype.

ular, SMCM outperforms SMS by 7.44% in FPR95 averaged across the four
OOD test sets. Moreover, CoOp with SMCM achieves an average FPR95 of
37.74% on the benchmark, surpassing the zero-shot performance of the
large backbone CLIP-L/14 model which has an FPR95 of 38.17% (Ming
et al., 2022a). These results further demonstrate the effectiveness of SMCM

in CLIP-based prompt learning for challenging scenarios.
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Figure 6.5: OOD detection performance (FPR95) on ImageNet-1k (ID).
Using SMCM score leads to significant improvement over SMSP.
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Figure 6.6: OOD detection performance (AUROC) on ImageNet-1k (ID).
The trend is consistent with Fig 6.5.
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The impact of shots. We investigate the impact of shots for CoOp and
CoCoOp with various OOD detection scores. The results are shown in Fig-
ure 6.7 and Figure 6.8, where each point represents the average FPR95
over the four OOD test sets. We highlight two key findings. First, the
OOD detection performance with both SMS and SMCM score improves as
the number of shots increases. This trend is consistent with the ID clas-
sification accuracy reported in Zhou et al. (2022c), suggesting that using
a suitable OOD uncertainty score can enhance the representation quality
as more data is incorporated during prompt learning. Second, the per-
formance of SMCM is promising even with a low number of shots, demon-
strating its effectiveness in resource-constrained settings.
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Figure 6.7: The effects of shots for CoOp with various OOD detection scores
on Caltech-101 (ID). The performance is averaged over the four OOD test
sets.

The impact of backbone architecture. We conduct another ablation study
on the impact of model architectures. We consider CLIP with ResNet
backbones (N50, RN101) and ViT backbones (CLIP-B/32, CLIP-L/14),
where the vision encoder is based on ViT-B/32 and ViT-L/14, respectively.
We train with CoOp with hyperparameters following the original imple-
mentation for each architecture (Zhou et al., 2022c). We evaluate the
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Figure 6.8: The effects of shots for CoCoOp with various OOD detection
scores on Caltech-101 (ID). The performance is averaged over the four
OOD test sets.

models using SMSP, SMS, and SMCM score and summarize the results in
Table 6.4 and Table 6.5. Interestingly, compared to SMSP, SMS brings more
significant improvements under ViT backbones than ResNet backbones.
In contrast, SMCM score consistently demonstrates competitive performance
for all the architectures considered. For instance, with CLIP-B/32, SMCM

achieves an average FPR95 of 6.17%, a 20.23% improvement over the SMSP

baseline. We observe similar improvements for RN101 (18.57%) and RN50
(22%). Moreover, larger backbones lead to superior performance when
fixing the OOD detection score as MCM. For example, with CLIP-L/14,
the average FPR95 is improved by 11.17% compared to RN50 and 2.67%
compared to CLIP-B/32. A similar trend has been shown for ID classi-
fication (Radford et al., 2021), where larger models yield better feature
representation.
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Table 6.4: The impact of model architecture on ResNet backbones with
CoOp on Caltech-101 (ID).

Arch Score OOD Dataset FPR95↓ AUROC↑

RN50

SMSP

SUN 29.93 93.95
Places 37.64 91.96
Textures 35.69 93.58
iNaturalist 43.42 91.27
AVG 36.67 92.69

SMS

SUN 6.02 98.45
Places 9.02 97.79
Textures 23.17 95.25
iNaturalist 12.39 97.37
AVG 12.65 97.22

SMCM

SUN 8.56 98.03
Places 17.02 95.88
Textures 12.09 97.56
iNaturalist 21.00 95.93
AVG 14.67 96.85

RN101

SMSP

SUN 23.60 95.20
Places 29.37 93.94
Textures 21.29 96.24
iNaturalist 34.18 94.05
AVG 27.11 94.86

SMS

SUN 19.08 96.56
Places 20.79 96.25
Textures 36.97 94.39
iNaturalist 30.89 95.41
AVG 26.93 95.65

SMCM

SUN 6.19 98.42
Places 11.57 97.16
Textures 5.83 98.49
iNaturalist 10.56 97.69
AVG 8.54 97.94

6.6 Conclusion
In this chapter, we provide a timely study on the impact of parameter-
efficient fine-tuning methods for OOD detection with large vision-language
models. We focus on the few-shot setting without access to OOD la-
bels, which has been largely unexplored in the literature. We show that
parameter-efficient fine-tuning methods can improve both ID and OOD
performance when coupled with a proper OOD score, with prompt learning-
based methods showing the strongest performance under the MCM score.
We analyze the feature space and provide insights into the effectiveness
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Table 6.5: The impact of model architecture on ViT backbones with CoOp
on Caltech-101 (ID).

Arch Score OOD Dataset FPR95↓ AUROC↑

CLIP-B/32

SMSP

SUN 24.20 96.02
Places 27.94 94.99
Textures 24.54 96.09
iNaturalist 28.90 95.37
AVG 26.40 95.62

SMS

SUN 13.81 97.41
Places 16.49 96.48
Textures 25.23 95.24
iNaturalist 13.00 97.60
AVG 17.13 96.68

SMCM

SUN 4.06 98.92
Places 7.31 98.01
Textures 4.61 98.81
iNaturalist 8.70 98.17
AVG 6.17 98.48

CLIP-L/14

SMSP

SUN 7.73 98.36
Places 10.96 97.71
Textures 19.18 96.60
iNaturalist 11.33 97.71
AVG 15.85 97.41

SMS

SUN 13.81 97.41
Places 16.49 96.48
Textures 25.23 95.24
iNaturalist 13.00 97.60
AVG 12.30 97.59

SMCM

SUN 2.15 99.33
Places 5.60 98.30
Textures 2.32 99.31
iNaturalist 3.94 99.06
AVG 3.50 99.00

of such methods through the lens of multi-modal concept matching. We
hope our findings will inspire and motivate future research on designing
reliable fine-tuning methods for large vision-language models.
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Chapter 7

Understanding
Retrieval-Augmented Task
Adaptation for Vision-Language
Models

Pre-trained contrastive vision-language models have demonstrated re-
markable performance across a wide range of tasks. However, they often
struggle on fine-trained datasets with categories not adequately repre-
sented during pre-training, which makes adaptation necessary. Recent
works have shown promising results by utilizing samples from web-scale
databases for retrieval-augmented adaptation, especially in low-data regimes.
Despite the empirical success, understanding how retrieval impacts the
adaptation of vision-language models remains an open research ques-
tion. In this chapter, we adopt a reflective perspective by presenting a
systematic study to understand the roles of key components in retrieval-
augmented adaptation. We unveil new insights on uni-modal and cross-
modal retrieval and highlight the critical role of logit ensemble for effec-
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tive adaptation. We further present theoretical underpinnings that di-
rectly support our empirical observations.

7.1 Introduction
Contrastive vision-language pre-training has emerged as a fundamental
cornerstone for a wide array of tasks in natural language processing and
computer vision Radford et al. (2021); Jia et al. (2021); Yang et al. (2022);
Li et al. (2022c); Mu et al. (2022); Yu et al. (2022); Sun et al. (2023); Xu
et al. (2024). These models excel in capturing the intricate relationships
present in both visual and textual data, enabling them to understand con-
text, semantics, and associations holistically. It is now a common prac-
tice to employ aligned multi-modal features from web-scale pre-training.
However, a challenge arises when these pre-trained models encounter
real-world downstream datasets, particularly in low-data (few-shot) sce-
narios. Such datasets often encompass fine-grained categories that were
not adequately represented during the initial pre-training phase, posing
a notable hurdle for the models in adapting to these nuanced distinctions.

In the low-data regime, retrieval-augmented adaptation has demon-
strated promise, where a wealth of external resources is readily available
on the Internet and can be retrieved efficiently to enhance adaptation. Re-
cent works Udandarao et al. (2023); Zhang et al. (2023) showcase encour-
aging results by leveraging large-scale text and image databases Schuh-
mann et al. (2022). Retrieval-augmented adaptation involves two main
steps: first retrieving the most relevant data from an external source, and
then adapting to downstream task based on the retrieved samples. While
existing works have primarily focused on developing new adaptation al-
gorithms or integrating different knowledge sources, there remains a no-
table gap in understanding how retrieval augmentation impacts adap-
tation for vision-language models. Such an understanding is imperative
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to guide the future development of effective algorithms.
In this work, we adopt a reflective perspective by presenting a system-

atic study to understand retrieval-augmented adaptation, and establish-
ing new theoretical underpinnings. Our empirical analysis reveals key
insights revolving around two aspects: (1) the impact of the retrieval
method, and (2) how retrieved samples help adaptation. First, we show
that image-to-image (I2I) retrieval consistently outperforms text-to-image
(T2I) retrieval for a wide range of downstream tasks. Under the same
retrieval budget, these two retrieval methods differ by the query sam-
ples used: I2I employs a few seed images from the target data distri-
bution, whereas T2I employs the textual description of each class label.
While both I2I and T2I retrieval introduce distributional shifts w.r.t. the
target data, we show that I2I achieves strong performance that matches
more closely with the oracle when we directly retrieve from the target
distribution (i.e., no distributional shifts). Secondly, we show that en-
sembling the zero-shot prediction together with I2I retrieved samples is
the key to improved adaptation performance. For a given test sample,
the ensembling is achieved by taking a weighted average between the
logit from the retrieved feature cache and the logit of the zero-shot in-
ference. We empirically find that without ensembling, the performance
of retrieval-augmented adaptation significantly degrades. This new ob-
servation complements previous studies that often attribute the success
of retrieval to the diversity and quality of samples.

Going beyond empirical analysis, we provide theoretical insights that
directly support our empirical observations above. We formalize T2I and
I2I retrieval by characterizing the multi-modal feature space with each
retrieval scheme. Under realistic assumptions, we analyze how retrieval
impacts the modality gap and the shift between the retrieved and tar-
get distributions. In particular, we prove that I2I retrieval is superior to
T2I retrieval (Theorem 7.1) and that logit ensemble is critical for improv-
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Figure 7.1: Illustration of the retrieval-augmented task adaptation frame-
work for CLIP-like models. (a): Given a downstream target dataset,
we first retrieve relevant samples from a web-scale database using seed
prompts (T2I) or seed images (I2I). We can then build a K-shot cache by
selecting the Top-K similar images per class based on CLIP embeddings.
(b) At inference time, the final logit fEN of a test input is an ensemble
(weighted sum) of logits from the zero-shot model fZOC and the few-shot
cache fRET.

ing CLIP-based adaptation (Theorem 7.2) by better leveraging the knowl-
edge encoded in different modalities. Our theoretical results shed light
on the key factors in the design of effective retrieval-augmented adapta-
tion algorithms for vision-language models.

Our main contributions are summarized as follows:

• We conduct a timely and systematic investigation into the retrieval-
augmented adaptation of vision-language models, where we high-
light key components such as the retrieval methods and logit en-
semble.

• We provide a finer-grained empirical study with in-depth analysis.
We unveil new insights on the critical role of uni-modal retrieval
and logit ensemble for effective CLIP-based adaptation in low-data
scenarios.

• We develop a novel theoretical framework for retrieval-augmented
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adaptation and present theoretical results that directly support our
empirical observations.

• We further provide a comprehensive ablation study and discuss al-
ternative design choices such as the impact of model architectures,
adaptation with a finetuned feature cache, and adaptation with data
mixtures.

7.2 Retrieval-Augmented Task Adaptation
In this section, we first discuss the preliminaries of contrastive vision-
language models as well as the external databases employed for retrieval
(Section 7.2.1). Next, we illustrate the two main steps for retrieval-augmented
task adaptation: building a feature cache by retrieving relevant samples
from the external database (Section 7.2.2), and performing task adapta-
tion based on retrieved samples (Section 7.2.3). An illustration of the
pipeline is shown in Figure 7.1.

7.2.1 Preliminaries

Popular contrastive vision-language models such as CLIP (Radford et al.,
2021) adopt a dual-stream architecture with one text encoder T : t → Rd

and one image encoder I : x → Rd. The model is pre-trained on a mas-
sive web-scale image-caption dataset with a multi-modal contrastive loss,
which aligns features from different modalities. This alignment of multi-
modal embeddings offers distinct advantages for contemporary large-scale
multi-modal vector databases Schuhmann et al. (2022), enabling efficient
retrieval based on semantic similarity.

Zero-shot inference. At inference time, given a test input x, we can ob-
tain the cosine similarity fZOC

c (x) = sim(I(x), T (tc)) between the visual
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embedding I(x) and contextualized representations T (tc) for each label
c ∈ {1, 2, ..., C}. Here the context tc can be either a generic template such
as “a photo of <CLASS>” or a textual description of the class. We denote
the logit vector of the zero-shot model as fZOC(x) ∈ RC , which consists
of C cosine similarities. The class prediction can be made based on the
maximum cosine similarity among C classes.

External web-scale knowledge base. Pre-trained CLIP models often strug-
gle for downstream datasets with finer-grained categories, which are not
well represented in the pre-training dataset. To adapt CLIP models to
finer-grained datasets in a low-data scheme, recent works Liu et al. (2023)
demonstrate promising performance by utilizing external resources such
as LAION (Schuhmann et al., 2022), a web-scale knowledge base which
consists of billions of image-text pairs SL = {(xi, ti)}N

i=1 covering a di-
verse range of concepts in the real world. Given a fixed budget, we can
efficiently build a few-shot cache by retrieving relevant samples from the
knowledge base with approximate KNN search Johnson et al. (2019). We
provide details as follows.

7.2.2 Building Feature Cache by Retrieval

Given a downstream dataset with C classes: Y = {1, 2, ..., C} and a bud-
get size of KC, we can retrieve K samples per class to build a cache of size
KC. For vision-language models, the retrieval methods be categorized as
uni-modal and cross-modal retrieval, formalized as follows:

Uni-modal retrieval. We mainly consider image-to-image (I2I) retrieval
due to its popularity. For I2I retrieval, we assume access to a small set of
query images from the downstream dataset. The query set QI = ⋃C

c=1 Qc
I ,

where Qc
I = {xc,1, xc,2, . . . , xc,nc} contains nc seed images for each class
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c ∈ Y . We then retrieve top-K similar images from SL per class:

RI2I(c) = topK {x ∈ SL : sim(I(x), I(xc,i)), xc,i ∈ QI} ,

where sim(I(x), I(xc,i)) is the cosine similarity between the image em-
bedding of x from retrieval database and the query image xc,i, and topK

denotes the operation of selecting the top-K items. We can build a K-shot
cache for I2I retrieval by taking the union of these sets across all classes:

S I2I
R =

⋃
c∈C

{
(x, t) ∈ SL : x ∈ RI2I(c)

}
.

Cross-modal retrieval. We mainly consider text-to-image (T2I) retrieval.
We assume access to class names in the target dataset, also known as
“name-only transfer” (Udandarao et al., 2023). The query set QT =
{tc}C

c=1, where tc is a generic textual description of class c. The retrieved
K samples for class c is:

RT2I(c) = topK {x ∈ SL : sim(I(x), T (tc)), tc ∈ QT } ,

where sim(I(x), T (tc)) is the cosine similarity between the image embed-
ding of x and the text embedding for class c. The K-shot cache for T2I
retrieval is denoted as:

ST2I
R =

⋃
c∈C

{
(x, t) ∈ SL : x ∈ RT2I(c)

}
.

7.2.3 Task Adaptation with Retrieved Samples

Given a K-shot cache (S I2I
R or ST2I

R ) and pre-trained CLIP image and text
encoders I and T , we can perform adaptation w.r.t. a fine-grained target
dataset. To better understand the effects of retrieved samples, we con-
sider zero-shot adaptation in Section 7.3, where the cache only consists of
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retrieved samples. We discuss few-shot adaptation in Section 7.5, where
the cache contains a mixture of samples in the target training set and re-
trieved samples.

Retrieval-based adaptation. A variety of cache-based adaptation meth-
ods have been recently proposed Zhang et al. (2022b, 2023); Udandarao
et al. (2023). At the core, these methods typically obtain a logit ensem-
ble for each test input based on two sources: (1) a logit from the zero-
shot CLIP model, and (2) a logit from the cache. Without loss of gen-
erality, we consider a representative adaptation framework TipAdaptor
(Zhang et al., 2022b). Specifically, given the cache of size CK (consisting
of C classes with K retrieved samples per class), we denote the collec-
tion of the visual features as K = [k1,1, k1,2, · · · , kC,K ] ∈ Rd×CK where
kc,i = I(xc,i). For each test input x, we can obtain CK cosine similarities
sc,i(x) = sim(I(x), kc,i). The cosine similarities are then scaled by an ex-
ponential function s̃ : s 7→ exp(−ω + ωs) with a hyperparameter ω that
modulates the sharpness. Accordingly, we can obtain an average similar-
ity vector for each class based on visual features, fRET

c (x) = 1
K

∑K
i=1 s̃c,i(x).

The final logit of the test sample is an ensemble of logits from the feature
cache and zero-shot CLIP prediction:

fEN(x) = αfZOC(x) + γfRET(x),

where α, γ weigh the relative importance between two logits. Such a logit
ensemble scheme has also been commonly adopted in recent works Zhang
et al. (2023). For completeness, we also discuss learning-based adapta-
tion by setting visual features in K as learnable parameters. We denote
the method as Ensemble(F), where F stands for fine-tuning.
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Figure 7.2: Comparison of adaptation performance (in accuracy) of dif-
ferent retrieval methods. Compared to the zero-shot model (purple star),
I2I retrieval significantly improves the performance and consistently out-
performs T2I retrieval across shots and datasets.

7.3 A Finer-Grained Analysis of
Retrieval-Augmented Adaptation

Different from recent works on algorithm design and incorporation of
new knowledge sources Zhang et al. (2023); Iscen et al. (2023); Udan-
darao et al. (2023), the goal of our work is to present a systematic analy-
sis with theoretical insights on how retrieval augmentation impacts adap-
tation for vision-language models. In this section, we present empirical
analysis focusing on the impact of two aspects: retrieval method (Sec-
tion 7.3.2) and logit ensemble with retrieved samples (Section 7.3.3). We
will provide theoretical analysis to support these empirical findings in
Section 7.4. We discuss alternative design choices and ablation studies in
Section 7.5.
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7.3.1 Settings

Datasets. Following prior works Zhang et al. (2022b), we consider a
wide range of real-world datasets that span both common and finer-grained
categories: Caltech101 (Fei-Fei et al., 2004), Birds200 (Wah et al., 2011),
Food101 (Bossard et al., 2014), OxfordPets (Parkhi et al., 2012), Flow-
ers102 Nilsback and Zisserman (2008), Textures Cimpoi et al. (2014), and
UCF101 Soomro et al. (2012).

Implementation details. We use LAION-5B Schuhmann et al. (2022)
as the retrieval database, which consists of 5.85 billion image-text pairs.
For T2I retrieval, the default query set contains class descriptions with a
prompt template. For I2I retrieval, by default, we use 8 seed images per
class as the query set. Based on the query set, we use the clip-retrieval
tool1 for efficient retrieval from LAION-5B. We vary the number of re-
trieved samples per class K ∈ {1, 2, 4, 8, 16}. For adaptation, we use pre-
trained CLIP with RN50 backbone as the default. Unless otherwise spec-
ified, each reported result is averaged over three independent runs. The
ensemble weights of two logits α, γ are tuned on the validation set. Ab-
lation studies on the number of seed images and alternative backbones
are in Section 7.5. Further implementation details can be seen in Ap-
pendix F.1.

7.3.2 Impact of Retrieval Method

I2I retrieval consistently outperforms T2I retrieval. To better under-
stand the impact of the retrieval method, we compare the adaptation per-
formance (in Accuracy) using I2I and T2I retrieval. The results are shown
in Figure 7.2, where the horizontal axis indicates the number of retrieved
samples for each class (shot). As both I2I and T2I retrieval introduce dis-

1https://github.com/rom1504/clip-retrieval

https://github.com/rom1504/clip-retrieval


123

tributional shifts w.r.t. the target distribution, we also plot the oracle per-
formance when retrieving samples from the target training set for refer-
ence, denoted as ID retrieval (green). Directly retrieving from the target
training set can be viewed as performance upper bound.

We observe several salient trends: (1) I2I retrieval consistently out-
performs T2I retrieval across all shots and datasets. In particular, the gap
between I2I and T2I increases when increasing the shot. (2) Compared to
the zero-shot inference without knowledge augmentation (purple star),
I2I retrieval significantly improves the performance. Notably, the gap be-
tween I2I retrieval and ID-retrieval (ideal) can be as small as 1% on aver-
age (12 shots), highlighting the potential of utilizing retrieved samples in
the extremely low-data scheme where one does not have training data in
the target dataset. (3) While T2I retrieval obtains a diverse collection of
samples, the performance gain compared to the zero-shot CLIP for multi-
ple datasets can be marginal. We investigate the reasons by a detailed ex-
amination of retrieved samples next and provide theoretical understand-
ing in Section 7.4 (Theorem 7.1). Similar trends also hold for training-
based adaptation, where we finetune the cache features as in Zhang et al.
(2022b) (see Figure F.3 in Appendix F.5).

A closer look at retrieved samples. To better understand the effects of
retrieval, we examine the samples retrieved by T2I and I2I respectively.
The results are shown in Figure 7.3. While T2I retrieval often results in
a diverse collection of images corresponding to the class semantics, we
find that such diversity may not always be desirable for target task adap-
tation. For example, when using the query a photo of a cellphone,
we retrieve images with a broad range of cellphone types. However, the
downstream dataset contains cellphones typical in the 2000s with physi-
cal keypads. The same phenomenon widely exists in the suite of datasets
commonly used in the literature (see Appendix F.3 for more extensive
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Caltech101UTF101
cellphonebilliards common dandelion


Flowers102T2I

I2I

ID

Figure 7.3: Samples from T2I and I2I retrieval. Top row: the main source
of noise for T2I retrieval is semantic ambiguity, as the textual queries (e.g.,
a photo of a cellphone) may not accurately describe the images from
target distributions (e.g., cellphones typical in the early 2000s). Middle
row: samples retrieved by I2I matches more closely with ID data. Bottom
row: images sampled from the target (ID) distribution. More examples
can be seen in Appendix F.3.

examples) As a result, T2I retrieval can lead to undesirable performance
due to semantic ambiguity. In contrast, I2I retrieval mitigates such am-
biguity. For example, when using an image of a cellphone with smaller
screens and physical keypads, one can retrieve images of older models of
cellphones with similar layouts (middle row).

7.3.3 How Do Retrieved Samples Help Adaptation?

Ensemble with zero-shot prediction is the key. We show that ensem-
bling the zero-shot prediction together with I2I-retrieved samples is the
key to improved adaptation performance. The results are shown in Fig-
ure 7.4, where ensemble denotes using fEN = αfZOC + γfRET with α, γ ∈
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Figure 7.4: Importance of ensemble for I2I retrieval. Ensemble corre-
sponds to the default logit ensemble: fEN = αfZOC + γfRET with α, γ ∈
(0, 1). RET denotes only using fRET (α = 0, γ = 1) and ZOCLIP denotes
only using fZOC (α = 1, γ = 0). By ensembling the prediction with re-
trieved samples (K = 16), the performance improvement over zero-shot
prediction is significant for most datasets.

(0, 1), RET denotes only using fRET (α = 0, γ = 1), and ZOCLIP means
only using fZOC (α = 1, γ = 0). This interesting phenomenon high-
lights the importance of logit ensembling for adapting vision-language
models to downstream tasks. The benefits can also be seen by examining
the class-wise performance of RET and Ensemble (see Figure F.1 in Ap-
pendix F.2). Similar trends also hold for training-based adaptation, de-
noted as Ensemble (F), where we finetune the cache features as in Zhang
et al. (2022b). Next, we provide further theoretical explanations (Theo-
rem 7.2).

7.4 Theoretical Understanding
We now provide theory to support our empirical observations and for-
mally understand retrieval-augmented task adaptation. As an overview,
Theorem 7.1 shows why I2I retrieval is superior to T2I retrieval. We fur-
ther prove that logit ensemble is the key for retrieval-augmented adapta-
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tion in Theorem 7.2. These two theorems justify our empirical results in
Section 7.3. Full proof is in Appendix F.4.

7.4.1 Problem Setup

Given a downstream task with C classes, let [C] := {1, 2, · · · , C}. T =
[t1, . . . , tC ] ∈ Rd×C denotes the text embedding matrix for all classes,
where tc := T (tc) ∈ Rd and tc is a generic textual description of class
c. Recall that K = [k1,1, k1,2 . . . , kC,K ] ∈ Rd×CK denotes the embedding
matrix for retrieved images, where kc,i := I(xc,i) ∈ Rd. For notational
simplicity, we assume text and image features are ℓ2 normalized. Let
K̄ = KV⊤

K
∈ Rd×C contain the average retrieved feature for each class.

V ∈ RC×CK is a sparse matrix containing the one-hot labels for retrieved
samples with entries Vi,j = 1{i = j̃} for i ∈ [C], j ∈ [CK], where
j̃ :=

⌈
j
K

⌉
Zhang et al. (2022b). For example, when K = 2, C = 3, we

have:

V =


1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

 .

At inference time, let (x, y) ∼ DT be a test sample from the target distribu-
tion DT with label y ∈ [C] and its visual feature z := I(x). The final logit
for the test sample can be represented as a weighted sum (ensemble) of
logits from the zero-shot CLIP and the feature cache from retrieval:

f(x) = (αT + γK̄)⊤z,

where 0 ≤ α, γ ≤ 1.
Given a loss function ℓ (e.g., cross-entropy), the risk on the down-

stream distribution is L(f) := E(x,y)∼DT
[ℓ(f(x), y)]. To simplify notations,

we denote the risk as R(Q) := E
[
ℓ(Q⊤z, y)

]
for some Q ∈ Rd×C . For

example, the risk of logit ensemble is R(αT + γK̄).
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Modality gap and retrieval distribution shift. To understand the im-
pact of retrieval, we characterize the distributional shift between the re-
trieved data and downstream data in the feature space. We define s̄c :=
E(x,y)∼DT

[I(x)|y = c] as the image representation of class c ∈ [C] based
on the downstream distribution. Let S̄ := [s̄1, . . . , s̄C ]. We define the
distributional shift between the retrieved data and target data for T2I
and I2I retrieval as ξT2I

c and ξI2I
c for class c. Let ξt := maxc∈[C] ξT2I

c and
ξs := maxc∈[C] ξI2I

c (Definition F.4). We can obtain an upper bound for ξs

and a lower bound for ξt by Lemma F.10.

7.4.2 Main Results

Under realistic assumptions of T2I and I2I retrieval on the pre-trained
feature space, we present two key results below. The detailed versions
with full proof are in Appendix F.4.
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Figure 7.5: Impact of architecture. We report the average performance
(over all datasets) for I2I retrieval and T2I retrieval under different CLIP
backbones and observe consistent trends. Results for individual datasets
can be seen in Appendix F.6.

Theorem 7.1 (Benefit of uni-modal retrieval). With probability at least 1−δ,
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the following upper bound of the ensemble risk holds:

R(αT + γK̄) − R(S̄)

≤L

α ∥(T − S̄)⊤z∥2︸ ︷︷ ︸
modality gap

+ γκ

√
8C

K
log C

δ︸ ︷︷ ︸
retrieval sample complexity

+ γ
√

2Cξ︸ ︷︷ ︸
retrieval shift

,

where L ≤
√

exp(2) + 1, κ characterizes the inner-class feature concentration
(Definition F.1), and ξ is either ξs for I2I retrieval or ξt for T2I retrieval.

Interpretations: The above upper bound consists of three terms: the
gap between the textual and visual modality, the sample complexity of
retrieved features which decreases as we increase K, and a term related to
the distributional shift induced by the retrieval method. By Lemma F.10,
we can further show that I2I provably outperforms T2I retrieval due to a
smaller ξ.

Further, to understand the benefit of logit ensemble, we define the
following three events:

E1 :={(x, y) ∼ DT : y ̸= arg max
c∈[C]

t⊤
c z and y ̸= arg max

c∈[C]
k̄⊤

c z}

E2 :={(x, y) ∼ DT : y = arg max
c∈[C]

t⊤
c z and y ̸= arg max

c∈[C]
k̄⊤

c z}

E3 :={(x, y) ∼ DT : y ̸= arg max
c∈[C]

t⊤
c z and y = arg max

c∈[C]
k̄⊤

c z}

Here E1 indicates that both fZOC and fRET incorrectly classify the test sam-
ple, while E2 and E3 denote the event where only one of them makes a
correct prediction. We can see that R0−1(fZOC) = Pr(E1) + Pr(E3) and
R0−1(fRET) = Pr(E1) + Pr(E2).

Theorem 7.2 (Benefit of logit ensemble). Under realistic assumptions for I2I
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retrieval, when α = γ = 1
2 , we can upper bound the 0-1 risk of logit ensemble:

R0−1 (f) ≤ Pr (E1) + C1(Pr(E2) + Pr(E3)) + ρc

where C1 := ρd max{6κ − ν, 2κ + τ} is a term related to modality gap, inner-
class feature concentration, and inter-class separation. ρc characterizes the ratio
of outliers. See Appendix F.4 for detailed definitions of κ, τ, ν, ρc, and ρd.

Interpretations: The above theorem characterizes the 0-1 risk upper
bound by the modality gap and key properties of retrieved and target
distributions. Moreover, logit ensemble utilizes knowledge encoded in
different modalities to benefit each other. We can further show that un-
der some conditions (detailed in Appendix F.4), logit ensemble leads to
a lower 0-1 risk (i.e., higher accuracy) than the zero-shot model.

7.5 Discussion of Design Choices
In this section, we discuss the impact of other design choices for retrieval-
augmented adaptation.

Impact of model architecture. We conduct an ablation study on the im-
pact of model architectures. We consider CLIP with ResNet (RN50) and
ViT Dosovitskiy et al. (2021) backbones (CLIP-B/32, CLIP-B/16, CLIP-
L/14), where the vision encoder is based on ViT-B/32 and ViT-L/14, re-
spectively. The results are shown in Figure 7.5. We observe that a simi-
lar trend holds for CLIP with various backbones, where I2I retrieval con-
sistently outperforms T2I retrieval. In particular, larger backbones such
as CLIP-L/14 lead to overall superior performance compared to smaller
backbones across the number of retrieved samples per class.
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Impact of the number of seed images. To investigate the impact of seed
images on I2I retrieval, we adjust the number of seed images per class
from 2 to 8. The results are shown in Table 7.1 based on Textures (K =
16). We can see that increasing the number of seed images improves the
adaptation performance because it is less prone to overfitting to limited
retrieved samples. Similar trends also hold for other datasets in the test
suite.

Seed # Method
ZOCLIP RET Ensemble Ensemble (F)

2 42.79 38.48 51.77 57.98
4 42.79 44.09 52.96 58.57
8 42.79 45.86 55.32 62.94

Table 7.1: The impact of the number of seed images (per class) for I2I
retrieval. Results are based on RN50 backbone with K = 16.

Adaptation with a mixture of ID and retrieved samples. Previously,
we have considered only using retrieved samples in the feature cache to
better understand the effects of retrieval. When we have access to the few-
shot (ID) training set, another practical scenario is to use a mixture of re-
trieved and ID samples. The results are shown in Figure 7.6. We report
the average performance (over 7 datasets) for I2I retrieval (K = 16). EN
denotes logit ensemble with only retrieved samples. MIX denotes logit
ensemble with a mixture of ID samples and retrieved samples. EN (F)
and MIX (F) stand for the finetuned variants. The mixture ratio is 1:1. We
observe that mixing ID and retrieved samples further leads to improved
performance compared to only using few-shot ID samples. Our obser-
vations are consistent with prior works Udandarao et al. (2023); Zhang
et al. (2023) under different logit ensemble schemes, which highlight the
potential of retrieval-augmented few-shot adaptation.
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Figure 7.6: Impact of Mixture of retrieved samples with few-shot ID data.
We report the average performance (over all datasets) for I2I retrieval
(K = 16). EN denotes logit ensemble with only retrieved samples. MIX
denotes logit ensemble with a mixture of ID samples and retrieved sam-
ples. The mixture ratio is 1:1.

Adaptation with finetuned feature cache. For completeness, we dis-
cuss learning-based adaptation by setting the visual features in the cache
K as learnable parameters after initializing from the pre-trained CLIP
model. We denote the variant as Ensemble(F), where F stands for fine-
tuning. We follow the hyperparameter tuning scheme in Zhang et al.
(2022b) and show the results (averaged across all datasets) in Figure 7.7.
We can see that a similar trend holds for training-based adaptation, where
I2I retrieval significantly outperforms zero-shot CLIP and T2I retrieval.
In the low-shot setting (K = 1 or 2), the performance is close to the ideal
case (ID retrieval). Full results for individual datasets can be seen in Ap-
pendix F.5.

We provide additional ablation studies in the Appendix.

7.6 Related Works
Few-shot task adaptation for vision-language models. Recent years have
witnessed the popularity of contrastive language-image pre-training (CLIP) Rad-
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Figure 7.7: Adaptation with finetuned feature cache. We observe a similar
trend as training-free adaptation.

ford et al. (2021); Jia et al. (2021); Yang et al. (2022); Li et al. (2022c);
Mu et al. (2022); Yu et al. (2022); Zhai et al. (2022); Sun et al. (2023);
Zhai et al. (2023); Xu et al. (2024), etc. While CLIP-like models learn
aligned multi-modal features, they often struggle on fine-trained datasets
with categories not adequately represented during pre-training, which
makes adaptation necessary. Recent works propose various promising
solutions for adapting the vision-language model in the low-data (few-
shot) scheme such as tuning textual prompts Zhou et al. (2022b,c), visual
prompts Bahng et al. (2022); Chen et al. (2023a), multi-modal prompts Khat-
tak et al. (2023). Zhang et al. (2022c) use neural architecture search to
optimize prompt modules. Lu et al. (2022) optimize prompts by learning
prompt distributions. Alternatively, Yu et al. (2023) tune an additional
task residual layer. Another line of work utilizes adaptor Zhang et al.
(2022b); Gao et al. (2023); Zhang et al. (2023); Udandarao et al. (2023)
by maintaining a memory cache that stores the features of few-shot data.
Zhang et al. (2022b) uses an additive logit ensemble with a feature cache
from the target training set. In contrast, we focus on the impact of retrieval
and build the cache with retrieved samples, rather than the downstream
dataset.
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Knowledge-augmented adaptation for CLIP. A natural idea for task
adaptation is to utilize external knowledge sources by retrieval or syn-
thesis. Sampling from external datasets has shown promising perfor-
mance in adapting vision models to fine-grained datasets Liu et al. (2022);
Kim et al. (2023b). For CLIP-based adaptation, existing methods can be
categorized into two regimes, based on the amount of external data uti-
lized. In the high-data regime, Liu et al. (2023) demonstrates promising
zero-shot performance by first constructing a large-scale dataset (10M)
containing relevant samples retrieved from web-scale databases and then
fine-tuning CLIP models on the retrieved dataset. Xie et al. (2023) pro-
pose a Retrieval Augmented Module to augment CLIP pre-training on
1.6M retrieved samples. Recently, Iscen et al. (2023) advocated uni-modal
search but cross-modal fusion for CLIP adaptation, where the fusion model
is trained on 10M samples. Long et al. (2022) demonstrate the promise
of retrieval for long-tail visual recognition tasks. In the low-data regime,
recent works also enhance the retrieval augmentation pipeline with syn-
thetic samples from pre-trained generative models Udandarao et al. (2023);
Zhang et al. (2023). Beyond augmenting the visual modality, Shen et al.
(2022) leverage external text knowledge sources such as WordNet Miller
(1995) and Wiktionary Meyer and Gurevych (2012) to augment captions
with class-specific descriptions, while Pratt et al. (2023) perform augmen-
tation by querying large language models. El Banani et al. (2023) use
the language guidance to find similar visual nearest neighbors. Li et al.
(2022a) establish a benchmark for evaluating the transfer learning per-
formance of language-augmented visual models. In this work, we adopt
a reflective perspective and provide a systematic study to understand
retrieval-augmented adaptation in the low-data regime and establish new
theoretical insights.
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Theoretical understanding of multi-modal learning. A few works pro-
vide theoretical explanations for multi-modal learning Zadeh et al. (2020);
Huang et al. (2021b); Fürst et al. (2022); Chen et al. (2023d). For CLIP
models, Liang et al. (2022) demonstrate and provide a systematic analysis
of the modality gap between the features of two modalities. Nakada et al.
(2023) establish the connection between CLIP and singular value decom-
position (SVD) under linear representations. Chen et al. (2023d) develop
a theoretical framework to understand the zero-shot transfer mechanism
of CLIP. Different from prior works, we focus on the theoretical under-
standing of retrieval-augmented task adaptation.

7.7 Conclusion
In this work, we present a timely and systematic investigation for retrieval-
augmented adaptation of vision-language models in the low-data regime.
Our work offers a finer-grained empirical study, unveiling insights into
the impact of cross-modal and uni-modal retrieval. In addition, we high-
light the necessity of logit ensemble. We also develop a novel theoretical
framework that supports our empirical findings and provides a deeper
understanding of retrieval-augmented adaptation. Additionally, our com-
prehensive ablation study explores various design choices in the retrieval
augmentation pipeline. We hope our work will serve as a springboard
for future research on algorithm design and theoretical understanding
for effective adaptation of vision-language models.

7.8 Impact Statements
The main purpose of this work is to provide a systematic investigation of
existing approaches with theoretical understanding. The work can help
guide the development of effective and reliable algorithms for retrieval-
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augmented adaptation of vision-language models. We conducted a thor-
ough manual review to ensure that the retrieved samples do not contain
illegal or inappropriate content, and we foresee no immediate negative
ethical impact.
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Chapter 8

A Critical Analysis of Document
Out-of-Distribution Detection

Publication Statement. This chapter is a joint work with Jiuxiang Gu, Yi
Zhou, Jason Kuen, Vlad I. Morariu, Handong Zhao, Ruiyi Zhang, Niko-
laos Barmpalios, Anqi Liu, Yixuan Li, Tong Sun, and Ani Nenkova The pa-
per version of this chapter appeared in EMNLP 2023-Findings (Gu et al.,
2023).

Large-scale pre-training is widely used in recent document understand-
ing tasks. During deployment, one may expect that models should trig-
ger a conservative fallback policy when encountering out-of-distribution
(OOD) samples, which highlights the importance of OOD detection. How-
ever, most existing OOD detection methods focus on single-modal inputs
such as images or texts. While documents are multi-modal in nature, it is
underexplored if and how multi-modal information in documents can be
exploited for OOD detection. In this chapter, we first provide a system-
atic and in-depth analysis on OOD detection for document understanding
models. We study the effects of model modality, pre-training, and fine-
tuning across various types of OOD inputs. In particular, we find that spa-
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tial information is critical for document OOD detection. To better exploit
spatial information, we propose a spatial-aware adapter, which serves
as a parameter-efficient add-on module to adapt transformer-based lan-
guage models to the document domain. Extensive experiments show that
adding the spatial-aware adapter significantly improves the OOD detec-
tion performance compared to directly using the language model and
achieves superior performance compared to competitive baselines.

8.1 Introduction
The recent success of large-scale pre-training has propelled the widespread
deployment of deep learning models in the document domain, where
model predictions are used to help humans make decisions in various
applications such as tax form processing and medical reports analysis.
However, models are typically pre-trained on data collected from the web
but deployed in an environment with distributional shifts Cui et al. (2021).
For instance, the outbreak of COVID-19 has led to continually changing
data distributions in machine-assisted medical document analysis sys-
tems Velavan and Meyer (2020). This motivates the need for reliable doc-
ument understanding models against out-of-distribution (OOD) inputs.

The goal of OOD detection is to categorize in-distribution (ID) sam-
ples into one of the known categories and detect inputs that do not belong
to any known classes at test time Bendale and Boult (2016). A plethora
of OOD detection methods has been proposed for single-modal (image
or text) inputs Ge et al. (2017); Nalisnick et al. (2019); Oza and Patel
(2019); Tack et al. (2020); Hsu et al. (2020); Arora et al. (2021); Zhou
et al. (2021b); Xiao et al. (2020); Xu et al. (2021a); Li et al. (2021d); Shen
et al. (2021); Jin et al. (2022); Zhou et al. (2022d); Ming et al. (2022b,c);
Podolskiy et al. (2021); Ren et al. (2023). Recent works Fort et al. (2021);
Esmaeilpour et al. (2022); Ming et al. (2022a); Ming and Li (2023); Bit-
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Figure 8.1: Illustration of OOD detection for document classification. The
pre-training and fine-tuning pipelines are shown on the top left and bot-
tom left, respectively. Right: During inference time, an OOD score can be
derived based on logits g(x) or feature embeddings z := h(x). A docu-
ment input x is identified as OOD if its OOD score is below some thresh-
old γ.

terwolf et al. (2023) also demonstrate promising OOD detection perfor-
mance based on large-scale models pre-trained on text-image pairs, as
pre-training enables models to learn powerful and transferable feature
representations Radford et al. (2021). However, it remains largely unex-
plored if existing findings in the OOD detection literature for images or
texts can be naturally extended to the document domain.

Multiple unique challenges exist for document OOD detection. Unlike
natural images, texts, or image-text pairs, no captions can describe a docu-
ment and images in documents rarely contain natural objects. Moreover,
the spatial relationship of text blocks further differentiates multimodal
learning in documents from multimodal learning in the vision-language
domain Lu et al. (2019); Li et al. (2020a). In addition, while recent pre-
training methods have demonstrated remarkable performance in down-
stream document understanding tasks Xu et al. (2020, 2021b); Li et al.
(2021c); Gu et al. (2022); Hong et al. (2022); Huang et al. (2022b); Li et al.
(2022b); Wang et al. (2022f), existing pre-training datasets for documents
are limited and lack diversity. This is in sharp contrast to common pre-
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training datasets for natural images. It remains underexplored whether
existing OOD detection methods are reliable in the document domain and
how pre-training impacts OOD reliability.

In this work, we first present a comprehensive study to better un-
derstand OOD detection in the document domain through the following
questions: (1) What is the role of document pre-training? How do pre-
training datasets and tasks affect OOD detection performance? (2) Are
existing OOD detection methods developed for natural images and texts
transferrable to documents? (3) How does modality (textual, visual, and
especially spatial information) affect OOD performance? In particular,
we find that spatial information is critical for improving OOD reliabil-
ity. Moreover, we propose a new spatial-aware adapter, a small learned
module that can be inserted within a pre-trained language model such as
RoBERTa Liu et al. (2019). Our module is computationally efficient and
significantly improves both ID classification and OOD detection perfor-
mance (Sec. 8.5.2). Our contributions are summarized as follows:

• We provide an extensive and in-depth study to investigate the im-
pacts of pre-training, fine-tuning, model-modality, and OOD scor-
ing functions on a broad spectrum of document OOD detection tasks.
Our codebase will be open-sourced to facilitate future research.

• We present unique insights on document OOD detection. For ex-
ample, we observe that distance-based OOD scores are consistently
advantageous over logit-based scores, which is underexplored in
the recent OOD detection literature on vision-language pre-trained
models.

• We further propose a spatial-aware adapter module for transformer-
based language models, facilitating easy adaptation of pre-trained
language models to the document domain. Extensive experiments
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confirm the effectiveness of our module across diverse types of OOD
data.

8.2 Preliminaries and Related Works

8.2.1 Document Models and Pre-Training

Large-scale pre-trained models gradually gain popularity in the docu-
ment domain due to their success in producing generic representations
from large-scale unlabeled corpora in vision and natural language pro-
cessing (NLP) tasks Devlin et al. (2018); Lu et al. (2019); Su et al. (2019);
Schiappa et al. (2022). As documents contain both visual and textual
information distributed spatially in semantic regions, document-specific
models and pre-training objectives are often necessary, which are distinct
from vision or language domains.

We summarize common model structures for document pre-training
in Fig. 8.2a. Specifically, LayoutLM Xu et al. (2020) takes a sequence
of Optical Character Recognition (OCR) Smith (2007) words and word
bounding boxes as inputs. It extends BERT to learn contextualized word
representations for document images through multitask learning. Lay-
outLMv2 Xu et al. (2021b) improves on the prior work with new pre-
training tasks to model the interaction among texts, layouts, and images.
DocFormer Appalaraju et al. (2021) adopts a CNN model to extract im-
age grid features, fusing the spatial information as an inductive bias for
the self-attention module. LayoutLMv3 Huang et al. (2022b) further en-
hances visual and spatial characteristics with masked image modeling
and word-patch alignment tasks. Another line of work focuses on var-
ious granularities of documents, such as region-level text/image blocks.
Examples of such models include SelfDoc Li et al. (2021c), UDoc Gu et al.
(2021), and MGDoc Wang et al. (2022g), which are pre-trained with a
cross-modal encoder to capture the relationship between visual and tex-
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Figure 8.2: (Left) Illustration of models for document pre-training and
classification, with our proposed spatial-aware models in green blocks.
Modality information is also shown atop each architecture. (Right) Eval-
uating fine-tuning performance for document classification of pre-trained
models. Models are grouped into several categories (from left to right):
language-only, vision-only, and multi-modal. For comparison, the per-
formance of corresponding models in other groups is shown in gray. The
average accuracy for each model is indicated in the parenthesis.

tual features. These models incorporate spatial information by fusing po-
sition embeddings at the output layer of their encoders, instead of the in-
put layer. Additionally, OCR-free models Kim et al. (2022); Tang et al.
(2023) tackle document understanding as a sequence generation prob-
lem, unifying multiple tasks through an image-to-sequence generation
network.

While these pre-trained models demonstrate promising performance
on downstream applications, their robustness to different types of OOD
data, the influence of pre-training and fine-tuning, and the value of dif-
ferent modalities (e.g., spatial, textual, and visual) for document OOD
detection remain largely unexplored.

8.2.2 Out-of-Distribution Detection

OOD detection has been extensively studied for open-world multi-class
classification with natural image and text inputs, where the goal is to de-
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rive an OOD score that separates OOD from ID samples. A plethora of
methods are proposed for deep neural networks, where the OOD scor-
ing function is typically derived based on logits (without softmax scal-
ing) Hendrycks et al. (2022), softmax outputs Liang et al. (2018); Hsu
et al. (2020); Huang and Li (2021); Sun et al. (2021), gradients Huang
et al. (2021a), and feature embeddings Tack et al. (2020); Fort et al. (2021);
Ming et al. (2023). Despite their impressive performance on natural im-
ages and texts, it is underexplored if the results are transferrable to the
document domain. A recent work Larson et al. (2022) studied OOD de-
tection for documents but only explored a limited number of models and
OOD detection methods. The impacts of pre-training, fine-tuning, and
spatial information remain unknown. In this work, we aim to provide a
comprehensive and finer-grained analysis to shed light on the key factors
for OOD robustness in the document domain.

Notations. Following prior works on OOD detection with large-scale
pre-trained models Ming et al. (2022a); Ming and Li (2023), the task of
OOD detection is defined with respect to the downstream dataset, instead
of the pre-training data which is often hard to characterize. In document
classification, we use X in and Y in = {1, . . . , K} to denote the input and
label space, respectively. Let Din = {(xin

i , yin
i )}N

i=1 be the ID dataset, where
x ∈ X in, and yin ∈ Y in. Let Dout = {(xout

i , yout
i )}M

i=1 denote an OOD test
set where yout ∈ Yout, and Yout ∩ Y in = ∅. We express the neural network
model f := g ◦ h as a composition of a feature extractor h : X → Rd and
a classifier g : Rd → RK , which maps the feature embedding of an input
to K real-valued numbers known as logits. During inference time, given
an input x, OOD detection can be formulated as:

Gγ(x; h, g) =

ID S(x; h, g) ≥ γ

OOD S(x; h, g) < γ
,
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where S(·) is a scoring function that measures OOD uncertainty. In prac-
tice, the threshold qγ is often chosen so that a high fraction of ID data
(e.g., 95%) is above the threshold.

OOD detection scores. We focus on two major categories of computa-
tionally efficient OOD detection methods1: logit-based methods derive
OOD scores from the logit layer of the model, while distance-based meth-
ods directly leverage feature embeddings, as shown in Fig. 8.1. We de-
scribe a few popular methods for each category as follows.

• Logit-based: Maximum Softmax Probability (MSP) score Hendrycks
and Gimpel (2017) SMSP = maxi∈[K] efi(x)/

∑K
j=1 efj(x) naturally arises

as a classic baseline as models often output lower softmax prob-
abilities for OOD data; Energy score Liu et al. (2020): SEnergy =
log∑i∈[K] efi(x) utilizes the Helmholtz free energy of the data and
theoretically aligns with the logarithm of the ID density; the simple
MaxLogit score Hendrycks et al. (2022): SMaxlogit = maxi∈[K] fi(x)
has demonstrated promising performance on large-scale natural im-
age datasets. We select the above scores due to their simplicity and
computational efficiency. In addition, recent studies demonstrate
that such simple scores are particularly effective with large-scale
pre-trained models in vision Fort et al. (2021) and vision-language
domains Ming et al. (2022a); Bitterwolf et al. (2023). We comple-
ment previous studies and investigate their effectiveness for docu-
ments.

• Distance-based: Distance-based methods directly leverage feature
embeddings z = h(x) based on the idea that OOD inputs are rela-
tively far away from ID clusters in the feature space, compared to ID

1We also investigate gradient-based methods such as GradNorm Huang et al.
(2021a) in Appendix G.3.
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inputs. Distance-based methods can be characterized as paramet-
ric and non-parametric. Parametric methods such as Mahalanobis
score Lee et al. (2018); Sehwag et al. (2021) assume ID embeddings
follow class-conditional Gaussian distributions and use the Maha-
lanobis distance as the distance metric. On the other hand, non-
parametric methods such as KNN+ Sun et al. (2022) use cosine sim-
ilarity as the distance metric.

Evaluation metrics. To evaluate OOD detection performance, we adopt
the following commonly used metrics: the Area Under the Receiver Oper-
ating Characteristic (AUROC), False Positive Rate at 95% Recall (FPR95),
and the multi-class classification accuracy (ID Acc).

8.3 Experimental Setup
Models. Fig. 8.2a summarizes common structures for document pre-
training and classification models2. While documents typically come in
the form of images Harley et al. (2015), an OCR system can be used to
extract words and their coordinates from the input image. Therefore,
models can use single-modal or multi-modal information. We categorize
these models according to the input modalities into the following groups:
(1) models using only visual features, (2) models using solely textual
features, (3) models incorporating both visual and textual features, and
(4) models integrating additional spatial (especially layout) information.
Further details can be found in Appendix G.1.

• Vision-only: Document classification can be viewed as a standard
image classification problem. We consider ResNet-50 He et al. (2016)

2Apart from document classification, in the Appendix G.2, we also investigate OOD
detection for two entity-level tasks: document entity recognition and document object
detection.
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and ViT Fort et al. (2021) as exemplar document image classifica-
tion models. We adopt two common pre-training settings: (1) only
pre-trained on ImageNet Deng et al. (2009) and (2) further pre-
trained on IIT-CDIP Lewis et al. (2006) with masked image mod-
eling (MIM)3. After pre-training, we append a classifier for fine-
tuning.

• Text-only: Alternatively, we can view document classification as
text classification since documents often contain text blocks. To this
end, we use RoBERTa Liu et al. (2019) and Longformer Beltagy et al.
(2020) as the backbones. RoBERTa can handle up to 512 input to-
kens while Longformer can handle up to 4,096 input tokens. We pre-
train the language models with masked language modeling (MLM)
on IIT-CDIP extracted text corpus.

• Text+Layout: Layout information plays a crucial role in the docu-
ment domain, as shown in Fig. 8.3. To investigate the effect of layout
information, we adopt LayoutLM as the backbone. We will show
that spatial-aware models demonstrate promising OOD detection
performance. However, such specialized models can be compu-
tationally expensive. Therefore, we propose a new spatial-aware
adapter, a small learned module that can be inserted within a pre-
trained language model such as RoBERTa and transforms it into a
spatial-aware model, which is computationally efficient and com-
petitive for both ID classification and OOD detection (Sec. 8.5.2).

• Vision+Text+Layout: For comprehensiveness, we consider Lay-
outLMv3 and UDoc, which are large and computationally intensive.
Both models are pre-trained on the full IIT-CDIP for fairness. These

3Note that the document classification dataset we used in this paper, RVL-
CDIP Harley et al. (2015), is a subset of IIT-CDIP. Hence, unless otherwise specified,
the IIT-CDIP pre-training data used in this paper excludes RVL-CDIP.
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Figure 8.3: (Top) Examples of ID inputs sampled from RVL-CDIP (top).
(Bottom) In-domain OOD from RVL-CDIP, and out-domain OOD from
Scientific Poster and Receipts.

models utilize different input granularities and modalities, includ-
ing textual, visual, and spatial information for document tasks.

Constructing ID and OOD datasets. We construct ID datasets from
RVL-CDIP Harley et al. (2015), where 12 out of 16 classes are selected
as ID classes. Dataset details are in Appendix G.1. We consider two OOD
scenarios: in-domain and out-domain, based on the content (e.g., , words,
background) and layout characteristics.

• In-domain OOD: To determine the OOD categories, we analyzed
the performance of recent document classification models on the
RVL-CDIP test set. Fig. 8.2b shows the per-category test accuracy
of various models. Naturally, for the classes the models perform
poorly on, we may expect the models to detect such inputs as OOD
instead of assigning a specific ID class with low confidence. We ob-
serve that the 4 categories (letter, form, scientific report, and presenta-
tion) result in the worst performance across most of the models with
different modalities. We use these as OOD categories and construct
the OOD datasets accordingly. The ID dataset is constructed from
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the remaining 12 categories, which we refer to as in-domain OOD
datasets, as they are also sourced from RVL-CDIP.

• Out-domain OOD: In the open-world setting, test inputs can have
significantly different color schemes and layouts compared to ID
samples. To mimic such scenarios, we use two public datasets as
out-domain OOD test sets: NJU-Fudan Paper-Poster Dataset Qiang
et al. (2019) and CORD Park et al. (2019). NJU-Fudan Paper-Poster
Dataset contains scientific posters in digital PDF format4. CORD is
a receipt understanding dataset with significantly different inputs
compared to RVL-CDIP. As shown in Fig. 8.3, receipt images can be
challenging and require models to handle not only textual but also
visual and spatial information.

We further support our domain selection using OTDD Alvarez-Melis and
Fusi (2020), a flexible geometric method for comparing probability distri-
butions, which enables us to compare any two datasets regardless of their
label sets. We observe a clear gap between in-domain and out-domain
data, which aligns with our data selection. Further details can be found
in Appendix G.1.1.

8.4 Analyzing OOD Reliability for Documents

8.4.1 OOD Detection Without Fine-Tuning

In this section, we begin by examining the influence of pre-training datasets
on zero-shot OOD detection. For each model, we adopt the same pre-
training objective while adjusting the amount of pre-training data. Specif-
ically, we increase the data diversity by appending 10, 20, 40, and 100%
of randomly sampled data from IIT-CDIP dataset (around 11M) and pre-

4Extracted using https://github.com/pymupdf/PyMuPDF
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Figure 8.4: Analysis of IIT-CDIP.

train each model. After pre-training, we measure the OOD detection per-
formance with KNN+ score based on feature embeddings.

We observe that: (1) for out-domain OOD data (Fig. 8.5a, right), in-
creasing the amount of pre-training data can significantly improve the
zero-shot OOD detection performance (w.o. fine-tuning) for models across
different modalities. Our hypothesis is that pre-training with diverse data
is beneficial for coarse-grained OOD detection, such as inputs from differ-
ent domains (e.g., , color schemes). (2) For in-domain OOD inputs, even
increasing the amount of pre-training data by over 40% provides negli-
gible improvements (Fig. 8.5a, left). This suggests the necessity of fine-
tuning for improving in-domain OOD detection performance (Fig. 8.7).

We further explore a more restricted setting for zero-shot OOD detec-
tion where potential OOD categories are removed from the pre-training
dataset IIT-CDIP. First, we use LayoutLM fine-tuned on RVL-CDIP to pre-
dict labels for all documents in IIT-CDIP. Fig. 8.4 summarizes the distri-
bution of the predicted classes on IIT-CDIP. Next, we remove the “OOD”
categories from IIT-CDIP and pre-train two models (RoBERTa and Lay-
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Figure 8.5: The impact of pre-training data on zero-shot OOD detection
performance. IIT-CDIP− denotes the filtered pre-training data after re-
moving the “OOD" categories.

outLM) with 10, 20, 40, and 100% of randomly sampled data from the
filtered IIT-CDIP (dubbed III-CDIP−), respectively. The zero-shot OOD
performance for in-domain and out-domain OOD is shown in Fig. 8.5b5.
For RoBERTa, we observe similar trends as in Fig. 8.5a, where increas-
ing the amount of pre-training data improves zero-shot OOD detection
performance for out-domain data. However, the zero-shot performance
of LayoutLM benefits from a larger pre-training dataset. In particular,
given the same amount of pre-training data, LayoutLM consistently out-

5Note that we do not show 0% in Fig. 8.5b since we pre-train LayoutLM from scratch.
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performs RoBERTa for both in-domain and out-domain OOD detection,
which suggests that spatial information can be essential for boosting the
OOD reliability in the document domain. Motivated by the above obser-
vations, we dive deeper and analyze spatial-aware models next.
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Figure 8.6: Comparison between representative feature-based scores
and logit-based scores for spatial-aware and non-spatial-aware models.
Spatial-aware models are colored in blue.

While pre-trained models exhibit the capability to differentiate data
from various domains as a result of being trained on a diverse range of
data. We observe that achieving more precise separation for in-domain
OOD inputs remains difficult. Given this observation, we further ana-
lyze the impacts of fine-tuning for OOD detection with fixed pre-training
datasets in the next section. By combining pre-trained models with a sim-
ple classifier and fine-tuning on RVL-CDIP (ID), we find that fine-tuning
is advantageous in enhancing the OOD detection performance for both
types of OOD samples.

8.4.2 The Impact of Fine-Tuning on Document OOD
Detection

Recent document models are often pre-trained on a large-scale dataset
and adapted to the target task via fine-tuning. To better understand the
role of fine-tuning, we explore the following questions: 1) How does fine-
tuning impact OOD reliability for in-domain and out-domain OOD inputs? 2)
How does model modality impact the performance?
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Figure 8.7: OOD detection performance for pre-trained models w. and
w.o. fine-tuning. We use a distance-based method KNN+ as the OOD
scoring function. Fine-tuning significantly improves performance for
both in and out-domain OOD data.

We consider a wide range of models pre-trained on pure-text/image
data (e.g., , ImageNet and Wikipedia) described in Appendix G.1.3. Dur-
ing fine-tuning, we combine pre-trained models with a simple classifier
and fine-tune on RVL-CDIP (ID). For models before and after fine-tuning,
we extract the final feature embeddings and use a distance-based method
KNN+ Sun et al. (2022) for OOD detection. The results are shown in
Fig. 8.7. We observe the following trends. First, fine-tuning largely im-
proves OOD detection performance for both in-domain and out-domain
OOD data. The same trend holds broadly across models with different
modalities. Second, the improvement of fine-tuning is less significant for
out-domain OOD data. For example, on Receipt (out-domain OOD), the
AUROC for pre-trained ViT model is 97.13, whereas fine-tuning only im-
proves by 0.79%. This suggests that pre-trained models do have the po-
tential to separate data from different domains due to the diversity of data
used for pre-training, while it remains hard for pre-trained models to per-
form finer-grained separation for in-domain OOD inputs. Therefore, fine-
tuning is beneficial for improving OOD detection performance for both
types of OOD samples. To further validate our conclusion, we consider
two additional in-domain OOD settings for our analysis: (1) selecting
the classes the model performs well on, as in-domain OOD categories;
(2) randomly selecting classes as OOD categories (Appendix G.1.2). We
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find that fine-tuning improves OOD detection for both settings, further
verifying our observations.

Next, we take a closer look at the impact of model modality on out-
domain OOD detection. As shown in Fig. 8.7 (mid and right), both vi-
sion and text-based models demonstrate strong reliability against scien-
tific posters (OOD). However, vision-based models display stronger per-
formance than text-based models for Receipts (OOD). This can be ex-
plained by the fact that ViT was first pre-trained on ImageNet while scien-
tific posters and receipts contain diverse visual information such as colors
and edges for vision models to utilize (see Fig. 8.3). On the other hand,
although fine-tuning text-based models largely improves the detection
performance compared to pre-trained counterparts, utilizing only textual
information can be inherently limited for out-domain OOD detection.

8.5 The Importance of Spatial-Awareness
In previous sections, we mainly focus on mainstream text-based and vision-
based models for in- and out-domain OOD detection. Next, we consider
models tailored to document processing, which we refer to as spatial-aware
models, such as LayoutLMv3 and UDoc. Given fine-tuned models, we
compare the performance of logit-based and distance-based OOD scores.

8.5.1 Analysis of Spatial-Aware Models

We summarize key comparisons in Fig. 8.6, where we use MSP and En-
ergy as exemplar logit-based scores and KNN+ as the distance-based
score. Full results are in Appendix G.3. We can see that the simple KNN-
based score (KNN+) consistently outperforms logit-based scores for both
in-domain and out-domain OOD data across different models with differ-
ent modalities. This is in contrast with recent works that investigate large-
scale pre-trained models in the vision-language domain, where logit-based
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Figure 8.8: Illustration of our spatial-aware adapter for language mod-
els. We present 2 adapter designs (marked in green box): (1) insert
the adapter into the word embedding layer during pre-training and fine-
tuning; (2) insert the adapter into the output layer for fine-tuning only.
For the first design, we freeze the word embedding layer and learn the
adapter and transformer layers.

scores demonstrate strong OOD detection performance Fort et al. (2021).
As documents are distinct from natural image-text pairs, observations in
the vision-language domain do not seamlessly translate to the document
domain. Moreover, spatial-aware models demonstrate stronger OOD de-
tection performance for both in and out-domain OOD. For example, with
the best scoring function (KNN+), LayoutLMv3 improves the average
AUROC by 7.09% for out-domain OOD and 7.54% for in-domain OOD
data compared to RoBERTa. This further highlights the value of spatial
information for improving OOD robustness for documents.

Despite the impressive improvements brought by spatial-aware mod-
els, acquiring a large-scale pre-training dataset that includes spatial in-
formation remains challenging. In contrast, there is a growing abun-
dance of pre-trained language models that are based on textual data. This
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motivates us to explore the possibility of leveraging these pre-trained
language models by training an adapter on a small dataset containing
document-specific information. By adopting this approach, we can effec-
tively utilize existing models while minimizing the time and cost required
for training.

8.5.2 Towards Effective Spatial-Aware Adapter

During our investigation into the effects of model modality, pre-training,
and fine-tuning on various types of OOD inputs, we find that spatial/lay-
out information plays a critical role in the document domain. However,
existing pre-training models such as LayoutLM series, SelfDoc, and UDoc
do not fully leverage the benefits of well-pre-trained language models.
This raises the question of whether a large-scale language model, such as
RoBERTa, can be adapted to detect OOD documents effectively. In this
section, we demonstrate that incorporating an adapter module that ac-
counts for spatial information with transformer-based pre-trained mod-
els can achieve strong performance with minimal changes to the code. To
the best of our knowledge, this is the first study to apply the adapter idea
to documents.

Spatial-aware adapter. Given a pre-trained language model such as RoBERTa,
we propose an adapter that utilizes spatial information. We consider
two potential designs: 1) the adapter is appended to the word embed-
ding layer, denoted as Spatial-RoBERTa (pre), which requires both pre-
training and fine-tuning. This architecture is illustrated in the top row of
Fig. 8.8. 2) The adapter is appended to the final layer of the text encoder,
denoted as Spatial-BoBERTa (post), which only requires fine-tuning as
the model can utilize the pre-trained textual encoder, as shown in the
bottom row of Fig. 8.8.
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Figure 8.9: Comparison of OOD detection performance of Spatial-
RoBERTa and RoBERTa. All models are initialized with public pre-
trained checkpoints trained on purely textual data and further pre-trained
on IIT-CDIP. The only difference is that Spatial-RoBERTa has an addi-
tional spatial-ware adapter and takes word bounding boxes as additional
inputs.
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Figure 8.10: Correlation between ID accuracy and OOD detection per-
formance. For most models, ID accuracy is positively correlated with
OOD detection performance. Language models with spatial-aware
adapters (highlighted in blue) achieve significantly higher ID accuracy
and stronger OOD robustness (in AUROC) compared to language mod-
els without adapters. Here, (+) represents further pre-training on the
IIT-CDIP dataset.

For Spatial-RoBERTa (pre), we freeze the word embedding layer dur-
ing pre-training for several considerations: 1) word embeddings learned
from large-scale corpus already cover most of those words from docu-
ments; 2) pre-training on documents without strong language depen-
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dency may not help improve word embeddings. For example, in semi-
structured documents (e.g., , forms, receipts), language dependencies are
not as strong as in text-rich documents (e.g., , letters, resumes), which
may degenerate the learned word representations. In practice, each word
has a normalized bounding box (x0, y0, x1, y1), where (x0, y0) / (x1, y1)
corresponds to the position of the upper left / lower right in the bounding
box. To encode positional information, we employ four position embed-
ding layers, where each layer= encodes one coordinate (e.g., , x0) and pro-
duces a corresponding position embedding. The special tokens ([CLS],
[SEP], and [PAD]) are attached with an empty bounding box (0, 0, 0, 0).
As depicted in the top row of Fig. 8.8, the spatial-aware word embeddings
are formed by adding position embeddings to their corresponding word
embeddings.

For Spatial-RoBERTa (post), position embeddings are added through
late fusion in the final hidden states during fine-tuning without affecting
the pre-trained encoder. Our experiments demonstrate that introducing
spatial-aware adapters during pre-training yields better results than only
adding position embeddings during fine-tuning. For additional details6,
please refer to Appendix G.3. In the following, we focus on analyzing
Spatial-RoBERTa (pre) and comparing both ID and OOD performance
with that of the pure-text pre-trained RoBERTa.

Spatial-RoBERTa significantly outperforms RoBERTa. To verify the ef-
fectiveness of Spatial-RoBERTa, we compare the OOD detection perfor-
mance of pre-trained and fine-tuned models. The results are shown in
Fig. 8.9, where OOD performance is based on KNN+ (K=10). Full re-
sults can be seen in Table G.6. Spatial-RoBERTa significantly improves
the OOD detection performance, especially after fine-tuning. For exam-

6Spatial-RoBERTaBase (pre) incorporates position information during both pre-
training and fine-tuning, while Spatial-RoBERTaBase (post) only inserts the adapter into
the output layer for fine-tuning.
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ple, compared to RoBERTa (base), Spatial-RoBERTa (base) improves AU-
ROC significantly by 4.24% averaged over four in-domain OOD datasets.
This further confirms the importance of spatial information for OOD de-
tection in the document domain.

Spatial-RoBERTa is competitive for both ID classification and OOD
detection. Beyond OOD detection performance, we also examine the
multi-class ID classification accuracy and plot the two metrics for all mod-
els with different modalities in Fig. 8.10. We can clearly observe a positive
correlation between ID accuracy and OOD detection performance (mea-
sured by AUROC) for both in-domain and out-domain OOD data. More-
over, spatial-aware models display superior ID accuracy and OOD ro-
bustness compared to text-only and vision-only models. Overall, Spatial-
RoBERTa greatly improves upon RoBERTa and matches the performance
of models with more complex and specialized architectures such as Lay-
outLM. Specifically, Spatial-RoBERTaLarge achieves 97.37 ID accuracy, which
is even higher than LayoutLM (97.28) and UDoc (97.36).

To summarize, our spatial-aware adapter effectively adapts pre-trained
transformer-based text models to the document domain, improving both
ID and OOD performance. In addition, by freezing the original word
embeddings during pre-training, the models (Spatial-RoBERTaBase and
Spatial-RoBERTaLarge) are parameter-efficient and thus reduce the train-
ing cost.

8.6 Conclusions
In this work, we provide a comprehensive and in-depth study on the im-
pacts of pre-training, fine-tuning, model-modality, and OOD scores on a
broad variety of document OOD detection tasks. We present novel in-
sights on document OOD detection, which are under-explored or in con-
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trast with OOD detection works based on vision-language models. In
particular, we highlight that spatial information is critical for OOD detec-
tion in documents. We further propose a spatial-aware adapter as an add-
on module to transformer-based models. Our module adapts pre-trained
language models to the document domain. Extensive experiments on a
broad range of datasets verify the effectiveness of our design. We hope
our work will inspire future research toward improving OOD robustness
for reliable document understanding.
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Appendix A

On the Impact of Spurious
Correlation for
Out-of-Distribution Detection

Publication Statement. This chapter is a joint work with Hang Yin and
Yixuan Li. The paper version of this chapter appeared in AAAI 2022 (Ming
et al., 2022c).

Modern neural networks can assign high confidence to inputs drawn
from outside the training distribution, posing threats to models in real-
world deployments. While much research attention has been placed on
designing new out-of-distribution (OOD) detection methods, the precise
definition of OOD is often left in vagueness and falls short of the desired
notion of OOD in reality. In this chapter, we present a new formaliza-
tion and model the data shifts by taking into account both the invariant
and environmental (spurious) features. Under such formalization, we
systematically investigate how spurious correlation in the training set im-
pacts OOD detection. Our results suggest that the detection performance
is severely worsened when the correlation between spurious features and
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labels is increased in the training set. We further show insights on detec-
tion methods that are more effective in reducing the impact of spurious
correlation, and provide theoretical analysis on why reliance on environ-
mental features leads to high OOD detection error. Our work aims to fa-
cilitate a better understanding of OOD samples and their formalization,
as well as the exploration of methods that enhance OOD detection. Code
is available at https://github.com/deeplearning-wisc/Spurious_OOD.

A.1 Introduction
Modern deep neural networks have achieved unprecedented success in
known contexts for which they are trained, yet they do not necessarily
know what they don’t know (Nguyen et al., 2015). In particular, neural
networks have been shown to produce high posterior probability for test
inputs from out-of-distribution (OOD), which should not be predicted
by the model. This gives rise to the importance of OOD detection, which
aims to identify and handle unknown OOD inputs so that the algorithm
can take safety precautions.

Before we attempt any solution, an important yet often overlooked
problem is: what do we mean by out-of-distribution data? While the re-
search community lacks a consensus on the precise definition, a common
evaluation protocol views data with non-overlapping semantics as OOD
inputs (Hendrycks and Gimpel, 2017). For example, an image of a cow
can be viewed as an OOD w.r.t a model tasked to classify cat vs. dog.
However, such an evaluation scheme is often oversimplified and may not
capture the nuances and complexity of the problem in reality.

We begin with a motivating example where a neural network can rely
on statistically informative yet spurious features in the data. Indeed, many
prior works showed that modern neural networks can spuriously rely on
the biased features (e.g., background or textures) instead of features of

https://github.com/deeplearning-wisc/Spurious_OOD


162

the object to achieve high accuracy (Beery et al., 2018; Geirhos et al., 2019;
Sagawa et al., 2019). In Figure A.1, we illustrate a model that exploits the
spurious correlation between the water background and label waterbird
for prediction. Consequently, a model that relies on spurious features
can produce a high-confidence prediction for an OOD input with the
same background (i.e., water) but a different semantic label (e.g., boat).
This can manifest in downstream OOD detection, yet unexplored in prior
works. In this paper, we systematically investigate how spurious corre-
lation in the training set impacts OOD detection. We first provide a new
formalization and explicitly model the data shifts by taking into account
both invariant features and environmental features (Section A.2). Invari-
ant features can be viewed as essential cues directly related to semantic la-
bels, whereas environmental features are non-invariant and can be spuri-
ous. Our formalization encapsulates two types of OOD data: (1) spurious
OOD—test samples that contain environmental (non-invariant) features
but no invariant features; (2) non-spurious OOD—inputs that contain nei-
ther the environmental nor invariant features, which is more in line with
the conventional notion of OOD. We provide an illustration of both types
of OOD in Figure A.1.

Under the new formalization, we conduct extensive experiments and
investigate the detection performance under both spurious and non-spurious
OOD inputs (Section A.3). Our results suggest that spurious correla-
tion in the training data poses a significant challenge to OOD detection.
For both spurious and non-spurious OOD samples, the detection per-
formance is severely worsened when the correlation between spurious
features and labels is increased in the training set. Further, we compre-
hensively evaluate common OOD detection approaches, and show that
feature-based methods have a competitive edge in improving non-spurious
OOD detection, while detecting spurious OOD remains challenging (Sec-
tion A.4). To further understand this, we provide theoretical insights on
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Figure A.1: Left (train): The training examples x are generated by a combina-
tion of invariant features, dependent on the label y; and environmental features,
dependent on the environment e. In Waterbirds dataset (Sagawa et al., 2019), y ∈
{waterbird, landbird} is correlated with the environment e ∈ {water, land}.
Right (test): During test time, we consider two types of OOD inputs. Spurious
OOD inputs contain the environmental features, but no signals related to the
in-distribution classes. Non-spurious OOD inputs have neither environmental
features nor invariant features. Confidence scores are computed from a ResNet-
18 model trained on Waterbirds (Sagawa et al., 2019).

why reliance on non-invariant features leads to high OOD detection error
(Section A.5). We provably show the existence of spurious OOD inputs
with arbitrarily high confidence, which can fail to be distinguished from
the ID data. Our key contributions are as follows:

• We provide a new formalization of OOD detection by explicitly tak-
ing into account the separation between invariant features and envi-
ronmental features. Our formalization encapsulates both spurious
and non-spurious OOD. Our work, therefore, provides a comple-
mentary perspective in the evaluation of OOD detection.

• We provide systematic investigations on how the extent of spurious
correlation in the training set impacts OOD detection. We further
show insights on OOD detection solutions that are more effective
in mitigating the impact of spurious correlation, with up to 46.73%
reduction of FPR95 in detecting non-spurious OOD data.
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• We provide theoretical analysis, provably showing that detecting
spurious OOD samples remains challenging due to the model’s re-
liance on the environmental features.

Our study provides strong implications for future research on out-of-
distribution detection. Our study signifies the importance for future works
to evaluate OOD detection algorithms on spurious OOD examples be-
sides standard benchmarks (most of which are non-spurious) to test the
limits of the approaches. We hope that our work will inspire future re-
search on the formalization of the OOD detection problem and algorith-
mic solutions.

A.2 A New Formalization of
Out-of-distribution Data

Data Model. We consider a supervised multi-class classification prob-
lem, where X = Rd denotes the input space and Y = {1, 2, ..., K} denotes
the label space. We assume that the data is drawn from a set of E envi-
ronments (domains) E = {e1, e2, . . . , eE}. The inputs x is generated by a
combination of invariant features zinv ∈ Rs, dependent on the label y; and
environmental feature ze ∈ Rde , dependent on the environment e:

x = τ(zinv, ze),

where τ is a function transformation from the latent features [zinv, ze]⊤ to
the pixel-space X . The signal zinv are the cues essential for the recognition
of x as y; examples include the color, the shape of beaks and claws, and fur
patterns of birds for classifying waterbird vs. landbird. Environmental
features ze, on the other hand, are cues not essential for the recognition
but correlated with the target y. For example, many waterbird images are
taken in water habitat, so water scenes can be considered as ze. Under the
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r=0.5 r=0.7 r=0.9
OOD Type Test Set FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC↑ FPR95 ↓ AUROC ↑

Spurious OOD 59.89 ± 12.40 88.54 ± 4.81 74.22 ± 13.12 80.98 ± 4.45 74.39 ± 12.50 79.81 ± 8.43

Non-spurious OOD

iSUN 19.69 ± 10.66 91.88 ± 4.52 43.22 ± 12.50 91.81 ± 3.32 57.40 ± 15.54 82.45 ± 7.98
LSUN 22.60 ± 12.08 90.80 ± 3.33 43.30 ± 16.66 90.09 ± 4.51 52.68 ± 13.70 84.56 ± 8.56
SVHN 15.32 ± 5.05 95.71 ± 2.20 25.53 ± 8.11 95.60 ± 2.45 43.89 ± 23.80 93.27 ± 6.90

Table A.1: OOD detection performance of models trained on Water-
birds (Sagawa et al., 2019). Increased spurious correlation in the training set
results in worsen performance for both non-spurious and spurious OOD sam-
ples. In particular, spurious OOD is more challenging than non-spurious OOD
samples. Results (mean and std) are estimated over 4 runs for each setting.

data model, we have a joint distribution P (x, y, e). Each g = (y, e) ∈ Y ×E
group has its own distribution over features [zinv, ze] ∈ Rs+de . Further-
more, let De

in denote the marginal distribution on X for environment e.
The union of distributions De

in over all environments is the in-distribution
Din.

Out-of-distribution Data. In practice, OOD refers to samples from an
irrelevant distribution whose label set has no intersection with Y , and
therefore should not be predicted by the model. Under our data model,
we define data distributional shifts by explicitly taking into account the
separation between invariant features and environmental features. Con-
cretely, our formalization encapsulates two types of OOD data defined
below.

• Spurious OOD is a particularly challenging type of inputs, which
contain the environmental feature, but no invariant feature essential for
the label. Formally, we denote by x = τ(zȲ , ze), where zȲ is from an
out-of-class label Ȳ /∈ Y . For example, this can be seen in Figure A.1
(middle right), where the OOD example contains the semantic fea-
ture boat /∈ {waterbird, landbird}, yet it has the environmental
feature of water background.
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• Non-spurious (conventional) OOD are inputs that contain neither
the environmental nor the invariant features, i.e., x = τ(zȲ , zē). In par-
ticular, zȲ is sampled from an out-of-class label Ȳ /∈ Y , and zē is
sampled from a different environment ē /∈ E . For example, an in-
put of an indoor cat falls into this category, where both the se-
mantic label cat and environment indoor are distinct from the in-
distribution data of waterbirds and landbirds.

Out-of-distribution Detection. OOD detection can be viewed as a bi-
nary classification problem. Let f : X → RK be a neural network trained
on samples drawn from the data distribution defined above. During infer-
ence time, OOD detection can be performed by exercising a thresholding
mechanism:

Gλ(x; f) =

in S(x; f) ≥ λ

out S(x; f) < λ
, (A.1)

where samples with higher scores S(x; f) are classified as ID and vice
versa. The threshold λ is typically chosen so that a high fraction of ID
data (e.g., 95%) is correctly classified.

A.3 How does spurious correlation impact
OOD detection?

During training, a classifier may learn to rely on the association between
environmental features and labels to make its predictions. Moreover, we
hypothesize that such a reliance on environmental features can cause fail-
ures in the downstream OOD detection. To verify this, we begin with
the most common training objective empirical risk minimization (ERM).
Given a loss function ℓ, ERM finds the model w that minimizes the aver-
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age training loss:

R̂(w) = E(x,y,e)∼P̂ [ℓ(w; (x, y, e))]. (A.2)

We now describe the datasets we use for model training and OOD
detection tasks. We consider three tasks that are commonly used in the
literature. We start with a natural image dataset Waterbirds, and then
move onto the CelebA dataset (Liu et al., 2015). Due to space constraints,
a third evaluation task on ColorMNIST is in the Supplementary.

Evaluation Task 1: Waterbirds. Introduced in (Sagawa et al., 2019),
this dataset is used to explore the spurious correlation between the im-
age background and bird types, specifically E ∈ {water, land} and Y ∈
{waterbirds, landbirds}. We also control the correlation between y and
e during training as r ∈ {0.5, 0.7, 0.9}. The correlation r is defined as
r = P (e = water | y = waterbirds) = P (e = land | y = landbirds). For
spurious OOD, we adopt a subset of images of land and water from the
Places dataset (Zhou et al., 2017). For non-spurious OOD, we follow the
common practice and use the SVHN (Netzer et al., 2011), LSUN (Yu et al.,
2015), and iSUN (Xu et al., 2015) datasets.

Evaluation Task 2: CelebA. In order to further validate our findings be-
yond background spurious (environmental) features, we also evaluate on
the CelebA (Liu et al., 2015) dataset. The classifier is trained to differenti-
ate the hair color (grey vs. non-grey) with Y = {grey hair, nongrey hair}.
The environments E = {male, female} denote the gender of the person.
In the training set, “Grey hair” is highly correlated with “Male”, where
82.9% (r ≈ 0.8) images with grey hair are male. Spurious OOD inputs
consist of bald male, which contain environmental features (gender) with-
out invariant features (hair). The non-spurious OOD test suite is the same
as above (SVHN, LSUN, and iSUN). Figure A.2 illustates ID samples, spuri-
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Grey Hair Nongrey Hair

Spurious OOD Non-Spurious OOD
Training Examples (r = 0.8) Testing Examples
6136 1262 61361262# img

Bald

Figure A.2: For CelebA, the classifier is trained to differentiate the hair color
(grey vs. non-grey). Left: Training environments. 82.9% images with grey hair
are male, whereas 82.9% images with non-grey hair are female. Middle: Spu-
rious OOD inputs contain the environmental feature (male) without invariant
features (hair). Right: Non-spurious OOD samples consist of images with di-
verse semantics without human faces.

ous and non-spurious OOD test sets. We also subsample the dataset to
ablate the effect of r; see results are in the Supplementary.

Results and Insights. We train on ResNet-18 (He et al., 2016) for both
tasks. See Appendix for details on hyperparameters and in-distribution
performance. We summarize the OOD detection performance in Table A.1
(Waterbirds), Table A.2 (CelebA) and Table A.4 (ColorMNIST).

There are several salient observations. First, for both spurious and
non-spurious OOD samples, the detection performance is severely wors-
ened when the correlation between spurious features and labels is in-
creased in the training set. Take the Waterbirds task as an example, under
correlation r = 0.5, the average false positive rate (FPR95) for spurious
OOD samples is 59.89%, and increases to 74.39% when r = 0.9. Simi-
lar trends also hold for other datasets. Second, spurious OOD is much
more challenging to be detected compared to non-spurious OOD. From
TableA.1, under correlation r = 0.7, the average FPR95 is 37.35% for non-
spurious OOD, and increases to 74.22% for spurious OOD. Similar obser-
vations hold under different correlation and different training datasets.
Third, for non-spurious OOD, samples that are more semantically dis-
similar to ID are easier to detect. Take Waterbirds as an example, images
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containing scenes (e.g. LSUN and iSUN) are more similar to the train-
ing samples compared to images of numbers (e.g. SVHN), resulting in
higher FPR95 (e.g. 43.22% for iSUN compared to 25.53% for SVHN under
r = 0.7).

OOD Type Test Set FPR95 ↓ AUROC ↑

Spurious OOD 71.28 ± 4.12 82.04 ± 2.64

Non-spurious OOD

iSUN 17.35 ± 2.97 97.03 ± 0.30
LSUN 18.85 ± 2.44 96.90 ± 0.17
SVHN 5.63 ± 2.60 98.64 ± 0.21

Table A.2: OOD detection performance of models trained on CelebA (Liu et al.,
2015) with r ≈ 0.8. Spurious OOD test data incurs much higher FPR than non-
spurious OOD data. Results (mean and std) are estimated over 4 runs for each
setting.

Our results suggest that spurious correlation poses a significant threat
to the model. In particular, a model can produce high-confidence predic-
tions on the spurious OOD, due to the reliance on the environmental fea-
ture (e.g., background information) rather than the invariant feature (e.g.,
bird species). To verify that the spurious feature causes poor detection
performance, we show that the classifier frequently predicts the spurious
OOD as the ID class with the same environmental feature. For Water-
birds, on average 93.9% of OOD samples with water background is clas-
sified as waterbirds, and 80.7% of OOD samples with land background
is classified as land birds. For the CelebA dataset, on average 86.5% of
spurious OOD samples (bold male) are classified as grey hair. Note that
our results here are based on the energy score (Liu et al., 2020), which is
one competitive detection method derived from the model output (logits)
and has shown superior OOD detection performance over directly using
the predictive confidence score. Next, we provide an expansive evalua-
tion using a broader suite of OOD scoring functions in Section A.4.
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Scoring Func MSP (Hendrycks and Gimpel, 2017) ODIN (Liang et al., 2018) Mahalanobis (Lee et al., 2018) Energy (Liu et al., 2020) Gram (Sastry and Oore, 2020)
Metric FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
In-distribution Data SP NSP SP NSP SP NSP SP NSP SP NSP SP NSP SP NSP SP NSP SP NSP SP NSP
ColorMNIST 42.99 3.15 77.75 99.13 38.06 1.88 78.78 99.01 14.97 0.04 88.65 99.54 30.45 7.65 86.74 97.54 4.33 0.05 96.89 99.40
Waterbirds 74.68 47.53 79.22 92.34 77.25 34.06 81.04 93.48 69.35 0.80 82.73 99.51 74.22 37.35 80.98 92.50 58.25 0.65 87.33 99.71
CelebA 83.70 22.60 68.22 90.21 81.07 11.49 75.22 89.11 78.75 2.33 83.12 98.93 71.28 13.94 82.04 97.51 81.21 3.11 68.58 98.96

Table A.3: Performance for different post-hoc OOD detection methods when
the spurious correlation is high in the training set. We choose r = 0.45 for Col-
orMNIST, r = 0.7 for Waterbirds, and r = 0.8 for CelebA. SP stands for Spurious
OOD test set. NSP denotes non-spurious OOD, where the results are averaged
over 3 OOD test sets (see details in Section A.3).

A.4 How to reduce the impact of spurious
correlation for OOD detection?

The results in the previous section naturally prompt the question: how
can we better detect spurious and non-spurious OOD inputs when the
training dataset contains spurious correlation? In this section, we com-
prehensively evaluate common OOD detection approaches, and show
that feature-based methods have a competitive edge in improving non-
spurious OOD detection, while detecting spurious OOD remains chal-
lenging (which we further explain theoretically in Section A.5).

Feature-based vs. Output-based OOD Detection. Section A.3 suggests
that OOD detection becomes challenging for output-based methods espe-
cially when the training set contains high spurious correlation. However,
the efficacy of using representation space for OOD detection remains un-
known. In this section, we consider a suite of common scoring functions
including maximum softmax probability (MSP) (Hendrycks and Gim-
pel, 2017), ODIN score (Liang et al., 2018; Hsu et al., 2020), Mahalanobis
distance-based score (Lee et al., 2018), energy score (Liu et al., 2020), and
Gram matrix-based score (Sastry and Oore, 2020)—all of which can be
derived post hoc1 from a trained model. Among those, Mahalanobis and

1Note that Generalized-ODIN requires modifying the training objective and model
retraining. For fairness, we primarily consider strict post-hoc methods based on the
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Gram Matrices can be viewed as feature-based methods. For example,
Lee et al. (2018) estimates class-conditional Gaussian distributions in the
representation space and then uses the maximum Mahalanobis distance
as the OOD scoring function. Data points that are sufficiently far away
from all the class centroids are more likely to be OOD.

Results. The performance comparison is shown in Table A.3. Several
interesting observations can be drawn. First, we can observe a signifi-
cant performance gap between spurious OOD (SP) and non-spurious OOD
(NSP), irrespective of the OOD scoring function in use. This observation
is in line with our findings in Section A.3. Second, the OOD detection
performance is generally improved with the feature-based scoring func-
tions such as Mahalanobis distance score (Lee et al., 2018) and Gram Ma-
trix score (Sastry and Oore, 2020), compared to scoring functions based
on the output space (e.g., MSP, ODIN, and energy). The improvement
is substantial for non-spurious OOD data. For example, on Waterbirds,
FPR95 is reduced by 46.73% with Mahalanobis score compared to us-
ing MSP score. For spurious OOD data, the performance improvement
is most pronounced using the Mahalanobis score. Noticeably, using the
Mahalanobis score, the FPR95 is reduced by 28.02% on the ColorMNIST
dataset, compared to using the MSP score. Our results suggest that fea-
ture space preserves useful information that can more effectively distin-
guish between ID and OOD data.

Analysis and Visualizations. To provide further insights on why the
feature-based method is more desirable, we show the visualization of em-
beddings in Figure A.3a. The visualization is based on the CelebA task.
From Figure A.3a (left), we observe a clear separation between the two
class labels. Within each class label, data points from both environments
standard cross-entropy loss.
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(a) Visualization of Feature Embedding (b) Histograms of Different
Scores

Figure A.3: (a) Left: Feature for in-distribution data only. (a) Middle: Feature
for both ID and spurious OOD data. (a) Right: Feature for ID and non-spurious
OOD data (SVHN). M and F in parentheses stand for male and female respec-
tively. (b) Histogram of Mahalanobis score and MSP score for ID and SVHN
(Non-spurious OOD). Full results for other non-spurious OOD datasets (iSUN
and LSUN) are in the Supplementary.

are well mixed (e.g., see the green and blue dots). In Figure A.3a (mid-
dle), we visualize the embedding of ID data together with spurious OOD
inputs, which contain the environmental feature (male). Spurious OOD
(bold male) lies between the two ID clusters, with some portion overlap-
ping with the ID samples, signifying the hardness of this type of OOD.
This is in stark contrast with non-spurious OOD inputs shown in Fig-
ure A.3a (right), where a clear separation between ID and OOD (purple)
can be observed. This shows that feature space contains useful informa-
tion that can be leveraged for OOD detection, especially for conventional
non-spurious OOD inputs. Moreover, by comparing the histogram of
Mahalanobis distance (top) and MSP score (bottom) in Figure A.3b, we
can further verify that ID and OOD data is much more separable with
the Mahalanobis distance. Therefore, our results suggest that feature-
based methods show promise for improving non-spurious OOD detec-
tion when the training set contains spurious correlation, while there still
exists large room for improvement on spurious OOD detection.
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A.5 Why is it hard to detect spurious OOD?
Given the results above, a natural question arises: why is it hard to detect
spurious OOD inputs? To better understand this issue, we now provide
theoretical insights. In what follows, we first model the ID and OOD data
distributions and then derive mathematically the model output of invari-
ant classifier, where the model aims not to rely on the environmental fea-
tures for prediction.

Setup. We consider a binary classification task where y ∈ {−1, 1}, and
is drawn according to a fixed probability η := P (y = 1). We assume both
the invariant features zinv and environmental features ze are drawn from
Gaussian distributions:

zinv ∼ N
(
y · µinv, σ2

invI
)

, ze ∼ N
(
y · µe, σ2

eI
)

where µe ∈ Rde , µinv ∈ Rs, and I is the identity matrix. Note that the
parameters µinv and σ2

inv are the same for all environments. In contrast,
the environmental parameters µe and σ2

e are different across e, where the
subscript is used to indicate the dependence on the environment and the
index of the environment. In what follows, we present the results, with
detailed proof deferred in the Appendix.

Lemma A.1. (Bayes optimal classifier) For any feature vector which is a linear
combination of the invariant and environmental features Φe(x) = Minvzinv +
Meze, the optimal linear classifier for an environment e has the corresponding
coefficient 2Σ−1

Φ µΦ, where:

µΦ = Minvµinv + Meµe

ΣΦ = MinvM
T
invσ

2
inv + MeM

T
e σ2

e
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Note that the Bayes optimal classifier uses environmental features which
are informative of the label but non-invariant. Rather, we hope to rely
only on invariant features while ignoring environmental features. Such a
predictor is also referred to as optimal invariant predictor (Rosenfeld et al.,
2021), which is specified in the following. Note that this is a special case
of Lemma A.1 with Minv = I and Me = 0.

Proposition A.2. (Optimal invariant classifier using invariant features) As-
sume the featurizer recovers the invariant feature Φe(x) = [zinv] ∀e ∈ E , the
optimal invariant classifier has the corresponding coefficient 2µinv/σ2

inv.2

The optimal invariant classifier explicitly ignores the environmental
features. However, an invariant classifier learned does not necessarily
depend only on the invariant features. Next Lemma shows that it can be
possible to learn an invariant classifier that relies on the environmental features
while achieving lower risk than the optimal invariant classifier.

Lemma A.3. (Invariant classifier using non-invariant features) Suppose E ≤
de, given a set of environments E = {e1, e2, . . . , eE} such that all environmental
means are linearly independent. Then there always exists a unit-norm vector
p and positive fixed scalar β such that β = pTµe/σ2

e ∀e ∈ E . The resulting
optimal classifier weights are

ŵ =
 βinv

2β

 =
 2µinv/σ2

inv

2p⊤µe/σ2
e

 .

Note that the optimal classifier weight 2β is a constant, which does not
depend on the environment (and neither does the optimal coefficient for
zinv). The projection vector p acts as a "short-cut" that the learner can use
to yield an insidious surrogate signal p⊤ze. Similar to zinv, this insidious

2The constant term in the classifier weights is log η/(1 − η), which we omit here and
in the sequel.
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signal can also lead to an invariant predictor (across environments) ad-
missible by invariant learning methods. In other words, despite the vary-
ing data distribution across environments, the optimal classifier (using
non-invariant features) is the same for each environment. We now show
our main results, where OOD detection can fail under such an invariant
classifier.

Theorem A.4. (Failure of OOD detection under invariant classifier) Consider
an out-of-distribution input which contains the environmental feature: Φout(x) =
Minvzout + Meze, where zout ⊥ µinv. Given the invariant classifier (cf. Lemma
2), the posterior probability for the OOD input is

p(y = 1 | Φout) = σ
(
2p⊤zeβ + log η/(1 − η)

)
, where σ is the logistic function. Thus for arbitrary confidence 0 < c := P (y =
1 | Φout) < 1, there exists Φout(x) with ze such that

p⊤ze = 1
2β

log c(1 − η)
η(1 − c)

.

Our theorem above signifies the existence of OOD inputs that can trig-
ger high-confidence predictions on in-distribution classes yet contain no
meaningful feature related to the labels in Y = {1, −1} at all. An OOD
detector can fail to detect these inputs with predictions that are indistin-
guishable from ID data. We provide a simple toy example to explain this
phenomenon further.

An Intuitive Example. An illustrative example with two environments
is provided in Figure A.4a. The feature representations for examples in
environments 1 and 2 are shown as circle and diamond, respectively. In-
distribution samples with different colors correspond to different labels:
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(b) Feature based on zinv

Figure A.4: The ID data is comprised of two classes y = 1 (yellow) and y = −1
(green). Two environments are shown as circle and diamond, respectively. (a)
The invariant decision boundary (blue dashed line) is based on both the invari-
ant feature zinv and environmental features ze. Illustration of the existence of
OOD inputs (red triangles) that can be predicted as in-distribution with high
confidence, therefore can fail to be detected by OOD methods (e.g., using pre-
dictive confidence threshold). (b) An ideal case when the invariant decision
boundary is purely based on zinv (red dashed line). The OOD inputs lie on the
decision boundary and will be predicted as y = 1 or y = −1 with a probability
0.5.

yellow indicates y = 1 and green indicates y = −1. The decision bound-
ary of classification is denoted by the dashed line, which relies on both the
invariant features zinv and environmental features ze. It can be seen that
if the feature representation relies on environmental features p⊤ze, spuri-
ous OOD samples (red triangles) can trick the classifier into recognizing
OOD samples as one of the in-distribution classes with high confidence,
posing severe threats to OOD detection.

In contrast, under an ideal case when the invariant classifier only uses
invariant features zinv, the optimal decision boundary is a horizontal dashed
line (see Figure A.4b). OOD inputs (red triangles) will be predicted with
a probability of 0.5 since they lie on the decision boundary.

Remark. As a special case, if the representation consists purely of en-
vironmental features, i.e., Φe(x) = [ze], the resulting optimal classifier
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weights are 2p⊤µe/σ2
e = 2β, a fixed scalar that is still invariant across en-

vironments. Lemma A.5 below shows that such a predictor can yield low
risks under certain conditions. Our main theorem above still holds under
such a predictor.

Lemma A.5. (Existence of purely environmental predictors with low risks (Rosen-
feld et al., 2021)) There exists a representation constructed purely relying on en-
vironmental features based on the short-cut direction p that achieves lower risk
than the optimal invariant predictor on every environment e such that σeβ >

σ−1
inv ∥µinv∥2 and 2σeβσ−1

inv ∥µinv∥2 ≥ |log η/(1 − η)|.

Summary. To summarize, the theoretical analysis demonstrates the dif-
ficulty of recovering the invariant classifier without using environmental
features. In particular, there exists an invariant classifier that uses non-
invariant features, and achieves lower risks than the classifiers only based
on invariant features. As a result, spurious OOD samples can utilize en-
vironmental clues to deteriorate the OOD detection performance. Our
main theorem provably shows the existence of OOD inputs with arbitrar-
ily high confidence, and can fail to be distinguished from the ID data.

Extension: Empirical Validation of Theoretical Analysis. To further
validate our analysis above, we comprehensively evaluate the OOD de-
tection performance of models that are trained with recent prominent do-
main invariance learning objectives (Arjovsky et al., 2019; Bahng et al.,
2020; Krueger et al., 2021; Ganin et al., 2016; Li et al., 2018c; Sagawa et al.,
2019) (Section A.12 in Appendix). The results align with our theoretical
analysis.
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A.6 Discussion and related works
Out-of-distribution Uncertainty Estimation. The phenomenon of neu-
ral networks’ overconfidence to out-of-distribution data is revealed by
Nguyen et al. Nguyen et al. (2015). Early works attempt to improve the
OOD uncertainty estimation by proposing the ODIN score (Liang et al.,
2018) and Mahalanobis distance-based confidence score (Lee et al., 2018).
Recent work by Liu et al. (Liu et al., 2020) proposed using an energy score
for OOD detection, which demonstrated advantages over the softmax
confidence score both empirically and theoretically. Huang and Li Huang
and Li (2021) proposed a group-based OOD detection method that scales
effectively to large-scale dataset ImageNet. Recent work by Lin et al. Lin
et al. (2021) also proposed dynamic OOD inference framework that im-
proved the computational efficiency of OOD detection. However, pre-
vious methods primarily focused on convention non-spurious OOD. We
introduce a new formalization of OOD detection that encapsulates both
spurious and non-spurious OOD data. A parallel line of approaches re-
sorts to generative models Goodfellow et al. (2014); Kingma and Dhari-
wal (2018) that directly estimate in-distribution density (Nalisnick et al.,
2019; Ren et al., 2019; Serrà et al., 2020; Xiao et al., 2020; Kirichenko et al.,
2020). In particular, Ren et al. (2019) addressed distinguishing between
background and semantic content under unsupervised generative mod-
els. Generative approaches yield limiting performance compared with
supervised discriminative models due to the lack of label information and
typically suffer from high computational complexity. Notably, none of the
previous works systematically investigate the influence of spurious cor-
relation for OOD detection. Our work presents a novel perspective for
defining OOD data and investigates the impact of spurious correlation in
the training set. Moreover, our formulation is more general and broader
than the image background (for example, gender bias in our CelebA ex-
periments is another type of contextual bias beyond image background).
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Near-ID Evaluations. Our proposed spurious OOD can be viewed as a
form of near-ID evaluation. Orthogonal to our work, previous works (Winkens
et al., 2020; Roy et al., 2022) considered the near-ID cases where the seman-
tics of OOD inputs are similar to that of ID data (e.g., CIFAR-10 vs. CIFAR-
100). In our setting, spurious OOD inputs may have very different seman-
tic labels but are statistically close to the ID data due to shared environ-
mental features (e.g., boat vs. waterbird in Figure 1). While other works
have considered domain shift (Hsu et al., 2020) or covariate shift (Ova-
dia et al., 2019), they are more relevant for evaluating model generaliza-
tion and robustness performance—in which case the goal is to make the
model classify accurately into the ID classes and should not be confused
with OOD detection task. We emphasize that semantic label shift (i.e.,
change of invariant feature) is more akin to OOD detection task, which
concerns model reliability and detection of shifts where the inputs have
disjoint labels from ID data and therefore should not be predicted by the
model.

Out-of-distribution Generalization. Recently, various works have been
proposed to tackle the issue of domain generalization, which aims to achieve
high classification accuracy on new test environments consisting of in-
puts with invariant features, and does not consider the change of invariant
features at test time (i.e., label space Y remains the same)—a key differ-
ence from our focus. Literature in OOD detection is commonly concerned
about model reliability and detection of shifts where the OOD inputs have
disjoint labels and therefore should not be predicted by the model. In
other words, we consider samples without invariant features, regardless of
the presence of environmental features or not.

A plethora of algorithms are proposed: learning invariant representa-
tion across domains (Ganin et al., 2016; Li et al., 2018c; Sun and Saenko,
2016; Li et al., 2018b), minimizing the weighted combination of risks from
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training domains (Sagawa et al., 2019), using different risk penalty terms
to facilitate invariance prediction (Arjovsky et al., 2019; Krueger et al.,
2021), causal inference approaches (Peters et al., 2016), and forcing the
learned representation different from a set of pre-defined biased repre-
sentations (Bahng et al., 2020), mixup-based approaches (Zhang et al.,
2018; Wang et al., 2020; Luo et al., 2020), etc. A recent study (Gulra-
jani and Lopez-Paz, 2021) shows that no domain generalization methods
achieve superior performance than ERM across a broad range of datasets.

Contextual Bias in Recognition. There has been a rich literature study-
ing the classification performance in the presence of contextual bias (Tor-
ralba, 2003; Beery et al., 2018; Barbu et al., 2019). The reliance on contex-
tual bias such as image backgrounds, texture, and color for object detec-
tion are investigated in (Zhu et al., 2017; Baker et al., 2018; Geirhos et al.,
2019; Zech et al., 2018; Xiao et al., 2021; Sagawa et al., 2019). However,
the contextual bias for OOD detection is underexplored. In contrast, our
study systematically investigates the impact of spurious correlation on
OOD detection and how to mitigate it.

A.7 Conclusion
Out-of-distribution detection is an essential task in open-world machine
learning. However, the precise definition is often left in vagueness, and
common evaluation schemes can be too primitive to capture the nuances
of the problem in reality. In this paper, we present a new formalization
where we model the data distributional shifts by considering the invariant
and non-invariant features. Under such formalization, we systematically
investigate the impact of spurious correlation in the training set on OOD
detection and further show insights on detection methods that are more
effective in mitigating the impact of spurious correlation. Moreover, we
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provide theoretical analysis on why reliance on environmental features
leads to high OOD detection error. We hope that our work will inspire
future research on the understanding and formalization of OOD samples,
new evaluation schemes of OOD detection methods, and algorithmic so-
lutions in the presence of spurious correlation.

A.8 Proofs for Theoretical Results
Lemma A.6. (Bayes optimal classifier) For any feature vector which is a linear
combination of the invariant and environmental features Φe(x) = Minvzinv +
Meze, the optimal linear classifier for an environment e has the corresponding
coefficient 2Σ−1

Φ µΦ, where:

µΦ = Minvµinv + Meµe

ΣΦ = MinvM
T
invσ

2
inv + MeM

T
e σ2

e

Proof. Since the feature vector Φe(x) = Minvzinv + Meze is a linear com-
bination of two independent Gaussian densities, Φe(x) is also Gaussian
with the following density:

Minvzinv + Meze | y ∼ N (y · (Minvµinv + Meµe)︸ ︷︷ ︸
µΦ

, MinvMT
invσ2

inv + MeM
T
e σ2

e︸ ︷︷ ︸
ΣΦ

).

(A.3)

The conditional density is given by:

p(Φe(x) = ϕ | y) = 1√
(2π)d|ΣΦ|

exp(−1
2(ϕ − y · µΦ)⊤Σ−1

Φ (ϕ − y · µΦ))

(A.4)

Then, the probability of y = 1 conditioned on Φe(x) = ϕ can be expressed
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as:

p (y = 1 | Φe = ϕ) = p(Φe = ϕ | y = 1)p(y = 1)
p(Φe = ϕ | y = 1)p(y = 1) + p(Φe = ϕ | y = −1)p(y = −1)

= 1
1 + p(Φe=ϕ|y=−1)p(y=−1)

p(Φe=ϕ|y=1)p(y=1)

= 1
1 + exp(−y · 2ϕ⊤Σ−1

Φ µΦ − log η/(1 − η))
= σ

(
y · 2ϕ⊤Σ−1

Φ µΦ + log η/(1 − η)
)

,

where σ(·) is the sigmoid function. The log odds of y are linear w.r.t.

the feature representation Φe. Thus given feature
 Φe(x)

1

 =
 ϕ

1

 (ap-

pended with constant 1), the optimal classifier weights are
 2Σ−1

Φ µΦ

log η/(1 − η)

.

Note that the Bayes optimal classifier uses environmental features which
are informative of the label but non-invariant.

Lemma A.7. (Invariant classifier using non-invariant features) Suppose E ≤
de, given a set of environments E = {e1, e2, . . . , eE} such that all environmental
means are linearly independent. Then there always exists a unit-norm vector
p and positive fixed scalar β such that β = p⊤µe/σ2

e ∀e ∈ E . The resulting
optimal classifier weights are

ŵ =
 βinv

2β

 =
 2µinv/σ2

inv

2p⊤µe/σ2
e

 .

Proof. Suppose Minv =
 Is×s

01×s

, and Me =
 0s×e

p⊤

 for some unit-norm

vector p ∈ Rde , then Φe(x) =
 zinv

p⊤ze

. By plugging into the results of
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Lemma A.1, we can obtain the optimal classifier weights as
 2µinv/σ2

inv

2p⊤µe/σ2
e

.3

If the total number of environments is insufficient (i.e., E ≤ dE , which
is a practical consideration because datasets with diverse environmental
features w.r.t. a specific class of interest are often very computationally
expensive to obtain), a short-cut direction p that yields invariant classi-
fier weights satisfies the system of linear equations Ap = b, where A =
µ⊤

1

· · ·
µ⊤

E

, and b =


σ2

1

· · ·
σ2

E

. As A has linearly independent rows and E ≤ de,

there always exists feasible solutions, among which the minimum-norm
solution is given by p = A⊤(AA⊤)−1b. Thus β = 1/∥A⊤(AA⊤)−1b∥2.

Theorem A.8. (Failure of OOD detection under invariant classifier) Consider
an out-of-distribution input which contains the environmental feature: Φout(x) =
Minvzout + Meze, where zout ⊥ µinv. Given the invariant classifier (cf. Lemma
2), the posterior probability for the OOD input is

p(y = 1 | Φout) = σ
(
2p⊤zeβ + log η/(1 − η)

)
, where σ is the logistic function. Thus for arbitrary confidence 0 < c := P (y =
1 | Φout) < 1, there exists Φout(x) with ze such that

p⊤ze = 1
2β

log c(1 − η)
η(1 − c)

.

Proof. Consider an out-of-distribution input xout with Minv =
 Is×s

01×s

,

and Me =
 0s×e

p⊤

, then the feature representation is Φe(x) =
 zout

p⊤ze

,

3The constant term is log η/(1 − η), as in Proposition A.2.
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where p is the unit-norm vector defined in Lemma A.3. By Bayes’ rule,
the posterior probability of y = 1 can be expressed as:

P
(
y = 1 | zout, p⊤ze

)
=

P
(
zout, p⊤ze, y = 1

)
P (zout, p⊤ze)

= P (zout | y = 1) P (p⊤ze | y = 1)P (y = 1)
P (zout, p⊤ze)

= 1
1 + P (zout|y=−1)P (p⊤ze|y=−1)P (y=−1)

P (zout|y=1)P (p⊤ze|y=1)P (y=1)

(A.5)

Recall that the conditional density is given by:

p(zout | y) = 1√
(2π)s|σ2

invI|
exp(−1

2(zout − y · µinv)⊤ 1
σ2

inv
· I · (zout − y · µinv)).

(A.6)

Canceling common terms, we get

P
(
y = 1 | zout, p⊤ze

)
= 1

1 + exp(−µ⊤
invzout/σ2

inv−p⊤zeβ)(1−η)
exp(µ⊤

invzout/σ2
inv+p⊤zeβ)η

= 1
1 + exp (− (2p⊤zeβ + log η/(1 − η)))

(A.7)

Then we have

P (y = 1 | Φout) = P (y = 1 | zout, p⊤ze) = σ
(
2p⊤zeβ + log η/(1 − η)

)
, where σ is the logistic function. Thus for arbitrary confidence 0 < c :=
P (y = 1 | Φout) < 1, there exists Φout(x) with ze such that

p⊤ze = 1
2β

log c(1 − η)
η(1 − c)

.
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Remark: In a more general case, zout can be modeled as a random vec-
tor that is independent of the in-distribution labels y = 1 and y = −1 and
environmental features: zout ⊥⊥ y and zout ⊥⊥ ze. Thus in Eq. A.5 we have
P (zout | y = 1) = P (zout | y = −1) = P (zout). Then P (y = 1 | Φout) =
σ
(
2p⊤zeβ + log η/(1 − η)

)
, same as in Eq. A.7. Therefore our main theo-

rem still holds under more general cases.

A.9 Extension: Color Spurious Correlation
To further validate our findings beyond background and gender spu-
rious (environmental) features, we provide additional experimental re-
sults with the ColorMNIST dataset, as shown in Figure A.5.

Spurious OOD

Training Examples (e.g. r = 0.45) Testing Examples

45% 45% 5% 5% Non-Spurious OOD

45% 45% 5% 5%

Figure A.5: Left: Training environments of ColorMNIST. The digit 0 correlates
both red and purple background with probability r, whereas digit 1 correlates
with green and pink with probability r. Right: Spurious OOD inputs contain the
shared environmental feature (color background) yet with different digit labels
(e.g., not 0 or 1). Non-spurious (conventional) OOD samples share neither the
digit semantics nor colors in the training set.

Evaluation Task 3: ColorMNIST. The ColorMNIST dataset is modified
from MNIST (LeCun et al., 1998), which composes colored backgrounds
on digit images. In this dataset, E = {red, green, purple, pink} denotes
the background color and we use Y = {0, 1} as in-distribution classes.
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The correlation between the background color e and the digit y is explic-
itly controlled, with r ∈ {0.25, 0.35, 0.45}. That is, r denotes the probabil-
ity of P (e = red | y = 0) = P (e = purple | y = 0) = P (e = green |
y = 1) = P (e = pink | y = 1), while 0.5 − r = P (e = green | y = 0) =
P (e = pink | y = 0) = P (e = red | y = 1) = P (e = purple | y = 1).
Note that the maximum correlation r (reported in Table A.4) is 0.45. As
ColorMNIST is relatively simpler compared to Waterbirds and CelebA,
further increasing the correlation results in less interesting environments
where the learner can easily pick up the contextual information. For spu-
rious OOD, we use digits {5, 6, 7, 8, 9} with background color red and
green, which contain overlapping environmental features as the training
data. For non-spurious OOD, following common practice (Hendrycks
and Gimpel, 2017), we use the Textures (Cimpoi et al., 2014), LSUN (Yu
et al., 2015) and iSUN (Xu et al., 2015) datasets. We train on ResNet-18 (He
et al., 2016), which achieves 99.9% accuracy on the in-distribution test set.
The OOD detection performance is shown in Table A.4.

r=0.25 r=0.35 r=0.45
OOD Type Test Set FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC↑ FPR95 ↓ AUROC ↑

Spurious OOD 5.40 ± 1.81 98.25 ± 0.89 13.5 ± 1.90 94.91 ± 0.86 30.45 ± 10.42 86.74 ± 7.76

Non-spurious OOD

Texture 0.03 ± 0.03 99.42 ± 0.35 0.43 ± 0.49 99.41 ± 0.17 9.93 ± 5.26 95.94 ± 0.88
iSUN 0.18 ± 0.19 99.43 ± 0.27 0.25 ± 0.10 99.39 ± 0.14 6.68 ± 4.23 98.16 ± 1.25
LSUN 0.3 ± 0.28 99.55 ± 0.17 0.63 ± 0.40 99.40 ± 0.19 6.33 ± 4.93 98.51 ± 0.80

Table A.4: OOD detection performance of models trained on ColorMNIST. In-
creased spurious correlation in the training set results in worsen performance
for both non-spurious and spurious OOD samples. For any fixed spurious cor-
relation, spurious OOD is more challenging than non-spurious OOD samples.
Results (mean and std) are estimated over 4 runs for each setting.

A.10 Visualization and Histograms
Visualization. As an extension of Section A.4, here we present the visu-
alization of embeddings for ID samples and samples from non-spurious



187

OOD test sets LSUN (Figure A.6a) and iSUN (Figure A.6b) based on the
CelebA task. We can observe that for both non-spurious OOD test sets,
the feature representations of ID and OOD are separable, similar to ob-
servations in Section A.4.

y=nongrey hair(F)
y=nongrey hair(M)
y=grey hair(M)
y=grey hair(F)
LSUN

(a) Feature for ID data and
LSUN (Non-spurious).

y=nongrey hair(F)
y=nongrey hair(M)
y=grey hair(M)
y=grey hair(F)
iSUN

(b) Feature for ID data and
iSUN (Non-spurious).

Figure A.6: Visualization of feature embedding for in-distribution samples and
non-spurious OOD samples: LSUN (Left) and iSUN (right).

Histograms. We also present histograms of the Mahalanobis distance
score and MSP score for non-spurious OOD test sets iSUN and LSUN
based on the CelebA task. As shown in Figure A.7, for both non-spurious
OOD datasets, the observations are similar to what we describe in Sec-
tion A.4 where ID and OOD are more separable with Mahalanobis score
than MSP score. This further verifies that feature-based methods such as
Mahalanobis score is promising to mitigate the impact of spurious cor-
relation in the training set for non-spurious OOD test sets compared to
output-based methods such as MSP score.
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Figure A.7: Left: Histograms of the Mahalanobis score and MSP score for iSUN
(Non-spurious OOD). Right: Histograms of the Mahalanobis score and MSP
score for LSUN (Non-spurious OOD).

A.11 Adjusting Spurious Correlation in the
Training Set for CelebA

To further validate if our observations on the impact of the extent of spu-
rious correlation in the training set still hold beyond the Waterbirds and
ColorMNIST tasks, here we subsample the CelebA dataset (described in
Section A.3) such that the spurious correlation is reduced to r = 0.7.
Note that we do not further reduce the correlation for CelebA because
that will result in a small size of total training samples in each environ-
ment which may make the training unstable. The results are shown in
Table A.5. The observations are similar to what we describe in Section A.3
where increased spurious correlation in the training set results in wors-
ened performance for both non-spurious and spurious OOD samples. For
example, the average FPR95 is reduced by 3.37% for LSUN, and 2.07% for
iSUN when r = 0.7 compared to r = 0.8. In particular, spurious OOD is
more challenging than non-spurious OOD samples under both spurious
correlation settings.
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r=0.7 r=0.8
OOD Type Test Set FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC↑ ↑

Spurious OOD 70.18 ± 1.76 83.30 ± 0.68 71.28 ± 4.12 82.04 ± 2.64

Non-spurious OOD

iSUN 15.28 ± 3.18 97.37 ± 0.14 17.35 ± 2.97 97.03 ± 0.30
LSUN 15.48 ± 3.57 97.56 ± 0.20 18.85 ± 2.44 96.90 ± 0.17
SVHN 5.39 ± 4.30 98.89 ± 0.90 5.63 ± 2.60 98.64 ± 0.21

Table A.5: OOD detection performance of models trained on CelebA (Liu et al.,
2015). The observations are similar to the Waterbirds and ColorMNIST tasks.
Increased spurious correlation in the training set results in worsen performance
for both non-spurious and spurious OOD samples. In particular, spurious OOD
is more challenging than non-spurious OOD samples. Results (mean and std)
are estimated over 4 runs for each setting.

A.12 Extension: Training with Domain
Invariance Objectives

In this section, we provide empirical validation of our analysis in Sec-
tion A.5, where we evaluate the OOD detection performance based on
models that are trained with recent prominent domain invariance learn-
ing objectives where the goal is to find a classifier that does not overfit to
environment-specific properties of the data distribution. Note that OOD
generalization aims to achieve high classification accuracy on new test
environments consisting of inputs with invariant features, and does not
consider the absence of invariant features at test time—a key difference
from our focus. In the setting of spurious OOD detection, we consider
test samples in environments without invariant features. We begin by de-
scribing the more popular objectives and include a more expansive list of
invariant learning approaches in our study.

Invariant Risk Minimization (IRM). IRM (Arjovsky et al., 2019) as-
sumes the existence of a feature representation Φ such that the optimal
classifier on top of these features is the same across all environments. To
learn this Φ, the IRM objective solves the following bi-level optimization
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problem:

min
Φ,ŵ

1
|E|

∑
e∈E

Re(Φ, ŵ) s.t. ŵ ∈ arg min
w

Re(Φ, w) ∀e ∈ E (A.8)

The authors also propose a practical version named IRMv1 as a surro-
gate to the original challenging bi-level optimization formula (A.8) which
we adopt in our implementation:

min
Φ:X →Y

∑
e∈Etr

Re(Φ) + λ ·
∥∥∥∇w|w=1.0R

e(w · Φ)
∥∥∥2

(A.9)

where an empirical approximation of the gradient norms in IRMv1 can
be obtained by a balanced partition of batches from each training envi-
ronment.

Group Distributionally Robust Optimization (GDRO). GDRO (Sagawa
et al., 2019) minimizes the worst-group risk:

min
w

max
g∈G

E(x,y)∼P̂g
[ℓ(w; (x, y))], (A.10)

where each example belongs to a group g ∈ G = Y × E , with g = (y, e).
The model learns the correlation between label y and environment e in the
training data would do poorly on minority group where the correlation
does not hold. Hence, by minimizing the worst-group risk, the model is
discouraged from relying on spurious features. The authors show that
objective (A.10) can be rewritten as:

min
w

sup
q∈∆m

m∑
g=1

qgE(x,y)∼Pg [ℓ(w; (x, y))] (A.11)

Then Algorithm 1 in (Sagawa et al., 2019) can be used for optimization
where stochastic gradient descent on w is interleaved with exponentiated
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gradient ascent on q. For further details and convergence analysis, we
encourage interested readers to refer to (Sagawa et al., 2019).

Alternative Objectives. IRM is motivated by the existence of a feature
representation Φ such that E[y|Φ(x)] is invariant across environments.
Follow-up works proposed several variations, based on different notions
of invariance. In particular, (Krueger et al., 2021) proposed Risk Ex-
trapolation (REx), which aims to achieve stronger invariance p(y|Φ(x))
by penalizing the variance of risks of environments. Other approaches
have proposed to remove the predictability of p(e|Φ(x)) through domain
adversarial losses such as DANN (Ganin et al., 2016) and CDANN (Li
et al., 2018c) (adapted for domain generalization). For completeness, we
include all the aforementioned methods in our study4.

Training Objective FPR95 ↓ AUROC ↑

ERM (Vapnik, 1992) 71.28 ± 4.12 82.04 ± 2.64
IRM (Arjovsky et al., 2019) 70.09 ± 3.67 82.66 ± 3.28
GDRO (Sagawa et al., 2019) 68.77 ± 4.56 83.39 ± 3.12
REx (Krueger et al., 2021) 72.43 ± 3.21 81.88 ± 3.19
DANN (Ganin et al., 2016) 70.01 ± 7.47 82.30 ± 9.89
CDANN (Li et al., 2018c) 69.87 ± 4.19 82.93 ± 4.55

Table A.6: Spurious OOD detection performance on CelebA (Liu et al., 2015)
where r ≈ 0.8. The models are trained with domain invariance learning objec-
tives. The results verify that detecting spurious OOD data is challenging as no
training objectives significantly outperform ERM.

Results. Table A.6 summarizes the OOD detection performance for spu-
rious OOD samples based on models trained with various invariance learn-
ing objectives. All methods are trained on the CelebA dataset described
in Section A.3 where “Grey hair” is highly correlated with “Male’ in the

4Our implementation for most of the training objects are based on: https://github.
com/facebookresearch/DomainBed.

https://github.com/facebookresearch/DomainBed
https://github.com/facebookresearch/DomainBed
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Training Objective FPR95 ↓ AUROC ↑

ERM (Vapnik, 1992) 74.22 ± 13.12 80.98 ± 4.45
IRM (Arjovsky et al., 2019) 72.41 ± 13.27 81.29 ± 5.24
GDRO (Sagawa et al., 2019) 70.79 ± 11.51 82.94 ± 4.59
REx (Krueger et al., 2021) 73.83 ± 15.26 81.25 ± 4.99
DANN (Ganin et al., 2016) 72.81 ± 13.47 81.11 ± 6.21
CDANN (Li et al., 2018c) 72.37 ± 14.20 82.13 ± 3.53

Table A.7: Spurious OOD detection performance on Waterbirds (Sagawa et al.,
2019) where r = 0.7. The models are trained with domain invariance learning
objectives. The results are similar to what we observe for CelebA, where detect-
ing spurious OOD data is challenging.

training set (r ≈ 0.8). We then compute the energy score (Liu et al., 2020)
from the model output f(x) as OOD uncertainty measurement for OOD
detection. From the table, we can observe that despite being motivated
by invariance learning, many objectives do not significantly outperform
the ERM baseline. For example, DGRO only mildly improves over ERM
(1.35% improvement in terms of AUROC). Moreover, invariance learn-
ing methods generally display larger variances across runs compared to
ERM. Similar observations still hold for Waterbirds, where we choose
r = 0.7, as shown in Table A.7. A recent study (Gulrajani and Lopez-
Paz, 2021) shows that ERM remains competitive in OOD generalization
tasks compared with various domain invariance learning methods across
a broad range of real-world datasets. While our results suggest that given
high spurious correlation in the training set, detecting spurious OOD re-
mains challenging, even for models trained with domain invariance ob-
jectives.
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A.13 Experiment Details and In-distribution
Classification Performance

Software and Hardware. Our code is implemented with Python 3.8.0
and PyTorch 1.6.0. All experiments are run on NVIDIA GeForce RTX
2080Ti.

Experiment Details. Following the common setup, the validation set is
randomly selected from 20% of the training set. We perform grid search
over learning rate γ ∈ {0.0001, 0.005, 0.001, 0.01} and l2 penalties λ ∈
{0.0001, 0.001, 0.01, 0.05}. We train for 30 epochs with SGD on ResNet-
18. For ColorMNIST, we train from scratch while we start training with
pre-trained ResNet for Waterbirds and CelebA, as in Sagawa et al. (2019).

In-distribution Classification Performance. Table A.8, Table A.9, and
Table A.10 present the in-distribution data classification accuracy for mod-
els trained with ERM and other domain invariance learning objectives for
different tasks respectively (averaged over 4 runs).

Training Objective r=0.25 r=0.35 r=0.45
ERM (Vapnik, 1992) 99.98 ± 0.03 99.99 ± 0.02 99.97 ± 0.03
IRM (Arjovsky et al., 2019) 99.98 ± 0.02 100.00 ± 0.00 99.99 ± 0.02
GDRO (Sagawa et al., 2019) 99.97 ± 0.04 99.98 ± 0.03 99.98 ± 0.02
REx (Krueger et al., 2021) 100.00 ± 0.00 99.99 ± 0.02 99.99 ± 0.02
DANN (Ganin et al., 2016) 99.97 ± 0.02 99.99 ± 0.02 99.99 ± 0.02
CDANN (Li et al., 2018c) 99.97 ± 0.02 99.99 ± 0.02 99.98 ± 0.02

Table A.8: In-Distribution data classification accuracy on ColorMNIST.
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Training Objective r=0.5 r=0.7 r=0.9
ERM (Vapnik, 1992) 96.93 ± 0.05 96.64 ± 0.06 94.67 ± 0.25
IRM (Arjovsky et al., 2019) 96.48 ± 0.24 96.67 ± 0.13 94.70 ± 0.44
GDRO (Sagawa et al., 2019) 96.82 ± 0.00 96.63 ± 0.04 94.55 ± 0.12
REx (Krueger et al., 2021) 97.11 ± 0.07 96.67 ± 0.14 94.68 ± 0.10
DANN (Ganin et al., 2016) 96.65 ± 0.12 96.08 ± 0.08 93.57 ± 0.48
CDANN (Li et al., 2018c) 96.57 ± 0.09 96.19 ± 0.13 94.17 ± 0.21

Table A.9: In-Distribution data classification accuracy on Waterbirds (Sagawa
et al., 2019).

Training Objective r=0.8

ERM (Vapnik, 1992) 95.78 ± 0.48
IRM (Arjovsky et al., 2019) 95.97 ± 0.62
GDRO (Sagawa et al., 2019) 95.74 ± 0.54
REx (Krueger et al., 2021) 95.49 ± 0.77
DANN (Ganin et al., 2016) 96.27 ± 0.25
CDANN (Li et al., 2018c) 94.74 ± 0.63

Table A.10: In-Distribution data classification accuracy on CelebA (Liu et al.,
2015).
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Appendix B

Appendix for How to Exploit
Hyperspherical Embeddings for
Out-of-Distribution Detection

B.1 Algorithm Details and Discussions
The training scheme of our compactness and dispersion regularized (CIDER)
learning framework is shown in Algorithm 1. We jointly optimize: (1) a
compactness loss to encourage samples to be close to their class prototypes,
and (2) a dispersion loss to encourage larger angular distances among dif-
ferent class prototypes.

Remark 1: The prototype update rule. The class prototypes are only
updated by exponential moving average (EMA). Since the prototypes are
not learnable parameters, the gradients of the dispersion loss have no di-
rect impact on their updates. EMA-style techniques have been used in
prior works Li et al. (2020b), and can be rigorously interpreted from a
clustering-based Expectation-Maximization (EM) perspective. Alterna-
tively, the prototypes can also be updated via gradients without EMA.
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Algorithm 1: Pseudo-code of CIDER.
1 Input: Training dataset D, neural network encoder f , projection head h,

classifier g, class prototypes µj (1 ≤ j ≤ C), weights of loss terms λd,
and λc, temperature τ

2 for epoch = 1, 2, . . . , do
3 for iter = 1, 2, . . . , do
4 sample a mini-batch B = {xi, yi}b

i=1
5 obtain augmented batch B̃ = {x̃i, ỹi}2b

i=1 by applying two
random augmentations to xi ∈ B ∀i ∈ {1, 2, . . . , b}

6 for x̃i ∈ B̃ do
// obtain normalized embedding

7 z̃i = h(f(x̃i)), zi = z̃i/∥z̃i∥2
// update class-prototypes

8 µc := Normalize(αµc + (1 − α)zi), ∀c ∈ {1, 2, . . . , C}
// calculate compactness loss

9 Lcomp = −
∑b

i=1 log exp(z⊤
i µc(i)/τ)∑C

j=1 exp(z⊤
i µj/τ)

// calculate dispersion loss
10 Ldis = 1

C

∑C
i=1 log 1

C−1
∑C

j=1 1{j ̸= i}eµ
⊤
i µj/τ

// calculate overall loss
11 L = Ldis + λcLcomp

// update the network weights
12 update the weights in the encoder and the projection head

We provide an ablation study of CIDER based on different prototype up-
date rules in Appendix B.3.

Remark 2: CIDER vs. Wang and Isola (2020). The notion of alignment
and uniformity for contrastive losses were proposed in Wang and Isola
(2020) for the unsupervised setting where both metrics are based on in-
dividual samples. CIDER is a contrastive loss designed for the supervised
setting. In particular, the uniform loss in Wang and Isola (2020) is defined
based on randomly sampled pairs of data and promotes an instance-to-
instance uniformity on the hypersphere. The notion of uniformity is fun-
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damentally different from CIDER, which promotes prototype-to-prototype
dispersion.

Remark 3: CIDER vs. Cross Entropy. When a model is trained with the
cross-entropy (CE) loss, the weight matrix of the last fully connected layer
can be interpreted as the set of class prototypes. However, CE is subopti-
mal for OOD detection for two main reasons: (1) CE does not explicitly
optimize for the intra-class compactness and inter-class dispersion in the
feature space. As a consequence, the embeddings obtained by CE loss
display insufficient compactness and dispersion (Table 3.4). Compared
to CE, CIDER is more structured by exploiting the hyperspherical embed-
dings and explicitly optimizing towards the desirable properties for OOD
detection and ID classification. (2) the feature space obtained by CE loss
is Euclidean instead of hyperspherical. As shown in Tack et al. (2020), ID
data tend to have a larger norm than OOD data. As a result, the Euclidean
distance between ID features can be larger than the distance from OOD to
ID data. A recent work (Sun et al., 2022) verified that Euclidean embed-
ding without feature normalization leads to suboptimal OOD detection
performance. Instead, CIDER is designed to optimize hyperspherical em-
beddings, which benefit OOD detection.

Remark 4: On the measurement of embedding quality. In Section 3.4.3,
we provide measurements of embedding quality (inter-class dispersion
and intra-class compactness) via prototypes. In practice, one can replace
the class prototypes in the dispersion and compactness metrics to be one
random sample (or the average of a random subset) from the correspond-
ing class. For example, on CIFAR-10, as the embeddings of CIDER are
compact, we observe that the two metrics give similar results (e.g., the
ID-OOD Separability is 42.5 with prototype-based metrics vs. 38.3 with
instance-based metrics). We choose to use prototypes because (1) the def-
inition directly maps to our loss function design, and (2) prototypes are
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calculated as the averaged feature for each class, which helps to mitigate
the sampling bias.

B.2 Experimental Details

Software and hardware. All methods are implemented in Pytorch 1.10.
We run all the experiments on NVIDIA GeForce RTX-2080Ti GPU for
small to medium batch size and on NVIDIA A100 GPU for large batch
size and larger network encoder.

Architecture. As shown in Figure 3.1, the overall architecture of CIDER
consists of a projection head h on top of a deep neural network encoder f .
Following common practice and fair comparison with prior works (Khosla
et al., 2020; Sehwag et al., 2021), we fix the output dimension of the pro-
jection head to be 128. We use a two-layer non-linear projection head for
CIFAR-10 and CIFAR-100 as in Sun et al. (2022).

Training. For methods based on pre-trained models such as MSP (Hendrycks
and Gimpel, 2017), ODIN (Liang et al., 2018), Mahalanobis (Lee et al.,
2018), and Energy (Liu et al., 2020), we follow the configurations in Sun
et al. (2022) for CIFAR-10 and train with the cross-entropy loss for 100
epochs. The initial learning rate is 0.1 and decays by a factor of 10 at
epochs 50, 75, and 90 respectively. For the more challenging dataset CIFAR-
100, we train 200 epochs. We use stochastic gradient descent with mo-
mentum 0.9, and weight decay 10−4. For fair comparison, methods in-
volving contrastive learning (Winkens et al., 2020; Tack et al., 2020; Se-
hwag et al., 2021) are trained for 500 epochs on CIFAR-10 and CIFAR-100.
For CIDER, we adopt the same key hyperparameters for contrastive losses
such as initial learning rate (0.5), temperature (0.1), and batch size (512)
as SSD+ (Sehwag et al., 2021) in main experiments to demonstrate the ef-
fectiveness and simplicity of CIDER. For the prototype update factor α,
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Figure B.1: Ablation on CIDER v.s. SupCon loss under different batch sizes.
The results are averaged across the 5 OOD test sets based on ResNet-34.
CIDER outperforms SupCon across different batch sizes, suggesting the ef-
fectiveness of explicitly facilitating prototype-wise dispersion.

we set the default value as 0.95 for simplicity. We observed that α = 0.95
on CIFAR-10 with ResNet-18 and α = 0.5 on CIFAR-100 with ResNet-34
provide stronger performance.

OOD detection score. By default, we use the non-parametric KNN score (Sun
et al., 2022). We use a larger K = 300 for CIFAR-100 and a smaller K =
100 for CIFAR-10 for simplicity. Adjusting K ∈ {10, 20, 50, 100, 200, 300, 500}
yields similar performance. In practice, K can be tuned using a validation
method (Sun et al., 2022) to further improve the performance.

B.3 Additional Ablation Studies
CIDER is effective under various batch sizes. Figure B.1a and B.1b also
indicate that CIDER remains competitive under different batch size config-
urations compared to SupCon. To explain this, the standard SupCon loss
requires instance-to-instance distance measurement, whereas compactness
loss reduces the complexity to instance-to-prototype. The class-conditional
prototypes are updated during training, which capture the average statis-
tics of each class and alleviate the dependency on the batch size. This
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Figure B.2: Ablation on (a) weight λc of the compactness loss; (b) prototype
update discount factor α. The results are based on CIFAR-100 (ID) averaged
over 5 OOD test sets.

leads to an overall memory-efficient solution for OOD detection.

Ablation on the loss weights. In the main results (Table 3.1), we demon-
strate the effectiveness of CIDER where the loss weight λc is simply set to
balance the initial scale between the Ldis and Lcomp. In fact, CIDER can be
further improved by adjusting λc. As shown in Figure B.2a, the perfor-
mance of CIDER is relatively stable for moderate adjustments of λc (e.g.
0.5 to 2), with the best performance at around λc ∈ [1, 2]. This indicates
CIDER provides a simple and effective solution for improving OOD detec-
tion, without much need for hyperparameter tuning on the loss scale.

Adjusting prototype update factor α improves CIDER. We show in
Figure B.2b the performance by varying the moving-average discount fac-
tor α in Eq. 3.8. We can observe that the detection performance (averaged
over 5 test sets) is still competitive across a wide range of α. In particu-
lar, for CIFAR-100, α = 0.5 results in the best performance with aver-
age FPR95 of 46.89% under KNN score. For CIFAR-10, we observe that a
larger α (e.g. 0.95 to 0.99) results in stronger performance.

Ablation on the learning rate. Prior works (Khosla et al., 2020; Sehwag
et al., 2021) use a default initial learning rate (lr) of 0.5 to train contrastive
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losses, which is also the default setting of CIDER. We further investigate
the impact of the initial learning rate on OOD detection. As shown in
Figure B.3a, a relatively higher initial lr is indeed desirable for competi-
tive performance while too small lr (e.g. 0.1) would lead to performance
degradation.

Small temperature τ leads to better performance. Figure B.3b demon-
strates the detection performance as we vary the temperature parameter
τ . We observe that the OOD detection performance is desirable at a rel-
atively small temperature. Complementary to our finding, a relatively
small temperature is shown to be desirable for ID classification (Khosla
et al., 2020; Wang and Liu, 2021) which penalizes hard negative samples
with larger gradients and leads to separable features.
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Figure B.3: Ablation on (a) initial learning rate and (b) temperature. The re-
sults are based on CIFAR-100 (ID) averaged over 5 OOD test sets.

Ablation on network capacity. We verify the effectiveness of CIDER un-
der networks with other architectures such as ResNet-50 for CIFAR-100.
The results are shown in Figure B.4. The trend is similar to what we ob-
served with ResNet-34. Specifically, as a result of the improved repre-
sentation, training with CIDER improves the FPR95 for various test sets
compared to training with the SupCon loss.
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Ablation on gradient-based prototype update. We examine the effect
of updating prototypes via gradients. Compared to CIDER with EMA,
CIDER with learnable prototypes (LP) can be more sensitive to initializa-
tion. We report the average performance of CIDER (EMA) and CIDER
(LP) across 3 independent runs for CIFAR-10 in Table B.1. All training
and evaluation configurations (e.g., learning rate and batch size) are the
same. We can see that CIDER with EMA improves the average FPR95 by
5.08% with smaller standard deviation. Therefore, we empirically verify
that updating prototypes via EMA is a better option with stronger train-
ing stability in practice.

Table B.1: Ablation on prototype update rules. OOD detection perfor-
mance for ResNet-18 trained on CIFAR-10 with EMA-style updates de-
noted as CIDER (EMA) vs. learnable prototypes denoted as CIDER (LP).
CIDER with EMA demonstrates strong OOD detection performance. Re-
sults are averaged over 3 independent runs.

Method
OOD Dataset AverageSVHN Places365 LSUN iSUN Texture

FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑

CIDER (LP) 2.17±1.50 99.55±0.48 28.13±1.59 94.53±0.12 5.23±2.68 98.16±0.99 36.47±8.93 94.59±0.92 16.25±1.07 97.38 ±0.19 17.65±2.36 96.84±0.40

CIDER (EMA) 3.04±1.38 99.50±0.30 26.60±2.47 94.64±0.51 4.10±1.68 99.14±0.19 15.94±4.56 97.10±0.54 13.19±0.82 97.39±0.48 12.57±1.31 97.56±0.33

Stability of CIDER. To verify that CIDER consistently provides strong
performance, we train with 3 independent seeds for each ID dataset. Ta-
ble B.2 shows the OOD detection performance of CIDER with ResNet-18
trained on CIFAR-10 and ResNet-34 trained on CIFAR-100. Comparing
Table 3.1 and Table B.3, we can see that CIDER yields consistently strong
performance. Code and checkpoints are provided in https://github.
com/deeplearning-wisc/cider.

https://github.com/deeplearning-wisc/cider
https://github.com/deeplearning-wisc/cider
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Table B.2: Ablation on stability. OOD detection performance of CIDER
for CIFAR-10 and CIFAR-100. Results are averaged over 3 independent
runs.

ID Dataset
OOD Dataset AverageSVHN Places365 LSUN iSUN Texture

FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑

CIFAR-10 3.04±1.38 99.50±0.30 26.60±2.47 94.64±0.51 4.10±1.68 99.14±0.19 15.94±4.56 97.10±0.54 13.19±0.82 97.39±0.48 12.57±1.31 97.56±0.33

CIFAR-100 23.67±2.28 95.07±0.13 79.37±1.84 72.97±3.90 22.04±5.12 96.01±1.80 62.16±8.48 83.70±2.92 44.96±6.01 90.25±0.97 46.45±2.01 87.60±1.03
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Figure B.4: Ablation on architecture. Results are based on ResNet-50.

B.4 Results on Large-scale Datasets
In recent years, there has been a paradigm shift towards fine-tuning pre-
trained models, as opposed to training from scratch. Given this trend, it
is important to explore whether CIDER remains effective based on pre-
trained models. Specifically, we fine-tune ImageNet pre-trained ResNet-
34 on ImageNet-100 with CIDER and SupCon losses for 10 epochs. For
each loss, we update the weights of the last residual block and the nonlin-
ear projection head, while freezing the parameters in the first three resid-
ual blocks. At test time, we use the same detection score (KNN) to eval-
uate representation quality. FPR95 and AUROC for each OOD test set
are shown in Figure B.5a and B.5b, respectively. The results suggest that
CIDER remains very competitive, which highlight the benefits of promot-
ing inter-class dispersion and intra-class compactness.
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Figure B.5: OOD detection performance of fine-tuning with CIDER v.s.
SupCon for ImageNet-100 (ID). With the same detection score (KNN),
CIDER consistently outperforms SupCon across all OOD test datasets.

B.5 Results on CIFAR-10
In the main paper, we mainly focus on the more challenging task CIFAR-
100. In this section, we additionally evaluate on CIFAR-10, a commonly
used benchmark in literature. For methods involving contrastive losses,
we use the same network encoder and embedding dimension, while only
varying the training objective. The Mahalanobis score is used for OOD
detection in SSD+ (Sehwag et al., 2021), CE+SimCLR (Winkens et al., 2020),
SupCon, and CIDER. As CIFAR-10 is much less challenging compared to
CIFAR-100, recent methods with contrastive losses yield similarly strong
performance. For methods trained with cross-entropy loss, we use the
publicly available checkpoints in Sun et al. (2022) for better consistency.
The results are shown in Table B.3. Similar trends also hold as we describe
in Section 3.4.2: (1) CIDER achieves superior OOD detection performance
in CIFAR-10 as a result of better inter-class dispersion and intra-class com-
pactness. For example, compared to the Mahalanobis baseline (Lee et al.,
2018), CIDER reduces the FPR95 by 24.99% averaged over 5 diverse test
sets; (2) Although the ID classification accuracy of CIDER is similar to an-
other proxy-based loss ProxyAnchor (Table B.4), CIDER significantly im-
proves the OOD detection performance by 21.05% in FPR95 due to the
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addition of explicit inter-class dispersion which we show is critical for
OOD detection in Section 3.4.3. The significant improvements highlight
the importance of representation learning for OOD detection.

Method
OOD Dataset AverageSVHN Places365 LSUN iSUN Texture

FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑

Without Contrastive Learning
MSP 59.66 91.25 62.46 88.64 45.21 93.80 54.57 92.12 66.45 88.50 57.67 90.86
Energy 54.41 91.22 42.77 91.02 10.19 98.05 27.52 95.59 55.23 89.37 38.02 93.05
ODIN 53.78 91.30 43.40 90.98 10.93 97.93 28.44 95.51 55.59 89.47 38.43 93.04
GODIN 18.72 96.10 55.25 85.50 11.52 97.12 30.02 94.02 33.58 92.20 29.82 92.97
Mahalanobis 9.24 97.80 83.50 69.56 67.73 73.61 6.02 98.63 23.21 92.91 37.94 86.50

With Contrastive Learning
CE + SimCLR 6.98 99.22 54.39 86.70 64.53 85.60 59.62 86.78 16.77 96.56 40.46 90.97
CSI 37.38 94.69 38.31 93.04 10.63 97.93 10.36 98.01 28.85 94.87 25.11 95.71
SSD+ 2.47 99.51 22.05 95.57 10.56 97.83 28.44 95.67 9.27 98.35 14.56 97.38
ProxyAnchor 39.27 94.55 43.46 92.06 21.04 97.02 23.53 96.56 42.70 93.16 34.00 94.67
KNN+ 2.70 99.61 23.05 94.88 7.89 98.01 24.56 96.21 10.11 97.43 13.66 97.22
CIDER 2.89 99.72 23.88 94.09 5.45 99.01 20.21 96.64 12.33 96.85 12.95 97.26

Table B.3: Results on CIFAR-10. OOD detection performance for ResNet-
18 trained on CIFAR-10 with and without contrastive loss. CIDER achieves
strong OOD detection performance and ID classification accuracy (Ta-
ble B.4).

B.6 ID Classification Accuracy
The ID classification accuracy on CIFAR-10 and CIFAR-100 can be seen
in Table B.4 and Table B.5, where for contrastive losses such as KNN+,
SSD+, and CIDER, we follow the common practice as in Khosla et al.
(2020) and use linear probe on normalized features.
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Table B.4: ID classification accuracy on CIFAR-10 (%)

Method ID ACC

w.o. contrastive loss
MSP 94.21
ODIN 94.21
GODIN 93.64
Energy 94.21
Mahalanobis 94.21

w. contrastive loss
CE + SimCLR 93.12
SSD+ 94.53
ProxyAnchor 94.21
KNN+ 94.53
CIDER 94.58

Table B.5: ID classification accuracy on CIFAR-100 (%)

Method ID ACC

w.o. contrastive loss
MSP 74.59
ODIN 74.59
GODIN 74.92
Energy 74.59
Mahalanobis 74.59

w. contrastive loss
CE + SimCLR 73.54
SSD+ 75.11
ProxyAnchor 74.21
KNN+ 75.11
CIDER 75.35
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Appendix C

Appendix for Hyperspherical
Out-of-Distribution
Generalization

C.1 Pseudo Algorithm
The training scheme of HYPO is shown below. We jointly optimize for
(1) low variation, by encouraging the feature embedding of samples to
be close to their class prototypes; and (2) high separation, by encouraging
different class prototypes to be far apart from each other.

C.2 Broader Impacts
Our work facilitates the theoretical understanding of OOD generalization
through prototypical learning, which encourages low variation and high
separation in the hyperspherical space. In Section 4.5.2, we qualitatively
and quantitatively verify the low intra-class variation of the learned em-
beddings and we discuss in Section 4.6 that the variation estimate deter-
mines the general upper bound on the generalization error for a learn-
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Algorithm 2: Hyperspherical Out-of-Distribution Generaliza-
tion
1 Input: Training dataset D, deep neural network encoder h, class

prototypes µc (1 ≤ j ≤ C), temperature τ
2 for epoch = 1, 2, . . . , do
3 for iter = 1, 2, . . . , do
4 sample a mini-batch B = {xi, yi}b

i=1
5 obtain augmented batch B̃ = {x̃i, ỹi}2b

i=1 by applying two
random augmentations to xi ∈ B ∀i ∈ {1, 2, . . . , b}

6 for x̃i ∈ B̃ do
// obtain normalized embedding

7 z̃i = h(x̃i), zi = z̃i/∥z̃i∥2
// update class-prototypes

8 µc := Normalize(αµc + (1 − α)zi), ∀c ∈ {1, 2, . . . , C}
// calculate the loss for low variation

9 Lvar = − 1
N

∑
e∈Eavail

∑|De|
i=1 log exp(ze

i
⊤µc(i)/τ)∑C

j=1 exp(ze
i

⊤µj/τ)
// calculate the loss for high separation

10 Lsep = 1
C

∑C
i=1 log 1

C−1
∑

j ̸=i,j∈Y exp
(
µ⊤

i µj/τ
)

// calculate overall loss
11 L = Lvar + Lsep

// update the network weights
12 update the weights in the deep neural network

able OOD generalization task. This provable framework may serve as a
foothold that can be useful for future OOD generalization research via
representation learning.

From a practical viewpoint, our research can directly impact many
real applications, when deploying machine learning models in the real
world. Out-of-distribution generalization is a fundamental problem and
is commonly encountered when building reliable ML systems in the in-
dustry. Our empirical results show that our approach achieves consistent
improvement over the baseline on a wide range of tasks. Overall, our
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work has both theoretical and practical impacts.

C.3 Theoretical Analysis
Notations. We first set up notations for theoretical analysis. Recall that
Pe

XY denotes the joint distribution of X, Y in domain e. The label set
Y := {1, 2, · · · , C}. For an input x, z = h(x)/∥h(x)∥2 is its feature em-
bedding. Let Pe,y

X denote the marginal distribution of X in domain e with
class y. Similarly, Pe,y

Z denotes the marginal distribution of Z in domain e

with class y. Let E := |Etrain| for abbreviation. As we do not consider the
existence of spurious correlation in this work, it is natural to assume that
domains and classes are uniformly distributed: PX := 1

EC

∑
e,y P

e,y
X . We

specify the distance metric to be the Wasserstein-1 distance i.e., W1(·, ·)
and define all notions of variation under such distance.

Next, we proceed with several lemmas that are particularly useful to
prove our main theorem.

Lemma C.1. With probability at least 1 − δ,

− E(x,c)∼PXY
µ⊤

c

h(x)
∥h(x)∥2

+ 1
N

N∑
i=1

µ⊤
c(i)

h(xi)
∥h(xi)∥2

≤ ES∼PN
[ 1
N
Eσ1,...,σN

sup
h∈H

N∑
i=1

σiµ
⊤
c(i)

h(xi)
∥h(xi)∥2

] + β

√
ln(2/δ)

N
.

where β is a universal constant and σ1, . . . , σN are Rademacher variables.

Proof. By Cauchy-Schwarz inequality,

|µ⊤
c(i)

h(xi)
∥h(xi)∥2

| ≤
∥∥∥µc(i)

∥∥∥
2

∥∥∥∥∥ h(xi)
∥h(xi)∥2

∥∥∥∥∥
2

= 1

Define G = {⟨ h(·)
∥h(·)∥2

, ·⟩ : h ∈ H}. Let S = (u1, . . . , uN) ∼ PN where
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ui =
 xi

µc(i)

 and N is the sample size. The Rademacher complexity of G

is

RN(G) := ES∼PN
[ 1
N

sup
g∈G

N∑
i=1

σig(ui)].

We can apply the standard Rademacher complexity bound (Theorem 26.5
in Shalev-Shwartz and Ben-David) to G, then we have that,

− E(x,c)∼PXY
µ⊤

c

h(x)
∥h(x)∥2

+ 1
N

N∑
i=1

µ⊤
c(i)

h(xi)
∥h(xi)∥2

≤ ES∼PN
[ 1
N
Eσ1,...,σN

sup
g∈G

N∑
i=1

σig(ui)] + β

√
ln(2/δ)

N

= ES∼PN
[ 1
N
Eσ1,...,σN

sup
h∈H

N∑
i=1

σiµ
⊤
c(i)

h(xi)
∥h(xi)∥2

] + β

√
ln(2/δ)

N
,

where β is a universal positive constant.

Remark C.2. The above lemma indicates that when samples are sufficiently
aligned with their class prototypes on the hyperspherical feature space, i.e.,

1
N

N∑
i=1

µ⊤
c(i)

h(xi)
∥h(xi)∥2

≥ 1 − ϵ

for some small constant ϵ > 0, we can upper bound −E(x,c)∼PXY
µ⊤

c
h(x)

∥h(x)∥2
. This

result will be useful to prove Thm 4.6.

Lemma C.3. Suppose E(z,c)∼PZY
µ⊤

c z ≥ 1 − γ. Then, for all e ∈ Etrain and
y ∈ [C], we have that

Ez∼Pe,y
Z
µ⊤

c z ≥ 1 − CEγ.

https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/
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Proof. Fix e′ ∈ Etrain and y′ ∈ [C]. Then,

1 − γ ≤ E(z,c)∼PZY
µ⊤

c z

= 1
CE

∑
e∈Etrain

∑
y∈[C]

Ez∼Pe,y
Z

z⊤µy

= 1
CE

Ez∼Pe′,y′
Z

z⊤µy′ + 1
CE

∑
(e,y)∈Etrain×[C]\{(e′,y′)}

Ez∼Pe,y
Z

z⊤µy

≤ 1
CE

Ez∼Pe′,y′
Z

z⊤µy′ + CE − 1
CE

where the last line holds by |z⊤µc| ≤ 1 and we also used the assumption
that the domains and classes are uniformly distributed. Rearranging the
terms, we have

1 − CEγ ≤ Ez∼Pe′,y′
Z

z⊤µy′

Lemma C.4. Fix y ∈ [C] and e ∈ Etrain. Fix η > 0. If

Ez∼Pe,y
Z

z⊤µy ≥ 1 − CEγ,

then

Pe,y
Z (∥z − µy∥2 ≥ η) ≤ 2CEγ

η2 .

Proof. Note that

∥z − µy∥2
2 = ∥z∥2

2 + ∥µy∥2
2 − 2z⊤µy

= 2 − 2z⊤µy.

Taking the expectation on both sides and applying the hypothesis, we
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have that

Ez∼Pe,y
Z

∥z − µc∥2
2 ≤ 2CEγ.

Applying Chebyschev’s inequality to ∥z − µy∥2, we have that

Pe,y
Z (∥z − µy∥2 ≥ η) ≤

Var(∥z − µy∥2)
η2

≤
Ez∼Pe,y

Z
(∥z − µy∥2

2)
η2

≤ 2CEγ

η2

Lemma C.5. Fix y ∈ [C]. Fix e, e′ ∈ Etrain. Suppose Ez∼Pe,y
Z

z⊤µc ≥ 1 − CEγ.
Fix v ∈ Sd−1. Let P denote the distribution of v⊤ze and Q denote the distribution
v⊤ze′ . Then,

W1(P, Q) ≤ 10(CEγ)1/3

where W1(P, Q) is the Wassersisten-1 distance.

Proof. Consider the dual formulation of Wasserstein-1 distance:

W(P, Q) = sup
f :∥f∥lip≤1

Ex∼Pe,y
X

[f(v⊤x)] − Ex∼Pe′,y
X

[f(v⊤x)]

where ∥f∥lip denotes the Lipschitz norm. Let κ > 0. There exists f0 such
that

W(P, Q) ≤ Ez∼Pe,y
Z

[f0(v⊤z)] − Ez∼Pe′,y
Z

[f0(v⊤z)] + κ.

We assume that without loss of generality f0(µ⊤
y v) = 0. Define f ′(·) =

https://www.stat.cmu.edu/~larry/=sml/Opt.pdf
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f0(·) − f0(µ⊤
y v). Then, note that f ′(µ⊤

y v) = 0 and

Ez∼Pe,y
Z

[f ′(v⊤z)] − E
z∼Pe′,y

Z

[f ′(v⊤z)]

= Ez∼Pe,y
Z

[f0(v⊤z)] − Ez∼Pe′,y
Z

[f0(v⊤z)] + f ′(µ⊤
y v) − f ′(µ⊤

y v)

= Ez∼Pe,y
Z

[f0(v⊤z)] − Ez∼Pe′,y
Z

[f0(v⊤z)],

proving the claim.
Now define B := {u ∈ Sd−1 : ∥u − µy∥2 ≤ η}. Then, we have

Ez∼Pe,y
Z

[f0(v⊤z)] − Ez∼Pe′,y
Z

[f0(v⊤z)]

= Ez∼Pe,y
Z

[f0(v⊤z)1{z ∈ B}] − Ez∼Pe′,y
Z

[f0(v⊤z)1{z ∈ B}]

+ Ez∼Pe,y
Z

[f0(v⊤z)1{z ̸∈ B}] − Ez∼Pe′,y
Z

[f0(v⊤z)1{z ̸∈ B}]

Note that if z ∈ B, then by ∥f∥lip ≤ 1,

|f0(v⊤z) − f0(v⊤µy)| ≤ |v⊤(z − µy)|

≤ ∥v∥2 ∥z − µy∥2

≤ η.

Therefore, |f0(v⊤z)| ≤ η and we have that

Ez∼Pe,y
Z

[f0(v⊤z)1{z ∈ B}] − Ez∼Pe′,y
Z

[f0(v⊤z)1{z ∈ B}]

≤ 2η(Ez∼Pe,y
Z

[1{z ∈ B}] + Ez∼Pe′,y
Z

[1{z ∈ B}])

≤ 2η.

Now, note that maxu∈Sd−1 |f(u⊤v)| ≤ 2 (repeat the argument from
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above but use ∥u − µy∥2 ≤ 2. Then,

Ez∼Pe,y
Z

[f0(v⊤z)1{z ̸∈ B}] − Ez∼Pe′,y
Z

[f0(v⊤z)1{z ̸∈ B}]

≤ 2[Ez∼Pe,y
Z

[1{z ̸∈ B}] + Ez∼Pe′,y
Z

[1{z ̸∈ B}]]

≤ 8CEγ

η

where in the last line, we used the hypothesis and Lemma C.4. Thus, by
combining the above, we have that

W(P, Q) ≤ 2η + 8CEγ

η2 + κ.

Choosing η = (CEγ)1/3, we have that

W(P, Q) ≤ 10(CEγ)1/3 + κ.

Since κ > 0 was arbitrary, we can let it go to 0, obtaining the result.

Next, we are ready to prove our main results. For completeness, we
state the theorem here.

Theorem C.6 (Variation upper bound (Thm 4.1)). Suppose samples are
aligned with class prototypes such that 1

N

∑N
j=1 µ

⊤
c(j)zj ≥ 1 − ϵ for some ϵ ∈

(0, 1), where zj = h(xj)
∥h(xj)∥2

. Then ∃δ ∈ (0, 1), with probability at least 1 − δ,

Vsup(h, Σavail) ≤ O(ϵ1/3+(ED[ 1
N
Eσ1,...,σN

sup
h∈H

N∑
i=1

σiz⊤
i µc(i)])1/3+(ln(2/δ)

N
)1/6),

where σ1, . . . , σN are Rademacher random variables and O(·) suppresses de-
pendence on constants and |Eavail|.

Proof of Theorem 4.6. Suppose 1
N

∑N
j=1 µ

⊤
c(j)zj = 1

N

∑N
i=1 µ

⊤
c(i)

h(xi)
∥h(xi)∥2

≥ 1−ϵ.
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Then, by Lemma C.1, with probability at least 1 − δ, we have

−E(x,c)∼PXY
µ⊤

c

h(x)
∥h(x)∥2

≤ ES∼PN
[ 1
N
Eσ1,...,σN

sup
h∈H

N∑
i=1

σiµ
⊤
c(i)

h(xi)
∥h(xi)∥2

]

+ β

√
ln(2/δ)

N
− 1

N

N∑
i=1

µ⊤
c(i)

h(xi)
∥h(xi)∥2

≤ ES∼PN
[ 1
N
Eσ1,...,σN

sup
h∈H

N∑
i=1

σiµ
⊤
c(i)

h(xi)
∥h(xi)∥2

]

+ β

√
ln(2/δ)

N
+ ϵ − 1

where σ1, . . . , σN denote Rademacher random variables and β is a univer-
sal positive constant. Define

γ = ϵ + ES∼PN
[ 1
N
Eσ1,...,σN

sup
h∈H

N∑
i=1

σiµ
⊤
c(i)

h(xi)
∥h(xi)∥2

] + β

√
ln(2/δ)

N
.

Then, we have

E(z,c)∼PZY
µ⊤

c z ≥ 1 − γ.

Then, by Lemma C.3, for all e ∈ Etrain and y ∈ [C],

Ez∼Pe,y
Z
µ⊤

y z ≥ 1 − CEγ.

Let α > 0 and v0 such that

Vsup(h, Etrain) = sup
v∈Sd−1

V(v⊤h, Etrain) ≤ V(v⊤
0 h, Etrain) + α

Let Qe,y
v0 denote the distribution of v⊤

0 z in domain e under class y. From
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Lemma C.5, we have that

W1(Qe,y
v0 , Q

′,y
v0) ≤ 10(CEγ)1/3

for all y ∈ [C] and e, e′ ∈ Etrain.
We have that

sup
v∈Sd−1

V(v⊤h, Etrain) = sup
v∈Sd−1

V(v⊤h, Etrain)

= max
y

sup
e,e′

W1(Qe,y
v0 , Qe′,y

v0 ) + α

≤ 10(CEγ)1/3 + α.

Noting that α was arbitrary, we may send it to 0 yielding

sup
v∈Sd−1

V(v⊤h, Etrain) ≤ 10(CEγ)1/3.

Now, using the inequality that for a, b, c ≥ 0, (a + b + c)1/3 ≤ a1/3 +
b1/3 + c1/3, we have that

Vsup(h, Etrain) ≤ O(ϵ1/3 + (ES∼PN
[ 1
N
Eσ1,...,σN

sup
h∈H

N∑
i=1

σiµ
⊤
c(i)

h(xi)
∥h(xi)∥2

])1/3 + β( ln(2/δ)
N

)1/6)

Remark C.7. As our loss promotes alignment of sample embeddings with their
class prototypes on the hyperspherical space, the above Theorem implies that when
such alignment holds, we can upper bound the intra-class variation with three
main factors: the optimization error ϵ, the Rademacher complexity of the given
neural network, and the estimation error ( ln(2/δ)

N
)1/6.
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C.3.1 Extension: From Low Variation to Low OOD
Generalization Error

Ye et al. (2021) provide OOD generalization error bounds based on the
notation of variation. Therefore, bounding intra-class variation is critical
to bound OOD generalization error. For completeness, we reinstate the
main results in Ye et al. (2021) below, which provide both OOD gener-
alization error upper and lower bounds based on the variation w.r.t. the
training domains. Interested readers shall refer to Ye et al. (2021) for
more details and illustrations.

Definition C.8 (Expansion Function (Ye et al., 2021)). We say a function
s : R+ ∪ {0} → R+ ∪ {0, +∞} is an expansion function, iff the following
properties hold: 1) s(·) is monotonically increasing and s(x) ≥ x, ∀x ≥ 0; 2)
limx→0+ s(x) = s(0) = 0.

As it is impossible to generalize to an arbitrary distribution, charac-
terizing the relation between Eavail and Eall is essential to formalize OOD
generalization. Based on the notion of expansion function, the learnabil-
ity of OOD generalization is defined as follows:

Definition C.9 (OOD-Learnability (Ye et al., 2021)). Let Φ be the feature
space and ρ be a distance metric on distributions. We say an OOD generalization
problem from Eavail to Eall is learnable if there exists an expansion function s(·)
and δ ≥ 0, such that: for all ϕ ∈ Φ1 satisfying Iρ(ϕ, Eavail) ≥ δ, we have
s(Vρ(ϕ, Eavail)) ≥ Vρ(ϕ, Eall). If such s(·) and δ exist, we further call this problem
(s(·), δ)-learnable.

For learnable OOD generalization problems, the following two theo-
rems characterize OOD error upper and lower bounds based on variation.

1ϕ referred to as feature h in theoretical analysis.
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Theorem C.10 (OOD Error Upper Bound (Ye et al., 2021)). Suppose we
have learned a classifier with loss function ℓ(·, ·) such that ∀e ∈ Eall and ∀y ∈ Y ,
phe|Y e(h|y) ∈ L2(Rd). h(·) ∈ Rd denotes the feature extractor. Denote the char-
acteristic function of random variable he|Y e as p̂he|Y e(t|y) = E[exp{i⟨t, he⟩}|Y e =
y]. Assume the hypothetical space F satisfies the following regularity conditions
that ∃α, M1, M2 > 0, ∀f ∈ F , ∀e ∈ Eall, y ∈ Y ,
∫

h∈Rd
phe|Y e(h|y)|h|αdh ≤ M1 and

∫
t∈Rd

|p̂he|Y e(t|y)||t|αdt ≤ M2. (C.1)

If (Eavail, Eall) is
(
s(·), I inf(h, Eavail)

)
-learnable under Φ with Total Variation ρ2,

then we have
err(f) ≤ O

(
s
(
Vsup(h, Eavail)

) α2
(α+d)2

)
, (C.2)

where O(·) depends on d, C, α, M1, M2.

Theorem C.11 (OOD Error Lower Bound (Ye et al., 2021)). Consider 0-1
loss: ℓ(ŷ, y) = I(ŷ ̸= y). For any δ > 0 and any expansion function satisfying
1) s′

+(0) ≜ limx→0+
s(x)−s(0)

x
∈ (1, +∞); 2) exists k > 1, t > 0, s.t. kx ≤

s(x) < +∞, x ∈ [0, t], there exists a constant C0 and an OOD generalization
problem (Eavail, Eall) that is (s(·), δ)-learnable under linear feature space Φ w.r.t
symmetric KL-divergence ρ, s.t. ∀ε ∈ [0, t

2 ], the optimal classifier f satisfying
Vsup(h, Eavail) = ε will have the OOD generalization error lower bounded by

err(f) ≥ C0 · s(Vsup(h, Eavail)). (C.3)

C.4 Additional Experimental Details
Software and hardware. Our method is implemented with PyTorch 1.10.
All experiments are conducted on NVIDIA GeForce RTX 2080 Ti GPUs for

2For two distribution P,Q with probability density function p, q, ρ(P,Q) =
1
2
∫

x
|p(x) − q(x)|dx.
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small to medium batch sizes and NVIDIA A100 and RTX A6000 GPUs for
large batch sizes.

Architecture. In our experiments, we use ResNet-18 for CIFAR-10, ResNet-
34 for ImageNet-100, ResNet-50 for PACS, VLCS, Office-Home and Terra
Incognita. Following common practice in prior works (Khosla et al., 2020),
we use a non-linear MLP projection head to obtain features in our ex-
periments. The embedding dimension is 128 of the projection head for
ImageNet-100. The projection head dimension is 512 for PACS, VLCS,
Office-Home, and Terra Incognita.

Additional implementation details. In our experiments, we follow the
common practice that initializing the network with ImageNet pre-trained
weights for PACS, VLCS, Office-Home, and Terra Incognita. We then
fine-tune the network for 50 epochs. For the large-scale experiments on
ImageNet-100, we fine-tune ImageNet pre-trained ResNet-34 with our
method for 10 epochs for computational efficiency. We set the temper-
ature τ = 0.1, prototype update factor α = 0.95 as the default value. We
use stochastic gradient descent with momentum 0.9, and weight decay
10−4. The search distribution in our experiments for the learning rate hy-
perparameter is: lr ∈ {0.005, 0.002, 0.001, 0.0005, 0.0002, 0.0001, 0.00005}.
The search space for the batch size is bs ∈ {32, 64}. The loss weight
λ for balancing our loss function (L = λLvar + Lsep) is selected from
λ ∈ {1.0, 2.0, 4.0}. For multi-source domain generalization, hard nega-
tives can be incorporated by a simple modification to the denominator of
the variation loss:

Lvar = − 1
N

∑
e∈Eavail

|De|∑
i=1

log
exp

(
z⊤

i µc(i)/τ
)

∑C
j=1 exp

(
z⊤

i µj/τ
)

+∑N
j=1 I(yj ̸= yi, ei = ej) exp

(
z⊤

i zj/τ
)

(C.4)
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Details of datasets. We provide a detailed description of the datasets
used in this work:

CIFAR-10 (Krizhevsky et al., 2009) is consist of 60, 000 color images
with 10 classes. The training set has 50, 000 images and the test set has
10, 000 images.

ImageNet-100 is composed by randomly sampled 100 categories from
ImageNet-1K.This dataset contains the following classes: n01498041, n01514859,
n01582220, n01608432, n01616318, n01687978, n01776313, n01806567, n01833805,
n01882714, n01910747, n01944390, n01985128, n02007558, n02071294, n02085620,
n02114855, n02123045, n02128385, n02129165, n02129604, n02165456, n02190166,
n02219486, n02226429, n02279972, n02317335, n02326432, n02342885, n02363005,
n02391049, n02395406, n02403003, n02422699, n02442845, n02444819, n02480855,
n02510455, n02640242, n02672831, n02687172, n02701002, n02730930, n02769748,
n02782093, n02787622, n02793495, n02799071, n02802426, n02814860, n02840245,
n02906734, n02948072, n02980441, n02999410, n03014705, n03028079, n03032252,
n03125729, n03160309, n03179701, n03220513, n03249569, n03291819, n03384352,
n03388043, n03450230, n03481172, n03594734, n03594945, n03627232, n03642806,
n03649909, n03661043, n03676483, n03724870, n03733281, n03759954, n03761084,
n03773504, n03804744, n03916031, n03938244, n04004767, n04026417, n04090263,
n04133789, n04153751, n04296562, n04330267, n04371774, n04404412, n04465501,
n04485082, n04507155, n04536866, n04579432, n04606251, n07714990, n07745940.

CIFAR-10-C is generated based on the previous literature (Hendrycks
and Dietterich, 2019), applying different corruptions on CIFAR-10 data.
The corruption types include gaussian noise, zoom blur, impulse noise,
defocus blur, snow, brightness, contrast, elastic transform, fog, frost, gaus-
sian blur, glass blur, JEPG compression, motion blur, pixelate, saturate,
shot noise, spatter, and speckle noise.

ImageNet-100-C is algorithmically generated with Gaussian noise based
on (Hendrycks and Dietterich, 2019) for the ImageNet-100 dataset.

PACS (Li et al., 2017a) is commonly used in OoD generalization. This
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dataset contains 9, 991 examples of resolution 224 × 224 and four do-
mains with different image styles, namely photo, art painting, cartoon,
and sketch with seven categories.

VLCS (Gulrajani and Lopez-Paz, 2021) comprises four domains in-
cluding Caltech101, LabelMe, SUN09, and VOC2007. It contains 10, 729
examples of resolution 224 × 224 and 5 classes.

Office-Home (Gulrajani and Lopez-Paz, 2021) contains four different
domains: art, clipart, product, and real. This dataset comprises 15, 588
examples of resolution 224 × 224 and 65 classes.

Terra Incognita (Gulrajani and Lopez-Paz, 2021) comprises images
of wild animals taken by cameras at four different locations: location100,
location38, location43, and location46. This dataset contains 24, 788 ex-
amples of resolution 224 × 224 and 10 classes.

C.5 Detailed Results on CIFAR-10
In this section, we provide complete results of the different corruption
types on CIFAR-10. In Table C.1, we evaluate HYPO under various com-
mon corruptions. Results suggest that HYPO achieves consistent improve-
ment over the ERM baseline for all 19 different corruptions. We also com-
pare our loss (HYPO) with more recent competitive algorithms: EQRM (East-
wood et al., 2022) and SharpDRO (Huang et al., 2023), on the CIFAR10-C
dataset (Gaussian noise). The results on ResNet-18 are presented in Ta-
ble C.13.

C.6 Additional Evaluations on Other OOD
Generalization Tasks

In this section, we provide detailed results on more OOD generalization
benchmarks, including Office-Home (Table C.3), VLCS (Table C.4), and
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Table C.1: Main results for verifying OOD generalization performance
on the 19 different covariate shifts datasets. We train on CIFAR-10 as ID,
using CIFAR-10-C as the OOD test dataset. Acc. denotes the accuracy on
the OOD test set.

Method Corruptions Acc. Corruptions Acc. Corruptions Acc. Corruptions Acc.
CE Gaussian noise 78.09 Zoom blur 88.47 Impulse noise 83.60 Defocus blur 94.85
HYPO Gaussian noise 85.21 Zoom blur 93.28 Impulse noise 87.54 Defocus blur 94.90
CE Snow 90.19 Brightness 94.83 Contrast 94.11 Elastic transform 90.36
HYPO Snow 91.10 Brightness 94.87 Contrast 94.53 Elastic transform 91.64
CE Fog 94.45 Frost 90.33 Gaussian blur 94.85 Glass blur 56.99
HYPO Fog 94.57 Frost 92.28 Gaussian blur 94.91 Glass blur 63.66
CE JEPG compression 86.95 Motion blur 90.69 Pixelate 92.67 Saturate 92.86
HYPO JEPG compression 89.24 Motion blur 93.07 Pixelate 93.95 Saturate 93.66
CE Shot noise 85.86 Spatter 92.20 Speckle noise 85.66 Average 88.32
HYPO Shot noise 89.87 Spatter 92.46 Speckle noise 89.94 Average 90.56

Terra Incognita (Table C.5). We observe that our approach achieves strong
performance on these benchmarks. We compare our method with a col-
lection of OOD generalization baselines such as IRM (Arjovsky et al., 2019),
DANN (Ganin et al., 2016), CDANN (Li et al., 2018c), GroupDRO (Sagawa et al.,
2019), MTL (Blanchard et al., 2021), I-Mixup (Zhang et al., 2018), MMD (Li
et al., 2018b), VREx (Krueger et al., 2021), MLDG (Li et al., 2018a), ARM (Zhang
et al., 2021a), RSC (Huang et al., 2020), Mixstyle (Zhou et al., 2021a),
ERM (Vapnik, 1999), CORAL (Sun and Saenko, 2016), SagNet (Nam et al.,
2021), SelfReg (Kim et al., 2021a), GVRT Min et al. (2022), VNE (Kim et al.,
2023a). These methods are all loss-based and optimized using standard
SGD. On the Office-Home, our method achieves an improved OOD gen-
eralization performance of 1.6% compared to a competitive baseline (Sun
and Saenko, 2016).

We also conduct experiments coupling with SWAD and achieve su-
perior performance on OOD generalization. As shown in Table C.6, Ta-
ble C.7, Table C.8, our method consistently establish superior results on
different benchmarks including VLCS, Office-Home, Terra Incognita, show-
ing the effectiveness of our method via hyperspherical learning.



223

Algorithm Art painting Cartoon Photo Sketch Average Acc. (%)
IRM (Arjovsky et al., 2019) 84.8 76.4 96.7 76.1 83.5
DANN (Ganin et al., 2016) 86.4 77.4 97.3 73.5 83.7
CDANN (Li et al., 2018c) 84.6 75.5 96.8 73.5 82.6
GroupDRO (Sagawa et al., 2019) 83.5 79.1 96.7 78.3 84.4
MTL (Blanchard et al., 2021) 87.5 77.1 96.4 77.3 84.6
I-Mixup (Wang et al., 2020) 86.1 78.9 97.6 75.8 84.6
MMD (Li et al., 2018b) 86.1 79.4 96.6 76.5 84.7
VREx (Krueger et al., 2021) 86.0 79.1 96.9 77.7 84.9
MLDG (Li et al., 2018a) 85.5 80.1 97.4 76.6 84.9
ARM (Zhang et al., 2021a) 86.8 76.8 97.4 79.3 85.1
RSC (Huang et al., 2020) 85.4 79.7 97.6 78.2 85.2
Mixstyle (Zhou et al., 2021a) 86.8 79.0 96.6 78.5 85.2
ERM (Vapnik, 1999) 84.7 80.8 97.2 79.3 85.5
CORAL (Sun and Saenko, 2016) 88.3 80.0 97.5 78.8 86.2
SagNet (Nam et al., 2021) 87.4 80.7 97.1 80.0 86.3
SelfReg (Kim et al., 2021a) 87.9 79.4 96.8 78.3 85.6
GVRT Min et al. (2022) 87.9 78.4 98.2 75.7 85.1
VNE (Kim et al., 2023a) 88.6 79.9 96.7 82.3 86.9
HYPO (Ours) 87.2 82.3 98.0 84.5 88.0

Table C.2: Comparison with state-of-the-art methods on the PACS benchmark.
All methods are trained on ResNet-50. The model selection is based on a training
domain validation set. To isolate the effect of loss functions, all methods are opti-
mized using standard SGD. *Results based on retraining of PCL with SGD using
official implementation. PCL with SWAD optimization is further compared in
Table 4.2. We run HYPO 3 times and report the average and std. ±x denotes the
standard error, rounded to the first decimal point.

C.7 Experiments on ImageNet-100 and
ImageNet-100-C

In this section, we provide additional large-scale results on the ImageNet
benchmark. We use ImageNet-100 as the in-distribution data and use
ImageNet-100-C with Gaussian noise as OOD data in the experiments. In
Figure C.1, we observe our method improves OOD accuracy compared to
the ERM baseline.
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Algorithm Art Clipart Product Real World Average Acc. (%)
IRM (Arjovsky et al., 2019) 58.9 52.2 72.1 74.0 64.3
DANN (Ganin et al., 2016) 59.9 53.0 73.6 76.9 65.9
CDANN (Li et al., 2018c) 61.5 50.4 74.4 76.6 65.7
GroupDRO (Sagawa et al., 2019) 60.4 52.7 75.0 76.0 66.0
MTL (Blanchard et al., 2021) 61.5 52.4 74.9 76.8 66.4
I-Mixup (Wang et al., 2020) 62.4 54.8 76.9 78.3 68.1
MMD (Li et al., 2018b) 60.4 53.3 74.3 77.4 66.4
VREx (Krueger et al., 2021) 60.7 53.0 75.3 76.6 66.4
MLDG (Li et al., 2018a) 61.5 53.2 75.0 77.5 66.8
ARM (Zhang et al., 2021a) 58.9 51.0 74.1 75.2 64.8
RSC (Huang et al., 2020) 60.7 51.4 74.8 75.1 65.5
Mixstyle (Zhou et al., 2021a) 51.1 53.2 68.2 69.2 60.4
ERM (Vapnik, 1999) 63.1 51.9 77.2 78.1 67.6
CORAL (Sun and Saenko, 2016) 65.3 54.4 76.5 78.4 68.7
SagNet (Nam et al., 2021) 63.4 54.8 75.8 78.3 68.1
SelfReg (Kim et al., 2021a) 63.6 53.1 76.9 78.1 67.9
GVRT Min et al. (2022) 66.3 55.8 78.2 80.4 70.1
VNE (Kim et al., 2023a) 60.4 54.7 73.7 74.7 65.9
HYPO (Ours) 68.3 57.9 79.0 81.4 71.7

Table C.3: Comparison with state-of-the-art methods on the Office-Home
benchmark. All methods are trained on ResNet-50. The model selection
is based on a training domain validation set. To isolate the effect of loss
functions, all methods are optimized using standard SGD.
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Figure C.1: Experiments on ImageNet-100 (ID) vs. ImageNet-100-C (OOD).

C.8 Ablation of Different Loss Terms
Ablations on separation loss. In Table C.9, we demonstrate the effec-
tiveness of the first loss term (variation) empirically. We compare the
OOD performance of our method (with separation loss) vs. our method
(without separation loss). We observe our method without separation
loss term can still achieve strong OOD accuracy–average 87.2% on the



225

Algorithm Caltech101 LabelMe SUN09 VOC2007 Average Acc. (%)
IRM (Arjovsky et al., 2019) 98.6 64.9 73.4 77.3 78.6
DANN (Ganin et al., 2016) 99.0 65.1 73.1 77.2 78.6
CDANN (Li et al., 2018c) 97.1 65.1 70.7 77.1 77.5
GroupDRO (Sagawa et al., 2019) 97.3 63.4 69.5 76.7 76.7
MTL (Blanchard et al., 2021) 97.8 64.3 71.5 75.3 77.2
I-Mixup (Wang et al., 2020) 98.3 64.8 72.1 74.3 77.4
MMD (Li et al., 2018b) 97.7 64.0 72.8 75.3 77.5
VREx (Krueger et al., 2021) 98.4 64.4 74.1 76.2 78.3
MLDG (Li et al., 2018a) 97.4 65.2 71.0 75.3 77.2
ARM (Zhang et al., 2021a) 98.7 63.6 71.3 76.7 77.6
RSC (Huang et al., 2020) 97.9 62.5 72.3 75.6 77.1
Mixstyle (Zhou et al., 2021a) 98.6 64.5 72.6 75.7 77.9
ERM (Vapnik, 1999) 97.7 64.3 73.4 74.6 77.5
CORAL (Sun and Saenko, 2016) 98.3 66.1 73.4 77.5 78.8
SagNet (Nam et al., 2021) 97.9 64.5 71.4 77.5 77.8
SelfReg (Kim et al., 2021a) 96.7 65.2 73.1 76.2 77.8
GVRT Min et al. (2022) 98.8 64.0 75.2 77.9 79.0
VNE (Kim et al., 2023a) 97.5 65.9 70.4 78.4 78.1
HYPO (Ours) 98.1 65.3 73.1 76.3 78.2

Table C.4: Comparison with state-of-the-art methods on the VLCS bench-
mark. All methods are trained on ResNet-50. The model selection is
based on a training domain validation set. To isolate the effect of loss
functions, all methods are optimized using standard SGD.

PACS dataset. This ablation study indicates the first term (variation) of
our method plays a more important role in practice, which aligns with
our theoretical analysis in Section 4.6 and Appendix C.3.

Ablations on hard negative pairs. To verify that hard negative pairs
help multiple training domains, we conduct ablation by comparing ours
(with hard negative pairs) vs. ours (without hard negative pairs). We
can see in Table C.10 that our method with hard negative pairs improves
the average OOD performance by 0.4% on the PACS dataset. Therefore,
we empirically demonstrate that emphasizing hard negative pairs leads
to better performance for multi-source domain generalization tasks.

Comparing EMA update and learnable prototype. We conduct an ab-
lation study on the prototype update rule. Specifically, we compare our
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Algorithm Location100 Location38 Location43 Location46 Average Acc. (%)
IRM (Arjovsky et al., 2019) 54.6 39.8 56.2 39.6 47.6
DANN (Ganin et al., 2016) 51.1 40.6 57.4 37.7 46.7
CDANN (Li et al., 2018c) 47.0 41.3 54.9 39.8 45.8
GroupDRO (Sagawa et al., 2019) 41.2 38.6 56.7 36.4 43.2
MTL (Blanchard et al., 2021) 49.3 39.6 55.6 37.8 45.6
I-Mixup (Wang et al., 2020) 59.6 42.2 55.9 33.9 47.9
MMD (Li et al., 2018b) 41.9 34.8 57.0 35.2 42.2
VREx (Krueger et al., 2021) 48.2 41.7 56.8 38.7 46.4
MLDG (Li et al., 2018a) 54.2 44.3 55.6 36.9 47.8
ARM (Zhang et al., 2021a) 49.3 38.3 55.8 38.7 45.5
RSC (Huang et al., 2020) 50.2 39.2 56.3 40.8 46.6
Mixstyle (Zhou et al., 2021a) 54.3 34.1 55.9 31.7 44.0
ERM (Vapnik, 1999) 49.8 42.1 56.9 35.7 46.1
CORAL (Sun and Saenko, 2016) 51.6 42.2 57.0 39.8 47.7
SagNet (Nam et al., 2021) 53.0 43.0 57.9 40.4 48.6
SelfReg (Kim et al., 2021a) 48.8 41.3 57.3 40.6 47.0
GVRT Min et al. (2022) 53.9 41.8 58.2 38.0 48.0
VNE (Kim et al., 2023a) 58.1 42.9 58.1 43.5 50.6
HYPO (Ours) 58.8 46.6 58.7 42.7 51.7

Table C.5: Comparison with state-of-the-art methods on the Terra Incog-
nita benchmark. All methods are trained on ResNet-50. The model selec-
tion is based on a training domain validation set. To isolate the effect of
loss functions, all methods are optimized using standard SGD.

Algorithm Art Clipart Product Real World Average Acc. (%)
SWAD (Cha et al., 2021) 66.1 57.7 78.4 80.2 70.6
PCL+SWAD (Yao et al., 2022) 67.3 59.9 78.7 80.7 71.6
VNE+SWAD (Kim et al., 2023a) 66.6 58.6 78.9 80.5 71.1
HYPO+SWAD (Ours) 68.4 61.3 81.8 82.4 73.5

Table C.6: Results with SWAD-based optimization on the Office-Home
benchmark.

Algorithm Caltech101 LabelMe SUN09 VOC2007 Average Acc. (%)
SWAD (Cha et al., 2021) 98.8 63.3 75.3 79.2 79.1
PCL+SWAD (Yao et al., 2022) 95.8 65.4 74.3 76.2 77.9
VNE+SWAD (Kim et al., 2023a) 99.2 63.7 74.4 81.6 79.7
HYPO+SWAD (Ours) 98.9 67.8 74.3 77.7 79.7

Table C.7: Rresults with SWAD-based optimization on the VLCS bench-
mark.

method with exponential-moving-average (EMA) (Li et al., 2020b; Wang
et al., 2022a; Ming et al., 2023) prototype update versus learnable pro-
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Algorithm Location100 Location38 Location43 Location46 Average Acc. (%)
SWAD (Cha et al., 2021) 55.4 44.9 59.7 39.9 50.0
PCL+SWAD (Yao et al., 2022) 58.7 46.3 60.0 43.6 52.1
VNE+SWAD (Kim et al., 2023a) 59.9 45.5 59.6 41.9 51.7
HYPO+SWAD (Ours) 56.8 61.3 54.0 53.2 56.3

Table C.8: Results with SWAD-based optimization on the Terra Incognita
benchmark.

Algorithm Art painting Cartoon Photo Sketch Average Acc. (%)
Ours (w/o separation loss) 86.2 81.2 97.8 83.6 87.2
Ours (w separation loss) 87.2 82.3 98.0 84.5 88.0

Table C.9: Ablations on separation loss term.

Algorithm Art painting Cartoon Photo Sketch Average Acc. (%)
Ours (w/o hard negative pairs) 87.8 82.9 98.2 81.4 87.6
Ours (w hard negative pairs) 87.2 82.3 98.0 84.5 88.0

Table C.10: Ablation on hard negative pairs. OOD generalization perfor-
mance on the PACS dataset.

totypes (LP). The results on PACS are summarized in Table C.11. We
observe our method with EMA achieves better average OOD accuracy
88.0% compared to learnable prototype update rules 86.7%. We empir-
ically verify EMA-style method is a suitable prototype updating rule to
facilitate gradient-based prototype update in practice.

Algorithm Art painting Cartoon Photo Sketch Average Acc. (%)
Ours (LP) 88.0 80.7 97.5 80.7 86.7
Ours (EMA) 87.2 82.3 98.0 84.5 88.0

Table C.11: Ablation on prototype update rules. Comparing EMA update
and learnable prototype (LP) on the PACS benchmark.

Quantitative verification of the ϵ factor in Theorem 4.6. We calculate
the average intra-class variation over data from all environments 1

N

∑N
j=1 µ

⊤
c(j)zj

(Theorem 4.6) models trained with HYPO. Then we obtain ϵ̂ := 1 −
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1
N

∑N
j=1 µ

⊤
c(j)zj . We evaluated PACS, VLCS, and OfficeHome and sum-

marized the results in Table C.12. We observe that training with HYPO
significantly reduces the average intra-class variation, resulting in a small
epsilon (ϵ̂ < 0.1) in practice. This suggests that the first term O(ϵ 1

3 ) in
Theorem 4.6 is indeed small for models trained with HYPO.

Dataset ϵ̂

PACS 0.06
VLCS 0.08
OfficeHome 0.09

Table C.12: Empirical verification of intra-class variation in Theorem 4.6.

Method OOD Acc. (%)
EQRM (Eastwood et al., 2022) 77.06
SharpDRO (Huang et al., 2023) 81.61
HYPO (ours) 85.21

Table C.13: Comparison with more recent competitive baselines. Mod-
els are trained on CIFAR-10 using ResNet-18 and tested on CIFAR10-C
(Gaussian noise).

C.9 Analyzing the Effect of τ and α

In Figure C.2a, we present the OOD generalization performance by ad-
justing the prototype update factor α. The results are averaged over four
domains on the PACS dataset. We observe the generalization performance
is competitive across a wide range of α. In particular, our method achieves
the best performance when α = 0.95 on the PACS dataset with an average
of 88.0% OOD accuracy.

We show in Figure C.2b the OOD generalization performance by vary-
ing the temperature parameter τ . The results are averaged over four dif-
ferent domains on PACS. We observe a relative smaller τ results in stronger
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OOD performance while too large τ (e.g., 0.9) would lead to degraded
performance.
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Figure C.2: Ablation on (a) prototype update discount factor α and (b)
temperature τ . The results are averaged over four domains on the PACS
dataset.
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C.10 Theoretical Insights on Inter-class
Separation

To gain theoretical insights into inter-class separation, we focus on the
learned prototype embeddings of the separation loss with a simplified
setting where we directly optimize the embedding vectors.

Definition C.12. (Simplex ETF (Sustik et al., 2007)). A set of vectors {µi}C
i=1

in Rd forms a simplex Equiangular Tight Frame (ETF) if ∥µi∥ = 1 for ∀i ∈ [C]
and µ⊤

i µj = −1/(C − 1) for ∀i ̸= j.

Next, we will characterize the optimal solution for the separation loss
defined as:

Lsep = 1
C

C∑
i=1

log 1
C − 1

C∑
j ̸=i,j=1

exp
(
µ⊤

i µj/τ
)

︸ ︷︷ ︸
↑ separation

:= 1
C

C∑
i=1

log Lsep(i)

Lemma C.13. (Optimal solution of the separation loss) Assume the number of
classes C ≤ d + 1, Lsep is minimized when the learned class prototypes {µi}C

i=1

form a simplex ETF.

Proof.

Lsep(i) = 1
C − 1

C∑
j ̸=i,j=1

exp
(
µ⊤

i µj/τ
)

(C.5)

≥ exp
 1

C − 1

C∑
j ̸=i,j=1

µ⊤
i µj/τ

 (C.6)

= exp
(
µ⊤

i µ − µ⊤
i µi

τ(C − 1)

)
(C.7)

= exp
(
µ⊤

i µ − 1
τ(C − 1)

)
(C.8)
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where we defineµ = ∑C
i=1 µi and (C.6) follows Jensen’s inequality. There-

fore, we have

Lsep = 1
C

C∑
i=1

log Lsep(i)

≥ 1
C

C∑
i=1

log exp
(
µ⊤

i µ − 1
τ(C − 1)

)

= 1
τC(C − 1)

C∑
i=1

(µ⊤
i µ − 1)

= 1
τC(C − 1)µ

⊤µ − 1
τ(C − 1)

It suffices to consider the following optimization problem,

minimize L1 = µ⊤µ

subject to ∥µi∥ = 1 ∀i ∈ [C]

where µ⊤µ = (∑C
i=1 µi)⊤(∑C

i=1 µi) = ∑C
i=1

∑
j ̸=i µ

⊤
i µj + C

However, the problem is non-convex. We first consider a convex re-
laxation and show that the optimal solution to the original problem is the
same as the convex problem below,

minimize L2 =
C∑

i=1

C∑
j=1,j ̸=i

µT
i µj

subject to ∥µi∥ ≤ 1 ∀i ∈ [C]

Note that the optimal solution L∗
1 ≥ L∗

2. Next, we can obtain the La-
grangian form:

L(µ1, . . . ,µC , λ1, . . . , λC) =
C∑

i=1

C∑
j=1,j ̸=i

µT
i µj +

C∑
i=1

λi(∥µi∥2 − 1)

where λi are Lagrange multipliers. Taking the gradient of the La-
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grangian with respect to µk and setting it to zero, we have:

∂L
∂µk

= 2
C∑

i ̸=k

µi + 2λkµk = 0

Simplifying the equation, we have:

µ = µk(1 − λk)

Therefore, the optimal solution satisfies that (1) either all feature vectors
are co-linear (i.e. µk = αkv for some vector v ∈ Rd ∀k ∈ [C]) or (2) the
sum µ = ∑C

i=1 µi = 0. The Karush-Kuhn-Tucker (KKT) conditions are:

µk(1 − λk) = 0 ∀k

λk(∥µk∥2 − 1) = 0 ∀k

λk ≥ 0 ∀k

∥µk∥ ≤ 1 ∀k

When the learned class prototypes {µi}C
i=1 form a simplex ETF, µ⊤

k µ =
1+∑

i ̸=k µ
⊤
i µk = 1− C−1

C−1 = 0. Therefore, we have µ = 0, λk = 1, ∥µk∥ = 1
and KKT conditions are satisfied. Particularly, ∥µk∥ = 1 means that all
vectors are on the unit hypersphere and thus the solution is also optimal
for the original problem L1. The solution is optimal for Lsep as Jensen’s
inequality (C.6) becomes equality when {µi}C

i=1 form a simplex ETF. The
above analysis provides insights on why Lsep promotes inter-class sepa-
ration.
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Appendix D

Appendix for Delving into
Out-of-Distribution Detection
with Vision-Language
Representations

D.1 Theoretical Justification: Softmax Scaling
for Zero-Shot OOD Detection

In this section, we provide the proof for Theorem 5.2 in Section 5.3, which
states the benefits of applying softmax scaling to inner products for OOD
detection. We begin with a review of notations.

Notations. We denote the text encoder of a pre-trained CLIP-like model
as T : t → Rd and the image encoder I : x → Rd. For a given task
with label set Yin = {y1, y2, ..., yK}, we construct a collection of concept
vectors T (ti). For a given input x′, we denote the cosine similarity w.r.t.
concept vectors as si(x′) = I(x′)·T (ti)

∥I(x′)∥·∥T (ti)∥ ∀i ∈ [K], where |si(x′)| ≤ B for
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all x′ ∈ X .1. We define the maximum concept matching (MCM) score
as: SMCM(x′; Yin, T , I) = maxi∈[K]

esi(x′)/τ∑K

j=1 esj (x′)/τ . We denote the maximum

inner product without applying softmax scaling as Swo
MCM(x′; Yin, T , I) =

maxi∈[K] si(x′). By convention, the OOD detection functions are given by:

Gwo(x′; Yin, T , I) =

1 Swo
MCM(x′; Yin, T , I) ≥ λwo

0 Swo
MCM(x′; Yin, T , I) < λwo

,

G(x′; Yin, T , I) =

1 SMCM(x′; Yin, T , I) ≥ λ

0 SMCM(x′; Yin, T , I) < λ
,

Remarks: By convention, 1 represents the positive class (ID) and 0 in-
dicates OOD; λ and λwo are typically chosen such that the true positive
rate is at 95%.

For convenience, we paste the assumptions and the theorem in Sec-
tion 5.3 below,

Assumption D.1. Let z := 1{y ∈ Yin} and Qx denotes the out-of-distribution
Px|z=0 (marginal distribution of x conditioned on z = 0). Assume ∃ δ > 0 such
that

Qx

 1
K − 1

∑
i ̸=ŷ

[sŷ2(x) − si(x)] < δ

 = 1,

where ŷ := argmaxi∈[K]si(x) and ŷ2 := argmaxi ̸=ŷ,i∈[K]si(x) denote the indices
of the largest and second largest cosine similarities for an OOD input x.

Theorem D.2. Given a pre-trained CLIP-like model (T , I) and a task with label
set Yin = {y1, y2, ..., yK}. If Qx satisfy Assumption D.1, Then there exists a

1In practice, we observe that si ∈ [0.1, 0.3] for CLIP with high probability.
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constant T = λ(K−1)(λwo+δ−sŷ2)
Kλ−1 such that for any temperature τ > T , we have:

FPR(τ, λ) ≤ FPRwo(λwo),

where FPR(τ, λ) is the false positive rate based on softmax scaling with temper-
ature τ and threshold λ; FPRwo(λwo) is the false positive rate without softmax
scaling based on threshold λwo. This suggests that applying softmax scaling with
temperature results in superior OOD detection performance compared to without
softmax scaling.

Proof. By definition, we express the false positive rate FPR(τ, λ) as fol-
lows,

FPR(τ, λ) = P (G(x′; Yin, T , I) = 1 | z = 0)

= Qx′ (G(x′; Yin, T , I) = 1)

= Qx′ (pŷ (x′; τ) > λ)

= Qx′

(
esŷ(x′)/τ∑K

j=1 esj(x′)/τ
> λ

)

= Qx′

(
1
λ

>
K∑

i=1
exp

(
si(x′) − sŷ(x′)

τ

))

By inequality ex ≥ 1 + x, we have,

Qx′

(
1
λ

>
K∑

i=1
exp

(
si(x′) − sŷ(x′)

τ

))
≤ Qx′

(
1
λ

>
K∑

i=1

[
1 + si(x′) − sŷ(x′)

τ

])

This indicates

Qx′

(
1
λ

>
K∑

i=1
exp

(
si(x′) − sŷ(x′)

τ

))
≤ Qx′

(
1
λ

>
K∑

i=1

[
1 + si(x′) − sŷ(x′)

τ

])

= Qx′

(
K∑

i=1
(sŷ(x′) − si(x′)) >

(
K − 1

λ

)
τ

)
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Since

K∑
i=1

(sŷ(x′) − si(x′)) =
∑
i ̸=ŷ

(sŷ(x′) − sŷ2(x′) + sŷ2(x′) − si(x′))

=
∑
i ̸=ŷ

(sŷ(x′) − sŷ2(x′)) +
∑
i ̸=ŷ

(sŷ2(x′) − si(x′))

= (K − 1) (sŷ(x′) − sŷ2(x′)) +
∑
i ̸=ŷ

(sŷ2(x′) − si(x′))

By Assumption 5.1, we have

Qx′

(
K∑

i=1
(sŷ(x′) − si(x′)) < (K − 1) (sŷ(x′) − sŷ2(x′)) + (K − 1)δ

)
= 1.

Therefore,

Qx′

(
K∑

i=1
(sŷ(x′) − si(x′)) >

(
K − 1

λ

)
τ

)
≤ Qx′

(
sŷ(x′) − sŷ2(x′) > −δ2 +

(
K − 1

λ

)
τ

K − 1

)
= Qx′ (sŷ(x′) − sŷ2(x′) > −δ2 + λ′)

= Qx′ (sŷ(x′) > sŷ2(x′) − δ2 + λ′) ,

where λ′ =
(
K − 1

λ

)
τ

K−1 is a monotonic function of λ (i.e., minimizing
false positive rate w.r.t. λ is equivalent to minimizing w.r.t. λ′.)

For τ > 0, we can rewrite the MCM score as

SMCM(x′; Yin, T , I) = max
i∈[K]

esi(x′)/τ∑K
j=1 esj(x′)/τ

= esŷ(x′)/τ∑K
j=1 esj(x′)/τ

= 1
1 +∑K

j=1,j ̸=ŷ e(sj(x′)−sŷ(x′))/τ

As ŷ := argmaxi∈[K]si(x), sj(x′)−sŷ(x′) ≤ 0, SMCM(x′; Yin, T , I) is a mono-
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tonically decreasing function of τ , we have:

SMCM(x′; Yin, T , I) > lim
τ→∞

1
1 +∑K

j=1,j ̸=ŷ e(sj(x′)−sŷ(x′))/τ
= 1

K

Therefore by the definition of λ, we have λ > 1
K

, λ′ =
(
K − 1

λ

)
τ

K−1 > 0

For moderately large τ > T where T = λ(K−1)(λwo+δ−sŷ2)
Kλ−1 , we always

have sŷ2(x′) − δ + λ′ > λwo. Therefore, we obtain the following inequality,

FPR(τ, λ) ≤ Qx′ (sŷ(x′) > sŷ2(x′) − δ2 + λ′) ≤ Qx′ (sŷ(x′) > λwo) := FPRwo(λwo),

which means that the FPR without softmax scaling is larger than that with
softmax scaling and a moderately large temperature. We show in Sec-
tion 5.5 that the bound is indeed satisfied in practice with a large-scale ID
dataset.
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D.2 Experimental Details

D.2.1 Software and Hardware

All methods are implemented in Pytorch 1.10. We run all OOD detec-
tion experiments on NVIDIA GeForce RTX-2080Ti GPU and use NVIDIA
A100 GPU for fine-tuning CLIP and ViT.

D.2.2 Hyperparameters

The only hyperparameter in MCM is the (temperature) scaling factor τ .
We use τ = 1 by default unless otherwise specified. Our experiments
suggest that MCM is insensitive to the scaling factor, where τ in a wide
range of [0.5, 100] shares similar performance.

D.2.3 Datasets

ImageNet-10 We create ImageNet-10 that mimics the class distribution of
CIFAR-10 but with high-resolution images. It contains the following cat-
egories (with class ID): warplane (n04552348), sports car (n04285008),
brambling bird, (n01530575), Siamese cat (n02123597), antelope (n02422699),
Swiss mountain dog (n02107574), bull frog (n01641577), garbage truck
(n03417042), horse (n02389026), container ship (n03095699).

ImageNet-20 For hard OOD evaluation with realistic datasets, we cu-
rate ImageNet-20, which consists of 20 classes semantically similar to ImageNet-
10 (e.g., dog (ID) vs. wolf (OOD)). The categories are selected based on
the distance in the WordNet synsets (Miller, 1995). Specifically, it con-
tains the following categories: sailboat (n04147183), canoe (n02951358),
balloon (n02782093), tank (n04389033), missile (n03773504), bullet train
(n02917067), starfish (n02317335), spotted salamander (n01632458), com-
mon newt (n01630670), zebra (n01631663), frilled lizard (n02391049),
green lizard (n01693334), African crocodile (n01697457), Arctic fox (n02120079),
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timber wolf (n02114367), brown bear (n02132136), moped (n03785016),
steam locomotive (n04310018), space shuttle (n04266014), snowmobile
(n04252077).

We hope the above two datasets will help future research on large-
scale hard OOD detection. We provide a script for generating the datasets
at https://github.com/deeplearning-wisc/MCM.

ImageNet-100 We randomly sample 100 classes from ImageNet-1k to
curate ImageNet-100. To facilitate reproducibility, the script for generat-
ing the dataset and the class list are provided at https://github.com/
deeplearning-wisc/MCM.

Conventional (non-spurious) OOD datasets Huang et al. (Huang and
Li, 2021) curate a diverse collection of subsets from iNaturalist (Van Horn
et al., 2018), SUN (Xiao et al., 2010), Places (Zhou et al., 2017), and Tex-
ture (Cimpoi et al., 2014) as large-scale OOD datasets for ImageNet-1k,
where the classes of the test sets do not overlap with ImageNet-1k. We
provide a brief introduction to each dataset as follows.

iNaturalist contains images in the natural world (Van Horn et al.,
2018). It has 13 super-categories and 5,089 sub-categories covering plants,
insects, birds, mammals, and so on. We use the subset that contains 110
plant classes not overlapping with ImageNet-1k.

SUN stands for the Scene UNderstanding Dataset (Xiao et al., 2010).
SUN contains 899 categories that cover more than indoor, urban, and nat-
ural places with or without human beings appearing. We use the subset
which contains 50 natural objects not showing in ImageNet-1k.

Places is a large scene photographs dataset (Zhou et al., 2017). It con-
tains photos that are labeled with scene semantic categories from three
macro-classes: Indoor, Nature, and Urban. The subset we use is sampled
from 50 categories that are not present in ImageNet-1k.

Texture stands for the Describable Textures Dataset (Cimpoi et al.,

https://github.com/deeplearning-wisc/MCM
https://github.com/deeplearning-wisc/MCM
https://github.com/deeplearning-wisc/MCM
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2014). It contains images of textures and abstracted patterns. As no cate-
gories overlap with ImageNet-1k, we use the entire dataset as in (Huang
and Li, 2021).

D.2.4 Baselines and sources of model checkpoints

For the Mahalanobis score (Lee et al., 2018), we use the feature embed-
dings without l2 normalization as Gaussian distributions naturally do not
fit hyperspherical features. Alternatively, one can normalize the embed-
dings first and then apply the Mahalanobis score.

For Fort et al. (Fort et al., 2021) in Table 5.2, we fine-tune the whole
ViT model on the ID dataset. Specifically, we use the publicly available
checkpoints from Hugging Face where the ViT model is pre-trained on
ImageNet-21k and fine-tuned on ImageNet-1k.

For CLIP models, our reported results are based on checkpoints pro-
vided by Hugging Face for CLIP-B and CLIP-L. Similar results can be
obtained with checkpoints in the codebase by OpenAI https://github.
com/openai/CLIP. Note that for CLIP (RN50x4), which is not available in
Hugging Face, we use the checkpoint provided by OpenAI.

D.3 Spurious OOD Datasets
In general, spurious attributes refer to statistically informative features
that co-exist with the majority of ID samples but do not necessarily cap-
ture cues related to the labels such as color, texture, background, etc (Barbu
et al., 2019; Beery et al., 2018; Geirhos et al., 2019; Xiao et al., 2021; Zhu
et al., 2017). A recent work (Ming et al., 2022c) investigated a new type
of hard OOD samples (called spurious OOD) that contain spurious or
environmental features, but no object features related to the ID classes. A
concrete example is shown in Figure D.1, where images of birds co-occur
frequently with either the land background or water background. Mod-

https://github.com/openai/CLIP
https://github.com/openai/CLIP
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ern neural networks can spuriously rely on the image background (e.g.,
water or land) for classification instead of learning to recognize the actual
object (Ribeiro et al., 2016). Ming et al. (2022c) show that spurious OOD
samples remain challenging for most common OOD detection methods
based on pure vision models such as ResNet (He et al., 2016).

For ID dataset, we use Waterbirds (Sagawa et al., 2019), which com-
bines bird photographs from CUB-200 (Wah et al., 2011) with water or
land background images from Places (Zhou et al., 2017). For the spuri-
ous OOD dataset, we use the one created in Ming et al. (2022c) consisting
of land and water background from Places (Zhou et al., 2017).

Figure D.1: Illustration of spurious OOD samples for Waterbirds (Sagawa et al.,
2019). Images are taken from Ming et al. (2022c).

D.4 ID Classification Accuracy
Table D.1 shows the multi-class classification accuracy on ImageNet-1k
for methods in Table 5.2.
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Table D.1: ID classification accuracy on ImageNet-1k (%)

Method ID ACC

zero-shot
MCM (CLIP-B/16) 67.01
MCM (CLIP-L/14) 73.28

w. fine-tuning
MSP (CLIP-B/16) 79.39
MSP (CLIP-L/14) 84.12
Energy (Liu et al., 2020) (CLIP-B/16) 79.39
Energy (Liu et al., 2020) (CLIP-L/14) 84.12
Fort et al. (Fort et al., 2021) (ViT-B/16) 81.25
Fort et al. (Fort et al., 2021) (ViT-L/14) 84.05
MOS (Huang and Li, 2021) (BiT) 75.16

D.5 Implementation of CLIP-Based Baselines

D.5.1 Overview of Baselines

We review two previous works on CLIP-based OOD detection (Esmaeilpour
et al., 2022; Fort et al., 2021) in Figure D.2, which derive the scoring func-
tion based on candidate OOD labels. For a given task with ID label set
Yin = {y1, y2, ..., yK} and candidate labels YC = {yK+1, yK+2, ..., yK+L},
where ideally Yin ∩YC = ∅, they construct a collection of text embeddings
T (ti), i ∈ {1, 2, ..., K + L}. Here, ti is the text prompt “this is a photo
of a ⟨yi⟩” for a label yi. For any test input image x, we can calculate the
label-wise matching score based on the cosine similarity between the im-
age and text features: si(x) = I(x)·T (ti)

∥I(x′)∥·∥T (ti)∥ . Therefore, a detection score
can be derived as:

S(x; Yin, YC, T , I) =
K∑

i=1

esi(x)/τ∑K+L
j=1 esj(x)/τ

,

where τ > 0 is the temperature scaling hyperparameter.
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Figure D.2: Zero-shot OOD detection with candidate OOD labels. The ID classi-
fication task is defined by a set of class labels Yin. With an additional set of candi-
date labels YC that describes the contents of the input image, the OOD detection
scoring function can be calculated by normalizing over the expanded space of
cosine similarities.

Figure D.3: Improved pipeline to generate candidate OOD labels. It con-
sists of three main components: a caption generator, a syntactic parser,
and a filtering module to remove candidate labels that overlap with the
ID label set.

D.5.2 Obtaining OOD Candidate Labels

For the baseline methods, obtaining OOD candidate labels is a major chal-
lenge and limitation. Recently, (Esmaeilpour et al., 2022) propose ZO-
CLIP, where a transformer (decoder) based on the image encoder of CLIP
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is used to generate candidate labels. The transformer is trained from
scratch on the COCO dataset (Lin et al., 2014) with simple teacher forc-
ing algorithms. Although the decoder trained on COCO may work well
on CIFAR (ID), it does not scale up to large-scale datasets such as Ima-
geNet (Deng et al., 2009) where categories are not covered in COCO. As
a result, (Esmaeilpour et al., 2022) only test on small-scale datasets with
common classes such as CIFAR (ID).

We improve the baseline by using a high-quality caption generator
pre-trained on much larger datasets, which not only saves computational
overhead but can potentially improve the quality of generated labels. The
pipeline involves three components (see Figure D.3):

• A caption generator. Given an input image, it generates a caption
serving as the textual description of the input. In this work, we con-
sider ClipCap (Mokady et al., 2021), which uses GPT-2 (Radford
et al., 2019) to generate captions based on CLIP’s image encoder.
ClipCap is pre-trained on a much larger dataset Conceptual Cap-
tions (Ng et al., 2020) compared to COCO, which can be viewed as
an enhanced version of the ZO-CLIP baseline (Esmaeilpour et al.,
2022). The checkpoints are publicly available2.

• A syntactic parser. Given a caption, we extract noun objects using
a parsing toolkit released by spaCy 3. Those nouns can be used as
candidate labels YC of the input image.

• A filter module. Unlike (Esmaeilpour et al., 2022), we further en-
hance the baseline by adopting a filtering technique to remove over-
lapping categories in YC with ID labels Yin, which we detail below.

2https://github.com/rmokady/CLIP_prefix_caption
3https://spacy.io/models/en

https://github.com/rmokady/CLIP_prefix_caption
https://spacy.io/models/en
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D.5.3 Label Filtering

Example. To illustrate the effects of filtering, we begin with a concrete
example where ID labels are [“frog”,“bird”. . . “truck”], as shown in Fig-
ure D.3. The generated labels (without filtering) of an ID input of a bird
sitting on a tree are [“bird”, “tree”]. Therefore, Yin∪YC =[“frog”,“bird”. . .

“truck”,“bird”, “tree”]. Ideally, the softmax probability distribution over
the concatenated labels would be [0, 0.5, 0, . . . , 0.5, 0] and by definition
S(x) ≈ 0.5. However, if we filter the generated labels to eliminate nouns
with similar meanings as ID, our concatenated labels would be [“frog”,“bird”. . .

“truck”,“tree”] and the probability vector would be [0, 1, 0, . . . , 0], which
leads to a much higher score S(x) = 1. In contrast, the generated labels
for an OOD input with a caption “man in the desert” would be [“man”,
“desert”]. The resulting probability vector would be [0, 0, 0, . . . , 1, 0] and
the score S(x) = 0. Therefore, filtering makes it easier to separate ID
inputs from OOD inputs (c.f. Figure D.4).

String-based filtering. To implement the idea of filtering, we need a
measurement of the similarity between the generated labels and ID la-
bels. The simplest way is string-based filtering where a generated label
is filtered if it matches any ID labels (in the string format), as in the case
above.

D.6 Alternative Scoring Functions
We explore the effectiveness of several alternative scoring functions:

• Entropy: the (negative) entropy of softmax scaled cosine similari-
ties denoted as Sentropy;

• Var: the variance of the cosine similarities denoted as Svar;
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ClipCap  (w.o. filter) ClipCap  (w. filter)

OOD
ID

Figure D.4: Score distributions for ImageNet-10 (ID) and iNaturalist
(OOD) inputs. Simple string-based filtering alleviates the overlap be-
tween OOD inputs and ID inputs especially with scores around 0.5 (yel-
low rectangle), resulting in better ID-OOD separability.

• Scaled: the scaled difference between the largest and second-largest
cosine similarities Sscaled := esŷ(x)−sŷ2 (x) where ŷ := argmaxi∈[K]si(x)
and ŷ2 := argmaxi ̸=ŷ,i∈[K]si(x).

As shown in Table D.2, MCM still gives the most promising results
compared to the other three alternative scores across most OOD test sets.

Table D.2: Comparison with other scaling functions (applied to inner
products) on the large-scale benchmark ImageNet-1k (ID). We use CLIP-
B/16 as the backbone.

Method
OOD Dataset AverageiNaturalist SUN Places Texture

FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑

Entropy 84.44 63.50 93.79 62.54 94.10 64.15 97.16 58.98 92.37 62.29
Var 87.42 63.87 68.71 81.02 76.28 75.38 80.04 71.90 78.11 73.04
Scaled 89.06 72.26 89.06 70.81 89.08 69.66 89.56 68.17 89.19 70.22
MCM 30.91 94.61 37.59 92.57 44.69 89.77 57.77 86.11 42.74 90.77
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Appendix E

Appendix for How Does
Fine-Tuning Impact
Out-of-Distribution Detection for
Vision-Language Models

E.1 Dataset Details
Details on ID and OOD dataset construction For ID datasets, we follow
the same construction as in previous works (Zhang et al., 2022b; Zhou
et al., 2022b,c). Detailed instructions on dataset installation can be found
in https://github.com/KaiyangZhou/CoOp/blob/main/DATASETS.md. For
OOD datasets, Huang and Li (2021) curate a collection of subsets from
iNaturalist Van Horn et al. (2018), SUN Xiao et al. (2010), Places Zhou
et al. (2017), and Texture Cimpoi et al. (2014) as large-scale OOD datasets
for ImageNet-1k, where the classes of the test sets do not overlap with
ImageNet-1k. Detailed instructions can be found in https://github.
com/deeplearning-wisc/large_scale_ood.

https://github.com/KaiyangZhou/CoOp/blob/main/DATASETS.md
https://github.com/deeplearning-wisc/large_scale_ood
https://github.com/deeplearning-wisc/large_scale_ood
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E.2 Additional Results

E.2.1 ID accuracy

While we primarily focus on the OOD detection performance of CLIP-
based fine-tuning methods, we present the results of the ID accuracy for
each dataset based on CLIP-B/16 in Table E.1 for completeness. Further
results on the ID accuracy with various datasets and architectures can be
seen in Zhou et al. (2022b), Zhou et al. (2022c), and Zhang et al. (2022b).

Table E.1: ID accuracy on the downstream datasets for CLIP-based fine-
tuning methods with CLIP-B/16.

ID Dataset Method ID Acc

Caltech-101

ZOCLIP 92.90
TipAdaptor 95.01
TipAdaptorF 95.66
CoOp 95.30
CoCoOp 95.00

Food-101

ZOCLIP 86.10
TipAdaptor 86.49
TipAdaptorF 87.43
CoOp 85.50
CoCoOp 87.30

Stanford-Cars

ZOCLIP 65.27
TipAdaptor 75.29
TipAdaptorF 83.40
CoOp 78.50
CoCoOp 72.30

Oxford-Pets

ZOCLIP 89.10
TipAdaptor 91.85
TipAdaptorF 92.91
CoOp 93.40
CoCoOp 93.30

ImageNet-1k

ZOCLIP 68.77
TipAdaptor 70.26
TipAdaptorF 73.70
CoOp 71.63
CoCoOp 71.20
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E.2.2 OOD detection performance based on visual
features alone

In this section, we explore several commonly used OOD detection scores
solely based on the visual branch of CLIP models. Specifically, we con-
sider the Mahalanobis score (Lee et al., 2018) on the penultimate layer of
the visual encoder and MSP (Hendrycks and Gimpel, 2017), Energy (Liu
et al., 2020), and KL Matching (Hendrycks et al., 2022) scores on the logit
layer after linear probing the visual encoder. The results are summa-
rized in Table E.2, based on 16-shot Caltech-101 (ID). We can see that
the Mahalanobis score does not yield promising performance because 1)
the feature embeddings from the visual encoder of CLIP may not follow
class-conditional Gaussian distributions, 2) it is challenging to estimate
the mean and especially covariance matrix when the number of samples
is much smaller than the feature dimension in the few-shot setting. On the
other hand, the OOD scores based on fine-tuned logit layer result in worse
performance compared to the MCM score. One major reason is that fine-
tuning CLIP in the few-shot setting is prone to overfitting the downstream
ID dataset, making the model less reliable. This further highlights the im-
portance of choosing OOD detection scores fitted to parameter-efficient
fine-tuning methods.

E.2.3 Additional results on ImageNet-1k

In this section, we consider two additional OOD test sets ImageNet-O (Hendrycks
et al., 2021) and OpenImage-O (Wang et al., 2022b) for ImageNet-1k (ID).
OpenImage-O is a subset curated from the test set of OpenImage-V3 (Krasin
et al., 2017) containing a diverse set of categories. ImageNet-O is a chal-
lenging OOD dataset that contains naturally adversarial examples for ImageNet-
1k. The results are shown in Table E.3. The model (CLIP-B/16) is trained
with CoOp. We can see that: 1) The performance on ImageNet-O is gen-
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Table E.2: Additional results for OOD scores based on visual encoder
only. ID dataset is Caltech-101 (16 shot).

OOD Score OOD Dataset FPR95↓ AUROC↑

Maha

SUN 34.15 95.20
Places 20.50 96.21
Textures 64.10 92.43
iNaturalist 66.62 92.97
AVG 46.34 94.20

Energy

SUN 15.02 97.05
Places 21.10 95.75
Textures 15.60 97.00
iNaturalist 33.77 95.49
AVG 21.37 96.32

KL Matching

SUN 4.56 98.21
Places 8.92 97.52
Textures 42.64 94.47
iNaturalist 9.70 97.35
AVG 16.46 96.89

MSP

SUN 16.23 96.59
Places 20.98 95.97
Textures 7.15 98.33
iNaturalist 11.79 97.31
AVG 14.04 97.05

erally worse than the rest of OOD test sets (iNaturalist, Textures, SUN,
Places) in Section 6.5.3, suggesting that this task remains challenging in
the context of few-shot prompt learning. 2) MCM score still performs the
best compared to MS and MSP on both OOD test sets, consistent with
our previous observations, which further highlights the importance of
softmax and temperature scaling for OOD detection with fine-tuning.

Table E.3: OOD detection performance on two OOD additional test sets
for ImageNet-1k (ID). We train CLIP-B/16 with CoOp.

OOD Dataset OOD Score FPR95↓ AUROC↑

ImageNet-O
SMSP 77.20 74.01
SMS 70.75 82.30

SMCM 61.50 84.13

OpenImage-O
SMSP 56.89 83.73
SMS 39.18 91.48

SMCM 36.68 92.76
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E.2.4 Alternative OOD scores

In this section, we investigate the performance with several alternative
OOD scoring functions based on the cosine similarities of input x with
the k-th label sk(x), k ∈ {1, 2, ..., K} (defined in Section 6.4.2). Specifi-
cally, we consider the energy and the KL matching score for each adapta-
tion method and summarize the results based on Caltech-101 (ID) in Ta-
ble E.5. We observe that 1) using the energy score, all adaptation methods
significantly enhance the performance over the zero-shot baseline (ZO-
CLIP). 2) the general performance vastly improves when utilizing the
KL Matching score. However, even the highest achieved performance
(FPR95 at 7.91 with CoCoOp) falls short when compared to the MCM
score (FPR95 at 5.02 with CoCoOp).

Table E.4: OOD detection performance based on SMSP score. The average
performance for most adaptation methods is much worse than using SMS
(Table 6.1) and SMCM (Table 6.3).

ID Dataset Method SUN Places Textures iNaturalist Average
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

Food-101

ZOCLIP 11.48 97.76 13.11 97.48 15.04 96.08 16.65 96.73 14.07 97.01
TipAdaptor 7.32 98.51 9.03 98.31 11.88 96.94 14.47 97.21 10.68 97.74
TipAdaptorF 15.08 97.26 15.38 97.24 17.57 95.99 20.95 96.18 17.25 96.67
CoOp 19.66 96.20 21.15 95.95 28.33 93.62 23.80 95.51 23.23 95.32
CoCoOp 8.67 98.28 10.56 98.03 14.77 96.23 14.33 97.26 12.08 97.45

Oxford-Pets

ZOCLIP 24.67 94.72 28.54 93.71 19.01 96.42 39.77 93.01 28.00 94.47
TipAdaptor 15.66 97.11 18.83 96.45 12.50 97.92 25.19 95.90 18.04 96.84
TipAdaptorF 16.79 96.77 20.33 96.04 12.22 97.90 26.62 95.80 18.99 96.63
CoOp 8.46 98.50 10.75 98.13 11.21 98.09 32.13 94.08 15.64 97.20
CoCoOp 9.06 98.31 10.43 98.13 7.39 98.70 27.97 95.11 13.71 97.56

Stanford-Cars

ZOCLIP 6.99 98.49 10.33 97.68 8.24 98.39 32.85 92.56 14.60 96.78
TipAdaptor 1.94 99.58 3.30 99.31 1.97 99.56 12.52 97.80 4.93 99.06
TipAdaptorF 15.39 97.19 14.01 97.32 8.39 98.49 21.88 95.90 14.92 97.22
CoOp 9.88 98.05 14.07 97.12 10.71 97.71 36.73 91.51 17.85 96.10
CoCoOp 9.99 97.81 11.87 97.15 10.46 97.69 31.58 92.59 15.97 96.31

Caltech-101

ZOCLIP 16.17 96.47 22.45 94.96 17.89 96.33 15.01 96.96 17.88 96.18
TipAdaptor 12.98 97.40 17.79 96.77 13.74 97.72 20.08 96.65 16.15 97.13
TipAdaptorF 17.94 96.68 22.92 95.74 15.16 97.40 24.18 96.01 20.05 96.46
CoOp 24.07 96.11 29.91 94.59 26.29 95.72 26.35 95.92 26.66 95.58
CoCoOp 14.92 97.32 20.67 95.91 19.20 96.56 21.74 96.33 19.13 96.53
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Table E.5: Comparison with additional OOD scores on Caltech-101 (ID).
SKL stands for the KL matching score (Hendrycks et al., 2022) and SEnergy
denotes the energy score (Liu et al., 2020).

OOD Score Method SUN Places Textures iNaturalist Average
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

SMS

ZOCLIP 32.03 94.06 33.01 93.39 54.66 89.29 32.14 94.30 37.96 92.76
TipAdaptor 9.69 98.07 11.25 97.84 20.90 96.68 13.62 97.72 13.86 97.58
TipAdaptorF 10.20 97.76 11.60 97.42 23.32 95.54 14.01 97.36 14.78 97.02
CoOp 5.53 98.56 9.88 97.50 13.10 97.10 4.89 98.76 8.35 97.98
CoCoOp 2.86 99.19 6.42 98.37 8.81 98.09 5.68 98.68 5.94 98.58

SMCM

ZOCLIP 14.83 97.20 20.45 96.00 14.98 97.35 10.84 97.76 15.28 97.08
TipAdaptor 5.12 98.83 8.05 98.34 4.65 99.05 6.94 98.77 6.19 98.75
TipAdaptorF 4.83 98.79 8.09 98.07 6.41 98.11 4.94 98.98 6.07 98.49
CoOp 3.62 99.01 8.15 97.89 6.29 98.62 7.57 98.35 6.41 98.47
CoCoOp 4.26 98.94 6.76 98.00 4.33 98.88 4.71 98.68 5.02 98.62

SEnergy

ZOCLIP 53.83 90.22 50.51 90.21 74.10 83.20 56.00 90.13 58.61 88.44
TipAdaptor 11.71 97.72 12.20 97.61 30.48 95.73 16.42 97.30 17.70 97.09
TipAdaptorF 11.57 97.46 11.89 97.30 29.38 94.70 16.18 96.90 17.26 96.59
CoOp 6.58 98.29 11.16 97.20 18.19 96.32 5.92 98.53 10.46 97.59
CoCoOp 5.22 98.87 8.80 98.13 17.30 96.87 11.28 97.95 10.65 97.95

SKL

ZOCLIP 5.51 97.57 9.48 96.61 7.41 97.64 11.43 96.22 14.02 97.31
TipAdaptor 5.54 97.63 7.69 97.13 5.74 97.96 8.00 97.37 6.74 97.52
TipAdaptorF 8.52 96.89 13.00 95.92 7.02 98.02 10.71 97.11 9.81 96.98
CoOp 7.15 98.06 12.37 96.60 8.74 97.62 9.33 98.00 9.40 97.57
CoCoOp 4.07 98.95 9.61 97.59 5.30 98.77 12.67 97.57 7.91 98.22
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Appendix F

Appendix for Understanding
Retrieval-Augmented Task
Adaptation for Vision-Language
Models

F.1 Experimental Details
Hardware and software. We run all experiments on NVIDIA GeForce
RTX-A6000 GPU. To retrieve samples from the LAION5B database, we
build a semantics-based retrieval system with clip-retrieval (https://
github.com/rom1504/clip-retrieval) for fast T2I and I2I retrieval based
on textual and visual embeddings of pre-trained CLIP. Our implementa-
tion is based on PyTorch 1.12.
Retrieval dataset. We adopt LAION5B as the database for retrieval for
three main reasons: (1) Scale: in contrast to prior works that use smaller-
scale datasets such as WebVision Li et al. (2017b), Conceptual Captions Sharma
et al. (2018), and ImageNet-21k Ridnik et al. (2021), LAION5B is a web-
scale open-source dataset that contains 5,85 billion CLIP-filtered image-

https://github.com/rom1504/clip-retrieval
https://github.com/rom1504/clip-retrieval
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text pairs covering a wide range of concepts in the real world. The diverse
concept coverage makes it a reliable source for retrieval Udandarao et al.
(2023). (2) Multi-modal retrieval: one major advantage of LAION is that
it computes the textual and visual embeddings of the text-image pairs
based on pre-trained CLIP. This provides the foundation for us to conduct
a systematic study on both T2I and I2I retrieval. (3) Retrieval efficiency:
the development of distributed inference tools such as clip-retrieval
enable fast index building and efficient retrieval from LAION5B based
on approximate KNN search. Such community support for LAION5B
makes retrieval more practical compared to alternatives.
Prompts for T2I retrieval. In this work, we use dataset-specific prompts
in T2I retrieval to mitigate semantic ambiguity. For example, for Bird200 (Wah
et al., 2011), the prompt for T2I retrieval is A photo of a <CLS>, a type
of bird. The prompts for other datasets can be seen in Table F.1. In a re-
cent work (Udandarao et al., 2023), language model-based prompts are
used for retrieval. However, external knowledge encoded in pre-trained
language models can introduce additional biases especially when the tar-
get dataset contains characteristics not captured by the class names. As a
result, we observed similar issues as in Figure 7.3 when using language
model-based prompts in our initial experiments.

Dataset Prompt
Caltech101 (Fei-Fei et al., 2004) A photo of a <CLS>
Birds200 (Wah et al., 2011) A photo of a <CLS>, a type of bird
Food101 (Bossard et al., 2014) A photo of <CLS>, a type of food
OxfordPets (Parkhi et al., 2012) A photo of a <CLS> pet
Flowers102 Nilsback and Zisserman (2008) A photo of a <CLS> flower
Textures Cimpoi et al. (2014) A photo of <CLS> texture
UCF101 Soomro et al. (2012) A photo of <CLS> in action

Table F.1: Default prompts for T2I retrieval. In this work, we use dataset-
specific prompts to mitigate semantic ambiguity.

Fine-tuning details. As our work focuses on the impact of retrieval, we
adopt the fine-tuning scheme in Zhang et al. (2022b) for training-based
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adaptation, where we set features in the retrieval cache as learnable. For
each target dataset, the train, validation, and test split also follow (Zhang
et al., 2022b). Specifically, we use AdamW Loshchilov and Hutter (2019)
as the optimizer with a cosine scheduler. The initial learning rate is set as
0.001 and we finetune for 20 epochs. The hyperparameters such as α, ω, γ

are determined based on the validation split of each target dataset.

F.2 A Closer Look at Logit Ensemble via
Classwise Performance

In Section 7.3.3, we have shown that logit ensemble is essential to CLIP-
based adaptive inference with the few-shot cache obtained by retrieval.
In this section, we take a finer-grained view by examining the change of
accuracy for each class before and after logit ensemble. For better visu-
alization, we use Textures Cimpoi et al. (2014), a dataset with 47 classes.
The results are shown in Figure F.1, where green indicates an increase in
accuracy while orange denotes a decrease in accuracy. The result for RET
vs. ZOCLIP (i.e., before ensemble) is shown in Figure F.1a and Ensem-
ble vs. ZOCLIP is shown in Figure F.1b. We can clearly observe that (1)
before ensemble, RET is inferior to ZOCLIP for multiple classes such as
blotchy and freckled, and pleated, as a result of retrieval ambiguity. (2)
Logit ensemble significantly mitigates such issue and results in an over-
all larger proportion of green bars compared to orange bars, as shown in
Figure F.1b.

F.3 Qualitative Analysis of Retrieved Samples
In Section 7.3.2, we examined the retrieved samples from I2I and T2I re-
trieval to identify the main sources of errors. Here, we present additional
retrieved samples for diverse datasets. The results are depicted in Fig-
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(a) RET over ZOCLIP (average improvement in accuracy: 3.1%)
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(b) Ensemble over ZOCLIP (average improvement in accuracy: 12.5%)

Figure F.1: Change of classwise accuracy before and after logit ensemble.
For better visualization, the results are based on Textures Cimpoi et al.
(2014), a dataset with 47 classes. We use I2I retrieval to obtain the few-
shot feature cache. We plot the change of accuracy over ZOCLIP for each
class before (top row) and after logit ensemble (bottom row). Blue bars
indicate an increase in accuracy while orange denotes a decrease in accu-
racy. (a) Comparison of RET versus ZOCLIP. On average, RET achieves
a 3.1% improvement in accuracy compared to ZOCLIP. (b) Comparison
of Ensemble versus ZOCLIP. On average, Ensemble achieves a 12.5% im-
provement in accuracy compared to ZOCLIP. This further highlights the
importance of logit ensemble for retrieval-augmented adaptation.

ure F.2, where we contrast samples from T2I retrieval (top row), I2I re-
trieval (middle row), and the downstream dataset (bottom row). We
have two salient observations: (1) As discussed in Section 7.3.2, T2I re-
trieval often yields a diverse set of images that match the class seman-
tics. However, this diversity may not always be beneficial for adapting to
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the target dataset, especially in the few-shot retrieval setting where one
is under a limited budget. For example, using the query a photo of a
lobster, we may not retrieve images of cooked lobsters that often appear
in the target dataset. (2) Since T2I retrieval utilizes the class name in the
query, it occasionally retrieves images with text on them, rather than im-
ages of the actual object. For instance, we retrieve images that feature
the text “summer tanager” or “dandelion” (as seen in the 4th and 3rd
columns of Figures F.2 and 7.3, respectively). This occurs because the
cosine similarity between pairs of (class name, image of the actual
object) and (class name, image with the text <class name>) is sim-
ilar, based on pre-trained CLIP models. This highlights a prevalent chal-
lenge in web-scale cross-modal retrieval systems, such as LAION5B. Con-
versely, this type of misalignment is rarely encountered in I2I retrieval.
Therefore, samples from T2I retrieval can introduce undesirable inductive
biases, resulting in limited performance gains over the zero-shot model.

Figure F.2: More samples from T2I and I2I retrieval. Top row: the main
source of noise for T2I retrieval is semantic ambiguity, as the textual
queries (e.g., striped texture) may not accurately describe the images
from target distributions (bottom row). Middle row: samples retrieved
by I2I matches more closely with ID data. Bottom row: images sampled
from the target (ID) distribution.
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F.4 Theoretical Understanding
In this section, we provide details on the problem setup, introduce rele-
vant definitions and lemmas, and provide the complete proof for our the-
oretical results discussed in Section 4.6. Common notations can be seen
in Table F.2.

Notation Description
[C] The set {1, 2, . . . , C}

1[condition] Indicator function, equals 1 if the condition is true, 0 otherwise
T T : t → Rd is the text encoder of CLIP
I I : x → Rd is the image encoder of CLIP

Table F.2: Common notations.

F.4.1 Problem Setup

We consider a pre-trained CLIP model (Radford et al., 2021) with one
text encoder T : t → Rd and one image encoder I : x → Rd. We use T =
[t1, . . . , tC ] ∈ Rd×C to denote the text embedding matrix for all classes,
where tc := T (tc) ∈ Rd and tc is a generic textual description of class c

such as “a photo of <CLASS c>”. For theoretical analysis, we consider
training-free adaptation based on retrieved samples. We use the terms
“downstream” and “target” dataset interchangeably which refer to the
dataset a pre-trained CLIP model is adapted to.
Building feature cache by retrieval. Given a downstream dataset with
C classes: Y = {1, 2, ..., C} and a retrieval budget size of KC, we can
retrieve K samples per class to build a cache of size KC. Recall that K =
[k1,1, k1,2 . . . , kC,K ] ∈ Rd×CK denotes the embedding matrix for retrieved
images, where kc,i := I(xc,i) ∈ Rd. For notational simplicity, we assume
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text and image features are ℓ2 normalized Radford et al. (2021). In other
words, we have ∥z∥2 = ∥tc∥2 = 1 for any z = I(x) and tc = T (tc).

Let K̃ = KV⊤

K
= [k̃1, k̃2, . . . , k̃C ] ∈ Rd×C contain the average retrieved

feature for each class. V ∈ RC×CK is a sparse matrix containing the
one-hot labels for retrieved samples with entries Vi,j = 1{i = j̃} for
i ∈ [C], j ∈ [CK], where j̃ :=

⌈
j
K

⌉
Zhang et al. (2022b). For example,

when K = 2, C = 3, we have:

V =


1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

 .

We define K̄ := [k̄1, k̄2, . . . , k̄C ] as the normalized version where k̄i =
k̃i

∥k̃i∥2
, which will be used in the rest of the section. Note that here the

notations are slightly different from Section 7.4.1 and are more rigorous.
Task adaptation with retrieved cache. At inference time, let (x, y) ∼ DT

be a test sample from the target distribution DT with label y ∈ [C] and its
visual feature z := I(x). In some cases, beyond retrieved samples, one
also has access to a cache consisting of few-shot training samples from
the target distribution. For theoretical analysis, we consider one-shot and
denote the feature cache as S := [s1, . . . , sC ] ∈ Rd×C . The final logit for
the test sample can be represented as a weighted sum (ensemble) of logits
from the zero-shot CLIP and the feature cache from retrieved and training
samples1:

f(x) = (αT + βS + γK̄)⊤z,

where 0 ≤ α, β, γ ≤ 1. Without loss of generality, we assume α+β+γ = 1.
In particular, the zero-shot logit fZOC(x) := T⊤z and the retrieval logit
1For theoretical analysis, we omit the exponential scaling function to better focus on

the effects of ensembling.
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fRET(x) := K̄⊤z. In the main paper, we mainly focus on β = 0 (i.e., one
only has access to retrieved samples). We denote the corresponding en-
semble logit as fEN(x) = (αT + γK̄)⊤z.
Evaluation metric. Given a loss function ℓ(v, y) such as the cross-entropy:

ℓ(v, y) = − log exp(vy)∑
i∈[C] exp(vi)

,

the population risk on the target distribution is:

L(f) =E(x,y)∼DT
[ℓ(f(x), y)].

To simplify notations, we denote the risk as R(Q) := E
[
ℓ(Q⊤z, y)

]
for

some Q ∈ Rd×C . For example, the risk of logit ensemble is R(αT + γK̄).
We also have the error risk R0−1 defined as:

R0−1(f) = 1 − E(x,y)∼DT

[
1{arg max

i∈[C]
f(x)i = y}

]
.

F.4.2 Definitions and Assumptions

Before presenting the main theoretical results, we first introduce the fol-
lowing definitions and assumptions to formalize the retrieval augmented
adaptation process based on pre-trained CLIP models.

For class i ∈ [C], we define s̃i := E(x,y)∼DT
[I(x)|y = i], which is the

image representation of class i based on the downstream distribution and
s̄i = s̃i

∥s̃i∥2
the ℓ2 normalized version2. Let S̄ := [s̄1, s̄2, . . . , s̄C ].

Definition F.1 (Inner-class concentration and inter-class separation). We
define the inter-class feature separation as ν := 1 − maxi ̸=j s̄⊤

i s̄j . We use ρc to
2For any two non-zero vectors v1, v2 with unit norms, we have ∥v1 − v2∥2 =√

2 − 2v⊤
1 v2.
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denote the inner-class feature concentration:

ρc := max
i∈[C]

Pr (∥I(x) − s̄i∥2 ≥ κ|y = i)

for some positive constant κ.

Definition F.2. Let Z̄ = [z̄1, . . . , z̄C ] ∈ Rd×C . We define the optimal represen-
tations as

Z̄∗ = argmin
Z̄∈Rd×C ;∀i∈[C],∥z̄i∥=1

E[ℓ(Z̄∗⊤z, y)].

Definition F.3 (Modality gap). We define the modality gap between the pre-
trained text distribution and the target distribution (in the visual modality) as
τ := maxi ̸=j(tj − ti)⊤s̄i, where i, j ∈ [C].

Definition F.4 (Retrieval distribution shift). We denote the retrieval distri-
bution based on the (text or image) query (denote tc or sc as qc) from class c

as DR|qc . k̃qc := Ex∼DR|qc
[I(x)] is the average retrieved feature from class c.

k̄qc := k̃qc

∥k̃qc ∥2
denotes the normalized version. We define the distributional shift

between target data and T2I and I2I retrieval data for class c as ξT2I
c := 1 − k̄⊤

tc
s̄c

and ξI2I
c := 1 − k̄⊤

sc
s̄c. Let, ξt := maxc∈[C] ξT2I

c and ξs := maxc∈[C] ξI2I
c .

Remarks: Note that k̃qc is the expected version, while k̃c (defined in Ap-
pendix F.4.1) is the empirical mean of retrieved samples for class c ∈ [C].

At inference time, for a test sample (x, y) ∼ DT with image feature
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z = I(x), one of the following four events can happen:

E1 :={(x, y) ∼ DT : y ̸= arg max
i∈[C]

t⊤
i z and y ̸= arg max

i∈[C]
k̄⊤

i z}

E2 :={(x, y) ∼ DT : y = arg max
i∈[C]

t⊤
i z and y ̸= arg max

i∈[C]
k̄⊤

i z}

E3 :={(x, y) ∼ DT : y ̸= arg max
i∈[C]

t⊤
i z and y = arg max

i∈[C]
k̄⊤

i z}

E4 :={(x, y) ∼ DT : y = arg max
i∈[C]

t⊤
i z and y = arg max

i∈[C]
k̄⊤

i z}.

We can see that R0−1(fZOC) = Pr(E1) + Pr(E3) and R0−1(fRET) =
Pr(E1) + Pr(E2). Next, we formalize the intuitions in Figure 7.3 as the
following definition:

Definition F.5 (Knowledge encoded in different modalities). For a vector
v ∈ RC and a scalar i ∈ [C], We define ϕ(v, i, z) := {j|vi − vj ≤ z}. Consider
(x, y) ∼ DT and z = I(x). We define the conditional probability ρd(z) as

ρd(z) = Pr
(
ϕ(T⊤z, y, z) ∩ ϕ(K̄⊤z, y, z) ̸= {y}

∣∣∣E2 or E3
)

.

Remarks: ϕ(v, i, z) identifies elements in vector v that are within a thresh-
old z of the i-th element of v. ρd(z) represents the likelihood that, given
events E2 or E3, the transformed data z is associated with an incorrect
class by both T and K̄. In practical scenarios, ρd(z) is typically small.
This is because different modalities usually represent knowledge in dis-
tinct ways and, as a result, have different patterns of confusion or error.

Assumption F.6 (Sample representativeness). We assume that the sample
for each class is relatively representative, i.e., ∀i ∈ [C], ∥si − s̄i∥2 ≤ κ for some
constant κ.

Assumption F.7 (Retrieved data distribution). We assume that for each class
the distribution of retrieved samples is composed of clusters, which exhibit ν sep-
aration and κ concentration as defined in Definition F.1. We assume that the
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retrieval process for a query sample is uniformly sampling from its closest re-
trieval cluster.
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F.4.3 Main Results and Analysis

Lemma F.8. We can upper bound the risk R(S̄) as follows:

R(S̄) ≤ (1 − ρc) log (1 + (C − 1) exp (2κ − ν)) + ρc log (1 + (C − 1) exp (2))

where ρc, κ, ν defined in Definition F.1 characterize the inner-class concentration
and inter-class separation.

Proof. For a test sample (x, y) ∼ DT with z = I(x). Let z = v + s̄y. By the
definition of inner-class feature concentration, we have Pr (∥v∥2 ≥ κ) ≤
ρc. Thus, we have

R(S̄) =E
[
ℓ(S̄⊤z, y)

]
(F.1)

=E

− log
exp

(
s̄⊤

y z
)

∑
i∈[C] exp

(
s̄⊤

i z
)
 (F.2)

=E

log
1 +

∑
i ̸=y

exp
(
s̄⊤

i z − s̄⊤
y z
) (F.3)

=E

log
1 +

∑
i ̸=y

exp
(
s̄⊤

i (v + s̄y) − s̄⊤
y (v + s̄y)

) (F.4)

≤(1 − ρc)E
log

1 +
∑
i ̸=y

exp
(
s̄⊤

i v + 1 − ν − s̄⊤
y v − 1

)∣∣∣∣∣∣∥v∥2 ≤ κ


(F.5)

+ ρcE

log
1 +

∑
i ̸=y

exp (2)
∣∣∣∣∣∣∥v∥2 ≥ κ

 (F.6)

≤(1 − ρc)E
log

1 +
∑
i ̸=y

exp (2∥v∥2 − ν)
∣∣∣∣∣∣∥v∥2 ≤ κ

 (F.7)

+ ρc log (1 + (C − 1) exp (2)) (F.8)

≤(1 − ρc) log (1 + (C − 1) exp (2κ − ν)) + ρc log (1 + (C − 1) exp (2)) .

(F.9)
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Remarks: Lemma F.8 is a tight upper bound. We give a simple toy exam-
ple here for illustration: consider binary classification on two data points
(x1, y1) and (x2, y2). Suppose z1 = I(x1) = −z2 = −I(x2), we can see that
R(S̄) = R(Z̄∗) = log (1 + exp (−2)), where C = 2, ρc = κ = 0, ν = 2.

Lemma F.9. For a test sample (x, y) ∼ DT and its image feature z = I(x), with
probability at least 1 − ρc, we have

max
i ̸=y

s⊤
i z − s⊤

y z ≤ 4κ − ν.

Proof of Lemma F.9. Let z = v + s̄y. By Definition F.1 and Assumption F.6,
we have Pr (∥v∥2 ≥ κ) ≤ ρc. Thus, we have with probability at least 1 − ρc

such that

max
i ̸=y

s⊤
i z − s⊤

y z = max
i ̸=y

(si − s̄i + s̄i)⊤ (v + s̄y) − (sy − s̄y + s̄y)⊤ (v + s̄y)

(F.10)

= max
i ̸=y

s⊤
i v + (si − s̄i)⊤ s̄y + s̄⊤

i s̄y (F.11)

− s⊤
y v − (sy − s̄y)⊤ s̄y − s̄⊤

y s̄y (F.12)

≤ max
i ̸=y

κ + κ + 1 − ν + κ + κ − 1 (F.13)

=4κ − ν. (F.14)

Remarks: From the above lemma, we can see that if 4κ < ν, the accuracy
of fRET(·) is at least 1 − ρc.

Lemma F.10 (Retrieval distribution shift bound). Under Assumption F.6
and Assumption F.7 and suppose that si is in the support of DR, we have ξs ≤
2κ2. Furthermore, when the retrieval cluster for ti and si are different for any
i ∈ [C], we have ξt ≥ ν − 2κ.
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Proof of Lemma F.10. By Assumption F.6 and Assumption F.7, for any i ∈
[C], we have

ξI2I
i =1 − k̄⊤

si
s̄i (F.15)

=1
2
∥∥∥s̄i − k̄si

∥∥∥2

2
(F.16)

≤2κ2. (F.17)

Furthermore, when the retrieval clusters for ti and si are different, by As-
sumption F.7, we have

ξT2I
i =1 − k̄⊤

ti
s̄i (F.18)

=1 −
(
k̄ti

)⊤ (
s̄i − k̄si

+ k̄si

)
(F.19)

=1 −
(
k̄ti

)⊤ (
s̄i − k̄si

)
− k̄⊤

ti
k̄si

(F.20)

≥ν −
∥∥∥s̄i − k̄si

∥∥∥
2

(F.21)

=ν −
√

2ξI2I
i (F.22)

≥ν − 2κ. (F.23)

Theorem F.11 (Benefit of uni-modal retrieval). Assume the same condition
as Lemma F.10, with probability at least 1 − δ, the following upper bound of the
ensemble risk holds:

R(αT + γK̄) − R(S̄) ≤L

α ∥(T − S̄)⊤z∥2︸ ︷︷ ︸
modality gap

+ γκ

√
8C

K
log C

δ︸ ︷︷ ︸
retrieval sample complexity

+ γ
√

2Cξ︸ ︷︷ ︸
retrieval shift

,

(F.24)

where L =
√

exp(2) + 1, κ characterizes the inner-class feature concentration
(Definition F.1), and ξ is either ξs for I2I retrieval or ξt for T2I retrieval.
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Proof of Theorem F.11. By Lemma F.13 and Lemma F.14, let L =
√

exp(2) + 1,
we have:

R(αT + γK̄) − R(S̄) ≤L
(
α∥(T − S̄)⊤z∥2 + γ∥(K̄ − S̄)⊤z∥2

)
. (F.25)

By the vector Bernstein inequality in Lemma F.15 and the union bound,
with probability at least 1 − δ, for any c ∈ [C]:

∥k̄c − k̄qc∥2 ≤ κ

√
8
K

log C

δ
, (F.26)

This bound characterizes the retrieval sample complexity. Moreover, from
the definition of the retrieval distributional shift, we have ∥k̄qc − s̄c∥2 =√

2 − 2k̄⊤
qc

s̄c =
√

2ξc, where qc = sc for I2I retrieval and qc = tc for T2I
retrieval. Therefore, we obtain an upper bound of ∥(K̄ − S̄)⊤z∥2 as:

∥(K̄ − S̄)⊤z∥2 ≤ κ

√
8C

K
log C

δ
+
√

2Cξ (F.27)

We obtain the final bound by putting together Eq. (F.25) and Eq. (F.27).

Remarks: The above upper bound consists of three terms: the gap be-
tween the textual and visual modality, the sample complexity of retrieved
features which decreases as we increase K, and a term related to the dis-
tributional shift induced by the retrieval method. By Lemma F.10, we can
see the superiority of I2I over T2I retrieval by comparing ξs and ξt.

Theorem F.12 (Benefit of logit ensemble). Assume the same condition as
Lemma F.10. For I2I retrieval with α = γ = 1

2 , β = 0, we have

R0−1(f) ≤ Pr (E1) + (Pr(E2) + Pr(E3))ρd(max{6κ − ν, 2κ + τ}) + ρc

(F.28)
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Proof of Theorem F.12. We define the events

Ec = {∥I(x) − s̄i∥2 ≥ κ and y = i, ∀i ∈ [C]} .

We also define events

Ed(z) =
{
ϕ(T⊤z, y, z) ∩ ϕ(K̄⊤z, y, z) = {y}

}
. Note that we have

Pr (Ed(z)|E2 or E3) = 1 − ρd(z)

. By Definition F.5, we have

max
(x,y)∈Ec,y=i ̸=j

(tj − ti)⊤z = max
(x,y)∈Ec,y=i ̸=j

(tj − ti)⊤(z − s̄i + s̄i) (F.29)

= max
(x,y)∈Ec,y=i ̸=j

(tj − ti)⊤(z − s̄i) + (tj − ti)⊤s̄i

(F.30)

≤2κ + τ. (F.31)

By Lemma F.9 and Assumption F.6 and Assumption F.7, conditional on
Ec, we have the logits gap maxi ̸=y k̄⊤

i z − k̄⊤
y z ≤ 6κ − ν. Let ACC(f) =
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1 − R0−1(f). Then, we get

ACC(f) = Pr
(

y = arg max
i

1
2t⊤

i z + 1
2 k̄⊤

i z
)

(F.32)

≥ Pr (E4) + Pr(Ec ∩ E2) Pr
(

y = arg max
i

t⊤
i z + k̄⊤

i z
∣∣∣∣Ec ∩ E2

)
(F.33)

+ Pr(Ec ∩ E3) Pr
(

y = arg max
i

t⊤
i z + k̄⊤

i z
∣∣∣∣Ec ∩ E3

)
(F.34)

= Pr (E4) + Pr(Ec ∩ E2) Pr
(

max
y=i ̸=j

(tj − ti)⊤z + (k̄j − k̄i)⊤z < 0
∣∣∣∣Ec ∩ E2

)
(F.35)

+ Pr(Ec ∩ E3) Pr
(

max
y=i ̸=j

(tj − ti)⊤z + (k̄j − k̄i)⊤z < 0
∣∣∣∣Ec ∩ E3

)
.

(F.36)

Now, we prove that

Ed(6κ − ν) ∩ Ec ∩ E2 ⊆ {max
y=i ̸=j

(tj − ti)⊤z + (k̄j − k̄i)⊤z < 0} ∩ Ec ∩ E2.

For any (x, y) ∈ Ed(6κ − ν) ∩ Ec ∩ E2 and y = i ̸= j,

• if j ∈ ϕ(T⊤z, y, z) and j /∈ ϕ(K̄⊤z, y, z), we have

(tj − ti)⊤z + (k̄j − k̄i)⊤z < 0 − (6κ − ν) ≤ 0

• if j /∈ ϕ(T⊤z, y, z) and j ∈ ϕ(K̄⊤z, y, z), by Lemma F.9,

(tj − ti)⊤z + (k̄j − k̄i)⊤z < −(6κ − ν) + 6κ − ν = 0

• if j /∈ ϕ(T⊤z, y, z) and j /∈ ϕ(K̄⊤z, y, z), we have

(tj − ti)⊤z + (k̄j − k̄i)⊤z < −(6κ − ν) − 6κ − ν < 0
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Thus, we have
max
y=i ̸=j

(tj − ti)⊤z + (k̄j − k̄i)⊤z < 0.

Therefore, Ed(6κ − ν) ∩ Ec ∩ E2 ⊆ {maxy=i ̸=j(tj − ti)⊤z + (k̄j − k̄i)⊤z <

0} ∩ Ec ∩ E2.
Similarly, by

max
(x,y)∈Ec,y=i ̸=j

(tj − ti)⊤z ≤ 2κ + τ,

we have Ed(2κ + τ) ∩ Ec ∩ E3 ⊆ {maxy=i ̸=j(tj − ti)⊤z + (k̄j − k̄i)⊤z <

0} ∩ Ec ∩ E3.
Thus, as E2 and E3 are disjoint and union bound, we have

ACC(f) ≥ Pr (E4) + Pr(Ec ∩ E2) Pr (Ed(6κ − ν)|Ec ∩ E2) (F.37)

+ Pr(Ec ∩ E3) Pr (Ed(2κ + τ)|Ec ∩ E3) (F.38)

≥ Pr (E4) + (Pr(E2) + Pr(E3))(1 − ρd(max{6κ − ν, 2κ + τ})) − ρc.

(F.39)

We finish the proof by following ACC(f) = 1 − R0−1(f) and Pr(E1) +
Pr(E2) + Pr(E3) + Pr(E4) = 1.

Remarks: The above theorem characterizes the 0-1 risk upper bound
by the modality gap and key properties of retrieved and target distribu-
tions. Moreover, logit ensemble utilizes knowledge encoded in different
modalities to benefit each other. When (Pr(E2)+Pr(E3))(1−ρd(max{6κ−
ν, 2κ + τ})) − ρc ≥ max{Pr(E2), Pr(E3)}, we can see that logit ensemble
leads to a lower 0-1 risk (i.e., higher accuracy) compared to the zero-shot
model. This happens when the modality gap τ is small and the test data
exhibits good clustering properties.
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F.4.4 Auxiliary Lemmas

Lemma F.13 (Lipschitz continuity of cross-entropy loss). When y ∈ [C],
the cross-entropy loss ℓ(v, y) is L-Lipschitz on the hyper-cube, i.e., v ∈ [−1, 1]C ,
where L =

√
exp(2) + 1.

Proof of Lemma F.13. Note that since ℓ(·, y) : RC → R is differentiable, it
is sufficient to find L such that ∥∇ℓ(·, y)∥2 ≤ L. Let s = ∑

i∈[C] exp(vi).
Applying calculus rules we have that

∂ℓ

∂vy

= exp(vy) − s

s
and ∂ℓ

∂vi

= exp(vy + vi)
s

∀i ̸= y. (F.40)

Thus,

∥∇ℓ(·, y)∥2
2 =

(∑
i ̸=y exp(vi)

)2
+ exp(2vy)

(∑
i ̸=y exp(2vi)

)
s2 (F.41)

≤s2 + exp(2vy)s2

s2 (F.42)

≤ exp(2) + 1. (F.43)

Thus, we have L =
√

exp(2) + 1.

Lemma F.14 (Bounded logits). For an input with visual feature z ∈ Rd, if Q
is a convex combination among {T, S, S̄, K̄}, we have Q⊤z ∈ [−1, 1]C .

Proof of Lemma F.14. From the definitions of matrices T, S, S̄, K̄ ∈ Rd×C

defined in Appendix F.4.1 and Appendix F.4.2, we have that the Euclidean
norm of each column in T, S, S̄, K̄ and z is smaller or equal to 1. Thus,
their convex combination Q multiplied by z satisfies Q⊤z ∈ [−1, 1]C .

Lemma F.15 (Vector Bernstein inequality. Lemma 18 in Kohler and Lucchi
(2017)). Let v1, ..., vn ∈ Rd be independent vector-valued random variables
and assume that each one is centered, uniformly bounded with variance bounded
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above:

E[vi] = 0 and ∥vi∥2 ≤ B2 as well as E[∥vi∥2
2] ≤ σ2. (F.44)

Let v̂ = 1
n

∑n
i=1 vi. Then we have for 0 < ϵ < σ2/B2,

Pr(∥v̂∥2 ≥ ϵ) ≤ exp
(

−n · ϵ2

8σ2 + 1
4

)
. (F.45)

F.5 Training-based Adaptation
In Section 7.5, we have shown the average performance of training-based
adaptation, where the feature cache is finetuned (based on the RN50 back-
bone). In this section, we report the performance for each dataset. The
results are shown in Figure F.3. The result for each dataset is consistent
where I2I retrieval outperforms T2I retrieval and zero-shot CLIP when
varying the shot number from 2 to 16.
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Figure F.3: Comparison of retrieval method on adaptation with fine-
tuned feature. Results are based on RN50. We observe a trend similar
to training-free adaptation, where I2I retrieval consistently outperforms
T2I retrieval and zero-shot CLIP.
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Figure F.4: Impact of model architecture. Results are based on ViT-B/32
(training-free).
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Figure F.5: Impact of model architecture. Results are based on ViT-B/32
(feature cache finetuned).

F.6 Impact of Architecture
In Section 7.5, we show the average performance over all datasets for I2I
retrieval and T2I retrieval under different CLIP backbones and observe
consistent trends. The results for individual datasets can be seen in Fig-
ure F.4 (training-free adaptation based on ViT-B/32), Figure F.5 (training-
based adaptation based on ViT-B/32), Figure F.6 (training-free adaptation
based on ViT-B/16), Figure F.7 (training-based adaptation based on ViT-
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Figure F.6: Impact of model architecture. Results are based on ViT-B/16
(training-free).
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Figure F.7: Impact of model architecture. Results are based on ViT-B/16
(feature cache finetuned).

B/16), Figure F.8 (training-free adaptation based on ViT-L/14), and Fig-
ure F.9 (training-based adaptation based on ViT-L/14).
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Figure F.8: Impact of model architecture. Results are based on ViT-L/14
(training-free).
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Figure F.9: Impact of model architecture. Results are based on ViT-L/14
(feature cache finetuned).
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Appendix G

Appendix for A Critical Analysis
of Document Out-of-Distribution
Detection

G.1 Dataset and Model Details

G.1.1 Datasets

The full RVL-CDIP dataset consists of 320K/40K/40K training/valida-
tion/testing images under 16 categories. We select 12 of them as the ID
(In-domain) data. We employ the Google OCR engine1 to extract the text
and layout information, which provides tokens, text blocks and the cor-
responding bounding boxes.

G.1.2 Quantifying OOD Dataset Construction

The distance between datasets can be measured via Optimal Transport
Dataset Distance (OTDD)2. We visualize the OTDD distance between ID

1https://cloud.google.com/vision/docs/ocr
2https://github.com/microsoft/otdd

https://cloud.google.com/vision/docs/ocr
https://github.com/microsoft/otdd
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and the OOD (both in-domain and out-domain) data in Fig. G.1, where
we highlight the in-domain OOD data in blue and the out-domain OOD
data in green. Specifically, we randomly sample 1000 images from each
dataset and calculate the average distance between pairs of datasets. We
can see a significant gap between the OTDD of in-domain OOD data and
out-domain OOD data. To make the analysis more thorough, we consider
two additional in-domain OOD settings: (1) select the classes the model
performs well as OOD data; (2) randomly select classes as OOD data.
The results are shown in Fig. G.2 and Fig. G.3. We can see that the dis-
tance between ID and in-domain OOD is similar to the original scheme
(Fig. G.1). This suggests that most in-domain OOD categories are not far
from ID data.

While this paper represents an initial endeavor, we hope that our work
will serve as a stepping stone towards constructing more comprehensive
and diverse OOD benchmarks in the document domain, akin to those
available in the NLP and natural image domain.

G.1.3 Models and Training Details

All models reported in Fig. 8.2b, except UDoc, are initialized with pre-
trained weights from Huggingface3 and fine-tuned on the full RVL-CDIP
training set. During fine-tuning, we train these models on RVL-CDIP
with the cross-entropy loss. The models were optimized with Adam op-
timizer Kingma and Ba (2014) for 30 epochs with a batch size of 50 and
a learning rate of 2 × 10−5 on 8 A100 GPUs. The following are the hyper-
parameters of the models used in our paper:

Text-only:
3https://huggingface.co/models

https://huggingface.co/models
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Figure G.1: Visualization of optimal transport dataset distance for ID and
OOD (in-domain and out-domain) datasets. We highlight the in-domain
OOD data in blue and the out-domain OOD data in green. OOD cate-
gories are selected based on the worst performance.
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Figure G.2: Visualization of optimal transport dataset distance for ID and
OOD datasets. OOD categories are selected based on the best perfor-
mance.
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Figure G.3: Visualization of optimal transport dataset distance for ID and
OOD datasets. OOD categories are selected randomly.

• BERT and RoBERTa: We adopt RoBERTaBase (12 layers) and BERTBase

(12 layers) as backbones and set the maximum sequence length to
512. For RoBERTa, the classifier consists of two linear layers fol-
lowed by a tanh activation function.

• LongformerBase: We also employ LongformerBase (12 layers) as the
backbone and set the maximum sequence length to 4,096.

Vision-only:

• ResNet50: We adopt ResNet50 pre-trained on ImageNet-1k as the
backbone. We fine-tune the model at a resolution of 224×224.

• ViT: We consider ViTBase (vit-base-patch16-224, pre-trained on ImageNet-
21k) as the backbon and fine-tune at a resolution of 224×224.

• SwinB: We also use the Swin Transformer (swin-base-patch4-window7-
224-in22k, pre-trained on ImageNet-21k) as the backbone and fine-
tune the model at a resolution of 224×224.
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(a) RoBERTaBase (10%) (b) RoBERTaBase (20%)

(c) RoBERTaBase (40%) (d) RoBERTaBase (100%)

Figure G.4: Feature visualization for pre-trained (with different numbers
of pre-training data) and fine-tuned models based on RoBERTa. We show
both in-domain (RVL-CDIP) and out-domain (CORD) OOD datasets.
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(a) ViTBase (10%) (b) ViTBase (20%)

(c) ViTBase (40%) (d) ViTBase (100%)

Figure G.5: Feature visualization for pre-trained (with different numbers
of pre-training data) and fine-tuned models based on ViT. We show both
in-domain (RVL-CDIP) and out-domain (CORD) OOD datasets.
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Figure G.6: MSP, Energy, KNN, and Maha score histogram distributions
of ID (blue) and OOD (green) inputs derived from fine-tuned ResNet-
50, RoBERTa, and LayoutLMv3. The KNN scores calculated from both
vision and language models naturally form smooth distributions. In con-
trast, MSP and Maha scores for both in- and out-of-distribution data con-
centrate on high values. Overall our experiments show that using fea-
ture space makes the scores more distinguishable between and out-of-
distributions and, as a result, enables more effective OOD detection.

Text+Layout:

• LayoutLMv1: This model employs the LayoutLM (layoutlm-base-
uncased, 12 layers, pre-trained on IIT-CDIP) as the backbone. We
set the maximum sequence length to 512.

• Spatial-RoBERTaBase (Pre): This model combines our spatial-aware
adapter to the pre-trained RoBERTaBase model. The adapter is ap-
plied to the word embedding layer. We freeze the pre-trained word
embeddings and optimize the spatial-aware adapter and transform-
ers.
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Figure G.7: The network architectures in green blocks are our proposed
models. We also show the modality information on top of each architec-
ture.

• Spatial-RoBERTaBase (Post): Instead of inserting the spatial-aware
adapter in the input layer, this model integrates the spatial-aware
adapter at the output layer of the transformer.

Vision+Text+Layout:

• LaytouLMv3: We use LayoutLMv3 (layoutlmv3-base, 12 layers, pre-
trained on IIT-CDIP) as the backbone.

• UDoc: We use a slight variant of UDoc with the only difference
in the sentence encoder, where we adopt a smaller version of the
pre-trained sentence encoder (all-MiniLM-L6-v2, 6 layers) instead
of the larger sentence encoder (bert-base-nli-mean-tokens, 12 lay-
ers).
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G.2 Beyond Document Classification
In the main paper, we mainly focus on document classification to provide
a thorough and in-depth analysis. In this section, we go beyond docu-
ment classification and explore OOD detection for two entity-level tasks
in documents: document entity recognition and document object detec-
tion. It is natural to detect and recognize basic units in documents such
as text, tables, and figures. Document entity recognition aims to predict
the label for each semantic entity with given bounding boxes. Document
object detection is an object detection task for document images. Specifi-
cally, we denote the input as x, the bounding box coordinates associated
with object instances in the image as b ∈ R4, and use the model with
parameters θ to model the bounding box regression pθ(b|x) and the la-
bel classification pθ(y|x, b). Given a test input x̂, the OOD detection scor-
ing function for entity detection and recognition can be unified as S(x̂, b̂),
where b̂ denotes the object instance predicted by the object detector. In
particular, for document entity recognition, since the bounding boxes are
provided, the OOD score can be simplified as S(x̂, b̄), where b̄ is the given
object instance.

Document Object Detection. For document object detection, we use
PubLayNet as the ID dataset and construct the OOD dataset from IIIT-
AR-13K. Unlike PubLayNet, where the documents are scientific articles,
IIIT-AR-13K is a dataset for graphical object detection in business docu-
ments (e.g., , annual reports), thus there exists an obvious domain gap.
We select natural images as the OOD entity and filter images that contain
the OOD entity. Two object detection models are considered in this paper:
(1) Vanilla Faster-RCNN with ResNet-50 visual backbone, and (2) Faster-
RCNN with VOS Du et al. (2022b), a recent unknown-aware learning
framework to improve OOD detection performance for natural images.
Following the original paper, we use 1,000 samples for each ID class to
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estimate the class-conditional Gaussian statistics. The models are trained
for 180k iterations with a base learning rate of 0.01 and a batch size of 8
using the Detectron2 framework Wu et al. (2019). The performance of the
models is measured using the mean average precision (MAP) @ intersec-
tion over union (IOU) [0.50:0.95] of bounding boxes.

Document Entity Recognition. For entity recognition, we construct ID
and OOD datasets from FUNSD. Each semantic entity includes a list of
words, a label, and a bounding box. The standard label set for this dataset
contains four categories: question, answer, header, and other. In this paper,
we select entities labeled as other or header as OOD data, and the enti-
ties belonging to the other three categories as ID. Instead of treating en-
tity recognition as a named-entity recognition problem, we follow UDoc
and solve this problem at the semantic region level. We replace the sen-
tence encoder in UDoc with a smaller sentence encoder (all-MiniLM-L6-
v24) from Huggingface Wolf et al. (2019). We also have the following
model variants to verify the effectiveness of the combination of modal-
ities: textual-only, visual-only, textual+spatial, visual+spatial, and vi-
sual+textual+spatial.

We provide details on datasets and models as follows.

G.2.1 Datasets

The original FUNSD Jaume et al. (2019) dataset contains 149 training and
50 testing images. For document entity recognition, we treat entities with
the category other/header as OOD entities. After the split, if we consider
other as OOD, we have a total of 8,330 ID and 1,019 OOD entities. Oth-
erwise, if we consider header as OOD, we have 8,981 ID and 368 OOD
entities in total.

4https://huggingface.co/sentence-transformers

https://huggingface.co/sentence-transformers
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Figure G.8: Ablation on document entity recognition and object detection.
Numbers are reported in FPR95.

For document object detection, we consider PubLayNet Zhong et al.
(2019), which contains 336K/11K training/validation images with 6 cat-
egories (text, title, list, fig., and table). The original IIIT-AR-13K Mondal
et al. (2020) contains (table, fig., natural image, logo, and signature). In this
paper, considering the overlap between IIIT-AR-13K and PubLayNet, we
select those images containing natural images as the OOD test set. After
filtering, we obtain 2,880 OOD entities across 1,837 document images.

We consider three ID datasets in this experiment. (1) PubLayNet: This
is the original PubLayNet dataset. We treat all the entities in training/val-
idation images as ID entities. (2) Considering the domain shift between
ID data (PubLayNet) and OOD data (IIIT-AR-13K). We combine the Pub-
LayNet training data with the images from IIIT-AR-13K with overlapping
annotations (table and figure) and train the object detection model.
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G.2.2 Models

Fig. G.7 illustrates the entity recognition models used in this paper. We
consider the entities on regions instead of tokens, as regions provide richer
semantic information. As for the pre-trained model, we adopt UDoc (trained
on IIT-CDIP) since it models inputs at the regional level. Based on the
UDoc framework, we develop the following models.
Vision/Vision+Layout:

• ResNet-50: This model is composed of the ResNet-50 from pre-
trained UDoc. It adopts the RoI pooling followed by a classifier to
extract the entity features.

• ResNet-50+Position: This model also adapts UDoc’s pre-trained
ResNet-50 for further improvement. It makes the RoI features spa-
tially aware by adding position embeddings, which are mapped
from the bounding boxes via a linear mapping layer.

Text/Text+Layout:

• Sentence BERT: This model adopts the language branch of UDoc
and appends the classifier to the output of the sentence encoder.

• Sentence BERT+Position: This model is close to the above model
but adds position embeddings to the sentence embeddings.

Vision+Text+Layout:

• ResNet-50+sentence BERT: This model follows the same frame-
work as UDoc, but replaces the sentence encoder in their original
design with a more miniature sentence encoder (all-MiniLM-L6-
v2).

• SwinT+Sentence BERT: This model replaces the ResNet-50 visual
backbone with a pre-trained tiny Swin Transformer (swin-tiny-patch4-
window7-224) adopted from the Huggingface.
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All the models are fine-tuned with the cross-entropy loss for 100 epochs,
using a learning rate of 10−5 and a batch size of 8 on an A100 GPU.

G.2.3 Summary of Observations

We provide a summary of observations here and hope to inspire future
works on a thorough investigation of OOD detection for entity-level tasks.
To identify entity types, models should not only understand the words
but also utilize spatial and visual information.

For document entity recognition, the comparison of distance-based
and logit-based OOD detection methods with different models are shown
in Fig. G.8a. More details are shown in Table G.2. We see that models
can better predict the entity type and also achieve better OOD robustness
with the help of spatial information. Considering the weak language de-
pendency between entities, it is not surprising that vision-based models
achieve better performance than text-based models. In particular, UDoc
with ResNet-50 achieves the best performance on two OOD test sets, il-
lustrating that visual information plays a major role in increasing the dis-
crimination of entities with similar semantics. For document object detec-
tion, we summarize our findings in Fig. G.8b and describe them in more
detail in Table G.1. We can see that the OOD detection performance is fur-
ther improved by introducing document images from IIIT-AR-13K with
the same ID annotations as training data.

To provide more intuitions, in Fig. G.9, we visualize the document
entity recognition OOD detection results. In Fig. G.10, we visualize the
prediction on sample OOD images, using object detection models trained
without VOS (top) and with VOS (bottom), respectively. We can see that
vanilla Faster RCNN trained on PubLayNet produces false positives when
applied to the OOD document images from IIIT-AR-13K. Table G.1 shows
that introducing the unknown-aware learning method optimized for both
ID and OOD can reduce the FPR95 while preserving the mAP on the ID
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data. This experiment indicates that incorporating uncertainty estimation
into the entity detection training procedure can improve the reliability of
the document object detection system.

Figure G.9: Visualization of detected OOD entities on the form images.
The top part shows the entities in blue are entities annotated as other. The
bottom part shows the detected OOD entities (green). We also show fail-
ure cases on the right part.

(b) I I IT-AR-13K (OOD)(a) PubLayNet (ID)

Figure G.10: Visualization of detected objects on the OOD images (from
IIIT-AR-13K) by a vanilla Faster-RCNN (top) and Faster-RCNN with VOS
(bottom) is shown. Objects in blue boxes are detected and classified as
one of the ID classes. The detected OOD objects (green) reduce false pos-
itives among detected objects. We also visualize detected objects on the
ID images. There is a clear difference between PubLayNet and IIIT-AR-
13K – entities and annotations of natural images rarely exist in PubLayNet.

G.3 Detailed Experimental Results
• Table G.2 corresponds to the results shown in Fig. G.9 and Fig. G.8a.
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Table G.1: Comparison with different training and detection methods.
Models ID Dataset OOD Score IIIT-AR-13K (Natural Image as OOD) PubLayNet (ID)

FPR95 AUROC AUPR mAP

Vanilla Faster-RCNN PubLayNet MSP 74.33 79.12 98.41 92.6Energy 55.96 83.55 98.73

Faster-RCNN with VOS PubLayNet MSP 63.65 79.37 98.57 92.2Energy 55.61 80.60 98.67

Faster-RCNN with VOS PubLayNet+IIIT-AR-13K(ID) MSP 56.57 82.94 98.59 92.4Energy 47.73 84.04 98.67

Table G.2: Comparison with different models on FUNSD OOD setting.
All models are initialized with UDoc pre-trained on IIT-CDIP and fine-
tuned on FUNSD data with ID entities. All values are percentages. S-
BERT deontes Sentence BERT. A lower FPR95 or a higher AUROC value
indicates better performance.

Test Method Other (OOD) ID Header (OOD) ID Test Method Other (OOD) ID Header (OOD) ID
F1 FPR95 AUROC F1 FPR95 AUROC F1 F1 FPR95 AUROC F1 FPR95 AUROC F1
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75.15

KNN10 59.47 79.14
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78.04

R
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N
et
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0+
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75.82

KNN10 73.21 73.19

77.65

90.22 61.42

77.98

KNN20 69.97 78.15 81.25 63.66 KNN20 72.91 73.44 88.04 61.54
KNN50 84.49 77.40 82.61 62.86 KNN50 75.96 74.43 82.88 60.93
KNN100 97.94 77.08 84.24 61.62 KNN100 79.69 74.85 83.70 59.39
KNN200 97.84 77.15 94.29 59.74 KNN200 86.06 75.14 91.58 57.42
KNN400 97.15 76.09 94.84 57.53 KNN400 87.93 74.92 95.92 55.37
MSP 50.54 75.80 75.82 76.55 MSP 77.82 67.60 84.24 66.58
MaxLogit 52.40 73.70 73.64 76.72 MaxLogit 76.94 67.05 84.24 65.41
Energy 52.50 73.70 75.82 76.55 Energy 76.64 66.93 84.51 64.98

S-
BE

R
T

77.15

KNN10 93.72 48.44

82.12

92.66 60.99

82.41

S-
BE

R
T+

Po
si

tio
n

82.69

KNN10 97.45 41.24

87.08

93.75 62.38

87.01

KNN20 93.92 47.65 92.93 59.00 KNN20 97.55 39.91 93.48 61.51
KNN50 93.62 48.94 93.21 57.90 KNN50 97.15 39.56 92.39 61.76
KNN100 93.92 48.79 93.21 55.07 KNN100 97.06 41.67 91.85 60.99
KNN200 93.92 47.85 93.48 52.86 KNN200 96.57 41.85 89.67 59.08
KNN400 94.11 46.21 95.38 49.86 KNN400 97.25 40.83 90.22 54.03
MSP 93.62 54.91 94.29 52.14 MSP 88.42 61.11 90.76 59.58
MaxLogit 93.72 54.75 94.57 56.51 MaxLogit 89.70 60.19 88.86 60.92
Energy 93.23 54.88 93.21 58.22 Energy 90.48 59.61 89.95 61.12

R
es

N
et

-5
0+

S-
BE

R
T

89.11

KNN10 45.93 87.85

93.13

53.80 87.97

93.18

Sw
in

T+
S-

BE
R

T

86.00

KNN10 63.30 83.64

90.82

81.52 64.08

90.40

KNN20 53.58 86.71 55.71 87.06 KNN20 66.73 82.53 81.52 61.50
KNN50 73.21 84.36 62.77 85.49 KNN50 70.17 80.21 82.34 57.77
KNN100 89.70 83.01 69.02 83.60 KNN100 83.91 77.71 83.15 54.97
KNN200 96.66 81.90 75.54 80.85 KNN200 95.39 75.79 95.38 50.57
KNN400 98.82 81.00 91.58 77.42 KNN400 96.76 75.49 99.73 47.45
MSP 45.44 87.82 67.39 72.85 MSP 69.28 70.70 80.71 52.02
MaxLogit 45.53 90.58 63.04 72.39 MaxLogit 67.12 74.41 81.79 52.77
Energy 45.53 90.57 63.86 72.37 Energy 67.22 74.41 81.79 52.77

• Table G.1 corresponds to the results shown in Fig. G.10 and Fig. G.8b.

• Table G.3 and Table G.7 correspond to the results shown in Fig. 8.5a.

• Table G.4 and Table G.5 correspond to the results shown in Fig. 8.5b.

• Table G.6 corresponds to the results shown in Fig. 8.9 and Fig. 8.10.

• Table G.9 and Table G.8 correspond to the results shown in Fig. 8.7
and Fig. 8.10.
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• Table G.10 and Table G.11 correspond to the analysis for Sec. 8.4 and
Sec. 8.4.2.

• Table G.12 corresponds to the results shown in Fig. 8.10.
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Table G.3: OOD detection performance for document classification with
different number of pre-training data from IIT-CDIP. ID (Acc) denotes the
ID accuracy obtained by testing on ID test data. We report the KNN-based
scores for both pre-trained and fine-tuned models. Sci. Poster denotes
the document images converted from NJU-Fudan Paper-Poster Dataset.
Receipt denotes the receipt images collected from the CORD receipt un-
derstanding dataset. For in-domain OOD test data, we also report the
averaged scores.

ID Method
OOD Dataset (In-domain) OOD Dataset (Out-domain)

Acc
Sci. Report Presentation Form Letter Average Sci. Poster Receipt

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
Pre-train on 10% IIT-CDIP→ fine-tune on RVL-CDIP ID data
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MSP 92.75 69.24 92.21 66.93 94.65 65.40 92.00 70.09 92.90 67.92 96.51 66.93 99.10 52.90
MaxLogit 98.36 77.85 97.23 78.51 98.76 72.84 98.86 78.08 98.30 76.82 100.00 78.69 100.00 63.74
Energy 98.60 77.81 97.55 78.49 98.96 72.79 98.94 78.00 98.51 76.77 100.00 78.68 100.00 63.70
GradNorm 98.04 79.26 97.07 76.85 98.56 72.83 98.62 80.55 98.07 77.37 100.00 85.23 100.00 64.10
KNN10 63.21 88.18 65.81 88.05 73.02 84.63 67.74 88.92 67.45 87.44 69.77 88.49 90.50 84.44
KNN20 63.53 88.07 65.89 87.90 72.75 84.48 67.33 88.81 67.38 87.32 68.60 88.13 91.10 84.09
KNN50 64.17 87.89 66.97 87.77 73.34 84.23 67.21 88.60 67.92 87.12 72.09 87.47 91.60 83.59
KNN100 64.49 87.64 67.78 87.55 73.46 83.94 67.29 88.37 68.26 86.88 72.09 86.83 91.50 83.21

Pre-train on 10% IIT-CDIP (no fine-tune)

–

KNN10 88.07 66.94 92.13 66.62 94.13 61.90 94.40 54.57 92.18 62.51 67.44 87.04 62.10 84.94
KNN20 88.59 66.02 92.65 65.25 94.13 60.83 94.72 53.79 92.52 61.47 77.91 85.38 64.60 83.86
KNN50 89.75 64.40 93.53 63.12 94.37 58.98 95.17 52.33 93.20 59.71 83.72 82.97 69.20 82.29
KNN100 90.23 62.94 93.85 61.28 94.41 57.45 95.13 51.28 93.40 58.24 83.72 80.91 70.10 81.05

Pre-train on 20% IIT-CDIP→ fine-tune on RVL-CDIP ID data

R
oB

ER
Ta

B
as

e
(2

0%
) 90.71

MSP 94.28 68.02 94.46 65.98 96.01 62.98 94.81 65.98 94.89 65.74 95.35 63.55 99.10 54.99
MaxLogit 97.36 77.82 97.19 79.16 98.40 72.64 98.34 77.68 97.82 76.82 100.00 77.36 99.60 66.63
Energy 98.04 77.80 97.43 79.15 98.76 72.61 98.58 77.64 98.20 76.80 100.00 77.32 99.60 66.61
GradNorm 97.36 80.68 96.83 76.04 98.44 73.29 97.89 81.37 97.63 77.85 100.00 86.18 99.50 67.49
KNN10 63.57 88.30 67.06 87.06 73.66 83.92 73.09 87.80 69.34 86.77 69.77 88.01 87.60 83.81
KNN20 63.85 88.20 67.46 86.90 73.94 83.78 72.93 87.70 69.54 86.64 69.77 87.63 88.30 83.53
KNN50 63.89 88.02 67.54 86.71 74.38 83.55 72.24 87.46 69.51 86.43 70.93 87.09 88.20 83.12
KNN100 64.85 87.81 67.62 86.45 74.90 83.25 72.65 87.24 70.00 86.19 72.09 86.65 88.30 82.89

Pre-train on 20% IIT-CDIP (no fine-tune)

–

KNN10 87.15 68.27 90.88 66.89 92.26 62.39 95.01 53.02 91.32 62.64 43.02 92.29 57.00 87.67
KNN20 87.31 67.35 92.04 65.54 91.54 61.40 94.97 52.33 91.46 61.66 47.67 91.18 62.60 86.61
KNN50 88.39 65.71 92.69 63.45 92.18 59.57 95.25 50.97 92.13 59.92 56.98 89.64 65.70 85.20
KNN100 88.83 64.20 93.13 61.61 92.22 57.99 95.45 49.95 92.41 58.44 58.14 88.36 66.90 84.17

Pre-train on 40% IIT-CDIP→ fine-tune on RVL-CDIP ID data

R
oB

ER
Ta

B
as

e
(4

0%
) 90.76

MSP 92.67 70.09 93.93 65.69 95.05 63.19 95.50 65.54 94.29 66.13 95.35 63.63 95.40 64.97
MaxLogit 98.08 78.72 97.87 79.85 98.44 71.63 98.30 75.41 98.17 76.40 98.84 78.07 98.90 75.65
Energy 98.48 78.69 97.91 79.83 98.68 71.61 98.50 75.40 98.39 76.38 100.00 78.04 98.50 75.60
GradNorm 98.04 81.03 97.47 76.73 98.44 72.77 97.40 79.11 97.84 77.41 100.00 87.47 97.60 77.12
KNN10 60.57 88.79 68.86 86.36 75.26 83.55 73.90 87.12 69.65 86.46 67.44 89.90 72.70 89.49
KNN20 61.37 88.72 69.06 86.24 75.46 83.43 73.46 87.00 69.84 86.35 68.60 89.66 73.50 89.25
KNN50 62.21 88.52 69.18 86.08 75.66 83.21 73.42 86.71 70.12 86.13 70.93 89.20 74.70 88.89
KNN100 63.77 88.30 69.79 85.84 76.02 82.93 74.19 86.46 70.94 85.88 74.42 88.84 75.30 88.69

Pre-train on 40% IIT-CDIP (no fine-tune)

–

KNN10 85.71 69.08 90.84 68.68 90.46 62.52 94.76 51.76 90.44 63.01 25.58 95.83 57.30 88.60
KNN20 85.27 68.21 91.64 67.48 89.74 61.32 94.81 51.01 90.36 62.00 29.07 95.22 62.30 87.61
KNN50 86.19 66.60 92.21 65.54 90.30 59.35 94.93 49.60 90.91 60.27 41.86 94.32 66.80 86.25
KNN100 87.19 65.04 92.57 63.83 90.50 57.74 95.09 48.44 91.34 58.76 45.35 93.66 68.30 85.14

Pre-train on 100% IIT-CDIP→ fine-tune on RVL-CDIP ID data

R
oB

ER
Ta

B
as

e
(1

00
%

)

91.00

MSP 93.23 68.88 94.54 65.83 96.65 63.11 94.12 68.28 94.64 66.53 98.84 62.52 95.10 71.25
MaxLogit 97.84 78.86 97.95 80.23 98.48 74.01 98.25 77.59 98.13 77.67 100.00 78.73 98.90 79.36
Energy 98.20 78.84 97.95 80.22 98.52 74.00 98.78 77.55 98.36 77.65 100.00 78.72 98.70 79.29
GradNorm 97.88 80.81 97.91 76.37 98.28 75.25 98.25 80.09 98.08 78.13 100.00 86.10 98.30 77.50
KNN10 62.57 88.26 68.90 86.96 72.39 84.73 70.37 88.23 68.56 87.04 72.09 89.97 65.90 90.51
KNN20 63.41 88.11 69.59 86.88 73.10 84.56 70.70 88.11 69.20 86.92 74.42 89.58 67.20 90.37
KNN50 63.85 87.87 69.79 86.79 73.90 84.30 71.14 87.87 69.67 86.71 76.74 88.95 67.90 90.22
KNN100 65.13 87.61 70.27 86.58 74.86 84.00 71.75 87.65 70.50 86.46 79.07 88.44 68.30 90.19

Pre-train on 100% IIT-CDIP (no fine-tune)

–

KNN10 84.43 70.20 90.20 68.54 90.98 63.18 94.72 52.16 90.08 63.52 27.91 94.10 46.00 91.37
KNN20 84.51 69.30 91.28 67.35 90.38 61.96 94.72 51.43 90.22 62.51 33.72 93.39 51.50 90.55
KNN50 85.67 67.75 91.92 65.35 90.82 59.79 94.89 49.77 90.82 60.66 39.53 92.28 56.70 89.32
KNN100 86.55 66.08 92.97 63.46 91.46 58.00 95.41 48.39 91.60 58.98 44.19 91.29 61.60 88.18
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Table G.4: OOD detection performance for document classification with
different number of pre-training data from IIT-CDIP− (remove pseudo
OOD categories).

ID Method
OOD Dataset (In-domain) OOD Dataset (Out-domain)

Acc
Sci. Report Presentation Form Letter Average Sci. Poster Receipt

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
Pre-train on 10% IIT-CDIP−→ fine-tune on RVL-CDIP ID data

R
oB

ER
Ta

B
as

e
(1

0%
) 90.62

MSP 90.07 69.00 89.92 68.86 92.58 64.16 91.07 66.78 90.91 67.20 96.51 54.47 96.70 59.63
MaxLogit 97.76 78.40 97.71 80.58 98.64 71.26 98.70 76.38 98.20 76.66 100.00 73.51 99.80 73.32
Energy 98.16 78.35 97.75 80.55 98.84 71.20 98.90 76.32 98.41 76.60 100.00 73.46 99.80 73.31
GradNorm 97.68 79.92 97.27 79.42 98.56 71.31 98.50 79.44 98.00 77.52 100.00 82.62 99.60 75.85
KNN10 65.85 87.89 66.69 88.12 75.98 82.82 74.55 86.85 70.77 86.42 87.21 85.16 83.90 87.91
KNN20 66.33 87.80 66.85 88.04 75.94 82.70 73.94 86.75 70.76 86.32 87.21 84.63 83.60 87.71
KNN50 66.77 87.66 67.30 88.00 76.02 82.49 73.66 86.52 70.94 86.17 88.37 83.73 83.90 87.34
KNN100 67.25 87.42 67.74 87.84 76.18 82.18 73.99 86.26 71.29 85.92 89.53 82.85 83.90 86.98

Pre-train on 10% IIT-CDIP− (no fine-tune)

–

KNN10 86.35 65.48 85.74 70.84 92.94 59.55 93.14 56.62 89.54 63.12 29.07 95.42 87.60 83.13
KNN20 86.87 64.48 87.14 69.68 93.30 58.41 93.30 55.91 90.15 62.12 37.21 94.75 88.00 81.44
KNN50 87.75 62.73 88.99 67.80 93.50 56.54 93.75 54.52 91.00 60.40 47.67 93.71 90.30 78.97
KNN100 88.43 61.17 89.59 66.05 93.62 54.91 93.99 53.40 91.41 58.88 48.84 93.09 91.50 77.00

Pre-train on 20% IIT-CDIP−→ fine-tune on RVL-CDIP ID data

R
oB

ER
Ta

B
as

e
(2

0%
) 90.65

MSP 96.04 67.58 94.90 68.32 96.05 64.92 96.23 68.62 95.80 67.36 100.00 61.49 98.70 56.38
MaxLogit 97.96 76.92 97.59 80.68 98.48 72.31 98.74 77.72 98.19 76.91 100.00 75.91 99.50 69.21
Energy 98.16 76.89 98.23 80.65 98.88 72.26 99.07 77.67 98.58 76.87 100.00 75.89 99.50 69.18
GradNorm 97.84 78.23 97.31 78.57 98.00 71.44 98.46 80.03 97.90 77.07 100.00 85.80 99.00 69.54
KNN10 66.05 87.60 67.70 87.94 73.42 83.10 73.50 87.96 70.17 86.65 77.91 90.19 90.10 84.32
KNN20 66.17 87.50 68.38 87.83 73.90 82.93 73.66 87.82 70.53 86.52 77.91 89.84 89.80 84.13
KNN50 67.21 87.26 68.46 87.73 74.18 82.63 73.66 87.58 70.88 86.30 79.07 89.24 89.60 83.80
KNN100 68.78 86.98 69.14 87.53 75.50 82.30 74.27 87.36 71.92 86.04 82.56 88.68 89.80 83.59

Pre-train on 20% IIT-CDIP− (no fine-tune)

–

KNN10 85.63 66.10 85.17 70.34 92.58 60.29 93.43 56.85 89.20 63.40 30.23 95.72 83.20 83.84
KNN20 86.31 65.17 85.98 69.13 93.30 59.09 93.47 56.05 89.77 62.36 34.88 95.08 84.90 82.16
KNN50 87.31 63.50 87.63 67.11 93.38 57.17 94.16 54.60 90.62 60.60 44.19 94.07 87.50 79.74
KNN100 87.83 62.06 88.27 65.31 93.62 55.65 94.32 53.56 91.01 59.14 48.84 93.48 88.80 77.77

Pre-train on 40% IIT-CDIP−→ fine-tune on RVL-CDIP ID data

R
oB

ER
Ta

B
as

e
(4

0%
) 90.72

MSP 93.84 68.86 93.69 67.62 95.41 63.91 94.20 65.25 94.28 66.41 96.51 63.32 98.90 54.02
MaxLogit 97.16 78.56 96.87 80.18 98.68 71.84 98.58 74.44 97.82 76.26 100.00 76.72 99.10 65.41
Energy 97.40 78.53 97.15 80.17 98.68 71.79 98.78 74.39 98.00 76.22 100.00 76.67 99.50 65.39
GradNorm 97.24 80.59 96.95 78.01 98.52 72.12 98.34 77.16 97.76 76.97 100.00 86.94 99.70 67.46
KNN10 66.89 87.91 68.58 86.90 77.61 82.31 76.58 85.39 72.41 85.63 75.58 89.45 86.40 84.23
KNN20 67.57 87.80 68.90 86.79 77.77 82.19 76.30 85.22 72.64 85.50 80.23 89.17 86.80 83.85
KNN50 67.97 87.58 69.67 86.67 78.01 81.98 76.66 84.85 73.08 85.27 80.23 88.63 87.20 83.21
KNN100 69.46 87.34 71.23 86.47 79.01 81.72 77.48 84.57 74.30 85.02 82.56 88.19 88.00 82.72

Pre-train on 40% IIT-CDIP− (no fine-tune)

–

KNN10 88.79 66.14 88.35 68.92 93.50 60.30 95.54 51.09 91.54 61.61 37.21 95.37 55.90 91.90
KNN20 89.59 65.07 89.80 67.61 93.89 59.10 95.58 50.17 92.21 60.49 46.51 94.41 61.50 91.00
KNN50 90.59 63.39 91.64 65.68 93.77 57.35 95.66 48.63 92.92 58.76 53.49 93.06 66.40 89.72
KNN100 91.19 61.79 92.37 63.90 93.66 55.78 95.62 47.42 93.21 57.22 65.12 91.99 68.30 88.72

Pre-train on 100% IIT-CDIP−→ fine-tune on RVL-CDIP ID data

R
oB

ER
Ta

B
as

e
(1

00
%

)

90.74

MSP 94.12 68.24 94.29 66.18 95.93 63.83 95.21 65.66 94.89 65.98 98.84 59.25 96.50 65.42
MaxLogit 97.24 78.15 97.19 80.27 98.36 72.16 98.38 75.82 97.79 76.60 100.00 73.28 99.30 75.58
Energy 97.32 78.13 97.51 80.26 98.64 72.12 98.70 75.78 98.04 76.57 100.00 73.27 99.60 75.52
GradNorm 97.16 80.07 97.39 77.86 98.40 71.83 98.05 79.08 97.75 77.21 100.00 86.32 99.40 73.52
KNN10 66.81 87.86 69.67 86.91 77.49 82.60 74.59 86.28 72.14 85.91 81.40 87.74 76.90 88.49
KNN20 66.73 87.75 70.31 86.78 77.89 82.51 75.28 86.13 72.55 85.79 81.40 87.43 77.50 88.39
KNN50 67.25 87.54 70.59 86.62 77.85 82.32 75.41 85.84 72.78 85.58 83.72 86.85 77.80 88.23
KNN100 68.13 87.34 71.47 86.39 78.05 82.08 76.14 85.60 73.45 85.35 83.72 86.39 78.50 88.21

Pre-train on 100% IIT-CDIP− (no fine-tune)

–

KNN10 87.95 66.44 84.49 72.34 95.01 58.47 96.23 49.07 90.92 61.58 31.40 96.19 41.60 94.78
KNN20 88.91 65.39 85.70 71.25 95.33 57.19 96.59 48.06 91.63 60.47 34.88 95.50 48.40 94.12
KNN50 90.59 63.69 87.14 69.45 95.53 54.93 97.08 46.26 92.58 58.58 43.02 94.51 55.20 93.05
KNN100 91.75 62.08 88.55 67.85 95.89 53.05 97.20 44.81 93.35 56.95 50.00 93.60 61.10 92.04
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Table G.5: OOD detection performance for document classification with
different number of pre-training data from IIT-CDIP− (remove pseudo
OOD categories).

ID Method
OOD Dataset (In-domain) OOD Dataset (Out-domain)

Acc
Sci. Report Presentation Form Letter Average Sci. Poster Receipt

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
Pre-train on 10% IIT-CDIP− → fine-tune on RVL-CDIP ID data

La
yo

ut
LM

v1
B

as
e

(1
0%

)

95.89

MSP 42.43 76.31 56.05 69.39 54.31 70.25 47.00 73.93 49.95 72.47 43.02 76.55 44.10 75.68
MaxLogit 41.91 91.27 55.04 89.33 54.19 85.20 44.97 90.93 49.03 89.18 38.37 94.27 41.30 91.38
Energy 41.83 91.29 54.92 89.35 54.11 85.22 45.01 90.97 48.97 89.21 38.37 94.29 41.10 91.42
GradNorm 39.15 91.80 54.04 86.93 51.88 86.05 42.49 91.65 46.89 89.11 38.37 91.79 41.40 91.82
KNN10 31.63 94.25 46.52 90.98 46.77 90.49 40.83 92.79 41.44 92.13 24.42 95.95 30.30 95.66
KNN20 32.03 94.11 46.65 90.89 47.01 90.32 41.60 92.63 41.82 91.99 26.74 95.76 31.80 95.44
KNN50 34.39 93.75 49.34 90.46 49.36 89.94 44.52 92.23 44.40 91.60 33.72 95.33 33.20 95.38
KNN100 36.15 93.47 51.27 90.19 51.36 89.65 46.63 91.99 46.35 91.32 33.72 95.10 35.10 95.16

Pre-train on 10% IIT-CDIP− (no fine-tune)

–

KNN10 90.95 72.30 94.66 65.49 90.94 72.38 94.40 67.32 92.74 69.37 48.84 91.56 56.00 75.08
KNN20 91.59 70.54 94.98 63.91 91.66 70.74 94.81 65.95 93.26 67.78 53.49 90.41 57.60 73.51
KNN50 93.07 67.76 95.54 61.24 92.78 68.27 95.25 64.01 94.16 65.32 55.81 88.37 58.50 71.06
KNN100 93.55 65.41 95.90 59.13 93.10 66.19 95.54 62.41 94.52 63.28 67.44 86.44 60.20 69.09

Pre-train on 20% IIT-CDIP− → fine-tune on RVL-CDIP ID data

La
yo

ut
LM

v1
B

as
e

(2
0%

)

95.84

MSP 49.20 76.78 61.51 70.13 62.37 69.49 55.52 73.64 57.15 72.51 50.00 77.99 50.70 75.90
MaxLogit 41.03 91.57 54.00 88.45 56.42 85.70 47.00 90.19 49.61 88.98 38.37 93.62 41.80 90.56
Energy 40.95 91.60 53.76 88.47 56.19 85.72 46.79 90.22 49.42 89.00 38.37 93.65 41.70 90.59
GradNorm 37.15 91.89 54.16 84.99 53.03 86.28 43.95 90.94 47.07 88.52 40.70 90.41 42.40 90.91
KNN10 31.63 94.17 47.69 90.29 47.49 90.50 40.54 92.92 41.84 91.97 31.40 95.65 34.50 95.15
KNN20 32.55 94.03 47.89 90.22 48.32 90.34 40.91 92.76 42.42 91.84 33.72 95.45 35.40 94.97
KNN50 35.71 93.67 49.74 89.82 51.04 89.99 44.12 92.39 45.15 91.47 36.05 95.01 36.20 94.92
KNN100 36.75 93.38 50.30 89.60 51.68 89.71 44.97 92.17 45.92 91.22 36.05 94.73 36.50 94.71

Pre-train on 20% IIT-CDIP− (no fine-tune)

–

KNN10 90.39 75.25 79.59 79.43 93.14 72.41 97.12 66.99 90.06 73.52 50.00 91.36 24.70 96.34
KNN20 90.63 73.75 80.47 78.51 93.81 70.58 97.16 65.54 90.52 72.10 55.81 89.91 26.90 95.94
KNN50 91.67 71.19 82.56 76.90 94.45 67.82 97.36 62.98 91.51 69.72 67.44 87.29 29.10 95.31
KNN100 91.95 69.19 83.73 75.55 95.33 65.37 97.36 60.84 92.09 67.74 74.42 84.78 30.30 94.75

Pre-train on 40% IIT-CDIP−→ fine-tune on RVL-CDIP ID data

La
yo

ut
LM

v1
B

as
e

(4
0%

)

96.01

MSP 51.76 75.76 62.39 69.63 63.37 68.75 54.22 74.03 57.94 72.04 55.81 71.69 42.50 80.56
MaxLogit 42.03 91.29 54.24 89.47 57.30 84.44 45.66 90.02 49.81 88.80 52.33 93.08 33.00 92.89
Energy 41.87 91.31 54.20 89.49 57.26 84.47 45.50 90.05 49.71 88.83 52.33 93.13 32.50 92.92
GradNorm 38.19 91.66 53.64 86.85 55.03 85.66 43.18 91.45 47.51 88.90 52.33 92.39 34.60 92.95
KNN10 31.47 94.43 47.13 90.63 48.20 90.45 38.11 93.30 41.23 92.20 27.91 95.78 24.70 96.09
KNN20 32.59 94.29 47.61 90.55 49.60 90.27 39.25 93.14 42.26 92.06 32.56 95.60 25.50 95.95
KNN50 34.87 93.93 49.50 90.10 52.11 89.87 42.29 92.75 44.69 91.66 38.37 95.16 26.40 95.95
KNN100 36.55 93.65 50.38 89.82 53.55 89.57 43.71 92.51 46.05 91.39 43.02 94.89 27.70 95.77

Pre-train on 40% IIT-CDIP−(no fine-tune)

–

KNN10 87.07 80.44 71.76 83.72 86.75 82.31 96.10 76.36 85.42 80.71 75.58 84.96 5.90 98.24
KNN20 88.95 79.03 74.93 82.31 88.99 81.11 96.71 75.01 87.40 79.36 80.23 82.56 7.20 97.93
KNN50 91.47 77.23 80.39 79.90 91.78 79.75 97.40 72.60 90.26 77.37 87.21 78.19 9.00 97.92
KNN100 90.75 75.27 84.77 77.48 91.74 78.31 97.16 70.26 91.10 75.33 89.53 74.11 14.20 97.49

Pre-train on 100% IIT-CDIP−→ fine-tune on RVL-CDIP ID data

La
yo

ut
LM

v1
B

as
e

(1
00

%
)

96.38

MSP 43.43 76.12 57.21 69.16 58.38 68.56 46.14 74.76 51.29 72.15 38.37 78.67 28.30 83.78
MaxLogit 35.19 91.29 50.22 88.98 53.19 84.54 39.98 90.71 44.64 88.88 24.42 96.39 21.40 95.57
Energy 35.23 91.32 50.22 89.00 53.19 84.55 39.98 90.73 44.65 88.90 24.42 96.44 21.40 95.58
GradNorm 30.30 92.54 48.61 88.18 48.96 86.58 36.16 92.63 41.01 89.98 19.77 96.71 19.20 96.35
KNN10 26.50 94.95 43.47 91.69 45.09 90.95 34.09 93.86 37.29 92.86 19.77 97.39 17.80 96.37
KNN20 27.22 94.83 44.07 91.58 45.41 90.79 34.62 93.71 37.83 92.73 19.77 97.22 18.40 96.26
KNN50 29.46 94.49 46.28 91.12 47.69 90.45 37.50 93.33 40.23 92.35 17.44 97.04 18.70 96.80
KNN100 32.15 94.26 48.17 90.85 50.64 90.21 40.38 93.12 42.83 92.11 19.77 96.88 20.70 96.74

Pre-train on 100% IIT-CDIP− (no fine-tune)

–

KNN10 78.74 81.67 74.45 80.86 80.53 83.71 95.01 77.33 82.18 80.89 38.37 94.62 17.70 96.12
KNN20 82.39 80.13 77.86 79.31 83.48 82.75 95.45 75.93 84.80 79.53 44.19 93.42 14.60 96.13
KNN50 86.03 77.65 82.80 76.60 86.91 81.30 96.10 73.07 87.96 77.16 54.65 91.09 9.60 97.21
KNN100 89.11 75.51 88.03 74.08 90.62 79.78 96.71 70.43 91.12 74.95 66.28 88.50 18.00 96.82
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Table G.6: OOD detection performance for document classification.
Spatial-RoBERTaBase (Pre) or SRBase (Pre) denotes applying the spatial-
aware adapter in the word embedding layer. Spatial-RoBERTaBase (Post)
or SRBase (Post) denotes applying the spatial-aware adaptor at the output
layer.

ID Method
OOD Dataset (In-domain) OOD Dataset (Out-domain)

Acc
Sci. Report Presentation Form Letter Average Sci. Poster Receipt

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
Fine-tune on RVL-CDIP (ID)

R
oB

ER
Ta

B
as

e

90.19

MSP 91.19 73.70 90.84 73.49 91.82 71.53 91.03 72.35 91.22 72.77 93.02 80.94 97.60 74.59
MaxLogit 96.88 79.04 96.87 79.38 98.04 75.85 98.54 77.45 97.58 77.93 100.00 82.76 99.40 79.99
Energy 97.48 78.96 97.23 79.31 98.40 75.71 99.07 77.25 98.04 77.81 100.00 82.71 99.20 80.06
KNN10 53.20 88.94 58.50 88.62 61.37 86.25 63.72 88.29 59.20 88.02 22.09 96.52 68.60 92.47
KNN20 53.44 88.81 58.90 88.50 61.65 86.07 63.60 88.15 59.40 87.88 27.91 96.38 71.70 92.02
KNN50 53.84 88.52 59.42 88.42 62.01 85.81 64.16 87.80 59.86 87.64 32.56 96.07 74.30 91.37
KNN100 55.56 88.10 60.67 88.20 63.69 85.41 64.77 87.42 61.17 87.28 34.88 95.67 76.50 90.81

No fine-tune

–

KNN10 93.11 63.52 88.15 66.34 94.57 66.92 98.42 53.37 93.56 62.54 25.58 95.99 86.00 72.99
KNN20 92.99 63.18 88.39 65.78 94.57 66.08 98.42 52.10 93.59 61.78 26.74 95.71 87.30 70.44
KNN50 92.67 62.41 89.31 64.72 94.17 64.74 98.34 50.07 93.62 60.48 26.74 95.02 90.80 66.04
KNN100 92.67 61.57 89.59 63.57 94.01 63.45 98.17 48.33 93.61 59.23 29.07 94.34 92.80 61.62

Pre-train on IIT-CDIP → fine-tune on RVL-CDIP (ID)

SR
B

as
e

(P
re

) 97.11

MSP 46.80 74.52 54.64 70.58 56.26 69.72 54.30 70.74 53.00 71.39 44.19 75.79 57.20 69.23
MaxLogit 39.43 88.64 46.48 89.92 49.96 85.75 48.30 87.66 46.04 87.99 33.72 93.42 50.60 88.70
Energy 39.43 88.66 46.48 89.94 50.00 85.76 48.30 87.67 46.05 88.01 33.72 93.45 50.60 88.71
KNN10 31.91 94.41 42.19 92.65 46.65 89.31 42.09 92.65 40.71 92.26 10.47 97.45 52.10 92.93
KNN20 32.31 94.28 42.59 92.64 47.01 89.21 43.43 92.53 41.34 92.16 11.63 97.31 53.30 92.80
KNN50 34.39 93.99 43.83 92.36 49.04 88.93 45.41 92.19 43.17 91.87 12.79 97.01 53.10 92.51
KNN100 35.15 93.76 44.27 92.15 49.48 88.65 46.14 91.97 43.76 91.63 15.12 96.81 49.70 92.44

Pre-train on IIT-CDIP (no fine-tune)

–

KNN10 78.82 78.92 79.99 73.89 77.69 81.32 91.48 76.52 82.00 77.66 10.47 98.08 87.30 80.89
KNN20 79.74 77.95 82.64 72.17 79.81 80.40 92.13 75.11 83.58 76.41 16.28 97.60 92.10 76.94
KNN50 80.42 76.87 85.13 69.62 82.12 78.93 92.98 73.01 85.16 74.61 22.09 96.66 95.20 70.53
KNN100 81.43 75.70 86.90 67.19 83.40 77.12 93.38 71.07 86.28 72.77 27.91 95.86 96.60 64.56

SR
B

as
e

(P
os

t)

Fine-tune on RVL-CDIP (ID)

97.10

MSP 58.05 78.37 76.46 65.44 65.80 75.00 61.81 77.59 65.53 74.10 54.65 81.65 93.50 52.85
MaxLogit 49.20 89.82 72.36 80.28 57.82 87.28 52.52 90.04 57.98 86.86 34.88 94.88 91.60 73.37
Energy 47.56 89.87 71.96 80.30 56.58 87.32 51.18 90.10 56.82 86.90 34.88 95.04 91.30 73.39
KNN10 37.43 93.37 64.08 86.83 49.44 89.82 46.92 92.17 49.47 90.55 26.74 96.38 90.10 80.21
KNN20 38.27 93.25 65.33 86.52 50.80 89.66 48.09 91.99 50.62 90.35 26.74 96.23 91.20 79.57
KNN50 40.43 92.98 67.38 86.02 52.83 89.38 50.65 91.58 52.82 89.99 26.74 95.89 92.10 78.48
KNN100 41.99 92.77 67.94 85.62 53.87 89.17 51.22 91.33 53.76 89.72 29.07 95.67 92.60 77.68

Pre-train on IIT-CDIP→ fine-tune on RVL-CDIP (ID)

SR
La

rg
e

(P
re

) 97.37

MSP 62.37 67.82 71.27 63.36 72.87 62.54 70.25 63.84 69.19 64.39 76.74 60.61 67.00 65.48
MaxLogit 33.39 90.15 39.25 89.87 42.30 88.12 37.05 91.66 38.00 89.95 31.40 92.41 27.70 94.23
Energy 33.39 90.16 39.25 89.88 42.30 88.13 37.05 91.66 38.00 89.96 31.40 92.42 27.70 94.22
KNN10 28.18 94.47 42.43 93.01 37.43 91.74 31.13 94.72 34.79 93.49 25.58 96.24 18.60 96.28
KNN20 28.78 94.32 42.43 92.90 38.07 91.58 32.02 94.55 35.33 93.34 25.58 96.02 18.60 96.33
KNN50 30.22 93.95 43.71 92.69 40.06 91.26 34.54 94.10 37.13 93.00 26.74 95.52 21.40 96.14
KNN100 30.86 93.71 44.11 92.56 40.66 91.05 35.47 93.88 37.78 92.80 26.74 95.22 21.70 96.11

Pre-train on IIT-CDIP (no fine-tune)

–

KNN10 68.49 80.43 88.23 69.83 71.75 83.11 88.11 73.32 79.14 76.67 75.58 84.36 49.80 92.02
KNN20 71.74 78.77 90.24 67.41 75.66 81.38 89.04 71.14 81.67 74.68 81.40 81.55 62.20 90.29
KNN50 75.46 76.49 92.81 63.82 80.17 78.72 90.42 67.84 84.72 71.72 82.56 77.15 78.20 87.49
KNN100 77.62 74.59 94.42 60.94 83.16 76.25 91.80 65.30 86.75 69.27 84.88 73.34 88.20 84.96
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Table G.7: OOD detection performance for document classification with
the different number of pre-training data from IIT-CDIP.

ID Method
OOD Dataset (In-domain) OOD Dataset (Out-domain)

Acc
Sci. Report Presentation Form Letter Average Sci. Poster Receipt

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
Pre-train on 10% IIT-CDIP→ fine-tune on RVL-CDIP (ID)

V
iT

B
as

e
(1

0%
) 94.89

MSP 55.80 88.37 48.61 91.38 63.93 83.83 55.52 88.55 55.96 88.03 52.05 89.60 34.10 95.04
MaxLogit 50.36 91.51 37.77 94.30 62.37 87.97 53.69 92.11 51.05 91.47 38.36 94.24 28.60 96.06
Energy 50.56 91.48 37.08 94.33 63.49 87.89 55.19 92.00 51.58 91.42 38.36 94.29 29.40 95.96
GradNorm 55.56 79.75 45.96 84.79 66.92 74.07 58.44 81.07 56.72 79.92 47.95 82.04 34.90 91.68
KNN10 50.40 92.60 43.51 93.92 51.60 90.54 74.47 88.87 55.00 91.48 20.55 97.19 9.20 98.21
KNN20 49.80 92.70 40.38 94.43 53.39 90.26 74.72 88.77 54.57 91.54 23.29 96.98 10.40 98.05
KNN50 46.72 92.89 34.27 95.24 56.07 89.92 74.55 88.45 52.90 91.62 27.40 96.56 12.80 97.80
KNN100 45.48 92.89 29.33 95.67 57.62 89.56 75.04 88.25 51.87 91.59 30.14 96.21 15.00 97.57

Pre-train on IIT-CDIP (no fine-tune)

–

KNN10 98.92 43.08 97.67 49.00 99.52 54.41 99.35 40.26 98.86 46.69 93.15 92.51 6.90 98.06
KNN20 98.88 42.47 97.75 48.57 99.52 53.75 99.35 39.56 98.88 46.09 94.52 92.24 8.60 97.91
KNN50 98.80 41.70 97.83 48.04 99.52 52.91 99.35 38.62 98.88 45.32 95.89 91.80 10.60 97.66
KNN100 98.76 41.20 97.79 47.70 99.48 52.32 99.35 38.01 98.84 44.81 98.63 91.31 14.50 97.41

Pre-train on 20% IIT-CDIP→ fine-tune on RVL-CDIP (ID)

V
iT

B
as

e
(2

0%
) 94.62

MSP 54.36 89.01 51.63 91.31 64.57 85.23 60.51 88.67 57.77 88.56 60.27 89.34 44.20 93.73
MaxLogit 44.32 92.16 38.21 94.18 64.92 87.63 58.56 91.33 51.50 91.32 45.21 92.63 39.70 94.36
Energy 44.36 92.17 37.89 94.24 66.56 87.51 60.39 91.22 52.30 91.28 46.58 92.62 41.50 94.18
GradNorm 90.51 54.92 92.04 51.67 94.29 45.41 98.13 32.36 93.74 46.09 95.89 40.44 89.70 59.01
KNN10 52.20 92.58 45.84 93.73 53.79 90.75 77.84 87.02 57.42 91.02 17.81 97.33 16.90 97.40
KNN20 51.60 92.66 43.55 94.15 55.63 90.46 78.04 86.79 57.20 91.02 19.18 97.06 19.40 97.11
KNN50 50.12 92.86 39.98 94.82 58.02 90.18 78.77 86.54 56.72 91.10 19.18 96.63 23.10 96.68
KNN100 48.04 92.91 34.75 95.28 60.38 89.88 78.98 86.42 55.54 91.12 20.55 96.27 26.20 96.35

Pre-train on IIT-CDIP (no fine-tune)

–

KNN10 98.16 41.13 97.51 47.12 99.48 53.05 99.31 38.79 98.62 45.02 94.52 91.80 8.00 97.41
KNN20 98.12 40.71 97.51 46.79 99.48 52.52 99.31 38.31 98.60 44.58 94.52 91.48 8.70 97.25
KNN50 98.04 40.10 97.55 46.31 99.48 51.84 99.39 37.63 98.62 43.97 95.89 91.01 11.50 96.99
KNN100 98.00 39.74 97.55 45.98 99.48 51.34 99.39 37.26 98.60 43.58 97.26 90.55 14.60 96.70

Pre-train on 40% IIT-CDIP→ fine-tune on RVL-CDIP (ID)

V
iT

B
as

e
(4

0%
) 94.63

MSP 55.48 88.65 52.27 91.54 64.49 85.52 58.08 89.20 57.58 88.73 67.12 84.62 45.80 93.82
MaxLogit 47.12 91.74 40.06 94.09 61.05 88.68 56.57 92.01 51.20 91.63 69.86 89.81 32.90 95.46
Energy 47.12 91.73 39.94 94.10 62.33 88.62 58.60 91.88 52.00 91.58 69.86 89.65 32.70 95.44
GradNorm 47.00 85.76 41.90 89.64 60.69 81.37 53.73 87.06 50.83 85.96 64.38 81.12 34.00 92.93
KNN10 53.28 92.13 48.33 92.99 46.45 92.20 75.61 88.87 55.92 91.55 34.25 95.53 6.80 98.56
KNN20 52.76 92.24 45.88 93.57 48.12 91.95 74.84 88.75 55.40 91.63 32.88 95.21 7.80 98.36
KNN50 51.28 92.52 40.94 94.51 50.52 91.70 75.08 88.46 54.46 91.80 35.62 94.67 10.90 98.04
KNN100 50.32 92.62 36.16 95.12 53.35 91.36 75.93 88.24 53.94 91.84 39.73 94.25 13.60 97.76

Pre-train on IIT-CDIP (no fine-tune)

–

KNN10 97.56 40.60 97.03 46.28 99.24 53.76 99.15 39.62 98.24 45.06 82.19 92.02 1.00 99.59
KNN20 97.56 40.00 96.95 45.86 99.24 53.18 99.15 39.12 98.22 44.54 82.19 91.63 1.00 99.55
KNN50 97.56 39.24 96.99 45.20 99.24 52.39 99.15 38.49 98.24 43.83 86.30 91.07 1.00 99.50
KNN100 97.60 38.78 97.03 44.79 99.24 51.76 99.15 38.15 98.26 43.37 90.41 90.67 1.20 99.45

Pre-train on 100% IIT-CDIP→ fine-tune on RVL-CDIP (ID)

V
iT

B
as

e
(1

00
%

)

94.79

MSP 54.28 88.80 49.14 91.80 64.60 84.45 58.85 88.78 56.72 88.46 61.64 89.44 41.00 94.27
MaxLogit 44.96 92.13 38.01 94.52 63.97 87.97 56.49 91.81 50.86 91.61 68.49 90.65 34.60 95.26
Energy 45.72 92.11 38.01 94.55 65.84 87.86 57.91 91.70 51.87 91.56 72.60 90.41 34.80 95.14
GradNorm 48.72 84.21 44.36 87.50 63.49 78.07 56.25 84.79 53.20 83.64 60.27 82.96 35.60 91.24
KNN10 45.16 93.14 39.13 94.62 51.68 90.85 73.58 88.81 52.39 91.86 50.68 93.09 10.40 98.04
KNN20 44.88 93.14 36.64 95.04 53.35 90.59 74.27 88.67 52.28 91.86 50.68 92.67 12.00 97.81
KNN50 43.67 93.19 31.18 95.60 56.74 90.29 75.28 88.49 51.72 91.89 57.53 92.23 15.60 97.45
KNN100 43.63 93.15 27.52 95.94 58.74 90.02 76.18 88.38 51.52 91.87 61.64 92.01 18.90 97.18

Pre-train on IIT-CDIP (no fine-tune)

–

KNN10 97.04 42.35 93.97 50.17 97.41 52.68 98.01 43.19 96.61 47.10 12.33 97.47 3.10 98.38
KNN20 97.16 41.99 94.01 49.96 97.81 52.01 98.09 42.73 96.77 46.67 15.07 96.95 3.00 98.31
KNN50 96.96 41.62 94.34 49.56 98.00 51.20 98.05 42.24 96.84 46.16 21.92 96.08 2.70 98.18
KNN100 97.00 41.48 94.90 49.31 98.12 50.65 98.13 42.03 97.04 45.87 36.99 95.29 2.30 98.27
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Table G.8: OOD detection performance for document classification.
Longformer4096 denotes the original model adopted from the Hugging-
face model hub. Longformer4096 (+) denotes the additional pre-training
on IIT-CDIP.

ID Method
OOD Dataset (In-domain) OOD Dataset (Out-domain)

Acc
Sci. Report Presentation Form Letter Average Sci. Poster Receipt

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
Fine-tune on RVL-CDIP (ID)

Lo
ng

fo
rm

er
40

96 90.71

MSP 95.00 64.32 95.62 62.17 95.89 60.53 93.95 66.89 95.12 63.48 88.37 77.50 98.60 54.72
MaxLogit 97.12 72.84 97.07 75.22 98.24 70.39 95.82 77.57 97.06 74.00 90.70 86.62 99.60 68.10
Energy 97.48 72.82 97.35 75.21 98.36 70.37 96.59 77.56 97.44 73.99 91.86 86.63 99.80 68.08
KNN10 58.45 88.21 65.65 86.88 67.80 83.99 56.78 89.53 62.17 87.15 27.91 96.01 82.10 86.31
KNN20 58.97 88.04 65.57 86.60 68.12 83.80 57.35 89.34 62.50 86.94 29.07 95.82 82.60 85.93
KNN50 60.25 87.64 66.57 86.25 68.91 83.41 58.81 88.96 63.64 86.56 30.23 95.46 82.70 85.27
KNN100 61.97 87.19 68.14 85.81 70.15 82.95 60.47 88.60 65.18 86.14 34.88 95.04 82.80 84.75

No fine-tune

–

KNN10 98.04 55.45 97.63 59.97 98.76 51.75 98.13 53.16 98.14 55.08 70.93 88.69 100.00 64.97
KNN20 98.12 55.19 97.67 59.64 98.80 51.27 98.17 52.71 98.19 54.70 70.93 88.51 100.00 64.08
KNN50 98.00 54.82 97.63 59.13 98.80 50.57 98.30 52.07 98.18 54.15 73.26 88.29 100.00 62.82
KNN100 97.92 54.48 97.67 58.62 98.84 50.00 98.34 51.62 98.19 53.68 74.42 88.14 100.00 61.70

Pre-train on IIT-CDIP→ fine-tune on RVL-CDIP (ID)

Lo
ng

fo
rm

er
40

96
(+

)

91.13

MSP 95.20 64.08 95.62 61.38 96.05 59.47 94.48 63.13 95.34 62.02 90.70 67.26 98.00 55.52
MaxLogit 96.96 75.41 96.54 76.03 97.89 70.15 96.71 74.56 97.02 74.04 100.00 78.65 99.70 72.88
Energy 97.28 75.40 96.54 76.03 98.28 70.14 97.16 74.55 97.32 74.03 100.00 78.59 99.70 72.86
KNN10 58.73 89.25 66.21 87.57 72.03 83.76 63.68 88.72 65.16 87.32 48.84 94.78 86.40 87.84
KNN20 58.61 89.18 65.97 87.45 71.67 83.69 63.39 88.61 64.91 87.23 48.84 94.62 85.30 87.70
KNN50 61.17 88.96 66.97 87.29 72.83 83.47 65.83 88.33 66.70 87.01 55.81 94.25 85.20 87.39
KNN100 61.73 88.79 66.93 87.11 73.30 83.24 66.15 88.15 67.03 86.82 55.81 94.00 84.70 87.21

Pre-train on IIT-CDIP (no fine-tune)

–

KNN10 95.48 61.40 98.07 53.66 97.73 55.55 98.66 48.70 97.49 54.83 81.40 91.12 97.40 46.27
KNN20 95.56 60.92 97.95 52.95 97.49 54.97 98.50 48.21 97.38 54.26 84.88 90.62 97.50 45.55
KNN50 95.60 59.94 97.95 51.77 97.41 53.97 98.62 47.29 97.40 53.24 87.21 89.95 98.20 44.18
KNN100 95.60 59.04 97.99 50.74 97.21 52.99 98.58 46.51 97.34 52.32 88.37 89.52 98.50 43.09
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Table G.9: OOD detection performance for document classification. All
models are pre-trained on ImageNet.

ID Method
OOD Dataset (In-domain) OOD Dataset (Out-domain)

Acc
Sci. Report Presentation Form Letter Average Sci. Poster Receipt

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
Pre-train on ImageNet→ fine-tune on RVL-CDIP (ID)

R
es

N
et

-5
0

91.12

MSP 64.49 87.87 55.89 90.94 66.60 87.31 77.88 80.87 66.22 86.75 51.16 92.76 63.10 90.36
MaxLogit 64.89 88.59 47.97 92.81 65.40 87.52 77.56 81.87 63.96 87.70 41.86 94.62 54.00 93.29
Energy 67.09 88.30 47.81 92.86 66.68 87.24 78.53 81.75 65.03 87.54 39.53 94.73 48.50 93.68
KNN10 73.38 86.82 67.98 87.46 71.31 87.84 92.90 77.74 76.39 84.96 6.98 99.12 5.20 98.98
KNN20 74.90 86.41 66.29 87.79 73.82 87.21 93.95 76.51 77.24 84.48 6.98 98.96 5.50 98.85
KNN50 76.66 86.04 66.41 88.48 78.29 86.39 95.50 74.76 79.22 83.92 5.81 98.68 5.90 98.70
KNN100 77.54 85.61 65.41 88.99 82.16 85.43 96.23 73.37 80.33 83.35 6.98 98.34 6.30 98.51

Pre-train on ImageNet

–

KNN10 96.96 51.14 94.62 51.75 98.76 53.84 99.59 37.60 97.48 48.58 83.56 85.00 20.80 97.00
KNN20 96.96 50.37 94.34 51.54 98.92 52.98 99.59 36.60 97.45 47.87 83.56 84.49 22.70 96.71
KNN50 96.92 49.29 94.29 51.30 99.00 51.84 99.59 35.15 97.45 46.90 83.56 84.03 26.70 96.21
KNN100 97.12 48.60 94.54 51.25 99.16 51.11 99.55 34.36 97.59 46.33 82.19 83.31 29.40 95.67

Pre-train on ImageNet→ fine-tune on RVL-CDIP (ID)

Sw
in

B
as

e

95.74

MSP 47.64 88.09 49.90 88.11 58.22 83.14 50.28 88.90 51.51 87.06 49.32 91.31 36.50 93.63
MaxLogit 42.39 93.11 42.47 93.45 58.62 88.79 45.90 93.18 47.34 92.13 50.68 92.50 32.20 95.65
Energy 43.15 93.05 42.95 93.40 59.02 88.70 46.71 93.07 47.96 92.06 52.05 92.38 33.60 95.49
KNN10 49.44 92.82 46.73 92.87 42.90 92.57 72.69 88.45 52.94 91.68 16.44 96.73 6.10 98.30
KNN20 48.84 92.95 43.27 93.51 44.53 92.32 72.28 88.35 52.23 91.78 17.81 96.52 7.40 98.10
KNN50 46.44 93.26 39.25 94.57 47.41 92.09 73.34 87.87 51.61 91.95 26.03 96.15 8.60 97.80
KNN100 43.76 93.42 35.03 95.29 50.08 91.72 75.77 87.42 51.16 91.96 28.77 95.94 11.30 97.55

Pre-train on ImageNet

–

KNN10 98.56 52.75 95.06 55.14 99.36 58.85 99.80 41.86 98.20 52.15 65.75 93.26 2.10 99.35
KNN20 98.44 51.86 95.18 54.72 99.32 57.88 99.80 40.66 98.18 51.28 68.49 92.52 2.60 99.22
KNN50 98.52 50.69 95.38 54.13 99.16 56.61 99.76 39.01 98.20 50.11 78.08 91.14 3.40 98.99
KNN100 98.72 49.96 95.66 53.80 99.16 55.84 99.76 38.16 98.32 49.44 79.45 89.89 4.30 98.77

Pre-train on ImageNet→ fine-tune on RVL-CDIP (ID)

V
iT

B
as

e

94.38

MSP 56.81 89.14 52.19 91.80 67.48 84.26 59.90 88.77 59.10 88.49 47.67 92.98 59.50 91.99
MaxLogit 50.76 91.37 44.60 93.75 68.04 86.94 55.15 91.81 54.64 90.97 40.70 94.20 52.40 93.16
Energy 51.16 91.31 44.52 93.75 69.43 86.81 56.09 91.77 55.30 90.91 38.37 94.11 53.20 93.11
KNN10 62.57 90.12 57.73 90.91 53.67 90.36 84.50 86.19 64.62 89.40 12.79 97.96 13.00 97.92
KNN20 63.01 90.24 56.01 91.51 55.03 90.02 84.38 86.01 64.61 89.44 15.12 97.76 14.90 97.67
KNN50 61.97 90.62 53.23 92.62 58.26 89.57 84.25 85.64 64.43 89.61 16.28 97.38 19.80 97.24
KNN100 60.29 90.85 49.70 93.53 60.38 89.07 84.01 85.43 63.60 89.72 16.28 97.05 23.60 96.82

Pre-train on ImageNet

–

KNN10 98.48 52.15 95.02 56.94 99.48 53.77 99.47 38.90 98.11 50.44 93.15 90.27 20.40 97.13
KNN20 98.48 51.41 95.06 56.61 99.44 52.92 99.55 37.61 98.13 49.64 94.52 89.44 22.60 96.80
KNN50 98.32 50.43 94.86 56.21 99.40 51.86 99.59 35.82 98.04 48.58 97.26 88.23 26.60 96.25
KNN100 98.40 49.76 95.06 55.90 99.44 51.15 99.59 34.59 98.12 47.85 98.63 87.24 31.20 95.76



299

Table G.10: OOD detection performance for document classification (se-
lect OOD categories achieve the best performance across most of the mod-
els with different modalities).

ID Method
OOD Dataset (In-domain) OOD Dataset (Out-domain)

Acc
Email Resume File folder Sci. publication Average Sci. Poster Receipt

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
Pre-train on pure-text data→ fine-tune on RVL-CDIP (ID)

R
oB

ER
Ta

B
as

e 86.13

MSP 96.22 60.38 90.67 71.72 93.82 59.47 93.86 65.51 93.64 64.27 91.86 70.57 93.00 69.99
MaxLogit 99.21 66.57 95.80 73.66 95.47 66.81 97.09 65.63 96.89 68.17 94.19 77.17 94.60 74.69
Energy 99.60 66.53 96.64 73.57 95.14 66.82 97.21 65.35 97.15 68.07 94.19 77.44 95.60 74.90
KNN10 83.70 82.77 69.02 84.28 88.32 74.06 86.11 74.02 81.79 78.78 43.02 92.74 72.00 88.87
KNN20 84.50 82.35 69.06 84.21 88.20 73.71 86.72 74.02 82.12 78.57 48.84 92.38 73.80 88.31
KNN50 84.98 81.57 68.86 84.06 88.08 73.01 87.08 73.94 82.25 78.14 54.65 91.92 75.40 87.44
KNN100 86.25 80.88 70.26 83.80 88.28 72.40 87.44 73.89 83.06 77.74 58.14 91.50 78.20 86.68

Pre-train on pure-text data

–

KNN10 86.09 75.63 95.12 58.62 97.71 59.75 98.95 50.54 94.47 61.14 10.47 98.46 89.80 63.01
KNN20 86.29 74.92 95.00 58.14 97.71 58.88 99.03 49.49 94.51 60.36 12.79 98.35 90.80 60.59
KNN50 87.32 73.55 94.64 57.53 97.83 57.56 99.15 48.11 94.73 59.19 12.79 98.11 93.30 56.61
KNN100 89.27 72.48 94.28 57.12 97.99 56.52 99.11 47.37 95.16 58.37 11.63 97.89 94.30 52.98

Pre-train on pure-text data→ fine-tune on RVL-CDIP (ID)

Lo
ng

fo
rm

er
40

96 88.34

MSP 96.90 60.55 96.20 59.14 96.31 55.72 97.82 55.12 96.81 57.63 95.35 80.44 99.60 52.82
MaxLogit 98.97 68.97 97.60 65.64 95.67 63.42 98.63 62.87 97.72 65.23 97.67 88.42 99.70 71.54
Energy 99.44 68.96 97.92 65.63 95.83 63.42 98.71 62.83 97.98 65.21 97.67 88.46 99.90 71.55
KNN10 68.28 88.72 69.62 83.36 78.17 85.08 90.88 74.98 76.74 83.04 16.28 96.90 81.60 86.94
KNN20 68.04 88.61 70.10 83.22 77.53 84.92 90.75 74.95 76.60 82.92 16.28 96.84 81.80 86.49
KNN50 69.28 88.29 70.98 82.92 78.29 84.46 90.96 74.82 77.38 82.62 19.77 96.59 83.40 85.71
KNN100 69.28 88.15 71.34 82.69 78.49 84.21 90.43 74.86 77.39 82.48 22.09 96.38 83.90 85.17

Pre-train on pure-text data

–

KNN10 97.42 47.77 95.72 50.09 97.67 46.58 99.52 38.61 97.58 45.76 45.35 93.92 100.00 63.03
KNN20 97.46 46.91 95.60 49.80 97.71 46.02 99.52 38.21 97.57 45.24 46.51 93.77 100.00 61.92
KNN50 97.58 45.68 95.56 49.45 97.75 45.19 99.52 37.72 97.60 44.51 50.00 93.60 100.00 60.35
KNN100 97.66 44.78 95.60 49.17 97.87 44.63 99.56 37.57 97.67 44.04 51.16 93.48 100.00 58.89

Pre-train on ImageNet→ fine-tune on RVL-CDIP (ID)

R
es

N
et

-5
0

85.25

MSP 60.53 87.26 69.53 87.00 27.86 95.13 94.05 75.79 62.99 86.30 91.78 74.40 27.80 95.47
MaxLogit 59.98 89.27 72.61 88.02 30.04 95.41 93.39 75.38 64.00 87.02 80.82 79.89 30.00 95.29
Energy 63.71 89.14 75.64 87.55 45.71 94.15 92.77 75.02 69.46 86.46 78.08 81.07 62.20 93.44
KNN10 72.46 85.68 85.69 85.30 68.62 76.01 96.15 55.35 80.73 75.59 36.99 94.56 2.20 99.37
KNN20 76.15 84.55 88.65 84.22 66.13 80.67 96.54 56.31 81.87 76.44 38.36 93.81 2.70 99.28
KNN50 80.37 82.61 92.00 82.49 60.98 86.77 96.93 59.06 82.57 77.73 47.95 92.42 3.80 99.11
KNN100 84.70 80.54 95.15 80.64 51.29 91.78 97.16 61.19 82.08 78.54 50.68 91.01 4.70 98.91

Pre-train on ImageNet

–

KNN10 99.72 40.94 99.65 21.52 52.47 91.03 98.33 45.40 87.54 49.72 84.93 84.38 20.40 97.12
KNN20 99.68 41.18 99.65 20.68 50.61 91.63 98.41 44.65 87.09 49.54 86.30 83.94 23.40 96.87
KNN50 99.64 41.58 99.65 19.48 46.97 92.36 98.37 43.49 86.16 49.23 84.93 83.70 26.90 96.43
KNN100 99.64 42.19 99.65 18.98 44.91 92.84 98.33 42.86 85.63 49.22 84.93 83.12 29.20 95.98

Pre-train on ImageNet→ fine-tune on RVL-CDIP (ID)

Sw
in

B
as

e

91.25

MSP 70.23 81.87 67.68 85.31 43.97 92.68 83.78 79.40 66.42 84.82 86.30 78.23 54.10 91.62
MaxLogit 54.73 87.04 46.51 92.30 17.25 96.51 90.86 74.11 52.34 87.49 82.19 83.20 34.40 94.82
Energy 54.05 87.11 44.38 92.49 16.38 96.63 91.29 73.59 51.53 87.46 84.93 83.07 33.80 94.82
KNN10 56.08 90.66 48.80 92.84 38.31 93.31 91.02 66.91 58.55 85.93 27.40 96.03 3.30 98.84
KNN20 54.61 90.95 49.98 92.68 27.58 95.24 91.44 68.54 55.90 86.85 26.03 96.35 4.00 98.76
KNN50 55.25 90.68 52.15 92.37 15.75 97.28 91.25 71.62 53.60 87.99 28.77 96.10 4.90 98.59
KNN100 56.20 90.31 54.75 92.17 9.14 98.00 91.13 75.11 52.80 88.90 30.14 95.77 6.50 98.35

Pre-train on ImageNet

–

KNN10 99.84 43.55 99.76 20.64 47.92 93.20 98.91 37.55 86.61 48.74 58.90 93.88 1.60 99.32
KNN20 99.84 43.78 99.76 19.61 44.76 93.61 98.91 37.01 85.82 48.50 65.75 93.42 2.10 99.20
KNN50 99.84 44.47 99.80 18.36 41.31 94.14 99.03 36.45 85.00 48.36 72.60 92.69 2.60 99.00
KNN100 99.88 45.26 99.80 17.92 39.97 94.39 99.03 36.71 84.67 48.57 79.45 91.97 3.70 98.81

Pre-train on ImageNet→ fine-tune on RVL-CDIP (ID)

V
iT

B
as

e

89.97

MSP 61.25 85.84 66.57 85.04 40.44 93.10 85.84 81.83 63.52 86.45 73.97 80.66 60.30 90.41
MaxLogit 53.02 90.37 55.77 88.86 19.91 96.25 92.38 79.69 55.27 88.79 76.71 85.16 50.60 93.12
Energy 51.79 90.49 55.07 89.03 17.53 96.53 92.69 79.20 54.27 88.81 79.45 85.01 50.10 93.20
KNN10 54.13 91.18 52.86 91.18 58.49 87.46 92.88 65.98 64.59 83.95 42.47 95.07 11.00 97.94
KNN20 54.21 91.18 53.17 90.99 50.61 89.35 93.04 67.52 62.76 84.76 43.84 94.98 13.10 97.62
KNN50 54.53 91.05 53.33 90.79 41.95 92.82 93.00 72.06 60.70 86.68 42.47 94.74 17.30 97.12
KNN100 54.65 90.81 54.12 90.56 30.79 95.78 93.04 75.39 58.15 88.14 45.21 94.24 22.00 96.58

Pre-train on ImageNet

–

KNN10 99.80 46.46 99.68 26.50 58.65 90.61 98.72 46.40 89.21 52.49 87.67 91.39 19.90 97.25
KNN20 99.80 46.02 99.65 25.69 57.30 91.01 98.72 46.46 88.87 52.30 90.41 90.87 21.70 97.01
KNN50 99.80 45.48 99.61 24.76 55.16 91.52 98.76 46.69 88.33 52.11 94.52 89.99 24.30 96.62
KNN100 99.80 45.33 99.65 24.43 54.81 91.90 98.72 47.10 88.24 52.19 95.89 89.31 28.80 96.27
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Table G.11: OOD detection performance for document classification (ran-
domly select four categories as OOD).

ID Method
OOD Dataset (In-domain) OOD Dataset (Out-domain)

Acc
Letter Handwritten Advertisement Memo Average Sci. Poster Receipt

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
Pre-train on pure-text data→ fine-tune on RVL-CDIP (ID)

R
oB

ER
Ta

B
as

e 88.86

MSP 70.22 79.21 50.14 87.24 84.64 67.80 91.42 57.99 74.10 73.06 95.35 59.75 94.30 55.12
MaxLogit 66.04 87.51 39.65 92.53 86.47 77.03 91.67 71.84 70.96 82.23 100.00 77.89 96.80 71.96
Energy 66.20 87.57 38.19 92.59 87.35 77.03 91.67 71.89 70.85 82.27 100.00 77.92 96.80 71.96
KNN10 62.62 80.19 60.98 70.90 75.62 80.24 85.84 69.20 71.26 75.13 94.19 81.99 90.40 82.48
KNN20 63.18 80.10 60.07 71.17 75.90 80.03 85.72 68.88 71.22 75.04 94.19 81.75 91.20 81.89
KNN50 63.78 80.00 57.30 71.70 76.34 79.67 85.88 68.38 70.82 74.94 94.19 81.45 91.80 81.09
KNN100 64.77 79.98 54.33 71.94 77.37 79.32 86.08 67.80 70.64 74.76 94.19 81.20 91.90 80.47

Pre-train on pure-text data

–

KNN10 85.53 59.90 98.61 21.79 96.21 56.72 97.69 58.39 94.51 49.20 12.79 98.01 84.50 65.73
KNN20 85.45 59.27 98.73 21.19 96.21 55.63 97.90 57.05 94.57 48.28 12.79 97.91 86.10 63.57
KNN50 86.80 57.94 98.77 20.45 96.89 54.12 98.30 55.35 95.19 46.96 13.95 97.60 89.30 59.64
KNN100 88.47 56.71 98.81 19.97 96.81 52.89 98.18 53.93 95.57 45.88 13.95 97.38 91.10 55.17

Pre-train on pure-text data→ fine-tune on RVL-CDIP (ID)

Lo
ng

fo
rm

er
40

96 92.08

MSP 65.96 69.58 50.38 77.93 81.52 60.89 90.21 54.23 72.02 65.66 82.56 60.14 95.00 50.90
MaxLogit 62.19 87.35 44.64 89.79 79.97 78.84 88.39 68.08 68.80 81.02 80.23 84.19 94.30 77.36
Energy 61.27 87.35 43.61 89.81 79.13 78.85 88.15 68.08 68.04 81.02 80.23 84.19 94.30 77.37
KNN10 58.65 79.54 50.77 71.81 66.56 83.48 80.87 75.19 64.21 77.51 58.14 92.78 90.00 77.76
KNN20 57.81 79.43 51.40 71.72 67.00 83.35 81.15 74.86 64.34 77.34 58.14 92.57 89.70 77.12
KNN50 58.77 79.30 51.60 71.67 66.72 83.15 81.31 74.36 64.60 77.12 61.63 92.24 89.80 76.17
KNN100 61.39 79.16 52.75 71.61 67.84 82.93 81.76 73.91 65.94 76.90 62.79 91.99 89.80 75.29

Pre-train on pure-text data

–

KNN10 99.40 47.83 100.00 27.75 98.28 47.03 93.20 60.40 97.72 45.75 46.51 93.85 100.00 63.64
KNN20 99.44 47.33 100.00 27.48 98.32 46.49 93.24 60.22 97.75 45.38 48.84 93.70 100.00 62.79
KNN50 99.44 46.33 100.00 27.23 98.40 45.85 93.41 60.05 97.81 44.86 51.16 93.51 100.00 61.55
KNN100 99.44 45.67 100.00 27.31 98.44 45.23 93.53 59.90 97.85 44.53 52.33 93.40 100.00 60.31

Pre-train on ImageNet→ fine-tune on RVL-CDIP (ID)

R
es

N
et

-5
0

87.80

MSP 70.58 85.35 55.29 89.88 64.29 86.54 71.15 85.58 65.33 86.84 54.79 91.70 77.20 84.67
MaxLogit 64.25 87.46 53.59 90.72 49.70 90.60 64.45 88.71 58.00 89.37 36.99 95.13 78.90 86.86
Energy 62.66 87.65 58.33 90.33 46.00 91.26 63.56 89.05 57.64 89.57 32.88 95.69 83.00 87.05
KNN10 90.99 79.37 56.36 90.64 72.41 86.20 89.17 81.74 77.23 84.49 2.74 99.32 39.70 93.70
KNN20 92.17 78.00 47.47 92.61 68.27 88.42 90.85 80.23 74.69 84.82 2.74 99.25 43.80 93.08
KNN50 94.32 75.96 28.44 94.49 65.65 89.27 92.78 77.91 70.30 84.41 1.37 98.97 49.70 92.09
KNN100 95.58 74.02 27.21 95.07 60.44 89.78 94.22 75.63 69.36 83.62 2.74 98.67 53.80 91.10

Pre-train on ImageNet

–

KNN10 98.46 42.21 77.29 81.41 27.87 91.16 99.08 43.47 75.68 64.56 80.82 89.98 12.30 98.17
KNN20 98.66 41.00 76.78 81.70 29.22 92.27 99.08 42.29 75.94 64.32 83.56 89.30 14.10 97.97
KNN50 98.58 39.53 76.58 81.81 31.01 92.05 99.12 40.80 76.32 63.55 83.56 88.51 16.30 97.61
KNN100 98.62 38.62 77.13 81.49 32.64 91.84 99.12 39.86 76.88 62.95 83.56 87.80 19.50 97.23

Pre-train on ImageNet→ fine-tune on RVL-CDIP (ID)

Sw
in

B
as

e

92.42

MSP 63.96 87.03 65.21 88.15 73.56 79.72 61.40 88.46 66.03 85.84 84.93 74.34 49.60 92.49
MaxLogit 56.49 90.22 75.36 87.00 72.64 84.26 44.22 93.01 62.18 88.62 72.60 84.16 29.10 95.70
Energy 57.43 90.11 77.01 86.60 73.44 84.17 43.78 93.06 62.92 88.48 73.97 84.25 28.00 95.69
KNN10 60.27 90.12 66.90 90.76 49.66 89.15 47.67 92.67 56.12 90.68 42.47 94.28 7.20 98.56
KNN20 61.32 90.01 61.37 91.31 48.83 90.33 49.00 92.52 55.13 91.04 30.14 95.56 8.80 98.33
KNN50 62.22 89.78 56.44 91.56 50.34 89.55 48.52 92.30 54.38 90.80 26.03 95.72 11.80 97.97
KNN100 62.62 89.60 54.98 91.85 50.70 88.93 47.63 92.18 53.98 90.64 30.14 95.54 13.90 97.66

Pre-train on ImageNet

–

KNN10 99.15 45.57 86.02 79.44 32.45 90.98 99.52 46.20 79.28 65.55 24.66 96.24 0.40 99.78
KNN20 99.19 44.11 86.89 80.35 33.48 92.19 99.60 44.79 79.79 65.36 27.40 95.62 0.50 99.73
KNN50 99.23 42.39 87.99 81.66 36.78 91.59 99.60 43.07 80.90 64.68 43.84 94.57 0.80 99.63
KNN100 99.19 41.46 89.02 82.63 40.60 91.05 99.60 42.14 82.10 64.32 52.05 93.49 1.20 99.53

Pre-train on ImageNet→ fine-tune on RVL-CDIP (ID)

V
iT

B
as

e

91.03

MSP 69.68 86.81 69.67 87.88 72.25 80.78 69.38 86.61 70.24 85.52 67.12 85.97 58.50 91.47
MaxLogit 63.35 89.20 68.40 88.58 69.58 84.38 61.08 89.94 65.60 88.02 57.53 89.41 48.40 93.04
Energy 62.22 89.21 70.34 88.43 70.26 84.37 60.75 90.03 65.89 88.01 58.90 89.47 49.70 93.03
KNN10 68.10 88.99 54.90 92.30 53.44 88.05 58.19 91.34 58.66 90.17 38.36 95.02 22.90 96.71
KNN20 67.61 88.95 49.01 92.85 51.53 89.25 58.59 91.16 56.68 90.55 41.10 94.47 25.40 96.35
KNN50 67.29 88.91 42.54 93.15 53.96 88.43 58.75 90.88 55.64 90.34 42.47 93.60 29.90 95.78
KNN100 66.19 88.90 43.80 93.19 55.71 87.73 59.11 90.64 56.20 90.12 45.21 92.86 34.90 95.27

Pre-train on ImageNet

–

KNN10 98.90 41.98 90.96 77.15 34.87 90.69 99.40 41.21 81.03 62.76 54.79 94.27 10.80 98.47
KNN20 98.94 40.54 91.67 77.20 36.82 91.71 99.44 39.85 81.72 62.32 64.38 93.57 12.70 98.25
KNN50 99.07 38.75 92.61 76.99 40.00 91.17 99.52 38.14 82.80 61.26 75.34 92.47 15.90 97.87
KNN100 99.11 37.43 93.25 76.56 43.38 90.68 99.56 36.93 83.82 60.40 82.19 91.52 18.90 97.49
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Table G.12: OOD detection performance for document classification. All
models are pre-trained on IIT-CDIP. For LayoutLM models, we adopt the
checkpoints from the Huggingface model hub. For UDoc, we pre-train
the model on our side. All models are fine-tuned on RVL-CDIP ID data.

ID Method
OOD Dataset (In-domain) OOD Dataset (Out-domain)

Acc
Sci. Report Presentation Form Letter Average Sci. Poster Receipt

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

La
yo

ut
LM

v1
B

as
e

97.28

MSP 47.48 74.91 59.74 68.72 66.40 65.36 58.89 69.12 58.13 69.53 43.02 77.15 72.40 62.40
MaxLogit 27.06 92.38 37.97 91.52 45.65 88.36 35.92 91.22 36.65 90.87 24.42 94.96 57.30 86.70
Energy 27.06 92.40 37.97 91.54 45.65 88.36 35.92 91.23 36.65 90.88 24.42 94.97 57.30 86.70
KNN10 20.82 96.09 35.32 93.82 40.06 91.34 28.65 94.80 31.21 94.01 17.44 97.00 49.80 93.92
KNN20 21.74 95.93 36.20 93.77 41.42 91.12 30.44 94.61 32.45 93.86 17.44 96.82 51.70 93.73
KNN50 24.34 95.56 38.25 93.41 43.93 90.69 33.64 94.19 35.04 93.46 23.26 96.44 53.80 93.70
KNN100 25.54 95.30 39.13 93.20 45.17 90.35 34.78 93.99 36.16 93.21 25.58 96.24 54.70 93.45

La
yo

ut
LM

v3

97.81

MSP 56.16 70.81 63.44 67.17 67.16 65.30 58.60 69.58 61.34 68.22 52.33 72.70 43.60 77.10
MaxLogit 30.70 89.17 40.42 88.18 42.98 84.09 33.12 88.22 36.80 87.42 19.77 94.50 11.70 97.02
Energy 30.70 89.18 40.42 88.18 42.98 84.10 33.12 88.23 36.80 87.42 19.77 94.51 11.70 97.03
KNN10 21.74 95.03 35.68 93.38 32.88 91.86 18.51 96.26 27.20 94.13 11.63 97.58 8.90 97.97
KNN20 22.74 94.90 36.56 93.20 33.96 91.66 19.64 96.15 28.22 93.98 12.79 97.44 10.00 97.89
KNN50 24.62 94.62 38.37 92.71 35.83 91.38 21.63 95.93 30.11 93.66 13.95 97.20 10.70 97.72
KNN100 25.22 94.38 39.29 92.32 36.55 91.09 22.48 95.79 30.88 93.40 16.28 97.04 11.80 97.59

U
D

oc
R

es
N

et
50

97.36

MSP 66.13 65.73 69.43 64.09 71.03 63.28 71.06 63.25 69.41 64.09 40.70 78.47 39.80 78.99
MaxLogit 45.96 82.12 47.21 86.39 49.64 83.16 49.59 83.13 48.10 83.70 2.33 98.57 4.00 98.34
Energy 45.96 82.12 47.21 86.40 49.64 83.16 49.59 83.13 48.10 83.70 2.33 98.60 4.00 98.36
KNN10 30.02 94.47 41.22 88.66 41.90 90.99 36.65 93.48 37.45 91.90 1.16 99.13 5.50 98.42
KNN20 31.10 94.36 41.98 88.44 42.10 90.90 38.03 93.35 38.30 91.76 1.16 99.04 6.90 98.32
KNN50 33.95 94.07 43.35 87.89 44.01 90.72 40.71 93.06 40.51 91.43 1.16 98.84 7.40 98.26
KNN100 34.83 93.84 43.75 87.51 45.01 90.61 41.96 92.90 41.39 91.22 1.16 98.72 8.30 98.16
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