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Abstract 

Positron emission tomography (PET) provides inherently quantitative information about 

physiological and molecular processes, endowing it with great clinical and research potential. 

This is particularly true of dynamic PET imaging. Unfortunately, PET, and especially dynamic 

PET, suffers from unfavorable noise properties, limiting it diagnostically and quantitatively. 

Denoising methods that improve image quality and thus increase diagnostic accuracy and 

improve estimates of quantitative parameters could be of great benefit, particularly if they are 

simple, accurate, and easily implemented on a wide range of PET tracer studies.  

The aim of this thesis is to develop and evaluate two novel denoising methods for dynamic 

PET imaging: HighlY constrained back-Projection-Local Reconstruction (HYPR-LR), which has 

recently been applied to dynamic PET data with promising results, and spatio-temporal 

expectation maximization (STEM) filtering, a newly developed 4-dimensional iterative filtering 

process.  

An implementation of HYPR-LR is presented that provides the maximum amount of noise 

reduction that is possible without introducing any significant bias. This is accomplished using 

multiple time-dependent temporally summed composite images that account for the kinetics of 

the tracer being studied. The potential of HYPR-LR to improve dynamic PET imaging is 

demonstrated using phantom, simulated, and human data, with a focus on quantitative parametric 

images. 

The newly proposed STEM filtering combines two well established image processing 

techniques: 4-dimensional Gaussian smoothing followed by EM deconvolution. In principle, this 

approach should provide substantial reductions in noise while introducing little bias. STEM 
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filtering is also evaluated using phantom, simulated, and human data, with a focus on parametric 

images. 

The potential of HYPR-LR and STEM filtering to improve PET imaging of [I-124] labeled 

agents is also studied.  [I-124] could be a valuable radionuclide for PET imaging, but its use is 

often limited by noise because of dosimetry concerns and relatively few decays by positron 

emission. 

Finally, the impact of a more traditional means of controlling image noise at the cost of bias, 

varying the number of iterations performed during EM reconstruction, on the diagnosis of 

temporal lobe epilepsy is studied. This also serves as an illustration of how HYPR-LR and 

STEM filtering might be evaluated in a clinical context. 
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Chapter 1. Introduction 

Positron emission tomography (PET) has tremendous potential as an imaging modality for 

both preclinical research and clinical practice because of its ability to provide quantitative 

information about biological processes in vivo and noninvasively. This is particularly true of 

dynamic PET imaging, which provides a means of measuring physiologically relevant 

parameters from the analysis of a radiotracer’s dynamic behavior, for example the rate at which 

the tracer is metabolized or the availability of targeted receptors (Phelps et al 1979, Phelps et al 

1982). The ability to obtain biological and molecular information through imaging has provided 

valuable insights into disease processes that have changed medical practice in a number of fields, 

most notably oncology, cardiology and neurology. PET imaging has also created new research 

opportunities in these fields, providing information that cannot be otherwise obtained 

noninvasively. 

Unfortunately, PET data are limited by noise because of the finite amount of radiation that 

can acceptably be given to human subjects. This limits the number of radioactive decays that can 

be detected, resulting in high noise variance. Noise is especially limiting for dynamic PET 

imaging, as time frames must be of limited duration to accurately capture a tracer’s kinetic 

behavior. 

The noisy nature of PET data impacts both the quality of the images, which is critically 

important for accurate clinical diagnosis, and the quantitative kinetic analysis of the data. Noise 

impacts image quality by limiting the detectability of objects, dependent on objects’ contrast and 

size. This is known as the Rose model, and holds true for both human observers and electronic 

imaging systems (Rose 1974). The spatial resolution of PET images is also limited by noise, as 
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PET scanners with high spatial resolution will have a greater number of detector elements and 

will therefore detect fewer positron decays per detector element (Wienhard et al 2002). Any gain 

in spatial resolution may therefore be offset by higher image noise. Noise in dynamic PET data 

affects quantitative kinetic analysis in two ways. First, for all kinetic analysis methods, noise in 

the dynamic PET data will result in variance in the estimated kinetic parameters. Second, some 

methods, namely the Logan graphical method, have a noise-dependent bias (Logan 2003, 

Slifstein and Laruelle 2000).  

Strategies that reduce noise in PET data are thus of great potential value as they could both 

improve the accuracy of clinical diagnoses and reduce the variance of quantitative parameters 

estimated from the data. Improved kinetic parameter estimates could in turn improve the 

reliability and sensitivity of studies that utilize PET to detect changes in biological processes in 

vivo. Improved accuracy in diagnostic images and quantitative parameters could in turn increase 

the utility of PET, broadening its scope while minimizing the amount of radiation given to 

subjects. 

1.1 Noise Properties of PET Data 

Many of the approaches used to reduce noise in PET data take advantage of the fact that the 

underlying signal in PET images is relatively low frequency in both space and time, but noise is 

not. A PET image can be described as a signal with added noise: 

ε+= xy        (1.1) 

where y is the measured value of an image voxel, x is the true underlying signal, and ε is the 

added noise, which can be approximated as Gaussian with a mean value of zero and a standard 

deviation that will be scaled by the amount of activity in the object being imaged. The additive 



 
 

3 
 

noise will be powered at all frequencies as each measurement in a PET dataset will be 

statistically independent of all other measurements. In some reconstructions, for example filtered 

back-projection (FBP) with a ramp filter, noise will actually have excess power in the high 

spatial frequencies. The spectral characteristics of noise are thus very dissimilar to the relatively 

low spatial frequencies that characterize the signal (Figure 1.1). The same is true in the time 

domain, as time activity curves (TACs) from PET data tend to be relatively smooth and are 

therefore dominated by low frequencies.  

The difference in the frequency characteristics of signal and noise is a compelling means of 

differentiating them from each other. However, in real PET data where the truth is unknown, it is 

not a trivial task to identify and suppress noise without altering the signal. Given that one of the 

greatest strengths of PET imaging is its ability to provide quantitative information, it is of vital 

importance that any method for reducing noise preserve the fidelity of the signal as best as 

possible. There have been many proposed means of reducing noise in PET data, each of 

 

Figure 1.1. An illustration of the frequencies that characterize signal and noise in PET 
images. For an example image reconstructed with FBP with Poisson noise added in 
sinogram space (a), the underlying signal is dominated by relatively low spatial 
frequencies (b), and the noise power spectrum is overpowered at high spatial frequencies 
(c). The difference in the spectral characteristics of the signal and noise is a compelling 
means of reducing noise. 
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which has strengths and weaknesses in terms of the degree to which they suppress noise, the 

accuracy of the resulting data for a given level of noise suppression, and the simplicity of their 

implementation.  

1.2 Current Denoising Methods 

1.2.1 Spatial Filters 

One of the simplest, and still most widely used, means of reducing noise in PET data is 

simply filtering the data in space. This can alternatively be thought of as spatial averaging or as 

filtering in the spatial frequency domain. There are a number of approaches to spatial filtering, 

the simplest of which is simply spatially smoothing the data. There are also several other spatial 

filtering methods that have been developed, such as the median filter, Wiener filters, the Metz 

filter, and the Herholz filter (Miller and Sampathkumaran 1982, King et al 1983, King et al 

1988, Varga et al 1997, Herholz 1988). All of these methods rest on the principle that the power 

of the frequencies that represent signal and noise can be differentiated. While all of these 

methods can be very effective at reducing noise, they invariably suppress frequencies important 

to the signal, resulting in a loss of spatial resolution or other bias. Nevertheless, spatially filtering 

the data, particularly simple spatial smoothing, remains one of the most used means of reducing 

noise in PET images. 

1.2.2 Wavelet Denoising 

PET data can also be filtered in the wavelet domain. Transforming data to a wavelet domain 

gives a representation of frequency and spatial (and/or temporal) information simultaneously. 

Wavelet transforms can therefore be thought of as localizing frequencies in space and time. This 

is a potential advantage for non-stationary signals, such as those in PET, where the frequencies 
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that dominate the signal change in space and time. Wavelet transforms will therefore compress 

the signal more than a non-localizing transform (e.g. a Fourier transform). However, noise will 

still be dispersed (Donoho and Johnstone 1994, Unser and Aldroubi 1996). This allows for easier 

identification and suppression of noise. The most extensive work of applying wavelet denoising 

PET data has been done by Turkhiemer et al. (Turkheimer et al 1999, Turkheimer et al 2000, 

Turkheimer et al 2003, Turkheimer et al 2003). This body of work and other studies utilizing 

wavelets have demonstrated significant improvements in dynamic PET data following wavelet 

denoising, with an emphasis on improvements in quantitative parameter estimates (Lin et al 

2001, Cselenyi et al 2002). However, the proper application of wavelet denoising to dynamic 

PET data is relatively complicated and difficult to implement. A filter must still be designed to 

suppress wavelet coefficients associated with noise and preserve those associated with the signal; 

this is not a trivial task. 

1.2.3 Iterative Reconstructions 

Iterative reconstructions have had one of the greatest impacts on reducing noise in PET 

images. In particular, ordered subset expectation-maximization (OSEM) reconstructions are now 

widely used in both clinical practice and research (Shepp and Vardy 1982, Hudson and Larkin 

1994). OSEM reconstruction has been shown to have superior noise properties to FBP (Barrett et 

al 1994, Wilson et al 1994, Wilson and Tsui 1993), and the improvements in diagnostic accuracy 

gained with OSEM have been demonstrated in many imaging tasks (Gilland et al 1992, Wells et 

al 1999, Wells et al 2000, LaCroix et al 2000, Gifford et al 2000). While the use of OSEM 

reconstruction has become standard practice and has undoubtedly improved clinical diagnosis, 

there is still a trade-off between bias and variance seen with the number of iterations performed 

that can influence measurements made from PET data (Jaskowiak et al 2005). In addition, 



 
 

6 
 

OSEM reconstructions can still be very noisy, particularly when activity levels are low or 

scanning times are short. 

Maximum a posteriori (MAP) reconstructions have also proven to be an effective means of 

reducing noise in reconstructed PET images (Miller and Butler 1993). Unlike OSEM, MAP 

reconstructions impose an explicit penalty on the degree to which neighboring voxels vary. 

Therefore, they can degrade spatial resolution, similar to simple spatial smoothing (Nuyts and 

Fessler 2003). Nevertheless, there utility has been demonstrated in a number of applications (Qi 

and Leahy 1999, Cheng et al 2012). 

1.2.4 4-Dimensional Reconstructions 

In addition to the iterative reconstructions already described, a number of reconstruction 

methods have been developed that take advantage of information in the time domain to reduce 

noise (Rahmim et al 2009). Some strategies include smoothing between time-frames within 

reconstruction (Lalush and Tsui 1998, Walledge et al 2004), principal component analysis 

(Wernick et al 1999, Narayanan et al 1999), and the direct reconstruction of parametric images 

from sinograms (Carson and Lange 1985, Kamasak et al 2005, Tsoumpas et al 2008, Meikle et 

al 1998). While 4-dimensional reconstructions are an active field of research and show much 

promise, they must make some assumption about the temporal behavior of a tracer that may not 

be true, at least for some parts of the image object. For example, these reconstructions often 

make assumptions about a kinetic model that the tracer follows, the degree to which neighboring 

frames will be similar, or the measured signal components that will be most important to the true 

(noise-free) signal. 
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1.2.5 Kinetic Analysis Methods for Reducing Variance 

Because the primary motivation of acquiring dynamic PET data is to perform kinetic 

analysis, there are also a number of analysis methods that have been developed to minimize the 

variance of calculated kinetic parameters. Unlike 4-dimensional reconstructions, these methods 

still use data acquired as individual time-frames. They do, however, use assumptions about the 

expected temporal behavior of PET tracers, or impose limits on the data based on theoretical 

truths, to minimize the effects of noise present in the measured data. These strategies include the 

use of temporal basis functions (Koeppe et al 1985, Gunn et al 1997, Gunn et al 2001, Gunn et 

al 2002), fitting the data in an alternative domain (e.g. the wavelet domain) (Cselenyi et al 2002), 

and using initial results to fix parameters that theoretically should not vary at different locations 

in the image object (e.g. the reference region efflux constant, k2
REF, in simplified models can be 

fixed rather than being fit at each voxel, (Wu and Carson 2002). These strategies have proven 

effective in a number of imaging tasks (Yaqub et al 2008, Cselenyi et al 2006). However, their 

assumptions can limit their use and accuracy, and their implementation can be more complicated 

than simple graphical methods, requiring more initial parameters to be defined. And, although 

these methods improve the variance of calculated parameters, very noisy data will still produce 

parameters with high variance. 

1.3 Potential for New PET Denoising Methods 

Many methods have been developed to reduce noise in PET data, and an overview has been 

presented here. Each of these methods has proven effective, but each has limitations. These 

limitations typically arise from assumptions that are made about the nature of the data in an 

attempt to distinguish underlying signal from noise (Equation 1.1). For example, filtering 
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methods must make an assumption, implicit or explicit, about what components of the measured 

data are most important to the signal. Although these assumptions may be based upon reasonable 

premises, they are not necessarily true. In addition, more sophisticated methods of denoising can 

be limited by the complexity of their implementation. 

Potential exists for the development of novel denoising methods, particularly methods that 

are data driven in the sense that they attempt to distinguish signal from noise in a manner that is 

specific to the data being studied. New denoising methods could also prove useful if they are 

easy to implement, can be applied across a wide range of PET imaging applications, and can 

complement existing and established denoising methods. Denoising methods that possess these 

traits will be much more likely to have a meaningful impact on PET image quality and 

quantification in both clinical and research applications, and may have the potential to broaden 

the scope of PET imaging. 

1.4 Thesis Aims 

The primary purpose of this work is to develop two novel denoising methods for dynamic 

PET data: HighlY constrained back-PRojection-Local Reconstruction (HYPR-LR) (Mistretta et 

al 2006, Johnson et al 2008) and spatiotemporal expectation-maximization (STEM) filtering. 

These methods attempt to fulfill the criteria of being data driven, easy to implement, applicable 

to a wide range of dynamic PET studies, and complementary to other denoising techniques. This 

work also aims to rigorously evaluate the performance of these algorithms on dynamic PET 

tracer data, and to show how these new methods and more traditional methods might be 

evaluated in a clinical context. 
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The specific aims of this thesis are: 

1. To develop an implementation of HYPR-LR that can be tailored to different PET tracer 

behaviors, or even individual studies such that it provides the maximum amount of noise 

reduction possible without introducing any bias. 

2. To develop a novel 4-dimensional filtering method that combines Gaussian smoothing 

with expectation maximization (EM) deconvolution (Richardson 1972, Lucy 1974). 

3. To evaluate the potential of HYPR-LR processing and STEM filtering to improve the 

kinetic analysis of PET tracer data. In particular, to improve parametric images of 

quantitative parameters. This is done is separate chapters for HYPR-LR and STEM 

filtering. 

4. To evaluate the potential of HYPR-LR and STEM filtering to improve the longitudinal 

imaging (i.e. several day time-course) of [I-124] labeled tracers. 

5. To evaluate a more traditional denoising method, altering the number of iterations 

performed in EM reconstruction, in the context of a real diagnostic imaging task. This is 

intended to serve as an example of how both established and new denoising methods 

might be evaluated in a clinical context. 
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Chapter 2. HYPR-LR Processing of Dynamic PET Data: 
Initial Application and Impact on Image Quality 

2.1 Introduction 

The first novel denoising method for dynamic positron emission tomography (PET) explored 

in this thesis is HighlY constrained back-PRojection (HYPR). HYPR is a family of image 

reconstruction and post-processing algorithms that have made a dramatic impact on magnetic 

resonance angiography (MRA), allowing for under sampling factors on the order of several 

hundred fold and dramatic signal-to-noise ratio (SNR) improvements in dynamic datasets 

(Mistretta et al 2006, Johnson et al 2008, Wu et al 2009). The central idea of HYPR is to 

estimate individual frames in a dynamic study by weighting a temporally summed composite 

image. In the ideal case, individual frames will take on the noise properties of the composite 

image. It is the potential improvement in SNR that makes HYPR an attractive tool for other 

imaging modalities, and the post-processing version, HYPR-LR (for Local Reconstruction), has 

recently been applied to positron emission tomography (PET) with promising results (Christian 

et al 2010). 

2.2 Chapter Aims 

The aim of this chapter is to introduce the HYPR-LR methodology for dynamic PET imaging 

and generally illustrates the algorithm’s impact on image quality measures first studied in the 

initial work applying HYPR-LR to PET (Christian et al 2010). In particular, the effects HYPR-

LR has on image noise, resolution, time-activity curves (TACs), and the calculation of simple 

kinetic parameters are explored. This is done with phantom data. Human [O-15]H2O data is also 

studied to evaluate the potential impact of HYPR-LR in a study with very high levels of noise. 
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Later chapters propose an optimized implementation of the HYPR-LR that can be tailored to 

different PET tracer behaviors and even individual studies, and rigorously evaluate the algorithm 

in the context of quantitative kinetic analysis of dynamic PET tracer data. 

2.3 HYPR-LR Methodology 

All of the formulations of HYPR make use of a temporally summed composite image in a 

dynamic set of images to provide a low-noise estimate of the true image at an individual time 

frame. This composite is weighted by a low resolution spatial comparison of each frame and the 

composite image. In the initial implementation of HYPR, this spatial comparison was made by 

means of unfiltered back-projection of acquired projection data (i.e. sinograms): 

∑⋅=⋅= y yxc
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ty
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            (2.1) 

where Hx,t is the HYPR estimate of an individual frame, Cx,t is the composite image, Wx,t is the 

weighting image, Py,t  and Py
C are the projections of an individual frame and the composite, 

respectively, and By,x is the unfiltered back-projection operator. Note that t is a discrete time 

index of the reconstructed frames. 

 The unfiltered back-projection operation can create temporal errors in images that are not 

sufficiently sparse, blurring the comparison between Py,t and Py
C and creating inappropriate 

weights (Mistretta et al 2006). Johnson et al (2008) recognized that any filtering process could 

serve as a valid means of comparing individual frames to the composite image, and that 

convolving the data in image space could minimize or eliminate temporal errors while still  
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providing substantial improvements in noise. They developed the LR implementation of 

HYPR which can be written as:  

  
xtx
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where Fx is the spatial filtering kernel and ⊗  represents convolution. Careful selection of a 

filtering kernel, such that regions of differing temporal behavior do not overlap within the kernel 

during the convolution process, will result in completely accurate processing of the data. It is 

also important to note that some protection against small numbers must be implemented in the 

HYPR-LR algorithm as it involves a division. In this work, this is done by identifying all voxels 

in the blurred composite image whose values fall below 1% of the maximum of the unblurred 

composite image. These voxels are then assigned a value of zero in the weighting image. 

Iterative HYPR methods have also been proposed to reduce temporal errors (Griswold 2007, 

O'Halloran et al 2008). However, the iterative methods suffer from increasing noise with 

increasing numbers of iterations, and as a post-processing tool, HYPR-LR is easily implemented 

on any image, and can complement other denoising techniques. HYPR-LR is thus the focus of 

both this work. 

The formation of the composite image will be an important focus of this thesis. It can be 

described as: 

     '
'

',, t
t

txtx IC ∆⋅= ∑                                                (2.3)  

where t’ indexes the temporal range over which the composite image is integrated, and ∆t is the 

duration of frame t. The initial implementation of HYPR-LR for dynamic PET described below 
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uses all time frames in the formation of the composite image (t’=0 to t’=tmax, where tmax is the 

final frame of the study). The optimized implementation of HYPR-LR uses a different range for 

t’ for different phases of a dynamic PET study, as described in the next chapter. It is important to 

note that data should not be decay corrected so that each frame is weighted proportional to the 

measured signal in its contribution to the composite image. 

2.4 Methods 

2.4.1 Derenzo Resolutions Phantom 

The effect of HYPR-LR processing on spatial resolution and noise was assessed using a 

custom made miniature Derenzo phantom. The phantom had 6 groups of fillable rods with 

diameters of 0.8, 1.0, 1.25, 1.5, 2.0, and 2.5 mm. The center-to -center distance for each group of 

rods was equal to their respective diameters. The phantom was filled with aqueous [F-18] (1.5 

MBq/mL) and scanned for 60 minutes using a microPET P4 scanner (Concorde Microsystems 

Inc.). The acquired data were reconstructed into 60x1 minute frames using filtered back-

projection (FBP) with a ramp filter (at the Nyquist frequency cutoff) to a matrix size of 128 × 

128 × 63 with voxel dimensions of 0.47 × 0.47 × 1.21 mm. Corrections for normalization, dead 

time, random coincidences, attenuation, scatter, and decay of radioactivity were applied using the 

system software. HYPR-LR was applied with a composite image using all the frames in the 

study and a relatively large filtering kernel (2.35 x 2.35 x 2.35 mm3 FWHM Gaussian). The large 

kernel was used as it should have a greater potential impact on spatial resolution. HYPR-LR 

processing was compared to spatial smoothing using a Gaussian with the same dimensions as the 

HYPR-LR filtering kernel. Resolution was assessed using a line profile through the 2.5 and 1.5 
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mm rods. Noise was assessed by measuring the standard deviation of the voxels in the profile 

over the course of the decay corrected study. 

2.4.2 Dual-Isotope Phantom 

The temporal accuracy of HYPR-LR and its impact on the estimation of simple parameters 

were evaluated using another phantom study. In this study, a NEMA IEC body phantom with 

hollow spherical inserts 10, 13, 17, 22, and 28 mm in diameter was filled with two isotopes and 

scanned using a Discovery VCT PET/CT (GE Healthcare). The background of the phantom was 

filled with aqueous [F-18] (13.1 kBq/mL at the start of the emission scan) and the spherical 

inserts were filled with aqueous [C-11] (96.4 kBq/ml at the start of the emission scan). PET data 

were acquired over 150 minutes and reconstructed into 30x5 minute frames with FBP using a 

ramp filter (0.104 mm-1 cutoff frequency) to an image matrix size of 128x128x47 with voxel 

sizes of 3.125x3.125x3.27 mm3. Corrections for deadtime, normalization, and scatter were 

applied using the system software, and attenuation correction was applied using the CT data. 

Decay correction was not applied. HYPR-LR was applied using composite images of varying 

durations and a Gaussian filtering kernels with varying widths. 

Regions of interest (ROIs) were placed over [C-11] (57 voxels) and [F-18] (5471 voxels) 

regions in the reconstructed images. The standard deviation of the large and uniform [F-18] ROI 

at a single frame in the middle of the study (t = 47.5 minutes) was used to evaluate the impact of 

composite duration and kernel size on noise. 
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The time-activity curves (TACs) of all voxels within the phantom were also fit to a single 

decay exponential (Equation 2.4) using non-linear least-squares: 

C(t)=C0 exp(-λt)            (2.4) 

where C(t) is the radioactivity concentration at time t, C0 is the initial radioactivity concentration 

of the voxel, and λ is the radioactive decay constant. The mean and standard deviation of the 

radioactive decay constant were evaluated in the [C-11] ROI before and after HYPR-LR 

processing to study the algorithm’s impact on the estimation of simple kinetic parameters. 

2.4.3 Digital Motion Phantom 

A simple digital phantom was used to study the effects of motion and objects that change in 

size on HYPR-LR processing. Such information will be important, as motion is often an issue in 

PET acquisitions, and objects that change in size are seen in some PET applications, for example 

cardiac imaging. The phantom used consisted of a small circle within a larger circle. The contrast 

between the small circle and its background was 60%. The effects of motion on HYPR-LR 

processing were studied in two situations. In the first, the location of the small circle was simply 

translated relative to the rest of the image. In the HYPR-LR composite image, the shape of the 

small circle thus becomes a superposition of these two locations. In the second motion situation, 

the location of the small circle was varied sinusoidally over time, and the small circle’s shape in 

the composite image thus becomes an average of its location over time. In order to study the 

effects objects of changing sizes have on HYPR-LR processing, the diameter of the smaller 

circle was linearly increased from 16 to 19 pixels over the course of 4 frames. The composite 

image is therefore an average of these sizes. In all of these studies, all frames were given equal 

weight in the formation of the composite image. 
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2.4.4 [O-15]H2O Human Study 

A human [O-15]H2O study was processed with HYPR-LR to evaluate the algorithm’s 

performance in an application with very noisy individual frames.  The human study was acquired 

over 2 minutes on an Advance PET scanner (GE Healthcare Ltd.), starting at the time of 

injection of 2.78 GBq of tracer. Data were acquired in 2D mode, as specified by the NIH-

sponsored Carotid Occlusion Surgery Study, and reconstructed using FBP (ramp filter) to a 

matrix size of 128 × 128 × 63, with voxel dimensions of 2.34 × 2.34 × 4.25 mm. HYPR-LR 

processing was applied to a single slice using all of the frames in the study to form the composite 

image and with a relatively large 21.1 mm FWHM 2-dimensional Gaussian filtering kernel. 

2.5 Results 

2.5.1 Derenzo Resolution Phantom 

A single frame from the Derenzo resolution phantom study before and after HYPR-LR 

processing visually demonstrates improvement in noise with effectively no loss of spatial 

resolution (Figure 2.1 a & b). Spatial smoothing does significantly reduce noise, but also results 

in a significant loss of spatial resolution (Figure 2.1c). A profile drawn through the 2.5 and 1.5 

mm diameter rods confirms that there is little to no loss of spatial resolution following HYPR-

LR processing, but a significant reduction in noise, as measured by the standard deviation of the 

value of each voxel over the 60 frames of the study (Figure 2.1d & e). Spatial smoothing reduces 

the standard deviation of the voxels along the profile to a similar degree as HYPR-LR 

processing, but there is significant smoothing (Figure 2.1f). 
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2.5.2 Dual-Isotope Phantom 

Example images from the dual-isotope phantom study showing the calculated half-life at 

each voxel demonstrate how HYPR-LR can improve kinetic parameter estimates (Figure 2.2a & 

c). The voxel half-life estimates from the [C-11] ROI show that HYPR-LR processing improves 

both the accuracy and the precision of the estimated [C-11] decay constants (Figure 2.2b & d). 

This is a simple, but powerful illustration of the improvements in kinetic analysis that can be 

achieved with HYPR-LR processing. 

 

 

Figure 2.1. The Derenzo phantom used to study the effects of HYPR-LR on spatial 
resolution and image noise. Example image frames and profiles through the 2.5 and 1.5 
mm diameter rods drawn on temporally summed images show that HYPR-LR processing 
results in little to no loss of spatial resolution. Image noise, as measured by the standard 
deviation of each voxel in the profile over all 60 time frames, is significantly reduced by 
HYPR-LR. Spatial smoothing reduces noise to a similar degree, but results in a 
significant loss of spatial resolution.  
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The improvements in noise gained with HYPR-LR processing are dependent on the size of 

the filtering kernel used, and the duration of the composite image. Noise improves as a function 

of the square root of the duration of the composite image (Figure 2.2e), and improvements in 

noise level out as larger filtering kernels are used.  

2.5.3 Digital Motion Phantom 

The digital motion phantom shows that if objects move relative to the rest of the image in the 

course of the study, a shadow artifact will appear in HYPR-LR estimates of the individual 

 

Figure 2.2. The dual-isotope phantom used to study the potential of HYPR-LR to 
improve the estimation of simple kinetic parameters, and to study the effects of 
composite duration and kernel size on noise. Half-life images show the improvements in 
the variance of the parameters following processing (a & c). Histograms of the voxels in 
the [C-11] ROI (orange circle in a & b) show this quantitatively, and demonstrate that 
HYPR-LR does not bias the voxels values (b & d). Noise improves as a function of the 
square root of the length of the composite image (e), and improvements in noise level off 
as larger filtering kernels are used (f). 
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Figure 2.3. An illustration of the effects of motion on HYPR-LR processing. Objects 
whose position shifts in the course of a study (translational motion) create shadow 
artifacts in the HYPR-LR images.  Objects undergoing sinusoidal motion show a similar 
artifact. 

 

 

Figure 2.4. An illustration of the effects of changing object size on HYPR-LR processing. 
At the earliest frame, when the interior circle is smallest, the HYPR-LR image 
overestimates the size of the object, introduces a blur, and underestimates the values of 
pixels surrounding the object. Opposite effects are seen in the HYPR-LR image of the 
last frame, when the interior circle is at its largest. 
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frames. This is true for both objects that change their location once, and objects whose location 

varies sinusoidally (Figure 2.3). In the case where an object changes its size over the course of a 

study, the size of the object in the HYPR-LR images essentially becomes an average of its size 

over time (Figure 2.4). 

Objects whose true size is smaller or larger than the composite average are also blurred. 

Voxels surrounding the object in the HYPR-LR images are either underestimated in the case 

when the true size is smaller, or overestimated in the case where the true size is larger 

 

Figure 2.5. The human [O-15]H2O study used to illustrate the reductions in noise 
possible with HYPR-LR in dynamic PET studies with high noise. An example slice from 
the human [O-15]H2O study is shown from the original reconstruction (a), the data 
processed with HYPR-LR (b), and the composite image (c). A whole brain TAC shows 
that on average HYPR-LR introduces little bias (e). A single voxel TAC from the cortex 
shows a dramatic reduction in noise following HYPR-LR processing (f). 
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2.5.4 [O-15]H2O Human Study 

A single frame from the [O-15]H2O human study shows dramatic improvements in noise 

following HYPR-LR processing, and has noise properties much closer to those of the composite 

image (Figure 2.5a-c). A whole-brain TAC from the study shows that over a large averaged area, 

HYPR-LR introduces effectively no temporal bias into the data (Figure 2.5d). A single voxel 

TAC demonstrates the dramatic improvements in noise obtained with HYPR-LR, while the 

overall temporal behavior of the TAC appears to be preserved (Figure 2.5e).  

2.6 Discussion 

This chapter has introduced the HYPR-LR methodology for dynamic PET imaging, and 

explored the algorithm’s effect on image quality measures, including noise, spatial resolution, 

temporal resolution, the effects of motion, and the estimation of simple kinetic parameters.  

The Derenzo phantom shows that HYPR-LR processing has essentially no effect on spatial 

resolution, provided that the image object changes very little over the course of the study (Figure 

2.1) As previously described, errors caused by HYPR-LR are thus due to changes in the image 

over time (Mistretta et al 2006). Errors will be influenced by spatial distributions of activity, but 

are not truly due to degradation of spatial resolution.  

The dual-isotope phantom demonstrates the impact of composite duration and kernel size on 

the noise improvements seen with HYPR-LR. Noise varies as a function of the square root of the 

composite image, and improvements in noise level off as larger filtering kernels are used (Figure 

2.2). These results are consistent with previously published descriptions of HYPR and HYPR-LR 

(Mistretta et al 2006, Johnson et al 2008), and verify these properties of the algorithm in the 

context of dynamic PET imaging. 
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The dual-isotope phantom also demonstrates how HYPR-LR can improve the estimation of 

kinetic parameters, the half-lives of two different isotopes in this case (Figure 2.2). The potential 

of HYPR-LR to improve the estimation of kinetic parameters from dynamic PET tracer data is 

explored in more detail in a later chapter. 

The digital motion phantom shows that motion during a study, or changes in an objects size, 

will degrade the HYPR-LR estimates of individual time frames. The artifacts seen with motion 

and changing object size arise from the fact that all study frames were used and given equal 

weight in the formation of the composite image. As a result, the composite image is an 

inaccurate estimate of the true image, and the true image cannot be restored with the simple 

weighting image used in HYPR-LR.  

Finally, this chapter used an [O-15]H2O study to show how HYPR-LR processing might 

dramatically improve PET imaging applications with very high noise. In this example, the 2 

second frames essentially take on the noise properties of the 2 minute composite while little or 

no bias is introduced to the whole-brain or single voxel TACs studied. Studies with short frames 

and high noise may particularly benefit from HYPR-LR processing, provided that the image 

object does not change dramatically over the course of the study. 

2.7 Summary and Conclusions 

The results presented in this chapter are promising, and show that HYPR-LR can improve 

noise in individual time frames significantly and improve the precision of simple kinetic 

parameter estimates. The potential of HYPR-LR to improve kinetic parameter estimates from 

real dynamic PET tracer data will be explored in the next chapters. In addition, this chapter has 

not fully explored potential errors that might be caused by HYPR-LR. PET images are not 
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sparse, and HYPR-LR processing therefore has the potential to introduce temporal errors that 

might bias kinetic parameter estimates. These errors are explored in more detail in the next two 

chapters, and the next chapter introduces and implementation of the algorithm to limit them. 
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Chapter 3. Optimized Implementation of HYPR-LR for 
Dynamic PET 

3.1 Introduction 

The previous chapter gives examples of the significant improvements in noise that can be 

obtained with HYPR-LR. However, HYPR-LR still requires relatively sparse images such that 

regions with different temporal behaviors do not overlap within filtering kernel used to form the 

weighting image (Johnson et al 2008). Failing this HYPR-LR can distort the temporal signals of 

neighboring regions in the same way as the original implementation of HYPR (Mistretta et al 

2006). This is potentially problematic for PET imaging, where regions of different temporal 

behavior can lie in close proximity.  

3.2 Chapter Aims 

The aim of this chapter is to propose an optimized implementation of HYPR-LR that limits 

bias while maximizing noise reduction in the context of dynamic PET imaging. This 

implementation uses multiple time-dependent composite images that are formed based on the 

kinetics of the tracer being studied. These composites use the maximum amount of temporal data 

(i.e. long integration times) that is possible without introducing any bias. If composite images are 

shorter than this, they will provide no benefit in terms of reduced bias, and less noise reduction 

will be achieved; if they are made larger additional noise improvements will come at the cost of 

bias. Such an approach is less arbitrary than the traditional method for minimizing bias of using a 

sliding composite window of some fixed duration (Mistretta et al 2006). This implementation is 

introduced in this chapter and explored in more detail in the context of quantitative kinetic 

analysis in the next chapter. 
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3.3 Theory and Methodology 

The only way for the HYPR-LR estimate of a PET frame to be perfectly accurate is if the 

contrast between objects present in the frame is the same as the contrast between those objects in 

the frame’s composite image. Failing this, errors at boundary regions will depend on the 

difference in contrast between neighboring regions and the size of the kernel used (Figure 3.1). 

Quantitatively accurate application of HYPR-LR to PET data may still be possible because 

of the predictable behavior of PET tracers. This predictable behavior can be used to form 

composite images that more closely fulfill the criteria of having the same contrast between 

objects as their corresponding frames, and the proposed optimized implementation of HYPR-LR 

for PET data attempts to achieve this. 

A typical PET tracer’s behavior can be divided into three phases: uptake, specific retention, 

and equilibrium. Immediately after a tracer’s injection, during the brief uptake phase, the activity 

in all regions will be increasing at a relatively constant rate. During the specific retention phase, 

regions distinguish themselves from each other in a predictable manner. Finally, the tracer will 

reach a state of equilibrium, at a time frequently referred to as t*, the attainment of which is 

 

 

Figure 3.1. Illustration of the errors HYPR-LR can cause. The original image in this case 
is uniform (a), but a region of high uptake is revealed in the composite image (b). As a 
result, the weighting image (c) is inappropriately blurred, creating errors in the HYPR-
LR result (d). 
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required for application of graphical analysis methods and after which the image changes very 

little (Patlak et al 1983, Patlak and Blasberg 1985, Logan et al 1990, Logan et al 1996). Figure 

3.2 illustrates these behaviors for [C-11]PIB, a tracer of interest, for different regions of the 

brain. Composite images can thus be formed for the uptake and equilibrium phases by summing 

all the frames in these phases. A sliding composite can be used during the retention phase such 

that the change in contrast is nearly linear for the frames used, creating a composite very similar 

to the individual frame being processed. This approach is similar to recently proposed scatter 

correction methods that take into account the different counting rates seen in the different phases 

of a dynamic PET study (Cheng et al 2007).  

The formation of these multiple composite images can be expressed as: 

 For t = 1 to tuptake                      

 

Cx,t = Ix,t ' ⋅ ∆
t 't '=1

tuptake

∑
        

(a) 

 For t = tuptake+1 to t *-1        

 

Cx,t = Ix,t ' ⋅ ∆
t 't '=t−α

t+α
∑

        
(b)       (3.1) 

 For t = t* to tmax                       

 

Cx,t = Ix,t '
t '=t*

tmax

∑ ⋅ ∆
t '                    (c)  

The phases of the study are demarcated here by tuptake, the frame at which the uptake phase ends, 

t*, the frame at which the steady state begins, and tmax, the final frame of the study. The 

parameter α determines the number of frames to be used in the sliding composite during the 

specific retention phase. 



 
 

31 
 

 

 

The temporal parameters in Equation 3.1 must be determined from the data to be analyzed. 

This can be done on a region of interest (ROI) level. Specifically, ROIs should be drawn over 

structures in the image, and the ratios of neighboring structures must be examined. More 

emphasis can be put on structures of relevance. This is illustrated in Figure 3.2b with the parietal 

cortex and the surrounding structures in a human [C-11]PIB dataset. The parameters tuptake and t* 

can be determined by identifying the end of the flat uptake phase and the start of the flat 

equilibrium phase, respectively. α is more arbitrary. The frames at the beginning and end of the 

retention phase will largely determine the size of α, and α should be made as large as possible 

while keeping the contrast in the composite images for these frames as close as possible to the 

contrast in the frames themselves. Selection of the parameters used in Equation 3.1 could be 

 

Figure 3.2. [C-11]PIB time activity curves (TACs) for regions of the brain from a [C-
11]PIB positive human study (a), and the ratio of the activities of neighboring regions at 
each time point (b). The phases of the tracer’s temporal behavior can be used to form 
more appropriate temporally dependent composite images for HYPR-LR. (PAR = 
parietal cortex, FRT = frontal cortex, TMP = temporal cortex, OCC = occipital cortex, 
WM = white matter, CER = cerebellum). 
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done for individual patients, or for a general population for whom a tracer’s temporal behavior is 

relatively consistent. 

The size of the kernel, F, used in the formation of the weighting image is the other parameter 

which must be determined. The size of the kernel will determine the degree to which regions 

with disparate temporal behaviors overlap and contribute to bias, and also determine the spatial 

frequencies of individual frames that effectively take on the noise properties of their composite 

images (Johnson et al 2008). If the proposed composite scheme is implemented correctly and the 

contrast between objects in individual frames and their respective composites is nearly the same, 

overlap between regions should contribute little to temporal errors. A larger kernel should thus 

be desirable, as it will suppress noise at a wide range of spatial frequencies. In this work, the 

largest kernel used was a 3-dimensional (3-D) Gaussian with a FWHM approximately double the 

resolution of the scanner, 9 mm in this case. If the composite images do not match their 

respective frames, a relatively small kernel should be used to limit bias. The smallest kernel use 

in this work was a 3-D Gaussian with a FWHM of 3mm, close to the thickness of the cortex, the 

primary object of interest for [C-11]PIB. The effects of kernel size are further explored in the 

next chapter. 

The proposed method of forming multiple composite images will itself be limited in a 

number of respects. For one, it will likely not be possible to create composite images that have 

the exact same contrast between objects as in their respective frames. However, so long as there 

is not substantial bias introduced into multiple frames, having a few frames slightly biased by 

imperfect composite images should not affect kinetic analysis a great deal. Secondly, some PET 

tracers may not be amenable to the method of forming composites described in Equation 3.1. 

Finally, using shorter composite images will increase the variance in individual frames and in 
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quantitative parameter estimates. Nevertheless, the ratio of the activities of neighboring regions 

should at least be examined to provide insight into what time-series data should be used to form 

composite images. This will allow for the maximum benefit in terms of variance reduction while 

minimizing bias for a given PET tracer and imaging task. 

3.4 Summary 

In this chapter, a more optimal implementation of HYPR-LR has been introduced that can be 

tailored to specific studies. This implementation attempts to limit potential bias caused by the 

algorithm while providing the maximum possible reduction in noise by forming multiple time-

dependent composites that account for a tracer’s kinetic behavior. Such an implementation may 

be especially beneficial in the quantitative kinetic analysis of dynamic PET tracer data. This is 

explored in the next chapter.  
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Chapter 4. Improved Kinetic Analysis with Dynamic PET 
Data with HYPR-LR 

4.1 Introduction 

The reductions in noise gained from HYPR-LR processing could improve the precision and 

accuracy of kinetic parameters estimated from dynamic PET tracer data. The proposed optimal 

implementation of the algorithm could provide these improvements while introducing minimal 

bias. More precise and accurate kinetic parameter estimates could improve the utility of dynamic 

PET data in a number of contexts. Parametric image generation (i.e. voxel-by-voxel kinetic 

analysis) could be a particularly valuable application for HYPR-LR as parametric images 

provide physiologic information on the finest possible spatial scale but are limited by high noise. 

Less variance in parametric images could enable the identification of trends that would otherwise 

be lost to noise and lend greater confidence to existing trends and observations. HYPR-LR could 

likewise benefit kinetic analysis on a region of interest (ROI) level, but the benefits will diminish 

as larger ROIs are used. The effect of HYPR-LR processing on parametric images is thus the 

primary focus of this chapter. 

4.2 Chapter Aims 

The aim of this chapter is to rigorously evaluate the tradeoff between bias and variance seen 

with HYPR-LR processing in both individual time frames and parametric images of PET tracer 

data. This is done for [C-11]Pittsburgh Compound B ([C-11]PIB), a tracer that binds to beta-

amyloid that is amenable to a number of kinetic analysis methods (Yaqub et al 2008). This 

allows the effects of HYPR-LR on different analysis methods to be evaluated using the same 

data. Two analysis methods are studied here: the reference region Logan graphical method and 
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the basis function implementation of the simplified reference tissue method (SRTM), so called 

receptor parametric mapping (RPM or RPM2) (Logan et al 1990, Logan et al 1996, Lammertsma 

and Hume 1996, Gunn et al 1997, Wu and Carson 2002). The Logan graphical method is used as 

it is simple to implement and assumes no particular model, but is limited by a noise-dependent 

bias (Slifstein and Laruelle 2000, Logan 2000). RPM2 is generally considered to be more robust 

than the Logan method with regards to both bias and variance (Yaqub et al 2008), but it assumes 

a model and requires a nonlinear fit, which is more difficult to implement and more sensitive to 

parameters used in the fitting process. Both the proposed implementation of HYPR-LR using 

multiple composite images, heretofore called HYPR-LR-MC (multiple composites), and an 

implementation using all the frames in a dataset to form the composite, heretofore called HYPR-

LR-FC (full composite), are studied. Simulated dynamic studies are used to evaluate the absolute 

performance of the HYPR-LR, and human studies are used to study the algorithm in the context 

of a true imaging task. While the focus here is on two analysis methods for [C-11]PIB data, this 

work is also intended to provide a framework for determining the optimal implementation of 

HYPR-LR for a given imaging task that can be generalized to other tracers and analysis methods. 

4.3 Methods 

4.3.1 Creation of Numerical Phantoms 

As HYPR-LR processing uses data in both space and time, realistic spatial distributions of 

time activity curves (TACs) and noise must be simulated. With this in mind, numerical phantoms 

were created using TACs obtained from a human [C-11]PIB acquisition and the Zubal brain 

phantom (Zubal et al 1994). The [C-11]PIB TACs used were taken from a [C-11]PIB positive 

human scan acquired over 70 minutes with 5x2 minute and 12x5 minute frames. ROIs were 
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drawn over the frontal cortex, parietal cortex, occipital cortex, temporal cortex, white matter, and 

cerebellum on a temporally summed image.  The resulting temporal patterns were used to create 

a noise-free dynamic image set by impressing the TAC values into their corresponding regions in 

the Zubal phantom image. 

A PET acquisition on an ECAT HR+ scanner was then approximated using published 

performance information of the scanner model (Brix et al 1997, Herzog et al 2004). Data were 

first resampled to voxel sizes of 2.2x2.2x2.45mm, and then smoothed with a 4.39x4.39x5.10 

mm3 full-width-at-half-maximum (FWHM) Gaussian to approximate the resolution of the 

scanner. The activity distributions in the smoothed images were converted into expected counts 

by multiplying by factors for decay correction, frame duration, and voxel volume. Data in each 

slice were then forward projected at 160 angles spaced at 1.125 degrees using MATLAB’s (The 

MathWorks®) 2-dimensional radon transform function (i.e. a 2 dimensional acquisition). An 

attenuation map for each slice was created by assigning all voxels identified as bone in the Zubal 

brain phantom an attenuation coefficient of bone, and all voxels identified as other tissues an 

attenuation coefficient of water at 511 keV. The attenuation map was then resampled to the same 

matrix size as the PET images and forward projected at the same angles as the emission data. 

Each simulated emission sinogram was multiplied by its corresponding attenuation sinogram and 

the published sensitivity of the scanner. Scatter was not modeled, but sinograms were multiplied 

by the expected scatter fraction for the amount of activity used in the simulation. While this does 

not accurately model scatter, it will reduce counts to a similar degree as a true scatter correction 

algorithm so that added count-dependent Poisson noise is appropriately scaled. A noisy data 

value was then generated at each position in the resulting sinograms by generating a random 

number from a Poisson distribution with a mean equal the value of that position in the noise-free 
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sinograms. The resulting noisy sinograms were reconstructed with filtered backprojection (FBP) 

using a ramp filter with a cutoff at 0.75 the Nyquist frequency after correcting for attenuation, 

and values in the resulting images were converted back to activity units (Bq/ml). Fifty noisy 

realizations of the same simulated [C-11]PIB dataset were produced in this way. The noise-free 

sinograms were also reconstructed with FBP to use as a standard. FBP reconstruction was used 

as it is an analytical method that does not introduce any bias of its own, unlike iterative 

reconstructions like expectation-maximization (EM) and maximum a posteriori (MAP). This will 

allow for a more thorough evaluation of the bias and variance properties of HYPR-LR that is not 

confounded by the tradeoff between bias and variance in the reconstruction itself. 

4.3.2 Acquisition of Real Data 

Eight human [C-11]PIB datasets were evaluated to illustrate the potential of HYPR-LR to 

improve the kinetic analysis of real data. These datasets were selected as a representation of [C-

11]PIB positive scans. All data were obtained in accordance with a human subjects research 

protocol approved by the University of Wisconsin institutional review board. Briefly, the PET 

data were acquired using a Siemens HR+ scanner in 3-D mode (septa retracted). A five minute 

transmission scan was first acquired for attenuation correction, followed by a 70 minute dynamic 

emission scan initiated with a 30 second bolus infusion of radiotracer (518-585 MBq). The data 

were divided into 5x2 minute frames and 12x5 minute frames and reconstructed using a filtered 

backprojection algorithm using a ramp filter (at the Nyquist frequency) to a voxel size of 

2.0x2.0x4.25 mm3 and corrected for random events, attenuation, dead-time, scanner 

normalization, and scatter radiation. 
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4.3.3 HYPR-LR Processing and Smoothing 

Both the real data and the simulated data were processed with HYPR-LR-FC and HYPR-LR-

MC. A summary of the HYPR-LR terminology frequently used in this chapter is included in 

Table 4.1. The relevant temporal parameters for HYPR-LR-MC (Chapter 3, Equation 3.1) were 

determined by examining the ratios of the activities of neighboring regions, as described in 

Chapter 3. The same parameters were determined to be appropriate for both the simulated data 

and all the human datasets, Namely, tuptake was set at frame 3 (6 minutes), α was set to 2 frames 

(5 frames total in the sliding window), and t* was set at frame 12 (40 minutes). The impact of 

kernel size was studied using 3-dimensional Gaussian filtering kernels with a FWHM in each 

spatial dimension of three different sizes: 3, 6, and 9 mm. The 9x9x9 mm3 FWHM kernel was 

used to process all of the human data to examine both the maximum improvement in variance 

and the maximum bias to be expected from HYPR-LR processing. 

 

 

Table 4.1. A summary of HYPR-LR terminology used frequently in this chapter 
 
Term Definition 

HYPR-LR HighlY constrained backPRojection-Local Reconstruction  

Composite Image Temporally summed (i.e. time-averaged) image used in HYPR-LR 
processing to provide a low-noise estimate of a frame 

Weighting Image Spatial comparison of an individual frame with its composite image used 
to weight the composite image 

F, Filtering Kernel The smoothing kernel used to make the spatial comparison between an 
individual frame and its composite image 

HYPR-LR-MC HYPR-LR with Multiple Composite images 

HYPR-LR-FC HYPR-LR with a Full Composite image (summed over all frames) 
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Simulated and real data were also smoothed (after reconstruction) to provide a simple 

denoising method to compare HYPR-LR processing to. Data were smoothed with 3x3x3 and 

6x6x6 mm3 FWHM Gaussian kernels. Although smoothing is not as sophisticated as other 

denoising techniques, it is still one of the most commonly used methods for reducing noise.  

4.3.4 Kinetic Analysis 

Parametric images of the non-displaceable binding potential (BPND) were created from both 

the simulated and human data. The BPND is the ratio of bound to unbound (non-displaceable) 

tracer at equilibrium. This is one of the primary quantitative measures used for tracers that show 

reversible binding behavior, and is frequently taken as a measure of available receptors. BPND 

parametric images were created using the reference region Logan graphical method and receptor 

parametric mapping (RPM2). These analysis methods are described in detail in Appendix A.  

The cerebellum was used as a reference region for both analysis methods (Lammertsma and 

Hume 1996, Price et al 2005)(Logan et al 1996). For all [C-11]PIB data, Logan graphical 

analysis was performed using a reference tissue efflux constant, k2REF, of 0.144min-1(Price et al 

2005, Lopresti et al 2005), and an equilibrium time, t*, of 40 minutes, determined from the data 

analyzed. The Logan distribution volume ratios (DVRs) generated at each voxel were converted 

to non-displaceable binding potentials (BPND = DVR-1). RPM2 was performed using a k2a
min of 

0.02min-1 and a k2a
max of 0.1 min-1 with 50 basis functions. The minimum and maximum values 

for k2a were derived from non-linear least squares SRTM fits to several ROI TACs from both 

real and simulated data. The minimum k2a value used falls slightly above the values obtained 

from some of these fits, but gives results that are most consistent when compared with the Logan 

results. The reference region efflux constant, k2
REF

, used in RPM2 was determined by finding the 

median k2
REF

 of all voxels with a BPND> 0 in the first-pass fitting. 
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RPM2 requires that each frame be weighted by its duration and the total number of counts in 

the frame (without decay correction) (Gunn et al 1997): 

framein  counts Total
duration) (Frame  Weight Frame

2
=

    (4.1) 

The unprocessed data were weighted in this fashion, but a different weighting scheme is required 

for the HYPR-LR processed data, as the variance in each frame will no longer be determined by 

the number of counts in the frame, but by the number of counts in the composite image. The 

frames in the HYPR-LR processed data were therefore weighted as (again, without decay 

correction): 

compositein  counts Total
duration) (Composite  Weight Frame LR-HYPR

2

=
   (4.2) 

Fits to the HYPR-LR-FC data will thus be uniformly weighted as the same composite is used for 

each frame. 

For the simulated data, the parametric Logan image generated from the noise-free FBP 

reconstruction was used as a standard to which all noisy simulated parametric images were 

compared. The reference region Logan method assumes no model, and therefore should be the 

least biased of any reference tissue method when there is no noise in the data. 

4.3.5 Data Evaluation  

4.3.5.1  Bias and Variance in the Simulated Data 

The impact of HYPR-LR processing on both individual time frames and parametric images 

was evaluated by measuring the bias and variance of the simulated data. The bias at each voxel 

in each time frame was taken as the percentage difference between the mean voxel value over the  
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50 noise realizations and the voxel value in the noise-free FBP reconstruction: 

100  (%) bias x ⋅
−

=
x

xµ

          (4.3) 

where µx is the mean voxel value over all noise realizations and x is the true voxel value. Bias in 

the parametric images was measured in the same way, using the voxel values in the reference 

Logan parametric image created from the noise-free FBP reconstruction as a reference. 

The variance was evaluated using the coefficient of variation (COV) at each voxel: 

x

x
µ
σ

=cov
       (4.4) 

where σx is the standard deviation of a voxel over all noise realizations. The mean bias and COV 

of all voxels in the parietal and frontal cortices is reported (11794 voxels). The bias and COV of 

the time-series data were averaged over all frames. 

4.3.5.2 Evaluation of the Human Data 

A ROI based kinetic analysis was used to evaluate bias in the parametric images of the 

human data. For each dataset, ROIs were drawn over the frontal and parietal cortex (regions of 

particular interest in [C-11]PIB scans) on temporally summed images. ROIs contained 2648 

voxels on average (range 1150-4385 voxels). TACs averaged over these ROIs were analyzed 

with the reference Logan graphical method with the same parameters described above to 

generate an average BPND value for the entire corresponding region. Over such a large region, 

the Logan estimates of the BPND should be relatively unbiased as there is little noise in the TAC 

and a model is not assumed. These BPND values were thus used as a standard and compared with 

the BPND values from the same regions in the parametric images. In the ideal case, the BPND 

values taken from the parametric images will match the ROI Logan estimates exactly. A bias will 
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appear as a deviation from unity in the slope of a linear fit to the data, or a deviation from zero in 

the y-intercept. 

BPND values obtained with the reference Logan method and RPM2 were also compared 

voxel-by-voxel before and after processing to give an indication of variance in the parametric 

images. For each human [C-11]PIB dataset, the voxel values obtained with each method were 

plotted against each other and fit to a straight line. The Pearson correlation coefficient (r) of the 

resulting fits should provide an indication of the variance in the parametric images. This assumes 

that the effect of noise in the time-series data on the BPND estimates is independent for Logan 

analysis and RPM2. This is likely not true, and this approach therefore only gives a semi-

quantitative estimate of the variance in the parametric images. The correlation coefficients 

obtained from each dataset were compared between the original data, smoothing with a 3x3x3 

mm3 FWHM Gaussian, HYPR-LR-MC, and HYPR-LR-FC using paired t-tests. 

4.4 Results 

4.4.1 Evaluation Bias and Variance in the Simulated Data 

The noise-free simulated data give insight into the bias that HYPR-LR processing can 

introduce. In the case of the simulated [C-11]PIB data studied here, HYPR-LR-FC introduces 

errors into border regions of individual time frames that distort TACs (Figure 4.1). As a result, 

there are also errors in the BPND parametric images created with both the Logan graphical 

method and RPM2 (Figure 4.2). HYPR-LR-MC effectively eliminates these errors. 
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Figure 4.1. Evaluation of HYPR-LR with a noise-free simulated phantom. A frame from 
the original reconstruction (a) is compared to HYPR-LR-FC (b) and HYPR-LR-MC (c). 
In this frame, HYPR-LR-FC inappropriately increases the contrast between the cortex 
and the white matter. The errors in individual frames change the shape of TACs (d). 
HYPR-LR-MC virtually eliminates errors caused by HYPR. 

 

 

Figure 4.2. Parametric images of the noise-free simulated data generated with either the 
reference region Logan graphical method (a-c) or RPM2 (d-f). RPM2 tends to 
overestimate BPND values in some regions, particularly the white matter. The parametric 
images generated from the data processed with HYPR-LR-MC (b&e) differ little from 
the parametric images generated from the unprocessed data (a&d). The parametric 
images generated from the data processed using HYPR-LR-FC (c&f) show greater 
contrast between the high uptake regions of cortex and the surrounding white matter. 
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The noisy simulated data demonstrate the tradeoff between this bias and the variance 

reduction seen with HYPR-LR processing. In individual time frames, data processed with 

HYPR-LR-MC and HYPR-LR-FC show significant reductions in the COV (Figure 4.3a). 

HYPR-LR-MC processing does not reduce the average COV as much as HYPR-LR-FC, but it 

effectively introduces no bias. Averaged over all frames, the bias introduced by HYPR-LR-FC is 

small, 0.47% when the 9x9x9 mm3 filtering kernel is used. Larger filtering kernels provide more 

variance reduction. No additional bias is seen with HYPR-LR-MC as kernel size increases, and 

bias increases with kernel size for HYPR-LR-FC. Both implementations of HYPR-LR compare 

very favorably with spatial smoothing, which introduces significant negative bias into individual 

time frames due to loss of spatial resolution. 

HYPR-LR processing significantly improves both the bias and variance in the parametric images 

created with the Logan graphical method (Figure 4.3b). As with the individual time frames, 

HYPR-LR-FC reduces noise to a greater degree than HYPR-LR-MC, but can also introduce a 

slight bias. Greater reductions in both the noise-dependent Logan bias and the COV are achieved 

with larger filtering kernels. For example, HYPR-LR-MC with a 9x9x9 mm3 FWHM Gaussian 

kernel reduces the mean bias from -37.1% to -0.21% and the average COV from 33.1% to 

11.0%. HYPR-LR-FC with the same kernel further reduces the COV to 6.37% and introduces a 

slight positive bias of 2.45%. This positive bias is consistent with what is observed in Figure 4.2. 

Parametric Logan images created from the HYPR-LR processed data compare very favorably to 

the images created from the smoothed data. Smoothing with a 3x3x3 mm3 FWHM Gaussian 

reduces the average bias to   -22.7% and the average COV to 29.5%, and the 6x6x6 mm3 FWHM 
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Gaussian reduces the average bias to -24.6% (though this bias is largely due to smoothing not 

noise), and the average COV to 10.0%.  

HYPR-LR-MC and HYPR-LR-FC processing also reduce the variance in the RPM2 

parametric images. The variance reduction provided by HYPR-LR-MC processing is not as great 

as in the Logan images, but it does provide an improvement while introducing little bias. 

Variance reduction increases as larger kernels are used with HYPR-LR-MC and little additional 

bias is introduced (Figure 4.3c). For example, when the largest filtering kernel is used HYPR-

LR-MC processing reduces the COV from 16.6% to 14%, and increases the bias from 1.2% to 

3.73%. HYPR-LR-FC processing reduces noise more dramatically than HYPR-LR-FC, but at the 

cost of introduced bias. The tradeoff between bias and noise is closely related to kernel size for 

HYPR-LR-FC. When a 3x3x3 mm3 kernel is used, the average COV is reduced to 8.7% and 

 

Figure 4.3. The relationship between bias and the COV in the simulated data for 
individual time frames (a), Logan parametric images (b), and RPM2 parametric images 
(c). The mean bias and COV of voxels in the frontal and parietal cortices are shown for 
the original data, the data spatially smoothed with 3 and 6 mm FWHM 3-D Gaussians, 
and for the data processed with HYPR-LR-MC and HYPR-LR-FC using Gaussian 
smoothing kernels with either a 3 mm (open shapes), a 6 mm (half-open shapes), or a 9 
mm FWHM (solid shapes). The mean bias and COV following both spatial smoothing 
with a 3 mm FWHM Gaussian and HYPR-LR-MC and HYPR-LR-FC with a 9 mm 
FWHM Gaussian kernel are also shown. 
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average bias increases to 5.39%. When a 9x9x9 mm3 FWHM kernel is used, average COV drops 

to 5.37% and average bias increases to 11.4%. Spatial smoothing does compare relatively 

favorably to HYPR-LR in the RPM2 parametric images. Smoothing with the 3x3x3 mm3 FWHM 

Gaussian reduces the average COV to 10.5% and creates a negative bias of -2.92% relative to the 

baseline bias for RPM2 of 1.2%.  

HYPR-LR can also be used in addition to spatial smoothing. Although resolution will still be 

degraded by the initial smoothing, HYPR-LR will provide an additional reduction in noise with 

no further loss of spatial resolution. For example, smoothing with a 3x3x3 mm3 FWHM 

Gaussian followed by HYPR-LR-MC processing with a 9x9x9 mm3 FWHM Gaussian kernel 

reduces the average COV in the Logan parametric images to 7.19%, albeit while increasing bias 

to -6.98%, and reduces the variance in the RPM2 parametric images to 8.55% with a bias of        

-1.03%. 

4.4.2 Evaluation of Human [C-11]PIB Data 

Illustrative parametric images from a human PIB dataset qualitatively demonstrate the relative 

tradeoff between variance and (in the case of the Logan method) bias reduction, and introduced 

bias from HYPR-LR processing or simple spatial smoothing (Figure 4.4). These images are 

consistent with the data presented in the simulation results. HYPR-LR-MC reduces the variance 

in both the Logan and RPM2 parametric images, though the variance reduction is notably greater 

for the Logan images. HYPR-LR-MC also globally increases the BPND values in the Logan 

images, indicating a reduction of the noise-dependent bias. HYPR-LR-FC provides 
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the greatest reduction in variance in both the Logan and RPM2 parametric images in exchange 

for a slight inappropriate enhancement of the contrast between white matter and the cortex. 

HYPR-LR-FC likewise reduces the noise-dependent Logan bias. Smoothing with a 3x3x3 mm3 

FWHM Gaussian results in some improvement of the variance and bias of the Logan image, and 

qualitatively improves the variance in the RPM2 image to a similar degree as HYPR-LR-MC 

processing at the cost of some blurring. HYPR-LR processing can also be done in addition to 

spatial smoothing to further reduce variance. This is demonstrated in Figure 4.4with HYPR-LR-

MC.  

 

Figure 4.4. An illustrative example from a human [C-11]PIB dataset showing the effects 
of HYPR-LR processing on parametric images.  The unprocessed data are predictably 
noisy and the Logan image (a) appears biased compared to the RPM2 image (b). HYPR-
LR processing with a 9 mm FWHM Gaussian kernel improves the variance of both 
Logan and RPM2 parametric images (c-f). HYPR-LR-FC reduces variance more than 
HYPR-LR-MC processing, but the HYPR-LR-MC results are likely less biased. Spatial 
smoothing with a 3x3x3 mm3 Gaussian results in improved variance with a 
corresponding loss of spatial resolution (g & h). HYPR-LR processing can also be done 
following smoothing to provide a further improvement in variance without any 
additional loss of spatial resolution, demonstrated here with HYPR-LR-MC (i & j). 

 



 
 

49 
 

 

 

To evaluate bias in the human data, voxel BPND values averaged over frontal and parietal 

cortex ROIs from all eight datasets were compared with standard BPND values obtained from 

TACs averaged over the same ROIs using the reference Logan method. HYPR-LR-FC and 

HYPR-LR-MC reduce both the bias and variance of the Logan parametric image derived BPND 

values as the slopes of the linear fits approach unity and all the data points fall closely around 

their respective fits (Figure 4.5a). Spatial smoothing also reduces some of the noise-dependent 

Logan bias, but much less than HYPR-LR processing. The results from the RPM2 parametric 

images largely reflect what is seen in the simulated data. There appears to be little bias in the 

RPM2 images of the original data and the HYPR-LR-MC processed data. HYPR-LR-FC does 

introduce a positive bias, seen in the increased BPND values and the increase of the slope of the 

 

Figure 4.5. Bias in the [C-11]PIB human data. BPND values obtained from ROIs drawn 
on the parametric Logan (a) and RPM2 (b) images were compared to the BPND values 
obtained from the TACs of the same ROIs with the reference region Logan graphical 
method. Each point on the graphs represents the BPND from either the frontal or parietal 
cortex of one of the eight [C-11]PIB positive scans studied. Linear fits to the BPND values 
obtained using different types of processing are also shown with their corresponding 
equations (      = original data,  _    = smoothed,       = HYPR-LR-MC,         = HYPR-LR-FC). A 
deviation of the slope from unity or a y-intercept other than zero indicates the presence of a bias. 
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fit from 0.97 to 1.1. Smoothing does not bias the slope of the fit, but it does reduce the y-

intercept of the fit from 0.063 to 0.028, and all of the smoothed BPND values fall slightly below 

the original values. 

Finally, variance in the human data was evaluated semi-quantitatively by plotting voxel 

values from Logan and RPM2 parametric images against each other. An illustrative example of 

all voxels in the parietal and frontal cortex of the same dataset shown in Figure 4.4demonstrates 

that HYPR-LR increases the correlation between BPND values derived from the different analysis 

methods, indicating a reduction in variance (Figure 4.6). When the correlation coefficients of all 

the [C-11]PIB datasets are compared following spatial smoothing and HYPR-LR processing 

using paired t-tests, all of the denoising methods significantly increase the correlation between 

Logan and RPM2 BPND values (p<0.01, Table 4.2). There is not a significant difference between 

the correlation coefficients for HYPR-LR-MC and HYPR-LR-FC (p>0.05), but HYPR-LR-MC 

and HYPR-LR-FC both significantly increase the correlation over smoothing with a 3x3x3 mm3 

Gaussian. The lower correlation coefficient of the smoothed data is due mostly to the higher 

noise in the Logan parametric images.  

 
Figure 4.6. Voxel BPND values obtained with the Logan graphical method and RPM2 
plotted against each other from a representative [C-11]PIB study. The parametric 
images generated from the original data (a) are compared with those generated from the 
data smoothed with a 3x3x3 mm3 FWHM Gaussian (b), HYPR-LR-MC (c), and HYPR-
LR-FC (d). The correlation between the two analysis methods, measured here with the 
Pearson correlation coefficient (r), gives an indication of the variance of the parametric 
images. 
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4.5 Discussion 

In this chapter, the potential of HYPR-LR to improve variance in both individual time frames 

and quantitative parametric images has been evaluated in the context of PET tracer data. The 

proposed optimized implementation of the algorithm using multiple composite images (HYPR-

LR-MC), which will ideally provide the maximum improvement in noise while introducing no 

bias, has been compared to an implementation using all study frames to form the composite 

image (HYPR-LR-FC), which will provide the maximum possible improvement in noise but 

potentially introduce bias. HYPR-LR processing has also been compared to spatial smoothing.  

The results show that HYPR-LR-FC processing can potentially introduce bias into border 

regions in individual time frames and parametric images. This bias will be dependent on 

differences in contrast that exist between individual frames and the composite image. Bias 

caused by HYPR-LR-FC can be visualized in the noise-free simulated data of individual time 

frames (Figure 4.1b), TACs (Figure 4.1d), and parametric images (Figure 4.2). This bias was 

also quantified in the noisy simulated data (Figure 4.3), and in parametric images of the human 

data (Figure 4.5). While the bias introduced by HYPR-LR-FC is relatively small when averaged 

Table 4.2. The mean and range of Pearson correlation coefficients obtained from a linear 
fit to the voxel-by-voxel comparisons of the reference region Logan method and RPM2 
for each of the 8 human [C-11]PIB datasets. The mean correlation coefficient was 
significantly improved with each of the denoising methods over the original data            
(*, p<0.01). There was no difference between the two implementations of HYPR-LR 
(p>0.05), but they both increased the mean correlation coefficient more than simple 
smoothing (+, p<0.01). 
 
 Original Data Smoothed HYPR-LR-MC HYPR-LR-FC 
Mean Pearson-r 
(Range) 0.62 (0.42-0.88) 0.71* (0.51-0.82) 0.94*+ (0.91-0.98) 0.93*+ (0.89-0.98) 
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over all individual time frames, it makes a more significant impact on the parametric images, 

particularly those created with RPM2 (Figure 4.3 & Figure 4.5). 

HYPR-LR-MC processing virtually eliminates the bias caused by HYPR-LR. The simulated 

data show that individual time frames and parametric images are essentially unbiased following 

HYPR-LR-MC processing (Figure 4.1-Figure 4.3), and the human parametric images confirm 

this (Figure 4.4 & Figure 4.5).  

Bias can also be limited if a smaller kernel size is used with HYPR-LR-FC. In this work, the 

smallest kernel used was a Gaussian with a FWHM of 3x3x3 mm3, only slightly larger than the 

thickness of the cerebral cortex, the primary object of interest in [C-11]PIB data. For the 

simulated data studied here, HYPR-LR-FC with this size kernel performed particularly well with 

regard to bias when the data were analyzed with RPM2, only introducing slightly more bias than 

HYPR-LR-MC with a large 9 mm FWHM filtering kernel (5.39% versus 3.73%). HYPR-LR-FC 

with the smaller kernel size did not provide as much of a benefit to the Logan parametric images, 

as BPND values are still relatively biased (Figure 4.3b). 

Both methods of implementing HYPR-LR reduce variance in individual time frames and 

parametric images. HYPR-LR-FC processing with a larger filtering kernel gives the greatest 

reductions in variance (Figure 4.3 & Figure 4.4). This is not surprising, as each frame in a study 

is given the noise properties of the fully summed composite image. Processing with HYPR-LR-

MC reduces variance most significantly in parametric images generated with the Logan graphical 

method, and in RPM2 parametric images to a lesser extent (Figure 4.3, Figure 4.4, Figure 4.6, & 

Table 4.2). As expected, a larger kernel size results in better variance reduction with HYPR-LR-

MC while introducing little or no additional bias. A larger kernel likewise improves the variance 

reduction with the HYPR-LR-FC algorithm, but more bias is introduced (Figure 4.3). Using 
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HYPR-LR-FC with a small filtering kernel may therefore be desirable in some applications. For 

example, when the simulated data are analyzed with RPM2, HYPR-LR-FC with a smaller kernel 

still achieves good variance reduction (from 16.6% to 8.7%) while introducing little bias, as 

discussed above.  

In this work, HYPR-LR processing has been compared to simple spatial smoothing. While 

many other denoising methods have been developed, spatial smoothing remains one of the most 

common ways to control noise in PET data. In addition, the processing time required for HYPR-

LR will not be substantially longer than the time required to spatially smooth each frame. 

Processing time will largely be determined by the number of convolution operations that must be 

performed, and in this work the number of convolutions required for HYPR-LR-MC processing 

is 1.6 times greater than the number required to spatially smooth each frame.   

Individual frames processed with HYPR-LR compare very favorably to frames that have 

been spatially smoothed (Figure 4.3a). HYPR-LR also compares favorably to spatial smoothing 

when the data are analyzed with the reference Logan graphical method (Figure 4.3b, Figure 4.4, 

& Figure 4.5). The improvements offered by HYPR-LR are less dramatic compared to simple 

smoothing when parametric images are created with RPM2. HYPR-LR-MC provides less noise 

reduction than smoothing with the 3x3x3 mm3 FWHM Gaussian, though spatially smoothed 

BPND values are slightly more biased (Figure 4.3c & Figure 4.4). HYPR-LR-FC using the 3x3x3 

mm3 FWHM Gaussian kernel does provide more variance reduction than spatially smoothing 

with a 3x3x3 mm3 FWHM Gaussian for a comparable amount of bias (Figure 4.3c), although the 

bias caused by HYPR-LR-FC is not due to any loss of spatial resolution. HYPR-LR processing 

can also be done in addition to spatial smoothing to provide further reductions in variance 

without any additional loss of spatial resolution (Figure 4.3 & Figure 4.4). 
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In the future, HYPR-LR must be considered more fully in the context of other denoising 

methods, for example wavelet denoising and iterative image reconstruction algorithms, including 

the numerous proposed approaches to 4-dimensional (4-D) PET reconstruction (Turkheimer et al 

1999, Turkheimer et al 2000, Lin et al 2001, Cselenyi et al 2002, Turkheimer et al 2003, Alpert 

et al 2006, Rahmim et al 2009). As HYPR-LR uses temporally integrated data to reduce noise, 

comparing it to denoising methods that likewise utilize the time domain, such 4-D 

reconstructions, will be particularly important. Iterative reconstructions, wavelet denoising, and 

HYPR-LR have all demonstrated an ability to substantially reduce noise, but each also has 

drawbacks. A full comparison between HYPR-LR and these other denoising processes, explicitly 

examining the pros and cons of each, is beyond the scope of the current work and will likely 

depend on the specific imaging task. Furthermore, as demonstrated here with spatial smoothing, 

HYPR-LR could easily complement these other denoising techniques. This is particularly 

relevant for performing HYPR-LR on OSEM reconstructions, which are now routinely done on 

both clinical and research scanners and provide some noise control themselves. 

This work has shown that following HYPR-LR processing, Logan and RPM2 analysis 

perform comparably. After denoising with HYPR-LR-MC and HYPR-LR-FC, both the COV and 

the bias are similar between the Logan and RPM2 images (Figure 4.3-Figure 4.6). If anything, 

after HYPR-LR processing the greater bias is seen with RPM2 with little additional benefit in 

variance reduction (Figure 4.3c & Figure 4.5b). In addition, in this application the performance 

of RPM2 was more variable and sensitive to user selected parameters. In particular, the 

minimum k2a value used in this work was slightly greater than that predicted by non-linear 

SRTM fits to ROI TACs, and greater than the value previously reported for [C-11]PIB analysis 

(Yaqub et al 2008). There was also a slight positive bias in the BPND values obtained with RPM2 
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in the simulations (Figure 4.3c). This might be because the assumption of a simplified reference 

tissue model does not adequately describe the kinetics of [C-11]PIB in this case (Price et al 

2005). While the objective of this work is not to determine the best way to analyze [C-11]PIB 

data, the increased reliability and greater robustness seen with Logan analysis following HYPR-

LR processing may prove valuable, as the Logan method is easy to implement, does not assume 

any particular model, and does not require imposing limits on the data, for example the range of 

k2a in RPM2.  

Presumably, HYPR-LR processing should also improve other data driven methods, such as 

the multi-linear regression methods that are not susceptible to a noise-sensitive bias but do 

exhibit greater variance than the Logan graphical method (Ichise et al 2002, Logan 2003). 

Likewise, it should improve other model based methods like compartmental analysis. 

The results presented here suggest that HYPR-LR-MC and HYPR-LR-FC may have value in 

different contexts. HYPR-LR-MC introduces minimal bias into the data, but the bias introduced 

by HYPR-LR-FC is not that great, particularly when a smaller filtering kernel is used. And while 

HYPR-LR-MC reduces variance, HYPR-LR-FC does so to a greater degree. When the focus is 

on relatively large regions of high uptake in [C-11]PIB data, HYPR-LR-FC performs relatively 

well. However, caution should still be exercised when using all frames of the study to form the 

composite image. In the case of [C-11]PIB, it appears as if the bias caused by HYPR-LR-FC 

results in greater contrast between structures in the brain. While such an image may be appealing 

to look at, it may be a misleading result. Bias caused by HYPR-LR will also likely be greater in 

studies that have greater contrast between areas of interest and their surrounding background, for 

example [C-11]raclopride or any of a number of tracers used to study tumor biology. It is clear 

that using HYPR-LR with composite images that have been formed in a way that accounts for 
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the kinetic behavior of the tracer being studied can certainly provide an improvement in the 

variance of kinetic parameters while introducing very little bias. 

While the focus of this chapter has been the application of HYPR-LR processing to [C-

11]PIB data, a tracer of interest in the neuroscience community, the approach presented here 

should be generalizable to other tracers and other applications outside the brain. Indeed, the 

fairly detailed structure of the brain, and of the cortex in particular, provides a good means of 

testing HYPR-LR processing. HYPR-LR processing may prove particularly valuable for 

providing more detailed physiologic information on a smaller anatomical scale for cardiac and 

oncology applications of dynamic PET imaging. Not all tracers will follow the exact uptake 

pattern we have described, and the optimal composite scheme, including simply using a fully 

summed composite, will depend on the application. 

4.6 Conclusion 

HYPR-LR is a promising denoising technique for a number of medical imaging modalities, 

including dynamic PET imaging. This chapter has evaluated the tradeoff between bias and 

variance seen with HYPR-LR processing in the context dynamic PET tracer data, with a focus on 

kinetic analysis. HYPR-LR processing significantly improves the variance of both individual 

time frames and quantitative parametric images, and the proposed implementation using multiple 

composite images does so while introducing little bias. This work also provides a framework for 

testing the validity of HYPR-LR processing in the context of a given tracer and analysis method. 

In the future, HYPR-LR may prove particularly valuable in PET applications that suffer from 

high noise, such as PET scans requiring high spatial or temporal resolution, vulnerable patient 

populations who require less radiation dose, tracers used to screen large populations, and tracers 



 
 

57 
 

 

utilizing unique but dosimetry limited radionuclides such as [I-124] and [Cu-64]. HYPR-LR is a 

simple denoising tool, and the proposed method for its quantitatively accurate implementation 

could easily be implemented for different tracer behaviors, or for individual studies. 
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Chapter 5. Non-linear Spatio-temporal Filtering of Dynamic 
PET Data Using a Low-Pass Filter with Expectation-
Maximization Deconvolution 

5.1 Introduction 

The second novel denoising method for dynamic positron emission tomography (PET) 

presented in this thesis is spatio-temporal expectation-maximization (STEM) filtering. This 

thesis has so far demonstrated that HighlY constrained back-PRojection-Local Reconstruction 

(HYPR-LR) is an effective method for reducing noise in dynamic PET data and improving 

kinetic analysis. Furthermore, HYPR-LR can be tailored to specific imaging tasks and 

applications to improve noise while introducing little bias. However, application of HYPR-LR 

processing to specific tasks does require ad hoc selection of parameters used in the algorithm, 

which can be somewhat arbitrary. A 4-dimensional (4-D) denoising method that requires less 

adjustment but that is still simple, effective, and suited to a wide range of dynamic PET 

applications could thus be of value. 

5.2 Chapter Aims 

The aim of this chapter is to present STEM as a 4-D filtering algorithm that is simple, 

requires little adjustment, and can be applied to a wide range of dynamic PET studies. A method 

that filters data in the time domain alone, temporal EM (TEM) filtering is also presented, though 

as will be shown the benefits obtained with TEM filtering are less than those obtained with 

STEM. STEM and TEM filtering couple two well established methods: low-pass filtering 

followed by expectation-maximization (EM), or Richardson-Lucy, deconvolution (Richardson 

1972, Lucy 1974). In principle, the initial 4-D filter suppresses noise at a broad range of spatial 
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and temporal frequencies and the subsequent deconvolution recovers the frequencies most 

important to the signal after only a few iterations. This approach is similar to early termination of 

EM reconstruction, which improves noise at the cost of a slight degradation in resolution. 

However, because STEM filtering is 4-D, a substantial degree of noise is averaged out with little 

loss of signal. As TEM only filters temporal data, less noise will be reduced but there will be no 

loss of spatial resolution. In addition, because STEM and TEM use EM deconvolution, they are 

data driven processes and will produce a unique filter for a given dataset. STEM and TEM 

filtering are facilitated by two non-traditional approaches to the filtering process. Namely, time-

activity curves (TACs) are transformed to an image frame number domain, and the filtering 

kernel is shift-variant. 

The aim of this chapter is to introduce the STEM filtering methodology. The next chapter 

will evaluate the method’s performance on PET data. 

5.3 Theory 

5.3.1 Initial Filtering 

The goal of STEM and TEM filtering is to suppress temporal (and in the case of STEM 

spatial) noise in the initial filtering step, and then to restore the frequencies most important to the 

signal using EM deconvolution. The initial step for STEM filtering can be described as: 

jiji Sfg ,, )'( ⊗=
             (5.1) 

where fi,j is the original 4-dimensional dataset, denoted by the spatial dimension, i, and the image 

frame dimension, j, Si,j is the 4-dimensional filter, gi,j is the filtered result, and '⊗ is a modified 

convolution process. The initial filtering step is the same for TEM filtering, but only the time 

domain is filtered. The filter for TEM is thus one dimensional, and can be represented as Sj. The 
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convolution process employed is distinct from standard convolution in two important ways: the 

temporal component takes place in the image frame domain, as opposed to the time domain, and 

the convolution is shift-variant. 

5.3.1 Filtering in the Image Frame Domain 

Data filtered with STEM and TEM are transformed from the time domain to the image frame 

domain, filtered, and then transformed back to the time domain (Figure 5.1a & b). Practically, 

the transformation from the time domain to the frame domain and from the frame domain back to 

time is trivial. More formally, it can be described by the invertible matrix operations: 

 XT=F        (5.2) 

 X-1F=T       (5.3) 

where X is a diagonal transformation matrix whose diagonal elements are equal to the frame 

numbers divided by their respective mid-point times, T is a vector of the mid-point times of each 

frame, and F is a vector of the frame numbers. 

 

Figure 5.1. An illustration of the image frame domain component of STEM and TEM 
filtering. An initial voxel TAC (a) is transformed to the image frame domain and 
convolved with a shift-variant Gaussian (b) that is truncated at the beginning (not shown) 
and end (c) of the curve. 
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Filtering in the frame domain can help minimize bias caused by STEM filtering while 

maximizing the noise reduction it provides. Dynamic PET studies are typically sampled 

asymmetrically, with finer sampling early in a study when tracer kinetics are changing rapidly 

and coarser sampling as the study progresses. Such a sampling scheme maximizes frame 

durations to reduce noise while still sampling at an adequate rate to capture changes in the signal, 

limiting the change in tracer activity from one frame to the next. This will limit the amount the 

temporal signal is smoothed by the initial filter, particularly at early frames, making the 

restoration of the signal easier. In addition, by filtering in the frame domain, rather than 

interpolating to a uniform sampling rate and filtering in the time domain, STEM filtering 

provides the maximum averaging of noise between frames. 

5.3.3 Shift-Variant Convolution 

The convolution operation used in STEM and TEM filtering is distinct from standard 

convolution because it is shift-variant. In particular, the filtering kernel is truncated at the 

beginning and end of the frame domain. This approach is required as TACs are not periodic and 

not compactly supported. Standard approaches to convolving discrete data such as circular 

convolution and zero-padding would be incorrect and thus cannot be used. The filtering kernel is 

truncated by simply ignoring the elements of the kernel that fall outside the frame domain during 

the convolution (Figure 5.1c). Any kernel that is truncated must be normalized only by the area 

falling within the image frame domain.  

 

 

 



 
 

63 
 

 

For STEM filtering, the modified 4-dimensional convolution between the dynamic PET data 

fi,j with M frames indexed by j = 1,2…M, and the filtering kernel S, with 2N+1 elements in the 

image frame domain indexed by j=-N,-N+1…0…N-1,N, and 2P+1 elements in the spatial domain 

indexed by i=-P,P+1…0…P-1,P, can be represented as: 
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As PET images are typically compactly supported in space, no special normalization in the 

spatial domain is included in Equation 4.2, though it could easily be done if required. For TEM 

filtering, the spatial dimension would simply be omitted. The kernel would still be truncated at 

the beginning and end of the time domain. 
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5.3.4 EM Deconvolution 

After the initial filtering step, EM deconvolution is performed to recover the frequencies 

most important to the signal. For STEM filtering, this can be described as: 
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       (5.5) 

where yn
i,j is the STEM filtered result after n iterations, and gi,j is the dynamic data after the 

initial filtering (Equation 5.1). Again, for TEM filtering, the filter is 1-dimensional.  

The reduction in noise from the initial filtering step is sustained by terminating EM 

deconvolution after only a few iterations. Because the initial filter is 4-dimensional, it can be 

made relatively small in each dimension to limit the degradation of the signal and still reduce 

noise to a substantial degree. A few EM deconvolution iterations should thus be all that is needed 

to largely restore the temporal and spatial frequencies that dominate the signal, while noise is 

still largely suppressed. This is empirically demonstrated in the next chapter. 

5.3.5 Filter Magnitude 

The magnitude of the effective filter used for TEM and STEM filtering is revealing. Because 

the filtering kernel is shift variant, its magnitude in the Fourier transform of the frame domain is 

not Gaussian. The magnitude of an example filter with a FWHM of 4 frames in the frame 

domain is shown in Figure 5.2a. The magnitude of this filter in the frame frequency domain was 

found as: 
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where FFTj is the discrete Fourier transform of the frame domain, fp,j is a frame-activity curve 

(FAC) from a striatal voxel, i=p, in a simulated [C-11]raclopride dataset, and jpSf ,)'( ⊗ is the 

FAC of the same voxel following filtering. The magnitude of the effective filter following EM 

deconvolution with equation 3 demonstrates the rapid recovery of lower frequencies, and the 

progressive recovery of higher frequencies (Figure 5.2e & f). It is also interesting to note that 

there is an increase in the filter’s magnitude as it approaches the Nyquist frequency, reflecting 

the fact that the filtering process preserves the sharp edge at the abrupt end of the FAC. 

5.3.6 Filter Parameter Selection 

The factors most important to the adequate recovery of signal in TEM and STEM filtering are 

the size of the initial filter and the number of EM iterations performed. The spatial frequencies 

present in typical dynamic PET studies are relatively high compared to the frequencies present in 

the frame-activity domain (Figure 5.3). An asymmetric Gaussian filtering kernel is therefore 

proposed for STEM filtering, whose full width at half maximum (FWHM) is wider in the frame 

domain than in the spatial domain to limit the degradation of spatial frequencies. The results 

 

Figure 5.2. The magnitude of the effective filter in frame frequency space after the initial 
filter (a), after 3 deconvolution iterations (b), and after 5 deconvolution iterations (c) 
demonstrates the progressive recovery of lower frequencies. 



 
 

66 
 

 

presented in the next chapter demonstrate that STEM filtering with a Gaussian filtering kernel 

with a FWHM approximately equal to the resolution of the scanner in each spatial dimension and 

a FWHM of 4 frames in the image frame dimension performs quite well, with minimal 

introduced bias and significant noise suppression. TEM filtering performs  well using a Gaussian 

with a FWHM of 4 frames.  

Using kernels of this size, the temporal (and spatial) frequencies most important to the data 

studied in this thesis are largely restored after 10 iterations. If the first frame is left unfiltered, the 

spectrum of an example [C-11]raclopride TAC filtered with STEM is almost entirely restored 

after 10 iterations (Figure 5.3 a & b). The spatial frequencies from an example [C-11]raclopride 

slice are also largely restored, though there is some visible degradation of the higher frequencies 

(Figure 5.3 c & d). 

Kernel size and the number of iterations required are interrelated. Adjusting either one will 

impact the degree to which the original signal is restored and noise is suppressed. The size of the 

 

Figure 5.3. The spectral properties of an example [C-11]raclopride TAC (a & b) and 
frame (a, c, & d). If the first frame is excluded in the STEM filtered result (i.e. reset to 
its initial value), the temporal frequencies most important to the example TAC are 
almost entirely restored after 10 STEM iterations (b). The spatial frequencies are also 
largely restored, though there is a subtle loss of mid-level and high frequencies (c & d). 



 
 

67 
 

 

filtering kernel and the number of iterations suggested above were determined empirically, as 

illustrated in the following chapter. The noise suppression obtained with smaller kernels is not as 

good, even though fewer iterations are required, because the initial amount of noise suppression 

is less. Likewise, larger kernels provide little benefit relative to the extra number of iterations 

required. 

5.3.7 Effects of Temporal Sampling 

The restoration of the temporal signal will also be dependent on the temporal sampling 

scheme. Ideally, a study should be sampled such that the percent change in activity from frame to 

frame should be similar throughout the study. If TACs have not been sampled at an adequate 

rate, STEM and TEM filtering will have difficulty fully restoring them. For example, for the [F-

18]FDOPA striatal TAC shown in Figure 5.4, the initial sampling scheme (2x30 seconds, 3x1, 

3x2, 4x5, and 6x10 minute frames) does not sufficiently sample the initial part of the study to 

 

Figure 5.4. The effects of temporal sampling on the ability of STEM filtering to restore 
the original signal. An example [F-18]FDOPA TAC shows a sharp peak in the first 
minute of the study (a). If STEM filtering is applied the original sampling scheme, this 
peak is lost. As a result, the frequency spectrum of the STEM filtered TAC does not 
perfectly match the spectrum of the original TAC (b). If the first 2 minutes of the study 
are resampled to 10 second frames, STEM filtering better preserves the initial peak, and 
the frequency spectra of the resampled TAC and the STEM filtered TAC are nearly 
equivalent (c). 
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preserve the sharp peak in the first minute following STEM filtering. If the first two minutes of 

the study are effectively re-sampled by interpolating to 10 second frames, higher frequencies are 

less prominent in the resulting frame frequency spectrum, and STEM filtering restores the initial 

peak far better than with the initial sampling scheme. The interpolation is an oversimplification 

of the true behavior of the [F-18]FDOPA TAC, but nevertheless illustrates the impact of 

sampling on the ability of STEM (and TEM) filtering to fully recover temporal signal. Although 

STEM and TEM filtering will better maintain the fidelity of the temporal signal when the data 

are sampled at a higher rate, the resulting frames will be noisier. 

5.4 Summary 

In this chapter, STEM has been presented as a spatio-temporal filtering method to reduce 

noise in dynamic PET data. TEM filtering has also been introduced as a method that filters 

temporal data only. Because STEM is a 4-dimensional process, a substantial degree of noise-

averaging can be achieved with little loss of signal. Likewise, TEM filtering should reduce noise 

with no loss of spatial resolution and little effect on underlying temporal signals. The next 

chapter aims to demonstrate these properties in the context of dynamic PET data. 
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Chapter 6. Evaluation of STEM and TEM Filtering 

6.1 Chapter Aims 

The previous chapter introduced spatio-temporal expectation-maximization (STEM) and 

temporal expectation-maximization (TEM) filtering and put them in a theoretical context. The 

aim of this chapter is to rigorously evaluate their performance on real positron emission 

tomography (PET) data, and to demonstrate the ideas proposed in the previous chapter. In 

particular, this chapter aims to demonstrate that STEM, and to a lesser degree TEM, filtering 

provide significant reductions in noise with little loss of signal. Similar to the evaluation of 

HighlY constrained back-PRojection-Local Reconstruction (HYPR-LR), this chapter illustrates 

the improvements in variance relative to introduced bias following STEM and TEM filtering in 

individual time frames and in parametric images generated with various kinetic analysis methods 

using phantom data, and simulated and human [C-11]raclopride and [F-18]FDOPA data. STEM 

and TEM filtering are compared to spatial smoothing. 

6.2 Methods 

6.2.1 Dual-Isotope Phantom 

The same dual-isotope phantom used to evaluate HYPR-LR in Chapter 2 was used to 

evaluate STEM filtering. The details of the data acquisition are described in that chapter. The 

acquired data were reconstructed into 30x5 minute frames with filtered back-projection (FBP) 

using 3 different filters: a 2-dimensional (2-D) ramp filter with a frequency cutoff of 0.104 mm-1, 

and 3-dimensional (3-D) Hann filters with frequency cutoffs of 0.104 and 0.065 mm-1. 

Corrections for deadtime, normalization, and scatter were applied using the system software, and 
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attenuation correction was applied using the CT data. All reconstructions used an image matrix 

of 128x128x47 with voxel sizes of 3.125x3.125x3.27 mm3. 

STEM and TEM filtering were applied to the ramp reconstruction, the highest resolution 

images.  STEM filtering was applied using a 4-dimensional (4-D) Gaussian filter with a FWHM 

in the image frame domain of 4 frames and a FWHM in each of the 3 spatial dimensions of 6.25 

mm. TEM filtering was performed using a 1-dimensional (1-D) Gaussian with a FWHM of 4 

frames. STEM and TEM filtering were performed up to 10 iterations. As the only dynamic 

behavior in this study is two decaying exponentials, using frames of different durations would 

have little impact on the shape of the TACs. Uniform frames were thus used. 

Bias in the time-series data was assessed using the percent contrast of the 13 mm sphere to 

the background at each frame over the course of the study using a volume of interest (VOI) 

drawn on the CT scan: 

100
(Bq/ml) Background

(Bq/ml) Background - (Bq/ml) Sphere mm 13  (%)Contrast ×=
      (6.1) 

The coefficient of variation (COV) at each frame was assessed in a large VOI drawn on the CT 

scan in the F-18 background: 

(6.2)                                                          (%) COV
Background

Background

µ
σ

=
 

where σBackground is the standard deviation and µBackground is the mean of the large background 

VOI. 

6.2.2 [C-11]-Raclopride and [F-18]-FDOPA simulations 

Simulated dynamic image datasets for [C-11]-raclopride and [F-18]-FDOPA were created 

using time-activity curves (TACs) derived from human studies of patients with Parkinson disease 
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and the Zubal brain phantom (Zubal et al 1994). Details of the access to these human data are 

described in the section below on the application of STEM filtering to actual human scans.  

TACs from the caudate nucleus, putamen, thalamus, white matter, and the frontal, parietal, 

temporal, and occipital cortex were obtained from human datasets and impressed onto the 

corresponding regions in the Zubal brain phantom. VOIs drawn on the human data were made as 

large as possible to limit noise. The [C-11]-raclopride TACs were obtained from a 60 minute 

study with 16 frames: 4x1, 3x2, 8x5, and 1x10 minutes in duration. [F-18]-FDOPA TACs were 

obtained from a 90 minute study with 18 frames: 2x30 seconds, 3x1, 3x2, 4x5, and 6x10 minutes 

in duration. As will be shown in the results below, these sampling schemes are not ideal as they 

result in bias in the early frames following STEM filtering. However, the merits of using TACs 

derived from human studies with adequate signal-to-noise ratios are chosen over resampling to 

noisier, more unreliable data, or simulating TACs with model derived rate constants. 

Simulations were generated using the same methods described in Chapter 3 for [C-11]-PIB. 

Briefly, acquisitions of [C-11]-raclopride and [F-18]-FDOPA on an ECAT HR+ scanner were 

approximated using published performance information about the scanner model (e.g. resolution, 

sensitivity, etc…) (Brix et al 1997, Herzog et al 2004). Noise-free data were converted into 

counts by accounting for sensitivity, voxel volume, frame duration, and radioactive decay. Data 

were then forward projected using MATLAB’s (The MathWorks®) 2-D radon transform to 

create 2-D sinograms, attenuated using an attenuation map derived from the Zubal phantom, and 

multiplied by the expected scatter fraction for the amount of activity used in the simulation. 40 

noisy realizations of the emission sinograms for [C-11]-raclopride and [F-18]-FDOPA were then 

created by adding Poisson noise scaled by the number of counts at each position in the noise-free 

sinograms. Noisy sinograms were then corrected for attenuation, sensitivity, and scatter fraction, 
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and reconstructed with FBP using either a ramp filter with a frequency cutoff of 0.171 mm-1, or a 

Hann filter with a frequency cutoff of 0.227 mm-1 and converted back into activity concentrations 

(Bq/ml). FBP reconstructions of the noise-free sinograms using the ramp filter were used as a 

standard to determine bias, as described below. 

STEM and TEM filtering were performed on the ramp reconstructions, as these images will 

have the best initial spatial resolution. A 4-D Gaussian with a FWHM in the frame domain of 4 

frames and a FWHM in each of the 3 spatial dimensions of 4.40 mm was used for STEM 

filtering, and a 1-D Gaussian with a FWHM of 4 frames was used for TEM filtering. Ten EM 

deconvolution iterations were performed for both STEM and TEM. 

Bias was evaluated in the STEM and TEM filtered images and in the images reconstructed 

with the Hann filter. The bias of each voxel was taken as the percent difference between the 

mean of that voxel over the 40 noise realizations, µx, and that voxel’s value in the noise-free FBP 

reconstruction, x: 

100  (%) bias x ×
−

=
x

xµ
           (6.3) 

Variance was assessed using the COV at each voxel: 

x

x

µ
σ

=COV
     (6.4) 

where σx now represents the standard deviation of each voxel, as opposed an entire region in the 

phantom study (Equation 6.2). The mean bias and variance of all voxels in the striatum, the 

structure of primary interest for [C-11]-raclopride and [F-18]-FDOPA scans, were the principal 

measures taken from the simulated data. 
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6.2.3 Kinetic analysis of simulated data 

Parametric images were generated from the simulated datasets using a number of kinetic 

analysis methods. Parametric images of the non-displaceable binding potential (BPND) were 

generated from the [C-11]-raclopride simulations, and parametric images of the normalized 

uptake rate constant, Ki*, were generated from the [F-18]-FDOPA simulations. As stated in 

Chapter 4, the BPND is a parameter of primary interest in reversible tracer studies. The Ki* is a 

similar aggregate measure for tracers that show irreversible binding behavior. In the case of [F-

18]-FDOPA studies, Ki* is typically interpreted as a marker of dopamine synthesis and storage 

(Sossi et al 2003). 

BPND parametric images were created with the data driven reference region Logan graphical 

method (Logan et al 1990, Logan et al 1996) and the model based simplified reference tissue 

model (SRTM) basis function method (Lammertsma and Hume 1996, Gunn et al 1997), 

frequently referred to as receptor parametric mapping (RPM). Logan plots were fit from 30 to 60 

minutes. Calculation of the abscissa values did not include the term involving the reference 

region efflux rate constant, k2
REF, as it is known to be unimportant for [C-11]raclopride data 

(Logan 2000). RPM was performed using a fixed k2
REF (RPM2, (Wu and Carson 2002)), 

determined by an SRTM fit to a TAC averaged over the entire striatum. The range of the efflux 

rate constant, k2a, used in RPM2 was 0.035 to 0.2 min-1, with 50 possible values (i.e. 50 basis 

functions). The minimum and maximum k2a values were derived from SRTM fits to the TACs 

used to create the numerical phantom. A TAC from a large cerebellar VOI, obtained prior to 

STEM filtering, was used as the reference tissue TAC for all of the methods used to analyze [C-

11]raclopride.  
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Parametric images of Ki
* were generated from the [F-18]FDOPA simulations with the 

reference region Patlak method (Patlak et al 1983, Patlak and Blasberg 1985). A TAC averaged 

over both occipital lobes was used as a reference region input (Patlak et al 1983, Patlak and 

Blasberg 1985, Brooks et al 1990). The Patlak plot was fit from 30-90 minutes. A more complete 

description of the kinetic analysis methods used is included in Appendix A. 

The bias and variance in the resulting parametric images were analyzed in the same way as 

they were for the time-series data. Bias was found using Equation 6.3, with the true voxel value, 

x, equal to the voxel’s value in the parametric image of the noise-free FBP reconstruction. The 

COV of each voxel was found for each analysis method using Equation 6.4. The voxel bias and 

COV were averaged over all striatal voxels in the parametric images. 

Human [C-11]Raclopride and [F-18]FDOPA scans 

The performance of STEM filtering on actual PET studies in humans was evaluated using 

anonymized archived dynamic image data from two separate research protocols. TEM filtering 

was not evaluated in the human data based upon the limited improvements seen in the simulated 

parametric images. [C-11]raclopride scans of Parkinson disease patients were acquired on a 

Siemens HRRT scanner at the University of British Columbia.  Data were acquired in list-mode 

over 60 minutes and reconstructed with 3-D ordinary Poisson ordered subset EM (OP-OSEM) 

into 16 frames with durations of 4x1, 3x2, 8x5, and 1x10 minutes with matrix sizes of 

256x256x205 and voxel sizes of 1.2x1.2x1.23 mm. [F-18]FDOPA scans, also of patients with 

Parkinson’s disease, were acquired on a Siemens ECAT HR+ scanner at the University of 

Wisconsin-Madison. Data were acquired over 90 minutes and reconstructed with FBP into 18 

frames with durations of 2x30 seconds, 3x1, 3x2, 4x5, and 6x10 minutes with matrix sizes of 

128x128x63 and voxel dimensions of 2.57x2.57x2.45 mm. In both cases the data were acquired 
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in accordance with human subjects research protocols approved by the respective local 

institutional review boards, and in accordance with the declaration of Helsinki. 

STEM filtering was implemented with up to 10 iterations using a 4-D asymmetric Gaussian 

with a FWHM of 4 frames in the frame domain, and a FWHM of 3 mm in each spatial dimension 

for the [C-11]raclopride HRRT study and 5.2 mm in each spatial dimension for the [F-

18]FDOPA HR+ study. All human data were compared to spatial smoothing after reconstruction 

with a 3-D Gaussian with a FWHM 1.8 mm in each spatial dimension for the [C-11]raclopride 

data and 3.9 mm in each spatial dimension for the [F-18]FDOPA data. 

Parametric images of the human data were created with the same methods used for the 

simulated data. Bias in the time-series data was assessed by examining the residuals of TACs 

from relatively large VOIs before and after filtering. Bias in the parametric images was assessed 

by comparing BPND or Ki
* values obtained from TACs averaged over large VOIs to BPND or Ki

*
 

values obtained from parametric images averaged over the same VOIs. VOIs were drawn on 

PET images temporally summed over the entire course of the study over the right and left 

caudate nucleus, the right and left putamen, the thalamus, the frontal cortex, and the temporal 

cortex. Variance in both the time-series images and parametric images was assessed qualitatively 

(i.e. visually). 

6.3 Results 

6.3.1 Dual-Isotope Phantom 

STEM filtering compares favorably to the spatial filters studied, providing substantial 

reductions in noise over the initial FBP reconstruction with the ramp filter (0.104 mm-1 

frequency cutoff), without introducing a great degree of bias to the TACs or causing a substantial 
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loss of spatial resolution. TEM filtering likewise reduces noise and causes no loss in spatial 

resolution, but it does not improve noise as much as STEM filtering. At an example frame (t = 

42.5 minutes) STEM filtering gives a greater reduction in noise than the Hann filters but does not 

degrade the image contrast or resolution (Figure 6.1a-d). TEM filtering also reduces noise 

without degrading the image, but the reduction in noise is less than that seen with STEM (Figure 

6.1e). As more iterations are performed, STEM filtering recovers more contrast, but more noise 

is introduced into the TEM and STEM filtered images (Figure 6.1f & g). The improvements in 

image quality that STEM and TEM filtering provide hold true for the entire study (Figure 6.1h & 

i). After 5 EM iterations, STEM and TEM filtering only appear to bias the earliest frames, 

 

Figure 6.1. The results of the dual-isotope phantom. An illustrative frame (t = 42.5 
minutes) compares traditional FBP reconstructions (a-c) to TEM (d) and STEM (e) 
filtering. As more EM iterations are performed there is a progressive recovery of contrast 
and a corresponding increase in the COV (f & g). The contrast of the 13 mm sphere over 
the entire time course is largely unaltered by STEM and TEM filtering with 5 iterations 
(h). The COV of the background is lower following STEM filtering with 5 iterations than 
in the reconstruction with the 0.065 mm-1 Hann window over the entire time course (i). 
TEM filtering also lowers the COV, but not to the same degree. 
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where the radioactive decay curves have the highest frequency behavior, and this bias is still less 

than that introduced by the Hann filter with the 0.065 mm-1 cutoff at the same frames. STEM and 

TEM filtering predictably provide less noise suppression in the early and late frames as the 

filtering kernel is truncated and thus provides less averaging. 

6.3.2 [C-11]Raclopride and [F-18]FDOPA simulations 

The simulated data show similarly promising results. Following STEM filtering, an example 

TAC from the [C-11]raclopride simulations falls much closer to the underlying truth than either 

the original noisy TAC or the TAC from the FBP reconstruction with the Hann filter (Figure 

6.2a). With the exception of the earliest frames, STEM filtering introduces minimal bias into the 

 

Figure 6.2. Example TACs and the bias-COV tradeoff seen with STEM filtering. An 
example [C-11]raclopride voxel TAC falls much closer to the underlying truth following 
STEM filtering (a). STEM filtering biases the earliest frames in the study, but by the 
later frames the STEM filtered TAC is less biased than the TAC from the Hann 
reconstruction (b). The COV is lower at all frames following STEM filtering than in 
either the original reconstruction or in the reconstruction using the Hann filter (c). The 
[18F]-FDOPA simulations show similar results (d-e). 
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TACs of striatal voxels (Figure 6.2b). The average bias in these voxels is markedly high in the 

first frame, is 10-20% in magnitude through the second and third frames, and diminishes after 

that. After approximately the first 10 minutes of the study, the STEM filtered TACs are no more 

biased, and typically less biased, than the TACs of the data filtered with the Hann window. 

Because of the short duration of the early frames, the bias of the integral of the TACs is minimal, 

and is only -0.59% after 5 iterations. More importantly, as shown below, the bias in the early 

frames has little impact on the quantitative parameters studied in this work (i.e. BPND and Ki
*). 

The variance reduction achieved with STEM filtering is substantial, and is greater than that 

achieved with the Hann filter at all frames (Figure 6.2c). The results from the [F-18]FDOPA 

simulations are consistent with the [C-11]raclopride results (Figure 6.2d & e). 

 

Figure 6.3. Example TACs and the bias-COV tradeoff seen with TEM filtering for both 
[C-11]raclopride (a-c) and [F-18]FDOPA simulations (d-f). TEM filtering reduces high-
frequency noise in the example TACs, but the filtered TACs still generally follows the 
trend of the noisy TACs (a & d). The bias properties of TEM are similar to those of 
STEM (b&e). TEM filtering does reduce noise, but not to the same degree as STEM 
filtering (c & f). 
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The simulated data filtered with TEM show similar results. TEM filtering also reduces the 

high frequency noise in example TACs, to a similar degree as the Hann filter (Figure 6.3a & d). 

It is important to note, however, that the TEM filtered TACs still follow the general trend of the 

original noisy TACs, and do not necessarily follow the noise-free TACs. The bias seen with 

TEM filtering is similar to that seen with STEM filtering (Figure 6.3b & e). The bias at later 

frames is slightly less with TEM filtering, likely because there is no loss of spatial resolution. 

TEM filtering does reduce variance in individual frames, but not to the same degree as STEM 

filtering (Figure 6.3c & f). 

6.3.3 Kinetic Analysis of [C-11]Raclopride and [F-18]FDOPA simulations 

STEM filtering improves the variance of the simulated [C-11]raclopride and [F-18]FDOPA 

parametric images for all the analysis methods studied (Table 6.1). STEM filtering also 

compares favorably with the 0.227 mm-1 Hann filter, which predictably introduces a negative 

bias due to a loss of spatial resolution. After 10 iterations, the parametric [C-11]raclopride 

images created from the STEM filtered data show little bias and a better average COV than the 

parametric images created from the Hann filtered data.  

The parametric Ki
* images of the simulated [F-18]FDOPA data are largely consistent with 

the [C-11]raclopride results, but do show more bias, a positive bias in this case, when fewer 

iterations are used. The Patlak images are themselves slightly positively biased, reflected in the 

positive average bias in the parametric images created from the FBP reconstructions with the 

ramp filter, and the bias that is only slightly less than zero in the parametric images created from 

the Hann filtered data. After 10 iterations, the parametric images created from the STEM filtered 
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data do show less bias and an average COV that is half of that seen in the parametric images 

created from the Hann filtered data. 

TEM filtering does not significantly improve the noise in the simulated parametric images 

(Table 6.1). The Patlak images do show some improvement following TEM filtering, but the 

improvement is modest. TEM does not significantly bias the RPM2 parametric images, but it 

does appear to bias the Logan and Patlak parametric images. Based on these results, TEM 

filtering was not explored further in the human studies.  

Table 6.1. The average bias and COV of all voxels in the striatum of the parametric 
images created from the simulated data. After 10 iterations, the parametric images of 
the STEM filtered data have a lower average COV and less average bias than the 
parametric images of the data reconstructed using the 0.227 mm-1 Hann filter. The 
average COV is not significantly lower following TEM filtering. In addition, the Logan 
and Patlak parametric images are more biased following TEM filtering. 
 

  [11C]-Raclopride [18F]-FDOPA 
  RPM2 Reference Logan Patlak 

  Bias (%) COV (%) Bias (%) COV (%) Bias (%) COV (%) 
Original Reconstruction 
(Ramp) 1.37 11.5 -15.8 19.6 3.13 35.5 

Hann Filter -2.62 6.07 -8.15 15.1 -0.15 19.8 
STEM 3 Iterations -1.05 3.04 -0.80 3.73 11.3 4.86 
STEM 5 Iterations -0.96 3.78 -0.68 4.94 5.86 7.09 

STEM 10 Iterations -0.23 4.95 -0.50 6.88 2.20 10.6 
TEM 3 Iterations 2.0341 10.9 4.8 18.2 16.96 22.41 
TEM 5 Iterations 1.2795 11.2 5.03 21.7 9.66 27.6 
TEM 10 Iterations 1.415 11.4 4.4 24.5 4.55 29.49 
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6.3.4 [C-11]Raclopride and [F-18]FDOPA Human Data 

The STEM filtered human results are consistent with the simulations. For both the human [C-

11]raclopride and [F-18]FDOPA scans studied, after 5 iterations, the STEM filtered images 

appear to have better spatial resolution than the spatially smoothed image but significantly lower 

noise (Figure 6.4 & Figure 6.5). The sharpness of the images increases after 10 iterations at the 

cost of some increased noise. As with the simulated data, there is some bias in early frames 

following STEM, but as the study progresses the residuals of the STEM filtered data are 

comparable or better than those of the spatially smoothed data filtering (Figure 6.4f & Figure 

6.5f). 

 

Figure 6.4. A single time frame from the human [C-11]raclopride study evaluated (t = 
32.5 minutes). The original reconstruction (a) is compared with spatial smoothing using 
a 1.8x1.8x1.8 mm3 FWHM Gaussian (b), and STEM filtering after 5 (c) and 10 (d) 
iterations. Example TACs from large ROIs of the striatum and frontal cortex 
demonstrate that with the exception of the earliest time points STEM filtering biases the 
data very little (e & f). 
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The improvement in variance in the parametric images is likewise consistent with the 

simulated data. For the [C-11]raclopride data, after 5 iterations STEM filtering qualitatively 

improves the variance in the RPM2 parametric images to a greater degree than spatial smoothing 

for equivalent or even better spatial resolution (Figure 6.6a-c). Comparing the BPND values 

obtained from large VOIs drawn on the parametric RPM2 images to the BPND values obtained 

from TACs averaged over the same VOIs demonstrates that smoothing negatively biases the 

BPND values, as expected with the loss of spatial resolution, and STEM filtering introduces a 

slight positive bias to the slope of a linear fit to the data (Figure 6.6d). The bias in the STEM 

filtered data is primarily due to slightly underestimated BPND values in lower uptake regions. 

This bias is diminished as more iterations are performed.  

 

Figure 6.5. A single time frame from the human [F-18]FDOPA study evaluated (t = 45 
minutes). The original reconstruction (a) is compared with spatial smoothing using a 
3.86x3.86x3.86 mm3 FWHM Gaussian (b), and STEM filtering after 5 (c) and 10 (d) 
iterations. As with the [C-11]raclopride data, example TACs from large ROIs of the 
striatum and frontal cortex demonstrate that at most time points STEM filtering biases 
the data very little (e & f). 
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STEM filtering reduces the noise-dependent bias, and some of the variance, in the Logan 

parametric images (Figure 6.6e-h). However, a small but noticeable number of voxels have BPND 

values that are either very high or negative (Figure 6.6g). This is likely due to the very high noise 

 

Figure 6.6. RPM2 (a-c) and Logan (e-g) parametric images of the human [C-
11]raclopride study, and Patlak parametric images of the human [F-18]FDOPA study (i-
k). Parametric created from the original unfiltered reconstruction (a, e, & i) are 
compared with parametric images created from the spatially smoothed frames (b, f, & j) 
and the STEM filtered data after 5 iterations (c, g, & k). The BPND and Ki* values 
obtained from ROIs in the parametric images are compared with the BPND and Ki* 
values obtained from TACs averaged over the same ROIs (d,  h, & l). Linear fits to the 
comparison are shown for the parametric images created from the original data ( ), the 
spatially smoothed data ( ), and the data filtered with STEM after 5 (    ) and 10 (   ) 
iterations. 
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in the HRRT data, which causes some [C-11]raclopride curves to trend positive at the end of the 

study. STEM filtering exacerbates this trend and skews the slopes of the Logan plots (Figure 

6.7). These values introduce a bias into the average parametric image BPND values, which is less 

than the noise-dependent bias seen in images not filtered with STEM (Figure 6.6h). 

The reference Patlak parametric images of the [F-18]FDOPA study confirm that STEM 

filtering can also improve the analysis of tracers that have irreversible binding behavior. After 5 

iterations STEM filtering improves the variance in the Ki* image created with Patlak graphical 

analysis to a greater degree than spatially smoothing the frames (Figure 6.6i-k). Comparing 

parametric image Ki* values averaged over large VOIs to Ki* values obtained from TACs 

averaged over the same VOIs shows that the after 5 iterations STEM filtering slightly biases the 

parametric images, but this bias is eliminated after 10 iterations (Figure 6.6l). 

 

Figure 6.7. The inappropriately high or negative Logan BPND values following STEM 
filtering are due to TACs that start to flatten or trend positive at the end of the study 
because of the very high noise in the HRRT data. STEM filtering exacerbates this 
behavior (a). When Logan graphical analysis is performed, a linear fit to the noisy 
original data still yields a line with a reasonable slope. However, the slope of the curve 
that has been smoothed with STEM filtering is now negative (b). 
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6.4 Discussion 

The previous chapter introduced STEM and TEM filtering and the concepts behind their use, 

and this chapter has attempted to demonstrate that they can provide substantial reductions in 

noise in both individual time frames and parametric images while introducing little bias. 

The dual-isotope phantom data demonstrate that the tradeoff between noise variance and bias 

is very favorable with STEM filtering. STEM filtering improves noise to a greater degree than 

traditional filters with less loss of spatial resolution and little loss of temporal accuracy (Figure 

6.1). TEM filtering also improves noise, albeit to a lesser degree than STEM, causes absolutely 

no loss of spatial resolution, and its effects in the time domain appear similar to those of STEM 

filtering.  

The simulated data largely confirm these observations for dynamic PET tracer data. For most 

frames in the simulated studies, substantial reductions in variance are achieved with minimal bias 

(Figure 6.2& Figure 6.3). STEM and TEM filtering do bias early frames. This bias is likely due 

to inadequate temporal sampling, and could be reduced if a finer sampling scheme were used at 

the cost of increased noise in the shorter frames, as discussed in the previous chapter. 

Alternatively, the original reconstructions of the first one or more frames could simply be 

restored after STEM filtering. Importantly, this bias does not appear to have an impact on the 

quantitative parameters studied here. After STEM filtering with 10 iterations, the variance of the 

parametric images is low and bias is minimal (Table 6.1). The results from the simulations are 

largely confirmed by the human data (Figure 6.4-Figure 6.6). 

TEM filtering does not significantly improve the variance of the simulated parametric images 

studied (Table 6.1). This may be due to the fact that kinetic analysis methods provide some 
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degree of temporal smoothing themselves, as they force the measured data to fit to a 

predetermined function. Deviations in kinetic parameters are primarily caused by low-frequency 

noise that subtly alters the shape of TACs. TEM filtering does not reduce enough of this noise to 

significantly alter the fits. STEM filtering does reduce the variance of kinetic parameters because 

it enforces a degree of regularization on neighboring TACs. STEM filtering will thus likely be 

far more useful than TEM filtering for improving quantitative parameters obtained from dynamic 

PET data. 

Interestingly, the parametric images created from the [C-11]raclopride human study with the 

Logan graphical method show a small but noticeable number of voxels with either very high or 

very negative values. The simulated data filtered with TEM show similar results. This is likely 

due to the very high noise in the HRRT data, and the fact that STEM and TEM filtering can 

exacerbate the effects of low frequency noise by causing TACs to trend either flat or increase at 

the end of a study (Figure 6.7a). These filtered TACs thus no longer follow reversible binding 

kinetics. An example Logan plot shows that the noisy original data have both abscissa and 

ordinate values that can decrease from one point to the next, but a linear fit to the data still gives 

a reasonable slope. Following STEM filtering, the variability in the abscissa and ordinate values 

is minimized, but this can create Logan plots with very positive or even negative slopes (Figure 

6.7b). The simulated results show that this effect should not be as pronounced in studies acquired 

on more conventional PET scanners where the noise is not as extreme, so long as STEM and not 

TEM filtering is used (Table 6.1). It would also likely be less significant for tracers whose 

activity falls more rapidly at the end of the study. It may therefore be more appropriate to use 

STEM filtering with another analysis method (e.g. RPM2) for very noisy data, or to use it with 

Logan graphical analysis for tracers with more pronounced reversible binding behavior. 
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This chapter has focused primarily on the potential of STEM filtering to improve a number 

of simplified analysis methods. It also may improve analysis methods that are more sensitive to 

noise, for example the estimation of individual kinetic parameters in compartmental modeling. 

The results from the simplified analysis methods, particularly RPM2 which fits the data to a 

specific model, indicate that STEM filtering may well reduce the variance of individual kinetic 

rate constants. 

STEM filtering is distinct from many 4-D denoising methods in that it makes no explicit 

assumptions about the dynamic data. In particular, it assumes no kinetic model that all voxels in 

the image object must follow, and it imposes no explicit limits on the degree to which voxels 

neighboring each other in space and time are allowed to vary (e.g. a Gibbs prior used in MAP 

reconstructions or predetermined temporal basis functions), common approaches in 4-D 

reconstruction (Walledge et al 2004, Kadrmas and Gullberg 2001, Meikle et al 1998, Nichols et 

al 2002, Li et al 2007, Verhaeghe et al 2007, Matthews et al 1997, Reader et al 2006). Rather, 

because of its use of EM deconvolution, STEM filtering is a data driven approach, and the 

characteristics of the effective filter will be dependent on the data. The size of the initial 4-D 

filter does impose an implicit limit on the degree to which neighboring voxels will vary, but this 

can be offset in part by the number of iterations that are used.  

As a post-processing technique, STEM filtering can also improve noise in a number of 

reconstruction techniques. For example, in this work it has been shown to improve both OSEM 

and FBP reconstructions. Other iterative reconstructions should thus also be improved, for 

example MAP and time-of-flight reconstructions.  

STEM filtering is very easy to implement and it is relatively fast. In this work it was 

implemented using MATLAB (version 2011b, the MathWorks, Inc.) on a 64-bit Linux 
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workstation with two dual core AMD 270 2 GHz processors and 8 GB of RAM. This 

implementation takes 698 seconds to filter a 128x128x63x18 dynamic dataset up to 10 iterations. 

These characteristics may make STEM filtering readily applicable to a wide array of dynamic 

PET applications. 

This work has introduced STEM and TEM filtering and generally examined their bias and 

variance properties in both dynamic time series data and in parametric images. In the future, a 

more rigorous evaluation of these properties should be undertaken, for example examining the 

noise-power spectrum and the modulation transfer function in both the space and time domains. 

It also may prove valuable to evaluate the properties of STEM filtering with a broader variety of 

time curve behaviors and levels of noise. STEM filtering must also be considered more fully in 

the context of other 4-D denoising methods, particularly 4-D reconstructions that perform some 

averaging over the time domain and that do not rely on kinetic models (Kadrmas and Gullberg 

2001, Walledge et al 2004, Nichols et al 2002, Li et al 2007, Verhaeghe et al 2007, Reader et al 

2006). 

6.5 Conclusions 

This chapter has demonstrated that STEM filtering, and to a lesser degree TEM filtering, can 

provide substantial reductions in variance in both individual time frames and in parametric 

images created using a number of kinetic analysis techniques, while introducing little bias. 

STEM filtering makes no assumptions and imposes no explicit limits on the data being filtered, 

and should therefore provide a simple means of reducing noise for a variety of dynamic PET 

imaging applications. STEM filtering could be particularly valuable for dynamic PET 
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applications that suffer from high noise, including parametric image generation, high resolution 

PET scanning, and tracers that are limited by dosimetry concerns. 

References 

Brix, G, Zaers, J, Adam, L E, Bellemann, M E, Ostertag, H, Trojan, H, Haberkorn, U, Doll, J, 
Oberdorfer, F and Lorenz, W J 1997 Performance evaluation of a whole-body PET scanner using 
the NEMA protocol. National Electrical Manufacturers Association J. Nucl. Med. 38 10 1614-23  

Brooks, D J, Salmon, E P, Mathias, C J, Quinn, N, Leenders, K L, Bannister, R, Marsden, C D 
and Frackowiak, R S 1990 The relationship between locomotor disability, autonomic 
dysfunction, and the integrity of the striatal dopaminergic system in patients with multiple 
system atrophy, pure autonomic failure, and Parkinson's disease, studied with PET Brain 113 ( 
Pt 5) Pt 5 1539-52  

Gunn, R N, Lammertsma, A A, Hume, S P and Cunningham, V J 1997 Parametric imaging of 
ligand-receptor binding in PET using a simplified reference region model Neuroimage 6 4 279-
87  

Herzog, H, Tellman, L, Pietrzyk, U, Casey, M E and Kuwert, T 2004 NEMA NU2-2001 Guided 
Performance Evaluation of Four Siemens ECAT PET Scanners IEEE Trans Nucl Sci 51 5 2662-9  

Kadrmas, D J and Gullberg, G T 2001 4D maximum a posteriori reconstruction in dynamic 
SPECT using a compartmental model-based prior Phys. Med. Biol. 46 5 1553-74  

Lammertsma, A A and Hume, S P 1996 Simplified reference tissue model for PET receptor 
studies Neuroimage 4 3 Pt 1 153-8  

Li, Q, Asma, E, Ahn, S and Leahy, R M 2007 A fast fully 4-D incremental gradient 
reconstruction algorithm for list mode PET data IEEE Trans. Med. Imaging 26 1 58-67  

Logan, J 2000 Graphical analysis of PET data applied to reversible and irreversible tracers Nucl. 
Med. Biol. 27 7 661-70  

Logan, J, Fowler, J S, Volkow, N D, Wang, G J, Ding, Y S and Alexoff, D L 1996 Distribution 
volume ratios without blood sampling from graphical analysis of PET data J. Cereb. Blood Flow 
Metab. 16 5 834-40  

Logan, J, Fowler, J S, Volkow, N D, Wolf, A P, Dewey, S L, Schlyer, D J, MacGregor, R R, 
Hitzemann, R, Bendriem, B and Gatley, S J 1990 Graphical analysis of reversible radioligand 
binding from time-activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in 
human subjects J. Cereb. Blood Flow Metab. 10 5 740-7  



 
 

90 
 

 

Matthews, J, Bailey, D, Price, P and Cunningham, V 1997 The direct calculation of parametric 
images from dynamic PET data using maximum-likelihood iterative reconstruction Phys. Med. 
Biol. 42 6 1155-73  

Meikle, S R, Matthews, J C, Cunningham, V J, Bailey, D L, Livieratos, L, Jones, T and Price, P 
1998 Parametric image reconstruction using spectral analysis of PET projection data Phys. Med. 
Biol. 43 3 651-66  

Nichols, T E, Qi, J, Asma, E and Leahy, R M 2002 Spatiotemporal reconstruction of list-mode 
PET data IEEE Trans. Med. Imaging 21 4 396-404  

Patlak, C S and Blasberg, R G 1985 Graphical evaluation of blood-to-brain transfer constants 
from multiple-time uptake data. Generalizations J. Cereb. Blood Flow Metab. 5 4 584-90  

Patlak, C S, Blasberg, R G and Fenstermacher, J D 1983 Graphical evaluation of blood-to-brain 
transfer constants from multiple-time uptake data J. Cereb. Blood Flow Metab. 3 1 1-7  

Reader, A J, Sureau, F C, Comtat, C, Trebossen, R and Buvat, I 2006 Joint estimation of 
dynamic PET images and temporal basis functions using fully 4D ML-EM Phys. Med. Biol. 51 
21 5455-74  

Sossi, V, Holden, J E, de la Fuente-Fernandez, R, Ruth, T J and Stoessl, A J 2003 Effect of 
dopamine loss and the metabolite 3-O-methyl-[18F]fluoro-dopa on the relation between the 18F-
fluorodopa tissue input uptake rate constant Kocc and the [18F]fluorodopa plasma input uptake 
rate constant Ki J. Cereb. Blood Flow Metab. 23 3 301-9  

Verhaeghe, J, Dasseler, Y, Vandenberghe, S, Staelens, S and Lemahieu, I 2007 An investigation 
of temporal regularization techniques for dynamic PET reconstructions using temporal splines 
Med. Phys. 34 5 1766-78  

Walledge, R J, Manavaki, R, Honer, M and Reader, A J 2004 Inter-frame filtering for list-mode 
EM reconstruction in high0resolution 4-D PET IEEE Trans Nucl Sci 51 3 705,706-711  

Wu, Y and Carson, R E 2002 Noise reduction in the simplified reference tissue model for 
neuroreceptor functional imaging J. Cereb. Blood Flow Metab. 22 12 1440-52  

Zubal, I G, Harrell, C R, Smith, E O, Rattner, Z, Gindi, G and Hoffer, P B 1994 Computerized 
three-dimensional segmented human anatomy Med. Phys. 21 2 299-302  



 
 

91 
 

 

Chapter 7. Application of HYPR-LR and STEM Filtering to 
[I-124] PET Imaging 

7.1 Introduction 

Radioactive iodine isotopes are of great value in nuclear medicine and targeted radionuclide 

therapy. Radioiodinated agents have a number of advantages: molecules with iodine covalently 

attached to an aromatic ring are stable in vivo, iodine isotopes have a range of half-lives and an 

appropriate isotope can be selected whose physical half-life matches the physiological half-life 

of the molecule of interest, iodinated agents can easily be radiolabeled via an exchange reaction 

(Mangner et al 1982, Weichert et al 1986), and the field has over 50 years of experience using [I-

131] for radiotherapy. Iodine-124 (t1/2 = 4.12 days) is a positron emitting isotope that could be of 

great use in a number of positron emission tomography (PET) imaging applications, including 

imaging antibodies and small molecules with physiological half-lives on the order of hours to 

days. It’s potential as an imaging agent has been recognized for some time, and it continues to be 

of interest (Greene et al 1963, Lippincott et al 1964, Bakir et al 1992, O'Donoghue et al 2011). 

[I-124] can also be used isosterically to provide high resolution, quantitative PET images of 

molecules used for targeted radionuclide therapy (TRT) with other iodine isotopes, for example 

[I-125] and [I-131]. PET images of TRT agents could in turn provide quantitatively accurate, 

precise, and high resolution normal organ and tumor dosimetry estimates. This has been 

recognized as a potentially valuable application of [I-124] PET, and dosimetry estimates with [I-

124] PET have continued to be of great interest with the introduction of TRT agents like [I-131]-

MIBG (Larson et al 1992, Sgouros et al 2011, Lopci et al 2011). 
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An [I-124] labeled molecule of particular interest at the University of Wisconsin is the 

phospholipid ether analog [I-124]NM404. NM404 has demonstrated selective uptake and 

prolonged retention in a large number of preclinical cancer models and human cancers (Rampy 

et al 1995b, Rampy et al 1995a, Pinchuk et al 2006). In addition to [I-124], NM404 can be 

labeled with a number of other iodine isotopes, such as [I-125] and [I-131], for targeted 

radionuclide therapy (TRT), and fluorescent moieties for cellular and in vivo optical imaging. 

High resolution, high quality [I-124]NM404 PET images could be helpful for identifying and 

evaluating human tumors, and for planning TRT and calculating dosimetry. 

However, [I-124] PET imaging is limited in a number of ways. Because of its long half-life, 

decay scheme including several high energy gamma rays and beta particles, and the potential for 

high uptake of free iodine by the thyroid, the dose of [I-124] that can be tolerably given to 

patients may be limited. Additionally, [I-124] only undergoes positron decay 23% of the time. 

Limited tolerable radiation doses and a relatively low percentage of positron decays will result in 

high image noise or long scan times. There is also a 604 keV cascade gamma ray that is emitted 

in 60.5% of the decays, concurrently with roughly half of the positron decays. This gamma 

results in the detection of incorrect “true” coincidences, which adds a background of incorrect 

counts to the image, further degrading image quality. A variety of correction algorithms have 

been proposed to remove this background artifact, but they result in further increased image 

noise (Lubberink et al 2002, Laforest and Liu 2009). 

Because of the noise limitations of [I-124] PET imaging, some method of controlling noise 

will likely be necessary to make [I-124] images in general, and [I-124]NM404 images in 

particular, diagnostically useful and accurate in clinical applications. Both the HighlY 

constrained back-PRojection-Local Reconstruction (HYPR-LR) and spatio-temporal 
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expectation-maximization (STEM) filtering methods presented in this thesis could be helpful in 

this regard.  

7.2 Chapter Aims 

The aim of this chapter is to evaluate the potential of HYPR-LR and STEM filtering to 

improve [I-124]NM404 PET imaging. Because HYPR-LR and STEM filtering require 4-

dimensional data, applications in which images are acquired at multiple time points are studied. 

In particular, this chapter aims to: 

1. Study the potential of HYPR-LR processing to increase the length of time over which [I-

124]-NM404 can be imaged (e.g. several days of scanning) by decreasing noise, 

particularly at late time points.  

2. Study the potential of STEM filtering to improve the quality of human [I-124]-NM404 

images in studies involving relatively few (3-4) time points. 

3. Study the potential of both HYPR-LR and STEM filtering to reduce the 

radiopharmaceutical dose and/or imaging time required for [I-124]-NM404, and other 

tracers labeled with radionuclides that are limited by dosimetry (e.g. [Cu-64]). 

7.3 Methods 

7.3.1 HYPR-LR for Longitudinal [I-124]NM404 Scanning 

To explore the potential of HYPR-LR to increase the length of time over which [I-

124]NM404 images with good signal-to-noise ratios (SNR) can be obtained, a pilot study was 

conducted with two mice with pancreatic cancer xenografts (MiaPaCa) serially imaged with [I-

124]NM404 over 14 days. Both mce were injected with approximately 5.55 MBq (150 µCi) of 

[I-124]NM404 and imaged via a hybrid Inveon microPET/CT (Siemens Healthcare, Inc.) 4, 20, 
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and 30 hours post-injection (p.i.), and approximately every 24 hours after that up to 14 days p.i. 

All PET scans were acquired to 40 million detected events. PET data were reconstructed with 2-

dimensional ordered subset expectation-maximization (2-D OSEM) with 4 iterations and 16 

subsets to a matrix size of 128x128x159 with voxel sizes of 0.8x0.8x0.8 mm3. Reconstructed 

images were registered using affine transformations in Amira (version 4.1.2, Visage Imaging®), 

and processed with HYPR-LR in MATLAB (version R2008a, The Mathworks™). 

In this study, HYPR-LR was implemented using all frames in the studies to form the 

composite images (HYPR-LR-FC). HYPR-LR-FC was used to study the maximum 

improvements in noise possible with HYPR-LR in an imaging application with an expected high 

level of noise. A filtering kernel of 2.4x2.4x2.4 mm3 was used for HYPR-LR processing. 

Individual time frames were also spatially smoothed with a 2.1x2.1x2.1 mm3 boxcar filtering 

kernel for comparison. 

The SNR and accuracy of the HYPR-LR and spatially smoothed images were assessed in 

volumes of interest (VOIs). Relatively small spherical VOIs were placed in the tumor (16 

voxels) and the liver (24 voxels). The liver was selected as it is a healthy organ that is large and 

shows homogeneous uptake of [I-124]-NM404. The SNR of the VOIs was assessed by assuming 

all voxels in them to have uniform uptake and taking the ratio of the standard deviation to the 

mean: 

(7.1)                                                                           SNR
µ
σ

=  

where σ is the standard deviation and µ is the mean. Accuracy was assessed by comparing TACs 

averaged over the ROIs from the processed images to the TACs from the unprocessed images. 
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7.3.2 HYPR-LR for Radiation Dose Reduction 

Another pilot imaging study was conducted to explore the degree to which radiation dose can 

be reduced with HYPR-LR. In this case, PET imaging with [Cu-64] was evaluated in addition to 

[I-124]. Copper-64 is another relatively long lived (t1/2=12.7 hours) isotope with a relatively poor 

percentage of positron decays (18%), whose use might also be limited by radiation dosimetry 

and image noise (ICRP 1987, Smith 2004). Four healthy mice were scanned for 1 hour on the 

Inveon microPET/CT (Siemens Healthcare, Inc.). Acquisition of PET data was begun 

immediately following injection of either 10.4 or 2.74 MBq of [Cu-64]CuCl2, or 10.7 or 3.90 

MBq (289 or 105 µCi) of [I-124]NM404. All PET data were histogrammed into 15 frames:  1x1, 

1x3, 1x7, 1x15, 1x20, 1x30, 1x45, 1x120, 2x240, 1x480, and 4x600 seconds in duration. PET 

images were reconstructed using 2-D OSEM with 4 iterations and 16 subsets to a matrix size of 

128x128x159 with voxel sizes of 0.8x0.8x0.8 mm3.  

HYPR-LR was applied using the multiple composite implementation (HYPR-LR-MC) with a 

tuptake of frame 3, an α of 2 (5 frames in the sliding composite), and a tmax of frame 11. These 

parameters were empirically determined from the data. HYPR-LR-MC was used because of the 

relatively fast kinetics, and hence variable time frame images, in the first hour following the 

injection of these tracers. A 2.4x2.4x2.4 mm3 Gaussian filtering kernel was used for HYPR-LR-

MC processing. 

Image SNR and accuracy were evaluated in essentially the same way as described above. 

SNR was measured in the liver for both [Cu-64]CuCl2 and [I-124]NM404 using Equation 7.1, 

and TACs averaged over ROIs in the liver, kidneys, and heart were studied. Again, the liver was 
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chosen to measure SNR as it is a relatively large organ with homogeneous uptake of both [I-

124]-NM404 and [Cu-64]CuCl2. 

7.3.3 STEM Filtering for Improved Image Quality, Reduced Scan Durations, 

and Reduced Radiation Dose 

The potential of STEM filtering to improve image quality, reduce scan durations, and/or 

reduce radiation dose was evaluated in a phantom study and in human [I-124]NM404 scans. 

Current human investigations with [I-124]NM404 consist of 3 scans acquired over the course of 

3 days. These data were filtered with STEM as preliminary investigations showed that STEM 

has greater potential than HYPR-LR to improve datasets with such a small number of frames. 

STEM filtering such datasets is thus the focus in this section. 

7.3.3.1 STEM Filtering [I-124] Phantom Study 

STEM filtering was first evaluated with a Derenzo resolution phantom specially designed for 

a microPET scanner. An acrylic Derenzo phantom with fillable rods 5, 4, 3, 2, and 1.6 mm in 

diameter, separated from each other by the same distances was utilized for this study. (Figure 

 

Figure 7.1. The Derenzo resolution phantom used to evaluate STEM filtering of [I-124] 
data (a). The MTFs of the different reconstructions before and after STEM filtering 
were measured by comparing the peak and minimum values from a profile through 
each group of rods (b) to the maximum activity, measured in a small uniform 
backround ROI (c). An example profile is through the 5 mm rods is shown (d). 
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7.1a). The phantom was filled with 11.9 MBq of [I-124] and scanned on the Inveon microPET 

scanner (Siemens Healthcare, Inc.) 1, 24, 48, and 144 hours after it was filled. All PET scans 

were acquired to 1 billion counts. A single microCT scan of the phantom was acquired, 

registered to each of the PET scans, and used for attenuation and scatter correction of each PET 

image. Acquired PET data were histogrammed into sinograms using either all or a sixteenth of 

the detected coincidences, and reconstructed with either FBP with a ramp filter (at the Nyquist 

frequency), or 3-dimensional OSEM with maximum a posteriori (3-D OSEM/MAP) with 2 

OSEM iterations with 16 subsets, and 18 MAP iterations with a β smoothing parameter of 0.1. 

All images were reconstructed to a matrix size of 128x128x159 with voxel sizes of either 

0.4x0.4x0.8 mm3 (FBP) or 0.43x0.43x0.8 mm3 (3D OSEM/MAP). 

STEM filtering was applied to all of the reconstructions up to 10 iterations using a Gaussian 

filtering kernel with a FWHM of 0.8 mm in each spatial dimension, and a FWHM of 1.5 frames 

in the image frame domain. The FBP reconstructions were also smoothed with a 0.8x0.8x0.8 

mm3 Gaussian to serve as an additional comparison for STEM filtering. 

The resolution of the images reconstructed with FBP, 3-D OSEM/MAP, FBP followed by 

STEM filtering, and FBP followed by spatial smoothing was assessed by measuring the 

modulation transfer function (MTF). The MTF was measured using the images reconstructed 

with all of the acquired data to give the lowest possible noise. The power of the MTF at the 

primary spatial frequencies represented by each set of rods was measured as: 

(7.2)                                                                 
BackgroundMax

MinPeak

AA
AA

−
−

 

where APeak is the peak activity for a given set of rods, averaged over the maxima for a profile 

through the rods, AMin is the minimum activity, also averaged over the profile, AMax is the true 
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maximum activity averaged over a small ROI with little to no volume averaging effects, and 

ABackground is the background activity (assumed to be zero) (Figure 7.1b & c). The primary spatial 

frequency represented by each set of rods was taken as the number of rods per mm. 

Noise in the images was assessed with the noise power spectrum (NPS). The NPS was 

measured in a square region of uniform activity in the images reconstructed with a sixteenth of 

the data using FBP, FBP with STEM filtering, 3-D OSEM/MAP, and 3-D OSEM/MAP with 

STEM filtering. The noise was found from the background region by subtracting its mean. The 

NPS was calculated as: 

(7.3)                             )2exp()2exp(1
2

1

0
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where Sj,k is the 2-dimensional NPS of the noise, nx,y, with M elements in both the x and y-

dimensions. The 2-dimensional NPS was integrated over 180 projections through the origin to 

give a 1-dimensional representation of the NPS. 

7.3.3.2 STEM Filtering of [I-124]NM404 Human Brain Tumor Studies 

The performance of STEM filtering was also evaluated in three human brain tumor [I-

124]NM404 studies. All patients studied had either newly diagnosed (n=1) or recurrent (n=2) 

gliomas. Patients were injected with approximately 185 MBq of [I-124]NM404 and imaged at 6, 

24, and 48 hours post-injecetion on a Discovery VCT PET/CT scanner (GE Healthcare). Each 

PET scan of the brain was acquired for 90 minutes. Images were reconstructed using either 30 

minutes or all 90 minutes of acquired data with 2-D OSEM with 2 iterations and 28 subsets and a 

2.57x2.57 mm2 FWHM Gaussian filter applied after reconstructions. Images were reconstructed 

to voxel sizes of 2.35x2.35x3.27 mm3. 
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STEM filtering was applied up to 10 iterations using a Gaussian filter with a FWHM of 4.7 

mm in each spatial dimension and 1.5 frames in the frame dimension. STEM filtering was 

applied to the reconstructions using only 30 minutes of acquired data. STEM filtering was 

compared to spatial smoothing with an additional 4.7x4.7x4.7 mm3 FWHM Gaussian applied 

after reconstruction. 

Noise and bias of the human scans were assessed by measuring the bias in the contrast 

between tumor and background after filtering, by measuring the coefficient of variation (COV) 

of the background, and by evaluating tumor TACs. Contrast was measured between a tumor ROI 

and a background ROI drawn in the contralateral hemisphere of the brain: 

(7.4)                                            100 (%)Contrast 
Background

BackgroundTumor ⋅
−

=
µ

µµ
  

where µTumor is the mean of the tumor ROI and µBackground is the mean of the background ROI. 

The COV was measured in the background ROI: 

(7.5)                                                     100 (%) COV
Background

Background ⋅=
σ
µ

 

where σTumor is the standard deviation of the background ROI. The same ROIs were used for the 

unfiltered and filtered images. 

7.4 Results 

7.4.1. HYPR-LR for Longitudinal [I-124]NM404 Scanning 

In the 2 mice scanned with [I-124]NM404 over the course of 14 days, HYPR-LR processing 

significantly improves the noise of the PET images while maintaining the fidelity of the TACs 

studied (Figure 7.2). In the liver ROI, at the first frame (t = 4 hours) HYPR-LR improves the 
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SNR by 1.6 fold (from 12 to 19), similar to the SNR of the spatially smoothed image (20.3). In 

the tumor ROI at the final frame (t = 240 hours), HYPR-LR improves the SNR by over 4 fold  

(from 2.4 to 10.3), also similar to the SNR of the spatially smoothed image (20.3).  

7.4.2 HYPR-LR for Radiation Dose Reduction 

Following HYPR-LR processing, the PET images of the animals injected with less 

radioactivity have similar noise properties to the images of the animals injected with a full 

 

Figure 7.2. Example time frame images and TACs from the extended imaging time-
point [I-124]NM404 study. Images from the first frame demonstrate that HYPR-LR 
increases the SNR of a small liver ROI to nearly the same degree as spatial smoothing, 
but the image is not as blurred (a-c). The TAC of the ROI is essentially unchanged, and 
the standard deviation at each time point is reduced by HYPR-LR processing (d). 
Example images from the last time frame and a tumor TAC show similar improvements 
(e-h).  
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Figure 7.3. Results from the radiopharmaceutical dose reduction study. Example images 
from the [Cu-64]CuCl2 studies show that following HYPR-LR processing the image 
from the animal injected with a third of the radioactivity has better SNR than the 
animal injected with the full dose (a-c). The accuracy of the TACs studied is largely 
preserved with HYPR-LR processing with the exception of the sharp peaks in the blood 
and kidney (d, note that the HYPR-LR TACs have been offset to improve their 
visualization, hence early time points that are not offset are erroneous). Images from the 
[I-124]NM404 show similar results to the [Cu-64]CuCl2 studies (e-g). The improvements 
in SNR seen with HYPR-LR processing are consistent over the course of the [I-
124]NM404 study (h). 
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radiopharmaceutical dose. This can be seen in the SNR of small liver ROIs from example frames 

for both tracers (Figure 7.3), and over the course of the [I-124]NM404 study (Figure 7.3b). The 

TACs of ROIs in the heart, kidneys, and liver of the [Cu-64]CuCl2 study show that HYPR-LR 

processing introduces little bias, though some bias can be seen in the peaks of the heart and 

kidney TACs (Figure 7.3h).  

 

 

Figure 7.4. Evaluation of spatial resolution and the temporal accuracy following STEM 
filtering. The FBP reconstruction (a) is compared to the FBP reconstruction filtered 
with STEM after 5 iterations (b), the FBP reconstruction followed by spatial smoothing 
with a 0.8x0.8x0.8 mm3 Gaussian (c), and the 3-D OSEM/MAP reconstruction with 
β = 0.1 (d). The MTF of these 4 images at the first frame shows that the resolution of the 
FBP reconstruction is only slightly degraded by STEM filtering, and more degraded by 
spatial smoothing (e). The 3-D OSEM/MAP reconstruction performs comparably to 
FBP at the lower resolutions, but the higher frequencies are lost. STEM filtering slightly 
biases the TAC after 5 iterations, and this bias is reduced with 10 iterations (f). 
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7.4.3 STEM Filtering [I-124] Phantom Results 

STEM filtering only slightly degrades the resolution of the Derenzo phantom, as measured 

by the MTF, while noticeably reducing noise, as measured by the NPS (Figure 7.4 & Figure 7.5). 

This allows for better visualization of the rods in the Derenzo phantom (Figure 7.4a & b). STEM 

filtering also does not significantly bias the temporal behavior (i.e. [I-124] decay) of the phantom  

(Figure 7.4f). STEM filtering degrades the resolution of the phantom less than spatial smoothing 

while giving a similar degree of noise reduction (Figure 7.4 e & Figure 7.5b). 

 

Figure 7.5. The NPS of the FBP (a & b) and OSEM/MAP (c & d) reconstructions before 
and after STEM filtering with 5 and 10 iterations. The overall NPS (a & c), and the NPS 
at higher frequencies (b & d) are both shown. STEM filtering reduces the noise in both 
FBP and OSEM/MAP reconstructions at a broad range of frequencies. More noise 
reduction is achieved with 5 STEM iterations than with 10. Spatially smoothing the FBP 
reconstruction gives a similar NPS as STEM filtering with 5 iterations (a & b).  
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FBP and 3-D OSEM/MAP reconstructions were also compared before and after STEM 

filtering (Figure 7.4 & Figure 7.5). The FBP reconstruction has better resolution than the 3-D 

OSEM/MAP reconstruction at higher spatial frequencies, but the 3-D OSEM/MAP 

reconstruction has less high frequency noise. Following STEM filtering, the FBP reconstruction 

still has better resolution than the OSEM/MAP reconstruction, and the noise power spectra of the 

images are similar. STEM filtering can also reduce noise in the MAP reconstructions (Figure 

7.5c & d). 

 

Figure 7.6. Example human images of [I-124]NM404 from 2 brain tumor patients. For 
the first patient (a-d), the OSEM reconstruction using 90 minutes of data (a) is 
compared to the same reconstruction using 30 minutes of data (b), the 30 minute 
reconstruction followed by 5 iterations of STEM (c), and the 30 minute reconstruction 
following smoothing with a 4.7x4.7x4.7 mm3 Gaussian (d). For the second patient (e-f), a 
T1 weighted MRI acquired after the administration of gadolinium (e) shows an 
enhancing region of tumor (arrow). The OSEM reconstruction of 30 minutes of 
acquired PET data is also shown (f) and compared to STEM filtering with 5 iterations 
(g) and smoothing with a 4.7x4.7x4.7 mm3 Gaussian. 
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7.4.4 STEM Filtering of [I-124]NM404 Human Brain Tumor Studies 

STEM filtering reduces noise in the human brain tumor studies while introducing little bias 

into the data. In example images from two of the patients studied, STEM filtering the shorter (30 

minute) acquisitions reduces the high frequency noise without blurring the tumor activity (Figure 

7.6). The second set of example images in particular (Figure 7.6e-h) demonstrates how this may 

improve tumor visualization. The contrast is not degraded in a small region of recurrent tumor in 

the right medial temporal lobe (arrow), but high frequency noise is reduced. 

 

Figure 7.7. Tumor TACs from the 3 patients studied (a-c) and bias and COV from the 
last frame (t = 48 hours) of each study (d). The TACs from the original reconstruction 
are compared with the TACs from the spatially smoothed images and the images filtered 
with 5 iterations of STEM. Bias in the tumor activity at the last frame is compared to 
the COV of a contralateral background region (d). 
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The tumor TACs are slightly biased by STEM filtering, but at nearly all the frames studied 

this bias is less than what is seen with spatial smoothing (Figure 7.7a-c). The bias of the tumor 

activity and COV of the background at the final frame confirm this, showing that STEM filtering 

introduces less bias for comparable reductions in noise relative to spatial smoothing (Figure 

7.7d). 

7.5 Discussion 

7.5.1 HYPR-LR Processing of [I-124]NM404 Studies 

The pilot studies in this work show that noise improvements from HYPR-LR processing 

could be used to extend the time over which [I-124]NM404 (or any other molecule labeled with 

[I-124]) is imaged, and could be used to reduce radiopharmaceutical dose of tracers labeled with 

[I-124] and other radionuclides that are limited by radiation dosimetry. 

HYPR-LR processing improves the SNR of the PET images from the mice scanned over 14 

days with [I-124]NM404 up to 4 fold, dramatically improving the quality of images acquired 

several days after the injection of the radiotracer (Figure 7.2). Time points occurring a few half-

lives after the injection of radiotracer could contain important information, and improved SNR at 

these time points might allow this information to be observed and measured with greater 

accuracy and confidence. In addition, a noise improvement of 4-fold essentially makes up for the 

poor positron fraction of [I-124] decays. 

The improvements in noise seen with HYPR-LR processing in the radiopharmaceutical dose 

reduction study are likewise significant. The results demonstrate that images processed with 

HYPR-LR have similar SNRs to unprocessed images acquired with 3 or more times the injected 

radiopharmaceutical dose (Figure 7.3). These improvements could be tremendously valuable for 
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radionuclides whose use will likely be limited by radiation dosimetry, making their clinical use 

more feasible and safe for human subjects. 

7.5.2 STEM Filtering of [I-124]NM404 Studies 

STEM filtering has potential to improve the quality of datasets consisting of multiple images 

acquired over the course of hours or days. These improvements would be particularly valuable 

for tracers labeled with [I-124]. Such tracers, for example antibodies or in this case the small 

molecule NM404, can provide insight into biological processes that occur over hours or days, but 

are limited by the radiation dosimetry of [I-124]. As such, image quality with [I-124] tracers can 

be poor, or scanning times at each time point must be long. STEM filtering could thus provide 

better image quality with less radiation dose or shorter acquisitions at each time point. 

STEM filtering has been evaluated here using a Derenzo resolution phantom and 3 [I-

124]NM404 studies in humans with gliomas. The Derenzo resolution phantom demonstrates that 

STEM filtering can reduce noise at individual frames, measured by the NPS (Figure 7.5), 

without significantly degrading spatial resolution, measured by the MTF (Figure 7.4e), or the 

temporal signal (Figure 7.4f). The rods in the phantom can thus be better visualized, particularly 

at higher spatial frequencies (Figure 7.4a-d). STEM filtering gives slightly better spatial 

resolution than simple spatial smoothing (Figure 7.4e) and a similar NPS (Figure 7.5b). The 

STEM filtered FBP reconstruction also compares favorably to the OSEM/MAP reconstruction. 

Following STEM filtering, the FBP reconstruction has better spatial resolution at high spatial 

frequencies than the OSEM/MAP reconstruction (Figure 7.4e) for a similar level of noise (Figure 

7.5). The noise in the OSEM/MAP reconstruction is also reduced with STEM filtering (Figure 

7.5c & d), though the spatial resolution of the resulting images is still worse than it is in the FBP 

reconstruction. 
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The human studies also show an improvement in noise with little loss of spatial or temporal 

resolution following STEM filtering. Example PET images from two patients show that STEM 

filtering might allow for better visualization of tumors in [I-124]NM404 studies, as noise is well 

suppressed and there is little loss of signal in the lesions (Figure 7.6). This may be particularly 

valuable for small lesions that could be easily obscured by noise or overly blurred by simple 

spatial smoothing (Figure 7.6e-h). The minimal bias and improvements in noise seen with STEM 

filtering are confirmed by the tumor TACs (Figure 7.7a-c) and the tradeoff between bias and 

COV in the last frame from each study (t=48 hours) (Figure 7.7d). 

The human images do show that while STEM filtering suppresses high frequency spatial 

noise quite well, low frequency spatial noise is largely preserved because it is recovered along 

with the low frequency signal. Such low frequency spatial noise may interfere with the detection 

of small lesions. Small lesions may therefore be difficult to distinguish from noise at low spatial 

frequencies regardless of whether STEM filtering is performed. This could be explored more 

fully with a detection study using a machine or human observer. An observer may incorrectly 

identify noise as a small lesion, or dismiss actual small lesions as noise. Such a study will help 

better define the true potential of STEM filtering for improving the actual diagnostic quality of 

[I-124]NM404 images. 

STEM filtering should also be compared to other denoising methods in the context of [I-124] 

imaging. In this work it has been compared to spatial smoothing and to an OSEM/MAP 

reconstruction using a relatively conservative β smoothing parameter of 0.1. STEM filtering 

performed relatively well compared to these established methods of reducing noise. However, 

STEM filtering was not compared to wavelet denoising or other more sophisticated methods. 
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STEM filtering has the advantage of being less complicated to implement than wavelet 

denoising, and because it uses EM deconvolution no explicit limits are put on the data. 

7.5.3 Limitations of HYPR-LR Processing and STEM Filtering for Improving 

[I-124] Studies 

Both HYPR-LR and STEM filtering require a dynamic component to the data. Many other 

noise reduction methods, for example smoothing, MAP reconstruction, and wavelet denoising, 

do not, and can be used with individual images. HYPR-LR processing and STEM filtering will 

thus be limited to applications in which multiple acquisitions are involved. However, many [I-

124] PET imaging applications may involve acquiring data at multiple time points, for example 

to calculate radiation dosimetry for TRT with an [I-131] labeled agent. 

It is also important to note that HYPR-LR processing and STEM filtering are post-processing 

methods, and as such will be limited by the accuracy of the initial reconstructions. This is an 

important consideration in applications with very low counts, including extreme instances of the 

examples studied here (e.g. imaging a radionuclide after several physical half-lives have passed). 

PET images will be limited by inaccuracies in correction methods (e.g. random counts and 

scatter) when very low activities are scanned (Watson et al 1997, Cheng et al 2007). HYPR-LR 

processing and STEM filtering cannot reduce the errors in the images themselves. However, the 

denoising algorithms explored in this work could be used to devise better correction methods 

(Cheng et al 2011). 

7.6 Conclusions 

This chapter has presented HYPR-LR processing and STEM filtering as denoising methods 

that could be used to improve the PET imaging of [I-124] in a number of ways. These methods 
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could reduce noise in sets of images that have been acquired over several days, in images 

acquired with less injected radiopharmaceutical dose, and in images acquired for less time to 

improve patient comfort, compliance, and clinical practicality. Improvements in noise could 

enable more accurate kinetic analysis, demonstrated previously with shorter-lived isotopes 

(Floberg et al 2012), and enable better clinical diagnosis, though this remains to be 

demonstrated. To my knowledge, this is the first demonstration of using a 4-dimensional process 

to reduce noise in dynamic PET data acquired over the course of days in separate scanning 

sessions. Such an approach could be very useful for imaging other molecules with slow kinetics, 

particularly antibodies, and could make the clinical use of such molecules safer and more 

feasible. 
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Chapter 8. Impact of Expectation-Maximization Reconstru-
ction Iterations on the Diagnosis of Temporal Lobe Epilepsy 
with PET 

8.1 Introduction 

The utility of the denoising methods developed in this thesis must ultimately be demonstrated 

in the context of real imaging tasks. For example, their ability to improve the detection of trends, 

to reveal new patterns or findings, and to improve clinical diagnosis must still be proven. While 

such validation studies have not been undertaken as part of this thesis, assessing the impact of 

the bias-variance tradeoff seen with a simpler means of controlling noise on a clinical imaging 

task is illuminating. This chapter aims to accomplish this by investigating the impact of the 

number of iterations performed in expectation-maximization (EM) reconstruction on the clinical 

diagnosis of temporal lobe epilepsy (TLE) with 2-deoxy-2-([F-18])fluoro-D-glucose ([F-

18]FDG) positron emission tomography (PET).  

EM reconstruction with ordered subsets (OSEM) is now widely used for diagnostic PET, and 

there is a well-known tradeoff between increased image sharpness and increased noise variance 

as the number of EM iterations is increased during reconstruction (Shepp and Vardy 1982, 

Hudson and Larkin 1994, Barrett et al 1994, Wilson et al 1994). The impact of the number of 

iterations performed on diagnostic accuracy has been studied in the context of several imaging 

tasks (Gilland et al 1992, Wells et al 1999, Wells et al 2000, LaCroix et al 2000, Gifford et al 

2000), and unsurprisingly the optimal implementation of EM reconstruction is dependent on the 

task. However, to my knowledge such a study has not been undertaken for the diagnosis of TLE 

with [F-18]FDG PET. 
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PET with [F-18]FDG has become an integral part in the diagnosis and pre-surgical 

evaluation of temporal lobe epilepsy (TLE), and its diagnostic efficacy and ability to predict 

surgical outcomes have been demonstrated in numerous studies (Theodore et al 1992, Manno et 

al 1994, Casse et al 2002, Theodore et al 2001). TLE is diagnosed on [F-18]FDG PET by 

identifying hypometabolic regions with decreased [F-18]FDG uptake in a diseased temporal lobe 

relative to a healthy contralateral one. The diagnosis may be difficult to make if the degree of 

hypometabolism is subtle, and [F-18]FDG uptake in small regions may be obscured if resolution 

is poor or noise variance is high. A number of approaches have been developed to improve 

diagnosis by reducing partial volume effects, for example by using anatomical information from 

MRI scans, to make small hypometabolic regions more detectable (Baete et al 2004, Goffin et al 

2010, Kato et al 2008). However, such correction methods are not readily available at most 

clinical centers and their use is only beginning to be validated. 

Simply increasing the number of iterations performed during expectation-maximization (EM) 

reconstruction is a much more clinically accessible approach to reducing partial volume effects. 

In the context of [F-18]FDG PET for TLE, a greater number of iterations may increase image 

sharpness and thus improve the detectability of small regions of hypometabolism, but this may 

be offset by the associated increase in image noise. Currently, the specific reconstruction 

algorithm used for TLE PET studies is typically determined by physician or institutional 

preference. An optimal reconstruction algorithm may therefore be clinically useful.  

8.2 Chapter Aims 

The aim of this chapter is to investigate the impact of EM iteration number on the diagnosis 

of TLE with two OSEM reconstructions. The diagnostic performance of the two reconstructions 
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is evaluated with a blinded reader study using a receiver operating characteristic (ROC) analysis 

of the predictive power of [F-18]FDG PET for identifying surgical candidates. The sensitivities 

of the two different reconstructions for identifying patients who improved with surgery are also 

compared. 

8.3 Methods 

8.3.1 Subject Selection 

This study was carried out as a retrospective analysis of clinical [F-18]FDG PET studies 

previously acquired at the University of Wisconsin-Madison for the diagnosis of medically 

intractable TLE. The medical and imaging records of all patients (n=184) who received [F-

18]FDG PET scans for the diagnosis of TLE between 2000-2010 were investigated for inclusion 

and exclusion criteria as follows. Inclusion criteria included diagnosis or suspicion of TLE; 

consideration for surgical treatment of epilepsy; age ≥ 18 years; clinical documentation of age, 

gender, seizure onset, and seizure frequency, antiepileptic drug (AED) trials, EEG report, PET 

report, MRI report, and in patients ultimately receiving surgery: postoperative follow-up, 

including seizure frequency and character. Exclusion criteria included a history of cerebral 

vascular accident (CVA), brain tumor, head trauma, tuberous sclerosis, prior cranial surgery, and 

hemispheric congenital malformations (e.g., porencephaly, lissencephaly, perisylvian 

polymicrogyria, hemimegalencephaly).   

Medical records were then reviewed to determine the documented findings of [F-18]FDG 

PET, MRI, EEG exams, and postoperative outcomes. [F-18]FDG PET was deemed positive if 

unilateral temporal lobe hypometabolism was noted in the medical record. MRI was deemed 

positive if mesiotemporal sclerosis, hippocampal atrophy, unilateral temporal atrophy, or 
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temporal gliosis were noted. EEG was deemed localizing if reports indicated that seizures 

originated from one temporal lobe. Surgical outcome data were evaluated in patients who had at 

least one assessment of their postoperative seizure course in the electronic medical record. 

Surgical outcomes were graded according to the International League Against Epilepsy (ILAE) 

scale (Wieser et al 2001). For the purposes of this study, surgical outcomes were further 

categorized as positive for ILAE scores of 1-4 (1 = absence of seizures, 4 = 4 seizures per year 

up to a 50% seizure reduction from baseline), and negative for scores of 5 or 6 (less than a 50% 

reduction in seizures from baseline). Of the patients receiving surgery, only one had a negative 

outcome (ILAE score of 5). Following the compilation of these data, subjects were anonymized. 

The general characteristics of this population of subjects and an analysis of their outcomes has 

previously been published (Struck et al 2011). 

A subset of 32 subjects was then selected for use in the blinded reader study. This subset of 

subjects was selected to maximize the number of patients whose scans were initially read as 

negative with positive surgical outcomes (i.e. false negatives), as the interpretation of these scans 

is plausibly the most likely to change. The other scans included were selected such that the 

population of patients used in the reader study maintained the general diagnostic characteristics 

of the overall population of patients who received [F-18]FDG PET for TLE, while maximizing 

the number of scans from patients with surgical results. In particular, the percentage of scans 

initially read as positive and negative was kept approximately the same between the subset of 

subjects used in the reader study and all [F-18]FDG PET studies acquired to diagnose TLE, as 

was the proportion of scans with findings concordant and discordant with MRI and/or EEG. 
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8.3.2 PET Image Acquisition and Reconstruction Protocols 

Patients fasted for 6 hours prior to injection of [F-18]FDG. Diabetic patients were instructed 

to withhold diabetic medications for 6 hours and blood glucose measurements were required to 

be < 200 mg/dL at the time of tracer injection. Patients were injected intravenously with 

0.14 mCi/kg (minimum of 10 mCi) [F-18]FDG, and were then instructed to relax quietly for 

45 minutes in a dimly lit room. Patients were imaged at 60 minutes after injection with one of 

two scanners: an Advance PET scanner and a Discovery VCT PET/CT scanner (GE Healthcare). 

Two OSEM reconstructions were performed on each [F-18]FDG PET exam. The first used 

the reconstruction parameters typical for clinical PET brain scans at the University of Wisconsin 

for the type of scanner used. These reconstructions were considered the smooth, relatively low-

resolution, and low-noise standards. The second reconstruction increased the number of 

iterations used during reconstruction, while keeping all other parameters constant. The specific 

number of iterations to be used for the second set of reconstructions was determined by a nuclear 

medicine physician using a test set of subjects by qualitatively determining the number of 

iterations at which possible increased confidence in the diagnosis would be offset by increased 

noise. These reconstructions served as the sharper, higher noise comparisons. Pertinent 

reconstruction parameters are summarized in Table 8.2, and example reconstructions from each 

scanner for [F-18]FDG PET scans initially read as both positive and negative are shown in 

Figure 8.1. Note that 3D OSEM reconstructions of shorter acquisitions with more subsets (35 

versus 28) were used for the Discovery VCT, which is standard practice for this scanner at the 

University of Wisconsin. Corrections for normalization, deadtime, and scatter radiation were 

applied using system software. Attenuation correction was applied to the scans acquired on the 
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Table 8.1. Reconstruction parameters for each scanner used in the study. The number of 
iterations was the only parameter varied between the two OSEM reconstructions for 
each patient exam. 
 

Scanner GE Advance GE Discovery VCT 

Reconstruction 2D OSEM 3D OSEM 
Matrix Size 128x128x35 128x128x47 
Voxel Size 2.3x2.3x4.25 mm3 2.3x2.3x3.27 mm3 

Number of Subsets 28 35 
Number of Iterations: Smooth 2 2 
Number of Iterations: Sharp 5 5 

Post-Smoothing Filter 
(Gaussian FWHM) 

3.27 mm 2.57 mm 

 

 

Figure 8.1. Example images of the reconstructions studied. Example slices are shown of 
the 2 different reconstructions that were compared for both the GE Advance and GE 
Discovery VCT scanners used in the study. Examples from each scanner for patients 
with [F-18]FDG PET scans initially read as positive and with positive surgical outcomes, 
and for patients with [F-18]FDG PET scans initially read as negative who did not 
receive surgery are both shown. Hypometabolic regions are indicated with arrows. 
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GE Advance using a transmission scan acquired with two Ge-68 rod sources, and to the scans 

acquired on the GE Discovery VCT using a co-registered CT scan.  

8.3.3 Reader Study Design and Analysis 

Each individual reconstruction was assigned a random number and all associated patient, 

exam, and reconstruction information were removed. All reconstructions were then presented to 

the blinded readers interspersed randomly. Two readers, reader 1 and reader 2, assigned a 

diagnostic score of 1-5 to each reconstructed image (1 = unequivocal hypometabolic focus, 2 = 

strong confidence of hypometabolic focus, 3 = moderate confidence of hypometabolic focus, 4 = 

equivocal for hypometabolic focus, 5 = no hypometabolic focus). Readers were also blinded to 

MRI, EEG, and other clinical findings. 

ROC curves for surgical candidacy were then generated for each reconstruction, and 

analyzed for each reader separately and with their results combined. The area under the curve 

(AUC) was calculated for each ROC curve, and curves for smooth reconstructions (2 EM 

iterations) were compared with curves for sharp reconstructions (5 EM iterations) using the 

nonparametric comparison approach of DeLong et al. (DeLong et al 1988).  

As only one patient out of all the patients meeting the overall inclusion and exclusion criteria 

had a negative surgical outcome as defined for this study (ILAE score of 5 or 6), the specificity 

of [F-18]FDG-PET for predicting surgical outcomes cannot be assessed. Therefore, only the 

sensitivities of the two OSEM reconstructions for identifying patients who improved with 

surgery at each level of reader confidence were compared. Ninety-five percent confidence 

intervals (CIs) were found for the sensitivities at each level of diagnostic confidence using the 

Clopper-Pearson interval, and McNemar’s test was used to test for significance. 
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Access to imaging and medical records of used for the purpose of this study and permission 

to reprocess and reinterpret imaging studies was approved by the local institutional review board. 

8.4 Results 

8.4.1 Subject Selection 

A total of 120 patients met the initial inclusion and exclusion criteria and 32 were included in 

the reader study. As outlined above, the subset of 32 scans used for the reader study were 

selected to maximize the number of scans whose initial interpretations were false negative while 

keeping the percentage of scans initially read as [F-18]FDG PET positive and negative for 

hypometabolism, and with concordant and discordant MRI and/or EEG findings, approximately 

the same as in the 120 patients meeting the inclusion and exclusion criteria. Of the 32 patients 

included in the reader study, 26 were scanned on the GE advance and 6 were scanned on the GE 

Discovery VCT. The diagnostic characteristics of the scans selected for the reconstruction study 

and for the overall population of patients undergoing [F-18]FDG PET for TLE are summarized 

in Figure 8.2. Of the patients receiving surgery who were included in the reader study (n=18), 9 

had an ILAE outcome of 1 (seizure free), 4 had an ILAE outcome of 2 (auras, but no seizures), 4 

had ILAE outcomes of 3 (1-3 seizures per year), and 1 had an outcome of 5 (<50% reduction 

from baseline). The representation of these outcomes in the reader study population is likewise 

similar to their representation in the overall population of patients receiving surgery. Two 

patients were identified as surgical candidates but had not received surgery at the time of data 

collection. One patient was awaiting surgery at the time the study was conducted, and one did 
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not proceed with surgical treatment. Both of these patients were scanned on the Discovery VCT. 

8.4.2 Reader Study Results 

The two readers were very consistent in their interpretations of the [F-18]FDG scans, 

regardless of the number of iterations used. When the results of the two readers are combined, 

48/64 (75%) of the studies were given an identical rating between the two reconstructions, and 

13/64 (20.3%) were given ratings that differed by one degree of reader confidence. 

The ROC curves for surgical candidacy are shown in Figure 8.3. The ROC curves of the 

individual readers and their combined results are both included. The area under each curve and 

 

Figure 8.2. Patient population diagnostic characteristics. The diagnostic characteristics 
of the patient scans included in the study are shown. The characteristics of all of the [F-
18]FDG PET scans acquired for TLE diagnosis that met the initial inclusion and 
exclusion criteria are also included in parentheses. The proportion of scans initially read 
as positive and negative, and concordant and discordant with MRI and/or EEG were 
kept approximately the same between the scans included in the reader study and the 
overall number of scans meeting the inclusion and exclusion criteria. All but one of the 
patients who received surgery showed clinical improvement, and the patient who did not 
improve had an [F-18]FDG PET scan initially read as negative. 
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the results of the nonparametric statistical comparison between them are summarized in Table 

8.2. There was no statistically significant difference between the AUCs for the reconstructions 

with 2 iterations and 5 iterations for either of the outcomes. This was true for the results of both 

readers individually and with their results combined. As the acquisitions and reconstructions 

from the GE Discovery VCT were 3-dimensional and those from those from the GE Advance 

were 2-dimensional, the areas under ROC curves excluding the scans acquired on the GE DVCT

 

Figure 8.3. Surgical candidacy ROC curves. ROC curves for surgical candidacy are 
shown for both readers individually (a & b), and with their results combined (c). 
Smooth reconstructions (2 EM iterations) are compared with sharp reconstructions (5 
EM iterations) in each case. There was no statistically significant difference between the 
AUC of the two reconstructions for either reader separately or with their results 
combined. 
 
Table 8.2. The areas under the ROC curves from each reconstruction for the individual 
readers and with their results combined. The P-values for the differences between the 
AUCs of each reconstruction are shown. None reached significance. The AUCs and the 
P-values comparing them after excluding the scans acquired of the GE Discovery VCT 
are also shown. The exclusion of these scans did not alter the results. 

 

Surgical Candidacy All Scans Discovery VCT Excluded 
OSEM Iterations Reader 1 Reader 2 Combined Reader 1 Reader 2 Combined 

2 0.839 0.812 0.821 0.888 0.815 0.850 
5 0.806 0.831 0.807 0.833 0.830 0.828 

P-value 0.563 0.280 0.674 0.470 0.442 0.595 
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(n= 6) were also examined (Table 8.2). Excluding the GE Discovery VCT scans also excludes 

the two patients identified as surgical candidates but who had not received surgery at the time of 

data collection. Excluding these scans did not alter the results. 

The sensitivities of the 2 iteration and 5 iteration OSEM reconstructions for predicting 

surgical outcome at a moderate level of diagnostic confidence (images rated 3 or higher counted 

as positive reads) are shown in Figure 8.4. There was no significant difference between the two 

reconstructions for each reader separately or with their results combined. This was true at all 

other levels of diagnostic confidence as well (data not shown). As with the ROC curves for 

surgical candidacy, excluding the scans acquired on the Discovery VCT did not alter the results. 

 

Figure 8.4. The sensitivity of [F-18]FDG PET for predicting a positive surgical outcome 
for the two OSEM reconstructions studied. There was no statistically significant 
difference in the sensitivities of the reconstructions for either of the readers, or with 
their results combined. Excluding the scans acquired on the GE Discovery VCT did not 
alter the results. 
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8.5 Discussion 

The aim of this study was to retrospectively investigate the impact of the number of iterations 

performed during OSEM reconstruction on the sensitivity and specificity of [F-18]FDG PET for 

predicting surgical candidacy and surgical outcomes in TLE. This was done with a blinded 

reader study comparing two OSEM reconstructions, differing in the number of iterations 

performed. The ability of [F-18]FDG PET to predict surgical candidacy was evaluated with a 

ROC analysis of the two reconstructions, and the sensitivities of the two reconstructions for 

predicting surgical outcomes were compared. In the cases studied here, the number of iterations 

performed during OSEM reconstruction had no statistically significant impact on the sensitivity 

and specificity of [F-18]FDG PET for predicting surgical candidacy, or its sensitivity for 

predicting surgical outcome. The nuclear medicine physicians’ interpretations of the PET studies 

were essentially unchanged by the different reconstructions, illustrated by the consistency with 

which they interpreted the images between the two reconstructions studied. Therefore using 

physician preference to determine reconstruction parameters seems justified and acceptable in 

this case. These results should be tempered by the limited statistical power of the results. 

The hypometabolic regions identified by nuclear medicine physicians tended to be more 

global decreases in FDG uptake in the temporal lobe (Figure 8.1). Smaller lesions may not have 

been identified in either reconstruction, as they may have remained too blurred in the original 

reconstructions, and obscured by noise in the reconstructions with more iterations. It is possible 

that reconstructing with a number of iterations between 2 and 5 would be more optimal and 

would result in a better trade-off between image sharpness and noise variance.  
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Partial volume correction methods that aim to increase image sharpness while suppressing 

noise to improve the identification of small hypometabolic regions were not considered (Baete et 

al 2004, Goffin et al 2010, Kato et al 2008). Such methods are not yet widely available as 

clinical tools, whereas changing the number of iterations used in OSEM reconstructions can 

readily be performed and therefore may have a more immediate impact. Given that the results do 

not indicate any benefit to using the sharper but noisier images obtained with more iterations, 

more advanced partial volume correction methods might be needed to identify smaller regions of 

hypometabolism. However, if physicians rely on identifying a pattern of globally reduced [F-

18]FDG uptake, such methods may make little difference in subjective interpretation. If this is 

the case, one of the more objective methods of detecting small regions of hypometabolism might 

be required (Kumar et al 2010, Didelot et al 2010). 

This work has focused on the number of iterations performed during OSEM reconstruction in 

order to study the tradeoff between bias and variance (resolution and noise in this case), but there 

are a number of other factors that will influence resolution and noise. The most notable 

extraneous factors in this study are the two PET cameras that were used, the GE Advance and the 

Discovery VCT, and the different acquisitions and reconstruction used for each scanner, 2D 

acquisition with 2D OSEM reconstruction for the Advance and a shorter 3D acquisition with 3D 

OSEM reconstruction using more subsets (35 versus 28) for the Discovery VCT (Table 8.1). The 

overall impact of these differences on the images from the two scanners is difficult to determine. 

The 3D acquisition and reconstruction of the Discovery VCT images should result in better noise 

properties in the images, but this may be offset by the shorter acquisition time. Likewise, the 

greater number of subsets used during reconstruction should give sharper images for the same 

number of iterations, though image sharpness is also likely influenced by the 3D acquisition. 
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Rather than attempting to address each of these issues, this work has instead focused only on the 

impact of iteration number by demonstrating that excluding the Discovery VCT scans does not 

significantly alter the results. 

All reconstructions used for PET imaging have parameters that will affect the tradeoff 

between bias and variance. While these parameters are frequently determined by physician and 

institutional preference, it is possible that they could have an impact on diagnostic outcomes. 

This investigation indicates that this may not be the case with OSEM reconstructions of [F-

18]FDG PET images acquired for the diagnosis of TLE, as little difference was found between 

the two reconstructions studied. This work is limited by its statistical power, by extraneous 

variables such as the two PET cameras used, and in that only two possible numbers of iterations 

were examined. However, the consistency with which the readers interpreted the images 

indicates that a substantial number of scans would have to be read to identify any difference 

between reconstructions. Different reconstruction parameters, such as an intermediate number of 

iterations between 2 and 5, may have made a greater impact on the interpretation of scans, but 

the consistency of the interpretations makes this unlikely as well. If changing the number of 

iterations performed in reconstruction had potential to change interpretations, less consistency 

would be expected in the data presented here, even if the area under the ROC curves and the 

sensitivities are nearly equivalent. As such it appears perfectly reasonable to use images that 

nuclear medicine physicians are most familiar and comfortable with. Nevertheless, such studies 

could be helpful in validating and optimizing the reconstruction and image processing methods 

used in different clinical imaging tasks. This may be particularly valuable in the future for 

validating the use of the denoising methods presented in this thesis: HighlY constrained back-
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PRojection-Local Reconstruction (HYPR-LR) processing and spatio-temporal expectation-

maximization (STEM) filtering.  

8.6 Conclusions 

This retrospective blinded analysis investigated the impact of the number of iterations 

performed during OSEM reconstruction on the interpretation of [F-18]FDG PET scans acquired 

for the diagnosis of TLE. No difference was found between the reconstructions studied. This 

implies that the reconstructions used for the subjective clinical interpretation of [F-18]FDG PET 

scans acquired for TLE can be determined by physician preference. More sophisticated means of 

partial volume correction may have a more significant impact on the diagnostic interpretation of 

such scans. The methodology presented in this chapter could be used in the future to demonstrate 

the clinical utility of HYPR-LR processing and STEM filtering. 
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Chapter 9. Conclusions and Future Directions 

This thesis aimed to develop and evaluate HighlY constrained back-PRojection-Local 

Reconstruction (HYPR-LR) and spatio-temporal expectation-maximization (STEM) filtering as 

methods for denoising dynamic positron emission tomography (PET) data. These methods are of 

potential value because they can be tailored to specific applications and datasets, either explicitly 

with HYPR-LR or implicitly with STEM, to reduce noise while introducing little bias. They are 

also easy to implement, and can potentially complement other denoising methods. These 

characteristics make HYPR-LR processing and STEM filtering applicable to a wide range of 

dynamic PET studies, giving them potential to impact the use of PET imaging and broaden the 

modality’s scope and potential both clinically and in research. 

9.1 HYPR-LR Processing 

This thesis proposed an optimized implementation of HYPR-LR for PET imaging and 

rigorously evaluated the algorithm’s performance in the context of the kinetic analysis of 

dynamic PET tracer data. The optimized implementation of HYPR-LR uses multiple time-

dependent composite images (HYPR-LR-MC) that account for the temporal behavior of the 

tracer being studied to try and provide the greatest degree of noise reduction that is possible 

without introducing any bias. HYPR-LR-MC has been compared to HYPR-LR using a full 

composite formed with all study frames (HYPR-LR-FC), which will provide the greatest 

possible reduction in noise at the potential cost of introduced bias. The performance of HYPR-

LR-MC and HYPR-LR-FC were evaluated using [C-11]PIB data. 

Both of these implementations of HYPR-LR improve the kinetic analysis of dynamic PET 

data, particularly quantitative parametric images. HYPR-LR-FC provides the greatest 
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improvements in the variance of quantitative parameters, but does bias the data. However, the 

bias is not that great in the measures used in this work. HYPR-LR-MC also improves variance, 

albeit not to the same degree as HYPR-LR-FC, and does so while introducing little bias. 

9.2 STEM Filtering 

This thesis developed STEM filtering as another method for reducing noise in dynamic PET 

data. Like HYPR-LR, STEM filtering is data driven in that the filtering process will be unique 

for every dataset. However, the uniqueness of a given application of STEM filtering will be 

determined implicitly through the use of EM deconvolution, as opposed to the explicitly defined 

composite image ranges in HYPR-LR-MC. This makes the application of STEM filtering less ad 

hoc than HYPR-LR, potentially making its application to a broad range of dynamic PET studies 

easier. 

STEM filtering has been shown to significantly improve both individual time frames in 

dynamic PET studies and quantitative parameter estimates. It does so while introducing little bias 

into the data studied in this work. Like HYPR-LR, this gives STEM filtering potential to make 

significant impacts on both clinical and research PET imaging applications. 

9.3 Application of HYPR-LR Processing and STEM Filtering to [I-

124] PET Imaging 

This thesis evaluated HYPR-LR processing and STEM filtering as methods to improve PET 

imaging with [I-124] labeled agents. [I-124] could be a very useful radionuclide for PET imaging 

because of its unique chemical properties and relatively long (4.2 day) half-life. However, its use 

may be limited by noise because of radiation dosimetry concerns combined with a low 
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percentage of decays via positron emission (23%). HYPR-LR processing and STEM filtering 

could thus be of great benefit to [I-124] PET images. 

The applications of HYPR-LR and STEM filtering to [I-124] images presented in this work 

are distinct from their applications to conventional tracer studies because most of the [I-124] 

datasets studied were acquired as serial images, as opposed to a single dynamic acquisition. 

HYPR-LR and STEM filtering can both significantly improve noise in such applications. Their 

use may therefore prove valuable for other serially acquired PET data, for example images of 

radiolabeled antibodies and other molecules with physiological half-lives of hours to days. This 

thesis has begun to explore some of the challenges that must be dealt with to apply denoising 

methods to such studies, for example the effects of motion, registration, and changing object 

size, but these issues must be dealt with more rigorously in the future. 

9.4 Limitations of the Evaluation of HYPR-LR and STEM 

This work has demonstrated that HYPR-LR and STEM filtering can significantly improve 

the analysis of dynamic PET data. However, it has not demonstrated that these algorithms can 

improve real-world imaging tasks. For example, this work has not shown that the HYPR-LR and 

STEM can improve the detection of pathology using imaging. This thesis has also not rigorously 

compared the algorithms to other more sophisticated denoising methods. While the simplicity 

and effectiveness of HYPR-LR and STEM filtering make their use appealing, such comparisons 

must be undertaken in the context of true imaging tasks to ultimately demonstrate the potential of 

these methods to impact the clinical and research use of PET. 
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9.5 Impact of EM Reconstruction Iterations on Temporal Lobe 

Epilepsy Diagnosis 

While this thesis did not evaluate the ability of HYPR-LR processing and STEM filtering to 

improve real-world imaging tasks and outcomes, it has evaluated the impact of a simpler means 

of denoising on clinical diagnosis. In particular, Chapter 8 has evaluated the impact of the 

number of iterations performed during ordered subset EM reconstruction (OSEM) on the ability 

of physicians to diagnose temporal lobe epilepsy (TLE) using [F-18]FDG PET. Image sharpness 

and noise variance increase with increasing numbers of EM iterations, and both of these factors 

might have an impact on clinical diagnosis.  

However, in the data studied here, altering the number of iterations performed during 

reconstruction had essentially no impact on physicians’ abilities to accurately diagnose TLE. 

This result suggests that the current practice of selecting reconstruction parameters largely based 

upon institutional and physician preference may be reasonable. It also suggests that image 

processing methods, and denoising methods in particular, may need to dramatically improve 

image quality to make a significant impact on clinical diagnosis. This may be because the human 

eye-brain system provides a substantial level of “noise reduction” in the form of pattern 

recognition in tasks involving human observers. Denoising methods may also prove valuable in 

non-observer dependent tasks, for example thresholding methods and statistical parametric 

mapping. 

9.6 Future Work 

This thesis has largely focused on the development of HYPR-LR processing and STEM 

filtering as image processing tools for 4-dimensional PET, and lays the groundwork for their use. 
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However, to be proven as truly valuable methods, future work must rigorously evaluate their 

impact on real-world outcomes from imaging experiments and clinical tasks. The evaluation of 

the impact of the number of EM iterations on the diagnosis of TLE with [F-18]-FDG PET is an 

example of how such an evaluation could be done in the context of clinical imaging tasks. Future 

studies should also focus on how HYPR-LR, STEM filtering, and established methods could 

improve clinical and research tasks that are based on the kinetic analysis of dynamic PET data. 

Kinetic analysis of PET data gives tremendously valuable information, arguably the most 

quantitative of any imaging modality, but its use is currently limited in part by noise (Rahmim et 

al 2009). Studies that firmly demonstrate improved outcomes using these denoising methods 

could truly broaden the scope and potential of dynamic PET imaging. 
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Appendix A. Kinetic Analysis Methods for PET Tracer 
Data 

Three simplified kinetic analysis methods are used throughout this work: the reference region 

Logan graphical method (Logan et al 1990, Logan et al 1996), receptor parametric mapping 

(RPM or RPM2) (Lammertsma and Hume 1996, Gunn et al 1997, Wu and Carson 2002), and the 

reference region Patlak graphical method (Patlak et al 1983, Patlak and Blasberg 1985). This 

appendix gives an overview of these methods. 

A.1 Kinetic Analysis of Tracers with Reversible Binding Behavior 

The kinetic behavior of the tracers with reversible binding behavior presented in this work, 

[C-11]PIB and [C-11]raclopride, are typically described by the two-tissue compartment model or 

the simplified one-tissue compartment model. In the two-tissue compartment model, the tracer 

can be considered either unbound (C1) or bound (C2) in tissues, and the transfer of tracer from 

the plasma to these compartments can be described by the rate constants K1, k2, k3, and k4 (Figure 

A.1a). In the simplified one-tissue compartment case, it becomes difficult to distinguish between 

bound and unbound tracer and they can be collapsed into a single compartment, simplifying the 

fitting task. The rate constants thus become K1 and k2a, where k2a is the apparent overall rate 

constant for the transfer of tracer from tissue to plasma (Figure A.1b) (Lammertsma and Hume 

1996). In terms of the two-tissue compartment model rate constants, k2a is: 

)/1( 43

2
2 kk

kk a +
=      (A.1) 

Additionally, the reversible tracers in this work are modeled using a reference region as an input. 

The reference region is assumed to have no specific binding (Figure A.1c).  
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This work primarily concerns itself with aggregate quantitative parameters, namely the 

distribution volume ratio (DVR) and the non-displaceable binding potential (BPND). The 

distribution volume (DV) is the ratio, at true equilibrium, of the amount of tracer in tissue 

relative to that in plasma. The DVR is the ratio of the DV in a tissue with specific binding to the 

 

Figure A.1. The kinetic models used in this thesis, including the two-tissue compartment 
model (a), the simplified one-tissue compartment model (b), and the model for the 
reference tissue that is used as an input in all the simplified analysis methods presented 
in this work (c). 
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DV in a region with no specific binding. The BPND is the ratio of specifically bound to unbound 

(non-displaceable) tracer at equilibrium. In terms of the kinetic rate constants of the two-tissue 

compartment model, these parameters can be defined as: 
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The ratios K1/k2 and K1
REF/k2

REF  are typically assumed to be the same, so DVR becomes 

(1+k3/k4), and BPND is then simply DVR-1. 

For the simplified one-tissue compartment model, the DVR can be expressed as: 

REFREF
a

kK
kK

21

21

/
/

DVR =
      

(A.4)  

Combining Equations A.4 and A.1 yields the same DVR as in the two-tissue compartment case: 

DVR = (1 + BPND).  

A.1.1 Logan Graphical Analysis 

Logan graphical analysis with a reference tissue input is one of the methods used in this work 

to analyze the tracers with reversible binding behavior. Logan graphical analysis relates the 

measured data from tissue time-activity curves (TACs) and a reference region TAC with the 

following linear equation: 
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where CT(t) is the TAC of interest (e.g. a voxel TAC for parametric images) CREF(t) is the TAC 

of the reference tissue, k2
REF is the efflux rate constant for the reference tissue, DVR is the 

distribution volume ratio (the parameter of primary interest), and int is the y-intercept (Logan et 

al 1990, Logan et al 1996). For some tracers, for example [C-11]-raclopride, the term in equation 

A.5 with k2
REF can be ignored, as its inclusion makes no effective difference in the calculation of 

the DVR (Logan 2000). A linear fit to this equation after the intercept has achieved a state of 

equilibrium, at t=t*, yields a slope equal to DVR, from which BPND is easily calculated. 

 A.1.2 Receptor Parametric Mapping 

[C-11]PIB and [C-11]raclopride data presented in this work were also analyzed with RPM2. 

RPM is a basis function implementation of the simplified reference tissue method (Figure A.1b) 

(Lammertsma and Hume 1996, Gunn et al 1997). This assumes that all TACs in the data can be 

fit to the simplified reference tissue model using Equation A.6: 

 

CT (t) = R1CREF (t) + R1(k2
REF − k2a )CREF (t) ⊗ exp(−k2at)               (a) 
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where CT(t) and CREF(t) are the same as defined above, and K1, K1

REF, k2a, and k2
REF are the efflux 

rate constants for the simplified one-tissue compartment model. RPM2 creates a set of 

exponential basis functions over a range of k2a values to simplify the fitting process. In this work, 

minimum and maximum values for k2a were determined from non-linear least squares fits to Eq. 

3 of several ROI TACs from the data being analyzed. Variance can be improved by fixing k2
REF 
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after an initial fitting of each voxel in the image to equation A.6 (RPM2) (Wu and Carson 2002). 

Although three parameters can be obtained from analysis with RPM2, this work is concerned 

only with BPND estimates. 

A.2 Irreversible Tracers 

The behavior of irreversible tracers, such as [F-18]FDOPA used in this work, is also typically 

described with a two-tissue compartment model. However, there is assumed to be no efflux of 

the tracer out of the specifically bound compartment (Figure A.1a). As is the case with the 

irreversible tracers in this work, [F-18]-FDOPA is modeled using a reference region input, where 

the reference region is assumed to have no specific binding (Figure A.1c). The parameter of 

primary interest in the [F-18]-FDOPA studies is the uptake rate constant, Ki
*, another aggregate 

parameter that describes the net influx of tracer from the plasma into the tissue of interest, 

relative to the influx in a reference region. It is defined as: 

)( 32

32*
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A.2.1 Patlak Graphical Analysis 

Patlak graphical analysis with a reference region input was used to analyzed the irreversible 

kinetics of the [F-18]-FDOPA data presented in this work (Patlak et al 1983, Patlak and Blasberg 

1985). Patlak graphical analysis is similar to Logan analysis, but it relates the measured TACs 

from tissues with irreversible binding behavior to the TAC of a reference region: 
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C(t) and CREF(t) are the same as defined above, kb is a constant that accounts for a small degree 

of reversible binding behavior (assumed to be 0 in this work), int is the y-intercept term, and Ki
*
 

is the parameter of interest as defined above. A linear fit to this equation yields Ki
*. 
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Appendix B. A Kinetic Model for the Cancer Imaging and 
Therapy Agent NM404 

B.1 Introduction 

NM404 is a radioiodinated phospholipid ether analog that has demonstrated selective uptake 

and prolonged retention in 52 of 54 cancers in preclinical and clinical studies (Weichert et al 

2005, Pinchuk et al 2006). This gives the compound great potential as a diapeutic agent that can 

be used for both imaging diagnosis and targeted radionuclide therapy (TRT). [I-124]NM404 was 

presented in Chapter 7 of this thesis as an example [I-124] PET imaging agent that could benefit 

from novel denoising methods. 

The chemical properties and pharmacokinetics of NM404 have been well studied (Pinchuk et 

al 2006). However, there has been no attempt to describe the pharmacokinetics of NM404 with a 

compartmental model. Such a model could serve as a standard for quantifying the uptake of the 

compound in different tumors. This in turn could be useful in estimating radiation dosimetry for 

NM404, and predicting and assessing response to TRT with [I-131]NM404 or other therapies. In 

addition, a complete mechanism the compound’s uptake and retention has yet to be elucidated. A 

compartmental model that accurately describes the kinetics could thus yield clues about the 

biological processes involved. The aim of this appendix is to present pharmacokinetic data of [I-

124]NM404 obtained with PET imaging, and to establish a compartmental model that describes 

its uptake in solid tumors. 
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B.2 Methods 

B.2.1 Animal Preparation 

Eight nude mice (Harlan, Madison, WI) were innoculated with 1x106 human colon 

adenocarcinoma LS180 cells suspended in PBS between the shoulder blades. Mice were selected 

for imaging 7-14 days later when tumor volumes were between 22.3 and 259 mm3 (mean 104 

mm3). 

At the start of the imaging experiment, mice were injected with 7.4-14.8 MBq of [I-

124]NM404 via tail vein. NM404 was prepared and radiolabeled with [I-124] as previously 

described (Pinchuk et al 2006). Tail veins were catheterized to ensure clean bolus injection using 

catheters constructed in house with 30 gauge needles and PE-1 tubing (Scientific Commodities, 

Lake Havasu, AZ). Catheters were filled with heparin during their placement to ensure patency 

of the line, and flushed with 100-150 µL normal saline following [I-124]NM404 injection. 

B.2.2 Imaging Procedure 

Following injection of [I-124]NM404, mice were imaged on an Inveon microPET/CT system 

(Siemens Healthcare, Inc.) at 1, 6, 12, 24, 36, 48, 72, 120, 168, and 240 hours post-injection 

(p.i.). Mice were anesthetized with 2% isoflurane prior to and during image acquisition. PET 

emission scans were acquired in 3-dimensional (3-D) mode to 30-40 million detected events. 

Images were reconstructed using the system’s 3-D ordered subset expectation 

maximization/Maximum a posteriori (3-D OSEM/MAP) algorithm (2 EM iterations, 16 subsets, 

18 MAP iterations, β smoothing factor = 0), to a matrix size of 128x128x159 with voxel sizes of 

0.8x0.8x0.8 mm3. Corrections for deadtime, randoms, attenuation, and scatter were applied using 

the system software. Attenuation and scatter corrections were applied using the co-registered CT 
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scans. Animal experiments were conducted under a protocol approved by the local Institutional 

Animal Care and Use Committee. 

B.2.3 Data Analysis and Kinetic Modeling 

Volumes of interest (VOIs) of the tumor and left ventricle were drawn on each CT image and 

time-activity curves (TACs) were generated from the co-registered PET data. Input functions 

were generated from the left ventricle VOIs, assuming a hematocrit of 30%, no uptake in red 

blood cells, and no metabolites present in the blood. TACs were decay corrected to the time of 

injection.  

Tumor TACs were fit to either a one or two-tissue compartment model (see Appendix A, 

Error! Reference source not found.) using the image derived input functions. The one-tissue 

compartment model can be described by the differential equation: 

)()( 21 tCktCK
dt

dC
TumorPlasma

Tumor −=                 (B.1) 

where CTumor(t) is the concentration of [I-124]NM404 in the tumor, CPlasma(t) is the concentration 

in the blood plasma (including tracer bound to albumin), and K1 and k2 are rate constants. In the 

case of the two-tissue compartment model, the concentration in the tumor can be described as: 

)()()( 21 tCtCtCTumor +=                                           (B.2) 

where C1(t) and C2(t) are the concentrations of [I-124]NM404 in tissue compartments 1 and 2, 

respectively. The differential equations for C1(t) and C2(t) are: 
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Fits of the measured tumor TACs to these models were performed using the COMKAT 

software package (Muzic and Cornelius 2001). Time points were equally weighted as all PET 

acquisitions were performed to the same number of detected events.  

B.2.4 Akaike Weights 

The appropriateness of each model was assessed using Akaike weights, a normalized 

expression for the Akaike information criterion (AIC) (Burnham and Anderson 1998, 

Turkheimer et al 2003). The AIC rewards models that fit the data well in the least-squares sense, 

and penalizes models based on their complexity (Akaike 1983). The AIC can be calculated from 

PET data as: 
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where n is the number of data points, ε̂ i are the residuals from the fitted model, and P is the 

number of parameters in the model. The Akaike weight, wi, for the model i can then be found as: 
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where minAIC is the minimum value of the AIC for the model set being studied, and M is the 

total number of models in the set. A lower Akaike weight indicates a better model fit to the data. 

B.3 Results 

Tumors show slow but significant uptake of [I-124]NM404. Tumor activity exceeds that of 

the image-derived blood TAC at approximately 24 hours, and peaks around 72-96 hours. After 
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its peak, tumor activity steadily declines at approximately the same rate as the blood activity 

Figure B.1 & Figure B.2). 

A two-tissue compartment model better fits the tumor TACs than the one-tissue compartment 

model (Figure B.2), as evident by a substantially larger mean Akaike weight. The Akaike weight 

was greater for the one-tissue compartment model in one dataset (Table B.1). 

The mean results of the two-tissue compartment model fits to the eight tumor TACs studied are 

summarized in Table B.2. The individual rate constants k1 and k2 were not identifiable, thought 

their ratio was. NM404’s relatively low K1/k2 ratio, small k3, and very small k4 reflect its long 

plasma half-life and the slow but significant uptake of the compound by tumors. 

B.4 Discussion and Conclusions 

This appendix has evaluated the pharmacokinetics of [I-124]-NM404 using PET imaging, 

determined that a two-tissue compartment model best describes the kinetics of the data using the 

 

Figure B.1. A visual illustration of the pharmacokinetics of [I-124]-NM404. Projection 
images of the PET data are showed at 6, 24, 72, and 169 hours post-injection. 
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AIC, and measured the pharmacokinetic parameters of fits to this model. In this colorectal cancer 

model, NM404 behaves much like the reversible tracers typically seen in dynamic PET scans, 

but with a time course of hours to days instead of minutes.  

This kinetic behavior supports what is known about the compound’s physiologic mechanism. 

Namely, the compound is highly bound to albumin in plasma (Pinchuk et al 2006), as evident by 

 

Figure B.2. Representative curves for image derived plasma input functions, measured 
tumor activities, and one and two-tissue compartment fits. The two-tissue compartment 
model provides a superior fit, confirmed by an Akaike weight of 0.711 vs. 0.289 for the 
one-tissue compartment model for the data on the left, and and 0.999 vs. 1.87x10-5 for 
the data on the right. 

Table B.1. Appropriateness of the one and two-tissue compartment models for the 
kinetics of [I-124]NM404 as assessed by the AIC. The mean and standard deviation of 
the Akaike weights from the eight datasets analyzed are shown for each of the models 
studied. A lower Akaike weight indicates a better model fit. 
 
 Mean Akaike Weight Akaike Weight 

Standard Deviation 
One-Tissue  
Compartment Model 0.776 0.358 

Two-Tissue  
Compartment Model 0.225 0.335 
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its very gradual uptake by tumors, relatively low K1/k2 ratio, and small k3. The small k3 reflects 

the slow but specific uptake of [I-124]NM404 by tumors, and the even smaller k4 reflects how 

the compound is retained. The underlying mechanism of this specific uptake and retention has 

not yet been fully elucidated, but the results presented here suggest that such a mechanism does 

exist. There is also apparently some mechanism by which the compound is cleared. This may be 

true physiologic clearance, but may also represent cells that die as aggressive tumors become 

necrotic, or tumor growth that results in the same amount of radioactivity being dispersed over a 

larger volume. If a complete mechanism for NM404 is found, the ability to quantify individual 

rate constants could provide insight into important tumor biology. 

The two-tissue compartment model proposed here provides a means of quantifying NM404’s 

uptake in different tumor models non-invasively using PET imaging. This might be useful in 

predicting dosimetry for TRT with 131I-NM404, predicting tumor response to any therapeutic 

modality, and quantifying an underlying biological process that is apparently widespread in 

human cancers, and therefore potentially of significant importance to malignancy. 

 

 

Table B.2. Rate constants from fits of the [I-124]NM404 data to the two-tissue 
compartment model. The mean, standard deviation, and range of the parameters from 
the eight mice studied are shown. K1 and k2 were not individually identifiable, but their 
ratio was. 
 

 K1/k2 k3 (min-1) k4 (min-1) DV (ml/cm3) 
Average 0.28 0.0013 0.00028 1.6 

SD 0.036 0.00028 5.1x10-5 0.28 
Range (0.22-0.32) (9.3x10-4-1.9x10-3) (2.1 x10-4-3.6 x10-4) 1.2-2.0 
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Appendix C. Evaluation of the Diapeutic Agent NM404 in a 
Rat Glioma Model with PET and MRI 

C.1 Introduction 

Malignant gliomas are a virulent form of brain cancer that carry a very poor prognosis 

(Nieder et al 2004b). This poor prognosis is due to the fact that glimoas are exceptionally 

difficult to treat (Nieder et al 2004b, Stupp et al 2005, Nieder et al 2004a), and current 

modalities for imaging gliomas are limited in their ability to both evaluate the cancer and guide 

therapy (Pirotte et al 2006, Pirotte et al 2009, Watanabe et al 1992, Wen et al 2010). NM404, the 

phospholipid ether analog introduced in Chapter 7 of this thesis, has demonstrated avidity for 

glioma cells in xenograft tumor models. Thus, NM404 is a potentially useful agent for both 

evaluating gliomas, either with PET using [I-124] or optically using fluorescent moieties, and 

treating it with [I-131] or [I-125]. This could include using [I-124]NM404 PET to both guide and 

evaluate targeted radionuclide therapy (TRT) with [I-131]NM404. However, to date no study has 

evaluated NM404 in an orthotopic animal model of glioma. Such a study could provide insight 

into and information about NM404’s behavior in gliomas and other brain cancers that cannot 

easily be obtained from the human studies presented in Chapter 7. This appendix presents data 

collected to evaluate the diagnostic and therapeutic potential of NM404 in gliomas using an 

orthotopic rat model with [I-124]NM404 and positron emission tomography (PET). [I-

124]NM404 uptake is compared to gadolinium contrast enhanced (CE) magnetic resonance 

imaging (MRI), and [F-18]-3-deoxy-3-fluorothymidine (FLT) PET. These data are not used to 

evaluate the novel denoising methods developed in this thesis, but are instead presented to 

provide additional information about the behavior of [I-124]NM404 in malignant brain tumors. 
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C.2 Methods 

C.2.1 Cancer Model 

Fourteen nude rats (rnu) were inoculated intra-cranially with 106 U87 cells suspended in 5 µl 

of phosphate buffered saline (PBS). Cells were injected at the following coordinates with respect 

to the bregma: 4mm lateral, 1 mm posterior, and 5 mm deep. Rats were inoculated on 3 

occasions using the same procedure and divided into two groups with separate imaging protocols 

as described below (group 1, n=10; group 2, n=3). Two rats in group 1 were injected with PBS 

only as controls. Rats were screened for the presence of tumors with T2 weighted MRI. The 

imaging experiment was begun when tumors were at least 2 mm in diameter (4-5 weeks post-

inoculation). 

C.2.2 MRI Imaging 

At the start of the imaging experiment, all rats were first imaged with T1 weighted MRI 

before and after administration of 0.3 mg (1 mg/ml) of Multi-hance. Scanning was performed on 

a Varian 4.7 T small animal MRI with an in-house rat head coil. Images were acquired using a 

gradient echo pulse sequence (TR = 7 ms, TE = 4 ms, flip angle = 45o, number of experiments = 

4) and reconstructed to an image matrix size of 128x128x256 with isotropic voxel sizes of 

0.2x0.2x0.2 mm3. MRI was repeated before sacrifice. 

C.2.3 PET Imaging 

NM404 was prepared and radiolabeled with [I-124] as previously described (Pinchuk et al 

2006). [F-18]FLT was prepared as described by Martin et al. (Martin et al 2002), modified for 

synthesis on a Scansys (Denmark) radiochemistry module.  
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Rats in group 1 were injected with 7.88-21.4 MBq (213-579 µCi) [I-124]NM404 via a tail 

vein catheter and imaged with PET/CT 24, 48 and 96 hours post-injection. Immediately prior to 

injection of [I-124]NM404, 5 rats in group 1, including one control, were imaged with PET/CT 

following injection of 13.3-22.6 MBq (358-610 µCi) [F-18]FLT using a dynamic PET 

acquisition (t=90 minutes) initiated at the time of tracer injection. Rats in group 2 were injected 

with 8.40-24.1 MBq (227-651 µCi) of [I-124]NM404  and imaged with PET/CT every 24 to 48 

hours up to 240 hours post-injection. All PET/CT scanning was performed on an Inveon hybrid 

PET/CT system (Siemens Healthcare, Inc.). 

PET images were reconstructed with filtered back-projection (FBP) to a matrix size of 

256x256x159 with voxel sizes of 0.4x0.4x0.8 mm3. Corrections for normalization, deadtime, 

attenuation, and scatter were applied using the system software. Attenuation correction was 

performed using the co-registered CT scan.  

Uptake of tracers was quantified in regions of interest (ROIs) using mean and maximum 

SUV. SUV was measured for each tracer (60-90 minutes for [F-18]FLT, 96 hours for [I-

124]NM404) in tumor regions of interest (ROIs) showing high tracer uptake and in regions 

identified as possible tumor on MRI but showing low tracer uptake. [I-124]NM404 uptake at 96 

hours was compared to gadolinium enhancement on the MRI scan acquired on the same day, and 

to uptake of [F-18]FLT prior to [I-124]NM404 injection. 

C.2.3 Histology 

Following sacrifice, tumors were characterized histologically by tissue specimens stained 

with H&E. Immediately after the final MRI scan, animals were sacrificed, brains were removed, 

and fixed in formalin for 24 hours. Following formalin fixation, samples were stored in 
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PBS. Samples were then embedded in paraffin, cut into 10 micron slices in regions with lesions 

confirmed on MRI and/or PET, and stained with H&E. 

C.3 Results 

C.3.1 [I-124]NM404 Uptake versus CE-MRI  

 The mean SUV (t = 96 hours) of [I-124]NM404 in the suspected tumor ROIs showing high 

and low uptake of the agent is well correlated with the degree of gadolinium enhancement in the 

same regions. (Figure C.1). Regions with high [I-124]NM404 uptake tend to show significant 

enhancement following the administration of gadolinium, and regions with minimal [I-

 

Figure C.1. A comparison of [I-124]NM404 uptake and gadolinium enhancement. 
Example images of a lesion that shows intense enhancement with gadolinium on T1 
weighted MRI (a) and high [I-124]NM404 uptake (b), and a lesion that shows little 
enhancement with gadolinium (c) and correspondingly low uptake of [I-124]NM404 (d). 
[I-124]NM404 uptake at 96 hours post-injection is correlated with the tumor-to-healthy 
brain ratio on CE-MRI acquired on the same day (p=0.01) (e). 
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124]NM404 uptake show minimal gadolinium enhancement. However, not all regions of high 

gadolinium enhancement show high 124I-NM404 uptake (Figure C.1b). 

C.3.2 [I-124]NM404 versus [F-18]FLT Uptake 

Maximum [F-18]FLT SUV trends toward correlation with the maximum SUV for [I-

124]NM404 at 96 hours p.i. (Figure C.2), though the sample presented here is not large enough 

for this trend to reach significance. There was no uptake of [F-18]FLT and [I-124]NM404 in the 

brain of the control animal, and those data are not included in Figure C.2. [F-18]FLT and [I-

124]NM404 uptake do not perfectly overlap (Figure C.2a & b). These results must be considered 

alongside the fact that [F-18]FLT PET scans were acquired 96 hours before the [I-124]NM404 

scans, and during this time the tumor likely changed. 

C.3.3 Longitudinal Scanning with [I-124]NM404 

In the rats scanned over the course of 10 days (group 2), tumors continue to show [I-

124]NM404 uptake as they grow (Figure C.3). The degree of uptake appears to be related to 

tumor size. This is likely due in part to volume averaging effects. 

C.3.4 Histology 

Regions of high and low [I-124]NM404 uptake show different pathologic characteristics 

(Figure C.4). Namely, tumor regions with high uptake on PET tend to be subarachnoid 

(particularly in group 2), have higher cellular density, a greater degree of extracellular 

proteinaceous material, and tend to be more nodular and not infiltrative. The tumors from the 
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Figure C.2. Comparison of [I-124]NM404 and [F-18]FLT uptake. Example images of a 
lesion that shows high [I-124]NM404 uptake (a) and high [F-18]FLT uptake, and a lesion 
that shows low uptake of [I-124]NM404 (c) and low uptake of [F-18]FLT uptake. The 
maximum SUV of [I-124]NM404 at 96 hours shows a correlation with the maximum SUV 
of [F-18]FLT, but it does not reach significance (p=0.250) (e). 
 

 

Figure C.3. Longitudinal uptake of [I-124]NM404. An example animal shows increased 
tumor uptake and size on the [I-124]NM404 PET image from 96 hours (a) to 240 hours (b) 
post-injection. Increasing tumor uptake over time was seen in all animals scanned up to 
240 hours (c and d). Mean SUV is dependent on tumor size, likely due in part to volume 
averaging (c versus d). 
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animals in groups 1 and 2 also show different pathologic characteristics. Tumors in group 1 had 

both sub-arachnoid and infiltrative intraparenchymal components, and tumors in group 2 were 

entirely intraparenchymal and were largely spherical with little infiltration. 

C.4 Discussion and Conclusions 

This appendix has presented data evaluating the uptake of [I-124]NM404 in an orthotopic rat 

glioma model. These results could provide useful information about the mechanism of [I-

124]NM404 uptake in malignant brain tumors, and histopathological information that cannot be 

easily obtained from current trials involving human subjects. 

In this orthotopic rat glioma model, regions with [I-124]NM404 uptake have a mean SUV 

that is correlated with gadolinium enhancement on MRI (Figure C.1). The maximum SUV of [F-

18]FLT before [I-124]NM404 injection also shows a correlation with the maximum SUV of [I-

124]NM404, though this does not reach statistical significance with the limited number of 

subjects studied (Figure C.2). Although gadolinium enhancement and [F-18]FLT uptake appear 

to correlate with [I-124]NM404 uptake, the distributions of these agents do not perfectly match. 

Thus, contrast enhanced MRI and [F-18]FLT PET may be useful for predicting [I-124]NM404 

 

Figure C.4. Example histologic specimen. A representative tumor with regions of high and 
low gadolinium enhancement (a), and high and low 124I-NM404 uptake (b). The hisotlogic 
specimen shows that the region of of low uptake is intraparenchymal with perivascular 
infiltration (arrow, d), and the region of high uptake is subarachnoid and has a more 
significant extracellular proteinaceous component (arrow head, e). 
 
 



 
 

156 
 

 

uptake, but [I-124]NM404 PET also gives information that cannot be obtained with the other 

modalities. The relationship between [I-124]NM404, [F-18]FLT, and gadolinium enhancement 

may also prove useful in determining the biological mechanism of [I-124]NM404 uptake in brain 

cancers. These preclinical results suggest how [I-124]NM404 might behave in human brain 

cancers, must this must be verified with ongoing clinical trials in humans. 

The histology results give further insight into the cause of the variability of [I-124]NM404 

uptake seen in the tumors studied. There appear to be morphologic differences between regions 

of high and low [I-124]NM404 uptake (Figure C.4). This implies that there are differences in the 

tumor environment in these regions. This observation must be confirmed by further study and a 

quantitative analysis of the histology results. 

Finally, the continued uptake of [I-124]NM404 over the course of several days, including as 

the tumor grows (Figure C.3), might be a very useful characteristic for imaging and therapy with 

NM404. Continued uptake could be useful for monitoring tumor progression, or perhaps 

response to therapy, after a single injection of the agent. It is also a desirable trait for TRT with 

[I-131] or [I-125] labeled NM404, as the agent will continue to be taken up as cancer cells 

proliferate. 

NM404 is a promising agent for evaluating and treating malignant brain tumors. This 

preclinical study provides insight into the uptake characteristics of NM404 in brain tumors, 

including characteristics that might prove useful, and characteristics that will require further 

investigation.  
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