
SHAPE AWARE QUADRATURES

by

Vaidyanathan Thiagarajan

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Mechanical Engineering)

at the

UNIVERSITY OF WISCONSIN–MADISON

2017

Date of final oral examination: 12/02/2016

The dissertation is approved by the following members of the Final Oral Committee:
Vadim Shapiro, Professor of Mechanical Engineering
Xiaoping Qian, Professor of Mechanical Engineering
Krishnan Suresh, Professor of Mechanical Engineering
Eftychios Sifakis, Professor of Computer Science
Mario Trujillo, Professor of Mechanical Engineering

© Copyright by Vaidyanathan Thiagarajan 2017
All Rights Reserved

i

Acknowledgements

I would like to express my heartfelt gratitude to my advisor, Prof. Vadim Shapiro, for being

a phenomenal mentor and support throughout my PhD. I would also like to thank him for

giving me uninhibited freedom in exploring the research topics of my interest. His positive

energy and enthusiasm has always been very infectious. It is this energy and enthusiasm

that kept me going in spite of the several setbacks that I have had over the last 6 years.

I would like to thank Prof. Catalin Picu of Rensselaer Polytechnic Institute for teaching

me advanced courses in mechanics. His classes gave me the necessary mathematical back-

ground to attempt a thesis of this nature. Special thanks to Prof. Krishnan Suresh, Prof.

Mario Trujillo, Prof. Eftychios Sifakis, and Prof. Xiaoping Qian for agreeing to be on my

committee and for their helpful suggestions/questions.

Many thanks to Nils Zander of Technische Universität München for patiently responding

to my emails on FCMLab. Likewise, sincere gratitude to Dr. S.E. Mousavi of University of

Texas at Austin for the helpful email exchanges and discussions on moment fitting equations.

I would always remember and cherish all the fun I had working with my colleagues at

Spatial Automation Lab (SAL). Special thanks to Saigopal Nelaturi, Mikola Lysenko, Goldy

Kumar, Xingchen Liu, Brian McCarthy, Randi Wang, and Yaqi Zhang of SAL for all those

interesting/stimulating discussions over the course of my PhD.

My sincere gratitude to my brother and sister-in-law for taking good care of our aging

parents over the last several years. Without their support and encouragement I could not

have imagined pursuing this for 6 long years away from my home. I am immensely grateful

and indebted to my parents for their unconditional love and innumerable sacrifices that they

have made for making me who I am today.

Words cannot express how grateful I am to my spiritual master Sadhguru Vasudev of Isha

Foundation. Daily practice of the self-transformational tools that he offered in the form of

various yogic practices helped me to remain balanced and stay focused during testing times.

More importantly, this work would not have been possible without his grace and blessings.

ii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Challenges in Numerical Integration . 5

1.3 Problem Statement . 8

1.4 Overview . 8

2 Background 11

2.1 Volumetric Integration . 11

2.1.1 Polygonal/Polyhedral Domains . 12

2.1.2 Adaptation by Hierarchical Partitioning 15

2.1.3 Adaptation by Characteristic Function 17

2.1.4 Adaptation by Shape Sensitivity Analysis 23

2.1.5 Summary . 25

2.1.6 Open Issues . 26

2.2 Sensitivity Analysis . 28

2.2.1 Shape Sensitivity . 29

2.2.2 Topological Sensitivity . 32

2.2.3 Feature Sensitivity . 33

2.2.4 Modification Sensitivity . 37

2.2.5 Summary . 40

iii

3 Shape Aware Quadratures (SAQ) 41

3.1 Small Features . 41

3.2 Formulation . 44

3.3 Sensitivity Analysis of Moments . 50

3.3.1 SSA of Moments . 51

3.3.2 TSA of Moments . 55

3.4 Algorithm . 58

3.5 Algorithm Analysis . 62

3.6 Experimental Validation . 64

3.6.1 Example 1 - Quadrant of a circle . 67

3.6.2 Example 2 - Notched Domain . 71

3.6.3 Example 3 - Wavy domain . 73

3.6.4 Example 4 - Non-Convex domain with small holes 80

3.6.5 Example 5 - Unit Sphere . 81

3.6.6 Example 6 - Microstructures . 87

3.7 Summary . 89

4 SAQ in Finite Cell Method 92

4.1 Finite Cell Method . 92

4.2 Implementation . 97

4.2.1 2D Implementation . 97

4.2.2 3D Implementation . 102

4.3 Convergence Studies . 107

4.3.1 Annular Ring . 107

4.3.2 Cylinder under uniaxial compression 112

4.4 Summary . 117

iv

5 A priori and a posteriori error estimation of SAQ 119

5.1 Background . 119

5.2 Sources of error . 121

5.2.1 Insufficient/inappropriate choice of basis functions 121

5.2.2 Insufficient number of domain quadrature points 122

5.2.3 Inappropriate location of domain quadrature points 122

5.2.4 Inaccurate Moment Computations . 123

5.2.5 Fixed precision arithmetic . 125

5.3 A priori error analysis . 126

5.3.1 Example 1 - Quadrant of a Circle . 133

5.3.2 Example 2 - Family of noisy domains 138

5.4 A posteriori error analysis . 141

5.4.1 Example 3 - Quadtree . 143

5.5 Summary . 146

6 Contributions and Open Issues 148

Appendices 167

A SSA of Moments . 168

B TSA of Moments . 173

C Taylor’s Remainder Theorem . 180

D Eigen Value Lemma . 182

E Computed Basis Function Values . 184

v

List of Figures

1.1 Meshing failure for a perforated plate with 1,521 holes of size 1 mm in Solidworks 1

1.2 The fictitious domain approach : the physical domain Ω is extended by the

fictitious domain Ωfict into an embedding domain Ω to allow easy meshing of

complex geometries. The influence of Ωfict is penalized by α [118] 3

1.3 Illustration of excessive boundary cell fragmentation in quadtree based inte-

gration [118] . 6

1.4 Features smaller than the integration grid resolution are missed 7

1.5 Capturing the effect of small features by (a) uniform subdivision (b) overlaying

of fine grid and (c) non-uniform adaptive subdivision 7

2.1 Hierarchical partitioning using quadtrees . 17

2.2 Integrand adaptivity . 17

2.3 The supporting area is partitioned according to its contribution to the material

or void [12] . 19

2.4 Each Gauss point is replaced by two new points at the centroids of the parti-

tioned polygons [12] . 20

2.5 Integration cell with linear discontinuous interface 21

2.6 Reference and Deformed domains for SSA 24

2.7 Defeatured and fully featured defeatured domains with region of interest [123] 29

2.8 Shape Sensitivity : Reference and Deformed Domains 31

vi

2.9 Feature Sensitivity : Transformation [123] 34

3.1 Small features definition applied to positive features on the boundary 42

3.2 Small features definition applied to thin positive features 43

3.3 Small features definition applied to negative features 43

3.4 A typical car wheel assembly containing numerous small positive and negative

features . 44

3.5 SAQ - Simplified domain Ω0 is not homeomorphic to Ω 47

3.6 SAQ - Simplified domain Ω0 is homeomorphic to Ω 47

3.7 Flowchart for Shape Aware Quadratures . 50

3.8 Reference and Deformed domains for SSA 53

3.9 Geometric corrections based on first-order SSA is exact for computation of

area (or volume) provided Γ0 is homeomorphic to Γ and all the vertices (or

edges) of Γ0 lie on Γ . 54

3.10 Approximate polygon (Ω0) construction by ray casting. The approximate

polygon vertices are generated by casting rays parallel to integration rays and

intersecting it with the original domain (Ω). 67

3.11 Example 1 . 70

3.12 Example 2 . 72

3.13 Cases in marching squares . 74

3.14 Example 3 - Basis functions . 76

3.15 Example 3 - Polygonal edge variation . 77

3.16 Example 3 - Quadrature rule variation . 78

3.17 Example 3 - Quadtree depth variation . 79

3.18 A 2D non-convex domain with numerous holes 80

3.19 Non-Convex domain - Rel. Error Vs Number of Edges 81

3.20 Cases in marching cubes [2] . 82

3.21 Relative error in computing volume of a unit sphere 83

vii

3.22 Relative error in computing
∫
x2dΩ over a unit sphere 83

3.23 The L2-norm of the residual error in integrating all trivariate polynomials of

order up to three (xpyqzr with p, q, r ≥ 0 , p+ q + r ≤ 3) over a unit sphere . 83

3.24 The L2-norm of the residual vector in integrating all trivariate polynomials of

order up to three (xpyqzr with p, q, r ≥ 0 , p + r + r ≤ 3) over a unit sphere

for three different quadrature point generation schemes 85

3.25 Quadrature points generated using scaled Cartesian product rule 85

3.26 Quadrature points generated randomly inside the domain 86

3.27 Quadrature points generated randomly on the faces of the approximate poly-

hedron . 86

3.28 Unit sphere with small spherical voids . 88

3.29 A typical leaf cell of the unit sphere contains several hundred voids 88

3.30 Error plot for various hole distribution . 89

4.1 The fictitious domain approach : the physical domain Ω is extended by the

fictitious domain Ωfict into an embedding domain Ωe to allow easy meshing

of complex geometries. The influence of Ωfict is penalized by α [118] 93

4.2 Polynomial interpolation of a Heaviside function: (a) through 5 points; (b)

through 21 points [22] . 96

4.3 Illustration of boundary cell fragmentation in characteristic function method

[118] . 96

4.4 Approximate polygon (Ωi
0) construction and quadrature point generation over

a leaf cell (Ii) by ray casting. 99

4.5 Cases in marching squares . 100

4.6 Quadrature point distribution for SAQ scheme over a 2D domain 100

4.7 Design velocity is simply the distance to the boundary in a direction normal

to Γ0 . 101

4.8 Cases in marching cubes [2] . 104

viii

4.9 Savings in quadrature points (per leaf cell) for the SAQ scheme in 2D and 3D 105

4.10 (a) The leaf cells of the octree are first classified into one of the 15 cases using

PMC (b) Depending on the cell type, an approximate polyhedron homeomor-

phic to the domain in each of the leaf cells is constructed (c) Design velocity

is computed at the surface quadrature points of the approximate polyhedron

(Γ0) (d) Volumetric quadrature points are generated such that it lies within

the actual and polyhedral domain using ray casting (actual surface not shown

for clarity) . 106

4.11 2D annular ring problem from [118] . 108

4.12 Radial displacement plot obtained using SAQ (with 3 subdivisions) 108

4.13 von Mises stress plot obtained using SAQ (with 3 subdivisions) 108

4.14 Convergence of SAQ and characteristic function method w.r.t. p-refinement

in energy norm . 109

4.15 Convergence of SAQ and characteristic function method w.r.t. quadtree depth

in energy norm . 110

4.16 Convergence of SAQ and characteristic function method w.r.t. quadrature

rule in energy norm . 112

4.17 Cylinder under uniaxial compression . 114

4.18 Convergence w.r.t h-refinement for the cylinder problem 114

4.19 Convergence w.r.t octree refinement for the cylinder problem 115

4.20 von Mises stress plot (top face) for the uniaxial cylinder problem obtained

from an overkill FEM solution (with 313,842 DOFs) in SOLIDWORKS [3] . 115

4.21 von Mises stress plot (top face) for the uniaxial cylinder problem obtained

from (a) one (b) two and (c) three octree subdivisions using the characteristic

integration scheme (4x4x4 mesh) in FCMLab [95] 115

ix

4.22 von Mises stress plot (top face) for the uniaxial cylinder problem obtained

from (a) one (b) two and (c) three octree subdivisions using the SAQ scheme

(4x4x4 mesh) in FCMLab [95] . 116

4.23 Displacement norm plot of a human femur model problem as obtained by

employing SAQ in FCMLab with E = 15.2 × 103 N/mm2 and ν = 0.4. An

hip contact pressure of 1 MPa is applied on the non-boundary conforming

discretization using a separate surface discretization of the hip cap. 117

5.1 Design velocity is simply the distance to the boundary in a direction normal

to Γ0 . 123

5.2 Quadrant of a Circle (Ω) and its approximate domain (Ω0) 133

5.3 Error in the area computations of a quadrant (Ω) using zeroth and first-order

Taylor series approximation various polygonal approximations (Ω0) 136

5.4 Different polygonal approximations (Ω0) used for computing SAQ over a quad-

rant domain (Ω). The vertices of the polygon (green dots) lie on the original

boundary (Γ) . 136

5.5 Convergence plot for integral of bivariate polynomials (of order up to 3) over

the quadrant obtained using SAQ . 137

5.6 A family of noisy domains obtained by setting various values of k in y(x) =

x4 + ex + 0.75 sin(kπx) + 0.5 for x ∈ [0, 2] 138

5.7 Convergence plot for area computation over the noisy domain for various

values of k . 139

5.8 Illustration of violation of homeomorphic assumption at coarser polygonal

approximations (ne = 7) for the noisy domain with k = 4 139

5.9 Convergence plot for integral of bivariate polynomials (of order up to 3) over

the noisy domain with k = 2 . 140

5.10 Convergence plot for integral of bivariate polynomials (of order up to 3) over

the noisy domain with k = 4 . 140

x

5.11 Convergence plot for integral of bivariate polynomials (of order up to 3) over

the noisy domain with k = 6 . 141

5.12 Convergence plot for integral of bivariate polynomials (of order up to 3) over

the noisy domain with k = 8 . 141

5.13 SAQ using a quadtree over different domains 144

5.14 Comparison of actual and predicted errors for the unit circle, noisy domain,

and non-convex domain . 144

5.15 A posteriori error plot for integral of f(x, y) over the non-convex domain . . 145

5.16 A posteriori error plot for integral of g(x, y) over the non-convex domain . . 145

A.1 Vertices (black dots) of Γ0 lying on Γ makes VN = 0 at the vertices 172

B.1 Reference and deformed domains for Topological-Shape Sensitivity Analysis

[17] . 175

xi

List of Tables

2.1 Comparison of Different Integration Schemes 27

3.1 SSA of Moments . 52

3.2 TSA of Moments (for bivariate/trivariate polynomial basis) 55

3.3 Relative errors, order, and computational time for integral of f over the wavy

domain . 79

3.4 Relative error and order of convergence in volume computations for a unit

sphere . 86

3.5 Relative error and order of convergence in second moment computations for

a unit sphere . 87

4.1 Rel. error in energy norm and time comparison for SAQ and Characteristic

method w.r.t quadtreee refinement . 110

4.2 Mesh sizes and corresponding DOFs for the uniaxial compression problem . . 116

4.3 Time required to generate the stiffness matrix in generating the converged

points for various mesh sizes . 117

I Integral of basis functions over the quadrant 184

II Integral of basis functions over the notched domain 185

III Integral of basis functions over the wavy domain 186

xii

Abstract

With Shape Aware Quadratures (SAQ), for a given set of quadrature nodes, order and

domain of integration, the quadrature weights are obtained by solving a system of suitable

moment fitting equations in least square sense. The moments in the moment equations

are approximated over a simplified domain (Ω0) that is a reasonable approximation of the

original domain (Ω) that are then corrected for the deviation of the shape of Ω0 from Ω via

shape correction factors. The shape correction factors can be derived based on a variety of

sensitivity analysis techniques such as shape sensitivity and topological sensitivity. Using the

right kind/order of shape correction factors for moment approximation enables the resulting

quadrature (from the moment fitting equations) to efficiently adapt to the shape of the

original domain even in the presence of numerous small features (such as holes, notches and

gaps). We demonstrate the efficacy of the method in integrating bivariate/trivariate polyn

omials over several 2D/3D domains in the presence of small features.

SAQ is formulated irrespective of how the original domain Ω is represented, and it can

be used with or without an integration mesh. More specifically, SAQ is suitable for the com-

putation of integrals arising in immersed boundary (IB) methods such as solution structure

methods, fictitious domain methods, and Finite Cell Method (FCM). Hence, we study the

efficacy of SAQ to achieve a given accuracy in the context of FCM (one of the IB methods)

which must perform numerical integration over arbitrary domains without meshing. The

standard integration technique employed in FCM is the characteristic function method that

converts the continuous integrand over a complex domain into a discontinuous integrand over

xiii

a simple (box) domain. Then, well known integrand adaptivity techniques are employed to

integrate the resulting discontinuous integrand over the box domain. Although this method

is simple to implement, it becomes computationally very expensive for realistic complex 3D

domains such as sculptures, bones and engines.

In contrast, the shape aware quadratures automatically adapt to the shape of the original

domain, due to the incorporation of suitable shape correction factors, without the need

to making the integrand discontinuous leading to superior computational properties. We

demonstrate the computational efficiency of SAQ over characteristic function method (in the

context of FCM) as it requires fewer subdivisions and less time to achieve a given accuracy

in both two and three dimensions. In addition, SAQ offers a number of advantages including

flexibility in the choice of quadrature points and basis functions that is usually not available

for more traditional approaches.

However, moment approximations in SAQ leads to error in the computed integral. Thus,

there is need to bound/estimate this error. Hence, we present an a priori and a posteriori

error analysis for SAQ (with SSA correction factor) based on Taylor’s remainder theorem and

higher-order Taylor series respectively. Specifically, we prove that SAQ (with SSA correction

factor) exhibits quadratic convergence w.r.t. (integration) mesh refinement under suitable

assumptions. We also propose a simple a posteriori error estimate that can be used for

adaptive integration of complex geometric domains. We further validate the error estimates

using several computational examples in two dimensions.

1

Chapter 1

Introduction

1.1 Motivation

Figure 1.1: Meshing failure for a perforated plate with 1,521 holes of size 1 mm in Solidworks

Mesh generation is a major problem in simulation based Engineering, involving considerable

computational resources, especially for complex geometries. Approximately 80% of the to-

tal time invested for a FEA is expended in geometric modeling and mesh generation [118].

In addition, mesh generation suffers from several other drawbacks such as lack of robust-

2

ness, lack of guarantees, and inability to robustly handle small geometric/topological details.

Specifically, the presence of small geometric/topological features such as notches, gaps and

holes makes the meshing process difficult or even impossible. For example, mesh generation

failed for the perforated plate example shown in Fig. 1.1 in one of the most popular CAD

softwares owing to the presence of numerous small holes.

These challenges in mesh generation motivated the research in several meshless ap-

proaches such as the Generalized Finite Element Method (GFEM) [56] and Extended Finite

Element Method (XFEM) [40]. A family of such meshfree methods, known as Immersed

Boundary (IB) methods [33, 105], have gained popularity in the recent past owing to its

simplicity and wide applicability. Some examples of the IB methods include fictitious do-

main methods [45, 8, 113], embedded domain methods [6, 7], solution structure methods

[58, 85, 86, 72, 73], certain versions of XFEM [26, 51, 77, 91, 117, 124, 126], Finite Cell

Method (FCM) [66, 13], and fixed-grid methods [4, 5, 9, 10, 11]. In these methods, the orig-

inal domain is immersed or embedded into a geometrically simpler domain (usually box-like

domain). This simpler domain is then discretized (trivially) to allocate basis functions. These

basis functions are then used to discretize the variational (or weak) form of the boundary

value problem. This results in a linear system which when solved produces an approximation

to the unknown field (such as displacements). The formulation of the linear system requires

computation of volumetric and surface integrals. The surface integration is carried out by

means of local surface mesh generation. The volumetric integration is carried out using some

kind of adaptive integration procedure such as quadtree/octree [48, 49].

Thus, the use of a structured voxel grid eliminates most of the bottlenecks of conforming-

mesh based methods. However, the use of a voxel grid introduces other problems. To

understand this, let us consider the Finite Cell Method (FCM) [66, 13], a kind of IB method,

that has become very popular in recent times. The FCM was originally introduced in [66]

as an extension to the p-version of the finite element method [24, 54]. FCM combines the

fictitious domain approach with a higher-order approximation basis, the representation of

3

the geometry by adaptive quadrature based on recursive bisection, and the weak imposition

of unfitted boundary conditions [118]. FCM can operate on any geometry as along as the

geometry supports point membership classification query i.e. whether a point is located

inside or outside the physical domain. Fig. 1.2 illustrates the fictitious domain concept that

lies at the heart of the FCM.

Figure 1.2: The fictitious domain approach : the physical domain Ω is extended by the ficti-
tious domain Ωfict into an embedding domain Ω to allow easy meshing of complex geometries.
The influence of Ωfict is penalized by α [118]

The embedding domain Ωe consists of the physical domain of interest Ω and the fictitious

domain extension Ωfict. Analogous to classical FEM, the first step in FCM is to derive the

variational (or weak) form for the boundary value problem under consideration. Let us

consider the standard Poisson problem for the purpose of illustration. The FCM variational

form for the Poisson problem reads as follows

find u ∈ H1(Ω) such that

∫
Ω

α∇δu.∇udΩ =

∫
Ω

αfδudΩ +

∫
ΓN

gnδudΓN ∀δu ∈ H1(Ω) (1.1)

u = u0 ∀x ∈ ΓD (1.2)

where gn = ∇u.n is the Neumann boundary condition on ΓN . Neumann boundary

conditions are also specified over the boundary of the embedding domain ∂Ωe, where ∇u.n =

0 by definition. Dirichlet boundary conditions are specified over ΓD of the physical domain

4

by the prescribed value of the field variable u0. The scalar factor α is defined as follows

α(x) =

1.0 ∀x ∈ Ω

10−q ∀x ∈ Ωfict

In Ωfict, α must be chosen as small as possible, but large enough to prevent extreme ill-

conditioning of the stiffness matrix [66, 13]. Typical values of α range between 10−5 and

10−10. This scalar parameter α ensures that we are actually solving the boundary value

problem on Ω and not on the embedded domain Ωe. Using a structured grid of higher-order

elements (as shown in Fig. 1.2), the field variable u and its variation δu are discretized as

follows

u =
n∑
i=1

Niui (1.3)

δu =
n∑
i=1

Niδui (1.4)

Substituting the above in Eq.(1.1) results in the following discretized weak form

(K){u} = {f} (1.5)

with

Kij =

∫
Ω

α∇Ni∇NjdΩ (1.6)

fi =

∫
Ω

αfNidΩ +

∫
ΓN

gnNidΓN (1.7)

where K is the stiffness matrix, u the unknown field coefficients, and f the load vector.

Solving the above linear system for u and substituting the resulting coefficients in Eq.(1.3)

results in the estimation of the field solution u. Notice that the formulation of stiffness

matrix and the load vector requires volumetric integration of discontinuous function over a

5

box-like domain. In certain other IB methods such as Scan and Solve [85, 86], it is required

to perform volumetric integration of continuous functions over arbitrary domain. Thus,

unlike FEM, volumetric integration over a non-conforming background grid is much more

complicated. Thus, FCM (and most IB methods) replaces the problem of mesh generation

with that of numerical integration of discontinuous (or continuous) functions over simple (or

arbitrary) domains. Also, imposition of Dirichlet boundary conditions is not straightforward

and requires special consideration. These problems aggravate in the presence of small features

such as fillets, notches, small gaps, and small holes that is found in any typical CAD model.

Accurately capturing the physics near these small features is of utmost importance as they

are usually the regions under high stress and hence are considered critical from the designer’s

standpoint. Moreover, recent advances in additive manufacturing and the ability to optimally

generate microstructures have furthered interest in efficient (speed and accuracy) resolution

of these small features. The first step in efficient resolution of these small features is the

efficient numerical integration of stiffness/force integrands (Eq.(1.6) and Eq.(1.7)). Hence,

one of the main objectives of this thesis is to develop an efficient integration scheme that

can be employed in IB methods. However, in this thesis, we will develop a new quadrature

scheme that is quite general and can be used even without a conforming/non-conforming

integration mesh.

1.2 Challenges in Numerical Integration

The accuracy of the solution field depends very much on the accuracy of stiffness and force

coefficients in Eq.(1.5). As already mentioned, the stiffness and force coefficients are integrals

over the geometric domain Ω. Specifically, computation of K requires volumetric integration.

However, setting up f usually requires surface and/or volumetric integration. Surface inte-

gration can be easily accomplished by local surface mesh generation. However, accurate and

speedy volumetric integration over arbitrary domains is non-trivial. Volumetric Integration

6

over complex domains, such as those arising in most engineering applications, usually require

that domain Ω be approximated by a union of simple cells, so that the integration can be

carried out in a cell by cell fashion. In order to avoid integration errors, the union of cells

must closely approximate the domain either by cells that conform to the boundary ∂Ω or

by non-conforming cells that are recursively decomposed to cover the original domain. The

first approach leads to a difficult (theoretically and computationally) problem of meshing.

The latter case, illustrated in Fig. 1.3, leads to excessive fragmentation near the boundary,

resulting in significant computational cost and/or loss of accuracy.

Figure 1.3: Illustration of excessive boundary cell fragmentation in quadtree based integra-
tion [118]

This becomes even more pronounced in the presence of numerous small features as in the

perforated problem of Fig. 1.1. The presence of small features such as a voids or inclusions

smaller than an integration cell (in both 2D and 3D) poses a serious issue. Fig. 1.4 illustrates

this situation in which the void is completely situated inside the cell. Since all vertices of a cell

are inside the geometric domain, this void is missed completely by conventional integration

techniques. There are several ways to detect such small features. If the user knows that

small features exist in the domain geometry, an initial grid with tighter spacing (Fig. 1.5(a))

can be provided to ensure a cell corner intersects the feature. This is a simple way to globally

7

ensure that features down to a given size are detected and accounted for. However, because

the increased grid resolution applies everywhere in the domain, including regions where it

is not needed, it can unnecessarily drive up the computational cost. This approach can be

optimized if an additional information about location of small geometric features is available.

In this case, as it is illustrated by Fig. 1.5 (b) and Fig. 1.5 (c), a denser grid is imposed

within a cell or a non-uniform adaptive subdivision can be done depending on the location

of small features.

Figure 1.4: Features smaller than the integration grid resolution are missed

Figure 1.5: Capturing the effect of small features by (a) uniform subdivision (b) overlaying
of fine grid and (c) non-uniform adaptive subdivision

However, these techniques become prohibitively expensive for a model with large number

of small features such as the perforated plate problem of Fig. 1.1. This explains the need

for accurate volumetric integration scheme with minimal subdivision to accelerate the whole

solution process. This requires that the integration scheme adapt to the geometry and

topology (i.e. shape) of the domain in addition to the integrand. Issues related to integrand

adaptivity is well understood. On the other hand, efficient shape adaptivity is far from

complete and will be the main focus of this thesis.

8

1.3 Problem Statement

In this thesis, we will address efficient numerical integration of any integrable function over

arbitrary domains in the presence of small features.

Formally, the problem is to numerically evaluate the integral

∫
Ω

f(x)dΩ (1.8)

where f : Ω→ R is an arbitrary integrable function defined over an arbitrarya domain

Ω ⊂ Rd (d = 2 or 3) that is typically represented by a solid model [108].

aBy arbitrary domain we mean any 2D or 3D closed regular set [108] whose boundary is an
orientable manifold

We further assume that f can be suitably approximated by a function f̂ ∈ span({bi}mi=1)

such that the basis functions bi : Rd → R are symbolically integrable functions that are

sufficiently smooth. In other words, f̂ can be written as a linear combination of sufficiently

smooth basis functions bi i.e. f̂(x) = Σm
i=1cibi(x). The coefficients ci need not necessarily be

known ahead of time.

1.4 Overview

The main contributions of this thesis are :

1. A new quadrature scheme, called the Shape Aware Quadratures (SAQ), that can be

used to efficiently integrate a priori unknown functions over arbitrary domains in the

presence of small features based on moment fitting equations [137, 121], divergence

theorem [30, 41] and sensitivity analysis [75, 76, 67, 17, 123, 80]

2. Convergence and performance studies of SAQ in the context of Finite Cell Method

[66, 13]

9

3. A priori and a posteriori error estimation of SAQ

In Shape Aware Quadrature (SAQ), given an arbitrary domain Ω with a set of appropriately

chosen quadrature nodes and order of integration, we compute the quadrature weights by

solving a system of linear moment fitting equations [64, 116, 137] for an appropriate set of

basis functions in the least square sense. Setting up the moment-fitting equations involves

computing integrals of the basis functions (known as moments) over an arbitrary geometric

domain. This task itself is non-trivial, because it either entails some kind of domain de-

composition, or can be reduced to repeated boundary integration as was proposed in [16]

for bivariate domains. Adaption of the latter approach avoids excessive domain fragmen-

tation, but leads to a significant computational overhead, particularly in 3D. We overcome

this challenge by first computing the moments over a simpler domain Ω0, usually a poly-

gon/polyhedron, that is a reasonable approximation of the original domain Ω. The computed

moments are then corrected for the deviation of the shape of Ω0 from Ω by means of shape

correction factors. The shape correction factors can be computed via various sensitivity

analysis techniques such as the shape sensitivity [75, 76], topological sensitivity [67, 17],

feature sensitivity [123] and modification sensitivity [80]. The moments over approximate

domain are further reduced to boundary integrals by the application of divergence theorem

[136, 36, 30, 23, 41]. The approximate moment fitting equations, thus obtained, can then

be easily solved for quadrature weights. In other words, the shape correction factor en-

sures that the quadrature rule determined by the moment fitting equations is “aware” of the

shape of integration domain – hence the name Shape Aware Quadratures (SAQ). The result-

ing quadrature weights are not exact, but are accurate enough to integrate functions over

any arbitrary domain when they are well approximated by the chosen set of basis functions.

In addition, small features such as holes, notches, and thin features can be accounted for

automatically by employing the correct order/type of shape correction factor in the moment

approximations.

The main application of SAQ is in the boundary cells of any quadtree/octree based

10

integration. Thus, SAQ could be advantageously employed in integrating system matri-

ces/vectors arising in any IB (or meshless) method. Hence, in this thesis, we demonstrate

the efficacy of this method in integrating stiffness/force integrands arising in elastostatic

problems using the Finite Cell Method (FCM). In addition, SAQ is found to offer a great

deal of flexibility in the choice of quadrature points and basis functions that is not usu-

ally available for other integration schemes such as the characteristic function method [134]

employed in IB methods.

The use of sensitivities in computing the shape correction factor results in an approxima-

tion of the moments. Thus, there is a need to estimate the resulting error in the computed

integral using SAQ. Hence, we develop an a priori error estimate for SAQ (with SSA shape

correction factor) based on Taylor’s Remainder Theorem. In addition, we propose a simple

a posteriori error estimator based on higher-order Taylor series approximation that can be

used in the context of efficient adaptive integration over arbitrary 2D/3D domains.

Outline A detailed survey of volumetric integration and sensitivity analysis is presented

in chapter 2. A new integration procedure called as the Shape Aware Quadrature (SAQ)

is developed in chapter 3 as a means to efficiently integrate a priori unknown functions

over arbitrary domains in the presence of small features. Chapter 4 studies the conver-

gence/performance of SAQ relative to the traditional characteristic function approach [12]

in the context of FCM [66, 13]. A priori and a posteriori error analysis of SAQ is the topic

of chapter 5. Finally, chapter 6 summarizes the contribution of this thesis along with open

issues that warrant further research.

11

Chapter 2

Background

In this chapter we will review relevant literature on volumetric integration and sensitivity

analysis.

2.1 Volumetric Integration

As already pointed out in the introduction, formulation of stiffness matrix (Eq.(1.6)) and

the load vector (Eq.(1.7)) requires volumetric integration of continuous/discontinuous func-

tions over arbitrary domains. In certain IB methods such as the FCM [66, 13], embedded

domain methods [6, 7], and fictitious domain methods [45, 8, 113], it is required to integrate

discontinuous functions over a simple (box-like) domain. In other IB methods such as the

solution structure method [58, 85, 86, 72, 73], it is required to integrate continuous functions

over arbitrary domains. In either case, the integration procedure is complicated and results

in fragmentation of the integration boundary. Thus, there is a necessity for the integration

procedure to adapt to the geometry/topology (shape) of the domain in addition to adapting

to the integrand. The issues related to integrand adaptivity is well understood (e.g., see

[132]). On the other hand, shape adaptivity is far from complete. Hence, in this section, we

will survey relevant ideas and literature on numerical integration techniques with emphasis

on geometric adaptivity. In this section, we will closely follow our exposition in [129].

12

2.1.1 Polygonal/Polyhedral Domains

Simple Shapes

Numerical integration over a regular n-dimensional interval, i.e. a box, is well understood

(see for e.g. [35]). Stroud [20] describes cubature rules for a number of different simple

domains (such as hexagon, octahedron, and cubical shell) in his book four decades ago.

Since then, many additional specialized cubature formulas have been developed for a variety

of simple shapes and spaces [104, 103, 1].

Symbolically integrable functions - Divergence Theorem

Several authors [136, 30, 36, 23, 41] have advocated the use of divergence theorem to integrate

symbolically integrable functions over polygonal/polyhedral domains. Here, application of

divergence theorem (once for polygonal domain and twice for polyhedral domain) converts

the 2D/3D integral into an 1D integral over the edges of the polygon/polyhedron. The

resulting integral is then efficiently evaluated using 1D Gauss Quadrature rules. For the

purpose of illustration let us consider the integration of a symbolically integrable function

bi(X) over the polygonal domain Ω0 ⊂ R2. Our objective is to simplify
∫

Ω0
bi(X)dΩ0 to an

integral over the polygonal boundary. In order to apply the divergence theorem, we first

require a vector function φφφi = φiX(X, Y)̂i+ φiY (X, Y)ĵ such that the following is satisfied

∫ ∫
Ω0

bi(X, Y)dXdY =

∫ ∫
Ω0

∇ · (φφφi)dXdY (2.1)

It can be easily proved [41] that for φφφi(X, Y) =
∫
bi(X, Y)dXî + 0ĵ the above is satisfied.

Now, application of divergence theorem to the RHS of Eq.(2.1) yields

∫ ∫
Ω0

bi(X, Y)dXdY =

∫
Γ0

φiXNXdΓ0 (2.2)

13

where NX = N.̂i is the X-component of the normal to the boundary. For a polygon, the

normal is constant over its edges. Hence, for a polygon with ne-edges (i.e. Γ0 = ∪nek=1E
k
0)

one could rewrite the above more explicitly as:

∫ ∫
Ω0

bi(X, Y)dXdY =
ne∑
k=1

∫
Ek0

φiX(X, Y)Nk
XdE

k
0 (2.3)

It is to be noted that φiX(X, Y) =
∫
bi(X, Y)dX can be obtained symbolically (for e.g., if

bi(X, Y) = XpY q, then φiX(X, Y) = X(p+1)Y q

(p+1)
).

Analogously, the integral over the polyhedral domain Ω0 ⊂ R3 can be derived to be an

integral over its faces as [41]

∫ ∫ ∫
Ω0

bi(X, Y, Z)dXdY dZ =

nf∑
k=1

∫
Fk0

χiX(X, Y, Z)Nk
XdF

k
0 (2.4)

where χiX(X, Y, Z) =
∫
bi(X, Y, Z)dX and F k

0 being the kth polygonal face of the polyhedron

with nf faces. Thus, in general if Ω0 ⊂ Rd (d = 2 or 3) is the polygonal/polyhedral domain

of integration with boundary Γ0 ⊂ Rd−1 comprising of n∗ edges/faces (i.e. Γ0 = ∪n∗k=1Γk0),

then

∫
Ω0

bi(X)dΩ0 =

∫
Γ0

βiX(X)NXdΓ0 =
n∗∑
k=1

∫
Γk0

βiX(X)Nk
XdΓk0 (2.5)

where βiX(X) = φiX(X, Y) for polygons and βiX(X) = χiX(X, Y, Z) for polyhedrons. In

the case of polyhedra, one more application of divergence theorem to Eq.(2.5) would reduce

the original integral into a 1D integral similar to that of Eq.(2.3).

Arbitrary integrable functions - Moment Fitting

For arbitrary integrable functions, Sommariva and Vianello [14] used Green’s integral formula

with thin-plate splines basis functions to obtain a meshless cubature method for convex,non-

convex and even multiply connected polygonal domains. In general, a cubature or quadrature

14

in Rd is a formula of the form

n∑
i=1

wif(xi) ≈
∫
Ω

W (x)f(x)dΩ (2.6)

where Ω ⊂ Rd is the integration region, f is an integrable function defined on Ω, and W (x) is

a non-negative weight function. A quadrature rule is determined by points xi ∈ Rd that are

usually called quadrature nodes, and the quadrature weights wi [137]. A standard technique

for constructing quadrature rules is to solve the following system of moment fitting equations

[64, 116, 137]

∫
Ω
W (x)b1(x)dΩ∫

Ω
W (x)b2(x)dΩ

· · ·∫
Ω
W (x)bm(x)dΩ

=

b1(x1) b1(x2) · · · b1(xn)

b2(x1) b2(x2) · · · b2(xn)

· · · · · · · · · · · ·

bm(x1) bm(x2) · · · bm(xn)

w1

w2

· · ·

wn

(2.7)

The same equations may be written in a more compact form as

{M}m×1 = [A]m×n{w}n×1 (2.8)

with

{M} =

∫
Ω
W (x)b1(x)dΩ∫

Ω
W (x)b2(x)dΩ

· · ·∫
Ω
W (x)bm(x)dΩ

(2.9)

where {bi}mi=1 is the set of basis functions1 and {M} is the vector of moments defined over

the domain of integration Ω.

The quadrature nodes and the corresponding weights {xi, wi}ni=1 can be determined nu-

1Popular choices of basis functions include the bivariate polynomials xpyr (p + r ≤ o) and trivariate
polynomials xpyrzs (p + r + s ≤ o) in 2D and 3D respectively (for the given integration order o). Other
recommended choices of basis functions include Legendre and Chebyshev polynomials [15].

15

merically by solving the above set of moment fitting equations. The resulting quadrature

rule can be used to integrate any function that is in the function space spanned by these

basis functions, assuming that the integral of basis functions and solution to moment fitting

equations were computed exactly. Each integration point in d-dimensions contribute d + 1

unknowns: d coordinate components and one weight. Thus, d m
d+1
e could serve as an esti-

mate for the number of points required to integrate m basis functions in d dimensions [121].

Further, Xiao and Gimbutas [137] devised a numerical algorithm for constructing efficient,

higher-order quadratures in two and higher dimensions by using moment fitting equations

along with node elimination scheme. This algorithm was successfully applied to integrate

general functions over triangle and square [137].

Mousavi et al. [92, 120] used the same algorithm to construct efficient quadrature rules for

bivariate polynomials to integrate functions over convex and non-convex polygons. Specifi-

cally, Mousavi and Sukumar [121] constructed efficient quadrature for integration over convex

polygons and polyhedra based on moment fitting equations and monomial basis functions.

They used Lasserre’s method [68, 69] for the integration of homogeneous functions arising in

the moment computations. The authors also observed that integration of the known basis

functions may be transformed to boundary integrals using divergence theorem, at least in

principle. Recently, Joulaian et al. [71] applied this idea to the leaf cells of octree and demon-

strated its application in the context of FCM. However, in practice, repeated and accurate

integration over the boundary of an arbitrary domain is computationally expensive.

2.1.2 Adaptation by Hierarchical Partitioning

The boundary of an arbitrary domain is a piecewise smooth curve in 2D or surface in 3D.

Numerical integration over such domains must adapt to the domain’s boundary. This can

be achieved by meshing – subdividing the domain into a union of cells that conform to the

domain’s boundary and then applying well established quadrature rules to each of the cells.

Recall that our goal is to avoid mesh generation. However, in principle, the boundary may

16

be polygonized, but none of the proposed methods scale to handle polygons or polyhedra of

such complexity.

A common approach to geometric adaptation is hierarchical partitioning. In its simplest

form, a quadtree [70] or octree [96] subdivision breaks the domain into non-conforming cells

recursively. This kind of subdivision primarily leads to two types of integration cells: interior

cells and boundary cells (see Fig. 2.1a). Interior cells can be easily handled using ordinary

lattice rules (also called the Cartesian product rule). Several approaches to dealing with

boundary cells have been proposed. For example:

(a) The simplest method is to randomly include/exclude boundary cells (see Fig. 2.1b)

and then use ordinary lattice rules on the randomly included cells [109].

(b) Alternatively, one could map the boundary cells to smoothly deformed rectangles [72]

or other canonical regions [78] and then use ordinary lattice rules on it.

(c) More recently, convenient space parametrization of boundary cells was found to pro-

duce good results [131, 58, 22].

(d) Monte-Carlo based methods [132] can be used to accurately integrate the boundary

cells.

(e) Finally, level-set based approaches [31, 100] to deal with boundary cells.

All of the proposed approaches to dealing with boundary cells are problematic. Specifically,

referring to the above, (a) lacks accuracy, (b) doesn’t generalize to 3D, (b) and (d) are

computationally expensive, (b) requires function evaluation outside of the domain, (e) is

specific to a particular representation of the domain and (c) involves heuristic steps.

17

(a) (b)

Figure 2.1: Hierarchical partitioning (quadtree) (a) Grey: interior cells; Red: boundary cells
(b) Boundary cells are randomly excluded from integration

2.1.3 Adaptation by Characteristic Function

The problem of geometric adaptivity can be reduced in to integrand adaptivity over regular

rectangular/box domain. Thus, well known integrand adaptivity techniques (over regular

domains) can be used to compute the integral over arbitrary domains. To be precise, let

f be the function to be integrated over the arbitrary domain Ω ⊂ D, where D is a regular

domain. Let us define a characteristic (Heaviside) function H(x) as

H(x) =

 0 : x /∈ Ω

1 : x ∈ Ω
so that

∫
Ω

f(x)dΩ =

∫
D

f(x)H(x)dD. (2.10)

Now we have transformed the original integration domain Ω of the integral (Fig. 2.2a) into

a regular box domain D (Fig. 2.2b).

(a) (b)

Figure 2.2: Integrand adaptivity (a) Original integration domain (b)
Extended integration domain

18

Thus, the required integral can be computed by sampling the modified function f(x)H(x)

over the extended domain D using the ordinary lattice rules. Although this transformation is

mathematically perfectly legitimate and sensible, it poses a serious problem when evaluated

numerically owing to the discontinuity of the Heaviside function (H(x)). This method is

particularly popular in most IB methods [105, 66]. A recent survey [12] discusses a number

of strategies employed in the Finite Cell Method [66] in dealing with the discontinuity of the

Heaviside function. These include

Local Meshing

The simplest way to deal with the discontinuity of the Heaviside function is to locally tri-

angulate or mesh around the region of discontinuity. This method is often used in meshfree

methods [46, 47] and in methods that deal with the simulation of cracks [47, 134] and other

discontinuous phenomenon. Here, the triangulation conforms to the discontinuous interface

and thereby captures the interface/boundary. However, the cost of applying this idea in

IB method is high since cells are normally much bigger than standard finite elements, and

capturing the boundary by local meshing can be expensive. Furthermore, this defeats the

very purpose of avoiding conforming mesh generation.

Heuristic modification of integration weights and nodes

Rabczuk et al. [127] developed an heuristic way to modify the integration weights under the

assumption that the discontinuous interface is linear. Consider a cell with line of discontinuity

as shown in Fig. 2.3.

19

Figure 2.3: The supporting area is partitioned according to its contribution to the material
or void [12]

Further, consider the supporting area of the Gauss Point (ψi, η i), whose quadrature

weight is wi, which is cut by the line of discontinuity. Thus, the supporting area of wi is

split into two different polygons, with areas A− and A+ as shown in Fig. 2.3. It can be

proved that the classical Gauss quadrature weight for a box-like region obeys wi = A−i +A+
i .

Thus, Rabczuk et al. [127] heuristically replace wi with either w−i (for void side) or w+
i (for

material side) depending on where the quadrature point is located (void or material)

w−i = wi
A−i
Ai

(2.11)

w+
i = wi

A+
i

Ai
(2.12)

The obvious disadvantage of this method is that it can’t be applied for curved discontinuities.

Further, the method is applicable only to holes and boundaries but not for multi-material

problems [12].

Abedian et al. [12] proposed a modification to the above algorithm by replacing the

integration point (cut by discontinuity) by two different points each at the centroid of its

20

corresponding polygon (Fig. 2.4). Thus the integral (in this case) over the reference element

is written as

∫ −1

+1

∫ −1

+1

f(ψ, η)dψdη =
∑

i=1,3,4,6,7,9

wifi +
∑
j=2,5,8

[w−j f(ψ−j , η
−
j) + w+

j f(ψ+
j , η

+
j)] (2.13)

Figure 2.4: Each Gauss point is replaced by two new points at the centroids of the partitioned
polygons [12]

The authors [12] claim that the method is applicable even for curved discontinuity. How-

ever, it is not clear how this can be applied in practice to arbitrary 3D curved domains.

Smoothed step function approach

Some authors [115, 21] smoothen the Heaviside function of Eq.(2.10) and then use oc-

tree/quadtree based subdivisions along with regular Gauss quadrature to integrate functions

over arbitrary domains. There are several possible choices for smoothening the Heaviside

function. One simple choice is the linear approximation of the Heaviside step function as

21

given below

H(φ(x)) =

1 : φ ≥ ε

1
2

+ φ
2ε

: −ε ≤ φ ≤ ε

0 : φ ≤ −ε

(2.14)

where φ is an implicit function such that φ ≤ 1, φ = 0, and φ ≥ 1 corresponds respectively

to the interior, boundary, and exterior of the domain of integration. The approximate step

function tends to the exact Heaviside function as ε → 0 but has a value equal to half at

φ = 0. Thus, the function H(φ) is an implicit function of the solid that has a value equal to

half at the boundary of the domain where φ = 0. As ε→ 0, this function has a value equal

to 1 inside the domain and 0 outside. There are several other possible choices of approximate

Heaviside functions. For a list of such approximations refer to [21].

Equivalent polynomial Approach

Figure 2.5: Integration cell with linear discontinuous interface

When the discontinuous interface is linear, Ventura [43] showed that an equivalent polynomial

exists whose integral over the continuous part of the domain gives the exact value of the

discontinuous/non-differentiable function integrated over the whole domain [12]. Thus, this

avoids the subdivision of boundary cells in to sub-cells. Consider the case of 2D quadrilateral

cells whose domain of integration (Ω) can be decomposed into material part (Ωm) and void

22

(Ωv), when it is cut by the discontinuity. For simplicity, let us consider the evaluation of the

integrand f that is discontinuous over a linear interface as shown in Fig. 2.5 i.e.
∫

Ωm∪Ωv
fdΩ.

Here, Ωm and Ωv refers respectively to the material and void regions of the domain. However,

we know that in IB methods such as the FCM
∫

Ωv
fdΩ = 0. Thus it is only required to

evaluate the integral f , a polynomial of some degree, over Ωm i.e.
∫

Ω
fdΩ =

∫
Ωm

fdΩ. The

method is based on finding a polynomial function g such that the following equation holds

∫
Ωm

fdΩ =

∫
Ω

gfdΩ (2.15)

where Ω = Ωm ∪ Ωv is the full (rectangular) cell. Thus if g exists, then an integration over

a full cell regardless of the discontinuity can be performed to reach exactly the same result

as when the discontinuity is considered. If we assume that g and f to be polynomials of the

same order i.e.

f = b0 + b1x+ b2y + ...+ bj−1x
i + bjy

i (2.16)

g = c0 + c1x+ c2y + ...+ cj−1x
i + cjy

i (2.17)

23

then the following equations can be set up and solved to find c0, c1, c2, ..., cj

∫
Ω

gdΩ =

∫
Ωm

dΩ (2.18)∫
Ω

gxdΩ =

∫
Ωm

xdΩ (2.19)∫
Ω

gydΩ =

∫
Ωm

ydΩ (2.20)

. (2.21)

. (2.22)

. (2.23)∫
Ω

gxidΩ =

∫
Ωm

xidΩ (2.24)∫
Ω

gyidΩ =

∫
Ωm

yidΩ (2.25)

The RHS of the above can be determined by the application of divergence theorem which

converts them into contour integrals [43]. Thus, the problem of integration of a discontinuous

function over a given material domain is now converted to integrating each term in the

integrand analytically using divergence theorem with the extra cost of evaluating the function

g. As before, one of the main disadvantages of this method is that it doesn’t scale well for

general 3D curved domains. Furthermore, evaluation of g for higher-order integrands is

computationally expensive. To alleviate the latter disadvantage, [12] suggests to choose g to

be a lower order polynomial compared to f . However, this places a restriction on the size of

the integration cell and in fact warrants a finer integration grid.

2.1.4 Adaptation by Shape Sensitivity Analysis

We could also try to evaluate integral
∫

Ω
f(x) dΩ in two steps: first integrate function f(x)

over another domain Ω0 that approximates Ω, and then correct the result by the differ-

ence between the two integrals. To the best of our knowledge, this approach has not been

considered in the context of integration over arbitrary domain.

24

One popular approximation is based on the application of first-order Shape Sensitivity

Analysis (SSA) [75] from the shape optimization [75] literature. As a first order approxima-

tion, consider a reference domain Ω0 that is homeomorphic to and in the neighborhood of

the original domain Ω. In other words, there exists a continuous bijective mapping T (X, t)

(with continuous inverse) that deforms the reference domain into the original domain. In

this context, the original domain Ω could also be referred to as the deformed domain. For

simplicity, let us choose a homeomorphic piecewise linear domain as our reference domain

(see for e.g. Fig. 2.6). On applying SSA, and assuming that f can be suitably extended

outside of Ω, we get the following approximation to the integral

Figure 2.6: Reference and Deformed domains for SSA

I =

∫
Ω

fdΩ ≈
∫

Ω0

fdΩ0 +

∫
Γ0

fVNdΓ0, (2.26)

where VN is the normal component of the design velocity that is defined formally in Section

2.2.1. Thus the original integral over Ω was approximated using SSA over a simpler domain

Ω0. Furthermore, at least in principle, the integrals over the polygonal/polyhedral domain

(Ω0) can be computed using the quadrature rules via the moment fitting equations as ex-

25

plained in [137, 92] (or see Section 2.1.1). Although this method would give a reasonable

approximation to the original integral, it suffers from a serious drawback. In order to eval-

uate Eq.(2.26), function f(x) must be sampled over the polygonal/polyhedral boundary Γ0.

This either assumes that Γ0 lies completely within the domain, or requires extension of the

function to outside the domain (Ω), usually based on application specific heuristic arguments

as in [79]. To circumvent this rather severe restriction, the boundary term in Eq.(2.26) could

be written in domain form using divergence theorem:

I ≈
∫

Ω0

[f +∇ · (fV)]dΩ0, (2.27)

reducing the original integration over Ω to that over approximate simplified domain Ω0.

Although this eliminates the need for function extension, it does require the domain velocity

computation which is computationally expensive, ambiguous and/or not easily implemented

[76].

These difficulties perhaps explain why SSA has not been used for integration purposes

until now. Note, however, that SSA can be used without any problems when the integrand

f is defined everywhere in Rd, as is the case with basis functions used in moment fitting.

2.1.5 Summary

1. Divergence Theorem [136, 30, 36, 23, 41] and Moment fitting equations [14, 64, 116, 137]

work really well for polygonal/polyhedral domains. However, when applied to arbitrary

domains leads to significant performance problems. Moreover, Divergence Theorem

[136, 30, 36, 23, 41] can’t be applied to functions that are not symbolically integrable.

2. Out of the Hierarchical Partitioning approaches, Randomly excluding/including bound-

ary cells [109], Mapping cells to canonical regions [78], and Level-Set Approaches

[31, 100] suffer from lack of accuracy, generality and representation independences

respectively. Likewise, Monte-Carlo method [132] is computationally expensive as a

26

lot of quadrature points need to be generated to resolve the boundary. Although, Con-

venient Space Parametrization [131, 58, 22] of boundary cells does provide reasonably

accurate results in reasonable time, it has certain heuristic assumptions built into its

algorithm that might jeopardize its accuracy for complex domains.

3. Out of the Characteristic Function approaches, Local Meshing [46, 47, 134] defeats

the very purpose of avoiding conforming mesh generation. Modification of integration

weights / nodes [127, 12] is heuristic in nature and not expected to perform well for ar-

bitrary domains owing to its linear edge/face assumption in its formulation. Smoothed

Step Function Approach [115, 21] is computationally expensive owing to the intro-

duction of discontinuity in the integrand. Equivalent Polynomial Approach [43] works

well for simpler domains and might prove to be computationally expensive for real

world arbitrary domains owing to its inherent assumption of linear edges/faces in its

formulation.

4. Adaptation by Shape Sensitivity requires either function evaluation outside the actual

domain (of integration) or design velocity computation inside the domain - both of

which are not desirable.

The properties of different integration schemes are compared in Table.2.1.

2.1.6 Open Issues

1. An integration technique that efficiently integrates arbitrary integrable functions over

arbitrary 3D domains without unreasonable/heuristic assumptions is needed.

2. None of the integrators show any promise of handling small geometric features such as

fillets, notches, and other curved regions efficiently.

27

In
te

g
ra

ti
o
n

S
ch

e
m

e
s

A
cc

u
ra

cy
S

p
e
e
d

A
rb

it
ra

ry
F
u

n
ct

io
n

s
A

rb
it

ra
ry

D
o
m

a
in

L
im

it
in

g
a
ss

u
m

p
ti

o
n

s
R

e
p

re
se

n
ta

ti
o
n

D
e
p

e
n

d
e
n

ci
e
s

H
e
u

ri
st

ic
S

te
p

s
C

la
ss

ic
a
l

S
ch

e
m

e
s

D
iv

er
ge

n
ce

T
h
eo

re
m

[1
36

,
30

,
36

,
23

,
41

]
H

ig
h

A
ve

ra
ge

N
o

Y
es

N
on

e
N

on
e

N
on

e
M

om
en

t
F

it
ti

n
g

[1
4,

64
,

11
6,

13
7]

H
ig

h
L

ow
Y

es
Y

es
N

on
e

N
on

e
N

on
e

H
e
ir

a
rc

h
ic

a
l

P
a
rt

it
io

n
in

g
R

an
d
om

ly
ex

cl
u
d
e/

in
cl

u
d
e

b
ou

n
d
ar

y
ce

ll
s

[1
09

]
L

ow
H

ig
h

Y
es

Y
es

N
on

e
N

on
e

Y
es

M
ap

ce
ll
s

to
ca

n
on

ic
al

re
gi

on
s

[7
8]

H
ig

h
H

ig
h

Y
es

N
o

Y
es

N
on

e
N

on
e

C
on

ve
n
ie

n
t

S
p
ac

e
P

ar
am

et
ri

za
ti

on
[1

31
,

58
,

22
]

M
ed

iu
m

H
ig

h
Y

es
Y

es
N

on
e

N
on

e
Y

es
M

on
te

-C
ar

lo
[1

32
]

H
ig

h
L

ow
Y

es
Y

es
N

on
e

N
on

e
N

on
e

L
ev

el
-S

et
A

p
p
ro

ac
h
es

[3
1,

10
0]

H
ig

h
M

ed
iu

m
Y

es
M

ay
b

e
N

on
e

Y
es

N
on

e
C

h
a
ra

ct
e
ri

st
ic

F
u

n
ct

io
n

A
p

p
ro

a
ch

L
o
ca

l
M

es
h
in

g
[4

6,
47

,
13

4]
H

ig
h

M
ed

iu
m

Y
es

Y
es

N
on

e
Y

es
N

on
e

M
o
d
ifi

ca
ti

on
of

in
te

gr
at

io
n

w
ei

gh
ts

/
n
o
d
es

[1
27

,
12

]
A

ve
ra

ge
H

ig
h

Y
es

N
o

N
on

e
N

on
e

Y
es

S
m

o
ot

h
ed

S
te

p
F

u
n
ct

io
n

A
p
p
ro

ac
h

[1
15

,
21

]
M

ed
iu

m
L

ow
Y

es
Y

es
N

on
e

N
on

e
N

on
e

E
q
u
iv

al
en

t
P

ol
y
n
om

ia
l

A
p
p
ro

ac
h

[4
3]

H
ig

h
H

ig
h

Y
es

N
o

N
on

e
N

on
e

N
on

e
A

d
a
p

ta
ti

o
n

b
y

S
h

a
p

e
S

e
n

si
ti

v
it

y
[7

5]
M

ed
iu

m
H

ig
h

Y
es

Y
es

Y
es

N
on

e
N

on
e

T
ab

le
2.

1:
C

om
p
ar

is
on

of
D

iff
er

en
t

In
te

gr
at

io
n

S
ch

em
es

28

3. Small topological features such as small holes and washers are part of any realistic

CAD model. However, none of the integrators listed in this section can handle these

small topological features efficiently.

4. A realistic performance comparison of various integrators in integrating arbitrary in-

tegrable functions over arbitrary domains is very much needed to further understand

the computational aspects of these methods.

2.2 Sensitivity Analysis

In this section we will briefly review certain sensitivity analysis techniques that were primarily

developed for shape/topology optimization [75, 50] and defeaturing error estimation [80, 60].

However, it is important to note that we only need the basic definition/ideas from this

section to formulate our new quadrature scheme (which will be the subject of chapter 3).

This is because, the quantity of interest that we will be dealing with in this thesis is relatively

simple and doesn’t depend on a field solution that is governed by some PDEs. However, for

the sake of completeness, we will present sensitivity analysis in the context of defeaturing

error estimation in boundary value problems. Specifically, we will consider the standard

Poisson’s problem in order to understand the different ways to estimate the effect of small

geometric/topological features on any given Quantity of Interest (QOI). To be specific, we

will consider the following strong form

∇2u = f ∀x ∈ Ω− ω

u = ū ∀x ∈ ΓD (2.28)

∇u.n = gn ∀x ∈ ΓN

∇u.n = 0 ∀x ∈ Γω

where ω is an arbitrarily shaped small feature in the domain Ω that is traction free.

29

Figure 2.7: Defeatured and fully featured defeatured domains with region of interest [123]

Instead of solving the problem over the fully featured domain (Eq.(2.28)), we will pose

and solve a modified form of the problem on the defeatured domain Ω and then correct for

the presence of small features using various types of first/second order approximations. The

modified problem will thus be posed as

∇2u0 = f ∀x ∈ Ω

u0 = ū ∀x ∈ ΓD (2.29)

∇u0.n = gn ∀x ∈ ΓN

Also, we will assume that the quantity of interest (QOI) is of the following form

Q =

∫
R

q(u,∇u)dΩ (2.30)

where q is some non-linear function defined over a region of interest R ⊂ Ω− ω.

2.2.1 Shape Sensitivity

Shape sensitivity [75] is the rate of change of any given Quantity of Interest (QOI) w.r.t.

boundary perturbations. In the context of this approach, the positive feature on the bound-

ary of the domain is simply viewed as a deformation of the boundary. Thus, we establish

a mapping between the defeatured domain (Ω) and the fully featured domain (Ωt). Let T

be a homeomorphic mapping that transforms the defeatured domain (reference domain) in

30

to the fully featured domain (deformed domain) i.e. x = T(X, t) (see Fig. 2.8). Thus,

x ∈ Ωt is a function of the shape parameter t. The parameter t denotes the amount of shape

change in the design variable direction such that t = 0 represents the reference domain Ω0

[75]. If T(X, t) is assumed to be regular enough in the neighborhood of t = 0, then it can

be expanded using the Taylor series around the initial mapping point T(X, 0) as [75]

x = T(X, t)

= T(X, 0) + t
∂T

∂t
(X, 0) + · · ·

= X + tV(X) + · · · (2.31)

where V(X) = ∂T
∂t

(X, 0) = dx
dt

∣∣∣∣
t=0

is the design velocity vector that is defined over the

reference domain Ω0. First-order shape sensitivity is developed by considering only the first

two terms of the above Taylor series. Thus, ignoring the higher order terms, T is assumed

to be a homeomorphic linear mapping in t given by

x = T(X, t) = X + tV(X), X ∈ Ω. (2.32)

31

Figure 2.8: Shape Sensitivity : Reference and Deformed Domains

Having defined the mapping, the sensitivity of any Quantity of Interest (QOI) to shape

perturbation follows directly from the Reynold’s Transport Theorem and the definition of

adjoint [75]

dQ

dt
=

∫
dΓt

[∇λ.V∇u.n +∇u.V∇λ.n + Vn(q + fλ−∇u.∇λ)]dΓt −
∫

ΓN

λVngndΓt (2.33)

where Vn = V.n is the normal component of the design velocity and λ is the solution of

the adjoint weak form : Find λ ∈ H1
0 s.t.

∫
Ωt

∇λ.∇vdΩt =

∫
Ωt

[∇uqv +∇∇uq∇v]dΩt ∀ ∈ H1
0 (2.34)

It is important to note that for the example in Fig. 2.8 the velocity is zero everywhere

32

except on the feature boundary (as indicated by red arrows in the deformed domain).

Having determined the shape sensitivity for the QOI, we can estimate the QOI over the

fully featured domain (Q(u)) using first-order Taylor series as

Q(u) ≈ Q(u0) + t
dQ

dt

∣∣∣∣
t=0

(2.35)

Ming Li et al.[87] extended this idea to positive/negative boundary features using second-

order shape sensitivity [76].

2.2.2 Topological Sensitivity

The topological derivative is the sensitivity of a quantity of interest (Q) defined over a

region of interest (in the domain) when an infinitesimal hole is introduced in the domain

[67]. Formally, topological sensitivity is defined as

D1
T (x) = lim

ε→0

Q(Ωε)−Q(Ω)

f1(ε)
(2.36)

where Ωε = Ω − Bε and f1(ε) is a monotonically decreasing function that depends on the

boundary value problem under consideration. The ball Bε has a radius of ε with its center

at the point x ∈ Ω. For the standard Poisson’s problem, we have f1(ε) to be the measure of

the ball Bε and hence the topological derivative can be established as D1
T (x) = gn(x)λ0(x)

for gn 6= 0 and D1
T (x) = 2[∇u0(x)]T∇λ0(x)− f(x)λ0(x) for gn = 0 [107]. gn is the Neumann

data given by Eq.(2.29) and λ0 is the adjoint solution of the following adjoint problem

∇2λ0 = ∇u[q] ∀x ∈ Ω

λ0 = 0 ∀x ∈ ΓD (2.37)

∇λ0.n = 0 ∀x ∈ ΓN

33

Various methods [106, 17, 18, 19] have been proposed to compute the topological derivative.

For a finite spherical hole of radius r with center at x̂ ∈ Ω, one could approximate its effect

on the QOI as

Q(u) ≈ Q(u0) + µ(Br) ∗D1
T (x̂) (2.38)

where Q(u0) is the QOI computed from the solution (u0) of the boundary value problem over

the defeatured domain Ω and µ(Br) is the measure (area or volume) of the ball of radius

r. For an arbitrary small feature (ω) of size ε one could equivalently define the following

estimate for the QOI in the fully featured domain

Q(u) ≈ Q(u0) + µ(Bε) ∗D1
T (x̂) (2.39)

For relatively larger features, this estimate could be erroneous.

2.2.3 Feature Sensitivity

Feature sensitivity [123, 59, 60] is a generalization of topological sensitivity to finite sized

features. The central idea in this method is to parametrize the hole boundary using a scaling

parameter η as follows

T (η) : p =

 (P−Pc)η + Pc : P ∈ Γω

P : P ∈ Γ

34

Figure 2.9: Feature Sensitivity : Transformation [123]

where p is any point on the hole boundary and Pc is the center of the smallest spherical

hole that contains the given hole. For η = 1 and η = 0 we get the fully featured and

defeatured domains respectively. For η = 0+ we get the domain with a point hole. For

0 < η < 1, we get the domain with a shrunk hole (see Fig. 2.9). The above parametrization

also leads to the following strong form on the parametrized domain

∇2uη = f ∀x ∈ Ω− ωη

uη = ū ∀x ∈ ΓD (2.40)

∇uη.n = gn ∀x ∈ ΓN

∇uη.n = 0 ∀x ∈ Γωη

Analogously the QOI over the parametrized domain can be defined as

Qη =

∫
R

q(uη,∇uη)dΩ (2.41)

35

Evaluating the above at η = 0, we obtain the QOI as defined over the defeatured domain as

Q0 =

∫
R

q(u0,∇u0)dΩ (2.42)

Thus, the error in the QOI could be written as

Q1 −Q0 =

∫ 1

0

dQη

dη
dη (2.43)

In order to compute the sensitivity dQη
dη

, it is required to solve the following adjoint problem

for the adjoint solution λη on the fully featured domain Ω− ωη

∇2λη = ∇u[q] ∀x ∈ Ω− ωη

λη = 0 ∀x ∈ ΓD (2.44)

∇λη.n = 0 ∀x ∈ ΓN ∪ Γωη

The corresponding adjoint problem over the defeatured domain Ω could be stated as

∇2λ0 = ∇u[q] ∀x ∈ Ω

λ0 = 0 ∀x ∈ ΓD (2.45)

∇λ0.n = 0 ∀x ∈ ΓN

From standard shape sensitivity analysis and the definition of adjoint we have

dQη

dη
=

∫
Γωη

[q + fλη −∇uη.∇λη]VndΓ (2.46)

where Vn is the normal component of the design velocity and V = p−Pc

η
on the hole boundary

and zero everywhere else. However, the above equation requires that we solve boundary

value problems on the fully featured (or scaled) domain which we want to avoid. Hence, the

36

solutions Λη and uη are approximated as follows

uη

∣∣∣∣
Γωη

≈ u0

∣∣∣∣
Pc

+ ηuE

∣∣∣∣
Γω1

(2.47)

∇uη
∣∣∣∣
Γωη

≈ ∇u0

∣∣∣∣
Pc

+ η∇uE
∣∣∣∣
Γω1

(2.48)

where uE satisfies the following exterior boundary value problem

∇2uE = 0 ∀x ∈ Rn − ω

uE → 0 as P→∞ (2.49)

∇uE.n = ∇u0

∣∣∣∣
Pc

.n∀x ∈ Γω

Now, feature sensitivity could be used to estimate the effect of an arbitrary feature (ω)

on the QOI as

Q(u) ≈ Q(u0) +

∫
Γω

[F1 + F2]VndΓ (2.50)

where

F1 =

(q + fλ0)

∣∣∣∣
Pc

− [∇u0

∣∣∣∣
Pc

+∇uE].[∇λ0

∣∣∣∣
Pc

+∇λE]

2

F2 =

uE∇u[q]

∣∣∣∣
Pc

+ fλE

3

Thus, the first step in the approximation to the QOI is the computation of λ0 and u0

by solving the defeatured primal and adjoint problems. The second step is to compute λE

and uE by solving the exterior primal and adjoint problems. Finally, using these quantities

37

in Eq.(2.50), we can compute the approximation to the QOI over the fully featured domain.

This method in general can’t handle non-zero/zero Dirichlet boundary conditions and non-

zero Neumann boundary conditions over the feature boundary. In addition, this method is

limited to small/moderately sized features.

2.2.4 Modification Sensitivity

This was first introduced by Ming Li et al. [80] to capture the effect of introducing a negative

feature using the idea of modeling error estimation of Oden et al. [65]. The problem of

estimating the modeling error is defined for the following two abstract nonlinear problems

expressed in weak form : find solutions u and u0 such that

N(u; v) = F (v) ∀v ∈ V (2.51)

and

N0(u0; v) = F0(v) ∀v ∈ V (2.52)

where N(, ; .) and N0(, ; .) are semilinear forms defined on a Banach Space V , and F (.),

F0(.) are linear functionals on V. Eq.(2.51) and Eq.(2.52) represents two different models

modeling the same physical phenomena. Thus, the problem of modeling error estimation is

to estimate Q(u)−Q(u0) without explicitly solving u from Eq.(2.51). The adjoint problems

for the two models are defined as follows

N
′
(u; v, λ) = Q

′
(u; v) ∀v ∈ V (2.53)

and

N
′

0(u0; v, λ0) = Q
′

0(u0; v) ∀v ∈ V (2.54)

where ′ denotes Gateaux derivative [65]. The residual functional to characterize the

38

degree to which u0 fails to satisfy the problem in Eq.(2.51) is defined as

R(u0; v) = F (v)−N(u0; v) ∀v ∈ V (2.55)

Oden et al. [65] prove that the modeling error can be approximated as

Q(u)−Q(u0) ≈ R(u0;λ) (2.56)

Ming Li et al. [80] uses this idea of modeling error estimation in defining their modifica-

tion sensitivity by introducing an intermediate problem. Considering our model Poisson’s

problem, the strong form for the Poisson’s problem over the fully featured and defeatured

domains are once again given by Eq.(2.28) and Eq.(2.29) respectively. However, to make use

of the modeling error estimation idea we require that the two models (BVPs) are defined

over the same domain. Ming Li et al. [80] observe that the fully featured domain is contained

in the defeatured domain, that is Ω−ω ⊂ Ω. Hence, the defeatured solution u0 defined over

the geometry Ω− ω is well defined, and is denoted by

ū0 = u0

∣∣∣∣
Ω−ω

(2.57)

Thus, the solution ū0 can be seen as the solution of another engineering analysis problem

defined over the model Ω−ω with particular Neumann conditions prescribed over the internal

boundary Γω : find ū0 such that

∇2ū0 = f ∀x ∈ Ω− ω

ū0 = ū ∀x ∈ ΓD (2.58)

∇ū0.n = gn ∀x ∈ ΓN

∇ū0.n = hn ∀x ∈ Γω

39

Now, we have Eq.(2.28) and Eq.(2.58) are both defined on the same domain and thus

the modeling error in this case leads to the following modeling sensitivity

Q(u)−Q(u0) = Q(u)−Q(ū0) ≈ R(ū0;λ) (2.59)

Further, Ming Li et al. [80] prove based on certain heuristics that

Q(u)−Q(u0) ≈ R(ū0;λ0) (2.60)

For the standard Poisson’s problem the above turns out to be a boundary integral over

the feature boundary

Q(u) ≈ Q(u0) +

∫
Γω

(gn −∇ū0.n)λ0dΓ (2.61)

Thus, solving the primal and adjoint problems for u0 and λ0 over the defeatured domain

(Ω), the QOI over the fully featured domain can be estimated using the above equation.

Ming Li et al. [80] extended their idea of applying modification sensitivity to positive

boundary features [79] by extending the solution u0 to the domain Ω + ω. This is required

as, unlike the negative features, Ω + ω 6⊂ Ω. Hence, instead of Eq.(2.57) we have ū0 defined

using the solution uf0 to the following boundary value problem

∇2(uf0) = f ∀x ∈ ω

∇uf0 .n = gn ∀x ∈ Γω − I (2.62)

uf0 = u0 ∀x ∈ I

where I is the common boundary portion (known as the feature interface) between the

defeatured model Ω and the positive feature ω. Thus, we have the extended solution ū0

40

defined as

ū0 =

 u0 in Ω

uf0 in ω

With this extended solution ū0, the QOI over the fully featured domain is once again given

by Eq.(2.61).

This method nicely generalizes to 3D domains and can handle even large features. In

addition, it can handle non-zero Neumann boundary conditions over the hole boundary. One

major shortcoming of the method is that the use of λ = λ0 in the derivation of modification

sensitivity is not very well justified. In [81], Ming Li et al. approximate the dual solution

λ by computing an exterior solution. However, this in turn limits the application of the

method to domain features that are far away from the boundary. Also, the method can’t

in general handle zero/non-zero Dirichlet boundary conditions over the feature boundary.

Moreover, the heuristic assumption used in the extension of solution to Ω + ω in the case of

positive features is not fully justified.

2.2.5 Summary

1. Shape Sensitivity [75] is the rate of change of any given Quantity of Interest (QOI)

w.r.t. boundary perturbations. SSA can be effectively used to estimate the effect of

adding or removing small features over the boundary.

2. The topological derivative is the sensitivity of any QOI defined over a region of interest

(in the domain) when an infinitesimal hole is introduced in the domain. This can be

effectively used to estimate the effect of adding a small negative feature on the boundary

or interior of the domain.

3. Feature sensitivity (FSA) [123, 59, 60] and modification sensitivity (MSA) [80] extends

the notion of SSA/TSA to finite sized features. Thus, FSA and MSA can be used to

efficiently estimate the effect of finite sized small/large features on any given QOI.

41

Chapter 3

Shape Aware Quadratures (SAQ)

In this chapter, we will develop a new quadrature scheme called the “Shape Aware Quadra-

tures” (SAQ) that can be used to efficiently integrate arbitrary integrable functions over

arbitrary domains in the presence of small features. We will present a clear formulation of

the method, its algorithmic details including the analysis, and benchmark studies to illus-

trate its computational properties in 2D and 3D. However, we will first begin with a formal

definition and classification of small features based on morphological operators.

3.1 Small Features

In this section we will formally define and classify small features. In order to define small

features, we shall first define the following morphological operators [125]

1. Erosion of a set A by a structuring set B is defined mathematically as

A	B = {a ∈ A | Ba ⊆ A} where Ba = {b+ a | b ∈ B},∀a ∈ A

2. Dilation of a set A by a structuring set B is defined mathematically as

A⊕B = {a+ b | a ∈ A, b ∈ B}

3. Opening is the dilation of the erosion of a set A by B i.e.

A ◦B = (A	B)⊕B

42

4. Closing is the erosion of the dilation of a set A by B i.e.

A •B = (A⊕B)	B

Definition

The union of small features of a domain A relative to an user defined size δ is given

by one of the following operations

1. A− (A ◦B)

2. (A •B)− A

where the structuring setB is a ball of diameter δ. We classify small features into two primary

types - (1) positive and (2) negative small features. All positive features of a domain A are

given by A− (A◦B) and all the negative features of a domain are filled by (A•B)−A. Fig.

3.1 and Fig. 3.2 illustrates the application of small features definition to positive features.

Likewise, Fig. 3.3 illustrates the application of small features definition to negative features.

Figure 3.1: Small features definition applied to positive features on the boundary

43

Figure 3.2: Small features definition applied to thin positive features

Figure 3.3: Small features definition applied to negative features

Small features can be found in most Engineering components. One typical example is

44

the car wheel assembly as shown in Fig. 3.4.

Figure 3.4: A typical car wheel assembly containing numerous small positive and negative
features

In the above, the rim plate has a lot of thin positive regions, the disc brake has a lot of

small holes (negative features), the nuts are small positive regions, and the surface of the

tire has numerous small positive/negative features.

3.2 Formulation

Shape Aware Quadratures (SAQ) are quadratures that adapt to the geometry and topology

(i.e. shape) of the integration domain automatically/efficiently. The primary application of

this is in the integration of arbitrary integrable functions over an arbitrary domain (in the

presence of small features) using a non-conforming mesh. However, SAQ can be used with

or without a mesh.

Let us begin by rewriting the moment fitting equations in Eq.(2.7) by setting W (X) = 1

as

45

∫
Ω
b1(x)dΩ∫

Ω
b2(x)dΩ

· · ·∫
Ω
bm(x)dΩ

=

b1(x1) b1(x2) · · · b1(xn)

b2(x1) b2(x2) · · · b2(xn)

· · · · · · · · · · · ·

bm(x1) bm(x2) · · · bm(xn)

w1

w2

· · ·

wn

(3.1)

The same equations may be written in a more compact form as

{M}m×1 = [A]m×n{w}n×1 (3.2)

The above is a system of non-linear equations that can be solved for the position (xi) and

weights (wi) using an iterative solution scheme such as the Newton-raphson [132]. However,

such solution schemes are computationally very expensive and often do not scale for larger

problems. But, if we fix the position of the integration points as in [121], the equations

become linear (in weights) and can be solved easily. Knowing {M}, one could solve the

moment equations for weights {w} using linear least squares as

{w}n×1 = [A†]n×m{M}m×1 (3.3)

where [A†] is the Moore-Penrose pseudo inverse [42]. One popular stable algorithm to nu-

merically compute [A†] is based on the QR factorization [82].

Thus, given an arbitrary domain Ω with a set of appropriately chosen quadrature nodes

and order of integration, quadrature weights are obtained by solving a system of linear

moment fitting equations [64, 116, 137] for an appropriate set of basis functions in the least

square sense. Setting up the moment-fitting equations involves computing integrals of the

basis functions (known as moments) over an arbitrary geometric domain. This task itself is

non-trivial, because it either entails some kind of domain decomposition, or can be reduced

to repeated boundary integration as was proposed in [16] for bivariate domains. Adaption

46

of the latter approach avoids excessive domain fragmentation, but leads to a significant

computational overhead, particularly in 3D.

This challenge is overcome by first computing the moments (i.e. integral of basis functions

bi) over a simpler domain Ω0, usually a polygon/polyhedron, that is a reasonable approxima-

tion (in a Hausdorff distance sense) of the original domain Ω (see Fig. 3.5). The computed

moments are then corrected for the deviation of the shape of Ω0 from Ω based on sensitivity

analysis. Thus,

Mi ≈M0
i + CS

i (3.4)

CS
i is the ith shape correction factor and M0

i is the ith moment computed over the simplified

domain Ω0 i.e. M0
i =

∫
Ω0
bi(X) dΩ0. In general, the application of these sensitivities results

in correction factors that are boundary integrals over some domain. In other words, the

shape correction factor (CS
i) is of the following form

CS
i =

Nf∑
f=1

∫
Γf

gf (bi,X)dΓf (3.5)

where Γf ⊂ Rd−1 is the boundary of a domain that depends on the type of sensitivity em-

ployed in computing the corrections. For example, if the correction factor was computed

based on shape sensitivity analysis (SSA), then Γf is usually a polygonal/polyehdral bound-

ary that approximates Γ as shown in Fig. 3.8.

The moment approximations can entirely be written as a boundary integral by the ap-

plication of divergence theorem [136, 30, 36, 23, 41] i.e. M0
i in Eq.(3.4) can be replaced by

Eq.(2.5) as

Mi

∣∣∣∣
Ω

≈
∫

Γ0

βiX(X)NXdΓ0 +

Nf∑
f=1

∫
Γf

gf (bi,X)dΓf for i ∈ {1, 2, ...,m} (3.6)

gf depends on the type and order of sensitivity used. Its exact form can be deduced from

Table.3.1 and Table.3.2 for SSA and TSA respectively. For the sake of convenience and

47

understanding, let us write the shape correction factor as the sum of geometric (CG
i) and

topological correction factors (CT
i) i.e.

Mi ≈M0
i + CG

i + CT
i (3.7)

CG
i and CT

i respectively account for the geometric and topological deviations of Ω0 from Ω

in computing the ith moment approximation. If the simplified domain Ω0 is chosen home-

omorphic2 to Ω then CT
i = 0 (see Fig. 3.6) and hence the above reduces to the following

:

Mi ≈M0
i + CG

i (3.8)

Figure 3.5: SAQ - Simplified domain Ω0 is not homeomorphic to Ω

Figure 3.6: SAQ - Simplified domain Ω0 is homeomorphic to Ω

2by homeomorphic we mean the mapping T(x, t) that we assume in Eq.(2.32) is continuous and bijective
with a continuous inverse

48

CG
i and CT

i can be obtained using a variety of sensitivity analysis techniques as discussed

in the previous chapter. For instance, if we consider the domain Ω and its approximation Ω0

as shown in Fig. 3.5, then one could employ employ first-order Shape Sensitivity Analysis

(SSA) [75] for CG
i and Topological Sensitivity Analysis (TSA) [67, 17] for CT

i to obtain the

following moment approximations

Mi ≈
∫

Γ0

βiX(X)NXdΓ0 +

∫
Γ0

bi(X)VN(X)dΓ0 −
ns∑
j=1

µ(ωj)bi(X
j
c) (3.9)

where V = tV̂ is the design velocity and VN(X) = V(X).N(X) is the normal component

of the design velocity at a point X on the boundary Γ0 of the reference (piecewise linear)

domain Ω0. µ(ωj) and Xj
c are respectively the measure and centroid of the jth negative small

feature ωj. Here, CG
i corrects for the deviation of Ω0 (without holes) from Ω and CT

i accounts

for the presence of the small elliptical holes. The correction CG
i can be easily derived by

the straight forward application of first-order SSA [75] to the moments (for details refer to

Appendix A). Likewise, the correction term CT
i can be obtained by the straight forward

application of first-order TSA [17] (for details refer to Appendix B).

Likewise, employing first-order SSA for both CG
i and CT

i we get

Mi ≈
∫

Γ0

βiX(X)NXdΓ0 +

∫
Γ0

bi(X)VN(X)dΓ0 +
ns∑
j=1

∫
Γ0
j

[βiX(X)NX +bi(X)VN(X)]dΓ0
j (3.10)

where Γ0
j is the approximate polygonal/polyhedral domain chosen homeomorphic to the

boundary of the small feature ωj. Alternatively, one could employ first-order SSA for CG
i

and divergence theorem (or zeroth-order SSA) for CT
i resulting in the following

Mi ≈
∫

Γ0

βiX(X)NXdΓ0 +

∫
Γ0

bi(X)VN(X)dΓ0 +
ns∑
j=1

∫
Γ0
j

[βiX(X)NX]dΓ0
j (3.11)

If there are no topological features (as in Fig. 3.6), and if we employ first-order SSA for CG
i ,

49

then Eq.(3.10) reduces to the following

Mi ≈
∫

Γ0

βiX(X)NXdΓ0 +

∫
Γ0

bi(X)VN(X)dΓ0 (3.12)

For 2D domains, this boundary integral could be obtained simply by employing the usual

Gaussian quadrature over the edges of the polygon. Similarly, integration over 3D domains

bounded by triangles or convex quadrilaterals is straightforward. For more general 3D do-

mains, we proceed in two steps. First, we compute the appropriate weights for a chosen

set of quadrature nodes for each of the polygonal faces of the approximating polyhedron by

solving the moment fitting equations (Eq.(3.3)) with exact {M} given by Eq.(2.5). Then,

using the determined weights for the polygonal faces, we obtain approximate {M} for the

arbitrary 3D domain by numerically evaluating Eq.(3.5) over the faces of the polyhedron.

Using this approximate {M}, the approximate weights for the arbitrary domain are obtained

by solving the moment fitting equations i.e. Eq.(3.3).

The approximate moment fitting equations, thus obtained, can then be easily solved for

quadrature weights that adapt to the shape of the original domain. The resulting weights

are not exact, but are accurate enough to integrate functions over any arbitrary domain

when they are well approximated by the chosen set of basis functions. This integration

scheme could be advantageously employed in cell decomposition methods, for example using

quadtrees [70] or octrees [96], to reduce fragmentation. In summary, CG
i and CT

i in Eq.(3.7)

are the shape correction factors that accounts for the shape deviation of the original domain

Ω from the polygonal/polyhedral domain Ω0. In other words, these two terms ensures that

the quadrature rule determined by the moment fitting equations (Eq.(3.3)) is “aware” of

the shape of the integration domain – hence the name Shape Aware Quadratures (SAQ). In

fact, the exact moments for a polygonal/polyhedral domain can be recovered from Eq.(3.7)

by simply omitting these two terms. In general, as the polygonal/polyhedral approximation

(Γ0) approaches (in Hausdorff sense) the boundary of the original domain (Γ), the two terms

50

goes to 0, and the first term approaches the exact moments for the original domain. An

high-level overview of the method is given as a flowchart in Fig. 3.7.

Figure 3.7: Flowchart for Shape Aware Quadratures

3.3 Sensitivity Analysis of Moments

MG
i and MT

i can in general be obtained using any order SSA [75], TSA [19], Feature Sen-

sitivity (FSA) [123] or Modification Sensitivity [80]. However, in this thesis, we will limit

ourselves to SSA and TSA. Nevertheless, it is important to note that the correction factors

can be deduced using other types of sensitivities such as Feature Sensitivity (FSA) [123] or

Modification Sensitivity [80] usually resulting in a boundary integral as given by Eq.(3.5).

51

One could write Eq.(3.7) in the following more general form

Mi ≈
∫

Γ0

βiX(X) dΓ0 +

ng∑
k=1

CGk

i +
nt∑
l=1

CT l

i (3.13)

CGk

i is the kth order geometric correction factor while CT l

i is the lth order topological cor-

rection factor. For the example domain shown in Fig. 3.5, if we consider up to second-order

SSA for geometric corrections and first-order TSA for topological corrections then we have

the following moment approximations :

Mi ≈
∫

Γ0

βiXNX dΓ0 +
2∑

k=1

CGk

i +
1∑
l=1

CT l

i

=

∫
Γ0

β−XNX dΓ0 + CG1

i + CG2

i + CT 1

i

=

∫
Γ0

βiXNX dΓ0 + t

∫
Γ0

biVNdΓ0 +
t2

2

∫
Γ0

[∇bi]TNV 2
NdΓ0 +

ns∑
j=1

µ(ωj)[−bi(Xj
c)]

=

∫
Γ0

βiXNX dΓ0 +

∫
Γ0

biVNdΓ0 +
1

2

∫
Γ0

[∇bi]TNV 2
NdΓ0 −

ns∑
j=1

µ(ωj)[bi(X
j
c)] (3.14)

Although, in principle, both SSA and TSA could be applied to compute CG and CT , it is more

efficient to consider SSA for geometric corrections (CG) and TSA for topological corrections.

Hence, we will limit our discussion in this section to SSA for geometric corrections and TSA

for topological corrections.

3.3.1 SSA of Moments

In general, the nthg -order geometric correction factor using SSA can be written as

CG
i ≈ tD1

Si
(Γ0, VN) +

t2

2!
D2
Si

(Γ0, VN) +
t3

3!
D3
Si

(Γ0, VN) + ...
tng

ng!
D
ng
Si

(Γ0, VN) (3.15)

52

where t ∈ [0, 1] is the shape parameter and Dk
S is the kth-order shape derivative of the ith

moment for the given approximate polygonal/polyhedral boundary Γ0 and normal velocity

VN(X). Table 3.1 lists the SSA of moments up to 2nd order. In the table, bi(X) is the basis

function corresponding to the ith moment (Mi) and VN(X) = V̂(X).N(X) is the normal

component of the design velocity. It is important to note that the second-order shape

sensitivity given in Table 3.1 is only valid as long as the vertices in 2D/edges in 3D of the

approximating polygon/polyhedron Ω0 lie on Ω as shown in Fig. 3.9. If this condition is not

satisfied, then D2
Si

(Γ0, VN) =
∫

Γ0

[
[∇bi]TN + κbi

]
V 2
N dΓ0. Here, κ(X) is the curvature in 2D

and mean curvature in 3D for a given point X ∈ Γ0 (for more details see Appendix A).

Table 3.1: SSA of Moments

k Dk
Si

(Γ0, VN)

1
∫

Γ0
bi VN dΓ0

2
∫

Γ0
[∇bi]TNV 2

N dΓ0

In this thesis, we will always assume that the condition as stated above (i.e. all ver-

tices/edges of Γ0 lie on Γ) holds as otherwise the design velocity would become discontinuous

and thereby violating the fundamental assumptions of SSA [75]. This condition can almost

always be met in 2D by suitably constructing Γ0 via point sampling or quadtree decompo-

sition of Γ [70]. However, the same can’t be said for arbitrary domains in 3D. Nevertheless,

this error can be minimized by choosing a finer polyhedral approximation Γ0 in 3D.

Further, for our purposes, we will assume that the design velocity vector V̂(X) is piecewise

continuous over every edge/face of Ω0. Then, the perturbation of the domain by distance γ

in the direction normal to the boundary is x−X = γN(X), which implies that

VN(X) = V (X).N(X) = tV̂(X).N(X) = t
x−X

t
.N(X) = γN(X).N(X) = γ (3.16)

53

Thus, VN(X) is simply the shortest distance (γ) from X to the original boundary (Γ)

as measured in the normal direction. For details of SSA of moments we refer the reader to

Appendix A.

Figure 3.8: Reference and Deformed domains for SSA

Even for a coarse approximation Ω0 of Ω one can get accurate results from SSA based

correction factors as long as we include enough higher order shape sensitivities. For instance,

for the set of trivariate basis functions up to order 1 i.e. {1, X, Y, Z}, the following second-

order approximation can be proved to be exact even for a very coarse Ω0 approximating Ω

(as long as the boundary integrals are computed exactly)

CG
i = tD1

S(Xj) +
t2

2!
D2
S(Xj)

=

∫
Γ0

biVNdΓ0 +
1

2

∫
Γ0

∇bTi NV 2
NdΓ0

Thus, the second-order approximation of the moments over an arbitrary domain (using

SSA for geometric corrections and assuming CT = 0) can be written as a boundary integral

54

over the approximate polygonal/polyhedral boundary Γ0 as

Mi ≈
∫

Γ0

[
βiXNX + biVN +

1

2
∇bTi NV 2

N

]
dΓ0 (3.17)

where βiX is obtained by applying divergence theorem to
∫

Ω0
bidΩ0 as explained in section

2.1.1. The first-order approximation is obtained by neglecting the last term in the above

equation

Mi ≈
∫

Γ0

[
βiXNX + biVN

]
dΓ0 (3.18)

For area/volume computations (i.e. bi(X) = 1), it is easy to verify geometrically (see

Fig. 3.9) that the following equality holds

M1 = M0
1 + CG

= M0
1 + tD1

S(Xj)

=

∫
Ω0

(1)dΩ0 +

∫
Γ0

(1)VNdΓ0

=

∫
Γ0

[
XNX + VN

]
dΓ0 (3.19)

In the above equation (and in Eq.(3.17)), the equality holds as long as the mapping T that

we assume in Eq.(2.32) is a homeomorphism and the vertices (or edges in 3D) of Γ0 lie

exactly on Γ (for more details see Appendix A).

Figure 3.9: Geometric corrections based on first-order SSA is exact for computation of area
(or volume) provided Γ0 is homeomorphic to Γ and all the vertices (or edges) of Γ0 lie on Γ

55

In this thesis, we only employ first/second-order SSA to compute CG. Hence, for lower

order correction factors the error in the approximation can’t be eliminated totally when ap-

proximating higher order moments. Thus, it is important to choose Ω0 to closely approximate

Ω so as to minimize this error.

3.3.2 TSA of Moments

In general, the ntht -order topological correction factor (using TSA) for the ith moment (Mi)

over a ball of radius ε with center at Xc can be written as

CT
i = f1(ε)D1

Ti
(Xc) + f2(ε)D2

Ti
(Xc) + f3(ε)D3

Ti
(Xc) + ...fnt(ε)D

nt
Ti

(Xc) +R(fnt(ε)) (3.20)

where f1, f2, ..., fnt are monotonically decreasing functions of the size (ε) of the ball, Dk
Ti

is

the kth-order topological derivative of the ith moment and R(fnt(ε)) is the remainder for this

approximation. In general, the functions fj should satisfy the following conditions

Table 3.2: TSA of Moments (for bivariate/trivariate polynomial basis)

D1
T (Xc) f1(ε) D2

T (Xc) f2(ε)

2D −Xp
cY

q
c πε2 −1

2π

[(
p
2

)
Xp−2
c Y q

c +
(
q
2

)
Xp
cY

q−2
c

]
1
2
π2ε4

3D −Xp
cY

q
c Z

r
c

4
3
πε3 −1

4π

[(
p
2

)
Xp−2
c Y q

c Z
r
c +

(
q
2

)
Xp
cY

q−2
c Zr

c +
(
r
2

)
Xp
cY

q
c Z

r−2
c

]
8
9
π2ε5

lim
ε→0

fj(ε) → 0 ∀j ∈ 1, 2, ...nt

lim
ε→0

fj(ε)

fj−1(ε)
→ 0 ∀j ∈ 2, 3, ...nt

lim
ε→0

R(fj(ε))

fj(ε)
→ 0 ∀j ∈ 1, 2, ...nt (3.21)

56

The first (D1
Ti

) and second order (D2
Ti

) topological derivatives for moments (corresponding

to bivariate/trivariate polynomials) along with the functions f1 and f2 are listed in Table.

3.2. Thus, in 2D, we have the following second-order topological correction for a circular

hole of radius ε at (Xc, Yc) with bivariate polynomial basis functions (XpY q)

CT
i ≈ −πε2[Xp

cY
q
c]− 1

4
πε4
[(
p

2

)
Xp−2
c Y q

c +

(
q

2

)
Xp
cY

q−2
c

]

= −πε2
[
[Xp

cY
q
c] +

ε2

2

[(
p
2

)
Xp−2
c Y q

c +
(
q
2

)
Xp
cY

q−2
c

]
2

]
(3.22)

Likewise, in 3D, we have the following second-order topological correction for a spherical

hole of radius ε at (Xc, Yc, Zc) with trivariate polynomial basis functions (XpY qZr)

CT
i ≈ −4

3
πε3[−Xp

cY
q
c Z

r
c]−

2

9
πε5
[(
p

2

)
Xp−2
c Y q

c Z
r
c +

(
q

2

)
Xp
cY

q−2
c Zr

c +

(
r

2

)
Xp
cY

q
c Z

r−2
c

]

= −4

3
πε3
[
[Xp

cY
q
c Z

r
c] +

ε2

2

[(
p
2

)
Xp−2
c Y q

c Z
r
c +

(
q
2

)
Xp
cY

q−2
c Zr

c +
(
r
2

)
Xp
cY

q
c Z

r−2
c

]
3

]
(3.23)

For details of first and second order TSA of moments in 2D/3D we refer the reader to

Appendix B. Now, from Eq.(3.22) and Eq.(3.23) one can deduce the following more general

form for the second-order correction factor

CT
i ≈ −µ(Bε)

[
bi(X)

∣∣∣∣
X=Xc

+
ε2

2

∇2(bi(X))

2d

∣∣∣∣
X=Xc

]
(3.24)

where µ and Xc are respectively the measure and centroid of the ball Bε ⊂ Rd of radius ε.

Here, d = 2 or 3 is the dimension of the domain Ω. For a finite sized small negative/positive

feature ωl we define Xl
c as the centroid of the feature ωl and S as the sign of the feature

S(ωl) =

+1 if ωl is a positive feature,

−1 if ωl is a negative feature.

57

A feature ωl can be classified positive or negative using morphological operations as explained

in section 3.1. Now, we can define an equivalent topological correction factor for arbitrary

small negative/positive feature as

CT
i (ωl) = CTl

i ≈ S(ωl)µ(ωl)

[
bi(X)

∣∣∣∣
X=Xl

c

+
ε2l
2

∇2(bi(X))

2d

∣∣∣∣
X=Xl

c

]
(3.25)

For most primitive shapes ωl, µ can be computed using closed form expressions (for e.g.

µ = 1
3
πr2

chc for a cylinder of radius rc and height hc). For more general small features, µ

can be estimated accurately by applying divergence theorem (over the original domain ωl)

or via first-order SSA (over an approximate polygonal/polyhedral domain ω0
l) as a boundary

integral. For a collection of small features {ωl}n
l

l=1, one can simply use Eq.(3.25) and sum

the result to obtain the total topological correction CT as

CT
i =

nl∑
l=1

CTl
i =

nl∑
l=1

S(ωl)µ(ωl)

[
bi(X)

∣∣∣∣
X=Xl

c

+
ε2l
2

∇2(bi(X))

2d

∣∣∣∣
X=Xl

c

]
(3.26)

Note that the above approach is perfectly valid as we are dealing with topological sensitivity

of integrals (moments) that don’t depend on an underlying field (such as displacements in

elasticity) that gets perturbed due to material addition/removal. Hence, unlike topological

sensitivity in boundary value problems, principle of superposition is perfectly valid in our

case. Hence, topological corrections can be computed independently for each of the features

and can be added together as in Eq.(3.26).

Usually, the user specifies a relative (small) feature size δ and hence the approximations

given in Eq.(3.25) yields best results when the feature size fs(ωl) ≤ δ
2

(as otherwise the

feature is not small as per our definition in section 3.1). δ is usually problem dependent and

can be estimated easily. For instance, in octree/quadtree based integration, one can define

δ as a fraction of the smallest leaf cell size h i.e. δ = αfh where 0 < αf < 1. There are

many ways to define the size fs(ωl) of an arbitrary feature ωl. A standard way is to use local

feature size based on medial axis transform as in [94, 112]. However, defining the feature

58

size this way could lead to poor TSA correction estimates for long thin features as in Fig.

3.2. Hence, in order to avoid such problems, we will simply define feature size as the radius

of the smallest ball that contains the given feature ωl.

In order to compute CT , one needs the size εl of the feature ωl in Eq.(3.25). One way

to estimate this feature is to set εl ≡ fs(ωl). However, an even better way is to conceptually

replace the small feature with a ball Bεl centered at the centroid of the feature (Xl
c) having

the same measure as the small feature (as in [123]) i.e. µ(Bεl) = µ(ωl). Hence, the radius

εl could be estimated as
√

µ(ωl)
π

in 2D and 3

√
3

4π
µ(ωl) in 3D. This is consistent with the

standard definition of TSA which considers the sensitivity of the quantity of interest w.r.t

to the introduction of an infinitesimal “ball” in the domain. It is also important to note

that TSA correction factors can be best applied for finite sized small features that are

homeomorphic to a sphere (3D) / disc (2D). For features that are not homeomorphic to

sphere (such as the torus), in principle, we could still apply TSA by breaking the small

features into pieces that are homeomorphic to a ball. In this thesis, we will always assume

that the small features are homeomorphic to a sphere in 3D and disc in 2D. In order to

compute TSA based correction factors for thin features, it is best to break them into small

pieces whose size εl <
δ
2
. Alternatively, for thin features it could be more efficient to employ

first/second-order SSA to compute CT .

3.4 Algorithm

The procedure follows essentially the same steps for 2D and 3D domains, and produces a

set of integration nodes and weights that can be used to integrate any sufficiently smooth

function over domain Ω. For the purpose of analysis, we assume that the shape is bounded

by a degree k curve/surface and that k is known a priori (or at least can be estimated a

posteriori). Conceptually, the procedure consists of the following three subtasks that we

describe below in detail.

59

Initialization involves setting the data structures required for solving the system of mo-

ment equations (Eq.(3.3)). Note that the dimensions of the matrix [A†] depend on the

choice of basis functions and on the number of integration nodes, both of which depend on

the required order of integration. Specifically, initialization consists of the following steps:

1. Choose a piecewise linear domain Ω0 (polygon in 2D or polyhedron in 3D) that is a

reasonable approximation of the original domain Ω with or without the small features.

There are many ways to accomplish this and we will see some examples in section 3.6.

2. Determine the order of integration (o) based on the function to be integrated. Choose

a set of basis functions {bi}mi=1 of order up to o. A simple choice is the trivariate

polynomials xpyrzs (3D) or bivariate polynomials xpyr (2D).

3. For the chosen order of integration (o), determine the number and location of quadra-

ture nodes. The minimum number of quadrature points required is dictated by the

solvability of moment fitting equations. By having as many equations (basis functions)

as the number of unknowns (weights), we make matrix [A] invertible and thus eliminate

the need for least squares solution. Hence, the minimum number of quadrature points

required is equal to the number of basis functions (m) chosen in the previous step.

However, in general, choosing more quadrature points (n) than this minimum number

would result in a rectangular system that when solved in a least square sense results

in n −m quadrature points with zero weights. Moment fitting equations also offer a

lot of flexibility in positioning the quadrature points. There are a number of ways to

choose the quadrature points. One way is to use the tensor-product rule ensuring all

points are inside the domain as explained in [22] (for e.g., see Fig. 2.2a). Alternatively,

quadrature points could be generated by randomly sampling points inside the domain

or over the boundary as we will demonstrate in subsections 3.6.4, 3.6.5, and 3.6.6.

In addition, it is best to ensure that all the quadrature nodes lie within the approxi-

mate polygon/polyhedron (Ω0) as choosing points outside Ω0 will lead to dealing with

60

the discontinuity of an otherwise continuous integrand (as in characteristic function

approach) and thereby deteriorating SAQ’s accuracy.

Compute Moments The left hand side of equation (3.2) is a vector of m moments, one

moment for each basis function. The SAQ evaluation procedure follows the development in

section 3.2 and section 3.3, namely:

4. Determine the quadrature nodes and weights for each edge (2D) or face (3D) of the

simplified domain Ω0 in order to evaluate the moment approximations in Eq.(3.13).

The correction factors in Eq.(3.13) can be obtained by using appropriate sensitivities

from Table 3.1 and Table 3.2. It is important to note that these correction factors are

usually a boundary integral of the form given by Eq.(3.5).

SSA Correction factor The quadrature nodes and weights required to evaluate the

SSA correction factors are not easy to determine accurately as SSA correction terms

usually produces non-polynomial integrands (as we will see in one of the examples in

chapter 5). However, one can arrive at a good estimate by looking at the curve/surface

that the approximate edge/face approximates. If the edge/face approximates a surface

of degree 2k − 1 in the original boundary Γ, choosing the integration order to be

(o + k) (for example, k = 2 for conic sections and quadric surfaces) gives reasonably

accurate results for SSA correction factors. A better method is to use well-known

integrand adaptivity techniques for lines/triangles such as the one in [98, 32] (or using

MATLAB’s [90] int and quad2d functions) although it is computationally expensive.

TSA Correction factor For TSA correction factors, the sensitivities are relatively

easy to compute as it only involves the computation of the measure/size of the feature

and sampling of the basis function (and/or its derivatives) at discrete points (see sub-

section 3.3.2). For simple features such as a circle (or sphere) and ellipse (or ellipsoid)

61

there are closed form expressions available for measure computations. For more general

features, we use divergence theorem or first-order SSA to compute the measure (µ(ωl))

approximately as a boundary integral. Thus, in this more general case, we choose an

integration order of k + 1 to compute the boundary integrals arising in TSA correc-

tions. Appropriate sign for the TSA correction factor can be determined by knowing

if the feature is positive or negative. This can be easily accomplished in general by

using the morphological opening and closing operations as discussed in section 3.1.

As already discussed in subsection 3.3.2, the size εl can be estimated as
√

µ(ωl)
π

in 2D

and 3

√
3

4π
µ(ωl) in 3D. If εl >

δ
2
, then it is best to break the small features into more

manageable pieces for TSA computations. Alternatively, for such features, CT could

be computed using SSA without breaking it into smaller pieces.

5. Using the basis functions selected in step 1, evaluate the approximation to {M} over

the original domain Ω from Eq.(3.13), by summing contribution over individual edges

(2D) or faces (3D) of the approximate domain Ω0 (using the quadrature nodes and

weights determined in step 4).

Solve for weights and evaluate

6. Compute [A†] for the preselected set of basis functions (step 1) and quadrature nodes

(step 2) using say QR factorization [82].

7. Using the {M} from Step 5 and [A†] from step 6, compute the approximate weights

for the arbitrary domain Ω from {W} = [A†]{M} (Eq.(3.3)).

8. Finally, evaluate the approximation to the required integral by using these weights in

Eq.(2.6) i.e.
∫

Ω
f(x)dΩ ≈

∑n
k=1 Wkf(xk).

It should be clear that the same algorithm may be used in most situations, with steps 4

and 5 depending strongly on type, dimension, and representations of the geometric domain

62

Ω and its approximation Ω0. Note that these two steps also dominate the computational

complexity of the proposed approach, as we discuss below.

3.5 Algorithm Analysis

The analysis of the algorithm is dependent upon the order and type of sensitivity analysis

used for the computation of correction terms in Eq.(3.7). For the purpose of this analysis,

we will assume that we use first-order SSA for geometric corrections (CG
i) and first-order

TSA for topological correction (CT
i) of ns small features. In other words, we will assume

that the moment approximations are given by Eq.(3.9).

Thus, the main operations that are needed to implement the SAQ procedure are con-

struction of simplified approximation of Ω0 (Step 4), distance to boundary computation (for

design velocity computation), normal computations for polygonal edges/faces (for computing

normal component of design velocity), measure computations (for TSA) and ability to sam-

ple points/basis functions on a 2D/3D domain/boundary (for quadrature node generation

and topological corrections using TSA). All these operations are supported by any standard

CAD software and hence are readily available.

For a more careful asymptotic analysis, let 2k− 1 be the degree of the domain boundary

(Γ), o be the order of integration, n∗ be the number of edges/faces in the approximating

polygon/polyhedron Ω0, and m(o) = O(od) be the number of d-variate polynomial basis

functions in d-dimensional space. We will assume that the cost of all arithmetic operations

is constant. With this, we can estimate the running time of the algorithm. The initialization

steps 1-2 are performed only once and do not affect the worst-case running time; step 3

is a construction of piecewise linear domain Ω0, a task that is well-understood and can be

done in a number of ways. We note that such approximations are often used by many CAD

systems and may be available at no additional cost. Steps 6-8 are dominated by computation

of [A†] (step 6) and matrix multiplication (step 7). The cost of computing [A†] using QR

63

factorization can easily be proved to be O(o3d) [82]. Also, the matrix multiplication costs

O(o3d). This leaves steps 4 and 5 that are at the very heart of the SAQ.

Typically, the simplified domain Ω0 is bounded by triangles or convex quadrilaterals, step

4 is a trivial constant time operation. Close examination of Eq.(3.9) reveals that evaluation

of moments in step 5 requires:

� O(n∗) normal computations;

� O(ns) measure computations;

� O(n∗(o+ k)d−1) distance computations;

� O(n∗(o+ k)d−1od + ns) multiplications/additions; and

� O(n∗(o+ k)d−1od + ns) basis function evaluations.

Assuming that all of these operations are constant, the running time of step 5 is O(n∗(o +

k)d−1od+ns). Generally speaking, computing distance between two arbitrary domains is not

a constant time operation; however, when correspondence between the faces in Γ and Γ0 is

known, the distance computations are localized, and may be considered constant time for any

practical purpose. Likewise, computing the measure (volume/area) of a small feature is not

a constant. However, in most cases there are closed form expressions available for measure

computations. For more general small features, one could employ divergence theorem or

first-order SSA to efficiently compute the measure of small features.

We conclude that in most practical situations, the total cost of SAQ based integration

is O(o3d + n∗(o + k)d−1od + ns). For a given order of integration o, degree of bounding

surfaces k, dimension of space d and number of small features ns, the procedure is linear

in the number of bounding faces/edges n∗ of the simplified domain Ω0. This conclusion

underscores one of the most appealing properties of the SAQ procedure: it does not assume

any particular representation of the original domain Ω (such as voxels, mesh, splines, and

implicit surfaces), and can be used with any such representation, as long as it supports

64

efficient distance computations and can be approximated by a polygonal domain Ω0. In

other words, k can be viewed as a measure of frequency of oscillations in the boundary of Γ

relative to the simplified boundary Γ0. Large k leads to the increase in the number of required

integration points and distance computations which could undermine the advantages of SAQ

procedure. On the other hand, SAQ procedure can be also used with arbitrarily complex

approximate domains Ω0. When a 3D Ω0 is bounded by more general polygonal faces, such

as those found in [133, 89, 74], step 4 of the procedure requires constructing a quadrature

for each face using the moment fitting equations as described in Section 2.1.1, with moments

computed from Eq.(2.5). In principle, this could increase the theoretical complexity of the

algorithm to O(n∗(o+ k)3(d−1) + ns) but could also reduce the overall cost of integration by

allowing a much larger class of approximate domains in SAQ based integration.

3.6 Experimental Validation

In this section, in the first three examples, we compare the computational properties of SAQ

to five other methods and a reference symbolic integration. The five selected methods are:

SS: a direct application of shape sensitivity analysis as explained in Section 2.1.4;

C: the Cartesian product or tensor-product rule scaled to fit inside the geometry of the cell

as recommended in [132];

GA: the Geometrically Adaptive integration method described in [22];

P: the quadrature rule obtained by solving the linear moment fitting equations (in least

square sense) over a polygonized boundary (without correction).

Characteristic: the characteristic function approach as explained in section 2.1.3

In examples 1,2,3, and 5 we assume that Ω0 is a polygonal/polyhedral domain homeomorphic

to the given domain Ω. Thus, in these four examples, CG
i = 0 and thus CS

i = CG
i . In

65

example 4, we demonstrate the application of SAQ in integrating a cubic polynomial over

a non-convex 2D domain in the presence of numerous small features (using various type

of correction factors). Thus, for example 4 and 6, CT
i 6= 0 i.e. CS

i = CG
i + CT

i . For all

the examples, we use first-order SSA for CG
i computations. For example 4, we compute

and compare CT
i using first-order SSA, first-order TSA and zero-order SSA (or divergence

theorem). For example 6, we only compute and compare CT
i using first/second-order TSA.

All algorithms were implemented in MATLAB 7.10 (on a Intel Core i7 CPU with 2.8

GHz speed and 8 GB memory), which was also used for symbolic integration, and tested

on four 2D domains and two 3D domains : quadrant of a circle in Section 3.6.1, notched

domain in subsection 3.6.2, wavy domain in subsection 3.6.3, non-convex 2D domain with

small circular holes in subsection 3.6.4, unit sphere in subsection 3.6.5, and unit sphere

with numerous spherical voids in 3.6.6. We will denote the value of integral obtained from

MATLAB’s symbolic integrator as IA and use I∗ to stand for the value of integral computed

by method (*), where (*) could be one of the above methods. With this notation, we will

compare the accuracy of integration for each domain in terms of the following error measures:

� Relative Error (%) = | IA−I∗
IA
| ∗ 100;

� Actual Error= IA − IC .

For the first three examples, we will perform a series of tests aimed to establish how

the accuracy of the algorithms compare in terms of their ability to approximate integrals of

polynomial basis functions and integrands, adapt with better polygonal approximation, and

improve with increased order of integration. Specifically, for each domain Ω, we perform the

following tests:

(a) Integration of Basis Functions The integrand for this test would be the bivariate

polynomial basis functions of order up to 5. The approximating polygon Ω0 will have 7 edges

(i.e. ne = 7), and 3-pt tensor-product rule (i.e. n = 3 × 3) will be used to generate the

quadrature nodes.

66

(b) Effect of polygonization Integral of f = x2y2 + x2y3 + x3 + 100x + 10y + 2 with

3-pt tensor-product quadrature rule (i.e. n = 3× 3) is evaluated, as the number of edges in

the approximating polygon Ω0 is varied. It is worth noting that increasing the number of

edges doesn’t always improve the polygonal approximation to Ω as we will see in one of the

examples (Example 3). In other words, increasing the number of edges (finer polygonization)

doesn’t necessarily reduce the distance between Ω and Ω0 (in Hausdorff sense).

(c) Dependence on quadrature rule Integral of f = x2y2 +x2y3 +x3 +100x+10y+2 is

evaluated over polygonal approximation with seven edges (i.e. ne = 7), while the quadrature

rule is varied.

For the third example in section 3.6.3, which is based on quadtree decomposition, we

perform one additional experiment showing how the accuracy of the three methods (SAQ,

SS, GA) improves with increased depth of the approximating quadtree, while fixing ne = 7

and n = 3× 3 in the leaf cells for the integrand f as defined above.

The approximating polygon (Ω0) could be constructed in a number of ways including (i)

ray casting [119], (ii) coarse quadtree/octree decomposition [70] of Ω, and (iii) coarse surface

meshing [97] of Ω. For the first three examples, we employed method (i) to construct Ω0

homeomorphic to Ω (i.e. CT
i = 0). Specifically, we casted rays parallel to integration rays

and intersected it with the original domain Ω to generate the polygon vertices (see Fig. 3.10).

For example four, we will assume that Ω is only an approximation to Ω0 without considering

the numerous small features i.e. Ω0 is not homeomorphic to Ω and so CT
i 6= 0. For this

example, we construct Ω0 simply by the quadtree/octree decomposition of Ω (ignoring the

small features). In example 5, we illustrate the application of SAQ over a unit sphere

using an octree based integration. Here, we construct Ω0 homeomorphic to Ω (using the

octree decomposition of the domain) and hence CT
i = 0 for this example. In example 6,

we give an application of SAQ in integrating a cubic function over a sphere with several

67

thousand spherical voids. Here, we construct Ω0 homeomorphic to Ω −
ns⋃
f=1

ωf (using the

octree decomposition of the domain). However, we compute CT using first/second-order

TSA in order to account for the presence of voids (ωf).

Figure 3.10: Approximate polygon (Ω0) construction by ray casting. The approximate
polygon vertices are generated by casting rays parallel to integration rays and intersecting
it with the original domain (Ω).

3.6.1 Example 1 - Quadrant of a circle

We will consider the domain Ω to be a quadrant of a circle (Fig. 3.11a) with the approx-

imating polygon Ω0 as shown in Fig. 3.11b. This example would demonstrate that, in an

average sense, SAQ is at least as good or better than SS, C and P methods.

a. Integration of Basis Functions The results are shown in Fig. 3.11c. The relative

errors of SAQ, SS, and C are in the range 0.012%−1.718%, 0.012%−1.821%, and 0%−8.270%

respectively. The absolute value of the integrals and the relative errors are listed in Table I

68

(Appendix B). Clearly, SAQ and SS are better than C in most cases, except for some lower

order basis functions. Note that SAQ and SS correlate well with each other.

b. Effect of polygonization The results are shown in Fig. 3.11d. We observe a signif-

icant decrease in error for the P method, as expected. However, the results also indicate

that for the P method to be as accurate as the SAQ or SS methods, it needs a finer polyg-

onal approximation. We also note that the error in SAQ saturates for very fine polygonal

approximations. This is not an inherent problem of the algorithm as we will see in chapter

5. This is primarily due to the error arising in moment approximation computations due to

approximate distance computations. For this example, we used a rather coarse polygonal ap-

proximation of the original domain for the normal velocity (via ray casting from Γ0 to Γ). We

will revisit this example in subsection 5.3.1 where we will demonstrate quadratic convergence

of the method (for this example) w.r.t design velocity using exact distance function.

c. Dependence on quadrature rule The results are shown in Fig. 3.11e. It is clear

from Fig. 3.11e that only for ’6-pt’ quadrature rule, the error in C is smaller than that of

SAQ.

Note that in this example, one of the quadrature nodes lie outside the approximating

polygon Ω0. The presence of nodes outside the polygon usually decreases the accuracy of the

integral computed. Hence, whenever possible, it is best to choose a polygonal approximation

that contains all the quadrature nodes well within the polygonal boundary. In this particular

example, the presence of outside node for 3-pt rule does not have a serious impact on the

results computed by SAQ, as the quadrature weight corresponding to the node lying outside

the polygon is close to zero. However, for higher order quadrature (4-pt and higher), outside

nodes do have an effect on the results as can be seen from Fig. 3.11e. However, the error

(in SAQ and SS) stabilizes and becomes a constant with increase in quadrature rule. This is

because, unlike the C method, increasing the quadrature rule beyond a limit doesn’t usually

improve the accuracy of SAQ. This is consistent with the fact that SAQ doesn’t rely on the

69

distribution of quadrature points to capture the geometry of the integration domain.

(a) (b)

(c)

70

(d)

(e)

Figure 3.11: (a) Quadrant of a circle (Ω) (b) Approximating polygon (Ω0) (c) Rel. error vs
basis functions (for bij = xiyj, n = 3× 3, ne = 7) (d) Rel. error vs no. of polygon edges (for
f, n = 3× 3) and (e) Rel. error vs quadrature rule (for f, ne = 7)

71

3.6.2 Example 2 - Notched Domain

(a) (b)

(c)

72

(d)

(e)

Figure 3.12: (a) Notched domain (Ω) (b) Approximating polygon (Ω0) (c) Rel. error vs basis
functions (for bij = xiyj, n = 3 × 3, ne = 7) (d) Rel. error vs no. of polygon edges (for f,
n = 3× 3) and (e) Rel. error vs quadrature rule (for f, ne = 7)

We will consider the notched domain Ω (Fig. 3.12a) with the approximating polygon Ω0 as

shown in Fig. 3.12b. This example demonstrates that SAQ produces accurate results where

C fails in spite of using a higher-order quadrature.

a. Integration of Basis Functions The results are shown in Fig. 3.12c. The relative

errors of SAQ, SS, and C are in the range 0.010%−1.301%, 0.008%−1.550%, and 0.510%−

14.271% respectively. The absolute value of the integrals and the relative errors are listed

73

in Table II (Appendix B). Clearly, SAQ and SS are better than C for all basis functions as

the C method doesn’t detect the notch. As before, SAQ and SS are found to correlate well

with each other.

b. Effect of polygonization The results are shown in Fig. 3.12d. Again, there is a

significant decrease in error for the P method as expected. And, once again, for the P method

to be as accurate as SAQ or SS methods, it needs to have a finer polygonal approximation.

c. Dependence on quadrature rule The results are shown in Fig. 3.12e and demon-

strate that C cannot compete with SAQ and SS even for 6-pt quadrature because it fails to

detect the presence of the notch.

3.6.3 Example 3 - Wavy domain

In this example, we will demonstrate how SAQ can be used in a quadtree based integration.

For comparison purposes, SAQ, SS and GA methods are applied to integration over the leaf

cells of the quadtree that decomposes the wavy domain3(Fig. 3.14a). The approximating

polygons and the quadrature nodes were constructed in the leaf cells following the basic rules

of the GA method [22], by accounting for the type of leaf cell that arises in marching squares

(see Fig. 3.13). The interior cells (case 15) were integrated using the regular Cartesian

product rule while the exterior cells (case 0) were ignored. The quadrature nodes for the

leaf cells were allocated based on Cartesian coordinates (with appropriate scaling) for cases

3,6,7,9,11,12, 13 & 14 and polar coordinates for cases 1,2,4 & 8. The ambiguous cases (case 5

and 10) were handled simply by recursively dividing the cell until the ambiguity is resolved.

3the wavy surface is defined by the equation y(x) = 3.2 + 0.09sin(10.5πx)

74

Figure 3.13: Cases in marching squares

a. Integration of Basis Functions The results are shown in Fig. 3.14c. The quadtree

of depth one (i.e. D = 1) along with the approximating polygons (ne = 7) used in the leaf

cells are shown in Fig. 3.14b.The absolute value of the integrals and the relative errors are

listed in Table III (Appendix C). The relative errors of SAQ, SS and GA are in the range

0.004%− 0.557%, 0.009%− 0.557% and 1.975%− 12.180% respectively. It is apparent that

SAQ and SS are more accurate than GA for all integrands. As in previous examples, SAQ

and SS correlate well with each other.

b. Effect of polygonization The number of edges in polygons approximating the leaf

cells is varied, while all other parameters remain the same: D = 1, n = 3 × 3 (Fig. (3.15a-

3.15d) and the integrand f over the wavy domain. For this test only, we also include integra-

tion results with P method applied to the leaf nodes of the quadtree. The relative errors for

SAQ, SS, P and GA methods are in the range 0.003%− 1.569% ,0.005%− 1.424%,0.05%−

2.455% and 2.91%− 2.91% respectively. However, GA method is not adapting to finer poly-

gonization as one would expect, while P method is improving but somewhat inconsistently.

This is because, in this particular case, finer polygonization doesn’t necessarily mean better

approximation of the original domain Ω. In other words, increasing the number of polygon

edges doesn’t necessarily reduce the distance between Ω0 and Ω (in Hausdorff sense). This

also explains why the error in SAQ oscillates with finer polygonization in contrast to the

previous two examples (Fig. 3.11d and Fig. 3.12d). The number of edges required for the

relative error to fall below 0.1% are 9 for SAQ, 9 for SS and 14 for P method. This suggests

75

that P method requires finer and better polygonization to produce accurate integrals over

domains with rapidly varying boundaries and likely to be more expensive than SAQ and SS

methods.

c. Dependence on quadrature rule Number of quadrature nodes are varied in the leaf

cells with D = 1 and ne = 7 (Fig. 3.16a - 3.16c). Again, even with ’6-pt’ rule in the leaf

cells, the error in GA could not be made smaller than that of SS and SAQ.

d. Accuracy vs Depth of Quadtree Depth of the quadtree is varied with ne = 7 and

n = 3 × 3 (Fig. 3.17a - 3.17d). From the results, it is clear that SAQ and SS are able

to produce significantly more accurate results even at coarser resolutions (say D = 1 or 2)

when compared to GA method. In fact, from Table I it is clear that for the relative error

to fall below 0.05%, SAQ (and SS) requires 343 ms as against GA’s 562 ms. Also, we find

that, in general, the error decreases with refinement for all the 3 methods. However, the

order of convergence varies. This is explained by the fact that the order of accuracy depends

not only on the level of refinement but also on the kind of polygonal approximation (or

design velocity) at any given resolution. Since, in this example, the degree of polygonal

approximation varies non-uniformly from one level to another the design velocity does not

decrease monotonically w.r.t. mesh refinement (see chapter 5 for more details). This explains

why SAQ doesn’t exhibit a consistent order of convergence for this example.

76

(a) (b)

(c)

Figure 3.14: Quadtree integration of bivariate polynomial basis functions (bij = xiyj) of
order up to five over the wavy domain for ne = 7 and n = 3× 3. (a) Wavy domain (Ω) (b)
Quadtree with D = 1 and (c) Rel. error vs basis functions

77

(a) (b) (c)

(d)

Figure 3.15: Quadtree integration of f over the wavy domain for various polygonal approx-
imations of the leaf cells with D = 1 and n = 3× 3. (a) ne = 4 (b) ne = 6 (c) ne = 11 and
(d) Rel. error vs no. of polygon edges (in leaf cells)

78

(a) (b)

(c)

Figure 3.16: Quadtree integration of f over the wavy domain for various quadrature rules
with D = 1 and ne = 7. (a) n = 5× 5 (b) n = 6× 6 and (c) Rel. error vs quadrature rule

79

(a) (b) (c)

(d)

Figure 3.17: Quadtree integration of f over the wavy domain for various quadtree depths
with ne = 7 and n = 3 × 3. (a) D = 2 (b) D = 3 (c) D = 4 and (d) Rel. error vs depth of
quadtree

Table 3.3: Relative errors, order, and computational time for integral of f over the wavy
domain

Relative Error (%) Order Time (ms)

Depth h GA SS SAQ GA SS SAQ GA SS SAQ

1 1.929 2.9106 0.2268 0.2357 47 125 78

2 0.965 1.0998 0.0640 0.0643 1.40 1.83 1.87 94 172 172

3 0.482 0.0633 0.0255 0.0255 4.12 1.33 1.34 187 343 343

4 0.241 0.0007 0.0004 0.0004 6.41 5.94 5.94 562 655 780

80

3.6.4 Example 4 - Non-Convex domain with small holes

In this example, we integrate a cubic function g = 10 + 0.1x+ 0.4y− x2 + 5xy+ 2y2 + 9x3−

10x2y+10xy2−10y3 over the domain shown in Fig. 3.18 with 105 small holes of radius 0.025

(<< h = 0.25). We fix the quadtree depth to one and integrate all interior cells using the

usual box quadrature. For the leaf cells we generate quadrature points randomly such that

they lie completely inside the domain. We use first-order SSA for geometric corrections and

first-order TSA/first-order SSA/divergence theorem for topological corrections [i.e. Eq.(3.9)

- Eq.(3.11)]. Fig. 3.19 compares the integration of g over the non-convex domain using

various correction factors by varying the number of edges of the approximating polygon

(Ω0) for the small features. From the plot it is clear that employing first-order TSA or

SSA is superior to simply using divergence theorem (or 0th-order SSA or P method) for

topological corrections. In fact, first-order TSA only requires sampling of the basis function

and area/volume computations which can be computed with very little effort for most simple

shapes and hence is an attractive choice for CT
i computations for small features. Ignoring

the topological correction factor for this problem results in a relative error of 16.201%.

Figure 3.18: A 2D non-convex domain with numerous holes

81

Figure 3.19: Non-Convex domain - Rel. Error Vs Number of Edges

3.6.5 Example 5 - Unit Sphere

In this example, we will compare the accuracy of our integration scheme in integrating trivari-

ate polynomials (xpyrzr) with that of the characteristic function method (see section 2.1.3)

in an octree based integration setting. Specifically, we employ SAQ/characteristic function

approach in the leaf cells of the octree decomposition of a unit sphere. The interior cells are

integrated using ordinary lattice rules for a box. We use the standard implementation of

characteristic function method available in the open source framework FCMLab [95]. Anal-

ogous to previous two examples of this section, Ω0 (approximate polyhedra) was constructed

based on the type of cells arising in the marching cubes (see Fig. 3.20). We employ 27 points

for both the methods to integrate polynomials of order up to 3. However, SAQ requires far

fewer points (actually 20 points for this example) for reasons that will become apparent in

subsection 4.2.2.

82

Figure 3.20: Cases in marching cubes [2]

Volume and moment computations Fig. 3.21 and Fig. 3.22 shows the relative error4

in computing the volume (
∫
dΩ) and second moment (

∫
x2dΩ) over a unit sphere using the

two methods. We employ scaled cartesian product rule to generate quadrature points for

both the methods (as shown in Fig. 3.25).

The L2-norm of the residual error in integrating all trivariate polynomials of order up to

3 is given in Fig. 3.23. It takes just 2 subdivisions for SAQ to drive the error below 0.01%,

0.1% and 0.001 respectively for volume, second moment and residual computations. On the

other hand, the characteristic method requires 4 subdivisions to achieve the same level of

accuracy clearly owing to the inability of the method to adapt to the underlying geometry.

4The exact analytical volume (4
3π) and second moment (4

15π) was used as the reference solution in
computing these errors

83

Figure 3.21: Relative error in computing volume of a unit sphere

Figure 3.22: Relative error in computing
∫
x2dΩ over a unit sphere

Figure 3.23: The L2-norm of the residual error in integrating all trivariate polynomials of
order up to three (xpyqzr with p, q, r ≥ 0 , p+ q + r ≤ 3) over a unit sphere

Table. 3.4 and Table. 3.5 lists the error and the order of convergence in computing the

volume and second moment using the two methods (here h is the size of the smallest leaf

84

cell). For this problem, we find that SAQ has a consistent order of convergence close to

4. However, the characteristic function method doesn’t seem to posses a consistent order of

convergence. For lower octree depths, it has an order of convergence close to 1 and then it

increases to 3 for a octree depth of 4. This suggests that for characteristic function method

to produce reliable accurate results one often requires 4 or more subdivisions leading to a

substantial increase in the computational cost.

Choice of quadrature points Finally, we also study the effect of position of quadrature

points on SAQ. We consider the following three ways to generate quadrature points in the

leaf cells :

1. Scaled Cartesian product rule (Fig. 3.25)

2. Random points lying inside the domain (Fig. 3.26)

3. Random points on the polygonal faces of the polyhedral boundary (Fig. 3.27)

Sufficient care is taken to ensure that all generated points lie within the original domain (Ω)

and the approximate polyhedral piece Ωi
0 for any given leaf cell Ii.

We compare the L2-norm of the residual vector for the integration of polynomials of

order up to 3 over the unit sphere for all the above. From Fig. 3.24, we find that random

domain/boundary points performs slightly better than scaled Cartesian product method for

higher octree depths. One main reason for this is that as the leaf cells become smaller and

smaller, the quadrature points generated by the scaled Cartesian product method comes

closer to one another and thereby affecting the condition number of the moment matrix [A].

Random distribution of points within the domain/boundary avoids this problem completely

resulting in better accuracy even for increased octree depths. Also, there is almost no

difference in the residual plot for random domain and boundary points. This observation

brings forth an important advantage of SAQ which is the freedom in the choice of quadrature

points. Generating quadrature points using scaled Cartesian product rule could be time

85

consuming as it involves ray-triangle (or ray-polygonal) intersection tests. On the other

hand, it is a lot easier to generate random points lying within both the original domain

(Ω) and the polygonal domain (Ω0) or boundary (Γ0) as it only involves the inside/outside

(PMC) test.

Figure 3.24: The L2-norm of the residual vector in integrating all trivariate polynomials of
order up to three (xpyqzr with p, q, r ≥ 0 , p+ r+ r ≤ 3) over a unit sphere for three different
quadrature point generation schemes

Figure 3.25: Quadrature points generated using scaled Cartesian product rule

86

Figure 3.26: Quadrature points generated randomly inside the domain

Figure 3.27: Quadrature points generated randomly on the faces of the approximate poly-
hedron

Table 3.4: Relative error and order of convergence in volume computations for a unit sphere

Characteristic SAQ

Depth h Volume Error (%) Order Volume Error (%) Order
1 0.25 4.2246228 8.554E-01 4.1808040 1.907E-01
2 0.125 4.1699889 4.488E-01 0.930 4.1884232 8.761E-03 4.444
3 0.0625 4.1964163 1.821E-01 1.302 4.1887660 5.768E-04 3.925
4 0.0313 4.1897994 2.409E-02 2.918 4.1887888 3.448E-05 4.064

87

Table 3.5: Relative error and order of convergence in second moment computations for a
unit sphere

Characteristic SAQ

Depth h
∫

x2 dΩ Error (%) Order
∫

x2 dΩ Error (%) Order
1 0.25 0.8478973 1.210E+00 0.8279464 1.171E+00
2 0.125 0.8315221 7.444E-01 0.701 0.8371905 6.775E-02 4.112
3 0.0625 0.8402888 3.021E-01 1.301 0.8377194 4.618E-03 3.875
4 0.03125 0.8380973 4.050E-02 2.899 0.8377557 2.808E-04 4.040

3.6.6 Example 6 - Microstructures

In this example, we will consider the integral of a cubic function −x3− y3− z3 + 5x2 + 6y2 +

7z2 + 8xy − 10xyz over a microstructure like domain. Specifically, we would assume the

integration domain to be a unit sphere with several thousand small spherical voids as shown

in Fig. 3.28. A typical leaf cell of the octree decomposition of this domain is shown in Fig.

3.30. As shown in the plot, the voids are generated randomly (both in size and position) over

every leaf cell such that they don’t overlap. Likewise, the quadrature points are generated

randomly such that they lie within the domain. We use SAQ with first-order SSA based

correction factor to account for the geometry of the unit sphere and first/second-order TSA to

account for the spherical voids. The relative error in computing the integral using first-order

TSA based correction, second-order TSA correction, and without the features (for an octree

depth of one) are plotted in Fig. 3.30. It is clear from the plot that the first/second-order

TSA predicts the integral accurately up to an error of 0.005 %. As expected, missing the

features results in a relative error ranging from 0.013% to 0.264%. This example illustrates

one of the important applications of SAQ in efficiently accounting for small features such as

voids which is otherwise very difficult to account for in an octree based integration setting.

88

Figure 3.28: Unit sphere with small spherical voids

Figure 3.29: A typical leaf cell of the unit sphere contains several hundred voids

89

Figure 3.30: Error plot for various hole distribution

3.7 Summary

Shape Aware Quadratures (SAQ) are quadratures that can be used to accurately and effi-

ciently integrate arbitrary 2D/3D domains accounting for small geometric/topological fea-

tures. A generic formulation of SAQ based on moment fitting equations [64, 116, 137],

divergence theorem [41] and sensitivity analysis [75, 106, 123, 80] was given in Section 3.2.

SAQ employs a simplified domain (Ω0) to approximate the moments in the moment fitting

equations. Appropriate geometric and topological correction factors are used to correct for

the deviation of the shape from Ω. The use of these shape correction factors enables the

quadrature rule computed using the moment fitting equations “shape aware”. Thus, the

main step in this formulation is the derivation of geometric and topological correction fac-

tors using SSA and TSA. First/second-order SSA/TSA based correction factors were derived

based on SSA/TSA of moments and tabulated in Table. 3.1 and Table. 3.2. We recommend

the use of SSA for geometric corrections and TSA (or SSA) for topological corrections. How-

ever, the framework is quite general as one can employ other types of sensitivities such as

feature sensitivity [123] and modification sensitivity [80] to derive the correction factors.

We demonstrated the use of SAQ in integrating arbitrary polynomial functions over ar-

bitrary 2D/3D domains in the presence of small features (such as notches, boundary noise

90

and holes) and compared it with some standard methods: scaled Cartesian product rule as

recommended in [132], geometric adaptive (GA) integration method proposed in [22], polyg-

onal (P) approximation method, shape sensitivity (SS) method and characteristic function

approach. SAQ was shown to be superior to GA, P and characteristic methods in terms of

accuracy and comparable to SS method in most cases.

Recall from Section 2.1.4 that we abandoned the SS approach due to its unrealistic

requirements such as function extension outside the domain and domain velocity computation

inside the domain. Yet, experimental results show that SS and SAQ correlate well with each

other when applied to functions that can be readily defined even outside the original domain

of integration. In fact this is not a coincidence. To understand this, consider an alternate

way to formulate SAQ (with SSA based correction factors). To begin with, let us rewrite

the boundary integral in Eq.(2.26) in domain form as

∫
Γ0

f(X)VN(X)dΓ0 =

∫
Ω0

∇ · (f(X)V(X))dΩ0

=

∫
Ω0

f(X)Ψ(X)dΩ0

(3.27)

where

Ψ(X) =

∇·(f(X)V(X))

f(X)
: X ∈ A

∇ · (f(X)V(X)) : X ∈ Ω0 − A

where A = {X ∈ Ω0|f(X) 6= 0} is the set of points in the domain where the function f is

non-zero. It can be easily proved that f(X)Ψ(X) is integrable and that the equality holds

in Eq.(3.27). Substituting Eq.(3.27) in Eq.(2.26) we get

I ≈
∫

Ω0

f(X)dΩ0 +

∫
Ω0

f(X)Ψ(X)dΩ0 =

∫
Ω0

f(X)(1 + Ψ(X))dΩ0 (3.28)

91

Setting W (X) = (1 + Ψ(X)), we get:

I ≈
∫

Ω0

W (X)f(X)dΩ0 (3.29)

Now, we have Mi ≈
∫

Ω0
W (X)bi(X)dΩ0 with W (X) = (1 + Ψ(X)). Further, substitut-

ing for W (X) and simplifying we obtain exactly the same expression for Mi as before i.e.

Eq.(3.18). In other words, whether we first approximate the integral of f (over Ω by applying

SSA over Ω0) and then derive Mi or approximate Mi directly using SSA, we obtain the same

weights. Equivalently, this implies that SAQ is as good as SS but without the limitations

of SS as outlined in Section 2.1.4. Moreover, SAQ generalizes this idea to other types of

sensitivities and provides a more general framework for integration of arbitrary domains in

two and three dimensions.

The main application of SAQ is in non-conforming cell based integration. We observed

that SAQ, when used in the leaf cells of quadtrees/octrees, required fewer subdivisions /

quadrature nodes to resolve the geometry of the integration domain when compared to

other methods. We also note that the method is formulated irrespective of how the original

domain Ω is represented, and it can be used with or without an integration mesh. The latter

observation suggests that SAQ is suitable for a variety of IB methods such as Scan & Solve

[85, 86], Finite Cell Method [66], and other immersed boundary methods [105], which will

be the subject of the next chapter.

92

Chapter 4

SAQ in Finite Cell Method

In this chapter, we will present convergence/performance studies of SAQ in the context of

an immersed boundary method called the Finite Cell Method (FCM). We will assume in

this chapter that Ω0 is always homeomorphic to Ω and hence CT
i = 0. Further, we will

only use first-order SSA for CG
i computations i.e. we will employ Eq.(3.12) for moment

approximations. In this chapter, we will closely follow our exposition in [130].

4.1 Finite Cell Method

We have already presented a brief overview of FCM in chapter 1. Here, we will simply restate

FCM in the context of elastostatics which will be the basis for our convergence/performance

studies. FCM was originally introduced in [66] as an extension to the p-version of the finite

element method [24, 54]. FCM combines the fictitious domain approach with a higher-order

approximation basis, the representation of the geometry by adaptive quadrature based on

recursive bisection, and the weak imposition of unfitted boundary conditions [118]. FCM can

operate on any geometry as along as the geometry supports point membership classification

(PMC) query i.e. whether a point is located inside or outside the physical domain. Fig. 4.1

illustrates the fictitious domain concept that lies at the heart of the FCM.

93

Figure 4.1: The fictitious domain approach : the physical domain Ω is extended by the
fictitious domain Ωfict into an embedding domain Ωe to allow easy meshing of complex
geometries. The influence of Ωfict is penalized by α [118]

The embedding domain Ωe consists of the physical domain of interest Ω and the fictitious

domain extension Ωfict. Analogous to classical FEM, the first step in FCM is the discretiza-

tion of the variational (or weak) form for the boundary value problem under consideration.

Let us consider the standard elastostatics problem for the purpose of illustration. The FCM

variational form for this problem reads as follows :

find u ∈ H1(Ωe) such that

∫
Ωe

ασ : δεdΩe −
∫

Ωe

αδu.b dΩe −
∫

ΓN

δu.t dΓN ∀δu ∈ H1(Ωe) (4.1)

u = u0 ∀x ∈ ΓD (4.2)

σ, b, and t are respectively the Cauchy stress tensor, the body force vector, and the surface

traction vector. Neumann boundary conditions are also specified over the boundary of the

embedding domain ∂Ωe, where σ.n = 0 by definition. Dirichlet boundary conditions are

specified over ΓD of the physical domain by the prescribed value of the field variable u0.

The scalar factor α is defined as follows

α(x) =

1.0 ∀x ∈ Ω

10−q ∀x ∈ Ωfict

(4.3)

In Ωfict, α must be chosen as small as possible, but large enough to prevent extreme

ill-conditioning of the stiffness matrix [66, 13]. Typical values of α range between 10−5 and

94

10−10. This scalar parameter α ensures that we are actually solving the boundary value

problem on Ω and not on the extended domain Ωe. Using a structured grid of higher-order

elements (as shown in Fig. 4.1), the field variable u and its variation δu are discretized using

polynomial basis functions resulting in a linear system [K]{u} = {f}. The global stiffness

[K] and global force vector {f} are obtained by assembling the following cell stiffness matrix

([kc]) and force vector ({fc}) for all the cells (c = 1 to nc) :

[kc] =

∫
Ωc

[Bc]
Tα[Cc][Bc]dΩc (4.4)

{fc} =

∫
Ωc

α[Nc]
T{bc}dΩc +

∫
ΓcN

[Nc]
T{tc}dΓcN (4.5)

Bc, Cc, Nc, tc and bc are respectively the strain-displacement matrix, constitutive ma-

trix, shape function matrix, traction vector and body force vector associated with the cell c.

Solving the above linear system results in the nodal displacements u. As can be seen from

the above equations, the imposition of Neumann boundary conditions requires the compu-

tation of integrals over the surface of Ω. This can be easily accomplished by local surface

meshing. However, enforcement of Dirichlet boundary conditions (Eq.(4.2)) is not straight

forward primarily owing to the non-conformity of the mesh and/or the basis functions not

satisfying the Kronecker delta property5 [114]. Lot of research have gone into the enforce-

ment of Dirichlet boundary conditions in meshfree methods. There are a number of schemes

such as the Lagrangian Multiplier Method [52, 37], Penalty Method [53, 56, 93], Augmented

Lagrangian Method [114], Nitsche’s Method [135, 63, 102, 99] and Kantorovich’s Approach

[73, 72, 85, 86] that are available to weakly or strongly enforce Dirichlet boundary conditions.

Notice that the formulation of stiffness matrix and the load vector requires volumet-

ric integration of discontinuous functions (due to α) over a box domain (see Eq.(4.4) and

Eq.(4.5)). In other words, due to the introduction of the α factor in the weak form of the

FCM, we have effectively transformed the integral of a continuous integrand over the ar-

5A set of basis functions ηi(xj), associated to a set of nodes or particles xi, is said to satisfy the Kronecker
delta property if ηi(xj) = δij∀i, j [114]

95

bitrary original domain Ω into an integral of a discontinuous integrand over a box domain

∪nci=1ci. Then, the integral over each of these cells can be computed by employing the classical

Gaussian quadrature in combination with an hierarchical partitioning scheme [13, 138] such

as a quadtree [48, 49] (2D) or octree [96, 13, 48, 49] (3D). This approach of integrating a

continuous integrand over an arbitrary domain by transforming it into an integral of a dis-

continuous integrand over a regular domain is called as the characteristic function approach

and is the popular integration scheme employed in FCM [12]. Although this transformation

is mathematically perfectly legitimate and sensible, it poses a serious problem when evalu-

ated numerically owing to the discontinuity of α. This is because classical Gauss quadrature

schemes are designed assuming that the integrand is a polynomial of some degree [132]. For

instance, n point Gauss quadrature gives accurate results for integral of polynomials of de-

gree up to 2n−1 in 1D. If the same integration rule is applied to a non-polynomial function,

it gives a value of the integral of a polynomial approximation to the integrand. Thus, the

accuracy of the integrand by polynomials determines the integration accuracy. It is also

well known that polynomial approximation of discontinuous functions tend to oscillate in

the neighborhood of the discontinuity. For example, plots in Fig. 4.2 illustrate polynomial

approximation of a Heaviside function by polynomials of 4th (Fig. 4.2(a)) and 20th (Fig.

4.2(b)) degree on the segment [1, 1]. If we raise the degree of an approximating polynomial,

the amplitude of oscillations raises as well [22].

This implies that for the characteristic function method to produce accurate results one

often needs a very fine partitioning of the domain leading to excessive boundary cell frag-

mentation as shown in Fig. 4.3. This makes the method prohibitively expensive for realistic

3D CAD models such as sculptures, engines, and bones. Thus, numerical integration

is one of the major bottlenecks of FCM (or any IB method for that matter).

Hence, in this chapter, we examine the suitability / efficacy of SAQ in the context of FCM.

Specifically, we compare the convergence/performance of SAQ and the characteristic func-

tion method [12] in solving 2D/3D elastostatic problems using the FCM. For this purpose,

96

we implemented SAQ in the open source FCM framework in MATLAB called the FCMLab

[95]. From the experiments, we observe that SAQ has superior order of convergence and

also requires fewer subdivisions/less time to achieve a given accuracy compared to the char-

acteristic function method. In addition, SAQ is found to offer a great deal of flexibility in

the choice of quadrature points and basis functions that is not usually available for other

integration schemes such as the characteristic function method.

Figure 4.2: Polynomial interpolation of a Heaviside function: (a) through 5 points; (b)
through 21 points [22]

.

Figure 4.3: Illustration of boundary cell fragmentation in characteristic function method
[118]

97

4.2 Implementation

SAQ based integration could be implemented in any 2D / 3D meshfree FEA system. To

demonstrate its application in a meshfree system, we implemented SAQ based integration in

FCMLab [95], an open source framework in MATLAB that enables 2D/3D meshfree analysis

based on the Finite Cell Method (FCM) [66].

FCMLab currently supports the Penalty Method [53, 56, 93] and Nitsche’s Method [135,

63, 102, 99] for the enforcement of Dirichlet boundary conditions (in weak sense). Further-

more, it supports higher order polynomial basis functions for the discretization of any given

field of interest (such as displacements or temperature). Neumann boundary conditions are

enforced by means of surface integration over the surface mesh. The domain integration is

carried out over a separate integration mesh different from the grid of basis functions. The

integration mesh is partitioned using space trees such as quadtrees (2D) / octrees (3D) and

classical Gauss quadrature nodes (for boxes) are allocated in each of the integration cells.

Depending on whether a quadrature node is inside or outside the domain, appropriate scaling

factor (α = 1 or α = 10−q) is used for the domain integrands. In short, FCMLab currently

supports volumetric integration based on the characteristic function method (discussed in

section 2.1.3). For a detailed discussion of the capabilities and design of FCMLab we refer

the reader to [95].

We implemented SAQ in the FCMLab framework in order to compute the 2D/3D in-

tegrals arising in FCM and in general. In this section, we will give a brief overview of

implementation aspects of SAQ both in two and three dimensions.

4.2.1 2D Implementation

For 2D domains, we used a quadtree based integration to compute the desired area integrals.

A quadtree decomposition of the domain (Ω) results in three types of cells i.e. inner, outer,

98

and leaf (magenta cells in Fig. 4.6) cells. For the inner and outer6 (blue cells in Fig. 4.6) cells,

we allocated quadrature nodes based on the classical Gauss quadrature rule for rectangles

[132]. Hence, in this section, we will limit our discussion only to the integration of leaf cells

using SAQ.

Initialization

Approximate polygon (Ω0) construction The approximating polygon (Ω0) homeomor-

phic to the domain (Ω) could be constructed in a number of ways including (i) ray casting

[119], (ii) coarse quadtree decomposition [70] of Ω, and (iii) coarse polygonalization [97] of

Ω. For the sake of simplicity, we employed ray casting to construct the approximate polygon

(Ω0). However, what is needed for applying SAQ in a quadtree based integration setting

are the polygonal pieces Ωi
0 = Ii

⋂
Ω0 that approximates Ωi = Ii

⋂
Ω for every integration

cell Ii. In other words, Ω is the union of pieces Ωi (Ω =
⋃NI
i=1 Ωi) that is approximated

by Ω0 =
⋃NI
i=1 Ωi

0. Since, the inner and outer cells are integrated using classical quadrature

scheme for boxes, it is enough if we just construct approximate polygonal pieces Ωi
0 for the

leaf cells.

Specifically, first the leaf cells are classified into one of the 15 marching square cases of

Fig. 4.5 using point membership classification (PMC). For cases 1,2,3,4,6,7,8,9,11,12,13 and

14, we construct approximate polygons homeomorphic to the leaf cell by casting rays parallel

to integration rays and intersecting it with the original domain (Ω) as shown in Fig. 4.4.

6In principle, we could ignore the outer cells as they don’t contribute to the integral. However, we included
outer cells in the computation in order to avoid stability issues that may arise when very little of the support
of the basis function is in Ω (in solving boundary value problems). We note here that there are better ways
to improve stability as was suggested by Höllig et al. [73] and Babus̆ka I. and Banerjee U. [55].

99

Figure 4.4: Approximate polygon (Ωi
0) construction and quadrature point generation over a

leaf cell (Ii) by ray casting.

The ambiguous cases (case 5 & 10) were handled simply by recursively subdividing the

cell until it falls into one of the basic cases (0,1,2,3,4,6,7,8,9,11,12,13,14 and 15) or the size

of cells were consistent with the acceptable errors in integration.

Choice of basis functions There are a number of choices for the basis functions in

2D. Some popular choices include bivariate, Legendre and Chebyshev polynomials. In our

2D implementation, for the desired order of integration (o), we chose a set of bivariate

polynomials ({xpyr
∣∣∣ p, r ≥ 0 , p+ r ≤ o}) as our set of basis functions.

Quadrature point generation Quadrature nodes (in the leaf cells) were generated de-

pending on the type of leaf cell arising in marching squares (see Fig. 4.5). To be precise,

the quadrature nodes for cases 1,2,3,4,6,7,8,9,11,12, 13 & 14 were allocated based on scaled

Cartesian product rule via ray casting (see Fig. 4.4) such that the points lie within both

the original domain (Ω) and the approximate polygon (Ω0). This is because choosing points

outside Ω will lead to dealing with the discontinuity of an otherwise continuous integrand (as

in characteristic function approach) and thereby deteriorating SAQ’s accuracy. Moreover,

100

choosing points outside Ω0 is known to slightly decrease the accuracy of SAQ as was observed

in our experiments in the previous chapter. Typical distribution of quadrature points in a

2D domain for the SAQ scheme is illustrated in Fig. 4.6.

Figure 4.5: Cases in marching squares

Figure 4.6: Quadrature point distribution for SAQ scheme over a 2D domain

Moment computations

In order to set up the moment fitting equations (Eq.(3.1)), it is required to compute the

moments (Eq.(3.12)) and the [A] matrix (of Eq.(3.1)). The moments (Eq.(3.12)) are basically

boundary integrals over the approximate polygon (Ω0) and therefore requires computation of

line integrals over the edges of Γ0. Notice that this can be easily accomplished by employing

the classical 1D Gauss quadrature scheme [132] over the edges of the polygon provided

the design velocity (VN) is known at each of these 1D quadrature points. Recall from the

previous chapter that the design velocity (VN) is simply the shortest distance (γ) from the

given point on Γ0 (here the 1D quadrature points) to the original boundary (Γ) as measured

in the normal direction. One simple way to compute this distance is by a simple ray casting

algorithm [119] as illustrated in Fig. 4.7. Thus, using the generated quadrature nodes,

101

the approximating polygon and the design velocity, the approximate moments (Eq.(3.12))

were computed using the bivariate (xpyr) polynomial basis functions for the desired order

of integration. Then, [A] matrix can easily be setup by simply evaluating the chosen set of

basis functions (in this case xpyr) at all the generated quadrature points.

Figure 4.7: Design velocity is simply the distance to the boundary in a direction normal to
Γ0

Solving for weights and evaluation

Thus, for every leaf cell, we setup and solve a separate set of moment fitting equations in least

square sense (using the QR algorithm [82]) in order to obtain a set of weights that adapt to

the geometry in that leaf cell. In other words, we generate a new quadrature rule on the fly

for every leaf cell accounting for the type of geometry in that cell. Each of these generated

quadrature is then used in Eq.(2.6) to estimate the desired area integral contribution of the

leaf cells.

As mentioned in the beginning of this subsection, inner/outer cell’s contribution was

computed using the classical Gauss quadrature scheme for rectangles [132]. Thus, summing

up the contributions from all inner, outer and leaf cells gives us an estimation of the desired

area integral.

102

4.2.2 3D Implementation

For 3D domains, we used a octree based integration to compute the desired volume integrals.

Similar to quadtree decomposition, an octree decomposition of the domain (Ω) results in

three types of cells i.e. inner, outer, and leaf cells. The inner and outer cells can be handled

by standard Gauss quadrature for boxes [132]. Hence, in this section, we will limit our

discussion only to the integration of leaf cells using SAQ.

Initialization

Approximate polyhedron (Ω0) construction The approximating polyhedron Ω0 home-

omorphic to the domain Ω can be constructed in a number of ways including (i) ray casting

[119], (ii) coarse octree decomposition [96] of Ω, and (iii) coarse surface meshing [97] of Ω.

For the sake of simplicity, we construct this by the polygonalization of Ω through an octree

decomposition. However, what is needed for applying SAQ in an octree based integration

setting are the polyhedron pieces Ωi
0 = Ii

⋂
Ω0 that approximates Ωi = Ii

⋂
Ω for every inte-

gration cell Ii. In other words, Ω is the union of pieces Ωi (Ω =
⋃NI
i=1 Ωi) that is approximated

by Ω0 =
⋃NI
i=1 Ωi

0. Since, the inner and outer cells are integrated using classical quadrature

scheme for boxes, it is enough if we just construct approximate polyhedron pieces Ωi
0 for the

leaf cells. Thus, for each leaf cell Ii, we generate the approximate polyhedron Ωi
0 as shown

in Fig. 4.10(b).

To be precise, first the leaf cells are classified into one of the 15 cases of Fig. 4.8 using

point membership classification (PMC). For cases 1,2,5,8,9,11 and 14, we first compute the

polygonal boundary Γip1 (magenta triangles in Fig. 4.10(b)) approximating Γi based on

marching cubes algorithm [83]. This polyhedral boundary (Γip1) forms only a portion of the

approximate polyhedral boundary Γi0. The other faces of the polyhedron are obtained by

trimming the leaf cell Ii by Γip1 resulting in the polygons (Γip2) bounded by red lines in Fig.

4.10(b)). Thus, Γi0 = Γip1
⋃

Γip2 and Ωi
0 is the volume bounded by this boundary Γi0. Γip1 is

stored as a bunch of triangles while Γip2 is stored as a bunch of planar n-gons. The ambiguous

103

and disjoint cases (cases 3,4,6,7,10,12 and 13) were handled by recursively subdividing until

it falls into one of the above basic cases (case 0,1,2,5,8,9,11 and 14) or the size of cells were

consistent with the acceptable errors in integration.

Choice of basis functions There are a number of choices for the basis functions in

3D. Some popular choices include trivariate, Legendre and Chebyshev polynomials. In our

3D implementation, for the desired order of integration (o), we chose a set of trivariate

polynomials ({xpyqzr
∣∣∣ p, q, r ≥ 0 , p+ q + r ≤ o}) as our set of basis functions.

Quadrature point generation There is a great deal of flexibility in the choice of gener-

ating quadrature points. One way to generate quadrature points is based on the type of leaf

cell arising in marching cubes. However, in 3D, we have 256 marching cube cases to handle.

But, by employing rotations and symmetries this can be reduced to the 15 basic cases shown

in Fig. 4.8. The quadrature nodes for the non-ambiguous/non-disjoint cases 1,2,5,8,9,11

and 14 were allocated by scaled Cartesian product rule such that the points lie both within

the original domain (Ω) and the approximate polyhedron (Ω0). This is because choosing

points outside Ω will lead to dealing with the discontinuity of an otherwise continuous in-

tegrand (as in characteristic function approach) and thereby deteriorating SAQ’s accuracy.

Likewise, choosing points outside Ω0 is known to slightly decrease the accuracy of SAQ as

was observed by us in the previous chapter. Generation of quadrature nodes in a typical

leaf cell is illustrated in Fig. 4.10(d). For a leaf cell Ii, one could also generate quadrature

points randomly such that the points lie both within the approximate polyhedron piece Ωi
0

and the actual domain Ω as we have already see in section 3.6.5. The ambiguous/disjoint

cases (cases 3,4,6,7,10,12, and 13) were handled as before.

104

Figure 4.8: Cases in marching cubes [2]

Minimum number of quadrature points for SAQ (in leaf cells) is dictated by the total

number of basis functions chosen for the given order o. This is because, to make the moment

fitting equations solvable we at least need as many equations (basis functions) as the number

of unknowns (quadrature weights). For example, if we choose all trivariate polynomials of

order up to 3 (i.e. {1, x, y, z, x2, xy, yz, xz, y2, z2, x3, x2y, x2z, xyz,

y2x, y2z, y3, z2x, z2y, z3}) as our basis functions, then the minimum number of quadrature

points required for SAQ (per leaf cell) is only 20. However, comparing this with the charac-

teristic function method, we find that one requires at least 27 points (3× 3× 3) to integrate

a polynomial of order 3. This is because quadrature nodes in characteristic function method

are allocated based on the Cartesian product of 1D Gauss quadrature rule and the smallest

cube greater than or equal to 20 is 33 = 27.

Thus, minimum number of quadrature points for SAQ is equal to the number of complete

polynomials of given order (o) and is equal to (o+d)!
d!o!

[20] (where d = 2 for 2D and d = 3 for

3D domains). For characteristic method, it is simply equal to (o + 1)d as it is based on the

Cartesian product of 1D Gauss quadrature rule. Fig. 4.9 shows the savings in quadrature

points per leaf cell for the SAQ relative to the characteristic function method for different

orders of integration. From the plot one can see that, unlike 2D, the savings in 3D is

105

considerable especially for higher orders of integration which is critical from the context of

FCM.

Figure 4.9: Savings in quadrature points (per leaf cell) for the SAQ scheme in 2D and 3D

Moment computations

In order to set up the moment fitting equations (Eq.(3.1)), it is required to compute the

moments (Eq.(3.12)) and the [A] matrix (of Eq.(3.1)). The moments (Eq.(3.12)) are basically

boundary integrals over the approximate polyhedron (Ω0) and therefore requires computation

of surface integrals over the polygonal faces of Γ0. Notice that this can be accomplished by

first performing a coarse triangulation of the general polygonal faces and then applying the

standard quadrature rule for triangles [64]. Further, in order to compute the moments it

is required to compute the design velocity (VN) at each of these surface quadrature points.

Recall from the previous chapter that the design velocity (VN) is simply the shortest distance

(γ) from the give point on Γ0 (here the surface quadrature points) to the original boundary

(Γ) as measured in the normal direction. One simple way to compute this distance is by a

simple ray casting algorithm [119] as illustrated in Fig. 4.10(c). Thus, using the generated

quadrature nodes, the approximating polyhedron and the design velocity, the approximate

moments (Eq.(3.12)) were computed using the trivariate (xpyqzr) polynomial basis functions

for the desired order of integration. Then, [A] matrix can easily be setup by simply evaluating

the chosen set of basis functions (in this case xpyqzr) at all the generated quadrature points.

106

Solving for weights and evaluation

This step is exactly the same as in 2D and hence we refer the reader to subsection 4.2.1 for

details.

Figure 4.10: (a) The leaf cells of the octree are first classified into one of the 15 cases using
PMC (b) Depending on the cell type, an approximate polyhedron homeomorphic to the
domain in each of the leaf cells is constructed (c) Design velocity is computed at the surface
quadrature points of the approximate polyhedron (Γ0) (d) Volumetric quadrature points are
generated such that it lies within the actual and polyhedral domain using ray casting (actual
surface not shown for clarity)

Note on PMC There are many fast algorithms for PMC catering to different geometric

representations. For geometries represented by implicit functions, PMC is straight forward

and so is extremely fast. For geometries represented by triangular meshes, PMC by ray

107

boundary intersection is rapid since ray-cell intersections have closed form solutions [84].

Even faster techniques take advantage of signed triangles or enclosing tetrahedra sharing

a common vertex whose membership is known [38]. For non-tessellated B-reps, PMC is

based on Newton-type methods that operate on the parametric geometry describing a solid's

boundary [88]. For a good discussion of PMC algorithms we refer the reader to [39, 128].

4.3 Convergence Studies

We now compare the computational properties of SAQ and the characteristic function

method (section 2.1.3) for 2D/3D elastostatic problems. We used FCMLab’s [95] imple-

mentation of the Finite Cell Method (FCM) to solve the 2D/3D elastostatics. FCMLab [95]

supports quadtree/octree based integration using the characteristic function method. We

used this implementation of characteristic function method for the comparisons. We also

extended FCMLab [95] to support quadtree/octree based integration using SAQ.

We assess accuracy and convergence of the two integration schemes in the context of

FCM using the energy norm given by

Ee =

√
|Uex − UFCM |

Uex
× 100 % (4.6)

Uex and UFCM being the exact and FCM computed strain energies respectively.

4.3.1 Annular Ring

In this example, we will consider the plane stress problem over a 2D annular ring as reported

in [118]. The geometry, modeling parameters and the reference solution are given in Fig.

4.11. The application of Dirichlet boundary conditions for these problems was done in a weak

sense using the Nitsche’s method [135, 63, 102, 99] with β = 103. The radial displacement and

von Mises stress plot for this plane stress problem obtained using SAQ (with 3 subdivisions)

108

is shown in Fig. 4.12 and Fig . 4.13 respectively.

Figure 4.11: 2D annular ring problem from [118]

Figure 4.12: Radial displacement plot obtained using SAQ (with 3 subdivisions)

Figure 4.13: von Mises stress plot obtained using SAQ (with 3 subdivisions)

Convergence w.r.t. p-refinement First, we study the convergence w.r.t p-refinement

for the two integration schemes. Here, p-refinement refers to increasing the polynomial degree

(p) of the basis functions uniformly from 1 to 8 for an 8 × 8 mesh of quad elements. We

109

study the convergence (as measured in energy norm) of the annular ring problem w.r.t. p-

refinement for the two integration schemes using various levels of integration tree (quadtree)

refinement. We use a g× g quadrature in each of the integration cells where g = p+ 4. Fig.

4.14 shows the convergence of the two schemes w.r.t p-refinement for various integration

tree (quadtree) depths. It is clear from the plot that SAQ requires just 2 subdivisions to

provide the accuracy of characteristic’s 6 subdivisions. For lower quadtree depths (dep < 5),

the integration error dominates to the point that characteristic function method diverges for

higher order basis functions (p ≥ 4).

Figure 4.14: Convergence of SAQ and characteristic function method w.r.t. p-refinement in
energy norm

From Fig. 4.14 it is clear that the error does not go to zero w.r.t. p-refinement as the

convergence also depends on the mesh size. It is important to note that, in this study, we

fix the mesh size (8× 8) and vary only the degree of basis functions uniformly to achieve p-

refinement. In order to drive the error close to zero, it is also required to do an h-refinement

in combination with p-refinement so that the underlying finite element function space is rich

enough to capture the solution.

110

Convergence w.r.t. quadtree refinement Next, we study the effect of quadtree refine-

ment on the two schemes. For this study, we use a 4 × 4 mesh of quad elements of order 4

(578 dofs), for which we vary the quadtree depth (dep) from 1 to 4. We use 7×7 quadrature

in each of the integration cells. Fig. 4.15 shows the convergence of the two schemes w.r.t

quadtree refinement in energy norm. It is very clear from Table. 4.1 that characteristic

function method requires at least 4 subdivisions more than SAQ for the error in energy norm

to fall below 5.8%. We also measured the total time required to compute stiffness matrix

and force vector for this problem. Table. 4.1 lists the computer time and error in energy

norm for the two methods. From the table we find that SAQ is at least 17 times faster than

characteristic function method to achieve a given accuracy (of error ≤ 5.8%).

Figure 4.15: Convergence of SAQ and characteristic function method w.r.t. quadtree depth
in energy norm

Table 4.1: Rel. error in energy norm and time comparison for SAQ and Characteristic
method w.r.t quadtreee refinement

Characteristic SAQ

Depth Error(%) Time(s) Error(%) Time(s)
1 1263.7 4.26 5.785 6.06
2 8.102 11.74 5.796 15.40
3 5.987 27.24 5.780 35.55
4 6.048 58.31 5.779 71.86
5 5.754 104.85 5.790 131.225

111

Convergence w.r.t. quadrature rule Finally, we study the convergence w.r.t quadra-

ture rule. For this study, we use a 4 × 4 mesh of quad elements of order 4 (578 dofs), for

which we vary the quadrature rule from g = 1 to g = 10 in each of the integration cells.

We use a quadtree depth of 1 for both the schemes. Thus, the total number of integration

points for a given quadrature rule (g) is given by 4 × 4 × 4 × g2 = 64g2. Fig. 4.16 shows

the convergence of the two schemes w.r.t quadrature rule in energy norm. From the plots,

it is clear that for g ≥ 7, the error in energy norm for SAQ scheme is approximately 6%.

However, the characteristic function method diverges for higher order quadrature with the

error ranging from 25% to 1230%. This experiment demonstrates why, unlike characteristic

function method, SAQ is a reliable method especially for higher order integration. As already

pointed out in the introduction, classical Gauss quadrature schemes are designed assuming

that the integrand is a polynomial of some degree [132]. Characteristic function method

applies Cartesian product of this 1D integration scheme to integrate a discontinuous (i.e.

non-polynomial) integrand giving the value of a integral of its polynomial approximation.

However, polynomial approximation of discontinuous functions tend to oscillate in the neigh-

borhood of the discontinuity as was explained in the section 4.1 (also see Fig. 4.2). Thus,

raising the degree of an approximating polynomial, the amplitude of oscillations raises as

well [22] (see Fig. 4.2). This explains why the characteristic function method diverges for

higher order quadrature in this experiment. However, this problem doesn’t arise in SAQ as

we are always dealing with a continuous integrand. Moreover, quadrature rule is carefully

generated accounting for the type of integrand and geometric domain.

112

Figure 4.16: Convergence of SAQ and characteristic function method w.r.t. quadrature rule
in energy norm

4.3.2 Cylinder under uniaxial compression

In this example, we will compare SAQ with that of the characteristic function method in

solving a 3D uniaxial compression problem. A cylinder of radius 1 m and height 0.5 m is

subjected to a compressive pressure of 1 MPa on the top face with the bottom fixed (Fig.

4.17). We assume a linear isotropic constitutive relationship with E = 2.05 × 1011N/m2

and ν = 0.29 and study the convergence of the two integration schemes with respect to

h-refinement using FCM. We use triquadratic hexahedron elements (27 node, 81 DOFs) of

various mesh sizes as tabulated in Table. 4.2. For both the methods, 3 × 3 × 3 quadrature

points were used in all the integration cells. The strong penalty method [53] with a penalty

value of 1016 was employed to enforce the zero Dirichlet boundary condition on the bottom

face. An explicit surface discretization of the top face was introduced on which the traction

integral was evaluated. This surface integration mesh is independent of the actual solution

mesh and does not introduce additional degrees of freedom [95]. The reference solution

(Uex = 3.47926 Nm) for comparison was obtained by an overkill FEM solution of the same

problem using 313,842 DOFs in SOLIDWORKS [3].

The convergence plot with respect to global h-refinement for various octree depths in

computing the stiffness matrix of FCM using the two integration schemes is shown in Fig.

113

4.18. We find that SAQ exhibits monotonic convergence whereas characteristic function’s

convergence is oscillatory in nature. It is also clear from Fig. 4.18 that the error plot for

the characteristic function method oscillates about the error plot for our SAQ (blue lines

in Fig. 4.18). Moreover, the characteristic function method requires at least 5 subdivisions

(red lines in Fig. 4.18) for the oscillations to settle down and come closer to the accuracy of

SAQ’s 2 subdivisions.

It is also clear from Fig. 4.19 that SAQ requires just one subdivision to achieve the

same level of accuracy as that of characteristic’s five subdivision. Moreover, Fig. 4.19 also

suggests the oscillatory nature of convergence of the characteristic function method w.r.t

octree refinement. This is further confirmed from the von Mises stress plots obtained for the

two methods for various levels of octree refinement shown in Fig. 4.21 and Fig. 4.22. The

reference von Mises stress plot obtained from an overkill FEM solution in SOLIDWORKS [3]

is shown in Fig. 4.20. Fig. 4.21 clearly shows spurious stresses at the edges of the top face due

to the inability of the characteristic integration scheme to resolve the geometry at lower levels

of refinement. On the other hand, from Fig. 4.22 it is clear that SAQ does not exhibit such

a phenomena and the von Mises stress plots for all three subdivisions are quite similar to one

another. The reason for this is that even though we use a coarse polyhedral approximation

(Ω0) at lower subdivisions (obtained by ray casting in 2D and polygonization in 3D), the

incorporation of the shape sensitive term in the moment fitting equations suitably accounts

for the difference between Ω0 and Ω and thereby enabling a good approximation of the

moment integral resulting in accurate shape aware integration weights. This in turn implies

that, unlike SAQ, one often requires more than 4 subdivisions for the characteristic function

method to produce reliable accurate results for realistic problems with complicated geometry

in 3D. Table. 4.3 lists the time required to compute the stiffness matrix in generating the

converged points of the h-refinement convergence graph (Fig. 4.18) for both the methods.

From the table we find that SAQ is at least 43-60 times faster than characteristic function

method for this problem. For the SAQ scheme to generate the weights, on an average, 72%

114

of the time is spent in quadrature point generation (via scaled Cartesian product rule), 8%

in approximate polyhedra (Ω0) construction, 18.5% in setting up the linear system ({M}

and [A]) and 1.5% in solving the linear system. However, by using random quadrature point

generation schemes (as discussed in section 3.6.5) the total time for SAQ can be reduced

even further. This suggests that, unlike the characteristic function method, SAQ provides a

scalable/viable solution for integration over complex 3D domains.

Figure 4.17: Cylinder under uniaxial compression

Figure 4.18: Convergence w.r.t h-refinement for the cylinder problem

115

Figure 4.19: Convergence w.r.t octree refinement for the cylinder problem

Figure 4.20: von Mises stress plot (top face) for the uniaxial cylinder problem obtained from
an overkill FEM solution (with 313,842 DOFs) in SOLIDWORKS [3]

Figure 4.21: von Mises stress plot (top face) for the uniaxial cylinder problem obtained from
(a) one (b) two and (c) three octree subdivisions using the characteristic integration scheme
(4x4x4 mesh) in FCMLab [95]

116

Figure 4.22: von Mises stress plot (top face) for the uniaxial cylinder problem obtained from
(a) one (b) two and (c) three octree subdivisions using the SAQ scheme (4x4x4 mesh) in
FCMLab [95]

Table 4.2: Mesh sizes and corresponding DOFs for the uniaxial compression problem

Grid Size DOFs

2 x 2 x 2 375
3 x 3 x 3 1,029
4 x 4 x 4 2,187
5 x 5 x 5 3,993
7 x 7 x 7 10,125
9 x 9 x 9 20,577

10 x 10 x 10 27,783
12 x 12 x 12 46,875
14 x 14 x 14 73,167

117

Table 4.3: Time required to generate the stiffness matrix in generating the converged points
for various mesh sizes

Grid Size Time (s) Speed up

Characteristic SAQ
2 x 2 x 2 714.13 11.90 60.03
3 x 3 x 3 1540.32 29.30 52.57
4 x 4 x 4 2733.53 54.35 50.29
5 x 5 x 5 4199.05 82.41 50.96
7 x 7 x 7 8590.39 183.82 46.73
9 x 9 x 9 14291.23 327.35 43.66

10 x 10 x 10 19705.23 411.55 47.88

4.4 Summary

Figure 4.23: Displacement norm plot of a human femur model problem as obtained by
employing SAQ in FCMLab with E = 15.2 × 103 N/mm2 and ν = 0.4. An hip contact
pressure of 1 MPa is applied on the non-boundary conforming discretization using a separate
surface discretization of the hip cap.

We successfully demonstrated the application of SAQ in the context of FCM. We imple-

mented the method in FCMLab [95] and performed convergence studies for 2D plane stress

and 3D isotropic elasticity. The experimental results clearly indicates that, to achieve a

given accuracy, SAQ requires far fewer subdivisions / less time compared to the standard in-

tegration scheme (characteristic function approach) used in FCM. In addition, SAQ is found

118

to posses superior order of convergence compared to the characteristic function approach.

Moreover, the characteristic function approach is found to produce erroneous results at lower

levels of refinement for certain problems in addition to exhibiting oscillatory convergence.

Reliable and consistent results from characteristic function method can be expected only

with 4 or more subdivisions. This is essentially because of the inability of the method to

resolve the geometry at lower grid resolutions. This makes the characteristic function ap-

proach computationally very expensive for problems with complicated geometry such as the

human femur model shown in Fig. 4.23. On the other hand, the introduction of shape

correction factor in the computation of moments in SAQ makes the computed quadrature

weights shape aware and thus enables the weights to adapt to the domain of integration

automatically. This explains why SAQ produces accurate results even at lower grid resolu-

tion. SAQ is found to exhibit monotonic convergence for integration over simple geometries

and we anticipate similar behavior even for more complex geometries. Moreover, SAQ offers

a lot of flexibility in the choice of quadrature points and in the choice of basis functions

as its formulation is based on the moment fitting equations. We also note that SAQ was

formulated irrespective of how the original domain Ω is represented, and it can be used with

or without an integration mesh. This suggests that SAQ is not only applicable to FCM but

also to other immersed boundary and meshfree methods.

The introduction of shape correction factors results in an approximation error in compu-

tation of moments and hence in the integral computed using SAQ. Hence, there is a need to

develop a priori and a posteriori error estimates for SAQ which will be the subject of the

next chapter.

119

Chapter 5

A priori and a posteriori error

estimation of SAQ

5.1 Background

Adaptive numerical integration refers to the process of approximating the integral of a

given function to a specified precision by adaptively subdividing the integration domain

into smaller domains over which a set of local quadrature rules are applied [98]. All adaptive

algorithms for numerical integration have a general structure that consists of the following

four main steps [61]

1. Choose some subregion from a set of subregion(s)

2. Subdivide the chosen subregion(s)

3. Apply the integration rule to the new subregions; update the subregion set

4. Update global integral and error estimates; check for convergence

The corresponding components that distinguish these adaptive algorithms are (1) type of

representation used for subregion set, (2) a subdivision strategy and (3) an integration rule

120

and an error estimator. Error estimation is a key step in this process that enables adaptivity.

Error estimation in one dimension (interval) is very well understood and many estimators

have been developed since 1960s [98]. One popular technique is to estimate the error in the

actual integral
∫ b
a
f(x)dx as

e ≈ |In1 [a, b]− In2 [a, b]| (5.1)

where In1 and In2 are integrals computed using quadrature rule of different degrees. This

error estimate is based on the assumption that if the estimate In2 is a better approximation

of the integral than In1 , then the difference between both estimates will be a good estimate

of the difference between In1 and the actual integral [61]. Another class of error estimators

are based on the following

e ≈ |I(m1)
n [a, b]− I(m2)

n [a, b]| (5.2)

where I
(m1)
n and I

(m2)
n are integrals computed using two different quadrature rule (such as

Gauss quadrature and Clenshaw-Curtis [98]) of the same degree (n).

Other types of estimator work on analytically bounding the error in the quadrature

using some form of Taylor series expansion and invoking the Taylor’s Remainder Theorem.

These type of estimates (known as “a priori error estimate”) are useful to know the order

of convergence of the quadrature scheme. These estimates involve higher order derivatives

of the integrand that are often not very easy to compute as the function f is not known “a

priori”. However, some authors [44, 57] advocate approximating these derivatives in order

to come up with a computable error estimate. Such error estimates can also be used to drive

the adaptive integration process. Many error estimators have been developed in the last 50

years for the 1D interval and we refer the reader to [98] for details. Likewise, many error

estimates have been developed for a variety of regions such as hyper-rectangular regions [28],

triangles [32] and tetrahedra [27].

121

In short, adaptive quadrature over one and two dimensions is very well understood and

in fact many commercial packages such as QUADPACK [101] and MATLAB [90] supports

adaptive quadrature. Specifically, MATLAB [90] provides two functions int and quad2d for

adaptive quadrature over intervals and planar regions respectively. These two functions also

return an upper bound of the relative/absolute error in the final computed integral.

Much of the work on error estimators that is discussed above and in the literature were

developed in the context of integrand adaptivity over simple domains. However, to the best

of our knowledge, not much has been done with respect to shape adaptivity. Hence, in this

chapter we will focus on estimating the error in SAQ w.r.t. shape adaptivity. Specifically,

we will develop error estimators for SAQ to estimate the error due to approximation of

moments (see Eq.(3.4)). Hence, we will develop an a priori and a posteriori error estimator

for SAQ that estimates the error in the integral due to moment approximations. However,

to begin with, we will discuss all the possible sources of error in SAQ and ways to estimate

or eliminate the error. Then, we will develop a priori and a posteriori error estimates using

Taylor’s Remainder Theorem for SAQ with SSA based correction factors. Error estimates for

other types of correction factors (including TSA) can be derived based on the ideas presented

in this chapter.

5.2 Sources of error

In this section we will look at all the possible sources of error in SAQ and ways to avoid

and/or estimate the errors. We will refer to the algorithmic steps presented in section 3.4 in

order to identify the sources of error in SAQ.

5.2.1 Insufficient/inappropriate choice of basis functions

When the choice of basis functions {bi}mi=1 (Step 2) is inappropriate/insufficient then the

integrand f /∈ span({bi}mi=1) resulting in integrand error. In classical FEM [25] and its

122

variations [66, 26], it is not difficult to determine the degree or nature of the integrand

exactly. In such cases, this problem can be completely avoided by choosing appropriate

number/type of basis functions. In certain other applications such as [85, 72, 73], it might

be difficult to estimate/know this beforehand and hence can significantly affect the integral

accuracy. However, as we have already stated in the previous section, estimating integrand

error is a well understood subject and hence will not be the focus here.

5.2.2 Insufficient number of domain quadrature points

Choosing fewer domain quadrature points (Step 3) than the number of basis functions can

result in an over-determined linear system i.e. m > n in Eq.(3.2). This can result in error

due to linear least squares [122] in Step 7 of the algorithm. This error can be completely

eliminated by making [A] a square invertible matrix by choosing number of quadrature points

(n) to be equal to the number of basis functions (m).

5.2.3 Inappropriate location of domain quadrature points

In general, choosing domain quadrature points (Step 3) outside Ω or Ω0 is known to affect

the accuracy of SAQ (see section 4.5). In general, choosing random points such that it lies

completely inside both Ω and Ω0 can help eliminate this error completely. However, choosing

quadrature points that lie close to each other can affect the condition number of [A] thereby

deteriorating the accuracy of the method. One simple way to eliminate this problem is to

first check the conditioning of [A] before solving the linear system. This way, one can throw

away the generated quadrature points if [A] is poorly conditioned and generate a new set of

points until the condition number improves. Alternatively, one could use approximate Fekete

points as suggested by Sommariva and Vianello [15] to completely avoid this problem.

123

5.2.4 Inaccurate Moment Computations

Inaccuracy in moment computations (Eq.(3.9)) can be attributed to the following :

a. Inaccurate distance and/or measure computations Distance computations (VN)

are required in the calculation of moments using SSA. Likewise measure computa-

tions are required for shape correction factors based on TSA. The accuracy of dis-

tance/measure computation is dependent on the representation of Ω and the algo-

rithm employed. One simple way to compute this distance is by a simple ray casting

algorithm [119] as illustrated in Fig. 5.1.

Figure 5.1: Design velocity is simply the distance to the boundary in a direction normal to
Γ0

Likewise, measure of small features can be computed accurately using closed form

expressions or by first-order SSA. If we know that ζ is the absolute maximum error in

distance computations and η is the absolute maximum error in measure computations,

then the first-order error in the integral of ith basis function (dMi) due to inaccurate

distance/measure computations can be shown to be bounded above by the following :

124

|dMd
i | ≤ ζ

∣∣∣∣ ∫
Ω0

bi(X)dΩ

∣∣∣∣+ η
ns∑
j=1

bi(Xj)

= ζ

∣∣∣∣ ∫
Γ0

βiX(X)NXdΓ0

∣∣∣∣+ +η

∣∣∣∣ ns∑
j=1

bi(Xj)

∣∣∣∣ (using divergence theorem)(5.3)

b. Boundary integration error The evaluation of moments (Eq.(3.12)) is essentially

an integral over the polygonal/polyhedral boundary (Γ0). Unlike the first term in

Eq.(3.12), the second term is hard to evaluate due to the presence of the velocity term

VN that in turn depends on the complexity of Ω. Thus, one often requires 1D/2D

integrand adaptivity to accurately integrate the velocity term. However, fortunately,

integrand adaptivity is very well understood as already stated in section 5.1 and these

techniques can be employed directly to estimate the boundary integral error in the

evaluation of moments. If, ebi is the upper bound of the error in integral of bi due to

boundary integration, then

|dM b
i | ≤ ebi (5.4)

c. Error due to nth-order Taylor series approximation In SAQ, we use nth-order

Taylor series approximation (using sensitivities such as SSA or TSA) to compute the

shape correction factors. This in turn enables us to estimate the moments over Ω

using a simplified domain Ω0. This error can be estimated using Taylor’s Remainder

Theorem as we will see in the next section. If, esi is the upper bound of the error due

to nth-order Taylor series approximation then

|dM s
i | ≤ esi (5.5)

125

Thus, the total error in the computation of ith moment is bounded by

|dMi| ≤ |dMd
i + dM b

i + dM s
i | ≤ ζ

∣∣∣∣ ∫
Γ0

βiX(X)NXdΓ0

∣∣∣∣+ η

∣∣∣∣ ns∑
j=1

bi(Xj)

∣∣∣∣+ ebi + esi (5.6)

and an a posteriori error estimate of the computed integral (using SAQ) can be esti-

mated as (see section. 5.3 for details of this derivation)

|e| ≤ {dM}T{z} (5.7)

where z is the adjoint solution obtained by solving [A]T{z} = {f(Xi)} and {dM} is

the estimate of the total error in moments.

Henceforth, we will assume ζ = η = 0 and ebi = 0 and so |dMi| ≤ esi . In other words, we will

ignore/eliminate the error due to boundary integration/distance computations and consider

only the error in moments due to Taylor series approximation. Further, for simplicity, we

will assume that the shape correction factors were estimated only using first-order shape

sensitivity analysis (SSA) [75] and that Ω0 is homeomorphic to Ω (i.e. CT
i = 0). Estimates

for other types/order of sensitivity analysis can be easily derived following the ideas/theorems

that we present in the next section.

5.2.5 Fixed precision arithmetic

Numerical errors due to fixed precision arithmetic is a common problem in any numerical

process and SAQ is no exception (Steps 4-8). There are different ways to estimate/eliminate

these errors and we will refer the reader to [122] for details.

The focus of this chapter is to develop an a priori and a posteriori error estimate of SAQ

due to first-order Taylor series approximation of the moments using SSA. Hence, for the sake

of simplicity, we will neglect all other errors in our analysis.

126

5.3 A priori error analysis

In this section, we will develop an a priori error estimate for SAQ due to first-order Taylor

series approximation of moments using Shape Sensitivity Analysis (SSA) [75]. In other

words, we assume that the shape correction factor was derived purely using first-order SSA

and we also assume that the simplified Ω0 is always homeomorphic to Ω (i.e. CT
i = 0).

We will provide numerical results to support the theoretical estimates. We neglect all other

sources of error (including numerical errors) as discussed in the previous section.

Theorem 5.3.1 (Taylor’s Remainder Theorem). Let Mi : [0, α] → R be a C r continuous

function and for k ∈ Z+ let Pk(t) = Mi(0) + t.M
′
i (0) + t2

2!
M
′′
i (0) + ...+ tk

k!
Mk

i (0) (r ≥ k + 1).

Then, for some ε ∈ [0, α] we have the following error bound

|Ek(t)| = |Mi(t)− Pk(t)| ≤
|tk+1|

(k + 1)!
|Mk+1

i (ε)| (5.8)

Proof. See proof in Appendix C.

Corollary 5.3.1.1. For a linear approximation P1(t) = Mi(0) + t.M
′
i (0) we have the follow-

ing error bound

|E1(t)| = |Mi(t)− P1(t)| ≤ t2

2!
|M ′′

i (ε)| (5.9)

Proof. Follows directly from Theorem 5.3.1 by setting k = 1

Referring to the moments in Eq.(3.2), we know Mi(Ω) =
∫

Ω
bi(x)dΩ. However, this can

also be written as Mi(Ω) = Mi(Ω0, V̂, t). For a given initial domain (Ω0) and design velocity

vector (V̂), we can write Mi(Ω) = MΩ0,V̂
i (t). For the sake of simplicity, we will drop the

superscripts and henceforth denote Mi(t) ≡MΩ0,V̂
i (t)

Theorem 5.3.2. Let Ω ⊂ Rd and Ω0 ⊂ Rd be two r-sets [108] such that there exist a linear

homeomorphic mapping T : Ω0(X)×[0, 1]→ Ω(x) given by T(X, t) = x = X+tV̂(X). Here,

V̂(X) ⊂ Rd is the velocity vector defined in the neighborhood of Ω0 and is Ck continuous

127

with k ≥ 1. If bi : Ω ∪ Ω0 → R is a C r continuous function with r ≥ 2, Mi(t) =
∫

Ω
bi(x)dΩ

and M∗
i (t) =

∫
Ω0

[bi(X) + t∇.(b(X) ˆV(X))]dΩ0 then for some ε ∈ [0, 1] we have

|Mi(t)−M∗
i (t)| ≤ t2

2!

∣∣∣∣ ∫
Ω

(
∇.
[
∇.(biV̂(x))V̂(x)

]
−∇.

[
bi(x)∇V̂(x).V̂(x)

]
dΩ

)∣∣∣∣
t=ε

∣∣∣∣ (5.10)

Proof. Since, bi is at least C 2 continuous it can be proved that Mi(t) is at least C2 continuous

(see Theorem 5.6 in [62]). Then, from Corollary 5.3.1.1 for any ε ∈ [0, 1] we have the following

|Mi(t)−M∗
i (t)| ≤ t2

2!

∣∣∣∣d2Mi

dt2

∣∣∣∣
t=ε

(5.11)

However, d
2Mi

dt2
=
∫

Ω
∇.
[
∇.(biV̂(x))V̂(x)

]
−∇.

[
bi(x)∇V̂(x).V̂(x)

]
dΩ (see proof in Appendix

A) and the result follows plugging in this in Eq.(5.11).

Theorem 5.3.3. Let Ω ⊂ Rd and Ω0 ⊂ Rd be two r-sets [108]. Let {bi(x)}ni=1 be a set of

Ck continuous basis functions of degree p with k ≥ 2 (bi : Ω ∪ Ω0 → R). Let f : Ω →

R be a (C k continuous function) in span({bi(x)}mi=1). Let {xi}ni=1 ⊂ Ω ∩ Ω0 be a set of

quadrature points chosen to render the moment fitting matrix A invertible. If {w} and {w∗}

be the quadrature weights computed using the moments Mi(t) =
∫
bi(x)dΩ and M∗

i (t) =∫
Ω0
bi(x) +∇.(bi(x)V̂).dΩ0 respectively then the error |e(q∗)| =

∣∣∣∣ ∫Ω
fdΩ−

∑n
i=1W

∗
i f((xi))

∣∣∣∣
in integrating f over Ω using the shape aware quadratures q∗ = {xi, wi∗}ni=1 is bounded by

|e(q∗)| ≤ (Vmax)
2λmax||dM||2||f(x)||2 (5.12)

where dMi = (Bi+2DEi)
2

is a constant that depends only on the basis functions, gradient of the

design velocity and geometry of the domain, λmax is the maximum eigenvalue of A−TA−1

and Vmax = supX∈Ω0

∥∥∥V̂(X)
∥∥∥

2

Proof. By definition, the weights w and w∗ are obtained by solving the moment fitting

equations as

128

{w} = [A]−1{M} (5.13)

{w∗} = [A]−1{M∗} (5.14)

Subtracting the two equations we get

{w} − {w∗} = [A]−1
(
{M} − {M∗}

)
{∆w} = [A]−1{∆M} (5.15)

{w} corresponds to the exact quadrature rule if the moments M were computed exactly

(without any numerical errors). Thus, we have the following

|e(q∗)| =

∣∣∣∣ ∫
Ω

fdΩ−
n∑
i=1

w∗i f((xi))

∣∣∣∣
=

∣∣∣∣ n∑
i=1

wif((xi))−
n∑
i=1

w∗i f(xi)

∣∣∣∣∣∣∣∣
=

∣∣∣∣{w −w∗}T{f(x)}
∣∣∣∣

=

∣∣∣∣{∆w}T{f(x)}
∣∣∣∣

=

∣∣∣∣{[A]−1{∆M}}T{f(x)}
∣∣∣∣ (5.16)

where the last step was obtained by substituting for {∆w} from Eq.(5.15). Now, normalizing

∆M and applying Cauchy-Schwartz inequality [111] we get

129

|e(q∗)| =

∣∣∣∣||∆M||2
{

[A]−1
{∆M}
||∆M||2

}T
{f(x)}

∣∣∣∣
≤ ||∆M||2

∣∣∣∣∣∣∣∣[A]−1
{∆M}
||∆M||2

∣∣∣∣∣∣∣∣
2

||f(x)||2 (5.17)

Now, applying the eigen value lemma in Appendix D we have

|e(q∗)| ≤ ||∆M||2λmax||f(x)||2 (5.18)

where λmax is the maximum eigenvalue of A−TA−1.

From Theorem 5.3.2, we have the following

|Mi(t)−M∗
i (t)| ≤ t2

2!

∣∣∣∣ ∫
Ω

(
∇.
[
∇.(bi(x)V̂(x))V̂(x)

]
−∇.

[
bi(x)∇V̂(x).V̂(x)

]
dΩ

)∣∣∣∣
t=ε

∣∣∣∣
(5.19)

In our application, we will always assume V̂ = Vnn (i.e. normal perturbations). Thus,

multiplying and dividing the above equation by Vmax = supX∈Ω0

∥∥∥V̂(X)
∥∥∥

2
= supX∈Ω0

VN(X)

and introducing the notation V = V̂
Vmax

we have the following :

|Mi(t)−M∗
i (t)| ≤ (t.Vmax)

2

2!

∣∣∣∣ ∫
Ω

(
∇.
[
∇.(biV(x))V(x)

]
−∇.

[
bi(x)∇V(x).V(x)

]
dΩ

)∣∣∣∣
t=ε

∣∣∣∣
(5.20)

where we have used the fact that Vmax ≥ supx∈Ω Vn(x(t)) for any t ∈ [0, 1].

Now, applying divergence theorem and using the fact that V.n ≤ 1 and t ≤ 1, we get

130

|Mi(t)−M∗
i (t)| ≤ (t.Vmax)

2

2

∣∣∣∣ ∫
Γ

([
∇.(biV(x))V(x).n

]
−
[
bi(x)∇V(x).V(x)

]
.ndΓ

)∣∣∣∣
t=ε

∣∣∣∣
≤ (Vmax)

2

2

∫
Γ

∣∣∣∣∇.(biV(x))

∣∣∣∣+ |bi(x)||nT∇Vn|dΓ

∣∣∣∣
t=ε

≤ (Vmax)
2

2

∫
Γ

‖∇(bi(x))‖2 ‖V(x)‖2 + |bi(x)| |∇.(V(x))|+ |bi(x)| ‖∇V (x)‖2 dΓ

(5.21)

However, |∇.(V(x))| ≤ ‖∇V (x)‖2 ≤ ‖∇V1(x)‖2
2+‖∇V2(x)‖2

2+‖∇V3(x)‖2
2 and ||V|| ≤ 1.

Further, since bi(x) is C 2 continuous,
∫

Γ
‖∇bi(x)‖2 ≤ Bi <∞. This is because bi ∈ BV (Ω)

and so
∫

Γ
‖∇bi(x)‖2 is finite and equal to the total variation. Likewise, since V(x) is C 1

continuous,
∫

Ω
‖∇V (x)‖2 dΩ ≤

∫
Ω

[‖∇V1(x)‖2
2 + ‖∇V2(x)‖2

2 + ‖∇V3(x)‖2
2] ≤ D < ∞. Also,

bi(x) is a continuous function defined on a compact set and therefore it is bounded as well

i.e. bi(x) ≤ Ei <∞. Thus, substituting the bounds Bi, D and Ei in Eq.(5.21) we get :

|Mi(t)−M∗
i (t)| ≤ (Vmax)

2

2
(Bi + 2DEi)

Now, introducing the notation dMi = (Bi+2DEi)
2

we get

|∆Mi(t)| ≤ (Vmax)
2|dMi|

or

||∆M||2 ≤ (Vmax)
2||dM||2 (5.22)

Substituting Eq.(5.22) in Eq.(5.18) we get the desired result.

131

Theorem 5.3.4. SAQ converges quadratically w.r.t. uniform (integration) mesh re-

finement i.e. there exists a constant C independent of the integration mesh size h such

that

|e(q∗)| ≤ Ch2 (5.23)

provided the maximum normal velocity Vmax always satisfies the relation Vmax ≤ h

Proof. From Theorem 5.3.3 we have established

|e(q∗)| ≤ (Vmax)
2λmax||dM||2||f(x)||2 (5.24)

Since f is continuous and is defined over a compact set Ω, it attains its maximum fmax

for some x ∈ Ω and thus

||f(x)||2 ≤
√
nfmax (5.25)

Likewise, since bi and V are both C2 continuous and are defined over a compact set Ω∪Ω0,

we can define dMmax as

dMmax = max1≤i≤n|dMi| (5.26)

and hence

||dM||2 ≤
√
n(dM)max (5.27)

and now substituting Eq.(5.27) and Eq.(5.25) in Eq.(5.24) we get

|e(q∗)| ≤ (Vmax)
2λmaxn(dM)maxfmax (5.28)

Now, defining a constant C1 = n(dM)maxfmax we get

132

|e(q∗)| ≤ C1λmax(Vmax)
2 (5.29)

If we always choose Ω0 homeomorphic to Ω such that Vmax ≤ h, we get the following

bound

|e(q∗)| ≤ C1λmaxh
2 (5.30)

Here, λmax is the maximum eigenvalue of (ATA)−1 where we assume A to be a real non-

singular matrix. In order to bound this let us first bound the entires of ATA by the basis

function values bi as

(ATA)ij = AT
i Aj

≤ ||Ai||2||Aj||2 (by Cauchy-Schwarz inequality)

≤
√
n(bi)max

√
n(bj)max

= n(bi)max(bj)max

≤ n[max
k

sup
x∈Ω

[bk(x)]2] (5.31)

The maximum eigenvalue ζmax of (ATA) can be proved [110] to be bounded above by

the maximum row sum i.e.

|ζmax| ≤ max
i

n∑
j=1

|(ATA)ij| (5.32)

Thus, using the above and Eq.(5.31) and the fact that 0 < ζmin ≤ ζmax (as ATA is

positive definite since A is non-singular) we have

|ζmin| ≤ n2[max
k

sup
x∈Ω

[bk(x)]2] (5.33)

133

However, ζmin = 1
λmax

and thus we have the following upper bound for λmax

|λmax| ≤
1

n2[max
k

sup
x∈Ω

[bk(x)]2]
= Λ (5.34)

here 0 < Λ <∞ is a constant independent of h. Thus, using this bound in Eq.(5.28) we get

the following convergence result

|e(q∗)| ≤ C1Λh2 = Ch2 (5.35)

where C is a constant independent of h.

5.3.1 Example 1 - Quadrant of a Circle

In this example, we will first compute the area of quadrant of a circle (Ω) analytically by

applying first-order Shape Sensitivity Analysis (SSA) using a simple right angled triangle as

the approximate domain (Ω0) as shown in Fig. 5.2. Then, we will study the convergence of

SAQ for various bivariate polynomials xmyn (of order up to 3) over this Ω w.r.t a variety of

polygonal approximations (Ω0).

Figure 5.2: Quadrant of a Circle (Ω) and its approximate domain (Ω0)

134

From first-order SSA we have the following :

∫
Ω

dΩ ≈
∫

Ω0

dΩ0 +

∫
Ω0

VNdΩ0

=

∮
E1

xnxdt+

∮
E2

xnxdt+

∮
E3

[xnx + VN(t)]dt (5.36)

However, x = 0 on E1 and nx = 0 on E2. Thus, the above reduces to the following

∫
Ω

dΩ ≈
∮
E3

[xnx + VN(t)]dt (5.37)

The unit outward normal vector to E3 is 1√
2

 1

1

. Thus, the first term in the above

equation reduces to the following

∮
E3

xnxdt =
1√
2

∫ √2

0

[1− t√
2

]dt = 0.5 (5.38)

The contribution from the second term can be computed by first writing the velocity VN

as a function of the line parameter t. Any point (xe, ye) on E3 can be written as

xe = 1− t√
2

; ye =
t√
2

(5.39)

Let (xc, yc) be the point of intersection of the normal at (xe, ye) and the quadrant boundary.

Then,

xc = xe +
VN√

2
; yc = ye +

VN√
2

(5.40)

Substituting Eq.(5.39) in Eq.(5.40) we get

xc = 1− t√
2

+
VN√

2
; yc =

t√
2

+
VN√

2
(5.41)

However, yc =
√

1− x2
c =

√
1− [1− t√

2
+ d√

2
]2. Substituting this for yc in the above and

135

then simplifying we get the following quadratic equation for Vn

V 2
N +
√

2VN + [t2 −
√

2t] = 0 (5.42)

Solving for VN , we get

VN(t) =
−
√

2 +
√

2− 4[t2 −
√

2]

2
(5.43)

Then, using this expression in the second term of Eq.(5.37) we get the contribution from

this term as

∮
E3

VN(t) dt =

∮
E3

−
√

2 +
√

2− 4[t2 −
√

2]

2
dt (5.44)

Now, substituting Eq.(5.38) and Eq. (5.44) in Eq.(5.37), we compute the Area of the quad-

rant as

∫
Ω

dΩ ≈
∮
E3

xnxdt+

∮
E3

VN(t)]dt

= 0.5 + 0.285398163397448

≈ π

4

Note that the only approximation involved in the above is due to the fixed precision arith-

metic involved in the computation of the second boundary integral containing the velocity

term (VN). Thus, ∫
Ω

dΩ =

∮
E3

[xnx + VN(t)]dt (5.45)

Referring to Fig. 5.2, one can easily observe that the first term above corresponds to the

area of the approximate domain (A1) and the second term to the remaining area under the

quadrant (A2). In other words, area of a quadrant can be obtained exactly by applying

first-order Taylor series using a triangle (or any polygon homeomorphic to the quadrant) as

136

the approximate domain as long as the boundary integral involving the velocity term can be

computed exactly. However, evaluating the boundary integral involving the velocity term

(Eq.(5.44)) is non-trivial as it involves square roots. Hence, when computed numerically one

will have to use higher order quadrature or adaptive quadrature schemes to compute this

integral as demonstrated by Fig. 5.3. We used MATLAB’s [90] int function for adaptive

quadrature and the regular n − pt Gauss quadrature over the boundary of Ω0 (i.e. line

integral) for computing the moment approximations.

Figure 5.3: Error in the area computations of a quadrant (Ω) using zeroth and first-order
Taylor series approximation various polygonal approximations (Ω0)

Figure 5.4: Different polygonal approximations (Ω0) used for computing SAQ over a quadrant
domain (Ω). The vertices of the polygon (green dots) lie on the original boundary (Γ)

137

Fig. 5.3 plots the error in the integral due to first-order moment approximations using

various 1D integration rules to compute the boundary integral of Eq.(5.44) for various polyg-

onal approximations. We find that the adaptive quadrature scheme gives the best results as

the error is close to machine precision even for the coarsest polygonal approximation (i.e. for

the triangle). This observation is quite general and hence can be generalized to any domain

of integration in 2D (or 3D) as long as the vertices (or edges) of the approximate polygon (or

polyhedron) Ω0 lie on the original boundary (Γ) as shown in Fig. 5.4. We also superpose the

result obtained by omitting the boundary integral term arising from first-order SSA which

would then correspond to 0th order Taylor series approximation. We clearly see from Fig.

5.3 that omitting the second term would result in poor convergence.

Figure 5.5: Convergence plot for integral of bivariate polynomials (of order up to 3) over
the quadrant obtained using SAQ

Fig. 5.5 is the convergence plot for the SAQ scheme in integrating all bivariate polynomi-

als (xmyn) of order up to 3 using 10 randomly generated integration points lying completely

inside Ω and Ω0. We find that the order of convergence (w.r.t magnitude of the maximum

design velocity) is always greater than 2 (ranging from 2.5 to 3.95) for all the considered

138

integrands.

5.3.2 Example 2 - Family of noisy domains

In this example, we will study the convergence of SAQ in integrating all bivariate polynomials

(xmyn) of order up to 3 over a family of noisy domains obtained by setting different values of

k in the equation y(x) = x4 + ex + 0.75sin(kπx) + 0.5 for x ∈ [0, 2] (see Fig. 5.6). As before,

we use 10 randomly generated points (lying completely inside Ω and Ω0) as our integration

points.

Figure 5.6: A family of noisy domains obtained by setting various values of k in y(x) =
x4 + ex + 0.75 sin(kπx) + 0.5 for x ∈ [0, 2]

139

Figure 5.7: Convergence plot for area computation over the noisy domain for various values
of k

Figure 5.8: Illustration of violation of homeomorphic assumption at coarser polygonal ap-
proximations (ne = 7) for the noisy domain with k = 4

The convergence of SAQ (w.r.t. number of polygonal edges) for the area computation

over this family of noisy domains is given in Fig. 5.7. It is interesting to note that, unlike

the quadrant domain, there is significant error for coarser polygonal approximations even

for area computations. This is because, at coarser polygonal approximation, the bijective

normal mapping that we assume between Ω and Ω0 is not homeomorphic as illustrated in

Fig. 5.8. This problem gets resolved by using sufficiently higher number of edges so that

140

Ω and Ω0 are homeomorphic to each other. As in the quadrant problem, we observe that

the error slightly increases with increase in number of edges due to numerical noise. Fig.

5.9-5.12 plots the convergence of SAQ w.r.t. maximum design velocity for k = 2, 4, 6 and

8. Fig. 5.9 exhibits a consistent order of convergence close to 2 (ranging from 2.05 to 2.09).

However, as the boundary becomes more and more noisy (with increasing value of k), we

don’t have a consistent order of convergence for coarser polygonal approximations. Once

there are sufficient number of edges to ensure homeomorphic mapping between Ω and Ω0,

there is a consistent order of convergence close to 2 (ranging from 1.96 to 2.47).

Figure 5.9: Convergence plot for integral of bivariate polynomials (of order up to 3) over the
noisy domain with k = 2

Figure 5.10: Convergence plot for integral of bivariate polynomials (of order up to 3) over
the noisy domain with k = 4

141

Figure 5.11: Convergence plot for integral of bivariate polynomials (of order up to 3) over
the noisy domain with k = 6

Figure 5.12: Convergence plot for integral of bivariate polynomials (of order up to 3) over
the noisy domain with k = 8

5.4 A posteriori error analysis

In this section, we will develop an a posteriori error estimate for SAQ due to first-order

shape correction factors obtained using SSA [75]. We will also provide numerical results to

support the theoretical estimates. We neglect all other sources of error (including numerical

errors) as discussed in section 5.2.

142

Theorem 5.4.1. An a posteriori error estimate due to moment approximations (by

SSA) in SAQ is given by the following

e(q∗) ≈ {∆M̂}T{z} (5.46)

where {z} is the adjoint solution obtained by solving (A)T{z} = {f(x)} and the error

in moments ∆M is approximated by ∆M̂i ≈ 1
2

∫
Γ0

[
∇bi(X).N(X)V 2

N(X)

]
dΓ0

Proof. From Eq.(5.16) we have the following

e(q∗) = ([A]−1{∆M})T{f(x)}

= {∆M}T{z} (where [A]T{z} = {f(x)}) (5.47)

{∆M} = {dMi}mi=1 is the actual error in moments. Here, we will estimate the actual

error in the moments using a higher order Taylor series. In other words, we know that,

first-order Taylor series approximation of moments is given by

M1
i (t) = Mi

∣∣
t=0

+ t
dMi

dt

∣∣
t=0

(5.48)

Likewise, one can obtain a second order Taylor series approximation of the moments by

adding the second order SSA to the above as follows :

M2
i (t) = Mi

∣∣
t=0

+ t
dMi

dt

∣∣
t=0

+
t2

2!

d2Mi

dt2
∣∣
t=0

(5.49)

The error in moments can thus be approximated as the difference between the above two

approximations :

143

|∆Mi| ≈ |∆M̂i|

= |M2
i (t)−M1

i (t)|

=
t2

2!

∣∣∣∣d2Mi

dt2

∣∣∣∣
t=0

≤ 1

2

∣∣∣∣d2Mi

dt2

∣∣∣∣
t=0

(5.50)

The second order SSA d2Mi

dt2

∣∣
t=0

can be shown to be equal to the following (see proof in

Appendix A) integral over the polygonal/polyhedral boundary (Γ0) if we assume normal

perturbations (V̂ = VNN)

d2Mi

dt2

∣∣∣∣
t=0

=

∫
Γ0

[
∇[bi(X)].N(X)V 2

N(X)

]
dΓ0 (5.51)

substituting this expression in Eq.(5.50) completes the proof.

5.4.1 Example 3 - Quadtree

In this example, we will use the a posteriori error estimate developed in this section to

predict the SSA error in integrating an arbitrary polynomial f(x, y) = 10 + 0.1x + 0.4y −

x2+5xy+2y2+9x3−10x2y+10xy2−10y3 over a unit circle (Fig. 5.13(a)), noisy domain (Fig.

5.13(b)) and non-convex domain (Fig. 5.13(c)). As f(x, y) is a degree 3 polynomial, we will

use 4× 4 box quadrature for interior cells (blue filled circles in Fig. 5.13) and a 10 pt SAQ

in each of the leaf cells (red plus marks in Fig. 5.13). As before, we generate quadrature

points for SAQ in the leaf cells randomly. The approximate polygon (Ω0) is constructed

over every leaf cell taking into account the type of leaf cell that arises in marching squares

(see Fig. 4.5). Thus, we compute the integral over each of these cells and then sum up

the contributions to get the integral over the original domain. Likewise, we compute the

144

error term (Eq.(5.46)) over each of the leaf cells and sum them up to get an estimate for

the overall error. The overall predicted error for each of these domains is plotted along with

the actual error (computed using symbolic integration in MATLAB [90]) for various levels

of quadtree refinement in Fig. 5.14. From the plot it is clear that the a posteriori error

estimate is pretty accurate for all three domains.

Figure 5.13: SAQ using a quadtree over different domains

Figure 5.14: Comparison of actual and predicted errors for the unit circle, noisy domain,
and non-convex domain

One main application of our a posteriori error estimate is that it can be used drive an

adaptive refinement process as the error can be localized over every leaf cell as shown in Fig.

5.15 for the non-convex domain (of Fig. 5.13(c)). From this plot, it is clear that close to

94% of the total error is concentrated in just two cells C1 (yellow) and C2 (light blue). This

is primarily because, unlike the other cells, Ω0 in these two cells do not approximate the

original domain (Ω) closely. Hence, it is more effective to subdivide these two cells instead

of others. In this example, the error seems to be proportional to integral of velocity in each

of these cells. However, this need not always be true as illustrated by Fig. 5.16. Fig. 5.16

is the error plot corresponding to the integral of the following continuous function over the

145

non-convex domain (Ω) using SAQ

g(x, y) =

x− 0.095 if x ∈ [−0.8, 0.095]

f(x− 0.095, y) if x ∈ [0.095, 0.99]

Figure 5.15: A posteriori error plot for integral of f(x, y) over the non-convex domain

Figure 5.16: A posteriori error plot for integral of g(x, y) over the non-convex domain

From this plot, we see that the error distribution is altered significantly to the point

where the maximum error cell (yellow cell) has shifted and the total error in the two cells

146

(C1, C2) put together has dropped to 80.29%. Thus, this example illustrates how the SSA

error depends not only on the velocity but also on the integrand.

5.5 Summary

Errors in SAQ can arise from one or more of the following :

1. Insufficient/inappropriate choice of basis functions

2. Inappropriate number/location of domain quadrature points

3. Inaccurate Moment computations

4. Fixed precision arithmetic

Out of the above, inaccurate moment computations is the main source of error in SAQ and

all the others can be easily eliminated as discussed in section 5.2. There are three possible

sources of errors that can lead to inaccurate moment computations and They are

1. Inaccurate distance and/or measure computations (dMd
i)

2. Boundary integration error (dM b
i)

3. nth order Taylor series approximation (dM s
i)

Thus, the total error in the computation of ith moment is bounded by

|dMi| ≤ |dMd
i + dM b

i + dM s
i | ≤ ζ

∣∣∣∣ ∫
Γ0

βiX(X)NXdΓ0

∣∣∣∣+ η

∣∣∣∣ ns∑
j=1

bi(Xj)

∣∣∣∣+ ebi + esi (5.52)

and an a posteriori error estimate of the computed integral (using SAQ) can be estimated

as

|e| ≤ {dM}T{z} (5.53)

147

where z is the adjoint solution obtained by solving [A]T{z} = {f(Xi)} and {dM} is the

estimate of the total error in moments. We have proved in Theorem 5.3.4 that SAQ converges

quadratically w.r.t maximum design velocity (and hence with the mesh size). We have also

given an a posteriori error estimate in Theorem 5.4.1 to estimate this error computationally.

This a posteriori error estimate can be localized and hence can be used to drive an adaptive

grid refinement process. Several 2D examples were given to corroborate these two theorems.

148

Chapter 6

Contributions and Open Issues

Contributions We proposed a new integration framework called Shape Aware Quadra-

tures (SAQ) using moment fitting equations [64, 116, 137], divergence theorem [41], and

sensitivity analysis [75, 106, 123, 80] to efficiently integrate arbitrary integrable functions

over arbitrary 2D/3D domains (Ω) even in the presence of small features. A simplified do-

main (Ω0) was used to approximate the moments in moment fitting equations. Appropriate

geometric and topological correction factors were used to correct for the shape deviation of

Ω0 from Ω. Shape correction factors were derived by the application of first/second-order

Shape Sensitivity Analysis (SSA) [75] and Topological Sensitivity Analysis (TSA) [106] of

the moment integrals. The use of shape correction factors in the moment fitting equations

enabled the resulting quadrature rule “shape aware”.

We demonstrated the use of SAQ in integrating arbitrary polynomial functions over ar-

bitrary 2D/3D domains in the presence of small features (such as notches, boundary noise

and holes) and compared it with some standard methods: scaled Cartesian product rule

as recommended in [132], geometric adaptive (GA) integration method proposed in [22],

polygonal (P) approximation method, shape sensitivity (SS) method (section 2.1.4) and

characteristic function approach [134]. SAQ was shown to be superior to GA, P and char-

acteristic methods in terms of accuracy and comparable to SS method in most cases. We

149

also observed that SAQ, when used in the leaf cells of quadtrees/octrees, required fewer

subdivisions / quadrature nodes to resolve the geometry of the integration domain when

compared to other methods. We also note here that the method was formulated irrespective

of how the original domain Ω is represented, and it can be used with or without an inte-

gration mesh. SAQ offers a lot of flexibility in the choice of quadrature points and in the

choice of basis functions as its formulation is based on the moment fitting equations. In fact,

our experiments indicate that we can indeed generate quadrature points randomly either in

the domain or on boundary as long as the moment matrix [A] is invertible. The weights

automatically adjusts itself depending on the position of quadrature points. A wide variety

of basis functions can be chosen in forming the moment fitting equations depending on the

type of integrand that arises in any given application.

One of the main applications of SAQ is in immersed boundary methods such as the Fi-

nite Cell Method (FCM). We successfully demonstrated the application of SAQ in FCM. We

implemented the method in FCMLab [95] and performed convergence studies for 2D plane

stress and 3D isotropic elasticity. The experimental results clearly indicates that, to achieve

a given accuracy, SAQ requires far fewer subdivisions / less time compared to the standard

integration scheme (characteristic function approach) used in FCM. The characteristic func-

tion approach is found to produce erroneous results at lower levels of refinement for certain

problems in addition to exhibiting oscillatory convergence. Reliable and consistent results

from characteristic function method can be expected only with 4 or more subdivisions. This

is essentially because of the inability of the method to resolve the geometry at lower grid

resolutions. This makes the characteristic function approach computationally very expen-

sive for problems with complicated geometry such as the human femur model shown in Fig.

4.23. On the other hand, the introduction of shape correction factor in the computation

of moments in SAQ makes the computed quadrature weights shape aware and thus enables

the weights to adapt to the domain of integration automatically. This explains why SAQ

produces accurate results even at lower grid resolution.

150

The introduction of shape correction factors results in an approximation of the moments

thereby affecting the accuracy of the integral computed using SAQ. Hence, we performed

an a priori error analysis of SAQ with SSA correction factors (of first-order) and proved

that the method is quadratic w.r.t. the integration mesh size (Theorem 5.3.4). We also

derived a simple a posteriori error estimate using second-order SSA (Theorem 5.4.1). This

a posteriori error estimate can be localized and hence can be used to drive an adaptive grid

refinement process. Several 2D examples were given to support these two error estimates.

The following are some possible impacts of this work :

1. Since SAQ was formulated independent of the representation of the domain, it would

be interesting to explore the possibility of building a efficient 3D integration system

purely based on basic geometric queries (such as PMC, distance computations and

intersection tests) that will enable interoperable numerical integration over any given

solid representation (such as meshes, implicit representation, B-reps, and voxels).

2. Another significant impact of this work is studying the effect of other types of shape

correction factors such as feature sensitivity [123] and modification sensitivity [80] and

its comparison to TSA/SSA based correction factors.

3. Application of SAQ to evolving level sets and non-linear problems is a straight forward

extension

Open issues One minor weakness of this method is that the use of random quadrature

points is not fully justified. Hence, it is required to more rigorously establish the effect of

position of quadrature points on the moment matrix. Especially, it is important to study the

effect of position of quadrature points on the conditioning and invertability of the moment

matrix. However, the use of approximate Fekete points [15] could help eliminate this problem

completely. Nevertheless, it is required to further study the effect of Fekete points in 2D/3D

in the context of SAQ.

151

One other limitation of the method is that the integral computed using SAQ is dependent

on the approximate domain (Ω0). Hence, there is a need to eliminate the use of intermediate

domain or at least to rigorously understand the effect of this approximate domain on the

integral computed.

The moment computations in moment fitting equations (Eq. (3.1)) requires domain in-

tegration of smooth basis functions. In SAQ, we convert this into the boundary integration

of a much more complicated function (due to the presence of distance to boundary) via

divergence theorem and appropriate sensitivities in boundary form. However, this boundary

integration is non-trivial and often requires higher-order or adaptive integration [90]. Adap-

tive integration, although an elegant solution, can prove to be very expensive especially in

three dimensions. Also, it is not clear on how to decide the order of integration when one

opts for higher-order boundary integration. Thus, there is a need to improve the efficiency

of moment computations in SAQ by coming up with a suitable higher-order or adaptive

integration scheme.

As already discussed, one of the main applications of SAQ is in meshfree methods where

Legendre, spline, and other types of polynomial basis functions are employed to study various

field problems. Hence, it is more natural/useful to consider Legendre/Chebyshev/spline

polynomial basis function in moment fitting equations (for arbitrary 2D/3D domains) so as

to improve the accuracy and relevance of SAQ to meshfree analysis.

152

Bibliography

[1] Encyclopaedia of cubature formulas. http://nines.cs.kuleuven.be/ecf/.

[Online; accessed 2016-06-07].

[2] MARCHING CUBES. http://users.polytech.unice.fr/˜lingrand/

MarchingCubes/algo.html. [Online; accessed 2016-06-07].

[3] SOLIDWORKS. http://www.solidworks.com/. [Online; accessed 2016-06-07].

[4] Baiges J and Codina R. The fixed-mesh ALE approach applied to solid mechanics and

fluid-structure interaction problems. International Journal For Numerical Methods in

Engineering, 81:1529–1557, 2010.

[5] Gerstenberger A. and Wall W.A. Enhancement of fixed-grid methods towards complex

fluid-structure interaction applications. International Journal For Numerical Methods

in Fluids, 57:1227–1248, 2008.

[6] Löhner R, Cebral R.J, Camelli F.E, Appanaboyina S, Baum J.D, Mestreau E.L, and

Soto O.A. Adaptive embedded and immersed unstructured grid techniques. Computer

Methods in Applied Mechanics and Engineering, 197:2173–2197, 2008.

[7] Neittaanmäki P and Tiba D. An embedding of domains approach in free boundary

problems and optimal design. SIAM Journal on Control and Optimization, 33:1587–

1602, 1995.

153

[8] Ramière I, Angot P, and Belliard M. A fictitious domain approach with spread interface

for elliptic problems with general boundary conditions. Computer Methods in Applied

Mechanics and Engineering, 196:766–781, 2007.

[9] Rüberg T and Cirak F. Subdivision-stabilised immersed B-spline finite elements for

moving boundary flows. Computer Methods in Applied Mechanics and Engineering,

209–221:266–283, 2012.

[10] Wall W.A, Gamnitzer P, and Gerstenberger A. Fluid-structure interaction approaches

on fixed grids based on two different domain decomposition ideas. International Journal

of Computational Fluid Dynamics, 22:411–427, 2008.

[11] Zhang L, Gerstenberger A, Wang X, and Liu W.K. Immersed finite element method.

Computer Methods in Applied Mechanics and Engineering, 193:2051–2067, 2004.

[12] Abedian A., Parvizian J., Düster A., Khademyzadeh H., and Rank E. Performance

of different integration schemes in facing discontinuities in the Finite Cell Method.

International Journal of Computational Methods, 10:1–24, 2013.

[13] Düster A., Parvizian J., Yang Z., and Rank E. The finite cell method for three-

dimensional problems of solid mechanics. Computer Methods in Applied Mechanics

and Engineering, 197:3768–3782, 2008.

[14] Sommariva A. and Vianello M. Product Gauss cubature over polygons based on

Green’s integration formula. BIT Numerical Mathematics, 47:441–453, 2007.

[15] Sommariva A. and Vianello M. Computing approximate Fekete points by QR fac-

torizations of vandermonde matrices. Computers and Mathematics with Applications,

57:1324–1336, 2009.

[16] Sommariva A. and Vianello M. Gauss–Green cubature and moment computation over

154

arbitrary geometries. Journal of Computational and Applied Mathematics, 231:886–

896, 2009.

[17] Novotny A.A., Feijóo R. A., E. Taroco, and Padra C. Topological-Shape Sensitivity

Analysis. Computer Methods in Applied Mechanics and Engineering, 192:803–829,

2003.

[18] Novotny A.A., Feijóo R. A., E. Taroco, and Padra C. Topological Sensitivity Analysis

for Three-Dimensional Linear Elasticity Problems. In 6th World Congress on Structural

and Multidisciplinary Optimization, 2005.

[19] Novotny A.A., Feijóo R. A., E. Taroco, and Padra C. Topological-Shape Sensitivity

Method : Theory and Applications. Solid Mechanics and its Applications, 137:469–478,

2006.

[20] Stroud A.H. Approximate Calculation of Multiple Integrals. Prentice–Hall, Englewood

Cliffs, NJ, 1971.

[21] Kumar A.V. and Lee J. Step function representation of solid models and application

to mesh free engineering analysis. Journal of Mechanical Design (Transactions of the

ASME), 128:46–56, 2005.

[22] Luft B., Shapiro V., and Tsukanov I. Geometrically adaptive numerical integration.

In 2008 ACM symposium on Solid and physical modeling, pages 147–157, NY, 2008.

[23] Mirtich B. Fast and accurate computation of polyhedral mass properties. Journal of

Graphics Tools, 1:31–50, 1996.

[24] Szabó B and Babus̆ka I. Finite Element Analysis. John Wiley & Sons, Inc : New York,

1991.

155

[25] Ivo Babuska and Theofanis Strouboulis. The finite element method and its reliabil-

ity. Numerical mathematics and scientific computation. Clarendon Press New York,

Oxford, 2001.

[26] Belytschko T., Parimi C., Moës N., Sukumar N., and Usui S. Structured extended

finite element methods for solids defined by implicit surfaces. International Journal

For Numerical Methods in Engineering, 56:609–635, 2003.

[27] Jarle Berntsen, Ronald Cools, and Terje O. Espelid. Algorithm 720: An algorithm

for adaptive cubature over a collection of 3-dimensional simplices. ACM Trans. Math.

Softw., 19(3):320–332, September 1993.

[28] Jarle Berntsen, Terje O. Espelid, and Alan Genz. An adaptive algorithm for the

approximate calculation of multiple integrals. ACM Trans. Math. Softw., 17(4):437–

451, December 1991.

[29] S.P. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press,

2004.

[30] Cattani C. and Paoluzzi A. Boundary integration over linear polyhedra. Computer-

Aided Design, 22:130–135, 1990.

[31] Min C. and Gibou F. Geometric integration over irregular domains with application

to level-set methods. Journal of Computational Physics, 226:1432–1443, 2007.

[32] Ricolindo Cario, Ian Robinson, and Elise De Doncker. Adaptive cubature over a col-

lection of triangles using the d-transformation. Journal of Computational and Applied

Mathematics, 50(1):171 – 183, 1994.

[33] Peskin C.S. The immersed boundary method. Acta Numerica, 11:479–517, 2002.

156

[34] J. Rocha de Faria, A.A. Novotny, R.A. Feijo, E. Taroco, and C. Padra. Second or-

der topological sensitivity analysis. International Journal of Solids and Structures,

44(1415):4958 – 4977, 2007.

[35] Hunkins D.R. Cubatures of precision 2k and 2k+1 for hyperrectangles. Mathematics

of Computation, 29:1098–1104, 1975.

[36] Bernardini F. Integration of polynomials over n-dimensional polyhedra. Computer-

Aided Design, 23:51–58, 1991.

[37] Brezzi F. On the existence, uniqueness and approximation of saddle-point problems

arising from Lagrangian multipliers. Rev.Francaise d’Automat.Informat.Recherche

Opérationnelle Sér., 8:129–151, 1974.

[38] Feito F., Torres J.C., and Urena A. Orientation, simplicity and inclusion test for planar

polygons. Computers and Graphics, 19:595–600, 1995.

[39] Klein F. A New Approach to Point Membership Classification in B-rep Solids. Math-

ematics of Surfaces XIII, Lecture Notes in Computer Science, 5654:235–250, 2009.

[40] Fries T.-P. and Belytschko T. The extended/generalized finite element method : An

overview of the method and its applications. International Journal for Numerical

Methods in Engineering, 84:253–304, 2010.

[41] Dasgupta G. Integration within polygonal finite elements. J. Aerosp. Eng., 16:9–18,

2003.

[42] Strang G. The Fundamental Theorem of Linear Algebra. The American Mathematical

Monthly, 100:848–855, 1993.

[43] Ventura G. On the elimination of quadrature subcells for discontinuous functions in

the eXtended Finite-Element Method. International Journal for Numerical Methods

in Engineering, 66:761–795, 2006.

157

[44] S. Garribba, L. Quartapelle, and G. Reina. Algorithm 36 sniff: Efficient self-tuning

algorithm for numerical integration. Computing, 20(4):363–375, 1978.

[45] Glowinski R and Kuznetsov Y. Distributed lagrange multipliers based on fictitious

domain method for second order elliptic problems. Computer Methods in Applied

Mechanics and Engineering, 196:1498–1506, 2007.

[46] Liu G.R. Meshfree Methods : Moving Beyond the Finite Element Method. CRC Press,

2009.

[47] Liu G.R. and Nguyen T.T. Smoothed Finite Element Methods. CRC Press, 2010.

[48] Samet H. The design and analysis of spatial data structures. Addison-Wesley Publish-

ing Company INC., MA, 1990.

[49] Samet H. Foundations of Multidimensional and Metric Data Structures. Morgan

Kaufmann Publishers Inc., SF, 2005.

[50] Eschenauer H.A. and Olhoff N. Topology optimization of continuum structures: A

review. Appl. Mech., 54:331–390, 2001.

[51] Haslinger J and Renard Y. A new fictitious domain approach inspired by the extended

finite element method. SIAM Journal on Numerical Analysis, 47:1474–1499, 2009.

[52] Babus̆ka I. The finite element method with Lagrangian multipliers. Numer.Math.,

20:179–192, 1973.

[53] Babus̆ka I. The finite element method with Penalty. Mathematics of Computation,

27:221–228, 1973.

[54] Babus̆ka I., Szab́o B.A, and Katz I.N. The p-version of the finite element method.

SIAM Journal on Numerical Analysis, 18:515–545, 1981.

158

[55] Babus̆ka I. and Banerjee U. Stable Generalized Finite Element Method (SGFEM).

Computer Methods in Applied Mechanics and Engineering, 201–204:91–111, 2012.

[56] Babus̆ka I., Banerjee U, and Osborn J.E. Meshless and generalized finite element

methods: A survey of some major results. Meshfree Methods for Partial Differential

Equations,Lecture notes in Computational Science and Engineering, 26:1–20, 2002.

[57] Ninomiya I. Improvements of newton-cotes quadrature methods. J.Info Process,

3(3):162–170, 1980.

[58] Tsukanov I. and Shapiro V. The architecture of SAGE - a meshfree system based on

RFM. Engineering with Computers, 18:295–311, 2002.

[59] Turevsky I., Gopalakrishnan S.H., and Suresh K. Generalization of Topological Sensi-

tivity and its Application to Defeaturing. In ASME-IDETC, Las Vegas, 2007.

[60] Turevsky I., Gopalakrishnan S.H., and Suresh K. Defeaturing: A posteriori error analy-

sis via feature sensitivity. International Journal for Numerical Methods in Engineering,

76:1379–1401, 2008.

[61] Bernstein J., Epselid T., and Genz A. An adaptive algorithm for the approximate calcu-

lation of multiple integrals. ACM Transactions on Mathematical Software, 17:437451,

1991.

[62] Elstrodt J. Maβ- und integrationstheorie. In Springer Verlag, chapter 4, pages 266–

290.

[63] Freund J. and Stenberg R. On weakly imposed boundary conditions for second order

problems. In International Conference on Finite Elements in Fluids - New trends and

applications, pages 327–336, 1995.

[64] Lyness J. and Jespersen D. Moderate degree symmetric quadrature rules for the tri-

angle. IMA Journal of Applied Mathematics, 15:19–32, 1975.

159

[65] Oden J and Prudhomme S. Estimation of modeling error in computational mechanics.

Journal of computational physics, 182:496–515, 2002.

[66] Parvizian J., Düster A., and Rank E. Finite Cell Method : h- and p-extension for

embedded domain methods in solid mechanics. Computational Mechanics, 41:121–

133, 2007.

[67] Sokolowski J. and Zochowski A. On Topological Derivative in Shape Optimization.

SIAM Journal on Control and Optimization, 37:1251–1272, 1999.

[68] Lasserre J.B. Integration on a convex polytope. Proceedings of the American Mathe-

matical Society, 126:2433–2441, 1998.

[69] Lasserre J.B. Integration and homogeneous functions. Proceedings of the American

Mathematical Society, 127:813–818, 1999.

[70] Laguardia J.J., Cueto E., and Doblaré M. A natural neighbour Galerkin method

with quadtree structure. International Journal for Numerical methods in Engineering,

63:789–812, 2005.

[71] Joulaian M., Hubrich S. and Düster A. Numerical integration of discontinuities on

arbitrary domains based on moment fitting. Computational Mechanics, 57:979–999,

2016.

[72] Höllig K. Finite Element Methods with B-Splines. Frontiers in Applied Mathematics.

SIAM, 2003.

[73] Höllig K., Apprich C., and Streit A. Introduction to the Web-method and its applica-

tions. Advances in Computational Mathematics, 23:215–237, 2005.

[74] P. Kaufmann, S. Martin, M. Botsch, and M. Gross. Flexible simulation of deformable

models using discontinuous Galerkin FEM. In 2008 ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, pages 105–115, 2008.

160

[75] Choi K.K. and Kim N.H. Structural Sensitivity Analysis and Optimization I: Linear

Systems. New York: Springer, 2005.

[76] Choi K.K. and Kim N.H. Structural Sensitivity Analysis and Optimization II: Non-

Linear Systems. New York: Springer, 2005.

[77] Legrain G., Chevaugeon N, and Dréau K. High order X-FEM and levelsets for com-

plex microstructures: uncoupling geometry and approximation. Computer Methods in

Applied Mechanics and Engineering, 241–244:172–189, 2012.

[78] Shampine L.F. MATLAB program for quadrature in 2D. Appl. Math. Comput.,

202:266–274, 2008.

[79] Ming Li and Shuming Gao. Estimating defeaturing-induced engineering analysis errors

for arbitrary 3d features. Computer-Aided Design, 43:1587–1597, 2011.

[80] Ming Li, Shuming Gao, and Ralph Martin. Estimating effects of removing negative

features on engineering analysis. Computer-Aided Design, 43:1402–1412, 2011.

[81] Ming Li, Shuming Gao, and Kai Zhang. A goal oriented error estimator for the anal-

ysis of simplified designs. Computer Methods in Applied Mechanics and Engineering,

255:89–103, 2013.

[82] Trefethen L.N. and Bau D. Numerical Linear Algebra. SIAM, 1997.

[83] Lorensen W.E. and Cline H.E. Marching cubes: A high resolution 3D surface con-

struction algorithm. ACM Computer Graphics, 21:163–169, 1987.

[84] Freytag M. and Shapiro V. B-rep SE: simplicially enhanced boundary representation.

In ACM Symposium on Solid Modeling and Applications, Switzerland, pages 157–168,

2004.

[85] Freytag M., Shapiro V., and Tsukanov I. Scan and solve: Acquiring the physics of

artifacts. In ASME 2007 International Design Engineering Technical Conferences and

161

Computers and Information in Engineering Conference, pages 345–356, Las Vegas,

USA, 2007.

[86] Freytag M., Shapiro V., and Tsukanov I. Finite element analysis in situ. Finite

Elements in Analysis and Design, 47:957–972, 2011.

[87] Li M., Zhang B., and Martin R.R. Second-order defeaturing error estimation for mul-

tiple boundary features. International Journal for Numerical Methods in Engineering,

pages 1–25, 2013.

[88] Mortenson M. Geometric Modeling. John Wiley and Sons, Inc., New York, 1997.

[89] S. Martin, P. Kaufmann, M. Botsch, M. Wicke, and M. Gross. Polyhedral Finite

Elements using harmonic basis functions. In Eurographics Symposium on Geometry

Processing (Copenhagen, Denmark, July 2-4, 2008), Computer Graphics Forum, pages

1521–1529, 2008.

[90] MATLAB. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts,

2010.

[91] Moës N., Cloirec M., Cartraud P., and Remacle J.-F. A Computational approach to

handle complex microstructure geometries. Computer Methods in Applied Mechanics

and Engineering, 192:3163–3177, 2003.

[92] Mousavi S.E., Xiao H. and Sukumar N. Generalized Gaussian quadrature rules on ar-

bitrary polygons. International Journal for Numerical Methods in Engineering, 82:99–

113, 2010.

[93] Danwitz M.V. Automated application of Dirichlet boundary conditions in voxel based

analyses using the Finite Cell Method. Bachelor’s thesis, Technische Universität

München, September 2013.

162

[94] Amenta N. and Bern M. Surface reconstruction by Voronoi filtering. In Fourteenth

annual symposium on Computational geometry, pages 39–48, 1998.

[95] Zander N., Bog T., Elhaddad M., Espinoza R., Hu H., Joly A., Wu C., Zerbe P., Düster

A., Kollmannsberger S., Parvizian J., Ruess M., Schillinger D., and Rank E. FCMLab:

A finite cell research toolbox for MATLAB. Advances in Engineering Software, 74:49–

63, 2014.

[96] Klaas O. and Shephard M. Automatic generation of octree-based three dimenisonal

discretizations for partition of unity methods. Computational Mechanics, 25:296–304,

2000.

[97] Steven J. Owen. A survey of unstructured mesh generation technology. In INTERNA-

TIONAL MESHING ROUNDTABLE, pages 239–267, 1998.

[98] Gonnet P. A Review of Error Estimation in Adaptive Quadrature. ACM Computing

Surveys, 44, 2010.

[99] Hansbo P. and Larson M.G. Discontinuous Galerkin methods for incompressible and

nearly incompressible elasticity by Nitsche’s method. Computer Methods in Applied

Mechanics and Engineering, 191:1895–1908, 2002.

[100] Smereka P. The numerical approximation of a delta function with application to level

set methods. Journal of Computational Physics, 211:77–90, 2006.

[101] R. Piessens, E. deDoncker Kapenga, C. Uberhuber, and D. Kahaner. QUADPACK: A

Subroutine Package for Automatic Integration. Springer–Verlag, 1983.

[102] Becker R. Mesh adaptation for Dirichlet flow control via Nitsche’s method. Com-

mun.Numer.Methods Engrg, 18:669–680, 2002.

[103] Cools R. An encyclopaedia of cubature formulas. Journal of Complexity, 19:445–453,

2003.

163

[104] Cools R. and Rabinowitz P. Monomial cubature rules since stroud : a compilation. J.

Comput. Appl. Math., 48:309–326, 1993.

[105] Mittal R. and Iaccarino G. Immersed boundary methods. Annual Review of Fluid

Mechanics, 37:239–261, 2005.

[106] Feijóo R.A., Novotny A. A., Taroco E., and Padra C. The Topological Derivative For

The Poisson’S Problem. Math. Models Methods Appl. Sci. , 13:1825–1844, 2003.

[107] Feijoo R.A., Novotny A.A., Taroco E., and Padra C. The topological derivative for

poisson’s problem. Mathematical Models and Methods in Applied Sciences, 13:1925–

1844, 2003.

[108] A. Requicha. Representations of rigid solid objects. Computer Aided Design Modelling,

Systems Engineering, CAD-Systems, pages 1–78, 1980.

[109] Sarraga R.F. Computation of surface areas in GMSolid. IEEE Computer Graphics

and Applications, 2:65–70, 1982.

[110] Garren R.K. Bounds for the Eigenvalues of a Matrix. Technical Report NASA-TN-

D-4373, National Aeronautics and Space Administration, Washington D.C., March

1968.

[111] Walter Rudin. Principles of mathematical analysis. McGraw-Hill Book Co., New York,

third edition, 1976. International Series in Pure and Applied Mathematics.

[112] J. Ruppert. A delaunay refinement algorithm for quality 2-dimensional mesh genera-

tion. Journal of Algorithms, 18(3):548 – 585, 1995.

[113] Del Pino S and Pironneau O. A fictitious domain based general PDE solver. In

Numerical methods for scientific computing: Variational problems and applications,

CIMNE, Barcelona, 2003.

164

[114] Fernández-Méndez S. and Huerta A. Imposing essential boundary conditions in mesh-

free methods. Computer Methods in Applied Mechanics and Engineering, 193:1257–

1275, 2004.

[115] Osher S. and Fedkiw R. Level Set Methods and Dynamic Implicit Surfaces. Springer-

Verlag, New York, 2003.

[116] Wandzura S. and Xiao H. Symmetric quadrature rules on a triangle. Computers and

Mathematics with Applications, 45:1829–1840, 2003.

[117] Sauerland H and Fries T.-P. The extended finite element method for two-phase and

free-surface flows: A systematic study. Journal of Computational Physics, 230:3369–

3390, 2011.

[118] Schillinger D and Ruess M. The Finite Cell Method: A Review in the Context

of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models.

Archives of Computational Methods in Engineering, 22:391–455, 2014.

[119] Roth S.D. Ray casting for modeling solids. Computer Graphics and Image Processing,

18:109–144, 1982.

[120] Mousavi S.E. and Sukumar N. Generalized Gaussian quadrature rules for disconti-

nuities and crack singularities in the Extended Finite Element Method. Computer

Methods in Applied Mechanics and Engineering, 199:3237–3249, 2010.

[121] Mousavi S.E. and Sukumar N. Numerical integration of polynomials and discontinuous

functions on irregular convex polygons and polyhedrons. Computational Mechanics,

47:535–554, 2011.

[122] Mikhlin S.G. Error Analysis in Numerical Processes, 1991.

[123] Gopalakrishnan S.H. and Suresh K. Feature sensitivity : A generalization of topological

sensitivity. Finite Elmenets in Analysis and Design, 44:696–704, 2008.

165

[124] Shahmiri S, Gerstenberger A, and Wall W.A. An XFEM-based embedding mesh tech-

nique for incompressible viscous flows. International Journal For Numerical Methods

in Engineering, 65:166–190, 2011.

[125] Pierre Soille. Morphological Image Analysis: Principles and Applications. Springer-

Verlag New York, Inc., Secaucus, NJ, USA, 2 edition, 2003.

[126] Sukumar N., Chopp D.L., Moës N., and Belytschko T. Modeling holes and inclusions

by level sets in the extended finite-element method. Computer methods in applied

mechanics and engineering, 190:6183–6200, 2001.

[127] Rabczuk T., Areias P.M.A., and Belytschko.T. A meshfree thin shell method for non-

linear dynamic fracture. International Journal for Numerical Methods in Engineering,

72:524–548, 2007.

[128] Shapiro V. Solid Modeling. In Handbook of Computer Aided Geometric Design, pages

473–518. Elsevier Science Publishers: Amsterdam, 2002.

[129] Thiagarajan V. and Shapiro V. Adaptively weighted numerical integration over arbi-

trary domains. Computers and Mathematics with Applications, 67:1682–1702, 2014.

[130] Thiagarajan V. and Shapiro V. Adaptively weighted numerical integration in the Finite

Cell Method. Computer Methods in Applied Mechanics and Engineering, 2016.

[131] Rvachev V.L., Shevchenko A.N., and Veretel’nik V.V. Numerical integration software

for projection and projection-grid methods. Cybernetics and Systems Analysis, 30:154–

158, 1994.

[132] Press W.H., Teukolsky S.A., Vetterling W.T., and Flannery B.P. Numerical Recipes

in C: The Art of Scientific Computing. Cambridge University Press, 1992.

[133] M. Wicke, M. Botsch, and M. Gross. A Finite Element Method on convex polyhedra.

Computer Graphics Forum, 26:355–364, 2007.

166

[134] Abdelaziz Y. and Hamouine A. A survey of the extended finite element. Computers

& Structures, 86:1141–1151, 2008.

[135] Bazilevs Y. and Hughes T.J.R. Weak imposition of Dirichlet boundary conditions in

fluid mechanics. Computers & Fluids, 36:12–26, 2007.

[136] Lee Y.T. and Requicha A. Algorithms for computing the volume and other integral

properties of solids. I. known methods and open issues. Communications of the ACM,

25:635–641, 1982.

[137] Xiao H.and Gimbutas Z. A numerical algorithm for the construction of efficient quadra-

ture rules in two and higher dimensions. Computers and Mathematics with Applica-

tions, 59:663–676, 2010.

[138] Yang Z., Ruess M., Kollmannsberger S., Düster A., and Rank E. An efficient in-

tegration technique for the voxel-based finite cell method. International Journal for

Numerical Methods in Engineering, 91:457–471, 2012.

167

Appendices

168

Appendix A

SSA of Moments

First-Order SSA of Moments Recall that Mi =
∫

Ω
bi(x)dΩ. It is required to compute

the shape sensitivity of the moments Mi i.e. dMi

dt

∣∣∣∣
t=0

. In order to evaluate this, it is first

required to transform the moment integral over the reference domain Ω0. This can be done

by making use of the Jacobian matrix of the mapping T(X, t). It can be easily established

that dΩ = |J |dΩ0 [75], where |J | is the determinant of the Jacobian matrix . Thus, we have

the following

dMi

dt

∣∣∣∣
t=0

=
d

dt

(∫
Ω0

bi(x) |J |dΩ0

)∣∣∣∣
t=0

(A.1)

now, taking the derivative inside the integral and then applying the product and chain rule

of differentiation we get

d

dt

(∫
Ω0

bi(x) |J |dΩ0

)∣∣∣∣
t=0

=

∫
Ω0

d

dt

(
bi(x) |J |

)
dΩ0

∣∣∣∣
t=0

=

∫
Ω0

(
∇bi(x).V̂(x)|J |+ bi(x)

d|J |
dt

)
dΩ0

∣∣∣∣
t=0

(A.2)

where V̂(x) = dx
dt

is the design velocity vector at any point x ∈ Ω. Now, using the fact that

d|J |
dt

= |J |∇.V̂(x) [75], we get

169

d

dt

(∫
Ω0

bi(x) |J |dΩ0

)∣∣∣∣
t=0

=

∫
Ω0

(
∇bi(x).V̂(x)|J |+ bi(x)|J |∇.V̂(x)

)
dΩ0

∣∣∣∣
t=0

=

∫
Ω0

(
∇bi(x).V̂(x) + bi(x)∇.V̂(x)

)
|J |dΩ0

∣∣∣∣
t=0

=

∫
Ω0

∇.(bi(x)V̂(x))|J |dΩ0

∣∣∣∣
t=0

(A.3)

evaluating the RHS of the above at t = 0, we obtain the desired sensitivity as

dMi

dt

∣∣∣∣
t=0

=

∫
Ω0

∇.(bi(X)V̂(X))dΩ0 (A.4)

where X ∈ Ω0.

Applying the divergence theorem we obtain the following boundary form

dMi

dt

∣∣∣∣
t=0

=

∫
Γ0

bi(X)VN(X)dΓ0 (A.5)

where VN = V̂(X).N(X) is the normal component of the design velocity at X ∈ Γ0.

Second-order SSA of Moments Now, It is required to compute the second-order shape

sensitivity of the moments Mi i.e. d2Mi

dt2

∣∣∣∣
t=0

. This can be done by taking the first derivative

of Eq.(A.3) as

d2Mi

dt2
=

d

dt

∫
Ω0

(
∇.(bi(x)V̂(x))|J |dΩ0

)
(A.6)

taking the derivative inside the integral and then applying the product and chain rule of

differentiation we get :

∫
Ω0

d

dt

(
∇.(bi(x)V̂(x))|J |

)
dΩ0 =

∫
Ω0

d

dt

(
∇.(bi(x)V̂(x))

)
|J |

+ ∇.(bi(x)V̂(x))
d|J |
dt

dΩ0 (A.7)

170

However,

d

dt

(
∇.(bi(x)V̂(x))

)
=

∂

∂t
(∇.(bi(x)V̂(x)) +∇(∇.(biV̂(x))).V̂(x)

= ∇.(bi(x)
∂

∂t
V̂(x)) +∇(∇.(biV̂(x))).V̂(x) (A.8)

Since we assume a linear mapping, we have the following relationship for the total time

derivative of the design velocity :

d

dt
V̂(x) =

∂

∂t
V̂(x) +∇V̂(x).V̂(x) = 0 (A.9)

Thus, ∂
∂t

V̂(x) = −∇V̂(x).V̂(x). Using this and d|J |
dt

= |J |∇.V̂(x) [75] in Eq.(A.7) the

second derivative reduces to :

d2Mi

dt2
=

∫
Ω0

(
−∇.

[
bi(x)∇V̂(x).V̂(x)

]
+∇(∇.(bi(x)V̂(x))).V̂(x) +∇.(bi(x)V̂(x))∇.(V̂(x)

)
|J |dΩ0

=

∫
Ω0

(
∇.
[
∇.(bi(x)V̂(x))V̂(x)

]
−∇.

[
bi(x)∇V̂(x).V̂(x)

])
|J |dΩ0 (A.10)

evaluating the the above at t = 0, we obtain the second-order shape sensitivity as :

d2Mi

dt2

∣∣∣∣
t=0

=

∫
Ω0

(
∇.
[
∇.(bi(x)V̂(X))V̂(X)

]
−∇.

[
bi(X)∇V̂(X).V̂(X)

]
dΩ0

)
(A.11)

where X ∈ Ω0.

Applying the divergence theorem we get the boundary form of the second order shape

sensitivity as :

171

d2Mi

dt2

∣∣∣∣
t=0

=

∫
Γ0

[
∇.[bi(X)V̂(X)]VN(X)− bi(X)

(
∇V̂(X).V̂(X)

)
.N(X)

]
dΓ0

=

∫
Γ0

[
∇[bi(X)]V̂(X) + bi(X)∇.(V̂(X))− bi(X)

(
NT∇V̂N

)]
VN(X)dΓ0

=

∫
Γ0

[
∇[bi(X)].V̂(X) + bi(X)

(
∇.(V̂(X))−NT∇V̂N

)]
VN(X)dΓ0 (A.12)

It can be easily proved [75] that [∇.(V) − NT∇VN] = VN(X)κ(X), where κ is the

curvature of Γ0 in 2D and twice the mean curvature in 3D.

Thus,

d2Mi

dt2

∣∣∣∣
t=0

=

∫
Γ0

[∇bi(X)]TN + bi(X)κ(X)]V 2
N(X)dΓ0 (A.13)

If we assume that the vertices/edges of the approximate polygon/polyhedron Ω0 all lie

on Γ as shown in Fig. A.1, then VN = 0 at the vertices/edges of Ω0. Also, κ = 0 in the

interior of the edges/faces of the Γ0.Hence, we can easily prove that
∫

Γ0
κ(X)V 2

N(X)dΓ0 = 0

as the integrand [κ(X)V 2
N(X)] is identically zero. Hence, the above reduces to the following

:

dM2
i

dt2

∣∣∣∣
t=0

=

∫
Γ0

[∇bi(X)]TNV 2
N(X)dΓ0 (A.14)

172

Figure A.1: Vertices (black dots) of Γ0 lying on Γ makes VN = 0 at the vertices

173

Appendix B

TSA of Moments

First-order TSA of Moments First-order topological sensitivity of moments at a point

X0 can be established using the Topological-Shape Sensitivity definition as defined by

Novotny et al. [17] as

D1
Ti

(X0) = lim
ε→0

1

f
′
1(ε)|VN |

dMi

dt

∣∣∣∣
t=0

(B.1)

From Eq.(A.5) we have already established the first-order SSA as

dMi

dt

∣∣∣∣
t=0

=

∫
Γ0

bi(X)VN(X)dΓ0 (B.2)

where Γ0 is now the circular boundary Bε as shown in Fig. B.1. Thus, we have

dMi

dt

∣∣∣∣
t=0

=

∫
∂Bε

bi(X)VN(X)dBε (B.3)

Using Eq.(B.3) in Eq.(B.1), we get

D1
T (X0) = lim

ε→0

1

f
′
1(ε)|VN |

∫
∂Bε

bi(X)VN(X)dBε (B.4)

174

Since VN is a constant over the boundary of the ball (∂Bε) we have

D1
T (X0) = lim

ε→0

VN
f
′
1(ε)|VN |

∫
∂Bε

bi(X)dBε

= lim
ε→0

sign(VN)

f
′
1(ε)

∫
∂Bε

bi(X)dBε

= lim
ε→0

−1

f
′
1(ε)

∫
∂Bε

bi(X)dBε (B.5)

For 2D problems, f1(ε) = πε2 and hence f
′
1(ε) = 2πε. If we assume bivariate basis functions

of the form bi = XpY q and then write out the above integral in polar coordinates we get

D1
T (X0) = lim

ε→0

−1

2πε

∫ 2π

0

(X0 + εcos(θ))p(Y0 + εsin(θ))qεdθ

= lim
ε→0

−1

2π

∫ 2π

0

(X0 + εcos(θ))p(Y0 + εsin(θ))qdθ

=
−1

2π

[
Xp

0Y
q

0

∫ 2π

0

dθ + lim
ε→0

∫ 2π

0

[

(
q

1

)
Xp

0Y
q−1

0 εsin(θ) +

(
p

1

)
Y q

0 X
p−1
0 εcos(θ) +O(ε2)]dθ

]
= −Xp

0Y
q

0 (B.6)

where we have used binomial expansion in the third step above to apply the limit. Thus, in

2D the first-order TSA is given by

D1
T (X0) = −Xp

0Y
q

0 ∀X0 ∈ Ω ⊂ R2 with f1(ε) = πε2 (B.7)

Likewise in 3D, for trivariate polynomials of the form bi = XpY qZr and f1(ε) = 4
3
πε3,

one can easily establish the first-order topological derivative to be

D1
T (X0) = −Xp

0Y
q

0 Z
r
0 ∀X0 ∈ Ω ⊂ R3 with f1(ε) =

4

3
πε3 (B.8)

by using the fact that X = X0 + εcos(φ)sin(θ), Y = Y0 + εsin(φ)sin(θ) and Z =

Z0 + εcos(θ) where θ ∈ [0, π] and φ ∈ [0, 2π].

175

Figure B.1: Reference and deformed domains for Topological-Shape Sensitivity Analysis [17]

Second-order TSA of Moments The second-order TSA of moments can be defined

using the Topological-Shape sensitivity method of [34] as

D2
T (X0) = lim

ε→0

1

f
′
2(ε)

[
1

|VN |
dMi

dt

∣∣∣∣
t=0

− f ′1(ε)D1
T (X0)

]
= lim

ε→0

1

f
′
2(ε)

[
1

|VN |

∫
∂Bε

bi(X)VN(X)dBε − f
′

1(ε)D1
T (X0)

]
= lim

ε→0

1

f
′
2(ε)

[
sign(VN)

∫
∂Bε

bi(X)dBε − f
′

1(ε)D1
T (X0)

]
= lim

ε→0

1

f
′
2(ε)

[
−
∫
∂Bε

bi(X)dBε − f
′

1(ε)D1
T (X0)

]
(B.9)

For 2D domains if we choose the bivariate polynomials bi = XpY q then f
′
1(ε)D1

T (X0) =

−2πεXp
0Y

q
0 and f2(ε) = 1

2
π2ε4 (this is chosen such that f1(ε) → 0, f2(ε) → 0 and f2(ε)

f1(ε)
→ 0

as ε→ 0). Therefore, Eq.(B.9) becomes

D2
T (X0) = lim

ε→0

1

2π2ε3

[
−
∫ 2π

0

(X0 + εcos(θ))p(Y0 + εsin(θ))qεdθ + 2πεXp
0Y

q
0

]
= lim

ε→0

1

2π2ε2

[
−
∫ 2π

0

(X0 + εcos(θ))p(Y0 + εsin(θ))qdθ + 2πXp
0Y

q
0

]
(B.10)

Applying binomial theorem to the above and simplifying we get

176

D2
T (X0) = lim

ε→0

1

2π2ε2

[
− 2πXp

0Y
q

0 −
∫ 2π

0

[(
q

1

)
Xp

0Y
q−1

0 εsin(θ) +

(
p

1

)
Y q

0 X
p−1
0 εcos(θ)

+

(
q

2

)
Xp

0Y
q−2

0 ε2sin2(θ) +

(
p

2

)
Y q

0 X
p−2
0 ε2cos2(θ) +

(
p

1

)(
q

1

)
Xp−1

0 Y q−1
0 ε2cos(θ)sin(θ)

+ O(ε3)

]
dθ + 2πXp

0Y
q

0

]
= lim

ε→0

−1

2π2ε2

[∫ 2π

0

[(
q

2

)
Xp

0Y
q−2

0 ε2sin2(θ) +

(
p

2

)
Y q

0 X
p−2
0 ε2cos2(θ) +O(ε3)

]
dθ

=
−1

2π2

[∫ 2π

0

[(
q

2

)
Xp

0Y
q−2

0 sin2(θ) +

(
p

2

)
Y q

0 X
p−2
0 cos2(θ)

]
dθ

]
=
−1

2π2

[(
q

2

)
Xp

0Y
q−2

0 π +

(
p

2

)
Y q

0 X
p−2
0 π

]
=
−1

2π

[(
q

2

)
Xp

0Y
q−2

0 +

(
p

2

)
Y q

0 X
p−2
0

]

Thus, second-order TSA in 2D is given by

D2
T (X0) =

−1

2π

[(
p

2

)
Y q

0 X
p−2
0 +

(
q

2

)
Xp

0Y
q−2

0

]
∀X0 ∈ Ω ⊂ R2 with f2(ε) =

1

2
π2ε4

(B.11)

For 3D domains if we choose the trivariate polynomials bi = XpY qZr then f
′
1(ε)D1

T (X0) =

−4πε2Xp
0Y

q
0 Z

r and f2(ε) = 1
2ε

[4
3
πε3]2. Therefore, Eq.(B.9) becomes

D2
T (X0) = lim

ε→0

3

16π2ε4

[
−
[∫ π

0

[

∫ 2π

0

(X0 + εcos(φ)sin(θ))p(Y0 + εsin(φ)sin(θ))q

(Z0 + εcos(θ))rε2dφ]sin(θ)dθ

]
+ 4πε2Xp

0Y
q

0 Z
r
0

]
= lim

ε→0

3

16π2ε2

[[
−
∫ π

0

[

∫ 2π

0

(X0 + εcos(φ)sin(θ))p(Y0 + εsin(φ)sin(θ))qdφ]

(Z0 + εcos(θ))rsin(θ)dθ

]
+ 4πXp

0Y
q

0 Z
r
0

]
(B.12)

177

Let us first expand the two terms in the inner integral using binomial theorem

(X0 + εcos(φ)sin(θ))p = Xp
0 + ε

(
p

1

)
Xp−1

0 cos(φ)sin(θ) + ε2
(
p

2

)
Xp−2

0 cos2(φ)sin2(θ)

+ ε3
(
p

3

)
Xp−3

0 cos3(φ)sin3(θ) +O(ε4) (B.13)

(Y0 + εsin(φ)sin(θ))q = Y q
0 + ε

(
q

1

)
Y q−1

0 sin(φ)sin(θ) + ε2
(
q

2

)
Y q−2

0 sin2(φ)sin2(θ)

+ ε3
(
q

3

)
Y q−3

0 sin3(φ)sin3(θ) +O(ε4) (B.14)

Now,

(X0 + εcos(φ)sin(θ))p(Y0 + εsin(φ)sin(θ))q = Xp
0Y

q
0 + ε

(
q

1

)
Y q−1

0 Xp
0sin(φ)sin(θ)

+ ε2
(
q

2

)
Y q−2

0 Xp
0sin

2(φ)sin2(θ)

+ ε3
(
q

3

)
Y q−3

0 Xp
0sin

3(φ)sin3(θ)

+ ε

(
p

1

)
Xp−1

0 Y q
0 cos(φ)sin(θ)

+ ε2
(
p

1

)(
q

1

)
Xp−1

0 Y q−1
0 sin(φ)cos(φ)sin2(θ)

+ ε3
(
p

1

)(
q

2

)
Xp−1

0 Y q−2
0 cos(φ)sin2(φ)sin3(θ)

+ ε2
(
p

2

)
Xp−2

0 Y q
0 cos

2(φ)sin2(θ)

+ ε3
(
p

2

)(
q

1

)
Xp−2

0 Y q−1
0 sin(φ)cos2(φ)sin3(θ)

+ ε3
(
p

3

)
Xp−3

0 Y q
0 cos

3(φ)sin3(θ) +O(ε4)

Now, integrating the above w.r.t. φ over the interval [0, 2π] we get

178

∫ 2π

0

(X0 + εcos(φ)sin(θ))p(Y0 + εsin(φ)sin(θ))qdφ = 2πXp
0Y

q
0 + ε2

(
q

2

)
Y q−2

0 Xp
0 (π)sin2(θ)

+ ε2
(
p

2

)
Xp−2

0 Y q
0 (π)sin2(θ)

+ O(ε4) (B.15)

Now, using binomial theorem to expand (Z0 + εcos(θ))r we get

(
Z0 + εcos(θ)

)r
= Zr

0 + ε

(
r

1

)
Zr−1

0 cos(θ) + ε2
(
r

2

)
Zr−2

0 cos2(θ) + ε3
(
r

3

)
Zr−3

0 cos3(θ) +O(ε4)

(B.16)

Now, let us evaluate the double integral in Eq.(B.12) using Eq.(B.15) and Eq.(B.16)

∫ π

0

[

∫ 2π

0

(X0 + εcos(φ)sin(θ))p(Y0 + εsin(φ)sin(θ))qdφ](Z0 + εcos(θ))rsin(θ)dθ

]
= π

∫ π

0

(
2Xp

0Y
q

0 + ε2sin2(θ)[

(
q

2

)
Y q−2

0 Xp
0 +

(
p

2

)
Xp−2

0 Y q
0] +O(ε4)

)
(
Zr

0 + ε

(
r

1

)
Zr−1

0 cos(θ) + ε2
(
r

2

)
Zr−2

0 cos2(θ) + ε3
(
r

3

)
Zr−3

0 cos3(θ) +O(ε4)

)
sin(θ)dθ

= 4πXp
0Y

q
0 Z

r
0 + ε2

4π

3

[(
r

2

)
Xp

0Y
q

0 Z
r−2
0 +

(
q

2

)
Zr

0Y
q−2

0 Xp
0 +

(
p

2

)
Zr

0X
p−2
0 Y q

0

]
+O(ε4)(B.17)

Now, substituting the above in Eq.(B.12) and taking the limit we get the second-order

TSA in 3D as

D2
T (X0) = − 1

4π

[(
p

2

)
Xp−2

0 Y q
0 Z

r
0 +

(
q

2

)
Xp

0Y
q−2

0 Zr
0 +

(
r

2

)
Xp

0Y
q

0 Z
r−2
0

]
(B.18)

Thus, second-order TSA in 3D is given by

179

D2
T (X0) = − 1

4π

[(
p

2

)
Xp−2

0 Y q
0 Z

r
0 +

(
q

2

)
Xp

0Y
q−2

0 Zr
0 +

(
r

2

)
Xp

0Y
q

0 Z
r−2
0

]
∀ X0 ∈ Ω ⊂ R3 with f2(ε) =

8

9
π2ε5 (B.19)

The first/second-order SSA and TSA of moments are summarized in Table. (3.1) and

Table. (3.2) respectively

180

Appendix C

Taylor’s Remainder Theorem

Let Mi : [0, α]→ R be a C r continuous function and for k ∈ Z+ let Pk(t) = Mi(0) +

t.M
′
i (0) + t2

2!
M
′′
i (0) + ...+ tk

k!
Mk

i (0) (r ≥ k + 1). Then, for some ε ∈ [0, α] we have the

following error bound

|Ek(t)| = |Mi(t)− Pk(t)| ≤
|tk+1|

(k + 1)!
|Mk+1

i (ε)| (C.1)

Proof. We begin by noting that the following follows directly from the definition of Pk(t)

|Ek(0)| = |Mi(0)− Pk(0)| = 0

|E ′k(0)| = |M ′

i (0)− P ′k(0)| = 0

.

.

|Ek
k (0)| = |Mk

i (0)− P k
k (0)| = 0

Likewise, since Pk is a kth degree polynomial in t we have

|Ek+1
k (t)| = |Mk+1

i (t)− P k+1
k (t)| = |Mk+1

i (t)− 0| = |Mk+1
i (t)|

181

since Mk+1
i is a continuous function defined over a compact set [0, α], it attains its maximum

for some ε ∈ [0, α] [111] and hence we have

|Ek+1
k (t)| ≤ |Mk+1

i (ε)|

This also means

Ek+1
k (t) ≤ |Mk+1

i (ε)|

integrating the above once we get

Ek
k (t) =

∫
Ek+1
k (t)dt ≤

∫
|Mk+1

i (ε)|dt = |Mk+1
i (ε)|t+ c1

However, c1 = 0 as at t = 0 we have Ek
k (0) = 0 and therefore

Ek
k (t) ≤ |Mk+1

i (ε)|t

integrating the above k times and applying boundary conditions as before we have

Ek(t) ≤
tk+1

(k + 1)!
|Mk+1

i (ε)|

and the result follows by taking the absolute value on both sides.

182

Appendix D

Eigen Value Lemma

Suppose A ∈ Rm×n, x ∈ Rn, ‖x‖2 = 1 and λmax be the maximum eigenvalue of ATA

then

‖Ax‖2 ≤
√
λmax (D.1)

Proof. First we observe that ATA is a symmetric positive semi-definite matrix and hence

its eigenvalues are all non-negative. Now, let us consider the following optimization problem

maximize
x

xT (ATA)x

subject to ‖x‖2 = 1

This can be converted into an unconstrained optimization problem using the Lagrange mul-

tiplier method as

maximize
x

xT (ATA)x− λ(xTx− 1)

The KKT conditions [29] for this problem gives us the necessary optimality condition as

(ATA)x = λx

In other words, the quadratic form xT (ATA)x is maximized when λ corresponds to the

183

maximum eigenvalue and x the corresponding eigenvector of (ATA). This implies that for

any unit vector x ∈ Rn we have xT (ATA)x = (Ax)T (Ax) = ‖Ax‖2
2 ≤ λmax

184

Appendix E

Computed Basis Function Values

Table I: Integral of basis functions over the quadrant

Basis Function Integral Value Relative Error (%)

C SS SAQ Analytical C SS SAQ

b00 = x0y0 0.7890 0.7850 0.7850 0.7854 0.4609 0.0497 0.0460

b10 = x1y0 0.3372 0.3334 0.3333 0.3333 1.1685 0.0120 0.0122

b01 = x0y1 0.3333 0.3332 0.3331 0.3333 0.0000 0.0487 0.0703

b20 = x2y0 0.2006 0.1944 0.1945 0.1963 2.1605 1.0001 0.9365

b11 = x1y1 0.1250 0.1247 0.1248 0.1250 0.0000 0.2166 0.1893

b02 = x0y2 0.1961 0.1962 0.1963 0.1963 0.1056 0.0676 0.0280

b30 = x3y0 0.1380 0.1309 0.1310 0.1333 3.5009 1.8206 1.7183

b21 = x2y1 0.0667 0.0662 0.0662 0.0667 0.0000 0.6758 0.6660

b12 = x1y2 0.0664 0.0665 0.0665 0.0667 0.3864 0.2352 0.2082

b03 = x0y3 0.1333 0.1332 0.1333 0.1333 0.0000 0.1014 0.0414

b40 = x4y0 0.1035 0.0965 0.0965 0.0982 5.4327 1.7039 1.6840

b31 = x3y1 0.0417 0.0411 0.0411 0.0417 0.0000 1.2972 1.2858

b22 = x2y2 0.0324 0.0326 0.0326 0.0327 1.1118 0.3209 0.4688

b13 = x1y3 0.0417 0.0416 0.0416 0.0417 0.0000 0.2289 0.2513

b04 = x0y4 0.0983 0.0981 0.0981 0.0982 0.0956 0.0649 0.0660

b50 = x5y0 0.0825 0.0760 0.0759 0.0762 8.2698 0.1982 0.4042

b41 = x4y1 0.0287 0.0282 0.0282 0.0286 0.6250 1.3631 1.2967

b32 = x3y2 0.0185 0.0188 0.0188 0.0190 2.8577 1.2174 1.5349

b23 = x2y3 0.0190 0.0191 0.0190 0.0190 0.4687 0.1990 0.1494

b14 = x1y4 0.0287 0.0285 0.0285 0.0286 0.6021 0.1579 0.2575

b05 = x0y5 0.0763 0.0762 0.0761 0.0762 0.0781 0.0422 0.1128

185

Table II: Integral of basis functions over the notched domain

Basis Functions Integral Value Relative Error (%)

C SS SAQ Analytical C SS SAQ

b00 = x0y0 0.9556 0.9845 0.9845 0.9843 2.9195 0.0256 0.0244

b10 = x1y0 0.4778 0.4922 0.4922 0.4921 2.9195 0.0082 0.0096

b01 = x0y1 0.4578 0.4843 0.4845 0.4850 5.6048 0.1274 0.1024

b20 = x2y0 0.3222 0.3294 0.3294 0.3294 2.1693 0.0182 0.0181

b11 = x1y1 0.2289 0.2429 0.2429 0.2425 5.6048 0.1856 0.1595

b02 = x0y2 0.2932 0.3198 0.3197 0.3189 8.0692 0.2904 0.2474

b30 = x3y0 0.2444 0.2481 0.2481 0.2480 1.4248 0.0315 0.0295

b21 = x2y1 0.1561 0.1627 0.1627 0.1629 4.1489 0.1151 0.0922

b12 = x1y2 0.1466 0.1594 0.1594 0.1595 8.0692 0.0311 0.0218

b03 = x0y3 0.2118 0.2372 0.2371 0.2362 10.3262 0.4531 0.3820

b40 = x4y0 0.1972 0.1990 0.1990 0.1990 0.8730 0.0401 0.0355

b31 = x3y1 0.1197 0.1225 0.1226 0.1231 2.7146 0.4730 0.3917

b22 = x2y2 0.1011 0.1083 0.1081 0.1075 5.9522 0.7364 0.6204

b13 = x1y3 0.1059 0.1174 0.1175 0.1181 10.3262 0.5875 0.4889

b04 = x0y4 0.1636 0.1868 0.1868 0.1867 12.3890 0.0544 0.0458

b50 = x5y0 0.1653 0.1662 0.1662 0.1661 0.5107 0.0436 0.0357

b41 = x4y1 0.0974 0.0983 0.0984 0.0990 1.6582 0.7489 0.6254

b32 = x3y2 0.0783 0.0827 0.0825 0.0815 3.8806 1.5504 1.3015

b23 = x2y3 0.0738 0.0810 0.0808 0.0798 7.5919 1.4125 1.1856

b14 = x1y4 0.0818 0.0919 0.0922 0.0934 12.3890 1.5496 1.2967

b05 = x0y5 0.1320 0.1526 0.1528 0.1539 14.2709 0.8892 0.7470

186

Table III: Integral of basis functions over the wavy domain

Basis Functions Integral Value Relative Error (%)

GA SS SAQ Analytical GA SS SAQ

b00 = x0y0 6.2743 6.4135 6.4238 6.4055 2.0479 0.1255 0.2866

b10 = x1y0 6.2743 6.4115 6.4159 6.4055 2.0479 0.0951 0.1636

b01 = x0y1 9.8417 10.2718 10.2772 10.2615 4.0907 0.1002 0.1524

b20 = x2y0 8.3715 8.5511 8.5525 8.5442 2.0217 0.0800 0.0969

b11 = x1y1 9.8417 10.2704 10.2716 10.2615 4.0907 0.0864 0.0985

b02 = x0y2 20.5837 21.9308 21.9259 21.9271 6.1268 0.0167 0.0055

b30 = x3y0 12.5659 12.8300 12.8296 12.8218 1.9955 0.0640 0.0605

b21 = x2y1 13.1405 13.7040 13.7030 13.6936 4.0392 0.0761 0.0682

b12 = x1y2 20.5837 21.9315 21.9295 21.9271 6.1268 0.0199 0.0106

b03 = x0y3 48.4319 52.6733 52.6618 52.7321 8.1548 0.1116 0.1333

b40 = x4y0 20.1172 20.5350 20.5339 20.5235 1.9799 0.0560 0.0503

b31 = x3y1 19.7380 20.5698 20.5689 20.5578 3.9877 0.0582 0.0538

b22 = x2y2 27.5020 29.2759 29.2746 29.2733 6.0509 0.0089 0.0042

b13 = x1y3 48.4319 52.6771 52.6786 52.7321 8.1548 0.1043 0.1015

b04 = x0y4 121.5551 134.9193 134.9275 135.3215 10.1731 0.2972 0.2912

b50 = x5y0 33.5444 34.2398 34.2407 34.2202 1.9750 0.0573 0.0599

b41 = x4y1 31.6175 32.9364 32.9373 32.9203 3.9572 0.0490 0.0518

b32 = x3y2 41.3386 43.9604 43.9614 43.9657 5.9753 0.0120 0.0098

b23 = x2y3 64.7551 70.3402 70.3403 70.4284 8.0554 0.1252 0.1251

b14 = x1y4 121.5551 134.9168 134.9165 135.3215 10.1731 0.2991 0.2993

b05 = x0y5 317.7952 359.8569 359.8555 361.8728 12.1804 0.5571 0.5574

