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Abstract 

Endogenous biomolecules, such as metabolites, neuropeptides, and proteins, play important roles 

in biological and physiological processes. Mass spectrometry (MS) has become a central 

technology for the study of biomolecules and their biological functions involved in disease 

mechanisms. However, there are still challenges for biomolecular analyses due to their poor 

ionization efficiency, low concentration, and various modifications. This dissertation is devoted to 

the development of novel and improved MS-based omics methodologies and the application to 

human disease studies. Specifically, this work established a multiplex isobaric dimethylated 

leucine (DiLeu) strategy combined with advanced bioinformatics tool for metabolomics studies 

and extended its application to biomarker discovery in mouse models for lower urinary tract 

symptoms (LUTS). This work also developed a novel MS approach for comparative neuropeptide 

characterization with a decision-tree driven MS method and applied it to peptidomic analyses of 

human pituitary tumors and subcommissural organ. Moreover, metabolomics, peptidomics, and 

proteomics were integrated to investigate how the host immune system is shaped by human 

microbiome during infection. In summary, this work not only improves current analytical 

methodologies for characterizing and quantifying biomolecules but also demonstrates its potential 

applications in the pharmaceutical industry and clinical settings.  
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Introduction 

While mass spectrometry (MS) has been proven to be a powerful analytical technique for 

biomolecule identification and quantification, analytical challenges are still present due to the 

biomolecules’ poor ionization efficiency, low concentration, and various modifications. To 

address some of these challenges, a multiplex isobaric dimethylated leucine (DiLeu) strategy 

combined with an advanced bioinformatics tool was established in this dissertation for 

metabolomics studies; a decision-tree driven MS approach was also developed for comprehensive 

neuropeptide characterization; moreover, multi-omics integration method was investigated to 

study in vivo molecular network. These novel and improved MS-based methodologies have been 

successfully applied to lower urinary tract symptoms (LUTS) biomarker discovery, neural function 

exploration of human pituitary tumor and subcommissural organ (SCO), and human microbiome 

role investigation. 

 

Research Summary 

Chapter 1 provides a general introduction with summaries of the major findings of each study. 

Chapters 2 and 3 focus on the MS-based LUTS biomarkers discovery (1, 2). LUTS are common 

among aging men. The etiology of LUTS is considered to be multifactorial (3), and age-related 

hormone change and prostatic inflammation are two plausible etiologies. While patients may suffer 

a variety of etiologic mechanisms, the current subjective symptom score diagnosis method usually 

could not distinguish the pathogenic factors from different individuals. As a result, patients are 

treated empirically with either medication or surgery. Objective biomarkers associated with 

specific etiologic mechanisms are greatly needed to refine the diagnostic approach and provide 

personalized treatment. The purpose of these two chapters is to characterize the contribution of 
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hormonal change and prostatic inflammation to the urine metabolome and proteome in mouse 

models of hormone-induced urinary obstruction (Chapter 2) and bacterial-induced prostatic 

inflammation (Chapter 3). In Chapter 2, accurate and high throughput quantification of amine-

containing metabolites was achieved by twelve-plex DiLeu isobaric labeling (4). In Chapter 3, the 

investigation of DiLeu labeling on metabolites allowed metabolomics and proteomics analysis on 

the same LC-MS platform. Metandem (5) provides a useful tool for large-scale stable isotope 

labeling-based metabolomics data analysis. Moreover, significantly changed metabolites and 

proteins were found to be candidate biomarkers for prostatic inflammation induced-LUTS and 

hormone-induced urinary obstruction, which could be further used as the LUTS patient 

stratification. 

 

Neuropeptides are known to modulate neuronal communication and play a key role in regulating 

the activities of the brain. Recently, MS has evolved as a powerful tool to characterize 

neuropeptides, due to its high speed, great sensitivity, and unbiased detection of a wide range of 

peptides present in a complex mixture. However, the comprehensive characterization of 

neuropeptides is challenging due to their low abundance, biochemical complexities, and limited 

neuropeptide database (6). Therefore, a sensitive MS method is in high demand, and every step in 

the workflow, from sampling to data analysis, needs to be optimized. Although various sample 

preparation methods have already been reported, a systematic comparative investigation is still 

lacking. Also, EThcD is a novel ion fragmentation scheme, and its performance on neuropeptide 

characterization has not been evaluated yet. In Chapter 4, a novel workflow was developed, 

integrating a comparison of three common neuropeptide extraction methods, EThcD ion 

preference investigation, followed by application to neuropeptide characterization in the human 
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pituitary tumor. Furthermore, novel neuropeptides were explored with a custom-made 

neuropeptide preprohormone database (7). 

 

Chapters 5 also focuses on the neuropeptide study. The mammalian subcommissural organ (SCO) 

is a circumventricular organ located in the dorsocaudal region of the third ventricle. The 

functionality of the SCO is not fully understood, although it has been implicated in guiding the 

development of the brain and spinal cord (8). Since neuropeptides are neuronal signaling 

molecules that coordinate the activities of the brain and whole body, elucidating the functions of 

the SCO at the molecular level requires knowledge of its neuropeptidome, along with their critical 

post-translational modifications (PTMs). In this chapter, we performed the first neuropeptidomic 

analysis of the SCO, revealing unique information on the neuropeptide content and PTM 

modulation of the SCO, which will help to better understand the roles of the SCO in different 

biological processes (9). 

 

In recent decades, neuropeptides also have been found to play a significant role in communication 

along the gut-brain axis. Various neuropeptides are expressed in the central and peripheral nervous 

systems, where they facilitate the crosstalk between the nervous systems and other major body 

systems. In addition to being critical to communication from the brain in the nervous systems, 

neuropeptides actively regulate immune functions in the gut in both direct and indirect ways, 

allowing for communication between the immune and nervous systems. Chapter 6 is a mini-

review. The role of several neuropeptides, including calcitonin gene-related peptide (CGRP), 

pituitary adenylate cyclase-activating polypeptide (PACAP), corticotropin-releasing hormone 
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(CRH) and phoenixin (PNX), in the gut-brain axis and their functions in immunity and stress, were 

discussed and summarized (10).  

 

Chapters 7 integrates metabolomics, peptidomics, and proteomics analyses to investigate how the 

host immune system is shaped by the human microbiome during infections (11). The identified 

bioactive peptides (hormones) allow us to understand better how the human microbiome enhances 

host immune response through the gut-brain axis. Furthermore, this multi-omics analysis enabled 

by advanced bioinformatics tools helps to generate a more comprehensive metabolic pathway map 

involved in the immune response. 

 

In collaboration with the Wisconsin Institute for Scientific Literacy, Chapter 8 describes the 

LUTS biomarker discovery projects for a more general audience. Finally, Chapter 9 concludes 

the thesis and discusses future research directions. Other interesting projects, including Metandem 

software development (5), metabolite absolute quantification method development, 

neuropeptidomics characterization of rat habenular nuclei (12), extraction optimization for gut 

microbiota multi-omics study, and multi-omics study of different gut microbiota environments are 

presented in Appendix II, III, IV, V and VI, respectively. All my publications and presentations 

resulting from this work and beyond, are summarized in Appendix I.  
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Chapter 2 

 

Urinary Amine Metabolomics Characterization of a 

Hormone-Induced Urinary Obstruction Mouse Model 

with Custom 12-plex Isobaric DiLeu Labeling 

 

 

 

Adapted from Wei P, Hao L, Thomas S, Buchberger AR, Hyman S, Strinkr L, Ricke WA, Li LL. “Urinary 
Amine Metabolomics Characterization of a Hormone-Induced Urinary Obstruction Mouse Model with 
Custom 12-plex Isobaric DiLeu Labeling. ” Journal of the American Society for Mass Spectrometry, under 
reviewed. Wei P, designed and conducted the study under the supervision of LL; Hao L provided 
expertise in metabolomics, Buchberger AR systhesized the DiLeu tags, Strinkr L provide the mouse urine 
sample, Thomas S, Hyman S, and Ricke WA provided insights in LUTS. 
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ABSTRACT 

Lower urinary tract symptoms (LUTS) are common in aging males. Disease etiology is largely 

unknown, but likely includes inflammation and age-related changes in steroid hormones. 

Diagnosis is currently based on subjective symptom scores, and mainstay treatments can be 

ineffective and bothersome. Biomarker discovery efforts could facilitate objective diagnostic 

criteria for personalized medicine and new potential druggable pathways. To identify urine 

metabolite markers specific to hormone-induced bladder outlet obstruction, we applied our custom 

synthesized multiplex isobaric tags to monitor the development of bladder outlet obstruction across 

time in an experimental mouse model of LUTS. Mouse urine samples were collected before 

treatment and after 2, 4, and 8 weeks of steroid hormone treatment and subsequently analyzed by 

nanoflow ultrahigh-performance liquid chromatography coupled to tandem mass spectrometry. 

Accurate and high throughput quantification of amine-containing metabolites was achieved by 

twelve-plex DiLeu isobaric labeling. Metandem, a novel online software tool for large-scale 

isobaric labeling-based metabolomics, was used for identification and relative quantification of 

labeled metabolites. A total of 59 amine-containing metabolites were identified and quantified, 9 

of which were changed significantly by the hormone treatment. Metabolic pathway analysis 

showed three metabolic pathways were potentially disrupted. Among them, the arginine and 

proline metabolism pathway was significantly dysregulated both in this model and in a prior 

analysis of LUTS patient samples. Proline and citrulline were significantly changed in both 

samples and serve as attractive candidate biomarkers. 12-plex DiLeu isobaric labeling with 

Metandem data processing presents an accessible and efficient workflow for amine-containing 

metabolome study in biological specimens. 

KEYWORDS: urine, metabolomics, lower urinary tract symptoms, mass spectrometry, isobaric 

labeling, Metandem  
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INTRODUCTION 

 

Lower urinary tract symptoms (LUTS) is a major public health problem in the aging population. 

Symptoms include frequency, urgency, nocturia, weak urinary stream, straining to void, and a 

sense of incomplete emptying (1–3). Recent studies have shown that the etiology of LUTS is multi-

factorial (4, 5). In men, prostate enlargement, prostatic inflammation, age-related changes in 

detrusor function and steroid hormones, and heightened sensitivity to bladder filling may all 

contribute (4–8). The complex and variegated composition of the LUTS patient population makes 

it challenging to tease out and validate contributions of different mechanisms. Currently no 

objective biomarkers exist to inform treatment strategies, so patients are generally treated with 

drugs to decrease prostate size (5α-reductase inhibitors) or relax smooth muscle (alpha blockers) 

(9, 10). These treatments are not completely effective, durable in response, nor are they without 

complication (11). Patients with LUTS that persists after these mainline treatments may undergo 

invasive transurethral resection of the prostate (12). Overall, better biomarkers and treatment 

options need to be found. Here, we attempt to characterize the contribution of hormone changes to 

the urine metabolome under controlled, experimental conditions in a mouse model of bladder 

outlet obstruction (BOO). Understanding the urine signature of hormone-induced BOO will inform 

both future efforts to study druggable pathways and future efforts to validate LUTS biomarkers 

for patient stratification and personalized treatments. 

 

Our hormone-induced BOO mouse model relies on slow-release, subcutaneous implants of 

testosterone and 17-estradiol in adult male C57/BL6 mice to generate marked increases in urinary 

frequency, bladder volume, bladder mass, and prostate mass as well as decreased urinary 

volume/void before the 8 week timepoint (13). Additionally, this model, if treated longer (4 



11 
 

months), develops prostatic intraepithelial neoplasia lesions, making this model useful for the 

study of carcinogenesis in the prostate (14). To characterize the urine metabolome of hormone-

induced BOO, we collected samples across the development of this phenotype: before treatment 

and after 2, 4, and 8 weeks of treatment.  

 

Tandem mass spectrometry (MS/MS)-based relative quantification by isobaric labeling is a useful 

technique for comparative quantitative metabolomics in biological systems (15–17). N,N-dimethyl 

leucine (DiLeu) labels are isobaric. This means that analyte precursor m/z between channels is 

indistinguishable at low MS resolution, but distinct reporter ions are apparent in the low m/z region 

upon MS2 fragmentation. The intensities of these reporter ions in MS2 spectra reflect the labeled 

metabolites’ abundance in each sample and, thus, can be compared for relative quantification. 

Compared to label-free metabolomics, multiplexed isobaric labeling of metabolites greatly reduces 

run-to-run variation,  enhances ionization efficiency, improves chromatographic separation of 

polar metabolites, and decreases instrument time demand (by 12-fold when using 12-plex DiLeu 

labeling) (18). DiLeu utilizes a triazine ester to label primary and secondary amines, making this 

derivatization scheme applicable to many metabolites. Additionally, DiLeu labeling enables polar 

metabolites to be separated and detected on nanoUPLC systems, improving chromatographic 

resolution and detection sensitivity over typical standard flow separation techniques (19). Twelve-

plex DiLeu isobaric labels, which are designed and synthesized in our lab (20, 21), were employed 

here for the relative quantification of amine-containing metabolites in urine samples via nanoflow 

ultrahigh-performance liquid chromatography coupled to tandem mass spectrometry (nanoUPLC-

MS/MS).  

 



12 
 

Isobaric labeling has been widely adopted for quantitative proteomics and peptidomics, but it has 

only recently been applied to metabolomics analyses (22–24). Thus, data processing workflows 

for isobaric labeling in proteomics and peptidomics have matured more rapidly than for 

metabolomics. To date, few metabolomics software tools can process stable isotope label-based 

metabolomics data, particularly when using reporter ions produced by MS/MS for quantification. 

Therefore, our lab developed a novel online software tool for isobaric labeling-based 

metabolomics, called Metandem, which integrates metabolite quantification, identification, and 

statistical analysis in the same software package and is freely available at 

http://metandem.com/web/ (25). Metandem is also the first omics data analysis software to provide 

straightforward, online parameter optimization functionality for customization to a particular 

datasets (25). Here, we employed the Metandem software tool to analyze the 12-plex DiLeu-

labeled urinary metabolites at multiple time points after hormone treatment. Metabolite 

identification, quantification, and statistical analysis were achieved in less than 15 min using our 

Metandem software tool. It is expected that these powerful tools may identify clinically useful 

biomarkers of hormone-induced bladder outlet obstruction and new targets for drug treatment.   

 

MATERIALS AND METHODS 

 

Hormone-induced urinary obstruction mouse model  

All animal procedures were approved by the University of Wisconsin-Madison Animal Care and 

Use Committee. Adult male C57BL/6 mice were used for this study (n = 3) (Charles River, 

Wilmington, MA). Urine was collected from each animal via metabolic cage (26) for a two-hour 

period. After the pre-treatment urine collection, mice were treated with subcutaneous, slow-release 

implants containing compressed testosterone (T, 25 mg) and 17β-estradiol (E2, 2.5 mg + 22.5 mg 

http://metandem.com/web/
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cholesterol binder), as described previously (13). Urine samples from the same mice were then 

collected at 2, 4, and 8 weeks post-treatment, as above. All samples were stored at -80 °C until 

further processing. 

Mouse urine sample preparation 

Urine samples were thawed on ice and mixed well by vortexing.  Raw urine (220 μL) was 

centrifuged at 10,000 xg for 10 min to remove particulates and cellular debris. Centrifugal filters 

(3 kDa, Millipore Amicon Ultra, Burlington, MA) were pre-rinsed 3 times with 500 μL of Milli-

Q water at 14,000 xg for 20 min. Clarified supernatant (200 μL) was added to the filter unit and 

centrifuged at 14,000 xg for 30 min, followed by 2 rinses with Milli-Q water (200 μL; same 

centrifugation speed and time) to obtain the metabolite fraction (~600 μL total). Osmolality was 

determined via a freezing-point depression osmometer (Osmometer Model 3250, Advanced 

Instruments, Norwood, MA) (27) and all samples were normalized to 50 mOsmoles/kg H2O, 

aliquoted, lyophilized, and stored at -80 °C until labeling.  

DiLeu synthesis and labeling procedure 

Twelve-plex isobaric DiLeu reagents were synthesized and used for labeling reaction as previously 

described (28). Briefly, the DiLeu 12-plex reagents were synthesized, aliquoted in inactivated form 

at 4 ℃ in a dry box and activated prior to labeling. Lyophilized urine metabolite samples were 

redissolved in 0.5 M triethylammonium bicarbonate solution prior to derivatization of primary and 

secondary amines by excess activated DiLeu reagent (Fig. 1D). The organic: aqueous ratio was 

maintained at ~70% via anhydrous dimethylformamide. Reactions were allowed to proceed for 2 

hrs at room temperature with vigorous vortexing. Labeling reactions were quenched with 0.25% 

hydroxylamine (v/v), and labeled samples were combined in equal ratios (v/v) to form pooled 12-
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plex samples. Excess DiLeu reagents were removed from pooled 12-plex samples via SCX Ziptips 

(OMIX-SCX, Agilent, Santa Clara, CA) as previously described (19) before lyophilization and 

storage at -80 °C until analysis.  

LC-ESI-MS analysis 

Twelve-plex pooled samples were reconstituted in 3% acetonitrile, 0.1% formic acid (v/v) in water 

before injection. UPLC-MS/MS analysis was conducted using a Thermo Dionex UltiMateTM 3000 

nanoLC system coupled to a Thermo Q ExactiveTM HF Orbitrap MS. The analytical column was 

self-made with an integrated emitter tip and dimensions of 75 μm inner diameter × 15 cm length, 

packed with 1.7 μm, 150 Å, BEH C18 material (Waters, Milford, MA). Mobile phase A was 0.1% 

formic acid in water, and mobile phase B was 0.1% formic acid in acetonitrile (Optima Solvents, 

Thermo, Waltham, MA). The flow rate was 0.3 μL/min, and the 70-min gradient was as follows: 

0-16 min, 3% solvent B; 16-20 min, 3-25% B; 20-30 min, 25-45% B; 30-50 min, 45-70% B; 50-

56 min, 70-95% B; 56-60 min 95% B; 60-60.5 min, 95-3% B; 60.5-70 min, 3% B. Full MS scans 

were acquired from m/z 180 to 1000 at a resolution of 60 K, automatic gain control (AGC) at 1 × 

106, and maximum injection time of 50 ms. The top 20 precursors were selected for higher-energy 

C-trap dissociation tandem mass spectrometry (HCD MS2) analysis with an isolation window of 1 

m/z, normalized collision energy (NCE) of 30, resolving power of 60k, AGC target of 1 × 105, 

maximum injection time of 30 ms, and a lower mass limit of 110 m/z.  

Data analysis  

Raw data files were acquired using Thermo Scientific XcaliburTM software and converted into .txt 

format via the COMPASS software suite (29). Metandem was then used to batch-process three 

technical replicates of each 12-plex sample for metabolite quantification. Accurate mass of 
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reporter ions was obtained by averaging the mass across several MS/MS spectra. Then, the mass 

tolerance for metabolite identification was 20 ppm. DiLeu label purity was predetermined, and 

correction for each channel was performed as previously described (19). Average precursor mass 

shift due to labeling was 145.1280 Da. Data analysis parameters, such as reporter ion mass 

tolerance, batch mass tolerance, and retention time tolerance were optimized using the parameter 

optimization graphs in the Metandem software. Output files with reporter ion information were 

merged and median-normalized. Repeated-measures analysis of variance (RM-ANOVA) (30, 31), 

which helps to eliminate some of the interindividual variability, was used to compare metabolite 

abundance between timepoints. Metabolites were considered significantly modulated when p-

values were < 0.05 (RM-ANOVA). MetaboAnalyte 4.0 software (32) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) database were used for metabolic pathway analysis. Pathways were 

considered dysregulated when more than two metabolites were identified in the pathway and at 

least one was significantly changed due to the treatment. Candidate biomarkers and dysregulated 

pathways were compared with prior patient analyses and other previous reports. 

RESULTS AND DISCUSSION 

Efficacy of twelve-plex DiLeu for metabolomics 

Twelve-plex DiLeu isobaric labeling allowed multiplexed metabolite identification and 

quantification in mouse urine samples while also reducing instrumentation time demand, 

decreasing run-to-run variation, and also improving quantification accuracy. The same labeled 

metabolite from 12 urine samples showed a single peak in the MS1 spectrum with a mass shift of 

145.1280 Da (Fig. 1A). For this peak, twelve distinct reporter ion peaks are present in the MS2 

low m/z region (Fig. 1B). The intensity of each reporter ion in MS2 spectra reflects the labeled 

metabolites’ abundance in each sample and, thus, can be compared for relative quantification (Fig. 
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1C). The absence of unlabeled metabolite ions in the MS1 (mass difference of 145.1280 compared 

to unlabeled counterparts) suggested highly efficient labeling of the metabolites by the DiLeu 

reagent.  

Metandem parameter optimization 

Metandem is a newly developed custom software platform for large-scale stable isotope labeling-

based metabolite identification and quantification. It is also the first omics data analysis software 

that contains functionality to perform online parameter optimization for customization to a dataset. 

Results of automated parameter optimization were as follows: optimal reporter ion mass tolerance, 

0.5 mDa (Fig. 2A); optimal batch processing mass tolerance, 5 ppm (Fig. 2B); and optimal batch 

processing retention time tolerance, 0.5 min (Fig. 2C). Metandem also provides the histogram for 

retention time (Fig. S1A) and detected precursor (Fig. S1B) distribution results. 

Mouse urine metabolite identification and quantification 

Three technical replicates of each 12-plex injection were merged in Metandem. A total of 312 

features were identified as putative metabolites after accurate mass matching against the Human 

Metabolome Database (HMDB). Of these, 59 were primary or secondary amine-containing 

metabolites (Table S1). Thirty-seven of these 59 were documented in the urine metabolome 

database (33), and the twenty-two additional amine-containing metabolites were, to our knowledge, 

first reported here. After comparing metabolite abundance between timepoints, 9 metabolites were 

identified as statistically significant biomarker candidates (RM-ANOVA p-value < 0.05) (Table 

1). Among them, eight metabolites were generally increased at all timepoints, while only one 

metabolite was generally decreased at all timepoints (Fig. 3). For the increased expression patterns, 

leucine and 5-aminopentanamide have the highest concentration at 2 weeks; N-acetylputrescine at 
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4 weeks; and proline, citrulline, D-alanyl-D-alanine, O-phosphohomoserine, and 2-Aminobenzoic 

acid peaked at 8 weeks. 

Metabolic pathway analysis 

Metabolic pathway analysis is based on the association between identified metabolites and their 

related biological processes (34). Herein, all identified metabolites were input into the 

MetaboAnalyte 4.0 software for metabolic pathway analysis. Three potentially perturbed 

metabolic pathways were identified: (1) the arginine and proline metabolism pathway; (2) the 

aminoacyl-tRNA biosynthesis pathway; and (3) the tryptophan metabolism pathway. (Fisher’s 

exact test, p-value < 0.07) (Table 2).  

Comparison with LUTS patient samples and other previous reports 

Prior analyses have demonstrated some of the metabolomic and immunohistochemical features of 

LUTS in patient samples, which represent processes like fibrosis and inflammation (27). Both 

LUTS patients and this hormone-induced mouse model of BOO show perturbation of the arginine 

and proline metabolic pathway in the urine metabolome. In particular, the candidate biomarkers 

citrulline and proline were significantly changed in both LUTS and this mouse model (Fig. 4). For 

proline, it was increased in both LUTS patients and the hormone-treated mice, represents a strong 

candidate biomarker for hormone-induced BOO. Urinary proline was also increased in a mouse 

model of hepatic injury and fibrosis, indicating fibrosis is a potential relevant pathway in the 

present BOO model (35). Next, citrulline was decreased in LUTS patients but increased in this 

mouse model. Citrulline is poorly understood in the context of prostate diseases. Citrulline is a 

non-essential amino acid, a precursor to arginine, and displays antioxidant properties (36). 

Increased urine citrulline in these mice could be explained by inflammation-induced expression of 
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nitric oxide synthase 2, the enzyme responsible for conversion of arginine to citrulline (37), 

possibly in response to oxidative stress generated by catechol estrogen metabolites (38). 

 

Other processes were significantly changed in the present study but not observed in LUTS patients. 

For example, the aminoacyl-tRNA biosynthesis pathway was disrupted in the urine metabolome 

of this mouse model but not in LUTS patients. This pathway is pivotal in determining how the 

genetic code is interpreted as amino acids (39). More specifically, leucine and proline were 

significantly changed in this metabolic pathway. The tryptophan metabolism pathway, represented 

by 2-aminobenzoic acid, was also disrupted in this mouse model. Overall, these  pathway-level 

results were similar to a prior report of urine metabolomics in liver injury and fibrosis (40). 

Interestingly, leucine may play an important role in prostatic proliferation. Leucine is an essential 

branched-chain amino acid that signals through the mTOR pathway (41). This signaling is pro-

proliferative in prostate cancer cells, and as such decreasing leucine transport into tumors is an 

attractive therapeutic target (42). It is possible the strong initial increases in leucine in this model 

contribute to the increased prostate mass (benign hyperplasia) or even the development of prostatic 

intraepithelial neoplasia observed later in this model (14). 

 

CONCLUSIONS 

 

Twelve-plex DiLeu isobaric labeling is an attractive high-throughput strategy for identification 

and quantification of amine-containing metabolites, and Metandem is a useful tool for large-scale 

stable isotope labeling-based metabolomics data analysis. Paired together, these tools offer a 

powerful and accessible method for relative quantification of amine-containing metabolites in 

disease biomarker research. In this study of urinary amine metabolomics of a hormone-induced 
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LUTS mouse model, we have identified and quantified 59 amine metabolites, and 22 of them were 

identified in urine for the first time. LUTS patients and this mouse model shared common pathways 

that are dysregulated compared to control groups, for instance, the arginine and proline metabolism 

pathway. Proline presents an especially attractive candidate biomarker for hormone-induced BOO, 

as it was significantly increased in both human LUTS and this mouse model. Future experiments 

will test the hypothesis that this hormone treatment results in fibrosis of the lower urinary tract, 

ultimately leading to the pronounced BOO phenotype. 
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TABLES AND FIGURES 

 

Table 1. Nine significantly changed urine metabolites after hormone treatment.  

Compound 
Molecular 

Weight 
p-value 

Expression 

Pattern 
ppm 

tr  

(min) 
HMDB_ID 

Proline 115.0623 0.006 Increase 9.2 13.6 HMDB00162 

5-Aminopentanamide 116.0938 0.029 Increase 10.2 14.4 HMDB12176 

N-Acetylputrescine 130.1108 0.042 Increase 1.2 15.2 HMDB02064 

Citrulline 175.0936 0.005 Increase 11.7 15.5 HMDB00904 

D-Alanyl-D-alanine 160.0827 0.005 Increase 13.1 16.5 HMDB03459 

O-Phosphohomoserine 199.0278 0.001 Increase 16.1 16.7 HMDB03484 

Purine 120.0450 0.001 Decrease 11.3 8.6 HMDB01366 

2-Aminobenzoic acid 137.0464 0.023 Increase 9.7 19.0 HMDB01123 

Leucine 131.0942 0.006 Increase 3.0 19.0 HMDB00687 
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Table 2. Potentially disrupted metabolic pathways via MetaboAnalyte 4.0 and KEGG 

pathway analysis, metabolites highlighted with red bold font are significantly changed 

metabolites (p-value is from Fisher’s exact test). 

 

Metabolic 

Pathway  KEGG ID Matched Metabolites p-value 

Arginine and 

proline metabolism Map00330 

citrulline, N-acetylputrescine, 

proline, glutamic acid, creatine, 

GABA, 4-aminobutyraldehyde 4.90E-05 

Aminoacyl-tRNA 

biosynthesis Map00970 

leucine, proline, cysteine, 

glycine, alanine, glutamic acid 4.88E-03 

Tryptophan 

metabolism Map00380 

2-aminobenzoic acid, 3-

hydroxyanthranilic acid, 5-

hydroxyindoleacetic acid 6.81E-02 
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Figure 1. Details of 12-plex DiLeu labeling. A: Precursor ion of DiLeu-labeled citrulline; B: 

low m/z region showing DiLeu reporter channels at high resolution (top) and zoom in spectra 

(bottom); C: Citrulline changing trend from different time points of three biological replicates. 

D: Sample labeling map showing the 12-plex DiLeu tags and time point (randomized) 
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Figure 2. Metandem parameter optimization results: A: Optimizing reporter ion mass 

tolerance (0.5 mDa); B: Optimizing batch processing retention time tolerance (5 ppm); C: 

Optimizing batch processing retention time tolerance (0.5 min).  
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Figure 3. Quantification trends of 9 significantly changed urine metabolites (n = 3; RM-

ANOVA, p < 0.05). 
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Figure 4. Arginine and proline metabolism pathway is potentially disrupted 

(MetaboAnalyte, KEGG; Fisher’s exact test, p < 0.07). 
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SUPPLEMENTARY INFORMATION 

 

Figure S1. Additional statistical graphs from Metandem: A. Histogram for retention time 

distribution; B. Histogram for detected precursor distribution. 
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Table S1. List of 59 identified metabolites of interest. 

Compound 

Molecular 

Weight 

(Da) 

Mass of 

labeled 

metabolite 

Δppm 
Time 

(min) 
HMDB_ID 

2-Aminobenzoic acid 137.0464 283.1822 9.7 19.0 HMDB01123 

Leucine 131.0942 277.2301 3.0 19.0 HMDB00687 

Purinea 120.0450 266.1808 11.3 8.6 HMDB01366 

Citrulline 175.0936 321.2295 11.7 15.5 HMDB00904 

Proline 115.0623 261.1981 9.2 13.6 HMDB00162 

5-Aminopentanamidea 116.0938 262.2296 10.2 14.4 HMDB12176 

N-Acetylputrescine 130.1108 276.2466 1.2 15.2 HMDB02064 

D-Alanyl-D-alaninea 160.0827 306.2185 13.1 16.5 HMDB03459 

O-Phosphohomoserine 199.0278 345.1636 16.1 16.7 HMDB03484 

Glutathione 307.0788 453.2147 16.2 18.1 HMDB00125 

GABA 103.0618 249.1977 14.5 15.9 HMDB00112 

Creatine 131.0698 277.2057 2.6 19.7 HMDB00064 

Alanine 89.0467 235.1826 10.8 7.9 HMDB00161 

Taurine 125.0142 271.1501 3.4 8.8 HMDB00251 

Formamidea 45.0216 191.1574 2.1 8.7 HMDB01536 

Glycine 75.0307 221.1665 17.8 9.4 HMDB00123 

Cysteinylglycine 178.0421 324.1779 4.8 10.5 HMDB00078 

Glutamic acid 147.0550 293.1908 12.6 16.0 HMDB00148 

Cysteine 121.0175 267.1533 19.0 15.3 HMDB00574 

4-Aminobutyraldehydea 87.0675 233.2034 10.1 13.7 HMDB01080 

1,2,3,4-Tetrahydroisoquinolinea 133.0889 279.2248 1.5 14.9 HMDB12489 

3-Amino-2-piperidone 114.0784 260.2143 7.9 14.9 HMDB00323 

6-Dimethylaminopurinea 163.0876 309.2234 11.0 15.4 HMDB00473 

3-Methylindolea 131.0752 277.2111 13.2 15.4 HMDB00466 

Dihyroxy-1H-indole glucuronide I 325.0784 471.2143 4.1 15.5 HMDB59997 

Aminoadipic acid 161.0676 307.2034 7.8 15.6 HMDB00510 

5-L-Glutamyl-taurinea 254.0583 400.1942 4.3 15.7 HMDB04195 

Homocysteic acida 183.0211 329.1569 5.1 15.7 HMDB02205 

Diaminopimelic acid 190.0932 336.2290 11.4 16.0 HMDB01370 

2,4-Diaminobutyric acid 118.0727 264.2085 13.1 15.9 HMDB02362 

2,3-Diaminopropionic acid 104.0600 250.1958 13.7 15.9 HMDB02006 

N-Carboxyethyl-g-aminobutyric acida 175.0822 321.2180 13.2 16.1 HMDB02201 

N-Acetylcadaverine 144.1251 290.2610 7.9 16.5 HMDB02284 

4-Acetylimidazo[4,5-c]pyridinea 161.0597 307.1956 5.2 16.6 HMDB34888 

S-(2-carboxypropyl)-Cysteamine 163.0637 309.1995 18.5 16.6 HMDB02169 

7-Aminoclonazepama 285.0642 431.2000 9.4 16.8 HMDB41817 
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Compound 

Molecular 

Weight 

(Da) 

Mass of 

labeled 

metabolite 

Δppm 
Time 

(min) 
HMDB_ID 

Glutamylalaninea 217.0867 363.2225 19.6 16.7 HMDB03764 

2-Aminomuconic acida 157.0361 303.1719 9.1 17.0 HMDB01241 

2-Indolecarboxylic acid 161.0490 307.1848 8.2 17.0 HMDB02285 

3-Indole carboxylic acid glucuronide 337.0792 483.2150 1.7 17.4 HMDB13189 

S-Nitrosoglutathionea 336.0755 482.2114 4.7 17.4 HMDB04645 

Alanyltryptophan 275.1218 421.2577 18.7 17.8 HMDB13209 

N2,N2-Dimethylguanosine 311.1264 457.2622 11.0 17.9 HMDB04824 

5-Hydroxy-6-methoxyindole 

glucuronide 339.0946 485.2305 2.3 17.9 HMDB10363 

S-(Hydroxymethyl)glutathionea 337.0926 483.2284 5.3 17.9 HMDB04662 

Glutamyl-Tyrosinea 309.1034 455.2392 17.0 17.9 HMDB28831 

Inodxyl glucuronide 309.0813 455.2172 11.3 18.0 HMDB10319 

Tyramine-O-sulfate 217.0398 363.1756 5.1 18.1 HMDB06409 

Glutaminyl-Argininea 302.1691 448.3050 3.7 18.7 HMDB28791 

L-alpha-glutamyl-L-hydroxyproline  260.0977 406.2336 11.9 19.3 HMDB11161 

S-3-oxodecanoyl cysteamine 245.1482 391.2840 13.1 20.9 HMDB59773 

4-Thialysinea 164.0616 310.1974 2.3 16.6 HMDB29178 

3-Hydroxyanthranilic acid 153.0428 299.1786 1.3 16.8 HMDB01476 

5-Hydroxyindoleacetic acid 191.0579 337.1937 1.9 16.8 HMDB00763 

2'-Deoxysepiapterin 221.0929 367.2288 7.5 17.2 HMDB00389 

Cystathionine 222.0673 368.2031 0.6 17.2 HMDB00099 

S-Formylglutathionea 335.0761 481.2120 7.8 17.4 HMDB01550 

Homolanthioninea 268.0679 414.2037 18.7 17.8 HMDB02034 

Tyramine glucuronide 313.1120 459.2479 13.1 19.2 HMDB10328 
 

a First identified in urine samples 
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Chapter 3 

 

Urinary Metabolomic and Proteomic Analyses in 

a Mouse Model of Prostatic Inflammation 

 

 

 

 
 
 
 
 
 
 
 
 
 
Adapted from Wei P, Hao L, Ma F, Yu Q, Buchberger AR, Lee S, Bushman W, Li LL. “Urinary 
Metabolomic and Proteomic Analyses in a Mouse Model of Prostatic Inflammation. ” Journal of 
Urine, accepted. Wei P, designed and conducted the study under the supervision of LL, Hao L 
provided expertise in metabolomics, Ma F, provided expertise in proteomics,  Yu Q provided 
expertise instrumentation, Buchberger AR systhesized the DiLeu tags, Lee S provided the mouse 
urine sample, Bushman W provided insights in LUTS. 
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ABSTRACT 

Lower urinary tract symptoms (LUTS) are common among aging men. Since prostatic 

inflammation is one of its etiologies, it is plausible that urinary metabolite and protein 

biomarkers could be identified and used to diagnose inflammation-induced LUTS. We 

characterized the urine metabolome and proteome in a mouse model of bacterial-induced 

prostatic inflammation. Mass Spectrometry (MS)-based multi-omics analysis was 

employed to discover urinary protein and metabolite-based biomarkers. The investigation 

of isobaric dimethylated leucine (DiLeu) labeling on metabolites allowed metabolomics 

and proteomics analysis on the same liquid chromatography (LC)-MS platform. In total, 

143 amine-containing metabolites and 1058 urinary proteins were identified and quantified 

(data are available via ProteomeXchange with identifier PXD018023); among them, 14 

metabolites and 168 proteins were significantly changed by prostatic inflammation. Five 

metabolic pathways and four inflammation-related biological processes were potentially 

disrupted. By comparing our findings with urinary biomarkers identified in a mouse model 

of genetic-induced prostate inflammation and with those previously found to be associated 

with LUTS in older men, we identified creatine, haptoglobin, immunoglobulin kappa 

constant and polymeric Ig receptor as conserved biomarkers for prostatic inflammation 

associated with LUTS.  These data suggest that these putative biomarkers could be used to 

identify men in which prostate inflammation is present and contributing to LUTS.    

 

KEYWORDS: urine, metabolomics, proteomics, lower urinary tract symptoms, prostatic 

inflammation, mass spectrometry. 
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ABBREVIATIONS: 

LUST, Lower urinary tract symptoms; DiLeu, N, N-dimethyl leucine; NCE, normalized 

collision energy; DTT, dithiothreitol; IAA, iodoacetamide; TFA, trifluoroacetic acid; 

KEGG, Kyoto Encyclopedia of Genes and Genomes; HCD, higher-energy C-trap 

dissociation; GO, gene ontology; HMDB, Human Metabolome Database; IL-1, 

interleukin-1. 

 

1. INTRODUCTION 

Lower urinary tract symptoms (LUTS) are highly prevalent, affecting nearly 50% to 90% 

of men aged 50 years or older (1). Urinary symptoms include irritative symptoms such as 

urinary frequency, urgency and nocturia; and obstructive symptoms such as a weak urinary 

stream, straining to void, and a sense of incomplete emptying (2–4). The etiology of LUTS 

in men is considered to be multifactorial. Prostatic enlargement and age-related changes of 

the bladder detrusor are considered major factors, but many patients have symptoms 

without these conditions. Recently, prostate inflammation has been implicated as a possible 

cause of irritative voiding symptoms. We and others have shown that prostate inflammation 

in a mouse model is associated with detrusor overactivity and increased voiding frequency, 

an effect attributable to neural cross-talk between the prostate and bladder at the level of 

the dorsal root ganglia (5–8). Although patients are suffering a variety of etiologic 

mechanisms, the current subject symptom score diagnosis method usually could not 

distinguish the pathogenic factors from different individuals. As a result, patients are 

treated empirically with either medication or surgery. Objective biomarkers associated 

with specific etiologic mechanisms are greatly needed to refine the diagnostic approach 
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and provide personalized treatment (9–11). The purpose of this study is to characterize the 

contribution of prostatic inflammation to the urine metabolome and proteome under 

controlled, experimental conditions in a mouse model of bacterial-induced prostatic 

inflammation. The long-term goal of this work is to validate LUTS biomarkers for patient 

stratification and personalized treatments. 

 

Acute and chronic inflammation is common in the prostate of adult men. The etiology is 

thought to be multifactorial and may include bacterial colonization, viral infection, changes 

in serum testosterone, and reflux of noxious chemicals in the urine (12). In this model,    

prostatic inflammation is induced by a single transurethral inoculation with uropathogenic 

E.coli 1677 in adult male C57BL/6J mice. Nitrofurantoin is administered beginning one 

day prior to bacterial inoculation to help eliminate inflammation of the bladder or urethra 

(8, 13). To characterize the urine metabolome and proteome of the bacterial-induced 

prostatic inflammation model, we collected urine samples from both the control group and 

the bacterial-induced prostatic inflammation group on day seven post-instillation. 

 

Twelve-plex N, N-dimethyl leucine (DiLeu) isobaric labeling has been proven to be an 

accurate and high throughput quantification method for metabolomics studies in biological 

systems (14). It could increase the retention of polar metabolites and enable them to be 

separated and detected on nanoUPLC systems, meaning improved chromatographic 

resolution and detection sensitivity over typical standard flow separation techniques (15). 

Additionally, Metandem, a novel online software tool developed in our lab and freely 

available at http://metandem.com/web/, was created for isobaric labeling-based 
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metabolomics quantification, identification, and statistical analysis (16). Here, we paired 

the DiLeu labeling method and Metandem software tool to analyze the dataset of  DiLeu 

labeled urinary metabolites in controlled, experimental samples from mice with bacterial-

induced prostatic inflammation.   

 

In this study, metabolomics and proteomics analyses have been integrated in analysis of 

urine from a mouse model of bacterial-induced inflammation. Urine normally contains low 

protein concentration (17) (18), but our previous study revealed that proteins involved in 

inflammation and prostate fibrosis were upregulated in men with LUTS (19). This 

combined MS analysis casts a wide net to identify both proteins and metabolites entering 

the urine from the bladder, urethra, and/or prostate in mice with prostatic inflammation 

(20). It is expected that this strategy may identify clinically useful biomarkers of prostatic 

inflammation. In addition, an integrated analysis of both metabolic and proteomics urinary 

biomarkers may provide insight into the mechanism for LUTS associated with prostatic 

inflammation and identify new targets for drug treatment.  

 

2. MATERIALS AND METHODS 

2.1 Mouse model of bacterial-induced prostatic inflammation   

All animal procedures were approved by the University of Wisconsin-Madison Animal 

Care and Use Committee. 12-week old male C57BL/6J mice were used for this study 

(Jackson Lab, Bar Harbor, MA). E. coli 1677 (1x108  bacteria /ml, 20 µl) was instilled into 

the bladders of anesthetized mice (n=4) via a transurethral catheter, as previously described 

(13, 21, 22). Control mice (n=4) were inoculated with an equal volume of PBS. 27.2µg/g 
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nitrofurantoin (Sigma-Aldrich, St. Louis, MO) was injected into both groups via 

subcutaneous twice daily. The administration of nitrofurantoin (3.4 mg/kg, sc, twice daily) 

was begun one day prior to transurethral instillation and continued until the end of the 

experiment. Seven days after instillation, urine was collected from each animal housed in 

a metabolic cage (23) for a two-hour period. All samples were stored at -80 °C until further 

processing. 

 

2.2 Mice urine sample preparation 

Urine samples (~110 μL) were thawed on ice and mixed well before centrifugation (10,000 

xg, 10 min, 4 °C). Clarified supernatant (~100 μL) was aliquoted from each sample and 

loaded onto pre-rinsed (14) centrifugal filters (3 kDa, Millipore Amicon Ultra, Burlington, 

MA). The fluid that went through centrifugal filters during centrifugation (14,000 xg, 30 

min, 4 °C) was collected as the metabolite fraction (<3 kDa). The centrifugal filters were 

then rinsed twice with Milli-Q water (200 μL; same centrifugation speed and time), and 

the flow-through was combined with the previously collected metabolite fraction (total 

volume ~ 500 μL). Next, 200 μL Milli-Q water was used to dissolve the contents left on 

the membrane of centrifugal filters. The filters were then flipped over and centrifuged at 

10,000 xg for 2 min to collect the contents as the protein fraction (>3 kDa). 

 

2.3 Metabolite fraction sample preparation 

Osmolality was used to normalize all the metabolite fraction to 50 mOsmoles/kg H2O (24). 

All the samples were then aliquoted, lyophilized, and stored at -80 °C until labeling. Eight 



41 
 

channels were randomly chosen from the twelve-plex isobaric labeling reagents to match 

the eight samples. Four channels (117a, 117 c, 118a, and 118b) were used to label samples 

from bacterial-induced prostatic inflammation mouse, and four channels (115b, 116a, 116b, 

116c) to label control samples. Isobaric labeling was performed as previously described 

(25). Then equal amounts of eight labeled samples were combined, and excess DiLeu 

reagents were removed from the pooled sample via SCX Ziptips (OMIX-SCX, Agilent, 

Santa Clara, CA) (15). After lyophilization, the pooled metabolite sample was stored at       

-80 °C until analysis. 

 

2.4 Protein fraction sample preparation 

The protein fraction was lyophilized and resuspended in 8 M urea lysis buffer. The total 

protein concentration of each urine sample was determined by the BCA assay (Pierce™ 

BCA Protein Assay Kit, Thermo, Waltham, MA) (26). An equal amount of protein (200 

μg) was aliquoted from each sample. The disulfide bonds were reduced with 5 mM 

dithiothreitol (DTT) for 1 h at room temperature followed by alkylation with 15 mM 

iodoacetamide (IAA) in the dark for 30 min. The alkylation was quenched by 5 mM DTT. 

Next, the protein sample was diluted with 50 mM Tris solution (pH = 8) to a concentration 

of urea less than 1 M. Trypsin was used for protein digestion (protein/enzyme ratio 50:1) 

at 37 °C for 17 h. The digestion was quenched by 10% trifluoroacetic acid (TFA) to a pH 

lower than 2. Then, the digested proteins were desalted with Sep-Pak C18 (Sep Pak C18 

Cartridges, Waters, Milford, MA), lyophilized, and stored at -80 °C until LC-MS/MS 

analysis. 
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2.5 Metabolomics LC-MS Acquisition and Data Analysis 

For the metabolite fraction, the pooled sample was reconstituted in 3% acetonitrile, 0.1% 

formic acid (v/v) in water and inject into Thermo Dionex UltiMateTM 3000 nanoLC system 

coupled to a Thermo Q ExactiveTM HF Orbitrap MS.  The LC-MS acquisition method was 

as previously described (14). For the metabolomics data analysis, Metandem (16) was used 

to batch-process three technical replicates of pooled sample for metabolite identification 

and quantification. Two-tailed Student’s t-test (unequal variance) was used to compare 

metabolite abundance between groups (i.e., E. coli infected vs control mice). Metabolites 

were considered significantly modulated when fold changes were >1.5 and p-values were 

<0.05 (t-test). MetaboAnalyte 4.0 software (26) and the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) database (27) were used for metabolic pathway analysis. Pathway was 

considered dysregulated when p-value was <0.05 (Fisher’s exact test).  

 

2.6 Proteomics LC-MS Acquisition and Data Analysis 

The same LC-MS platform was applied to protein fraction with minor modification. An 

optimized 142 min gradient used was as follows: 0-16 min, 3% solvent B; 16-107 min, 3-

30% B; 107-107.5 min, 30-75% B; 107.5-117 min, 75% B; 117-117.5 min, 75-95% B; 

117.5-127 min 95% B; 127-127.5 min, 95-3% B; 127.5-142 min, 3% B. Full MS scans 

were acquired from m/z 300 to 1500 at a resolution of 60 K, AGC at 1 × 106, and maximum 

injection time (IT) of 100 ms. The top 15 precursors were then selected for higher-energy 

C-trap dissociation tandem mass spectrometry (HCD MS2) analysis with an isolation 
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window of 1.4 m/z, a normalized collision energy (NCE) of 30, a resolving power of 15 K, 

an AGC target of 1 × 105, a maximum injection time of 100 ms, and a lower mass limit of 

120 m/z.  

 

For the proteomics data analysis, the raw data files from the Orbitrap MS analysis were 

searched against a mouse proteome database downloaded from Uniprot (April 2017, entry 

number 24977) (28) utilizing PEAKS 8.5 software (29). A precursor mass error tolerance 

of 10 ppm and a fragment mass error tolerance of 0.01 Da were allowed. Trypsin was 

chosen as the enzyme, and max missed cleavages were two. Carbamidomethylation was 

set as fixed modification, and oxidation (M) was set as variable modifications and three 

maximum PTMs were allowed per peptide. Parameters for confident peptide identification 

were Ascore (PTM site confidence) higher than 20, FDR lower than 1%, and the presence 

of at least one unique peptide. The threshold for the quantification of significant proteins 

was the same as metabolites (p<0.05) using a t-test. DAVID (26) was used for gene 

ontology (GO) annotation of identified proteins. Candidate biomarkers, dysregulated 

pathways, and biological processes were compared with prior human patient analyses and 

other previous reports. Both the mass spectrometry metabolomics and proteomics data 

have been deposited to the ProteomeXchange Consortium via the PRIDE (30) partner 

repository with the dataset identifier PXD018023. 

 

3. RESULTS AND DISCUSSION 

3.1 Mouse urine metabolite identification and quantification 
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DiLeu isobaric labeling allowed both multiplexed metabolite identification and 

quantification in a single injection (Table S1, sample labeling map), which reduces 

demand for instrument time and improves relative quantification accuracy by decreasing 

run-to-run variation. Metandem, a newly developed custom software platform, was 

successfully used to process this large dataset for global stable isotope labeling-based 

metabolite identification and quantification. Results of automated parameter optimization 

(Figure S1) were as follows: reporter ion mass tolerance, 0.4 mDa; batch processing mass 

tolerance, 10 ppm; and batch processing retention time tolerance, 0.5 min.  

 

Three technical replicates of each pooled sample injection were merged via Metandem. 

Only metabolites which displayed reporter ions in every channel were used for further 

analysis. A total of 143 primary or secondary amine-containing metabolites (Table S2) 

were identified after matching for accurate mass against the Human Metabolome Database 

(HMDB) (31). Of these, 102 have been previously documented in the urine metabolome 

database (32); the remaining 41 amine-containing metabolites are, to our knowledge,   

identified in urine for the first time. Of the metabolites with omnipresent reporter ions, 14 

were identified as statistically significant biomarker candidates (Student’s t-test, fold 

change>1.5, p-value<0.05) (Figure 1). Among them, nine were upregulated, while five 

were downregulated.  

 

3.2 Metabolic pathway analysis 
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Metabolic pathway analysis is an effective way to understand the cellular metabolic 

network and metabolic objectives (33). All identified metabolites were entered into the 

MetaboAnalyte 4.0 software, and metabolic pathways with at least one significantly 

changed metabolite (p-value<0.05; Fisher’s exact test) were considered to be perturbed. In 

total, five perturbed metabolic pathways were identified (Table 1): tryptophan metabolism 

pathway; arginine and proline metabolism pathway; histidine metabolism pathway; glycine, 

serine and threonine metabolism pathway, and alanine, aspartate and glutamate metabolism 

pathway.  

 

3.3 Mouse urine protein identification and quantification 

Both labeling and label-free methods of protein identification were performed and 

compared. While the labeling method is more high-throughput, we found that the label-

free method identified more peptides and proteins in the urine samples. Proteomics analysis 

of the mouse urine samples with the label-free method enabled us to identify 6309 unique 

peptide sequences belonging to 1058 unique proteins (Table S3). Comparison of protein 

abundance in the prostatic inflammation and the control groups identified 168 proteins 

statistically significant candidate biomarkers (Student’s t-test, fold change>1.5) (Figure 2). 

Among these, 164 were upregulated, while 4 were downregulated. The 30 proteins showing 

the greatest magnitude of change are listed in Table 2. 

 

3.4 Proteomics Gene Ontology analysis 
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Although urinary proteomic analysis does not directly implicate any metabolic or signaling 

pathway, it is nonetheless instructive to perform GO classification of the significantly 

changed proteins to obtain insight into their possible roles in prostate inflammation and 

LUTS (34). Cell component analysis and biology process analysis of the 168 significantly 

change are shown in Figure 3. Cell component analysis identified most proteins as 

belonging to the extracellular component.  Biological process analysis identified proteins 

involved in acute inflammation, oxidative stress,  fibroblast proliferation and wound 

healing.   

 

3.5 Correlation between metabolic and proteomic analyses identifies biomarker profiles 

of inflammation and fibrosis 

Metabolomic analysis revealed perturbation of the tryptophan metabolism pathway (Table 

1). Tryptophan metabolism and, most especially, its derivative serotonin has been 

implicated in  age-related chronic inflammation (35–39).  Proteomic analysis revealed, 

upregulation of a group of proteins involved in the inflammatory response to injury, 

including acute-phase response (four proteins), wound healing (six proteins) and oxidative 

stress response (six proteins; Figure 3). Metabolomic analysis also revealed perturbation 

of arginine and proline metabolism pathways (Table 1). These pathways are known to be 

related to the synthesis of collagen (40) and it is therefore notable that the group of 

differentially expressed proteins includes several collagens (collagen alpha-1(I) chain, 

collagen alpha-1(XV) chain, collagen alpha-1(XXIV) chain) (Table S3).  In addition, the 

proteomics GO analysis identified nine of the differentially expressed proteins are positive 
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regulators of fibroblast proliferation. Taken together, these data comprise what appears to 

be a profile of biomarkers reflecting a fibrotic response to prostatic inflammation.  

 

It has been speculated that collagen accumulation (fibrosis) of the prostate, possibly 

occurring as a consequence of inflammation, can contribute to LUTS by partially causing 

bladder outlet obstruction (41–43). The inflammatory response to a prostate infection in 

our mouse model of bacterial-induced prostatic inflammation has been well-characterized 

and has been shown to induced collagen synthesis and accumulation. Accordingly, these 

potential biomarkers are likely relevant to LUTS occurring in association with prostatic 

inflammation.   

  

In order to identify metabolic pathway changes and differential protein expression that are 

conserved features of prostate inflammation, we compared our findings here with previous 

studies in a mouse model of prostate inflammation-induced by transgenic overexpression 

of interleukin-1 (IL-1) in the prostate epithelium (44, 45). This comparison analysis 

revealed that creatine, a product of the arginine and proline metabolism pathway, was up-

regulated in both inflammation mouse models (45). The significant changes in creatine 

were 1.5- and 1.6-fold increases in the transgenic mouse model and our bacterial-induced 

mouse model, respectively. We also identified three proteins whose expression was 

significantly increased in both models: haptoglobin, immunoglobulin kappa constant, and 

polymeric Ig receptor.  
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In order to determine if the changes we observed here are specific for prostatic 

inflammation or represent a generalized response to perturbations of the lower urinary tract, 

we compared them to changes observed in a mouse model of hormonally induced prostate 

hyperplasia and voiding dysfunction (16) (46). Metabolomic analysis of the urine revealed 

that this model also showed perturbation of the arginine and proline metabolic pathway, 

but different metabolites were found to be disrupted in these two different models. Creatine, 

putrescine, and argininosuccinic acid were significantly changed in urine samples from 

prostatic inflammation mouse model as compared to its control samples, whereas,  

citrulline, N-acetylputrescine, and proline were significantly changed in urine samples 

from hormone-induced mouse model as compared to its control samples. These 

observations support the conclusion that the different profiles of urinary biomarkers 

identified by metabolomic and proteomic analysis in the different models likely reflect the 

unique etiologic mechanisms.  

 

3.6 Comparison with findings in men with LUTS 

We previously performed metabolomic and proteomic analysis of urine from men with 

LUTS (19, 24). To determine whether our findings in the mouse model are recapitulated 

in patients with LUTS, we compared the changes observed in our mouse model of 

bacterial-induced prostatic inflammation with those found in men with LUTS (Figure 4). 

Metabolomic analysis revealed perturbation of the arginine and proline metabolic pathway 

in the urine metabolome, similar to that observed in the mouse models described above, 

but the specific metabolites exhibiting changes appeared to be different (Figure 4). 

Proteomic analysis revealed significant changes in processes related to fibrosis and 
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inflammation (Figure 4), similar to the mouse models of prostate inflammation but, again, 

the specific proteins that exhibited significantly changed expression were not the same. 

This is not unexpected given that men with LUTS present a complex mix of patients 

suffering a variety of etiologic mechanisms and exhibiting a wide spectrum of symptoms. 

Changes within a small component of that population that mimic those found in a specific 

mouse model are likely to be obscured.  In order to utilize the biomarkers identified here 

to stratify patients with LUTS, it will first be necessary to stratify patients by mechanism 

or by clinical features. For example, urine could be obtained from patients prior to prostate 

surgery, and the proteomic and metabolomic analysis performed on those patients in whom 

substantial inflammation is present in the removed prostate tissue. Alternatively, an 

analysis could be performed on patients who exhibit much greater irritative than 

obstructive symptoms. Once a correspondence is established with a subsegment of the 

LUTS patients, then the biomarkers might be used as a tool for stratification and 

individualized treatment.  

  

4. CONCLUSIONS 

Our aim was to perform urine metabolomics and proteomics analyses to determine LUTS 

biomarkers representing multi-factorial etiologies of LUTS and specifically targeting 

prostatic inflammation-induced LUTS. This aim was pursued by discovering novel 

prognostic metabolites and protein biomarkers in urine and linking them to the 

pathogenesis of LUTS through disrupted metabolic pathways and biological processes. The 

benefit of our study showing urine-based metabolomics and proteomics designed for LUTS 

is expected to be four-fold. First of all, the investigation of DiLeu labeling on metabolites 

allowed metabolomics and proteomics analysis on the same LC-MS platform. Second, the 
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combined metabolomics and proteomics analyses provided an informative method for the 

study of disease molecular mechanisms, which contributed to biomarker discovery and 

patient stratification according to etiologies. Third, metabolite creatine and proteins 

haptoglobin, immunoglobulin kappa constant, and polymeric Ig receptor were found to be 

candidate biomarkers for prostatic inflammation induced-LUTS and could be further used 

as the LUTS patient stratification. Fourth, urine samples from voluntary voiding, meaning 

a non-invasive method for sample collection, have been used for metabolomics and 

proteomics. Future studies will focus on clinical validation of the metabolite and protein 

biomarkers found in this study with a separate large cohort of patient samples.   
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TABLES AND FIGURES 

Table 1. Potentially disrupted metabolic pathways via MetaboAnalyte 4.0 and KEGG pathway analysis.  Matched metabolites 
include significantly changed metabolites (red font) and other identified metabolites whose quantitative values were not significantly 
different between the two groups (p-value is from Fisher’s exact test). 

Metabolic Pathway KEGG ID Matched Metabolites p-value 

Tryptophan 
metabolism 

Map00380 

melatonin, serotonin, 2-aminomuconic acid semialdehyde, N-
methylserotonin,  L-kynurenine, indoleacetaldehyde,  tryptamine, N-
acetylserotonin, 4-(2-amino-3-hydroxyphenyl)-2,4-dioxobutanoic acid, 
4-(2-Aminophenyl)-2,4-dioxobutanoic acid, 5-hydroxyindoleacetic 
acid,  L-3-hydroxykynurenine 

6.07E-06 

Arginine and proline 
metabolism 

Map00330 
creatine, putrescine, argininosuccinic acid, citrulline, L-arginine, L-
glutamic acid, N-acetylornithine, L-proline, hydroxyproline, gamma-
aminobutyric acid, 4-aminobutyraldehyde, N-acetylputrescine 

1.82E-05 

Histidine metabolism Map00340 
histamine, 1-methylhistamine, Imidazoleacetic acid, 1-Methylhistidine, 
L-Glutamic acid 

2.67E-04 

Glycine, serine and 
threonine metabolism 

Map00260 
creatine, L-serine, L-threonine, aminoacetone, L-cysteine, L-2-amino-
3-oxobutanoic acid 

1.60E-02 

Alanine, aspartate 
and glutamate 

metabolism 

Map00250 
argininosuccinic acid, L-alanine, L-glutamic acid, gamma-aminobutyric 
acid, 5-phosphoribosylamine 

2.03E-02 
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Table 2. 30 proteins with the greatest magnitude of change. The p-values are from a 
paired Student’s t-test.  

Accession Protein Name Gene 
Fold 

change 
p-value 

(unequal) 

Q06890 Clusterin CLUS 2.38 1.1E-03 
Q6UGQ3 Secretoglobin family 2B member 2 SG2B2 12.27 1.1E-03 
Q924C5 Alpha-protein kinase 3 ALPK3 9.03 1.2E-03 
E9PV24 Fibrinogen alpha chain FIBA 26.68 1.8E-03 
P21981 Protein-glutamine gamma-glutamyltransferase 2 TGM2 11.34 1.9E-03 

Q8BZT5 Leucine-rich repeat-containing protein 19 LRC19 3.34 2.3E-03 
Q61089 Frizzled-6 FZD6 13.42 2.5E-03 
Q61592 Growth arrest-specific protein 6 GAS6 3.34 2.6E-03 

Q91WR8 Glutathione peroxidase 6 GPX6 4.31 2.7E-03 
Q01339 Beta-2-glycoprotein 1 APOH 3.76 2.7E-03 

Q8CCH2 NHL repeat-containing protein 3 NHLC3 5.27 3.2E-03 
Q9DAU7 WAP four-disulfide core domain protein 2 WFDC2 3.07 3.3E-03 
P12961 Neuroendocrine protein 7B2 7B2 5.14 4.2E-03 

Q9ESB3 Histidine-rich glycoprotein HRG 2.62 4.7E-03 

P63005 
Platelet-activating factor acetylhydrolase IB 

subunit alpha LIS1 8.02 4.8E-03 
O70251 Elongation factor 1-beta EF1B 13.10 4.8E-03 
P16675 Lysosomal protective protein PPGB 2.86 4.9E-03 
P01132 Pro-epidermal growth factor EGF 2.31 5.1E-03 

Q6GU68 
Immunoglobulin superfamily containing 

leucine-rich repeat protein ISLR 4.81 5.4E-03 

Q61029 
Lamina-associated polypeptide 2 isoforms 

beta/delta/epsilon/gamma LAP2B 12.40 5.6E-03 
Q9R1Q9 V-type proton ATPase subunit S1 VAS1 7.63 5.7E-03 
P81117 Nucleobindin-2 NUCB2 7.30 5.8E-03 

Q9ESD1 Prostasin PRSS8 3.85 6.5E-03 
O70570 Polymeric immunoglobulin receptor PIGR 6.88 6.7E-03 
P11276 Fibronectin FINC 4.60 7.0E-03 
O88792 Junctional adhesion molecule A JAM1 6.70 7.2E-03 
Q61646 Haptoglobin HPT 27.48 7.2E-03 

Q04646 
Sodium/potassium-transporting ATPase subunit 

gamma ATNG 3.09 8.3E-03 
Q8BFR4 N-acetylglucosamine-6-sulfatase GNS 3.37 8.5E-03 
P05533 Lymphocyte antigen 6A-2/6E-1 LY6A 4.97 9.2E-03 
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Figure 1. Significantly changed metabolites. 14 metabolites were identified as 
statistically significant biomarker candidates as shown here by a fold change (bacterial-
induced prostatic inflammation mice with respect to control mice). 9 metabolites were 
up-regulated (red bars) and 5 metabolites were down-regulated (blue bars).  
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Figure 2. Volcano plot of quantified urinary proteins. The volcano plot of quantified 
urinary proteins reveals that 168 such proteins were significantly changed in bacterial-
induced prostatic inflammation mice compared to control samples. Proteins with fold 
changes > 1.5 and p-values < 0.05 are shown (red spots: up-regulated; blue spots: down-
regulated). Significant proteins were further characterized through literature searches and 
GO-term enrichment analysis. 
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Figure 3. Gene ontology analysis of significantly changed proteins. A: Cell 
component (top four categories) of significantly changed proteins. B: Biology processes 
(inflammation-related) of significantly changed proteins. 
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Figure 4. Result comparison with the previous study. A: Our bacterial-induced 
prostatic inflammation mouse model. B: Genetically induced prostatic inflammation 
mouse model. C: LUTS patients. D: Hormone induced BOO mouse model. 
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Figure S1. Metandem parameter optimization results: A: Optimizing reporter ion mass 
tolerance; 0.4 mDa was chosen for the final data analysis. B: Optimizing batch processing 
mass tolerance; 10 ppm was chosen. C: Optimizing batch processing retention time 
tolerance; 0.5 min was chosen. D: Histogram for retention time distribution. 
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Table S1. Sample labeling map (randomized) for metabolites samples 

 

Sample Labeling Map  

Bacterial #1 Bacterial #2 Bacterial #3 Bacterial #4 

118b 118a 117c 117a 

Control #1 Control #2 Control #3 Control #4 

116c 116b 116a 115b 
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Chapter 4 

 

Development of a Novel Mass Spectrometry Approach for 

Comprehensive Neuropeptidome Characterization and its 

Application to the Analysis of Human Pituitary Tumor 

 

Adapted from Wei P*, Yu Q*, Sun H*, Ma F, Bakshi VP, Sun W, Zheng Z, Zeng Chun, Li LL. 
“Development of a Novel Mass Spectrometry Approach for Comprehensive Neuropeptidome 
Characterization and its Application to the Analysis of Human Pituitary Tumor. ” Journal of the 
American Chemical Society, to be submitted. *cofirst authors. Wei P and Yu Q, designed and 
conducted the study under the supervision of LL; Sun H provided samples and helped with sample 
preparation, Ma F provied the expertise in neuropeptidomics, Bakshi VP Buchberger provided rat 
brain samples for the method development,  Zeng Chun performed the surgury and collected the 
tumor samples. Sun W and Zheng Z provided insights in human pitutory tumor.  
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ABSTRACT 

Comprehensive characterization of neuropeptides is challenging due to their low abundance, 

biochemical complexities, and limited neuropeptide database. Therefore, a sensitive mass 

spectrometry (MS) method is in great demand, and every step in the workflow, from sampling to 

instrumentation and data analysis, needs to be optimized. Although various sample preparation 

methods have already been reported, a systematic comparative investigation is still lacking. Also, 

EThcD is a relatively new ion fragmentation scheme, and its performance on neuropeptide 

characterization has not been evaluated yet. Herein, a novel MS approach was firstly developed 

by comparison of three common neuropeptide extraction methods, the one with the highest 

extraction efficiency was used in subsequent experiments. Deactivating protease activities was 

proven to decrease the sampling artifact of C-terminal methylation. Secondly, the performance of 

EThcD on neuropeptide characterization was evaluated in comparison with ETD and HCD, and a 

decision tree-driven MS scheme was developed to allow improved neuropeptide sequencing by 

alternating between these fragmentation techniques for each specific charge state. Furthermore, 

the raw data were searched against both mature neuropeptide database and custom-made 

neuropeptide preprohormone databases, then applied the detected preprohormones to NeuroPred 

to predict cleavage probability for novel neuropeptide exploration. With the assistance of this 

novel MS method, a total of 119 neuropeptides and 69 preprohormones were detected from four 

human pituitary tumor samples. Also, eleven novel sulfation modifications and four novel 

neuropeptides have been identified from human pituitary tumor samples. These results 

demonstrate the efficiency of this approach for both neuropeptide sequencing and post-

translational modification (PTM) elucidation. The characterization of these candidate 

neuropeptides and new sulfation sites lay the foundation for future functional investigations. 
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INTRODUCTION 

Neuropeptides are known to modulate neuronal communication and play a key role in regulating 

the activities of the brain (1–5). Recently, mass spectrometry (MS) has evolved as a powerful tool 

to characterize neuropeptides, due to its high speed, great sensitivity and unbiased detection of a 

wide range of peptides present in a complex mixture (6–9). Nevertheless, a comprehensive 

characterization of neuropeptide remains to be a challenging task due to low abundances and 

biochemical complexities of neuropeptides, as well as the limited neuropeptide database available 

for study (9–12). 

 

Increasing extraction efficiency, minimizing extraction artifact, and improving MS method 

sensitivity are critical to improving the characterization of low abundance neuropeptides in 

complex biochemical samples (13–16). C-terminal methylation, one of extraction artifacts, can 

occur during neuropeptide extraction and cause false identification. It could happen during the 

sample preparation process when both water and methanol exist, which may cause neuropeptide 

misidentifications. For example, NFDEIDRSGFG-OMe may be misidentified as NFDEIDRSGFA, 

since both sequences would yield nearly identical mass spectra (13). Therefore, the heat 

stabilization to deactivate protease activity method was evaluated to explore whether this step 

could inhibit this artifact when the extraction buffer is a water and methanol solution. Also, an 

extraction buffer, which allows sufficient neuropeptide recovery and preserves native 
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modification, is especially in need. Although various sample preparation methods have already 

been reported, a thorough comparative investigation is still lacking. In this work, three common 

extraction methods were compared and evaluated based on the number (No.) of neuropeptides 

identified. Since some of the brain tissue is tiny, the extraction method should be efficient for both 

large brain tissue and tiny brain tissue (<3mg). The better neuropeptide extraction method was 

further employed for the neuropeptidome analysis of the human pituitary tumor samples.  

 

Fragmentation is essential for peptide sequence characterization since this technique allows the 

generation of the structure information of a peptide by ion dissociation (17). 

Smaller m/z fragments would be produced during this process, measuring the values of these 

pieces and then assembling them could generate the original peptide sequence (18). Therefore, 

choosing a suitable fragmentation technique is critical for comprehensive neuropeptide 

identification. Electron transfer dissociation (ETD) and beam-type collision-induced dissociation 

(HCD) are the two common fragmentation techniques employed in the peptidomics and 

proteomics studies. Electron Transfer Higher Energy Collision Dissociation (EThcD), a recently 

developed ion fragmentation scheme available on Thermo Scientific Orbitrap instruments, has 

emerged as a hybrid method combining ETD and HCD fragmentation techniques (23, 24). It is 

well-known that each fragmentation technique has its preferences regarding the charge state of a 

peptide/protein ion, the length, and the amino acid components (17). For example, ETD tends to 

perform better than HCD on higher charge states but yields the lowest number of total 

identifications due to its slower scan rate (26, 27). HCD facilitates isobaric labeling-based peptide 

quantification because of its ability for better detection of reporter ions in the low mass region (25). 

Since EThcD is a relatively new fragmentation technique, its ion preference and performance on 
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neuropeptide sequencing are to be explored. Herein we comparatively evaluated these three 

fragmentation techniques and developed a decision tree-driven MS scheme to allow improved 

neuropeptide sequencing by alternating between these fragmentation modes for each specific 

charge state. 

 

Despite the large array of neuropeptides present in the brain (28) to precisely regulate animal 

behaviors  (29), only 294 are included in the mature rat neuropeptide database and 283 in homo 

neuropeptide database (30). A lack of comprehensive database is a major bottleneck for 

neuropeptide identification. Based on the neuropeptide biosynthesis process, the N-terminal signal 

peptide sequence is firstly removed from preprohormone by signal peptidase. Then the obtained 

prohormone will be cleaved by endopeptidases at the N-terminus between two basic residues or 

the C-terminus of the paired basic residues. Finally, basic residue extensions are removed by 

carboxypeptidase E and Peptidyl-glycine alpha-amidating monooxygenase (PAM) to yield the 

bioactive neuropeptide (25) (31). Therefore, to be classified as a candidate neuropeptide, two 

features were required: 1) Its preprohormone needs a signal sequence; 2) At least one terminal of 

experimentally measured peptide flanked by basic cleavage residues. In this study, besides a 

mature neuropeptide database, a custom-made candidate preprohormone database, which includes 

all the signal sequence containing proteins, was also used for untargeted neuropeptide searching. 

Neuropred, a statistical neuropeptide prediction algorithm (32), was used to explore novel 

neuropeptides in human pituitary tumor samples. 

MATERIALS AND METHODS 

Tissue Isolation  
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All animal procedures were approved by the University of Wisconsin-Madison Animal Care and 

Use Committee (33). Male Sprague Dawley rats (Charles River, Wilmington, MA) were used for 

the method development study. After euthanized with isoflurane, rat brains were quickly removed 

after fast decapitation. The entire brain samples and hypothalamus samples were placed on dry ice 

immediately after isolation, then transferred to -80 ℃ for storage. Human pituitary tumor samples 

were collected during surgery by Beijing Tian Tan Hospital and stored at -80℃ until further 

processing. 

 

Heat Denature Evaluation 

Frozen rat brain tissues were used for both the denature group and the non-denature group to 

evaluate the effect of heat denaturation. Denature step was using STABILIZOR T1 with frozen 

tissue mode. Then both the denatured tissue and non-denature tissue were weighed, following with 

the same analysis step. Briefly, ice-cold extraction buffer (water/methanol/acetic acid (1:90:9, 

v/v/v)) (34–37) was added based on the ratio of buffer volume to tissue weight, 3 μL/1mg. After 

homogenizing by Sonic Dismembrator (8 secs on, 15 secs off, three circles, Fisher Scientific 

Model FB120), samples were centrifuged (20,000 xg at 4°C, 20min, Eppendorf Centrifuge 5424 

R). Then the supernatant was loaded on the pre-rinsed Ultracel-30K 15ml Molecular Weight Cut 

Off (MWCO) filter pre-rinse with (i) 0.1M sodium hydroxide 1200ul, 4000G at 4°C, 5min (ii) 

Water/Methanol/Acetonitrile solution (50:30:20, v/v/v) 1200μL, 4000G at 4°C, 5min, repeat one 

time (iii) Extraction buffer, 4000 xg at 4°C, 5min. The flow-through part was collected and 

lyophilized. Sep-Pak C18 Cartridges were used for the sample desalting. Peptide Assay (Pierce™ 

Quantitative Colorimetric Peptide Assay) was used for peptide concentration determination and 

injection volume normalization before injecting into LC-MS. Ultimate 3000 UPLC system 
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coupling with Orbitrap Fusion™ Tribrid™ Mass Spectrometer. HCD fractionation method was 

adopted here for the heat denature evaluation.  

 

Extraction Buffer Evaluation 

Extraction buffers were evaluated with both large brain tissue (entire brain) and tiny brain tissue 

(hypothalamus). Three common neuropeptide extraction buffers, low acidified methanol (LAM, 

water/methanol/acetic acid (79.8:20:0.2, v/v/v) and water/methanol/acetic acid (49.8:50:0.2, v/v/v)) 

(38), high acidified methanol buffer (HAM, water/methanol/acetic acid (1:90:9, v/v/v)) and 8M 

Urea buffer (39), were applied to the brain tissues. Both HAM and 8M Urea buffers were used as 

extraction buffer and followed the workflow above. Since LAM method has two different buffers, 

to be consistent with the buffer volume-weight ratio with the other two methods, 1.5 μL/mg of 

water/methanol/acetic acid solution (79.8:20:0.2, v/v/v) and 1.5 μL/mg water/methanol/acetic acid 

solution (49.8:50:0.2, v/v/v) were added to tissue sample, respectively during homogenization step. 

The first step aqueous extractions and second step organic extractions were mixed before MWCO. 

The following steps were the same as the other two extraction buffer. 

 

Also, to minimize sample loss for handling small tissues such as the hypothalamus, the buffer 

volume-weight ratio was increased to 20 μL/mg. MWCO filter was changed to 0.5 ml Microcon 

YM-30 (Millipore; 20 min, 15,000 xg at 4 °C). 0.5 ml MWCO filters were pre-rinsed with the 

same solutions as 15 ml filters but used 200 μL volume instead (15,000 xg at 4°C, 10min, 

Eppendorf Centrifuge 5424 R) 
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Evaluation of EThcD, ETD and HCD Fragmentation Patterns Performance 

After BCA normalization, an equal amount of peptide sample was injected into LC-MS. For the 

MS fragmentation method, every charge stage from charge 2 to charge 6 was evaluated with 

EThcD, ETD, and HCD fragmentation patterns, respectively. LC-MS method has been optimized 

under each fractionation. Peaks 8.5 was employed to evaluate the fragmentation performance for 

each charge state. The following filters, false discovery rate (FDR) lower than 1%, PTM Ascore 

equal to or higher than 20, and at least one unique peptide was detected for each identified 

neuropeptide, were used to increase the confidence of identification. Mature neuropeptide database 

downloaded from NeuroPep was used for the database searching, and both the intact neuropeptides 

and truncated neuropeptides were used for the three fragmentation pattern evaluations.  

 

Novel Neuropeptide Exploration 

After the heat denature evaluation, extraction buffer evaluation, and three fragmentation 

performance evaluations, a novel method was developed and applied to the human pituitary tumor 

neuropeptide study. Besides the mature neuropeptide database, a custom-made candidate 

preprohormone database, which includes all the signal sequence containing proteins, was also used 

for novel neuropeptide exploration. A house-made candidate preprohormone database was begun 

with downloading the homo database from Uniprot (40). Then the signal sequence containing 

proteins were extracted with Signal P (41) to form the preprohormone database. After the 

preprohormone database searching, the identified preprohormones from human pituitary tumors 

were applied to Neuropred for cleavage probability predicted. Cleavage probability higher than 

0.9 was used for the candidate neuropeptide exploration. 
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RESULTS AND DISCUSSION 

Heat Denaturation Evaluation  

Both denature and non-denature groups identified same 89 neuropeptides with a mature 

neuropeptide database. However, four C-terminal methylation modified peptides were identified 

from the non-denature group, while none was detected from the denature group. From Table 1, the 

four C-terminal methylated peptides identified in the non-denature group were also found in the 

denature group but without methylation modification, which demonstrates that those four C-

methylation modifications did not belong to the original sequences but from the sample preparation 

artifact. Therefore, heating stabilization conducted rapid heating to preserve samples from human 

artifact during sampling, which was a recommended step to increase the accuracy and quality of 

analytical results. 

 

Extraction Buffer Evaluation  

HAM, LAM, and Urea buffers were comparatively evaluated for the neuropeptide recovery rate 

with both large brain tissue (the entire brain) and tiny tissue (hypothalamus). According to Fig. 1 

A and B, Urea and HAM buffers showed better extraction efficiency in both the hypothalamus and 

the entire brain, when compared with the LAM buffer. Therefore, Urea and HAM was further 

considered. According to Fig. 1 C and D, HAM extraction method could enable the identification 

of more unique neuropeptides when compared with the Urea method in both the hypothalamus 

and the entire brain tissues. Furthermore, since brain tissue is lipid-rich tissue, and the urea buffer 

offers good solubility for both lipids and neuropeptides. When using urea buffer for neuropeptide 

extraction, the lipid in the extraction solution would stuck on the MWCO filters and stop the other 

neuropeptide from flowing through, which made the centrifuge time much longer than the HAM 
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buffer. Therefore, HAM exhibits the best performance for neuropeptide study in the brain, as it 

yields the highest recovery efficiency, and it is easy to work with. 

 

Evaluation of EThcD, ETD and HCD Fragmentation Pattern Performance 

After going through the ion source, neuropeptides were charged, and their charge states commonly 

ranged from 2 to 6, due to the relatively small size of most neuropeptides. Therefore, ions 

preference analysis of EThcD, ETD, and HCD was based on the charge states from 2 to 6. In Fig 

2, firstly, the bar chart indicates HCD identified the highest number of peptides in every charge 

states, followed by EThcD and ETD. Secondly, although from the bar chart, the total peptide 

number identified by EThcD is higher than ETD, Venn diagram shows ETD, which has high 

charge ion preference as discussed in the background, identified more unique peptides at charge 

states 3, 4 and 5 than EThcD. Thirdly, from the Venn diagram, most identified peptides of EThcD 

are overlapped with HCD. Furthermore, EThcD and HCD exhibit similar trends, with 

identification rates decrease as the charge states increase, which indicates EThcD prefers lower 

charge states ions than higher charge state. Based on all the statistical comparison results from Fig 

2, a data-dependent decision tree method was established and illustrated in Fig 3A. Briefly, HCD 

was used as the main fragmentation mode due to its superior performance at all charge states. 

EThcD was combined at charge state 2, and ETD at charge states 3-6 as a complementary 

fragmentation mode to maximize the peptide coverage for comprehensive neuropeptide 

characterization. This data-dependent decision tree approach was further evaluated. The same 

brain sample was analyzed by both the decision tree method and the MS methods with three 

fragmentation modes operated individually. The neuropeptide identification results in Fig 3B show 

that the single run of the decision tree method could identify similar numbers of neuropeptides 
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from the sum of three separate runs with ETD, EThcD, and HCD, which verified the high 

efficiency of neuropeptide characterization using this novel decision tree method. 

 

Neuropeptidome Characterization in Human Pituitary Tumor 

After the method evaluation and optimization, a novel approach was developed, which starting 

from a heat denaturation to remove the sampling artifact. Then HAM buffer was added based on 

the pituitary tumor weight. A high pH reversed-phase peptide fractionation kit was specifically 

used here to improve the neuropeptide discovery. Then injected peptide mixture into the LC-MS 

with the data dependence decision-tree method. Raw data were searched against both the mature 

neuropeptide database and the preprohormone database. Neuropeptides identification, 

neuropeptide PTM, and novel neuropeptide were further explored.  

 

From the mature database searching, in total, 6480 peptides were detected from 119 mature 

neuropeptides, which belonging to 79 preprohormones. In Fig 4A, the bar graph shows the total 

identified neuropeptide number from each human pituitary tumor. The Venn diagram in Fig 4B 

shows the shared neuropeptides between four pituitary tumor samples. 39 neuropeptides (Table 

S1) were observed in all four pituitary tumors, including Neurosecretory protein VGF, which may 

regulate cell-cell interactions, Secretogranin-1, and Secretogranin-2 which could regulate the 

neuroendocrine secretion, and ProSAAS which control the neuroendocrine secretory pathway. 

 

Furthermore, 27 sulfotyrosine peptides (Table S2) were detected that belong to 5 human 

neuropeptides. Notably, 11 novel sulfotyrosine sites were confidently identified. Seven of them 
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were from neuropeptide Secretogranin-1. When compared with the sulfation sites with the 

previous study (Fig 5A), three sulfation sites 321, 454, and 546 were reported in Uniprot by 

similarity. By similarity means, these sulfotyrosine sites have been found in other organisms but 

have not yet been detected in human neuropeptides. Along with the other four novel sulfotyrosine 

sites in 369, 506, 548, and 581, seven sulfotyrosine sites were identified in the human for the first 

time, which greatly expanded the knowledge of sulfotyrosine sites in neuropeptide Secretogranin-

1. Fig 5B shows a mass spectrum of a sulfotyrosine peptide Y.Y(+79.96)DPLQWKSSHFE.R from 

neuropeptide Secretogranin-1. According to the neutral loss of 80 Da, sulfotyrosine could be 

distinguished from the phosphotyrosine with modification sites being localized. Commonly, PTM 

of neuropeptides could increase the complexity of neuropeptide structure and lead to more 

challenges for identification. Sulfation is especially tricky because of the similarity of sulfation 

and phosphorylation, exhibiting the same mass change after modification. However, this challenge 

was solved by this novel decision tree method, even without special sulfation enrichment. The 

alternation between different fragmentation modes could not only improve the efficiency of 

neuropeptide identification but also enable confident elucidation of the neuropeptide PTM and 

modification sites. 

 

Novel Neuropeptides in Human Pituitary Tumor 

After searching the raw data with the preprohormone database, 586 peptides that belong to 69 

preprohormones were found in all four human pituitary samples. The results of the candidate 

preprohormone database were significantly expanded in comparison with the mature neuropeptide 

database searching. After submitting the FASTA formatted sequence of detected candidate 

preprohormones to NeuroPred under the mammalian model, the potential cleavage sites and 
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cleavage probability were exported (32). Basic cleavage site Lys-Arg (K-R) and possible pairs 

Arg-Arg, Lys-Lys, and Arg-Lys, which may also be cleaved in some prohormones to produce 

active neuropeptides, were included to evaluate the possible cleavage sites (42). Table 2 shows the 

four cleavage sites were found with the cleavage probability of more than 90%, notably, three of 

the cleavage sites have cleavage probability of more than 95%. 90% was used here to avoid the 

false positive cleavage site. 

 

Among those four, Platelet-derived growth factor D, Augurin, and Meteorin have not been reported 

as neuropeptide preprohormones, while two mature neuropeptides have been identified from 

Neuropeptide W. WYKHVASPRYHTVGRAAGLLMGL (NP03746) and 

WYKHVASPRYHTVGRAAGLLMGLRRSPYLW (NP03747). In particular, peptide 

SSQAGIPVRAP has also been detected an experiment designed for the discovery of bioactive 

peptides by experimentally identifying signal sequence cleavage sites and processing sites (43). 

Meteorin, a secreted protein that regulates glial cell differentiation and promotes axonal extension 

(44). It is relatively newly described as a neurotrophic factor and reported as over-expressed in the 

striatum following excitotoxic injury (45). 

 

Augurin is a secreted peptide, a putative hormone that may induce senescence of oligodendrocyte 

and neural precursor cells. According to gene ontology annotation (GO), its molecular function is 

the neuropeptide hormone, and the biological process is the neuropeptide signaling pathway and 

negative regulation of cell proliferation. It is hypothesized that augurin is a novel peptide hormone 

likely to be involved in physiological homeostasis [29]. Also, it is reported as a novel hypothalamic 
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neuropeptide that stimulates the hypothalamus-pituitary-adrenal axis [30]. Notably, a hidden 

Markov model tool, a bioinformatics-driven discovery method has also been predicted that 

Augurin is a putative neuropeptide precursor from the human genome (48). Thus, its detection in 

our study further suggest that augurin is a candidate neuropeptide preprohormone.  

  

Platelet-derived growth factor D (PDGF D) is a growth factor that plays an essential role in the 

regulation of embryonic development, cell proliferation, cell migration, survival, and chemotaxis. 

Although PDGF D activation and human cancer progression are currently under investigation, the 

elevated PDGF D expression which has been observed and reported in many ovarian, lung, renal, 

and brain cancer-derived cell lines, sera, and cancer tissues supports such a hypothesis that PDGF 

D is aberrantly localized in some specific tumor tissues and may play a role in tumorigenesis (49). 

Since PDGF D is a signaling molecule (growth factor) specifically involved in the tumor tissues, 

it is likely to act as a crucial tumor-related neuropeptide precursor that could be used for tumor 

therapy.  

 

CONCLUSIONS 

A novel approach was developed for more comprehensive neuropeptide characterization. Firstly, 

three extraction buffers were comparatively evaluated, and HAM has been selected as the best 

extraction method for neuropeptide sampling. HAM buffer has the highest extraction efficiency 

for both large and tiny brain tissues when compared with the LAM extraction buffer. It is also a 

friendly extraction buffer to use when compared with the 8M urea buffer. Secondly, from the 

comparative investigation of three fragmentation techniques, HCD has the superior performance 
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for neuropeptide characterization in all charge states. While EThcD could provide more 

complementary results at charge state 2 and ETD provide more identifications at charge states 3-

6. Based on this result, a decision tree-driven MS scheme was developed to allow improved 

neuropeptide sequencing by alternating between these fragmentation techniques for each specific 

charge state. Thirdly, applying this novel MS approach to the human pituitary tumor study, a total 

of 119 neuropeptides were detected from four human pituitary tumor samples. Not only the 

neuropeptide sequencing but the site-specific PTMs characterization was also improved by this 

novel method. Eleven new sulfotyrosine sites were identified in neuropeptides from the human 

pituitary tumor samples without special enrichment steps. Furthermore, with the preprohormone 

database, four candidate neuropeptides have been identified in human pituitary tumor samples. 

The results demonstrated the efficiency of this novel approach for neuropeptide characterization. 

Future work will focus on novel neuropeptide evaluation and functional exploration. 
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TABLES AND FIGURES 

 

Table 1. Heat denaturation evaluation results. C-terminal methylation was only found in the non-denature group when compared 

with the denature group.  

Neuropeptide Accession Non-Denature Group Denature Group 
NP01018|Chromogranin/secretogranin|Secretogranin-1 R.LLDEGHDPVHESPVD(+14.02).T R.LLDEGHDPVHESPVD.T 
NP01013|Chromogranin/secretogranin|Chromogranin-A W.SRMDQLAKELT(+14.02).A W.SRMDQLAKELT.A 
NP01021|Chromogranin/secretogranin|Secretogranin-3 R.ELSAERPLNEQIAEAE(+14.02).A R.ELSAERPLNEQIAEAE.A 

NP00883|CART|Cocaine_and_amphetamine-regulated Q(-17.03)EDAELQPR(+14.02).A Q(-17.03)EDAELQPR.A 
 

Table 2. Novel neuropeptide identified from human pituitary tumors. The cleavage sites with the cleavage probability higher than 

90%, results from NeuroPred. 

Protein Accession Gene Peptide Unique Start End 
Cleavage 

Probability  
Q8N729|Neuropeptide W NPW R.SSQAGIPVRAP.R Y 105 115 0.9783 

Q9GZP0|Platelet-derived growth factor D PDGFD R.DESNHLTDLY.R Y 41 50 0.9620 
Q9H1Z8|Augurin C2orf40 R.EAPVPTKTKVAVDEN.K Y 42 56 0.9105 

Q9UJH8|Meteorin METRN R.ALFLQATPHQDIS.R Y 128 140 0.9962 
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Figure 1. Extraction buffer evaluation result. Panels A and C show the neuropeptides 

identified from the hypothalamus (tiny tissue) with three extraction buffers and the overlap 

among each buffer extraction. Panels B and D show the neuropeptides identified from the 

entire brain (large tissue) with three extraction buffers and the overlap among each buffer 

extraction. 
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Figure 2. Charge stage distribution with ETD, EThcD, and HCD. The bar chart shows the total identified peptide No. of ETD, 

EThcD, and HCD at each charge state. The Venn diagram shows the unique and overlap of peptides identified at each charge state. 

Peptide here refers to truncated neuropeptide. 
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Figure 3. Data-dependent decision tree method. A: Alternation between ETD, EThcD, 

and HCD fragmentation techniques for each charge state; B: Evaluation of the decision 

tree method with three individual run. 
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Figure 4. Neuropeptide identification in the human pituitary tumor. The bar chart in 

A shows the identified neuropeptide in four human pituitary tumors; The Venn diagram in  

B shows the overlap neuropeptides between four pituitary tumors.
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Figure 5. A: Novel sulfation sites identified in neuropeptide secretogranin-1 compare with Uniprot; B: Mass Spectra of sulfotyrosine 
peptide Y.Y(+79.96)DPLQWKSSHFE.R from Secretogranin-1.
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SUPPLEMENTARY INFORMATION 

 

Table S1. List of 39 neuropeptides shared by all four human pituitary tumors. 

Preprohormone(Uniprot) 
Neuropeptide 

ID 
Avg. 
Mass 

-10lgP 
Coverage 

(%) 
P05408 NP00012 20887 437.82 92 

Q8N6N7 NP00026 9790 94.07 10 
P07108 NP00034 9913 231.82 71 
P07492 NP00790 2860 190.36 100 
P08949 NP00793 3674 86.53 59 
Q16568 NP00881 9942 98.13 16 

Q6UW01 NP00913 18256 63.07 12 
P10645 NP00984 48918 499.74 89 
P05060 NP00999 76326 460.95 73 
P13521 NP01000 67829 408.18 80 

Q8WXD2 NP01002 50994 268.29 31 
P01042 NP01097 69897 109.31 6 
P22466 NP02025 3157 275.51 100 
P22466 NP02026 6672 176.16 73 

Q9UBC7 NP02040 6500 90.26 45 
P06307 NP02242 10750 91.75 25 
P01275 NP02465 8101 62.91 9 
P01275 NP02471 3766 53.09 27 
O43555 NP02577 10516 96.57 32 
P41159 NP02870 16026 75.05 23 
Q15848 NP03617 24544 79.52 13 
P43490 NP03624 55521 86.57 4 
O95158 NP03717 30326 113.72 11 
Q8N729 NP03747 3543 55.78 43 
P30990 NP03782 14303 54.89 11 
Q02818 NP04021 51146 230.87 21 
P80303 NP04026 47328 149.29 12 
P01210 NP04136 4587 48.09 24 
P01189 NP04893 4541 390.69 100 
P01189 NP04895 9806 518.05 100 
P01189 NP04901 3006 337.2 100 

Q9UHG2 NP04921 24034 497.41 96 
P08185 NP05299 42639 91.44 3 
Q86U17 NP05300 44982 139.05 14 
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Q8IW75 NP05301 45108 109.81 8 
O75830 NP05302 44060 69.89 7 
P01019 NP05334 49761 110.33 11 
P01236 NP05514 22898 76.93 21 
O15240 NP05915 65000 564.76 90 

 

The green highlight neuropeptides are sulfated neuropeptides. 
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Table S2. List of 27 identified sulfotyrosine peptides.  

Neuropeptide Sulfotyrosine Peptide PTM 
Sulfotyrosine 

Site 
Neuroendocrine 

protein 7B2 D.PEHDY(+79.96)PGLGKW.N* Sulfation 131 
Neuroendocrine 

protein 7B2 D.PEHDY(+79.96)PGLGKWN.K* Sulfation 131 
Neuroendocrine 

protein 7B2 F.Q(-17.03)LHQHLFDPEHDY(+79.96)P.G* 
Pyro-glu from Q; 

Sulfation 131 
Neuroendocrine 

protein 7B2 F.Q(-17.03)LHQHLFDPEHDY(+79.96)PGLGKWN.K* 
Pyro-glu from Q; 

Sulfation 131 
Neuroendocrine 

protein 7B2 H.LFDPEHDY(+79.96)PGLGKWN.K* Sulfation 131 
Neuroendocrine 

protein 7B2 H.Q(-17.03)HLFDPEHDY(+79.96)PGLGKWN.K* 
Pyro-glu from Q; 

Sulfation 131 
Neuroendocrine 

protein 7B2 L.FDPEHDY(+79.96)PGLGKW.N* Sulfation 131 
Secretogranin-1 N.Y(+79.96)DWWEKKP.F* Sulfation 548 
Secretogranin-1 Y.NY(+79.96)DWWEKKP.F* Sulfation 548 
Secretogranin-1 Y.Y(+79.96)DPLQW.K* Sulfation 506 
Secretogranin-1 Y.Y(+79.96)DPLQWKS.S Sulfation 506 
Secretogranin-1 Y.Y(+79.96)DPLQWKSSH.F Sulfation 506 
Secretogranin-1 Y.Y(+79.96)DPLQWKSSHFE.R Sulfation 506 
Secretogranin-1 F.NPYY(+79.96)DPLQWKSSHFE.R Sulfation 506 
Secretogranin-1 E.KNFFPEY(+79.96)N.Y* Sulfation 546 
Secretogranin-1 L.NY(+79.96)GEEGAPGKWQ.Q* Sulfation 454 
Secretogranin-1 E.EEPEY(+79.96)GEEIKGYPGVQAPEDLEWERYR(-.98).G Sulfation; Amidation 321 
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Secretogranin-1 R.ASEEEPEY(+79.96)GEEIKGYPGVQAPEDLEWERYR(-.98).G Sulfation; Amidation 321 
Secretogranin-1 R.NY(+79.96)PSLELDKM.A Sulfation 369 

Secretogranin-1 R.Q(-17.03)Y(+79.96)DRVAQLDQLLH.Y* 
Pyro-glu from Q; 

Sulfation 581 

Secretogranin-1 R.Q(-17.03)YDRVAQLDQLLHY(+79.96).R 
Pyro-glu from Q; 

Sulfation 581 

Secretogranin-2 R.E(-18.01)RMDEEQKLY(+79.96).T* 
Pyro-glu from E; 

Sulfation 196 

Lipotropin beta K.N(+42.01)AIIKNAY(+79.96)KKGE* 
Acetylation (N-
term); Sulfation 85 

ProSAAS L.RPRPPVY(+79.96).D* Sulfation 138 
ProSAAS L.RPRPPVY(+79.96)D.D* Sulfation 138 
ProSAAS L.VPAPVPAAALRPRPPVY(+79.96)DDGPAGPDAEE.A* Sulfation 138 

ProSAAS R.PRPPVY(+79.96)DDGPAGPDAEE.A* Sulfation 138 
 

* Peptides with Ascore (PTM localization confidence score) of 1000. 
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Chapter 5 

 

Neuropeptidomic Study of the Mammalian 

Subcommissural Organ (SCO) by High-Resolution 

Mass Spectrometry 

 

 

Adapted from Wei P, Ma F, Ge W, Li L. “Neuropeptidomic Study of the Mammalian Subcommissural 
Organ ( SCO ) by High-Resolution Mass Spectrometry.” To be submitted. Wei P, focus on the data analysis 
and manuscript preparation under the supervision of LL; Ma F conducted the sample preparation and 
instrument analysis, Ge W provide the SCO sample and provided insights in SCO. 
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ABSTRACT 

The mammalian subcommissural organ (SCO) is a circumventricular organ (CVO) of ependymal 

(glial) origin. The brain could utilize neuroactive messengers to control the secretory process in 

SCO. Although the functionality of the SCO is not fully understood, it has been implicated in 

guiding the development of the brain and spinal cord during embryonic development. Since 

neuropeptides are neuronal signaling molecules that coordinate the activities of the brain and 

whole body, to elucidate the functions of the SCO at the molecular level requires knowledge of its 

neuropeptidome, along with their critical post-translational modifications (PTMs). In this work, 

liquid chromatography (LC) coupled with Orbitrap tandem mass spectrometry (MS) was used to 

uncover the neuropeptide profiles of the SCO. With the assistance of bioinformatics, a total of 12 

neuropeptides were detected from the SCO. Base on their neuro functions, the crucial role of SCO 

in embryonic development was supported. Also, novel SCO functions, such as stress response, 

cold response and dietary excess response, and reproduction, were first identified in SCO. The 

identification of rare PTMs, such as citrullination, Hexose (NSY), and the discovery of unique O-

glycosylated neuropeptide helped better understand the roles of the SCO in different biological 

processes. Furthermore, novel neuropeptide, DVGSYQEKVDVVLGPIQLQSPSKE, was 

uniquely identified in SCO. Together, these data represent the first neuropeptidomics study of SCO. 

Information on the neuropeptide content and PTM modulation can be used as a basic 

understanding of the roles of SCO in different biological processes and enable a range of follow-

up studies. 

KEYWORDS: 

Subcommissural Organ (SCO), neuropeptidomics, mass spectrometry, post-translational 

modifications (PTMs), glyco-neuropeptide, preprohormone 
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INTRODUCTION 

The mammalian subcommissural organ (SCO) is a circumventricular organ (CVO) located in the 

dorsocaudal region of the third ventricle (1). Cells of the subcommissural organ, which are 

specialized in the secretion of glycoproteins, are arranged into two layers: a superficial layer called 

the ependyma and an underlying layer called the hypendyma (2). Both hypendymal cells and 

ependymal cells are secretory in nature, and they secrete Reissner’s fiber glycoprotein and many 

other proteins into the CSF (1, 3). The function of SCO is not known, although studies have shown 

preliminary evidence to support its role in embryonic development (4). Although there are no 

neuronal cell bodies within the SCO, it receives neuronal input from different neuropeptide and 

neurotransmitter systems. These neurochemical messengers may be responsible for changes in the 

secretory activity of the specialized SCO cells. Therefore, the neural function of SCO could be 

revealed by the study of the signaling molecules from SCO. 

 

Neuropeptides and peptide hormones are the main classes of signaling molecules in nervous and 

endocrine systems that regulate physiological processes and behaviors (5). They are classified into 

different families based on the shared sequence motif. Neuropeptides are usually released into the 

circulating system after cellular enzymatic processes from inactive precursors and multiple post-

translational modifications (PTMs). Low concentration and various PTMs are the main challenges 

for global neuropeptide characterization (6). The immunohistochemical method used to be applied 

to the SCO input system for neuropeptide identification (7). Although immunohistochemical is a 

sensitive method, it is not suitable for the large-scale discovery of neuropeptide study. Mass 

spectrometry has evolved to be a sensitive and unbiased method for the untargeted neuropeptide 

characterization (8). Combined with the advanced bioinformatic software, both neuropeptide 
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structure and PTMs could be confidently elucidated. 

 

PTMs are of great significance in determining or altering peptide structures and biological 

activities. Glycosylation is one of the most common yet the most challenging PTMs, due to the 

complexity of attached glycans and the site occupancy on the backbones (9, 10). Among different 

types of glycosylation, two categories are widely studied, namely, N- and O-linked glycosylation. 

Specifically, an oligosaccharide attached to the side chain amide nitrogen of asparagine (Asn) is 

recognized as N-linked glycans with the Asn-X-Ser/Thr sequon, where X could be any amino acid 

except proline. O-linked glycosylation usually occurs on the hydroxyl group of serine and 

threonine when the carbohydrate is attached to the oxygen (11). To deal with the high complexity 

and low abundance of the endogenous glycosylated peptides, MS-based approaches have emerged 

as powerful tools. Especially with the instrumentation developments in ionization sources, mass 

analyzers and the fragmentation modes, significant advancements in glycopeptide analysis enable 

revealing peptide backbone structures, site-specific information, and glycan types with less 

instrument time (12).  

 

Due to the limitation of the neuropeptide database, as well as the limited knowledge about the SCO 

neural function, novel neuropeptides may exist in SCO neuropeptidomics study. Therefore, 

besides the mature neuropeptide database, a custom-built preprohormone database, which 

including all the proteins with signal peptides, was developed and applied to the SCO novel 

neuropeptide investigation. Herein, we performed the first neuropeptidomic analysis of the SCO, 

revealing unique information on the neuropeptide content and PTM modulation of the SCO, which 

helps to understand better the roles of the SCO in different biological processes. 
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EXPERIMENTAL SECTION  

SCO Isolation  

All animal studies conform to the Guide for the Care and Use of Laboratory Animals (National 

Institutes of Health Publication No. 85–23, 1996 revision) and protocols approved by the 

Institutional Animal Care and Use Committee at the University of Texas Southwestern Medical 

Center. 12-week old male C57BL/6J mice were used for this study (Jackson Lab, Bar Harbor, MA). 

Forty mice were euthanized with isoflurane, and the brains were quickly removed after fast 

decapitation. The entire brain samples were placed on dry ice immediately after isolation. Then 

SCOs were carefully isolated pooled together as the SCO sample. A brain slice without SCO was 

used as the control sample. Both SCO and control samples were stored at -80 ℃ until use. 

 

Endogenous Peptide Extraction 

The isolated SCO sample and control sample were dissolved in water/methanol/acetic acid (1:90:9, 

v/v/v) buffer based on the ratio of buffer volume to tissue weight, 10μL/1mg. After homogenizing 

by Sonic Dismembrator (8 secs on, 15 secs off, three cycles in total, Fisher Scientific Model 

FB120), the mixture was centrifuged at (20,000 xg, 20 min, 4°C). Then clarified supernatant 

(200μL) was aliquoted and loaded on the pre-rinsed ((i) 0.1M sodium hydroxide, 200 μl (ii) 

water/methanol/acetonitrile solution (50:30:20, v/v/v), 200 μL, repeat one time (iii) 

water/methanol/acetic acid (1:90:9, v/v/v) buffer, 200μL, 15,000 xg, 5min, 4°C) 0.5ml molecular 

weight cut off (MWCO) filter (30 kDa, Millipore Amicon Ultra, Burlington, MA). The fluid that 

went through centrifugal filters during centrifugation (15,000 xg, 30 min, 4 °C) was collected as 

the neuropeptide samples (<30 kDa). The centrifugal filters were then rinsed twice with extraction 

buffer (200 μL; same centrifugation speed and time), and the flow-through was combined with the 
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previously collected peptide samples (total volume ~ 600 μL). All the samples were then aliquoted 

and lyophilized. C18 Zip tips (Millipore Sigma, St. Louis, MO) was used for desalting. After 

lyophilization, the peptide samples were stored at  -80 °C until LC-MS analysis. 

 

LC–Orbitrap MS Analysis 

The peptides extracted from the SCO and control samples were analyzed using a nanoLC system 

(Dionex UltiMate 3000, Thermo Fisher Scientific) coupled to an Orbitrap Fusion Lumos mass 

spectrometer (Thermo Fisher Scientific). The samples were reconstituted in loading solvent of 3% 

acetonitrile (ACN), 0.1% formic acid (v/v). The analytical column was self-made with an 

integrated emitter tip and dimensions of 75 μm inner diameter × 17 cm length, caped with 3.0 μm, 

packed with 1.7 μm, 150 Å, BEH C18 material (Waters, Milford, MA). H2O with 0.1% FA, and 

ACN with 0.1% FA, were used as solvents A and B, respectively. The flow rate was 0.3 μL/min, 

and the gradient for the peptide elution range was as follows: 0-16 min, 3% solvent B; 16-20 min, 

3-25% B; 20-30 min, 25-45% B; 30-50 min, 45-70% B; 50-56 min, 70-95% B; 56-60 min 95% B; 

60-60.5 min, 95-3% B; 60.5-70 min, 3% B. Data acquisition was accomplished in top speed data-

dependent mode. Other parameters included: precursor scan automatic gain control (AGC), 1e+6; 

MS/MS scan AGC, 5e+4; isolation window, 1 m/z; normalized collision energy, 30%; with both 

higher-energy C-trap dissociation (HCD) and electron-transfer/higher-energy collision 

dissociation (EThcD) tandem mass spectrometry analysis. 

 

Data Analysis 

Raw data were searched against the mouse neuropeptide database combined Neuropep and 

SwePep (337 entries) with PEAKS 8.5 for neuropeptide identification. A mass tolerance of ±10 
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ppm was used for precursors, monoisotopic mass tolerance was set to ±0.02 Da for product ions. 

HCD fragmentation type and EthcD fragmentation were selected individually. An advanced 

setting that searched against 313 build-in modifications was used for more accurate PTM searching.  

Parameters for confident neuropeptide identification were Ascore (PTM site confidence) higher 

than 20, FDR lower than 1%, and the presence of at least one unique peptide. Besides the mature 

neuropeptide database, a house-made candidate preprohormone database was also used to discover 

novel neuropeptides, as previously described (13). 

 

Raw data were also searched against 309 mammalian N-glycans and 78 O-glycans modifications 

with ByonicTM for glyco-neuropeptide study. Our post-processing steps included manual filtering 

to 1% false discovery rate (FDR) at the peptide spectral match level using the 2D-FDR score. Then 

removing identifications that had a Byonic score below 150 and retaining glyco PSMs that had 

|logProb| value above 1 (which is the absolute value of the log base 10 of the protein p-value). A 

further filtering step was added that only allowed for identifications with a DeltaMod score of 10 

or higher to remove all decoy hits (14).  

 

RESULTS AND DISCUSSION 

Neuropeptide Identification: 

From Table 1 and Fig. 1A, a total of 12 neuropeptides were detected in the SCO, with nine of 

them exhibiting 100% sequence coverage. Notably, neuropeptide manserin, which could regulate 

the neuroendocrine system, was identified in mice for the first time (15). And neuropeptide 

somatostatin, which has been identified as an SCO input neuropeptide with the 

immunohistochemical method, has also been identified with our MS method. Most of the identified 
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neuropeptides were secreted neuropeptides (Fig 1B), while Thymosin beta 4 (Tβ4) and Thymosin 

beta 10 (Tβ10), belonging to the cytoskeleton, and Acyl-CoA-binding protein (ACBP) located at 

the endoplasmic reticulum and Golgi apparatus. Their preprohormone belongs to the granin 

(chromogranin/secretogranin) family, thymosin beta family, MCH family, opioid family, 

somatostatin family, and other families. While in the control sample, 62 neuropeptides were 

identified, and 34 of them were exhibiting 100% sequence coverage (Fig 1A). All the 12 

neuropeptides identified in SCO were also identified in the control samples. 

 

PTM Identification: 

To identify more PTM modified neuropeptides in the SCO, an advanced setting that searched raw 

data against 313 built-in modifications was used. Besides the common peptide PTMs, acetylation 

(N-terminal), amidation, and oxidation (M), rare PTMs, citrullination, and hexose (NSY) were 

also identified from the SCO neuropeptides. For the two rare PTMs, citrullination is specifically 

modified on the arginine (site 39) of neuropeptide Tβ10, and hexose is modified on the serine (site 

1 and site 15) of neuropeptide Tβ4. Mass spectra of two modifications could be found in Fig 2. 

The same modified neuropeptides, Tβ10 and Tβ4 were also found in the control sample.  

 

After searching raw data against both 309 mammalian N-Glycan and 78 mammalian O-glycan 

modification lists with Byonics, nine O-glycosylated peptides (Table 2) were found belonging to 

the SCO neuropeptides. One O-glycosylated peptide from neuropeptide Tβ10 and eight from Tβ4.  

When comparing with the O-glycosylated peptides identified from the control sample, four O-

glycosylated peptides from neuropeptide Tβ4 were uniquely detected in SCO (Table 2). 
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Novel Neuropeptide Identification: 

Besides the mature neuropeptides database, the preprohormone database that includes all the 

mouse proteins with signal peptide sequences was also used for the novel neuropeptide exploration.  

From the searching result of the preprohormone database, 15 preprohormones were identified from 

the SCO. When comparing with the control sample, 7 of them were overlap with the control sample, 

while 8 of them were uniquely identified in SCO (Fig. 3). From the Gene Ontology (GO) analysis 

shown in Fig. 4B, extracellular region, extracellular space, and extracellular exosome are the top 

cell component of the preprohormones from SCO, which are consistent with the cell component 

with neuropeptides. 

 

After entering those 15 preprohormones identified in SCO into NeuroPred for the novel 

neuropeptide investigation, five peptides (Table 3) were identified from the preprohormone. 

According to the cleavage probability prediction, Arginine at protein site 2002 shows a cleavage 

probability of 0.9906, which is much higher than the neuropeptide cleavage probability 

requirement value of 0.8. Based on the five detected peptides and predicted cleavage sites, the 

sequence of novel neuropeptide is DVGSYQEKVDVVLGPIQLQSPSKE, which has been 

identified as a bioactive peptide in rat plasma after hemorrhagic shock. Notably, those five peptides 

were only identified in SCO when compared with the control sample, which shows the unique 

function of this candidate neuropeptide in SCO. 

 

Discussion: 

From neuropeptide content to infer SCO neuronal function 

The SCO is a secretory gland that receives some innervation from outside neurons. By studying 
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those input neuropeptides in SCO, which brings the neuroactive messengers to control the 

secretory process, we could know more about the neural functions of SCO. Both Tβ10 and Tβ4 

belong to the beta-thymosin family and exhibit diverse physiological functions such as tissue 

development and regeneration, anti-inflammatory effects, and induction of insulin secretion (16–

20). Especially Tβ4 could bind to actin and promote cell migration, including the mobilization, 

migration, and differentiation of stem/progenitor cells, which form new blood vessels and 

regenerate the tissue. Previous study has suggested that Tβ4 is a crucial factor in cardiac 

development, growth, disease, epicardial integrity, and blood vessel formation during embryonic 

development (21). Besides peptides Tβ4 and Tβ10, the other two neuropeptides, cerebellin-4 and 

ACBP, were also identified related to embryonic development. Neuropeptide cerebellin-4 plays a 

vital role in the formation and maintenance of inhibitory GABAergic synapses, and neuropeptide 

ACBP modulates the action of the GABA receptor (22). GABA receptor has been identified in the 

SCO in the previous study with the immunochemistry method (7). Although GABA is the 

chief inhibitory neurotransmitter in the developmentally mature mammalian central nervous 

system, its actions were thought to be primarily excitatory in the developing brain (23). Therefore, 

GABA is a crucial neurotransmitter during embryonic development, and its function was regulated 

by the two neuropeptides, cerebellin-4 (24) and ACBP (22, 25), identified in the SCO. Although 

the functionality of the SCO is not fully understood, it has been implicated in guiding the 

development of the brain and spinal cord. These identified neuropeptides further support SCO’s 

function during embryonic development. 

 

Besides potential role during embryonic development, the SCO may also be involved in stress 

response. Three identified neuropeptides,  Met-enkephalin-Arg-Phe (MERF), 
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PENK_MOUSE_198-209, and Somatostatin-28 have been implicated in various biological 

processes related to stress response (26–29). Among them, MERF and PENK_MOUSE_198-209 

were from the opioid neuropeptide precursor family, which is well known for their roles in pain 

perception and responses to stress. Somatostatin-28 could markedly influence several components 

of the stress response by activation of somatostatin receptor receptors. Besides the stress response, 

the three neuropeptides from chromogranin/secretogranin protein family, Manserin, 

Secretogranin-3, and SCG1_MOUSE_588-597 may indicate the role of SCO in regulated secretion 

(30). Neuropeptide Big SAAS is a serine-type endopeptidase inhibitor and response to cold and 

dietary excess biological process or relevance to modulation of the auditory and vestibular system. 

Finally, Neuropeptide- glutamic acid isoleucine (NEI) is a peptide related to reproduction (31, 32).  

 

For the rare PTMs, citrullination could increase the hydrophobicity of the protein, which can lead 

to changes in protein folding, affecting the structure and function. Therefore, it has a vital role in 

the insulation of neurons and the plasticity of the central nervous system (33). The mechanism and 

biological function of hexosylation remain unclear, might be a kind of glycation. Notably, the four 

O-glycosylated peptides from neuropeptide Tβ4 were uniquely expressed in the SCO when 

compared with the control sample. Unlike other CVOs, the blood-brain barrier (BBB) is present 

in the SCO. The neuropeptides after glycosylation could be more easily and effectively penetrate 

the BBB, which shows the essential role of neuropeptide Tβ4 on SCO.  

 

CONCLUSIONS 

SCO, a CVO of ependymal (glial) origin, utilizes neuroactive messengers, possibly controlling the 

secretory process. This was the first MS-based neuropeptidomic study of SCO, revealing twelve 
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neuropeptides that may suggest potential neuronal function of the SCO. The crucial role of SCO 

in embryonic development was supported. Also, novel SCO functions, such as stress response, 

cold and dietary excess response, and reproduction, were implicated in the SCO for the first time.  

PTM modulation, including glycosylation, helped to understand better the roles of the SCO in 

different biological processes. Furthermore, one candidate neuropeptide was found in the SCO, 

whose neural function will be explored and verified in the follow-up study. 
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TABLES AND FIGURES 

 

Table 1. A list of identified neuropeptides in the SCO  

Precursor 
Family 

Neuropeptide 
Coverage 

(%) 
Subcellular Location Neurofunction 

thymosin beta 
Tβ4 100 Cytoskeleton embryonic development 

Tβ10 100 Cytoskeleton embryonic development 
CBLN Cerebellin-4 7 Secreted  inhibitory GABAergic synapses 

ACBP ACBP 29 
Endoplasmic reticulum, Golgi 

apparatus 
GABA receptor  

opioid 
MERF 100 Secreted responses to stress. 

PENK_MOUSE_198-209 100 Secreted responses to stress. 
somatostatin Somatostatin-28 100 Secreted responses to stress. 

ProSAAS Big_SAAS 100 Secreted 
response to cold and dietary 

excess 

granin  
Manserin 100 Secreted 

regulated secretory proteins Secretogranin-3 3 Secreted 
SCG1_MOUSE_588-597 100 Secreted 

MCH NEI 100 Secreted reproduction.  
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Table 2. O-glycosylated peptides identified from the SCO. The green highlighted ones are only identified in SCO. 

Neurop
eptide Peptide Glycan Modification 

Byonic 
score  

Delta 
Mod 

|Log 
Prob| 

Tβ4 

M.AEIEKFDKS[+892.317]KLKKTETQEKNPLPSKETIEQEKQAGES.- HexNAc(2)Hex(3) 403.70 21.19 3.69 

-.S[+203.079]DKPDMAEIEKFDKSKLKKT[+162.053]ETQEKNPLPSKETIEQEKQAGES.- HexNAc(1) 381.39 34.15 5.35 

E.IEKFDKS[+933.344]KLKKTETQEKNPLPSKETIEQEKQAGES.- HexNAc(3)Hex(2) 365.30 143.08 4.41 

D.[+42.011]KPDMAEIEKFDKS[+203.079]KLKK.T HexNAc(1) 338.22 338.22 3.82 

M.AEIEKFDKS[+892.317]KLKKTETQEKNPLPSKETIEQEKQAGES.- HexNAc(2)Hex(3) 333.60 27.42 3.58 

D.KPDM[+15.995]AEIEKFDKS[+406.159]KLKKTETQEKNPLPSKETIEQEKQAGES.- HexNAc(2) 303.78 134.15 3.60 

D.[+42.011]KPDMAEIEKFDKS[+203.079]KLK.K HexNAc(1) 300.55 300.55 4.10 

M.AEIEKFDKS[+1038.375]KLKKTETQEKNPLPSKET[+162.053]IEQEKQAGES.- HexNAc(2)Hex(3)Fuc(1) 198.82 25.55 2.76 

Tβ10 G.EIAS[+162.053]FDKAKLKKT[+755.296]ETQEKNTLPT[+162.053]KETIEQEKRSEIS.- HexNAc(3)Fuc(1) 281.29 18.72 3.10 
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Table 3. Peptides identified from candidate neuropeptide DVGSYQEKVDVVLGPIQLQSPSKE. 

Neuropeptide 
Cleavage 

Site 
Cleavage 

Probability 
Peptide Mass ppm Length Start End Unique 

Deleted in malignant 
brain tumors 1 protein 

R2002 0.9906 

R.DVGSYQEKV.D 1023.4872 0 9 2003 2011 Y 

R.DVGSYQEKVD.V 1138.5142 0.7 10 2003 2012 Y 

R.DVGSYQEKVDV.V 1237.5826 0.1 11 2003 2013 Y 

R.DVGSYQEKVDVV.L 1336.6510 0.1 12 2003 2014 Y 

R.DVGSYQEKVDVVLGPIQ.L 1844.9519 1.2 17 2003 2019 Y 
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Figure 1. Neuropeptide identification result. A: Neuropeptide identification in the SCO 
compared with the control sample. B: Subcellular location of SCO neuropeptides. 
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Figure 2. MS Spectra of rare PTM A: Example spectrum of citrullination neuropeptide 
thymosin beta 10. B: Example spectra of Hexdose neuropeptide thymosin beta 4. 
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Figure 3. Preprohormone identification result. A: Preprohormones identification in SCO 
compared with the control sample. B: Cell component analysis of SCO preprohormones (Top 5). 
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Chapter 6 

 

Neuropeptides in Gut-Brain Axis and Their Influence 

on Host Immunity and Stress 

 

 

 

 
Adapted from Wei P, Keller C, Li L. 2020. “Neuropeptides in gut-brain axis and their influence 
on host immunity and stress. ” Comput Struct Biotechnol Journal. J 18:843–851. Wei P designed 
and conducted this review under the supervision of LL, Keller C provided review on the stres part. 
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Abstract  

In recent decades, neuropeptides have been found to play a major role in communication along the 

gut-brain axis. Various neuropeptides are expressed in the central and peripheral nervous systems, 

where they facilitate the crosstalk between the nervous systems and other major body systems. In 

addition to being critical to communication from the brain in the nervous systems, neuropeptides 

actively regulate immune functions in the gut in both direct and indirect ways, allowing for 

communication between the immune and nervous systems. In this mini review, we discuss the role 

of several neuropeptides, including calcitonin gene-related peptide (CGRP), pituitary adenylate 

cyclase-activating polypeptide (PACAP), corticotropin-releasing hormone (CRH) and phoenixin 

(PNX), in the gut-brain axis and summarize their functions in immunity and stress. We choose 

these neuropeptides to highlight the diversity of peptide communication in the gut-brain axis.  

 

Keywords:  

Neuropeptide, gut-brain axis, immunity, antimicrobial peptides, stress, hypothalamic-pituitary-

adrenal axis.  
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pituitary adenylate cyclase-activating polypeptide; CRH,  corticotropin-releasing hormone; 
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ACTH, adrenocorticotrophic hormone; HPA axis, hypothalamic-pituitary-adrenal axis; PNX, 

phoenixin. 

 

1. Introduction 

Trillions of bacteria colonize the human gut and the gut microbiota is essential for human health 

[1]–[4]. While commensal bacteria reside in the host, providing key benefits, including protection 

against invasion, opportunistic or virulent bacteria are eliminated from the gut by the local innate 

immune system [5]. Increasing evidence points to appropriate gut microbiota not only making 

critical contribution to the immune system, but also having a profound impact on brain function 

[6]–[8]. When virulent pathogens invade, metabolic products such as lipopolysaccharides (LPS) 

can directly affect the function of enteric neurons, spinal sensory neurons and the vagus nerve 

through activation of Toll-like receptors or translocation and release of neuropeptides and 

hormones [9]. Gut permeability is perhaps the most important factor in initiating microbial 

interaction with the rest of the body [10]. 

 

 The gut is the largest immune competent organ in our body, and contains close to 100 million 

neurons [11], [12]. Most of the nerve structures belong to the enteric nervous system (ENS), which 

regulates gut functions autonomously. The remaining extrinsic nerves connect the central nervous 

system with the gut and belong either to the afferent gut-brain or the efferent brain-gut axis [13], 

[14]. Bidirectional communication between the brain and the gut has long been recognized [7], 

[8]. To summarize the concept of the bidirectional deep interaction between central and peripheral 

nervous systems and the immune system, one can note that most of the neuropeptides, produced 

by neurons during immune response versus infectious agents or malignant cells, have 
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neuroendocrine-like activity that can influence both brain and gut functions. The neuropeptides 

calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide 

(PACAP) have been studied within this framework. 

 

Neuropeptides are important due to their ability to regulate a range of diverse biological activities. 

As neurotransmitters, neuropeptides are components of the autonomic nervous system and act 

locally at peripheral sites; as neuromodulators, neuropeptides could act on central regulatory 

centers; and as neurohormones and hormones, neuropeptides could reach the immune system, 

peripheral vessels, organs and glands through the circulatory system [18]. It is reported that 

neuropeptides show close relationships and deep interactions between the neuropeptidergic and 

immunological systems within the host immune homeostasis. Neuropeptides, such as substance P 

(SP) [16], vasoactive intestinal peptide (VIP) [15], and α-melanocyte-stimulating hormone (α-

MSH), released by nervous fibers in the intestine, exhibit a variety of proinflammatory or anti-

inflammatory effects that are required for the modulation of innate and adaptive immune response 

[19], [20].  

 

The influence of the gut microbiota on several aspects of central nervous system (CNS) function 

is increasingly supported by a growing body of experimental data [21]–[23]. The mechanism of 

this influence is complex and involves multiple direct and indirect pathways. The direct link 

between the microbiota and hypothalamic-pituitary-adrenal (HPA) axis association with stress 

shows the significant role of microbiota in CNS function [24]–[27]. While  inflammatory diseases, 

such as inflammatory bowel disease (IBD), could lead to mental disorder, stress could also induce 

inflammation through increasing intestinal permeability [28]. In this article, we will review the 
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current evidence in the literature that points towards roles of neuropeptides in gut-brain axis and 

their influence on host immune system and psychiatric disorders. We will also review the possible 

mechanisms through which gut microbiota might be involved in the pathogenesis of these 

disorders with example neuropeptides. While there are numerous neuropeptides involved in 

communication along the gut-brain axis, many of which are mentioned in this mini review, a 

couple select neuropeptides are chosen for in depth analysis to demonstrate the diversity of gut-

brain axis communications, as a full description of all gut-brain axis neuropeptides is outside the 

scope of this mini-review.  

 

2. Role of Gut-Brain Axis in Immune Response 

Starting from the study on capsaicin activity, the role of neuropeptides in the connection between 

the neuroendocrine and immune system has been receiving increasing attention [29], [30]. 

Neuropeptides from the gut-brain axis have two key roles on the immune system: enhance innate 

host defense and direct antimicrobial function [31], [32]. In initiating microbial interactions with 

the intestine, metabolic products such as lipopolysaccharide (LPS) created by pathogenic 

microorganisms can increase the gut permeability and alter the activity of the ENS and CNS [33]. 

The intestinal barrier, which could act against this invasion, consists of multiple layers that 

includes gut flora and external mucus layer, epithelial layer, and lamina propria [34]. Immune cells 

such as lymphocytes, macrophages, plasma cells, antigen presenting cells, and mast cells are 

mainly concentrated on the epithelial layer and lamina propria [33].  

 

Many neurotransmitters and neuropeptides bind directly to their receptors expressed in human T 

cells (also termed T lymphocytes), and also in various other immune cells, including B cells, 
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dendritic cells, macrophages, and microglia, and subsequently induce various very potent immune 

effects [35], [36]. Recent studies show that neuropeptides such as neuropeptide Y, Somatostatin, 

GnRH-I, GnRH-II and CGRP could bind to their receptors in normal peripheral human T cells and 

trigger or elevate significantly a kaleidoscope of T cell functions and features crucial for health-

keeping and disease-fighting tasks [37], [38]. 

 

Conventionally neuropeptides are considered as signaling molecules but have recently been shown 

to be pleiotropic molecules that are integral components of the nervous and immune system [39]. 

Common characteristics between some neuropeptides and antimicrobial peptides (AMPs), such as 

shared signal sequence, similarities in size, cationic charge or amphipathic design, suggest that 

neuropeptides might also serve an additional function in antimicrobial immunity [40]. Table1 

shows  some significant neuropeptides that have been proven to have antimicrobial activity, such 

as substance P (SP), neuropeptide Y (NPY), and vasoactive intestinal peptide (VIP).  

 

The negatively charged bacterial membranes make it a target of antimicrobial neuropeptides 

compared to the membranes of plants and animals, which have no net charge. After binding to the 

bacterial membrane, antimicrobial neuropeptides could displace membrane lipids to depolarize the 

normally energized bacterial membrane, causing fatal problems for the bacteria by altering the 

membrane structure to create physical holes that cause cellular contents to leak out, or even by 

entering into the interior of the target bacterial cell to activate deadly processes, such as induction 

of hydrolases that degrade the cell wall.  While conventional antibiotics are easier for the bacteria 

to become drug-resistant, it is almost impossible for bacteria to become resistant against a 

neuropeptide antibiotic as its target is the bacterial membrane, the principle cell structure of 
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bacteria [41]. Since the increased emergence of multi-resistant human pathogenic bacteria have 

become a worldwide problem, the antimicrobial neuropeptide opens new avenues for future 

therapeutic application of antibiotic-resistant infection. 

 

2.1 Neuroimmune Connector, Calcitonin Gene-related Peptide (CGRP) 

Neuropeptide calcitonin gene-related peptide (CGRP) is a member of the calcitonin peptide family 

that is expressed in both peripheral and central neurons. It is released from afferent fibers at the 

site of stimulation when gut environment is changing [42]. As shown in Fig. 1, once infection 

stimulates transient receptor potential vanilloid receptor-1 (TRPV1) on the surface of C fibers, 

CGRP is secreted from sensory nerves, which are distributed in C fibers and upstream. After 

release, CGRP actives host defense and immune response at different sites by binding to its 

receptor, calcitonin receptor like receptor (CRLR), and its receptor activity-modifying protein1 

(RAMP1) found on T and B lymphocytes, macrophages, mast cells, and dendritic cells among 

others [43], [44]. Since CGRP is released at the site of stimulation,  regulating innate immune 

activation and mediating information flow to the rest of the nervous system, it is exemplified as a 

neuroimmune connector [42]. 

 

CGRP has a regulatory effect on both dendritic cell and T-cell functions, down-regulating pro-

inflammatory cytokine tumor necrosis factor α (TNF- α) and promoting anti-inflammatory 

cytokine, interleukin 10 (IL-10) [45]. Dendritic cells are known to express the CGRP receptor 

CalcR and respond to CGRP in an anti-inflammatory manner [35]. Recently, a study shows that 

CGRP treatment significantly reduced TNF- α release while upregulating IL-10 release in LPS-

activated dendritic cells. This data suggest that TRPV1 activation of dendritic cells plays a role in 
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their homeostasis and regulation through the release of CGRP [46]. The role of CGRP might also 

be different in the acute and later stages of inflammation. In acute stages of inflammation, CGRP 

that is present in peripheral tissues is known to enhance inflammatory responses by dilation of 

blood vessels, extravasation of inflammatory cells, and activation of secretion of inflammatory 

cytokines, while in the later stage of inflammation, the proinflammatory activities of macrophages 

and lymphocytes can be inhibited by the action of CGRP, leading to the suppression of 

inflammatory responses [47].  

 

The CGRP signaling has been implicated in the cAMP, PKC, ERK, and p38 signal transduction 

pathways [43]. A recent study has shown that CGRP may play an important role in biological 

defenses including infection and inflammation by integrating the nervous system, hematopoiesis, 

and immunity. On the one hand, after initiation of inflammation, CGRP stimulates hematopoiesis 

in the bone marrow cell, which may compensate proliferating hematopoietic cells including 

monocytes, which are recruited to the local inflammatory tissues. On the other hand, in chronic 

inflammation, expression of the CGRP receptor CRLR may be reduced and the loss of CGRP 

function may inhibit hematopoiesis with reduction of myeloid cells, which could terminate the 

inflammatory responses by reduction of tissue-invaded macrophages [48]. 

 

CGRP is one of the main neurotransmitters involved in immune function and is a key responder 

to tissue damage that is perceived as “pain” [49]. A recent study with Drosophila shows that 

diuretic hormone 31 (DH31) and CGRP display a similar activity that triggers muscle contractions 

during bacterial infection which may cause intestinal pain. The traditional treatment may prescribe 

drugs that inhibit the visceral spasms which probably slows down the elimination of the pathogens 
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that are responsible for the discomfort. Therefore, a deeper understanding of the CGRP 

physiological mechanism would be helpful to design novel drugs and adapt medical practices to 

treat the visceral pain and diarrhea associated with bacterial infection [50]. 

 

2.2 Antibacterial neuropeptide, Pituitary Adenylate Cyclase-activating Peptide (PACAP)  

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a member of the secretin/glucagon 

superfamily, with potent anti-inflammatory and potent cytoprotective properties [51], [52]. It is 

most abundant in the brain, but there are significant levels in other organs, including the thymus, 

spleen, lymph nodes, and duodenal mucosa [53]. In the current work, analysis of C. gariepinus 

PACAP-38 primary structure reveals the high cationic nature of the peptide, which displays a net 

charge of +9 at physiological pH and provides evidence of antimicrobial activity of PACAP 

against a wide spectrum of Gram-negative and Gram-positive bacteria and fungi (Fig. 1) [54]. The 

basic structure of PACAP consists of 38 amino acids. The C-terminal domain of PACAP-38 is 

involved in the stabilization of the α-helix, and the N-terminal domain of PACAP plays an essential 

role for binding affinity and biological activity [55]. It has a significant component of hydrophobic 

residues with a structurally amphipathic arrangement, both hallmarks of canonical AMP. Its 

sequence has been remarkably conserved throughout evolution, from fish to mammals, suggesting 

that this peptide fulfills important biological functions in a broad spectrum of organisms [55]. 

PACAP-27 is a native isoform of PACAP-38. They both had antimicrobial activity against the 

Gram-negative bacteria E. coli in the radial diffusion assay, with PACAP-38 having the highest 

potency, i.e. the lowest minimum inhibitory concentration (MIC). While PACAP-38 has potent 

sterilizing activity against P. aeruginosa in the more stringent broth dilution assay and 

antimicrobial activity against the Gram-positive bacteria S. aureus in the radial diffusion assay, 
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PACAP-27 did not have any detectable effect against S. aureus. The difference of antimicrobial 

activity between PACAP-38 and PACAP-27, shows that while  the N-terminal of PACAP plays 

an essential role in the bacterial binding process, the α-helix on the C-terminal end might also play 

an important role [56]. 

 

Although PACAP has highly potent antimicrobial activity against a wide spectrum of bacteria and 

fungi, as a drug, PACAP38 is limited by its short half-life [57]. After studying the microbial 

activity of PACAP and its analogs (PACAP3-38), the result shows that they all have potent 

antimicrobial activity against a panel of Gram-positive and Gram-negative pathogens. While 

PACAP-38 and PACAP-27 were almost completely cleaved by DPP IV in less than 30 min, there 

was no indication that any analog tested was cleaved at all by DPP IV even after 72 h. Additionally, 

they have low toxicity against human RBCs. The potency and species selectivity of the 

antimicrobial activity of PACAP analogs also improved. PACAP (9-38), which adopts a π-helix 

conformation rather than an α-helical conformation like PACAP38, exhibits an increased 

specificity toward Burkholderia cenocepacia J2315 compared to other tested bacteria [58]. 

Besides the mammals, the antimicrobial activities of PACAP have also been explored in the non-

mammalian vertebrate immune system.  Current work provides evidence of antimicrobial activity 

of Clarias gariepinus PACAP against a wide spectrum of Gram-negative and Gram-positive 

bacteria and fungi of interest for human medicine and aquaculture, in which computational 

prediction studies support the putative PACAP therapeutic activity [54]. Overall, the current study 

contributes to a better understanding of PACAP and its function on the immune system and 

stimulates renewed interest in PACAP as a new therapeutic agent for the treatment of microbial 

species. 
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3. Role of Gut-Brain Axis in Stress Response and Psychological Disorders 

While many neuropeptides are involved in communication along the gut-brain axis in the immune 

response, neuropeptides also are key players in the response to stress. From neuropeptides and 

neurotransmitters secreted from the brain to gut peptides secreted from enteroendocrine (EEC) 

cells in the gastrointestinal (GI) tract, neuropeptides and peptide hormones have critical functions 

in bidirectional communication in the stress response. EEC cells, which are a small portion of 

epithelial cells in the gut, are regulated through the gut microbiome [60], [61], allowing for 

bidirectional communication between the brain and the microbiome. Many neuropeptides, such as 

corticotropin-releasing hormone (CRH) and neuropeptide Y, among others, are involved in 

communication along the gut-brain axis, including in the response to harmful circumstances, 

namely stress [62]. Furthermore, the microbiome and signaling along the gut-brain axis can also 

affect behaviors related to psychological disorders, such as anxiety and depression [63]–[65].  

Many endogenous peptides, such as neurotensin, oxytocin, amylin, neuropeptide Y, and 

cholecystokinin-8, are well studied in psychological disorders [62], [66].   

 

3.1 Connection Between the Gut and Psychological Disorders  

Diseases like obesity and inflammatory bowel disease (IBD), are commonly studied due to the 

involvement of the microbiome and bidirectional communication along the gut-brain axis in these 

diseases. As the connection between the gut-brain axis and obesity has recently been reviewed 

[67], this mini review will focus on IBD. IBD affects a diverse population of patients world-wide, 

especially in western countries. Although IBD is not considered fatal, its effects and associated 

psychological disorders, such as anxiety and depression, further decrease the quality of life [68], 

[69]. Studies have shown that these psychological disorders are more prevalent in IBD individuals 
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compared to healthy controls [70], [71].  Furthermore, stress was correlated with symptoms of 

IBD, indicating a sensitivity to stress in IBD [72]. Thus, the bi-directional communication between 

the gut and the brain in IBD influences symptoms of the disease, including the effect of 

psychological diseases and stress on the gastrointestinal tract. Communication in the gut-brain axis 

in stress involves a wide range of molecules participating in either brain to gut or gut to brain 

communication. Here, the focus will be on brain to gut communication during stress via 

neuropeptides.  

 

Communication during stress in the gut-brain axis commonly occurs through the hypothalamic-

pituitary-adrenal (HPA) axis. HPA is the main pathway for stress response and is involved in 

psychological disorders [73]. This pathway starts with release of corticotropin-releasing hormone 

(CRH) from the hypothalamus, which then initiates the release of adrenocorticotrophic hormone 

(ACTH) from the pituitary. The circulation of ACTH releases glucocorticoid hormones, namely 

cortisol and corticosterone from the adrenal glands [73]. A discussion about the role of CRH and 

ACTH peptide hormones in the stress response will be provided in the following section, and in 

the second section a relatively new peptide with potential anxiolytic effects will be discussed in 

detail. Here, we will provide a short discussion about other neuropeptide changes due to stress.  

 

3.2 Overview of Neuropeptide Changes in Stress 

Neuropeptide Y (NPY) is a key neuropeptide in the enteric nervous system, and has anti-stress 

properties [74]. The role of NPY in inflammatory responses, pain, emotion, mood, cognition, 

stress, ingestion, and energy homeostasis has previously been reviewed [75], so only a brief 

discussion will be presented here. NPY levels have been found to decrease in patients with post-
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traumatic stress disorder and increase in people exposed to trauma who do not develop or recover 

from the trauma [75]. In a study in humans with IBD, NPY levels in venous blood samples were 

found to increase in IBD patients [76]. In rodent models of stress and IBD, NPY levels were also 

found to be altered. In a dextran sulfate sodium (DSS)-induced colitis model in mice, increased 

levels of NPY were found in plasma as well as increased NPY expression in the hypothalamus 

[77], [78]. Another study investigated the effect of electro-acupuncture on two rat models of stress, 

namely the chronic and acute stress model and the senna gavage and chronic model. This study 

revealed decreased levels of NPY in the distal colon, hypothalamus, and spinal cord with the two 

models of stress, but electro-acupuncture restored NPY and other neurotransmitter levels to that 

of the healthy control group [79]. Finally, a study of minimal traumatic brain injury in rats found 

that the NPY levels were initially decreased 48 hours after trauma, but then were elevated 30 days 

after trauma [80]. Additional in-depth reviews of the role of the NPY neuropeptide family in stress 

can be found elsewhere [81], [82].  

 

A variety of neuropeptides are potentially involved in the gut-brain axis’s response to stress. 

Thyrotropin-releasing hormone was increased in water avoidance stress in both serum and mucosa, 

and a receptor for the hormone was expressed in the colon mucosal epithelium and myenteric 

plexus neurons [83]. The role of endogenous opioid signaling has also been investigated, where it 

was found that there was a switch in the opioid signaling to an excitation effect in dorsal root 

ganglia [84]. Additionally, apelin and cholecystokinin (CCK) levels were studied during acute 

restraint stress in rats [85]. Endogenous apelin mediated release of CCK from enteric neurons in 

stressed rats [85]. Further study of these neuropeptides may provide a deeper understanding of the 

role of the gut-brain axis in stress response.  
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3.3 Hypothalamic-Pituitary-Adrenal Axis Communication in the Stress Response 

The response to stress along the hypothalamic-pituitary-adrenal axis involves peptide hormones 

CRH and ACTH. CRH in mammals is a 41 amino acid long peptide. CRH is secreted from the 

hypothalamus [86], stimulating the release of ACTH, a 39 amino acid peptide, from the pituitary. 

There are two CRH receptors (CRH-R1 and CRH-R2), which are G protein-coupled receptors 

from the B1 family. CRH-R1 is highly expressed in the brain, with more limited expression in 

peripheral tissues, while CRH-R2 has more limited expression in the brain and is more highly 

expressed in peripheral tissues [87].  

 

In humans, the role of the hypothalamic-pituitary-adrenal axis in stress and IBD is extensively 

studied, and recent studies in humans examined the effect of administered CRH under different 

conditions. CRH administration in humans reproduced the effect of public speaking psychological 

stress, namely increased small intestine permeability [88]. The administration of CRH increased 

ACTH levels in plasma, which is expected as the function of CRH is to promote ACTH release. 

Additionally, exogenous administered CRH affects the brain regions associated with emotional-

arousal circuitry and pain differently during colorectal distention in control individuals than IBD 

patients [89]. A follow up study found that hypothalamic-pituitary-adrenal-sympathoadrenal 

responses to CRH injection were different in control and IBD patients during colorectal distention, 

indicating that changes in adrenal gland activity in response to ACTH stimulation may be involved 

with IBD [90].  
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In rodent studies, different models of IBD and stress are combined to investigate the role of the 

hypothalamic-pituitary-adrenal axis, including CRH and ACTH. The chronic restraint stress model 

is one model commonly used in rodents. An investigation of germ-free mice and specific pathogen 

infected mice under restraint stress revealed higher levels of hypothalamic-pituitary-adrenal axis 

related compounds, including CRH and ACTH, in germ-free mice [91]. Overall, specific pathogen 

infected mice exhibited more anxiety behaviors in restraint stress, indicating changes in intestinal 

microbiota can influence the hypothalamic-pituitary-adrenal axis response to stress [91]. Another 

study investigated probiotic treatment during restraint stress, revealing that treatment with 

Lactobacillus helveticus NS8 restored ACTH levels and lessened the anxiety and depression 

symptoms caused by restraint stress, again revealing the importance of the gut microbiome 

composition in stress [92].  Maternal separation stress early in development and CRH injection 

both resulted in changes in colorectal mobility and gut microbiome content by the stressors [93]. 

Furthermore, buserelin treatment, which was expected to cause enteric neuronal loss, resulted in 

up to 50% loss of neurons and an increase in CRH immunoreactive neurons in the colon. Despite 

these physical changes, however, the physiology and function of the gut is still well preserved with 

regards to the stress response and hypothalamic-pituitary-adrenal axis [94].  

 

In a mouse model of IBD, DDS-induced colitis, the effect of stress, via a water avoidance stress 

model of mild psychological stress, was studied. This revealed changes in CRH, CRH-R1, NPY, 

and NPY receptor Y1, among others, revealing altered brain-gut signaling during DDS induced 

colitis [78]. The role of the hypothalamic-pituitary-adrenal axis in visceral nociception was 

investigated in rats using a colorectal distention protocol, which demonstrated that CRH in the 

central nucleus of the amygdala was involved in signaling for visceral nociception through release 
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of noradrenaline after CRH-R1 binding [95]. Thus, changes in the HPA axis occur due to a variety 

of stressors, and when combined with the important role of the gut microbiome composition in 

stress, a dynamic gut-brain axis signaling process is revealed.  

 

3.4 Phoenixin – A Neuropeptide with Multiple Roles 

In contrast to the well-studied peptides along the HPA axis, novel neuropeptides are still being 

discovered. Relatively recently, the neuropeptide phoenixin (PNX) was discovered with 

bioinformatics approach, revealing a 14 amino acid peptide and a 20 amino acid peptide, both of 

which are amidated [96]. The peptides are highly conserved across species. Phoenixin is primarily 

localized to the hypothalamus, with peripheral localization to other organs, including the heart, 

thymus, and stomach [96]. Originally, in studies in rats, phoenixin was found to be involved in 

reproduction as administration of small interfering RNA (siRNA) against phoenixin in vivo 

delayed estrus and reduced gonadotrophin-releasing hormone (GnRH) receptor expression, which 

is involved in regulation of the reproductive system [96]. The G protein-coupled receptor Gpr173 

is the putative receptor for PNX binding [97], [98]. While the original function of the peptide was 

in reproduction, with multiple studies focusing on this, there has been a range of other proposed 

functions for PNX, including roles in psychological disorders, which will be discussed following 

description of the pathway and localization of PNX.   

 

In vitro studies have provided insight into the pathway for PNX involvement in reproduction. 

GnRH is involved in regulation of release of reproductive hormones, such as luteinizing hormone 

(LH). Evidence suggests that PNX mediates GnRH secretion by regulating the expression of the 

GnRH receptor [96] through activation of the cyclic AMP/ protein kinase A pathway after PNX 
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binds to the Gpr 173 receptor [98]. Additional research has examined the ability of PNX to affect 

levels of other molecules, including vasopressin [99], as well as identifying potential regulators of 

PNX and the PNX receptor [100]–[102]. Interestingly, in women with polycystic ovary syndrome, 

PNX-14 levels, along with LH and androgen, were increased in the serum of patients compared to 

controls, indicating a potential role of PNX-14 in polycystic ovary syndrome [103].  

 

The specific immunohistological localization and expression analysis revealed numerous 

localization patterns in the brain, suggesting that phoenixin has a wide range of functions  [96], 

[104], [105]. A study of the localization of pheonixin-14 (as opposed to the initial studies that used 

an antibody that bound to both the 14 and 20 amino-acid residue peptides with C-terminal 

amidation) revealed pheonixin-14 was localized to the medial division of the central amygdaloid 

nucleus in the brain, spinal trigeminal tract, spinocerebellar tract, and cells between crypts of 

duodenum, jejunum, and ileum [106]. PNX has been implicated in feeding behavior as studies in 

rats have shown high co-expression with the neuropeptide nesfatin-1, which is involved in food 

intake, energy expenditure, and glucose homeostasis [105], along with an increase in food intake 

upon injection of PNX [107], [108]. The peptide has also been implicated in the suppression of 

visceral pain [104] as well as signaling of itch sensation [109]. The effect of PNX in the heart has 

also been studied [110]. 

 

Furthermore, PNX levels have been investigated in psychological disorders, namely anxiety, and 

neurocognitive disorders. In mice, PNX-14 was shown to reduce anxiety in the open field and 

elevated maze test in a dose dependent manner [111]. In humans, a study in obese men revealed a 

negative association of PNX and anxiety. Interestingly, when the group was divided into minimal 
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and moderate anxiety subgroups, the minimal anxiety group had higher PNX levels, although the 

p-value was just above the level needed for statistical significance [112]. As depression and 

perceived stress were not correlated with PNX, the PNX anxiety correlation appears to be specific, 

but the study in obese men revealed only a moderate correlation between PNX and anxiety, 

potentially due to other factors [112], [113].  For neurocognitive disorders, PNX improved 

memory formation and retention through GnRH receptor activation  in mice, indicating a potential 

ability of the neuropeptide to enhance memory [114].  Also, PNX was shown to potentially 

reverses the effects of Alzheimer’s Disease as it lessened the effects of Aβ1-42 and scopolamine, 

which cause memory impairment [114]. PNX levels were tested in humans with either mild 

cognitive impairment, subjective memory complaints, or Alzheimer’s disease, and no significant 

differences were observed between the groups, although there was no healthy control for 

comparison [115]. The reported positive effects of PNX on anxiety and cognitive function have 

the potential to be impactful for treating these disorders. Thus, it will be interesting to follow up 

with further studies on the role of PNX in anxiety and neurocognitive disorders.  

 

4. Summary  

Significant progress has been made over the past decades in recognizing the importance of 

neuropeptides in bidirectional communication between the brain and the gut and their influence 

on host immunity and stress. As stated earlier, neuropeptides such as CGRP are involved in host 

monitoring of the gut environment and have an important function that connects nervous and 

immune systems during infection. Neuropeptides such as PACAP could directly act on the bacteria 

membrane to kill the bacteria. The effective defense and low bacterial resistance probability make 

the antimicrobial neuropeptides an attractive new class of antibiotics. Key findings show that stress 



138 
 

influences the composition of the gut microbiota and that bidirectional communication between 

microbiota and the CNS influences stress reactivity and responses. Neuropeptide CRH acts as a 

common mediator during this dynamic gut-brain axis signaling process. The positive effects of 

PNX on anxiety and cognitive function have the potential to be impactful for development of 

therapeutic strategies to treat these disorders. 

 

We are just beginning to understand the meaning of gut-to-brain microbiome interactions and what 

role neuropeptides ultimately play for host homeostasis including immunity and stress. Although 

their implications are described in selected models, some of the precise mechanisms and overall 

effects are not fully understood. Further progress in understanding the various processes involved 

in neuropeptide modulation of the interactions between the gut microbiome and the central and 

peripheral nervous systems is essential to develop effective treatments for immune and stress 

disorders with neurogenic components. Because our understanding of the interactions of the gut-

brain axis continues to expand, novel therapies will be developed to treat gut microbiome-mediated 

immune and stress diseases. Neuropeptides, their receptors, and the proteases that degrade the 

same neuropeptides may become the special target of new specific pharmacologic approaches. 
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TABLES AND FIGURES 

 

Figure 1. The bi-directional communication between the gut and the brain during pathogen 

infection and the potential function of neuropeptides on the host immunity and stress. LPS, 

lipopolysaccharides; TRPV1, transient receptor potential vanilloid receptor-1; CGRP, calcitonin 

gene-related peptide;   CNS, central nervous system; CRLR, calcitonin receptor like receptor; 

PACAP, pituitary adenylate cyclase-activating polypeptide; CRH,  corticotropin-releasing 

hormone; ACTH, adrenocorticotrophic hormone; HPA axis, hypothalamic-pituitary-adrenal axis.
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Table 1 Common Antimicrobial Neuropeptides 
Neuropeptide Origin Sequence Antimicrobial Activity 

Neuropeptide Y (NPY) Human Pro-neuropeptide Y (30-64) 
Against Gram-positive bacteria, Gram-negative 
bacteria, fungi and parasites [116]. 

Calcitonin gene-related 
peptide (CGRP) Human 

Calcitonin gene-related 
peptide 1 (83-119) 

Against Gram-positive bacteria, Gram-negative 
bacteria and fungi [32]. 

Substance P (SP) Human SP (1-11) 
Against Gram-positive bacteria, Gram-negative 
bacteria and fungi [116], [118]. 

Vasoactive intestinal 
peptide (VIP) Human VIP peptides (125-152) 

Against Gram-positive bacteria, Gram-negative 
bacteria, fungi and parasites [119]. 

α-melanocyte-
stimulating hormone 
(αMSH) Human α-MSH (1–13) 

Against Gram-positive bacteria, Gram-negative 
bacteria, fungi and parasites [120]. 

Pituitary adenylate 
cyclase-activating 
peptide (PACAP) Human/Catfish 

PACAP (131-169, PACAP-
38) / PACAP (131-158, 
PACAP-27) 

Against Gram-positive bacteria, Gram-negative 
bacteria and fungi [54]. 

Adrenomedullin (AM) Human Adrenomedullin (1-52) 
Against Gram-positive bacteria, Gram-negative 
bacteria and parasites [39], [122]. 

NDA-1 hydra NDA-1 (1-71) 
Against Gram-positive bacteria, Gram-negative 
bacteria [123]. 

Enkelytin Human proenkephalin-A (209–237) Against Gram-positive bacteria [124]. 
 

 



141 
 

 

References 

[1] G. K. John and G. E. Mullin, “The Gut Microbiome and Obesity,” Curr. Oncol. Rep., vol. 

18, no. 7, p. 45, Jul. 2016. 

[2] S. Ghaisas, J. Maher, and A. Kanthasamy, “Gut microbiome in health and disease: Linking 

the microbiome–gut–brain axis and environmental factors in the pathogenesis of systemic 

and neurodegenerative diseases,” Pharmacol. Ther., vol. 158, pp. 52–62, Feb. 2016. 

[3] C. M. Guinane and P. D. Cotter, “Role of the gut microbiota in health and chronic 

gastrointestinal disease: understanding a hidden metabolic organ.,” Therap. Adv. 

Gastroenterol., vol. 6, no. 4, pp. 295–308, Jul. 2013. 

[4] A. B. Shreiner, J. Y. Kao, and V. B. Young, “The gut microbiome in health and in disease,” 

Curr. Opin. Gastroenterol., vol. 31, no. 1, p. 69, Jan. 2015. 

[5] D. Artis, “Epithelial-cell recognition of commensal bacteria and maintenance of immune 

homeostasis in the gut,” Nat. Rev. Immunol., vol. 8, no. 6, pp. 411–420, Jun. 2008. 

[6] M. P. Sherman, H. Zaghouani, and V. Niklas, “Gut microbiota, the immune system, and 

diet influence the neonatal gut–brain axis,” Pediatr. Res., vol. 77, no. 1–2, pp. 127–135, 

Jan. 2015. 

[7] J. A. Foster and K.-A. McVey Neufeld, “Gut–brain axis: how the microbiome influences 

anxiety and depression,” Trends Neurosci., vol. 36, no. 5, pp. 305–312, May 2013. 

[8] A. I. Petra, S. Panagiotidou, E. Hatziagelaki, J. M. Stewart, P. Conti, and T. C. Theoharides, 

“Gut-Microbiota-Brain Axis and Its Effect on Neuropsychiatric Disorders With Suspected 

Immune Dysregulation,” Clin. Ther., vol. 37, no. 5, pp. 984–995, May 2015. 

[9] R.-B. Yang et al., “Toll-like receptor-2 mediates lipopolysaccharide-induced cellular 

signalling,” Nature, vol. 395, no. 6699, pp. 284–288, Sep. 1998. 



142 
 

 

[10] T. H. Frazier, J. K. DiBaise, and C. J. McClain, “Gut Microbiota, Intestinal Permeability, 

Obesity-Induced Inflammation, and Liver Injury,” J. Parenter. Enter. Nutr., vol. 35, no. 

5_suppl, pp. 14S-20S, Sep. 2011. 

[11] S. Buhner et al., “Calcium imaging of nerve-mast cell signaling in the human intestine,” 

Front. Physiol., vol. 8, no. NOV, pp. 1–12, 2017. 

[12] A. K. Rajvanshi, “The three minds of the body-Brain, heart and gut,” 2011. 

[13] S. H. Rhee, C. Pothoulakis, and E. A. Mayer, “Principles and clinical implications of the 

brain–gut–enteric microbiota axis,” Nat. Rev. Gastroenterol. Hepatol., vol. 6, no. 5, pp. 

306–314, May 2009. 

[14] M. Carabotti, A. Scirocco, M. A. Maselli, and C. Severi, “The gut-brain axis: interactions 

between enteric microbiota, central and enteric nervous systems,” Ann. Gastroenterol.  Q. 

Publ. Hell. Soc. Gastroenterol., vol. 28, no. 2, p. 203, 2015. 

[15] K. Ichihara, J. Eng, and R. S. Yalow, “Ontogeny of immunoreactive CCK, VIP and secretin 

in rat brain and gut,” Biochem. Biophys. Res. Commun., vol. 112, no. 3, pp. 891–898, May 

1983. 

[16] W. D. Barber and T. F. Burks, “Brain-gut interactions: brain stem neuronal response to local 

gastric effects of substance P.,” Am. J. Physiol., vol. 253, no. 3 Pt 1, pp. G369-77, Sep. 

1987. 

[18] T. Lotti, A. M. D’Erme, and J. Hercogová, “The role of neuropeptides in the control of 

regional immunity,” Clin. Dermatol., vol. 32, no. 5, pp. 633–645, Sep. 2014. 

[19] F. Sabatino, A. Di Zazzo, L. De Simone, and S. Bonini, “The Intriguing Role of 

Neuropeptides at the Ocular Surface,” Ocul. Surf., vol. 15, no. 1, pp. 2–14, 2017. 

[20] N. Y. Lai, K. Mills, I. M. Chiu, and I. Chiu, “Sensory neuron regulation of gastrointestinal 



143 
 

 

inflammation and bacterial host defense HHS Public Access,” J Intern Med, vol. 282, no. 

1, pp. 5–23, 2017. 

[21] L. E. Goehler, R. P. A. Gaykema, N. Opitz, R. Reddaway, N. Badr, and M. Lyte, “Activation 

in vagal afferents and central autonomic pathways: Early responses to intestinal infection 

with Campylobacter jejuni,” Brain. Behav. Immun., vol. 19, no. 4, pp. 334–344, Jul. 2005. 

[22] P. Bercik et al., “The Intestinal Microbiota Affect Central Levels of Brain-Derived 

Neurotropic Factor and Behavior in Mice,” Gastroenterology, vol. 141, no. 2, pp. 599-

609.e3, Aug. 2011. 

[23] N. Sudo et al., “Postnatal microbial colonization programs the hypothalamic-pituitary-

adrenal system for stress response in mice.,” J. Physiol., vol. 558, no. Pt 1, pp. 263–75, Jul. 

2004. 

[24] J. A. Foster, L. Rinaman, and J. F. Cryan, “Stress &amp; the gut-brain axis: Regulation by 

the microbiome,” Neurobiol. Stress, vol. 7, pp. 124–136, Dec. 2017. 

[25] G. De Palma et al., “Microbiota and host determinants of behavioural phenotype in 

maternally separated mice,” Nat. Commun., vol. 6, no. 1, p. 7735, Nov. 2015. 

[26] A. V. Golubeva et al., “Prenatal stress-induced alterations in major physiological systems 

correlate with gut microbiota composition in adulthood,” Psychoneuroendocrinology, vol. 

60, pp. 58–74, Oct. 2015. 

[27] J. Barouei, M. Moussavi, and D. M. Hodgson, “Effect of Maternal Probiotic Intervention 

on HPA Axis, Immunity and Gut Microbiota in a Rat Model of Irritable Bowel Syndrome,” 

PLoS One, vol. 7, no. 10, p. e46051, Oct. 2012. 

[28] N. Moussaoui et al., “Chronic Early-life Stress in Rat Pups Alters Basal Corticosterone, 

Intestinal Permeability, and Fecal Microbiota at Weaning: Influence of Sex.,” J. 



144 
 

 

Neurogastroenterol. Motil., vol. 23, no. 1, pp. 135–143, Jan. 2017. 

[29] T. Jin, H. Wu, Y. Wang, and H. Peng, “Capsaicin induces immunogenic cell death in human 

osteosarcoma cells,” Exp. Ther. Med., vol. 12, no. 2, pp. 765–770, Aug. 2016. 

[30] M. Granato, M. S. Gilardini Montani, M. Filardi, A. Faggioni, and M. Cirone, “Capsaicin 

triggers immunogenic PEL cell death, stimulates DCs and reverts PEL-induced immune 

suppression.,” Oncotarget, vol. 6, no. 30, pp. 29543–54, Oct. 2015. 

[31] J. E. Morley, N. E. Kay, G. F. Solomon, and N. P. Plotnikoff, “Neuropeptides: Conductors 

of the immune orchestra,” Life Sci., vol. 41, no. 5, pp. 527–544, Aug. 1987. 

[32] I. A. El Karim, G. J. Linden, D. F. Orr, and F. T. Lundy, “Antimicrobial activity of 

neuropeptides against a range of micro-organisms from skin, oral, respiratory and 

gastrointestinal tract sites,” J. Neuroimmunol., vol. 200, no. 1–2, pp. 11–16, Aug. 2008. 

[33] X. Zhu, Y. Han, J. Du, R. Liu, K. Jin, and W. Yi, “Microbiota-gut-brain axis and the central 

nervous system.,” Oncotarget, vol. 8, no. 32, pp. 53829–53838, Aug. 2017. 

[34] S. S. Yarandi, D. A. Peterson, G. J. Treisman, T. H. Moran, and P. J. Pasricha, “Modulatory 

effects of gut microbiota on the central nervous system: How gut could play a role in 

neuropsychiatric health and diseases,” J. Neurogastroenterol. Motil., vol. 22, no. 2, pp. 201–

212, 2016. 

[35] B. N. Lambrecht, “Immunologists getting nervous: neuropeptides, dendritic cells and T cell 

activation,” Respir. Res., vol. 2, no. 3, p. 133, Apr. 2001. 

[36] M. P. Stewart, C. Cabanas, N. Hogg, L. Steinman, and O. Lider, “T cell adhesion to 

intercellular adhesion molecule-1 (ICAM-1) is controlled by cell spreading and the 

activation of integrin LFA-1.,” J. Immunol., vol. 156, no. 5, pp. 1810–7, Mar. 1996. 

[37] A. Chen, Y. Ganor, S. Rahimipour, N. Ben-Aroya, Y. Koch, and M. Levite, “The 



145 
 

 

neuropeptides GnRH-II and GnRH-I are produced by human T cells and trigger laminin 

receptor gene expression, adhesion, chemotaxis and homing to specific organs,” Nat. Med., 

vol. 8, no. 12, pp. 1421–1426, Dec. 2002. 

[38] J.-P. Timmermans, D. W. Scheuermann, W. Stach, D. Adriaensen, and M. H. A. De Groodt-

Lasseel, “Distinct distribution of CGRP-, enkephalin-, galanin-, neuromedin U-, 

neuropeptide Y-, somatostatin-, substance P-, VIP- and serotonin-containing neurons in the 

two submucosal ganglionic neural networks of the porcine small intestine,” Cell Tissue Res., 

vol. 260, no. 2, pp. 367–379, May 1990. 

[39] D. Augustyniak, J. Nowak, and F. T. Lundy, “Direct and indirect antimicrobial activities of 

neuropeptides and their therapeutic potential.,” Curr. Protein Pept. Sci., vol. 13, no. 8, pp. 

723–38, Dec. 2012. 

[40] T. Ganz, “Defensins: antimicrobial peptides of innate immunity,” Nat. Rev. Immunol., vol. 

3, no. 9, pp. 710–720, Sep. 2003. 

[41] M. Zasloff, “Antimicrobial peptides of multicellular organisms,” vol. 415, no. January, pp. 

389–395, 2002. 

[42] R. Uddman, L. Edvinsson, E. Ekblad, R. Håkanson, and F. Sundler, “Calcitonin gene-

related peptide (CGRP): perivascular distribution and vasodilatory effects,” Regul. Pept., 

vol. 15, no. 1, pp. 1–23, Aug. 1986. 

[43] F. A. Russell, R. King, S.-J. Smillie, X. Kodji, and S. D. Brain, “Calcitonin Gene-Related 

Peptide: Physiology and Pathophysiology,” Physiol. Rev., vol. 94, no. 4, pp. 1099–1142, 

2014. 

[44] B. M. Assas, J. I. Pennock, and J. A. Miyan, “Calcitonin gene-related peptide is a key 

neurotransmitter in the neuro-immune axis,” Front. Neurosci., vol. 8, no. 8 FEB, pp. 1–9, 



146 
 

 

2014. 

[45] R. Yaraee, M. Ebtekar, A. Ahmadiani, and F. Sabahi, “Neuropeptides (SP and CGRP) 

augment pro-inflammatory cytokine production in HSV-infected macrophages,” Int. 

Immunopharmacol., vol. 3, no. 13–14, pp. 1883–1887, Dec. 2003. 

[46] B. M. Assas, M. H. Wakid, H. A. Zakai, J. A. Miyan, and J. L. Pennock, “Transient receptor 

potential vanilloid 1 expression and function in splenic dendritic cells: a potential role in 

immune homeostasis.,” Immunology, vol. 147, no. 3, pp. 292–304, Mar. 2016. 

[47] U. Hanesch, U. Pfrommer, B. D. Grubb, and H.-G. Schaible, “Acute and Chronic Phases of 

Unilateral Inflammation in Rat’s Ankle are Associated with an Increase in the Proportion 

of Calcitonin Gene-related Peptide-immunoreactive Dorsal Root Ganglion Cells,” Eur. J. 

Neurosci., vol. 5, no. 2, pp. 154–161, Feb. 1993. 

[48] A. Suekane et al., “CGRP-CRLR/RAMP1 signal is important for stress-induced 

hematopoiesis,” Sci. Rep., vol. 9, no. 1, p. 429, Dec. 2019. 

[49] S. Benemei, P. Nicoletti, J. G. Capone, and P. Geppetti, “CGRP receptors in the control of 

pain and inflammation,” Curr. Opin. Pharmacol., vol. 9, no. 1, pp. 9–14, Feb. 2009. 

[50] O. Benguettat et al., “The DH31/CGRP enteroendocrine peptide triggers intestinal 

contractions favoring the elimination of opportunistic bacteria,” PLoS Pathog., vol. 14, no. 

9, pp. 1–26, 2018. 

[51] H. Ji et al., “Neuropeptide PACAP in Mouse Liver Ischemia and Reperfusion Injury: 

Immunomodulation by the cAMP-PKA Pathway,” HEPATOLOGY, vol. 57, pp. 1225–

1237, 2013. 

[52] D. Reglodi et al., “PACAP is an Endogenous Protective Factor—Insights from PACAP-

Deficient Mice,” J. Mol. Neurosci., vol. 48, no. 3, pp. 482–492, Nov. 2012. 



147 
 

 

[53] M. DELGADO et al., “PACAP in Immunity and Inflammation,” Ann. N. Y. Acad. Sci., vol. 

992, no. 1, pp. 141–157, May 2003. 

[54] J. M. Lugo et al., “Evidence for antimicrobial and anticancer activity of pituitary adenylate 

cyclase-activating polypeptide (PACAP) from North African catfish (Clarias gariepinus): 

Its potential use as novel therapeutic agent in fish and humans,” Fish Shellfish Immunol., 

vol. 86, pp. 559–570, Mar. 2019. 

[55] S. Debbabi et al., “Antibacterial properties of the pituitary adenylate cyclase-activating 

polypeptide: A new human antimicrobial peptide.,” PLoS One, vol. 13, no. 11, p. e0207366, 

2018. 

[56] N. D. Doan et al., “Design and characterization of novel cell-penetrating peptides from 

pituitary adenylate cyclase-activating polypeptide,” J. Control. Release, vol. 163, no. 2, pp. 

256–265, 2012. 

[57] B. D. Green, N. Irwin, and P. R. Flatt, “Pituitary adenylate cyclase-activating peptide 

(PACAP): Assessment of dipeptidyl peptidase IV degradation, insulin-releasing activity 

and antidiabetic potential,” Peptides, vol. 27, no. 6, pp. 1349–1358, Jun. 2006. 

[58] S. Debbabi et al., “Antibacterial properties of the pituitary adenylate cyclase-activating 

polypeptide: A new human antimicrobial peptide,” PLoS One, vol. 13, no. 11, pp. 1–15, 

2018. 

 [60] G. J. Dockray, “Enteroendocrine cell signalling via the vagus nerve,” Curr. Opin. 

Pharmacol., vol. 13, no. 6, pp. 954–958, Dec. 2013. 

[61] L. J. Cohen et al., “Commensal bacteria make GPCR ligands that mimic human signalling 

molecules,” Nature, vol. 549, no. 7670, pp. 48–53, Sep. 2017. 

[62] G. Lach, H. Schellekens, T. G. Dinan, and J. F. Cryan, “Anxiety, Depression, and the 



148 
 

 

Microbiome: A Role for Gut Peptides,” Neurotherapeutics, vol. 15, no. 1, pp. 36–59, Jan. 

2018. 

[63] A. Burokas et al., “Targeting the Microbiota-Gut-Brain Axis: Prebiotics Have Anxiolytic 

and Antidepressant-like Effects and Reverse the Impact of Chronic Stress in Mice,” Biol. 

Psychiatry, vol. 82, no. 7, pp. 472–487, Oct. 2017. 

[64] Diaz Heijtz R et al., “Normal gut microbiota modulates brain development and behavior,” 

Proc. Natl. Acad. Sci., vol. 108, no. 7, pp. 3047–3052, Feb. 2011. 

[65] M.-L. Wong et al., “Inflammasome signaling affects anxiety- and depressive-like behavior 

and gut microbiome composition,” Mol. Psychiatry, vol. 21, no. 6, pp. 797–805, Jun. 2016. 

[66] P. McGonigle, “Peptide therapeutics for CNS indications,” Biochem. Pharmacol., vol. 83, 

no. 5, pp. 559–566, Mar. 2012. 

[67] E. Niccolai, F. Boem, E. Russo, and A. Amedei, “The gut–brain axis in the 

neuropsychological disease model of obesity: A classical movie revised by the emerging 

director ‘microbiome,’” Nutrients, vol. 11, no. 1. MDPI AG, 01-Jan-2019. 

[68] E. Guthrie, J. Jackson, J. Shaffer, D. Thompson, B. Tomenson, and F. Creed, “Psychological 

disorder and severity of inflammatory bowel disease predict health-related quality of life in 

ulcerative colitis and Crohn’s disease,” Am. J. Gastroenterol., vol. 97, no. 8, pp. 1994–1999, 

Aug. 2002. 

[69] K. Nordin, L. Påhlman, K. Larsson, M. Sundberg-Hjelm, and L. Lööf, “Health-related 

quality of life and psychological distress in a population-based sample of Swedish patients 

with inflammatory bowel disease.,” Scand. J. Gastroenterol., vol. 37, no. 4, pp. 450–7, Apr. 

2002. 

[70] J. R. Walker et al., “The Manitoba IBD Cohort Study: A Population-Based Study of the 



149 
 

 

Prevalence of Lifetime and 12-Month Anxiety and Mood Disorders,” Am. J. Gastroenterol., 

vol. 103, no. 8, pp. 1989–1997, Aug. 2008. 

[71] L. A. Graff et al., “Stress Coping, Distress and Health Perceptions in Inflammatory Bowel 

Disease and Community Controls,” Am. J. Gastroenterol., vol. 104, no. 12, pp. 2959–2969, 

Dec. 2009. 

[72] Whitehead WE, Crowell MD, Robinson JC, Heller BR, and Schuster MM, “Effects of 

stressful life events on bowel symptoms: subjects with irritable bowel syndrome compared 

with subjects without bowel dysfunction.,” Gut, vol. 33, no. 6, pp. 825–30, Jun. 1992. 

[73] R. L. Spencer and T. Deak, “A users guide to HPA axis research,” Physiol. Behav., vol. 

178, pp. 43–65, Sep. 2017. 

[74] A. Thorsell, “Brain neuropeptide Y and corticotropin-releasing hormone in mediating stress 

and anxiety,” Exp. Biol. Med., vol. 235, no. 10, pp. 1163–1167, Oct. 2010. 

[75] P. Holzer and A. Farzi, “Neuropeptides and the Microbiota-Gut-Brain Axis,” in Advances 

in experimental medicine and biology, vol. 817, 2014, pp. 195–219. 

[76] C. Stasi et al., “Neuroendocrine Dysregulation in Irritable Bowel Syndrome Patients: A 

Pilot Study,” J. Neurogastroenterol. Motil., vol. 23, no. 3, pp. 428–434, Jul. 2017. 

[77] A. M. Hassan et al., “Repeated predictable stress causes resilience against colitis-induced 

behavioral changes in mice,” Front. Behav. Neurosci., vol. 8, p. 386, Nov. 2014. 

[78] F. Reichmann, A. M. Hassan, A. Farzi, P. Jain, R. Schuligoi, and P. Holzer, “Dextran sulfate 

sodium-induced colitis alters stress-associated behaviour and neuropeptide gene expression 

in the amygdala-hippocampus network of mice,” Sci. Rep., vol. 5, no. 1, p. 9970, Sep. 2015. 

[79] J. Sun et al., “Electro-acupuncture decreases 5-HT, CGRP and increases NPY in the brain-

gut axis in two rat models of Diarrhea-predominant irritable bowel syndrome(D-IBS),” 



150 
 

 

BMC Complement. Altern. Med., vol. 15, no. 1, p. 340, Dec. 2015. 

[80] S. Sagarkar, S. Mahajan, A. G. Choudhary, C. D. Borkar, D. M. Kokare, and A. J. 

Sakharkar, “Traumatic stress-induced persistent changes in DNA methylation regulate 

neuropeptide Y expression in rat jejunum,” Neurogastroenterol. Motil., vol. 29, no. 9, p. 

e13074, Sep. 2017. 

[81] A. Farzi, F. Reichmann, and P. Holzer, “The homeostatic role of neuropeptide Y in immune 

function and its impact on mood and behaviour,” Acta Physiol., vol. 213, no. 3, pp. 603–

627, Mar. 2015. 

[82] F. Reichmann and P. Holzer, “Neuropeptide Y: A stressful review,” Neuropeptides, vol. 55, 

pp. 99–109, Feb. 2016. 

[83] Y. Zhang, C. Wang, and L. Zhang, “The potential role of thyrotropin-releasing hormone in 

colonic dysmotility induced by water avoidance stress in rats,” Neuropeptides, vol. 70, pp. 

47–54, Aug. 2018. 

[84] R. Guerrero-Alba et al., “Stress activates pronociceptive endogenous opioid signalling in 

DRG neurons during chronic colitis,” Gut, vol. 66, no. 12, pp. 2121–2131, Dec. 2017. 

[85] M. Bülbül, O. Sinen, O. Bayramoğlu, and G. Akkoyunlu, “Acute restraint stress induces 

cholecystokinin release via enteric apelin,” Neuropeptides, vol. 73, pp. 71–77, Feb. 2019. 

[86] W. Vale, J. Spiess, C. Rivier, and J. Rivier, “Characterization of a 41-residue ovine 

hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin.,” 

Science, vol. 213, no. 4514, pp. 1394–7, Sep. 1981. 

[87] K. D. Ketchesin, G. S. Stinnett, and A. F. Seasholtz, “Corticotropin-releasing hormone-

binding protein and stress: from invertebrates to humans,” Stress, vol. 20, no. 5, pp. 449–

464, Sep. 2017. 



151 
 

 

[88] T. Vanuytsel et al., “Psychological stress and corticotropin-releasing hormone increase 

intestinal permeability in humans by a mast cell-dependent mechanism,” Gut, vol. 63, no. 

8, pp. 1293–1299, Aug. 2014. 

[89] Y. Tanaka et al., “Differential Activation in Amygdala and Plasma Noradrenaline during 

Colorectal Distention by Administration of Corticotropin-Releasing Hormone between 

Healthy Individuals and Patients with Irritable Bowel Syndrome,” PLoS One, vol. 11, no. 

7, p. e0157347, Jul. 2016. 

[90] Y. Tanaka, M. Kanazawa, M. Kano, M. Tashiro, and S. Fukudo, “Relationship between 

sympathoadrenal and pituitary-adrenal response during colorectal distention in the presence 

of corticotropin-releasing hormone in patients with irritable bowel syndrome and healthy 

controls,” PLoS One, vol. 13, no. 7, p. e0199698, Jul. 2018. 

[91] R. Huo et al., “Microbiota Modulate Anxiety-Like Behavior and Endocrine Abnormalities 

in Hypothalamic-Pituitary-Adrenal Axis,” Front. Cell. Infect. Microbiol., vol. 7, p. 489, 

Nov. 2017. 

[92] S. Liang et al., “Administration of Lactobacillus helveticus NS8 improves behavioral, 

cognitive, and biochemical aberrations caused by chronic restraint stress,” Neuroscience, 

vol. 310, pp. 561–577, Dec. 2015. 

[93] T. Murakami et al., “Changes in Intestinal Motility and Gut Microbiota Composition in a 

Rat Stress Model,” Digestion, vol. 95, no. 1, pp. 55–60, 2017. 

[94] E. Sand et al., “Buserelin treatment to rats causes enteric neurodegeneration with moderate 

effects on CRF-immunoreactive neurons and Enterobacteriaceae in colon, and in 

acetylcholine-mediated permeability in ileum,” BMC Res. Notes, vol. 8, no. 1, p. 824, Dec. 

2015. 



152 
 

 

[95] J. Su, Y. Tanaka, T. Muratsubaki, M. Kano, M. Kanazawa, and S. Fukudo, “Injection of 

corticotropin-releasing hormone into the amygdala aggravates visceral nociception and 

induces noradrenaline release in rats,” Neurogastroenterol. Motil., vol. 27, no. 1, pp. 30–

39, Jan. 2015. 

[96] G. L. C. Yosten et al., “A Novel Reproductive Peptide, Phoenixin,” J. Neuroendocrinol., 

vol. 25, no. 2, pp. 206–215, Feb. 2013. 

[97] L. M. Stein et al., “Hypothalamic action of phoenixin to control reproductive hormone 

secretion in females: importance of the orphan G protein-coupled receptor Gpr173,” Am. J. 

Physiol. Integr. Comp. Physiol., vol. 311, no. 3, pp. R489–R496, Sep. 2016. 

[98] A. K. Treen, V. Luo, and D. D. Belsham, “Phoenixin Activates Immortalized GnRH and 

Kisspeptin Neurons Through the Novel Receptor GPR173,” Mol. Endocrinol., vol. 30, no. 

8, pp. 872–888, Aug. 2016. 

[99] S. Gasparini et al., “Novel regulator of vasopressin secretion: phoenixin,” Am. J. Physiol. 

Integr. Comp. Physiol., vol. 314, no. 4, pp. R623–R628, Apr. 2018. 

[100] E. K. McIlwraith, N. Loganathan, and D. D. Belsham, “Phoenixin Expression Is Regulated 

by the Fatty Acids Palmitate, Docosahexaenoic Acid and Oleate, and the Endocrine 

Disrupting Chemical Bisphenol A in Immortalized Hypothalamic Neurons,” Front. 

Neurosci., vol. 12, p. 838, Nov. 2018. 

[101] A. Suszka‐Świtek et al., “The Gn RH analogues affect novel neuropeptide SMIM 

20/phoenixin and GPR 173 receptor expressions in the female rat hypothalamic–pituitary–

gonadal ( HPG ) axis,” Clin. Exp. Pharmacol. Physiol., vol. 46, no. 4, pp. 350–359, Apr. 

2019. 

[102] E. K. McIlwraith, N. Loganathan, and D. D. Belsham, “Regulation of Gpr173 expression, 



153 
 

 

a putative phoenixin receptor, by saturated fatty acid palmitate and endocrine-disrupting 

chemical bisphenol A through a p38-mediated mechanism in immortalized hypothalamic 

neurons,” Mol. Cell. Endocrinol., vol. 485, pp. 54–60, Apr. 2019. 

[103] K. Ullah et al., “Phoenixin-14 concentrations are increased in association with luteinizing 

hormone and nesfatin-1 concentrations in women with polycystic ovary syndrome,” Clin. 

Chim. Acta, vol. 471, pp. 243–247, Aug. 2017. 

[104] R.-M. Lyu et al., “Phoenixin: a novel peptide in rodent sensory ganglia.,” Neuroscience, 

vol. 250, pp. 622–31, Oct. 2013. 

[105] A. Pałasz, E. Rojczyk, K. Bogus, J. J. Worthington, and R. Wiaderkiewicz, “The novel 

neuropeptide phoenixin is highly co-expressed with nesfatin-1 in the rat hypothalamus, an 

immunohistochemical study,” Neurosci. Lett., vol. 592, pp. 17–21, Apr. 2015. 

[106] P. Prinz et al., “Central and peripheral expression sites of phoenixin-14 immunoreactivity 

in rats,” Biochem. Biophys. Res. Commun., vol. 493, no. 1, pp. 195–201, Nov. 2017. 

[107] M. Schalla et al., “Phoenixin-14 injected intracerebroventricularly but not intraperitoneally 

stimulates food intake in rats,” Peptides, vol. 96, pp. 53–60, Oct. 2017. 

[108] T. Friedrich et al., “Intracerebroventricular injection of phoenixin alters feeding behavior 

and activates nesfatin-1 immunoreactive neurons in rats,” Brain Res., vol. 1715, pp. 188–

195, Jul. 2019. 

[109] A. Cowan, R.-M. Lyu, Y.-H. Chen, S. L. Dun, J.-K. Chang, and N. J. Dun, “Phoenixin: A 

candidate pruritogen in the mouse.,” Neuroscience, vol. 310, pp. 541–8, Dec. 2015. 

[110] C. Rocca et al., “Phoenixin-14: detection and novel physiological implications in cardiac 

modulation and cardioprotection,” Cell. Mol. Life Sci., vol. 75, no. 4, pp. 743–756, Feb. 

2018. 



154 
 

 

[111] J. H. Jiang et al., “Effects of Phoenixin-14 on anxiolytic-like behavior in mice,” Behav. 

Brain Res., vol. 286, pp. 39–48, Jun. 2015. 

[112] T. Hofmann et al., “Phoenixin is negatively associated with anxiety in obese men,” 

Peptides, vol. 88, pp. 32–36, Feb. 2017. 

[113] M. A. Schalla and A. Stengel, “The role of phoenixin in behavior and food intake,” Peptides, 

vol. 114, pp. 38–43, Apr. 2019. 

[114] J. H. Jiang et al., “Phoenixin-14 enhances memory and mitigates memory impairment 

induced by Aβ1-42 and scopolamine in mice,” Brain Res., vol. 1629, pp. 298–308, Dec. 

2015. 

[115] M. Yuruyen et al., “Does plasma phoenixin level associate with cognition? Comparison 

between subjective memory complaint, mild cognitive impairment, and mild Alzheimer’s 

disease,” Int. Psychogeriatrics, vol. 29, no. 9, pp. 1543–1550, Sep. 2017. 

[116] C. J. Hansen, K. K. Burnell, and K. A. Brogden, “Antimicrobial activity of Substance P and 

Neuropeptide Y against laboratory strains of bacteria and oral microorganisms,” J. 

Neuroimmunol., vol. 177, no. 1–2, pp. 215–218, Aug. 2006. 

 [118] K. Kowalska, D. B. Carr, and A. W. Lipkowski, “Direct antimicrobial properties of 

substance P,” Life Sci., vol. 71, no. 7, pp. 747–750, Jul. 2002. 

[119] J. Campos-Salinas et al., “Therapeutic efficacy of stable analogues of vasoactive intestinal 

peptide against pathogens.,” J. Biol. Chem., vol. 289, no. 21, pp. 14583–99, May 2014. 

[120] M. Cutuli, S. Cristiani, J. M. Lipton, and A. Catania, “Antimicrobial effects of α-MSH 

peptides,” J. Leukoc. Biol., vol. 67, no. 2, pp. 233–239, Feb. 2000. 

 [122] R. P. Allaker and S. Kapas, “Adrenomedullin and mucosal defence: interaction between 

host and microorganism,” Regul. Pept., vol. 112, no. 1–3, pp. 147–152, Apr. 2003. 



155 
 

 

[123] R. Augustin et al., “A secreted antibacterial neuropeptide shapes the microbiome of Hydra,” 

Nat. Commun., vol. 8, no. 1, p. 698, Dec. 2017. 

[124] Y. Goumon et al., “Characterization of antibacterial COOH-terminal proenkephalin-A-

derived peptides (PEAP) in infectious fluids. Importance of enkelytin, the antibacterial 

PEAP209-237 secreted by stimulated chromaffin cells.,” J. Biol. Chem., vol. 273, no. 45, 

pp. 29847–56, Nov. 1998. 

 

 

 



156 

 

Chapter 7 

 

Integrated, Multi-Omics Strategy to Study the Host Immune 

Response Induced by Human Microbiome during Salmonella 

enterica Typhimurium and Candida albicans Infection 

 

Adapted from Wei P, Keller C, Bratburd JR, Liu R, Vivas E, Gemperline E, Rey FE, Currie CR, 
Li LL. “Integrated , Multi-Omics Strategy to Study the Host Immune Response Induced by Human 
Microbiome during Salmonella enterica Typhimurium and Candida albicans Infection. ” To be 
submitted. Wei P, designed and conducted the peptidomics and proteomics study under the 
supervision of Li LL; Keller C conducted the metabolomics study, Bratburd JR provided the samples, 
Buchberger AR systhesized the DiLeu tags, Liu R, Vivas E, Gemperline E, Rey FE, Currie CR 
provided insights in gut microbiome and gut-brain axis. 
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ABSTRACT 

 

The gut microbiome performs many critical roles in human health, including host metabolism, 

immune system modulation, and even brain function. While the disruptive pathogen invaded, the 

“good” microbiome may help the host in both direct and indirect ways. They may produce 

naturally produced against the invasive pathogen, and they may also enhance the host immune 

system to defend. How does this process work, and what biomolecules are involved remain 

unclear. Therefore, the goal of this study is to investigate how the host immune system is shaped 

by human microbiome during infections. Herein, the potential metabolites produced by the 

microbiome is investigated, the host proteome changes during infection are also studied; 

furthermore, neuropeptides from the host were identified to explore the gut-brain axis response 

during infection. Mass spectrometry is a sensitive and robust technique to profile not just small 

molecule changes produced by the microbiome due to infection, but also protein and neuropeptide 

changes due to infection. Thus, a combination of the metabolome, proteome, and peptidome-based 

approach was used to profile the effect of the microbiome on the host during infection by both 

Salmonella enterica Typhimurium and Candida albicans. The results from the metabolomics and 

proteomics studies reveal molecular changes that highlight the role of the microbiome in the 

immune and inflammatory response to infection—analysis of three omics from the same sample. 

The neuropeptides found in the gut, specifically induced by the microbiome under infection, could 

facilitate further understanding of the bidirectional communication between gut microbiota, brain, 

and immune system. 

 

KEYWORDS: LC-MS; Metabolomics; Peptidomics; Proteomics; Microbiome; Infection; 

Multiomics 
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INTRODUCTION 

In the gastrointestinal tract, a large and dynamic community of microbes, the gut microbiome, 

reside, where three domains of life, namely archaea, bacteria, and eukaryote, are represented.1, 2 

These microbes have an essential role in human health. They affect the nutrition of the host as they 

carry out various digestive processes. They could also modulate immune function.3, 4 Additionally, 

disruptions to the normal composition of the microbiome are associated with various diseases, 

including obesity,5, 6 inflammatory bowel disease,7 and cardiovascular disease.8, 9  Consequently, 

a variety of “omic” techniques have been employed to study the microbiome. For example, there 

are metagenomic and metaproteomic studies on the gut microbiome as well as studies on how the 

microbiome influences metabolites in other systems of the body, such as the blood and 

cerebrospinal fluid.10-13  

 

Microbial metabolism produces both primary and secondary metabolites through the gut 

microbiome metagenome that influence health and disease.4  The role of metabolites produced by 

the microbiome is not limited to nutrition and metabolism. Still, it can also provide defense against 

pathogens, and immune regulation among many other functions.14, 15 Furthermore, the ability of 

secondary metabolites synthesized by the microbiome to protect the host against pathogens could 

potentially be used for discovery of new natural products, which is of interest due to the rise of 

antibiotic resistance.16 Mass spectrometry (MS) is a powerful tool to study metabolites in a sample, 

and in conjunction with nuclear magnetic resonance (NMR), can aid in the natural product in 

discovery.17 For example, metabolomic changes of the microbiome in response to disturbances to 

the microbiome has been profiled with MS techniques.18, 19  

 



159 

 

Metaproteomics studies on the microbiome provide valuable information on expressed proteins 

involved in various biological processes. For example, metaproteomics has been used to study the 

metabolism of the gut microbiome in premature infants,20 and the proteome changes in the 

microbiome due to disease, including Chrohn’s disease and inflammatory bowel disease.21, 22  

Additionally, metaproteomics is often coupled with metabolomics, as well as other “omics” for 

multi-omics analysis of the biological processes occurring in the gut.23 For example, 

metagenomics and metabolomics are often combined to study how different disruptions to the gut 

microbiome affect microbiome composition and metabolism.19, 24 Metaproteomics studies can also 

be used in with metagenomic and metabolomics techniques to provide a comprehensive analysis 

of active processes in the gut microbiome or the effect of stressors on the microbiome.25  

 

Peptidomics has risen to importance due to its ability to identify and profile changes in endogenous 

peptides, especially neuropeptides.26, 27 Neuropeptides are an important class of signaling 

molecules that help to regulate many biological processes.28, 29 The gut-brain axis is a critical 

system whereby microbes in the gut can communicate with the host brain and vise versa. Bacteria 

in the gut can produce neurotransmitters, while signaling from the brain can be accomplished 

through cytokine molecules.30 As neuropeptides, and other bioactive peptides, are critical signaling 

molecules, peptidomics analysis of the gut microbiome can provide key insights into 

communication in the host-microbiome relationship and the gut-brain axis.31 

 

Here a multi-omics approach will be applied to study the response of a model human gut 

microbiome to infection by Salmonella enterica Typhimurium and Candida albicans in mice. 

Previously a metagenomics and metabolomics approach was utilized to investigate microbiome 
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community and small molecule changes in the gut microbiome in response to infection.32 To 

further understand the host and microbiome’s response to infection, another multi-omics approach 

combining metabolomics, peptidomics, and proteomics was investigated here. The combination 

of peptidomics with metabolomics and proteomics is less commonly employed but will provide a 

great depth of information, especially in regard to communication in the gut-brain axis. 

Peptidomics analysis resulted in the identification of multiple neuropeptides in the gut 

microbiome. The combined metabolomics, peptidomics, and proteomics analysis of the gut 

microbiome resulted in the discovery of immune system changes in response to infection.  

 

MATERIALS AND METHODS 

Sample Collection and Extraction 

Mouse experiments, including inoculation with approximately 90 strains representing a model 

human microbiome and infection with either Salmonella enterica Typhimurium (Salmonella) or 

Candida albicans (Candida), were performed as previously described.32 A methanol chloroform 

water extraction was performed, and a 3 kDa molecular weight cut-off performed on the aqueous 

and organic fractions.32 The flow-through was collected as the metabolite fractions (below 3 kDa). 

The 3 kDa molecular weight cut-off device was equilibrated with 0.4 mL of 50% methanol and 

then flipped over and centrifuged (14,000 x g, 2 min) to collect content above three kDa. A 30 kDa 

MWCO was performed on the contents above 3 kDa to separate the extract into peptidomics (three 

kDa to 30kDa) and proteomics (above 30kDa) fractions.  

 

Metabolomics Acquisition and Analysis  
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Aqueous metabolite fractions (below 3 kDa) were resuspended at 10 mg/mL in optima grade water 

with 0.1% formic acid. Liquid chromatography-mass spectrometry (LC-MS) for label-free 

quantitation was performed as previously described.32 LC-MS/MS (tandem MS) was performed 

on samples with the same gradient as the MS1 data acquisition using a top 5 DDA method with 

inclusion lists for targets up-regulated in each sample. Full MS parameters were 70 k resolution, 

1E6 AGC target, 100 ms maximum injection time, and 200 to 1700 m/z. MS/MS parameters were 

70 k resolution, 5E5 AGC target, 100 ms maximum injection time, and 1.0 isolation width. A 10 

s dynamic exclusion was employed. Three technical replicates were collected for MS/MS runs, 

and each technical replicate had different collision energy (25, 30, and 40 were used).  

 

MS1 and MS/MS data was analyzed in Compound Discoverer 2.1 software. Initially, LC-MS data 

were analyzed. Retention time alignment was performed using an adaptive curve with 5 ppm mass 

accuracy and 2.0 min time shift. All following steps utilized 5 ppm mass accuracy and 0.2 retention 

time error unless otherwise stated. The workflow nodes were as follows: detect unknown 

compounds (30% intensity tolerance, 3 S/N ratio, and 1000000 min peak intensity), group 

unknown compounds, fill gasps (1.5 S/N threshold), normalize areas (constant sum), mark 

background compounds, predict compositions, differential analysis, and assign compound 

annotations. In addition to group ratios, the six biological replicates (each with two technical 

replicates) were also used to calculate biological replicate ratios. Salmonella targets were selected 

based upon a 2-fold down-regulation of the HumUn/HumSal and MonoSal/HumSal ratio with a 

p-value less than 0.05. Additionally, both the HumUn/HumSal and MonoSal/HumSal ratios 

needed to be less than 0.5 in 4 out of the six biological replicate ratios. Candida targets were 

selected based upon the same workflow but using the HumUn/HumCand and the 
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MonoCand/HumCand ratios. LC-MS/MS data was analyzed in Compound Discoverer 2.1 

software with the same parameters as the LC-MS data, except search mzCloud and search 

Chemspider nodes were added. The mzCloud search was conducted against all compound classes 

and activation types with a 20 CE activation energy tolerance and 10 ppm parent and fragment 

mass tolerance. Identifications in mzCloud were manually verified by checking fragmentation 

patterns of the top hits. Additional identifications were made by searching the Metlin spectral 

database with 5 ppm mass accuracy against target molecular weights. MS/MS database spectra 

were manually compared against experimental spectra. LC-MS normalized peak areas data from 

Compound Discoverer was imported into Metaboanalyst33, 34 with log transformation to generate 

principal component analysis results.  

 

Proteomics Acquisition and Analysis  

The protein fractions from the supernatant contents above 30 kDa (aqueous and organic fractions) 

and the pellets were combined. Ice-cold PBS was used to dissolved protein mixture samples to 

remove debris from the pellet at a low centrifuge speed (300 x g, 4℃ for 5 mins, three times). The 

supernatant was then centrifuged at 20,000 x g for 10 min to pellet the bacterial cells and host cells 

and then lysed with 4% SDS and 6 M urea Lysis buffer with sonication (On 15 sec, Off 30 sec, 

three cycles). Acetone protein precipitation was used to remove SDS from the protein sample, and 

the total protein concentration of each pellet was determined by the BCA assay. 100 µg proteins 

were aliquoted and digested with Trypsin/Lys-C mixture overnight. Then, the digested proteins 

were desalted, dried down in a speed vac, and saved in the -80℃ until labeling. Twelve-plex 

isobaric DiLeu reagents were synthesized and used for labeling reaction as previously described.35 

The labeled samples were combined in equal ratios to form pooled 12-plex samples (Labeling map 
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in Table S1). Excess DiLeu reagents were removed from pooled 12-plex samples via SCX Zip tips 

(OMIX-SCX, Agilent, Santa Clara, CA) and high pH RPLC fractionation approach was used to 

improve protein identification coverage. Four fractions were collected from each pooled sample 

and dried down in a speed vac and saved in the -80℃ until LC-MS/MS analysis.  

 

Fusion Lumos Orbitrap MS was adopted here for protein fraction analysis. Full MS scans were 

acquired from m/z 300 to 1500 at a resolution of 60 K, AGC at 2E5, and maximum injection time 

(IT) of 100 ms. The top 20 precursors were then selected for higher-energy C-trap dissociation 

tandem mass spectrometry (HCD MS2) analysis with an isolation window of 1 m/z, a normalized 

collision energy (NCE) of 30, a resolving power of 60 K, an AGC target of 5 × 104, a maximum 

injection time of 100 ms, and a lower mass limit of 110 m/z. Both PEAKS Studio and Proteome 

Discoverer software packages were used for protein identification and quantification. Trypsin with 

D&P enzyme was selected for this bottom-up proteomics study, and at most two missed cleavages 

were allowed. Searches were performed with a precursor mass tolerance of 25 ppm and a fragment 

mass tolerance of 0.02 Da. The static modifications consisted of DiLeu labels on peptide N-termini 

(+145.12801 Da) and carbamidomethylation of cysteine residues (+57.02146 Da). The dynamic 

modifications consisted of DiLeu labels on lysine residues, oxidation of methionine residues 

(+15.99492 Da). Peptide spectral matches (PSMs) were validated based on 1% FDR and 

quantitation was performed with a reporter ion integration tolerance of 20 ppm for the most 

confident centroid. Significantly changed proteins were selected based upon a 2-fold down-

regulation of the HumUn/HumSal and MonoSal/HumSal ratio with 1% FDR. 

 

Neuropeptidomics Acquisition and Analysis  
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The sample preparation, data acquisition, and data analysis of peptide fraction are similar, as 

previously described. Briefly, Sep-Pak C18 Cartridges were used for peptide desalting. Then 

peptide samples were dried down in a speed vac and resuspended in optima grade water with 3% 

acetonitrile and 0.1% formic acid. UPLC-MS/MS analysis was conducted using a Thermo Dionex 

UltiMateTM 3000 nanoLC system coupled to a Thermo Fusion Lumos Orbitrap MS. Especially, 

a decision tree-driven MS scheme was used here to allow improved peptide sequencing by 

alternating between higher-energy collisional dissociation (HCD), electron transfer dissociation 

(ETD) and electron transfer higher energy dissociation (EThcD) for each specific charge state 

(Charge 2, combined HCD and EThcD, Charge 3-6 combined HCD and EThcD). The .raw data 

files from the Orbitrap MS analysis were searched against the mouse neuropeptide database using 

PEAKS 8.5 software, and a precursor tolerance of 10 ppm and a fragment mass tolerance of 0.02 

Da were allowed. Acetylation (N-term), amidation, oxidation (M), pyro-glu from E, pyro-glu from 

Q, and sulfation (STY), were set as rare dynamic modifications and three maximum variable PTMs 

were allowed per peptide. Confident peptide identification was threshold with Ascore (PTM site 

confidence) higher than 20, FDR lower than 1%, and at least one unique peptide was found.  

 

RESULTS  

Metabolomics 

Label-free metabolomics was performed to investigate small molecule changes by the microbiome 

in response to both Salmonella and Candida infections. Humanized, salmonella infected mice 

(HumSal) were compared to humanized, uninfected mice (HumUn) and germ-free mice 

monocolonized with Salmonella (MonoSal). Similarly, humanized, candida infected mice 

(HumCand) were compared to humanized, uninfected mice (HumUn) and germ-free mice 

https://en.wikipedia.org/wiki/Higher-energy_collisional_dissociation
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monocolonized with Candida (MonoCand). Volcano plots were used to analyze the differences in 

the data by fold change and p-value. Additionally, potential targets were filtered based upon 4/6 

biological replicates having ratios below the 2-fold threshold. The HumSal vs. HumUn and 

HumSal vs. MonoSal comparisons were analyzed separately with volcano plots as shown in 

Figure 1(A) and Figure 1(B). Then, the overlap in the 2-fold downregulated compounds between 

two infections was compared with a Venn diagram, resulting in 384 small molecule targets for 

compounds up-regulated in the humanized, salmonella infected group (Figure 1(C)).  For the 

candida infection, the same analysis procedure resulted in 83 targets up-regulated in the 

humanized, candida infected mice (Figure 1(D-F)). The salmonella targets are listed in Table S2, 

and the candida targets are listed in Table S3. Of the targets, 13 were in both the Salmonella list 

and the Candida list.  

 

To investigate trends in an unsupervised manner, principal component analysis (PCA) was 

utilized. PCA linear transforms the data to display the properties and variance of the sample data 

along the coordinate axis. Figure 2 shows the PCA results for the data. In Figure 2(A), the 

separation of the samples along the principal component axis is shown. The HumSal, MonoSal, 

and MonoCand groups separate well from the HumUn and HumCand groups, which correlates to 

the fact that the Candida infection was not as severe as the Salmonella infection.32 In Figure 2(B), 

the PCA loadings plots are shown, where m/z retention time points are plotted. Points on the 

outside contribute most to the variation in the data. The points in the bottom right corner are where 

the compounds up-regulated in the HumSal group are located. Figure 2(C-E) provides examples 

of selected salmonella targets that are localized to this area of the PCA plot. The targets that were 

selected for both infections are slight to the left of the salmonella only targets, an example of which 
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is in Figure 2(F). Thus, the target list is composed of compounds that correlate well to the 

compounds causing the variance in the data as determined by the PCA plot.  

 

LC-MS/MS data, in combination with mzCloud and Metlin spectra libraries, was used for 

compound identification. Table 1 provides identifications for compounds detected in this study, 

with the associated error.  The compounds listed in italics were previously identified as being up-

regulated in the presence of the microbiome after infection.32 Interestingly, multiple additional 

putative annotations were for carnitine molecules. Additional adenosine related compounds were 

also observed. These compounds may be related to trends in carnitine and adenosine metabolism 

changes in response to infection when the microbiome is present.  

 

Proteomics 

For proteomics analysis, nanoLC-MS/MS with 12-plex DiLeu labeling for relative quantitation 

was employed.35 Both PEAKS Studio and Proteome Discoverer software packages were used for 

data analysis of the 12-plex DiLeu labeled samples, with the two packages generating consistent 

protein identification results. From the PEAKS analysis, 1318 proteins were identified from 6821 

peptide spectral matches (PSMs), while the Proteome Discoverer analysis identified 1228 proteins 

from 9253PSMs. Up-regulated proteins were selected based upon 1.5 fold changes in the HumSal 

or HumCand groups compared to their respective controls (HumUn and either MonoSal or 

MonoCand). While 14 up-regulated proteins were found in HumSal (Figure 3A & 3B), none of 

the proteins were found significantly up-regulated in the HumCand group, which was also 

correlated to the fact that the Candida infection was not as severe as the Salmonella infection. The 

gene ontology (GO) analysis of the up-regulated proteins in the HumSal group (Figure 3C) 
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displays the biological process of the up-regulated proteins. Notably, three proteins, Alpha-1-acid 

glycoprotein, Alpha-2-HS-glycoprotein, and Haptoglobin, were detected, which modulate the 

activity of the immune system during the acute-phase reaction.  

 

Neuropeptidomics 

The aqueous and organic fraction contents between 3 and 30 kDa were analyzed with nanoLC-

MS/MS to determine endogenous peptides in the gut produced in response to Salmonella infection. 

For peptidomics analysis, the data were searched against the neuropeptide database using PEAKS 

8.5 software. The fragmention MS spectrum of neuropeptide Fibrinopeptide B shown in Figure 

4A proved the confidence of the neuropeptide identification. Overall, 38 neuropeptides were 

identified in the HumSal group, while 28 neuropeptides from the MonoSal group and 7 from the 

HumUn group. Figure 4B compared the neuropeptide identification overlap in HumSal, MonoSal, 

and HumUn groups, with more unique neuropeptides being identified in HumSal. Also, the 

identification of neuropeptides in the gut belonging to various neuropeptide preprohormones 

indicates communication between gut microbiota, brain, and immune system. 

 

DISCUSSION  

Metabolites identified that are up-regulated in response to infection and the presence of the model 

microbiome provide evidence of metabolism changes induced by the microbiome in response to 

infection. Here, we focused on m/z greater than 200 to limit the detection of common primary 

metabolites and instead focus on the larger secondary metabolites, which could be potential natural 

products. Previously, the importance of glutathione metabolism against potential oxidative stress 

was discussed due to the presence of glutathione disulfide and glutathione cysteine disulfide after 
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Salmonella infection.32 Multiple carnitine molecules were identified in this study. Acetyl-L-

carnitine is involved in energy metabolism; it increases acetyl-CoA uptake in the mitochondria in 

fatty acid oxidation, increases acetylcholine production, and is a free radical scavenger.36-38 As 

acetyl-L carnitine can cross the blood-brain barrier easier compared to carnitine, and consequently 

its positive effects for various neurological disorders, including depression and Alzheimer's 

disease, has been observed.39, 40 Acylcarnitines are involved in β-oxidation through transportation 

of long-chain fatty acids across the mitochondrial membrane.41 Studies have focused on various 

biological and metabolic roles of acylcarnities,42 including potential pro-inflammatory roles.42, 43  

 

The proteomics results also display up-regulated proteins after infection that are involved in the 

immune response and regulation of the inflammatory response. Figure 3C shows among the top 

five biological processes that the up-regulated proteins involved, four of them were immune or 

inflammatory response related. In particular, the alpha-1-acid glycoprotein is an acute-phase 

protein that is involved in immune modulation and inflammatory response.49 Therefore, 

proteomics results here prove that the host immune system is enhanced by the human microbiome 

during infection. Besides, the proteomics result also explains the bodyweight study with this body. 

While the mice's weight was decreased considerably in the Salmonella groups, the mice's weight 

did not change too much in the Candida groups. This consistent result proved that the human 

microbiome could adjust the response according to the situation. They would augment the host 

immune system when the host health is being threatened, such as severe infection caused by 

Salmonella. 
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From the peptidomics analysis, we could see that more neuropeptides were involved during 

infection. Figure 4B showed the presence of 38 neuropeptides in the HumSal group and 28 

neuropeptides from the MonoSal group, while only 7 were from the HumUn group. When 

compared with the two Salmonella infection groups, more unique neuropeptides were identified 

in the HumSal group. Those 15 unique peptides may carry out neuronal function induced by the 

human microbiome under infection. To further analyze the biological process of those unique 

neuropeptides involved, nine of them were immune-related neuropeptides. Notably, a special 

antimicrobial neuropeptide, cathelin-related antimicrobial peptide, was identified among those 

unique neuropeptides. The antimicrobial neuropeptide could kill the gram-negative bacteria by 

attaching to their membrane. This kind of antibiotics is less prone to develop resistance, which 

could be further investigated for the Salmonella growth inhabition. 

 

The other immune-related neuropeptides could enhance host immune defense in different ways. 

For example, Fibrinopeptide B is formed by cleavage of fibrinogen by thrombin during the 

coagulation process.44 Previous studies have shown fibrinopeptide B involvement in the 

inflammatory processes.44 Investigations with sepsis, rheumatoid arthritis, and pilocytic 

astrocytoma, which are pathogenic inflammatory conditions, found increases in fibrinogen 

degradation fragments and fibrinopeptide B.45-47 Thus, Fibrinopeptide B and other immune-related 

neuropeptide stimulation by the human microbiome during infection could enhance cell-mediated 

immunity and influence brain and body activities, which facilitates further understanding of the 

bidirectional communication between gut microbiota, brain, and immune system. 

 

CONCLUSION 
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Overall, metabolomics, proteomics, and peptidomics analysis reveal microbiome-mediated 

immune and inflammatory responses in response to Salmonella infection. Three omics analyses 

were achieved in every single sample. The up-regulated metabolites and proteins, and unique 

peptides indicate that the 92 microbial strains in the human microbiome enhanced the host immune 

system and could help the host defense during infection. In particular, the neuropeptidomics 

analysis provides insights into gut-brain axis communication in response to Salmonella infection 

to stimulate immune functions. The neuropeptide cathelin-related antimicrobial peptide is a 

potential novel antibiotics for the treatment of Salmonella infection and could be further evaluated. 
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TABLES AND FIGURES 

 

 

Table 1. Putative identifications from metabolomics analysis. Compounds from the previous 

study are shown in italics.  

Molecular 

Weight RT (min) Compound Name Infection 

Literature 

Molecular 

Weight ppm 

203.11562 1.219 Acetyl-L-Carnitine Salmonella 203.11575 -0.65 

231.14701 6.577 

Butyryl-L-carnitine, Isobutyryl 

carnitine Salmonella 231.14706 -0.23 

245.16276 12.672 

2-Methylbutyroylcarnitine, 

pivaloylcarnitine Salmonella 245.16270 0.23 

247.14170 1.497/1.724 hydroxybutyrylcarnitine Salmonella 247.14197 -1.08 

259.17830 14.895 Hexanoylcarnitine Salmonella 259.17835 -0.17 

267.09656 2.413 Adenosine 

Salmonella 

&Candida 267.09674 -0.68 

347.06261 1.452 Adenosine 3’ monophosphate  

Salmonella 

&Candida 347.06308 -1.35 

347.06263 1.160 

similar to Adenosine 

monophosphate  Salmonella 347.06308 -1.30 

348.04670 1.188 Inosine monophosphate Salmonella 348.04709 -1.12 

426.08792 0.935 cysteine glutathione disulfide Salmonella 426.08789 0.07 

612.15125 1.881 L-Glutathione oxidized Salmonella 612.15198 -1.19 
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Table 2. Unique neuropeptides in the HumSal group (Immune-related) from under the 

Salmonella enterica Typhimurium infection. 

Neuropeptide Biology Process 

Fibrinopeptide_B facilitate the immune response 

Signal_transducer_CD24 positive regulation of inflammatory response 

Cathelin-

related_antimicrobial_peptide antibacterial humoral response  

Resistin-like_beta response to bacterium 

Prolactin-7B1 positive regulation of cell population proliferation  

Prolactin-2C3 positive regulation of cell population proliferation  

Parathyroid_hormone-

related_protein positive regulation of cell population proliferation  

Prolactin-6A1 positive regulation of cell population proliferation 

Prolactin-2A1 positive regulation of cell population proliferation  
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https://www.ebi.ac.uk/QuickGO/term/GO:0009617
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Figure 1. Target selection for metabolomics results. Volcano plots for MonoSal/HumSal (A), 

HumUn/HumSal (B), MonoCand (D), and HumUn/HumCand (E) selected statistically 

significant targets in each ratio. The overlap of the targets for the HumSal group (C) and 

HumCand group (F) were used to select final targets.   
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Figure 2. PCA results for the metabolomics data. (A) shows the PCA plot for separation of 

sample groups, while (B) shows the loadings plot for the various detected compounds. (C-F) 

show various compounds on the edge of the loadings plot as being up-regulated in the HumSal 

(and HumCand for (F)).  
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Figure 3. Quantification results for the proteomics data. (A) show for HumUn/HumSal; (B) 

shows for MonoSal/HumSal; (C) shows the gene ontology results for proteins up-regulated in 

the HumSal group. Four of the top five biological processes are related to inflammation response 

or immune response. 
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Figure 4. Identification results for the neuropeptidomics data. (A) shows the MS spectrum of 

neuropeptide Fibrinopeptide B; (B) compares the neuropeptides identified in HumSal, MonoSal, 

and HumUn groups. 
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SUPPLEMENTARY INFORMATION 

 

 

 

Table S1. Labeling map for protein samples from HumUn (NO), HumSal (HS), and MonoSal 

(GS) groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Samples HS1 HS2 HS3 HS4 HS5 HS6 GS1 GS2 GS3 GS4 GS5 GS6

DiLeu Labels 117b 117c 118a 118b 118c 118d 115a 115b 116a 116b 116c 117a

Samples NO1 NO2 NO3 NO4 NO5 NO6

DiLeu Labels 115a 115b 116a 116b 116c 117a

2 Mixtures HS&GS HS&NO
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Table S2. Target Compounds produced in response to Salmonella infection.  

Molecular 

Weight RT [min] 

Log2 Fold 

Change: 

(HumUn) / 

(HumSal) 

Log2 Fold 

Change: 

(MonoSal) / 

(HumSal) 

P-value: 

(HumUn) / 

(HumSal) 

P-value: 

(MonoSal) / 

(HumSal) 

203.11562 1.219 -4.41 -4.45 3.51E-04 7.27E-05 

205.04819 0.854 -5.65 -6.98 3.02E-02 1.33E-02 

206.01046 28.177 -2.49 -2.36 7.96E-03 4.71E-02 

206.09148 18.084 -2.64 -3.45 1.92E-02 1.10E-02 

211.13601 22.812 -2.54 -2.45 6.89E-03 4.28E-02 

212.04077 0.883 -6.12 -6.97 9.05E-03 2.23E-02 

216.09972 14.883 -4.39 -4.01 2.77E-03 2.89E-02 

217.03840 0.961 -4.80 -3.23 3.46E-03 1.16E-02 

222.08928 19.206 -1.90 -3.54 2.85E-02 1.29E-02 

224.10196 15.413 -2.38 -4.03 3.75E-02 1.32E-02 

225.00491 28.173 -2.63 -2.37 6.54E-03 4.78E-02 

226.19290 22.922 -2.63 -2.97 1.73E-02 1.88E-02 

227.00028 28.172 -2.55 -2.57 7.82E-03 4.46E-02 

231.14701 6.577 -1.19 -4.85 4.38E-02 4.14E-03 

231.88960 0.845 -3.41 -2.73 1.77E-03 3.75E-02 

234.16187 22.151 -2.43 -2.32 5.84E-03 4.28E-02 

236.96618 0.858 -2.20 -4.23 4.14E-02 3.75E-02 

239.02031 0.954 -4.42 -3.86 4.24E-03 1.01E-02 

242.11247 12.709 -2.27 -2.73 1.38E-02 3.74E-02 

243.21976 21.301 -2.75 -2.31 6.89E-03 4.96E-02 

244.12815 10.160 -2.99 -3.29 1.27E-02 2.76E-02 

245.16276 12.672 -2.19 -1.99 2.61E-03 2.17E-02 

247.14170 1.724 -7.40 -8.32 1.79E-03 6.14E-04 

247.14175 1.497 -3.66 -5.57 4.41E-03 1.58E-04 

247.86382 0.849 -2.07 -2.59 7.98E-03 4.21E-03 

248.97206 8.038 -3.98 -3.86 1.86E-02 4.99E-02 

254.15157 19.808 -1.33 -2.40 4.39E-02 2.84E-02 

259.17830 14.895 -1.99 -3.95 1.83E-02 5.21E-03 

261.03032 1.867 -3.47 -3.68 1.32E-02 4.39E-02 

261.15741 14.883 -5.75 -4.15 3.15E-03 4.74E-02 

262.01367 1.723 -6.25 -6.74 8.08E-03 8.13E-03 

265.06713 1.155 -2.82 -3.84 8.24E-03 3.71E-02 

266.16454 22.052 -2.39 -2.15 3.11E-03 3.68E-02 

267.09656 2.413 -3.65 -3.55 5.18E-03 3.47E-02 

268.12810 16.669 -1.95 -3.18 1.98E-02 2.10E-02 

270.13037 0.921 -2.65 -3.29 8.40E-03 1.90E-02 

270.14366 15.454 -2.95 -4.42 1.67E-02 1.09E-02 

270.14386 14.877 -2.37 -4.31 3.27E-02 1.05E-02 

270.90932 28.178 -2.46 -2.55 6.51E-03 2.47E-02 

271.21468 22.026 -2.72 -2.61 1.44E-02 4.11E-02 

271.25093 22.512 -2.59 -2.32 6.89E-03 3.95E-02 

272.90979 28.176 -2.32 -2.36 6.68E-03 4.41E-02 

274.06309 4.043 -7.12 -8.07 2.37E-03 2.65E-02 

274.12737 1.373 -2.65 -3.23 1.30E-02 1.33E-03 

274.13860 12.705 -2.38 -2.93 1.33E-02 3.17E-02 

274.25072 23.413 -2.17 -2.27 9.99E-03 3.61E-02 

278.15163 22.775 -2.53 -2.40 3.59E-03 1.50E-02 

280.13075 21.019 -2.00 -2.56 1.18E-02 3.31E-02 

280.24010 22.494 -3.17 -2.94 6.56E-04 1.66E-03 

282.14367 18.510 -2.32 -3.95 1.73E-02 1.38E-02 

282.14370 18.087 -2.38 -4.11 2.08E-02 1.24E-02 

282.14378 16.668 -1.82 -3.34 1.99E-02 2.13E-02 

283.32368 22.788 -3.12 -2.27 3.82E-02 3.13E-02 

283.32368 22.598 -2.07 -2.16 7.91E-03 4.80E-02 

285.11431 1.108 -6.84 -6.50 3.73E-03 4.88E-03 

286.13869 15.420 -2.25 -3.41 3.00E-02 6.54E-03 

286.88142 28.291 -2.58 -2.31 1.59E-02 4.56E-02 

287.24576 21.124 -2.90 -3.21 1.24E-02 4.96E-02 

288.88233 28.178 -2.56 -2.43 4.43E-03 4.08E-02 

289.12702 1.420 -2.05 -2.46 3.53E-03 2.36E-02 
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289.99846 8.040 -2.94 -2.95 2.75E-02 3.89E-02 

290.88296 28.183 -2.49 -2.44 1.72E-03 2.95E-02 

292.08625 21.483 -1.88 -2.62 2.26E-02 2.55E-02 

294.16173 22.781 -2.42 -2.23 5.66E-03 4.75E-02 

294.16175 22.642 -2.36 -2.33 6.84E-03 4.40E-02 

298.15676 21.409 -2.34 -2.59 1.45E-02 4.99E-02 

299.28219 23.468 -2.32 -2.25 9.30E-03 4.02E-02 

299.87702 0.846 -3.18 -3.10 2.68E-03 2.81E-02 

299.89790 0.826 -2.90 -5.96 4.33E-02 1.46E-02 

300.15435 15.915 -2.01 -3.59 2.69E-02 1.15E-02 

300.15454 15.411 -2.28 -3.89 3.70E-02 1.17E-02 

302.17006 14.878 -2.86 -4.78 2.50E-02 9.04E-03 

303.88420 28.332 -2.66 -1.89 7.42E-03 3.45E-02 

303.91471 28.183 -2.22 -2.35 1.12E-02 3.97E-02 

306.09237 0.933 -5.08 -4.87 4.70E-02 1.86E-02 

306.16166 22.932 -2.30 -2.06 9.73E-03 3.22E-02 

307.09615 1.114 -9.49 -8.75 4.40E-03 1.59E-02 

309.09181 1.108 -5.18 -4.09 5.51E-03 5.43E-03 

311.22231 22.052 -2.46 -1.77 2.48E-03 3.90E-02 

312.13588 22.614 -2.40 -2.35 9.73E-03 3.74E-02 

314.17009 16.669 -1.86 -3.28 2.09E-02 2.21E-02 

314.92232 28.180 -2.46 -2.34 8.17E-03 4.76E-02 

316.26106 20.551 -3.03 -3.17 1.79E-02 4.85E-02 

317.25637 22.950 -2.80 -2.57 6.23E-03 4.17E-02 

317.27177 20.480 -2.38 -2.64 2.35E-02 3.95E-02 

317.87950 28.218 -2.64 -2.58 6.62E-03 4.67E-02 

318.16479 15.417 -2.31 -3.86 3.63E-02 1.37E-02 

318.16494 14.442 -2.48 -3.47 1.74E-02 2.30E-02 

318.27670 23.408 -2.29 -2.32 9.47E-03 3.39E-02 

321.28769 22.952 -2.21 -1.90 8.66E-03 4.10E-02 

322.10709 1.191 -5.65 -5.09 1.32E-02 1.31E-02 

323.05147 1.189 -5.55 -6.15 5.32E-03 2.98E-02 

323.05156 0.963 -4.88 -5.04 1.32E-02 4.04E-02 

323.07018 1.109 -7.32 -6.43 4.81E-03 6.84E-03 

323.20939 22.718 -2.95 -2.89 1.02E-02 3.35E-02 

326.29308 23.314 -2.57 -2.27 7.07E-03 3.01E-02 

326.91170 28.182 -2.40 -2.37 1.21E-02 4.39E-02 

327.90807 28.314 -2.46 -2.31 2.29E-02 4.56E-02 

329.90863 28.181 -2.59 -2.39 5.54E-03 4.22E-02 

330.16487 16.668 -1.78 -2.92 2.66E-02 2.08E-02 

331.06787 1.423 -5.34 -4.10 5.98E-03 2.11E-02 

331.14169 21.402 -1.80 -2.70 3.17E-02 3.55E-02 

331.90955 28.179 -2.59 -2.48 9.13E-04 2.37E-02 

332.18065 15.413 -2.70 -4.19 2.25E-02 1.31E-02 

333.90459 28.181 -2.51 -2.43 7.33E-03 4.35E-02 

334.11785 22.607 -2.44 -2.41 1.09E-02 3.70E-02 

334.15423 21.345 -3.24 -2.46 4.04E-03 3.76E-02 

335.30321 23.408 -2.27 -2.30 9.71E-03 3.56E-02 

337.14409 21.483 -2.08 -2.32 1.30E-02 3.32E-02 

337.24626 20.458 -1.79 -2.89 1.79E-02 2.54E-02 

337.90054 28.192 -2.76 -2.56 7.69E-03 4.50E-02 

337.90312 28.179 -2.52 -2.41 7.20E-03 4.96E-02 

340.30875 23.344 -2.39 -2.18 8.17E-03 4.30E-02 

340.91667 28.186 -2.57 -2.39 6.13E-03 4.94E-02 

343.30851 21.889 -2.19 -2.88 3.38E-02 4.54E-02 

344.07956 18.793 -2.24 -2.48 9.78E-03 3.71E-02 

344.18057 18.087 -2.14 -4.01 2.12E-02 1.17E-02 

344.18069 16.669 -1.72 -3.26 2.66E-02 1.99E-02 

344.18072 17.176 -1.74 -2.80 2.69E-02 2.65E-02 

345.03346 0.968 -4.93 -4.41 4.41E-03 3.93E-02 

346.11426 0.860 -2.34 -2.89 5.43E-03 3.44E-02 

347.06261 1.452 -8.02 -9.37 7.12E-03 6.86E-03 

347.06263 1.160 -7.34 -9.80 1.39E-02 1.16E-02 

348.04670 1.188 -7.69 -8.04 5.67E-03 8.01E-03 

348.16980 22.705 -4.32 -3.16 1.12E-03 4.66E-02 

348.25100 21.770 -2.24 -2.87 2.59E-02 4.83E-02 
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349.28249 22.941 -1.94 -2.41 1.24E-02 6.70E-03 

349.31893 22.955 -3.34 -2.90 8.58E-03 4.30E-02 

349.31894 23.403 -2.69 -2.20 4.48E-03 2.96E-02 

349.31894 23.493 -2.36 -2.03 7.29E-03 3.67E-02 

350.08862 1.720 -4.98 -7.52 3.95E-02 5.19E-03 

352.11324 23.513 -2.33 -2.18 1.53E-02 4.62E-02 

354.23803 22.941 -1.79 -2.21 2.22E-02 7.77E-03 

355.21445 22.932 -2.28 -2.31 1.62E-02 2.95E-02 

357.23025 21.351 -2.61 -2.17 4.67E-03 3.29E-02 

358.19620 18.514 -2.19 -3.70 1.65E-02 1.45E-02 

358.19631 18.086 -2.29 -3.97 2.21E-02 1.16E-02 

359.17285 21.402 -2.44 -1.81 3.57E-03 3.63E-02 

359.33971 22.625 -2.76 -2.77 7.67E-03 2.52E-02 

360.96415 8.035 -4.28 -4.36 2.26E-02 4.50E-02 

361.31883 20.537 -2.99 -3.53 1.63E-02 3.31E-02 

362.19111 15.916 -2.54 -3.97 2.00E-02 1.82E-02 

362.19120 16.668 -1.74 -3.24 2.66E-02 2.06E-02 

362.21251 22.586 -2.22 -2.07 9.82E-03 4.15E-02 

362.30296 23.400 -2.31 -2.25 8.41E-03 3.31E-02 

363.05745 1.201 -8.82 -9.04 4.89E-03 1.43E-02 

363.05749 1.539 -6.91 -8.56 1.62E-02 1.18E-02 

363.33444 23.281 -2.58 -2.22 3.82E-03 3.09E-02 

363.33446 22.962 -3.72 -3.61 4.92E-03 3.75E-02 

364.04170 1.258 -5.77 -6.66 2.49E-02 2.48E-02 

365.05323 1.715 -8.13 -8.45 6.58E-03 6.80E-03 

365.27753 21.772 -2.25 -2.88 2.68E-02 4.93E-02 

365.31391 22.948 -2.24 -2.06 8.29E-03 3.86E-02 

367.86476 0.845 -3.03 -3.41 3.65E-03 2.66E-02 

369.28763 23.087 -2.79 -2.95 5.31E-03 3.99E-02 

371.24574 22.735 -3.85 -4.07 1.10E-02 3.25E-02 

371.24591 22.643 -2.52 -2.23 7.98E-03 2.74E-02 

371.35092 23.315 -2.47 -2.30 8.72E-03 4.67E-02 

373.31893 20.534 -3.00 -3.50 2.11E-02 4.77E-02 

373.31913 21.315 -2.33 -3.12 3.56E-02 3.96E-02 

376.20663 18.509 -2.21 -3.83 1.38E-02 1.41E-02 

376.20672 18.087 -2.29 -3.98 2.19E-02 1.16E-02 

376.20683 16.668 -1.97 -3.38 2.02E-02 2.35E-02 

376.22160 23.854 -2.40 -2.14 7.25E-03 4.70E-02 

376.28219 22.927 -2.41 -2.93 1.23E-02 1.43E-02 

377.31387 22.941 -2.75 -2.87 8.67E-03 1.61E-02 

377.35013 23.484 -2.24 -2.63 3.81E-03 2.75E-02 

379.32943 23.400 -2.32 -2.26 8.57E-03 3.33E-02 

379.32945 22.924 -2.29 -2.19 8.06E-03 4.91E-02 

383.24585 23.125 -2.47 -2.31 1.01E-02 4.58E-02 

383.24585 23.035 -2.58 -2.16 1.01E-02 4.70E-02 

383.24595 22.985 -4.08 -3.64 9.26E-03 7.40E-03 

383.30340 22.464 -2.75 -2.92 1.21E-02 3.84E-02 

383.83925 0.849 -1.50 -3.04 1.17E-02 2.99E-03 

387.20441 22.489 -2.80 -2.94 3.68E-02 2.16E-02 

387.20452 22.421 -2.53 -2.65 1.94E-02 3.75E-02 

388.20699 18.510 -2.20 -4.10 2.05E-02 1.22E-02 

390.22231 18.088 -2.35 -4.02 2.04E-02 1.19E-02 

392.07644 0.831 -2.03 -2.75 4.15E-02 3.98E-02 

393.30875 22.921 -2.39 -2.94 5.75E-03 8.85E-03 

393.30880 21.773 -2.22 -2.37 3.72E-03 1.68E-02 

393.34507 23.352 -3.07 -2.61 2.31E-02 4.48E-02 

393.34510 23.616 -2.14 -2.68 3.64E-03 2.17E-02 

393.34517 23.481 -2.01 -2.45 9.84E-03 2.39E-02 

394.17787 14.702 -4.10 -3.58 8.35E-03 4.33E-02 

401.25645 21.799 -2.39 -1.94 7.05E-03 4.10E-02 

401.25650 21.893 -2.59 -2.60 8.42E-03 4.91E-02 

401.25658 21.980 -2.29 -2.17 7.96E-03 3.64E-02 

402.29158 22.251 -2.98 -2.89 1.48E-02 1.69E-02 

403.11120 5.444 -9.55 -8.93 2.98E-03 5.91E-03 

406.04158 1.260 -5.05 -5.19 4.44E-03 4.20E-02 

406.21738 18.514 -2.27 -4.05 1.88E-02 1.36E-02 
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406.21761 17.175 -2.05 -2.95 2.10E-02 2.82E-02 

408.17576 24.492 -2.50 -2.40 1.74E-02 4.32E-02 

409.30355 20.512 -3.38 -3.73 1.80E-02 4.60E-02 

409.33998 22.930 -2.24 -1.99 9.27E-03 4.41E-02 

412.20433 18.093 -3.00 -4.60 8.00E-03 1.51E-02 

413.27749 20.628 -2.96 -3.34 2.67E-02 4.11E-02 

414.20382 21.166 -2.88 -2.78 2.96E-03 1.63E-02 

414.20384 20.657 -4.04 -4.66 5.45E-03 1.82E-02 

414.20384 21.374 -2.59 -3.99 1.10E-02 2.67E-02 

414.20389 21.020 -2.10 -2.53 1.36E-02 4.02E-02 

416.30700 22.710 -5.22 -4.39 1.88E-02 2.87E-02 

416.30713 22.752 -3.52 -3.53 2.12E-02 2.72E-02 

418.23265 20.628 -3.31 -3.10 1.82E-02 4.79E-02 

420.23298 18.514 -2.18 -3.85 1.83E-02 1.28E-02 

420.30831 22.916 -2.72 -3.04 1.72E-02 2.50E-02 

421.27916 23.859 -2.38 -2.29 4.28E-03 4.62E-02 

421.33996 22.927 -2.81 -2.91 1.39E-02 3.29E-02 

421.37627 23.486 -1.76 -2.78 3.10E-02 3.36E-02 

421.37631 23.304 -1.87 -2.25 2.92E-03 4.96E-02 

421.37651 23.244 -3.04 -3.72 1.88E-02 1.65E-03 

423.35558 23.388 -2.33 -2.32 9.08E-03 3.14E-02 

425.84380 0.836 -4.60 -6.55 2.10E-02 2.24E-02 

426.08792 0.935 -6.39 -5.64 4.47E-03 4.40E-02 

427.32967 22.461 -3.02 -3.44 1.42E-02 3.47E-02 

431.23034 21.015 -1.99 -2.44 1.47E-02 3.98E-02 

431.23046 21.377 -2.54 -3.98 1.98E-02 3.28E-02 

431.23047 20.657 -3.95 -4.66 6.35E-03 1.74E-02 

431.24354 20.891 -3.56 -3.87 7.93E-03 3.30E-02 

433.16213 22.712 -2.67 -2.68 1.36E-02 3.70E-02 

434.13253 21.400 -3.57 -2.84 1.53E-02 3.57E-02 

434.13255 21.597 -3.46 -3.15 1.54E-02 2.49E-02 

435.85203 0.845 -2.81 -3.60 9.06E-03 2.28E-02 

436.18550 21.132 -3.40 -4.17 5.05E-03 3.16E-02 

436.18557 21.025 -2.48 -2.61 1.02E-02 4.03E-02 

436.18560 21.347 -2.80 -3.83 2.87E-03 1.66E-02 

437.33500 22.916 -2.72 -3.04 1.72E-02 2.46E-02 

437.33502 21.780 -2.65 -2.82 2.66E-03 7.87E-03 

437.37119 23.728 -2.67 -2.49 9.10E-03 4.92E-02 

437.37120 23.344 -3.31 -3.24 1.89E-02 2.72E-02 

437.37126 23.468 -2.34 -2.77 1.28E-02 3.59E-02 

438.37474 23.481 -2.61 -3.08 9.36E-03 2.17E-02 

439.40232 22.669 -2.36 -2.28 7.42E-03 4.05E-02 

440.10311 1.229 -6.36 -6.50 3.60E-03 3.57E-02 

442.29020 22.916 -2.67 -3.01 1.82E-02 2.70E-02 

443.07082 1.096 -5.29 -4.72 5.46E-03 9.76E-03 

443.30108 22.491 -2.51 -2.30 1.22E-02 4.30E-02 

443.32451 22.454 -2.32 -1.98 4.17E-03 4.36E-02 

444.28037 16.102 -3.05 -3.06 1.05E-02 3.22E-02 

447.28302 23.282 -2.32 -2.41 7.40E-03 4.29E-02 

448.14852 22.267 -2.88 -2.59 1.65E-02 3.26E-02 

450.24367 18.774 -2.11 -3.87 1.78E-02 1.46E-02 

450.24379 18.911 -2.25 -3.81 1.48E-02 1.72E-02 

452.15985 21.037 -2.21 -2.26 9.11E-03 4.28E-02 

453.36608 22.907 -2.33 -2.32 6.07E-03 2.96E-02 

454.18120 14.876 -4.61 -4.91 7.53E-03 3.05E-02 

457.34002 23.072 -2.96 -2.38 8.82E-03 4.51E-02 

459.26158 20.656 -4.17 -3.74 3.51E-03 2.30E-02 

459.26162 21.759 -2.44 -3.67 4.11E-03 3.58E-03 

459.26162 21.373 -3.54 -3.36 2.19E-03 2.40E-02 

460.26482 21.375 -3.72 -3.25 2.48E-03 2.52E-02 

460.26500 20.656 -4.29 -3.81 3.59E-03 2.32E-02 

461.24148 21.020 -2.11 -2.82 1.03E-02 3.64E-02 

462.12303 23.440 -1.96 -1.97 1.08E-02 3.85E-02 

462.16372 22.707 -2.71 -2.85 1.08E-02 2.66E-02 

464.33454 22.895 -2.83 -3.13 2.14E-02 3.44E-02 

465.36619 22.916 -2.73 -3.27 1.59E-02 4.26E-02 
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465.40245 23.227 -3.92 -3.71 1.87E-02 3.39E-02 

465.40263 23.413 -2.52 -3.43 3.35E-02 4.90E-02 

466.30869 28.086 -2.58 -3.21 9.06E-03 1.30E-02 

466.30882 28.052 -2.27 -2.35 7.99E-03 3.14E-02 

467.38195 23.371 -2.51 -2.31 5.87E-03 4.03E-02 

467.43341 23.300 -2.35 -2.30 7.39E-03 4.60E-02 

472.09474 28.164 -2.38 -2.38 5.90E-03 4.32E-02 

472.28957 16.032 -3.27 -2.37 1.64E-03 6.22E-03 

475.25646 21.017 -2.32 -3.03 5.65E-03 3.94E-02 

479.14957 23.441 -1.98 -1.96 1.14E-02 3.72E-02 

479.15146 24.004 -2.28 -2.68 4.28E-02 3.80E-02 

481.36114 22.896 -2.84 -3.13 2.15E-02 3.45E-02 

481.36120 21.778 -2.64 -2.80 5.40E-03 1.52E-02 

481.39736 23.339 -2.82 -2.63 1.15E-02 4.80E-02 

481.39739 23.455 -2.56 -3.02 9.61E-03 2.08E-02 

481.39740 23.586 -3.01 -3.02 9.37E-03 2.08E-02 

483.10872 1.872 -7.21 -7.76 5.33E-03 2.40E-02 

486.09259 24.167 -2.20 -2.68 2.88E-02 3.81E-02 

486.31600 22.897 -2.78 -3.15 2.12E-02 3.34E-02 

489.38476 28.052 -2.56 -2.42 6.37E-03 4.69E-02 

493.83133 0.835 -4.29 -6.69 2.13E-02 1.75E-02 

494.28378 1.494 -3.78 -5.51 4.51E-03 3.19E-04 

501.36622 23.053 -2.62 -2.67 6.91E-03 4.70E-02 

503.83960 0.844 -3.03 -3.81 9.42E-03 1.88E-02 

508.36088 22.865 -2.84 -3.06 2.12E-02 3.76E-02 

509.39232 22.896 -2.44 -2.60 3.58E-03 2.33E-02 

509.42876 23.269 -2.70 -2.88 8.39E-03 3.79E-02 

511.40776 22.875 -2.52 -2.37 8.33E-03 4.41E-02 

511.40814 23.352 -2.58 -2.55 1.06E-02 4.95E-02 

513.30871 21.020 -1.94 -2.45 1.50E-02 4.89E-02 

513.35097 20.592 -2.50 -3.65 3.37E-02 4.69E-02 

515.30667 14.510 -6.33 -6.89 4.37E-03 7.01E-03 

520.31206 13.855 -6.36 -6.55 3.87E-03 3.42E-03 

525.38738 21.770 -2.38 -2.52 2.57E-03 2.07E-02 

525.38744 22.866 -2.84 -3.06 2.12E-02 3.75E-02 

525.42358 23.437 -2.57 -2.62 1.41E-02 2.05E-02 

525.42359 23.322 -2.00 -2.51 3.65E-02 3.61E-02 

525.42375 23.567 -2.90 -4.83 1.47E-02 2.07E-02 

529.32274 14.525 -3.44 -5.81 1.54E-03 3.65E-05 

531.43187 27.250 -2.19 -1.81 3.29E-03 4.59E-03 

531.43199 26.734 -1.93 -2.22 8.05E-03 4.05E-02 

531.43204 27.142 -1.72 -1.80 1.83E-02 4.67E-02 

532.37565 22.983 -4.11 -3.18 9.09E-03 1.91E-02 

534.19309 2.412 -3.57 -3.38 5.87E-03 3.74E-02 

537.32722 24.371 -2.07 -1.86 1.91E-02 4.87E-02 

541.27495 13.989 -6.53 -5.29 4.34E-03 3.02E-03 

549.11071 5.693 -9.08 -9.51 1.66E-03 2.61E-02 

552.38139 28.161 -2.46 -2.72 3.97E-03 1.86E-02 

552.38696 22.835 -2.85 -3.00 2.02E-02 3.79E-02 

553.16846 23.884 -2.22 -2.09 8.89E-03 4.20E-02 

553.45469 23.256 -2.33 -2.70 1.29E-02 3.97E-02 

557.37699 20.607 -2.52 -3.71 3.38E-02 4.49E-02 

559.46277 27.070 -2.44 -2.47 8.49E-03 4.24E-02 

561.79806 0.846 -4.84 -3.89 1.64E-03 3.62E-02 

563.12627 12.165 -6.55 -7.71 4.14E-03 3.55E-03 

569.41353 22.835 -2.86 -3.00 2.03E-02 3.78E-02 

569.44962 23.286 -2.07 -2.61 7.91E-03 1.87E-02 

569.44976 23.421 -2.44 -3.00 1.06E-02 1.82E-02 

571.82691 0.844 -3.01 -4.62 2.33E-02 1.93E-02 

573.28653 1.993 -2.86 -7.42 2.25E-04 6.71E-05 

586.15316 12.074 -7.55 -6.54 4.95E-03 4.48E-02 

587.10269 2.257 -4.38 -8.55 7.37E-03 7.59E-04 

587.13751 12.300 -7.68 -7.54 5.28E-03 4.13E-02 

589.11674 10.136 -9.82 -8.17 1.74E-03 4.96E-02 

589.41852 22.991 -2.63 -2.53 7.93E-03 4.81E-02 

590.26534 1.221 -2.82 -3.88 3.42E-03 1.89E-03 
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596.26293 22.856 -2.90 -2.95 1.03E-02 4.21E-02 

596.26341 22.693 -2.45 -2.53 1.13E-02 4.68E-02 

597.23977 12.158 -2.40 -3.04 5.49E-04 1.05E-03 

599.46011 23.308 -2.56 -2.27 7.68E-03 4.52E-02 

600.30906 15.411 -2.26 -3.86 3.65E-02 1.12E-02 

601.40315 20.619 -2.52 -3.69 3.23E-02 4.24E-02 

603.13231 12.160 -7.42 -7.60 4.09E-03 1.61E-02 

612.15104 2.017 -8.64 -9.90 3.69E-03 2.86E-02 

612.15125 1.881 -11.80 -11.75 3.69E-03 3.79E-02 

613.43969 22.805 -2.87 -2.97 2.00E-02 4.05E-02 

613.47567 23.290 -2.49 -2.48 3.08E-03 2.17E-02 

626.15955 12.291 -8.09 -6.76 5.07E-03 4.98E-02 

627.18689 24.470 -2.16 -1.98 8.78E-03 4.56E-02 

628.09287 3.234 -6.79 -7.34 1.95E-02 2.44E-02 

629.78451 0.844 -4.73 -4.23 2.86E-03 3.52E-02 

633.44475 22.956 -2.86 -2.62 8.81E-03 4.28E-02 

635.37526 13.849 -9.14 -8.72 3.94E-03 2.33E-02 

637.29439 20.125 -1.63 -2.21 5.85E-03 3.93E-02 

639.81335 0.842 -2.88 -5.52 4.87E-02 2.16E-02 

642.15453 12.122 -8.37 -7.37 4.66E-03 3.64E-02 

645.42931 20.631 -2.68 -3.67 2.93E-02 4.10E-02 

652.10374 5.751 -9.29 -9.82 8.47E-03 1.97E-02 

657.46570 22.774 -2.83 -2.95 2.00E-02 3.92E-02 

657.50174 23.285 -1.98 -2.40 6.35E-03 1.62E-02 

660.31836 2.761 -7.37 -7.92 5.62E-04 5.61E-04 

664.09245 1.275 -5.36 -5.22 4.31E-03 7.32E-03 

665.32553 20.123 -2.64 -1.93 3.58E-02 4.74E-02 

666.06998 1.888 -5.78 -6.52 4.82E-03 4.50E-03 

668.09826 5.748 -7.83 -8.32 1.40E-02 1.70E-02 

677.47048 22.928 -2.89 -2.82 1.09E-02 4.40E-02 

691.82752 0.835 -4.07 -5.03 3.85E-02 3.96E-02 

697.77088 0.844 -4.35 -4.54 5.36E-03 2.93E-02 

701.49201 22.744 -2.75 -2.90 2.07E-02 4.27E-02 

701.52782 23.226 -1.96 -1.92 1.02E-02 1.23E-02 

707.50340 27.201 -2.78 -3.45 1.12E-02 1.62E-02 

719.36329 13.108 -4.81 -5.59 1.21E-02 2.07E-02 

721.49632 22.894 -2.89 -2.82 8.95E-03 3.73E-02 

726.37009 13.401 -7.69 -7.23 4.18E-03 1.90E-02 

727.39695 12.381 -3.99 -3.34 8.06E-03 2.35E-02 

734.40276 20.539 -2.58 -4.57 2.40E-02 1.16E-02 

759.81475 0.833 -4.12 -5.60 4.66E-02 4.73E-02 

794.42888 13.703 -6.96 -6.56 5.51E-03 1.28E-02 

803.39223 12.162 -3.52 -4.23 3.43E-02 2.56E-02 

811.40724 11.820 -2.97 -3.90 6.80E-03 2.66E-02 

850.38994 21.025 -1.61 -2.93 4.16E-02 2.75E-02 

870.23685 1.890 -5.25 -5.58 8.44E-03 4.87E-03 

873.18136 1.872 -7.78 -7.78 4.96E-03 1.79E-02 

877.17912 11.247 -7.59 -7.55 2.56E-03 4.63E-02 

878.27300 24.374 -2.60 -2.36 1.54E-02 4.63E-02 

879.14672 11.764 -7.86 -7.28 5.72E-03 4.54E-02 

888.56171 16.100 -3.08 -3.00 1.13E-02 4.68E-02 

894.15731 11.400 -8.35 -8.23 4.67E-03 3.23E-02 

1039.59072 14.691 -6.49 -5.86 5.77E-03 1.97E-02 

1143.65445 0.843 -3.04 -4.62 2.42E-02 1.93E-02 

1192.65652 14.069 -2.45 -3.16 1.38E-02 3.33E-02 

1259.56968 0.843 -4.76 -4.61 2.76E-03 3.33E-02 

1279.62761 0.841 -2.86 -5.42 4.26E-02 1.93E-02 

1690.86495 15.055 -7.79 -7.77 3.97E-03 6.40E-03 

1795.82207 14.031 -8.26 -8.24 4.36E-03 4.68E-03 

1908.91261 14.475 -6.62 -7.30 1.03E-02 2.64E-02 
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Table S3. Target Compounds produced in response to Candida infection.  

Molecular 

Weight RT [min] 

Log2 Fold 

Change: 

(MonoCand) 

/ (HumCand) 

Log2 Fold 

Change: 

(HumUn) / 

(HumCand) 

P-value: 

(MonoCand) / 

(HumCand) 

P-value: 

(HumUn) / 

(HumCand) 

201.07486 0.975 -1.09 -1.04 3.71E-05 1.39E-03 

205.07728 1.701 -2.71 -1.24 1.58E-04 7.52E-03 

211.09564 1.649 -1.17 -1.51 9.99E-03 3.31E-03 

211.09570 2.585 -1.19 -1.29 1.31E-02 3.70E-02 

243.11071 13.181 -1.31 -1.33 4.33E-03 1.57E-02 

248.10457 16.250 -5.65 -1.26 2.32E-06 1.77E-03 

251.10170 2.650 -2.75 -1.82 3.73E-05 1.38E-03 

258.09629 1.041 -1.46 -1.20 2.71E-05 1.02E-03 

259.07598 0.908 -1.95 -2.41 6.63E-03 2.47E-03 

265.64015 11.918 -1.67 -1.56 2.25E-02 2.78E-02 

267.09656 2.413 -4.55 -2.23 4.09E-04 4.14E-05 

268.05177 9.113 -8.56 -1.71 3.27E-07 1.13E-02 

271.11657 1.529 -2.65 -1.41 3.54E-04 2.84E-02 

272.11193 1.546 -2.11 -1.42 7.92E-06 5.94E-03 

272.13700 1.577 -2.26 -1.62 9.87E-04 6.64E-03 

275.08271 13.147 -1.92 -1.62 3.32E-03 1.66E-02 

275.08282 12.026 -1.96 -1.49 1.96E-03 1.53E-02 

285.23016 16.114 -2.81 -1.85 9.23E-05 4.78E-02 

297.19393 18.697 -2.31 -2.30 6.15E-03 2.15E-02 

301.12715 1.318 -1.30 -1.43 1.23E-02 1.57E-02 

301.12718 1.771 -3.33 -1.13 2.44E-03 2.94E-03 

324.17987 11.899 -7.21 -2.59 6.40E-06 1.30E-03 

325.18873 16.306 -4.06 -1.15 5.19E-07 4.46E-02 

330.11748 1.154 -1.30 -1.15 8.03E-04 3.48E-03 

331.06787 1.423 -3.83 -4.41 3.97E-03 8.79E-03 

343.17429 13.260 -2.91 -1.29 2.61E-03 7.21E-03 

344.07956 18.793 -1.21 -1.51 3.99E-03 1.05E-03 

347.06263 1.160 -5.43 -3.59 1.98E-04 1.99E-03 

361.31891 20.303 -7.44 -1.09 1.65E-05 4.79E-02 

362.15090 12.765 -2.31 -1.15 3.45E-03 9.42E-03 

363.05745 1.201 -2.10 -2.45 1.45E-02 5.23E-03 

363.05749 1.539 -2.47 -2.55 2.43E-03 3.93E-03 

374.17233 15.957 -5.01 -1.54 3.02E-05 9.40E-03 

377.35012 23.394 -1.17 -1.43 3.07E-02 9.74E-03 

383.26684 18.042 -2.67 -1.56 3.86E-03 4.92E-02 

384.18942 1.861 -5.29 -1.48 1.83E-05 1.10E-04 

400.10655 12.780 -5.28 -2.46 1.02E-05 1.32E-03 

402.29149 22.011 -3.07 -1.83 3.55E-02 8.62E-03 

409.20930 15.959 -5.78 -1.55 8.63E-06 2.75E-03 

409.84062 0.846 -2.90 -2.29 9.37E-05 6.72E-03 

414.12236 13.887 -5.12 -3.02 3.17E-05 7.86E-04 

422.19370 15.731 -8.38 -1.26 1.90E-06 7.66E-03 

434.13253 21.400 -1.26 -1.81 1.19E-02 4.19E-02 

436.18077 1.044 -2.60 -1.91 1.27E-04 1.77E-03 

439.22054 15.722 -12.37 -1.21 1.53E-07 1.12E-02 

444.22551 15.979 -7.87 -1.34 3.32E-06 2.04E-03 

457.25758 14.152 -9.28 -1.60 2.77E-07 2.74E-03 

458.24107 16.480 -3.02 -1.66 8.24E-03 1.80E-02 

459.27311 15.826 -6.91 -1.26 2.29E-06 1.73E-02 

466.20760 15.980 -8.53 -1.32 2.03E-06 9.55E-04 

477.82814 0.847 -3.06 -2.52 4.74E-05 5.79E-03 

487.23176 18.208 -6.26 -1.48 4.29E-05 6.32E-03 

487.26795 14.316 -5.60 -1.50 4.11E-06 5.49E-03 

489.28332 15.982 -8.74 -1.53 3.67E-06 1.98E-03 

491.26225 19.414 -3.55 -1.25 5.09E-03 3.86E-02 

492.13306 14.741 -4.65 -1.88 6.35E-04 4.41E-02 

514.32266 11.735 -1.53 -2.29 7.79E-03 7.65E-05 

531.27977 11.920 -1.99 -1.94 2.01E-02 4.72E-02 

534.19309 2.412 -4.31 -2.25 2.32E-04 4.07E-05 

544.27427 1.565 -2.25 -1.62 8.25E-04 6.79E-03 
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568.28570 12.585 -6.25 -2.54 3.07E-06 3.09E-03 

569.44962 23.286 -2.16 -1.86 4.00E-02 4.74E-03 

576.28608 2.273 -4.19 -4.05 1.95E-02 1.93E-02 

599.46011 23.308 -1.36 -1.61 2.33E-02 1.31E-03 

613.47567 23.290 -1.65 -1.53 4.50E-03 8.56E-03 

657.50174 23.285 -2.06 -1.95 1.54E-02 3.50E-03 

671.39622 13.210 -1.12 -1.24 1.60E-02 2.98E-03 

701.52782 23.226 -2.23 -3.03 2.77E-02 3.24E-03 

729.15936 12.708 -7.37 -1.79 6.83E-07 4.80E-02 

743.17508 13.423 -5.52 -2.43 3.36E-05 2.83E-02 

787.41922 13.610 -1.37 -1.13 1.44E-04 5.67E-03 

789.33925 8.794 -6.24 -1.53 9.69E-04 1.76E-02 

852.42355 13.088 -3.38 -1.65 4.87E-04 1.89E-02 

887.48635 14.818 -3.99 -2.87 6.11E-05 3.43E-03 

900.49216 13.681 -2.09 -2.19 1.05E-02 1.18E-02 

906.44739 12.381 -1.74 -1.13 1.04E-03 8.45E-03 

910.43236 15.981 -4.70 -2.88 1.32E-03 6.83E-04 

911.47117 12.548 -5.18 -3.93 3.81E-05 2.81E-02 

939.50251 14.865 -1.94 -1.37 9.25E-04 1.63E-02 

1028.50089 15.029 -2.79 -2.87 1.79E-02 1.49E-02 

1040.59812 14.478 -3.96 -3.63 1.02E-03 1.15E-03 

1173.64252 15.720 -3.15 -4.24 4.19E-02 1.40E-03 

1193.34153 9.749 -10.04 -1.29 1.81E-07 1.99E-02 
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Chapter 8 

 

 
Urinary Biomarker Investigation of Lower Urinary 

Tract Symptoms with Mass Spectrometry 

 

 

 
 

 
Written in collaboration with the Wisconsin Initiative for Science Literacy to communicate this thesis 

research to non-specialists.  

 

Key Words: lower urinary tract symptoms (LUST), mass spectrometry, urine, metabolite, protein, 

biomarker, DiLeu labeling, Hormone, Inflammation. 
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First of all, I would like to thank the Wisconsin Initiative for Science Literacy (WISL) at the 

University of Wisconsin-Madison for sponsoring and supporting the creation of this chapter. I also 

really appreciate the guidance and editorial support provided by the science communications 

program of WISL. It is a great opportunity for me and many others to explain our research and 

share science enthusiasm with the non-scientific audience. Hopefully, this chapter could help them 

to understand the biomarker discovery process and inspire the next generation scientists. 

 

8.1 What is LUST? 

Lower urinary tract symptoms (LUTS) is a disease that the patients either have trouble urinating 

or they are urinating too often (1). It is prevalent in men and affects 50% to 90% of men aged 50 

years or older (2). Recent studies have shown that many reasons may cause LUTS, and age-related 

hormone change and prostatic inflammation are two plausible etiologies (3, 4). While patients may 

suffer a variety of etiologic mechanisms, the current subjective symptom score diagnosis method 

usually could not distinguish the pathogenic factors from different individuals. As a result, patients 

are treated empirically with either medication or surgery, which can be ineffective and bothersome. 

Therefore, objective biomarkers associated with specific etiologic mechanisms are greatly needed 

to refine the diagnostic approach and provide personalized treatment.  

 

8.2 What is Biomarker? 

Biomarkers can be specific cells, molecules, or genes, gene products, enzymes, or hormones. 

These large or small molecules present in biological systems and involved in the diseased 

development, which could be used as an indicator of diseased processes are defined as a biomarker 

(5). Although the term biomarker is relatively new, biomarkers have been used in pre-clinical 
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research and clinical diagnosis for a considerable time. For example, sweat chloride may be used 

as a diagnostic biomarker to confirm cystic fibrosis (6). Since age-related hormone change and 

prostatic inflammation are two etiologies of LUTS, it is plausible that urinary metabolite and 

protein biomarkers could be identified and used to diagnose hormone-induced LUTS and 

inflammation-induced LUTS. Therefore, our research goal is to investigate the urinary metabolite 

and protein biomarkers, which could be used as a non-invasive diagnose method of LUST to 

achieve individual treatment.  

8.3 What method did I use? 

8.31 Mouse Model 

To investigate the LUTS biomarkers according to the etiology and to further achieve the individual 

treatment, the first step is to group the patients according to the etiology. However, the complex 

and variegated composition of the LUTS patient population makes it challenging to validate the 

contributions of different mechanisms. Since many reasons could lead to LUTS, both the patients 

and doctors could not tell how the LUTS were caused, do not even mention to group them. But a 

mouse model could be used to solve a problem like this. Since in the lab condition, it is much 

easier to control the etiology. We have successfully built two LUTS models with mice, one is 

primarily caused by the hormone changed, and the other one is caused by the prostatic 

inflammation. Both have been proved to be justified mouse model for LUTS study (7, 8). 

 

The hormone change model is to mimic the etiology of LUTS, which is causing by the aging 

change. As we move through the stages of life, our hormone levels fluctuate. For example, a 

woman’s menopause is caused by the decrease releasing of estrogen and progesterone. In our case, 

https://www.ncbi.nlm.nih.gov/books/n/biomarkers/glossary/def-item/glossary.diagnostic-biomarker/
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to mimic the hormone changing in men caused by the age, testosterone (25 mg) and estradiol (2.5 

mg + 22.5 mg cholesterol binder) were slow releases in adult male C57/BL6 mice. The generate 

marked increases in bladder volume, bladder mass, and prostate mass are the same symptoms as 

the LUST patients (8). The mouse urine was collected before hormone treatment and 2 weeks, 4 

weeks, and 8 weeks after hormone treatment. Then the mouse urine samples were store in -80 

refrigerator before the analysis. The low temperature could avoid the degrading of some unstable 

metabolites. 

 

For the prostatic inflammation mouse model, Ecoli, a kind of bacterial, was used to treat the 

Bladder of C57BL/6J mice to cause the inflammation in the prostate, which mimics the LUTS, 

which cause by the inflammation (7). The control group was treated with phosphate-buffered 

saline (PBS), which could not cause any inflammation. Urine samples were collected from both 

prostatic inflammation group and control group mice seven days after treatment and store in -80 

until analysis.   

 

8.32 Mass Spectrometry (MS) 

After we get the mouse models and urine samples, the next step is looking for an unbiased tool to 

identify and quantify all the urinary metabolites and proteins to find the candidate biomarker. Mass 

spectrometry (MS) is a sensitive tool like this, which can detect a wide variety of metabolites and 

proteins present in a complex system (9). Fig. 1A shows the general set-up of a tandem mass 

spectrometer. After injecting a sample into the ion source, some molecules like metabolites and 

proteins will be charged and separated in MS1 according to their mass to charge ratio (m/z), which 
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called precursor ion. Since there may be two molecules with the same mass and charge, such as a 

peptide sequence with ADFG, although its molecule weight and charge state are the same with 

GFAD, they are different peptides. Therefore, to further confirm the structure of the molecule, the 

precursor ion will be broken into pieces (product ion) and separated again in MS2, then detected 

in the monitors. If the pieces we detected are ADF and DFG, then we could drive the structure of 

this molecule is ADFG instead of GFAD, just like solve a puzzle. After the separation in MS1 and 

MS2, the molecule could be identified confidently and the intensity of the detected report ions will 

be further used as the quantification. 

 

8.33 12-plex DiLeu tags 

Our 12-plex DiLeu tags are designed base on the theory of tandem MS, which has been proved to 

be high throughput and accurate quantification method for proteome study (10). In this thesis, it is 

the first time applied to the identification and quantification of the metabolite. Fig. 1B shows the 

basic structure of DiLeu tags, and it consists of three parts, amine-reactive group (A), balance 

group (B), and reporter group (C). Part A, which is the same in all the twelve tags, could be reacted 

with the amine group in the peptides or the metabolites. For part B and part C, heavy elements and 

light elements were both involved. Such as the two isomers of carbon 12C and 13C, 12C is the light 

element, and 13C is the heavy element. By adjusting the distribution of heavy and light elements, 

although the molecule weight of part C is different in all the twelves DiLeu tags, the total molecule 

weight of each DiLeu tags is the same because the complemental from the balance group. For 

example, tag 115 (part A=same, part B=31, part C=115) and tag 118 (part A=same, part B=28, 

part C=118) have the same molecule weight but different reporter group (C). 
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12-plex DiLeu tags were used to label twelve urine samples (Labeling map, Fig. 3D) and mixed 

the labeling samples in the same ratio. Fig. 1C shows an example of how DiLeu tags reacted with 

metabolites. Then the mixture was injected into the MS. During the first separation in MS1, the 

same metabolite from twelve samples would stay together since they all have the sample mass and 

charge state. After they came out from the MS1, their structure would be broken into pieces, and 

part B and part C were also broken apart. Part C, which could represent the metabolite from each 

sample, could be detected, and their intensity could be used for the measurement of the metabolite 

concentration in each sample. 

 

8.34 Metandem 

Except for the analysis instrument, the software is also import during the data analysis. To date, 

few metabolomics software tools can process stable isotope label-based metabolomics data, 

particularly when using reporter ions produced by MS/MS for quantification. Therefore, our lab 

developed a novel online software tool for isobaric labeling-based metabolomics, named 

Metandem (11), which integrates metabolite quantification, identification, and statistical analysis 

in the same software package and is freely available at http://metandem.com/web/. Metandem is 

also the first omics data analysis software to provide straightforward, online parameter 

optimization functionality for customization to a particular dataset (Fig. 2). 

 

8.4 What have I found? 

8.41 Hormone-induced mouse model 

http://metandem.com/web/
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12-plex DiLeu isobaric labeling with Metandem data processing presents an accessible and 

efficient workflow for amine-containing metabolome study in biological specimens. Twelve-plex 

DiLeu isobaric labeling allowed multiplexed metabolite identification and quantification in mouse 

urine samples while also reducing instrumentation time demand, decreasing run-to-run variation, 

and also improving quantification accuracy. The same labeled metabolite from 12 urine samples 

showed a single peak in the MS1 spectrum with a mass shift of 145.1280 Da (Fig. 3A). For this 

peak, twelve distinct reporter ion peaks are present in the MS2 low m/z region (Fig. 3B). The 

intensity of each reporter ion in MS2 spectra reflects the labeled metabolites’ abundance in each 

sample and, thus, can be compared for relative quantification (Fig. 3C).  

 

A total of 59 amine-containing metabolites were identified and quantified, 9 of which were 

changed significantly by the hormone treatment Fig. 4. Metabolic pathway analysis is based on 

the association between identified metabolites and their related biological processes. Herein, all 

identified metabolites were input into the MetaboAnalyte 4.0 software for metabolic pathway 

analysis. Three potentially perturbed metabolic pathways were identified as Table. 1: (1) the 

arginine and proline metabolism pathway; (2) the aminoacyl-tRNA biosynthesis pathway; and (3) 

the tryptophan metabolism pathway. Among them, the arginine and proline metabolism pathway 

was significantly dysregulated both in this model and in a prior analysis of LUTS patient samples 

(12). Proline and citrulline were significantly changed in both and present as attractive candidate 

biomarkers as Fig. 8.  

 

8.42 Prostatic-inflammation mouse model 
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In the hormone-induced mouse model, we investigated the influence of hormone changed on the 

urinary metabolites. In the prostatic-inflammation mouse model, we went a step further. We used 

the 3K molecular cut-off filter (MWCO) to separate the urine samples into metabolite fraction and 

protein fraction and investigated both the urinary protein and metabolite-based biomarkers. 

Notably, the investigation of isobaric dimethylated leucine (DiLeu) labeling on metabolites 

allowed metabolomics and proteomics analysis on the same liquid chromatography (LC)-MS 

platform. In total, 143 amine-containing metabolites and 1058 urinary proteins were identified and 

quantified; among them, 14 metabolites (Fig. 5) and 168 proteins (Fig. 6) were significantly 

changed by prostatic inflammation. Five metabolic pathways and four inflammation-related 

biological processes (Fig. 7) were potentially disrupted. By comparing our findings with urinary 

biomarkers identified in a mouse model of genetic-induced prostate inflammation (13, 14) and 

with those previously found to be associated with LUTS in older men (12, 15), we identified 

creatine, haptoglobin, immunoglobulin kappa constant and polymeric Ig receptor as conserved 

biomarkers for prostatic inflammation associated with LUTS (Fig. 8).  The combined 

metabolomics and proteomics analyses provided an informative method for the study of molecular 

disease mechanisms, which contributed to biomarker discovery and patient stratification, 

according to etiologies.  

 

8.5 What is the significance of my research? 

For the method significance part, twelve-plex DiLeu isobaric labeling is an attractive high 

throughput strategy for identification and quantification of amine-containing metabolites, and 

Metandem is a useful tool for large-scale stable isotope labeling-based metabolomics data analysis. 

Paired together, these tools offer a powerful and accessible method for relative quantification of 
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amine-containing metabolites in disease biomarker research. Besides, the investigation of DiLeu 

labeling on metabolites allowed metabolomics and proteomics analysis on the same LC-MS 

platform. 

 

From the biological significance part, the arginine and proline metabolism pathway was the critical 

pathway disrupted during the LUTS development, and candidate biomarkers involved in this 

pathway were found from both hormone-induced mice model and prostatic-inflammation mouse 

model. Especially, different biomarkers were detected in two mouse models (Fig. 8), which could 

be further used as the LUTS patient stratification and individual treatment. Furthermore, urine 

samples from voluntary voiding, meaning a non-invasive method for sample collection, have been 

proved to be available for the future LUTS diagnosis. Future studies will focus on clinical 

validation of the metabolite and protein biomarkers found in this thesis with a separate large cohort 

of patient samples. 
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TABLES AND FIGURES 

 

Table 1. Potentially disrupted metabolic pathways via MetaboAnalyte 4.0 and KEGG, 

metabolites with red bold are significantly changed metabolites (p-value is from Fisher’s 

exact test). 

 

Metabolic 

Pathway  KEGG ID Matched Metabolites p-value 

Arginine and 

proline metabolism Map00330 

citrulline, N-acetylputrescine, 

proline, glutamic acid, creatine, 

GABA, 4-aminobutyraldehyde 4.90E-05 

Aminoacyl-tRNA 

biosynthesis Map00970 

leucine, proline, cysteine, 

glycine, alanine, glutamic acid 4.88E-03 

Tryptophan 

metabolism Map00380 

2-aminobenzoic acid, 3-

hydroxyanthranilic acid, 5-

hydroxyindoleacetic acid 6.81E-02 
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Figure 1. A: General set-up of a tandem mass spectrometer. B: Basic structure of DiLeu tags. C: 

How DiLeu tags reacted with metabolites  
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Figure 2. Metandem parameter optimization results: A: Optimizing reporter ion mass 

tolerance (0.5 mDa); B: Optimizing batch processing retention time tolerance (5 ppm); C: 

Optimizing batch processing retention time tolerance (0.5 min).  
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Figure 3. Details of 12-plex DiLeu labeling. A: Precursor ion of DiLeu-labeled citrulline; B: 

low m/z region showing DiLeu reporter channels at high resolution (top) and zoom in spectra 

(bottom); C: citrulline changing curve from different time points of three biology replicates. D: 

sample labeling map (randomized) 
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Figure 4. Quantification curves of 9 significantly changed urine metabolites (n = 3; RM-

ANOVA, p < 0.05). 
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Figure 5. Significantly changed metabolites. 14 metabolites were identified as statistically 

significant biomarker candidates as shown here by a fold change (bacterial-induced prostatic 

inflammation mice with respect to control mice). 9 metabolites were up-regulated (red bars) and 

5 metabolites were down-regulated (blue bars).  
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Figure 6. Volcano plot of quantified urinary proteins. The volcano plot of quantified urinary 

proteins reveals that 168 such proteins were significantly changed in bacterial-induced prostatic 

inflammation mice compared to control samples. Proteins with fold changes > 1.5 and p-values < 

0.05 are shown (red spots: up-regulated; blue spots: down-regulated). Significant proteins were 

further characterized through literature searches and GO-term enrichment analysis. 
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Figure 7. Gene ontology analysis of significantly changed proteins. A: Cell component (top 

four categories) of significantly changed proteins. B: Biology processes (inflammation-related) 

of significantly changed proteins. 
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Figure 8. Result comparison with the previous study. A: Our bacterial-induced prostatic 

inflammation mouse model. B: Genetically induced prostatic inflammation mouse model. C: 

LUTS patients. D: Hormone induced BOO mouse model. 
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Chapter 9 

 

Conclusions and Future Directions 
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Conclusions 

This dissertation advances the field of mass spectrometry (MS)-based multi-omics through the 

development of stable isotope labeling method, decision tree method, and multi-omics integration 

method. The analytical methodologies are mainly focused on the use of nanoflow RPLC-ESI-MS 

platform. These methods have been successfully applied to human disease studies via clinical 

specimens collected from human patients and animal models.  

 

Chapters 2 demonstrates that twelve-plex N, N-dimethyl leucine (DiLeu) isobaric labeling is an 

attractive high throughput strategy for the identification and quantification of amine-containing 

metabolites. Metandem is a useful tool for large-scale stable isotope labeling-based metabolomics 

data analysis. Paired together, these tools offer a powerful and accessible method for relative 

quantification of amine-containing metabolites in disease biomarker research. With the isobaric 

labeling method and Metandem software (1) for the data analysis, we were able to identify and 

quantify 59 amine-containing metabolites in the urine samples of hormone-induced urinary 

obstruction mice model and relate them to metabolic pathway analysis to explore their role in the 

lower urinary tract symptoms (LUTS)  development. LUTS patients (2) and this mouse model 

shared common pathways that are dysregulated compared to control groups, for instance, the 

arginine and proline metabolism pathway. Proline presents an especially attractive candidate 

biomarker for hormone-induced LUTS, as it was significantly increased in both human LUTS and 

this mouse model.  

 

Chapters 3 demonstrated that urine metabolomics and proteomics provide an informative and 

non-invasive method for candidate biomarker determination and etiologies classification of LUTS 



214 
 

induced by inflammation. Also, the investigation of DiLeu labeling on metabolites allowed 

metabolomics and proteomics analysis on the same LC-MS platform. In total, 143 amine-

containing metabolites and 1058 urinary proteins were identified and quantified; among them, 14 

metabolites and 168 proteins were significantly changed by prostatic inflammation. Five metabolic 

pathways and four inflammation-related biological processes were potentially disrupted. By 

comparing our findings with urinary biomarkers identified in a mouse model of genetic-induced 

prostate inflammation (3, 4) and with those previously found to be associated with LUTS in older 

men (5, 6), we identified creatine, haptoglobin, immunoglobulin kappa constant and polymeric Ig 

receptor as conserved biomarkers for prostatic inflammation associated with LUTS.  These data 

suggest that these biomarkers could be used to identify men in which prostate inflammation is 

present and contributing to LUTS.  

 

A sensitive MS method is developed for comprehensive neuropeptide characterization in Chapter 

4, and every step in the workflow, from sampling, instrumentation analysis, to data analysis, were 

optimized. From the comparison of the three most commonly used extraction methods, a high 

acidified methanol method shows the highest extraction efficiency and lowest methylation 

percentage, which was further applied to the human pituitary tumor neuropeptide extraction. To 

improve the instrumentation analysis, a data-dependent decision tree scheme was established with 

Higher-energy C-trap dissociation (HCD) as the primary fragmentation method at all charge states, 

with Electron-transferred Higher-Energy Collision Dissociation (EThcD) complemented at charge 

state 2 and Electron transfer dissociation (ETD) at charge states 3-6. Furthermore, both mature 

neuropeptide database and preprohormone database were applied to the database searching.  After 

applying this novel MS approach to 4 human pituitary tumor samples, in total, 119 neuropeptides 
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were detected, and 39 were shared among four samples. Known neuropeptides and proteins, such 

as Neurosecretory protein VGF (regulate cell-cell interactions), Secretogranin-1, and 

Secretogranin-2 (neuroendocrine secretory granule protein), ProSAAS (control of the 

neuroendocrine secretory pathway) were all identified. Furthermore, seven novel sulfation 

modification sites and four novel neuropeptides have been identified from human pituitary tumor 

samples. These results demonstrated the efficiency of this novel approach.  

 
 

Chapters 5 focuses on the subcommissural organ (SCO) neuronal function exploration. A total of 

12 neuropeptides were detected in the SCO, with nine of them exhibiting 100% sequence coverage.  

Most of the identified neuropeptides were secreted neuropeptides and peptide manserin, which 

could regulate the neuroendocrine system, was identified in mice for the first time. Also, to identify 

more PTM modified neuropeptides in the SCO, an advanced setting that searched raw data against 

313 built-in modifications was used. Besides the common peptide PTMs, such as Acetylation (N-

terminal), Amidation, and Oxidation (M), rare PTMs, such as citrullination, and Hexose (NSY) 

were also identified with full Ascore (PTM confidence score). Since SCO could secrete 

glycoproteins into cerebrospinal fluid (CSF), glyco-neuropeptides were explored by searching raw 

data against both 309 mammalian N-Glycan and 78 mammalian O-glycan modification lists. 

Eleven O-glycosylated peptides were found in thymosin beta 10, thymosin beta 4, and Acyl-CoA-

binding proteins. Furthermore, the preprohormone database that included all the mouse proteins 

with signal peptide sequences was also used for the novel neuropeptide exploration. While 

comparing with the control sample, a candidate novel neuropeptide, 

DVGSYQEKVDVVLGPIQLQSPSKE, was only found in the SCO. It has been identified as a 

bioactive peptide in rat plasma after hemorrhagic shock.  
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The mini-review in Chapters 6 summarizes the significant progress which has been made over 

the past decades in recognizing the importance of neuropeptides in the bidirectional 

communication between the brain and the gut and their influence on host immunity and stress (7). 

Neuropeptides such as CGRP are involved in host monitoring of the gut environment and have an 

essential function that connects nervous and immune systems during infection. Neuropeptides such 

as PACAP could directly act on the bacteria membrane to kill the bacteria. The effective defense 

and low bacterial resistance probability make the antimicrobial neuropeptides an attractive new 

class of antibiotics. Key findings show that stress influences the composition of the gut microbiota 

and that bidirectional communication between microbiota and the CNS influences stress reactivity 

and responses. Neuropeptide CRH acts as a common mediator during this dynamic gut-brain axis 

signaling process. The positive effects of PNX on anxiety and cognitive function have the potential 

to be impactful for the development of therapeutic strategies to treat these disorders. 

 

In Chapter 7, I integrated MS-based multi-omics to investigate how the host immune system is 

shaped by the human microbiome during infection. The results from the metabolomics, 

peptidomics, and proteomics studies indicated that the 92 microbial strains in the human 

microbiome enhanced the host immune system and could help the host defense during infection. 

Also, the neuropeptide of the cathelin-related antimicrobial peptide could be a potential novel 

antibiotic for the treatment of Salmonella infection. Furthermore, the neuropeptides found in the 

gut facilitated further understanding of the bidirectional communication between gut microbiota, 

brain, and immune system. 
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Chapter 8 describes the two studies of LUTS biomarker discovery for the general public. Overall, 

this work improved techniques for both qualitative and quantitative profiling of metabolites, 

peptides, and proteins, which can be applied to answer some challenging questions in analytical 

chemistry, pharmaceutical sciences, and clinical settings. 

 

Future Directions 

To utilize the biomarkers identified in Chapter 2 and Chapter 3  to stratify patients with LUTS, 

which are induced with aging-related hormone change and prostatic inflammation, it will first be 

necessary to stratify patients by mechanism or by clinical features. For example, urine could be 

obtained from patients prior to prostate surgery, and the proteomic and metabolomic analysis 

performed on those patients in whom substantial inflammation is present in the removed prostate 

tissue. Alternatively, an analysis could be performed on patients who exhibit much greater 

irritative than obstructive symptoms. Once a correlation is established with a subsegment of the 

LUTS patients, then the biomarkers might be used as a tool for stratification and individualized 

treatment.  

 

The optimized workflow developed in Chapter 4 could be further used for neuropeptide 

identification and quantification. And the novel neuropeptides identified in both Chapters 4 and 

5 could be evaluated, and their neuronal function exploration could be conducted in the follow-up 

studies. Specifically, the novel sulfated sites found in neuropetides of Secretograini-1 and in the 

human pituitary tumor could be further investigated. There might be a possibility that the sulfated 

peptides play a vital role during pituitary tumor development. 
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We are just beginning to understand the meaning of gut-to-brain microbiome interactions and what 

role neuropeptides ultimately play for host homeostasis, including immunity and stress. Although 

Chapter 6 reviewed their implications with some highlighted neuropeptides, some of the precise 

mechanisms and overall effects are not fully understood. Further progress in understanding the 

various processes involved in neuropeptide modulation of the interactions between the gut 

microbiome and the central and peripheral nervous systems is essential to develop effective 

treatments for immune and stress disorders with neurogenic components. Because of studies such 

as those highlighted in Chapter 7, our understanding of the interactions between the brain and gut 

through the gut-brain axis continues to expand, and novel therapies will be developed to treat gut 

microbiome-mediated immune and stress-related diseases. Neuropeptides, their receptors, and the 

proteases that degrade the same neuropeptides may become the special target of new 

pharmacological approaches. 

 

Overall, this dissertation has significant impacts on both analytical method development and 

disease applications. The successful disease applications offer new insights and promising 

molecular targets for LUTS, pituitary tumor and gut-brain axis. It is anticipated that the analytical 

methodologies and disease applications presented in this dissertation can be potentially applied to 

the pharmaceutical industry and clinical settings. 
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Abstract  

 Mass spectrometry-based stable isotope labeling is a key technology for the analysis of 

biomolecules with the advantages of multiplexing capability and accurate quantification. Isobaric 

labeling has been widely used for quantitative proteomics and peptidomics and was successfully 

adopted to metabolomics analysis in the past decade. Despite the rapid advancement of 

methodology and data analysis in the metabolomics field, barely any current metabolomics 

software is able to process stable isotope labeling-based metabolomics data, particularly for 

isobaric labeling using reporter ions produced by MS/MS for quantification. The well-

established proteomics software tools cannot be readily adapted for metabolite identification and 

quantification. Therefore, we developed Metandem, a novel online software tool for isobaric 

labeling-based metabolomics, integrating metabolite quantification, identification, and statistical 

analysis, freely available at http://metandem.com/web/. Metandem is also the first omics data 

analysis software that provides straightforward online parameter optimization function for 

custom datasets. Systematic evaluation of the Metandem tool was demonstrated by duplex, 4-

plex, 10-plex, and 12-plex custom isobaric N,N-Dimethyl Leucine (DiLeu) labeling and the 

applications to various biological samples.  
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Introduction 

Metabolomics is an essential component of systems biology and has embraced rapid 

advancements over the past decades. The development of mass spectrometry (MS)-based 

techniques allows metabolomics to be carried out with sophisticated methodologies, as well as 

wide applications to biological and clinical studies 1. MS-based metabolomics generates 

multidimensional datasets where thousands of features can be measured in a single instrument 

run, pressing significant challenges on data processing and analysis. Particularly for large-scale 

metabolomics studies, state-of-the-art analytical techniques must be paired up with proper 

bioinformatics software for automated and efficient data analysis 2.  

Quantitative and qualitative metabolite analyses are typically performed by label-free or 

stable isotope labeling approaches. Stable isotope labeling, in particular isobaric labeling, has 

gained substantial popularity in proteomic and peptidomic studies and has also been successfully 

adopted to quantify small molecules in recent years 3-7. Biomolecules derivatized by multiplexed 

isobaric labels have nearly identical mass shift of precursor ions, which can be fragmented into a 

panel of MS/MS reporter ions for quantification, using commercial isobaric tags TMT 8,9 and 

iTRAQ 10,11, or custom synthesized reagents like DiLeu 12-14, DiAla 15, DiVal 15, and DiART 16. 

Besides amine-reactive isobaric labels, aminoxy TMT 17 was also developed to target molecules 

with carbonyl group such as carbohydrates and steroids. Stable isotope labeling provides 

advantages of multiplexing capability and accurate quantification, but often requires tailored 

bioinformatics tools for data analysis. A wide range of proteomics software have been well 

established for processing stable-isotope labeling-based datasets. Yet proteomics software 

platforms are specialized in protein/peptide analysis and cannot be easily adapted for small 

molecule analysis because of their distinct isotope distribution and identification algorithms. In 



227 

 

 
 

regards of metabolomics software, numerous packages have been developed for label-free 

metabolomics studies, such as XCMS 18,19, MZmine 20, MAVEN 21, SIEVE (Thermo), and 

Compound Discoverer (Thermo). However, barely any current metabolomics software packages 

are able to process stable isotope labeling-based metabolomics data, particularly for MS/MS 

generated reporter ion-based isobaric labeling. Scientists have to write their own program or 

script in order to process these datasets 9,11,16, which severely hampers the progress and 

applicability of isobaric labeling-based metabolomics.  

To address this limitation and critical technological gap, we developed Metandem, a 

novel online software platform for the data analysis of isobaric labeling-based metabolomics. 

Metandem is freely available at http://metandem.com/web/ and very easy to use through graphic 

interface design. It provides a comprehensive data analysis pipeline integrating feature extraction, 

metabolite quantification, metabolite identification, batch processing of multiple data files, 

parameter optimization, median normalization, and statistical analysis (Figure 1). All graphs are 

interactive, which can be visualized/edited online or downloaded for offline analysis. The 

highlighted function of parameter optimization in Metandem allows straightforward selection of 

the best set of parameters based on different custom dataset. We evaluated the Metandem 

software tool using duplex, 4-plex, 10-plex, and 12-plex isobaric DiLeu labeling on different LC-

MS and MALDI-MS platforms, and applied the complete isobaric labeling metabolomics 

workflow to various biological samples.  

 

Experimental  

Metabolite sample preparation 
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 Metabolite standard mixtures and metabolite fractions from various biological samples 

were prepared in this study. Commercially-available pancreatic cancer cells (PANC1) and breast 

cancer cells (MCF7) were routinely cultured in the lab, and cells were quenched with methanol. 

Cellular metabolites were extracted with a methanol/chloroform/water extraction method. 

Metabolite fractions from the urine samples were obtained using 3 kDa molecular weight cut-off 

ultracentrifugation filters 22. Metabolite standard mixtures were prepared by mixing individual 

stock solutions of 12 representative metabolites including histidine, valine, tyrosine, leucine, 

lysine, phenylalanine, tryptophan, alanine, serotonin, dopamine, γ-aminobutyric acid, and 

norepinephrine. 

Multiplexed isobaric DiLeu reagents were custom synthesized following the procedure 

described previously with steps of reductive dimethylation of leucine and 18O exchange 13. Dried 

DiLeu reagents were stored in a desiccator at 4 °C and activated to the triazine ester form right 

before the labeling reaction with amine groups. A 20-fold molar excess of activated DiLeu was 

reacted with metabolite samples at a 70% of organic: aqueous ratio. Each plex of labeled sample 

was combined, dried, and purified by SCX Ziptip as described previously 14.  

Mass spectrometry analysis 

 Multiple MS instrument platforms were used in this study to demonstrate the 

applicability of the Metandem tool, including a Dionex UltiMate 3000 nanoLC system coupled 

with a FusionTM LumosTM Orbitrap MS, a Dionex nanoLC coupled with a Q ExactiveTM HF 

Orbitrap MS, a Dionex UHPLC coupled with a Q ExactiveTM Orbitrap MS, and a MALDI LTQ 

Orbitrap MS. LC-MS analyses were conducted with a C18 column under a 40 min LC gradient 

separation and top 20 data-dependent acquisition. Mobile phase A was 0.1% formic acid in H2O, 

and mobile phase B was 0.1% formic acid in ACN. Flow rate was 0.3 μL/min. Full MS scans 
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were acquired from m/z 100 to 1000 at a resolution of 60 K, automatic gain control at 5 × 105, 

and maximum injection time of 100 ms. MS/MS scans were acquired at a resolution of 60 K, an 

isolation window of 1 m/z, and a lower mass limit of 110 m/z. Normalized collision energy for 

MS/MS fragmentation was 30% with higher-energy collisional dissociation (HCD).  

Data analysis using Metandem 

Data analysis was achieved using the Metandem software tool, which is freely available 

at http://metandem.com/web/. The web interface allows users to select the number of reporter 

ions, input accurate mass and purity of each reporter ion, and upload data sets. Thermo .raw data 

files were converted to .txt format using COMPASS 23 software suite. The complete reporter ion 

information of different isobaric DiLeu reagents used in this study is listed in Supplemental 

Table S1. Data analysis parameters for the demonstration data set were optimized using the 

parameter optimization graphs (POGs) and optimal settings were set as the following: reporter 

ion mass tolerance of 0.4 mDa, batch processing mass tolerance of 6 ppm, and batch processing 

retention tolerance of 0.5 min. Reporter ion intensities were extracted from the dataset for 

metabolite quantification and statistical analysis. Molecular weight of the detected compound 

can be calculated based on the charge and mass shift caused by labeling, which was then 

searched against Human Metabolome Database 24 for metabolite identification.  

 

Results and discussion 

Metandem functionality and web interface 

 Metandem has four main functions including quantification, metabolite identification, 

parameter optimization, and statistical analysis (Figure 1). Metabolite quantification is achieved 
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at the MS/MS level by extracting reporter ion intensities from the isobaric labeling experiment. 

Metabolite identification is conducted through accurate mass matching against the Human 

Metabolome Database (HMDB) 24. Since chemical derivatization can alter the fragmentation 

pattern of target molecules, MS/MS matching for ID confirmation needs to be performed 

manually instead of searching MS/MS databases. The data analysis pipeline of Metandem for 

isobaric labeling-based metabolomics can be summarized into five steps: 1) upload data; 2) 

define reporter ion information; 3) optimize parameters (optional); 4) submit job; and 5) generate 

output and interpret results. Metandem can process both individual data file and multiple data 

files as batch processing. The graphic interface of Metandem is shown in Figure 2. Metandem 

currently accepts .txt format for data upload. Available data conversion software tools include 

COMPASS 23 or ProteoWizard 25. After uploading the data files, reporter ion information must 

be defined based on the isobaric labeling experiment. Currently up to 20 multiplexing reporter 

ion channels can be selected for quantification. Reporter ion information of commercial isobaric 

tags are summarized in Supplemental Table S2, including TMT, aminoxyTMT, and iTRAQ. 

Metandem also provides the function of purity correction to account for the isotopic interference 

and impurities from synthetic isotope reagents 14,26. The purity of each label (default =1) can be 

input along with the accurate masses of reporter ions. In most cases, we recommend to select the 

option of only output data containing all reporter ions to ensure the best data quality (Figure 2). 

However, if some target molecules are known to be not present in some samples or with an 

extremely high fold change compared to other samples, this box can be unselected. 

 For most of the data analysis tools, software performance and quality of results are highly 

dependent on the set of parameters selected for data processing. Different datasets generated 

from diverse mass spectrometers may require unique parameter settings to ensure the best 
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performance. However, customization of parameters is often difficult and time-consuming. Some 

software packages provide recommended parameter settings or tailored settings for several types 

of instrument platforms, but rarely for specific custom datasets. To our knowledge, Metandem is 

the first omics data analysis software that provides online parameter optimization function. The 

program runs automatically with a range of parameter values to calculate the corresponding 

number of total/shared features to generate the POG curve. By simply checking the box of 

Output Parameter Optimization Graphs and submitting the job, users can view the POGs and 

select the best parameters for their specific custom datasets.  

 There are three POGs in total to optimize the reporter ion mass tolerance, the batch 

processing mass tolerance, and the batch processing retention time tolerance. Figure 3 A, B and 

C illustrate the POGs using the demonstration dataset. Reporter ion mass tolerance (0.1 to 2 mDa) 

is used to find specific reporter ions based on the input reporter ion masses and extract their 

intensities from the dataset for quantification. As illustrated in Figure 3A, the total number of 

features containing report ions increases with a mass tolerance-dependent manner and then 

reaches a plateau, indicating an optimal reporter ion mass tolerance of 0.4 mDa for the demo 

dataset. When multiple data files are uploaded for analysis, quantitative information is generated 

for each file and merged among multiple files on the feature level. With the increase of batch 

processing mass tolerance (from 0.1 to 20 ppm), the total number of features dropped as more 

features can be merged together. The shared features among multiple input files rises and then 

reaches a plateau at a mass tolerance of 6 ppm for batch processing of demo dataset (Figure 3B). 

For batch processing retention time tolerance (0.1-2 min), if the tolerance is too high, distinctive 

features are incorrectly merged together, causing the decreased number of both total features and 

shared features. As shown in Figure 3C for the demo dataset, the optimal retention time tolerance 
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is 0.5 min. Depending on the size of the dataset, the parameter optimization step only takes from 

several seconds up to 10 min to be finished. Test run function is also available to provide a quick 

evaluation of a subset of data.  

 Results of data analysis are summarized into tables (.csv) and statistical graphs to be 

either downloaded or visualized/edited online by simply clicking on the output link through 

Plotly web platform. The output result tables include all individual file tables, merged table, and 

metabolite identification table. If median normalization is selected, another merged table after 

ratio normalization will be generated. Reporter ion ratios are calculated from intensities with tag 

#1 as the denominator. The screenshots of these results tables were provided in Supplemental 

Figure S1. Each individual result table consists precursor ion information and reporter ion 

intensities and ratios of all quantified features. For the merged table, average reporter ion ratios 

and relative standard deviations (RSD) of ratios are calculated across all input data files.  

 Interactive statistical graphs are generated with only the shared features among all 

merged files to ensure the best data quality. Output graphs include histogram distribution of 

precursor mass (Figure 3D), histogram distribution of retention time (Figure 3E), and box plots 

of reporter ion ratios before and after median normalization (Figure 3F).  

Evaluation and Applicability 

Metandem tool was systematically evaluated with isobaric labeling experiments on both 

LC-MS/MS and MALDI-MS platforms. Duplex, 4-plex, 10-plex, and 12-plex isobaric DiLeu 

labeling was applied to standard, biofluid, and cancer cell samples for metabolite quantification 

and identification.  
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Accuracy and dynamic range of quantification are evaluated by labeling the same 

samples with multiplexed reagents which were then mixed at known ratios and analyzed by LC-

MS/MS. Breast cancer cellular metabolites were labeled with 12-plex isobaric DiLeu, generating 

a total of 3510 merged features with three technical replicates. Pancreatic cancer cellular 

metabolites were labeled with duplex isobaric DiLeu with a total of 5456 merged features. 

Experimental average ratios can be plotted against theoretical ratios, where slope =1 represents 

perfect accuracy and R2=1 represents perfect consistency and precision. As shown in Figure 4, 

box plots of reporter ion ratios demonstrate within 12% of accuracies for both 12-plex and 

duplex DiLeu labeling. Slopes for 12-plex and duplex labeling are 0.9691 and 1.122, 

respectively; R2 for 12-plex and duplex labeling are 0.999 and 0.998, respectively, indicating 

excellent quantification accuracy and precision of the results generated by Metandem.  

In order to validate feature extraction and metabolite identification functions of 

Metandem, we first use a simple dataset of 4-plex DiLeu labeled twelve metabolite standards 

mixture analyzed by UPLC-MS/MS platform. All 12 targets were successfully identified and 

quantified using Metandem. For complex samples like mouse urine, MCF7 breast cancer cells 

and PANC1 pancreatic cancer cells, over 2000 features were quantified, and over 500 features 

can be identified as metabolites (Table 1). A major pitfall of isobaric labeling-based 

metabolomics is that only subsets of the metabolome can be derivatized depending on the 

structure of chemical tags. Therefore, the results of metabolite identification need to be examined 

to exclude unreasonable matches from the database, which on the other hand, enhances the 

confidence of identification by the presence of reporter ions. For instance, TMT, iTRAQ and 

DiLeu labeled metabolites are amine-containing small molecules, and aminoxyTMT targets 
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carbonyl-containing molecules such as carbohydrates and steroids. These additional functional 

group requirements further increase the confidence of metabolite identification. 

 

Conclusions 

 MS-based quantitative analysis has fostered the development of state-of-the-art 

methodologies in both proteomics and metabolomics studies. There is a pressing need for 

associated software and computational tools to process complex data automatically and 

efficiently. Metandem fills a critical gap in the metabolomics field, enabling isobaric labeling-

based dataset to be processed with simple graphic interface design. Besides basic functions of 

metabolite quantification and identification, Metandem also provides unique feature of online 

parameter optimization to ensure the best performance of such large-scale metabolomic 

experiments. It is fast, accurate, easy to use, and freely available at http://metandem.com/web/.  
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Figures and Tables 

 

 

 

 

 

Figure 1. Pipeline of mass spectrometry-based isobaric labeling metabolomics using Metandem 

tool. Data analysis capability of Metandem is illustrated and highlighted in red color, including 

metabolite quantification, identification, parameter optimization, and statistical visualization.  
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Figure 2. Screenshot of the Metandem web interface. Output results of three demo data file are 

illustrated on the right which can be downloaded as .csv files. Parameter optimization and 

statistical plots can also be edited/visualized online.  
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Figure 3. Parameter optimization graphs (POGs) and statistical analysis of Metandem using 

three demo files as input files. Parameter optimization graphs for reporter ion mass tolerance (A), 

batch processing mass tolerance (B), and batch processing retention time tolerance (C). 

Statistical graphs were generated using the shared features among all merged input files, 

including histogram of precursor mass range (D), histogram of retention time (E), and boxplots 

of reporter ion ratios (F). Box denotes 25th and 75th percentiles; line inside the box denotes the 

median; whisker denotes standard deviation. 
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Figure 4. Quantification accuracy of Metandem tool demonstrated by isobaric DiLeu labeling of 

cellular metabolites. Boxplots of reporter ion ratios illustrate isobaric 12-plex DiLeu labeling of 

MCF7 cellular metabolites (A) and isobaric duplex DiLeu labeling of PANC1 cellular 

metabolites (B). Box denotes 25th and 75th percentiles; line inside the box denotes the median; 

whisker denotes standard deviation. Excellent linearity and dynamic range of relative 

quantification was shown in (C) with slope and R2 close to 1.  
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Table 1. Results of isobaric labeling-based various biological samples using Metandem. 

Biological  

sample 
MS platform Isobaric labels 

Quantified 

featurea 

Identified 

feature 

Standards mix UPLC-MS/MS 4-plex DiLeu 20 12 

Mouse urine MALDI MS/MS 4-plex DiLeu 55 9 

Mouse urine nanoLC-MS/MS 10-plex DiLeu 2108 510 

MCF7 cells nanoLC-MS/MS 12-plex DiLeu 3510 849 

PANC1 cells nanoLC-MS/MS Duplex DiLeu 5456 861 

a Quantified features often contain labeling artifacts that cannot be identified as metabolites.  
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Supplemental Information 

 

 

Supplemental Figure S1. Screenshots of the example result tables. A is the quantification result 

of individual file consisting of precursor ion information and reporter ion intensities and ratios. B 

is the merge table. For each merged feature, average reporter ion ratios and relative standard 

deviations (RSD) of ratios are calculated across all input data files, followed by the original 

reporter ion intensities and ratios from each data file. C is the metabolite identification table with 

ID numbers from KEGG, PubChem and HMDB databases.  

 

 

A 

 

 

B 

 

 

 

C 
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Supplemental Table S1. Reporter ion information of the custom isobaric DiLeu reagents. 

 

a Reporter ion accurate masses are the experimental m/z values not theoretical m/z values.  

b 10-plex DiLeu experiments used the first 10 reagents of the 12-plex DiLeu. 

  

DiLeu reagent Mass shift 
Reporter ion 

accurate massa 
Purity 

Duplex  145.1302 115.1252 0.9569 

  118.1532 0.9631 

4-plex  145.1302 115.1252 0.9236 

  116.1407 0.9125 

  117.1377 0.9786 

  118.1532 0.9607 

12-plexb 145.1280 115.1252 0.9405 

  115.1315 0.9750 

  116.1286 1.0990 

  116.1349 0.9983 

  116.1407 0.9390 

  117.1318 0.9178 

  117.1377 1.0019 

  117.144 1.0270 

  118.1352 1.0156 

  118.1411 1.0575 

  118.1473 1.0462 

  118.1532 0.9823 
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Supplemental Table S2. Reporter ion information of commercial isobaric labels. 

 

a Mass shift is the average accurate mass shift of the complete set of tags. 

 

Commercial 

reagent 

Mass 

shifta 

Reporter 

ions 

(HCD) 

Reporter 

ions 

(ETD) 

 
Commercial 

reagent 

Mass 

shifta 

Reporter 

ions 

(HCD) 

TMT 10-plex 229.1629 126.1277 114.1277  iTRAQ  

4-plex 

144.1024 114.1112 

  127.1248 115.1248   115.1083 

  127.1311 114.1277    116.1116 

  128.1281 115.1248    117.1150 

  128.1344 116.1344  iTRAQ 

8-plex 

304.2022 113.1078 

  129.1315 117.1315   114.1112 

  129.1378 116.1344    115.1082 

  130.1348 117.1315    116.1116 

  130.1411 118.1411    117.1149 

  131.1382 119.1382    118.1120 

AminoxyTMT  

6-plex 

301.2317 126.1277 114.1277    119.1153 

 127.1248 115.1248    121.1220 

  128.1344 116.1344     

  129.1315 117.1315     

  130.1411 118.1411     

  131.1382 119.1382     

 1 
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Appendix III 

 

Absolute Quantification of Amine Metabolites in Human 

Cerebrospinal Fluid via MS1-centric Isotopic DiLeu (iDiLeu) 

Labeling 

 

 

 

 

Adapted from L. Hao, P. Wei, J. Wang, T. Greer, O. Okonkwo, L. Li. "Absolute Quantification 

of Amine Metabolites in Human Cerebrospinal Fluid via MS1-centric Isotopic N,N-Dimethyl-

Leucine (iDiLeu) Labeling" To be submitted. PW conducted labeling experiments and data 

analysis. 
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Abstract  

 Quantitative measurement of metabolites is essential to understanding biological and 

physiological processes. Absolute quantification by spiking isotopic internal standards and 

analyzing on mass spectrometry (MS) platform is a key method to determine the concentration of 

metabolites in biological samples. However, MS-based absolute quantification is often limited 

by the commercial availability and high costs of isotopic internal standards. Here, we evaluated 

the use of custom 5-plex N,N-dimethyl-leucine (iDiLeu) labeling technique for absolute 

quantification of amine metabolites. Metabolites labeled by iDiLeu demonstrated improved 

detection sensitivity and chromatographic separation compared to the routine label-free approach 

on a standard flow reverse phase LC-MS platform. Accurate and high-throughput quantification 

was achieved on the MS1 level with the ability to construct calibration curves in a single LC-MS 

run. The application to human CSF samples resulted in the identification of 87 amine metabolites 

which provided 40 additional amine metabolites to expand the current human CSF metabolome 

database. The concentrations of ten amine metabolites were determined in 17 human CSF 

samples ranging from 5.16 to 109.09 µM.  
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Introduction 

 In biological systems, small molecule metabolites are downstream end products of 

transcriptional and translational processes and can directly reflect enzymatic activities at the time 

of sampling 1. Mass spectrometry (MS) has become a central technology for metabolite analysis 

with advantages that offer sensitive, accurate, and reproducible measurements in a wide dynamic 

range, yielding important insights into biological processes 2. MS-based metabolite 

quantification can be categorized into relative and absolute quantifications. Relative 

quantification through label-free or chemical derivatization compares the relative abundances of 

metabolites in different biological states, and has been successfully applied to the discovery of 

candidate metabolic biomarkers of various human diseases 3-6. Absolute quantification 

determines the absolute concentration of metabolites, typically achieved with an isotopic 

analogue of the analyte (2H- or 13C- analogues) spiked into samples as an internal standard to 

construct a calibration curve 7,8. Absolute quantification is usually employed in targeted assays, 

which can be applied to verify candidate biomarkers generated from discovery studies 4,9,10.  

 However, absolute quantification of metabolites is always limited by the commercial 

availability and high costs of isotopic internal standards. Alternative approaches have been 

developed in recent years via chemical derivatization, particularly stable isotope labeling 11,12. 

Stable heavy isotopes can be differentially incorporated into analytes to allow simultaneous 

comparison of multiple samples and the construction of calibration curves without the need of 

expensive isotopic internal standards. Quantification can be achieved by MS2-centric isobaric 

labeling or mass difference labeling on the MS1 level 13. MS1-centric mass difference labeling is 

often more accurate since it is virtually free from precursor isolation interferences as with 

isobaric labeling 14,15. Yet isobaric labeling provides greater multiplexing capability than mass 
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difference labeling, which is an important feature in terms of constructing multi-point calibration 

curves.  

In order to develop an MS1-centric mass difference labeling technique with greater 

multiplexing capability, our research group has designed and synthesized the 5-plex isotopic 

N,N-dimethyl leucine (iDiLeu) reagents for the absolute quantification of peptides/proteins 16. 

Each iDiLeu reagent was synthesized with simple synthetic route, high yield, and greatly 

reduced cost compared to commercial mTRAQ labels 17. The amine reactive group in iDiLeu 

label can target the N-terminus and lysine side chains of peptides which should also be 

applicable to amine-containing small molecules. Therefore, we aim to expand the 5-plex iDiLeu 

labeling technique to the analysis of amine-containing metabolites in the present study (Scheme 

1). Proof-of-principle experiments were conducted with metabolite standard mixture on a 

standard flow LC-MS platform which is routinely used for label-free metabolomics studies. We 

also applied iDiLeu labeling method to the absolute quantification of amine metabolites in 

human cerebrospinal fluid samples, where two iDiLeu channels can be used to label CSF 

samples and the other three channels to label metabolite standards. Thus, three-point calibration 

curve and multiplexed quantification can be efficiently achieved on a single LC-MS run.  

 

Experimental  

Human cerebrospinal fluid and standard sample preparation 

Human CSF samples were collected from consenting human subjects in the Wisconsin 

Alzheimer’s Disease Research Center (ADRC), approved by the University of Wisconsin 

Institutional Review Board. For each human subject, lumbar puncture was performed at L3/4 or 
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L4/5 following local anesthesia after 12-hour fast, and CSF sample was collected into a tube, 

gently mixed, and centrifuged at 2000 g for 10 min. Supernatant CSF sample was collected, 

stored at -80 °C, and thawed on ice before sample preparation. Metabolite fraction of CSF 

sample was obtained using 3 kDa molecular weight cut-off (MWCO) ultracentrifugation 

(Millipore Amicon Ultra, MA). Forty microliters of each CSF metabolite fraction were freeze 

dried and stored at -80 °C until the labeling experiment.  

Metabolite standard mixture was prepared by mixing 14 metabolite standard stock 

solutions, including glycine, alanine, GABA, creatinine, valine, isoleucine, leucine, lysine, 

methionine, dopamine, phenylalanine, serotonin, tyrosine, and tryptophan. Serial dilutions of 

metabolite standard mixture were conducted for the construction of label-free standard curves. 

Several aliquots of metabolite standard mixture were dried down. All metabolite standard 

samples were stored at -20 °C prior to the labeling experiment. 

iDiLeu synthesis and labeling reactions 

 The synthesis procedure of five-plex iDiLeu reagents was described previously 16. One 

milligram of each iDiLeu reagent was activated to triazine ester form before labeling reaction 16. 

Dried CSF metabolite or metabolite standard sample was re-dissolved in 0.5 M 

triethylammonium bicarbonate (TEAB) solution and labeled with 20 molar-fold excess of 

activated iDiLeu. Anhydrous DMF was added to reach 70% of organic: aqueous ratio and the 

labeling reaction was maintained for 2 h with vortexing at room temperature. The labeling 

reaction was quenched with 0.25% hydroxylamine (v/v), and each labeled sample was dried in 

vacuo separately and combined afterwards.  

LC-ESI-MS analysis 
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Ultra-performance LC-MS analysis was conducted using a Dionex UltiMate 3000 LC 

system coupled with a Q-ExactiveTM Orbitrap mass spectrometer (San Jose, CA). A Phenomenex 

C18 column (2.1 × 100 mm, 1.7 μm, 100 Å) was used for metabolite separation at a column 

temperature of 30 °C and a flow rate of 0.3 ml/min. Mobile phase A was 0.1% formic acid in 

optima water and mobile phase B was 0.1% formic acid in optima acetonitrile. For label-free 

metabolite samples, a 15 min gradient was set as the following: 0-5 min, 0-3% solvent B; 5-10 

min, 3-20% B; 10-12 min, 20-80% B; 12-13min, 80% B; 13-15 min, 0% B. Full MS was 

acquired in selected ion mode (SIM) with an inclusion list of fourteen standards at a resolution of 

70 K, an automatic gain control (AGC) of 1×106 and a maximum injection time (IT) of 100 ms. 

For iDiLeu labeled metabolite samples, a 23 min gradient was as the following: 0-5 min, 3% 

solvent B; 5-16 min, 3-30% B; 16-17 min, 30-80% B; 17-19min, 80% B; 19-23 min, 3% B. The 

first 5 min of LC flow was diverted to waste to remove impurities. Full MS scanned from m/z 

200-1000 at a resolution of 70 K, a AGC of 1×106 and a maxIT of 100 ms.  

Data analysis 

 Raw data files were acquired by Thermo Scientific Xcalibur software and then uploaded 

to SIEVETM software for data processing. Peak alignment and framing algorithm was selected 

with a frame time width of 2 min and m/z width of 5 ppm. The maximum retention time shift was 

0.2 min for peak alignment. ICIS algorithm was used for peak detection. A database lookup file 

(.csv) was created containing the accurate masses and names of 14 metabolite standards. 

Targeted quantification and identification of metabolites were achieved in SIEVE using the 

database lookup file with a mass tolerance of 5 ppm. For human CSF samples, the complete 

component table was downloaded, and the molecular weight of each compounds was calculated 

based on the charge and mass shift caused by iDiLeu labeling in an Excel sheet. MetaboSearch 18 
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software was then used for metabolite identification (mass error < 5 ppm) by searching against 

multiple online databases: Human Metabolome Database (HMDB), Madison Metabolomics 

Consortium Database (MMCD), Metlin, and LIPID MAPS. Five channels of iDiLeu labeled 

metabolite samples were separately analyzed by LC-MS to calculate the purity of each iDiLeu 

label, and purity correction was performed in an Excel sheet following a previously described 

method 19. 

 

Results and discussion 

Characterization of iDiLeu labeling 

Five-plex iDiLeu labeling was originally designed for protein/peptide quantification as 

MS1-centric mass difference reagents 16. For the first time, we expanded this technique to the 

analysis of amine-containing metabolites. The general structures of activated iDiLeu reagents are 

shown in Scheme 1. After the labeling reaction, mass shifts of 141.1154, 144.1313, 147.1409, 

150.1631, and 153.1644 were introduced into metabolites by the d0, d3, d6, d9, and d12 labels. 

A mixture of 14 metabolite standards was used to characterize the performance of iDiLeu 

labeling. The accurate masses before and after labeling were listed in Table 1. Peak areas of 

extracted ion chromatograms (EIC) of the labeled metabolites were used for quantification. As 

discussed previously for DiLeu labeled metabolites, hydrophobicity of the molecule was 

modified by labeling which can improve the separation of polar metabolites and enable the 

detection of polar metabolites in nanoLC-MS 19,20. Since metabolomics analysis is typically 

performed on a standard flow LC system, here, we aimed to evaluate the performance of iDiLeu 
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labeled metabolites on a standard flow RPLC-MS platform and its comparison with the label-

free approach.  

Both label-free and d0-labeled metabolite standard mixture were analyzed on a reveser 

phase (RP)LC-MS for comparison. The chromatographic separations were illustrated in Figure 1. 

Free metabolites eluted within the first few minutes, particularly small polar metabolites like 

glycine, alanine, GABA, lysine, and creatinine were barely retained on the column and eluted 

before 1 min. Free isoleucine and leucine were not completely separated in this label-free 

platform (Figure 1A). Optimization of LC gradient was not helpful to separate these early eluting 

metabolites. However, after iDiLeu labeling, polar metabolites can be better retained on the 

RPLC column and were well separated from each other with modified hydrophobicity and 

increased molecular size (Figure 1B). The isomers (leucine and isoleucine) were also completely 

separated with retention time of 9.7 min and 10.7 min, respectively.  

In order to compare the detection sensitivity for iDiLeu labeling vs. label-free approach, 

metabolite samples before and after iDiLeu labeling were serially diluted to construct calibration 

curves and determine their limits of detection. The results are listed in Table 2. LODs and LOQs 

of most metabolite standards were greatly improved after iDiLeu (d0) labeling. Although the 

improvements of metabolite detection sensitivity were not as significant as using nanoLC-MS or 

CE-MS system 19,20, the present results demonstrated the utility of iDiLeu labeling on the routine 

standard flow RPLC-MS platform with the advantages of better metabolite separation and 

creating calibration curves in a single run.  

Quantitative performance of iDiLeu labeling  
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 Five-plex iDiLeu labeled metabolites created five distinct peaks, differing from one 

another by 3, 6, 9, and 12 Da. An example iDiLeu labeled serotonin standard was illustrated in 

Figure 2. Because of the subtle mass difference of 3 Da, iDiLeu labeling does not suffer from 

isotope interference for metabolite analysis. Deuterium effect was minimized by grouping 

deuterium atoms around polar amine group of leucine 16,21, so that five labeled peaks can elute at 

roughly the same time. EIC peak areas of five isotopic forms of the same labeled metabolite can 

be compared for quantification. Quantitative accuracy of iDiLeu labeling was demonstrated by 

labeling 14 metabolite standards and mixing five channels at theoretical 1:1:1:1:1 and 1:2:5:8:10 

ratios. As shown in Figure 3, satisfactory accuracies were achieved with an average accuracy < 

12% error. Median ratios measured among 14 metabolites (three replicates each) were 

1:1.05:0.98:1.02:1.10 and 1:2.06:4.49:7.11:9.64, respectively.  

 Absolute quantification of a molecule is typically achieved by constructing a calibration 

curve where quantification accuracy is highly dependent on the curve’s linearity (also called 

correlation coefficient). The linearity of iDiLeu-based quantification was characterized by two 

approaches. Firstly, iDiLeu labeled metabolite standards were serially diluted and calibration 

curves were constructed across multiple LC-MS run; Alternatively, five channels of iDiLeu 

labeled metabolite standards were mixed at different ratios across two order of magnitude, and 

calibration curves were established in a single LC-MS run. We compared these two methods 

with the label-free approach and the correlation coefficients of 14 metabolites standards are 

provided in Table 2. The linearity using serially diluted labeled metabolites was comparable with 

free metabolite standards (R> 0.99) except for creatinine, while the single-run calibration curves 

demonstrated the best correlation coefficient (R>0.999) because of the ability to generate 

calibration curves in a single LC-MS injection to avoid run-to-run variations. 
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The Analysis of human CSF 

 CSF is a valuable biofluid sample circulating within the brain ventricular system. It 

protects the brain and maintains the metabolic homeostasis of the central nervous system 22,23. 

Amino acids in CSF samples serve as the basic building blocks and key regulators in CSF 

metabolism, which has been found to be involved in various neurological diseases, such as 

Alzheimer’s disease and Parkinson’s disease 5,24,25. The established absolute quantification 

method using iDiLeu labeling can be applied to determine the concentrations of amine-

containing metabolites in CSF samples. By using three channels of iDiLeu to label standards and 

the remaining channels to label two human CSF samples, we can construct a three-point 

calibration curve and determine the metabolite concentration in two samples on a single MS scan. 

Because of the good chromatographic separation of iDiLeu labeled metabolites, absolute 

quantifications of many amine metabolites can be achieved in a single LC-MS run. To minimize 

the influence of variations from five iDiLeu tags, we carefully designed the experiment to rotate 

different iDiLeu channels for the labeling of standards and CSF samples (Supplemental Table 

S1). Eight labeling experiments were conducted for the measurement of 16 human CSF samples.  

 Metabolite identification was achieved in Metabosearch software 18 by searching against 

multiple online databases with 5 ppm mass tolerance. The resulted list of metabolites was then 

manually examined to only include primary and secondary amine-containing molecules. A total 

of 87 amine metabolites were identified from human CSF samples (Supplemental Table S2). We 

then matched the metabolites with the human CSF metabolome database 22 and found that 47 of 

them are documented in the database and 40 additional amine metabolites were identified in our 

study. Since iDiLeu tags can only target primary and secondary amine groups, the confidence of 

metabolite identification was also enhanced by the presence of five isotopic peaks. With the 
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excellent linearity and quantification accuracy of iDiLeu labeling, we determined the 

concentrations of 10 amine metabolites in 16 human CSF samples, including lysine, tryptophan, 

valine, phenylalanine, tyrosine, methionine, creatinine, alanine, isoleucine, and leucine. As 

shown in Figure 4, concentrations of the 10 measured molecules ranged from 5.16 to 109.09 µM. 

Creatinine is the most abundant compounds with an average concentration of 109.09 ± 30.77 µM. 

Example calibration curves were shown in Supplemental Figure S1.  

 

Conclusions 

 An accurate and high throughput absolute quantification strategy was developed for 

amine metabolites using the custom 5-plex iDiLeu labeling. The labeling technique was 

characterized on a standard flow RPLC-MS platform for the first time and achieved enhanced 

metabolite separation and detection sensitivity compared with routine label-free approach. 

Accurate absolute quantification was achieved on the MS1 level with the ability to construct 

calibration curves in a single LC-MS run. We then successfully applied this method to the 

identification and quantification of amine metabolites in human CSF samples. We believe that 

iDiLeu labeling based absolute quantification will be a useful tool to measure the concentration 

of amine metabolites in biological samples, serving as a promising validation platform for 

disease biomarker studies.  
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Figures and Tables 

 

 

 

 

 

Scheme 1. General structure of iDiLeu reagents (d0, d3, d6, d9, and d12) in their activated 

triazine ester forms, and the reaction to label amine-containing metabolites.  
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Figure 1. Chromatographic comparison of label-free metabolites (A) and iDiLeu (d0) labeled 

metabolite standards (B) via standard flow UPLC-MS platform.  
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Figure 2. Example chromatography and MS spectrum of 5-plex iDiLeu labeled serotonin 

standard. Five-plex iDiLeu labeled serotonin samples were mixed at 1:2:5:8:10 ratio.  
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Figure 3. Quantification accuracy of iDiLeu labeling. Each box contains results from 14 

metabolite standards labeled by iDiLeu. Theoretical mixing ratios were 1:1:1:1:1 and 1:2:5:8:10. 

Box denotes 25th and 75th percentiles. Line within the box denotes 50th percentile. Whisker 

denotes standard deviation.  
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Figure 4. Metabolite concentrations in human CSF samples, measured by iDiLeu labeling 

technique.  
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Table 1. Accurate masses of 14 metabolite standards before and after iDiLeu labeling.  

Metabolite M+H d0 labeled d3 labeled d6 labeled d9 labeled d12 labeled 

Glycine 76.03983 217.1552 220.1711 223.1807 226.2029 229.2042 

Alanine 90.05553 231.1709 234.1868 237.1964 240.2186 243.2199 

GABA 104.0711 245.1865 248.2024 251.212 254.2342 257.2355 

Creatinine 114.0667 255.1821 258.198 261.2076 264.2298 267.2311 

Valine 118.0868 259.2022 262.2181 265.2277 268.2499 271.2512 

Isoleucine 132.1024 273.2178 276.2337 279.2433 282.2655 285.2668 

Leucine 132.1024 273.2178 276.2337 279.2433 282.2655 285.2668 

Lysine 147.1133 429.3441 435.3759 441.3951 447.4395 453.4421 

Methionine 150.0588 291.1742 294.1901 297.1997 300.2219 303.2232 

Dopamine 154.0868 295.2022 298.2181 301.2277 304.2499 307.2512 

Phenylalanine 166.0868 307.2022 310.2181 313.2277 316.2499 319.2512 

Serotonin 177.1028 318.2182 321.2341 324.2437 327.2659 330.2672 

Tyrosine 182.0817 323.1971 326.213 329.2226 332.2448 335.2461 

Tryptophan 205.0977 346.2131 349.229 352.2386 355.2608 358.2621 
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Table 2. Retention time, sensitivity, and linearity (calibration curves) of metabolite analysis with 

iDiLeu labeling and label-free approaches.  

 

aLimit of detection, µmol/L; 

bLimit of quantification, µmol/L; 

cLinearity of calibration curve generated by serial dilution of iDiLeu d0-labeled metabolite;  

dLinearity of calibration curve generated by five plex iDiLeu in a single LC-MS run. 

  

 

 iDiLeu labeling Label-free 

Metabolite Time LODa LOQb 
R 

(d0)c 

R (5-

plex)d 
Time LODa LOQb R 

Glycine 7.5 4.20E-04 7.00E-04 0.9948 0.9996 0.72 9.53E-03 1.59E-02 0.9994 

Alanine 8.5 2.17E-03 3.62E-03 0.9945 0.9990 0.7 3.45E-03 5.75E-03 0.9988 

GABA 7.9 5.06E-05 8.43E-05 0.9991 0.9993 0.71 1.27E-03 2.12E-03 0.9997 

Creatinine 8.8 1.13E-04 1.88E-04 0.9757 0.9998 0.74 1.20E-04 2.00E-04 0.9966 

Valine 7.7 5.23E-05 8.72E-05 0.9968 0.9999 1.02 1.09E-01 1.82E-01 0.9998 

Isoleucine 9.7 1.15E-04 1.92E-04 0.9807 0.9999 1.79 9.63E-04 1.61E-03 0.9995 

Leucine 10.7 6.93E-05 1.16E-04 0.9956 0.9999 1.82 6.04E-04 1.01E-03 0.9997 

Lysine 8.9 5.06E-05 8.43E-05 0.9995 0.9998 0.65 4.49E-04 7.48E-04 0.9998 

Methionine 9.2 4.74E-05 7.90E-05 0.9969 0.9998 1.26 1.77E-04 2.95E-04 0.9999 

Dopamine 9.9 1.20E-05 2.00E-05 0.9913 0.9991 1.34 4.62E-05 7.70E-05 0.9999 

Phenylalanine 11.6 1.43E-03 2.38E-03 0.9985 0.9999 4.31 7.74E-05 1.29E-04 0.9998 

Serotonin 11 4.16E-05 6.93E-05 0.9985 0.9991 3.24 9.51E-04 1.59E-03 0.9996 

Tyrosine 8.8 4.98E-05 8.30E-05 0.9968 0.9999 2.26 3.33E-04 5.55E-04 0.9999 

Tryptophan 12.1 1.18E-04 1.97E-04 0.9887 0.9999 7.34 4.29E-04 7.15E-04 0.9995 
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Supplemental Information 

 

 

 

 

Supplemental Figure S1. Example calibration curves for the absolute quantification of CSF 

metabolites using iDiLeu labeling. Three iDiLeu channels were used to label standard to 

construct the calibration curve, while the other two channels were used to label CSF samples.  
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Supplemental Table S1. Experimental design for the absolute quantification of amine 

metabolites in 16 human CSF samples using iDiLeu labeling.  

 #1 #2 #3 #4 #5 #6 #7 #8 

d0 a 49 80 c b c 159 169 

d3 b a 44 109 c a c 138 

d6 c b a 68 114 b a c 

d9 15 c b a 98 117 b a 

d12 30 27 c b a 144 125 b 

 

d0, d3, d6, d9, and d12 represent five iDiLeu channels; 

a, b, and c represent metabolite standard solutions with three different concentrations; 

#1 to #8 represent eight labeling experiments 

15, 30, 49, 27…..and other numbers inside the table represent the code of human subjects.  
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Supplemental Table S2. The list of detected amine metabolites in human CSF samples. 

Name MW 
Detected  

m/z 
Charge Time Δppm HMDB ID 

KEGG 

ID 

Creatine 131.0695 207.6576 2 10.18 1.93 HMDB00064 C00300 

Ornithine 132.0899 208.1678 2 8.56 0.97 HMDB00214 C01602 

Glutamine 146.0691 215.1575 2 8.49 0.16 HMDB00641 C00303 

Lysine 146.1055 215.1758 2 8.94 0.93 HMDB00182 C16440 

Glycine 75.0320 217.1550 1 7.54 1.17 HMDB00123 C00037 

Methyl-lysine 160.1212 222.1835 2 11.50 0.91 HMDB02038 C02728 

Arginine 174.1117 229.1790 2 8.01 0.44 HMDB00517 C02385 

Alanine 89.0477 231.1706 1 8.50 1.31 HMDB00161 C01401 

GABA 103.0633 245.1861 1 7.59 1.85 HMDB00112 C00334 

Serine 105.0426 247.1655 1 8.70 1.29 HMDB00187 C00716 

Creatinine 113.0589 255.1817 1 8.79 1.71 HMDB00562 C00791 

Valine 117.0790 259.2018 1 7.66 1.56 HMDB00883 C16436 

Cystine 240.0238 262.1347 2 9.61 0.24 HMDB00192 C01420 

Leucine 131.0946 273.2175 1 10.66 1.29 HMDB00687 C16439 

Isoleucine 131.0946 273.2176 1 9.71 0.93 HMDB00172 C16434 

Methionine 149.0510 291.1738 1 9.13 1.63 HMDB00696 C00073 

Histidine 155.0695 297.1923 1 8.41 1.35 HMDB00177 C00768 

Phenylalanine 165.0790 307.2020 1 11.64 0.66 HMDB00159 C02057 

Methylhistidine 169.0851 311.2081 1 8.88 0.81 HMDB00479 C01152 

Tyrosine 181.0739 323.1969 1 8.77 0.68 HMDB00158 C00082 

Tryptophan 204.0899 346.2128 1 12.10 0.94 HMDB00929 C00078 

Asparagine 132.0535 415.2917 1 13.50 1.00 HMDB00168 C16438 

Kynurenine 208.0848 491.3232 1 11.57 0.44 HMDB00684 C01718 

Ethanolamine 61.0528 203.1758 1 8.27 0.93 HMDB00149 C00189 

Aspartic acid 133.0375 275.1602 1 7.69 1.94 HMDB06483 C16433 

Homocysteine 135.0354 277.1584 1 8.05 0.81 HMDB00742 C05330 

Aminobenzoic acid 137.0477 279.1706 1 13.48 1.09 HMDB01392 D02456 

Guanidinobutanoic acid 145.0851 287.2078 1 9.14 1.92 HMDB03464 C01035 

Glutamate 147.0532 289.1763 1 7.37 0.29 HMDB03339 C00025 

Dopamine 153.0790 295.2022 1 9.77 0.01 HMDB00073 C03758 
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Allantoin 158.0440 300.1668 1 9.66 1.38 HMDB00462 C01551 

methoxytyramine 167.0946 309.2175 1 12.39 1.14 HMDB00022 C05587 

Norepinephrine 169.0739 311.1968 1 11.50 1.02 HMDB00216 C00547 

Glycylproline 172.0848 314.2081 1 8.81 -0.26 HMDB00721  

Acetylaspartate 175.0481 317.1712 1 10.62 0.31 HMDB00812  

Trimethyl-lysine 188.1525 330.2751 1 10.05 1.83 HMDB01325 C03793 

3-Methoxytyrosine 211.0845 353.2076 1 9.43 0.23 HMDB01434  

Sapropterin 241.1175 383.2408 1 17.50 -0.22 HMDB00787  

Cytidine 243.0855 385.2085 1 9.16 0.64 HMDB00089 C00475 

Guanidoacetic acid 117.0538 400.2921 1 8.69 0.88 HMDB00128 C00581 

Ureidoisobutyrate 146.0691 429.3073 1 10.72 1.09 HMDB02031 C05100 

Acetylneuraminic acid 309.1060 451.2292 1 7.74 0.01 HMDB00230  

Cystathionine 222.0674 505.3059 1 13.31 0.30 HMDB00099 C00542 

Succinoadenosine 383.1077 525.2312 1 17.57 2.15 HMDB00912  

Glutamyl-Lysine 275.1481 558.3863 1 9.38 0.80 HMDB28824  

Guanidinosuccinic acid 175.0593 599.4130 1 6.18 0.55 HMDB03157 C03139 

Citrulline 175.0957 599.4493 1 12.04 0.69 HMDB00904 C00327 

Acetyllysine 188.1161 236.1810 2 9.64 1.10 HMDB00446  

N-Acetylserotonin 218.1055 360.2286 1 12.63 0.42 HMDB01238 C00978 

Aminoacetone 73.0528 215.1757 1 12.93 1.34 HMDB02134 C01888 

Aminobutyraldehyde 87.0684 229.1913 1 7.62 1.48 HMDB01080 C00555 

Sarcosine 89.0477 231.1705 1 6.58 1.75 HMDB00271 C00213 

Cytosine 111.0433 253.1661 1 8.44 1.53 HMDB00630 C00380 

Acetamidopropanal 115.0633 257.1861 1 9.96 1.76 HMDB12880  

2-Amino-3-oxobutanoate/ 

Aspartate-semialdehyde 
117.0426 259.1653 1 6.85 2.00 

HMDB06454/ 

HMDB12249 

C03508/ 

C00441 

Allothreonine 119.0582 261.1811 1 7.53 1.41 HMDB04041 C05519 

Methylcytosine 125.0589 267.1817 1 10.33 1.64 HMDB02894 C02376 

Acryloylglycine 129.0426 271.1653 1 6.58 1.91 HMDB00783  

Acetylaminobutanal 129.0790 271.2018 1 12.05 1.49 HMDB04226 C05936 

Propionylglycine 131.0582 273.1810 1 10.40 1.71 HMDB00783  

5-Amino-2-oxopentanoic 

acid 
131.0582 273.1811 1 8.90 1.35 HMDB06272 C01110 

N-Methylnicotinamide 136.0637 278.1861 1 14.28 2.83 HMDB03152  

Vinylacetylglycine 143.0582 285.1810 1 9.04 1.64 HMDB00894  
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Oxoglutaramate 145.0375 287.1604 1 13.67 1.16 HMDB01552 C00940 

Isobutyrylglycine/ 

2-Keto-6-aminocaproate 
145.0739 287.1963 1 10.66 2.85 

HMDB00730/ 

HMDB12151 

5-Amino-3-oxohexanoate 145.0739 287.1969 1 9.60 0.76 HMDB12131  

Methyl-aspartic acid 147.0532 289.1760 1 9.28 1.32 HMDB02393 C12269 

Tiglylglycine/ 

Methylcrotonylglycine 
157.0739 299.1966 1 11.10 1.73 

HMDB00959/ 

HMDB00459 

2-Aminooctanoic acid 159.1259 301.2488 1 12.83 1.17 HMDB00991  

Aminoadipic acid 161.0688 303.1917 1 10.14 1.10 HMDB00510  

Hydroxydopamine 169.0739 311.1967 1 11.78 1.34 HMDB01537  

Hexanoylglycine 173.1052 315.2282 1 15.72 0.69 HMDB00701  

8-Hydroxy-7-methylguanine 181.0600 323.1830 1 12.96 0.62 HMDB06037  

2-Hydroxy-phenylalanine 181.0739 323.1968 1 10.21 0.98 HMDB06050  

N-Heptanoylglycine 187.1208 329.2439 1 16.64 0.51 HMDB13010  

Hydroxyphenyl-acetylglycine 209.0688 351.1919 1 11.85 0.38 HMDB00735  

Nonanoylglycine 215.1521 357.2751 1 14.48 0.75 HMDB13279  

Tyramine-O-sulfate 217.0409 359.1637 1 12.04 1.12 HMDB06409  

5-Hydroxyl-tryptophan 220.0848 362.2077 1 12.18 0.88 HMDB00472 C01017 

Acetyltyrosine 223.0845 365.2072 1 13.78 1.32 HMDB00866 C01657 

Aspartylhydroxyproline 246.0852 388.2082 1 7.41 0.54 HMDB28754  

Acetylvanilalanine 253.0950 395.2182 1 11.73 0.12 HMDB11716  

Tetrahydroneopterin 257.1124 399.2353 1 10.72 0.82 HMDB00942  

S-(2-Methylpropionyl)-

dihydrolipoamide-E 
277.1170 419.2405 1 13.56 -0.61 HMDB06868 C15977 

1-Methylguanosine 297.1073 439.2304 1 10.73 0.33 HMDB01563  

Acetylasparagine 174.0641 457.3026 1 8.72 0.18 HMDB06028  

Aminohippuric acid 194.0691 477.3075 1 12.42 0.56 HMDB01867 D06890 
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Appendix IV 

 

Neuropeptidomics of the Rat Habenular Nuclei 

 

 

 

 

 

 

 

Adapted from Ning Yang, Krishna D. B. Anapindi, Stanislav S. Rubakhin, Pingli Wei, Qing 

Yu, Lingjun Li, Paul J. Kenny, Jonathan V. Sweedler. "Neuropeptidomics of the Rat Habenular 

Nuclei." Journal of Proteome Research, 2018. Pingli Wei provided Sulfation peptide analysis. 
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ABSTRACT 

Conserved across vertebrates, the habenular nuclei are a pair of small symmetrical 

structures in the epithalamus. The nuclei functionally link the forebrain and midbrain by 

receiving input from and projecting to several brain regions. The habenular nuclei comprise 

two major asymmetrical subnuclei, the medial and lateral habenula; each are associated 

with different physiological processes and disorders, such as depression, nicotine addiction, 

and encoding aversive stimuli or omitting expected rewarding stimuli. Elucidating the 

functions of the habenula nuclei at the molecular level requires knowledge of their 

neuropeptide complement. In this work, three mass spectrometry (MS) techniques – liquid 

chromatography (LC) coupled to Orbitrap tandem MS (MS/MS), LC coupled to Fourier 

transform (FT)-ion cyclotron resonance (ICR) MS/MS, and matrix-assisted laser 

desorption/ionization (MALDI) FT-ICR MS – were used to uncover the neuropeptide 

profiles of the medial and lateral rodent habenula. With the assistance of tissue stabilization 

and bioinformatics, a total of 263 and 167 neuropeptides produced from 27 and 20 

prohormones were detected and identified from the medial and lateral habenula regions, 

respectively. Among these neuropeptides, 129 were exclusively found in the medial 

habenula, and 33 were exclusively expressed in the lateral habenula. The results 

demonstrate that these two small brain nuclei have a rich and differentiated peptide 

repertoire, with this information enabling a range of follow-up studies.  

 

KEYWORDS: medial habenula, lateral habenula, neuropeptidomics, mass spectrometry, 

ESI MS, MALDI MS, FT-ICR MS 
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INTRODUCTION 

The habenula nuclei are small structures symmetrically located above the posterior end of 

the thalamus, functionally linking the forebrain and the midbrain. They are 

phylogenetically conserved in vertebrates and part of the epithalamus.1 The habenula 

nucleus has two substructures, the medial and lateral subnuclei, which interconnect with 

different brain regions.2 The habenula had not attracted significant attention until the 

discovery of its involvement in the reward system.3-6 To date, the habenula has been found 

to play important roles in a wide range of physiological processes, including sleep 

regulation, reward-based decision-making, avoidance and mood behaviors, and drug 

addiction, particularly tobacco dependence.7-10 An important step in understanding the 

contribution of the habenula to these biological events and behaviors is to elucidate the 

cell-to-cell signaling molecules, including neuropeptides, contained in this brain region. In 

addition, there are orphan G-protein coupled receptors (GPCRs) densely or exclusively 

expressed in the habenula;11,12 characterizing the neuropeptide complement in the habenula 

may help to uncover the endogenous ligands for these GPCRs.  

Neuropeptides are important cell-to-cell signaling molecules involved in the 

coordination of behavioral, cognitive, and homeostatic events, as well as various 

physiological functions, such as food intake, pain sensation, circadian rhythms, and tissue 

regeneration, including pathophysiological processes such as drug addiction.13-17 These 

signaling peptides are produced by post-translational enzymatic processing of large 

precursor proteins known as prohormones at conventional cleavage sites, including 

mono/di-basic amino acid motifs, and cleavages at less canonical amino acid sequences. 

To become biologically functional peptides, many neuropeptides also undergo post-

translational modifications (PTMs),18,19 resulting in chemically unique peptides from the 

same sequence of amino acids.  

The development of modern mass spectrometry (MS) techniques, aided by 

improvements in sample preparation, have changed the way peptide detection, 

identification, and quantitation are performed, allowing characterization of a fairly 

complete set of neuropeptides present in a biological structure.20-24 In the past decade, 

hundreds of neuropeptides have been discovered and identified from a range of animals 
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using matrix-assisted laser desorption/ionization (MALDI) MS and electrospray ionization 

(ESI) MS.15,17,25-28  

A number of in situ mRNA hybridization and immunocytochemistry studies have 

suggested the presence of several neuropeptide receptors in the habenula region, such as 

the orexin-2 receptor in the lateral habenula, and the neuropeptide Y (NPY) Y1 receptor in 

both the medial and lateral habenula.29-31 However, there has yet to be a systematic 

investigation of the neuropeptide content in this small but functionally important brain 

region. Here, we combined sample stabilization, high molecular mass accuracy and 

resolution MS, and bioinformatics to characterize the endogenous peptides within the rat 

habenula. We identified 263 and 167 peptides from 27 and 20 prohormones in the medial 

and lateral habenula, respectively. Of these, 38 and 36 peptides in the medial and lateral 

habenula, respectively, possess PTMs, including amidation, pyroglutamylation, acetylation, 

disulfide bonds, and phosphorylation.    

In addition to characterizing these commonly found PTMs, a set of targeted 

experiments were aimed exclusively at characterizing sulfated peptides. Tyrosine (Tyr)-

sulfation is a well-known PTM that is involved specifically in modulating protein-protein 

and ligand-receptor interactions.32-37 Though sulfation as a modification of proteins was 

identified in the early 1950s,38 determination of the exact site of Tyr-sulfation using MS is 

still a challenging task for several reasons. First, sulfation increases the mass of the 

modified peptide by almost the same amount (+79.9568 Da) as phosphorylation (+79.9663 

Da). Moreover, both PTMs can occur on Tyr. Secondly, sulfation is a labile PTM where 

the SO3 group falls off, even with soft ionization techniques such as ESI. Finally, even if 

sulfation remains after ESI, it does not survive collision-induced dissociation (CID), 

making it difficult to determine the site of the modification. To overcome these difficulties, 

we used a custom approach with beam-type CID (high-energy C-trap dissociation, or HCD) 

and electron transfer HCD (EThcD) dissociation techniques, followed by manual 

deconvolution of neutral loss peaks of the parent ion corresponding to a mass difference of 

80 Da. Using this approach, we confidently localized four novel sites of modification for 

sulfation on the secretogranin I (SCG1) prohormone in rat.  

Together, these data represent the first comprehensive neuropeptidomics study of 

the vertebrate habenula. Information on the neuropeptide content of the habenular nuclei, 
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and modulation of these peptides by PTMs, can be used as a basis for better understanding 

of the roles of cell-to-cell signaling molecules in different biological processes.  

 

EXPERIMENTAL SECTION  

Materials  

The solvents used were of LC–MS grade and obtained from Thermo Fisher Scientific 

(Waltham, MA), except for triethylamine, acetone, and hydrochloric acid, which were 

obtained from Sigma-Aldrich (St. Louis, MA).  

 

Habenula Isolation and Stabilization 

Male Sprague Dawley rats, 8–12 weeks old, were euthanized by decapitation in compliance 

with animal use protocols approved by the University of Illinois Institutional Animal Care 

and Use Committee and in accordance with all state and federal regulations. The brain was 

quickly removed after fast decapitation and cooled in ice cold mGBSS buffer. Targeted 

brain areas were identified according to the Paxinos and Watson rat brain atlas,39 surgically 

isolated, and stabilized as outlined below; samples from the habenula regions were pooled 

together. For LC–FT-ICR MS analysis, the medial and lateral habenula-containing regions 

from 10 rats were collected and stabilized in boiling water for 10 min. For LC–Orbitrap 

MS analysis, 6 rats were euthanized. The isolated medial and lateral habenula regions were 

stabilized with a Denator Stabilizor T1 (ST1) (Denator, Sweden) and pooled, 

respectively.40 For LC–MALDI MS analysis, entire habenula regions from 3 rats were 

stabilized with the ST1 and pooled. For characterization of the sulfated peptides via LC–

Orbitrap MS, habenula regions from 3 rats were isolated and stabilized by the ST1. The 

entire habenular nucleus (medial + lateral) was used in this case.  
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Extraction of Endogenous Peptides 

The isolated habenula tissues were stabilized by the ST1 or hot water, followed by a three-

stage peptide extraction process, as described in our previous work.28 Briefly, habenula 

tissues were homogenized in 200 µL of ice cold water and incubated on ice for 1 h. 

Supernatants were saved in a new microcentrifuge tube after centrifugation at 14000 × g 

for 10 min. The tissue pellets were subjected to two more stages of peptide extraction with 

acidified acetone (acetone:H2O:HCl 40:6:1) and 0.25% acetic acid solution, respectively, 

performed in a similar manner. The supernatants collected during these three extraction 

steps were combined.  

The volume of combined supernatant sample was reduced to about 20 µL using a 

vacuum pre-concentrator device (GeneVac, UK) for HCl and acetone removal. 

Concentrated samples were desalted with a C18 spin column (Thermo Fisher Scientific). 

For LC–Orbitrap MS and LC–MALDI MS analysis, peptides were pre-purified on and 

eluted from the C18 spin column using an acetic acid organic solution buffer (pH 4.0). For 

LC–FT-ICR MS analysis, peptides retained on the C18 spin column were sequentially 

eluted into different vials using a set of buffers containing 70/30, 50/50, and 20/80 

H2O/acetonitrile (ACN) solutions, with the pH adjusted to 11.0. Each eluent fraction was 

collected, dried using a vacuum pre-concentrator, and stored in a –20 °C freezer until LC–

MS analysis. 

 

LC–Orbitrap MS Analysis 

The peptides extracted from the rat habenular nuclei regions were analyzed using a nanoLC 

system (Dionex UltiMate 3000, Thermo Fisher Scientific) coupled to an Orbitrap Fusion 

Lumos mass spectrometer (Thermo Fisher Scientific). The samples were reconstituted in 

loading solvent (95%/5% H2O/ACN with 0.1% formic acid (FA)) and loaded onto a trap 

column. H2O with 0.1% FA, and ACN with 0.1% FA, were used as solvents A and B, 

respectively. The loaded peptides were separated on a 15 cm Pepmap Acclaim analytical 

column (Thermo Fisher Scientific) packed with 2-µm particle sizes (100 Å pore size) at a 

300 nL/min flow rate. The gradient for the peptide elution range was as follows: 3–6 min, 

1–10% B; 6–90 min, 10–70% B. Data acquisition was accomplished in top speed data-

dependent mode. Other parameters included: precursor scan automatic gain control (AGC), 
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2e+5; MS/MS scan AGC, 5e+4; isolation window, 1.6 Da; normalized collision energy, 

35%; activation Q, 0.25. 

 

LC–FT-ICR MS Analysis 

The three dried eluent fractions were reconstituted in 10 µL of 95%/5% H2O/ACN solution 

and analyzed individually by Eksigent nanoLC 1D Plus system (SCIEX, Framingham, MA, 

USA) coupled to a 11 Tesla FT mass spectrometer (LTQ-FT Ultra, Thermo Fisher 

Scientific) mass spectrometer, as described in a prior peptidomics work.27 The 

experimental parameters were the same as described in the previous study,27 including the 

columns, solvents, and flowrate. Briefly, the peptides were first loaded onto a peptide trap 

column and then separated on the analytical column. The sample was eluted over a gradient 

as follows: 0–10 min, 0–20% solvent B; 10–65 min, 20–55% solvent B; 65–75 min, 55–

85% solvent B; 75–80 min, 85–85% solvent B; 80–85 min, 85–0% solvent B; 85–90 min, 

0–0% B. The MS acquisition parameters included mass scans at m/z 300–2000. Data-

dependent precursor selection was restricted to the top five most intense ions with the 

following parameters: precursor isolation window, m/z 10; activation Q, 0.25; activation 

time, 50 ms; collision energy 35 eV. Dynamic exclusion was enabled with a repeat count 

of 2 and exclusion duration of 180 s. 

 

LC–Orbitrap MS for Characterization of Sulfation PTM 

The peptide extracts were analyzed using the Orbitrap Fusion Lumos Tribrid mass 

spectrometer (Thermo Fisher Scientific) coupled to the Dionex UltiMate 3000 UPLC 

system (Thermo Fisher Scientific) located at UW. A binary solvent system composed of 

H2O containing 0.1% FA (A) and ACN containing 0.1% FA (B) was used for all analyses. 

Peptides were loaded and separated on a 75 μm × 15 cm self-fabricated column packed 

with 1.7 μm, 150 Å, BEH C18 material (part no. 186004661, Waters, Milford, MA). 

Samples were loaded with 3% solvent B, and solvent B was linearly ramped to 30% in 102 

min, and ramped to 75% in another 20 min at a 300 nL/min flow rate. Data were acquired 

in data-dependent mode using the Orbitrap mass spectrometer with EThcD and high-

energy C-trap dissociation. The precursor ions in the range of 300–1500 m/z were scanned 

with an AGC target set to 2e+5 and an Orbitrap resolution of 60,000. The fragment ion 
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analysis for the precursors was divided into five different scan events based on the charge 

state of the precursor ion. Scan event 1: intensity>1e+4; scan event 2: intensity>1e+4 and 

charge state 2; scan event 3: intensity>1e+4 and charge states 3–4; scan event 4: 

intensity>1e+4 and charge state 5; scan event 5: intensity>1e+5 and charge states 6–8. Scan 

event 1 analyzed all ions, whereas the other events only looked at specific charge states. 

The electron transfer dissociation reaction times were chosen appropriately for scan events 

2–5, depending on the charge state. All of the scan events were performed with an Orbitrap 

resolution of 15,000 and AGC target value of 5e+4. 

 

Peptide Identification: Untargeted Database Search 

The raw files acquired on the LC–Orbitrap Fusion Lumos system were loaded into PEAKS 

software (Version 7.5, Canada). The loaded data were first processed with the de novo 

function in the software and then searched against a rat proteome database from UniProt41 

(36,078 entries). The mass error tolerance was set to 20 ppm for precursor ion and 0.1 Da 

for fragment ions. No enzyme digestion was selected and up to 3 variable PTMs were 

allowed for each peptide from a list of 7 modifications, including acetylation (K, N-term, 

and protein N-term), amidation, oxidation (M), pyro-Glu from E, pyro-Glu from Q, 

phosphorylation (STY), and half-disulfide bond (C). Identified peptides in the database 

search results were filtered by -10logP value cut-offs, corresponding to a 1% false 

discovery rate (FDR) or lower.  

The raw data files acquired on the LC–FT-ICR MS system (LTQ-FT Ultra) were 

processed with the cRAWler algorithm in ProsightPC (Version 2.0, Thermo Fisher 

Scientific), which outputs .puf files containing the deconvoluted monoisotopic masses of 

precursor and fragment ions. The .puf files were then loaded into ProsightPC and searched 

against a lab-built rat proteome database based on information downloaded from UniProt. 

The database search was conducted in Biomarker search mode with the precursor and 

fragment mass error tolerances set at 81 Da and 10 ppm, respectively. In biomarker search 

mode, the detected precursor mass was compared with the calculated masses of all of the 

possible peptide subsequences present in the database. For subsequences with masses 

within 81 Da tolerance of a precursor mass, detected fragment masses were matched with 



279 
 

theoretical fragment masses from these candidate peptide subsequences. Identified 

peptides with p values lower than 1e-4 were retained. 

 

Peptide Identification: Targeted Database Search 

The .raw data files from the Orbitrap MS analysis were also searched against a lab-built rat 

neuropeptide prohormone library that contains prohormone sequences in FASTA format 

using PEAKS software. The same precursor and fragment ion mass error tolerance value 

were used as described above. Up to 7 variable PTMs, including acetylation (K, N-term, 

and protein N-term), amidation, oxidation (M), pyro-glu from E, pyro-glu from Q, 

phosphorylation (STY), and half-disulfide bond (C) were allowed for each peptide, so that 

the neuropeptides with multiple PTMs not detected in the initial round of the untargeted 

database search described above could be discovered and identified in the second round of 

targeted search. The FDR value was set at a stricter level of 0.1%. 

 

Sulfated Peptide Identification 

The. raw files from the HCD + EThcD method for the sulfated peptide analysis were 

performed with Byonic software (version 2.0, Protein Metrics, San Carlos, CA). Spectra 

were searched against a rat neuropeptide database (http://isyslab.info/NeuroPep/). A 

precursor tolerance of 10 ppm and a fragment mass tolerance of 20 ppm were allowed. 

Acetylation (N-term), oxidation (M), pyro-glu from E, and pyro-glu from Q were set as 

rare dynamic modifications. Common dynamic modifications consisted of phosphorylation 

(STY) and amidation (C-term). The mass spectra of the peptides identified to be sulfated 

were manually analyzed for the presence of a neutral loss of SO3 that corresponds to a mass 

difference of 80 Da.42,43 

 

LC–MALDI MS Analysis 

Peptide extracts were injected into a Dionex capLC system equipped with a capillary C18 

column (300 µm ID × 150 mm, 100 Å, Thermo Fisher Scientific). Solvents A and B were 

H2O with 0.1% FA and ACN with 0.1% FA, respectively. Flow rate was set at 4 µL/min. 

Peptides were separated over 45 min with gradient solvent B rising from 1% to 50%. 

Fractions were collected every 3 min. Collected fractions were dried with a vacuum pre-

http://isyslab.info/NeuroPep/
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concentrator and reconstituted in 5 µL of H2O. 1 µL of sample from each fraction was 

spotted on a MALDI sample plate, mixed with 50 mg/mL 2, 5-dihydroxybenzoic acid 

matrix, and dried at room temperature (~24°C). The dried samples were analyzed with a 

MALDI FT-ICR mass spectrometer (solariX XR, Bruker Daltonics, Billerica, MA) over a 

mass range of 200–4000 m/z. The putative identities of peaks in the MALDI mass spectra 

were assigned by matching the m/z of detected peaks to known neuropeptides contained in 

the SwePep rat database (http://www.swepep.org/), with a 0.1 Da allowable mass error. 

 

RESULTS AND DISCUSSION 

The habenular nuclei encompass two small regions symmetrically located in the brain 

hemispheres; these nuclei have important roles in a range of behavioral phenomena, 

including drug addiction and depression.1,9,44 Neuropeptides are important cell-to-cell 

signaling molecules involved in these phenomena.45-47 While immunohistochemical 

methods and in situ hybridization have been used to study the distribution of selected 

neuropeptides or their mRNAs within the habenular nuclei,48-51 it appears surprising that 

an inventory of the neuropeptides found in the structure is not available. Here, we 

employed a combination of high resolution MS platforms to explore the neuropeptidome 

of the lateral and medial habenula in rat. 

Evaluation of the morphology, connectivity to other brain regions, and 

biochemistry of the habenula nuclei suggests that the habenula is comprised of distinct 

lateral and medial subnuclei, each of which can be further divided into several smaller 

subnuclear regions. Difficulties in the observation, isolation, and LC–MS analysis of these 

smaller subnuclei restricted our investigation into the lateral and medial habenula nuclei.  

Figure 1 shows the workflow of the multifaceted mass spectrometric approach used 

in this study. Acquired data from analysis 1 using the LC–Orbitrap system were searched 

against a rat proteome database for peptide identification. A targeted database search was 

also performed on the raw Orbitrap MS data using a prohormone library instead of a 

proteome database. For the targeted search, up to seven PTMs on individual peptides were 

allowed, facilitating the discovery of neuropeptides possessing multiple PTMs. For 

example, orexin-A has pyroglutamination at its N-terminus, two disulfide bonds, and 

amidation at its C-termini. In our analysis, six neuropeptides from the lateral habenula 
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region, which were missed in the initial untargeted search, were found by the targeted 

database search. Using LC–FT-ICR MS/MS and LC–Orbitrap MS/MS, 263 known and 

putative neuropeptides derived from 27 prohormones were identified from the medial 

habenula (Table S1); in the lateral habenula, 177 known and putative neuropeptides derived 

from 20 prohormones were found (Table S2). These small brain nuclei display a high 

molecular heterogeneity, which is in agreement with the complex spatial expression of 

genes and high heterogeneity of cell types.52 Among the identified neuropeptides, 134 were 

detected and identified in both the medial and lateral habenula (Figure 2). Table 1 

summarizes the prohormones detected in the medial and lateral habenula. Peptides from 

seven prohormones were exclusively detected in the medial habenula, including pro-

opiomelanocortin, gastrin-releasing peptide, insulin-like growth factor-binding protein 5, 

neuropeptide S, neuroendocrine protein 7B2, corticoliberin, and tachykinin-3. These 

observations demonstrate that the medial and lateral habenula contain distinct sets of cell-

cell signaling peptides. Mass spectra illustrating the results of the MS/MS characterization 

of selected physiologically important neuropeptides are shown in Figure S1. 
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Figure 1. Workflow of the MS-based neuropeptidomic analyses of the rat habenular nuclei. Symmetrical 

habenular nuclei were isolated from the left and right brain hemispheres and characterized in three ways: 

(1) The medial and lateral habenula were analyzed with LC–ESI-Orbitrap MS and a PEAKS search against 

a rat proteome database (untargeted analysis), and a rat prohormone database (targeted analysis). (2) The 

medial and lateral habenula analyte extracts were first fractionated during C18 solid phase extraction, then 

analyzed with ESI-FT-ICR MS. (3) The entire habenula was fractionated with capLC and analyzed by 

MALDI-FT-ICR MS. (4) The entire habenula extracts were analyzed using specific settings for 

characterization of sulfated PTMs on the LC–ESI-Orbitrap mass spectrometer. The resultant raw spectra 

were searched against a rat prohormone database using Byonic 2.0. 

 

Figure 2. Venn diagram summarizing the results of peptidomic analyses of the medial and lateral habenula. 

A total of 263 and 177 neuropeptides were detected and identified in the medial and lateral habenula, 

respectively, with 134 neuropeptides detected in both regions.   



283 
 

Table 1. Prohormones expressed in the medial and lateral habenula and detected using MS-based 

peptidomic analyses.  

Prohormone Medial habenula Lateral habenula 

Cerebellin-1 X X 

Cholecystokinin  X X 

Chromogranin A  X X 

Cocaine- and amphetamine-regulated 

transcript protein  
X X 

Corticoliberin X  

Galanin peptides X X 

Gastrin-releasing peptide  X  

Insulin-like growth factor-binding protein 5  X  

Neuroendocrine protein 7B2 X  

Neuropeptide S X  

Neurosecretory protein VGF  X X 

Neurotensin X X 

Orexin  X X 

Pituitary adenylate cyclase-activating 

polypeptide  
X X 

Prepronociceptin  X X 

Proenkephalin-A  X X 

Proenkephalin-B X X 

Pro-MCH  X X 

Pro-neuropeptide Y  X X 

Pro-opiomelanocortin  X  

ProSAAS  X X 

Protachykinin-1 X X 

Protachykinin-3  X  

Prothyroliberin  X X 

Secretogranin-1 X X 

Secretogranin-2 X X 

Secretogranin-3 X X 

Somatostatin  X X 

 

We also investigated the habenula using MALDI-FT-ICR MS. Most of the 

observed signals, even highly intense and well-resolved peaks, did not match to known 

neuropeptides compiled in the SwePep database. Part of the unassigned signals may 

correspond to neuropeptides possessing endogenous cleavage sites at both termini but not 

included in the database. Other unassigned signals could represent peptides originated from 

processing of non-prohormone proteins. Nevertheless, 24 signals detected by MALDI-FT-

ICR MS were mass matched to known neuropeptides (Table S3) by mass matching 

detected peaks to known neuropeptides in the SwePep database, as described previously.53 

Of these, 22 peptides were also identified in the ESI MS data sets, improving the 

confidence of our assignments. Two signals were detected only with MALDI-FT-ICR MS, 
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and likely represent osteostatin and pro-FMRFamide-related neuropeptides. However, 

confirmation of the expression of these peptides needs further validation since no MS/MS 

spectra were acquired in the MALDI MS analysis. Nevertheless, the Allen Brain Atlas54  

in situ hybridization data demonstrate that mRNA of the parathyroid hormone-related 

protein containing the osteostatin sequence is present in the medial habenula region (Figure 

S2). Also, pro-FMRFamide-related neuropeptide FF receptors have been reported in the 

habenula region previously,55 although the presence of parathyroid hormone-related 

protein mRNA and pro-FMRFamide-related neuropeptide FF receptors do not confirm 

their protein expression. 

Although a comprehensive study of the neuropeptide complement of this 

physiologically important region has not been performed previously, a large body of 

information on the identity and function of several neuropeptides found in the habenular 

nuclei does exist. Our results align well with the results from previous studies, some of 

which are discussed below. 

The prohormone protachykinin-1, which belongs to the tachykinin protein family, 

has been reported in the medial habenula region.56 We identified multiple neuropeptides 

cleaved at mono/di-basic sites from tachykinin-1, including substance P, neurokinin A, 

short neuropeptide K, C-terminal flanking peptide, and protachykinin [111-118]. Prior 

immunocytochemistry and in situ hybridization investigations demonstrated the presence 

of cells expressing substance P and neurokinin B in the medial habenula, with their axons 

projecting to the interpeduncular nucleus and ventral tegmental area.57 The neurokinin 

signaling pathway involving substance P, neurokinin B, and their receptors facilitates 

enhancement of nicotine-induced excitability in medial habenula neurons.58 However, the 

biological functions of other protachykinin-1-derived peptides identified in the habenula 

are not clear. Further research on these neurokinin peptides can lead to a better 

understanding of the mechanism of nicotine addiction and perhaps neurokinin signaling-

based therapies for smoking cessation and other disorders for which the actions of this 

neuropeptide system in the medial habenula may be relevant. Work done by Pertizziello et 

al.59 on the effect of chronic nicotine treatment in the regulation of opioid and non-opioid 

peptides has revealed a significant difference in peptides levels derived from prohormones 

such as cerebellin-1, cholecystokinin, neurotensin, proenkephalin-A/B, proNPY, and 
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proSAAS in the dorsal striatum of model rats compared to the controls. In the current study, 

several endogenously cleaved full-length peptides from these prohormones were also 

found, further reinforcing the involvement of the habenular nuclei in nicotine addiction.  

NPY [30-65] is a 36-amino acid cell-to-cell signaling molecule found in the 

nervous system that is involved in regulating different physiological and pathological 

events, such as food intake, stress, and depression.60,61 NPY-immunoreactive fibers were 

detected in both lateral and medial habenula regions.62 We detected and identified the full-

length form of NPY and its C-terminal flanking peptide. A novel shortened NPY [30-47] 

peptide (YPSKPDNPGEDAPAEDMA.R) was also characterized with high confidence 

(34.0 for -10logP score). This shortened NPY has an arginine at its C-terminal, a common 

cleavage site in prohormone processing, supporting its endogenous nature, in contrast to 

the possibility that it was generated by degradation in post-mortem tissue. McBride and 

coworkers63 have reported that mRNA transcripts encoding NPY are significantly reduced 

in the medial habenula of alcohol-preferring rats, suggesting a role for NPY in ethanol 

intake control.63 This raises the interesting possibility that NPY, and novel modified forms 

of the peptide, expressed in the habenula may contribute to alcohol dependence 

vulnerability. While NPY is an appetite stimulator, cholecystokinin (CCK)-derived 

peptides have been associated with satiety and shown to decrease food intake.64 Even in 

invertebrates, sulfakinins, the peptides with high sequence similarity to vertebrate CCK 

peptides, were shown to reduce food intake.65 In this work, we detected a full-length mature 

peptide of the CCK prohormone (CCK[21-45]) with high confidence in both lateral and 

medial habenula regions, suggesting a role for the habenula in the regulation of food intake. 

Additionally, a recent study by Ye et al.,66 has shown a direct correlation between food 

intake and brain levels of the proSAAS-derived peptides, big LEN (proSAAS[245-260]), 

and PEN (proSAAS[221-242]). Both of these peptides have been identified with high 

confidence scores in the current study. 

The habenular nuclei are anatomically connected to the pineal gland, which 

together comprise the epithalamus.8 The pineal gland is known to regulate sleep. Also, the 

epithalamus receives extrinsic circadian signals sent from the main circadian pacemaker, 

the suprachiasmatic nucleus (SCN).67 The SCN is a well-investigated brain structure 

containing hundreds of peptides.15,68 For example, SCN-originated orexin-A and -B 
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modulate sleep by regulating melatonin synthesis and secretion through the orexinergic 

neuron-pineal gland circuit in zebrafish and rat, as well as influence neuronal activities in 

the lateral habenula.69,70 We detected and identified full-length orexin-B and other pro-

orexin-derived peptides in both the lateral and medial habenula. Though the sequence 

identity of orexin-A was not confirmed, low intensity peaks of m/z corresponding to +4, 

+5, and +6 charged orexin-A molecules were detected (Figure S3). The relatively low 

levels of this molecule present in the studied structures, and/or biological matrix 

interferences, may have led to the low quality MS/MS spectra. In addition, the PTMs of 

orexin-A71 (N-terminal pyroglutamyl cyclization, C-terminal amidation and two disulfide 

bonds between residues 38↔44 and 39↔46) complicate confident identification of the 

molecules with a targeted search. The identification of orexin-B in the habenular nuclei 

suggests that pro-orexin likely undergoes local translation and processing in the habenula, 

which may in turn contribute to sleep regulation by the epithalamus. 

We also identified two new pituitary adenylate cyclase-activating polypeptide-

derived neuropeptides, PACAP [111-128] and PACAP [130-143], in the habenular nuclei. 

Classic cleavage sites flank the N- and C-termini of both peptides. Immunohistochemistry 

and in situ hybridization studies have shown that these peptides and their receptors are 

present in the medial and lateral habenula.72,73 Habenular nuclei neurons are activated by 

stress-inducing stimuli, resulting in a significant decrease in c-fos expression.74 PACAP is 

associated with stress and anxiety-like behaviors.8,44  

Another cell-to-cell signaling peptide observed in this study is somatostatin, which 

affects the stress response in both experience-dependent and independent ways in the 

zebrafish habenula.75 Multiple pain-related peptides were also detected in this study, 

including those derived from prohormones such as nociceptin, pro-enkephalin-A, and pro-

dynorphin-related, which are known to produce endogenous opiate peptides.76-78 These 

peptides bind to various classes of opioid and nociception receptors, and are involved in 

mechanisms of pain signaling.79 Our finding of pain-related peptides in the habenular 

nuclei is consistent with results from a preclinical study demonstrating an important role 

for the habenula in pain and analgesia.80  

An additional experiment to identify the sites of sulfation revealed the location of 

five Tyr residues with O-sulfation. All of the five locations correspond to the prohormone 
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SCG1. One of them (SCG1 [339]) has been previously reported in rats,81 whereas the other 

four are novel PTM sites of sulfation (SCG1 [330], [466], [469] and [501]). SCG1 [469] is 

predicted to be a sulfotyrosine by homology with a previously reported sulfation site in a 

bovine model.82 While secretogranins are a class of secretory proteins that have been 

previously shown to be sulfated,83 only one site of sulfation had been previously confirmed 

in the rat SCG1 prohormone.81 Moreover, all of the identified peptides (Table S4) are either 

full-length forms or smaller fragments of two parent peptides (SCG1 [324-343] and SCG1 

[454-508]), both with mono/di-basic amino acid cleavage sites. Sulfation is associated with 

the secretory pathway and the modification is known to occur in the trans-Golgi network. 

Modified Tyr residues have been shown to modulate ligand-receptor interaction in several 

previous studies.35-37,84 The important role of sulfotyrosine in the regulation of ligand-

receptor interactions, combined with the mono/di-basic cleavage sites of the corresponding 

peptides containing this modification, make them interesting candidates for further 

evaluation of biological activity. Secondly, although the sulfation experiments were 

performed on an MS platform with a different collision energy, ion detection, and search 

engine parameters in a separate laboratory, we did not observe significant differences in 

the total number of precursor proteins identified (data available on request). This 

consistency in results reflects the efficient sample stabilization and peptide extraction 

protocols used in this study. 

Finally, we also detected and identified several novel neuropeptides, which have 

not been reported previously or have only corresponding mRNA transcripts detected in the 

habenular nuclei. These include peptides derived from CART, neurosecretory protein VGF, 

and several secretogranins.85 However, their role in the habenula is unknown and further 

investigation will be required to understand their functions.   

 

CONCLUSIONS 

Habenular nuclei are morphologically, chemically, and functionally complex brain 

structures. Our peptidomic analyses utilized high-resolution MS-based and bioinformatics 

approaches to detect and identify 263 and 167 neuropeptides in the rat medial and lateral 

habenula regions, respectively. We determined the spatial specificity of the prohormone 

expressions and revealed the endogenous forms of neuropeptides in these habenular 
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structures. The habenular nuclei receive inputs from different brain regions and act as a 

bridge between the forebrain and midbrain. It is therefore not surprising that many normal 

and pathological conditions, as well as behaviors, depend on the activity of cells in this 

brain region. The current compendium of habenular-expressed peptides reveals the striking 

chemical complexity of this structure and points to some unique features of habenular 

signaling that involve neuropeptides. We expect these results to be useful in identifying 

endogenous ligands for the habenular nuclei orphan GPCRs11,12 that may be targets for the 

development of novel therapeutics for neuropsychiatric disorders in which the habenula 

has been implicated.    
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Appendix V 

 

Integrated Label-Free and Ten-Plex DiLeu Tag Quantitative 

Methods for Profiling Changes in the Mouse Hypothalamic 

Neuropeptidome and Proteome under Different Gut 

Microbiota Environments 

 

 

Adapted from Rui Liu, Pingli Wei, Caitlin Keller, Nicola Salvatore Orefice, Yatao Shi, Zihui Li, Junfeng 
Huang, Yusi Cui, Dustin C. Frost, Shuying Han, Tzu-Wen L. Cross, Federico E. Rey, Lingjun Li. 
“Integrated Label-Free and Ten-Plex DiLeu Tag Quantitative Methods for Profiling Changes in the Mouse 
Hypothalamic Neuropeptidome and Proteome under Different Gut Microbiota Environments.” To be 
submitted. Pingli Wei provided expertise on the neuropeptidomics. 
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Abstract 

Gut microbiota can regulate host physiological and pathological status through gut-brain 

communications or pathways. However, although they are important signaling molecules, the 

neuropeptides and proteins involved in regulating brain functions or behaviors under different gut 

microbiota environments are still not clearly known. To address the problem, integrated label-free 

and ten-plex DiLeu isobaric tag-based quantitative methods were implemented to compare the 

profiling of neuropeptides and proteins in the germ-free (GF) and conventional (Con) mice 

hypothalamus. A total of 2,943 endogenous peptides from 63 precursorsneuropeptide 

preprohormones? and 3,971 proteins in the mouse hypothalamus were identified. Among these 368 

significantly changed peptides (fold changes over 1.5, and p-value < 0.05), 73.6% of the peptides 

showed higher levels in GF-mice than in Con-mice, and 26.4% of the peptides had higher levels in 

Con-mice than in GF-mice. These peptides were mainly from Secretogranin-2, 

Phosphatidylethanolamine-binding protein-1, ProSAAS, and Proenkephalin-A. DiLeu-labeled 

quantification showed that 282 proteins were significantly up- or down-regulated (fold changes over 

1.5, and p-value < 0.05) among the 3,277 quantified proteins. These neuropeptides and proteins were 

mainly involved in behaviors, transmitter release, signaling pathways, and synapses. Interestingly, 

pathways including long-term potentiation, long-term depression, and circadian entrainment were 

involved. In the present study, a label-free and DiLeu-based quantitative method reveals 

comprehensively and significantly changed neuropeptides and proteins in the hypothalamus under 

different gut microbiota environments, suggesting that these neuropeptides and proteins might exert 

key roles in mouse behavior, brain development, memory, and learning. 
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Introduction 

Neuropeptides are a class of endogenous peptides that act as long-lasting cell-to-cell signaling 

neurotransmitters in the nervous system and other target organs. Neuropeptides and their receptors 

play important roles in several key processes1, such as modulating neurobehavior2, social 

development3, affecting energy harvest from the diet and energy storage4, inducing systemic insulin 

resistance, and modifying glucose homeostasis and the immune response5,6. Neuropeptides and their 

precursors are important mediators both within the nervous system and between neurons and other 

cell types. When a neuron releases neuropeptides, the binding of the neuropeptide to its receptor on 

a receiving cell causes conformational changes within the receptor that, depending on the type of 

receptor, either open ion channels or activate coupled G-proteins that can cause a series of 

downstream effects within the cell7. 

Furthermore, neuropeptides have been implicated in the regulation of normal biological functions 

such as circadian rhythm8, feeding regulation9, temperature fluctuation10, depression, stress, anxiety11, 

cognition12, and other behaviors13. For instance, pituitary adenylate cyclase-activating polypeptide 

(PACAP) has neuroprotective and neurotrophic properties that could slow down Alzheimer’s disease-

like pathology; increasing or restoring PACAP and its receptor function might provide Alzheimer’s 

disease treatment benefits14. A ProSAAS-derived neuropeptide, Big LEN, could regulate body weight 

by binding G-protein-coupled receptor 171 (GPR171), which might be associated with food intake 

and metabolism15. Studies have also shown that the Big LEN-GPR171 system could regulate anxiety-
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like behavior and fear conditioning16. In addition, proteins in the brain, such as receptors and kinases, 

are also important and influence CNS development and behaviors. Compared to normal mice, 

Neufeld reported that GF-mice showed a decrease in the N-methyl-D-aspartate receptor subunit 

NR2B and in serotonin receptor 1A, as well as an increase in a brain-derived neurotrophic factor17. It 

has been well established that gut microbiota can alter the expression of cAMP-responding element-

binding protein (CREB) and protein kinase C (PKC), which might facilitate neurodevelopment via 

the PKC-CREB signaling pathway18. 

Over the past decade, various evidence has supported the assertion that gut microbiota can affect 

the host’s physiological status through “brain-gut axis” pathways19-21. It has been demonstrated that 

central nervous system (CNS) neurotransmission can be profoundly affected by the absence of normal 

gut microbiota22. Gut microbiota can regulate mouse behavior through the hippocampal 

glucocorticoid receptor pathway23. Investigations have indicated the effects of gut microbiota and 

how they exert their functions in regulating host physiological and pathological status through gut-

brain communications or pathways. Microbiota leading to CNS influences might be associated with 

second messenger pathways and synaptic long-term potentiation (LTP) in brain regions23,24. Bercik 

reported that gut microbiota influence behavior and brain chemistry through the autonomic nervous 

system, gastrointestinal-specific neurotransmitters, or inflammation25. 

The gut-brain axis uses four major information carriers for communication between the gut and the 

brain: vagal and spinal afferent neurons, immune mediators, gut hormones, and gut microbiota-

derived signaling molecules26. These brain chemistries, including neurotransmitters, neuropeptides, 

hormones, proteins, and receptors, can be totally different under different gut microbiota 

environments26-28. The brain is arguably the most fascinating organ in the body and also the most 
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complex, as reflected in its hundred billion neurons and their several hundred trillions of 

interconnections29. Among these gut-influenced brain chemistries, neuropeptides and proteins are the 

most important in behavior, neural interconnection, neurodegeneration, neuron development, and 

neuroimmunomodulation30. However, to date, there has been little research on determining the effects 

of gut microbiota on brain proteomics and neuropeptidomics, or on possible pathways of gut-brain 

communications at a protein or neuropeptide level. 

Quantitative MS-based proteomics or peptidomics can be used to characterize relative peptide 

abundance across different groups and can normally be implemented using label-based or label-free 

methods1,31,32. In this study, neuropeptides and proteins were simultaneously extracted from the same 

hypothalamus region, and then the relative quantitative changes of neuropeptides and proteins in 

different groups were identified and compared based on precursor ion intensity from MS, MS/MS 

spectra, or the report ions of isobaric tags. Therefore, the integrated label-free and ten-plex DiLeu-

tag quantitative method showed the profiling changes of neuropeptides and proteins in the mouse 

hypothalamus under different gut microbiota environments. This approach provided further evidence 

on how gut microbiota regulate brain signaling molecules (peptides and proteins), which might reveal 

the possible communications or pathways that gut microbiota could bring about through these crucial 

neuropeptides or proteins. 

 

Experimental  

Animal Experiment and Tissue Extraction 
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Animal care and study protocols were approved by the UW-Madison Animal Care and Use 

Committee. Mice were housed in the Microbial Sciences Building vivarium. Germ-free mice (GF-

mice) and conventional mice (Con-mice) were bred at UW-Madison. GF-mice were housed in 

separate plastic flexible vinyl gnotobiotic isolators. Mice were group-housed by colonization status 

and diet (five mice/cage) under standard conditions (12 h light: dark, temperature- and humidity-

controlled conditions) and received ad-libitum access to water and food. Five GF-mice and five Con-

mice were all sacrificed, and their brains were dissected and immediately rapid-heated via DenatorTM 

to minimize postmortem degradation, after which the hypothalamus region was isolated. A detailed 

description of tissue extraction, protein digestion, and instrument operation methods can be found in 

Supporting Information and a previous report31. 

Results and Discussion 

LFQ of endogenous peptides in the hypothalamus region in GF- and Con-mice  

An integrated LFQ (label-free quantification) and ten-plex DiLeu-based strategy was developed; 

the workflow of this study is illustrated in Figure 1. In total, 2,943 endogenous peptides derived from 

63 precursors from the hypothalamus region of both GF- and Con-mice were identified. A complete 

summary of all the identified peptides is provided in Table S1. High-confidence peptide identification 

was achieved using the high-resolution, high-accuracy nanoLC Orbitrap MS/MS (Figure S1). 
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Figure 1. Workflow for the integrated LFQ and the ten-plex DiLeu-based strategy. 

 

Among the 2,943 identified endogenous peptides, as shown in Figure 2A, 880 peptides were 

detected only in the GF-mice part and were mainly derived from well-characterized neuropeptide 

precursors, including SCG2, pro-opiomelanocortin (POMC), ProSAAS (PCSK1N), 

phosphatidylethanolamine-binding protein 1 (PEBP1), neuroendocrine protein (SCG5), vasopressin-

neurophysin 2-copeptin (AVP), pro-thyrotropin-releasing hormone (TRH), secretogranin-1 (SCG1), 

and somatostatin (SST) (Figure 2D). A total of 387 peptides were detected only in the Con-mice part 

and included mainly SCG2, PEBP1, SCG1, proenkephalin-A (PENK), SST, PCSK1N, 

cholecystokinin (CCK), and VIP peptides (VIP) (Figure 2C). Over half the total, or 1,676 peptides, 

were identified in the overlapping set of GF- and Con-mice, in which the SCG2 precursor accounted 
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for the highest number of peptides (535), followed by PEBP1, PCSK1N, SCG1, PENK, SCG5, and 

SST(Figure 2E). As shown in Figure 2B, the average length of the endogenous peptides in the Con-

mice part was 28.2 amino acids, whereas it was 24.0 and 23.0 in the GF-mice part and the overlapping 

part respectively.  

 

Figure 2. Distribution of the number of peptides per protein for the top 20 most abundant precursors 

from the hypothalamus region. 

 

LFQ of endogenous peptides was carried out in this study to compare the relative quantitation of 

those peptides in the GF- and Con-mice hypothalamus. Peptides showed 1.5-fold changes, and a 

Student’s t-test p-value lower than 0.05 was obtained, as shown in Figure S2A. In total, 368 peptides 
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that were significantly changed were selected (Table S2); representative neuropeptides and 

prohormone-derived peptides identified from the GF- and Con-mice hypothalamus are shown in 

Table S3. Among the 368 peptides, 271 peptides (73.6%) showed higher levels in GF-mice than in 

Con-mice, whereas 97 peptides (26.4%) showed higher levels in Con-mice than in GF-mice. These 

significantly changed peptides were mainly from SCG2 (82, 22.3%), PEBP1 (69, 18.8%), PCSK1N 

(72, 19.6%), SCG1 (20, 5.4%), and PENK (18, 4.9%). Peptides derived from SCG1, SCG2, and 

PCSK1N generally showed higher levels in GF-mice, whereas peptides derived from PEBP1 and 

PENK usually showed higher levels in Con-mice (Figure S3). Known bioactive neuropeptides were 

detected in the present study and quantified as well, such as orexin-B, joining peptide (J-peptide), 

corticotropin-like intermediate peptide (CLIP), γ-lipotropin, β-endorphin, α-MSH, neurokinin A, 

neurokinin B, galanin, substance P, nociceptin, Big LEN, Little LEN, Big SAAS, Little SAAS, and 

cerebellin. All these bioactive neuropeptides showed relatively low levels in Con-mice. As shown in 

Figure S2B. 

As previously reported, neuropeptides in the hypothalamus region play important roles in affecting 

food-intake behavior33, anxiety-like behavior and fear conditioning16, body weight regulation34, 

cardiac function, blood pressure regulation35, circadian function8, control of the sleep-wakefulness 

cycle, and energy homeostasis36. PCSK1N-derived peptides, such as Big SAAS, Little SAAS, PEN, 

and Big LEN, were significantly decreased after food intake, and some other neuropeptides, such as 

galanin and SCG2-derived peptides, were decreased as well. Chromogranin-A (CHGA)-, 

protachykinin-1 (TAC1)-, and CART prepropeptide (CARTPT)-derived peptides significantly 

increased after food intake33. Most of these food-intake involved neuropeptides were also detected in 

the present study, as shown in Figure S2C. Several mature neuropeptides derived from the PCSK1N 
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precursor, including Little LEN, Big LEN, Little SAAS, and Big SAAS, and also some truncated 

PCSK1N-derived neuropeptides, such as GAV [1-20], Big LEN [1-15], PEN [1-18], and Little SAAS 

[1-16], were quantified. These peptides were all down-regulated when microbiota existed in the 

mouse gut. PCSK1N-derived peptides have previously been reported and expressed at a relatively 

high level in the mouse hypothalamus region. PCSK1N can produce body weight changes through 

feeding control and fat deposition34. As one of the most abundant neuropeptides in the brain, 

PCSK1N-derived Big LEN and its receptor GPR171, which compose a Big LEN-GPR171 system, 

were involved in mood-related behaviors, such as anxiety-like and fear behaviors16. 

Galanin (which decreased by 51.4% in Con-mice) is derived from the precursor galanin detected 

in the present study, which was reported to be involved in the regulation of food intake and energy 

homeostasis37. The neuropeptides nociceptin and nociceptin [1-11] detected in the present study 

decreased by 46.4% and 58.1% in Con-mice, respectively. It has been previously reported that 

Nociceptin and its receptor can regulate learning and memory38. Decreasing the activation of the 

nociceptin receptor by using a specific endogenous agonist could enhance memory38, but nociceptin 

or nociceptin receptor agonists might impair memory consolidation39. Therefore, the present results 

implied that the relatively low nociceptin level in Con-mice might help the mice enhance their 

learning and memory. 

Besides the well-known mature neuropeptides, many peptides identified in the present study were 

truncated or longer forms. It is well known that neuropeptides are normally cleaved from a precursor 

molecule; a single precursor can be differentially cleaved into different sets of peptides to form mature 

neuropeptides40. These truncated peptides with differential cleavage levels might be related to distinct 

specificity and activity of the prohormone convertases involved, but they showed similar change 
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trends in the GF- and Con-mice hypothalamus. Take the neuropeptide orexin-B as an example. 

Orexin-B decreased by 54.4% in the Con-mice hypothalamus compared with GF-mice; similarly, 

truncated orexin-B forms, such as orexin-B [1-12], orexin-B [3-28], and orexin-B [14-28], were 

decreased by 56.4%, 51.7%, and 62.0% respectively. This trend was observed by the authors in 

truncated Somatostatin-28, truncated Big LEN, and Little SAAS as well. Notably, C-terminal 

amidation was observed in serval mature neuropeptides, such as orexin-B and C-terminal-amidated 

orexin-B, neurokinin B, and its C-terminal amidated form. Nevertheless, for the J-peptide, α-MSH, 

neurokinin A, substance P, and galanin neuropeptides, only their C-terminal amidated forms were 

identified in the present study. The level of peptide E (fragment) series derived from the precursor 

PENK was significantly elevated by over 150% in Con-mice. Besides, peptides derived from the 

precursor SCG1 (DPLQWKN, LFNPYFDPLQWKNSD, DGVAELDQLLHY, 

YDGVAELDQLLHY, etc.) were elevated from 52.4% to 266.3%. Precursor CCK-derived peptides 

APSGRMSVLKNLQSLDPSHRIS and APSGRMSVLKNLQSLDPS were elevated by 62.6% and 

148.9%, whereas a peptide from SST, APSDPRLRQFLQKSLAAATGKQELAKYFLAE, was 

elevated by 263.1%. 

Neuropeptides derived from POMC were decreased greatly in expression levels as well in response 

to the existence of gut microbiota, such as J-peptide (decreased by 86.1%), CLIP (decreased by 

83.0%), γ-lipotropin (decreased by 80.2%), β-endorphin (decreased by 77.0%), and α-MSH 

(decreased by 74.8%). POMC-derived peptides in the present study, including γ-lipotropin, β-

endorphin, and α-MSH, were decreased significantly in Con-mice. The POMC neuron works in 

association with energy homeostasis and regulating feeding behavior through releasing peptides41: α-

MSH mediates the anorexigenic effect on feeding, whereas on the contrary, β-endorphin can produce 
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food-intake effects. These two neuropeptides might maintain a dynamic balance to regulate feeding 

behavior. It has also been reported that POMC-derived neuropeptides with feeding and obesity-

suppressing functions were increased in the hypothalamus of Con-mice compared with GF-mice, 

which was consistent with the present investigation28. 

In addition, a large number of active neuropeptides, truncated neuropeptides, or endogenous 

peptides with unknown activities were detected and quantified. In total, 84 SCG2-derived peptides 

were quantified, and SCG2-derived peptides are known for their reproduction, food intake, and 

dopamine release functions42. Neuropeptides derived from TAC1 and TAC3, including neurokinin A, 

neurokinin B, substance P, and neuropeptide K [1-23], decreased by 58.6%, 48.8%, 49.0%, and 

40.5%, respectively. TAC1-derived peptides, including neurokinin A, substance P, and neurokinin B 

(TAC3-derived) are involved with the suprachiasmatic nucleus and are associated with circadian 

rhythm8. In addition, in Con-mice, nociceptin, galanin, catestatin, and truncated MCH were decreased 

by 46.4%, 51.4%, 40.4%, and 40.9%, respectively. 

It has already been reported that that GF-mice gain less weight than Con-mice even though their 

food intake and total fecal calories are similar43. GF-mice were completely diet-induced obesity-

resistant when fed a cholesterol-rich lard-based high-fat diet. The mechanism protecting GF-mice 

from diet-induced obesity might involve the influence of microbiota on both sides of the energy 

homeostasis44. Gut microbiota are an important environmental factor that affects energy harvest from 

the diet and energy storage in the host4. Compared with Con-mice, GF-mice could protect against 

obesity after being fed a high-fat, sugar-rich diet, which might be associated with increasing skeletal 

muscle and liver levels of phosphorylated AMP-activated protein kinase (AMPK) and its downstream 

targets44. Therefore, in the present study, hypothalamic mature active neuropeptides showed different 
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levels in GF- and Con-mice, which might indicate one of the pathways by which gut microbiota affect 

food intake and energy homeostasis. 

GF-mice actually showed increased spontaneous motor activity and decreased anxiety-like 

behavior compared with Con-mice24. Based on the changing profiles of neuropeptides under different 

gut microbiota environments, it could be speculated that these changes in brain development and 

behavior-related neuropeptides might act as signal molecules or might be associated with second 

messenger pathways and synaptic LTP in brain regions, which would lead to behavioral change. 

Furthermore, proteins, including receptors, kinases, and cytokines, are also important in responding 

to gut microbiota environment change. 

 

Ten-plex isobaric DiLeu-tag labeled quantitative proteomic analysis in GF- and Con-mice 

An example tandem MS spectrum of a DiLeu-labeled peptide sequence is shown in Figure S4. 

Using the DiLeu-labeled proteomic approach, a total of 3,971 proteins were identified, and 3,277 

proteins were quantified, as shown in Table S5. Volcano plotting (Figure S5) was used to compare 

the fold changes (log2 ratio GF-/Con-) and the statistical significance (−log10 of p-value) for all these 

identifications. A p-value of < 0.05 and a 1.2 magnitude of change were set as thresholds for 

statistically significant identifications. Among these, the 282 up- or down-regulated proteins are listed 

in Table S6. Biological process, cellular component, molecular function enrichment analysis, and 

COG/KOG protein category analysis are shown in Figure S6. 

Interestingly, biological process enrichment results showed that the significantly changed proteins 

were related to nervous system development and signal transduction, including CNS development, 
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intracellular signal transduction, trans-synaptic signaling, G-protein coupled receptor signaling 

pathways, and modulation of synaptic transmission; they may even be related to learning and memory 

(Figure S7A). The cell periphery, cell projection, neuron projection, and synapses were all involved 

in cellular component enrichment (Figure S7B). In molecular function enrichment (Figure S7C), 

proteins were enriched in various functions, including transporter activity, cation or metal ion trans-

membrane transporter activity, and ligand-gated ion channel activity. 

KEGG pathway enrichment analysis suggested that proteins were involved in different pathways. 

The main pathways that attracted attention were some signaling pathways (cGMP-PKG, oxytocin, 

cAMP, GnRH) and synapses (glutamatergic and dopaminergic synapses). Although some hormone 

secretions were obtained, such as bile, insulin, and pancreatic secretions, normally these secretions 

take place in the gut, not in the brain, and therefore what was observed should have been those 

pathways taking place in the brain. In addition, LTP, circadian entrainment pathways were obtained. 

This showed that proteins were involved in these important pathways. Considering the circadian 

rhythm pathway, for instance, as shown in Figure 3A, proteins including glutamate receptor 

(AMPAR), glutamate receptor ionotropic, NMDA (NMDAR), inositol 1,4,5-trisphosphate receptor 

(IR3P), ryanodine receptor (RyR), guanine nucleotide-binding proteins, adenylate cyclase (AC), 1-

phosphatidylinositol 4,5-bisphosphate phosphodiesterase (PLC), protein kinase C (PKC), and 

calcium/calmodulin-dependent protein kinase (CaMKII) were involved in this pathway. Interestingly, 

in the circadian rhythm pathway, PACAP was also identified in the neuropeptide investigation. 

PACAP and glutamate play a co-regulated role in modulating the circadian clock45. In addition, 

neuropeptides have been reported to change significantly during the natural circadian rhythm. For 

example, the PEN-LEN region derived from PCSK1N was significantly more abundant at nighttime, 
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whereas the truncated GAV peptide was significantly more abundant in the daytime. When the 

neuropeptides and proteins detected in the present study are combined, it becomes evident that gut 

microbiota can affect proteins and neuropeptides in the brain, which may be associated with circadian 

rhythm-related physiological changes. In another KEGG pathway instance, LTP and long-term 

depression (LTD) attracted attention. As shown in Figure 3B, significantly changed proteins in the 

hypothalamus were also involved in the LTP and LTD pathways. LTP is the process of strengthening 

the connections between two neurons, which is associated with learning and memory. LTD has long 

been considered to be an important contributor to motor learning and memory. 

 

Figure 3. Neuropeptides and proteins involved in pathways: (A) circadian rhythm pathway, (B) 

glutamatergic synapse, LTP, and LTD pathways. 

 

In summary, although it has been reported that gut microbiota can affect food intake, anxiety-like 

behavior, memory, and learning in mice, what leads to these physiological phenomena is still 



313 
 

attracting scientists’ attention. Gut microbiota are associated with impaired learning and memory. 

GF-mice display normal anxiety levels, but exhibit an absence of non-spatial and working memory, 

proving that gut microbiota are important for memory development46. GF-mice showed more motor 

activity than Con-mice24. GF-mice had lower body and adipose tissue weights compared with age-

matched specific pathogen-free (SPF) mice; GF-mice exhibited decreased food intake levels at 4 

weeks old, but exhibited increased food intake levels compared with SPF-mice at the age of 8 

months47. The present study has shown that under different gut microbiota environments, mice exhibit 

different, or even opposite, behaviors, which might be associated with changes in hypothalamic 

proteins and neuropeptides. 

 

Conclusions 

LFQ-based neuropeptidomics analysis and DiLeu-label-based proteomics analysis have been used 

to compare the relative changes in neuropeptides and proteins in the hypothalamus region of GF- and 

Con-mice. Interestingly, neuropeptides and proteins that significantly changed were identified, and 

the functions of the neuropeptides and the pathways of the proteins involved were related with mouse 

behaviors, brain development, memory, and learning. A label-free ten-plex DiLeu integrated 

quantitative strategy combined with high-resolution MS has been used to simultaneously identify and 

quantify a surprisingly rich neuropeptide and protein presence. The fact that many of these peptides 

and proteins change levels suggests that multiple peptides and proteins are likely to be associated 

with food intake, the circadian clock, memory, and learning. The present analysis confirmed the 

importance of gut microbiota in regulating brain component changes. As an analogy, based on the 
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present method, signaling molecules including neuropeptides and proteins in other brain regions can 

be comprehensively identified and quantified, and even the relationship of important signaling 

molecules among these different regions can be elucidated as well. Further studies should focus on 

validation of these neuropeptide and protein changes and even on changes in these components in 

other brain regions. 
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Supplementary Information 

Experimental details 

Chemicals and Reagents 

All isotopic reagents used for the synthesis of labels were purchased from Isotec (Miamisburg, 

OH). Mass spec grade trypsin and dithiothreitol (DTT) were purchased from Promega (Madison, WI). 

Urea, ammonium bicarbonate, ACS grade methanol (MeOH), dichloromethane (DCM), Optima 

UPLC grade ACN, Optima UPLC grade water, and Optima LC/MS grade formic acid were purchased 

from Fisher Scientific (Pittsburgh, PA). Sodium cyanoborohydride (NaBH3CN), L-leucine, 

formaldehyde (CH2O), hydrogen chloride gas (HCl), iodoacetamide (IAA), tris hydrochloride, 

trifluoroacetic acid (TFA), triethylammonium bicarbonate (TEAB), N,N-dimethylformamide (DMF), 

4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium tetrafluoroborate (DMTMM), N-

methylmorpholine (NMM), heptafluorobutyric acid (HFBA), dimethyl sulfoxide (DMSO), and 
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bovine serum albumin (BSA) were purchased from Sigma-Aldrich (St. Louis, MO). Hydroxylamine 

solution was purchased from Alfa Aesar (Ward Hill, MA). DiLeu Reporter was synthesized in our 

lab based on our previous work1. 

Animal Experiment and Tissue Extraction 

Five GF-mice and five Con-mice were all sacrificed and brains were dissected and immediately 

rapid heated via DenatorTM to minimize postmortem degradation, and then the hypothalamus region 

was isolated. The processed brain tissues were then extracted by probe sonicator into ice-cold 

acidified methanol (90:10:1, MeOH: water: acetic acid) as Ye’s described2. The homogenized sample 

was then spun at 14,000 × g for 15 min at 4 °C. Protein concentration of the pellet was determined 

for each sample using bicinchoninic acid (BCA) assay from Pierce (Rockford, IL) and used to adjust 

the differences in the neuropeptide levels contained in different sample aliquots. The adjusted 

supernatant was decanted and then dried in a vacuum centrifuge. Extracts were re-suspended in 20 μl 

0.1% formic acid aqueous solution by vortexing and brief sonication. Subsequently, the reconstituted 

samples were purified and concentrated by C18 OMIX tips (Agilent Technologies, Santa Clara, CA, 

USA). Tips were first wetted with ACN and equilibrated with water containing 0.1% TFA. Samples 

were applied onto the tip, washed with water containing 0.1% TFA, and then eluted with 50% and 

80% aqueous ACN containing 0.1% TFA. Samples were dried down and loaded on LC-MS. 

For proteomics analysis, pellets after neuropeptide extraction were lysed by sonication in a solution 

containing digest buffer (4% SDS, 100 mM Tris/Base pH 8.0). The BCA assay was applied to 

determine the protein concentration. Then 200 μg protein was incubated 0.5 h after adding DTT to 

10 mM, and then samples were alkylated with 55 mM iodoacetamide (IAA) in the dark for 30 min, 
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and the reaction was quenched by 5 mM DTT. Proteins were precipitated from the soluble extract by 

addition of 5.5 volumes of 80% acetone overnight and rinsed with 80% acetone, and then dry in air. 

Dried pellet was resuspended in 8 M urea, 30 mM NaCl, 50 mM Tris (pH = 8), 5 mM CaCl2, and one 

protease inhibitor cocktail tablet (Roche Diagnostics). The sample was sonicated in an ice-water bath 

for 20 min, centrifuged at 14,000 × g for 5 min, and the supernatant was collected. After that, the 

supernatant was diluted with 50 mM Tris solution (pH = 8) to a urea concentration of less than 1 M. 

Protein digestion was performed with trypsin enzyme at a 50:1 protein/enzyme ratio at 37 °C for 16 

h. The digestion was quenched by adding 10% trifluoroacetic acid (TFA) to a pH lower than 3, 

followed by a desalting step with SepPak C18 solid-phase extraction cartridge (Waters). 

Detailed syntheses of 10-Plex DiLeu tags were reported by Dustin1, DiLeu labeling was performed 

by addition of labeling solution at a 20:1 label to peptide digest ratio by weight and vortexing at room 

temperature for 2 h. Peptides were randomly labeled with DiLeu reagents, DiLeu reagents (115a, 

115b, 116a, 116b, 116c, 117a, 117b, 117c, 118a, and 118b) were used to label the digests from the 

different brain regions of GF-mice (labeled with 116a, 116b, 116c, 117a, and 117b) and Con-mice 

(labeled with 115a, 115b, 117c, 118a, and 118b), respectively. The labeling reaction was quenched 

by addition of hydroxylamine to a concentration of 0.25%, and the peptide mixtures were pooled in 

the same ratio. The pooled labeled peptide samples were dried down. The combined samples were 

then acidified with HFBA to a concentration of 0.5%, cleaned with SCX SpinTips (Protea 

Biosciences, Morgantown, WV) to remove unreacted DiLeu reagent and reaction byproducts from 

the labeled peptides, and then pooled samples were separated into four fractions by high pH 

fractionation using C18 column (Phenomenex). 

Neuropeptide Analysis 
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A Waters nano Acquity ultraperformance liquid chromatography (UPLC) (Waters Corp., Milford, 

MA) was coupled to a Thermo Q-Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific, 

San Jose, CA) for LC-MS/MS analysis. Chromatographic separations were performed on a Waters 

BEH 130 Å C18 reversed-phase capillary column (150 mm × 75 μm, 1.7 μm). The mobile phases 

used were: mobile phase A consisted of water with 0.1% FA, and mobile phase B was composed of 

ACN with 0.1% FA. Samples were injected and loaded onto the Waters NanoACQ 2G-V/M Sym 

C18 (20 mm × 180 μm, 5 μm) using 100% A at a flow rate of 5 μl/min for 1 min. Then the peptides 

were separated using a solvent gradient of 0-10% B over 0.5 min and then 10-35% B over 90 min at 

a flow rate of 300 nL/min. Data-dependent acquisition (DDA) parameters recorded MS scans in 

profile mode from m/z 200–2000 at a resolution of 70,000. Automatic gain control (AGC) targets of 

1 × 106 and maximum injection times (IT) of 250 ms were set. The 15 most intense precursor ions 

were selected for MS2 higher-energy collisional dissociation (HCD) fragmentation with an isolation 

window of 2 Da and dynamic exclusion set at 40 s. An AGC target of 2 × 105 and a maximum IT of 

120 ms was selected for tandem mass acquisition. The tandem MS spectra were acquired at a 

resolution of 17,500 in profile mode, with normalized collision energy (NCE) set at 27, and a fixed 

lower mass at m/z 110. 

DiLeu Label Proteomic Analysis 

Samples were analyzed using a Dionex Ultimate 3000 nanoLC system (Thermo Scientific) coupled 

to a Q Exactive HF hybrid quadrupole-Orbitrap mass spectrometer (QE HF, Thermo Fisher Scientific, 

San Jose, CA). Labeled tryptic peptide samples were dried in vacuo and dissolved in 3% ACN, 0.1% 

formic acid in water. Peptides were loaded onto a 75 μm inner diameter microcapillary column 

fabricated with an integrated emitter tip and packed with 15 cm of Bridged Ethylene Hybrid C18 
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particles (1.7 μm, 130 Å, Waters). Mobile phase A consisted of water with 0.1% FA, and mobile 

phase B was composed of ACN with 0.1% FA. Separation was performed using a gradient elution of 

3% to 30% mobile phase B over 120 min at a flow rate of 300 nL/min. Survey scans of peptide 

precursors from 300 to 1500 m/z were performed at a resolving power of 60,000 with an AGC target 

of 1 × 106 and maximum injection time of 100 ms. The top 10 precursors were then selected for 

higher-energy C-trap dissociation tandem mass spectrometry (HCD MS2) analysis with an isolation 

width of 2.0 Da, a normalized collision energy (NCE) of 30, a resolving power of 60,000, an AGC 

target of 1 × 105, a maximum injection time of 100 ms. Precursors were subject to dynamic exclusion 

for 15 s with a 10 ppm tolerance. 

Data Analysis 

All the raw LC-MS/MS data were imported to PEAKS Studio 8.5 (BSI, Waterloo, Ontario, Canada) 

for peptide identification. Data processing procedures, including peak centroiding and charge 

deconvolution, were conducted to refine the raw data. To perform a neuropeptide search using the 

PEAKS DB algorithm, the enzyme was specified as none. The peptide mass tolerance was set at 10 

ppm and the MS/MS mass tolerance was set at 20 ppm. The variable modifications were set to include 

amidation (C-terminal), acetylation (protein N-terminal), and Gln->pyro-Glu (N-terminal). No 

enzyme specificity was required. The database search was conducted using SwePep neuropeptide 

database (download on the October 6th, 2018). The cutoff of false discovery rate (FDR) for peptide 

identification was set below 1%. Peptide spectral matches (PSMs) with a –10logP value cutoff of 30 

in PEAKS were considered for further manual inspection. All the spectra used for identification 

assigned by PEAKS were subsequently manually checked. For PTM assignment, a minimum of three 

consecutive b or y ions must be present in the MS/MS spectra. 
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Label-free quantitation (LFQ) method was applied to calculate the relative expression level 

changes by comparing the peaks areas calculated using extracted ion chromatograms (XIC). Such 

differential analysis was conducted using PEAKS Studio 8.5. The acquired LC-MS/MS data were 

first aligned by the software. Using one of the samples as a reference, the peak areas of each identified 

peptides were normalized using Tubulins as internal standard proteins, and then extracted, and the 

differential analysis was conducted on the GF- and Con-mice samples region by region. A t-test was 

performed between GF- and Con-mice groups, and any pair at p < 0.05 was considered as statistically 

significant. The parameters used were as follows: m/z range: 200-2000; retention time window = 6 

min; ion m/z width = 10 ppm; retention time range: 5-80 min.  

For DiLeu labeled quantitative analysis, mass spectra were processed using MaxQuant (1.6.0.1). 

Raw files were searched in MaxQuant UniProt mouse complete database (download on the February 

3rd, 2019) using Sequest HT algorithm with trypsin selected as the enzyme and two missed cleavages 

allowed. Searches were performed with a precursor mass tolerance of 25 ppm and a fragment mass 

tolerance of 0.03 Da. Static modifications consisted of DiLeu labels on peptide N-termini 

(+145.12801 Da) and carbamidomethylation of cysteine residues (+57.02146 Da). Dynamic 

modifications consisted of DiLeu labels on lysine residues, oxidation of methionine residues 

(+15.99492 Da), deamidation of asparagine and glutamine residues (+0.98402 Da), and methylation 

of C termini and aspartic acid, glutamic acid, histidine, lysine, arginine, serine, and threonine residues 

(+14.01565 Da). PSMs were validated based on q-values to 1% FDR (false discovery rate) using 

percolator. Quantitation was performed in MaxQuant with a reporter ion integration tolerance of 20 

ppm for the most confident centroid. Only the PSMs that contained all 10 reporter ions were 

considered, and protein quantitative ratios were determined using a minimum of one quantified 
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peptide. Reporter ion ratio values for protein groups were exported to Excel workbook format 

(Redmond, CA). The UniProt Gene Ontology Annotation database (http://www.ebi.ac.uk/GOA/) was 

used. Quantification of neuropeptides and proteins from different samples was analyzed by Excel and 

SPSS 16.0 software. 
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Supplementary Figures 

 

Figure S1. (A) MS/MS spectra of a 5+ charged peptide ion were detected at m/z 966.2924. Using a 

stringent search criterion, a mass tolerance for precursor ions at 10 ppm, and one for product ions at 

20 ppm, the precursor ion was identified as 

IPVGSLKNEDTPNRQYLDEDMLLKVLEYLNQEQAEQGREHL from the neuropeptide precursor 

secretogranin-2 with high confidence (−10logP score of 151.09). (B) A 4+ charged ion at m/z 

666.3583 was characterized as peptide derived from a phosphatidylethanolamine-binding protein-1 

with the sequence RVDYAGVTVDELGKVLTPTQVMNR (−10logP score of 131.07). 
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Figure S2. (A) Volcano plots showing −log10 p-values plotted against log2 ratio (GF-/Con-). The 

horizontal line represents the t-test threshold of significance assigned (p < 0.05). The vertical lines 

mark the threshold of 1.5-fold up and down-regulated peptides. Some peptides had been reported 

previously, such as LLYEKMKGGQ (SCG5), IPVGSLKNEDTPN (SCG2), 

LVNAVGSGRSQSGPNGDRAA (SCG2), and YDGVAELDQLLHY (SCG1). (B) Relative 

abundance of endogenous peptides from the hypothalamus (GF-/Con-). For each peptide, the peak 

area was calculated and log10 transformed, somatostatin-28 [1–12], Little SAAS, Big SAAS, CLIP, 

Big LEN, orexin-B, and α-MSH were present in the upper range, whereas deamidated Big LEN, 

galanin, neurokinin A, neurokinin B, β-endorphin, and cerebellin were present in the lower range. (C) 

Ratio of the relative abundance of endogenous peptides as determined by LFQ in GF- and Con-mice. 

For each peptide, the peak area was calculated and log10 transformed. 
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Figure S3. Relative GF/Con ratio of peptides from PCSK1N, SCG2and PEBP1. PCSK1N and SCG2-

derived peptides were decreased in the Con-mice hypothalamus compared with GF-mice. In contrast, 

those PEBP1-derived peptides in Con-mice were significantly elevated from 50.2% to 191.9% in the 

hypothalamus compared with GF-mice. 

Even though most of the SCG2- and PEBP1-derived peptides had not been reported yet, in the 

present study, some function-related SCG2-derived peptides related to food-intake behaviors were 

detected, such as ANQIPKVAWIPDVES, ASFQRNQLLQKEPDLRLE, 

ASFQRNQLLQKEPDLRLENVQKFPSPEM, and LDEDMLLK2. The SCG2-derived neuropeptide 

manserin was detected in the present study, which was identified in Zhang and Southey’s paper as 

well3,4. In addition, the IPVGSLKNEDTPN and IPVGSLKNEDTPNRQYLDEDMLLKVLE 

peptides were also detected in Southey’s paper and showed differential abundance in daytime and 

nighttime, which indicated that some SCG2-derived peptides might participate in circadian rhythm 

regulation4. The PEBP1-derived homologous peptides QAEWDDYVPKLYEQLSGK, 

QAEWDDYVPKLYEQL, and KGNDISSGTVLSDYVGSGPPSGTGL were also reported in 

Southey’s paper4. 
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Figure S4. An example of identification and quantification of a DiLeu-labeled peptide. Ten reporter 

ions of DiLeu represent the relative abundance of peptide LTG…NR in ten different hypothalamus 

samples. 
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Figure S5. Volcano plots showing −log10 p-values plotted against log2 ratio (GF-/Con-). The 

horizontal line represents the t-test threshold of significance assigned (p < 0.05). The vertical lines 

mark the threshold of 1.2-fold up and down-regulated proteins.
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Figure S6. (A) Among these 282 significantly changed proteins, the functions and characteristics of all the detected and quantified 

proteins were further investigated by gene ontology (GO) analysis and classification of the proteins into three categories: biological 

process, cellular component, and molecular function. (B) Analysis of eukaryotic orthologous groups (KOG) and clusters of 

orthologous groups (COG) of proteins was performed. Among the significantly changed proteins, 66 proteins were involved in signal 

transduction mechanisms, 30 proteins were related to general function prediction only, 18 proteins were involved in intracellular 

trafficking, secretion, and vesicular transport, and 16 proteins were related to inorganic ion transport and metabolism. 
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Figure S7. Enrichment results of biological process (A), cellular component (B), and molecular function (C). 
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Table S1. Representative neuropeptides and preprohormone-derived peptides identified from GF- and Con- mice hypothalamus and 

their corresponding changes. (−0.98) denotes C-terminal amidation, (+15.99) denotes oxidation, and (+0.98) denotes deamidation. The 

GF/Con ratio represents the relative level changes of peptides under different gut environments. 

Accessi
on 

Precursor Gene Name Peptide sequence PTM m/z z Mass ppm 

GF/
CO
N 
Rati
o 

P 
value 

O55241 Orexin Hcrt Orexin-B 
R.RPGPPGLQGRLQRLL
QANGNHAAGILTM.G 

 
588.
1335 

5 
2935.
6038 

9.4 2.19 0.0128 

P01193 
Pro-
opiomelan
ocortin 

Pom
c 

Joining 
peptide 

R.AEEEAVWGDGSPEP
SPRE(-.98).G 

C-term 
amidation 

970.
9355 

2 
1939.
8547 

0.9 7.21 0.0480 

P01193 
Pro-
opiomelan
ocortin 

Pom
c 

γ-Lipotropin 
R.ELEGERPLGLEQVLE
SDAEKDDGPYRVEHF.
R 

 
864.
9205 

4 
3455.
6479 

1.4 5.05 0.0463 

P01193 
Pro-
opiomelan
ocortin 

Pom
c 

CLIP 
R.RPVKVYPNVAENES
AEAFPLEF.K 

 
1253
.639
4 

2 
2505.
2539 

4.1 5.89 0.0425 

P01193 
Pro-
opiomelan
ocortin 

Pom
c 

α-MSH 
R.SYSMEHFRWGKPV(-.
98).G 

C-term 
amidation 

811.
9008 

2 
1621.
7823 

2.9 3.97 0.0497 

P01193 
Pro-
opiomelan
ocortin 

Pom
c 

β-endorphin 
R.YGGFMTSEKSQTPLV
TLFKNAIIKNAHKKGQ 

 
688.
1751 

5 
3435.
8335 

1.7 4.35 0.0431 

P41539 
Protachyki
nin-1 

Tac1 Neurokinin A 
R.HKTDSFVGLM(+15.9
9)(-.98).G 

Oxidation 
C-term 
amidation 

575.
2912 

2 
1148.
5648 

2.6 2.42 0.0089 



 

 

3
3
4
 

P41539 
Protachyki
nin-1 

Tac1 Substance P 
R.RPKPQQFFGLM(+15.
99)(-.98).G 

C-term 
amidation 

682.
3691 

2 
1362.
7230 

0.5 1.96 0.0212 

P47212 
Galanin 
peptides 

Gal Galanin 
R.GWTLNSAGYLLGPH
AIDN(+.98)HRSFSDKH
GLT(-.98).G 

Deamidati
on 
C-term 
amidation 

633.
7219 

5 
3163.
5588 

4.5 2.06 0.0238 

P55099 
Tachykinin
-3 

Tac3 Neurokinin B 
R.DM(+15.99)HDFFVGL
M(-.98).G 

Oxidation 
C-term 
amidation 

613.
7717 

2 
1225.
5260 

2.3 1.78 0.0303 

Q64387 
Prepronoci
ceptin 

Pnoc Nociceptin 
R.FGGFTGARKSARKL
ANQ.K 

 
603.
6692 

3 
1807.
9805 

2.9 1.86 0.0004 

P60041 
Somatostat
in 

Sst 
Somatostatin-
28 [1-12] 

R.SANSNPAMAPRE.R  
622.
7897 

2 
1243.
5615 

2.6 1.58 0.0008 

Q9QX
V0 

ProSAAS 
Pcsk
1n 

Big SAAS 
S.ARPVKEPRSLSAASA
PLVETSTPLRL.R 

 
687.
3975 

4 
2745.
5500 

3.9 2.31 0.0213 

Q9QX
V0 

ProSAAS 
Pcsk
1n 

Big LEN 
R.LENPSPQAPARRLLP
P 

 
586.
3352 

3 
1755.
9631 

11.8 2.28 0.0026 

Q9QX
V0 

ProSAAS 
Pcsk
1n 

Little LEN R.LENPSPQAPA.R  
512.
2601 

2 
1022.
5032 

2.4 3.02 0.0002 

Q9QX
V0 

ProSAAS 
Pcsk
1n 

Little SAAS 
R.SLSAASAPLVETSTPL
RL.R 

 
907.
0076 

2 
1811.
9993 

0.7 1.74 0.0021 

Q9R17
1 

Cerebellin-
1 

Cbln
1 

Des-Ser1-
Cerebellin 

S.GSAKVAFSAIRSTNH.
E 

 
515.
9432 

3 
1544.
8059 

1.3 2.10 0.0471 

Q9R17
1 

Cerebellin-
1 

Cbln
1 

Cerebellin 
R.SGSAKVAFSAIRSTN
H.E 

 
544.
9545 

3 
1631.
8379 

2.4 2.83 0.0191 
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Appendix VI 

 

Extraction Optimization for Combined Metabolomics, 

Peptidomics, and Proteomics Analysis of Gut 

Microbiota Samples 

 

 

 

 

 

Adapted Caitlin Keller, Pingli Wei, Benjamin Wancewicz, Tzu-Wen L Cross, Frederico Rey, 
Lingjun Li. "Extraction Optimization for Combined Metabolomics, Peptidomics, and Proteomics 
Analysis of Cecum Gut Microbiota Samples." To be submitted. Pingli Wei prepare sample and 
datanalysis for the peptide and protein study. 
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Abstract 

Multiomic studies are increasingly used to gain a deeper understanding of molecular processes 

occurring in a biological system, such as the complex microbial communities (i.e., microbiota) 

that reside the distal gut. While a combining metabolomics and proteomics is more commonly 

used, multiomics studies including peptidomcis characterization are less frequently undertaken. 

Here, we investigated three different extraction methods, chosen for their previous use in 

extracting metabolites, peptides, and proteins, and compared their ability to perform metabolomic, 

peptidomic, and proteomic analysis of mouse cecum content. The methanol/chloroform/water 

extraction performed the best for metabolomic and peptidomic analysis as it detected the largest 

number of small molecules and identified the largest number of peptides, but the acidified 

methanol extraction performed best for proteomics analysis as it had the highest number of protein 

identifications. The methanol/chloroform/water extraction was further analyzed by identifying 

metabolites with MS/MS analysis and by gene ontology analysis for the peptide and protein results 

to provide a multiomics analysis of the gut microbiota.  

 

Keywords: Microbiome, Multiomics, Metabolomics, Peptidomics, Proteomics  

 

Introduction 

The gastrointestinal tract is host to large and dynamic communities of microbes, containing 

~108 to 1010 organisms  per gram in the illium and stool [1] , and encompassing the 3 domains of 

life: bacterial, archaea and eukaryotes [2,3]. The gut microbiota has various roles in human health, 

including nutrition and immune function modulation [4,5]. Furthermore, the disruption of the gut 

microbiota has been connected to various inflammatory chronic conditions such as inflammatory 
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bowel disease, obesity [6,7] and cardiovascular disease [8,9]. Due to the importance that the 

microbiota plays in human health, there is an abundance of studies on various aspects of the 

microbiota. Research includes various aspects of the microbiome such as the metagenomic [10] 

and proteomic content [11], but also looks at how the microbiome influences other systems, 

including blood and cerebrospinal fluid metabolites [12,13].  

While studying individual “omics” results in a depth of information about the genomic, 

proteomic or metabolomic content of the desired biological specimen, the combination of multiple 

of these analyses can determine different connections between molecular classes in a biological 

system. Consequently, multiomic approaches are used to study the microbiota, as well as in other 

fields [14-17]. A combination of metagenomic and metabolomic approaches has been used, for 

example, to study the microbiota’s response to infection [18], the effect of arsenic on the gut 

microbiome [19], and the effect of trichloroacetamide exposure on the gut microbiome and urinary 

metabolites [20]. Other combinations of metagenomics, metatranscriptomics, metabolomics, and 

(meta)proteomics can also be employed [21]. Although large amounts of data created in multiomic 

techniques can be challenging and time consuming to analyze, advances in software are arising to 

simplify the task [22,23].  

While the field of peptidomics is more recent than the fields of metabolomics and 

proteomics, it has nevertheless risen to importance [24,25]. Well-studied signaling peptides in the 

brain, i.e. neuropeptides, are an important class of molecules regulating a wide variety of processes 

[26,27]. Similarly, peptide hormones in the endocrine system are also important endogenous 

peptides that have been studied due to their role in regulating metabolism [28,29]. In the gut, 

bioactive peptides, derived from digestion of proteins in the intestines, has resulted in a number of 

peptides with roles in health [30]. For example, bioactive peptides present in the gut that inhibit 
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the angiotensin I-converting enzyme (ACE) can reduce hypertension and improve cardiovascular 

health [31,32].  

Although multiomic studies with a combination of genomics, metabolomics, and 

proteomics is common, peptidomics is much less frequently combined with other “omic” 

techniques. Therefore, we set out to identify an optimal extraction method ideal for combining 

peptidomics with metabolomics and proteomics for a multiomics approach to analyze the gut 

microbiota. Here, we tested three different extraction methods for combined metabolomics, 

peptidomics, and proteomics. The three extractions chosen have been previously used in various 

biological systems to achieve good results in one or more of the metabolomics, peptidomics, and 

proteomics fields and comprise of a variety of solvent systems. The chloroform/methanol/water 

extraction is a common small molecule extraction that can be used for metabolomics and 

proteomics multiomics studies [33], and has previously been used to study cecal metabolomics 

[18]. An acidified methanol extraction is commonly used in neuropeptide extractions [34,28] but 

has also been applied for metabolomics [35]. Finally, the 40/40/20 acetonitrile/methanol/water 

extraction adds acetonitrile to the extraction solvent, which has been shown to be beneficial for 

certain metabolites [36] and has been shown to work well in metabolomics studies [37]. The small 

molecules, peptides, and proteins detected for each extraction were compared and used to 

determine an optimal extraction for metabolomic, peptidomic, and proteomic analysis. While the 

acidified methanol extraction performed best for the proteomics experiments, the 

methanol/chloroform/water extraction performed the best in terms of the number of small 

molecules and peptides detected and was further evaluated with gene ontology analysis.  

 

Materials and Methods 
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Cecum Collection 

All animal procedures were approved by the Institutional Animal Care and Use Committee 

at the University of Wisconsin-Madison. Germ-free (n=1) and conventionally-raised (n=1) male 

C57BL/6 mice were used and fed LabDiet #5021 (Purina Mills, Inc. Richmond, IN). At 21 weeks 

of age, mice were euthanized via CO2 inhalation and exsanguination. Cecal content was collected, 

snap frozen in liquid nitrogen immediately, and stored in the -80°C until analysis. 

Sample Preparation 

The two cecum samples were combined and separated into three approximately equal 

aliquots. On one aliquot, a methanol/chloroform/water extraction was performed in a PTFE tube 

by adding in order, 3 parts methanol, 1 part chloroform, and 4 parts MilliQ water (total volute 4.0 

mL). The tube was vortexed and centrifuged at 3200 x g and 4oC for 15 minutes. The upper 

aqueous layer was removed, and 4 parts methanol were added to the tube and vortexed. The tube 

was centrifuged again at 1500 x g and 4oC for 5 minutes. The supernatant was removed (organic 

fraction). The aqueous fraction, organic fraction, and pellet were dried down and saved in the -

80oC until further processing. The second aliquot was extracted with acidified methanol 

(methanol/water/acetic acid 90/9/1 v/v/v) and the third aliquot with 40% methanol 40% 

acetonitrile 20% water. Both of these two extractions were probe sonicated for 3 cycles (8s on 15 

s off) at 4oC and centrifuged at 15,000 x g and 4oC for 15 minutes. The supernatant and pellet were 

separated and then dried down in a speed vac and saved in the -80oC until further processing.  

A 3 kDa molecular weight cut-off (MWCO) filtration was performed on the aqueous and 

organic fraction of the methanol/chloroform/water extraction, the acidified methanol (AcMeOH) 

extraction, and the methanol/acetonitrile/water extraction. The Amicon Ultra (Millipore) MWCO 

device was first rinsed with 0.2 mL 0.1 M NaOH, and 0.5 mL 50% methanol. Both rinses were 
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centrifuged at 14,000 x g until the rinse was through the membrane. The sample was then loaded 

into the device and centrifuged through the device at 14,000 x g. A final rinse of 0.1 mL 50% 

methanol was added to the device and the MWCO was centrifuged at 14,000 x g. The content 

below 3 kDa was split into two aliquots (one metabolomics and one peptidomics) for each of the 

four samples and dried down in a speed vac. The MWCO was rinsed with 0.4 mL 50% methanol 

and equilibrated for 5 mins, and then flipped over and centrifuged at 14,000 x g for 2 mins to 

collect content above 3 kDa from the device. A 30 kDa MWCO was performed on the above three 

kDa fraction to separate the extract into peptidomics (3 kDa to 30 kDa) and proteomics (above 30 

kDa) fractions. 

           The below 3 kDa and 3-30 kDa peptidomics fractions were combined. Sep-Pak C18 was 

used for peptide desalting, and then peptide samples were dried down in a speed vac and saved at 

-80oC until LC-MS/MS analysis. The proteomics fractions from the supernatant contents above 30 

kDa and from the pellets were combined. The aqueous and organic fraction above 30 kDa from 

the methanol/chloroform/water extraction method were combined together with the pellet. The 

protein mixture samples were dissolved in 1 mL ice-cold PBS, and debris from the pellet was 

removed with a low centrifuge speed (300 x g, 4oC for 5 mins) [38]. The supernatant was carefully 

collected, and the pellets were washed another two times with PBS and all the supernatant obtained 

from each time was combined. The supernatant was then centrifuged at 20,000 x g for 10 min to 

pellet the bacterial cells and host cells. The pellet was then lysed with 8 M urea Lysis buffer with 

sonication (On 8 sec, Off 15 sec, 3 cycles). The total protein concentration of each pellet was 

determined by BCA assay and then digested with Trypsin/Lys-C mixture overnight. Then, the 

digested proteins were desalted, dried down in a speed vac, and saved in the -80oC until LC-

MS/MS analysis. 
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Metabolomics Data Acquisition and Analysis 

 The aqueous fraction was resuspended at 10 mg/mL in optima grade water with 0.1% 

formic acid while the other three metabolomic samples (organic fraction, AcMeOH sample, 

MeOH/AcN/water sample) were resuspended at 10 mg/mL in optima grade methanol with 0.1% 

formic acid. Any samples that were cloudy were centrifuged briefly and the supernatant used for 

the analysis. LC-MS/MS analysis was performed with a Dionex Ultimate 3000 UHPLC system 

connected to a Q Exactive mass spectrometer (Thermo Scientific). Separation occurred on a 

Cortecs C18 column (2.1 mm internal diameter x 100 mm length, 1.6 μm particle size; Waters), 

equipped with a corresponding guard column with a column temperature of 35°C, and mobile 

phases of optima grade water with 0.1% formic acid (A) and acetonitrile with 0.1% formic acid 

(B). A 35 minute gradient at a flow rate of 0.3 mL/minutes with the following conditions was used 

for separation: 0–5 min, 1% B; 5–10 min, linear gradient from 1–3% B; 10–18 min, linear gradient 

from 3–40% B; 18–22 min, linear gradient from 40–80% B; 22–27 min, column cleaning at 95% 

B; and 27–35 min, re-equilibration at 1% B. A top 5 data dependent acquisition method was used 

for MS/MS of small molecules in the extractions. The full MS settings were 70,000 resolution, 

1e6 AGC, 100 ms max inject time, 100-1500 m/z. The MS/MS settings were 35,000 resolution, 

1e5 AGC, 100 ms max inject time, 1.0 m/z isolation window, and 30 dynamic exclusion. Three 

technical replicates were run for each extraction, and each technical replicate used a different HCD 

collision energy (25, 30, 40 respectively). Samples were run in both positive and negative mode.  

 Compound Discoverer software was used to analyze the LC-MS/MS data for each 

extraction in both positive and negative ion mode (the aqueous and organic fractions were analyzed 

together). Individual runs were aligned with an adaptive curve model with a maximum shift of 1 

minute and 5 ppm tolerance. Unknown compounds were detected with a 5 ppm mass tolerance, 
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30% intensity tolerance, 3 S/N ratio, and 1,000,000 minimum peak intensity. Unknown 

compounds were grouped with a 5 ppm mass tolerance and 0.1-minute retention time tolerance. A 

fill gaps step was used with 5 ppm mass error and 0.1 retention time error. Constant sum 

normalization and marking of background compounds were used. The MS/MS spectra were 

searched in the mzCloud library against all activation types and activation energies and matches 

were manually validated by ensuring that all the major fragment ions in the database spectra 

matched the experimental spectra. MS/MS spectra were also searched against the MassBank of 

North America MS/MS database for additional identifications.  

Peptidomics Acquisition and Analysis  

Peptide samples were resuspended in optima grade water with 3% acetonitrile and 0.1% 

formic acid. LC-MS/MS was performed on an Ultimate 3000 UPLC system coupled with the 

Orbitrap Fusion™ Tribrid™ Mass Spectrometer. A 75 μm × 16 cm homemade column packed 

with 1.7 μm, 150 Å, BEH C18 material obtained from a Waters (Milford, MA) UPLC column 

(part no. 186004661) was used for label-free peptide separation at a flow rate of 0.3 μl/min. Mobile 

phase A was 0.1% formic acid in optima water and mobile phase B was 0.1% formic acid in optima 

acetonitrile. The 145 min optimized gradient used was as follows: 0-18.33 min, 3% solvent B; 

18.33-30 min, 3-10% B; 30-50 min, 10-20% B; 50-108 min, 20-75% B; 108-118 min, 75% B; 

118-118.5 min 75%-95% B; 118.5-128 min, 95% B; 128-128.5 min, 95%-3% B; 128.5-145 min, 

3% B. Full MS scans were acquired from m/z 300 to 1500 at a resolution of 60 K, automatic gain 

control (AGC) at 2 × 105, and maximum injection time (IT) of 100 ms. The top 20 precursors were 

then selected for higher-energy C-trap dissociation tandem mass spectrometry (HCD MS2) 

analysis with an isolation window of 1 m/z, a HCD collision energy (NCE) of 30, a resolving 

https://www.thermofisher.com/order/catalog/product/IQLAAEGAAPFADBMBCX
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power of 15 k, an AGC target of 5 × 104, a maximum injection time of 100 ms, and a lower mass 

limit of 120 m/z.  

The .raw data files from the Orbitrap MS analysis were searched against a combined 

database which included food, 93 strains of bacteria, and mouse proteome from Uniport with 

PEAKS STUDIO 8.5 software. A precursor tolerance of 10 ppm and a fragment mass tolerance of 

0.02 Da were allowed. Acetylation (N-term), amidation, oxidation (M), pyro-Glu from E, pyro-

Glu from Q, sulfation (STY), were set as rare dynamic modifications and allowing three maximum 

variable PTM per peptide. Parameters for confident peptide identification were Ascore (PTM site 

confidence) higher than 20, FDR lower than 1%, and the presence of at least one unique peptide.  

Proteomics Acquisition and Analysis  

A Dionex UltiMate 3000 nanoLC system coupled with a Q Exactive HF Orbitrap MS was used 

for Ultra-performance LC-MS analysis. Homemade column and mobile phases were the same as 

mentioned above for the peptidomic analysis. The optimized  gradient used was as follows: 0-16 

min, 3% solvent B; 16-20 min, 3-25% B; 20-30 min, 25-45% B; 30-50 min, 45-70% B; 50-56 min, 

70-95% B; 56-60 min 95% B; 60-60.5 min, 95-3% B; 60.5-70 min, 3% B. Full MS scans were 

acquired from m/z 300 to 1500 at a resolution of 60 K, AGC at 1 × 106, and maximum injection 

time (IT) of 100 ms. The top 15 precursors were then selected for higher-energy C-trap dissociation 

tandem mass spectrometry (HCD MS2) analysis with an isolation window of 1.4 m/z, a normalized 

collision energy (NCE) of 30, a resolving power of 15 K, an AGC target of 1 × 105, a maximum 

injection time of 100 ms, and a lower mass limit of 120 m/z. PEAKS software was used for protein 

identification. The parameters were the same as used above for peptidomics analysis, except 

trypsin with D&P enzyme was selected for this bottom-up proteomics study. Non-specific 
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cleavage at both ends of the peptide was allowed and the maximum missed cleavages per peptide 

was set at two. 

 

 Results 

Two cecal content samples were combined and split into three approximately equal 

aliquots to test three different extraction protocols. The sample preparation workflow is provided 

in Online Resource 1 for the three extractions. The three extractions tested were a 

methanol/chloroform/water (MeOH/CHCl3/H2O) extraction, an acidified methanol (AcMeOH) 

extraction, and a methanol, acetonitrile, water (MeOH/AcN/H2O) extraction. The 

methanol/chloroform/water extraction results in two liquid fractions, an aqueous fraction and an 

organic fraction, as well as a pellet. The other two extractions resulted in a supernatant and a pellet. 

The four liquid portions were processed with a 3 kDa molecular weight cut-off followed by a 30 

kDa molecular weight cut-off. The <3 kDa portion was split for LC-MS metabolomics analysis 

and nano-LC-MS peptidomics analysis. The 3<x<30 kDa portion was saved for nano-LC-MS 

peptidomics analysis as well. The >30 kDa fraction was combined with the pellet for bottom up 

nano-LC-MS proteomics analysis. 

Metabolomics 

Metabolomics data was analyzed in Compound Discoverer 2.0 to detect unknown 

compounds and perform tandem MS (MS/MS) matching of experimental MS/MS spectra to the 

mzCloud high resolution/accurate mass spectral database. Each of the three extractions were 

analyzed separately in the software with the same parameters to test how many compounds were 

detected in each extraction. The aqueous and organic fractions for the methanol/chloroform/water 

extraction were combined in the software. Fig. 1 shows the results for the metabolomics analysis. 
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In both positive and negative mode, the methanol/chloroform/water extraction detected about 2-

times more compounds than the other extractions in Compound Discoverer. Compound 

monoisotopic molecular weights were processed in METLIN with a 5 ppm error to approximate 

how many of the m/z potentially matched to known small molecules. The 

methanol/chloroform/water extraction still out-performed the other two extractions in both 

positive and negative mode in the METLIN  analysis. In order to compare the detected m/z across 

the three extractions, the METLIN searching results were used with the venny software [39] to 

create Venn diagrams. To be consistent, the lowest METLIN  identification number was used for 

the m/z that had multiple accurate mass matches to the METLIN database. In the Venn diagrams 

(Fig. 1b, positive data, Fig. 1d, negative data), a majority of the compounds are detected with the 

methanol, chloroform water extraction, with only a small percentage unique to one of the other 

two extractions. Thus, the methanol/chloroform/water extraction performs the best for 

metabolomics analysis.  

Peptidomics 

Peptidomic analysis was performed on a nano-LC QE-HF system and the data analyzed in 

PEAKS 8.5 software. Fig. 2 shows the results of the peptidomics experiments by showing the 

peptide sequences detected and by comparing the protein accession numbers detected. In Fig. 2a, 

the number of peptide sequences is shown with the number of peptide sequences shared in both 

technical replicates represented with the diagonal lines. The organic fraction of the 

methanol/chloroform/water extraction had the most peptides identified, with the aqueous fraction 

in second. The other two extractions showed low peptide identifications. When comparing the 

proteins detected from the peptide sequences that were shared between both technical replicates 

for the organic and aqueous fractions, most of the aqueous proteins are also in the organic fraction, 
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but there are proteins only in the aqueous fraction. To compare the three extractions, the 

combination of unique proteins from the aqueous and organic fraction were taken, along with the 

proteins in both technical replicates for the other two extractions. The Venn diagram shows only 

2 proteins that were not detected by the methanol/chloroform/water extraction and over 100 

proteins that were only detected in the methanol/chloroform/water extraction. Thus, the 

methanol/chloroform/water extraction performs best for the peptidomics analysis as it identifies 

the most proteins and covers almost all of the proteins identified in the other two extractions. 

 To look further at the differences between the peptides detected in the aqueous and organic 

fractions, peptide sequences found in each fraction from the proteins present in both technical 

replicates were compared with respect to their length and isoelectric point. The isoelectric point 

was calculated using the Peptide Property calculator (GeneScript, online tool) as it allowed the 

inclusion of certain posttranslational modifications (PTMs), for example acetylation. PTMs that 

were not present in this online tool were excluded from the isoelectric point analysis, but this was 

minority for each fraction (11/198 for organic fraction 2/89 for aqueous fraction). Fig. 3 shows the 

results of the length and isoelectric point comparison. The length distribution in the aqueous and 

organic fractions seemed to be similar as the organic fraction had approximately 2-fold more 

peptides sequences at each length, and overall the organic fraction has about 2 times more 

sequences. The isoelectric point distribution, however, does appear to be different between the two 

fractions. While the number of peptides with very low pI’s is approximately the same for both 

fractions, the organic fraction has more peptide sequences with pI’s above 4. The organic fraction 

potentially extracted a larger number of peptides than the aqueous fraction due to the preference 

of the peptides for the methanol/chloroform solvent.  

Proteomics 
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Bottom-up proteomics was performed on the pellets and the >30 kDa content from the 

molecular weight cut-off step. The results of this analysis are shown in Fig. 4. The acidified 

methanol extraction had noticeably more proteins than the other two extractions. While only 

proteins detected in both technical replicates were counted as identifications, it is worth noting that 

many proteins were only in 1 technical replicate, rather than both technical replicates (as shown 

by the diagonal lines). Potentially adding in a third technical replicate in the experimental analysis 

could increase the number of identifications by increasing the identifications seen in multiple 

technical replicates. The comparison of the three extractions shows that each extraction has 

hundreds of identifications unique to that extraction, with the acidified methanol extraction having 

over a thousand identifications unique to it. For searching, a combined multi-organism database 

was used containing the mouse genome, the genomes of approximately 90 bacterial strains for a 

model microbiota [18], and potential proteins from the food the mice were fed. While 

conventionally raised mice very likely have a more diverse microbial community [40], here a more 

focused database was used because increasing the database size to a more comprehensive one 

would make processing the MS/MS data significantly more challenging. For studies highly 

interested in the microbial species present, a targeted microbiome database without the mouse and 

food components could be used instead. Fig 4c shows the number of proteins that match to each 

of the different potential sources of the protein, namely the mouse, the microbiome, and the food. 

The methanol/acetonitrile/water extraction has the most proteins matching to both the mouse 

database and the food proteins. Where the acidified methanol extraction gets a vast majority of its 

protein identifications from is from microbiome proteins, as it has a much higher number of 

microbiome identifications compared to the other two extractions.  

Combined Metabolomics, Peptidomics, Proteomics  
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Fig. 5 combines the results of the three different omics by total identifications and by a 

source comparison for the combined peptide and protein results. The total identifications were 

calculated with the total number of hits to the METLIN database from the positive mode LC-MS 

data for the metabolomics analysis, the identified proteins from the peptidomics study shared 

between both technical replicates and, the protein number from the proteomics study shared 

between both technical replicates. When all three omics are combined, the 

methanol/chloroform/water and the acidified methanol extractions have similar number of total 

identifications. When the peptide and protein results are combined, and the source of the protein 

identification investigated, the methanol/chloroform/water, and methanol/acetonitrile/water 

extractions have similar numbers of mouse proteins. However, the acidified methanol extraction 

still has the most identifications due to the large number of microbial protein identifications. For 

microbiome studies focusing on the host response, the methanol/chloroform/water performs well 

for metabolomics, peptidomics, and proteomics, but if microbial proteins are desired, the acidified 

methanol extraction preforms best.  

 

Discussion 

In order to get a good representation of metabolites, peptides, and proteins, the 

methanol/chloroform/water extraction was chosen for further investigation into the compounds 

detected. For metabolomics identification, the mzCloud and MassBank small molecule MS/MS 

databases were used for spectral matching of fragment ions. Potential matches to either database 

were manually inspected for verification. Online Resource 2 compares the total small molecule 

putative identifications in the methanol/chloroform/water extraction with the two MS/MS 

databases with both databases in positive and negative modes, as well as comparing the overlap 
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between the positive and negative putative identifications. Online Resource 3 provides all the 

small molecule identifications for the methanol/chloroform/water extraction with their molecular 

weight, retention time, and which database and polarity they were identified from. In positive 

mode, both databases provided a similar number of identifications and resulted in complementary 

coverage for a total of 57 identifications. In negative mode, almost all the results came from the 

MSDial database. Overall, the positive and negative mode identification results showed 

complementary coverage as many identifications were made only in one of the polarities. To 

verified putatively identified compounds, standards could be obtained, and retention times and 

fragmentation patterns compared to the experimental data. More identifications are potentially 

possible using other databases (i.e., METLIN) or using in silico fragmentation software. However, 

these were not utilized here due to the time involved in metabolomics identification and the lack 

of a biological experiment that would show upregulation or downregulation of certain m/z in a 

biological condition.  

The identifications for the peptidomics results for the methanol/chloroform/water 

extraction are in Online Resource 4 (aqueous fraction) and Online Resource 5 (organic fraction), 

and the proteomics results for the methanol/chloroform/water extraction are provided in Online 

Resource 6. Gene Ontology analysis was conducted on the protein and peptide results from the 

methanol/chloroform/water extraction using DAVID Bioinformatics Resources 6.8 [41,42]. The 

gene ontology results of the biological processes for the detected peptides and proteins are shown 

in Fig. 6. The top biological process for both the protein and peptide results was proteolysis.  Other 

shared biological process include digestion, chromatin silencing, regulation of systemic arterial 

blood pressure by renin-angiotensin, and metabolic process. Overall, the many shared biological 

processes in the protein and peptide gene ontology results indicate that the protein and peptide 
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results agree well with each other. By integrating the peptide results with the protein results, a 

more comprehensive understanding of the biological processes can be achieved for a biological 

question of interest.   

To look further at the peptidomcis results, the peptides belonging to the biological process 

of digestion, a key function of the digestive track that the cecum is a part of, were investigated. 

Table 1 shows the peptides that fell under the biological process of digestion. Peptide sequences 

from the enzymes chymotrypsinogen B1(Ctrb1), serine protease, and trypsin were detected. 

Further analysis would be necessary to discover the potential role that these peptides play. 

Furthermore, an in silico study reported the potential for endogenous proteins in the gut to be 

digested into bioactive peptides [43]. Experimentally, peptides were observed from three proteins, 

Mucin-13, Chymotrypsinogen B, and pancreatic triacylglycerol lipase, that have predicted 

potential for bioactive peptide release after intestinal digestion of the gut endogenous protein. The 

predicted activity for peptides from these three proteins is ACE inhibition, which can prevent 

hypertension [32]. 

 Multiomic analysis can provide a greater understanding by studying not just the one 

subclass of molecules, protein changes, for example, but also changes in the metagenomic, or 

metabolome in order to better understand the relationships between various biological systems.  

Here, the ability of three extractions for combined metabolomics, peptidomics, and proteomics 

analysis was compared. The methanol/chloroform/water extraction method enabled a more 

comprehensive view of all three omics in the mouse host system and performed particularly strong 

in metabolomics and peptidomics analysis. By including peptidomics in the multiomics 

experiments, a deeper understanding of the role of peptides could be obtained, for example, by 

characterization and discovery of bioactive peptides and their role in various pathways.  
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Tables 

 

Table 1. Peptide Sequences from the Digestion biological process in the peptide gene ontology 

results.  

Identification Name Uniptrot ID Sequence Mass (Da) 

chymotrypsinogen 

B1(Ctrb1) 

Q9CR35 A.GEFDQGSDEENVQVLK.I 1792.8115 

  
K.IAQVFKNPK.F 1043.6127 

protease, serine 2(Prss2) P07146 I.NVLEGNEQFVDSAK.I 1548.7419 

trypsin 4(Try4)/ 

trypsin 5(Try5) 

Q9R0T7/ 

Q9QUK9 

R.TLNNDIM(+15.99)LIK.L 1189.6377 
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Figure Captions 

 

Fig. 1 Metabolomics results for the three extractions. The number of compounds detected is shown 

for positive (A) and negative (C) mode. The m/z with hits in METLIN were compared between 

the three extractions in Venn Diagrams (B, positive and D, negative mode) 

 

Fig. 2 Peptidomics results from the extraction test. In (A) the number of peptide sequences are 

shown. (B) compares the protein accession numbers in the aqueous and organic fractions of the 

methanol, chloroform, water extraction. (C) compares the protein accession numbers for the three 

extractions. 

 

Fig. 3 Comparison of peptide length (A) and isoelectric point (B) between peptide sequences 

detected in organic and aqueous fractions. 

 

Fig. 4 Proteomics results from extraction optimization. (A) shows the detected proteins with the 

diagonal lines representing the number of shared proteins in both technical replicates. (B) 

compares the shared proteins in both technical replicates for the three extractions. (C) shows the 

breakdown of the shared proteins to the source of the protein ID for each extraction 

 

Fig. 5 Combined results of the three omics analysis. (A) shows the combined identifications of 

metabolomics, peptidomics, and proteomics results. (B) compares the protein source for the 

combined peptide and protein results. 

 

Fig. 6 DAVID gene ontology results showing the biological processes associated with detected 

peptide (A) and protein (B). SABP stands for systemic arterial blood pressure. 
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Figures 

Fig 1 
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Fig 2 
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Fig 3 
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Fig 4 
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Fig 5 
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Fig 6 
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SUPPLEMENTARY INFORMATION 

 

Online Resource 1. Diagram showing experimental workflow  

 

 

Online Resource 2. Comparison of mzCloud and MSDial spectral matching databases for 

metabolomics identification 
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