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ABSTRACT

This dissertation presents a distributed platoon control strategy of connected and automated vehicles
(CAVs) based on physics-informed Deep Reinforcement Learning (DRL) for mixed traffic of CAVs
and human-driven vehicles (HDVs). The dissertation will mainly consist of three parts: (i) generic DRL-
based CAV control framework for the mixed traffic flow; (i) DRL-based CAV distributed control under
communication failure for the fully connected automated environment; (iii) distributed CAVs control
for the mixed traffic flow, under real-time aggregated macroscopic car-following behavior estimation

based on DRL.

For the first part, we first discussed the current challenges for CAV control in mixed traffic flow. For
distributed CAV control, we categorize the local downstream environment into two broad traffic
scenarios based on the composition of CAVs and HDVs to accommodate any possible CAV-HDV
platoon configuration: (i) a fully connected automated environment, where all local downstream
vehicles are CAVs, forming a CAV-CAVs topology; and (ii) a mixed local downstream environment,
comprising the closest downstream CAV followed by one or more HDVs, creating a CAV-HDVs-CAV
topology. This generic control framework effectively accommodates any CAV-HDV platoon topology

that may emerge within the mixed traffic platoon. This part is discussed in Section 3.

For the second part, this study proposes a deep reinforcement learning (DRL) based distributed
longitudinal control strategy for connected and automated vehicles (CAVs) under communication
failure to stabilize traffic oscillations. Specifically, the Signal-Interference-plus-Noise Ratio (SINR)
based vehicle-to-vehicle (V2V) communication is incorporated into the DRL training environment to
reproduce the realistic communication and time-space varying information flow topologies (IFTs). A
dynamic information fusion mechanism is designed to smooth the high-jerk control signal caused by
the dynamic IFTs. Based on that, each CAV controlled by the DRL-based agent was developed to
receive the real-time downstream CAVs’ state information and take longitudinal actions to achieve the
equilibrium consensus in the multi-agent system. Simulated experiments are conducted to tune the

communication adjustment mechanism and further validate the control performance, oscillation



xi
dampening performance and generalization capability of our proposed algorithm. This part is discussed

in Section 4.

The third part proposes an innovative distributed longitudinal control strategy for connected automated
vehicles (CAVs) in the mixed traffic environment of CAV and human-driven vehicles (HDVs),
incorporating high-dimensional platoon information. For mixed traffic, the traditional CAV control
method focuses on microscopic trajectory information, which may not be efficient in handling the HDV
stochasticity (e.g., long reaction time; various driving styles) and mixed traffic heterogeneities.
Different from traditional methods, our method, for the first time, characterizes consecutive HDVs as a
whole (i.e., AHDV) to reduce the HDV stochasticity and utilize its macroscopic features to control the
following CAVs. The new control strategy takes advantage of platoon information to anticipate the
disturbances and traffic features induced downstream under mixed traffic scenarios and greatly
outperforms the traditional methods. In particular, the control algorithm is based on deep reinforcement
learning (DRL) to fulfill car-following control efficiency and further address the stochasticity for the
aggregated car following behavior by embedding it in the training environment. To better utilize the
macroscopic traffic features, a general platoon of mixed traffic is categorized as a CAV-HDVs-CAV
pattern and described by corresponding DRL states. The macroscopic traffic flow properties are built
upon the Newell car-following model to capture the characteristics of aggregated HDVs' joint behaviors.
Simulated experiments are conducted to validate our proposed strategy. The results demonstrate that
the proposed control method has outstanding performances in terms of oscillation dampening, eco-

driving, and generalization capability. This part is discussed in Section 5.

KEYWORDS

Mixed Traffic, Connected Automated Vehicles, Car Following, Deep Reinforcement Learning,

Vehicle-to-Vehicle Communication.



1 INTRODUCTION

1.1 Background

Traffic oscillations, known as the stop-and-go phenomenon (Li et al., 2010), contribute to
traffic flow instability, traffic unsafety, and energy inefficiency. With the fast development of
vehicular automation and communication technology, connected and automated vehicles (CAV)
gradually occupied some portion of the vehicle market. CAVs equipped with advanced
communication and automation capability have great potential to alleviate traffic oscillations
to enhance the traffic flow performance through adaptive cruise control (ACC) (Marsden et al.,
2001) and cooperative adaptive cruise control (CACC) (Arem et al., 2006). It is envisioned that
the CAVs and human-driven vehicles (HDVs) will co-exist in the near future (Zhou et al., 2019),
which will change the pure traffic flow of HDVs to the mixed traffic flow of CAVs and HDVss
(Lu & Liu, 2021; Zhang & Yang, 2021). Despite the changes in the traffic environment, traffic
oscillations remain a demanding issue in the congested mixed traffic flow Therefore, efficiently
controlling CAVs to drive safely and smartly in the mixed traffic environment is important both

in academia and industry implementation.

The CAVs longitudinal control strategies have been comprehensively investigated in recent years,
which can be divided into three categories: (i) analytical linear or non-linear CAVs control, (ii) model
predictive control (MPC) based CAVs control, and (iii) deep reinforcement learning (DRL) based
CAVs control. Each of these strategies has pros and cons. The analytical linear or non-linear CAVs
controller (Morbidi et al., 2013; Stipanovi¢ et al., 2004; Treiber et al., 2000; Zhou & Ahn 2019; Guo et
al., 2020; Zhu et al., 2020) is fast computing and easy to implement, and the corresponding closed-form
control policy leads to the convenient stability analysis (Zheng et al., 2014, 2016; Li et al., 2019; Wang
et al., 2020), where local stability and string stability can be mathematically guaranteed by properly

choosing controller parameters. However, the analytical linear or non-linear controller is hard to
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explicitly incorporate multiple objectives and safety constraints with reasonable boundaries. As one of
the most popular optimal control methods, MPC-based CAV controllers (Zhou et al., 2017; Gong et al.,
2016; Wang et al., 2016; Zhou et al., 2019) can optimize multiple objectives in a flexible constrained
framework. This method predicts the leading vehicle's future state (e.g., position, speed) and optimizes
the driving behavior in a rolling/receding fashion. However, MPC usually requires the formulated
problem to be convex, and it may need great demand for computation depending on the complexity of
formulation, which makes it difficult for real-time implementation. The computation demand can be

more intensive when stochasticity or uncertainties are explicitly considered (Chen et al., 2018).

Although there have been many studies about different approaches to optimizing car-following behavior
and traffic flow, gaps in the studies remain in the following two aspects. Firstly, a fast computing multi-
objective CAVs control strategy for the mixed platoon to improve mixed traffic string stability (e.g.,
Naus et al., 2010; Ge & Orosz, 2014), car following efficiency, and eco-driving performances, is still
challenging. An exact optimization-based control such as MPC in a mixed connected automated traffic
environment is hard to construct due to the uncertainty of HDVs (Zhou et al., 2019), and fast
computation is required to satisfy the real-time implementation. Secondly, the unpredictable driving
behavior of human-driven vehicles (HDVs) contributes to traffic disruptions and intensifies oscillation
amplitude throughout the vehicular stream. This, in turn, negatively impacts the stability, efficiency,
and energy consumption of mixed traffic flow (Zheng et al., 2020). Consequently, addressing the
stochastic nature of HDV behavior is a crucial challenge in controlling connected and automated
vehicles (CAVs) within mixed traffic environments. Thirdly, it is hard to optimize mixed traffic flow
considering the different combinations of CAVs and HDVs due to the heterogeneity. Mixed platoons
with different combinations have diverse characteristics, making it hard to develop a comprehensive

model for optimal control, especially with multiple objectives.

In summary, despite extensive research on CAV control strategies, several research gaps persist:

Identified gaps
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Most studies assume flawless communication among CAVs, neglecting the potential for
communication failures and dynamic information flow topology (IFT). This assumption
leads to overly optimistic results.

For deep reinforcement learning (DRL)-based CAV control, there is often a lack of
equilibrium concepts derived from control theory, which could aid in analyzing string
stability and local stability within a vehicular platoon.

DRL-based CAV control typically lacks consensus concepts from multi-agent control
theory, which can prevent disturbance accumulation and achieve system-level performance.
In a mixed traffic environment consisting of CAVs and HDVs, addressing the adverse
effects of HDV stochasticity presents a significant challenge.

The heterogeneous nature of mixed traffic platoons complicates the development of a
universal CAV control approach that ensures system-level control performance.

A generic, distributed, and computationally efficient CAV control approach is needed,
regardless of the CAV platoon size, dynamic IFT topology, and the CAV-HDV topology

within mixed traffic environments.

1.2 Research Objectives and Scope of Work

Taking into account the advantages and disadvantages of various CAV longitudinal controllers and the

identified gaps in existing research, this study aims to develop a physics-informed DRL-based CAV

control strategy for mixed connected automated traffic environments by addressing the following

aspects:

(1)

(i)

Develop a generic and multi-objective CAV control strategy suitable for any CAV-HDV
topology of a mixed vehicular platoon.

Create an integrated generic distributed control approach to control CAVs in a realistic
communication environment, regardless of the CAV platoon size and dynamic IFT

topology caused by the communication loss.



(iii)

(iv)

)
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The generic CAV control strategy aims to efficiently stabilize traffic oscillations, enhance
car-following efficiency, and improve eco-driving performances.

Integrate the equilibrium concept and the consensus concept into the DRL framework to
achieve better control.

Design a novel CAV control strategy that adeptly mitigates the adverse effects resulting

from the stochastic nature of human-driven vehicles (HDVs).

1.3 Research Contributions

The research contributions of this dissertation work are summarized as follows.

(1)

(i)

(iif)

(iv)

V)

(vi)

(vii)

Propose an integrated generic distributed control approach to control CAVs in a realistic
communication environment, regardless of the CAV platoon size and dynamic IFT
topology caused by communication loss.

Propose a generic fast-computing CAV control strategy for the mixed vehicular platoon of
any CAV-HDV topology.

Integrate the equilibrium concept and the consensus concept into the DRL framework to
achieve better control by creatively fusing information of the downstream environment.
Embed the real ground-truth dataset and the dynamic communication mechanism in the
distributed DRL training framework to better capture the stochasticity of driving behaviors
and communication loss.

Propose a novel and generic car-following structure, 'CAV-AHDV-CAV," which can
capture the aggregated HDVs' macroscopic traffic features (i.e., fundamental diagram) and
embed them in the microscopic CAV longitudinal control, which efficiently alleviates the
adverse impact brought by HDVs' stochasticity and optimizes the whole mixed traffic flow.
Better dampen traffic oscillations and meanwhile enhance car following efficiency, safety,
and acceleration smoothness than other state-of-art CAV control methods.

Marry the merits of control theory, traffic flow theory, and Artificial Intelligence (Al),

which better utilizes the information of sensed surrounding environment and leads to a



promising control performance.

1.4 Dissertation Organization

This thesis is organized as follows. Chapter 2 introduces the relevant studies regarding CAV control
strategies, DRL algorithms, V2V communications, and the equilibrium concept and consensus concept
from control theories; Chapter 3 discusses the CAV control challenges in mixed traffic and introduces
the proposed generic CAV control strategy for mixed traffic. Chapter 4 presents a DRL based
distributed longitudinal control strategy for connected and automated vehicles (CAVs) under
communication failure to stabilize traffic oscillations and enhances car-following control performances.
Chapter 5 presents a generic CAV control strategy for any CAV-HDV topology of a mixed vehicular
platoon, which integrates the macroscopic traffic features to handle HDVs’ stochasticity. Conclusion

and future studies are suggested in Chapter 6.



2 LITERATURE REVIEW

This chapter presents a literature review on research related to traditional CAV control strategy,
deep reinforcement learning and DRL-based control, V2V communications, and equilibrium

and consensus concepts from control theory.

2.1 Traditional Connected Automated Control Strategy

The study of CAV control strategies attracted many researchers, though the majority of them only
focused on the pure connected automated environments (Gong & Du, 2018). The mainstream methods
can be largely divided into three categories based on their modeling differences: (i) linear or non-linear
CAV longitudinal controller, (ii) model predictive control (MPC) based CAV longitudinal controller
with functions of objectives and constraints, (iii) deep reinforcement learning (DRL) based CAV
longitudinal controller. First, linear (e.g., Stipanovi¢ et al., 2004; Naus et al., 2010; Morbidi et al., 2013)
and non-linear (e.g., Bando et al., 1995; Treiber et al., 2000) CAV longitudinal controllers have closed-
form formulations with parameters or gains. This type of model requires less calculation time due to its
simplicity. In addition, its stability analysis is convenient due to the closed-form representation (e.g.,
Zheng et al., 2014; Shladover et al., 2015; Zheng et al., 2016; Petrillo et al., 2018; S. E. Li et al., 2019;
Wang et al., 2020), and theoretically, the local stability and string stability of controllers can be
guaranteed through appropriate parameter tuning. However, these linear and non-linear controllers have
difficulties in designing an explicitly formulated framework to incorporate multiple control objectives
(e.g., car following efficiency (local stability), string stability, energy efficiency) and collision-free
constraints within reasonable vehicle acceleration/deceleration boundaries. Considering this limitation,
MPC based CAV longitudinal controllers (e.g., Wang et al., 2016; Gong et al., 2016; Zhou et al., 2017,
Gong & Du, 2018; Zhou et al., 2019;) have been favored in recent years. As an optimal control method,
the MPC-based controller provides a flexible, constrained optimization framework that incorporates
flexible optimizing objectives and constraints. Thus, CAV longitudinal control problem that considers

string stability, efficiency, fuel consumption, and driving comfort can be solved at each timestep under
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safety constraints within a bounded acceleration range. Besides, this approach can provide driving
decisions by predicting the future state of the leading vehicle trajectory, thus improving optimization
and control performance in a rolling/receding horizon fashion. However, this approach is normally
computational demanding and time consuming, which is not applicable for real-time implementation
(Zhou et al., 2017). Since it solves a deterministic constrained optimization in a rolling horizon fashion,
it usually requires the problem to be convex. Otherwise, it is generally forbidding to be solved
efficiently. Furthermore, it is challenging to quantitatively guarantee its platoon string stability due to

the formulation complexity (Zhou et al., 2019).

2.2 Deep Reinforcement Learning and DRL-based Control

Similar to the MPC controller, the recent breakthrough in the DRL community provides alternative
algorithms to be utilized (Karnchanachari et al., 2020). The advantages of DRL based approaches are
mainly reflected in the two aspects. First, DRL is a model-free and learning-based method that does not
have any specific requirement for convexity of the problem and is suitable for capturing complex and
stochastic system characteristics. Second, the computational burden of a DRL algorithm mainly lies in
its offline training process, while the learned driving policy can be rapidly implemented in real-time

(Gorges, 2017). Specifically, the reinforcement learning basics are given as follows.

Modeling reinforcement learning is a Markov Decision Process (MDP) (Van Otterlo & Wiering, 2012),
which contains a set of interactive objects, namely agent and environment. Except for two interactive
objects, five model elements are included in MDP: state s;, action a;, policy m(a|s), reward 1:(s¢, a;),
and return R. RL aims to address problems with specific target through continuous exploration. At time
step t, the input to the network is the observing state s, of an agent, while an action a; from action space
is output according to the policy n. Reward 1; related to a; and s; is computed by the target-guided
reward function and obtained by the agent. The agent then moves to the next states s;,, due to a;.
Process terminates when the agent moves to the terminal state s;. At the same time, return R is obtained

by summing cumulative rewards from timestep 0 to timestep t. Thus, the whole training process from
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the first sq to the terminal s; is defined as an episode. Then, next episode restarts, back and forth. The

target problem is solved through maximizing R.

Generally, model-free reinforcement learning can be divided into two categories: value-based
reinforcement learning and policy-based reinforcement learning. Recently, deep reinforcement learning,
combining reinforcement learning and deep learning, has made breakthrough that makes RL applied in
different fields. A typical algorithm of value-based reinforcement learning is DQN (Deep Q Network),
which was proposed by DeepMind, with its improved version published in (Mnih et al., 2015).
Combined with deep learning, this algorithm uses a convolutional neural network to fit the value
function, namely the Q function. Since DQN was proposed, it has shown a large number of improved
algorithms which enhance the overall structure of the system and neuron networks. However, DQN is
only applied to problems with discrete action space, which restricts the scope of application. To address
more complex problems with continuous action space, Deep Deterministic Policy Gradient (DDPG),
Asynchronous Advantage Actor-Critic (A3C), Trust Region Policy Optimization (TRPO), Proximal
Policy Optimization (PPO) and other policy-based algorithms with actor-critic structure have been
proposed and applied in diverse areas. DDPG is proposed by (Lillicrap et al., 2016), which has two
separate and interdependent networks: actor network and critic network. DDPG combines DQN and
deterministic policy gradient (DPG) by creating a memory buffer to separate training samples in a
successive environment, which enhances stability of training process. Google DeepMind proposed A3C
algorithm with multiple parallel agents (Mnih et al., 2016). These agents simultaneously update
parameters in the primary structure on parallel environments, which reduces relevance and improves
convergence of the algorithm. TRPO is proposed by (Schulman et al., 2015). The algorithm improves
the convergence of policy updates by restricting KL divergence between the prediction distribution of
the old strategy and new strategy on the same batch of data. PPO algorithm proposed by (Schulman et
al., 2017) has become the default RL algorithm of Open Al It is similar with TRPO but shows better
sample efficiency due to multiple updates per batch sample. Combined with the advantage of A3C,

Google DeepMind proposed a distributed PPO algorithm to update the policy of global agent in parallel



through multiple working agents (Heess et al., 2017).

Recently, DRL algorithms have been gradually applied to design CAV controllers (Chong et al., 2013;
Li et al., 2020; Zhou et al., 2020). Guan et al. (2019) applied a DRL algorithm to cooperatively control
CAVs at intersections and address the computational burden by training offline. Duan et al. (2020)
comprehensively consider both high-level and low-level motion control for CAVs based on DRL, which
achieves a smooth and safe decision-making process. Wang et al. (2019) developed a Q-learning based
bird-view approach for CAV control, which shows great control performance under complicated traffic
environments. However, these works have not considered the mixed platoon's string stability and
mainly focus on distance tracking (e.g., maintaining a car following headway with reasonable
acceleration control). In addition, the equilibrium state concept for DRL-based CAV control is usually
missing, which renders DRL a large search space for the optimal policy. As far as the authors know,
only Qu et al. (2020) proposed a control strategy based on the DDPG algorithm to dampen traffic
oscillations and improve energy efficiency. However, this study only considers non-cooperative vehicle
control without exploiting information sharing. Besides, this study adopts a model-free gap policy,
which cannot directly guarantee a stable traffic flow. In general, DRL algorithm applications are still

rare from the perspective of stability analysis in a mixed traffic environment.

2.3 V2V Communications

Regarding the communication of CAVs, vehicle-to-vehicle (V2V) communication enables traffic
information exchange through all surrounding CAVs, which improves CAVs’ situational awareness
and performance in safety, mobility, and sustainability (Wang et al., 2019). However, the distance
between sender and receiver vehicles and the mutual communication interference from equipped
vehicles significantly affects the V2V communication connection, even causing a communication
failure (Kim et al., 2017). The fading effect of the signal amplitudes over distance greatly influences
the success rate of the V2V communication, especially when multiple CAVs frequently exchange and
disseminate data simultaneously. Once communication failure occurs, the CAV loses the ability to

receive the proceeding vehicles’ information, and the information flow topology (IFT) can change
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dynamically, which impairs CAV’s performance in mobility, stability, and even safety. With these
concerns, recent studies (Wang et al., 2020; Zhou et al., 2020b) proposed two-step algorithms based on
a linear controller, whose first step is to optimize IFT for a time period that maximizes the expected
string stability, and the second step is to find parameters for linear controllers to guarantee string
stability under dynamic communication environment. However, the two-step algorithm is relatively

separate and cannot update the IFT dynamically as an integrated system together with the control design.

2.4 Equilibrium and Consensus Concept

On the aspect of the equilibrium concept and consensus concept, they are critical for the car-following
control approach to achieve stability-wise and system-level control performance. Without the
equilibrium state concept, the stability, including string stability (Ploeg et al., 2014) and local stability
(Willems et al., 2014) of DRL-based controller, is forbidden to be analyzed in the DRL-based control
studies. Considering this issue, Shi et al., (2020) proposed a DRL-based centralized control strategy for
connected and automated vehicles (CAVs). However, the approach divides mixed vehicular platoon
into multiple sub-platoons, each of which is controlled by a centralized controller. Considering the
potential communication loss, the sub-platoon size can also vary, which hinders the applications of sub-
platoon centralized control. Further, with the increased size of the centralized DRL-based controller,
the larger action and state dimensions make the training hard to converge. Hence, rather than developing
a centralized controller, a distributed controller may be better fitted for the case with communication
loss. To ensure the distributed controller can still achieve a great system-level control performance, a
consensus concept from the multi-agent control theory (L. Zhang & Orosz, 2017), requiring all agents
to maintain the desired relative states with respect to their neighbors, needs to be considered. The
consensus property hinders the accumulation of disturbances and achieves system-level stability.
Therefore, incorporating the consensus in the DRL-based CAV control framework can be expected to

further stabilize traffic oscillations.



3 GENERIC CAV CONTROL STRATEGY FOR MIXED TRAFFIC FLOW

This chapter presents the CAV control challenges in mixed traffic flow and introduces the

proposed generic CAV control strategy for mixed traffic flow.

3.1 CAV Control Challenges in Mixed Traffic Flow

Although the CAV longitudinal controllers described in Section 2 can provide strong tools to control
CAVs efficiently, how to handle mixed traffic still remains a problem due to the heterogeneity and
HDVs’ stochastic and uncertain movements (Gong & Du, 2018). The stochastic HDV driving behavior
triggers traffic disturbances and amplifies the oscillation amplitude through the vehicular stream, which
impairs the mixed traffic flow stability, travel efficiency, and energy (Zheng et al., 2020). Moreover,
the heterogeneous driving behaviors in mixed traffic may create voids and further reduce traffic
throughput (D. Chen et al., 2020). To handle the HDV uncertainty and mixed traffic heterogeneities,
approaches of recent studies can be largely divided into two categories: 1). predict the proceeding
HDV’s driving behaviors (Gong & Du, 2018; Bang & Ahn, 2019; Wang et al., 2020; Zhu et al., 2018)
and incorporate the prediction in the control strategy (e.g., by MPC); 2). divide mixed traffic into sub-
platoons (Shi et al., 2021; Wang, 2018b) for more efficient control and apply a cooperative control
strategy for CAVs assuming that the disturbances triggered by HDVs are completely random. For the
first type of method, Gong & Du (2018) utilized an online curve matching algorithm to predict the HDV
trajectory and developed a cooperative platoon control for the mixed traffic environment. However, this
study only predicts the last HDV of consecutive HDVs in the mixed traffic, which does not fully use
the downstream traffic information that can be potentially conveyed by proceeding CAVs. The
downstream traffic information can be very helpful in predicting the wave propagation and oncoming
traffic scenario. On the other hand, Shi et al. (2021) proposed a DRL-based cooperative CAV
longitudinal control strategy for the mixed traffic environment, which divides the mixed platoon into
multiple subsystems for centralized cooperative control. However, the method cannot utilize the

downstream information of each sub-platoon and model it as random noise in the environment.
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Moreover, this approach lacks sufficient generalization with the increased centralized CAV sizes. With
this concern, a distributed manner may be better for CAV control in mixed traffic. Besides the two
primary approaches mentioned above, the connected cruise control (CCC) strategy was developed to
handle the various connectivity structures in heterogeneous platoons by assuming an oversimplified
nonlinear car following laws for HDVs. Based on that, they designed a control law for CAVs to improve
the car following performance and traffic efficiency (e.g., Ge & Orosz, 2014; Orosz, 2016; Zhang &
Orosz, 2016). However, these studies did not focus on addressing HDVs’ inherent stochasticity and

stabilizing the mixed platoon.

In general, although these approaches (e.g., HDV behavior prediction; sub-platoon) could improve
CAV control performances in the mixed traffic environment, the limits still remain as follows. Firstly,
it is challenging to effectively incorporate HDVs' behavior for control due to its inherent stochastic and
personalized characteristics, especially for the aggregated (i.e., multiple consecutive) HDVs in the
mixed traffic. The joint behaviors of multiple HDVs are hard to model. In the case of platooning, while
only the individual behaviors are modeled, the predicting error will be accumulated and propagated
over time and space (Lin et al., 2020). Even the microscopic behavior is stochastic and difficult to
capture, the aggregated HDV driving behaviors exhibit macroscopic traffic flow properties (e.g.,
kinematic wave propagating time, density) with typical traffic phenomena (e.g., shock wave
propagation), and they can be modeled by for example the fundamental diagram (Meng et al., 2021;
Tian et al., 2021). Comparing to the microscopic behaviors, the aggregated driving behaviors show less
stochasticity, as indicated by the central limit theorem (Kwak & Kim, 2017). Therefore, this study aims
to attenuate the aggregated HDVs’ stochasticity by incorporating their macroscopic traffic properties
into the control framework. Secondly, the mixed traffic environment has various vehicular compositions
due to the different combinations of HDVs and CAVs, as presented in Fig. 3-1. Approaches such as
sub-platoon or centralized cooperative control (Du et al., 2020; Shi et al., 2021; Wang, 2018; Zheng et
al., 2020) lack adequate flexibility and may suffer from computation burden. Such heterogeneity makes

it challenging to develop a generic CAV control approach with a system-level control performance.
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With this concern, the study aims to build a generic CAV control framework to generalize the varied

CAV-HDV topologies and incorporate the macroscopic features.
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Fig. 3-1. Different compositions of mixed connected automated traffic environment

3.2 Generic DRL-based Control Framework

In a mixed traffic platoon, various combinations of connected and automated vehicles (CAVs) and
human-driven vehicles (HDVs) can be observed. The controlling CAV typically processes information
from the downstream environment to make control decisions. To accommodate any possible CAV-
HDV platoon configuration, we categorize the local downstream environment into two broad traffic
scenarios based on the composition of CAVs and HDVs, as illustrated in Fig. 3-2: (i) a fully connected
automated environment, where all local downstream vehicles are CAVs, forming a CAV-CAVs
topology; and (ii) a mixed local downstream environment, comprising the closest downstream CAV

followed by one or more HDVs, creating a CAV-HDVs-CAV topology.
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Fig. 3-2. The two scenarios of the local environment
In the fully connected automated environment, the controlling CAV gathers information from multiple
downstream CAVs to make decisions. In the mixed local downstream environment, the controlling
CAV receives information from the immediate preceding HDV as well as the nearest downstream CAV.
This generic control framework effectively accommodates any CAV-HDV platoon topology that may

emerge within the mixed traffic platoon.

3.2.1 Fully Connected Automated Environment

For the fully connected automated environment, we propose a generic DRL-based distributed
framework for CAV control. The detailed methodology and results are discussed in Section 4 of the
thesis.

Within the framework, we aim to develop an integrated generic distributed control approach with a
dynamic IFT mechanism to control CAVs in a realistic communication environment. Specifically, our
DRL framework is designed with the following novelties. First, we embed the real ground-truth dataset
(i.e., Next Generation Simulation (NGSIM) datasets) and the dynamic communication mechanism (i.e.,
Signal-Interference-plus-Noise Ratio (SINR) (Du & Dao, 2015)) in the distributed training framework
since DRL can etter capture stochastic behaviors of proceeding vehicles and stochastic communication
loss. Second, we develop a generic DRL-based control framework, regardless of the CAV platoon size
and dynamic information topology caused by communication loss. Specifically, the DRL state and

reward function were specially designed to integrate the equilibrium concept and the consensus concept
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into the DRL framework by appropriately fusing multiple downstream CAVs’ information in a
weighted sum manner. Considering the potential fluctuations of the weighted sum of the downstream
CAV’s information and the resulting unstable control caused by communication loss, we developed a
dynamic information fusion mechanism to smooth the high-jerk control signal and ensure the desired
control performance. By this design, the fused state and predefined equilibrium state regulate CAVs to
keep close to a predefined equilibrium point regardless of traffic scenario, which increases the
generalizability and robustness of the control method. Moreover, the equilibrium state gives DRL an
exploration direction in the training process to improve the convergence and ability to dampen traffic
oscillations, compared with the decentralized control, which merely uses the very nearest proceeding

vehicle information.

3.2.2 Mixed Local Traffic Environment

For the mixed traffic local downstream environment, we propose a novel vehicle following structure,
“CAV-AHDV-CAV,” as a generic unit for mixed traffic of any vehicle ordering and simultaneously
embedded platoon-level features in the distributed CAV control framework. The detailed methodology

and results are discussed in Section 5 of the thesis.

The defined ‘AHDV’ component in the “CAV-AHDV-CAC” structure means the aggregated HDVs
between the two CAVs in the structure. This novel structure characterizes the aggregated consecutive
HDVs in the mixed traffic as a whole, denoted as the ‘AHDV,” whose aggregated HDV car-following
behaviors and stochasticity can be further captured by the macroscopic traffic features. Specifically, we
propose an estimated time-varying Newell car-following method (D. Chen et al., 2012), which links the

fundamental diagram to the microscopic driving behavior parameters.

Furthermore, DRL is suitable for capturing stochastic characteristics and embedding them in the
environment with great generalization capability. Thus, this structure is incorporated into the DRL
framework to fulfill car-following control efficiency and further reduce stochasticity based on the

following two aspects. First, the ground-truth HDV trajectory data are embedded into the DRL training
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process, by which we incorporate real HDV stochastic characteristics implicitly. Second, the
macroscopic features captured by the ‘CAV-AHDV-CAV’ structure are weighted and fused into the
DRL state and reward function based on the equilibrium concept. In this way, the HDVs’ stochasticity
is alleviated by regulating CAVs close to the pre-defined equilibrium state. With the proposed ‘CAV-
AHDV-CAV’ structure and the designed DRL framework, the HDV stochasticity is efficiently

alleviated for CAV control.

To summarize, the method utilizes the DRL framework to develop a generic distributed CAV
longitudinal control approach for a mixed traffic environment. The contribution can be summarized in
terms of methodology and application. From the methodology-wise perspective, the aggregated HDVs’
macroscopic traffic flow features are real-time estimated based on the generic ‘CAV-AHDV-CAV’
structure. The structure is embedded into the DRL control framework by a specially designed DRL state
and reward function, which efficiently alleviates the adverse impact of HDVs’ stochasticity and
optimizes the whole mixed traffic flow. From the application-wise side, a generic strategy for any CAV-
HDYV topology of a mixed vehicular platoon is developed to stabilize the traffic oscillations efficiently.
Specifically, each controlled CAV receives the information from the local downstream vehicles for
real-time control. The received information is fused as the DRL state based on the philosophy of
equilibrium concept and the consensus concept, which helps develop a robust control policy and gives
the base for analyzing car-following control efficiency and vehicular string stability. The DRL reward
function is then designed based on the fused DRL state in a quadratic form to efficiently fulfill the car-

following control efficiency and improve driving comfort performance.
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4 DEEP REINFORCEMENT LEARNING BASED DISTRIBUTED CONNECTED AUTOMATED

VEHICLE CONTROL UNDER COMMUNICATION FAILURE

This chapter proposes a deep reinforcement learning (DRL) based distributed longitudinal control
strategy for connected and automated vehicles (CAVs) under communication failure to stabilize traffic
oscillations. The control strategy is designed for the fully connected automated environment discussed
in Section 3 of the thesis. Specifically, the Signal-Interference-plus-Noise Ratio (SINR) based vehicle-
to-vehicle (V2V) communication is incorporated into the DRL training environment to reproduce the
realistic communication and time-space varying information flow topologies (IFTs). A dynamic
information fusion mechanism is designed to smooth the high-jerk control signal caused by the dynamic
IFTs. Based on that, each CAV controlled by the DRL-based agent was developed to receive the real-
time downstream CAVs’ state information and take longitudinal actions to achieve the equilibrium
consensus in the multi-agent system. Simulated experiments are conducted to tune the communication
adjustment mechanism and further validate the control performance, oscillation dampening

performance and generalization capability of our proposed algorithm.

The chapter is organized as follows. Section 4.1 presents the environment settings, including basic
assumptions and the adopted V2V communication model. CAV longitudinal control framework and the
proposed dynamic information fusion mechanism are described in Section 4.2. Section 4.3 proposed
the details of DRL model development and training procedure. The proposed CAV longitudinal control
strategy is validated by numerical experiments presented in Section 4.4. Section 4.5 gives the

conclusion of this work.

4.1 Environment Setting

This research considers the car-following process without lateral movement in a straight highway
segment with infinite length. The communication between CAVs applies a dedicated short-range
communication (DSRC) radio with a 5.9-GHz frequency, which is adopted by the Federal

Communications Commission for transportation safety and mobility (L. Du & Dao, 2015). The basic



18

assumptions for the simulation environment are given as follows: (i) The CAV’s state information (e.g.,
spacing, speed) can be broadcasted to the local upstream CAVs through V2V communication in real-
time. (ii) SINR dynamically determines the successful transmission between two CAVs. (iii) The
communication time is not considered in this study as it can be negligible for measuring the delay on a
road segment (L. Du & Dao, 2015). (iv) The CAV can receive its immediate predecessor’s state

information through onboard sensors and its own state information through GPS.

For a given CAV platoon in a realistic environment, the V2V communications can be unreliable and
constantly changing over time due to failures caused by communication interference or information
congestion (Wang et al., 2019). The uncertain communication environment will impair CAV’s driving
behavior and thus the entire traffic flow. To optimize the CAV’s driving behavior and stabilize traffic
oscillations under the realistic environment, this study provides a control framework incorporating a
distributed DRL-based CAV control strategy and a dynamic adjusted V2V IFT. The V2V
communication topology with broadcast mechanism, widely utilized for the CACC framework (Noor-
A-Rahim et al., 2019; Wang et al., 2018, 2020), is adopted in this study. For this communication
topology, each CAV broadcasts its information to multiple upstream CAVs and simultaneously receives

its downstream CAVs’ information for real-time control.

Specifically, the IFT, which demonstrates the information links of all vehicles in the platoon, changes
dynamically based on the SINR condition. To describe the IFT from the receiver side, we introduced a
vector & = [nf;_y, M;_2 -, Mi;_n] » whose each nf;_, €{0,1} indicates the information
transmission status between the receiver CAV i and the transmitter CAV i — m: n{;_,,= 1 denotes a
successful transmission; otherwise, 7 ;_,,= 0. Notably, we assume that n{;_, = 1 due to the robust
onboard sensors, representing that the CAV can always receive its immediate predecessor’s state
information. For instance, CAV i with dynamic IFTs receives real-time information of the three
downstream CAVs for control, as presented in Fig. 4-1. The three possible real-time IFTs in Fig. 4-1(a),

Fig. 4-1(b), Fig. 4-1(c) have & = [1,1,1],[1,0,1],[1, 0, 0], respectively.
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Fig. 4-1. A schematic diagram showing different IFTs of CAV i in a four-vehicle platoon.
To reproduce the realistic communication environment, this study, inspired by (L. Du & Dao, 2015),
uses the SINR communication model to determine the successful wireless communication condition.
The SINR, presented in Equation (4-1), is a commonly used standard that considers multiple realistic

factors to measure the wireless connection quality. The SINR quality yjt,l- between the transmitter CAV

i and the receiver CAV j at timestep t is specified as:

py(xt) "
yii = ) (4-1)

= ——
Yo ki €kPR(X )79 +0

where P; represents the transmission power of CAV i; « is the signal power decay; X f] denotes the
distance between the two vehicles. Y-y p;(ex P X, [ ;)~% is the sum of the interference signal power

from all proceeding vehicles in the communication range, where ej, is a Boolean parameter that
determines whether CAV k can share its information. In this study, all CAVs are allowed to share
information (i.e., e; = 1). O denotes the noise term. A normal distribution (O~N (u, 62)) is adopted to
illustrate the noise effect. Based on the SINR quality yjt‘i, the information transmission status nf‘ i—m 18

defined as:

oot
L {1: if Yii-m > B 42)

Ti=m =00, if ytim < B

where S is a threshold value determined by the communication modulation and code rate.
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Considering multiple V2V environmental factors, the proposed SINR model captures critical
communication features in the actual condition, which reliably determines a successful connection

between CAVs. The default parameter settings are shown in Table 4-1.

4.2 Distributed Control Scheme

Based on the environment setting in Section 4.1, this section describes the control scheme of the
proposed strategy, including a distributed control framework for regulating CAVs’ longitudinal
movements (in Section 4.2.1) and a dynamic information fusion mechanism for reducing control
signal’s high jerks caused by the time-varying IFT (in Section 4.2.2). The related notations are defined

in Table 4-1.

Table 4-1. Notations of the control scheme

Symbol Definition

y}?’i The SINR quality between the transmitter
CAV i and the receiver CAV j

B The SINR threshold value for a successful

transmission

nfiim The information transmission status between
the receiver CAV i and the transmitter CAV i —m

at timestep t

At The timestep size (update interval)

s The fused DRL state for CAV i at timestep t
uf The desired acceleration signal of CAV i at

timestep t
at The realized acceleration of CAV i at timestep
t
vf The velocity of CAV i at timestep t
Avfi_ The relative speed between CAV i and

CAVi—m
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diim The spacing between CAV i and CAV i —m

dibm The equilibrium spacing between CAV i
andCAVi—m

Adf; The deviation from the equilibrium spacing

between CAV i and CAVi—m

Wi_m The state coefficient of the transmitter
CAVi—m
A(iit The weighted deviation of spacing for CAV i

at timestep t after IFT adjustment

AD! The weighted deviation of speed for CAV i at

timestep t after IFT adjustment

Cii-m The permission parameter for determining

whether to fuse the information of CAV i —m

i The adjusted information transmission status

between CAV i and CAV i — m at timestep ¢

el The first-order difference of Ad}; ef = |Adf —
Ad;™|

4.2.1 Distributed Control Scheme

In this section, we proposed a distributed CAV longitudinal control strategy under the unreliable
communication environment, whose framework is as presented in Fig. 4-2. In this general scenario, the
controlled CAV i communicates with local downstream CAVs and receives their fused state
information for control at each timestep. The fused state information is generated based on CAV i’s

adjusted IFT within a certain communication range (i.e., k local downstream vehicles).
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Fig. 4-2. A distributed control framework for CAV i in the multi-agent vehicle platoon.
Specifically, the CAV i’s time-varying IFT, determined by the SINR-based communication model, is
adjusted by our proposed dynamic information fusion mechanism, which will be explained in Section
4.2.2. Then, the fused state information s} is generated based on the adjusted IFT and sent to the DRL-
based controller. s} is calculated from the local downstream vehicles’ information (i.e., speed difference,
gap, position) to the required DRL state s} = [Aczf , AD!], representing the weighted deviations from
the target equilibrium, which will be explained with details later. Based on the fused state information,
the DRL-based controller (denoted as My, if controlled CAV receives k downstream CAV’s fused
information) outputs the desired acceleration signal uf to regulate the CAV’s longitudinal movement

at each timestep. Given the above framework, the detailed design is given as below.

In our longitudinal control, we consider a vehicle’s linearized dynamics which captures the air drag
force, gear position and road gradient. It is modeled with the first-order approximation using the

generalized vehicle dynamics (GLVD) equation (Li et al., 2011; Wang, 2018):

. 1 K;
at = ——af + 224, (4-3a)
. T

L iL
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At At
ait!=e Tie xal + <1 —e Ti,L) X K; juf (4-3b)

where T; ; is the actuation time lag and K; ; is the ratio of the demanded acceleration that can be realized
for vehicle i. Readers can find more details for the value of the above two parameters under different
conditions in (Wang, 2018). afis the realized acceleration, usually within a boundary [@min, @max]; &5

is the jerk. Based on the realized acceleration af, the vehicle state is updated using the kinematic point-

mass model (Zhu et al., 2018):

t+1 _ ot t
v T =v; + A, (4-4a)
t+1 _ o t+1 t+1
Aviioy =viZy —vi (4-4b)
v{i_1+Avt+1

A
t+1 _ gt
dijzq =djjq +

. Moo At, (4-4¢)

where At is the control interval; vf denotes CAV i’s velocity at timestep t; v/*; indicates the velocity

of CAV i’s preceding vehicle; dl-t, ;—1 1s the vehicle spacing, representing the distance between front

bumpers of CAV i and CAV i — 1.

With above vehicle longitudinal dynamics, the fused DRL state s is specially designed in our DRL-
based controller. The control design follows the concept of a distributed control framework for
cooperation in the multi-agent vehicular platoon (L. Zhang & Orosz, 2017), aiming to achieve a
consensus of CAV platoon and meanwhile regulate CAVs to keep close to a predefined equilibrium
point for each car following pair. The merit of utilizing the equilibrium concept is to avoid the arbitrary
change of the car following spacing that may render unstable traffic flow. Specifically, the equilibrium
concept is based on the constant time gap (CTG) policy from the Society of Automotive Engineer
Standard. It regulates each car following pair formed by CAV i and i — 1 to reach the same speed and

maintain the preset equilibrium spacing as below:

diiy = vit] +1 (4-52)
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vt =vf_,, (4-5b)
where v} is the speed of CAV i; [; is the standstill spacing; 7] is the constant time gap.

Considering the downstream vehicles’ impact and platoon-level consensus, we can further expand the
local equilibrium for each car following pair to a distributed system-level equilibrium d;g_m between

CAViandi—m,Vvm = [1,2, ... k], whose equilibrium spacing follows:

dit_m = m(viti +1;), (4-6a)
vit=vt (4-6b)

Based on that, the deviation from the equilibrium spacing Adit’ i—m and the relative speed Avit’ i_m are

defined as:
Adit.i—m = dit,i—m - dff—m» 4-7)
Avit’i_m = vit_m - Uit. (4-8)

To reduce the dimension of state in DRL for better convergence, and meanwhile better achieve the
multi-vehicle consensus by utilizing downstream traffic information, similar to CAV multi-agent linear
control (Bian et al., 2019; Chen et al., 2021), the equilibrium deviations between CAV i and its k
downstream vehicles (Adf;_,, Avf; ., 1<m <k) are weighted averaged to the fused state
information sf = [Ad}, Af] for CAV i. The weighted deviations of spacing Ad} and speed A5} are

given as Equation (4-9) and Equation (4-10), respectively:

t t ~t t ~t t
Adt = Wi—17ii—1Adi i1 tWiaWii pAdy; o+ -+ Wik Adj ik
i = por 3 por3
Wi-1llji 1+ Wi-2MjjaF " Wi-kNi—k

: (4-9)

i

=t t =t t =t t
Wi i1 AV 1 Wi o AV o+ Wi g7l i g AV

~t =t ~t
Wi-alii_q1t Wi2ljjot Wikl

: (4-10)

ADE =

where the coefficient w;_,, is defined in Equation (4-11), reflecting that the closer downstream CAVs

are paid more attention.
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S lsm<k-1
Wi =14 2 . (4-11)

Tmo M= k

ﬁit_ i—m denotes the adjusted transmission status between CAV i and CAV i — m, which will be given by

an information fusion mechanism in Section 4.2.2.

4.2.2 Dynamic Information Fusion Mechanism

The continuity and smoothness of the DRL state (Adf and AD}) are essential for DRL-based control
methods since the learned policy directly maps the DRL state to the control action (i.e., ut = mg (s]'))
However, if the IFT of CAV i is not adjusted (i.e., ; j_,= nf_i_m), the communication loss will cause
the transmission status ﬁit_i_m to switch frequently and correspondingly make the DRL state s} fluctuate,

which can lead to undesirable high-jerk accelerations, as presented in Fig. 4-3.

AV [m/s]

= o B~

0 100 200 300 400 500

o
n

Ad [m]
o
P

|
o
&)

0 100 200 300 400 500

=

o

Acceleration
signal [m/s?]

0 100 200 300 400 500
Time [1071s]
Fig. 4-3. The high jerk phenomenon due to the unstable transmission. !
Rather than directly fusing the information received by lettingﬁl-t_ i—m= r]it_i_m, we add one more
mechanism, ‘dynamic information fusion mechanism’, by determining whether CAV i is allowed to
fuse the information of CAV i — m at each timestep. The proceeding CAVs’ information will be fused

if and only if the controlled CAV is allowed to fuse the information and meanwhile the information is
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received. Mathematically, our dynamic control mechanism introduces a ‘fusion permission’ parameter

t
Li-m

c € {0, 1} for CAV i to determine whether it is allowed to fuse the information from CAV m at each
timestep t, where 1 represents permission and vice versa. Based on this mechanism, the adjusted IFT
of CAV i &} is defined as & = [t i1 Titicg s ifi_x), Where 7f{;_, represents whether CAV i — k’s
information will be utilized for the state fusion by CAV i. The detailed definition 7} ;_, is given as:

Lifnfi_m=1andcj;_,, = T

. (4-12)
0, otherwise

ik = {

Equation (4-12) represents that the fusion only happens when fusion permission and information receipt

both hold. It should be noted that c{;_; = 1 since the information of CAV i — 1 is necessary due to

safety concerns and nf;_; = 1 since information can be directly measured by vehicle on-board sensors.

t
i,i-m

As presented in Fig. 4-4, a rule-based method for determining the permission parameter c is
designed. Specifically, we firstly set the default value of the permission parameter cit_ i—m =1, aiming to
utilize the information of proceeding vehicles as much as possible. cl-t_ i—m = 0 only happens when the
following two conditions hold simultaneously: (i) the transmission status between CAV i and CAV i —
m changes from “fail” at timestep t — 1 to “success” at timestep t (i.e., ﬁf_ L, =0and ﬁf'i_m = 1); (i)
the first-order difference of the weighted deviation ef (i.e., ef = |Adf — Ad!™Y]), triggered by
condition (i), is larger than a threshold q (i.e., ef > q). The above rule helps to reduce the sudden state
change caused by communication status change, which may result in control non-smoothness. The
threshold g determines and adjusts the smoothness of the control signal, which is flexible to meet the

requirements of varied control actuators. The sensitivity analysis of the threshold q regarding signal

smoothness and control performances is conducted in Section 4.4.1 to seek its optimal range.
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Fig. 4-4. The flow chart of the dynamic communication control mechanism.

4.3 DRL MODEL DEVELOPMENT

Based on the above control scheme, this section develops the DRL-based models. We first describe the
DRL framework design (given in Section 4.3.1), including the representations of the four basic DRL
elements (state, action, policy, and reward). Then, the DRL algorithm (DPPO) details for policy

updating are given in Section 4.3.2. The training procedure is described in Section 4.3.3.

4.3.1 DRL Design

DRL can be modeled as a Markov decision process, consisting of two interactive objects: DRL agent
(CAYV control algorithm) and environment (given in Sections 4.1 and 4.2). The DRL framework has

four basic elements: state, action, policy, and reward: state, action, policy, and reward (s, 4, 7, ).

The state information s contains two components: the weighted deviations of spacing Ad? and speed
A, as discussed in the last section. When the DRL agent receives the state information s, it outputs

the action A, namely u!, to control CAV i according to a control policy 7. The policy 7 is an implicit



28

function updated through the training process to achieve optimal performance described by the reward

r.

The reward r determines control targets. In our design, cooperative control efficiency and driving
comfort are considered to achieve the consensus equilibrium and simultaneously smooth driving
behavior. The cooperative control efficiency f;measures the deviation from the consensus equilibrium

in a quadratic form:
ff = (sDTQsi, (4-13)
where Q; is a positive definite diagonal coefficient matrix with tuning weights a; ;, a, ;, defined as:

a1,

Qi = [ ],al_i,az‘i > 0. (4-14)

a2

Especially, the cooperative car following control efficiency f;" regulates the equilibrium spacing
deviation Adit'l-_1 — 0 and relative speed Avfi_l — 0, which greatly reduces the driving risks as

manifested by the safety surrogate measure such as time-to-collision (TTC), where TTC =

A=l o ¢ t
vy > vy ¢ ¢ .
AViiq " " (Jiménez et al., 2013). When Ad;;_; — 0 and Av;;_; - 0, TTC— oco. During

@,if v} < Vit,i—1
the non-steady state, small Av{;_; also suggests large TTC. Moreover, it is worth noting that our newly
designed approach is different from (Zhou, et al., 2019; Shi, et al., 2020), whose objective only aims to
minimize the quadratic term of local control efficiency cost fi* = (89)7Q;8}, where 8 = [Ad},_,,
Avit_ i—1l- fit merely measures the local stability of the CAV longitudinal control, indicating a vehicle’s
capability to remain in a car following pair of the local equilibrium state. However, this term does not
incorporate the consensus of the whole CAV platoon, which makes the CAV react very myopically and

¢
Li—-m:*

may lead to large Avf;_ . and Ad

Further, a trade-off cost term gf=Z;(af)? that evaluates driving comfort is incorporated in the car-

following control, alleviating the control force to increase the driving comfort and string stability (i.e.,
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acceleration magnitude decreases through vehicular string). Z; is the acceleration weighting coefficient.

Thus, the running cost If is formulated below:
li=fi+ gi. (4-15)

Since Equation (4-15) is quadratic, which makes the DRL property similar to constrained quadratic
control, we adopted the settings of coefficient Z; and matrix Q; (Zhou et al., 2019) to enhance the

empirical string stability.

The cost function (15) is converted to the immediate reward i for CAV i at timestep t using the

exponential function, specified as:
rf = exp(—1). (4-16)

Therefore, we formulate an infinite-horizon optimal control problem with the DRL policy ©n* to

maximize the discounted cumulative rewards:
0]
* __ m..t+m(.t+m _t+m
nt = argmgxzmz oY (si ,alitm), (4-17)

where r(sit , ait) represents the reward function (16).

4.3.2 Distributed Proximal Policy Optimization (DPPQO) Algorithm

The DRL solves the optimal control problem in Equation (4-17) by updating policy z in the training
procedure. We used the DPPO algorithm (Heess et al., 2017) that supports continuous action space to

update policy due to its great performance in sampling efficiency and convergence.

The DPPO algorithm consists of an actor network and a critic network, whose parameters need to be
updated by training to find the optimal 7*. Specifically, the actor network’s parameter 8, which directly

determines the latest policy 7, is updated by maximizing the objective function LELP (9):

LCP(9) = E[min(p.(0)A,, clip(p.(0),1 — &, 1 + &)A,], (4-18)
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where p,(60) represents the probability ratio of the new policy mgand the old policy 7,4, denoted as
p:(0) = _T0@clS) _ The function clip(p;(0),1 —€,1 + ¢) limits p;(0) between 1 —¢ and 1 + ¢,

79,4 (@tISO)
which prevents a large difference between the updated new policy and the old policy, thus improving

the converging performance. ¢ is a parameter of the clipping function. 4, is the estimated advantage at

timestep t:

A = R, — Vo (s), (4-19)
where R, represents the T-step discounted sum of rewards:

Re = Xnsoy™ri ™™ +y Va(si™), (4-20)
where rf*™ denotes the reward value given in Equation (4-16); y is a discount factor.

On the other hand, the critic network evaluates the action u} output by the actor network. A critic loss

function L. (@) is defined to be minimized to update the critic network:

Le(@) = B (R~ Va(sD) (421)

The detailed hyperparameter setting of the DPPO algorithm is given in Table 4-2.

Table 4-2. DPPO algorithm’s hyperparameters.

Hyperparameters Value
Clipping value ¢ 0.2
Discount factor ¥ 0.99
Minibatch T 256
Actor learning rate 0.00001
Critic learning rate 0.00001
Number of the parallel 4

agents
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4.3.3 Training Procedure

This section provides the detailed training procedure, which aims to update the policy of the DRL agent.
DPPO algorithm with the actor-critic network structure is adopted for updating policy =. The DPPO
algorithm includes one global agent for updating the actor-critic networks' parameters and multiple
parallel agents collecting data to improve the sampling efficiency. To be noted that, if there are fewer
than k downstream vehicles, the controlled CAV integrates all the downstream information and takes
proper action from DRL-based models (M;~M,_;), which are developed based on the same framework

with M,, but with a smaller number of proceeding vehicles (1~k — 1 downstream CAVs).

The training process of Mg is demonstrated in Fig. 4-5. We set the number of communicated
downstream CAVs k = 5 in the control framework since the impact of far downstream CAV can be
neglected (w;_j < 1—16 when k > 5). The numerical environment is built via Python. Specifically, the
trajectory of the leading CAV (CAV i — 5) is ground-truth data from the NGSIM datasets. The other
downstream CAVs are controlled by the corresponding DRL-based models (M;~M,). Without losing
generality, all following CAVs start with the equilibrium states defined in section 4.2. During the
training process, each parallel agent receives state s at time step t and outputs uf to control CAV i
based on the latest policy 7. Simultaneously, the reward 7 is computed by the reward function (16)
and stored in the memory buffer with state s{ and action u}. After a specific batch of data is collected,

the global agent will update policy r by optimizing the actor network and critic network parameters.
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Fig. 4-5. The schematic diagram of training procedure.
The distributed controller is trained on 200 episodes, consisting of 218 timesteps with a 0.1s time
interval. The moving reward trajectories (Qu et al., 2020) of developed models (M; ~Ms), presented in
Fig. 4-6, show an almost monotonous increase with episodes until stable convergence, suggesting the
good converging performance of our designed DRL. The main reason is that the predefined equilibrium
state regulates CA'Vs to keep close to equilibrium, which gives DRL an exploration direction to improve

the convergence and reduce the computation burden.
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Fig. 4-6. Reward trajectories of the proposed models.

4.4 Numerical Experiments

Several experiments embedded with NGSIM datasets are conducted to evaluate the DRL-based
distributed control strategy in this section. The raw field data was processed using a low-pass filter to
efficiently clean noises (Montanino & Punzo, 2015). The trajectories of vehicles in Lane 2 of [-80 from

4:00 pm to 4:15 pm are adopted for experiments due to the frequent traffic oscillations period. Without
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losing generality, for each experiment, the followers start with initial equilibrium states. The default

experimental settings are shown in Table 4-3.

Table 4-3. Experiment parameter settings.

Parameters

Value

Number of downstream CAV's

k
Update interval At
Vehicle length [,
Standstill spacing ;
Constant time gap 7/

Acceleration weighting

coefficient Z;

Coefficient matrix Q;

SINR threshold value

Ratio of the demanded

acceleration K; |
Actuation time lag T;

Threshold for the dynamic

information infusion mechanism

q
SINR noise parameter y
SINR noise parameter o2

Acceleration boundary

[amin! amax]

0.1s

4.5m

6.4 m
Is

0.5

" odl

0.055

0.1

0.1

0.1

[-4 m/s?, 4 m/s?]
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The experiments consist of the following three aspects: (i) parameter tuning for the dynamic information
fusion mechanism (in Section 4.4.1); (ii) control performance evaluation and comparison with the

decentralized strategy (in Section 4.4.2); (iii) generalization capability analysis (in Section 4.4.3).

Regarding part (i), the sensitivity analysis was conducted to seek the optimal range of the information
fusion mechanism threshold g, aiming to achieve a great balance between the acceleration jerk and
communication utilization rate. We average the absolute value of acceleration signal jerk j¢ for all time

steps to measure the control signal smoothness, specified as:

N it
ji = Bl (4-22)

where N is the number of timesteps; jf = |uf — uf~*|/At. The communication utilization rate is to

indicate the percentage of fused information for a communication link, given by:

N st
y _ Zt=0Tlii-m
i,i-m — §N t .
’ Ze=0Mii-m

(4-23)

Regarding part (ii), the distributed control performance is analyzed and compared with a decentralized
control strategy and a linear-based CACC strategy. The CAV controlled by the decentralized strategy
can only receive the preceding vehicle’s information through onboard sensors, which means the CAV
is downgraded to the automated vehicle (AV). M; is applied for decentralized control. The compared
CACC algorithm (Zhou et al., 2020c) is a linear CAV longitudinal controller also based on CTG policy,
which greatly dampens traffic oscillations with guaranteed string stability performance. To
quantitatively evaluate the performance of the control strategy, four performance indexes: driving
comfort cost gf, cooperative control efficiency cost f;f, local control efficiency cost fit, and the
cumulative dampening ratio d,,;, are incorporated in the analysis. The cumulative dampening ratio d,, ;
is defined to evaluate the string stability that measures the performance in dampening traffic oscillations
through a platoon (Zhou et al., 2019), defined as:

1
d. . = llafll, _ (Eolaf ~aimean] )2 (4-24)

Pl |af 7
’ ”aO”z (ZItV=0|a3—ao,mean|2)z




35

where I is the vehicle index; index O represents the leader of a platoon; a; mean is the average
acceleration of CAV i over all timesteps. The smaller dampening ratio indicates the more string stable

driving behavior. Particularly, the platoon is strict string stable when all vehicles satisfy d;, ; < dp, ;1.

After performance evaluation, the control strategy's generalization ability is validated in part (iii), using
multiple ground-truth datasets. Finally, the proposed strategy is implemented in different traffic
conditions to demonstrate the oscillation-dampening performance compared with the (intelligent driver

model) IDM-based HDV platoon (Treiber et al., 2000).

4.4.1 Sensitivity Analysis of the Communication Control Mechanism

The experiments in this section aim to optimize the dynamic information fusion mechanism through
tuning the threshold g to achieve smooth control subject to sufficient communication utilization and

control performances.

As an example, we analyzed an unstable communication link between the controlled CAV i and the
transmitter CAV i — 4. Fig. 4-7 presents the acceleration jerk trajectories under different threshold q.
The “Information fully adopted” case indicates the communication utilization rate y; ;_,, = 1, which
means the CAV utilizes (fuses) all the received information from CAV i — 4 and thus can better achieve
the downstream consensus with richer information. However, the acceleration signal jerk ranges
between 1.1 m/s* to 5.5 m/s* in this case when the communication status is unstable. The “fully dropped”
case represents ¥; ;_,, = 0, in which the jerk trajectory is merely below 0.5 m/s’. However, the CAV
ignores all information from CAV i — 4 in this case, which is not desired for achieving the equilibrium
consensus. The two extreme cases demonstrate the trade-off relationship between the smoothness of the
acceleration signal and the communication utilization, which needs to be balanced by finding an

‘optimal’ threshold g*.

Thus, the experiment with threshold g (meters) ranging from 0.01 to 0.25 was enumerated, presented
in Fig. 4-7. Compared with the case that fully utilizes the communication information, cases with

smaller g help alleviate the jerk, with only a few time points with high jerk values. To quantify the
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results, we use 30 datasets with each over 50 seconds to average the acceleration jerk j; and
communication utilization rate y; ;_4, presented in Fig. 4-8 (a). The quantified results further illustrate
the trade-off relevance. Particularly, the average jerk j; increases monotonically from 0.173 m/s’ to
0.309 m/s’, with the communication utilization rate y; ;_,, growing from 28.4% to 87.8%. When q >

0.03, y; ;_m 1s less sensitive while the trend of j; is more sensitive due to the nearly exponential growth.

55
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Fig. 4-7. The acceleration jerk trajectory under different thresholds.

Furthermore, the sensitivity analysis of threshold g was conducted regarding its impact on control
performances (i.e., dampening ratio d,, ;, cooperative control efficiency fi£, and local control efficiency
fit), as presented in Fig. 4-8 (b). As threshold q increases, the dampening ratio gradually decreases
before since more information is utilized to facilitate the string stability performance. Nevertheless, the
dampening ratio re-rises after q reaches some point (0.15) due to the high-jerk acceleration. On the
other hand, the two types of control efficiency costs remain low when q is within a certain range (0.03
~ 0.09) and then rise monotonically as g gradually increases, indicating that the high-jerk equilibrium

deviations (i.e., Adf , ADY) negatively affect the control efficiency.



Fig. 4-8. Sensitivity analysis of threshold q regarding (a): average jerk and communication

utilization rate; (b): dampening ratio, cooperative control efficiency, and local control efficiency.
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Taking different aspects regarding signal smoothness, oscillation dampening performance, and control

efficiency into consideration, the optimal range of the threshold g can be found as 0.03 to 0.09. In this

study, q* = 0.03 is adopted for the follow-up experiments due to the relatively small jerk and sufficient

control performance.
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4.4.2 Control Performance Evaluation

Based on the optimal threshold g*, we systematically compared the proposed DRL-based distributed
control strategy's performance with a DRL-based decentralized control strategy (i.e., single
predecessor-follower topology) and a linear-based CACC strategy in this section. A six-vehicle platoon’
trajectory from the NGSIM dataset was used in the experiment, where the first vehicle trajectory is

selected as the leading vehicle trajectory of these strategies.

As an illustrative example, Fig. 4-9 shows the six-vehicle platoon’s trajectories of the field data and
simulated results based on the decentralized strategy and distributed control strategy. The acceleration
of HDVs in Fig. 4-9 (a) fluctuates significantly due to the traffic oscillations, leading to traffic
congestion during 25 seconds to 35 seconds. In contrast, the CAV follower in Fig. 4-9 (b-c) is more
responsive to the preceding CAV with smaller spacing and smoother realized acceleration, indicating
great car following efficiency and driving comfort. Compared with the decentralized control, which
merely utilizes the very nearest following vehicle’s information, the distributed control strategy in Fig.
4-9 (c) significantly improves the dampening performance with the magnitude of spacing, velocity, and
acceleration attenuated through the platoon, indicating more excellent string stability and cooperative
control efficiency. Moreover, we assessed the decision-making time of the proposed DRL-based
method. The average decision-making time (the average result of 500 timesteps) of follower 5° s DRL
controller takes 0.236 milliseconds (0.023 standard deviations), which meets the decision-making

requirements for CAVs.
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Fig. 4-9. The position, velocity, and realized acceleration results of a vehicle platoon: (a) NGSIM
ground-truth data; (b) Simulated results using decentralized control strategy; (c) Simulated results

using distributed control strategy.

For quantitative evaluation, Fig. 4-10 demonstrates evaluation indexes of the three vehicular platoons,
including dampening ratio d,,; (in Equation (4-24)), comfort cost gf (in Equation (4-15)), cooperative
control efficiency cost f;* (in Equation (4-13)), and local control efficiency cost fit, among which last
three indicators are based on the average value per time step. The dampening ratio of each HDV
(NGSIM data) remains around 1.0. On the other hand, the dampening ratio and driving comfort cost of
the linear-based CACC approach, decentralized control approach, and proposed distributed control
approach show a similar downward trend through the platoon, satisfying the strict string stability criteria
and indicating the improved driving comfort. Despite the similar tendency, the distributed control
strategy demonstrates a smaller dampening ratio and driving comfort cost, and the advantage to the
decentralized control and linear-based CACC becomes more obvious towards the traffic upstream. By

the above results, we can conclude that the distributed CAV controller receives downstream multi-

leader

follower 1
follower 2
follower 3
follower 4
follower 5
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vehicle information and achieves equilibrium consensus, which outperforms the decentralized control

and linear CACC in smoothing the driving behavior and alleviating traffic oscillations.
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Fig. 4-10 Comparison of distributed control, decentralized control, and NGSIM data in terms of

four evaluation indexes.

On the other hand, both decentralized and distributed control shows a small cost of local control
efficiency (below 1.0), indicating that local stability is well guaranteed. However, the decentralized
control shows a growing trend in the cooperative control efficiency cost, while the distributed control
demonstrates much smaller and attenuated costs through the platoon. This proves that the decentralized
control cannot achieve the consensus due to the large deviation for the CAVs far apart. The distributed
control strategy achieves the consensus, which contributes to the stable platoon dynamics with little
deviations from the consensus equilibrium. Furthermore, the proposed DRL-based control strategy
outperforms the linear-based CACC strategy in every aspect, which can be attributed to two reasons.
First, the DRL can better capture stochastic vehicle behaviors since the real ground-truth dataset
(NGSIM) is embedded in the training framework, whereas (Zhou et al., 2019) may neglect some
nuanced vehicle driving characteristics. In addition, the specially designed DRL state and reward
function incorporate the merits of the multi-agent consensus by fusing the weighted information of the

downstream CAVs, which further improves the control performance and the dampening performance
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from a system level. Besides, the system-level control performances further enhance driving safety
based on the equilibrium concept. To demonstrate the safety performance more intuitively, we defined
the ‘safety cost’ as the reciprocal of TTC (i.e., 1/TTC}) and plotted the safety cost trajectory for the
vehicle platoon, as presented in Fig. 4-11. According to the previous studies (Sultan et al., 2002), the
safety cost threshold of 0.5 (i.e., TTC threshold as two seconds) is adopted to identify whether the car
following behavior is safe or not. In Fig. 4-11, the safety cost trajectories are below 0.5 under any

condition, which further proves that the proposed controller enhances safety performance.
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Fig. 4-11. The safety cost trajectory of the vehicle platoon!
Moreover, to visualize our dynamic information fusion mechanism and the unstable communication
status of the vehicular platoon, the IFT and the adjusted IFT of follower 4 and follower 5 are given in
Fig. 4-12. It demonstrates the communication statuses between the receiver (follower 4 and follower 5)
and downstream transmitters (vehicle 3 — vehicle 0 for follower 4; vehicle 4 — vehicle 0 for follower 5)
during the whole period. It shows that the communication becomes unstable as the distance of the
transmitter and receiver increases. In current settings, the successful information delivery of the
transmitter CAV i — m cannot be guaranteed when m > 3 (e.g., vehicle 0 to follower 4; vehicle 0 and
vehicle 1 to follower 5), which negatively affects the control implementation and performance. By the
information fusion mechanism, the acceleration of follower 4 and follower 5, presented in Fig. 4-9 (c),

ensures smooth control and simultaneously achieves desired control performance.
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Fig. 4-12. IFT and adjusted IFT of the follower 4 and follower 5: (a) IFT of follower 4; (b)

Adjusted IFT of follower 4; (c) IFT of follower 5; (d) Adjusted IFT of follower 5

4.4.3 Generalization Analysis

After evaluating the great control performance of the proposed approach, this section validates its
generalization capability through validating the statistical robustness and demonstrating extended

experimental cases.

Statistical Robustness Validation

To validate the statistical robustness, multiple field trajectories from NGSIM datasets (180 ground-truth
datasets with each over 30 seconds) are selected to quantitatively evaluate the generalized performance
of our proposed strategy for different leading vehicles trajectories. The detailed performance indexes
are as presented in Fig. 4-13. As can be found that, the dampening ratio (give in Equation (4-24)) starts
at 1 and gradually decreases to 0.335 through five distributed CAVs, proving that the oscillations are

weakened during traffic propagation. From the control perspective, the monotonically decreased
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running cost (given in Equation 4-15) demonstrates that the proposed strategy can make CAVs maintain
close to the predefined equilibrium point through the vehicular string. Moreover, upstream CAVs can

better achieve equilibrium consensus due to the weakened oscillations and more comprehensive

information received.
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Fig. 4-13. Average cumulative dampening ratio and running cost of each vehicle in a six-vehicle

platoon.

Further, we statistically show the advantage of the proposed strategy over ground-truth data and other
approaches mentioned above (i.e., decentralized control; linear-based CACC). The superiority

percentage P is introduced as follows:

P= %* 100%,

o

(4-25)

where PI, and PI; are the generalized performance index of the compared strategies and proposed
strategy, respectively. For generalizing these indexes, we first averaged five followers' performance
indicators in the platoon as representation for the whole platoon and then took the average result of the
180 datasets. Thus, the superiority percentage of each indicator is calculated and demonstrated in Fig.
4-14. The distributed control outperforms the field data with 55.92% in dampening ratio and 76.05% in
driving comfort, demonstrating significant improvement of string stability. Compared with the
decentralized control and linear-based CACC, the distributed control has advantages in every aspect,

especially in the cooperative control efficiency (74.96% and 78.3% in cost reduction, respectively).
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These results further validate the generalization capability of the proposed method for different leading

vehicle trajectories.
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Fig. 4-14. The superiority percentage of proposed strategy compared with NGSIM data and

decentralized control strategy.

Extended Cases

Finally, extended experiments are conducted to demonstrate the robustness of our controllers under

different traffic conditions. Fig. 4-15 shows acceleration profiles of ten-follower vehicular platoon in

six different scenarios, whose leading vehicle trajectories, picked from NGISM, are different. The

results show that the proposed control method quickly and significantly dampens traffic oscillations,

efficiently stabilizing the driving behaviors of the upstream CAVs.
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Further, the proposed control strategy is applied to control 50 CAV followers with a customized leading
vehicle trajectory incorporating one rapid deceleration-acceleration cycle (-2.4 m/s* — 1.5 m/s?)
disturbance. The 50-HDV platoon generated by the IDM is set as a comparison, where the IDM model
is calibrated by (Kesting & Treiber, 2008) based on the datasets with complex situations. Fig. 4-
16 illustrates the velocity heat map of the CAV platoon and HDV platoon, and Fig. 4-17 intuitively
demonstrates the velocity and acceleration portfolios of the CAV platoon. For the HDV platoon, the
traffic oscillation is amplified upstream with increasing traffic jams. However, for the CAV platoon,
the disturbance is dampened significantly through the platoon so the followers can quickly recover from

the disturbance, showing outstanding robustness and resilience. The velocity and acceleration portfolios
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Fig. 4-15. Acceleration profiles of ten-follower vehicular platoon in six different scenarios.

also demonstrate the excellent dampening performance of the CAV platoon.
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Fig. 4-16. Velocity heat map based on the position trajectories for the HDV platoon and CAV
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Fig. 4-17. Velocity and acceleration trajectories of the CAV platoon under rapid deceleration-

acceleration scenario.

Since the proposed controller is trained by the NGSIM dataset, which is normally low-speed congested,
we conduct experiments to simulate a 20-vehicle platoon under the medium-speed speed scenario
(steady state 20 m/s) and high-speed scenario (steady state 30 m/s), with results presented in Fig. 4-18.
Similarly, one typical rapid deceleration-acceleration cycle (i.e., -2.5 m/s* — 2.5 m/s” for medium-speed

scenario; -3 m/s> — 3 m/s for high-speed scenario) is customized to represent a large-amplitude traffic
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oscillation for the leading vehicle. The results demonstrate that the controller greatly dampens the traffic
oscillation in both medium-speed and high-speed scenarios, which further validates the generalizable

capability.
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Fig. 4-18. Velocity trajectories of the CAV platoon in the medium-speed and high-speed scenarios. !

4.5 Conclusion

This study presents a DRL-based generic distributed CAV longitudinal control approach in a relatively
realistic communication environment. To better capture stochastic characteristics of the preceding
vehicles and communication loss, we embed the NGSIM datasets and the SINR based dynamic
communication mechanism into the training framework. Each CAV in the framework receives its
downstream CAVs’ fused information as the DRL state for real-time control. The fused DRL state and
reward function are specially designed to incorporate the merits of the equilibrium concept and
consensus concept, which maintains CAVs around the predefined equilibrium point and achieves the
system-level consensus to better dampen traffic oscillations. A dynamic information fusion mechanism
is proposed to smooth the fluctuated DRL state and the high-jerk control signal caused by the dynamic

communication loss.

For evaluating the proposed strategy, we conducted several numerical experiments using NGSIM
datasets. The sensitivity analysis was conducted first to optimize the parameter of the dynamic

information fusion mechanism. Then the control performance of the distributed control approach is
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evaluated by comparing with the decentralized control, linear control, and field data in terms of
dampening ratio, driving comfort, and cooperative car following efficiency. The results suggest that the
distributed control strategy significantly outperforms other strategies and field data in every aspect and
can greatly stabilize the traffic oscillations based on the platoon’s equilibrium consensus, demonstrating
its robustness and resilience against disturbances. Finally, the generalization capability of the proposed

strategy is validated using large amounts of the NGSIM datasets and customized traffic scenarios.

Some future studies can be investigated based on current results. The CAV lateral control can be
incorporated in the control framework for merging, diverging or lane-changing maneuvers. In addition,
other dynamic or validated communication models (Kim et al., 2017; Wang et al., 2019) or topologies
(e.g., relay communication topology, V2I, V2C) can be embedded in the framework to conduct
extended experiments. The dynamic communication delay can be considered to make the control
framework more realistic. Moreover, the complex mixed traffic flow properties can be further studies

and optimized based on this study by extending the control framework.

Furthermore, we can incorporate the prediction process (i.e., predicting the behavior of the surrounding
vehicles) into the control framework to achieve more efficient control performance. The prediction
process using advanced supervised machine learning algorithms (Ahmadlou & Adeli, 2010; Alam et
al., 2020; Pereira et al., 2020; Rafiei & Adeli, 2017) are considered as the extension based on the current

control framework.
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5 DISTRIBUTED CONNECTED AUTOMATED VEHICLES CONTROL IN MIXED TRAFFIC: REAL-TIME

AGGREGATED MACROSCOPIC CAR-FOLLOWING BEHAVIOR ESTIMATION BASED ON DEEP

REINFORCEMENT LEARNING

This chapter proposes an innovative distributed longitudinal control strategy for connected automated
vehicles (CAVs) in the mixed traffic environment of CAV and human-driven vehicles (HDVs),
incorporating high-dimensional platoon information. The control strategy is designed for the mixed
traffic environment discussed in Section 4 of the thesis. For mixed traffic, the traditional CAV control
method focuses on microscopic trajectory information, which may not be efficient in handling the HDV
stochasticity (e.g., long reaction time; various driving styles) and mixed traffic heterogeneities.
Different from traditional methods, our method, for the first time, characterizes consecutive HDVs as a
whole (i.e., AHDV) to reduce the HDV stochasticity and utilize its macroscopic features to control the
following CAVs. The new control strategy takes advantage of platoon information to anticipate the
disturbances and traffic features induced downstream under mixed traffic scenarios and greatly
outperforms the traditional methods. In particular, the control algorithm is based on deep reinforcement
learning (DRL) to fulfill car-following control efficiency and further address the stochasticity for the
aggregated car following behavior by embedding it in the training environment. To better utilize the
macroscopic traffic features, a general platoon of mixed traffic is categorized as a CAV-HDVs-CAV
pattern and described by corresponding DRL states. The macroscopic traffic flow properties are built
upon the Newell car-following model to capture the characteristics of aggregated HDVs' joint behaviors.
Simulated experiments are conducted to validate our proposed strategy. The results demonstrate that
the proposed control method has outstanding performances in terms of oscillation dampening, eco-
driving, and generalization capability. Finally, we further analyze the vehicle sequencing’s impact on
the mixed traffic flow, which has rarely been discussed in previous researches. This will provide

guidance and reference for future research that considers lane-changing maneuvers.

The chapter is organized as follows. Section 5.1 provides the CAV longitudinal control scheme,

including the environment setting, the distributed control scheme, and the state fusion strategy. Section
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5.2 gives the details of DRL-based control model development, in which the basics of the DRL
algorithm are discussed in Section 5.2.1; the policy updating algorithm is given in Section 5.2.2, and
the training procedure is described in Section 5.2.3. Section 5.3 analyzes the results of simulated
experiments in terms of control performance, driving comfort, and generalization capability. Section

5.4 analyzes the impact of CAV-HDV topologies on mixed traffic flow. Section 5.5 concludes the work.

5.1 CAV Control Scheme

5.1.1 Assumptions and Environment Setting

Assumptions

This study focuses on the CAV longitudinal control in mixed traffic of CAVs and HDVs. We consider
the car following process without lateral movement in an infinite highway segment. The communication
between CAVs follows the Federal Communications Commission, allocating a dedicated short-range
communication (DSRC) radio with a 5.9-GHz frequency (Du & Dao, 2015). The environment
assumptions are given as follows: (i) The CAV can obtain the real-time state information (e.g., speed,
position) of its immediate preceding vehicle using onboard sensors. (ii) The CAV can receive its own
real-time state information. (iii) The CAV’s real-time state information is broadcasted to the upstream
CAVs by vehicle-to-vehicle (V2V) communication. (iv) The Signal-Interference-plus-Noise Ratio
(SINR) condition dynamically determines the transmission status (fail/success) between any CAV pairs.
(v) The communication delay is negligible due to the short communication distance in a road segment.
(vi) HDVs have no communication capability. (vii) The lane-changing maneuvers are not considered

in the vehicular platoon.

Communications

For the DSRC-based V2V communication environment given in the above assumptions, the
information transmission status between CAVs can change dynamically under communication failure

due to communication interference or information congestion (Wang et al., 2019). The communication
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failure will undermine driving performance. We embed this realistic communication property into the
control framework to enhance the robustness and practicality of the CAV controller. The information
flow topology (IFT), which indicates the dynamic transmission status of links in the vehicular platoon,
is described from the receiver side (i.e., controlled CAV) to illustrate the communication environment.
Specifically, the IFT of CAV i at timestep t is defined as & = [nf;_y, nf; 5, .., nf;_y], where
Nfi-m € {0,1} denotes the information transmission status between the receiver CAV i and the
downstream vehicle i —m. nf;_,, = 1 indicates a successful transmission, while 7{;_,, =0 can
happen either when a communication loss or vehicle i —m is an HDV. In addition, we assume a
permanently successful transmission status for the immediate preceding vehicle (i.e., nit,i—l = 1)dueto
CAV’s robust onboard sensors. To better replicate the DSRC-based V2V communication, the SINR
communication model (Du & Dao, 2015), which demonstrates great estimation of communication loss
on a one-way road segment, is adopted to identify CAVs’ IFTs. The SINR model determines the real-
time transmission quality yit‘ ; between the transmitter CAV j and the receiver CAV i at timestep ¢,

defined as Equation (5-1):

—-a
(xt
yt = Pi(¥)
M B e PrX) 0’

(-1

where P; denotes the transmission power of vehicle i; Xfl is the distance between two CAVs; a is the

parameter adjusting the signal power decay. ch_:ljﬂ P (X£;) ™ represents the sum of the interference
signal power of vehicles between the receiver CAV i and transmitter CAV j. The noise term
O~N (u, 0?) is used to simulate the random noise affecting the communication environment. Based on
yﬁ j» a threshold value B related to the communication capability (e.g., modulation, code rate) is

introduced to determine the real-time transmission status nf’i_m:

1, yt_ >
%Fm={ Vii-m > B (5-2)

0, yit:i—m < ﬁ
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Based on the SINR model, we embed critical communication features of the practical condition in the

simulated V2V communication environment, making the simulation more realistic.
Vehicle Dynamics

Given the assumptions and communication environment, the vehicle dynamics are modeled by a first-
order approximation to capture multiple factors (e.g., gear position, road gradient, air drag force) of the

vehicle linearized dynamics (Li et al., 2011; Wang, 2018b):
_At _Ae
aft' =e lirxaf + (1 —e ’i'L> X K; juf, (5-3)

where K;; and I;; denote the system gain (ratio of the control demand that can be realized) and
actuation time lag of CAV i, respectively; uf and a! are the demanded acceleration and realized

acceleration. With acceleration af, the real-time vehicle state is updated according to the kinematic

point-mass equations (M. Zhu et al., 2018):
vitt = vl +afAt (5-4a)

t+1 _ . t+1 t+1
Avii=y =vy — v (5-4b)

t t+1
Vii-1 +Av;

A 1
i=dii+ == At, (5-4¢)

¢

where At is the update interval; v} is the velocity of CAV i at timestep ¢; d;;_4 denotes the front-

bumper distance between CAV i and CAV i — 1.

5.1.2 Distributed Control Scheme

Based on the above environment setting, this section provides a generic distributed control framework
to regulate CAVs’ longitudinal movements in a mixed traffic environment, as presented in Fig. 5-1. The
communication topology setting assumed by the SINR model in the framework is a common V2V
communication topology, which is widely utilized in the CACC control (Wang et al., 2020). For this

topology, each controlled CAV (i.e., CAV i) broadcasts its state information (e.g., velocity, position)
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to the upstream vehicles within a certain communication range and simultaneously communicates with
the multiple downstream vehicles within the communication range (i.e., at most K downstream vehicles)
at each timestep for real-time longitudinal control. For each timestep, the received information from the
downstream vehicles is fused as a weighted DRL state s¢, which will be explained with details later.
After the fusion process, the DRL-based controller generates the real-time demanded acceleration uf,
and u! is then implemented based on the above vehicle dynamics, regulating CAV i’s longitudinal

movements.
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Fig. 5-1. Velocity and acceleration trajectories of the CAV platoon under rapid deceleration-

acceleration scenario.

Within the above framework, the fused DRL state s! is notably designed to better utilize the
downstream vehicles’ information. The communication range for state fusion, defined as the ‘local
downstream environment,’ is restricted to cover at most K downstream vehicles. The communication
quality within the range should be basically stable (i.e., rarely fails), and the kinematic traffic waves
(Whitham, 1955) can be quickly propagated to the controlled CAV i. Despite the limited range, the
diversified downstream CAV-HDV topologies make developing a generic distributed controller
challenging. To this end, we describe any local mixed downstream environment as the generic CAV-
HDVs-CAYV pattern, which consists of a nearest downstream CAV followed by a single or multiple

HDVs, as presented in Fig. 5-2(a). In this heterogeneous local environment, the traffic oscillation



54

amplitude usually grows upstream through the consecutive HDVs between CAV i and CAVi—m
(Zhou et al., 2019), which hinders CAV i from driving smoothly. To alleviate this issue, we firstly fuse
the nearest downstream CAYV (i.e., CAV i — m)’ s state information to ‘actively’ anticipate its relatively
smooth and stable driving behavior for more efficient control. Furthermore, directly modeling or
predicting each HDV’s stochastic behavior between CAV i and CAV i — m is very challenging. To this
end, we characterize the consecutive HDVs as a whole ‘large’ HDV (i.e., AHDV) and utilize its
macroscopic traffic features to attenuate stochasticity, thus enhancing CAV i’ s driving behavior. As
presented in Fig. 5-2(b), we neglect each HDV’s microscopic driving behavior between the preceding
HDV (i.e., HDV i — 1) and CAV i —m and define this ‘CAV-HDVs-CAV’ pattern as a novel car-
following structure ‘CAV i - AHDV — CAV i —m.’ In this way, CAV i receives the real-time state
information of its preceding HDV i — 1 and the nearest downstream CAV i — m to generate the fused
DRL state s; for the DRL-based control. It should be noted that if CAV i —m is out of the
communication range (i.e., m > K), CAV i only receives the information of HDV i — 1 for control.
The proposed distributed control scheme is downgraded to the ‘decentralized control’, which will be

explained in Section 5.3.2 with details.
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Fig. 5-2. The mixed local downstream environment: (a) characterized as ‘CAV-HDVs-CAV’

pattern; (b) “three-vehicle” car-following structure
5.1.3 State Fusion Formulation

A generic state fusion strategy is designed based on the equilibrium concept to regulate each CAV close
to the pre-defined equilibrium state and meanwhile effectively stabilize traffic oscillations. The
equilibrium concept from the modern control theory defines the equilibrium state (equilibrium point)
for a dynamical system, which represents a state where the system can stabilize after being affected by
external disturbances or forces (Absil & Kurdyka, 2006). A system will remain at the (stable)

equilibrium state once reached, given the perturbation and inputs are small enough.

In longitudinal car-following control, the equilibrium state represents the desired ideal vehicle state (i.e.,
equilibrium spacing and speed) during driving for each car following pair, which avoids arbitrary
variation of the inter-vehicle spacing for control. Incorporating the equilibrium concept in DRL
provides the exploration direction in DRL training to help develop a robust control policy and gives the
base for analyzing vehicle string stability and car following control efficiency. Based on the concept,
this subsection derives the DRL state s as the weighted deviation from the equilibrium spacing Adf
and the weighted deviation from the equilibrium speed Av{ regarding its downstream vehicles HDV i —

1 and CAV i — m. Four parameters are predefined to fuse the DRL state, including the equilibrium

*t

spacing d;_§_1 and equilibrium speed v; t_, regarding HDV i — 1; the equilibrium spacing d;i_m and

*t

equilibrium speed v;;_,, regarding CAV i — m. The following content describes the derivations of the

DRL state.
Local Equilibrium

The derivation of the DRL state starts with the local equilibrium state. The local equilibrium state for
each CAV car following pair follows the constant time gap (CTG) policy from the Society of
Automotive Engineer Standard (SAE), which regulates the CAV to set the same speed as its preceding

vehicle and maintain the preset equilibrium spacing, defined as below:
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diiy =viti +1; (5-52)
Vi1 = Vioy (5-5b)

where v} denotes CAV i’s real-time velocity at timestep t; 7; and [; are the constant time gap and the
standstill spacing between CAV i and vehicle i — 1, respectively. The two equations above define the

local equilibrium for a car following pair.
Multi-agent Equilibrium

Furthermore, to consider the impact of multiple vehicles in the local downstream environment, Equation
(5-5a) and Equation (5-5b) are expanded to a distributed multi-agent version, whose equilibrium
spacing d; ¢, and speed v; ¢, between CAV i and any downstream vehicle i —m is specified as

Equation (5-6a) and Equation (5-6b):

dzti—m = vlFTiTi—m + Li,i—m' (5-63)
Viiom = Viom: (5-6b)

T};_m and L; ;_,, denote the equilibrium time gap and standstill spacing between CAV i and CAV i —
m. The two terms regulate CAV i’s desired microscopic driving behavior considering its downstream
vehicles, which will be explained with mathematical details later. To facilitate the system-optimal
consensus of the vehicular platoon, we measure and embed the actual spacing and speed deviations

from the equilibrium between CAV i and CAV i — m into the DRL framework, which is specified as:

Adit,i—m = df,i—m - dﬁ—m; (5-7a)
AV = Vi = V], (5-7b)

Based on Equation (5-7), the equilibrium deviations for multiple downstream vehicles can be

determined for the state fusion.

Estimation from Newell’s Car-following Model
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The remaining problem lies in calculating the equilibrium spacing d; t_n in Equation (5-6a), which
needs to specify the corresponding time gap T;;_,, and the standstill spacing L; ;_,. Specifically, for
the defined ‘CAV-AHDV-CAV’ structure, the equilibrium spacing regarding HDV i — 1 (i.e., d;§_,

and CAVi—m (i.e. d” m) needs to be configured. Regarding HDV i — 1, d;‘f_l is directly given in
Equation (5-5). Based on that, the deviation from equilibrium spacing is specified as Adﬁ -1 =
dit,i—1 - d;‘_g_l. Regarding CAV i — m, the equilibrium time gap T;;_,,, standstill spacing L; ;_,, and
equilibrium spacing dl i—m are defined as follows based on the three-vehicle following scheme ‘CAV

i->HDVi—1->CAVi—m

Tiiom =T + T (5-8a)
Li,i—m l +Ll 1i-m> (5‘8b)
d;‘,tl;—m = vi('[;= + T*tll m) + (l + L 1,i—m)a (S'SC)

where T{%; ;_,, and Li_; ;_,, represent the time-varying time gap and spacing between HDV i — 1 and

CAV i —m, respectively. Considering the aggregated HDVs in-between, T;", ;_,,, can be denoted as:
l 11 -m Z;nllrl*t}' (5'9)

where 7t ; denotes the time gap between HDV i — j and its preceding vehicle. Since HDV has inherent

*t

stochastic nature with great diversities, 7;~; is time-varying and follows varied distributions for

different HDVs. Moreover, 7;* _j is unmeasurable due to the lack of communication capability of HDVs,

making it challenging to determine T;* ~1,i—m- Compared with a single HDV’s microscopic behavior, the
aggregated HDV driving behaviors exhibit macroscopic traffic flow properties, which show less

stochasticity. Thus, rather than measuring t;°; individually, the aggregated HDV driving

J'
characteristics can be better captured by the macroscopic traffic features to address stochasticity, as

indicated by the philosophy of central limit theorem (CLT) (Kwak & Kim, 2017). Though m may not

be sufficiently large to apply CLT, the aggregation treatment of multiple HDVs brought promises to
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capture HDVs features. Moreover, we leave the remaining uncertainties by embedding the field-

measured HDV trajectories in the DRL training process.

Precisely, the two time-varying terms T;"*; ;_,,, and L{_; ;_, need to be real-time estimated in the state
fusion process to capture the macroscopic features. The schematic diagram for the real-time estimation
is presented in Fig. 5-3(c). Newell’s car following model (Newell, 2002), which bridges the
fundamental diagram and microscopic driving behavior features, and meanwhile efficiently models the
kinematic oscillation waves (Richards, 2013), is adopted after modification, by allowing the two time-
varying terms T;*y ;_,, and L{_; ;_,, to be time-variant and real-time estimated. Rather than directly
modeling the microscopic driving behaviors of any CAV or HDV, the time-varying version of Newell’s
car-following model describes the aggregated HDVs’ (AHDV’s) driving behavior to capture its

exhibited macroscopic traffic features in real-time.

Fig. 5-3(a) and Fig. 5-3(b) demonstrates the principle of Newell’s car-following model. From the
microscopic perspective, Newell’s car-following model gives a linear speed-spacing relationship in
congested traffic flow for the following vehicle i, which assumes the follower reproduces the preceding

leader’s trajectory with a time-space displacement (z, [):
d; =vt+1, (5-10)

where v is the vehicle speed; d; is the spacing; T represents the time shift for vehicle i to match its
leader’s speed; ! denotes the displacement of the speed change point. Moreover, from a macro
perspective, the Newell’s car following model models the kinematic wave with a triangular fundamental
diagram, in which the parameters t and [ represent macroscopic traffic features to describe traffic wave

speed w and jam density k:
w=-=, (5-11a)

_ L (5-11b)
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d=vt+1

Spacing

Velocity v

HDVi—-1

(©

Fig. 5-3. Model schematic diagram: (a) Newell’s car following model; (b) Speed-spacing
relationship; (c) Real-time estimation diagram of the time-varying time-gap T}‘fl_i_m and spacing

t
Li 1i-m

where T denotes the wave propagating time between two consecutive vehicles; [ indicates the jam
spacing. Based on Equation (5-10) and Equation (5-11), T and [ are two key terms for modeling the car-
following behavior and simultaneously capturing the macroscopic features. Furthermore, for the vehicle
following structure ‘CAV-AHDV-CAV’ described above, the time gap T;*; ;_,,, and spacing L}_; ;_,,

B

can be interpreted as Newell’s parameters 7 and [ in the car following pair ‘HDVi—1 - CAVi—m’,
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which anticipates the relatively smooth behavior of CAV i — m and incorporates macroscopic features

of the aggregated HDVs. Specifically, Equation (12) is proposed to real-time estimate Tl-*_tl‘i_m and

Lg_l‘i_m based on the integration form of Equation (10) and Equation (11):

Dt

Tiimm = er (5-12a)
L§—1,i—m = WTi*—tl,i—m' (5-12b)

where v{_; is the speed of HDV i — 1 at timestep t; D{_; ;_, is the actual spacing between HDV i — 1
and CAV i —m; w denotes the average kinematic wave speed, which is a pre-calibrated value
determined by the road infrastructure’s features and configuration. Since w plays an important role in
the method, applications of our methods should regularly measure and update the w value. There are
methods available for w measurement, including direct measurement w using wavelet transform
(Zheng et al., 2011; Zheng & Washington, 2012), or indirect estimation by first estimating the
fundamental diagram to derive w per Li et al., (2022). We set w to 16 km/h due to the generalized
settings in studies using Next Generation Simulation (NGSIM) data collected on eastbound I-80 with

an on-ramp at Powell Street (e.g., Laval & Leclercq, 2010; Duret et al., 2011; Chen et al., 2012).

In addition, it should be noted that T;"*; ;_,, and L{_; ;_, are not derived from the steady-state spacing
defined in Chen et al. (2012). We use the actual spacing Dit—l,i—m to approximate the steady-state
spacing for real-time estimation, which better anticipates the actual disturbances from downstream (e.g.,
sudden change in spacing) and thus achieves adaptive control performances. Moreover, the estimation
method for T;*, ;_,, and L}_, ;_, are only suitable for heavily congested traffic conditions, where the

traffic oscillations are continuously propagated upstream.
DRL State Fusion

Based on the estimated time-varying gap T;"';; ., and spacing L} in Equation (5-12), the

i—1,i-m

equilibrium spacing d; t_n between CAV i and CAV i —m in Equation (5-8c) can be real-time
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determined. Thus, the deviation between actual spacing and equilibrium spacing is defined as
Adl-t_ i—m = dit_ i—m — dis_m. To better regulate the CAVs close to the equilibrium and reduce the DRL
state dimension for greater training performance, the DRL state st = [Adf, Av{] is generated by fusing
the weighted equilibrium deviations of HDV i — 1 and CAV i — m:

t t t t
Qi—1M{i—18d{i_1+qi-mNii—mAdii_m

t 3
Qi-1M i1t Qi-mNij—m

Adf =

: (5-13a)

¢ ¢ ¢ ¢
Q-1 i1 AV Aiem i m AV

t t
qi-1Mi i1t Qi-mNij—m

Av!

2

: (5-13b)

where weights q;_; and q;_,, represent the information importance for HDVi — 1 and CAVi —m,

respectively. The coefficient for the two components is computed based on the function g;_; =

. The sum of all the weights should be equal to 1 without loss of generality. Since the

information of both the two components is critical, we make it decay with 1/2 order to give equal weight
to the two components based on the above function. Despite the equal weight settings in this study, the
weights can be adjusted to balance the impact of the two components. The impact of both components
can be summarized as follows. The preceding HDV i — 1’s information is necessary due to safety
concerns. The information Adf_ ;1 and Avf i1 from HDV i — 1 should always be incorporated into the
fused DRL state to enhance safety. In particular, it regulates the local equilibrium spacing deviation
Adl-t_ i—1 — 0 and relative speed Avit_ i—1 — 0, which significantly lowers the driving risks as manifested
by safety surrogate measures such as time-to-collision (TTC) (Jiménez et al., 2013). On the other hand,
the information from CAV i — m is the key part of the state fusion process, which anticipates the
relatively smooth driving behaviors from CAVi — m and alleviates the HDVs’ stochasticity to facilitate

control performances.

For a better understanding, the above-proposed estimation method and state fusion process can be
interpreted in this way. The controlled CAV i adapts its car-following strategy according to the state of

its actual immediate preceding vehicle HDV i — 1 and the state of the fictive vehicle (i.e., AHDV) in
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front of the controlled CAV. To refine the effective position of the fictive vehicle, the Newell-based
methodology is introduced to estimate the traffic state and propagate the current state of the leader
CAV i — m through a set of HDV vehicles. Specifically, the time-varying terms Ti*—tl,i—m and LS ;.
which are real-time estimated from Newell’s model, determine the position of the fictive vehicle.
Adopting the interpretation makes the introduced method similar to Multi-Anticipative ACC car-
following rules (Lin et al., 2012; Wang et al., 2014a, 2014b). Rather than defining a fictive vehicle like
in MA-ACC rules only based on perception and communication sensors, which provide information
regarding the immediate leader HDV i — 1 and the CAV leader CAV i — m, the introduced method
refines the approach by making use of the Newell’s car-following model to capture the macroscopic

traffic features between the two leaders.

From the equilibrium concept perspective, the control design maintains the CAV in the pre-defined
equilibrium state, considering its preceding HDV and the nearest downstream CAV. The equilibrium
state with the preceding HDV (i.e., d_,, v{_;) ensures local stability (Willems and Polderman, 2013),
representing the capability to remain in a car-following pair of equilibrium under disturbances. The
equilibrium state with the nearest downstream CAV (i.e., d;ﬁ_m, vl_,,) incorporates the relatively
stable driving motion of the downstream CAV and the macroscopic traffic features of aggregated HDVs,

which further enhances the car-following performances. Moreover, this control design is generic since

it is suitable for diversified compositions of the mixed local downstream environment.
Extension to the full CAV environment

It should be noted that the local communication range can be a pure connected automated environment,
in which consecutive downstream vehicles are CAVs (i.e., CAV-CAVs patten), as presented in Fig. 5-
4. The above generic state fusion approach can also be applied to this full CAV condition, whose
control design is to achieve a platoon-level consensus by fusing received information from all the
aggregated CAVs (i.e., m CAVs,1 < m < K) as the DRL state st for control (Shi et al., 2022). The

methodology and detailed results are discussed in Section 4. Specifically, the fusion process follows
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the same formulations from Equation (5-5) to Equation (5-7) to calculate the equilibrium speed
deviation Avf i—m and spacing deviation Adit_ i—m between CAV i and CAV i — m. Due to the full CAV
environment, the equilibrium time gap T;;_,, and equilibrium standstill spacing L; ;_p, in Equation (5-
6) can be directly defined in a multi-agent version, which means T;;_,,, = mt;; L; j_, = ml;. Similar
to Equation (5-13), the fused DRL state sf = [Ad, Avf] incorporates the weighted equilibrium
deviations for the m aggregated CAVs to anticipate the disturbances induced downstream and thus

achieve great system-level consensus:

t t t t t t
Qi-1Mii-18dii—1+qi-2Mii—2Ad; o+ +qi—kN; j-mAdii—m

Adf = 5-14a
! Qi-1M{i 1+ Q-2+ QimmTf i _m ' ( )
¢ QimaMiioa AV il AV o+ Qi kN i m AV iom
Avt = - . k \ (5-14b)
Qi-1Mj i1 Wi-2Mj 2t Qi-kNji—m
1 .
L 1<j=sm-1
where the coefficient q;_; = { | represents that the closer CAV is assigned with
1) = m

greater power on the control decision.

Fused state
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Fig. 5-4. Scenario extended to the full CAV downstream environment

5.2 Development of DRL-based Controller

Based on the defined control scheme in Section 5.1, this section develops the DRL-based controller.
We discuss the detailed DRL scheme (Section 5.2.1), the adopted DRL algorithm (Section 5.2.2), and
the training process (Section 5.2.3). The simulation experiments, including training and evaluation, are

performed via Python. TensorFlow package is used to build the DRL algorithm. Pyomo package is
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applied to develop the MPC-based controller for performance comparison in the experimental part

(Section 5.3).

5.2.1 DRL Scheme and Formulation

The basis of DRL is Markov Decision Process (MDP), in which the DRL agent (i.e., CAV controller)
and environment (given in Section 5.1) interact with each other based on four basic elements: state,
action, policy, and reward (s, a, 7, r). As discussed in the previous section, state s represents the fused
state information, which contains the weighted deviations of spacing Adf and speed Av{, denoted as s!
= [Adf, Av!]. The DRL agent receives st at each timestep and outputs the action a (i.e., the control
signal uf) based on the policy 7t to regulate CAV i’s longitudinal movements. As an implicit function
that assigns the action probability for each state, policy m(a|s) needs to be updated to achieve optimal

control performance through the training process.

The reward r determines the control objectives. In our design, the objectives of the car following control
efficiency, which aims to maintain CAV in the pre-defined equilibrium state, and driving comfort,
which pursues a smoother driving behavior with greater eco-driving performance, are incorporated in
the DRL framework. In particular, the cost of the car following control efficiency c} is defined as the
quadratic form of deviation from the equilibrium state, which is a common control design in modern
control theories such as Linear Quadratic Regulator (LQR) and MPC. This design facilitates stability
analysis, as manifested by numerous control papers (e.g., Fisher & Bhattacharya, 2009; Zhou et al.,

2019b). Specifically, the quadratic cost ¢} is defined as:

¢t = (sDTQis, (5-15)

,L

a .
where Q; = [ L a ] is a positive definite diagonal coefficient matrix with weights a;; > 0 and
2

Ay > 0.
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Further, the driving comfort cost gf suggested by (Wang et al., 2014) is defined in Equation (5-16),
which alleviates the acceleration to improve the eco-driving performance and empirical string stability

(i.e., acceleration energy) (Shi et al., 2021; Feng et al., 2019):

g9t = a5;(a)’, (5-16)

where a3 ; denotes the weight for driving comfort. It should be noted that both the two costs regarding
the car following control efficiency cost ¢ and driving comfort cost g{ are unitless. The weight’s unit
is the reciprocal of its valuable unit. Thus, each weight of a4 ;, a,;, and a3 ; offsets the units of its

variables, making the whole cost unitless.

Combining the two control objectives above, the running cost ef of CAV i at timestep t is defined as

the sum of the car following efficiency cost ¢ and driving comfort cost gf:
ef =ct+ gt (5-17)

Since the quadratic running cost ef is similar to the cost function in the constrained optimization
framework, and the training environment is similar to the state space as Zhou et al. (2019b), the
coefficients setting (a4 ;, @5 ;, @3 ;) is set to be same as Zhou et al. (2019b) to improve the string stability
performance further. Though it is prohibitive to conduct mathematical string stability as Zhou et al.
(2019b), due to the intrinsic complexity of DRL, we envision the setting coefficients in the same fashion

as is helpful to enhance the string stability by the similarities mentioned above.

Based on the above systematic cost design, we convert the running cost ef as the immediate reward r;f
using the exponential function, as shown in Equation 5-18, which calculates the reward value as
feedback for the control action at each timestep. The exponential equation serves the following two
purposes. First, the reward value needs to be maximized in the DRL framework, whose optimization
direction is opposite to the cost function of optimal control. Using the exponential function changes the

optimization direction from minimization to maximization. Second, the above exponential function
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plays a normalization function, normalizing the immediate reward r* within the boundary [0, 1] and

further enhancing the training performance.
rf = exp(—ef). (5-18)

The above exponential function also normalizes the immediate reward 7 within the boundary [0, 1] to
enhance the training performance. With the reward value, an infinite-horizon optimal control problem

is formulated for maximizing the discounted cumulative rewards to find the optimal control policy 7*:
m* = argmax Y - o Y it ™, (5-19)
T

where Y is the discount factor.

5.2.2 Policy Update Algorithm

The DRL solves the optimization problem in Equation (5-19) by continuously updating policy 7 in
training. The choice of DRL algorithm for the CAV control is based on the following aspects: (i) the
action space (discrete/continuous); and (ii) the algorithm performance. The algorithm should support
continuous action space for the instance of the microscopic CAV control with great sampling efficiency
and converging performances. The Distributed Proximal Policy Optimization (DPPO) algorithm (Heess
et al., 2017), one of the Actor-Critic DRL algorithms, is adopted for policy updating in training. The
Actor-Critic DRL algorithm combines the merits of Policy-Based RL and Value-Based RL algorithms,
which performs faster than traditional RL algorithms and supports continuous action space in the
training process. Based on its merits, the Actor-Critic framework is widely used in the most popular
reinforcement learning algorithms, such as the A3C algorithm (Mnih et al., 2016), DDPG algorithm
(Lillicrap et al., 2016), and PPO (DPPO) algorithm (Heess et al., 2017). In this study, we adopted the
DPPO algorithm to update policy due to its great balance between sampling efficiency, implementation
simplicity, and converging performance (Schulman et al., 2017). Compared with traditional policy
gradient RL algorithms, the DPPO algorithm makes policy gradient less sensitive to a large step and

improves the convergence of policy updates by clipping the divergence of the strategy update. Besides,
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the DPPO algorithm updates the policy of the global agent in parallel through multiple parallel agents,

which further improves training efficiency.

The Distributed Proximal Policy Optimization (DPPO) algorithm (Heess et al., 2017) is adopted for
policy updating due to its great balance between sampling efficiency, implementation simplicity, and
converging performance. The DPPO algorithm is a typical Actor-Critic DRL algorithm, with objective
LELP (6) updating in the actor network and critic loss L. (@) updating in the critic network. The overall
actor-network framework with network structures is presented in Fig. 5-5. The detailed hyperparameters
settings are demonstrated in Table 5-1. The number of neurons for the actor network (200) and critic
network (100) is tuned by experiences to achieve the desired performances without causing underfitting
and overfitting issues. Since the actor network learns a more complex policy function that maps the
DRL state to a probability distribution over all actions, thus setting with more neurons in this study

(Grondman et al., 2012).

Actor-Critic Structure for Policy Update
Update pg(a,|s;) with gradient VL¢P (6)

Actor Network {

200
Neurons

Action
Input Probability e (at|St) 14 (e)
Layer distribution| ¢ CLIP
St 9414 (atlst) L)
6t zt
100

Vo (se) | Vo (SesT)

Vo (S¢)

L (@)

Critic Network i
Update V4 (s;) with gradient VL. (@)

Fig. 5-5. The actor-critic structure of the policy iteration algorithm
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Table 5-1. Hyper parameters of the DPPO algorithm

Hyperparameter Value
clipping value € 0.2
minibatch T 256
discount factor ¥ 0.99
Hidden layer of actor 1
Hidden layer of critic 1

actor network neurons 200
critic network neurons 100
parallel worker numbers 4

actor learning rate 0.00001
critic learning rate 0.00001

Actor Network

The actor network determines the policy  with parameter 6. It receives the DRL state st as the input
and outputs a probability distribution over actions. The control signal uf is then sampled from the
distribution. For the network structure, there is one hidden layer with 200 neurons, and the RelLu
function is adopted as the activation function for the output. The actor network is updated by

maximizing the objective function LX/P (6):
LELP(9) = E,[min(p.(0)A,, clip(p.(0),1 — &1 + £)A,], (5-20)

g (aclsy)
79,4 (@tlS0)

where p;(6) = identifies the probability ratio of the new policy mgy(a;|s;) and old policy

o1a(ae|Sy). The clipping function clip(ps(6),1 — €,1 + ¢€) function restricts p;(6) between 1 — ¢
and 1 + ¢ to limit the update range of new policy, making the policy gradient less sensitive to the step
size and improving the convergence. € is the clipping parameter. A, is the estimated advantage at state

sk, which is provided from the critic network:
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A, = R, —Vu(sh), (5-21)

where Vi, (st) is the value estimated from the critic network; R, denotes the discounted sum of rewards

in T steps at state s}
Ry = Xhy™ ™ +yTVe(si*T), (5-22)

where T is the minibatch size; ri”m is the immediate reward defined in Equation (5-18); y is the
discount factor. Therefore, the parameter 8 of the actor network is updated based on the gradient of

LELP () with learning rate ag:
0= 60— a,VICHP(6). (5-23)
Critic Network

On the other hand, the critic network with parameter @ evaluates the decision uf output by the actor
network. The critic network receives the DRL state s¢ as the input and outputs the estimated state value
Vs (s%). For the network structure, there is one hidden layer with 100 neurons, and the ReLu function is
used as the activation function for the output. The critic network is updated by minimizing the critic

loss function L.(®):
Le(@) = Et(V¢(S€) - Ry)?, (5-24)

where Temporal Differences (TD) error & is denoted as 8, = Vi (st) — R, in the loss function. The TD
error &, estimates the advantage value A, in actor since §, = —A,. Thus, the parameter @ is iteratively

optimized based on the gradient VL.(®) with learning rate ag: @ = @ — agy VL (D).

5.2.3 Procedure and Results

Based on the proposed DRL scheme (given in Section 5.2.1) and the adopted policy updating algorithm
(given in Section 5.2.2), this section describes the detailed training procedure in which the DPPO agent
continuously interacts with the simulation environment. The DPPO agent consists of one global agent

for the actor-critic network updating and multiple parallel agents interacting with their independent
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simulation environments for data collecting (e.g., state, action, reward), which further improves the
sampling efficiency and training speed. The detailed training process is demonstrated in Fig. 5-6. At
timestep t, each parallel agent receives the CAV i’s state s; of its corresponding simulation
environment and outputs the control signal uf to update the longitudinal movement based on the current

policy (als). Concurrently, the collecting data, including the calculated reward 7%, state s¢, and action

t

u;, is sent to the memory buffer for storage. The update of the policy and actor-critic network is

triggered after a certain batch of data is stored in the memory buffer.

I___Q"l‘f‘____ CAVi—-m

(D) (E) () )
e i

1 1 u’?
st
DPPO Agent i
R pt
el

Minimize critic
loss (als)

Fig. 5-6. The schematic diagram of training framework
Regarding the training environment settings, ten sets of five-vehicle ground-truth vehicular platoon
trajectories with a time length of 334 timesteps from NGSIM datasets are embedded for the initial
configuration. For each training episode, one of the ten platoon trajectories is randomly sampled and
assigned for the trajectories of the leading vehicle CAV i — m and the following aggregated HDVs. Fig.
5-7 below shows details of one platoon trajectory. The platoon trajectories that incorporate typical
phases of acceleration, deceleration, and uniform speed are embedded in the training process for the
DRL control model to better capture stochastic driving characteristics. It should be noted that the
proposed “CAV-AHDV-CAV” structure is a generic unit in the mixed traffic flow, whose leading

CAV’s driving behavior could be varied and even stochastic due to the impact of the downstream traffic.
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Thus, rather than setting a deterministic leading CAV, using NGSM data to represent the stochastic

leading vehicle behavior should be rational.
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Fig. 5-7. Trajectories of the vehicular platoon in the training process regarding (a) acceleration; (b)

position; (c) spacing; and (d) time gap (g§/v})

Specifically, the number of HDVs n (1 < n < K — 1) between the two CAVs is randomly sampled in
the simulation environment at each training episode to enhance the generalized capability for different
topologies. Based on sampled topology, the trajectories of the leading CAV i — m and following HDVs
are assigned from the above NGSIM platoon data. Taking an example of the topology ‘CAV-three
HDVs-CAV’, the NGSIM leader trajectory and three follower trajectories are assigned to CAV i —m
and three HDVs. For the controlled CAV i, it starts with the initial equilibrium state defined in Section

5.1 and is then controlled by the DRL learning agent without the loss of generality.
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For the scenario where the local downstream environment is pure connected and automated (i.e., full
CAVs), only the trajectory of the leading vehicle is from the NGSIM dataset, and the corresponding

DRL-based models control the other downstream CAVs.

Training results are represented by the moving reward trajectory (Qu et al., 2020) demonstrated in Fig.
5-8. For the mixed (heterogeneous) traffic environment (Fig. 5-8(a)), the training platoon trajectories
and number of HDVs are randomly sampled, which leads to a varied mixed environment. Thus, the
rewards fluctuate in the converging area. On the other hand, the full CAV downstream environment
leads to more stable reward trajectories, as presented in Fig. 5-8(b). In general, the rewards for both

cases monotonically increase until convergence, indicating good converging performance.
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Fig. 5-8. The moving reward trajectory results for mixed traffic environment (a) and homogeneous

traffic environment (b)

5.3 Simulation Experiments

5.3.1 Experiment Settings

After developing the DRL-based control models, we conduct several numerical experiments to evaluate
the control approach using NGSIM datasets of I-80 in California. To remove the noises and handle the

missing data, we reconstruct the datasets using a low-pass filter proposed by (Punzo et al., 2011) and
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(Montanino & Punzo, 2015). The trajectories in Lane 2 from 4:00 pm to 4:15 pm are selected for
experiments and analysis due to the frequent traffic congestions and oscillations and the fewer lane-

changing maneuvers. The default experimental setting is shown in Table 5-2.

Table 5-2 Default parameters for the experimental setting

Parameters Value
number of local downstream vehicles K 5
update interval At 0.1s
vehicle length [, 4.6m
standstill spacing [; 6.4m
constant time gap 7; Is
SINR threshold B 0.01
control demand ratio K; ; 1
actuation time lag I; | 0.1
noise term N (u, %) N(0,0.1)
b G2 G 1(%) ,0.5(;—22), 0.5(;—42)
(@i mins Qimax] [-4m/s?, 4m/s?]
free flow speed vy 33.3m/s (120 km/h)
wave speed w 44 m/s (16 km/h)

The simulation experiments can be divided into three parts: (i) model performance analysis; (ii)
application of the proposed model in a long vehicular platoon with different CAV penetration rates; (iii)
generalization capability validation. Based on these experiments, the effectiveness, robustness, and
generalization of the proposed control strategy are analyzed comprehensively. For the simulated
platoons in these experiments, the leader’s trajectory is picked from NGSIM datasets or the customized

trajectory profile to reproduce traffic disturbances. The initial states of followers start with the pre-
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defined equilibrium states or start with the ground-truth NGSIM data. With the leader profile and
followers’ initial states, the vehicular platoon trajectory can be simulated based on the proposed model

or other compared methods.
Evaluation Metrics

There are several performance indicators for quantitatively evaluating the control performance:

cumulative dampening ratio d,,;, local stability measured by Adf;_; and Av{_,, driving comfort g}

p.is
(given in Equation (5-16)), and average velocity ¥;. The cumulative dampening ratio dj,; quantifies the
empirical string stability, an important property that measures the capability of the CAV controller in
dampening traffic oscillations. The traffic oscillation magnitude is reduced or remains the same as it
goes through a string stable CAV. Specifically, the [,-norm acceleration dampening ratio d,,; (Ploeg et

al., 2014) is specified as:

1
_ llafll, _ ¢olaty?

dy; = (5-25)

t 1
”%”2 (thV:0|a5|2)z

where N denotes the time length; i is the vehicle index. Index O represents the leader of the whole
vehicular platoon. The smaller dampening ratio d,,; indicates that the disturbances are dampened to a
greater extent, leading to a more string stable driving behavior. The local stability is another important
property of CAV longitudinal control, denoting a vehicle’s ability to remain in the equilibrium state
with its immediate preceding vehicle (Willems and Polderman, 2013). The deviations from equilibrium
spacing Ad; ;—1 and equilibrium speed Avit_l regarding vehicle i — 1 are the indicators for local
stability. Great local stability with low equilibrium deviations indirectly guarantees driving safety since
it leads to large time-to-collision (TTC) (Minderhoud & Bovy, 2001). The average velocity v; refers to

N ot
the mean velocity of all timesteps (v; = thv—‘)v‘).

HDV Modeling Method
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Furthermore, the precise modeling of HDV driving behavior in the mixed traffic simulation contributes
to a more realistic simulation environment and convincing results. This study uses a calibrated
Intelligent Driver Model (IDM) (Kesting & Treiber, 2008; Treiber et al., 2000), which can be
representative of HDV’s string instability property, to model the HDV behaviors in the experiments.
The IDM parameters are calibrated by (Kesting & Treiber, 2008) using ground-truth datasets of HDV
behaviors. The calibrated datasets show complex situations of daily city traffic with several
accelerations, decelerations, or standstill periods, which is quite similar to the adopted NGSIM datasets
for experiments. Therefore, the calibrated IDM model can be applied in the experiments of this study.

The calibrated parameters are presented in Table 5-3.

Table 5-3 Calibrated Parameters of IDM

Variable Parameter Values
Vo Desired velocity 333 m/s
T Safe time headway 1.12s
a Maximum acceleration 1.23 m/s?
b Comfortable Deceleration 3.2 m/s?
sigma Acceleration exponent 4
So Minimum distance 23m

5.3.2 Control Performance Evaluation

For the first part of the experiments, this section analyzes the performance of the proposed distributed
control strategy. The proposed distributed control performance is analyzed in the mixed local

environment compared with the following state-of-art CAV controllers as comparisons:

e Decentralized DRL-based controller. The decentralized controller, also developed by the
DRL, downgrades the CAV to the autonomous vehicle (AV) that can only receive its immediate

preceding vehicle’s information through onboard sensors. The decentralized DRL control
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model is developed using the same methodology (i.e., same reward design and training data)
given in Section 5.2. The only difference lies in that the decentralized DRL state is defined as

the local equilibrium deviations regarding the immediate preceding vehicle (i.e., st = [Adit, i1

Avit,i—1])~

e Linear-based CACC controller. The compared linear-based CACC controller (Zhou et al.,
2019) is based on the constant time gap (CTG) policy, which has been proved to have excellent

traffic oscillation dampening performances and guaranteed string stability performance.

e MPC-based CACC controller. The compared MPC-based CACC controller (Wang et al.,
2016) has explicit constraints of velocity and acceleration to meet restrictions of the vehicle
kinematics. The cost function is designed to achieve control efficiency and driving comfort
criteria. Similarly, the CTG policy is incorporated into the control model to enhance the

empirical string stability performances.

The simulated mixed platoon follows a topology T, = {1',0,1,0,0,1,0,0,0, 1}, where 1’ represents
the leading CAV of the platoon with its trajectory from the NGSIM dataset; 0 denotes the simulated
HDV follower; 1 denotes the simulated CAV follower. Each follower starts with the pre-defined
equilibrium state. This topology provides the typically mixed traffic local environment, in which driving
behaviors of CAV 2, CAV 5, and CAV 9 are determined by the proposed distributed control approach.
The mixed platoons generated from the decentralized control and linear-based CACC strategy follow

the same topology.

Fig. 5-9 presents the position, velocity, and acceleration trajectory results under DRL-based distributed
control (Fig. 5-9(a)) and DRL-based decentralized control (Fig. 5-9(b)). The leading CAV’s trajectory
(black trajectory) shows frequent acceleration-deceleration waves and a short standstill period. For the
mixed platoon under the decentralized control strategy (Fig. 5-9(b)), the HDV tends to amplify the
traffic oscillations due to the long reaction time, aggravating the traffic jam. Compared with HDVs, the

decentralized CAVs are more responsive to their leaders with smaller spacing, showing efficient car-
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following behaviors. However, the decentralized CAVs only slightly dampen the traffic disturbances
since they are separated and distributed in the mixed platoon. The decentralized CAV makes the control
decision only based on its preceding HDV, whose driving behavior is negatively affected by the
propagated traffic disturbances. Thus, the decentralized CAV is hard to diminish the disturbances in

this mixed traffic scenario.

On the other hand, the distributed CAVs, as presented in Fig. 5-9(a), also demonstrate responsive
driving behaviors with smaller spacings compared with the HDVs. Moreover, the distributed CAV can
dampen the traffic oscillation significantly, showing great string stability. The reason is that the
downstream CAV’s driving state and macroscopic traffic flow property of the aggregated HDVs are
conveyed into the DRL control framework, which enhances the car following performance and better
optimizes the entire mixed traffic flow. Fig. 5-9(c) gives the velocity portfolio of the linear-based CACC
controller and MPC-based CACC controller. Compared with these two approaches, the distributed
DRL-based control can alleviate the propagated oscillations to a more significant extent. The
performance of these approaches can be differentiated around the inflection point of the acceleration-
deceleration process (e.g., timestep 280, timestep 320). The underlying reason is that the DRL can better
capture leading HDV characteristics and stochasticity with the proposed ‘CAV-AHDV-CAV’ structure
and ground truth training dataset. Whereas Zhou et al. (2019a) focused on the frequency predominant
range, Wang et al. (2016) focused on the formation and propagation of moving jams, which may lose

some nuanced characteristics of leading HDV behaviors.
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Fig. 5-9. The position, velocity and acceleration trajectory results comparison: (a) distributed
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trajectories

The quantified performance indicators of the nine followers from the distributed control, decentralized
control, and CACC strategy are shown in Fig. 5-10, respectively, in which we focus on each vehicle’s
average performance. In general, the mixed platoon under distributed control framework greatly
outperforms the decentralized control-based mixed platoon in terms of string stability and driving
comfort. The performance of the linear-based CACC strategy is more akin to the proposed distributed

DRL-based approach, while it scarifies certain performances in velocity. Particularly, the three



79

distributed CAVs (CAV 2, CAV 5, and CAV 9) differentiate their performances from other strategies,
in which the most upstream CAV 9 has the greatest advantage. This indicates that the more HDVs
between the controlled CAV and the downstream CAV, the distributed control can better dampen traffic
oscillations and have higher advantages than other strategies. Specifically, compared with the
decentralized CAV 9, the distributed CAV 9 can reduce a 20.23% dampening ratio, 36.38% driving
comfort cost, and increase by 0.52% average velocity. Regarding the local stability, Fig. 5-11
demonstrates the trajectories of equilibrium spacing Ad};_, and equilibrium speed Av{;_; of vehicle
i — 1. The equilibrium deviations of the CAVs are within a relatively small range (i.e., -2.5 m/s to 0.8
m/s for Av{_;; —1.6m to 2.4m for Ad; ,), which indicates that local stability is achieved

empirically.
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Evaluation under the Extreme Scenario

Furthermore, we conduct an experiment under an extreme traffic scenario to validate the robustness of
the proposed controller. The vehicular platoon topology has the same topology as the previous
experiment, while the leading vehicle profile is customized with one rapid deceleration-stall-
acceleration cycle (—2.4m/s? - 0 ft/s? > 1.5m/s?) traffic oscillation. Fig. 5-12(a) gives the
position, velocity, and acceleration for the proposed DRL-based controller, and Fig 5-12 (b) shows the
velocity for the other three compared approaches. Similarly, the aggregated HDVs amplify traffic
oscillations while the distributed CAVs greatly dampen traffic oscillations with stability-wise
performances. The quantified results of indicators are presented in Fig. 5-13, which shows the proposed
DRL-based control has manifest advantages over other approaches regarding string stability and driving

comfort.
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Evaluation under Communication Failure

Although we assume the communication quality within the communication range should be stable (i.e.,
communication rarely fails), the communication loss could happen at a certain period when the
communication distance is relatively far (e.g., four aggregated HDVs in between CAV i and CAV i —
m). If communication failures between CAV i and CAV i —m happen, the IFT status nit,i_m (in
Equation 5-14) frequently switches between 0 and 1, which makes the DRL state sf fluctuate. This will
lead to high-jerk accelerations since the DRL policy directly maps the DRL state to the control action,
as presented in Fig. 5-14(a). Considering the issue, we adopted the ‘dynamic information fusion
mechanism’ proposed by (Shi et al., 2022) to reduce the adverse impact caused by communication
losses. The ‘dynamic information fusion mechanism’ adjusted the IFT status nit,i—m during

communication failures to smooth the acceleration signal, alleviating the high-jerk DRL control issue.
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The experiments are conducted to evaluate the control performances under communication failure, as
presented in Fig. 5-14. The communication failure happens during 500 to 550 timesteps, where the IFT
status r]f_i_m between the receiver CAV 9 and transmitter CAV 5 switches frequently (Fig. 5-14(a)).
With the adopted dynamic information fusion mechanism, the acceleration trajectory suddenly changes
when communication failure happens and then performs smoothly without high jerks (Fig. 5-12b). The
quantified results for indicators are presented in Fig. 5-14(c). Similar to the previous experiments, the
proposed DRL-based control outperforms other approaches in oscillation dampening and driving

comfort performances.
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Evaluation with different IDM model parameter settings

The adopted IDM model only reproduces one HDV driving pattern. To evaluate the CAV controller
considering different HDV driving patterns, we further conducted an experiment using the IDM model

with three sets of parameters calibrated based on the NGSIM datasets (Jiang et al., 2023). The trajectory
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and indicator results are illustrated in Fig. 5-15. The performances using different IDM models show a

similar tendency of control performances, illustrating that the distributed CAV can markedly dampen

traffic disturbances in the mixed traffic flow regarding different HDV driving patterns.
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Evaluation using ground-truth AV trajectory
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The previous experiments use ground-truth NGSIM data (i.e., HDV trajectory) as the leading vehicle
trajectory for evaluation. Furthermore, we evaluate our model using two ground-truth AV trajectories
adopted from (Li et al., 2022) as the platoon leader trajectory, with results presented in Fig. 5-16 below.
As suggested by the results, each CAV in the platoon can greatly stabilize the propagated traffic

oscillations, suggesting similar control performances as the previous experiments.
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Fig. 5-16. Two cases of AV ground-truth trajectories as the platoon leading trajectory for control

performance evaluation: (a) case 1; (b) case 2; (c) indicator performance

5.3.3 Mixed Platoon with Different Penetration Rates

To further visually demonstrate the dampening performance of the proposed control strategy, we
utilized the strategy to control CAVs in a 50-follower mixed platoon with different penetration rates
(0%, 20%, 40%, 60%, 80%, 100%), where the CAVs are randomly sampled and distributed in the mixed
traffic. The platoon leader experienced two typical deceleration-acceleration maneuvers. The followers
start with the pre-defined equilibrium states. For results, Fig. 5-17 illustrates the mixed platoon's
velocity and acceleration heat map, and the platoon trajectories under three typical penetration rates
(0%, 60%, 100%) are demonstrated in Fig. 5-18. Generally, the traffic oscillations are dampened
gradually with the increasing CAV penetration rate. When the followers are all HDVs (i.e., %0 CAV),

the disturbances are propagated and amplified towards the end, seriously impairing the entire traffic
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flow. Furthermore, the oscillations are undermined to a large extent when the CAV penetration rate
reaches 60%, where the upstream vehicles are much less affected by the dampened disturbances. Finally,
the disturbances are quickly dissipated in the 100% CAYV penetration rate, and the downstream CAVs
can promptly recover from the disturbances, showing the controller’s strong robustness and resilience.
Therefore, the distributed CAV control strategy can effectively stabilize traffic oscillations and

significantly improve the entire traffic flow.
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5.3.4 Generalization Capability Validation

After evaluating the model performance, the generalization capability is validated in this section.

Statistical validation in mixed traffic

First, we use 150 NGSIM ground-truth trajectories excluded from training set, which is with a time

length of over 50 seconds, to validate the statistical robustness of the proposed model’s control

performances. The experiment is configured with a 15-follower mixed platoon with different

penetration rates (0%, 20%, 40%, 60%, 80%, 100%), where CAVs are randomly distributed in the

mixed traffic. Each ground-truth trajectory of the 150 NGSIM datasets is assigned as the platoon

leader’s trajectory for each penetration rate, which means there are 150 simulated vehicular platoons

for each penetration rate. The followers start with the initial equilibrium state and are then simulated by

the corresponding control models (IDM for HDV's and DRL model for CAVs).
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For each simulated platoon in the experiment, we first average the performance indicators of the 15
followers to represent the performance of the whole platoon. Then for each penetration rate, the mean
indicator performance value over the 150 platoons is calculated, representing the generalized
performance of the penetration rate. The results are demonstrated in Fig. 5-19, which illustrates that the
traffic flow performance in terms of travel efficiency, string stability, and driving comfort is improved
monotonically with the increasing CAV penetration rate. Specifically, compared with the HDV platoon,
the platoon with a 100% CAYV penetration rate reduces a 38.54% dampening ratio, 55.74% driving
comfort cost, and increases 5.16% travel efficiency, respectively. These generalized results further
validate the generalization capability of the proposed control strategy. To focus on the detailed
performance of each vehicle in the platoon, we directly average the indicator performance for each
vehicle over the 150 platoons under different CAV penetration rates, as illustrated in Fig. 5-20. As the
CAV penetration rate increases, the traffic disturbances are dampened to a greater extent through the

platoon, which optimizes the entire mixed traffic flow.
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Fig. 5-19. The generalized statistical results of the mixed platoon with different penetration rates
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Cases for irregular initial condition

The initial condition (e.g., initial velocity, acceleration, spacing) of a vehicular platoon has a great
impact on the CAV controller (Li et al., 2016; Gao et al., 2019). Irregular initial conditions normally
impair the control performances. To further validate the generalization capability, different NGSIM
datasets are assigned for both the leader trajectory and the follower’s initial states. The vehicular platoon
has a topology {0, 1, 0, 0, 0, 1}, where ‘0’ represents the HDV, and ‘1’ represents the CAV. The results
are presented in Fig. 5-21. Like the previous experiments, the DRL-based distributed CAV has
responsive driving behaviors with great oscillation dampening performances even under the various
initial conditions. With the equilibrium-based control philosophy, the CAV can quickly recover to the
equilibrium state from the large initial spacing (Fig. 5-21 (c), (¢)) or small initial spacing (Fig. 5-21 (b),
(d)) and maintain close to the equilibrium, which stabilizes the traffic flow and alleviates the adverse
impact brought by HDVs’ stochasticity. The results validate the great robustness and resilience of the

proposed controller.



N w &
=3 =3 o
o o S

Position [m]

-
1<)
o

=
o ® o N

Velocity [m/s]

IS

Position [m]

125

10.0

7.5

5.0

Velocity [m/s]

2.5

0.0

—— Distributed CAV —— Distributed CAV 200 — Distributed CAV
---- HDV 4001 ____ ypy -~ HOV
E 300 E 300
[ c
2 S
3 3 200
§ 200 K
100 100
0 100 200 300 400 500 0 100 200 300 400 500
14
12
910 3 10
£ s
z z
2 £ 6
2 > 4
2
0 0
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Time [107's] Time [10-1s] Time [107%s]
(a) (b) (c)
—— Distributed CAV —— Distributed CAV a00] — Distributed CAV
---- HDV 4001 --—- HDV S— iV
E 300 E 300
= =
F-1 S
2 G 200
8 200 8
100 100
0 100 200 300 400 500 0 100 200 300 400 500
17.5
12
15.0
_10
7 125 =
g E s
< 10.0 =
F 2
s 75 §
>
5.0 N
g 25 2
4 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Time [107s] Time [107s] Time [10-1s]
(d) (e)

90

Fig. 5-21. The generalized mixed platoon trajectories with initial states from ground-truth NGSIM data

Generalization capability comparison with other approaches

Finally, multiple ground-truth trajectories from NGSIM datasets are used to further statistically validate

the advantage of the proposed DRL-based controller over other compared control methods. The

experiments comprise two parts, including (i) equilibrium initial condition and (ii) random initial

condition. For each vehicular platoon in the experiments, the first part follows the same experiment

configuration in Section 5.3.3, and the second part follows the same experiment configuration of ‘Cases

for Random Initial Condition’ in Section 5.3.4. Specifically for each vehicular platoon, a superiority
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percentage P is defined to quantify the advantage of the proposed DRL-based method over other control

approaches:

__ Ply=Plg

P * 100%, (26)

o

where PI, and Pl; represent the CAV’s performance indicator value of the compared control
approaches (PI,) and the proposed DRL-based control approach (Pl), respectively. Then, the average

superiority percentage P over multiple vehicular platoons is calculated as the final result.

For the first experiment, whose vehicular topology is T, = {1,0,1,0,0,1,0,0,0, 1}, we focus on the

performance of CAV 2, CAV 5, and CAV 9 in the platoon. The average superiority percentage P is
calculated over the 150 vehicular platoons with different NGSIM leading trajectories (i.e., same NGSIM
data in Section 5.3.4). The results are presented in Fig. 5-22. As can be found in the Figure, the proposed
control method markedly outperforms other control approaches regarding oscillation dampening and
driving comfort. Moreover, the more HDVs between the controlled CAV and the immediate CAV
downstream, the proposed DRL-based control shows higher advantages than other approaches. With
more HDVs and a longer distance between the two CAVs, the proposed control can better capture the
stochastic characteristics of the aggregated HDVs joint driving behaviors and stabilize traffic

disturbances to a greater extent.
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Fig. 5-22. Generalization capability comparisons for different CAVs in the mixed platoon (CAV 2
with one downstream HDVs (a); CAV 5 with two downstream HDVs (b); CAV 9 with three

downstream CAVs (c); 0 line represents the performance of the proposed approach)

For the second experiment, whose vehicular topology is T, = {0,1,0,0,0,1}, we focus on the
performance of CAV 5, which is the last CAV in the platoon. The average superiority percentage P is
calculated over thirty vehicular platoons with different NGSIM leading trajectories over 500 timesteps
and irregular initial conditions for followers. The average superiority percentage P is shown in Fig. 5-
23. The MPC-based controller does not perform well in this case since the optimized control policy is
more sensitive to the initial state. A large initial spacing may lead to a relatively aggressive control
policy, which increases acceleration energy. Similarly, the proposed control method performs better in

every aspect than other compared approaches for the cases with irregular initialized conditions.
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Fig. 5-23. Generalization capability comparisons with irregular initial states (i.e., CAV 5 in the

mixed platoon; 0 line represents the performance of the proposed approach)
5.4 Comparison of Mixed Platoon with Different Combinations

Although the proposed control strategy's performance has been validated in the mixed connected

automated traffic environment, HDVs and CAVs are only combined randomly in previous experiments.
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However, the combination of CAVs and HDVs can make a significant impact on traffic flow. To
evaluate the impact of combinations on mixed traffic flow, four combinations of followers (random
combination, specific combination, CAV first, HDV first) are analyzed and compared. The ‘Random
Combination” means CAVs are randomly sampled with a certain penetration rate in the platoon. The
‘Specific Combination” means CAVs are evenly distributed in the platoon. 'CAV First' combination
and 'HDV First' combination mean all CAVs in front of HDVs and all HDVs in front of CAVs,

respectively. Platoon T, (except for the leader) with a specific combination for different penetration

rates 1) is defined as follows:

(1,1,1,1,0,1,1,1,1,0,.... ,1,1,1,1,0 ), when n = 20%
T, = (1,0,1,0,...... ,1,0),whenn = 50% (28)

(1,0,0,0,0,1,0,0,0,0, ... ... ,1,0,0,0,0), when n = 80%
where 1) represents penetration rate; 1 represents HDV; 0 denotes CAV. In this experiment, we mainly
focused on a non-cyclic traffic oscillation. The experiment is conducted with a leading vehicle trajectory

incorporating one deceleration-acceleration cycle (-8 ft/s* - 6 ft/s?) disturbance with a short period of

standstill (2 seconds). The number of followers is set to 50 to enhance the diversity of the combinations.

Fig. 5-24 demonstrates the detailed results. It is cleared that the platoon with all CAVs in front of HDVs
outperforms the platoon with other combinations in all aspects (travel efficiency, string stability, energy
efficiency) no matter what penetration rate. In contrast, platoon with all HDVs preceding CAVs takes
the worst case. Results of "specific combination" and "random combination" show similar performance
because HDVs and CAVs are scattered in the mixed platoon for both combinations. The results suggest
that clustering leading CAVs can better optimize the entire mixed platoon's traffic flow because
oscillations are dampened before they reach HDV followers. Thus, the behaviors of HDVs are
optimized to the greatest extent, which mitigates the negative impact of oscillations. In contrast, if
HDVs are in front of CAVs, oscillations from the platoon leader are amplified towards upstream, which

makes it harder for CAVs to dampen them. Thus, the "HDV first" combination takes the worst case.
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Fig. 5-24. Comparison of detailed indicators of each vehicle in mixed platoon with different

combinations

The entire platoon's average performance under different combinations further validates the conclusion,
shown in Fig. 5-25. To generalize the results of “random combination,” an average of 25 experiments
was adopted for analysis. In addition, the Wilcoxon signed-rank test was conducted for each
performance indicator to denote the significant level, with Table 5-4 below showing the p-value of the
comparison between “random combination” and “specific combination.” As shown in Fig. 5-25, there
is a great difference between the two extreme combinations ("CAV First" and "HDV First"), while
"specific combination" and "random combination" show similar performance. From the statistics point
of view, most of the p-value in Table 5-4 is greater than 0.05, demonstrating that the performance
difference between “random combination” and “specific combination” is not significant. By contrast,
the p-value of other comparisons is less than E-08, validating the significant difference. Particularly,

the "CAV First" combination improves 5.77% and 11.91% in travel efficiency and energy efficiency
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compared with the '"HDV First' combination when the CAV penetration rate reaches 50%. Thus, CAVs

can be guided to lead the mixed platoon with lane-changing maneuvers, which optimizes traffic flow to

the greatest extent.

Table 5-4 P-value of Wilcoxon signed-rank test between “random combination” and “specific

combination”
Penetration Rate 20% 32% 66% 80%
PI
Average Velocity 0.076 0.467 2.429E-08 2.429E-08
Minimum Velocity 0.090 1.333 0.0290 0.225
Energy Consumption 0.090 0.029 3.738E-05 0.0896 0.225
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Fig. 5-25. Comparison of detailed results of mixed platoon with different combinations

5.5 Conclusion

This research proposes a DRL-based distributed CAV longitudinal control strategy for mixed traffic of

CAVs and HDVs. In this generic distributed control framework, each CAV receives the fused real-time

information of vehicles in the local downstream environment for longitudinal control. To generalize the
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diversified downstream topologies, any mixed local downstream environment is categorized as the
CAV-HDVs-CAYV pattern, which consists of a nearest downstream CAV followed by aggregated HDVs.
For this local heterogeneous environment, we construct a novel vehicle-following structure ‘CAV-
AHDV-CAV’ based on Newell’s car-following model to capture the macroscopic traffic properties of
the aggregated HDVs and embed them into the control framework. This approach efficiently attenuates
the HDVs’ stochasticity and enhances the car-following performances. With the philosophy, a novel
DRL state fusion strategy based on the equilibrium concept is proposed to regulate each CAV close to
the pre-defined equilibrium state and greatly stabilize traffic oscillations. For model development,
NGSIM datasets are embedded in training to better incorporate the preceding vehicles’ stochastic
characteristics into control. The DPPO algorithm is adopted to enhance the convergence of control

policy updated in the training process.

A series of simulated experiments are conducted with NGSIM datasets. The proposed strategy’s control
performance is evaluated regarding empirical string stability, travel efficiency, and driving comfort.
Numerical results indicate that the proposed distributed control strategy can significantly dampen the
traffic oscillation and outperform the decentralized strategy and linear-based CACC strategy in every
aspect. Then, the dampening performance of the proposed control strategy is intuitively demonstrated
in a 50-follower mixed platoon with different penetration rates, showing its strong robustness and

resilience. Finally, the generalization capability of the proposed strategy is validated.

This study still has several limitations. The first point lies in that the proposed control method focuses
on heavily congested traffic conditions, while it is not suitable for free flow conditions. Besides, this
study does not consider the communication delay, which may lead to an over-optimistic performance.
Moreover, the study only considers the longitudinal car-following movement, which is relatively
limited for applications in more complex scenarios (e.g., lane-changing movement). Some future work
can be conducted based on the research. For instance, the vehicle dynamics can be built more complex

considering the internal vehicle components (e.g., pedal, steering wheel, brake). Moreover, lateral
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movement can be incorporated into the control framework to reproduce more complex traffic scenarios,

such as lane-changing, merging, or diverging behaviors.
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6 CONCLUSIONS

6.1 Summary of Chapters

Chapter 1 introduces the background of CAV control, mixed traffic environment, and the issues of
traffic oscillations. This Chapter gives the identified gaps, research objectives and scope of work,

research contributions, and organization of the dissertation.

Chapter 2 reviews relative literatures of CAV control approaches, the DRL algorithms, V2V
communications, and equilibrium and consensus concepts. This Chapter summarized the pros and cons
of current CAV longitudinal control approaches regarding linear-based controller, MPC-based

controller, and DRL-based controller.

Chapter 3 discusses the current major challenges for CAV control in the mixed traffic flow, and
introduces the general philosophy of the proposed CAV control strategy in the mixed traffic. To
accommodate any possible CAV-HDV platoon configuration, we categorize the local downstream
environment into two broad traffic scenarios based on the composition of CAVs and HDVs, and
designed a generic DRL-based control framework for the two scenarios. The details control design for

the two scenarios are discussed in Chapter 4 and Chapter 5, respectively.

Chapter 4 presents a DRL-based generic distributed CAV longitudinal control approach in a relatively
realistic communication environment. To better capture stochastic characteristics of the preceding
vehicles and communication loss, we embed the NGSIM datasets and the SINR based dynamic
communication mechanism into the training framework. Each CAV in the framework receives its
downstream CAVs’ fused information as the DRL state for real-time control. The fused DRL state and
reward function are specially designed to incorporate the merits of the equilibrium concept and
consensus concept, which maintains CAVs around the predefined equilibrium point and achieves the
system-level consensus to better dampen traffic oscillations. A dynamic information fusion mechanism
is proposed to smooth the fluctuated DRL state and the high-jerk control signal caused by the dynamic

communication loss. The simulated experiments validated the performances of the proposed controller.
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Chapter 5 proposes presents a novel distributed longitudinal control strategy for connected automated
vehicles (CAVs) in mixed traffic environments with human-driven vehicles (HDVs), utilizing high-
dimensional platoon information. Traditional CAV control methods, which focus on microscopic
trajectory information, struggle to address HDV stochasticity and mixed traffic heterogeneities
efficiently. Our approach, for the first time, treats consecutive HDVs as a single entity (AHDV) to
reduce stochasticity and leverages macroscopic features for controlling following CAVs. The new
strategy anticipates disturbances and traffic features in mixed traffic scenarios, significantly
outperforming traditional methods. The control algorithm employs deep reinforcement learning (DRL)
to enhance car-following efficiency and addresses aggregated car-following behavior stochasticity by
incorporating it into the training environment. Mixed traffic platoons are categorized as CAV-HDVs-
CAV patterns, with macroscopic traffic properties based on the Newell car-following model to capture
aggregated HDVs' joint behaviors. Simulation experiments validate the proposed strategy,
demonstrating its superior performance in oscillation dampening, eco-driving, and generalization

capability.

6.2 Limitation And Future Works

Some future studies can be investigated based on current results. The CAV lateral control can be
incorporated in the control framework for merging, diverging or lane-changing maneuvers. In addition,
other dynamic or validated communication models (Kim et al., 2017; Wang et al., 2019) or topologies
(e.g., relay communication topology, V2I, V2C) can be embedded in the framework to conduct
extended experiments. The dynamic communication delay can be considered to make the control
framework more realistic. Moreover, the complex mixed traffic flow properties can be further studies

and optimized based on this study by extending the control framework.

Furthermore, we can incorporate the prediction process (i.e., predicting the behavior of the surrounding
vehicles) into the control framework to achieve more efficient control performance. The prediction

process using advanced supervised machine learning algorithms (Ahmadlou & Adeli, 2010; Alam et
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al., 2020; Pereira et al., 2020; Rafiei & Adeli, 2017) are considered as the extension based on the current

control framework.
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