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ABSTRACT 

This dissertation presents a distributed platoon control strategy of connected and automated vehicles 

(CAVs) based on physics-informed Deep Reinforcement Learning (DRL) for mixed traffic of CAVs 

and human-driven vehicles (HDVs). The dissertation will mainly consist of three parts: (i) generic DRL-

based CAV control framework for the mixed traffic flow; (ii) DRL-based CAV distributed control under 

communication failure for the fully connected automated environment; (iii) distributed CAVs control 

for the mixed traffic flow, under real-time aggregated macroscopic car-following behavior estimation 

based on DRL.  

For the first part, we first discussed the current challenges for CAV control in mixed traffic flow. For 

distributed CAV control, we categorize the local downstream environment into two broad traffic 

scenarios based on the composition of CAVs and HDVs to accommodate any possible CAV-HDV 

platoon configuration: (i) a fully connected automated environment, where all local downstream 

vehicles are CAVs, forming a CAV-CAVs topology; and (ii) a mixed local downstream environment, 

comprising the closest downstream CAV followed by one or more HDVs, creating a CAV-HDVs-CAV 

topology. This generic control framework effectively accommodates any CAV-HDV platoon topology 

that may emerge within the mixed traffic platoon. This part is discussed in Section 3.  

For the second part, this study proposes a deep reinforcement learning (DRL) based distributed 

longitudinal control strategy for connected and automated vehicles (CAVs) under communication 

failure to stabilize traffic oscillations. Specifically, the Signal-Interference-plus-Noise Ratio (SINR) 

based vehicle-to-vehicle (V2V) communication is incorporated into the DRL training environment to 

reproduce the realistic communication and time-space varying information flow topologies (IFTs). A 

dynamic information fusion mechanism is designed to smooth the high-jerk control signal caused by 

the dynamic IFTs. Based on that, each CAV controlled by the DRL-based agent was developed to 

receive the real-time downstream CAVs’ state information and take longitudinal actions to achieve the 

equilibrium consensus in the multi-agent system. Simulated experiments are conducted to tune the 

communication adjustment mechanism and further validate the control performance, oscillation 
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dampening performance and generalization capability of our proposed algorithm. This part is discussed 

in Section 4. 

The third part proposes an innovative distributed longitudinal control strategy for connected automated 

vehicles (CAVs) in the mixed traffic environment of CAV and human-driven vehicles (HDVs), 

incorporating high-dimensional platoon information. For mixed traffic, the traditional CAV control 

method focuses on microscopic trajectory information, which may not be efficient in handling the HDV 

stochasticity (e.g., long reaction time; various driving styles) and mixed traffic heterogeneities. 

Different from traditional methods, our method, for the first time, characterizes consecutive HDVs as a 

whole (i.e., AHDV) to reduce the HDV stochasticity and utilize its macroscopic features to control the 

following CAVs. The new control strategy takes advantage of platoon information to anticipate the 

disturbances and traffic features induced downstream under mixed traffic scenarios and greatly 

outperforms the traditional methods. In particular, the control algorithm is based on deep reinforcement 

learning (DRL) to fulfill car-following control efficiency and further address the stochasticity for the 

aggregated car following behavior by embedding it in the training environment. To better utilize the 

macroscopic traffic features, a general platoon of mixed traffic is categorized as a CAV-HDVs-CAV 

pattern and described by corresponding DRL states. The macroscopic traffic flow properties are built 

upon the Newell car-following model to capture the characteristics of aggregated HDVs' joint behaviors. 

Simulated experiments are conducted to validate our proposed strategy. The results demonstrate that 

the proposed control method has outstanding performances in terms of oscillation dampening, eco-

driving, and generalization capability. This part is discussed in Section 5. 

KEYWORDS 

Mixed Traffic, Connected Automated Vehicles, Car Following, Deep Reinforcement Learning, 

Vehicle-to-Vehicle Communication. 
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1   INTRODUCTION 

1.1 Background 

Traffic oscillations, known as the stop-and-go phenomenon (Li et al., 2010), contribute to 

traffic flow instability, traffic unsafety, and energy inefficiency. With the fast development of 

vehicular automation and communication technology, connected and automated vehicles (CAV) 

gradually occupied some portion of the vehicle market. CAVs equipped with advanced 

communication and automation capability have great potential to alleviate traffic oscillations 

to enhance the traffic flow performance through adaptive cruise control (ACC) (Marsden et al., 

2001) and cooperative adaptive cruise control (CACC) (Arem et al., 2006). It is envisioned that 

the CAVs and human-driven vehicles (HDVs) will co-exist in the near future (Zhou et al., 2019), 

which will change the pure traffic flow of HDVs to the mixed traffic flow of CAVs and HDVs 

(Lu & Liu, 2021; Zhang & Yang, 2021). Despite the changes in the traffic environment, traffic 

oscillations remain a demanding issue in the congested mixed traffic flow Therefore, efficiently 

controlling CAVs to drive safely and smartly in the mixed traffic environment is important both 

in academia and industry implementation.  

The CAVs longitudinal control strategies have been comprehensively investigated in recent years, 

which can be divided into three categories: (i) analytical linear or non-linear CAVs control, (ii) model 

predictive control (MPC) based CAVs control, and (iii) deep reinforcement learning (DRL) based 

CAVs control. Each of these strategies has pros and cons. The analytical linear or non-linear CAVs 

controller (Morbidi et al., 2013; Stipanović et al., 2004; Treiber et al., 2000; Zhou & Ahn 2019; Guo et 

al., 2020; Zhu et al., 2020) is fast computing and easy to implement, and the corresponding closed-form 

control policy leads to the convenient stability analysis (Zheng et al., 2014, 2016; Li et al., 2019; Wang 

et al., 2020), where local stability and string stability can be mathematically guaranteed by properly 

choosing controller parameters. However, the analytical linear or non-linear controller is hard to 
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explicitly incorporate multiple objectives and safety constraints with reasonable boundaries. As one of 

the most popular optimal control methods, MPC-based CAV controllers (Zhou et al., 2017; Gong et al., 

2016; Wang et al., 2016; Zhou et al., 2019) can optimize multiple objectives in a flexible constrained 

framework. This method predicts the leading vehicle's future state (e.g., position, speed) and optimizes 

the driving behavior in a rolling/receding fashion. However, MPC usually requires the formulated 

problem to be convex, and it may need great demand for computation depending on the complexity of 

formulation, which makes it difficult for real-time implementation. The computation demand can be 

more intensive when stochasticity or uncertainties are explicitly considered (Chen et al., 2018). 

Although there have been many studies about different approaches to optimizing car-following behavior 

and traffic flow, gaps in the studies remain in the following two aspects. Firstly, a fast computing multi-

objective CAVs control strategy for the mixed platoon to improve mixed traffic string stability (e.g., 

Naus et al., 2010; Ge & Orosz, 2014), car following efficiency, and eco-driving performances, is still 

challenging. An exact optimization-based control such as MPC in a mixed connected automated traffic 

environment is hard to construct due to the uncertainty of HDVs (Zhou et al., 2019), and fast 

computation is required to satisfy the real-time implementation. Secondly, the unpredictable driving 

behavior of human-driven vehicles (HDVs) contributes to traffic disruptions and intensifies oscillation 

amplitude throughout the vehicular stream. This, in turn, negatively impacts the stability, efficiency, 

and energy consumption of mixed traffic flow (Zheng et al., 2020). Consequently, addressing the 

stochastic nature of HDV behavior is a crucial challenge in controlling connected and automated 

vehicles (CAVs) within mixed traffic environments. Thirdly, it is hard to optimize mixed traffic flow 

considering the different combinations of CAVs and HDVs due to the heterogeneity. Mixed platoons 

with different combinations have diverse characteristics, making it hard to develop a comprehensive 

model for optimal control, especially with multiple objectives.  

In summary, despite extensive research on CAV control strategies, several research gaps persist: 

Identified gaps  
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 Most studies assume flawless communication among CAVs, neglecting the potential for 

communication failures and dynamic information flow topology (IFT). This assumption 

leads to overly optimistic results.  

 For deep reinforcement learning (DRL)-based CAV control, there is often a lack of 

equilibrium concepts derived from control theory, which could aid in analyzing string 

stability and local stability within a vehicular platoon.  

 DRL-based CAV control typically lacks consensus concepts from multi-agent control 

theory, which can prevent disturbance accumulation and achieve system-level performance.   

 In a mixed traffic environment consisting of CAVs and HDVs, addressing the adverse 

effects of HDV stochasticity presents a significant challenge.  

 The heterogeneous nature of mixed traffic platoons complicates the development of a 

universal CAV control approach that ensures system-level control performance.  

 A generic, distributed, and computationally efficient CAV control approach is needed, 

regardless of the CAV platoon size, dynamic IFT topology, and the CAV-HDV topology 

within mixed traffic environments. 

1.2  Research Objectives and Scope of Work 

Taking into account the advantages and disadvantages of various CAV longitudinal controllers and the 

identified gaps in existing research, this study aims to develop a physics-informed DRL-based CAV 

control strategy for mixed connected automated traffic environments by addressing the following 

aspects: 

(i) Develop a generic and multi-objective CAV control strategy suitable for any CAV-HDV 

topology of a mixed vehicular platoon.  

(ii) Create an integrated generic distributed control approach to control CAVs in a realistic 

communication environment, regardless of the CAV platoon size and dynamic IFT 

topology caused by the communication loss. 
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(iii) The generic CAV control strategy aims to efficiently stabilize traffic oscillations, enhance 

car-following efficiency, and improve eco-driving performances. 

(iv) Integrate the equilibrium concept and the consensus concept into the DRL framework to 

achieve better control. 

(v) Design a novel CAV control strategy that adeptly mitigates the adverse effects resulting 

from the stochastic nature of human-driven vehicles (HDVs). 

1.3 Research Contributions 

The research contributions of this dissertation work are summarized as follows.  

(i) Propose an integrated generic distributed control approach to control CAVs in a realistic 

communication environment, regardless of the CAV platoon size and dynamic IFT 

topology caused by communication loss.  

(ii) Propose a generic fast-computing CAV control strategy for the mixed vehicular platoon of 

any CAV-HDV topology. 

(iii) Integrate the equilibrium concept and the consensus concept into the DRL framework to 

achieve better control by creatively fusing information of the downstream environment.  

(iv) Embed the real ground-truth dataset and the dynamic communication mechanism in the 

distributed DRL training framework to better capture the stochasticity of driving behaviors 

and communication loss. 

(v) Propose a novel and generic car-following structure, 'CAV-AHDV-CAV,' which can 

capture the aggregated HDVs' macroscopic traffic features (i.e., fundamental diagram) and 

embed them in the microscopic CAV longitudinal control, which efficiently alleviates the 

adverse impact brought by HDVs' stochasticity and optimizes the whole mixed traffic flow. 

(vi) Better dampen traffic oscillations and meanwhile enhance car following efficiency, safety, 

and acceleration smoothness than other state-of-art CAV control methods. 

(vii) Marry the merits of control theory, traffic flow theory, and Artificial Intelligence (AI), 

which better utilizes the information of sensed surrounding environment and leads to a 



5 
 

promising control performance. 

1.4 Dissertation Organization 

This thesis is organized as follows. Chapter 2 introduces the relevant studies regarding CAV control 

strategies, DRL algorithms, V2V communications, and the equilibrium concept and consensus concept 

from control theories; Chapter 3 discusses the CAV control challenges in mixed traffic and introduces 

the proposed generic CAV control strategy for mixed traffic. Chapter 4 presents a DRL based 

distributed longitudinal control strategy for connected and automated vehicles (CAVs) under 

communication failure to stabilize traffic oscillations and enhances car-following control performances. 

Chapter 5 presents a generic CAV control strategy for any CAV-HDV topology of a mixed vehicular 

platoon, which integrates the macroscopic traffic features to handle HDVs’ stochasticity. Conclusion 

and future studies are suggested in Chapter 6. 
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2   LITERATURE REVIEW 

This chapter presents a literature review on research related to traditional CAV control strategy, 

deep reinforcement learning and DRL-based control, V2V communications, and equilibrium 

and consensus concepts from control theory.  

2.1 Traditional Connected Automated Control Strategy 

The study of CAV control strategies attracted many researchers, though the majority of them only 

focused on the pure connected automated environments (Gong & Du, 2018). The mainstream methods 

can be largely divided into three categories based on their modeling differences: (i) linear or non-linear 

CAV longitudinal controller, (ii) model predictive control (MPC) based CAV longitudinal controller 

with functions of objectives and constraints, (iii) deep reinforcement learning (DRL) based CAV 

longitudinal controller. First, linear (e.g., Stipanović et al., 2004; Naus et al., 2010; Morbidi et al., 2013) 

and non-linear (e.g., Bando et al., 1995; Treiber et al., 2000) CAV longitudinal controllers have closed-

form formulations with parameters or gains. This type of model requires less calculation time due to its 

simplicity. In addition, its stability analysis is convenient due to the closed-form representation  (e.g., 

Zheng et al., 2014; Shladover et al., 2015; Zheng et al., 2016; Petrillo et al., 2018; S. E. Li et al., 2019; 

Wang et al., 2020), and theoretically, the local stability and string stability of controllers can be 

guaranteed through appropriate parameter tuning. However, these linear and non-linear controllers have 

difficulties in designing an explicitly formulated framework to incorporate multiple control objectives 

(e.g., car following efficiency (local stability), string stability, energy efficiency) and collision-free 

constraints within reasonable vehicle acceleration/deceleration boundaries. Considering this limitation, 

MPC based CAV longitudinal controllers (e.g., Wang et al., 2016; Gong et al., 2016; Zhou et al., 2017; 

Gong & Du, 2018; Zhou et al., 2019;) have been favored in recent years. As an optimal control method, 

the MPC-based controller provides a flexible, constrained optimization framework that incorporates 

flexible optimizing objectives and constraints. Thus, CAV longitudinal control problem that considers 

string stability, efficiency, fuel consumption, and driving comfort can be solved at each timestep under 
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safety constraints within a bounded acceleration range. Besides, this approach can provide driving 

decisions by predicting the future state of the leading vehicle trajectory, thus improving optimization 

and control performance in a rolling/receding horizon fashion. However, this approach is normally 

computational demanding and time consuming, which is not applicable for real-time implementation 

(Zhou et al., 2017). Since it solves a deterministic constrained optimization in a rolling horizon fashion, 

it usually requires the problem to be convex. Otherwise, it is generally forbidding to be solved 

efficiently. Furthermore, it is challenging to quantitatively guarantee its platoon string stability due to 

the formulation complexity (Zhou et al., 2019). 

2.2 Deep Reinforcement Learning and DRL-based Control 

Similar to the MPC controller, the recent breakthrough in the DRL community provides alternative 

algorithms to be utilized (Karnchanachari et al., 2020). The advantages of DRL based approaches are 

mainly reflected in the two aspects. First, DRL is a model-free and learning-based method that does not 

have any specific requirement for convexity of the problem and is suitable for capturing complex and 

stochastic system characteristics. Second, the computational burden of a DRL algorithm mainly lies in 

its offline training process, while the learned driving policy can be rapidly implemented in real-time 

(Görges, 2017).  Specifically, the reinforcement learning basics are given as follows. 

Modeling reinforcement learning is a Markov Decision Process (MDP) (Van Otterlo & Wiering, 2012), 

which contains a set of interactive objects, namely agent and environment. Except for two interactive 

objects, five model elements are included in MDP: state 𝑠௧, action 𝑎௧, policy 𝜋ሺ𝑎|𝑠ሻ, reward 𝑟௧ሺ𝑠௧,𝑎௧ሻ, 

and return R. RL aims to address problems with specific target through continuous exploration. At time 

step t, the input to the network is the observing state 𝑠௧ of an agent, while an action 𝑎௧ from action space 

is output according to the policy π. Reward 𝑟௧  related to 𝑎௧ and 𝑠௧ is computed by the target-guided 

reward function and obtained by the agent. The agent then moves to the next states 𝑠௧ାଵ due to 𝑎௧. 

Process terminates when the agent moves to the terminal state 𝑠த. At the same time, return R is obtained 

by summing cumulative rewards from timestep 0 to timestep τ. Thus, the whole training process from 
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the first 𝑠଴ to the terminal 𝑠த is defined as an episode. Then, next episode restarts, back and forth. The 

target problem is solved through maximizing R.  

Generally, model-free reinforcement learning can be divided into two categories: value-based 

reinforcement learning and policy-based reinforcement learning. Recently, deep reinforcement learning, 

combining reinforcement learning and deep learning, has made breakthrough that makes RL applied in 

different fields. A typical algorithm of value-based reinforcement learning is DQN (Deep Q Network), 

which was proposed by DeepMind, with its improved version published in (Mnih et al., 2015). 

Combined with deep learning, this algorithm uses a convolutional neural network to fit the value 

function, namely the Q function. Since DQN was proposed, it has shown a large number of improved 

algorithms which enhance the overall structure of the system and neuron networks. However, DQN is 

only applied to problems with discrete action space, which restricts the scope of application. To address 

more complex problems with continuous action space, Deep Deterministic Policy Gradient (DDPG), 

Asynchronous Advantage Actor-Critic (A3C), Trust Region Policy Optimization (TRPO), Proximal 

Policy Optimization (PPO) and other policy-based algorithms with actor-critic structure have been 

proposed and applied in diverse areas. DDPG is proposed by (Lillicrap et al., 2016), which has two 

separate and interdependent networks: actor network and critic network. DDPG combines DQN and 

deterministic policy gradient (DPG) by creating a memory buffer to separate training samples in a 

successive environment, which enhances stability of training process. Google DeepMind proposed A3C 

algorithm with multiple parallel agents (Mnih et al., 2016). These agents simultaneously update 

parameters in the primary structure on parallel environments, which reduces relevance and improves 

convergence of the algorithm. TRPO is proposed by (Schulman et al., 2015). The algorithm improves 

the convergence of policy updates by restricting KL divergence between the prediction distribution of 

the old strategy and new strategy on the same batch of data. PPO algorithm proposed by (Schulman et 

al., 2017) has become the default RL algorithm of Open AI. It is similar with TRPO but shows better 

sample efficiency due to multiple updates per batch sample. Combined with the advantage of A3C, 

Google DeepMind proposed a distributed PPO algorithm to update the policy of global agent in parallel 
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through multiple working agents (Heess et al., 2017). 

Recently, DRL algorithms have been gradually applied to design CAV controllers (Chong et al., 2013; 

Li et al., 2020; Zhou et al., 2020). Guan et al. (2019) applied a DRL algorithm to cooperatively control 

CAVs at intersections and address the computational burden by training offline. Duan et al. (2020) 

comprehensively consider both high-level and low-level motion control for CAVs based on DRL, which 

achieves a smooth and safe decision-making process. Wang et al. (2019) developed a Q-learning based 

bird-view approach for CAV control, which shows great control performance under complicated traffic 

environments. However, these works have not considered the mixed platoon's string stability and 

mainly focus on distance tracking (e.g., maintaining a car following headway with reasonable 

acceleration control). In addition, the equilibrium state concept for DRL-based CAV control is usually 

missing, which renders DRL a large search space for the optimal policy. As far as the authors know, 

only Qu et al. (2020) proposed a control strategy based on the DDPG algorithm to dampen traffic 

oscillations and improve energy efficiency. However, this study only considers non-cooperative vehicle 

control without exploiting information sharing. Besides, this study adopts a model-free gap policy, 

which cannot directly guarantee a stable traffic flow. In general, DRL algorithm applications are still 

rare from the perspective of stability analysis in a mixed traffic environment. 

2.3 V2V Communications 

Regarding the communication of CAVs, vehicle-to-vehicle (V2V) communication enables traffic 

information exchange through all surrounding CAVs, which improves CAVs’ situational awareness 

and performance in safety, mobility, and sustainability (Wang et al., 2019). However, the distance 

between sender and receiver vehicles and the mutual communication interference from equipped 

vehicles significantly affects the V2V communication connection, even causing a communication 

failure (Kim et al., 2017). The fading effect of the signal amplitudes over distance greatly influences 

the success rate of the V2V communication, especially when multiple CAVs frequently exchange and 

disseminate data simultaneously. Once communication failure occurs, the CAV loses the ability to 

receive the proceeding vehicles’ information, and the information flow topology (IFT) can change 
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dynamically, which impairs CAV’s performance in mobility, stability, and even safety. With these 

concerns, recent studies (Wang et al., 2020; Zhou et al., 2020b) proposed two-step algorithms based on 

a linear controller, whose first step is to optimize IFT for a time period that maximizes the expected 

string stability, and the second step is to find parameters for linear controllers to guarantee string 

stability under dynamic communication environment. However, the two-step algorithm is relatively 

separate and cannot update the IFT dynamically as an integrated system together with the control design. 

2.4 Equilibrium and Consensus Concept 

On the aspect of the equilibrium concept and consensus concept, they are critical for the car-following 

control approach to achieve stability-wise and system-level control performance. Without the 

equilibrium state concept, the stability, including string stability (Ploeg et al., 2014) and local stability 

(Willems et al., 2014) of DRL-based controller, is forbidden to be analyzed in the DRL-based control 

studies. Considering this issue, Shi et al., (2020) proposed a DRL-based centralized control strategy for 

connected and automated vehicles (CAVs). However, the approach divides mixed vehicular platoon 

into multiple sub-platoons, each of which is controlled by a centralized controller. Considering the 

potential communication loss, the sub-platoon size can also vary, which hinders the applications of sub-

platoon centralized control. Further, with the increased size of the centralized DRL-based controller, 

the larger action and state dimensions make the training hard to converge. Hence, rather than developing 

a centralized controller, a distributed controller may be better fitted for the case with communication 

loss. To ensure the distributed controller can still achieve a great system-level control performance, a 

consensus concept from the multi-agent control theory (L. Zhang & Orosz, 2017), requiring all agents 

to maintain the desired relative states with respect to their neighbors, needs to be considered. The 

consensus property hinders the accumulation of disturbances and achieves system-level stability. 

Therefore, incorporating the consensus in the DRL-based CAV control framework can be expected to 

further stabilize traffic oscillations.  
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3   GENERIC CAV CONTROL STRATEGY FOR MIXED TRAFFIC FLOW 

This chapter presents the CAV control challenges in mixed traffic flow and introduces the 

proposed generic CAV control strategy for mixed traffic flow. 

3.1 CAV Control Challenges in Mixed Traffic Flow 

Although the CAV longitudinal controllers described in Section 2 can provide strong tools to control 

CAVs efficiently, how to handle mixed traffic still remains a problem due to the heterogeneity and 

HDVs’ stochastic and uncertain movements (Gong & Du, 2018). The stochastic HDV driving behavior 

triggers traffic disturbances and amplifies the oscillation amplitude through the vehicular stream, which 

impairs the mixed traffic flow stability, travel efficiency, and energy (Zheng et al., 2020). Moreover, 

the heterogeneous driving behaviors in mixed traffic may create voids and further reduce traffic 

throughput (D. Chen et al., 2020). To handle the HDV uncertainty and mixed traffic heterogeneities, 

approaches of recent studies can be largely divided into two categories: 1). predict the proceeding 

HDV’s driving behaviors (Gong & Du, 2018; Bang & Ahn, 2019; Wang et al., 2020; Zhu et al., 2018) 

and incorporate the prediction in the control strategy (e.g., by MPC); 2). divide mixed traffic into sub-

platoons (Shi et al., 2021; Wang, 2018b) for more efficient control and apply a cooperative control 

strategy for CAVs assuming that the disturbances triggered by HDVs are completely random. For the 

first type of method, Gong & Du (2018) utilized an online curve matching algorithm to predict the HDV 

trajectory and developed a cooperative platoon control for the mixed traffic environment. However, this 

study only predicts the last HDV of consecutive HDVs in the mixed traffic, which does not fully use 

the downstream traffic information that can be potentially conveyed by proceeding CAVs. The 

downstream traffic information can be very helpful in predicting the wave propagation and oncoming 

traffic scenario. On the other hand, Shi et al. (2021) proposed a DRL-based cooperative CAV 

longitudinal control strategy for the mixed traffic environment, which divides the mixed platoon into 

multiple subsystems for centralized cooperative control. However, the method cannot utilize the 

downstream information of each sub-platoon and model it as random noise in the environment. 
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Moreover, this approach lacks sufficient generalization with the increased centralized CAV sizes. With 

this concern, a distributed manner may be better for CAV control in mixed traffic. Besides the two 

primary approaches mentioned above, the connected cruise control (CCC) strategy was developed to 

handle the various connectivity structures in heterogeneous platoons by assuming an oversimplified 

nonlinear car following laws for HDVs. Based on that, they designed a control law for CAVs to improve 

the car following performance and traffic efficiency (e.g., Ge & Orosz, 2014; Orosz, 2016; Zhang & 

Orosz, 2016). However, these studies did not focus on addressing HDVs’ inherent stochasticity and 

stabilizing the mixed platoon. 

In general, although these approaches (e.g., HDV behavior prediction; sub-platoon) could improve 

CAV control performances in the mixed traffic environment, the limits still remain as follows. Firstly, 

it is challenging to effectively incorporate HDVs' behavior for control due to its inherent stochastic and 

personalized characteristics, especially for the aggregated (i.e., multiple consecutive) HDVs in the 

mixed traffic. The joint behaviors of multiple HDVs are hard to model. In the case of platooning, while 

only the individual behaviors are modeled, the predicting error will be accumulated and propagated 

over time and space (Lin et al., 2020). Even the microscopic behavior is stochastic and difficult to 

capture, the aggregated HDV driving behaviors exhibit macroscopic traffic flow properties (e.g., 

kinematic wave propagating time, density) with typical traffic phenomena (e.g., shock wave 

propagation), and they can be modeled by for example the fundamental diagram (Meng et al., 2021; 

Tian et al., 2021). Comparing to the microscopic behaviors, the aggregated driving behaviors show less 

stochasticity, as indicated by the central limit theorem (Kwak & Kim, 2017). Therefore, this study aims 

to attenuate the aggregated HDVs’ stochasticity by incorporating their macroscopic traffic properties 

into the control framework. Secondly, the mixed traffic environment has various vehicular compositions 

due to the different combinations of HDVs and CAVs, as presented in Fig. 3-1. Approaches such as 

sub-platoon or centralized cooperative control (Du et al., 2020; Shi et al., 2021; Wang, 2018; Zheng et 

al., 2020) lack adequate flexibility and may suffer from computation burden. Such heterogeneity makes 

it challenging to develop a generic CAV control approach with a system-level control performance. 
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With this concern, the study aims to build a generic CAV control framework to generalize the varied 

CAV-HDV topologies and incorporate the macroscopic features.    

 

Fig. 3-1. Different compositions of mixed connected automated traffic environment 

 

3.2 Generic DRL-based Control Framework  

In a mixed traffic platoon, various combinations of connected and automated vehicles (CAVs) and 

human-driven vehicles (HDVs) can be observed. The controlling CAV typically processes information 

from the downstream environment to make control decisions. To accommodate any possible CAV-

HDV platoon configuration, we categorize the local downstream environment into two broad traffic 

scenarios based on the composition of CAVs and HDVs, as illustrated in Fig. 3-2: (i) a fully connected 

automated environment, where all local downstream vehicles are CAVs, forming a CAV-CAVs 

topology; and (ii) a mixed local downstream environment, comprising the closest downstream CAV 

followed by one or more HDVs, creating a CAV-HDVs-CAV topology. 
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Fig. 3-2. The two scenarios of the local environment 

In the fully connected automated environment, the controlling CAV gathers information from multiple 

downstream CAVs to make decisions. In the mixed local downstream environment, the controlling 

CAV receives information from the immediate preceding HDV as well as the nearest downstream CAV. 

This generic control framework effectively accommodates any CAV-HDV platoon topology that may 

emerge within the mixed traffic platoon. 

3.2.1 Fully Connected Automated Environment  

For the fully connected automated environment, we propose a generic DRL-based distributed 

framework for CAV control. The detailed methodology and results are discussed in Section 4 of the 

thesis.  

Within the framework, we aim to develop an integrated generic distributed control approach with a 

dynamic IFT mechanism to control CAVs in a realistic communication environment. Specifically, our 

DRL framework is designed with the following novelties. First, we embed the real ground-truth dataset 

(i.e., Next Generation Simulation (NGSIM) datasets) and the dynamic communication mechanism (i.e., 

Signal-Interference-plus-Noise Ratio (SINR) (Du & Dao, 2015)) in the distributed training framework 

since DRL can etter capture stochastic behaviors of proceeding vehicles and stochastic communication 

loss. Second, we develop a generic DRL-based control framework, regardless of the CAV platoon size 

and dynamic information topology caused by communication loss. Specifically, the DRL state and 

reward function were specially designed to integrate the equilibrium concept and the consensus concept 



15 
 

into the DRL framework by appropriately fusing multiple downstream CAVs’ information in a 

weighted sum manner. Considering the potential fluctuations of the weighted sum of the downstream 

CAV’s information and the resulting unstable control caused by communication loss, we developed a 

dynamic information fusion mechanism to smooth the high-jerk control signal and ensure the desired 

control performance. By this design, the fused state and predefined equilibrium state regulate CAVs to 

keep close to a predefined equilibrium point regardless of traffic scenario, which increases the 

generalizability and robustness of the control method. Moreover, the equilibrium state gives DRL an 

exploration direction in the training process to improve the convergence and ability to dampen traffic 

oscillations, compared with the decentralized control, which merely uses the very nearest proceeding 

vehicle information. 

3.2.2 Mixed Local Traffic Environment 

For the mixed traffic local downstream environment, we propose a novel vehicle following structure, 

“CAV-AHDV-CAV,” as a generic unit for mixed traffic of any vehicle ordering and simultaneously 

embedded platoon-level features in the distributed CAV control framework. The detailed methodology 

and results are discussed in Section 5 of the thesis.  

The defined ‘AHDV’ component in the “CAV-AHDV-CAC” structure means the aggregated HDVs 

between the two CAVs in the structure. This novel structure characterizes the aggregated consecutive 

HDVs in the mixed traffic as a whole, denoted as the ‘AHDV,’ whose aggregated HDV car-following 

behaviors and stochasticity can be further captured by the macroscopic traffic features. Specifically, we 

propose an estimated time-varying Newell car-following method (D. Chen et al., 2012), which links the 

fundamental diagram to the microscopic driving behavior parameters.  

Furthermore, DRL is suitable for capturing stochastic characteristics and embedding them in the 

environment with great generalization capability. Thus, this structure is incorporated into the DRL 

framework to fulfill car-following control efficiency and further reduce stochasticity based on the 

following two aspects. First, the ground-truth HDV trajectory data are embedded into the DRL training 
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process, by which we incorporate real HDV stochastic characteristics implicitly. Second, the 

macroscopic features captured by the ‘CAV-AHDV-CAV’ structure are weighted and fused into the 

DRL state and reward function based on the equilibrium concept. In this way, the HDVs’ stochasticity 

is alleviated by regulating CAVs close to the pre-defined equilibrium state. With the proposed ‘CAV-

AHDV-CAV’ structure and the designed DRL framework, the HDV stochasticity is efficiently 

alleviated for CAV control. 

To summarize, the method utilizes the DRL framework to develop a generic distributed CAV 

longitudinal control approach for a mixed traffic environment. The contribution can be summarized in 

terms of methodology and application. From the methodology-wise perspective, the aggregated HDVs’ 

macroscopic traffic flow features are real-time estimated based on the generic ‘CAV-AHDV-CAV’ 

structure. The structure is embedded into the DRL control framework by a specially designed DRL state 

and reward function, which efficiently alleviates the adverse impact of HDVs’ stochasticity and 

optimizes the whole mixed traffic flow. From the application-wise side, a generic strategy for any CAV-

HDV topology of a mixed vehicular platoon is developed to stabilize the traffic oscillations efficiently. 

Specifically, each controlled CAV receives the information from the local downstream vehicles for 

real-time control. The received information is fused as the DRL state based on the philosophy of 

equilibrium concept and the consensus concept, which helps develop a robust control policy and gives 

the base for analyzing car-following control efficiency and vehicular string stability. The DRL reward 

function is then designed based on the fused DRL state in a quadratic form to efficiently fulfill the car-

following control efficiency and improve driving comfort performance.   
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4   DEEP REINFORCEMENT LEARNING BASED DISTRIBUTED CONNECTED AUTOMATED 

VEHICLE CONTROL UNDER COMMUNICATION FAILURE 

This chapter proposes a deep reinforcement learning (DRL) based distributed longitudinal control 

strategy for connected and automated vehicles (CAVs) under communication failure to stabilize traffic 

oscillations. The control strategy is designed for the fully connected automated environment discussed 

in Section 3 of the thesis. Specifically, the Signal-Interference-plus-Noise Ratio (SINR) based vehicle-

to-vehicle (V2V) communication is incorporated into the DRL training environment to reproduce the 

realistic communication and time-space varying information flow topologies (IFTs). A dynamic 

information fusion mechanism is designed to smooth the high-jerk control signal caused by the dynamic 

IFTs. Based on that, each CAV controlled by the DRL-based agent was developed to receive the real-

time downstream CAVs’ state information and take longitudinal actions to achieve the equilibrium 

consensus in the multi-agent system. Simulated experiments are conducted to tune the communication 

adjustment mechanism and further validate the control performance, oscillation dampening 

performance and generalization capability of our proposed algorithm. 

The chapter is organized as follows. Section 4.1 presents the environment settings, including basic 

assumptions and the adopted V2V communication model. CAV longitudinal control framework and the 

proposed dynamic information fusion mechanism are described in Section 4.2. Section 4.3 proposed 

the details of DRL model development and training procedure. The proposed CAV longitudinal control 

strategy is validated by numerical experiments presented in Section 4.4. Section 4.5 gives the 

conclusion of this work.  

4.1 Environment Setting 

This research considers the car-following process without lateral movement in a straight highway 

segment with infinite length. The communication between CAVs applies a dedicated short-range 

communication (DSRC) radio with a 5.9-GHz frequency, which is adopted by the Federal 

Communications Commission for transportation safety and mobility (L. Du & Dao, 2015). The basic 
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assumptions for the simulation environment are given as follows: (i) The CAV’s state information (e.g., 

spacing, speed) can be broadcasted to the local upstream CAVs through V2V communication in real-

time. (ii) SINR dynamically determines the successful transmission between two CAVs. (iii) The 

communication time is not considered in this study as it can be negligible for measuring the delay on a 

road segment (L. Du & Dao, 2015). (iv) The CAV can receive its immediate predecessor’s state 

information through onboard sensors and its own state information through GPS.  

For a given CAV platoon in a realistic environment, the V2V communications can be unreliable and 

constantly changing over time due to failures caused by communication interference or information 

congestion (Wang et al., 2019). The uncertain communication environment will impair CAV’s driving 

behavior and thus the entire traffic flow. To optimize the CAV’s driving behavior and stabilize traffic 

oscillations under the realistic environment, this study provides a control framework incorporating a 

distributed DRL-based CAV control strategy and a dynamic adjusted V2V IFT. The V2V 

communication topology with broadcast mechanism, widely utilized for the CACC framework (Noor-

A-Rahim et al., 2019; Wang et al., 2018, 2020), is adopted in this study. For this communication 

topology, each CAV broadcasts its information to multiple upstream CAVs and simultaneously receives 

its downstream CAVs’ information for real-time control. 

Specifically, the IFT, which demonstrates the information links of all vehicles in the platoon, changes 

dynamically based on the SINR condition. To describe the IFT from the receiver side, we introduced a 

vector 𝛏𝐢
𝐭 ൌ ሾ𝜂௜,௜ିଵ

௧ , 𝜂௜,௜ିଶ
௧ , … , 𝜂௜,௜ିே

௧ ሿ , whose each 𝜂௜,௜ି௠
௧ ∈ ሼ0, 1ሽ  indicates the information 

transmission status between the receiver 𝐶𝐴𝑉 𝑖 and the transmitter 𝐶𝐴𝑉 𝑖 െ 𝑚: 𝜂௜,௜ି௠
௧ = 1 denotes a 

successful transmission; otherwise, 𝜂௜,௜ି௠
௧ = 0. Notably, we assume that 𝜂௜,௜ିଵ

௧ ≡ 1 due to the robust 

onboard sensors, representing that the CAV can always receive its immediate predecessor’s state 

information. For instance, 𝐶𝐴𝑉 𝑖  with dynamic IFTs receives real-time information of the three 

downstream CAVs for control, as presented in Fig. 4-1. The three possible real-time IFTs in Fig. 4-1(a), 

Fig. 4-1(b), Fig. 4-1(c) have 𝛏𝐢
𝐭 ൌ ሾ1, 1, 1ሿ, ሾ1, 0, 1ሿ, ሾ1, 0, 0ሿ, respectively.  
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Fig. 4-1. A schematic diagram showing different IFTs of 𝑪𝑨𝑽 𝒊 in a four-vehicle platoon. 

To reproduce the realistic communication environment, this study, inspired by (L. Du & Dao, 2015), 

uses the SINR communication model to determine the successful wireless communication condition. 

The SINR, presented in Equation (4-1), is a commonly used standard that considers multiple realistic 

factors to measure the wireless connection quality. The SINR quality 𝑦௝,௜
௧  between the transmitter CAV 

𝑖 and the receiver CAV 𝑗 at timestep 𝑡 is specified as: 

𝑦௝,௜
௧ ൌ  

௉೔ቀ௑೔ೕ
೟ ቁ

షഀ

∑ ௘ೖ௉ೖሺ௑ೖೕ
೟ ሻషഀ೙

ೖసభ,ೖಯ೔ ାை
                                                                                                  (4-1)  

where 𝑃௜  represents the transmission power of CAV 𝑖; 𝛼 is the signal power decay; 𝑋௜௝
௧  denotes the 

distance between the two vehicles. ∑ ሺ𝑒௞𝑃௞𝑋௞௝
௧ ሻିఈ௡

௞ୀଵ,௞ஷ௜  is the sum of the interference signal power 

from all proceeding vehicles in the communication range, where 𝑒௞  is a Boolean parameter that 

determines whether 𝐶𝐴𝑉 𝑘  can share its information. In this study, all CAVs are allowed to share 

information (i.e., 𝑒௞ ≡ 1). 𝑂 denotes the noise term. A normal distribution (𝑂~𝑁ሺ𝜇,𝜎ଶሻ) is adopted to 

illustrate the noise effect. Based on the SINR quality 𝑦௝,௜
௧ , the information transmission status 𝜂௜,௜ି௠

௧  is 

defined as: 

𝜂௜,௜ି௠
௧ ൌ ቊ

1, 𝑖𝑓 𝑦௜,௜ି௠
௧ ൐  𝛽

0, 𝑖𝑓 𝑦௜,௜ି௠
௧ ൑  𝛽

,                                                                                               (4-2) 

where 𝛽 is a threshold value determined by the communication modulation and code rate.  
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Considering multiple V2V environmental factors, the proposed SINR model captures critical 

communication features in the actual condition, which reliably determines a successful connection 

between CAVs. The default parameter settings are shown in Table 4-1.   

4.2 Distributed Control Scheme 

Based on the environment setting in Section 4.1, this section describes the control scheme of the 

proposed strategy, including a distributed control framework for regulating CAVs’ longitudinal 

movements (in Section 4.2.1) and a dynamic information fusion mechanism for reducing control 

signal’s high jerks caused by the time-varying IFT (in Section 4.2.2). The related notations are defined 

in Table 4-1.  

Table 4-1. Notations of the control scheme 

Symbol Definition 

𝑦௝,௜
௧  The SINR quality between the transmitter 

CAV 𝑖 and the receiver CAV 𝑗 

𝛽 The SINR threshold value for a successful 

transmission 

𝜂௜,௜ି௠
௧  The information transmission status between 

the receiver 𝐶𝐴𝑉 𝑖 and the transmitter 𝐶𝐴𝑉 𝑖 െ 𝑚 

at timestep 𝑡 

∆𝑡 The timestep size (update interval) 

𝐬𝐢
𝐭 The fused DRL state for 𝐶𝐴𝑉 𝑖 at timestep 𝑡 

𝑢௜
௧ The desired acceleration signal of 𝐶𝐴𝑉 𝑖 at 

timestep 𝑡 

𝑎௜
௧ The realized acceleration of 𝐶𝐴𝑉 𝑖 at timestep 

𝑡 

𝑣௜
௧ The velocity of 𝐶𝐴𝑉 𝑖 at timestep 𝑡 

𝛥𝑣௜,௜ି௠
௧  The relative speed between 𝐶𝐴𝑉 𝑖 and 

𝐶𝐴𝑉 𝑖 െ 𝑚 
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𝑑௜,௜ି௠
௧  The spacing between 𝐶𝐴𝑉 𝑖 and 𝐶𝐴𝑉 𝑖 െ 𝑚 

𝑑௜,௜ି௠
∗௧  The equilibrium spacing between 𝐶𝐴𝑉 𝑖 

and 𝐶𝐴𝑉 𝑖 െ 𝑚 

𝛥𝑑௜,௜ି௠
௧  The deviation from the equilibrium spacing 

between 𝐶𝐴𝑉 𝑖 and 𝐶𝐴𝑉 𝑖 െ 𝑚 

𝑤௜ି௠ The state coefficient of the transmitter 

𝐶𝐴𝑉 𝑖 െ 𝑚 

Δ𝑑ሚ௜ 
௧  The weighted deviation of spacing for 𝐶𝐴𝑉 𝑖 

at timestep 𝑡 after IFT adjustment 

Δ𝑣෤௜ 
௧  The weighted deviation of speed for 𝐶𝐴𝑉 𝑖 at 

timestep 𝑡 after IFT adjustment 

c௜,௜ି௠
௧  The permission parameter for determining 

whether to fuse the information of 𝐶𝐴𝑉 𝑖 െ 𝑚 

𝜂෤௜,௜ି୫
௧  The adjusted information transmission status 

between 𝐶𝐴𝑉 𝑖 and 𝐶𝐴𝑉 𝑖 െ 𝑚 at timestep 𝑡 

𝑒௜
௧ The first-order difference of ∆𝑑ሚ௜

௧;  𝑒௜
௧ ൌ |∆𝑑ሚ௜

௧ െ

𝛥𝑑ሚ௜ 
௧ିଵ| 

 

4.2.1 Distributed Control Scheme 

In this section, we proposed a distributed CAV longitudinal control strategy under the unreliable 

communication environment, whose framework is as presented in Fig. 4-2. In this general scenario, the 

controlled 𝐶𝐴𝑉 𝑖  communicates with local downstream CAVs and receives their fused state 

information for control at each timestep. The fused state information is generated based on 𝐶𝐴𝑉 𝑖’s 

adjusted IFT within a certain communication range (i.e., 𝑘 local downstream vehicles).  
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Fig. 4-2. A distributed control framework for 𝑪𝑨𝑽 𝒊 in the multi-agent vehicle platoon. 

Specifically, the 𝐶𝐴𝑉 𝑖’s time-varying IFT, determined by the SINR-based communication model, is 

adjusted by our proposed dynamic information fusion mechanism, which will be explained in Section 

4.2.2. Then, the fused state information 𝐬𝐢
𝐭 is generated based on the adjusted IFT and sent to the DRL-

based controller. 𝐬𝐢
𝐭 is calculated from the local downstream vehicles’ information (i.e., speed difference, 

gap, position) to the required DRL state 𝐬𝐢
𝐭 = [Δ𝑑ሚ௜  

௧ , Δ𝑣෤௜ 
௧], representing the weighted deviations from 

the target equilibrium, which will be explained with details later. Based on the fused state information, 

the DRL-based controller (denoted as 𝑀௞  if controlled CAV receives 𝑘  downstream CAV’s fused 

information) outputs the desired acceleration signal 𝑢௜
௧ to regulate the CAV’s longitudinal movement 

at each timestep. Given the above framework, the detailed design is given as below.  

In our longitudinal control, we consider a vehicle’s linearized dynamics which captures the air drag 

force, gear position and road gradient. It is modeled with the first-order approximation using the 

generalized vehicle dynamics (GLVD) equation (Li et al., 2011; Wang, 2018): 

𝑎ሶ ௜
௧ ൌ െ

ଵ

்೔,ಽ
𝑎௜
௧ ൅

௄೔,ಽ
்೔,ಽ

𝑢௜
௧ ,                                                                                                            (4-3a) 
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𝑎௜
௧ାଵ ൌ 𝑒

ି
∆೟
೅೔,ಽ ൈ 𝑎௜

௧ ൅ ቆ1 െ 𝑒
ି

∆೟
೅೔,ಽቇ ൈ 𝐾௜,௅𝑢௜

௧                                                                          (4-3b) 

where 𝑇௜,௅ is the actuation time lag and 𝐾௜,௅ is the ratio of the demanded acceleration that can be realized 

for vehicle 𝑖. Readers can find more details for the value of the above two parameters under different 

conditions in (Wang, 2018). 𝑎௜
௧is the realized acceleration, usually within a boundary [𝑎௠௜௡ ,𝑎௠௔௫]; 𝑎ሶ ௜

௧ 

is the jerk. Based on the realized acceleration 𝑎௜
௧, the vehicle state is updated using the kinematic point-

mass model (Zhu et al., 2018): 

𝑣௜
௧ାଵ ൌ 𝑣௜

௧ ൅ 𝑎௜
௧∆𝑡,                                                                                                                (4-4a) 

Δ𝑣௜,௜ିଵ
௧ାଵ ൌ 𝑣௜ିଵ

௧ାଵ െ 𝑣௜
௧ାଵ,                                                                                                        (4-4b) 

𝑑௜,௜ିଵ
௧ାଵ ൌ 𝑑௜,௜ିଵ

௧ ൅
୼௩೔,೔షభ

೟ ା୼௩೔,೔షభ
೟శభ

ଶ
ൈ ∆𝑡,                                                                                    (4-4c) 

where ∆𝑡 is the control interval; 𝑣௜
௧ denotes 𝐶𝐴𝑉 𝑖’s velocity at timestep 𝑡; 𝑣௜ିଵ

௧ାଵ indicates the velocity 

of 𝐶𝐴𝑉 𝑖’s preceding vehicle; 𝑑௜,௜ିଵ
௧  is the vehicle spacing, representing the distance between front 

bumpers of 𝐶𝐴𝑉 𝑖 and 𝐶𝐴𝑉 𝑖 െ 1. 

With above vehicle longitudinal dynamics, the fused DRL state 𝐬𝐢
𝐭 is specially designed in our DRL-

based controller. The control design follows the concept of a distributed control framework for 

cooperation in the multi-agent vehicular platoon (L. Zhang & Orosz, 2017), aiming to achieve a 

consensus of CAV platoon and meanwhile regulate CAVs to keep close to a predefined equilibrium 

point for each car following pair. The merit of utilizing the equilibrium concept is to avoid the arbitrary 

change of the car following spacing that may render unstable traffic flow. Specifically, the equilibrium 

concept is based on the constant time gap (CTG) policy from the Society of Automotive Engineer 

Standard. It regulates each car following pair formed by CAV 𝑖 and 𝑖 െ 1 to reach the same speed and 

maintain the preset equilibrium spacing as below: 

𝑑௜,௜ିଵ
∗௧ ൌ 𝑣௜

௧𝜏௜
∗ ൅ 𝑙௜ ,                                                                                                                (4-5a) 
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𝑣௜
∗௧ ൌ 𝑣௜ିଵ

௧ ,                                                                                                                           (4-5b) 

where 𝑣௜
௧ is the speed of 𝐶𝐴𝑉 𝑖; 𝑙௜ is the standstill spacing; 𝜏௜

∗ is the constant time gap.       

Considering the downstream vehicles’ impact and platoon-level consensus, we can further expand the 

local equilibrium for each car following pair to a distributed system-level equilibrium 𝑑௜,௜ି௠
∗௧  between 

CAV 𝑖 and 𝑖 െ 𝑚 , ∀𝑚 ൌ ሾ1,2, … 𝑘ሿ, whose equilibrium spacing follows:  

𝑑௜,௜ି௠
∗௧ ൌ 𝑚൫𝑣௜

௧𝜏௜
∗ ൅ 𝑙௜൯,                                                                                                       (4-6a) 

𝑣௜
∗௧ ൌ 𝑣௜ି௠

௧ ,                                                                                                                         (4-6b) 

Based on that, the deviation from the equilibrium spacing Δ𝑑௜,௜ି௠
௧  and the relative speed Δ𝑣௜,௜ି௠

௧  are 

defined as: 

Δ𝑑௜,௜ି௠
௧ ൌ 𝑑௜,௜ି௠

௧ െ 𝑑௜,௜ି௠
∗௧ ,                                                                                                  (4-7)  

Δ𝑣௜,௜ି௠
௧ ൌ 𝑣௜ି௠

௧ െ 𝑣௜
௧ .                                                                                                          (4-8)                           

To reduce the dimension of state in DRL for better convergence, and meanwhile better achieve the 

multi-vehicle consensus by utilizing downstream traffic information, similar to CAV multi-agent linear 

control (Bian et al., 2019; Chen et al., 2021), the equilibrium deviations between 𝐶𝐴𝑉 𝑖  and its 𝑘 

downstream vehicles (Δ𝑑௜,௜ି௠
௧ ,  Δ𝑣௜,௜ି௠

௧ , 1 ൑ 𝑚 ൑ 𝑘 ) are weighted averaged to the fused state 

information 𝒔𝐢
𝐭 = [Δ𝑑ሚ௜ 

௧ , Δ𝑣෤௜ 
௧ ] for 𝐶𝐴𝑉 𝑖. The weighted deviations of spacing Δ𝑑ሚ௜ 

௧  and speed Δ𝑣෤௜ 
௧  are 

given as Equation (4-9) and Equation (4-10), respectively:  

Δ𝑑ሚ௜ 
௧ ൌ

௪೔షభఎ෥೔,೔షభ
೟ ୼ௗ೔,೔షభ

೟ ା௪೔షమఎ෥೔,೔షమ
೟ ୼ௗ೔,೔షమ

೟ ା⋯ା௪೔షೖఎ෥೔,೔షೖ
೟ ୼ௗ೔,೔షೖ

೟

௪೔షభఎ෥೔,೔షభ
೟ ା ௪೔షమఎ೔,೔షమ

೟ ା⋯௪೔షೖఎ෥೔,೔షೖ
೟ ,                                                   (4-9) 

Δ𝑣෤௜ 
௧ ൌ  

௪೔షభఎ෥೔,೔షభ
೟ ୼௩೔,೔షభ

೟ ା௪೔షమఎ෥೔,೔షమ
೟ ୼௩೔,೔షమ

೟ ା⋯ା௪೔షೖఎ෥೔,೔షೖ
೟ ୼௩೔,೔షೖ

೟

௪೔షభఎ෥೔,೔షభ
೟ ା ௪೔షమఎ෥೔,೔షమ

೟ ା⋯௪೔షೖఎ෥೔,೔షೖ
೟ ,                                                 (4-10)     

where the coefficient 𝑤௜ି௠ is defined in Equation (4-11), reflecting that the closer downstream CAVs 

are paid more attention.  
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 𝑤௜ି௠ ൌ ቐ

ଵ

ଶ೘
, 1 ൑ 𝑚 ൑ 𝑘 െ 1

ଵ

ଶ೘షభ , 𝑚 ൌ 𝑘
.                                                                                            (4-11) 

𝜂෤௜,௜ି௠
௧  denotes the adjusted transmission status between 𝐶𝐴𝑉 𝑖 and 𝐶𝐴𝑉 𝑖 െ 𝑚, which will be given by 

an information fusion mechanism in Section 4.2.2. 

4.2.2 Dynamic Information Fusion Mechanism 

The continuity and smoothness of the DRL state (Δ𝑑ሚ௜ 
௧  and Δ𝑣෤௜ 

௧) are essential for DRL-based control 

methods since the learned policy directly maps the DRL state to the control action (i.e., 𝑢௝
௜ ൌ 𝜋ఏ൫𝐬𝐣

𝐢൯). 

However, if the IFT of 𝐶𝐴𝑉 𝑖 is not adjusted (i.e., 𝜂෤௜,௜ି௠
௧ = 𝜂௜,௜ି௠

௧ ), the communication loss will cause 

the transmission status 𝜂෤௜,௜ି௠
௧  to switch frequently and correspondingly make the DRL state 𝐬𝐢

𝐭 fluctuate, 

which can lead to undesirable high-jerk accelerations, as presented in Fig. 4-3.  

 

Fig. 4-3. The high jerk phenomenon due to the unstable transmission. 

Rather than directly fusing the information received by letting𝜂෤௜,௜ି௠
௧ = 𝜂௜,௜ି௠

௧ , we add one more 

mechanism, ‘dynamic information fusion mechanism’, by determining whether CAV 𝑖 is allowed to 

fuse the information of CAV 𝑖 െ 𝑚 at each timestep. The proceeding CAVs’ information will be fused 

if and only if the controlled CAV is allowed to fuse the information and meanwhile the information is 
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received. Mathematically, our dynamic control mechanism introduces a ‘fusion permission’ parameter 

c௜,௜ି௠
௧ ∈ ሼ0, 1ሽ for 𝐶𝐴𝑉 𝑖 to determine whether it is allowed to fuse the information from 𝐶𝐴𝑉 𝑚 at each 

timestep 𝑡, where 1 represents permission and vice versa. Based on this mechanism, the adjusted IFT 

of 𝐶𝐴𝑉 𝑖 𝜉ሚ௜
௧ is defined as 𝛏෨𝐢

𝐭 ൌ ሾ𝜂෤௜,௜ିଵ
௧ , 𝜂෤௜,௜ିଶ

௧ , … , 𝜂෤௜,௜ି௞
௧ ሿ, where 𝜂෤௜,௜ି௞

௧  represents whether CAV 𝑖 െ 𝑘’s 

information will be utilized for the state fusion by CAV 𝑖. The detailed definition 𝜂෤௜,௜ି௞
௧  is given as: 

𝜂෤௜,௜ି௞
௧ ൌ ൜

1, 𝑖𝑓 𝜂௜,௜ି௠
௧ ൌ 1 and c௜,௜ି௠

௧ ൌ 1 
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.                                                                          (4-12)    

Equation (4-12) represents that the fusion only happens when fusion permission and information receipt 

both hold. It should be noted that c௜,௜ିଵ
௧ ≡ 1 since the information of 𝐶𝐴𝑉 𝑖 െ 1 is necessary due to 

safety concerns and 𝜂௜,௜ିଵ
௧ ≡ 1 since information can be directly measured by vehicle on-board sensors. 

As presented in Fig. 4-4, a rule-based method for determining the permission parameter c௜,௜ି௠
௧  is 

designed. Specifically, we firstly set the default value of the permission parameter c௜,௜ି௠
௧ ൌ1, aiming to 

utilize the information of proceeding vehicles as much as possible. c௜,௜ି௠
௧ ൌ 0 only happens when the 

following two conditions hold simultaneously: (i) the transmission status between 𝐶𝐴𝑉 𝑖 and 𝐶𝐴𝑉 𝑖 െ

𝑚 changes from “fail” at timestep 𝑡 െ 1 to “success” at timestep 𝑡 (i.e., 𝜂෤௜,௜ି௠
௧ିଵ ൌ 0 and 𝜂෤௜,௜ି௠

௧ ൌ 1); (ii) 

the first-order difference of the weighted deviation 𝑒௜
௧  (i.e., 𝑒௜

௧ ൌ |𝛥𝑑ሚ௜ 
௧ െ 𝛥𝑑ሚ௜ 

௧ିଵ| ), triggered by 

condition (i),  is larger than a threshold 𝑞 (i.e., 𝑒௜
௧ ൐ 𝑞). The above rule helps to reduce the sudden state 

change caused by communication status change, which may result in control non-smoothness. The 

threshold 𝑞 determines and adjusts the smoothness of the control signal, which is flexible to meet the 

requirements of varied control actuators. The sensitivity analysis of the threshold 𝑞 regarding signal 

smoothness and control performances is conducted in Section 4.4.1 to seek its optimal range. 
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Fig. 4-4. The flow chart of the dynamic communication control mechanism. 

4.3 DRL MODEL DEVELOPMENT 

Based on the above control scheme, this section develops the DRL-based models. We first describe the 

DRL framework design (given in Section 4.3.1), including the representations of the four basic DRL 

elements (state, action, policy, and reward). Then, the DRL algorithm (DPPO) details for policy 

updating are given in Section 4.3.2. The training procedure is described in Section 4.3.3.  

4.3.1 DRL Design 

DRL can be modeled as a Markov decision process, consisting of two interactive objects: DRL agent 

(CAV control algorithm) and environment (given in Sections 4.1 and 4.2). The DRL framework has 

four basic elements: state, action, policy, and reward: state, action, policy, and reward (s, 𝐴, π, 𝑟). 

The state information s contains two components: the weighted deviations of spacing Δ𝑑ሚ௜ 
௧  and speed 

Δ𝑣෤௜ 
௧ , as discussed in the last section. When the DRL agent receives the state information 𝐬𝐢

𝐭, it outputs 

the action 𝐴, namely 𝑢௜
௧, to control 𝐶𝐴𝑉 𝑖 according to a control policy π. The policy π is an implicit 
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function updated through the training process to achieve optimal performance described by the reward 

𝑟.     

The reward 𝑟  determines control targets. In our design, cooperative control efficiency and driving 

comfort are considered to achieve the consensus equilibrium and simultaneously smooth driving 

behavior. The cooperative control efficiency 𝑓௜
௧measures the deviation from the consensus equilibrium 

in a quadratic form:  

𝑓௜
௧ ൌ  ሺ𝐬𝐢

𝐭ሻ்𝐐𝐢𝐬𝐢
𝐭,                                                                                                                 (4-13)                           

where 𝑄௜ is a positive definite diagonal coefficient matrix with tuning weights 𝛼ଵ,௜, 𝛼ଶ,௜, defined as: 

𝐐𝐢 ൌ  ቈ
𝛼ଵ,௜

𝛼ଶ,௜
቉ ,𝛼ଵ,௜ ,𝛼ଶ,௜ ൐ 0.                                                                                       (4-14) 

Especially, the cooperative car following control efficiency 𝑓௜
௧   regulates the equilibrium spacing 

deviation ∆𝑑௜,௜ିଵ
௧ → 0  and relative speed ∆𝑣௜,௜ିଵ

௧ → 0 , which greatly reduces the driving risks as 

manifested by the safety surrogate measure such as time-to-collision (TTC), where 𝑇𝑇𝐶௜
௧ ൌ

ቐ

ௗ೔,೔షభ
೟ ି௟ೡ
௱௩೔,೔షభ

೟ , if 𝑣௜
௧ ൐ 𝑣௜,௜ିଵ

௧

∞, 𝑖𝑓 𝑣௜
௧ ൑ 𝑣௜,௜ିଵ

௧
 (Jiménez et al., 2013). When ∆𝑑௜,௜ିଵ

௧ → 0 and ∆𝑣௜,௜ିଵ
௧ → 0, TTC→ ∞. During 

the non-steady state, small ∆𝑣௜,௜ିଵ
௧  also suggests large TTC. Moreover, it is worth noting that our newly 

designed approach is different from (Zhou, et al., 2019; Shi, et al., 2020), whose objective only aims to 

minimize the quadratic term of local control efficiency cost 𝑓መ௜
௧ ൌ  ሺ𝐬ො𝐢

𝐭ሻ்𝐐𝐢𝐬ො𝐢
𝐭 , where 𝐬ො𝐢

𝐭  = [∆𝑑௜,௜ିଵ
௧ ,

∆𝑣௜,௜ିଵ
௧ ]. 𝑓መ௜

௧ merely measures the local stability of the CAV longitudinal control, indicating a vehicle’s 

capability to remain in a car following pair of the local equilibrium state. However, this term does not 

incorporate the consensus of the whole CAV platoon, which makes the CAV react very myopically and 

may lead to large  Δ𝑣௜,௜ି௠
௧  and Δ𝑑௜,௜ି௠

௧ .  

Further, a trade-off cost term 𝑔௜
௧=𝑍௜ሺ𝑎௜

௧ሻଶ that evaluates driving comfort is incorporated in the car-

following control, alleviating the control force to increase the driving comfort and string stability (i.e., 
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acceleration magnitude decreases through vehicular string). 𝑍௜ is the acceleration weighting coefficient. 

Thus, the running cost 𝑙௜
௧ is formulated below: 

𝑙௜
௧ ൌ 𝑓௜

௧ ൅  𝑔௜
௧ .                                                                                                                       (4-15)        

Since Equation (4-15) is quadratic, which makes the DRL property similar to constrained quadratic 

control, we adopted the settings of coefficient 𝑍௜  and matrix 𝐐𝐢  (Zhou et al., 2019) to enhance the 

empirical string stability.   

The cost function (15) is converted to the immediate reward 𝑟௜
௧  for CAV 𝑖  at timestep 𝑡  using the 

exponential function, specified as: 

𝑟௜
௧ ൌ exp൫െ𝑙௜

௧൯.                                                                                                                   (4-16)                     

Therefore, we formulate an infinite-horizon optimal control problem with the DRL policy π* to 

maximize the discounted cumulative rewards: 

𝜋∗ ൌ arg max
గ

∑ 𝛶௠
∞
௠ ୀ ଴ 𝑟௜

௧ା௠൫𝐬𝐢
𝐭ା𝐦,𝑎௜

௧ା௠൯,                                                                   (4-17) 

where 𝑟൫𝑠௜
௧ ,𝑎௜

௧൯ represents the reward function (16). 

4.3.2 Distributed Proximal Policy Optimization (DPPO) Algorithm 

The DRL solves the optimal control problem in Equation (4-17) by updating policy π in the training 

procedure. We used the DPPO algorithm (Heess et al., 2017) that supports continuous action space to 

update policy due to its great performance in sampling efficiency and convergence.  

The DPPO algorithm consists of an actor network and a critic network, whose parameters need to be 

updated by training to find the optimal 𝜋∗. Specifically, the actor network’s parameter 𝜃, which directly 

determines the latest policy π, is updated by maximizing the objective function 𝐿஼௅ூ௉ሺ𝜃ሻ: 

𝐿஼௅ூ௉ሺ𝜃ሻ  ൌ  𝐸෠௧ሾmin൫𝑝௧ሺ𝜃ሻ𝐴መ௧ , 𝑐𝑙𝑖𝑝ሺ𝑝௧ሺ𝜃ሻ, 1 െ 𝜀, 1 ൅ 𝜀ሻ𝐴መ௧൧,                                              (4-18) 
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where  𝑝௧ሺ𝜃ሻ represents the probability ratio of the new policy 𝜋ఏand the old policy 𝜋௢௟ௗ , denoted as 

𝑝௧ሺ𝜃ሻ ൌ
గഇሺ௔೟|𝐬𝐭ሻ

గഇ೚೗೏ሺ௔೟|𝐬𝐭ሻ
. The function 𝑐𝑙𝑖𝑝ሺ𝑝௧ሺ𝜃ሻ, 1 െ 𝜀, 1 ൅ 𝜀ሻ  limits 𝑝௧ሺ𝜃ሻ  between 1 െ 𝜀  and 1 ൅ 𝜀  , 

which prevents a large difference between the updated new policy and the old policy, thus improving 

the converging performance. 𝜀 is a parameter of the clipping function. 𝐴መ௧ is the estimated advantage at 

timestep 𝑡: 

𝐴መ௧  ൌ  𝑅௧ െ 𝑉ఃሺ𝐬𝐢
𝐭ሻ,                                                                                                                (4-19) 

where  𝑅௧ represents the T-step discounted sum of rewards: 

𝑅௧ ൌ ∑ 𝛾௠𝑟௜
௧ା௠ ൅்ିଵ

௠ୀ଴ 𝛾்𝑉ః൫𝐬𝐢
𝐭ା𝐓൯,                                                                                     (4-20) 

where 𝑟௜
௧ା௠ denotes the reward value given in Equation (4-16); 𝛾 is a discount factor.  

On the other hand, the critic network evaluates the action 𝑢௜
௧ output by the actor network. A critic loss 

function 𝐿௖ሺ𝛷ሻ is defined to be minimized to update the critic network: 

𝐿௖ሺ𝛷ሻ ൌ  𝐸෠௧ ቀ𝑅௧ െ 𝑉ఃሺ𝐬𝐢
𝐭ሻቁ

ଶ
.                                                                                               (4-21) 

The detailed hyperparameter setting of the DPPO algorithm is given in Table 4-2. 

Table 4-2. DPPO algorithm’s hyperparameters. 

Hyperparameters Value 

Clipping value 𝜀 0.2 

Discount factor 𝛶 0.99 

Minibatch 𝑇 256 

Actor learning rate 0.00001 

Critic learning rate 0.00001 

Number of the parallel 

agents 

4 
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4.3.3 Training Procedure 

This section provides the detailed training procedure, which aims to update the policy of the DRL agent. 

DPPO algorithm with the actor-critic network structure is adopted for updating policy 𝜋. The DPPO 

algorithm includes one global agent for updating the actor-critic networks' parameters and multiple 

parallel agents collecting data to improve the sampling efficiency. To be noted that, if there are fewer 

than 𝑘 downstream vehicles, the controlled CAV integrates all the downstream information and takes 

proper action from DRL-based models (𝑀ଵ~𝑀௞ିଵ), which are developed based on the same framework 

with 𝑀௞ but with a smaller number of proceeding vehicles (1~𝑘 െ 1 downstream CAVs).  

The training process of Mହ  is demonstrated in Fig. 4-5. We set the number of communicated 

downstream CAVs 𝑘 ൌ 5 in the control framework since the impact of far downstream CAV can be 

neglected (𝑤௜ି௞ ൏
ଵ

ଵ଺
 when 𝑘 ൐ 5). The numerical environment is built via Python. Specifically, the 

trajectory of the leading CAV (𝐶𝐴𝑉 𝑖 െ 5) is ground-truth data from the NGSIM datasets. The other 

downstream CAVs are controlled by the corresponding DRL-based models (𝑀ଵ~𝑀ସ). Without losing 

generality, all following CAVs start with the equilibrium states defined in section 4.2. During the 

training process, each parallel agent receives state 𝐬𝐢
𝐭 at time step 𝑡 and outputs 𝑢௜

௧  to control 𝐶𝐴𝑉 𝑖 

based on the latest policy 𝜋. Simultaneously, the reward 𝑟௜
௧ is computed by the reward function (16) 

and stored in the memory buffer with state 𝐬𝐢
𝐭 and action 𝑢௜

௧. After a specific batch of data is collected, 

the global agent will update policy 𝜋 by optimizing the actor network and critic network parameters. 
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Fig. 4-5. The schematic diagram of training procedure. 

The distributed controller is trained on 200 episodes, consisting of 218 timesteps with a 0.1s time 

interval. The moving reward trajectories (Qu et al., 2020) of developed models (𝑀ଵ~𝑀ହ), presented in 

Fig. 4-6, show an almost monotonous increase with episodes until stable convergence, suggesting the 

good converging performance of our designed DRL. The main reason is that the predefined equilibrium 

state regulates CAVs to keep close to equilibrium, which gives DRL an exploration direction to improve 

the convergence and reduce the computation burden.  

 

Fig. 4-6. Reward trajectories of the proposed models. 

4.4 Numerical Experiments 

Several experiments embedded with NGSIM datasets are conducted to evaluate the DRL-based 

distributed control strategy in this section. The raw field data was processed using a low-pass filter to 

efficiently clean noises (Montanino & Punzo, 2015). The trajectories of vehicles in Lane 2 of I-80 from 

4:00 pm to 4:15 pm are adopted for experiments due to the frequent traffic oscillations period. Without 
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losing generality, for each experiment, the followers start with initial equilibrium states. The default 

experimental settings are shown in Table 4-3.  

Table 4-3. Experiment parameter settings. 

Parameters Value 

Number of downstream CAVs 

𝑘 

5 

Update interval ∆𝑡 0.1 s 

Vehicle length 𝑙௩ 4.5 m 

Standstill spacing 𝑙௜ 6.4 m 

Constant time gap 𝜏௜
∗ 1 s 

Acceleration weighting 

coefficient 𝑍௜ 

0.5 

Coefficient matrix 𝑸𝒊 

 

ቂ 1
0.5

ቃ 

SINR threshold value 𝛽 0.055 

Ratio of the demanded 

acceleration 𝐾௜,௅ 

1 

Actuation time lag 𝑇௜,௅ 0.1 

Threshold for the dynamic 

information infusion mechanism 

𝑞 

 

0.1 

SINR noise parameter 𝜇 0 

SINR noise parameter 𝜎ଶ 0.1 

Acceleration boundary 

[𝑎௠௜௡,𝑎௠௔௫] 

[-4 m/s2, 4 m/s2] 
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The experiments consist of the following three aspects: (i) parameter tuning for the dynamic information 

fusion mechanism (in Section 4.4.1); (ii) control performance evaluation and comparison with the 

decentralized strategy (in Section 4.4.2); (iii) generalization capability analysis (in Section 4.4.3).  

Regarding part (i), the sensitivity analysis was conducted to seek the optimal range of the information 

fusion mechanism threshold 𝑞, aiming to achieve a great balance between the acceleration jerk and 

communication utilization rate. We average the absolute value of acceleration signal jerk 𝑗௜
௧ for all time 

steps to measure the control signal smoothness, specified as: 

𝚥௜̃ ൌ  
∑ ௝೔

೟ಿ
೟సబ

ே
,                                                                                                                       (4-22) 

where N is the number of timesteps; 𝑗௜
௧ ൌ |𝑢௜

௧ െ 𝑢௜
௧ିଵ|/∆𝑡. The communication utilization rate is to 

indicate the percentage of fused information for a communication link, given by: 

𝛾௜,௜ି௠ ൌ
∑ ఎ෥೔,೔ష೘

೟ಿ
೟సబ

∑ ఎ೔,೔ష೘
೟ಿ

೟సబ
.                                                                                                            (4-23) 

Regarding part (ii), the distributed control performance is analyzed and compared with a decentralized 

control strategy and a linear-based CACC strategy. The CAV controlled by the decentralized strategy 

can only receive the preceding vehicle’s information through onboard sensors, which means the CAV 

is downgraded to the automated vehicle (AV). 𝑀ଵ is applied for decentralized control. The compared 

CACC algorithm (Zhou et al., 2020c) is a linear CAV longitudinal controller also based on CTG policy, 

which greatly dampens traffic oscillations with guaranteed string stability performance. To 

quantitatively evaluate the performance of the control strategy, four performance indexes: driving 

comfort cost 𝑔௜
௧ , cooperative control efficiency cost 𝑓௜

௧ , local control efficiency cost 𝑓መ௜
௧ , and the 

cumulative dampening ratio 𝑑௣,௜, are incorporated in the analysis. The cumulative dampening ratio 𝑑௣,௜ 

is defined to evaluate the string stability that measures the performance in dampening traffic oscillations 

through a platoon (Zhou et al., 2019), defined as: 

𝑑௣,௜ ൌ
ฮ௔೔

೟ฮమ
ฮ௔బ

೟ฮమ
ൌ

ሺ∑ ห௔೔
೟ି௔೔,೘೐ೌ೙ห

మ
ሻ
భ
మಿ

೟సబ

ሺ∑ ห௔బ
೟ି௔బ,೘೐ೌ೙ห

మ
ሻ
భ
మಿ

೟సబ

,                                                                                       (4-24) 
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where 𝑖  is the vehicle index; index 0 represents the leader of a platoon; 𝑎௜,௠௘௔௡  is the average 

acceleration of 𝐶𝐴𝑉 𝑖 over all timesteps. The smaller dampening ratio indicates the more string stable 

driving behavior. Particularly, the platoon is strict string stable when all vehicles satisfy 𝑑௣,௜ ൑ 𝑑௣,௜ିଵ.  

After performance evaluation, the control strategy's generalization ability is validated in part (iii), using 

multiple ground-truth datasets. Finally, the proposed strategy is implemented in different traffic 

conditions to demonstrate the oscillation-dampening performance compared with the (intelligent driver 

model) IDM-based HDV platoon (Treiber et al., 2000).  

4.4.1 Sensitivity Analysis of the Communication Control Mechanism 

The experiments in this section aim to optimize the dynamic information fusion mechanism through 

tuning the threshold 𝑞 to achieve smooth control subject to sufficient communication utilization and 

control performances. 

As an example, we analyzed an unstable communication link between the controlled 𝐶𝐴𝑉 𝑖 and the 

transmitter 𝐶𝐴𝑉 𝑖 െ 4. Fig. 4-7 presents the acceleration jerk trajectories under different threshold 𝑞. 

The “Information fully adopted” case indicates the communication utilization rate 𝛾௜,௜ି௠ ൌ 1, which 

means the CAV utilizes (fuses) all the received information from 𝐶𝐴𝑉 𝑖 െ 4 and thus can better achieve 

the downstream consensus with richer information. However, the acceleration signal jerk ranges 

between 1.1 m/s3 to 5.5 m/s3 in this case when the communication status is unstable. The “fully dropped” 

case represents 𝛾௜,௜ି௠ ൌ 0, in which the jerk trajectory is merely below 0.5 m/s3. However, the CAV 

ignores all information from 𝐶𝐴𝑉 𝑖 െ 4 in this case, which is not desired for achieving the equilibrium 

consensus. The two extreme cases demonstrate the trade-off relationship between the smoothness of the 

acceleration signal and the communication utilization, which needs to be balanced by finding an 

‘optimal’ threshold 𝑞∗.  

Thus, the experiment with threshold 𝑞 (meters) ranging from 0.01 to 0.25 was enumerated, presented 

in Fig. 4-7. Compared with the case that fully utilizes the communication information, cases with 

smaller 𝑞 help alleviate the jerk, with only a few time points with high jerk values. To quantify the 
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results, we use 30 datasets with each over 50 seconds to average the acceleration jerk 𝚥௜̃  and 

communication utilization rate 𝛾௜,௜ିସ, presented in Fig. 4-8 (a). The quantified results further illustrate 

the trade-off relevance. Particularly, the average jerk 𝚥௜̃  increases monotonically from 0.173 m/s3 to 

0.309 m/s3, with the communication utilization rate 𝛾௜,௜ି௠ growing from 28.4% to 87.8%. When 𝑞 ൒

0.03, 𝛾௜,௜ି௠ is less sensitive while the trend of  𝚥௜̃  is more sensitive due to the nearly exponential growth.  

 

Fig. 4-7. The acceleration jerk trajectory under different thresholds. 

Furthermore, the sensitivity analysis of threshold 𝑞  was conducted regarding its impact on control 

performances (i.e., dampening ratio 𝑑௣,௜, cooperative control efficiency 𝑓௜
௧, and local control efficiency 

𝑓መ௜
௧), as presented in Fig. 4-8 (b). As threshold 𝑞 increases, the dampening ratio gradually decreases 

before since more information is utilized to facilitate the string stability performance. Nevertheless, the 

dampening ratio re-rises after 𝑞 reaches some point (0.15) due to the high-jerk acceleration. On the 

other hand, the two types of control efficiency costs remain low when 𝑞 is within a certain range (0.03 

~ 0.09) and then rise monotonically as 𝑞 gradually increases, indicating that the high-jerk equilibrium 

deviations (i.e., Δ𝑑ሚ௜ 
௧ ,Δ𝑣෤௜ 

௧) negatively affect the control efficiency.  
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                                                                   (a) 

 

(b) 

Fig. 4-8.  Sensitivity analysis of threshold q regarding (a): average jerk and communication 

utilization rate; (b): dampening ratio, cooperative control efficiency, and local control efficiency. 

Taking different aspects regarding signal smoothness, oscillation dampening performance, and control 

efficiency into consideration, the optimal range of the threshold 𝑞 can be found as 0.03 to 0.09. In this 

study,  𝑞∗ ൌ 0.03 is adopted for the follow-up experiments due to the relatively small jerk and sufficient 

control performance. 
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4.4.2 Control Performance Evaluation 

Based on the optimal threshold 𝑞∗, we systematically compared the proposed DRL-based distributed 

control strategy's performance with a DRL-based decentralized control strategy (i.e., single 

predecessor-follower topology) and a linear-based CACC strategy in this section. A six-vehicle platoon’ 

trajectory from the NGSIM dataset was used in the experiment, where the first vehicle trajectory is 

selected as the leading vehicle trajectory of these strategies. 

As an illustrative example, Fig. 4-9 shows the six-vehicle platoon’s trajectories of the field data and 

simulated results based on the decentralized strategy and distributed control strategy. The acceleration 

of HDVs in Fig. 4-9 (a) fluctuates significantly due to the traffic oscillations, leading to traffic 

congestion during 25 seconds to 35 seconds. In contrast, the CAV follower in Fig. 4-9 (b-c) is more 

responsive to the preceding CAV with smaller spacing and smoother realized acceleration, indicating 

great car following efficiency and driving comfort. Compared with the decentralized control, which 

merely utilizes the very nearest following vehicle’s information, the distributed control strategy in Fig. 

4-9 (c) significantly improves the dampening performance with the magnitude of spacing, velocity, and 

acceleration attenuated through the platoon, indicating more excellent string stability and cooperative 

control efficiency. Moreover, we assessed the decision-making time of the proposed DRL-based 

method. The average decision-making time (the average result of 500 timesteps) of follower 5’ s DRL 

controller takes 0.236 milliseconds (0.023 standard deviations), which meets the decision-making 

requirements for CAVs.  
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(a)                                                  (b)                                                 (c) 

Fig. 4-9. The position, velocity, and realized acceleration results of a vehicle platoon: (a) NGSIM 

ground-truth data; (b) Simulated results using decentralized control strategy; (c) Simulated results 

using distributed control strategy. 

For quantitative evaluation, Fig. 4-10 demonstrates evaluation indexes of the three vehicular platoons, 

including dampening ratio 𝑑௣,௜ (in Equation (4-24)), comfort cost 𝑔௜
௧ (in Equation (4-15)), cooperative 

control efficiency cost 𝑓௜
௧ (in Equation (4-13)), and local control efficiency cost 𝑓መ௜

௧, among which last 

three indicators are based on the average value per time step. The dampening ratio of each HDV 

(NGSIM data) remains around 1.0. On the other hand, the dampening ratio and driving comfort cost of 

the linear-based CACC approach, decentralized control approach, and proposed distributed control 

approach show a similar downward trend through the platoon, satisfying the strict string stability criteria 

and indicating the improved driving comfort. Despite the similar tendency, the distributed control 

strategy demonstrates a smaller dampening ratio and driving comfort cost, and the advantage to the 

decentralized control and linear-based CACC becomes more obvious towards the traffic upstream. By 

the above results, we can conclude that the distributed CAV controller receives downstream multi-
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vehicle information and achieves equilibrium consensus, which outperforms the decentralized control 

and linear CACC in smoothing the driving behavior and alleviating traffic oscillations.  

 

Fig. 4-10 Comparison of distributed control, decentralized control, and NGSIM data in terms of 

four evaluation indexes. 

On the other hand, both decentralized and distributed control shows a small cost of local control 

efficiency (below 1.0), indicating that local stability is well guaranteed. However, the decentralized 

control shows a growing trend in the cooperative control efficiency cost, while the distributed control 

demonstrates much smaller and attenuated costs through the platoon. This proves that the decentralized 

control cannot achieve the consensus due to the large deviation for the CAVs far apart. The distributed 

control strategy achieves the consensus, which contributes to the stable platoon dynamics with little 

deviations from the consensus equilibrium. Furthermore, the proposed DRL-based control strategy 

outperforms the linear-based CACC strategy in every aspect, which can be attributed to two reasons. 

First, the DRL can better capture stochastic vehicle behaviors since the real ground-truth dataset 

(NGSIM) is embedded in the training framework, whereas (Zhou et al., 2019) may neglect some 

nuanced vehicle driving characteristics. In addition, the specially designed DRL state and reward 

function incorporate the merits of the multi-agent consensus by fusing the weighted information of the 

downstream CAVs, which further improves the control performance and the dampening performance 
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from a system level. Besides, the system-level control performances further enhance driving safety 

based on the equilibrium concept. To demonstrate the safety performance more intuitively, we defined 

the ‘safety cost’ as the reciprocal of TTC (i.e., 1/𝑇𝑇𝐶௜
௧) and plotted the safety cost trajectory for the 

vehicle platoon, as presented in Fig. 4-11. According to the previous studies (Sultan et al., 2002), the 

safety cost threshold of 0.5 (i.e., TTC threshold as two seconds) is adopted to identify whether the car 

following behavior is safe or not. In Fig. 4-11, the safety cost trajectories are below 0.5 under any 

condition, which further proves that the proposed controller enhances safety performance.  

 

Fig. 4-11. The safety cost trajectory of the vehicle platoon 

Moreover, to visualize our dynamic information fusion mechanism and the unstable communication 

status of the vehicular platoon, the IFT and the adjusted IFT of follower 4 and follower 5 are given in 

Fig. 4-12. It demonstrates the communication statuses between the receiver (follower 4 and follower 5) 

and downstream transmitters (vehicle 3 – vehicle 0 for follower 4; vehicle 4 – vehicle 0 for follower 5) 

during the whole period. It shows that the communication becomes unstable as the distance of the 

transmitter and receiver increases. In current settings, the successful information delivery of the 

transmitter 𝐶𝐴𝑉 𝑖 െ 𝑚 cannot be guaranteed when 𝑚 ൐ 3 (e.g., vehicle 0 to follower 4; vehicle 0 and 

vehicle 1 to follower 5), which negatively affects the control implementation and performance. By the 

information fusion mechanism, the acceleration of follower 4 and follower 5, presented in Fig. 4-9 (c), 

ensures smooth control and simultaneously achieves desired control performance. 
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Fig. 4-12. IFT and adjusted IFT of the follower 4 and follower 5: (a) IFT of follower 4; (b) 

Adjusted IFT of follower 4; (c) IFT of follower 5; (d) Adjusted IFT of follower 5 

4.4.3 Generalization Analysis 

After evaluating the great control performance of the proposed approach, this section validates its 

generalization capability through validating the statistical robustness and demonstrating extended 

experimental cases.  

Statistical Robustness Validation 

To validate the statistical robustness, multiple field trajectories from NGSIM datasets (180 ground-truth 

datasets with each over 30 seconds) are selected to quantitatively evaluate the generalized performance 

of our proposed strategy for different leading vehicles trajectories. The detailed performance indexes 

are as presented in Fig. 4-13. As can be found that, the dampening ratio (give in Equation (4-24)) starts 

at 1 and gradually decreases to 0.335 through five distributed CAVs, proving that the oscillations are 

weakened during traffic propagation. From the control perspective, the monotonically decreased 
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running cost (given in Equation 4-15) demonstrates that the proposed strategy can make CAVs maintain 

close to the predefined equilibrium point through the vehicular string. Moreover, upstream CAVs can 

better achieve equilibrium consensus due to the weakened oscillations and more comprehensive 

information received. 

 

Fig. 4-13. Average cumulative dampening ratio and running cost of each vehicle in a six-vehicle 

platoon. 

Further, we statistically show the advantage of the proposed strategy over ground-truth data and other 

approaches mentioned above (i.e., decentralized control; linear-based CACC). The superiority 

percentage 𝑃 is introduced as follows: 

𝑃 ൌ
௉ூ೚ି௉ூ೏
௉ூ೚

∗ 100%,                                                                                                            (4-25) 

where  𝑃𝐼௢ and 𝑃𝐼ௗ are the generalized performance index of the compared strategies and proposed 

strategy, respectively. For generalizing these indexes, we first averaged five followers' performance 

indicators in the platoon as representation for the whole platoon and then took the average result of the 

180 datasets. Thus, the superiority percentage of each indicator is calculated and demonstrated in Fig. 

4-14. The distributed control outperforms the field data with 55.92% in dampening ratio and 76.05% in 

driving comfort, demonstrating significant improvement of string stability. Compared with the 

decentralized control and linear-based CACC, the distributed control has advantages in every aspect, 

especially in the cooperative control efficiency (74.96% and 78.3% in cost reduction, respectively). 



44 
 

These results further validate the generalization capability of the proposed method for different leading 

vehicle trajectories. 
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Fig. 4-14. The superiority percentage of proposed strategy compared with NGSIM data and 

decentralized control strategy. 

Extended Cases 

Finally, extended experiments are conducted to demonstrate the robustness of our controllers under 

different traffic conditions. Fig. 4-15 shows acceleration profiles of ten-follower vehicular platoon in 

six different scenarios, whose leading vehicle trajectories, picked from NGISM, are different. The 

results show that the proposed control method quickly and significantly dampens traffic oscillations, 

efficiently stabilizing the driving behaviors of the upstream CAVs. 
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Fig. 4-15. Acceleration profiles of ten-follower vehicular platoon in six different scenarios. 

Further, the proposed control strategy is applied to control 50 CAV followers with a customized leading 

vehicle trajectory incorporating one rapid deceleration-acceleration cycle (-2.4 m/s2 – 1.5 m/s2) 

disturbance. The 50-HDV platoon generated by the IDM is set as a comparison, where the IDM model 

is calibrated by (Kesting & Treiber, 2008) based on the datasets with complex situations. Fig. 4-

16 illustrates the velocity heat map of the CAV platoon and HDV platoon, and Fig. 4-17 intuitively 

demonstrates the velocity and acceleration portfolios of the CAV platoon. For the HDV platoon, the 

traffic oscillation is amplified upstream with increasing traffic jams. However, for the CAV platoon, 

the disturbance is dampened significantly through the platoon so the followers can quickly recover from 

the disturbance, showing outstanding robustness and resilience. The velocity and acceleration portfolios 

also demonstrate the excellent dampening performance of the CAV platoon.  
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Fig. 4-16. Velocity heat map based on the position trajectories for the HDV platoon and CAV 

platoon. 

 

Fig. 4-17. Velocity and acceleration trajectories of the CAV platoon under rapid deceleration-

acceleration scenario. 

Since the proposed controller is trained by the NGSIM dataset, which is normally low-speed congested, 

we conduct experiments to simulate a 20-vehicle platoon under the medium-speed speed scenario 

(steady state 20 m/s) and high-speed scenario (steady state 30 m/s), with results presented in Fig. 4-18. 

Similarly, one typical rapid deceleration-acceleration cycle (i.e., -2.5 m/s2 – 2.5 m/s2 for medium-speed 

scenario; -3 m/s2 – 3 m/s2 for high-speed scenario) is customized to represent a large-amplitude traffic 
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oscillation for the leading vehicle. The results demonstrate that the controller greatly dampens the traffic 

oscillation in both medium-speed and high-speed scenarios, which further validates the generalizable 

capability. 

 

Fig. 4-18. Velocity trajectories of the CAV platoon in the medium-speed and high-speed scenarios. 

4.5 Conclusion 

This study presents a DRL-based generic distributed CAV longitudinal control approach in a relatively 

realistic communication environment. To better capture stochastic characteristics of the preceding 

vehicles and communication loss, we embed the NGSIM datasets and the SINR based dynamic 

communication mechanism into the training framework. Each CAV in the framework receives its 

downstream CAVs’ fused information as the DRL state for real-time control. The fused DRL state and 

reward function are specially designed to incorporate the merits of the equilibrium concept and 

consensus concept, which maintains CAVs around the predefined equilibrium point and achieves the 

system-level consensus to better dampen traffic oscillations. A dynamic information fusion mechanism 

is proposed to smooth the fluctuated DRL state and the high-jerk control signal caused by the dynamic 

communication loss. 

For evaluating the proposed strategy, we conducted several numerical experiments using NGSIM 

datasets. The sensitivity analysis was conducted first to optimize the parameter of the dynamic 

information fusion mechanism. Then the control performance of the distributed control approach is 
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evaluated by comparing with the decentralized control, linear control, and field data in terms of 

dampening ratio, driving comfort, and cooperative car following efficiency. The results suggest that the 

distributed control strategy significantly outperforms other strategies and field data in every aspect and 

can greatly stabilize the traffic oscillations based on the platoon’s equilibrium consensus, demonstrating 

its robustness and resilience against disturbances. Finally, the generalization capability of the proposed 

strategy is validated using large amounts of the NGSIM datasets and customized traffic scenarios.  

Some future studies can be investigated based on current results. The CAV lateral control can be 

incorporated in the control framework for merging, diverging or lane-changing maneuvers. In addition, 

other dynamic or validated communication models (Kim et al., 2017; Wang et al., 2019) or topologies 

(e.g., relay communication topology, V2I, V2C) can be embedded in the framework to conduct 

extended experiments. The dynamic communication delay can be considered to make the control 

framework more realistic. Moreover, the complex mixed traffic flow properties can be further studies 

and optimized based on this study by extending the control framework.  

Furthermore, we can incorporate the prediction process (i.e., predicting the behavior of the surrounding 

vehicles) into the control framework to achieve more efficient control performance. The prediction 

process using advanced supervised machine learning algorithms (Ahmadlou & Adeli, 2010; Alam et 

al., 2020; Pereira et al., 2020; Rafiei & Adeli, 2017) are considered as the extension based on the current 

control framework. 
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5 DISTRIBUTED CONNECTED AUTOMATED VEHICLES CONTROL IN MIXED TRAFFIC: REAL-TIME 

AGGREGATED MACROSCOPIC CAR-FOLLOWING BEHAVIOR ESTIMATION BASED ON DEEP 

REINFORCEMENT LEARNING 

This chapter proposes an innovative distributed longitudinal control strategy for connected automated 

vehicles (CAVs) in the mixed traffic environment of CAV and human-driven vehicles (HDVs), 

incorporating high-dimensional platoon information. The control strategy is designed for the mixed 

traffic environment discussed in Section 4 of the thesis. For mixed traffic, the traditional CAV control 

method focuses on microscopic trajectory information, which may not be efficient in handling the HDV 

stochasticity (e.g., long reaction time; various driving styles) and mixed traffic heterogeneities. 

Different from traditional methods, our method, for the first time, characterizes consecutive HDVs as a 

whole (i.e., AHDV) to reduce the HDV stochasticity and utilize its macroscopic features to control the 

following CAVs. The new control strategy takes advantage of platoon information to anticipate the 

disturbances and traffic features induced downstream under mixed traffic scenarios and greatly 

outperforms the traditional methods. In particular, the control algorithm is based on deep reinforcement 

learning (DRL) to fulfill car-following control efficiency and further address the stochasticity for the 

aggregated car following behavior by embedding it in the training environment. To better utilize the 

macroscopic traffic features, a general platoon of mixed traffic is categorized as a CAV-HDVs-CAV 

pattern and described by corresponding DRL states. The macroscopic traffic flow properties are built 

upon the Newell car-following model to capture the characteristics of aggregated HDVs' joint behaviors. 

Simulated experiments are conducted to validate our proposed strategy. The results demonstrate that 

the proposed control method has outstanding performances in terms of oscillation dampening, eco-

driving, and generalization capability. Finally, we further analyze the vehicle sequencing’s impact on 

the mixed traffic flow, which has rarely been discussed in previous researches. This will provide 

guidance and reference for future research that considers lane-changing maneuvers. 

The chapter is organized as follows. Section 5.1 provides the CAV longitudinal control scheme, 

including the environment setting, the distributed control scheme, and the state fusion strategy. Section 
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5.2 gives the details of DRL-based control model development, in which the basics of the DRL 

algorithm are discussed in Section 5.2.1; the policy updating algorithm is given in Section 5.2.2, and 

the training procedure is described in Section 5.2.3. Section 5.3 analyzes the results of simulated 

experiments in terms of control performance, driving comfort, and generalization capability. Section 

5.4 analyzes the impact of CAV-HDV topologies on mixed traffic flow. Section 5.5 concludes the work.  

5.1 CAV Control Scheme 

5.1.1 Assumptions and Environment Setting 

Assumptions 

This study focuses on the CAV longitudinal control in mixed traffic of CAVs and HDVs. We consider 

the car following process without lateral movement in an infinite highway segment. The communication 

between CAVs follows the Federal Communications Commission, allocating a dedicated short-range 

communication (DSRC) radio with a 5.9-GHz frequency (Du & Dao, 2015). The environment 

assumptions are given as follows: (i) The CAV can obtain the real-time state information (e.g., speed, 

position) of its immediate preceding vehicle using onboard sensors. (ii) The CAV can receive its own 

real-time state information. (iii) The CAV’s real-time state information is broadcasted to the upstream 

CAVs by vehicle-to-vehicle (V2V) communication. (iv) The Signal-Interference-plus-Noise Ratio 

(SINR) condition dynamically determines the transmission status (fail/success) between any CAV pairs. 

(v) The communication delay is negligible due to the short communication distance in a road segment. 

(vi) HDVs have no communication capability. (vii) The lane-changing maneuvers are not considered 

in the vehicular platoon. 

Communications 

For the DSRC-based V2V communication environment given in the above assumptions, the 

information transmission status between CAVs can change dynamically under communication failure 

due to communication interference or information congestion (Wang et al., 2019). The communication 
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failure will undermine driving performance. We embed this realistic communication property into the 

control framework to enhance the robustness and practicality of the CAV controller. The information 

flow topology (IFT), which indicates the dynamic transmission status of links in the vehicular platoon, 

is described from the receiver side (i.e., controlled CAV) to illustrate the communication environment. 

Specifically, the IFT of CAV  𝑖  at timestep 𝑡  is defined as 𝝃𝒊
𝒕 ൌ ሾ𝜂௜,௜ିଵ

௧ , 𝜂௜,௜ିଶ
௧ , … , 𝜂௜,௜ିே

௧ ሿ , where 

𝜂௜,௜ି௠
௧ ∈ ሼ0, 1ሽ  denotes the information transmission status between the receiver CAV  𝑖  and the 

downstream vehicle  𝑖 െ 𝑚 . 𝜂௜,௜ି௠
௧ ൌ 1  indicates a successful transmission, while 𝜂௜,௜ି௠

௧ ൌ 0  can 

happen either when a communication loss or vehicle 𝑖 െ 𝑚 is an HDV. In addition, we assume a 

permanently successful transmission status for the immediate preceding vehicle (i.e., 𝜂௜,௜ିଵ
௧ ≡ 1) due to 

CAV’s robust onboard sensors. To better replicate the DSRC-based V2V communication, the SINR 

communication model (Du & Dao, 2015), which demonstrates great estimation of communication loss 

on a one-way road segment, is adopted to identify CAVs’ IFTs. The SINR model determines the real-

time transmission quality 𝑦௜,௝
௧  between the transmitter CAV 𝑗 and the receiver CAV 𝑖 at timestep 𝑡, 

defined as Equation (5-1): 

𝑦௜,௝
௧ ൌ  

௉ೕቀ௑ೕ೔
೟ ቁ

షഀ

∑ ௉ೖሺ௑ೖ೔
೟ ሻషഀ೔షభ

ೖసೕశభ ାை
,                                                                                                              (5-1) 

where 𝑃௝ denotes the transmission power of vehicle 𝑖; 𝑋௝௜
௧  is the distance between two CAVs; 𝛼 is the 

parameter adjusting the signal power decay. ∑ 𝑃௞ሺ𝑋௞௜
௧ ሻିఈ௜ିଵ

௞ୀ௝ାଵ  represents the sum of the interference 

signal power of vehicles between the receiver CAV  𝑖  and transmitter CAV 𝑗 . The noise term 

𝑂~𝑁ሺ𝜇,𝜎ଶሻ is used to simulate the random noise affecting the communication environment. Based on 

𝑦௜,௝
௧ , a threshold value 𝛽  related to the communication capability (e.g., modulation, code rate) is 

introduced to determine the real-time transmission status 𝜂௜,௜ି௠
௧ : 

𝜂௜,௜ି௠
௧ ൌ ቊ

1, 𝑦௜,௜ି௠
௧ ൐  𝛽

0, 𝑦௜,௜ି௠
௧ ൑  𝛽

.                                                                                                           (5-2) 
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Based on the SINR model, we embed critical communication features of the practical condition in the 

simulated V2V communication environment, making the simulation more realistic.  

Vehicle Dynamics 

Given the assumptions and communication environment, the vehicle dynamics are modeled by a first-

order approximation to capture multiple factors (e.g., gear position, road gradient, air drag force) of the 

vehicle linearized dynamics (Li et al., 2011; Wang, 2018b): 

𝑎௜
௧ାଵ ൌ 𝑒

ି
∆೟
಺೔,ಽ ൈ 𝑎௜

௧ ൅ ቆ1 െ 𝑒
ି
∆೟
಺೔,ಽቇ ൈ 𝐾௜,௅𝑢௜

௧ ,                                                                               (5-3) 

where 𝐾௜,௅  and 𝐼௜,௅  denote the system gain (ratio of the control demand that can be realized) and 

actuation time lag of CAV  𝑖 , respectively; 𝑢௜
௧  and 𝑎௜

௧  are the demanded acceleration and realized 

acceleration. With acceleration 𝑎௜
௧, the real-time vehicle state is updated according to the kinematic 

point-mass equations (M. Zhu et al., 2018): 

𝑣௜
௧ାଵ ൌ 𝑣௜

௧ ൅ 𝑎௜
௧∆𝑡                                                                                                                      (5-4a) 

Δ𝑣௜,௜ିଵ
௧ାଵ ൌ 𝑣௜ିଵ

௧ାଵ െ 𝑣௜
௧ାଵ                                                                                                               (5-4b) 

𝑑௜,௜ିଵ
௧ାଵ ൌ 𝑑௜,௜ିଵ

௧ ൅
୼௩೔,೔షభ

೟ ା୼௩೔,೔షభ
೟శభ

ଶ
∆𝑡,                                                                                              (5-4c) 

where ∆𝑡 is the update interval; 𝑣௜
௧  is the velocity of CAV 𝑖 at timestep 𝑡;  𝑑௜,௜ିଵ

௧  denotes the front-

bumper distance between CAV 𝑖 and CAV 𝑖 െ 1. 

5.1.2 Distributed Control Scheme 

Based on the above environment setting, this section provides a generic distributed control framework 

to regulate CAVs’ longitudinal movements in a mixed traffic environment, as presented in Fig. 5-1. The 

communication topology setting assumed by the SINR model in the framework is a common V2V 

communication topology, which is widely utilized in the CACC control (Wang et al., 2020). For this 

topology, each controlled CAV (i.e., CAV 𝑖) broadcasts its state information (e.g., velocity, position) 
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to the upstream vehicles within a certain communication range and simultaneously communicates with 

the multiple downstream vehicles within the communication range (i.e., at most 𝐾 downstream vehicles) 

at each timestep for real-time longitudinal control. For each timestep, the received information from the 

downstream vehicles is fused as a weighted DRL state 𝒔𝒊
𝒕, which will be explained with details later. 

After the fusion process, the DRL-based controller generates the real-time demanded acceleration 𝑢௜
௧, 

and 𝑢௜
௧  is then implemented based on the above vehicle dynamics, regulating CAV 𝑖’s longitudinal 

movements.  

 

Fig. 5-1. Velocity and acceleration trajectories of the CAV platoon under rapid deceleration-

acceleration scenario. 

Within the above framework, the fused DRL state 𝒔𝒊
𝒕  is notably designed to better utilize the 

downstream vehicles’ information. The communication range for state fusion, defined as the ‘local 

downstream environment,’ is restricted to cover at most 𝐾 downstream vehicles. The communication 

quality within the range should be basically stable (i.e., rarely fails), and the kinematic traffic waves 

(Whitham, 1955) can be quickly propagated to the controlled CAV 𝑖. Despite the limited range, the 

diversified downstream CAV-HDV topologies make developing a generic distributed controller 

challenging. To this end, we describe any local mixed downstream environment as the generic CAV-

HDVs-CAV pattern, which consists of a nearest downstream CAV followed by a single or multiple 

HDVs, as presented in Fig. 5-2(a). In this heterogeneous local environment, the traffic oscillation 
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amplitude usually grows upstream through the consecutive HDVs between CAV 𝑖 and CAV 𝑖 െ 𝑚 

(Zhou et al., 2019), which hinders CAV 𝑖 from driving smoothly. To alleviate this issue, we firstly fuse 

the nearest downstream CAV (i.e., CAV 𝑖 െ 𝑚)’ s state information to ‘actively’ anticipate its relatively 

smooth and stable driving behavior for more efficient control. Furthermore, directly modeling or 

predicting each HDV’s stochastic behavior between CAV 𝑖 and CAV 𝑖 െ 𝑚 is very challenging. To this 

end, we characterize the consecutive HDVs as a whole ‘large’ HDV (i.e., AHDV) and utilize its 

macroscopic traffic features to attenuate stochasticity, thus enhancing CAV 𝑖’ s driving behavior. As 

presented in Fig. 5-2(b), we neglect each HDV’s microscopic driving behavior between the preceding 

HDV (i.e., HDV 𝑖 െ 1) and CAV 𝑖 െ 𝑚 and define this ‘CAV-HDVs-CAV’ pattern as a novel car-

following structure ‘CAV 𝑖 → AHDV → CAV 𝑖 െ 𝑚.’ In this way, CAV 𝑖 receives the real-time state 

information of its preceding HDV 𝑖 െ 1 and the nearest downstream CAV 𝑖 െ 𝑚 to generate the fused 

DRL state 𝒔𝒊
𝒕  for the DRL-based control. It should be noted that if CAV  𝑖 െ 𝑚  is out of the 

communication range (i.e., 𝑚 ൐ 𝐾), CAV 𝑖 only receives the information of HDV 𝑖 െ 1 for control. 

The proposed distributed control scheme is downgraded to the ‘decentralized control’, which will be 

explained in Section 5.3.2 with details.    
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Fig. 5-2. The mixed local downstream environment: (a) characterized as ‘CAV-HDVs-CAV’ 

pattern; (b) “three-vehicle” car-following structure 

5.1.3 State Fusion Formulation 

A generic state fusion strategy is designed based on the equilibrium concept to regulate each CAV close 

to the pre-defined equilibrium state and meanwhile effectively stabilize traffic oscillations. The 

equilibrium concept from the modern control theory defines the equilibrium state (equilibrium point) 

for a dynamical system, which represents a state where the system can stabilize after being affected by 

external disturbances or forces (Absil & Kurdyka, 2006). A system will remain at the (stable) 

equilibrium state once reached, given the perturbation and inputs are small enough. 

In longitudinal car-following control, the equilibrium state represents the desired ideal vehicle state (i.e., 

equilibrium spacing and speed) during driving for each car following pair, which avoids arbitrary 

variation of the inter-vehicle spacing for control. Incorporating the equilibrium concept in DRL 

provides the exploration direction in DRL training to help develop a robust control policy and gives the 

base for analyzing vehicle string stability and car following control efficiency. Based on the concept, 

this subsection derives the DRL state 𝒔𝒊
𝒕 as the weighted deviation from the equilibrium spacing Δ𝑑௜ 

௧  

and the weighted deviation from the equilibrium speed Δ𝑣௜ 
௧  regarding its downstream vehicles HDV 𝑖 െ

1 and CAV 𝑖 െ 𝑚. Four parameters are predefined to fuse the DRL state, including the equilibrium 

spacing 𝑑௜,௜ିଵ
∗௧  and equilibrium speed 𝑣௜,௜ିଵ

∗௧  regarding HDV 𝑖 െ 1; the equilibrium spacing 𝑑௜,௜ି௠
∗௧  and 

equilibrium speed 𝑣௜,௜ି௠
∗௧  regarding CAV 𝑖 െ 𝑚. The following content describes the derivations of the 

DRL state.  

Local Equilibrium  

The derivation of the DRL state starts with the local equilibrium state. The local equilibrium state for 

each CAV car following pair follows the constant time gap (CTG) policy from the Society of 

Automotive Engineer Standard (SAE), which regulates the CAV to set the same speed as its preceding 

vehicle and maintain the preset equilibrium spacing, defined as below: 
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𝑑௜,௜ିଵ
∗௧ ൌ 𝑣௜

௧𝜏௜
∗ ൅ 𝑙௜ ,                                                                                                                   (5-5a) 

𝑣௜,௜ିଵ
∗௧ ൌ 𝑣௜ିଵ

௧ ,                                                                                                                          (5-5b) 

where 𝑣௜
௧ denotes CAV 𝑖’s real-time velocity at timestep 𝑡; 𝜏௜

∗ and 𝑙௜ are the constant time gap and the 

standstill spacing between CAV 𝑖 and vehicle 𝑖 െ 1, respectively. The two equations above define the 

local equilibrium for a car following pair.  

Multi-agent Equilibrium  

Furthermore, to consider the impact of multiple vehicles in the local downstream environment, Equation 

(5-5a) and Equation (5-5b) are expanded to a distributed multi-agent version, whose equilibrium 

spacing 𝑑௜,௜ି௠
∗௧  and speed 𝑣௜,௜ି௠ 

∗௧  between CAV 𝑖 and any downstream vehicle 𝑖 െ 𝑚 is specified as 

Equation (5-6a) and Equation (5-6b): 

𝑑௜,௜ି௠
∗௧ ൌ 𝑣௜

௧𝑇௜,௜ି௠
∗ ൅ 𝐿௜,௜ି௠,                                                                                                   (5-6a) 

𝑣௜,௜ି௠ 
∗௧ ൌ 𝑣௜ି௠

௧ .                                                                                                                       (5-6b) 

𝑇௜,௜ି௠
∗  and 𝐿௜,௜ି௠ denote the equilibrium time gap and standstill spacing between CAV 𝑖 and CAV 𝑖 െ

𝑚. The two terms regulate CAV 𝑖’s desired microscopic driving behavior considering its downstream 

vehicles, which will be explained with mathematical details later. To facilitate the system-optimal 

consensus of the vehicular platoon, we measure and embed the actual spacing and speed deviations 

from the equilibrium between CAV 𝑖 and CAV 𝑖 െ 𝑚 into the DRL framework, which is specified as: 

Δ𝑑௜,௜ି௠
௧ ൌ 𝑑௜,௜ି௠

௧ െ 𝑑௜,௜ି௠
∗௧ ,                                                                                                  (5-7a) 

Δ𝑣௜,௜ି௠
௧ ൌ 𝑣௜ି௠

௧ െ 𝑣௜
௧ ,                                                                                                          (5-7b) 

Based on Equation (5-7), the equilibrium deviations for multiple downstream vehicles can be 

determined for the state fusion.  

Estimation from Newell’s Car-following Model 
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The remaining problem lies in calculating the equilibrium spacing 𝑑௜,௜ି௠
∗௧  in Equation (5-6a), which 

needs to specify the corresponding time gap 𝑇௜,௜ି௠
∗  and the standstill spacing 𝐿௜,௜ି௠. Specifically, for 

the defined ‘CAV-AHDV-CAV’ structure, the equilibrium spacing regarding HDV 𝑖 െ 1 (i.e., 𝑑௜,௜ିଵ
∗௧ ) 

and CAV 𝑖 െ 𝑚 (i.e., 𝑑௜,௜ି௠
∗௧ ) needs to be configured. Regarding HDV 𝑖 െ 1, 𝑑௜,௜ିଵ

∗௧  is directly given in 

Equation (5-5). Based on that, the deviation from equilibrium spacing is specified as Δ𝑑௜,௜ିଵ
௧ ൌ

𝑑௜,௜ିଵ
௧ െ 𝑑௜,௜ିଵ

∗௧ . Regarding CAV 𝑖 െ 𝑚, the equilibrium time gap 𝑇௜,௜ି௠
∗ , standstill spacing 𝐿௜,௜ି௠, and 

equilibrium spacing 𝑑௜,௜ି௠
∗௧  are defined as follows based on the three-vehicle following scheme ‘CAV 

𝑖 → HDV 𝑖 െ 1 → CAV 𝑖 െ 𝑚’: 

𝑇௜,௜ି௠
∗ ൌ 𝜏௜

∗  ൅  𝑇௜ିଵ,௜ି௠
∗௧ ,                                                                                                           (5-8a) 

𝐿௜,௜ି௠ ൌ 𝑙௜ ൅ 𝐿௜ିଵ,௜ି௠
௧ ,                                                                                                             (5-8b) 

𝑑௜,௜ି௠
∗௧ ൌ 𝑣௜ሺ𝜏௜

∗  ൅  𝑇௜ିଵ,௜ି௠
∗௧ ሻ ൅ ൫𝑙௜ ൅ 𝐿௜ିଵ,௜ି௠

௧ ൯,                                                                      (5-8c) 

where 𝑇௜ିଵ,௜ି௠
∗௧  and 𝐿௜ିଵ,௜ି௠

௧  represent the time-varying time gap and spacing between HDV 𝑖 െ 1 and 

CAV 𝑖 െ 𝑚, respectively. Considering the aggregated HDVs in-between, 𝑇௜ିଵ,௜ି௠
∗  can be denoted as: 

𝑇௜ିଵ,௜ି௠
∗௧ ൌ ∑ 𝜏௜ି௝

∗௧௠ିଵ
௝ୀଵ ,                                                                                                                (5-9) 

where 𝜏௜ି௝
∗௧  denotes the time gap between HDV 𝑖 െ 𝑗 and its preceding vehicle. Since HDV has inherent 

stochastic nature with great diversities, 𝜏௜ି௝
∗௧  is time-varying and follows varied distributions for 

different HDVs. Moreover, 𝜏௜ି௝
∗௧  is unmeasurable due to the lack of communication capability of HDVs, 

making it challenging to determine 𝑇௜ିଵ,௜ି௠
∗௧ . Compared with a single HDV’s microscopic behavior, the 

aggregated HDV driving behaviors exhibit macroscopic traffic flow properties, which show less 

stochasticity. Thus, rather than measuring 𝜏௜ି௝
∗௧  individually, the aggregated HDV driving 

characteristics can be better captured by the macroscopic traffic features to address stochasticity, as 

indicated by the philosophy of central limit theorem (CLT) (Kwak & Kim, 2017). Though 𝑚 may not 

be sufficiently large to apply CLT, the aggregation treatment of multiple HDVs brought promises to 
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capture HDVs features. Moreover, we leave the remaining uncertainties by embedding the field-

measured HDV trajectories in the DRL training process. 

Precisely, the two time-varying terms 𝑇௜ିଵ,௜ି௠
∗௧  and 𝐿௜ିଵ,௜ି௠

௧  need to be real-time estimated in the state 

fusion process to capture the macroscopic features. The schematic diagram for the real-time estimation 

is presented in Fig. 5-3(c). Newell’s car following model (Newell, 2002), which bridges the 

fundamental diagram and microscopic driving behavior features, and meanwhile efficiently models the 

kinematic oscillation waves (Richards, 2013), is adopted after modification, by allowing the two time-

varying terms 𝑇௜ିଵ,௜ି௠
∗௧  and 𝐿௜ିଵ,௜ି௠

௧  to be time-variant and real-time estimated. Rather than directly 

modeling the microscopic driving behaviors of any CAV or HDV, the time-varying version of Newell’s 

car-following model describes the aggregated HDVs’ (AHDV’s) driving behavior to capture its 

exhibited macroscopic traffic features in real-time.  

Fig. 5-3(a) and Fig. 5-3(b) demonstrates the principle of Newell’s car-following model. From the 

microscopic perspective, Newell’s car-following model gives a linear speed-spacing relationship in 

congested traffic flow for the following vehicle 𝑖, which assumes the follower reproduces the preceding 

leader’s trajectory with a time-space displacement (𝜏, 𝑙): 

𝑑௜ ൌ 𝑣𝜏 ൅ 𝑙,                                                                                                                               (5-10) 

where 𝑣 is the vehicle speed; 𝑑௜  is the spacing; 𝜏 represents the time shift for vehicle 𝑖 to match its 

leader’s speed; 𝑙  denotes the displacement of the speed change point. Moreover, from a macro 

perspective, the Newell’s car following model models the kinematic wave with a triangular fundamental 

diagram, in which the parameters 𝜏 and 𝑙 represent macroscopic traffic features to describe traffic wave 

speed 𝑤 and jam density 𝑘:  

𝑤 ൌ
ଵ

ఛ௞
,                                                                                                                                 (5-11a) 

𝑘 ൌ  
ଵ

௟
ൌ  

ଵ

௪ఛ
,                                                                                                                        (5-11b) 
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Fig. 5-3. Model schematic diagram: (a) Newell’s car following model; (b) Speed-spacing 

relationship; (c) Real-time estimation diagram of the time-varying time-gap 𝑻𝒊ି𝟏,𝒊ି𝒎
∗𝒕  and spacing 

𝑳𝒊ି𝟏,𝒊ି𝒎
𝒕  

where 𝜏  denotes the wave propagating time between two consecutive vehicles; 𝑙  indicates the jam 

spacing. Based on Equation (5-10) and Equation (5-11), 𝜏 and 𝑙 are two key terms for modeling the car-

following behavior and simultaneously capturing the macroscopic features. Furthermore, for the vehicle 

following structure ‘CAV-AHDV-CAV’ described above, the time gap 𝑇௜ିଵ,௜ି௠
∗௧  and spacing 𝐿௜ିଵ,௜ି௠

௧  

can be interpreted as Newell’s parameters 𝜏 and 𝑙 in the car following pair ‘HDV 𝑖 െ 1 → CAV 𝑖 െ 𝑚’, 
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which anticipates the relatively smooth behavior of CAV 𝑖 െ 𝑚 and incorporates macroscopic features 

of the aggregated HDVs. Specifically, Equation (12) is proposed to real-time estimate 𝑇௜ିଵ,௜ି௠
∗௧  and 

𝐿௜ିଵ,௜ି௠
௧  based on the integration form of Equation (10) and Equation (11): 

𝑇௜ିଵ,௜ି௠
∗௧ ൌ

஽೔షభ,೔ష೘
೟

௪ା௩೔షభ
೟ ,                                                                                                               (5-12a) 

𝐿௜ିଵ,௜ି௠
௧ ൌ 𝑤𝑇௜ିଵ,௜ି௠

∗௧ ,                                                                                                         (5-12b) 

where 𝑣௜ିଵ
௧  is the speed of HDV 𝑖 െ 1 at timestep 𝑡; 𝐷௜ିଵ,௜ି௠

௧  is the actual spacing between HDV 𝑖 െ 1 

and CAV 𝑖 െ 𝑚 ; 𝑤  denotes the average kinematic wave speed, which is a pre-calibrated value 

determined by the road infrastructure’s features and configuration. Since 𝑤 plays an important role in 

the method, applications of our methods should regularly measure and update the 𝑤 value. There are 

methods available for 𝑤  measurement, including direct measurement w using wavelet transform 

(Zheng et al., 2011; Zheng & Washington, 2012), or indirect estimation by first estimating the 

fundamental diagram to derive 𝑤 per Li et al., (2022). We set 𝑤 to 16 𝑘𝑚/ℎ due to the generalized 

settings in studies using Next Generation Simulation (NGSIM) data collected on eastbound I-80 with 

an on-ramp at Powell Street (e.g., Laval & Leclercq, 2010; Duret et al., 2011; Chen et al., 2012).  

In addition, it should be noted that 𝑇௜ିଵ,௜ି௠
∗௧  and 𝐿௜ିଵ,௜ି௠

௧  are not derived from the steady-state spacing 

defined in Chen et al. (2012). We use the actual spacing 𝐷௜ିଵ,௜ି௠
௧  to approximate the steady-state 

spacing for real-time estimation, which better anticipates the actual disturbances from downstream (e.g., 

sudden change in spacing) and thus achieves adaptive control performances. Moreover, the estimation 

method for 𝑇௜ିଵ,௜ି௠
∗௧  and 𝐿௜ିଵ,௜ି௠

௧  are only suitable for heavily congested traffic conditions, where the 

traffic oscillations are continuously propagated upstream.  

DRL State Fusion 

Based on the estimated time-varying gap 𝑇௜ିଵ,௜ି௠
∗௧  and spacing 𝐿௜ିଵ,௜ି௠

௧  in Equation (5-12), the 

equilibrium spacing 𝑑௜,௜ି௠
∗௧  between CAV  𝑖  and CAV  𝑖 െ 𝑚  in Equation (5-8c) can be real-time 
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determined. Thus, the deviation between actual spacing and equilibrium spacing is defined as 

Δ𝑑௜,௜ି௠
௧ ൌ 𝑑௜,௜ି௠

௧ െ 𝑑௜,௜ି௠
∗௧ . To better regulate the CAVs close to the equilibrium and reduce the DRL 

state dimension for greater training performance, the DRL state 𝒔𝒊
𝒕 = [Δ𝑑௜ 

௧ , Δ𝑣௜ 
௧] is generated by fusing 

the weighted equilibrium deviations of 𝐻𝐷𝑉 𝑖 െ 1 and 𝐶𝐴𝑉 𝑖 െ 𝑚: 

Δ𝑑௜ 
௧ ൌ

௤೔షభఎ೔,೔షభ
೟ ୼ௗ೔,೔షభ

೟ ା௤೔ష೘ఎ೔,೔ష೘
೟ ୼ௗ೔,೔ష೘

೟

௤೔షభఎ೔,೔షభ
೟ ା ௤೔ష೘ఎ೔,೔ష೘

೟ ,                                                                                (5-13a) 

Δ𝑣௜ 
௧ ൌ

௤೔షభఎ೔,೔షభ
೟ ୼௩೔,೔షభ

೟ ା௤೔ష೘ఎ೔,೔ష೘
೟ ୼௩೔,೔ష೘

೟

௤೔షభఎ೔,೔షభ
೟ ା ௤೔ష೘ఎ೔,೔ష೘

೟ ,                                                                                 (5-13b) 

where weights 𝑞௜ିଵ and 𝑞௜ି௠ represent the information importance for HDV 𝑖 െ 1 and CAV 𝑖 െ 𝑚, 

respectively. The coefficient for the two components is computed based on the function 𝑞௜ି௝ ൌ

ቐ

ଵ

ଶ
, 𝑗 ൌ 1

ଵ

ଶ
, 𝑗 ൌ 𝑚

. The sum of all the weights should be equal to 1 without loss of generality. Since the 

information of both the two components is critical, we make it decay with 1/2 order to give equal weight 

to the two components based on the above function. Despite the equal weight settings in this study, the 

weights can be adjusted to balance the impact of the two components. The impact of both components 

can be summarized as follows. The preceding HDV 𝑖 െ 1’s information is necessary due to safety 

concerns. The information 𝛥𝑑௜,௜ିଵ
௧  and 𝛥𝑣௜,௜ିଵ

௧  from HDV 𝑖 െ 1 should always be incorporated into the 

fused DRL state to enhance safety. In particular, it regulates the local equilibrium spacing deviation 

∆𝑑௜,௜ିଵ
௧ → 0 and relative speed ∆𝑣௜,௜ିଵ

௧ → 0, which significantly lowers the driving risks as manifested 

by safety surrogate measures such as time-to-collision (TTC) (Jiménez et al., 2013). On the other hand, 

the information from CAV 𝑖 െ 𝑚 is the key part of the state fusion process, which anticipates the 

relatively smooth driving behaviors from CAV𝑖 െ 𝑚 and alleviates the HDVs’ stochasticity to facilitate 

control performances.  

For a better understanding, the above-proposed estimation method and state fusion process can be 

interpreted in this way. The controlled CAV 𝑖 adapts its car-following strategy according to the state of 

its actual immediate preceding vehicle HDV 𝑖 െ 1 and the state of the fictive vehicle (i.e., AHDV) in 
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front of the controlled CAV. To refine the effective position of the fictive vehicle, the Newell-based 

methodology is introduced to estimate the traffic state and propagate the current state of the leader 

CAV 𝑖 െ 𝑚 through a set of HDV vehicles. Specifically, the time-varying terms 𝑇௜ିଵ,௜ି௠
∗௧  and 𝐿௜ିଵ,௜ି௠

௧ , 

which are real-time estimated from Newell’s model, determine the position of the fictive vehicle. 

Adopting the interpretation makes the introduced method similar to Multi-Anticipative ACC car-

following rules (Lin et al., 2012; Wang et al., 2014a, 2014b). Rather than defining a fictive vehicle like 

in MA-ACC rules only based on perception and communication sensors, which provide information 

regarding the immediate leader HDV 𝑖 െ 1 and the CAV leader CAV 𝑖 െ 𝑚, the introduced method 

refines the approach by making use of the Newell’s car-following model to capture the macroscopic 

traffic features between the two leaders. 

From the equilibrium concept perspective, the control design maintains the CAV in the pre-defined 

equilibrium state, considering its preceding HDV and the nearest downstream CAV. The equilibrium 

state with the preceding HDV (i.e., 𝑑௜,௜ିଵ
∗௧ , 𝑣௜ିଵ

௧ ) ensures local stability (Willems and Polderman, 2013), 

representing the capability to remain in a car-following pair of equilibrium under disturbances. The 

equilibrium state with the nearest downstream CAV (i.e., 𝑑௜,௜ି௠
∗௧ , 𝑣௜ି௠

௧ ) incorporates the relatively 

stable driving motion of the downstream CAV and the macroscopic traffic features of aggregated HDVs, 

which further enhances the car-following performances. Moreover, this control design is generic since 

it is suitable for diversified compositions of the mixed local downstream environment.  

Extension to the full CAV environment 

It should be noted that the local communication range can be a pure connected automated environment, 

in which consecutive downstream vehicles are CAVs (i.e., CAV-CAVs patten), as presented in Fig. 5-

4.  The above generic state fusion approach can also be applied to this full CAV condition, whose 

control design is to achieve a platoon-level consensus by fusing received information from all the 

aggregated CAVs (i.e., 𝑚 CAVs, 1 ൑ 𝑚 ൑ 𝐾) as the DRL state 𝒔𝒕
𝒊  for control (Shi et al., 2022). The 

methodology and detailed results are discussed in Section 4. Specifically, the fusion process follows 
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the same formulations from Equation (5-5) to Equation (5-7) to calculate the equilibrium speed 

deviation Δ𝑣௜,௜ି௠
௧  and spacing deviation Δ𝑑௜,௜ି௠

௧  between 𝐶𝐴𝑉 𝑖 and 𝐶𝐴𝑉 𝑖 െ 𝑚. Due to the full CAV 

environment, the equilibrium time gap 𝑇௜,௜ି௠
∗  and equilibrium standstill spacing 𝐿௜,௜ି௠ in Equation (5-

6) can be directly defined in a multi-agent version, which means 𝑇௜,௜ି௠
∗ ൌ 𝑚𝜏௜

∗; 𝐿௜,௜ି௠ ൌ 𝑚𝑙௜. Similar 

to Equation (5-13), the fused DRL state 𝒔𝒊
𝒕  = [Δ𝑑௜ 

௧ , Δ𝑣௜ 
௧ ] incorporates the weighted equilibrium 

deviations for the 𝑚 aggregated CAVs to anticipate the disturbances induced downstream and thus 

achieve great system-level consensus:  

Δ𝑑௜ 
௧ ൌ

௤೔షభఎ೔,೔షభ
೟ ୼ௗ೔,೔షభ

೟ ା௤೔షమఎ೔,೔షమ
೟ ୼ௗ೔,೔షమ

೟ ା⋯ା௤೔షೖఎ೔,೔ష೘
೟ ୼ௗ೔,೔ష೘

೟

௤೔షభఎ೔,೔షభ
೟ ା ௤೔షమఎ೔,೔షమ

೟ ା⋯௤೔ష೘ఎ೔,೔ష೘
೟ ,                                                    (5-14a) 

Δ𝑣௜ 
௧ ൌ  

௤೔షభఎ೔,೔షభ
೟ ୼௩೔,೔షభ

೟ ା௤೔షమఎ೔,೔షమ
೟ ୼௩೔,೔షమ

೟ ା⋯ା௤೔షೖఎ೔,೔ష೘
೟ ୼௩೔,೔ష೘

೟

௤೔షభఎ೔,೔షభ
೟ ା ௪೔షమఎ೔,೔షమ

೟ ା⋯௤೔షೖఎ೔,೔ష೘
೟ ,                                                    (5-14b) 

where the coefficient 𝑞௜ି௝ ൌ ቐ

ଵ

ଶೕ
, 1 ൑ 𝑗 ൑ 𝑚 െ 1

ଵ

ଶೕషభ
, 𝑗 ൌ 𝑚

 represents that the closer CAV is assigned with 

greater power on the control decision.    

 

Fig. 5-4. Scenario extended to the full CAV downstream environment 

5.2 Development of DRL-based Controller 

Based on the defined control scheme in Section 5.1, this section develops the DRL-based controller. 

We discuss the detailed DRL scheme (Section 5.2.1), the adopted DRL algorithm (Section 5.2.2), and 

the training process (Section 5.2.3). The simulation experiments, including training and evaluation, are 

performed via Python. TensorFlow package is used to build the DRL algorithm. Pyomo package is 
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applied to develop the MPC-based controller for performance comparison in the experimental part 

(Section 5.3).  

5.2.1 DRL Scheme and Formulation 

The basis of DRL is Markov Decision Process (MDP), in which the DRL agent (i.e., CAV controller) 

and environment (given in Section 5.1) interact with each other based on four basic elements: state, 

action, policy, and reward (s, a, 𝝅, r). As discussed in the previous section, state s represents the fused 

state information, which contains the weighted deviations of spacing Δ𝑑௜ 
௧  and speed Δ𝑣௜ 

௧ , denoted as 𝒔𝒊
𝒕 

= [Δ𝑑௜ 
௧ , Δ𝑣௜ 

௧]. The DRL agent receives 𝒔𝒊
𝒕 at each timestep and outputs the action a (i.e., the control 

signal 𝑢௜
௧) based on the policy 𝝅 to regulate CAV 𝑖’s longitudinal movements. As an implicit function 

that assigns the action probability for each state, policy 𝝅ሺ𝒂|𝒔ሻ needs to be updated to achieve optimal 

control performance through the training process.  

The reward r determines the control objectives. In our design, the objectives of the car following control 

efficiency, which aims to maintain CAV in the pre-defined equilibrium state, and driving comfort, 

which pursues a smoother driving behavior with greater eco-driving performance, are incorporated in 

the DRL framework. In particular, the cost of the car following control efficiency 𝑐௜
௧ is defined as the 

quadratic form of deviation from the equilibrium state, which is a common control design in modern 

control theories such as Linear Quadratic Regulator (LQR) and MPC. This design facilitates stability 

analysis, as manifested by numerous control papers (e.g., Fisher & Bhattacharya, 2009; Zhou et al., 

2019b). Specifically, the quadratic cost 𝑐௜
௧ is defined as: 

𝑐௜
௧ ൌ  ሺ𝒔𝒊

𝒕ሻ்𝑄௜𝒔𝒊
𝒕,                                                                                                                   (5-15) 

where 𝑄௜ ൌ ቈ
𝛼ଵ,௜

𝛼ଶ,௜
቉ is a positive definite diagonal coefficient matrix with weights 𝛼ଵ,௜ ൐ 0 and 

𝛼ଶ,௜ ൐ 0.  
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Further, the driving comfort cost 𝑔௜
௧ suggested by (Wang et al., 2014) is defined in Equation (5-16), 

which alleviates the acceleration to improve the eco-driving performance and empirical string stability 

(i.e., acceleration energy) (Shi et al., 2021; Feng et al., 2019):  

𝑔௜
௧ ൌ 𝛼ଷ,௜൫𝑎௜

௧൯
ଶ

,                                                                                                                        (5-16) 

where 𝛼ଷ,௜ denotes the weight for driving comfort. It should be noted that both the two costs regarding 

the car following control efficiency cost 𝑐௜
௧ and driving comfort cost 𝑔௜

௧ are unitless. The weight’s unit 

is the reciprocal of its valuable unit. Thus, each weight of 𝛼ଵ,௜, 𝛼ଶ,௜, and 𝛼ଷ,௜ offsets the units of its 

variables, making the whole cost unitless.  

Combining the two control objectives above, the running cost 𝑒௜
௧ of CAV 𝑖 at timestep 𝑡 is defined as 

the sum of the car following efficiency cost 𝑐௜
௧ and driving comfort cost 𝑔௜

௧: 

𝑒௜
௧ ൌ 𝑐௜

௧ ൅  𝑔௜
௧ .                                                                                                                         (5-17) 

Since the quadratic running cost 𝑒௜
௧  is similar to the cost function in the constrained optimization 

framework, and the training environment is similar to the state space as Zhou et al. (2019b), the 

coefficients setting (𝛼ଵ,௜, 𝛼ଶ,௜, 𝛼ଷ,௜) is set to be same as Zhou et al. (2019b) to improve the string stability 

performance further. Though it is prohibitive to conduct mathematical string stability as Zhou et al. 

(2019b), due to the intrinsic complexity of DRL, we envision the setting coefficients in the same fashion 

as is helpful to enhance the string stability by the similarities mentioned above.  

Based on the above systematic cost design, we convert the running cost 𝑒௜
௧ as the immediate reward 𝑟௜

௧ 

using the exponential function, as shown in Equation 5-18, which calculates the reward value as 

feedback for the control action at each timestep. The exponential equation serves the following two 

purposes. First, the reward value needs to be maximized in the DRL framework, whose optimization 

direction is opposite to the cost function of optimal control. Using the exponential function changes the 

optimization direction from minimization to maximization. Second, the above exponential function 
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plays a normalization function, normalizing the immediate reward 𝑟௜
௧ within the boundary [0, 1] and 

further enhancing the training performance.  

𝑟௜
௧ ൌ exp൫െ𝑒௜

௧൯.                                                                                                                       (5-18) 

The above exponential function also normalizes the immediate reward 𝑟௜
௧ within the boundary [0, 1] to 

enhance the training performance. With the reward value, an infinite-horizon optimal control problem 

is formulated for maximizing the discounted cumulative rewards to find the optimal control policy 𝜋∗: 

𝜋∗ ൌ arg max
గ

∑ 𝛶௠ஶ
௠ ୀ ଴ 𝑟௜

௧ା௠,                                                                                                     (5-19) 

where 𝛶 is the discount factor. 

5.2.2 Policy Update Algorithm 

The DRL solves the optimization problem in Equation (5-19) by continuously updating policy 𝜋 in 

training. The choice of DRL algorithm for the CAV control is based on the following aspects: (i) the 

action space (discrete/continuous); and (ii) the algorithm performance. The algorithm should support 

continuous action space for the instance of the microscopic CAV control with great sampling efficiency 

and converging performances. The Distributed Proximal Policy Optimization (DPPO) algorithm (Heess 

et al., 2017), one of the Actor-Critic DRL algorithms, is adopted for policy updating in training. The 

Actor-Critic DRL algorithm combines the merits of Policy-Based RL and Value-Based RL algorithms, 

which performs faster than traditional RL algorithms and supports continuous action space in the 

training process. Based on its merits, the Actor-Critic framework is widely used in the most popular 

reinforcement learning algorithms, such as the A3C algorithm (Mnih et al., 2016), DDPG algorithm 

(Lillicrap et al., 2016), and PPO (DPPO) algorithm (Heess et al., 2017). In this study, we adopted the 

DPPO algorithm to update policy due to its great balance between sampling efficiency, implementation 

simplicity, and converging performance (Schulman et al., 2017). Compared with traditional policy 

gradient RL algorithms, the DPPO algorithm makes policy gradient less sensitive to a large step and 

improves the convergence of policy updates by clipping the divergence of the strategy update. Besides, 
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the DPPO algorithm updates the policy of the global agent in parallel through multiple parallel agents, 

which further improves training efficiency.  

The Distributed Proximal Policy Optimization (DPPO) algorithm (Heess et al., 2017) is adopted for 

policy updating due to its great balance between sampling efficiency, implementation simplicity, and 

converging performance. The DPPO algorithm is a typical Actor-Critic DRL algorithm, with objective 

𝐿஼௅ூ௉ሺ𝜃ሻ updating in the actor network and critic loss 𝐿௖ሺ𝛷ሻ updating in the critic network. The overall 

actor-network framework with network structures is presented in Fig. 5-5. The detailed hyperparameters 

settings are demonstrated in Table 5-1. The number of neurons for the actor network (200) and critic 

network (100) is tuned by experiences to achieve the desired performances without causing underfitting 

and overfitting issues. Since the actor network learns a more complex policy function that maps the 

DRL state to a probability distribution over all actions, thus setting with more neurons in this study 

(Grondman et al., 2012). 

 

Fig. 5-5. The actor-critic structure of the policy iteration algorithm 
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Table 5-1. Hyper parameters of the DPPO algorithm 

Hyperparameter Value 

clipping value 𝜀 0.2 

minibatch 𝑇 256 

discount factor 𝛶 0.99 

Hidden layer of actor 1 

Hidden layer of critic 1 

actor network neurons 200 

critic network neurons  100 

parallel worker numbers 4 

actor learning rate 0.00001 

critic learning rate 0.00001 

 

Actor Network 

The actor network determines the policy 𝜋 with parameter 𝜃. It receives the DRL state 𝒔𝒊
𝒕 as the input 

and outputs a probability distribution over actions. The control signal 𝑢௜
௧  is then sampled from the 

distribution. For the network structure, there is one hidden layer with 200 neurons, and the ReLu 

function is adopted as the activation function for the output. The actor network is updated by 

maximizing the objective function 𝐿஼௅ூ௉ሺ𝜃ሻ: 

𝐿஼௅ூ௉ሺ𝜃ሻ ൌ  𝐸෠௧ሾmin൫𝑝௧ሺ𝜃ሻ𝐴መ௧ , 𝑐𝑙𝑖𝑝ሺ𝑝௧ሺ𝜃ሻ, 1 െ 𝜀, 1 ൅ 𝜀ሻ𝐴መ௧൧,                                              (5-20) 

where 𝑝௧ሺ𝜃ሻ ൌ  
గഇሺ௔೟|𝐬𝐭ሻ

గഇ೚೗೏ሺ௔೟|𝐬𝐭ሻ
 identifies the probability ratio of the new policy 𝜋ఏሺ𝑎௧|𝐬𝐭ሻ and old policy 

𝜋௢௟ௗሺ𝑎௧|𝐬𝐭ሻ. The clipping function 𝑐𝑙𝑖𝑝ሺ𝑝௧ሺ𝜃ሻ, 1 െ 𝜀, 1 ൅ 𝜀ሻ  function restricts 𝑝௧ሺ𝜃ሻ  between 1 െ 𝜀 

and 1 ൅ 𝜀 to limit the update range of new policy, making the policy gradient less sensitive to the step 

size and improving the convergence. Ɛ is the clipping parameter. 𝐴መ௧ is the estimated advantage at state 

𝑠௜
௧, which is provided from the critic network: 
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𝐴መ௧  ൌ  𝑅௧ െ 𝑉ఃሺ𝒔𝒊
𝒕ሻ,                                                                                                                (5-21) 

where 𝑉ఃሺ𝒔𝒊
𝒕ሻ is the value estimated from the critic network; 𝑅௧ denotes the discounted sum of rewards 

in T steps at state 𝑠௜
௧:  

𝑅௧ ൌ ∑ 𝛾௠𝑟௜
௧ା௠ ൅்ିଵ

௠ୀ଴ 𝛾்𝑉ః൫𝒔𝒊
𝒕ା𝑻൯,                                                                                      (5-22) 

where 𝑇  is the minibatch size; 𝑟௜
௧ା௠  is the immediate reward defined in Equation (5-18); 𝛾  is the 

discount factor. Therefore, the parameter 𝜃 of the actor network is updated based on the gradient of 

𝐿஼௅ூ௉ሺ𝜃ሻ with learning rate 𝛼ఏ: 

𝜃 ൌ  𝜃 െ  𝛼ఏ∇𝐿஼௅ூ௉ሺ𝜃ሻ.                                                                                                           (5-23) 

Critic Network 

On the other hand, the critic network with parameter 𝛷 evaluates the decision 𝑢௜
௧ output by the actor 

network. The critic network receives the DRL state 𝒔𝒊
𝒕 as the input and outputs the estimated state value 

𝑉ఃሺ𝒔𝒊
𝒕ሻ. For the network structure, there is one hidden layer with 100 neurons, and the ReLu function is 

used as the activation function for the output. The critic network is updated by minimizing the critic 

loss function 𝐿௖ሺ𝛷ሻ: 

𝐿௖ሺ𝛷ሻ ൌ  𝐸෠௧ሺ𝑉ఃሺ𝒔𝒊
𝒕ሻ െ 𝑅௧ሻଶ,                                                                                                    (5-24) 

where Temporal Differences (TD) error 𝛿௧ is denoted as 𝛿௧ ൌ 𝑉ఃሺ𝒔𝒊
𝒕ሻ െ 𝑅௧ in the loss function. The TD 

error 𝛿௧ estimates the advantage value 𝐴መ௧ in actor since 𝛿௧ ൌ െ𝐴መ௧. Thus, the parameter 𝛷 is iteratively 

optimized based on the gradient ∇𝐿௖ሺ𝛷ሻ with learning rate 𝛼ః: 𝛷 ൌ 𝛷 െ  𝛼ః∇𝐿௖ሺ𝛷ሻ.  

5.2.3 Procedure and Results   

Based on the proposed DRL scheme (given in Section 5.2.1) and the adopted policy updating algorithm 

(given in Section 5.2.2), this section describes the detailed training procedure in which the DPPO agent 

continuously interacts with the simulation environment. The DPPO agent consists of one global agent 

for the actor-critic network updating and multiple parallel agents interacting with their independent 
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simulation environments for data collecting (e.g., state, action, reward), which further improves the 

sampling efficiency and training speed. The detailed training process is demonstrated in Fig. 5-6. At 

timestep 𝑡 , each parallel agent receives the CAV 𝑖 ’s state 𝒔𝒊
𝒕  of its corresponding simulation 

environment and outputs the control signal 𝑢௜
௧ to update the longitudinal movement based on the current 

policy 𝜋ሺ𝑎|𝑠ሻ. Concurrently, the collecting data, including the calculated reward 𝑟௜
௧, state 𝒔𝒊

𝒕, and action 

𝑢௜
௧ , is sent to the memory buffer for storage. The update of the policy and actor-critic network is 

triggered after a certain batch of data is stored in the memory buffer. 

 

Fig. 5-6. The schematic diagram of training framework 

Regarding the training environment settings, ten sets of five-vehicle ground-truth vehicular platoon 

trajectories with a time length of 334 timesteps from NGSIM datasets are embedded for the initial 

configuration. For each training episode, one of the ten platoon trajectories is randomly sampled and 

assigned for the trajectories of the leading vehicle CAV 𝑖 െ 𝑚 and the following aggregated HDVs. Fig. 

5-7 below shows details of one platoon trajectory. The platoon trajectories that incorporate typical 

phases of acceleration, deceleration, and uniform speed are embedded in the training process for the 

DRL control model to better capture stochastic driving characteristics. It should be noted that the 

proposed “CAV-AHDV-CAV” structure is a generic unit in the mixed traffic flow, whose leading 

CAV’s driving behavior could be varied and even stochastic due to the impact of the downstream traffic. 
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Thus, rather than setting a deterministic leading CAV, using NGSM data to represent the stochastic 

leading vehicle behavior should be rational. 

 

Fig. 5-7. Trajectories of the vehicular platoon in the training process regarding (a) acceleration; (b) 

position; (c) spacing; and (d) time gap (𝒈𝒊
𝒕/𝒗𝒊

𝒕 ) 

Specifically, the number of HDVs 𝑛 ሺ1 ൑ 𝑛 ൑ 𝐾 െ 1ሻ between the two CAVs is randomly sampled in 

the simulation environment at each training episode to enhance the generalized capability for different 

topologies. Based on sampled topology, the trajectories of the leading CAV 𝑖 െ 𝑚 and following HDVs 

are assigned from the above NGSIM platoon data. Taking an example of the topology ‘CAV-three 

HDVs-CAV’, the NGSIM leader trajectory and three follower trajectories are assigned to CAV 𝑖 െ 𝑚 

and three HDVs. For the controlled CAV 𝑖, it starts with the initial equilibrium state defined in Section 

5.1 and is then controlled by the DRL learning agent without the loss of generality.  
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For the scenario where the local downstream environment is pure connected and automated (i.e., full 

CAVs), only the trajectory of the leading vehicle is from the NGSIM dataset, and the corresponding 

DRL-based models control the other downstream CAVs.  

Training results are represented by the moving reward trajectory (Qu et al., 2020) demonstrated in Fig. 

5-8. For the mixed (heterogeneous) traffic environment (Fig. 5-8(a)), the training platoon trajectories 

and number of HDVs are randomly sampled, which leads to a varied mixed environment. Thus, the 

rewards fluctuate in the converging area. On the other hand, the full CAV downstream environment 

leads to more stable reward trajectories, as presented in Fig. 5-8(b). In general, the rewards for both 

cases monotonically increase until convergence, indicating good converging performance. 

 

                                         (a)                                                               (b) 

Fig. 5-8. The moving reward trajectory results for mixed traffic environment (a) and homogeneous 

traffic environment (b) 

5.3 Simulation Experiments 

5.3.1 Experiment Settings 

After developing the DRL-based control models, we conduct several numerical experiments to evaluate 

the control approach using NGSIM datasets of I-80 in California. To remove the noises and handle the 

missing data, we reconstruct the datasets using a low-pass filter proposed by (Punzo et al., 2011) and 
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(Montanino & Punzo, 2015). The trajectories in Lane 2 from 4:00 pm to 4:15 pm are selected for 

experiments and analysis due to the frequent traffic congestions and oscillations and the fewer lane-

changing maneuvers. The default experimental setting is shown in Table 5-2.  

Table 5-2 Default parameters for the experimental setting 

Parameters Value 

number of local downstream vehicles 𝐾 5 

update interval ∆𝑡 0.1 s 

vehicle length 𝑙௩ 4.6 𝑚 

standstill spacing 𝑙௜ 6.4 𝑚 

constant time gap 𝜏௜
∗ 1 s 

SINR threshold 𝛽 0.01 

control demand ratio 𝐾௜,௅ 1 

actuation time lag 𝐼௜,௅ 0.1 

noise term 𝑁ሺ𝜇,𝜎ଶሻ 𝑁ሺ0, 0.1ሻ 

𝛼ଵ,௜, 𝛼ଶ,௜, 𝛼ଷ,௜ 1ሺ
1
𝑚ଶሻ , 0.5ሺ

𝑠ଶ

𝑚ଶሻ, 0.5ሺ
𝑠ସ

𝑚ଶሻ 

ሾ𝑎௜,௠௜௡, 𝑎௜,௠௔௫ሿ [-4 𝑚/sଶ , 4 𝑚/sଶ] 

free flow speed 𝑣௙ 33.3 𝑚/𝑠 (120 𝑘𝑚/ℎ) 

wave speed 𝑤 4.4 m/𝑠 (16 𝑘𝑚/ℎ) 

 

The simulation experiments can be divided into three parts: (i) model performance analysis; (ii) 

application of the proposed model in a long vehicular platoon with different CAV penetration rates; (iii) 

generalization capability validation. Based on these experiments, the effectiveness, robustness, and 

generalization of the proposed control strategy are analyzed comprehensively. For the simulated 

platoons in these experiments, the leader’s trajectory is picked from NGSIM datasets or the customized 

trajectory profile to reproduce traffic disturbances. The initial states of followers start with the pre-
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defined equilibrium states or start with the ground-truth NGSIM data. With the leader profile and 

followers’ initial states, the vehicular platoon trajectory can be simulated based on the proposed model 

or other compared methods. 

Evaluation Metrics 

There are several performance indicators for quantitatively evaluating the control performance: 

cumulative dampening ratio 𝑑௣,௜ , local stability measured by ∆𝑑௜,௜ିଵ
௧  and ∆𝑣௜ିଵ

௧ , driving comfort 𝑔௜
௧ 

(given in Equation (5-16)), and average velocity 𝑣̅௜. The cumulative dampening ratio 𝑑௣,௜ quantifies the 

empirical string stability, an important property that measures the capability of the CAV controller in 

dampening traffic oscillations. The traffic oscillation magnitude is reduced or remains the same as it 

goes through a string stable CAV. Specifically, the 𝑙ଶ-norm acceleration dampening ratio 𝑑௣,௜ (Ploeg et 

al., 2014) is specified as: 

𝑑௣,௜ ൌ
ฮ௔೔
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ሻ
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,                                                                                                      (5-25) 

where 𝑁 denotes the time length; 𝑖 is the vehicle index. Index 0 represents the leader of the whole 

vehicular platoon. The smaller dampening ratio 𝑑௣,௜ indicates that the disturbances are dampened to a 

greater extent, leading to a more string stable driving behavior. The local stability is another important 

property of CAV longitudinal control, denoting a vehicle’s ability to remain in the equilibrium state 

with its immediate preceding vehicle (Willems and Polderman, 2013). The deviations from equilibrium 

spacing ∆𝑑௜,௜ିଵ
௧  and equilibrium speed ∆𝑣௜ିଵ

௧  regarding vehicle 𝑖 െ 1  are the indicators for local 

stability. Great local stability with low equilibrium deviations indirectly guarantees driving safety since 

it leads to large time-to-collision (TTC) (Minderhoud & Bovy, 2001). The average velocity 𝑣̅௜ refers to 

the mean velocity of all timesteps (𝑣̅௜ ൌ
∑ ௩೔

೟ಿ
೟సబ

ே
).  

HDV Modeling Method 
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Furthermore, the precise modeling of HDV driving behavior in the mixed traffic simulation contributes 

to a more realistic simulation environment and convincing results. This study uses a calibrated 

Intelligent Driver Model (IDM) (Kesting & Treiber, 2008; Treiber et al., 2000), which can be 

representative of HDV’s string instability property, to model the HDV behaviors in the experiments. 

The IDM parameters are calibrated by (Kesting & Treiber, 2008) using ground-truth datasets of HDV 

behaviors. The calibrated datasets show complex situations of daily city traffic with several 

accelerations, decelerations, or standstill periods, which is quite similar to the adopted NGSIM datasets 

for experiments. Therefore, the calibrated IDM model can be applied in the experiments of this study. 

The calibrated parameters are presented in Table 5-3.  

Table 5-3 Calibrated Parameters of IDM 

Variable Parameter Values 

𝑉଴ Desired velocity 33.3 m/s 

T Safe time headway 1.12s 

a Maximum acceleration 1.23 m/s2 

b Comfortable Deceleration 3.2 m/s2 

sigma Acceleration exponent 4 

𝑆଴ Minimum distance 2.3 m 

 

5.3.2 Control Performance Evaluation 

For the first part of the experiments, this section analyzes the performance of the proposed distributed 

control strategy. The proposed distributed control performance is analyzed in the mixed local 

environment compared with the following state-of-art CAV controllers as comparisons: 

 Decentralized DRL-based controller. The decentralized controller, also developed by the 

DRL, downgrades the CAV to the autonomous vehicle (AV) that can only receive its immediate 

preceding vehicle’s information through onboard sensors. The decentralized DRL control 
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model is developed using the same methodology (i.e., same reward design and training data) 

given in Section 5.2. The only difference lies in that the decentralized DRL state is defined as 

the local equilibrium deviations regarding the immediate preceding vehicle (i.e., 𝒔𝒊
𝒕 ൌ ሾΔ𝑑௜,௜ିଵ

௧ ,

Δ𝑣௜,௜ିଵ
௧ ሿ).  

 Linear-based CACC controller. The compared linear-based CACC controller (Zhou et al., 

2019) is based on the constant time gap (CTG) policy, which has been proved to have excellent 

traffic oscillation dampening performances and guaranteed string stability performance.   

 MPC-based CACC controller. The compared MPC-based CACC controller (Wang et al., 

2016) has explicit constraints of velocity and acceleration to meet restrictions of the vehicle 

kinematics. The cost function is designed to achieve control efficiency and driving comfort 

criteria. Similarly, the CTG policy is incorporated into the control model to enhance the 

empirical string stability performances.    

The simulated mixed platoon follows a topology 𝑇௣ ൌ ሼ1′, 0, 1, 0, 0, 1, 0, 0, 0, 1ሽ, where 1′ represents 

the leading CAV of the platoon with its trajectory from the NGSIM dataset; 0 denotes the simulated 

HDV follower; 1 denotes the simulated CAV follower. Each follower starts with the pre-defined 

equilibrium state. This topology provides the typically mixed traffic local environment, in which driving 

behaviors of CAV 2, CAV 5, and CAV 9 are determined by the proposed distributed control approach. 

The mixed platoons generated from the decentralized control and linear-based CACC strategy follow 

the same topology. 

Fig. 5-9 presents the position, velocity, and acceleration trajectory results under DRL-based distributed 

control (Fig. 5-9(a)) and DRL-based decentralized control (Fig. 5-9(b)). The leading CAV’s trajectory 

(black trajectory) shows frequent acceleration-deceleration waves and a short standstill period. For the 

mixed platoon under the decentralized control strategy (Fig. 5-9(b)), the HDV tends to amplify the 

traffic oscillations due to the long reaction time, aggravating the traffic jam. Compared with HDVs, the 

decentralized CAVs are more responsive to their leaders with smaller spacing, showing efficient car-
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following behaviors. However, the decentralized CAVs only slightly dampen the traffic disturbances 

since they are separated and distributed in the mixed platoon. The decentralized CAV makes the control 

decision only based on its preceding HDV, whose driving behavior is negatively affected by the 

propagated traffic disturbances. Thus, the decentralized CAV is hard to diminish the disturbances in 

this mixed traffic scenario.  

On the other hand, the distributed CAVs, as presented in Fig. 5-9(a), also demonstrate responsive 

driving behaviors with smaller spacings compared with the HDVs. Moreover, the distributed CAV can 

dampen the traffic oscillation significantly, showing great string stability. The reason is that the 

downstream CAV’s driving state and macroscopic traffic flow property of the aggregated HDVs are 

conveyed into the DRL control framework, which enhances the car following performance and better 

optimizes the entire mixed traffic flow. Fig. 5-9(c) gives the velocity portfolio of the linear-based CACC 

controller and MPC-based CACC controller. Compared with these two approaches, the distributed 

DRL-based control can alleviate the propagated oscillations to a more significant extent. The 

performance of these approaches can be differentiated around the inflection point of the acceleration-

deceleration process (e.g., timestep 280, timestep 320). The underlying reason is that the DRL can better 

capture leading HDV characteristics and stochasticity with the proposed ‘CAV-AHDV-CAV’ structure 

and ground truth training dataset. Whereas Zhou et al. (2019a) focused on the frequency predominant 

range, Wang et al. (2016) focused on the formation and propagation of moving jams, which may lose 

some nuanced characteristics of leading HDV behaviors.     
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Fig. 5-9. The position, velocity and acceleration trajectory results comparison: (a) distributed 

control; (b) decentralized control; (c) MPC-based CACC and Linear-based CACC velocity 

trajectories 

The quantified performance indicators of the nine followers from the distributed control, decentralized 

control, and CACC strategy are shown in Fig. 5-10, respectively, in which we focus on each vehicle’s 

average performance. In general, the mixed platoon under distributed control framework greatly 

outperforms the decentralized control-based mixed platoon in terms of string stability and driving 

comfort. The performance of the linear-based CACC strategy is more akin to the proposed distributed 

DRL-based approach, while it scarifies certain performances in velocity. Particularly, the three 
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distributed CAVs (CAV 2, CAV 5, and CAV 9) differentiate their performances from other strategies, 

in which the most upstream CAV 9 has the greatest advantage. This indicates that the more HDVs 

between the controlled CAV and the downstream CAV, the distributed control can better dampen traffic 

oscillations and have higher advantages than other strategies. Specifically, compared with the 

decentralized CAV 9, the distributed CAV 9 can reduce a 20.23% dampening ratio, 36.38% driving 

comfort cost, and increase by 0.52% average velocity. Regarding the local stability, Fig. 5-11 

demonstrates the trajectories of equilibrium spacing ∆𝑑௜,௜ିଵ
௧  and equilibrium speed ∆𝑣௜,௜ିଵ

௧  of vehicle 

𝑖 െ 1. The equilibrium deviations of the CAVs are within a relatively small range (i.e., -2.5 𝑚/𝑠 to 0.8 

𝑚/𝑠  for ∆𝑣௜ିଵ
௧ ; െ1.6 𝑚  to 2.4 𝑚  for ∆𝑑௜,௜ିଵ

௧ ), which indicates that local stability is achieved 

empirically.  

 

Fig. 5-10. The detailed performance indicators of the distributed control, decentralized control, 

linear-based CACC, and MPC-based CACC 
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Fig. 5-11. The spacing equilibrium deviation ∆𝒅𝒊,𝒊ି𝟏
𝒕  and speed equilibrium deviation ∆𝒗𝒊,𝒊ି𝟏

𝒕  

trajectories (equilibrium deviation with the preceding vehicle) 

Evaluation under the Extreme Scenario 

Furthermore, we conduct an experiment under an extreme traffic scenario to validate the robustness of 

the proposed controller. The vehicular platoon topology has the same topology as the previous 

experiment, while the leading vehicle profile is customized with one rapid deceleration-stall-

acceleration cycle (െ2.4 𝑚/𝑠ଶ → 0 𝑓𝑡/𝑠ଶ → 1.5 𝑚/𝑠ଶ ) traffic oscillation. Fig. 5-12(a) gives the  

position, velocity, and acceleration for the proposed DRL-based controller, and Fig 5-12 (b) shows the 

velocity for the other three compared approaches. Similarly, the aggregated HDVs amplify traffic 

oscillations while the distributed CAVs greatly dampen traffic oscillations with stability-wise 

performances. The quantified results of indicators are presented in Fig. 5-13, which shows the proposed 

DRL-based control has manifest advantages over other approaches regarding string stability and driving 

comfort.   
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(a) 

 

(b) 

Fig. 5-12. The position, velocity and acceleration trajectory results under the extreme scenario: (a) 

Distributed DRL-based controller; (b) Velocity trajectories of decentralized CAV, MPC-based 

CACC, and linear-based CACC 
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Fig. 5-13. The detailed performance indicators of the distributed control, decentralized control, 

linear-based CACC, and MPC-based CACC under the extreme scenarios 

Evaluation under Communication Failure  

Although we assume the communication quality within the communication range should be stable (i.e., 

communication rarely fails), the communication loss could happen at a certain period when the 

communication distance is relatively far (e.g., four aggregated HDVs in between CAV 𝑖 and CAV 𝑖 െ

𝑚 ). If communication failures between CAV 𝑖  and CAV  𝑖 െ 𝑚  happen, the IFT status 𝜂௜,௜ି௠
௧  (in 

Equation 5-14) frequently switches between 0 and 1, which makes the DRL state 𝐬𝒊
𝒕 fluctuate. This will 

lead to high-jerk accelerations since the DRL policy directly maps the DRL state to the control action, 

as presented in Fig. 5-14(a). Considering the issue, we adopted the ‘dynamic information fusion 

mechanism’ proposed by (Shi et al., 2022) to reduce the adverse impact caused by communication 

losses. The ‘dynamic information fusion mechanism’ adjusted the IFT status 𝜂௜,௜ି௠
௧  during 

communication failures to smooth the acceleration signal, alleviating the high-jerk DRL control issue.  
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The experiments are conducted to evaluate the control performances under communication failure, as 

presented in Fig. 5-14. The communication failure happens during 500 to 550 timesteps, where the IFT 

status 𝜂௜,௜ି௠
௧  between the receiver CAV 9 and transmitter CAV 5 switches frequently (Fig. 5-14(a)). 

With the adopted dynamic information fusion mechanism, the acceleration trajectory suddenly changes 

when communication failure happens and then performs smoothly without high jerks (Fig. 5-12b). The 

quantified results for indicators are presented in Fig. 5-14(c). Similar to the previous experiments, the 

proposed DRL-based control outperforms other approaches in oscillation dampening and driving 

comfort performances.     

 

(a)                                    (b)                                                       (c)    

Fig. 5-14. The performance comparison under communication failure: (a) trajectory under 

communication failure (b) trajectory under communication failure with adjusted IFT by ‘dynamic 

information fusion mechanism’; (c) performance indicator comparison under communication failure 

Evaluation with different IDM model parameter settings  

The adopted IDM model only reproduces one HDV driving pattern. To evaluate the CAV controller 

considering different HDV driving patterns, we further conducted an experiment using the IDM model 

with three sets of parameters calibrated based on the NGSIM datasets (Jiang et al., 2023). The trajectory 
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and indicator results are illustrated in Fig. 5-15. The performances using different IDM models show a 

similar tendency of control performances, illustrating that the distributed CAV can markedly dampen 

traffic disturbances in the mixed traffic flow regarding different HDV driving patterns.  

 

(a) 

 

(b) 

Fig. 5-15. Performance evaluation results using different calibrated IDM models: (a) trajectory 

results; (b) indicator results 

Evaluation using ground-truth AV trajectory  
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The previous experiments use ground-truth NGSIM data (i.e., HDV trajectory) as the leading vehicle 

trajectory for evaluation. Furthermore, we evaluate our model using two ground-truth AV trajectories 

adopted from (Li et al., 2022) as the platoon leader trajectory, with results presented in Fig. 5-16 below. 

As suggested by the results, each CAV in the platoon can greatly stabilize the propagated traffic 

oscillations, suggesting similar control performances as the previous experiments.  

 

                               (a)                                           (b)                                                 (c) 

Fig. 5-16. Two cases of AV ground-truth trajectories as the platoon leading trajectory for control 

performance evaluation: (a) case 1; (b) case 2; (c) indicator performance 

5.3.3 Mixed Platoon with Different Penetration Rates 

To further visually demonstrate the dampening performance of the proposed control strategy, we 

utilized the strategy to control CAVs in a 50-follower mixed platoon with different penetration rates 

(0%, 20%, 40%, 60%, 80%, 100%), where the CAVs are randomly sampled and distributed in the mixed 

traffic. The platoon leader experienced two typical deceleration-acceleration maneuvers. The followers 

start with the pre-defined equilibrium states. For results, Fig. 5-17 illustrates the mixed platoon's 

velocity and acceleration heat map, and the platoon trajectories under three typical penetration rates 

(0%, 60%, 100%) are demonstrated in Fig. 5-18. Generally, the traffic oscillations are dampened 

gradually with the increasing CAV penetration rate. When the followers are all HDVs (i.e., %0 CAV), 

the disturbances are propagated and amplified towards the end, seriously impairing the entire traffic 
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flow. Furthermore, the oscillations are undermined to a large extent when the CAV penetration rate 

reaches 60%, where the upstream vehicles are much less affected by the dampened disturbances. Finally, 

the disturbances are quickly dissipated in the 100% CAV penetration rate, and the downstream CAVs 

can promptly recover from the disturbances, showing the controller’s strong robustness and resilience. 

Therefore, the distributed CAV control strategy can effectively stabilize traffic oscillations and 

significantly improve the entire traffic flow. 

 

Fig. 5-17. Velocity and acceleration heat map of mixed platoon with different penetration rates 
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Fig. 5-18. Trajectories of velocity and acceleration under 0% (Fig. 5-18 (a)) , 60% (Fig. 5-18 (b)), 

and 100% (Fig. 5-18 (c)) penetration rates. (For illustration, only 

𝒗𝒆𝒉𝒊𝒄𝒍𝒆 𝟓,𝒗𝒆𝒉𝒊𝒄𝒍𝒆 𝟏𝟎,𝒗𝒆𝒉𝒊𝒄𝒍𝒆 𝟏𝟓…𝒗𝒆𝒉𝒊𝒄𝒍𝒆 𝟓𝟎 are plotted for 0% and 100% penetration rates) 

5.3.4 Generalization Capability Validation 

After evaluating the model performance, the generalization capability is validated in this section. 

Statistical validation in mixed traffic 

First, we use 150 NGSIM ground-truth trajectories excluded from training set, which is with a time 

length of over 50 seconds, to validate the statistical robustness of the proposed model’s control 

performances. The experiment is configured with a 15-follower mixed platoon with different 

penetration rates (0%, 20%, 40%, 60%, 80%, 100%), where CAVs are randomly distributed in the 

mixed traffic. Each ground-truth trajectory of the 150 NGSIM datasets is assigned as the platoon 

leader’s trajectory for each penetration rate, which means there are 150 simulated vehicular platoons 

for each penetration rate. The followers start with the initial equilibrium state and are then simulated by 

the corresponding control models (IDM for HDVs and DRL model for CAVs).  
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For each simulated platoon in the experiment, we first average the performance indicators of the 15 

followers to represent the performance of the whole platoon. Then for each penetration rate, the mean 

indicator performance value over the 150 platoons is calculated, representing the generalized 

performance of the penetration rate. The results are demonstrated in Fig. 5-19, which illustrates that the 

traffic flow performance in terms of travel efficiency, string stability, and driving comfort is improved 

monotonically with the increasing CAV penetration rate. Specifically, compared with the HDV platoon, 

the platoon with a 100% CAV penetration rate reduces a 38.54% dampening ratio, 55.74% driving 

comfort cost, and increases 5.16% travel efficiency, respectively. These generalized results further 

validate the generalization capability of the proposed control strategy. To focus on the detailed 

performance of each vehicle in the platoon, we directly average the indicator performance for each 

vehicle over the 150 platoons under different CAV penetration rates, as illustrated in Fig. 5-20. As the 

CAV penetration rate increases, the traffic disturbances are dampened to a greater extent through the 

platoon, which optimizes the entire mixed traffic flow. 

 

Fig. 5-19. The generalized statistical results of the mixed platoon with different penetration rates 
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Fig. 5-20. The generalized indicator results of each vehicle in the mixed platoon under different 

penetration rates 

Cases for irregular initial condition 

The initial condition (e.g., initial velocity, acceleration, spacing) of a vehicular platoon has a great 

impact on the CAV controller (Li et al., 2016; Gao et al., 2019). Irregular initial conditions normally 

impair the control performances. To further validate the generalization capability, different NGSIM 

datasets are assigned for both the leader trajectory and the follower’s initial states. The vehicular platoon 

has a topology {0, 1, 0, 0, 0, 1}, where ‘0’ represents the HDV, and ‘1’ represents the CAV. The results 

are presented in Fig. 5-21. Like the previous experiments, the DRL-based distributed CAV has 

responsive driving behaviors with great oscillation dampening performances even under the various 

initial conditions. With the equilibrium-based control philosophy, the CAV can quickly recover to the 

equilibrium state from the large initial spacing (Fig. 5-21 (c), (e)) or small initial spacing (Fig. 5-21 (b), 

(d)) and maintain close to the equilibrium, which stabilizes the traffic flow and alleviates the adverse 

impact brought by HDVs’ stochasticity. The results validate the great robustness and resilience of the 

proposed controller.  
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Fig. 5-21. The generalized mixed platoon trajectories with initial states from ground-truth NGSIM data 

Generalization capability comparison with other approaches 

Finally, multiple ground-truth trajectories from NGSIM datasets are used to further statistically validate 

the advantage of the proposed DRL-based controller over other compared control methods. The 

experiments comprise two parts, including (i) equilibrium initial condition and (ii) random initial 

condition. For each vehicular platoon in the experiments, the first part follows the same experiment 

configuration in Section 5.3.3, and the second part follows the same experiment configuration of ‘Cases 

for Random Initial Condition’ in Section 5.3.4. Specifically for each vehicular platoon, a superiority 
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percentage P is defined to quantify the advantage of the proposed DRL-based method over other control 

approaches: 

  𝑃 ൌ
௉ூ೚ି௉ூ೏
௉ூ೚

∗ 100%,                                                                                                               (26) 

where 𝑃𝐼௢  and 𝑃𝐼ௗ  represent the CAV’s performance indicator value of the compared control 

approaches (𝑃𝐼௢) and the proposed DRL-based control approach (𝑃𝐼ௗ), respectively. Then, the average 

superiority percentage 𝑃෨ over multiple vehicular platoons is calculated as the final result.  

For the first experiment, whose vehicular topology is 𝑇௣ ൌ ሼ1, 0, 1, 0, 0, 1, 0, 0, 0, 1ሽ, we focus on the 

performance of CAV 2, CAV 5, and CAV 9 in the platoon. The average superiority percentage 𝑃෨ is 

calculated over the 150 vehicular platoons with different NGSIM leading trajectories (i.e., same NGSIM 

data in Section 5.3.4). The results are presented in Fig. 5-22. As can be found in the Figure, the proposed 

control method markedly outperforms other control approaches regarding oscillation dampening and 

driving comfort. Moreover, the more HDVs between the controlled CAV and the immediate CAV 

downstream, the proposed DRL-based control shows higher advantages than other approaches. With 

more HDVs and a longer distance between the two CAVs, the proposed control can better capture the 

stochastic characteristics of the aggregated HDVs joint driving behaviors and stabilize traffic 

disturbances to a greater extent.  

 

                             (a)                                                (b)                                                   (c) 
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Fig. 5-22. Generalization capability comparisons for different CAVs in the mixed platoon (CAV 2 

with one downstream HDVs (a); CAV 5 with two downstream HDVs (b); CAV 9 with three 

downstream CAVs (c); 0 line represents the performance of the proposed approach) 

For the second experiment, whose vehicular topology is 𝑇௣ ൌ ሼ0, 1, 0, 0, 0, 1ሽ , we focus on the 

performance of CAV 5, which is the last CAV in the platoon. The average superiority percentage 𝑃෨ is 

calculated over thirty vehicular platoons with different NGSIM leading trajectories over 500 timesteps 

and irregular initial conditions for followers. The average superiority percentage 𝑃෨ is shown in Fig. 5-

23. The MPC-based controller does not perform well in this case since the optimized control policy is 

more sensitive to the initial state. A large initial spacing may lead to a relatively aggressive control 

policy, which increases acceleration energy. Similarly, the proposed control method performs better in 

every aspect than other compared approaches for the cases with irregular initialized conditions.  

 

Fig. 5-23. Generalization capability comparisons with irregular initial states (i.e., CAV 5 in the 

mixed platoon; 0 line represents the performance of the proposed approach) 

5.4 Comparison of Mixed Platoon with Different Combinations 

Although the proposed control strategy's performance has been validated in the mixed connected 

automated traffic environment, HDVs and CAVs are only combined randomly in previous experiments. 
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However, the combination of CAVs and HDVs can make a significant impact on traffic flow. To 

evaluate the impact of combinations on mixed traffic flow, four combinations of followers (random 

combination, specific combination, CAV first, HDV first) are analyzed and compared. The ‘Random 

Combination’ means CAVs are randomly sampled with a certain penetration rate in the platoon. The 

‘Specific Combination’ means CAVs are evenly distributed in the platoon. 'CAV First' combination 

and 'HDV First' combination mean all CAVs in front of HDVs and all HDVs in front of CAVs, 

respectively. Platoon 𝑇௣ (except for the leader) with a specific combination for different penetration 

rates ƞ is defined as follows: 

𝑇௣ሬሬሬሬ⃗ ൌ  ቐ
ሺ 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, … … , 1,1,1,1,0 ሻ,𝑤ℎ𝑒𝑛  ƞ ൌ  20%

ሺ1, 0, 1, 0, … … ,1,0ሻ,𝑤ℎ𝑒𝑛 ƞ ൌ 50%
ሺ1, 0, 0, 0, 0, 1, 0, 0, 0, 0, … … ,1, 0, 0, 0, 0ሻ,𝑤ℎ𝑒𝑛 ƞ ൌ 80%

 (28) 

where ƞ represents penetration rate; 1 represents HDV; 0 denotes CAV. In this experiment, we mainly 

focused on a non-cyclic traffic oscillation. The experiment is conducted with a leading vehicle trajectory 

incorporating one deceleration-acceleration cycle (-8 ft/s2 - 6 ft/s2) disturbance with a short period of 

standstill (2 seconds). The number of followers is set to 50 to enhance the diversity of the combinations. 

Fig. 5-24 demonstrates the detailed results. It is cleared that the platoon with all CAVs in front of HDVs 

outperforms the platoon with other combinations in all aspects (travel efficiency, string stability, energy 

efficiency) no matter what penetration rate. In contrast, platoon with all HDVs preceding CAVs takes 

the worst case. Results of "specific combination" and "random combination" show similar performance 

because HDVs and CAVs are scattered in the mixed platoon for both combinations. The results suggest 

that clustering leading CAVs can better optimize the entire mixed platoon's traffic flow because 

oscillations are dampened before they reach HDV followers. Thus, the behaviors of HDVs are 

optimized to the greatest extent, which mitigates the negative impact of oscillations. In contrast, if 

HDVs are in front of CAVs, oscillations from the platoon leader are amplified towards upstream, which 

makes it harder for CAVs to dampen them. Thus, the "HDV first" combination takes the worst case. 
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(a) 20% Penetration Rate 

 

(b) 50% Penetration Rate 
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(c) 80% Penetration Rate 

Fig. 5-24. Comparison of detailed indicators of each vehicle in mixed platoon with different 

combinations 

The entire platoon's average performance under different combinations further validates the conclusion, 

shown in Fig. 5-25. To generalize the results of “random combination,” an average of 25 experiments 

was adopted for analysis. In addition, the Wilcoxon signed-rank test was conducted for each 

performance indicator to denote the significant level, with Table 5-4 below showing the p-value of the 

comparison between “random combination” and “specific combination.” As shown in Fig. 5-25, there 

is a great difference between the two extreme combinations ("CAV First" and "HDV First"), while 

"specific combination" and "random combination" show similar performance. From the statistics point 

of view, most of the p-value in Table 5-4 is greater than 0.05, demonstrating that the performance 

difference between “random combination” and “specific combination” is not significant. By contrast, 

the p-value of other comparisons is less than E-08, validating the significant difference. Particularly, 

the "CAV First" combination improves 5.77% and 11.91% in travel efficiency and energy efficiency 
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compared with the 'HDV First' combination when the CAV penetration rate reaches 50%. Thus, CAVs 

can be guided to lead the mixed platoon with lane-changing maneuvers, which optimizes traffic flow to 

the greatest extent.   

Table 5-4 P-value of Wilcoxon signed-rank test between “random combination” and “specific 

combination” 

     Penetration Rate 

PI 

20% 32% 50% 66% 80% 

Average Velocity 0.076 0.467 0.467 2.429E-08 2.429E-08 

Minimum Velocity 0.090 1.333 0.290 0.0290 0.225 

Energy Consumption 0.090 0.029 3.738E-05 0.0896 0.225 

 

Fig. 5-25. Comparison of detailed results of mixed platoon with different combinations 

5.5 Conclusion 

This research proposes a DRL-based distributed CAV longitudinal control strategy for mixed traffic of 

CAVs and HDVs. In this generic distributed control framework, each CAV receives the fused real-time 

information of vehicles in the local downstream environment for longitudinal control. To generalize the 
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diversified downstream topologies, any mixed local downstream environment is categorized as the 

CAV-HDVs-CAV pattern, which consists of a nearest downstream CAV followed by aggregated HDVs. 

For this local heterogeneous environment, we construct a novel vehicle-following structure ‘CAV-

AHDV-CAV’ based on Newell’s car-following model to capture the macroscopic traffic properties of 

the aggregated HDVs and embed them into the control framework. This approach efficiently attenuates 

the HDVs’ stochasticity and enhances the car-following performances. With the philosophy, a novel 

DRL state fusion strategy based on the equilibrium concept is proposed to regulate each CAV close to 

the pre-defined equilibrium state and greatly stabilize traffic oscillations. For model development, 

NGSIM datasets are embedded in training to better incorporate the preceding vehicles’ stochastic 

characteristics into control. The DPPO algorithm is adopted to enhance the convergence of control 

policy updated in the training process.  

A series of simulated experiments are conducted with NGSIM datasets. The proposed strategy’s control 

performance is evaluated regarding empirical string stability, travel efficiency, and driving comfort. 

Numerical results indicate that the proposed distributed control strategy can significantly dampen the 

traffic oscillation and outperform the decentralized strategy and linear-based CACC strategy in every 

aspect. Then, the dampening performance of the proposed control strategy is intuitively demonstrated 

in a 50-follower mixed platoon with different penetration rates, showing its strong robustness and 

resilience. Finally, the generalization capability of the proposed strategy is validated.  

This study still has several limitations. The first point lies in that the proposed control method focuses 

on heavily congested traffic conditions, while it is not suitable for free flow conditions. Besides, this 

study does not consider the communication delay, which may lead to an over-optimistic performance. 

Moreover, the study only considers the longitudinal car-following movement, which is relatively 

limited for applications in more complex scenarios (e.g., lane-changing movement). Some future work 

can be conducted based on the research. For instance, the vehicle dynamics can be built more complex 

considering the internal vehicle components (e.g., pedal, steering wheel, brake). Moreover, lateral 
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movement can be incorporated into the control framework to reproduce more complex traffic scenarios, 

such as lane-changing, merging, or diverging behaviors.  
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6 CONCLUSIONS 

6.1 Summary of Chapters 

Chapter 1 introduces the background of CAV control, mixed traffic environment, and the issues of 

traffic oscillations. This Chapter gives the identified gaps, research objectives and scope of work, 

research contributions, and organization of the dissertation. 

Chapter 2 reviews relative literatures of CAV control approaches, the DRL algorithms, V2V 

communications, and equilibrium and consensus concepts. This Chapter summarized the pros and cons 

of current CAV longitudinal control approaches regarding linear-based controller, MPC-based 

controller, and DRL-based controller.   

Chapter 3 discusses the current major challenges for CAV control in the mixed traffic flow, and 

introduces the general philosophy of the proposed CAV control strategy in the mixed traffic. To 

accommodate any possible CAV-HDV platoon configuration, we categorize the local downstream 

environment into two broad traffic scenarios based on the composition of CAVs and HDVs, and 

designed a generic DRL-based control framework for the two scenarios. The details control design for 

the two scenarios are discussed in Chapter 4 and Chapter 5, respectively. 

Chapter 4 presents a DRL-based generic distributed CAV longitudinal control approach in a relatively 

realistic communication environment. To better capture stochastic characteristics of the preceding 

vehicles and communication loss, we embed the NGSIM datasets and the SINR based dynamic 

communication mechanism into the training framework. Each CAV in the framework receives its 

downstream CAVs’ fused information as the DRL state for real-time control. The fused DRL state and 

reward function are specially designed to incorporate the merits of the equilibrium concept and 

consensus concept, which maintains CAVs around the predefined equilibrium point and achieves the 

system-level consensus to better dampen traffic oscillations. A dynamic information fusion mechanism 

is proposed to smooth the fluctuated DRL state and the high-jerk control signal caused by the dynamic 

communication loss. The simulated experiments validated the performances of the proposed controller. 
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Chapter 5 proposes presents a novel distributed longitudinal control strategy for connected automated 

vehicles (CAVs) in mixed traffic environments with human-driven vehicles (HDVs), utilizing high-

dimensional platoon information. Traditional CAV control methods, which focus on microscopic 

trajectory information, struggle to address HDV stochasticity and mixed traffic heterogeneities 

efficiently. Our approach, for the first time, treats consecutive HDVs as a single entity (AHDV) to 

reduce stochasticity and leverages macroscopic features for controlling following CAVs. The new 

strategy anticipates disturbances and traffic features in mixed traffic scenarios, significantly 

outperforming traditional methods. The control algorithm employs deep reinforcement learning (DRL) 

to enhance car-following efficiency and addresses aggregated car-following behavior stochasticity by 

incorporating it into the training environment. Mixed traffic platoons are categorized as CAV-HDVs-

CAV patterns, with macroscopic traffic properties based on the Newell car-following model to capture 

aggregated HDVs' joint behaviors. Simulation experiments validate the proposed strategy, 

demonstrating its superior performance in oscillation dampening, eco-driving, and generalization 

capability. 

6.2 Limitation And Future Works  

Some future studies can be investigated based on current results. The CAV lateral control can be 

incorporated in the control framework for merging, diverging or lane-changing maneuvers. In addition, 

other dynamic or validated communication models (Kim et al., 2017; Wang et al., 2019) or topologies 

(e.g., relay communication topology, V2I, V2C) can be embedded in the framework to conduct 

extended experiments. The dynamic communication delay can be considered to make the control 

framework more realistic. Moreover, the complex mixed traffic flow properties can be further studies 

and optimized based on this study by extending the control framework.  

Furthermore, we can incorporate the prediction process (i.e., predicting the behavior of the surrounding 

vehicles) into the control framework to achieve more efficient control performance. The prediction 

process using advanced supervised machine learning algorithms (Ahmadlou & Adeli, 2010; Alam et 
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al., 2020; Pereira et al., 2020; Rafiei & Adeli, 2017) are considered as the extension based on the current 

control framework. 
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