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Abstract

This thesis presents a detailed analysis of vapor bubble dynamics and the interfacial process

of liquid-vapor phase change. A spherically symmetric model for single vapor bubble is

employed to present a numerical and theoretical analysis of the intermediate bubble collapse,

where in contrast to the thermally induced or inertia dominated collapse, both the effects

of liquid-vapor interfacial heat transfer and the advection of the surrounding liquid play an

important role. The contrast in thermal, intermediate, and inertial behavior of collapse is

represented in the form of a regime map defined by two non-dimensional quantities, Bsat and

ξ, which can be directly evaluated from the initial system conditions of collapse.

The same model is also used to simulate a spherically symmetric bubble growth configu-

ration to assess the physical validity of a constant interface temperature assumption made by

Highly-Resolved Simulation (HRS) studies aimed at solving flows undergoing phase change.

Results show that HRS predictions are inaccurate during the initial period of bubble growth,

which coincides with the inertial growth stage. A closed-form expression for a threshold time

is derived, beyond which the commonly employed HRS assumptions hold.

Forgoing the limitation of spherical symmetry, the second theme of this thesis is on the

development of a general two-phase flow solver that can handle the phase change process.

Under a finite volume framework using a geometric Volume of Fluid (gVoF) approach, two

key challenges with phase change flows have been addressed in this work, namely, (i) added

deformation of the interface, and (ii) capture of velocity and pressure gradient discontinuity

at the interface, both caused due to phase change. To track the interface in the gVoF scheme,

an effective flux is defined that captures the effect of phase change on interface motion. This
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method improves upon the source term approach used in other studies. For the solution of

velocity, and pressure, a ghost fluid approach has been implemented, which is the first of its

kind in a VoF-based phase change solver.
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Chapter 1

Introduction

Bubble dynamics refers to the motion of an enclosed gas-filled entity present inside a liquid

phase. Gas inside the bubble can be the vapor phase of the liquid that surrounds the bubble

or a non-condensable gas, like air in water. The focus of this study is on the former, pure

vapor bubbles. Such bubbles are oftentimes a point of interest in the context of boiling [4–

7] or cavitation [8–11] phenomenon. Boiling refers to the process of vapor formation that

occurs when liquid is heated beyond its saturation temperature (or boiling point); while

cavitation is a term used for vapor formation due to sudden decrease in local pressure below

its saturation value (de-pressurization) at the local temperature [12]. These phenomenon are

important for several applications [13], such as,

• for heat and mass transfer processes [14, 15] in the power, electronics, and chemical

industries,

• in dispersion processes [16, 17] in petroleum industry and atmospheric processes, and

• in surface erosion [18] processes for medical applications and in naval industry.
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With such a wide range of applications, understanding the physics of bubbles has remained

an active field of research in the past century.

Early research on vapor bubbles mainly relied on experiments [9, 19–31], and theoretical

models that were essentially a reduced form of the Navier - Stokes equations [8, 10, 30, 32–40]

under strict, simplifying assumptions. It has been well-established that vapor bubbles have a

short length scale, and a small lifetime in physical processes, which implies clear limitations

for experiments used to study bubble dynamics. Yet, excellent experimental works have

provided insightful photographic evidence for bubble growth and collapse under various

conditions that allowed for the validation or improvement of existing theoretical models

[41]. While experiments have the factor of uncertainty, the theoretical analysis also tends

to be impractical for realistic systems due to the departure from sphericity, presence of a

multitude of bubbles, presence of multiple species/components, and a wide range of initial

thermo-physical conditions. Nonetheless, they have provided a strong fundamental basis

related to the governing mechanisms, and the relative importance of various physical factors

in the process of bubble growth or collapse.

More recently, with the advancement in computing power, direct numerical simulations

(DNS) have gained importance [11, 42–55]. Such analysis employs a solution for the numer-

ically discretized form of the partial differential equations governing the coupled behavior of

flow dynamics and energy transfer in a system of vapor bubbles. These methods are referred

to as DNS methods with the underlying assumption that all time and length scales associ-

ated with the physical process are resolved in these simulations. However, to avoid ambiguity

with different simulations, we prefer to refer to these methods as Highly Resolved Simulation

methods or HRS methods. While powerful, the development of a robust and stable technique
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using this method is not straightforward. Besides, there is a rapid increase in the computa-

tional cost for even moderately complex applications. Each mode of research must synergize

with another, to provide meaningful insights about any process involving vapor bubbles.

This dissertation provides a numerical and theoretical take on the analysis for two of

the most common phenomenon associated with vapor bubbles, namely, bubble growth and

collapse. Furthermore, new ideas have been proposed as part of this thesis for the develop-

ment of a generalized HRS method that can simulate the phenomenon of the phase change

(boiling or condensation associated with vapor bubbles). Notably, the methods developed

in this dissertation are not specific to any particular application and can be used to study

any thermo-physical condition for vapor bubbles or phase change that satisfy the underlying

assumptions of the proposed method.

The research work has been divided into three chapters:

• The work in chapter 2 is a detailed analysis of the physics of bubble collapse (Bardia

and Trujillo [3]). At first, the existing literature about the physics of bubble dynamics

is reviewed. Based on that, a numerical model is developed for a canonical system of

single, spherical vapor bubbles from the two-phase momentum and energy equations.

This model is then employed to obtain a bubble collapse rate for a range of system

conditions. A closer look at the results revealed that certain cases of collapse had useful

similar characteristics, and hence, a novel categorization for the process of vapor bubble

collapse has been proposed.

• In chapter 3, the same model developed in chapter 2 is employed to study the limita-

tions in existing HRS methods (Bardia and Trujillo [1]). These limitations are associ-
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ated with the assumptions used to simplify the complex 3-D, coupled two-phase flow

equations. An analytical expression is also proposed to circumvent these limitations.

• The third aspect of this research presented in chapter 4 describes the development

of an in-house numerical solver for highly resolved simulations of vapor bubbles. The

development focuses on the specific physical process of the phase change (evaporation or

condensation), which is a critical surface phenomenon governing the behavior of vapor

bubbles. The code has been developed using C++ within the OpenFOAM-v1706+

framework and builds upon the pre-existing two-phase fluid flow solver, interIsoFoam.

Two key components have been completed and presented as part of this thesis:

– A scalable and physically accurate tracking of the liquid-vapor interface, which

deforms under the effect of bulk flow as well as phase change, and

– A finite-volume Ghost Fluid Method (GFM) implementation to capture pressure

gradient, and velocity discontinuities at the liquid-vapor interface arising due to

phase change.

The novelty in this method especially stems from the enforcement of a jump in pressure

gradient often ignored in older works [54, 56–60] of phase change numerical methods.

These modifications have been tested without the solution of an energy equation.

Remaining aspects of the proposed phase change solver related to the temperature equation

and evaluation of the rate of phase change will be points of future work as described in

chapter 5.
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Chapter 2

An Improved Categorization of Vapor

Bubble Collapse: Explaining the

Coupled Nature of Hydrodynamic

and Thermal Mechanisms

This chapter elaborates on two objectives that were identified to have remained unexplored

in the literature related to bubble collapse, namely:

1. An in-depth characterization of an intermediate category of vapor bubble collapse.

2. A new categorization that accounts for the effect of the transient period for changes in

system or far-field conditions.
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2.1 Literature Review

Vapor bubble collapse occurs either due to an increase in the liquid pressure surrounding the

bubble (P∞) or due to a decrease in the liquid temperature (T∞) [61]. In one of the early works

on bubble collapse, Florschuetz and Chao [20] showed that the severity or nature of bubble

collapse is primarily governed by (i) the magnitude of liquid inertia or inertial mechanism

and (ii) the rate of interfacial heat transfer or thermal mechanism. They characterized the

relative importance of these two mechanisms by defining a non-dimensional parameter called

Beff . Physically, Beff can be interpreted as a ratio of the time taken by a bubble to collapse

completely in a purely heat-transfer controlled and a purely liquid inertia controlled process.

Mathematically, Beff is given by

Beff = ψ2

(
ρLCp,L∆Ts
ρV hLV

)2
αL
Ro

√
ρL

∆P ∗
, (2.1)

where subscript L denotes liquid, and V denotes vapor. The variable ψ is a measure of

the non-linearity in the saturation Pressure-Temperature curve of a real fluid, and ρV is

the average vapor density of the bubble during the collapse process. The latent heat, liquid

density, specific heat, and thermal diffusivity are respectively given by hLV , ρL, Cp,L, αL, and

Ro is the initial bubble radius. Furthermore,

∆Ts = Tsat (Pmax
∞ )− T∞, (2.2)

∆P ∗ = Pmax
∞ − Psat (T∞) , (2.3)
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where ∆Ts refers to the degree of liquid temperature sub-cooling, and ∆P ∗ refers to the

maximum theoretical pressure difference. Subscripts sat and ∞ represent saturated values

and far-field system conditions, while the superscript max refers to the maximum system

pressure.

Depending on the magnitude of Beff , Florschuetz and Chao [20] proposed three categories

of collapse:

Beff < 0.05, Thermal Collapse

0.05 < Beff < 10, Intermediate Collapse

Beff > 10, Inertial Collapse.

(2.4)

A fundamental limitation of this categorization was that these distinctive values were pro-

posed only for systems where the collapse was initiated by a sudden, step change in system

pressure. But in any practical system, it takes a finite amount of time to increase the pressure

of the surrounding liquid to the desired level.

Disregarding this limitation for the moment, Florschuetz and Chao [20] showed that in

the limit as Beff → 0, the process is initiated by a small pressure difference resulting in a slow

collapse, which is governed by a thermal mechanism [41] and is often described as thermal

collapse. In such a case, the pressure inside the bubble increases almost instantaneously

with the system pressure, maintaining a mechanical equilibrium at the bubble surface. It

implies that the temperature of the saturated vapor near the interface (Tsat(PV (t))) increases,

while liquid away from the bubble remains sub-cooled at the far-field temperature, T∞. The

subsequent development of a thermal boundary layer in the liquid phase and condensation
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at the bubble surface drive the bubble collapse. Due to the importance of heat transfer

for such cases, the evolution of liquid temperature as a function of space and time for the

moving bubble interface has been the focus of studies in the past [33, 62, 63]. Other works

have studied the effect of buoyancy [23, 31, 64] because, due to the longer lifetime of such

bubbles, an appreciable bulk motion may be observed.

For Beff � O (10), the process is initiated by a large difference between the bubble

pressure and far-field liquid pressure (P∞(t)) producing pronounced inward movement of the

surrounding liquid, and hence, the term liquid inertia collapse [8, 65]. For such cases, the

collapse occurs very rapidly and the bubble pressure remains close to its initial value, PV,o,

for nearly the entire process. Correspondingly, the value of the vapor temperature remains

nearly unchanged. Hence, only a small temperature difference persists between the bubble

and far-field liquid temperature separated by an almost infinitesimal boundary layer. Due to

the minute dimensions of this layer, the temperature gradient is sufficiently strong to balance

the heat released due to condensation.

The third, intermediate category of collapse is governed by both liquid inertia and heat

transfer and compared to the former two regimes has received much less attention. Unlike

thermal and inertial cases, no simplifying relations can be made regarding the vapor pressure

or temperature and the coupling of both inertial and heat transfer augments significantly the

complexity of the phenomenon. For instance, the bulk motion of vapor has been suggested [20]

as being important for the intermediate regime, which is commonly ignored in the analysis

of thermal and inertial collapse. However, a review of the literature shows that this vapor

side analysis for the intermediate collapse case is yet to be done. Furthermore, only a limited

number of experimental studies [28, 66, 67] have presented bubble radius and liquid pressure
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data for vapor bubble collapse under conditions that correspond with 0.05 < Beff < 10.

Even within these works, the key differences between intermediate collapse from the more

established thermal and inertial collapse are not analyzed.

Interestingly, intermediate bubble collapse behavior is important for a growing number

of studies on bubble condensation in nucleate boiling at high sub-coolings [28, 68–70], and in

the generation of micro-bubbles as a result of the collapse of a larger bubble [71–73] in heat

exchangers. System conditions reported for these applications in the literature are typically

in the range of 10 − 50 K sub-cooling at 1 atm pressure for water, which corresponds to

0.04 < Beff < 3.0 for an initial bubble size of 1 mm, which places these studies within the

intermediate category.

Another salient aspect of bubble collapse, which is often ignored, is the rate of change

in far-field system pressure or temperature (system level metrics are represented by ∞ sub-

script) that cause the collapse to occur [20]. While the finite rate of pressure increase has

been reported in many previous works [20, 28, 29, 48], its effect on the collapse dynamics

has not been studied. Only the total magnitude of the pressure change is considered, which

may not even be realized if the collapse is faster than the system transient period. This

can modify the behavior of the collapse process, which may result in a deviation from the

regime characterization presented in Eq. 2.4, which is precisely what is found from the results

presented later in this chapter.
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2.2 Description of the Collapse Study

At first, we systematically delineate the differences in the dynamics of an intermediate col-

lapse from the well established thermal and inertial cases. Moreover, the role of vapor ve-

locity, often overlooked for collapse analysis, is investigated for intermediate systems. This

description lays the foundation for a new generalized bubble collapse categorization, which

is an extension of the work of Florschuetz and Chao [20]. Again in their work, summarized

by Eq. (2.4), the collapse processes were initiated by a step change in pressure, i.e. having

a Heaviside character in time. In the present study, we include the finite rate of rising in

system pressure instead of an instantaneous change.

In §(2.3), the set of governing equations for bubble dynamics is presented. The numer-

ical method used to solve this system of equations is described in §(2.3.2) followed by its

validation against experimental data. In §(2.4), a typical case belonging to the intermedi-

ate category of collapse is analyzed using the transient behavior of individual terms in the

Rayleigh-Plesset equation and energy balance at the interface. Comparison of vapor velocity

magnitude against the rate of collapse is also shown in §(2.4.1). The discussion is facilitated

with contrasting plots from the more established [20, 48, 62, 74] thermal and inertial regimes

of collapse. A generalized categorization of the collapse process is mathematically proposed

in §(2.5), which is subsequently supported by over 550 simulations to create a generalized

categorization map. Finally, the key details of this chapter are summarized in §(2.6).
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2.3 Compressible Vapor Saturated Interface (CVSI)

Solution for Bubble Collapse

In this section, we present a spherically-symmetric model for a single vapor bubble sur-

rounded by a homogeneous, pressurized liquid phase. Under spherical symmetry, the single

phase governing equations for mass, momentum, and energy are respectively,

∂ρ

∂t
+

1

r2

∂ (ρur2)

∂r
= 0, (2.5)

ρ

(
∂u

∂t
+ u

∂u

∂r

)
= −∂P

∂r
+

(
4µ

3
+ κ

)
∂

∂r

(
1

r2

∂ (r2u)

∂r

)
,

(2.6)

ρ

(
∂e

∂t
+ u

∂e

∂r

)
= −P

(
1

r2

∂ (r2u)

∂r

)
− 1

r2

∂
(
k
(
∂T
∂r

)
r2
)

∂r
+ Φ,

(2.7)

where ρ, u, P , µ, κ, e, k, and Φ represent the density, radial flow velocity, pressure, dynamic

viscosity, bulk viscosity, internal energy, thermal conductivity, and viscous dissipation, re-

spectively.
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In addition, the interfacial mass, momentum, and energy transfer are given by

ṁ′′ = ρL

(
Ṙ− uL,Γ

)
= ρV

(
Ṙ− uV,Γ

)
, (2.8)

(PV − PL)Γ =
2σ

R
− ṁ′′ (uL − uV )Γ +

4µV
3

(
∂uV
∂r
− uV

r

)
Γ

− 4µL
3

(
∂uL
∂r
− uL

r

)
Γ

+ κV

(
1

r2

∂ (r2uV )

∂r

)
Γ

− κL
(

1

r2

∂ (r2uL)

∂r

)
Γ

, and

(2.9)

ṁ′′hLV = kL

(
∂TL
∂r

)
Γ

− kV
(
∂TV
∂r

)
Γ

, (2.10)

where subscript Γ denotes the value of a property at the interface. The variable T stands for

temperature, ṁ′′, and σ represent respectively mass flux due to phase change, and surface

tension. Quantities that are dotted reflect temporal derivative; for instance, the interface

velocity is written as,

Ṙ =
dR

dt
. (2.11)

The CVSI method bears various similarities with other past approaches [42, 48, 74, 75],

but the solution procedure has some unique characteristics described in §(2.3.2). Also, all

fluid properties used in the method for various calculations are obtained from the Engineering

Equation Solver [76].
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2.3.1 Description of the Physical System & the CVSI Model

The general system studied here consists of a vapor bubble with an initial radius, R(t =

0) = Ro, surrounded by a liquid domain having a maximum radial extent of r∞. Initially,

the bubble interior is at thermal equilibrium with the liquid phase, such that

T (r ∈ [0, r∞] , t = 0) = T∞, (2.12)

where r = 0 represents the bubble center location. The far-field location, r∞ is sufficiently

removed from the bubble interface such that it does not affect the observed dynamics of

bubble collapse. The pressure inside the bubble corresponds to its saturated value given by

PV (r ∈ [0, Ro], t = 0) = PV,o = Psat(T∞), (2.13)

where subscript o refers to the initial value of a variable. Initially, the bubble is also at a

mechanical equilibrium with the surrounding liquid, hence, the system pressure is given by,

P∞(t = 0) = Psat(T∞), (2.14)

which is the same as Eq. (2.13). It can be shown that the capillary pressure difference due

to surface tension can be ignored for an initially large bubble.

The collapse of a bubble is triggered by increasing the system pressure [20, 28, 29, 77].
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Here, the rate of increase is given by,

dP∞
dt

=


Pmax
∞ − Psat(T∞)

trise
0 ≤ t ≤ trise

0 t > trise,

(2.15)

creating a far field pressure that rises linearly with time to Pmax
∞ over a finite period, trise.

Consequently, the far-field pressure can be expressed as,

P∞(t) = Psat(T∞) +

∫ t

0

(
dP∞
dt

)
dt = min

[
Pmax
∞ , Psat (T∞) +

∆P ∗

trise
t

]
. (2.16)

The assumption of a linear increase in system pressure is consistent with the experimental

details of two previous studies [20, 29], which reported a linearly increasing system pressure.

Both these studies are used in this work to validate the numerical solution for bubble collapse

in §(2.3.3). Consistent with this behavior, Eq. (2.16) is used to describe the system pressure,

P∞ (t), for all bubble collapse cases described in this study.

For the bubble interior, the vapor phase is assumed to follow the ideal gas equation

of state. Separate calculations, where the vapor phase was treated as a Van-der-Waals gas

and a uniform bubble temperature (not included here for the sake of brevity) were done to

assess this assumption. The use of a more elaborate equation of state had no perceivable

effect on the bubble radius time histories. Also, vapor thermal conductivity and specific heat,

are assumed to be constant as their variation with temperature has a negligible effect on

bubble collapse behavior. An important assumption regarding the vapor phase pertains to

the consideration of a uniform pressure inside the bubble. This assumption was analyzed
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in a previous numerical study on bubble collapse [48] by calculating the radial variation of

vapor pressure within the bubble interior. The uniform pressure approximation was found to

hold quite well even for very high interface speed (Ṙ) that were realized close to the rebound

stage of an inertial collapse in that study. Pressure changes at the interface are propagated

through the bubble volume with the speed of sound (cV ), but even the maximum interface

speed associated with the collapse calculations performed in this work is comparatively much

smaller in magnitude than cV (Mach Number, MV (t) = Ṙ(t)/cV (t) = Ṙ(t)/
√
γVRV TV,Γ(t) <

0.3).

Under the above conditions, a homo-baric model for a spherical vapor bubble is presented

below. This model has been previously used in the literature [48, 75, 78, 79] to study inertial

or thermal cases of collapse. From the continuity and energy equations along with the ideal

gas equation of state, an expression for vapor velocity and evolution for vapor temperature

is obtained, namely,

uV (r, t) =
1

PV

(
1− 1

γV

)
kV

(
∂TV
∂r

)
− r

3γV PV

dPV
dt

, and (2.17)

ρVCpV

(
∂TV
∂t

+ uV
∂TV
∂r

)
=

1

r2

∂

∂r

(
r2kV

∂TV
∂r

)
+

dPV
dt

. (2.18)

Here, γV stands for the ratio of specific heats for vapor, and Cp is specific heat at constant

pressure. The vapor properties of γV and CpV are assumed to be constants as their variation

was found to be unimportant for the working conditions used in the study. Thermal con-

ductivity of vapor kV is evaluated as a function of interface temperature TΓ(t). Using the
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interfacial jump condition for mass balance given by

uV,Γ = Ṙ− ṁ′′

ρV
, (2.19)

the boundary condition at r = R(t) for vapor velocity (Eq. 2.17) yields an expression for

vapor pressure,

R

3γV

dPV
dt

=

(
1− 1

γV

)
kV

(
∂TV
∂r

)
Γ

− PV uV,Γ. (2.20)

The ideal gas equation of state is employed to obtain density of vapor phase as,

ρV (r, t) =
PV (t)

RV TV (r, t)
, (2.21)

where RV is the gas constant of the vapor phase.

On the liquid side, As compressibility effects are unimportant for the relevant working

conditions the continuity equation is simply ∇ · uL = 0. It is integrated along the radial

coordinate, and the mass jump condition given by Eq. (2.8) is employed to yield the equation

uL(r, t) =
R2

r2

(
Ṙ− ṁ′′

ρL

)
. (2.22)

This expression is substituted in the radially-integrated liquid-phase momentum equation

(Eq. (2.6)), where the viscous contribution cancels due to incompressibility. The resulting

expression is further reduced by substituting liquid pressure at the interface from the mo-

mentum jump condition (Eq. (2.9)) and by neglecting the bulk viscosity contribution from
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the vapor phase. This yields

RR̈︸︷︷︸
Acceleration Term

=
PV (t)− P∞

ρL︸ ︷︷ ︸
Pressure Term

−3

2
Ṙ2︸ ︷︷ ︸

Inertia Term

− 2σ

RρL︸ ︷︷ ︸
Surface Tension Term

−4νL
R

(
Ṙ− ṁ′′

ρL

)
︸ ︷︷ ︸

Viscosity Term

+
ṁ′′

ρL
Ṙ︸ ︷︷ ︸

Mass Flux Term - 1

+
R

ρL

dṁ′′

dt︸ ︷︷ ︸
Mass Flux Term - 2

−
(
ṁ′′

ρL

)2(
1

2
− ρL
ρV

)
︸ ︷︷ ︸

Mass Flux Term - 3

.

(2.23)

Here ν is the kinematic viscosity of the fluid. Last three terms in Eq. (2.23) are associated

with mass flux due to phase change, which are often ignored in the common uses of the

Rayleigh-Plesset equation due to their small magnitude. These terms will be referred to as

Mass flux term - 1, 2 and 3, respectively in the subsequent discussion.

The remaining unknown variable on the liquid side of the bubble surface is temperature,

which is evaluated from the solution of the liquid energy equation,

ρL

(
∂ (CpLTL)

∂t
+ CpL

1

r2

∂ (r2TLuL)

∂r

)
= kL

1

r2

∂

∂r

(
r2∂TL

∂r

)
, (2.24)

where liquid thermal conductivity (kL), and specific heat (CpL) are evaluated at a film

temperature, defined as Tfilm = (TΓ(t) + T∞) /2.

Finally, at the interface, mass flux due to phase change is governed by the energy balance

[60] given by Eq. (2.10) rewritten here with a brief description of individual terms,

ṁ′′hLV︸ ︷︷ ︸
Latent Heat Term

= kL

(
∂TL
∂r

)
Γ︸ ︷︷ ︸

Liquid Heat Transfer Term

−kV
(
∂TV
∂r

)
Γ︸ ︷︷ ︸

Vapor Heat Transfer Term

. (2.25)
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Similar to the interface property of surface tension, latent heat is also evaluated as a function

of interface temperature, TΓ(t). In this complete description of bubble dynamics, the key

governing equations are Eq. (2.23) and Eq. (2.10), which are used to evaluate the rate of

collapse, and the rate of condensation, respectively.

2.3.2 Numerical Solution

Our model consists of two partial differential equations for vapor temperature (TV (r, t) Eq.

2.18) and liquid temperature (TL(r, t) Eq. 2.24), three ordinary differential equations, for

vapor pressure (PV (t) Eq. 2.20), bubble radius (R(t) Eq. 2.11), and interface speed (Ṙ Eq.

2.23), and three algebraic equations for vapor velocity (uV (r, t) Eq. 2.17), vapor density

(ρV (r, t) Eq. 2.21), and mass flux due to phase change (ṁ′′(t) Eq. 2.25), respectively. The

main difference in the CVSI model with respect to previous collapse studies [20, 48, 80] lies in

the solution methodology employed to solve the two PDE’s and the use of an adaptive time

stepping scheme that significantly reduces the computational burden, which is necessary for

the extensive categorization analysis done in §(2.5). Note that for the current focus, collapse

calculations are not performed to the extent when bubble radius approaches the value of

zero, where the above-mentioned assumptions may prove to be limiting.

The initial conditions for this system of equations are given by
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R(t = 0) = Ro, (2.26a)

Ṙ(t = 0) = 0, (2.26b)

ṁ′′(t = 0) = 0, (2.26c)

TL(r ∈ (Ro, r∞), t = 0) = T∞, and

(2.26d)

PV (t = 0) = Psat(T∞), (2.27a)

uV (r ∈ [0, Ro], t = 0) = 0, (2.27b)

TV (r ∈ [0, Ro], t = 0) = T∞, (2.27c)

ρV (r ∈ [0, Ro], t = 0) =
Psat(T∞)

RV T∞
.

(2.27d)

The relevant boundary conditions are

∂TV
∂r

(r = 0, t) = 0, (2.28a)

TV (R(t), t) = TΓ(t), and (2.28b)

TL(R(t), t) = TΓ(t), (2.29a)

TL(r∞, t) = T∞, (2.29b)

where TΓ(t) is obtained from the Clausius-Clapeyron equation, namely

dPV (t)

dTΓ(t)
=
ρV (R(t), t)hLV (TΓ(t))

TΓ(t)
, (2.30)

under the stipulation that the interface remains at thermodynamic equilibrium. The expres-

sion on the left-hand-side (LHS) of the equation is approximated numerically by the solution

of PV and TΓ. Above conditions reflect a system for bubble collapse, but it is instructive

to point out that the CVSI solution can also be used to study bubble growth by making

relevant changes to initial and boundary conditions, as is done in chapter 3. The governing

equations solved are equally applicable to both bubble collapse or growth.

Liquid temperature field is solved using an Arbitrary Lagrangian-Eulerian (ALE), which
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has been modified from the work of Ryddner and Trujillo [2], where it was used for droplet

evaporation. The liquid domain, ΩL, spans from the bubble radius, R(t), to an external

radius, r∞(t), and is discretized into spherical shell volumes, which are temporal displaced

at some arbitrary velocity. The radial location of these shell boundaries is given by

rL,i = R(t) +Ro × (ζ − 1)

e( i−1
nL
×sL

)
− 1

esL − 1

 , i ∈ 1, 2, 3, ..., nL + 1. (2.31)

In this expression, nL is the total number of spherical shell volumes and i = 1 corresponds

to the innermost shell whose internal boundary coincides with the bubble surface. As noted

previously, the extent of the liquid domain is given by r∞ = R(t) + Ro × (ζ − 1), where ζ

determines the extent of the liquid domain and sL is a parameter that is employed to locally

refine the grid near R(t). Using sL > 0, these shells are clustered around the bubble surface

for adequate resolution of the thermal boundary layer. The rate of displacement of each of

these element boundaries is then given by

ṙnj = Ṙ(tn)

(
1 + (ξ − 1)

(
eλ

j
M − 1

eλ − 1

))
, where j = 0, 1, 2, ..., (M − 1). (2.32)

Inside the bubble, the vapor temperature equation is solved using a finite difference

approach used by [78] but with a non-uniform grid spacing. The radial coordinates are

transformed to a non-dimensional form, η = r/R(t). The non-uniform spatial discretization

is again leveraged to improve the resolution of the thermal boundary layer close to the bubble



21

surface. The locations of the boundaries of the computational volumes are given by

rV,j = R(t)×

e(− j−1
nV
×sV

)
− 1

e−sV − 1

 , j ∈ 1, 2, 3, ..., nV + 1, (2.33)

where nV is the number of nodes in the vapor phase, and j = nV + 1 corresponds to the

bubble surface. Similar to the parameter sL in Eq. (2.31), sV sets the density of points close

to the interface inside the bubble.

Besides the liquid and vapor temperature equations, the remaining differential equations

are integrated using the Euler scheme, and the algebraic equations are employed throughout

the solution. The entire system of equations is solved using an adaptive time stepping scheme,

where the time step size is determined such that 0.1 < CFL < 0.4, where

CFL =
Ṙ×∆t

min (min (∆rL,i) ,min (∆rV,j))
, and (2.34)

∆rL,i = rL,i+1 − rL,i ; ∆rV,j = rV,j+1 − rV,j, (2.35)

for i ∈ {1, 2, 3, ..., nL} and j ∈ {1, 2, 3, ..., nV }. The time step size is ∆t, thickness of ith

shell in liquid domain is ∆rL,i and the distance between consecutive radial points in the

discretized vapor domain is ∆rV,j.

In appendix A, a numerical sensitivity analysis is reported leading to the conclusion that

with parameters ζ = 2, sL = 5, sV = 5, nL = 100, and nV = 100, grid convergent results

are obtained. Hence, in the bubble collapse calculations, these are the numerical parameters

that are employed.
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2.3.3 Validation of the CVSI Model

To validate the CVSI model, six different bubble collapse cases are considered. The system

conditions for these cases are given in table 2.1 and are obtained from previously published

experimental studies. To quantify the degree of agreement, the following error metric is

employed

Emean =
1

Nref

Nref∑
i=1

∣∣∣∣RCV SI (ti)

Ro

− Rref (ti)

Ro

∣∣∣∣, i ∈ 1, 2, 3, ...Nref , (2.36)

where Rref (ti) is the bubble radii obtained from the reference study, Nref is the number of

data points obtained from those studies, and RCV SI(ti) are the corresponding bubble radius

computed from the CVSI model.

Case # and Fluid Subcooling System pressure Pressure rise time Initial radius ψ Beff tref Mean error
Ref. (in K), ∆Ts (in atm), Pmax

∞ (in ms), trise (in mm), Ro Eq. (2.1) (in ms) Emean
1 [20] Water 12.20 0.987 2.50 3.66 1.04 0.02 .53 7.2 %
2 [28] Water 29.80 1.000 0.20 11.80 1.16 0.05 1.4 5.9 %
3 [28] Water 33.90 1.000 0.20 13.80 1.18 0.06 1.6 5.0 %
4 [28] Water 39.50 1.000 0.20 12.70 1.22 0.10 1.4 3.0 %
5 [28] Water 53.40 1.000 0.20 11.80 1.30 0.32 1.2 6.3 %
6 [29] Water 70.40 0.7025 1× 10−6 1.00 1.41 27.62 .12 2.2 %

Table 2.1: Description of published vapor bubble collapse cases used for validation of the

CVSI method. Here, ψ = 2/(∆Ts∆P
∗)
∫ Tsat(Pmax∞ )

T∞
(Pmax
∞ − Psat(T )) dT , is used in the

evaluation of Beff .

The range of Beff values in table 2.1 suggests that the cases considered in this validation

span all three categories of collapse. In each plot, the bubble radius is non-dimensionalized

using initial bubble radius as a reference, and time is non-dimensionalized using the charac-

teristic time for the inertial effects [20], namely,

tref = Ro

√
ρL

∆P ∗
. (2.37)
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(a) Data Set # 1: Emean = 7.2% (b) Data Set # 2 : Emean = 5.87%

(c) Data Set # 3 : Emean = 5.02% (d) Data Set # 4 : Emean = 3.00%

(e) Data Set # 5 : Emean = 6.27% (f) Data Set # 6: Emean = 2.16%

Figure 2.1: Comparison between CVSI and experimental data sets for cases described in
table 2.1 along with mean error values.
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Results from figure 2.1 show that the CVSI solution matches experimental results for a

range of cases for bubble collapse. Case # 1 represents a thermal collapse and its bubble

radius trend is shown in figure 2.1a. This collapse has a gradual and decelerating rate of

motion as expected for a thermally-dominated process. Experimental data for the following

four cases shown in figure 2.1b - figure 2.1e are obtained from Board and Klimpton [28]

and pertain to the intermediate category of collapse. All four collapses are captured quite

well with most of the error originating from model predictions close to the minimum radius.

Finally, for figure 2.1f, the result shows an inertial collapse for which the bubble radius time

history from the CVSI method has an excellent agreement with the experimental data. Across

all the six cases, the CVSI model predicts the bubble radius with a mean error, Emean < 7.5%,

where most of the discrepancy occurs when the bubble has reached a smaller size. For the

thermal collapse, the reason for the discrepancy may be attributed to the bulk motion of

bubble [20], which may occur after an initial time period of acceleration due to buoyant

forces. For the intermediate cases, experimental measurements by Board and Klimpton [28]

were reported to be affected by the presence of vessel walls close to the bubble, whereas the

CVSI model corresponds to a stationary spherical vapor bubble collapse. Notwithstanding,

for all six validation cases the error is within a reasonable magnitude.

2.4 Intermediate Bubble Collapse

To analyze the key features of intermediate collapse, Case # 2 described in table 2.1 is

employed as a representative case. For all of the following calculations, CVSI model has

been employed up to a final time equal to the time required for the bubble to collapse to 5%
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of its initial volume. This has been done to strike a balance between the time needed for the

dominating characteristics of a collapse to be evident and to avoid working with very small

bubble sizes, which are difficult to study in practical systems [20, 28, 41, 61].

At first, a comparison of the time history of the Rayleigh-Plesset terms defined in

Eq. (2.23) are presented in figure 2.2, where the intermediate collapse is represented by

figure 2.2a. To contrast its characteristics with the more established thermal and inertial

regimes [20, 48, 62, 74], the temporal variation of the Rayleigh-Plesset terms for a typical

thermal and inertial collapse is also shown in figure 2.2b and figure 2.2c, respectively. The

terms are non-dimensionalized using R2
o/t

2
ref , where tref is given by Eq. (2.37). Also, over the

entire collapse period shown for the three cases, the dominant terms that contribute to the

acceleration of the bubble radius are pressure and inertial terms. Surface tension, viscous,

and mass flux terms remain negligible for the entire period.

Before presenting a more detailed description about the intermediate collapse and its

unique transient behavior, we would like to note that the oscillation of pressure and acceler-

ation terms for the thermal collapse in figure 2.2b is not an anomaly. It has been observed

in previous studies [20, 31, 80, 81] as well. Hao and Prosperetti [81] provide a more detailed

explanation for this phenomenon and relate it to the imbalance between the increasing sys-

tem pressure (P∞(t)), and vapor pressurization (PV (t)) due to a sudden, rapid collapse. This

initial transient period for thermal collapse can usually be ignored as those acceleration val-

ues are small in magnitude and only last for a small duration in comparison to the overall

collapse period.

For the intermediate collapse represented by figure 2.2a, initially the system pressure,

P∞(t), increases at a constant rate for a period corresponding to trise (introduced in Eq. (2.16)),
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(a) Intermediate Collapse

(b) Thermal Collapse (c) Inertial Collapse

Figure 2.2: Transient variation of individual terms in generalized Rayleigh-Plesset equation
for (a) Case # 2, (b) Case # 1, and (c) Case # 6 from table 2.1. Figure (b) and (c) are

provided for reference from the more established thermal and inertial categories of collapse.
Entries for all three plots in the legend are in the same order as the order of terms in

Eq. (2.23), starting with the acceleration term
(
RR̈
)

.

which is depicted by a nearly linear decrease in the pressure term. Due to the negative value

of the pressure difference, the bubble begins to collapse. After trise, the system pressure

(P∞ (t > trise) = Pmax
∞ ) remains constant but the pressure term magnitude decreases due

to an increasing vapor pressure (PV ). Eventually, vapor pressure inside the bubble becomes

larger than the system pressure, which reverses the sign of the pressure term and begins
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to act as a decelerating force for bubble collapse. This behavior is unlike a thermal collapse

where, after an initial transient of vapor pressure, its magnitude stabilizes at a constant value

as shown in figure 2.2b. Also, it is unlike an inertial collapse, where the vapor pressure is

known to remain nearly constant at its initial value for most of the collapse period, precisely

as found in our calculations shown in figure 2.2c.

The initial acceleration for the intermediate collapse shown in figure 2.2a triggers the

manifestation of the inertia term, which always remains negative and promotes the contrac-

tion of the bubble. After its initial gradual increase, the magnitude of liquid inertia becomes

the dominant term in the Rayleigh-Plesset equation. This dominance is only sustained for a

short period after which the collapse begins to decelerate under the influence of a stronger,

positive pressure term. Such a time variation of the inertia term is unique to an intermedi-

ate collapse. Otherwise, inertia term either remains insignificant for a thermally-dominated

collapse as shown in figure 2.2b or it gradually increases and then sustains its dominance in

case of an inertially-dominated collapse as shown in figure 2.2c.

With respect to the energy balance at the interface (Eq. 2.10), the time history of each

of the terms for the intermediate collapse is shown in figure 2.3a along with similar plots for

a thermal, figure 2.3b and inertial collapse, figure 2.3c, for reference. Again, we observe a

short time period of initial oscillation of different energy terms for the thermal collapse in

figure 2.3b. Similar to the description for figure 2.2b, the pressure imbalance [81] also affects

the temperature difference that exists in the liquid phase, causing these oscillations. Barring

this short initial transient period, the remaining behavior of thermal collapse is not affected

by those oscillations.

The energy terms in all the plots are normalized by |kL∆Ts/
√
αLtref |, which is a measure
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of the liquid heat flux given by the degree of sub-cooling (∆Ts) and a reference boundary layer

thickness (
√
αLtref ). Evidently, from figure 2.3, the rate of heat transfer is nearly balanced

(a) Intermediate Collapse

(b) Thermal Collapse (c) Inertial Collapse

Figure 2.3: Transient variation of individual terms in energy jump condition for (a) Case #
2, (b) Case # 1, and (c) Case # 6 from table 2.1. Figure (b) and (c) are provided for

reference from the more established thermal and inertial categories of collapse. Entries for
all three plots in the legend are in the same order as the order of terms in Eq. (2.10),

starting with the latent heat term (ṁ′′hLV ).

by the latent heat term for the entire time period for all three categories of collapse. It

suggests that heat released during condensation is almost entirely transferred to the liquid

phase, while heat transfer in the vapor phase is negligible.



29

Focusing on the intermediate collapse shown in figure 2.3a, as the collapse unfolds, bubble

temperature increases, which results in the initial increase in liquid heat transfer. While the

temperature difference between bubble surface and far-field liquid increases, diffusion of heat

also leads to the growth of thermal boundary layer thickness (δL). These competing factors

result in a complex transient system for intermediate collapse, where both these effects are

equally important. In comparison, for a thermal collapse, the boundary layer growth is more

dominant and the process is characterized by an asymptotically decreasing rate of liquid

heat transfer evident from figure 2.3b. On the other hand, the inertial collapse in figure 2.3c

shows a similar behavior of energy balance as the intermediate collapse with a continuously

increasing rate of liquid heat transfer as well as condensation.

2.4.1 Explaining the Different Characteristics of Intermediate Col-

lapse

In the preceding discussion, the main distinctive trait of an intermediate collapse is the

continuous variation of vapor pressure and inertia term in the Rayleigh-Plesset equation.

Since the pressure term plays a dominant role in the dynamics, we consider the contributing

factors to the rate of change of PV . These are given in Eq. (2.20) and consist of a heat

transfer contribution, (1− 1/γV ) kV (∂TV /∂r)Γ and pressure work, PV uV,Γ.

The time histories of these contributing factors for the intermediate collapse are plotted

in figure 2.4a, non-dimensionalized by Ro ∆P ∗/tref along with similar plots for a thermal,

figure 2.4b and inertial collapse, figure 2.4c, for reference. The reason behind oscillations for

thermal collapse in figure 2.4b is the same as described in the discussion for figure 2.2b and
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figure 2.3b above.

(a) Intermediate Collapse

(b) Thermal Collapse (c) Inertial Collapse

Figure 2.4: Time histories of terms in the vapor pressure rate of change equation
(Eq. (2.20)) corresponding to (a) Case # 2, (b) Case # 1, and (c) Case # 6 from table 2.1.
The rate of change of vapor pressure is given by [1/γ R(t) dPV /dt]/[Ro ∆P ∗/tref ], the heat

transfer by [(1− 1/γV ) kV (∂TV /∂r)Γ]/[Ro ∆P ∗/tref ], and pressure work by
[PV uV,Γ]/[Ro ∆P ∗/tref ].

Results from figure 2.4 show that any change in vapor pressure is a result of the pres-

sure work contribution with a negligible role from the gas-side heat flux on the interface.

The magnitude of pressure work and the resulting pressure variation are significant for the

entire collapse period in the intermediate regime as shown in figure 2.4a. In contrast, these



31

terms remain essentially negligible for a thermal collapse as shown in figure 2.4b. For in-

ertial collapse shown in figure 2.4c the pressure work and change in vapor pressure has an

increasing trend, but the values are 3 orders of magnitude lower than what is observed for

the intermediate collapse, rendering the pressure variation as insignificant for most of the

inertial regime. This is also corroborated from a nearly constant pressure difference term in

figure 2.2c, above.

In intermediate collapse, the reason for the importance of pressure work term (PV uV, Γ)

can be traced back to the expression for interfacial vapor velocity given by Eq. (4.35b), i.e.

uV, Γ = Ṙ − ṁ′′/ρV . This equation can be interpreted in terms of expressing uV, Γ as an

imbalance between the rate of bubble collapse (Ṙ) and the rate of condensation (ṁ′′/ρV ). To

analyze its magnitude, the time histories of Ṙ and uV, Γ for a typical intermediate collapse are

plotted in figure 2.5a, non-dimensionalized by Ro/tref along with similar plots for thermal

(figure 2.5b) and inertial (figure 2.5c) types of bubble collapse.

An inspection of the results in figure 2.5a reveals that the magnitude of the interfacial

vapor velocity is of the same order as the speed of the bubble interface for the entire collapse

period for an intermediate collapse. This implies that for an intermediate collapse, Ṙ is

not matched by an equal rate of condensation (ṁ′′/ρV ). As a result, the contraction of the

bubble is additionally balanced by bulk motion of the vapor inside the bubble, i.e. uV, Γ,

which contributes to a continuous change in vapor pressure as shown in figure 2.4a. This is

in clear contrast with a thermal or inertial collapse [20], where vapor velocity is justifiably

ignored as shown by its small magnitude in figure 2.5b and figure 2.5c, which in turn means

that Ṙ ∼= ṁ′′/ρV for those two regimes of collapse.
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(a) Intermediate Collapse

(b) Thermal Collapse (c) Inertial Collapse

Figure 2.5: Time histories for interfacial velocities corresponding to (a) Case # 2, (b) Case
# 1, and (c) Case # 6 from table 2.1.

2.5 Vapor Bubble Collapse Categorization

As mentioned in the introduction, one of the main goals of this study is to define a generalized

metric to categorize vapor bubble collapse over a variety of system conditions and working

fluids beyond an earlier categorization [20], which was solely based on Beff . Specifically,

collapse is bound to depend on the time taken to change the system pressure given by

trise, which is ignored in prior work. A detailed description of the significance of trise is
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given below through a non-dimensional analysis of the generalized Rayleigh-Plesset equation

(Eq. (2.23)). To clarify the presentation of results, the definition of the relevant variables are

included in table 2.2.

Time, τ =
t

tref

Bubble radius, γ(τ) =
R(τ)

Ro

Radial coordinate, η =
r −R(t)

δL
Liquid thermal boundary layer, δL = C1

√
αLtref

(C1 is a constant of proportionality)

Temperature, θ(η, τ) =
T (η, τ)− T∞

∆Ts

Vapor density, εV (τ) =
ρV (R(t), t)

ρ∗V

Time Scale Ratio, ξ =
Ro

trise

√
ρL

∆P ∗

Reference vapor density, ρ∗V = ρV,sat (Tsat (Pmax
∞ ))

Vapor pressure, πV (t) =
Pmax
∞ − PV (t)

∆P ∗

Vapor pressure, π∞(t) =
Pmax
∞ − P∞(t)

∆P ∗

Latent heat, ω =
hLV
h∗LV

Reference latent heat, h∗LV = hLV (Tsat (Pmax
∞ ))

Vapor velocity, u∗V (η, τ) =
uV (η, τ)

Ṙref

Jakob number, Ja =
ρLCL∆Ts
ρ∗V h

∗
LV

Categorization Parameter, Bsat = Ja2αL
Ro

√
ρL

∆P ∗

Table 2.2: Non-dimensional form of key variables for bubble dynamics equations.

From the results in §(2.4), the dominant terms in the generalized Rayleigh-Plesset equa-
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tion are the acceleration, pressure, and inertia terms. Considering these leading order terms,

the Rayleigh-Plesset equation is

RR̈ +
3

2
Ṙ2 =

PV (t)− P∞(t)

ρL
. (2.38)

This expression can be manipulated to yield,

RR̈ +
3

2
Ṙ2 =

− (Pmax
∞ − PV (t)) + (Pmax

∞ − P∞(t))

ρL
. (2.39)

Using the non-dimensional variables for time, bubble radius, vapor pressure and system

pressure defined in table 2.2, this equation can be rewritten in its non-dimensional form as

R2
o

t2ref

(
γγ̈ +

3

2
γ̇2

)
=

∆P ∗

ρL

(
−πV (τ) +

Pmax
∞ − P∞(t)

∆P ∗

)
. (2.40)

From the expression for tref defined in Eq. (2.37), the coefficients R2
o/t

2
ref and ∆P ∗/ρL cancel

out. On substituting P∞(t) from Eq. (2.16), we obtain

γγ̈ +
3

2
γ̇2 = −πV (τ) +

Pmax
∞ −min

[
Pmax
∞ , Psat (T∞) +

∆P ∗

trise
t

]
∆P ∗

. (2.41)

Combining the Pmax
∞ and the terms inside the min() function and using the expression for

∆P ∗ = (Pmax
∞ − Psat(T∞)) (defined in Eq. (2.3)), this expression is further reduced to

γγ̈ +
3

2
γ̇2 = −πV (τ) +

max

[
0, ∆P ∗ − t ∆P ∗

trise

]
∆P ∗

. (2.42)
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Expressing time, t as τtref , a final equation for the momentum dynamics is obtained, namely

γγ̈ +
3

2
γ̇2 = −πV (τ) +max [0, 1− ξτ ] where (2.43)

ξ =
tref
trise

=
Ro

trise

√
ρL

∆P ∗
. (2.44)

Specifically, for t ≤ trise, which may be a large fraction of the total collapse time, the

momentum is given by

γγ̈ +
3

2
γ̇2 = 1− πV (τ)− t

trise
, (2.45)

and for t > trise

γγ̈ +
3

2
γ̇2 = −πV (τ). (2.46)

In previous studies on bubble collapse [20, 48, 74], it is tacitly assumed that the system

pressure rise occurs extremely fast. In the framework of this analysis, this situation is equiva-

lent to trise being very small such that ξ � 1. Consequently, this leads to max [1− ξτ, 0] ∼= 0,

and the momentum dynamics reduces to Eq. (2.46). Hence, under the established treatment

of momentum in the literature, the role of varying system pressure is absent in the mathe-

matical framework.

To complete the description of the dynamics, the energy jump condition is considered
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(Eq. (2.10)) and rewritten here accounting only for the leading order terms. This gives

kL

(
∂TL
∂r

)
Γ

= ρV

(
Ṙ− uV,Γ

)
hLV , (2.47)

where the negligible heat flux from the gas side has been omitted. Note, this omission is

valid in all collapse regimes.

Introducing the non-dimensional form for liquid temperature, radial coordinate, vapor

density, interface speed, vapor velocity, and latent heat from table 2.2, yields

kL∆Ts
δL

(
∂θL
∂η

)
Γ

= (ρV,satεV )

[(
γ̇ − u∗V,Γ

) Ro

tref

]
(ωh∗LV ) . (2.48)

Rearranging these terms to obtain an explicit expression for the liquid side heat flux gives

(
∂θL
∂η

)
η=0

=
C1√
Bsat

εV ω [γ̇ − u∗V (η = 0, τ)] , where (2.49)

Bsat = Ja2αL
Ro

√
ρL

∆P ∗
. (2.50)

The above analysis summarized by Eq. (2.43) and Eq. (2.49), shows that the bubble dynamics

are categorized by two parameters, ξ, and Bsat. The transient nature of the pressure change

that is used to induce a bubble collapse is dictated by ξ, and and the dependence of collapse

behavior on fluid properties and liquid sub-cooling is represented by Bsat. This categorization

sets apart the present work from the earlier categorization advanced in [20], which is only

based on Beff or essentially Bsat. An analysis of the non-dimensional form of the auxiliary

equations in the CVSI model defined in §(2.3.1) that are used to evaluate variables, πV and
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θL in Eq. (2.43) and Eq. (2.49) was also done. It revealed that non-dimensional quantities

obtained from those equations use the same physical properties as ξ and Bsat and do not

introduce any new parameter, except the ratio of vapor specific heats (γV = CpV /CvV ).

The value of γV affects the rate of change in vapor pressure (Eq. (2.20)) during bubble

collapse. To ascertain its importance for this categorization, in §(2.5.2), we have shown cases

for R113 and Water; two fluids with distinct values of γV . Tests were conducted for similar

values of Bsat and ξ with both fluids. The thermal, inertial and intermediate regions on the

map overlapped even with these different values of γV . Changing the fluid affects all thermo-

physical properties and isolating the effect of γV from the variation of other fluid properties

(ρL, ρV , hLV , kL, CpL) that are included in the mathematical form of Bsat has been left for

investigation in a future study.

Now, to determine the corresponding collapse regimes pertaining to specific values for

each pair {ξ, Bsat}, we compute a large set of calculations as described in the following

sections.

2.5.1 Metric for Bubble Collapse

We refer to the discussion in §(2.1) and §(2.4), where it was highlighted that the time varia-

tion of interface temperature (TΓ(t)) has different characteristics across all three categories.

Hence, to identify collapse regimes, we compare the trend of interface temperature for col-

lapse with the expected behavior if the collapse was a purely thermal or a purely inertial

collapse. First, to establish the baseline behavior with respect to the limiting cases of purely

thermal or inertial collapse, we have the following:
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• (Purely Thermal Collapse) Bubble remains at a mechanical equilibrium (PV (t) =

P∞(t)) and interface temperature is always equal to the corresponding saturation value

[20] TΓ(t) = Tsat(P∞(t)). In its non-dimensional form, the interface temperature for

this collapse is given by

θTherm(η = 0, t) =
Tsat (P∞(t))− T∞

∆Ts
. (2.51)

• (Purely Inertial Collapse) The rate of collapse is adequately balanced by condensation,

resulting in little to no mass accumulation inside the bubble and constant pressure.

Hence, TΓ(t) can be adequately approximated by T∞ [8, 20], and the theoretical ex-

pression for non-dimensional interface temperature for such a case is

θIner(η = 0, t) = 0. (2.52)

Although any practical setup would deviate from these limiting behaviors, it is reasonable

to expect that a non-dimensional interface temperature, θΓ, defined as

θΓ(t) =
TΓ(t)− T∞

Tsat(Pmax
∞ )− T∞

(2.53)

will resemble the trend of θTherm for a thermal collapse, while an inertial collapse will have

θΓ(t) ∼= θIner. In contrast, an intermediate collapse has a large variation of bubble pres-

sure and interface temperature during the collapse, and the corresponding θΓ trend will

significantly deviate from both θTherm and θIner. Therefore, the deviation of θΓ from these
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corresponding values can be used in the metrics for defining the collapse regimes. In the

present work, these metrics are obtained in a time integrable sense, namely,

∆Therm =
1

τT

∫ τT

0

|θTherm(τ)− θΓ(τ)| dτ , and (2.54a)

∆Iner =
1

τT

∫ τT

0

|θIner(τ)− θΓ(τ)| dτ =
1

τT

∫ τT

0

|θΓ(τ)| dτ . (2.54b)

Here, ∆Therm gives the average difference of a given collapse case from purely thermal

behavior, ∆Iner gives the same difference from a purely inertial collapse, and τT represents

a threshold time until which the differences are computed. Keeping in line with the compu-

tations done in this study and as described in §(2.4), we employ a value of τT equal to the

time required for the bubble to collapse to 5% of its initial volume.

Figure 2.6: Comparison of transient variation of interface temperature for Case # 2 of
table 3.1 with θTherm and θIner.

To explain the use of the categorization metrics, we first give a graphical representation
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of θΓ with respect to θIner and θTherm in figure 2.6. The shaded area represents the integrated

difference of θΓ from pure inertia or pure thermal behavior, which is respectively equal to

∆Iner × τT and ∆Therm × τT . To clearly define the similarity of a bubble collapse towards

either thermal or inertial collapse, the categorization is given by

∆Therm/∆Iner ≤ 0.1

0.1 < ∆Therm/∆Iner < 10

∆Therm/∆Iner ≥ 10

Thermal Collapse

Intermediate Collapse

Inertial Collapse

(2.55)

where this ratio can be explicitly written as

∆Therm

∆Iner

=

∫ τ5%
0
|θTherm (τ)− θΓ (τ)| dτ∫ τ5%

0
|θΓ (τ)| dτ

=

∫ t5%
0
|TTherm (t)− TΓ (t)| dt∫ t5%
0
|TΓ − T∞ (t)| dt

. (2.56)

With reference to the specific thresholds used in Eq. (2.55), the value of 0.1 represents

that the difference of collapse behavior from a purely thermal case is less than 10% of the

difference from purely inertial case. On the other hand, the value of 10 represents that the

difference from a purely inertial behavior is less than 10% of the difference from purely

thermal behavior. These thresholds were found to reasonably predict the category of a range

of test cases described in §(2.5.2) and also the experimental cases used in numerical validation

in §(2.3.3).

2.5.2 Categorization Map

To visualize the new collapse categorization, 558 different collapse calculations using the

CVSI model were performed for which, Bsat ∈ [1× 10−3, 1.4× 103] and ξ ∈ [1.3× 10−2, 1.6×
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106]. These calculations were done across two different fluids, namely, water and R113,

different maximum system pressures (Pmax
∞ ), different length of system transient period

(trise), and different superheats (∆Ts). The results are shown in terms of a generalized

Figure 2.7: Categorization map for spherical vapor bubble collapse based on Bsat and ξ
values. Collapse categories: Thermal (◦), intermediate (+), and inertial (∗). Table 2.1 cases
are also marked in the map: Case # 1 - ?; Case # 2 - ♦; Case # 3 - ×; Case # 4 - �; Case

# 5 -
a

; Case # 6 -
`

.

collapse map presented in figure 2.7, where each point in the map represents an individual

collapse event, i.e. a single calculation. Each event is categorized based on the metric defined

by Eq. (2.55). Additionally, all six experimental cases described in table 2.1 are included and

it is reassuring to see that the category for each case matches the one obtained with the new

collapse categorization.

Starting from the top portion of the map, for a value of ξ > 1, the regime identification

is essentially independent of the specific value of ξ and only dependent on Bsat. For such
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large values of ξ, the far-field pressure rise rate is quick, matching the conditions that have

been employed in the earlier categorization [20]. Therefore, our results corroborate previous

findings where Bsat is the key category-identifying parameter. The only slight difference is

that a sharp distinction between the intermediate and thermal collapse is lacking. The present

results indicate more of a gradual transition between these two categories of collapse.

For ξ < 1, however, the regime map becomes much richer and the regime distinction

deviates from this Bsat only categorization. Looking at the transition from thermal to in-

termediate collapse, the mapping from figure 2.7 indicates that as the value of ξ decreases

below 1, we observe a slower collapse resembling thermal regime behavior even for larger

Bsat values. The deviation continues to increase with decreasing values of ξ to such an ex-

tent that even with Bsat as large as 1, the behavior is representative of thermal collapse.

This represents two orders of magnitude deviation from the threshold observed for ξ > 1.

Similar deviations are observed for intermediate-inertial regime boundary, where cases with

ξ < 1 are found to behave like an intermediate collapse even for large Bsat values of ∼ 100.

The authors would like to note that in some cases, where ξ < 1, the system pressure (P∞(t))

realized in far-field liquid until the bubble reaches 5% of its initial volume (P∞ (t5%)) is

smaller than the maximum prescribed value of Pmax
∞ . This choice of maximum system pres-

sure, which is used in evaluating ∆P ∗ only affects the value of ξ and Bsat, i.e., position of

a specific point on the collapse map. Hence, for clarity of representation the values of ξ and

Bsat are always evaluated using ∆P ∗ as defined in Eq. (2.3) in this study. In cases where

Pmax
∞ is not realized, ∆P ∗ serves as a notional pressure difference.

This tendency towards a milder collapse is expected for small values of ξ. It represents a

slower rate of increase in system pressure (larger trise), which implies that the effective pres-
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sure difference forcing the bubble collapse remains much smaller than the possible maximum,

(P∞(t)− PV (t) < ∆P ∗). Moreover, this gradual change in system pressure allows more heat

diffusion in liquid before the system reaches its maximum pressure. It results in a larger

thermal boundary layer, which limits the rate of heat transfer and hence, condensation.

Therefore, even when Bsat > 0.01, we may observe a slow and gradual collapse if trise is large

or equivalently, ξ is small. Slow system pressure rise allows time to establish a mechanical

equilibrium across the bubble surface, which resembles a thermal collapse. Similarly, at the

intermediate-inertial boundary, even if Bsat > 30, a slow rise in the system pressure allows

time for thermal boundary thickness to increase around the bubble. Slow liquid heat trans-

fer starts to limit the rate of condensation resulting in an imbalance between collapse rate

and condensation rate described in §(2.4.1). Consequently, the resulting process falls in the

category of an intermediate collapse.

2.6 Summary

This chapter revisits the dynamics of a vapor bubble collapsing in a homogeneous surround-

ing liquid phase. It has been presented into two parts, where first the dynamics of an inter-

mediate type of collapse are analyzed and explained, and second, a generalized framework

for categorizing bubble collapse is introduced.

With respect to the first aspect of the work, an analysis of intermediate collapse, where

both heat transfer and liquid inertia are important, reveals that it is characterized by a

continuous change in interface temperature and vapor pressure. This distinguishes the inter-

mediate regime from thermal or inertia-dominated collapse. The fundamental reason for the
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pressure and temperature variation is found to be caused by a substantial interfacial vapor

velocity, which can be interpreted as an imbalance between the bubble surface regression

rate and the rate of condensation.

In the second part of this work, it is mathematically shown that the behavior of bubble

collapse is not solely dependent on the fluid properties and liquid sub-cooling, but also on

the rate of increase in system pressure that initiates the collapse. It is shown that at the same

level of liquid sub-cooling, the behavior of bubble collapse can be modified by changing the

rate of change of system pressure by adjusting trise. For more gradual changes in the system

pressure, the thermal mechanism of bubble collapse increases in importance. These findings

are quantified by creating a generalized categorization map shown in figure 2.7, where the

parameter space is defined by the following two non-dimensional quantities, namely,

ξ =
Ro

trise

√
ρL

Pmax
∞ − Psat(T∞)

, and Bsat = Ja2αL
Ro

√
ρL

Pmax
∞ − Psat(T∞)

.

The resulting map divides the bubble collapse process into three regimes representing

thermal, intermediate, and inertial dominated collapse. For values of ξ exceeding one, it

is observed that the influence of this parameter is negligible in the distinction of collapse

regimes reducing the categorization to the traditional given by Bsat [20]. However, for values

ξ below one, this parameter along with Bsat play an active role in identifying the bubble

collapse regime. As such, this study shows that the rate of change in system pressure can be

effectively used to alter the behavior of vapor bubble collapse.
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Chapter 3

Assessing the Physical Validity of

Highly Resolved Simulation

Benchmark Tests for Flows

Undergoing Phase Change

A more versatile method for studying bubble dynamics is by performing three-dimensional

Highly Resolved Simulations. Such a simulation for a vapor bubble needs to solve a general

three-dimensional two phase flow with a continuously deforming interface, and capture the

interfacial process of phase change. Development of such methods for two phase flows that

can handle the phase change phenomenon by directly implementing the interfacial conditions

has been a subject of wide interest in the past few years [50, 54, 58–60, 82–97]. These studies

can be categorized based on the underlying scheme used for the advection of the liquid-
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vapor interface, namely, Volume of Fluid (VoF) [83, 89, 90, 92, 93, 95, 96], Level Set (LS)

[54, 58, 85–88], coupled LS-VoF [50, 91], or Front-Tracking (FT) [82, 84, 97]. In the course

of developing these numerical methods to handle the interfacial jump conditions, certain

physical assumptions have become almost universally adopted [50, 54, 58, 60, 83, 85–96].

These assumptions are:

i) Incompressibility in both the liquid and vapor phases (except at the interface), implying

respectively that the liquid and vapor densities are constant.

ii) A constant interface temperature equal to the saturation temperature corresponding

to far-field pressure, namely TΓ(t) = Tsat(P∞).

The above assumptions will be referred to as the underlying HRS assumptions in this study.

A key validation exercise found in many HRS studies consists of the growth of a bubble

immersed in a superheated liquid domain. This test case represents a fundamental and

necessary step in the confident application of a numerical technique to more general phase

change problems. In the aforementioned simulation papers [54, 84, 85, 90, 92–94, 96], none

of them have thoroughly inspected the physical characteristics of bubble growth and in

that context examined the validity of the underlying HRS assumptions. Hence, before diving

deeper into the development of such an in-house simulation tool, we leverage the CVSI model

developed in chapter 2 to better understand the limitation of the HRS assumptions.

In this chapter, we use the canonical bubble growth test case to demonstrate the extent

to which the incompressibility and constant interfacial temperature assumptions hold under

pertinent phase change conditions. Solving for bubble growth using the CVSI model allows

for temporal changes in the interface temperature, vapor pressure, and vapor density inside
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the bubble. This makes the CVSI model, physically more general for spherically symmetric

bubble dynamics than existing HRS solution methods [50, 54, 58, 60, 83, 85–96], and hence,

it offers the necessary benchmark information from which to analyze the applicability of the

underlying assumptions for phase change HRS methods. In §(3.1), the results are compared

with experimental data to show that the CVSI predicts bubble growth accurately, similar

to the collapse validation presented in §(2.3.3). This is followed by a comparison of CVSI

and HRS results in §(3.2), as well as commonly used analytical solutions, which lead to the

finding that the discrepancy with HRS lies in the initial inertial-controlled bubble growth

stage. The identification of this initial period under variable operating conditions is done in a

closed analytical form in §(3.2.1). Finally, in §(3.3), a summary of this chapter is presented.

3.1 Validating the CVSI Solution

The first step in critically analyzing the underlying HRS assumptions is to ascertain that the

physically more accurate CVSI model for spherical vapor bubble growth performs as well

as it does for a collapse as discussed in chapter 2. With this goal in mind, CVSI results are

compared to six different experimental datasets of bubble growth. The parameters of these

experiments are provided in table 3.1. An important system parameter is related to the liquid

superheat that governs the process of bubble growth. Here, it is denoted by ∆Tsh = −∆Ts,

where ∆Ts is defined in Eq. (2.2). Note that unlike the previous study on collapse, the far-field

pressure is assumed to remain a constant. Hence, Pmax
∞ is simply equal to P∞. Additionally,

an analytical solution for bubble radius given by Scriven [35] is also plotted in the experiment

vs CVSI comparison. This analytical solution is often used in validating HRS approaches. It
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Case # and Fluid Superheat System Pressure Initial Radius Jakob Number
Refs. (in K), ∆Tsh (in atm), P∞ (in mm), Ro Ja

1a,b [25] Water 2.9 1.00 0.021 8.68
2 [24] Water 10.5 1.19 0.004 26.70
3 [26] Water 9 0.38 0.014 65.11
4 [27] Water 20.3 0.318 0.007 128.55
5 [26] Water 7.34 0.132 0.025 142.16
6 [30] R113 34.11 0.083 0.005 413.98

Table 3.1: Description of experimental datasets used for validation of the CVSI method.

is based on a saturated vapor state for the bubble contents that is constant in time; hence,

it directly implies constant vapor density and interfacial temperature, i.e. the assumptions

under scrutiny in the present work. The analytical expression for bubble radius given by

Scriven [35] is

R(t) = 2β
√
αLt or Ṙ(t) = β

√
αL
t
, (3.1)

where β is evaluated from the following transcendental equation

2β2

∫ 1

0

e

(
−β2

(
(1−ζ)−2−2

(
1− ρV

ρL

)
ζ−1

))
dζ =

ρLCpL∆Tsh
ρV (hLV + (CpL − CpV ) ∆Tsh)

=
Ja(

1 +
(CpL − CpV ) ∆Tsh

hLV

) . (3.2)

Here, CpL and CpV are the respective liquid and vapor specific heats at constant pressure,

and Ja is the Jakob number defined as

Ja =
ρLCpL∆Tsh
ρV hLV

. (3.3)
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The Jakob number is evaluated using the liquid properties ρL and CpL obtained at T∞; while,

ρV and hLV are evaluated at Tsat(P∞).

The comparison between the bubble radius time histories obtained from experimental

data, analytical solution, and CVSI predictions are shown in figure 3.1 for the six dif-

ferent cases described in table 3.1. The bubbles observed in these experiments were not

entirely spherical as described in those papers. Even then, the equivalent radius obtained

in those studies from the oblate or prolate shapes of the bubbles matches well with the

radius vs. time predictions from the CVSI solution. For datasets #1 and #2, the agree-

ment among the CVSI and analytical predictions, as well as the experimental data, is

good. The only minor difference between analytical and CVSI result is at early times. For

Ja = 65.11, 128.55, 142.16, and 413.98, the CVSI results match the experiments quite

well over the entire time period, while the analytical solutions show a noticeable deviation,

which is particularly pronounced at earlier times. The explanation for this discrepancy is

postponed until after the comparison to HRS results is presented in the next section, since

the discussion shares some of the same issues faced by HRS.

3.2 Departure from Physically Accurate Behavior in

Published HRS Results

The validated CVSI method is used in this section to simulate three distinct systems of bubble

growth that have been previously used as test cases in HRS studies [54, 90, 93, 94, 96]. The

comparison is shown in figure 3.2 and the operating parameters for these cases are given
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(a) Data Set # 1: Ja = 8.68 (b) Data Set # 2: Ja = 26.70

(c) Data Set # 3: Ja = 65.11 (d) Data Set # 4: Ja = 128.55

(e) Data Set # 5: Ja = 142.16 (f) Data Set # 6: Ja = 413.98

Figure 3.1: Comparison between CVSI predictions, analytical solutions, and datasets
presented in table 3.1



51

in table 3.2. These HRS studies used the Scriven solution (Eq. (3.1)) as a reference, and

hence, it is also included in figure 3.2.

At Ja = 9.88, over the time period shown, the CVSI solution nearly overlaps with both

the Scriven solution and the HRS results. At Ja = 14.95, a clear difference is noted between

the CVSI solution and both, the Scriven and the HRS predictions. For this particular case

(shown in figure 3.2b), the time period corresponds to the early phase of bubble growth,

where the time window ranges from 10−3 to 10−1 ms, as opposed to the case for Ja = 9.88,

where the time range is 100 to 102 ms. For the larger Ja case (Ja = 27.92), the comparison

between all three bubble radius calculations is shown for the latter part of the bubble growth

period, namely between 2× 10−1 and 3× 100 ms. And in this period the agreement between

CVSI, Scriven, and HRS is fairly good. However, at earlier times a noticeable discrepancy is

noted between the Scriven and CVSI solutions in a similar fashion as the results presented

in figure 3.1.

Based on the comparison presented in figure 3.2, it appears that the Scriven and HRS

results are in close agreement for all cases presented. This is not entirely surprising since

both formulations use a constant interface temperature and vapor density. In contrast, with

respect to the CVSI solution, it is observed that during the early phase of bubble growth, the

Case # and
References

Fluid Superheat System Pressure Initial Radius Jakob Number

(in K), ∆Tsh (in atm), P∞ (in mm), Ro Ja
1 [54] Water 3.30 1.00 0.018 9.88
2 [90, 93, 94,
96]

Water 5.00 1.00 0.006 14.95

3 [90] HFE-7100 10.00 0.493 0.002 27.92

Table 3.2: Description of cases used in HRS studies.
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(a) HRS Case # 1: Ja = 9.88 (b) HRS Case # 2: Ja = 14.95

(c) HRS Case # 3: Ja = 27.92

Figure 3.2: Comparison between CVSI predictions, HRS results, and analytical solutions
pertaining to the cases included in table 3.2

discrepancy between the CVSI results and the results obtained with both Scriven and HRS

is noticeable. We interpret this difference as an error in the HRS predictions. To examine

this error in more detail and to investigate the role of constant interface temperature and
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vapor density, these quantities are first put in non-dimensional form, namely

Non-Dimensional Interface Temperature, θT =
TΓ(t)− Tsat(P∞)

T∞ − Tsat(P∞)
, (3.4)

Non-Dimensional Vapor Density at Interface, θρ =
ρV,Γ(t)− ρsat(Tsat(P∞))

ρsat(T∞)− ρsat(Tsat(P∞))
, (3.5)

Non-Dimensional Time, τ =
t

t∗
=
Ja2αL
R2
o

t. (3.6)

Note that the non-dimensional time used for this work is different from the one defined in

table 2.2. Here, the reference time, t∗, comes from the time required to achieve the initial

bubble radius nucleus, Ro, based on Scriven’s solutions (Eq. (3.1)). Namely, t∗ = R2
o/(αLJa

2),

where β value of the Scriven solution has been approximated by Ja, which is an excellent

approximation when ρV � ρL and (CpL∆Tsh/hLV ) & 0.01. The reference denominator values

used to obtain non-dimensional interface temperature and vapor density, in Eq. (3.4) and

Eq. (3.5) are the maximum variation these quantities can theoretically experience.

(a) (b)

Figure 3.3: Non-dimensional interface temperature (left) and vapor density (right) as a
function of time for the cases described in table 3.2. The arrows mark the time period for

which HRS results have been reported [54, 90, 93, 94, 96].
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The time histories for non-dimensional temperatures and densities are plotted in fig-

ure 3.3 showing a monotonic decrease to zero from an initial finite value. Superimposed

on these curves are the time periods over which the HRS results were reported in various

studies [54, 90, 93, 94, 96]. Clearly, the error in HRS occurs precisely before θT and θρ have

approached their asymptotic values of 0. During the initial transient period both the in-

terfacial temperature, TΓ(t) and density (=ρV,sat(TΓ(t))) are changing in time. Hence, the

discrepancy or error in HRS results stems directly from the fact that this time evolution of

vapor contents is not taken into account.

Considering the literature on the subject of bubble growth, particularly the work of

Plesset and Zwick [33], Prosperetti [41], Robinson and Judd [49], Plesset and Prosperetti

[98], we find that the initial transient period corresponds to the inertial bubble growth phase.

During this period, the bubble vapor pressure undergoes significant changes, and depending

on the Jakob number, various terms in the Rayleigh-Plesset equation become active. Beyond

this inertia-controlled time period, we enter into the heat-transfer dominated stage, which is

characterized by a nearly constant interface temperature, vapor pressure, and vapor density.

Basically, the two underlying HRS assumptions are valid during this latter stage of bubble

growth. Hence, the key to avoiding issues associated with the violation of the underlying

assumptions in HRS lies in identifying apriori the heat transfer dominated regime. This is

elaborated in the following subsection.
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3.2.1 Identifying Apriori Conditions Favorable to the Current HRS

Treatment

A previous attempt at quantifying the threshold time beyond which the bubble growth can

be assumed to be in the heat transfer dominated period of growth was reported by Lee and

Merte Jr. [45]. The basis was comparing a semi-empirical solution, i.e. the MRG solution [36],

which holds over both inertial and heat transfer stages to a solution derived by Plesset and

Zwick [33] for exclusive use in the heat transfer dominated stage. Lee and Merte Jr. [45]

indicated that beyond a threshold time, given by

50× τref = 50× 18Ja2

π

ρLTsatαL
hLV ρV ∆Tsh

, (3.7)

the difference in the bubble radius predictions from the two solutions is less than 10%,

and hence, it can be interpreted that beyond t = 50τref , the bubble has entered the heat-

transfer dominated stage. In this expression, all thermophysical properties are evaluated at

the saturation temperature, Tsat(P∞).

To examine the accuracy of Eq. (3.7), we employ predictions generated by the CVSI

numerical procedure, which are more accurate than the MRG solution, and compare these

predictions to the Scriven solution [35]. Our rationale is that the Scriven solution, which holds

in the heat-transfer regime, does not make additional assumptions concerning the thickness

of the boundary layer (δL � R) as opposed to the expression given by Lee and Merte Jr. [45].

Hence, it is interpreted as being more accurate. We can subsequently compare the CVSI and

Scriven’s predictions to determine the threshold time when both of these predictions agree
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within 10%. The results show that for Ja = 8.68, this threshold time begins at t ≈ 236×τref ;

while, for Ja = 413.98, this same reference time begins at t ≈ 13× τref . For all of the other

cases, the results lie between this range demonstrating an undesirable level of variability

in the prediction of threshold time using Eq. (3.7). To address this problem we develop an

alternative approach.

We begin with simplifying the Rayleigh-Plesset equation (Eq. (2.23)) to its most dominant

terms [10] during the bubble growth process, namely

RR̈ +
3

2
Ṙ2 +

2σ

RρL
=
PV (t)− P∞

ρL
. (3.8)

The RHS of Eq. (3.8) can be written in terms of temperature by using a first order approx-

imation of Clausius-Clapeyron equation given by

PV (t)− P∞
TΓ(t)− Tsat(P∞)

=
ρV,sat(Tsat(P∞))hLV

Tsat(P∞)
. (3.9)

On substituting Eq. (3.9) into Eq. (3.8) we get

RR̈ +
3

2
Ṙ2 +

2σ

RρL
=

ρV hLV
Tsat(P∞)

(
TΓ(t)− Tsat(P∞)

ρL

)
=

ρV hLV
ρLTsat(P∞)

θT (t)∆Tsh, (3.10)

where ρV , hLV , and ρL, correspond to saturation properties at P∞ and the temperature

difference on the RHS is rewritten in non-dimensional form (Eq. (3.4)).

In the heat transfer controlled regime, we can express R(t) as 2β
√
αLt (Eq. (3.1)) from
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the Scriven solution. This can be substituted directly into Eq. (3.10), yielding

(
2β
√
αLt
) d2

(
2β
√
αLt
)

dt2
+

3

2

(
d
(
2β
√
αLt
)

dt

)2

+
2σ(

2β
√
αLt
)
ρL

=
ρV hLV

ρLTsat(P∞)
θT (t)∆Tsh.

(3.11)

This expression only holds in the heat transfer controlled-regime, where it is expected that

θT � 1. Denoting χ =
√
t, the above expression can be rearranged to give the following

quadratic expression for χ,

(
2θT

ρV hLV
ρLTsat(P∞)

∆Tsh

)
χ2 −

(
2σ

βρL
√
αL

)
χ− β2αL = 0, (3.12)

where the thermo-physical properties are evaluated at Tsat(P∞). To compute the extent of

the initial transient period or threshold time, tthreshold, for a given bubble growth case, we

directly solve Eq. (3.12) using a suitably small value of θT . This gives us

tthreshold =

[4θTρV hLV ∆Tsh
ρLTsat(P∞)

]−1

 2σ

βρL
√
αL

+

√(
2σ

βρL
√
αL

)2

+

(
8θTρV hLV
ρLTsat(P∞)

)
β2αL∆Tsh


2

,

(3.13)

where the largest root is chosen, since it coincides with the physically relevant situation of

being situated within the heat-transfer dominated period.

For θT = 0.1, we found that the difference in bubble radius predicted by the Scriven
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solution, and CVSI solution, given by

εR =
|RCV SI(tthreshold)−RScriven(tthreshold)|

RCV SI(tthreshold)
× 100, (3.14)

was less than 10% for all the cases presented in this work. This is shown in table 3.3.

Values of θT larger than 0.1 place the solution either within the inertial range or close to it

thereby increasing the error, εR. For θT �0.1, unreasonably large values of tthreshold can be

predicted. Although this would ensure that the bubble growth is more accurately predicted

by the Scriven solution, such a conservative estimate is not found to be necessary because

even at θT = 0.1, εR is already sufficiently low. Hence, the value of θT = 0.1 provides a

reasonable approximation for tthreshold, beyond which the HRS assumptions remain valid.

Case tthreshold from εR
Description Eq. (3.13) for θT = 0.10 from Eq. (3.14)

# 1 from table 3.1 2.01 ms 7.55 %
# 2 from table 3.1 0.38 ms 1.53 %
# 3 from table 3.1 2.85 ms 3.34 %
# 4 from table 3.1 9.10 ms 0.97 %
# 5 from table 3.1 26.21 ms 6.31 %
# 6 from table 3.1 171.97 ms 6.41 %
# 1 from table 3.2 1.59 ms 5.31 %
# 2 from table 3.2 0.79 ms 0.49 %
# 3 from table 3.2 0.30 ms 5.60 %

Table 3.3: Prediction of threshold times for achieving solutions in the
heat-transfer-dominated regime and the associated error with respect to the CVSI solution.

HRS based on incompressibility and constant interface treatment should initialize bubbles

with a radius given by Rinitial > 2β
√
αLtthreshold, where tthreshold is given in Eq. (3.13). This

should be combined with a Scriven temperature profile [35]. Adopting these measures would

ensure that the underlying HRS assumptions would not be violated during the bubble growth
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process.

3.2.1.1 Departure from sphericity

In various applications, the vapor bubble may depart from spherical symmetry due to trans-

lation under the effect of buoyancy. For the analysis presented in the paper to remain ap-

plicable, the bubble must be nearly spherical up to at least the threshold time described

by Eq. (3.13). Following the line of reasoning provided by Brennen [61], a significant de-

viation from sphericity would happen if the viscous force, which is of the form µW∞D is

comparable to the characteristic force maintaining sphericity, σD, for a Reynolds number

(Re = ρW∞D/µ) range such that Re � 1. In this viscous dominated regime the ratio of

destabilizing and stabilizing forces can be shown to be given by We/Re , where We is the

Weber number (ρW 2
∞D/σ). In the opposite extreme, for Re � 1, the destabilizing force

would be ρW 2
∞D

2, and the aforementioned ratio becomes simply We. Thus, over the full

range of Re, we can interpret max(We/Re,Re) as the ratio of destabilizing over stabilizing

forces. When this ratio reaches the limit of one, we expect departures from sphericity to be-

come significant. In the above expressions µ, W∞, σ, ρ, and D, are respectively the dynamic

viscosity, terminal bubble velocity, surface tension coefficient, liquid density, and diameter.

The terminal velocity, which is required in the calculation of the pertinent non-dimensional

quantities is given by [61]

W∞ =

(
4Dg

3CD

)1/2

, (3.15)
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where the drag coefficient can be obtained over a broad range ofRe from the work of Mikhailov

and Freire [99] (Equation 8 in their paper). This allows for the direct calculation ofmax(We/Re,Re)

as a function of bubble diameter as shown in figure 3.4.

Figure 3.4: Ratio of destabilizing over stabilizing forces (max(We/Re,Re)) for the
preservation of bubble sphericity as function of diameter for water and R113 systems.

The results in figure 3.4 indicate that significant departures from sphericity are not ex-

pected to occur until the bubble diameter reaches a threshold size of approximately 1 mm.

At this point, the ratio reaches a critical value of 1 indicated in the plot by the blue limit

line. Results using water and R113 properties are relatively close and lead to a similar

threshold size for the bubble. For most practical fluids, the Haberman-Morton Number,

Hm = gµ4/(ρσ3), is Hm < 10−10, and in this Hm range similar values for the threshold

bubble size are obtained.

Considering the various CVSI to experimental data set comparisons included in figure 3.1

of the present paper, the most significant deviations from the incompressibility and constant

interface temperature assumptions (HRS assumptions) take place when the bubble is sub-
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stantially smaller than 1 mm. In fact, once the bubble reaches the 1 mm size for cases where

the Ja is less than O(100), the deviations from the HRS assumptions are negligible. This

means that HRS can be performed under the current assumptions with no problem. For cases

where Ja is O(100) or greater, serious deviations from the HRS assumptions are recorded

at a bubble size of 1 mm. However, under these demanding conditions, the HRS would face

additional formidable numerical challenges imposed by stringent requirements of numerical

resolution at large values of Ja.

3.3 Summary

Bubble growth process is well-known to be comprised of an initial inertia-controlled phase

followed by a heat-transfer controlled phase. The HRS methods are shown here to be inac-

curate in the inertia-controlled stage of the growth process. The reason for this inaccuracy is

the inability of these methods to capture the time variation of the interface temperature, and

its coupling with the bubble pressure. Usually, HRS methods are judged against the Scriven

solution [35], which by construction only holds in the heat-transfer-dominated regime; hence,

the initial discrepancy associated with the inertial-controlled growth stage cannot be tested

accurately if the reference solution is invalid. Furthermore, this initial transient period be-

comes more dominant with increasing Jakob (Ja) number. Beyond this initial transient, once

the bubble enters the heat transfer dominated regime, the underlying HRS assumptions of

incompressibility and constant interface temperature hold remarkably well.

The work presented in this chapter provides a theoretical framework for specifying ap-

propriate initial set of conditions, which hold under incompressibility and constant interface
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temperature, since most of the methods operate under these assumptions. It does not pro-

pose a change in HRS simulation methodology but establishes the time period during which

such methods are physically valid. This is accomplished in this work by first determining the

time required for a bubble to enter the heat transfer dominated regime using a reduced form

of the Rayleigh-Plesset equation along with Scriven solution for bubble radius. This results

in an analytical closed form expression for this time, denoted as the tthreshold (Eq. (3.13)),

which can be subsequently employed to calculate the corresponding bubble radius, namely

2β
√
αLtthreshold. This bubble radius can be combined with the Scriven temperature pro-

file [35] to provide the appropriate initial conditions. Even for aspherical bubbles found in a

variety of applications, it is reasonable to infer that simulations should only deal with bubble

sizes that have an equivalent bubble radius greater than 2β
√
αLtthreshold, if the numerical

methodology uses the underlying HRS assumptions.
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Chapter 4

Numerical Method Development for

Two-Phase Flows With Phase Change

In the previous chapter, we have reported about the limitations of the constant interface

temperature and vapor density assumptions used in previously published phase change sim-

ulation methods [50, 54, 58–60, 82–97]. However, the usefulness of those methods was also

noted and we prescribed the conditions for the fundamental case of bubble growth that can

be solved without relaxing the HRS assumptions. Based on the literature review presented

in §(4.1) and through the work of Ryddner [100] & Anumolu [101] within our research group,

it was identified that a physically correct, easy to implement, robust and scalable implemen-

tation of phase change is not readily available. Moreover, as identified in chapter 1, such a

solver is a natural extension to the theoretical work on vapor bubble dynamics presented in

chapter 2 and chapter 3. It will lead to the development of a necessary capability to study

more complex vapor bubble systems for specific applications.

The phase change solver developed in this thesis describes the numerical solution for the
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continuity and momentum equations, but leaves the solution of energy equation as part of

future work. It includes a procedure to capture the deformation of an interface due to phase

change in addition to the bulk flow and also describes a novel method to capture the velocity

and pressure gradient discontinuities in a finite-volume framework. Importantly, the pressure

gradient discontinuity is often ignored in previous studies. An analytical expression for the

jump in pressure gradient has been derived as part of this thesis, its physical relevance is

validated, and it has been included in the numerical discretization through the Pressure-

Poisson equation.

The chapter is divided into four sections. The existing phase change HRS methods are

first reviewed in §(4.1). This is followed by §(4.2), which provides a description of an incom-

pressible two-phase flow solver without the capability of phase change, which is used as the

basic solver for further development. Then the numerical method for interface advection and

pressure-velocity solution related to phase change is presented in §(4.3). Finally, the coding

algorithm and relevant tests are presented in §(4.4).

4.1 A Review of Phase Change Simulation Methods

A large part of the discussion related to phase change methods is on the correct implemen-

tation of the interfacial conditions, hence, at first these equations are established here [60],
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ṁ′′ = ρL (uL,Γ − ẋΓ) · nΓ = ρV (uV,Γ − ẋΓ) · nΓ, (4.1a)

JpdK = (2µJEK) · nΓ − ṁ′′JuK · nΓ − σκΓ + JρK (g · x) , and (4.1b)

hLV ṁ
′′ = Jk∇T K · nΓ. (4.1c)

Here, ẋΓ is the local rate of change in interface position, nΓ is the normal directed from liquid

to vapor phase at the interface, ṁ′′ is the mass flux due to phase change, JφK = φV,Γ − φL,Γ

represents the difference between the two phases at the interface for any quantity φ, E is

the strain tensor given by
(
∇u +∇uT

)
/2, and κΓ is the local curvature of the interface.

Also, pd = p − ρ (g · x) refers to the dynamic pressure, where g refers to the gravitational

acceleration or more generally, acceleration due to body forces. Note that the expressions

in Eq. (4.1) are the generalized form of Eq. (2.8), Eq. (2.9), and Eq. (2.10), which were

specialized for a spherically symmetric system of vapor bubble.

A correct phase change numerical method should satisfy Eq. (4.1), and evaluate property

gradients (∇T and ∇u) near the interface, while accounting for those jump conditions [60].

Several such computational methods have been proposed in the literature. For succinctness,

these can be categorized based on the underlying scheme used for the advection of the liquid-

vapor interface, broadly, Volume of Fluid (VoF) [83, 89, 90, 92, 93, 95, 96], Level Set (LS)

[54, 58, 85–88], or Front-Tracking (FT) [82, 84, 97].

Among the early works on numerical simulations for phase change, Welch [44], and Son

and Dhir [102] presented Lagrangian approaches to track the interface, but such methods
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could not be scaled in cases of large deformations. Consequently, the focus shifted to the

Eulerian based approach for phase change problem, and the first work in this regard may be

attributed to Juric and Tryggvason [82]. They proposed a front-tracking method, where the

interface is marked by several points. Its deformation is tracked by advecting and re-adjusting

those points. Source terms were added to the underlying Eulerian fluid equations to simulate

phase change. This method is known to be very complicated in terms of implementation and

handling the rearrangement of the interface markers in cases of topological changes. Recent

work by Irfan and Muradoglu [97] has extended the front-tracking phase change method to

include cases where the mass transfer is due to species gradient. This is done by using the

Clausius-Clapeyron equilibrium relation to evaluate vapor mass fraction near an interface

and subsequently evaluating the resulting rate of mass flux.

Another early work on phase-change was published by Son and Dhir [103], who proposed a

level-set based approach. In a level-set method, the interface is treated as a zero-level contour

of a smooth, differentiable function defined over the entire domain. This function is taken

to be a signed distance function, which is advected with the fluid flow. The discontinuous

step change in the fluid velocity at the interface was handled by smoothing this change

over several computational cells near the interface. This concept of smearing introduced by

Son and Dhir [103] was contrary to the concept of the sharp interface [60] but due to the

numerical stability obtained from this approach, several other authors have continued to use

the ‘smearing’ concept [89, 90, 92, 104] to account for phase change. More recently, a number

of level-set based phase change methods [54, 60, 105] have instead used a method called the

Ghost Fluid Method to sharply capture interfacial discontinuities. As this method is used in

the current work, it is discussed in more detail later in this section.
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The third category of phase change methods has used the volume of fluid (VoF) method

for the interface advection. The first VoF based phase change method was proposed by Welch

and Wilson [83]. In VoF, phases are distinguished based on the fluid volume fraction (α) in

every computational cell. We follow the convention that α = 1 for liquid and α = 0 for

vapor. For an interfacial cell, α assumes a value in the range (0, 1). The α value changes

sharply near the interface from a value of 0 to 1. In the solution of the momentum equation,

the discontinuity of the velocity field, the velocity gradients, and the viscosity due to phase

change were treated in [83] by smearing the change over several computational cells. A

recent methodology based on the interface reconstruction using an iso-surface of α = 0.5

was developed by Tsui and Lin [95] to solve for phase change. In this method, while density

and viscosity were still treated as smeared variables, thermal properties were treated sharply

and one-sided temperature gradients were obtained to evaluate the rate of mass flux due to

phase change.

An algebraic method similar to VoF was used by Sato and Ničeno [93] to propose a

phase change solver, where they used a color function (0 ≤ c ≤ 1) to advect the interface

(c = 0.5) using the constrained interpolation profile (CIP) method [106]. The method used

a source term to account for the motion of interface due to phase change, and in the energy

equation. In their work, they combine a finite volume formulation for the bulk fluids and

finite-difference formulation close to the interface for the temperature equation. While it

was noted that the velocity jump is handled sharply, the method used to capture this jump

through the pressure-velocity coupling using the Chorin projection [107] method was not

explicitly explained. This method has been used by the same authors for studying nucleate

boiling [108], pool boiling [109], and flow boiling [110] problems.
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Prominently, two methods have been used in previous literature to account for the dis-

continuities at the liquid-vapor interface: smoothing/smearing, or Ghost Fluid Method. The

latter is physically more accurate and its implementation has been extensively discussed

for the finite-difference formulation of the Navier - Stokes equations, which are used in the

level-set methods. However, the extension of level set methodologies to more realistic non-

orthogonal grids is very challenging. Instead, finite volume methods such as the VoF tech-

nique can be extended more easily. The OpenFOAM solver, which will be used in this thesis

also has existing VoF based solvers that can be further developed to include the capability

for phase change. Hence, this thesis describes the development of the Ghost Fluid Method

for a finite volume method of phase change. Before proceeding, the following sub-section

reviews the important pieces of literature related to GFM.

Review of Ghost fluid method

This method was first introduced in the work of Fedkiw et al. [111] within a Level-Set based

fluid flow solver to sharply capture material discontinuities exhibited at the liquid-vapor

phase interface. The initial development was motivated by a need to eliminate spurious

currents that arose due to the smearing of the interface discontinuities. In this method, the

liquid phase is assumed to extend beyond the interface into the vapor phase as a ghost fluid.

Liquid values are populated in this ghost region by some form of extrapolation, either using

a normal-wise constant extrapolation approach or by Taylor series expansion that accounts

for the discontinuities. Similarly, ghost vapor is also defined for liquid points in the domain.

Such an extension leads to two continuous fields in the domain, one pertaining to the liquid
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phase and the other related to the vapor phase. Consequently, the phase-specific gradients

that need to be calculated close to the interface can be evaluated directly.

While this method has been used extensively in finite-difference methods, finite vol-

ume techniques have only recently begun to apply GFM. A recent work by Vukčević et al.

[112] used GFM to capture the dynamic pressure (pd) discontinuity related to gravitational

forces. The implementation was done within an algebraic VoF solver within the OpenFOAM

framework. It delineated the fundamental idea that all cells (including mixture cells with

0 < α < 1) are treated either as a pure liquid or vapor cell when writing the discrete form

of the momentum equation. In doing so, the pressure gradients evaluated at the faces of

interfacial computational cells have to be corrected to include the appropriate pressure jump

using the ghost fluid approach. Similarly, another study that was published as a short note

by Haghshenas et al. [113] implemented GFM to capture the pressure jump related to surface

tension. This was done within a Coupled Level Set-Volume of Fluid framework (CLSVoF),

where the value of curvature was determined from the level set.

For phase change problems, which is the focus of this thesis, the first use of GFM was in

the work of Nguyen et al. [56], where they extended the capture of material discontinuities

at the interface to the jump in velocity field at the interface. Interestingly, to obtain a

relation between vapor and liquid pressure gradients near the interface, they used the non-

conservative form of the momentum equation to argue that the momentum equation remains

continuous across the interface even with phase change, without sufficient justification. This

assumption led to the following relation for liquid and vapor pressure gradients near the
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interface,

(
∇pL
ρL

)
Γ

· nΓ =

(
∇pV
ρV

)
Γ

· nΓ. (4.2)

This relation along with Eq. (4.1b) served as the interfacial conditions for pressure to develop

the ghost fluid extrapolation across the interface based on the work of Liu et al. [114].

Following [56], phase change methods that employed Ghost Fluid method to handle interface

discontinuity [54, 57–60] continued the use of Eq. (4.2) in the solution of the Poisson equation

for pressure. These methods largely focused on improvements in the ghost fluid extension of

velocity and the use of improved advection schemes.

However, the velocity discontinuity observed due to phase change at the interface breaks

the continuity of the momentum equation and Eq. (4.2) no longer holds. Even for a sim-

ple case of spherical vapor bubble, using the well-known analytical expression for pL (x, t),

pV (x, t), uL (x, t), and uV (x, t) [8, 10], it can be shown that pressure gradient suffers a

jump along the radial coordinate at the bubble surface (shown in §(B.3)). This shortcoming

of existing phase change methods is overcome in §(4.3.2) by incorporating a jump in pressure

gradient at the interface due to phase change and implementing the concept of Ghost Fluid

Method in a finite volume scheme, similar to the aforementioned work of Vukčević et al.

[112].
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4.2 Framework for Phase Change Solver Development

For this work, the open-source framework of OpenFOAM v1706+ [115] was chosen for its

coding-friendly paradigms, plenty of online resources, and extensive in-house experience

with these libraries [116, 117]. The interIsoFoam solver within this version of OpenFOAM

is used as the base two-phase solver for the development of phase change capability within

it. Comprehensive testing done for interIsoFoam is presented below.

Testing the performance of base solver: interIsoFoam

For assessing the performance of, interIsoFoam, several tests are presented in this section. Its

results are compared against the more widely used interFoam solver, which has been in use

within our group for over a decade and has been thoroughly tested for its accuracy and ro-

bustness [118]. The fundamental difference between the two solvers is related to the advection

of liquid volume fraction, α, which implicitly tracks the deformation of the interface.

The interIsoFoam solver [119] is based on a geometric VoF methodology that explicitly

performs a geometric reconstruction of the interface and tracks its motion over time to evalu-

ate the advection of liquid volume across the boundaries of a computational cell. In contrast,

the interFoam solver incorporates an algebraic manipulation in the advection equation for

α that serves to limit the diffusion of α field close to the interface and somewhat preserve

the sharpness of a liquid-vapor interface. While it results in a stable and easily scalable algo-

rithm, a major drawback with the interFoam solver is the absence of a sharp location of the

interface (available in the interIsoFoam algorithm), which is substituted with an interfacial

region that spans over several computational cells.
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In the following comparison, results from interFoam will be referred to as aVoF, which

stands for algebraic volume of fluid method, and results from interIsoFoam will be referred

to as gVoF which stands for geometric volume of fluid method.

4.2.1 Advection Tests

In this section, we exclusively analyze the performance of the liquid volume fraction advection

equation given by,

∂α

∂t
+

∫
∂Ωi

I (u · n) dS = 0. (4.3)

Here, u represents the velocity, n represents the normal pointing outwards from the control

volume, and I represents the indicator function, given by,

I (x, t) =


1 x ∈ Liquid

0 x ∈ Vapor

⇒ χ (x, t) = χLI (x, t) + χV (1− I (x, t)) , (4.4)

where χ represents any physical quantity.

The problem with solving a hyperbolic equation such as Eq. (4.3) lies in the evaluation

of the second term on the left-hand side of the equation referred to as the advection term.

As briefly explained above, this evaluation of liquid flux through a computational volume

is done in interIsoFoam by first approximating a geometric reconstruction of the sub-grid

interface, and then subsequently tracing its sub-grid movement at the computational volume

boundaries during a time step. Conceptually, this method is similar to the popular PLIC

geometric VoF scheme [120–123], but the reconstruction and time-evolution of the interface



73

slightly differ from the traditional method.

In PLIC, the interface is oriented using normals calculated from volume fraction gradient,

and then located such that the cell liquid fraction is satisfied. The first step that includes the

calculation of interface normal itself introduces error in the formulation. In the new method

implemented in interIsoFoam, an interpolation of the α field on each cell-edge is done to

reconstruct an iso-surface that cuts the cell into liquid and vapor volumes that correspond

with the volume fraction of the cell [119]. This reconstruction of iso-surface is independently

done in each of the interfacial cells, without the need to orient the interface with respect to

a separately calculated interface normal direction.

Tests on the implemented solution for Eq. (4.3) in interIsoFoam are shown in this section

for simple geometries that undergo interface deformation under a prescribed velocity field. No

velocity-pressure solutions are obtained in these tests. The velocity fields are prescribed such

that the object should ideally retain its original position and shape at the end of simulation

time. This provides an easy benchmark to compare the final volume fraction field with the

initial state and find the error that is induced only due to the inaccuracy of the α advection

methodology.

Notched Disk: Pure Rotation

This is a popular case used in several other papers as the first test of their interface advection

scheme. The initial geometry consists of a circular object in a square domain ([0, 1]× [0, 1]).

The circular object has a rectangular notch and the shape is shown in figure 4.1a. The center

of the circle is kept at (0.5, 0.75), and its radius is 0.15, while the notch width is 0.06, and

the top-most edge of the notch is at y = 0.85. This disk undergoes a pure rotation around
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the center of the domain and should ideally come back to its original position, where the

prescribed velocity is given by,

X-Velocity, u = − π

3.14
(y − 0.5) , and (4.5a)

Y-Velocity, v =
π

3.14
(x− 0.5) . (4.5b)

Error metric used for this test is given by,
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Figure 4.1: Results for Notched Disk Advection.

Error =

( ∑
i∈All cells

Ai |αi,final − αi,initial|

)
, (4.6)

where error between the initial and final volume fraction field is integrated over the entire

2-D domain. Both the qualitative visual result in figure 4.1a and the quantitative error in

figure 4.1b show that the performance of the interIsoFoam solver is superior when compared

to the interFoam solver.
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Two-Dimensional Vortex: Highly Deforming Interface

This test is designed to test advection performance where an interface severely deforms

from an initial circular disk under a vortex field. After achieving maximum deformation the

velocity field is reversed such that the object should attain its original position after one

complete period. In a square domain ([0, 1] × [0, 1]) an initial circular disk of radius 0.15 is

centered at (0.5, 0.75). The deformation velocity field is,

u = (u, v) =

(
sin2 (πx) sin(2πy) cos

(
πt

8

)
,− sin2 (πy) sin(2πx) cos

(
πt

8

))
. (4.7)

The contour obtained from geometric VoF retains the original shape of the circle more
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Figure 4.2: Results for 2-D Vortex Deformation Advection.

accurately than the algebraic VoF as shown in figure 4.2a. Quantitatively, the error in the

α field decreases more significantly for the geometric VoF method on the refinement of the

mesh.



76

4.2.2 Surface Tension and Pressure Velocity Coupling Tests

Momentum equation in a whole domain formulation of two phase flows is given by,

∫
Ωi

∂ρu

∂t
dV +

∫
∂Ωi

ρu (u · n) dS = −
∫

Ωi

∇pddV −
∫

Ωi

(g · x)∇ρdV +

∫
Ωi

σκ∇αdV (4.8)

+

∫
∂Ωi

(µ∇u) · ndS +

∫
∂Ωi

(∇u · ∇µ) dS,

The above equation is repeated from the work of Deshpande et al. [116].

The solution for Eq. (4.8) is performed by the Chorin projection method [124]. First, an

intermediate velocity field is constructed without considering pressure term, and then the

resulting velocity field is corrected using the Pressure Implicit with Splitting of Operators

(PISO) [125] method. It is an implicit pressure correction procedure to time advance the

pressure. The interested reader is referred to Deshpande et al. [116] for explicit numerical

details of the method.

Both density and viscosity used in the solution of the momentum equation are given by,

ρni = αni ρL + (1− αni ) ρV , and (4.9)

µni = αni µL + (1− αni )µV , (4.10)

where i refers to the computational cell index, and n refers to the time step-index. Equa-

tion (4.10) shows that the change in density and viscosity happens continuously over an

interfacial region rather than discontinuously at the interface.

The surface tension term in Eq. (4.8) is calculated using the Continuum Surface Force
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(CSF) model in both interFoam and interIsoFoam solvers, which is given by,

n = ∇α, (4.11)

κΓ = ∇ · n = ∇ · ∇α, and (4.12)

∆P = σ (∇ · ∇α) . (4.13)

Laplacian of the liquid volume fraction field in any VoF scheme will naturally result into

non-zero values over several computational cells. Again, Eq. (4.13) suggests that a smoothed

profile of change in pressure due to surface tension is implemented in the OpenFOAM frame-

work.

Regarding the comparative study here, the key difference between the test solver inter-

IsoFoam and the benchmark solver interFoam lies in the volume fraction field. The time

evolution of α from both methodologies is different, which will directly affect the evalua-

tion of density & viscosity and consequently the pressure-velocity solution for momentum

equation obtained from the PISO loop.

Interfacial Curvature Calculation

Here, an initial system is set up with a simple droplet of radius, R = 0.25 kept at the center

of a square domain of span [0, 1]× [0, 1]. The two phases have identical properties of ρ = 104,

and µ = 1, while the surface tension at the droplet interface is set at σ = 1. The curvature

of a 2-D shape is simply given by 1/R, and hence, the analytical value of curvature is equal

to 4. Correspondingly, the pressure jump across the surface should be equal to σκ = 4.

Comparison of this analytical value to the value computed from the interIsoFoam and
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interFoam solvers is shown below.
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Figure 4.3: Evaluation of Pressure Jump from at different grid sizes.

In figure 4.3b, the pressure jump occurs across one cell for the interIsoFoam solver based

on geometric VoF, while the pressure jump occurs over at least 2 cells in the interFoam

results. The former is more in line with the sharper treatment of the interface as described

in §(4.1). However, it is also evident that the computed pressure jump has a higher error in

the geometric VoF method than the algebraic method. As the variation of α in gV oF occurs

more sharply, it results in greater error in calculating the divergence of its gradient used in

Eq. (4.13).

Standing Capillary Wave

The two-phase setup for this case is shown in figure 4.4. The horizontal dimension of the

domain is 10−4 m and the vertical dimension is 5 × 10−4 m. As shown in the figure, an

initial perturbation of wavelength λ = 10−4 is added to the liquid-gas interface, which has

an amplitude, a = λ/20 = 0.05× 10−4. Density of liquid and vapor phases are 1 kg/m3 and

999 kg/m3 respectively, while kinematic viscosity is equal to 0 and 10−6 m2/s. The left and
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right walls have a cyclic boundary condition as shown in figure 4.4, while the top and bottom

sides are simply treated as constant pressure, and zero velocity gradients.

aVoF gVoF
τaV oF |τaV oF − τosc|/τosc × 100 τgV oF |τgV oF − τosc|/τosc × 100

λ/∆x = 5 3.702× 10−5 55.285% 3.152× 10−5 32.201%
λ/∆x = 20 2.473× 10−5 3.747% 2.487× 10−5 4.31%
λ/∆x = 30 2.444× 10−5 2.517% 2.476× 10−5 3.859%
λ/∆x = 40 2.436× 10−5 2.181% 2.453× 10−5 2.908%

Table 4.1: Error in calculation of oscillation time period for standing capillary wave.

Figure 4.4: Initial setup of the
standing capillary wave test.

Due to the difference in densities, the interface

undergoes periodic oscillations that are eventually

damped out due to the liquid viscosity. The results

are compared to the analytical solution as shown in

the test cases of Deshpande et al. [118]. The analytical

solution is given by,

ωosc =

√
σκ3

ρl + ρg
, where κ =

2π

λ
. (4.14)

For this case, analytical period of oscillation given by,

τosc =
1

2

2π

ωosc
= 2.384× 10−5 s, (4.15)

which is compared with the numerical period of oscillation obtained as an average of 10

cycles.

Results in table 4.1 show that for the coarsest grid of 5 grid cells across the wavelength,
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both aV oF , and gV oF methods perform poorly, and the former has a higher magnitude of

error. A significant improvement in the results is observed for λ/∆x = 20 for both method-

ologies and the rate of decrease in error on further refinement of the grid is small. The test

shows that the geometric volume of fluid implementation in interIsoFoam has a comparable

performance compared to the well-established algebraic volume of fluid, interFoam solver

for surface tension dominated dynamic test cases.

0 10 20 30 40 50

t*

0

0.2

0.4

0.6

0.8

1

K
E

(t
)/

K
E

(0
)

/ x=5
/ x=20
/ x=30
/ x=40
/ x=80

(a) interFoam solver

0 10 20 30 40 50

t*

0

0.2

0.4

0.6

0.8

1

K
E

(t
)/

K
E

(0
)

/ x=5
/ x=20
/ x=30
/ x=40
/ x=80

(b) interIsoFoam solver

Figure 4.5: Time variation of kinetic energy in the domain for a standing capillary wave
test case.

Rising Bubbles due to Buoyancy

Keeping in mind the final application intended for the interIsoFoam solver, the final test

case is chosen to be directly related to bubble dynamics. The following tests are done for

pressure-velocity coupling in case of rising gas bubble under the effect of buoyancy. Here,

we present a comparison between the experimental results of Bhaga and Weber [126] and

the numerical results obtained from the interIsoFoam solver for rising air bubbles in water-

sugar solution column similar to previous numerical works [84, 106, 127–131]. The solution
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concentration was varied to obtain different values of the following non-dimensional numbers

[126],

Reynolds Number, Re =
ρDU

µ
, (4.16a)

Eötvös Number, Eo =
gD2ρ

σ
, and (4.16b)

Morton Number, Mo =
gµ4

ρσ3
. (4.16c)

Present Work Magnini [132] Results
Case Eo Mo Reexperimental Recalculated ∆Re Recalculated ∆Re

a 116 848 2.47 2.33 5.66 % 2.37 4 %
b 116 41.1 7.16 6.96 2.79 % 6.94 3.1 %
c 116 1.3 20.4 19.51 4.36 % 19.55 4.2 %
d 116 0.103 42.2 38.58 8.58 % 39 7.6 %

Table 4.2: Test cases for bubbles rising in liquid columns of different liquid properties.

The system setup is obtained from Magnini [132]. A gas bubble of diameter D is centered

at [0, 2D] in an axisymmetric domain that spans [0, 4D] × [0, 12D]. The grid size is kept

fixed for all cases at 80 × 240. Density ratio between vapor and liquid was kept at 1000,

and viscosity ratio as 100. Values of the Eo, and Mo were varied for different cases and the

computed Re value of the bubble are logged in table 4.2. Difference of the computed values

from experimental data are shown as ∆Re.

Reynolds number obtained for the terminal velocity of the bubble from the present cal-

culations are within 10% of the experimental values. Also, the results match very well with

a similar numerical methdology used by [132], where they use PLIC method of geometric

reconstruction in the volume of fluid algorithm.

The results presented above show that interIsoFoam is a stable two phase flow solver
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(a) Case (a)

(b) Case (b)

(c) Case (c)

(d) Case (d)

Figure 4.6: Test cases for bubbles rising in liquid columns of different liquid properties.
Experimental pictures on the left [126] and results from interIsoFoam solver on the right.

with the ability to provide information about the sub-grid interface location. This property

is useful in implementing the capability to handle phase change phenomenon, which results

in velocity, pressure gradient and temperature gradient discontinuity at the interface.
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4.3 Phase Change Numerical Method Development

To add the capability of phase change in the interIsoFoam solver, following equations must

be modified or added to the solver:

• Interface advection: α equation

• Momentum: Chorin projection and Pressure-Poisson equation

• Temperature: Energy equation

• Mass Flux: Rate of phase change at the interface evaluated from Eq. (4.1c)

In this thesis, methods related to the first two aspects of a phase change solver, namely,

advection and momentum equations have been presented. It includes the critical component

related to capturing the velocity discontinuity at the interface.

4.3.1 Alpha Equation

The liquid volume fraction advection equation given by Eq. (4.3) only accounts for the

interface motion that occurs along with the bulk flow. This needs to be modified for a flow

with phase change due to two reasons:

1. The velocity field has a discontinuity at the interface, which is absent in flows without

phase change.

2. Besides interface advection with the flow, there is an additional motion of the interface

due to the phase change process.
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To derive a generalized equation for the advection of liquid volume fraction, we begin

with the integral form of continuity equation given by Eq. (B.5), specialized for mass with

ψ = ρ. This is given by,

d

dt

∫
Ω

ρdV =
d

dt

∫
Ωi

ρdV +

∫
∂Ωi

ρu · ndS, (4.17)

where the integral on left hand side represents the time rate of change in the mass of a

material volume, first term on the right hand side represents the time rate of change in the

mass for a control volume that coincides with the material volume at an instant of time

t, and the last term represents the mass flux across the bounding surface. By definition,

L.H.S. = 0 and the equation reduces to,

d

dt

∫
Ωi

ρdV +

∫
∂Ωi

ρu · ndS = 0. (4.18)

Using the indicator function, I, given by Eq. (4.4), density at any point, x, in the domain

can be expressed in terms of liquid and vapor densities. Rewriting Eq. (4.18) in terms of ρL

and ρV , we get,

d

dt

∫
Ωi

(ρLI + ρV (1− I)) dV +

∫
∂Ωi

(ρLI + ρV (1− I)) u · ndS = 0. (4.19)

Collecting the indicator function terms on one side, we get,

(ρL − ρV )

(
d

dt

∫
Ωi

IdV +

∫
∂Ωi

Iu · ndS
)

= − d

dt

∫
Ωi

ρV dV︸ ︷︷ ︸
=0

−
∫
∂Ωi

ρV u · ndS. (4.20)
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Phase densities, ρV and ρL are assumed to remain constant in writing Eq. (4.20), which can

be further rearranged as,

dα

dt
+

∫
∂Ωi

Iu · ndS = − ρV
(ρL − ρV )

∫
∂Ωi

u · ndS, (4.21)

where, α =
∫

Ωi
IdV . For cases without phase change, the divergence of velocity on R.H.S. is

zero even for interfacial cells. Equation (4.21) would be identical to Eq. (4.3) in that case.

However, due to Eq. (4.1a), the divergence of velocity over a control volume is no longer zero

for interfacial cells.

A derivation for the divergence of velocity for a control volume containing the interface

in a flow with phase change was presented in §(B.2) and given by Eq. (B.12). Substituting

Eq. (B.12), Eq. (4.21) can be rewritten as,

dα

dt
+

∫
∂Ωi

Iu · ndS = − ρV
(ρL − ρV )

(
1

ρV
− 1

ρL

)∫
Γ

ṁ′′dS. (4.22)

Another important modification needed for α advection with phase change is related to the

velocity that is used to advect this quantity. The general variable u, which remains continuous

for cases without phase change no longer holds that property due to the velocity discontinuity

in phase change problems. Rewriting, u in terms of uL and uV using the indicator function

distinctly identifies the vapor and liquid velocity, which is physically accurate at the interface.

Using such a relation in Eq. (4.22) and simplifying R.H.S. gives,

dα

dt
+

∫
∂Ωi

I (uLI + uV (1− I)) · ndS = − 1

ρL

∫
Γ

ṁ′′dS. (4.23)
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Considering, I (x, t) I (x, t) = I (x, t) and I (x, t) (1− I (x, t)) = 0, the final reduced form of

this equation is given by,

dα

dt
+

∫
∂Ωi

I (uL · n) dS = − 1

ρL

∫
Γ

ṁ′′dS. (4.24)

Different from Eq. (4.3) used in the original solver without phase change, the advection of

liquid volume fraction in this phase-change formulation is performed with the liquid velocity

as it forgoes the notion of a general velocity that describes the entire domain. Also, the

additional motion of interface due to phase change is included in the source term given by

the right hand side of Eq. (4.24).

4.3.1.1 Numerical Solution of Alpha Equation

In the implemented solver, Eq. (4.24) is written for each discrete computational cell as,

αn+1
i = αni +

∑
f∈Cell Faces

(
φnL,f
|Sf |

∫ t+∆t

t

∫
f

IdSdt
)
− 1

ρL

∫ t+∆t

t

∫
Γ

ṁ′′dSdt. (4.25)

Here, the superscript n refers to the previous time step for which the velocity, liquid volume

fraction, and mass flux fields are known. The superscript n+1 refers to the time step for which

α needs to be evaluated through Eq. (4.25). In writing Eq. (4.25), we have assumed that

face volume flux, φL,f = uL,f · Sf remains a constant for the time step ∆t. This assumption

is similar to the solution taken without phase change in the interIsoFoam solver [119].

Using the same notation as used in [119], the advection integral can be written in terms

of Af =
∫
f
IdS, which refers to the face area submerged in liquid at a given instant of time.
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We can further assume that mass flux due to phase change for a given interfacial cell is

uniform and constant for time step ∆t. This reduces Eq. (4.25) to,

αn+1
i = αni +

∑
f∈Cell Faces

(
φnL,f
|Sf |

∫ t+∆t

t

Afdt

)
− (ṁ′′)ni

ρL
AnΓ,i∆t, (4.26)

where AΓ,i represents the area of the sub-grid reconstruction of the interface. The evaluation

of Af and its time integral remains unmodified from the solution of interIsoFoam as presented

in detail in [119]. Equation (4.26) serves as the first step in the advection of α.

The resultant α field is not bounded, however. The source term in Eq. (4.26) allows the

value of α in some computational cells to overshoot its maximum value of 1 or undershoot

the minimum value of 0. In the original implementation in interIsoFoam, this step of α

advection is handled by transferring the additional fluid volume to downwind cells by using

the volume flux values at the faces. We employ a similar strategy, albeit, with some needed

modifications. The flux values used for α advection in Eq. (4.26) correspond with the liquid

flux. These values do not reflect the additional volume that is generated due to phase change

and only represent the bulk liquid flow.

Hence, for this step we reformulate the α equation starting from Eq. (4.21). Here, instead

of substituting Eq. (B.12) on the R.H.S., velocity on the R.H.S. is also written in terms of

uL and uV . The resulting expression is given by,

dα

dt
+

∫
∂Ωi

I (uLI + uV (1− I)) · ndS = − ρV
(ρL − ρV )

∫
∂Ωi

(uLI + uV (1− I)) · ndS. (4.27)
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Combining uL terms and uV terms separately on the R.H.S., we get,

dα

dt
= −

(
1 +

ρV
ρL − ρV

)∫
∂Ωi

I (uL · n) dS − ρV
ρL − ρV

∫
∂Ωi

uV · ndS +
ρV

ρL − ρV

∫
∂Ωi

IuV · ndS.

(4.28)

Second term on R.H.S. is equal to zero due to vapor incompressibility (
∫
∂Ωi

uV · ndS = 0).

Note that this step assumes that vapor velocity is populated on faces of interfacial computa-

tional cells, which may be completely submerged in the liquid face. Hence, the assumption

inherently implies that fictional values populated for vapor beyond the interface also follow

the incompressibility condition. On further simplifying Eq. (4.28), it is reduced to,

dα

dt
= −

∫
∂Ωi

I


(

ρL
ρL − ρV

uL −
ρV

ρL − ρV
uV

)
︸ ︷︷ ︸

Effective face velocity

·n

 dS. (4.29)

Using this effective face velocity, we evaluate an effective face flux given as,

φnEffective,f =

(
ρL

ρL − ρV
unL,f +

ρV
ρL − ρV

unV,f

)
· n |Sf | , (4.30)

which is used to advect the additional volume obtained from the overfill or underfill.

The author would like to note that Eq. (4.29) has been derived with no major assumptions

besides bulk-phase incompressibility of liquid and vapor. Hence, Eq. (4.30) can ideally be

used directly to advect α. However, in practice, φEffective, that employs the values of both

uL and uV , is physically inconsistent for faces, which are completely submerged in liquid or

vapor. Switching between φL and φEffective depending on the instantaneous state of a face
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(completely submerged in liquid/vapor or intersected by the interface) requires complicated

book-keeping. Hence, it is only invoked for cases where the computational cell overshoots or

undershoots.

Finally, the evolution of α is composed of two parts:

1. At first, α is advected using Eq. (4.26). The flux value in advection term, represented

by φL,f refers to the volume flux associated with liquid bulk velocity.

2. The second step uses Eq. (4.30), which defines an effective volume flux, to transfer

additional fluid volume from computational cells that have α > 1 or α < 0.

4.3.2 Pressure - Velocity Coupling (Ghost Fluid Method)

After the interface advection, the density and viscosity values at cell centers is updated using

the new values of α. A whole-domain formulation is traditionally used for the solution of

momentum equation in the base, interIsoFoam solver, which uses the volume averaged value

of ρ and µ. This formulation is not consistent with the velocity discontinuity, characteristic of

a two-phase flow with phase change. To tackle this challenge, we present a hybrid approach

below. Instead of treating cells with 0 < α < 1 as mixture cells, we first categorize each

computational cell as either liquid or vapor (even the interfacial cells) depending on the

location of their cell centers relative to the interface as shown in figure 4.7. The geometric

volume of fluid method for advection of liquid volume fraction ensures that the interfacial

region is not diffused and a planar interface may be reconstructed from the α field with a

reasonable assumption that the interface curvature is larger than the grid size. Due to this

planar nature of a sub-grid interface, the location of cell-center can be easily defined to reside
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Figure 4.7: An instantiation of cells tagged as liquid or vapor to be treated as such in the
solution of momentum equation. Cell faces shared by a liquid and vapor cell have been
highlighted in red and are the interfacial faces, where the changes due to Ghost Fluid

Method are directly implemented.

either in the liquid or vapor side based on the following expression,

Ξn
i =


αni ≥ 0.5 Liquid Cells

αni < 0.5 Vapor Cells

, (4.31)

where Ξ identifies whether a computational cell is tagged as liquid or vapor. The definition

is in-line with a prior GFM implementation in finite volume framework by Vukčević et al.

[112], where they implemented the gravity force jump given in Eq. (4.1b).

Under this categorization, the momentum equation valid at each cell center is the single

phase momentum equation instead of the whole domain formulation. Numerically, each cell

assumes the density, and viscosity values that the cell-center is assigned based on Eq. (4.31).

For incompressible flows and Newtonian fluids, the momentum equation for a single phase
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can be written as,

d

dt

∫
Ωi

udV +

∫
∂Ωi

u (u · n) dS =−
∫

Ωi

∇pd
ρ
dV +

∫
∂Ωi

ν (∇u · n) dS. (4.32)

In solving Eq. (4.32) for cells near the interface, the velocity flux, pressure gradient, and

velocity gradient near the interface must be corrected to include the effect of jump conditions

defined by Eq. (4.1a) and Eq. (4.1b). These corrections must be implemented at all the faces

that lie between a liquid tagged cell and a vapor tagged cell, or mathematically represented

by,

(∂Γ)nj =


1 |Ξn

P − Ξn
N | > 0

0 |Ξn
P − Ξn

N | = 0

. (4.33)

Here ∂Γ is used to refer the computational cell faces that are shared by a liquid and vapor cell

(also referred as interfacial faces in the remaining text). A simple graphical representation of

the proposed concept is shown in figure 4.8. On performing any surface integral that includes

∂Γ in figure 4.8, care has to be taken for using a liquid value for liquid cell, and vapor value

for vapor cell. Hence, all interfacial faces must be populated with both liquid and vapor

values of a variable, like volume flux (φf ), or face normal pressure gradient (∇⊥f pd).

As the focus of this work is to capture the velocity discontinuity due to phase change

at the interface, we relax the sharp treatment of some of the terms in Eq. (4.32) and jump

conditions, Eq. (4.1a) and Eq. (4.1b), which converts the formulation into a hybrid approach.

These relaxations are:

• Surface Tension Jump (treated smoothly): The jump in pressure due to surface ten-
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Figure 4.8: An example pair of cells showing them tagged as liquid and vapor, and
highlighting the interfacial face between them.

sion given by σκ is not treated sharply in this treatment. We continue to handle this

interfacial discontinuity using the existing CSF formulation [133], where the capillary

force pressure jump is smoothed close to the interface. The related expression given by

Eq. (4.13) is added to Eq. (4.32) to reflect this jump in pressure.

• Viscous forces (µ = 0): Viscosity is assumed to be zero due to its relative unimportance

for the intended bubble dynamics applications.

• Gravitational forces (g = 0): Dynamic pressure (pd) used in OpenFOAM calculations

as a proxy for pressure has a jump in its value associated with gravitational forces as

shown in Eq. (4.1b). For the present work, it is assumed to be zero.

The extension of surface tension pressure jump using Ghost Fluid method would require a

more robust method of curvature calculation, which adds another dimension of complexity

to the method. However, updates to the viscous and gravitational force calculations are
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straightforward. GFM Implementation of the gravitational jump for pd in OpenFOAM has

already been published by Vukčević et al. [112] and will be included in the solver at a later

stage of development.

With above simplifications, the final momentum equation that must be solved in each

computational cell is given by,

d

dt

∫
Ωi

udV +

∫
∂Ωi

u (u · n) dS =−
∫

Ωi

∇pd
ρ
dV +

∫
Ωi

σκ∇αdV . (4.34)

Along with this equation, the interfacial conditions that must be satisfied by velocity used

in the momentum flux represented by the advection term is given by,

uL,Γ · nΓ = ẋΓ · nΓ +
ṁ′′

ρL
, and (4.35a)

uV,Γ · nΓ = ẋΓ · nΓ +
ṁ′′

ρV
. (4.35b)

Finally, the evaluation of pressure term must follow the following jump conditions,

pV,Γ − pL,Γ = ∆pΓ = −ṁ′′ 2

(
1

ρV
+

1

ρL

)
, and (4.36a)

((
∇p
ρ

)
V,Γ

−
(
∇p
ρ

)
L,Γ

)
· nΓ = −

(
1

ρV
− 1

ρL

)
dṁ′′

dt
. (4.36b)

These jump conditions are imposed by using the Ghost fluid approach to evaluate the ad-

vection and pressure terms for liquid and vapor cells near an interface.

An important concept is introduced in Eq. (4.36b). In most previous formulations of
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GFM, the R.H.S. of this equation is assumed to be zero as described in §(4.1). However, a

detailed derivation to evaluate the jump in pressure gradient at the interface has been done

as part of this work starting from the general conservation expression given by Eq. (B.5). For

a good organization of the details related to this derivation, it has been presented in §(B.3)

along with a suitable test case verifying the validity of the expression given in Eq. (4.36b).

Intermediate Velocity

Following the established projection method of Chorin [124] to solve the momentum equation,

an intermediate velocity needs to be computed without contribution from the pressure term.

In the finite volume framework, this is accomplished in two steps. At first, we only consider

the temporal and advection terms from Eq. (4.34), which in its discretized form is given by,

u∗P − unP
∆t

|ΩP |+
∑
f∈∂ΩP

φnfu
r′

f = 0. (4.37)

Here, P refers to the computational cell for which the projection velocity (u∗P ) is evaluated

and ur
′

f refers to an implicit calculation of face value that is described below.

To simplify the following discussion on implementation of the jump conditions, we con-

sider the case of a liquid cell. Expanding Eq. (4.37) for a liquid cell, and writing the advection

term as a sum of pure liquid faces and interfacial faces, it gives,

u∗P − (uP )nL
∆t

|ΩP |+
∑

f∈∂ΩP /∂Γ

φnLfu
r′

f +
∑

f∈∂ΩP∩∂Γ

φnLfu
r′

Lf = 0. (4.38)

Here, ∂ΩP ∩∂Γ refers to the interfacial cell faces as defined in Eq. (4.33), and ∂ΩP/∂Γ refers
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to all other cell faces that circumscribe a computational cell. This distinction is graphically

represented in figure 4.9. Also note that in the temporal term, the quantity that denotes the

nth time step has been specialized to have a liquid value. If a computational cell has changed

from vapor to liquid due to interface motion over the current time step, the corresponding

value from the previous time step must be updated.

The face velocity used to compute volume flux φL,f (or φV,f in case of vapor cell) are

obtained by interpolation from the velocities stored at cell centers. Figure 4.9 depicts the

values stored for a typical GFM computational cell grid. The interpolated velocity for f ∈

Figure 4.9: An example computational cell grid, where the green cells represent liquid cells
and white cells represent vapor cells. The red highlighted cell boundaries are the interfacial

faces. Cells sharing an interfacial face are populated with two velocity values, one
corresponding to its original phase and another ghost value.

∂ΩP/∂Γ is simply given by,

ur
′

f =
1 + θ(f)w

2
u∗P +

1− θ(f)w

2
unN , (4.39)
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where θ(f) refers to the sign convention used in OpenFOAM related to the owner-neighbor

relation of a cell with the face, and w refers to the interpolation weight calculated depending

on the interpolation scheme used [116]. For interfacial faces (f ∈ ∂Γ), the ghost liquid value

of the neighbor cell must be employed to evaluate the face velocity, which is given by,

ur
′

L,f =
1 + θ(f)w

2
u∗P +

1− θ(f)w

2
(unN)ghostL .

ur
′

L,f =
1 + θ(f)w

2
u∗P +

1− θ(f)w

2

(
unN − (ṁ′′)

n
N

(
1

ρV
− 1

ρL

)
nnΓ

)
. (4.40)

Substituting Eq. (4.39) and Eq. (4.40) in Eq. (4.38) we get,

u∗P − (uP )nL
∆t

|ΩP |+
∑

f∈∂ΩP /∂Γ

(
1 + θ(f)w

2
u∗P +

1− θ(f)w

2
unN

)
φnLf+

∑
f∈∂ΩP∩∂Γ

(
1 + θ(f)w

2
u∗P +

1− θ(f)w

2

(
unN − (ṁ′′)

n
N

(
1

ρV
− 1

ρL

)
nnΓ

))
φnLf = 0. (4.41)

On rearranging all the terms, Eq. (4.41) can be written as,

(
|ΩP |
∆t

+
∑
f∈∂ΩP

(
1 + θ(f)w

2

)
φnLf

)
u∗P = (uP )nL

|ΩP |
∆t
−
∑
f∈∂ΩP

(
1− θ(f)w

2

)
unNφ

n
Lf

+
∑

f∈∂ΩP∩∂Γ

(
1− θ(f)w

2

)
(ṁ′′)

n
N

(
1

ρV
− 1

ρL

)
nnΓφ

n
Lf .

(4.42)

Succinctly, the coefficient of u∗P on the left hand side of the above equation is termed as AP

and the right hand side is termed H(un). Equation (4.42) represents the equation for a liquid

cell. Compared to the solver without phase change, we have one additional component given

by the last term that will be zero in the absence of phase change leading to a continuous
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velocity field.

The expression defined in Eq. (4.42) was specialized for a liquid cell. For a vapor cell, it

will have a similar form except that the velocity correction term for interfacial faces changes

its sign, and the first step for a vapor cell looks like,

(
|ΩP |
∆t

+
∑
f∈∂ΩP

(
1 + θ(f)w

2

)
φnV f

)
u∗P = (uP )nV

|ΩP |
∆t
−
∑
f∈∂ΩP

(
1− θ(f)w

2

)
unNφ

n
V f

−
∑

f∈∂ΩP∩∂Γ

(
1− θ(f)w

2

)
(ṁ′′)

n
N

(
1

ρV
− 1

ρL

)
nnΓφ

n
V f .

(4.43)

For a liquid cell near the interface, the intermediate velocity corresponding to the liquid

phase will be evaluated by Eq. (4.42). But in a finite volume framework, these values are

interpolated at the faces before they are used in the Poisson equation. Hence, u∗P value in

the adjacent vapor cell must be corrected to obtain a consistent liquid value at the faces.

The same should be implemented for vapor cells. As a result, on the interpolation of these

cell-centered projection velocities calculated from Eq. (4.42) and Eq. (4.43), each interfacial

face will have two separate face values, each corresponding to a liquid and vapor phase.

The associated volume flux from these expressions of intermediate velocity can be math-

ematically written as,

φ∗f =



(
H(un)
AP

)
f
· Sf f /∈ ∂Γ(

H(un)
AP

)
f
· Sf −

(
1−θ(f)w

2

)
(ṁ′′)nN

(
1
ρV
− 1

ρL

)
nnΓ · Sf f ∈ ∂Γ and solving for liquid cell(

H(un)
AP

)
f
· Sf +

(
1−θ(f)w

2

)
(ṁ′′)nN

(
1
ρV
− 1

ρL

)
nnΓ · Sf f ∈ ∂Γ and solving for vapor cell

.

(4.44)
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Surface tension term from Eq. (4.34) is added to Eq. (4.44) to obtain the final projection

velocity flux. The final expression is given by,

φrf = φ∗f +

(
1

AP

)
f

(σκ)n+1
f

(
∇⊥f α

)n+1 |Sf | (4.45)

Poisson Equation

The contribution of pressure is added to correct Eq. (4.45) and obtain the final velocity flux

given by,

φm+1
f = φrf −

(
1

AP

)
f

1

ρ

(
∇⊥f pd

)m+1 |Sf | . (4.46)

If the face is shared by computational cells of the same phase, the φ values are the same for

equations written for either cell. However, if f is an interfacial face, φ values used at the face

for liquid cell are different from the case when the face values are used for the sharing vapor

cell as described in Eq. (4.44).

Taking a divergence based on these fluxes over all the faces of a computational cell gives,

∑
f∈∂ΩP

θ(f)φm+1
f =

∑
f∈∂ΩP

θ(f)φrf −
∑
f∈∂ΩP

(
1

AP

)
f

θ(f)

ρ

(
∇⊥f pd

)m+1 |Sf |,

which due to continuity of each cell (treated either as liquid or vapor) reduces to,

∑
f∈∂ΩP

θ(f)

(
1

AP

)
f

(
1

ρ

)(
∇⊥f pd

)m+1 |Sf | =
∑
f∈∂ΩP

θ(f)φrf . (4.47)

While the R.H.S. in Eq. (4.47) is evaluated using Eq. (4.45), left hand side must be
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corrected to evaluate the pressure gradient for either liquid or vapor phase at the interfacial

cells. The corrections can be derived by substituting the pressure jump conditions, Eq. (4.36a)

and Eq. (4.36b) in the corrections proposed using Ghost Fluid Method in §(C.4). At the

interfacial cells, if face f is owned by a liquid cell,

(
1

AP

)
f

(
1

ρL

)(
∇⊥f pd

)
L

=

(
1

AP

)
f

1

ρ∗

(
(pd −∆pΓ)N − (pd)P

∆x
+
ρL − ρV
ρL

dṁ′′

dt
(1− λf )

)
|Sf | , and

(4.48a)(
1

AP

)
f

(
1

ρL

)(
∇⊥f pd

)
V

=

(
1

AP

)
f

1

ρ∗

(
(pd)N − (pd + ∆pΓ)P

∆x
− ρL − ρV

ρV

dṁ′′

dt
λf

)
|Sf | ,

(4.48b)

where λf is a non-dimensional quantity representing an approximate distance of the interface

from the cell centers given by Eq. (C.2). Similarly, if face f is owned by a vapor cell,

(
1

AP

)
f

(
1

ρL

)(
∇⊥f pd

)
L

=

(
1

AP

)
f

1

ρ∗∗

(
(pd)N − (pd −∆pΓ)P

∆x
+
ρL − ρV
ρL

dṁ′′

dt
λf

)
|Sf | , and

(4.49a)(
1

AP

)
f

(
1

ρL

)(
∇⊥f pd

)
V

=

(
1

AP

)
f

1

ρ∗∗

(
(pd + ∆pΓ)N − (pd)P

∆x
− ρL − ρV

ρV

dṁ′′

dt
(1− λf )

)
|Sf | .

(4.49b)

Using the updated gradient calculations in Eq. (4.47) results in a symmetric linear system

of equations, which is solved using the preconditioned conjugate gradient (PCG) method.

Note that Eq. (4.48) and Eq. (4.49) are used for the interfacial faces. The evaluated value

for pd is then used to calculate the pressure gradient flux at the cell faces needed to update
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the value of volume flux defined in Eq. (4.46). The corrected flux is reconstructed to get

cell-centered velocity values as described in [116] and repeated here for completeness,

um+1
P = u∗P +

(
1

AP

)( ∑
f∈∂ΩP

Sf ⊗ Sf
|Sf |

)−1

·

 ∑
f∈∂ΩP

φ
m+1
f − u∗f · Sf(

1

AP

)
f

 Sf
|Sf |

 . (4.50)

At the interfacial faces, both φf and u∗f will have two values corresponding to the liquid

and vapor phase. These values are carefully used in the reconstruction of liquid or vapor

cell-centered value near the interface, respectively.

4.4 Solver Development: ghostFluidPhaseChangeFoam

A graphical work flow of the developed OpenFOAM code is presented below in figure 4.10.

4.4.1 Phase Change Tests

Two tests are presented in this section. The first test pertains to the α advection equation

and assesses that the interface advection due to a source term is done correctly as defined in

§(4.3.1). The second test is for the solution of pressure and velocity along with an advecting

interface. It is a one-dimensional test called the Stefan-Flow problem, which assesses the

implementation of the pressure-velocity coupling using the Ghost Fluid Method in the PISO

iteration as defined in §(4.3.2).
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Pure advection due to mass flux source at the interface

To test the correct implementation of α advection under the effect of a source term, a simple

test case is used. A two-dimensional domain of size ([0, 8× 10−3] , [0, 8× 10−3]) is initialized

with a circular zone at the geometric center of the domain with radius Ro = 10−3. This region

is initialized with α = 0 and the rest of the domain with α = 1 as shown in figure 4.11 (a). The

pressure and velocity solution is turned off. Both bulk fluids are assumed to remain stationary

and simply a constant interface velocity is prescribed, ẋΓ · nΓ = −2 × 10−3 that is used to

move the interface. The negative sign is because of the interface normal pointing inwards

(nΓ = −r̂, where r̂ refers to the radial direction corresponding to the initialized circle).

Bulk velocity inside the disk remains equal to zero, while a radial velocity is analytically

prescribed outside the disk. In addition to advection in the α = 1 region due to the bulk

flow, values of α change due to the source term associated with the phase change process,

and the information is transferred to other cells using the effective flux defined in §(4.3.1).

Figure 4.11: Alpha field with α = 0.5 contour (in white) for a circle growing purely due to
a prescribed mass flux at the interface. Results shown for grid size 64× 64.

Analytically, the circle should expand with the interface speed determining the rate of
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change in the circle radius, i.e., the circle radius should increase linearly. This is correctly

obtained in the results shown in figure 4.12. Here, Nx refers to the grid size in one direction,

Figure 4.12: Circle radius growing purely due to a prescribed mass flux at the interface.

and the disk radius obtained from simulations is simply evaluated as,

Rsimulation =

( ∑
i∈All cells

(1− αi)Ωi

)1/3

, (4.51)

where Ωi is the ith computational cell volume. Figure 4.12 clearly shows a converging trend

of the bubble radius results and it affirms that the implementation of α advection under the

influence of interfacial source has been done correctly.

1-D Stefan Flow

In this section, we present a 1-D test for phase change, which is commonly referred to as the

Stefan Flow test [54, 60]. A graphical representation for this flow is shown in figure 4.13.

In this simple configuration, the vapor domain is near the wall and the liquid domain

is closer to an outlet. Due to vaporization at the interface (xΓ(t)), the extent of the vapor
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Figure 4.13: Representation of the liquid-vapor system in Stefan Flow.

domain increases. The vapor side remains stationary, while velocity jump results in an out-

ward flow in the liquid phase (in this case a flow towards the right side of the domain).

Physically, the vaporization occurs due to the temperature difference between the liquid and

vapor phases. However, the current formulation has not been extended to solving the energy

equation. Therefore, we simply include an analytical expression in the formulation that cal-

culates the mass flux due to phase change (ṁ′′(t)) at the interface resulting in the ensuing

flow. This mass flux is given by [134],

ṁ′′ (t) =
kV
hLV

∆T√
παV t erf (ς)

e−ς
2

, (4.52)

where hLV refers to the latent heat of vaporization, kV is the thermal conductivity of vapor

phase, ∆T = Twall − Tsat is the temperature difference which causes the vaporization, αV is

vapor thermal diffusivity, and ς is obtained from the solution of a transcendental equation

given by [134],

ς exp
(
ς2
)

erf(ς) =
CpV ∆T√
π hLV

. (4.53)

Here, CpV refers to the specific heat of vapor at constant pressure. All the parameters defined

for this case are tabulated in table 4.3.
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Fluid ρ k Cp µ σ hLV
kg/m3 W/m-K J/kg-K Pa-s N/m J/kg

Vapor 0.597 0.025 2030 1.26 ×10−5 0.059 2.26 ×106

Liquid 958.4 0.679 2030 2.80 ×10−4 - -

Table 4.3: Thermophysical properties for Stefan Flow.

With Twall = 383 K and Tsat = 373 K, the function for ṁ′′ (t), which is directly imple-

mented in the solution is given by,

ṁ′′ (t) =
1.8144× 10−4

√
t

. (4.54)

Also, the analytical expression for the location of interface, and liquid velocity as a function

of time are given by,

xΓ(t) = 6.0785× 10−4
√
t, and (4.55)

uL(x ≥ xΓ, t) =
3.0373× 10−4

√
t

. (4.56)

The system is initialized with values at t = 0.1. Interface position and liquid velocity values

obtained in the simulation are compared with the analytical expressions defined in Eq. (4.55)

and Eq. (4.56) for t ∈ [0.1, 0.3].

The time series of interface location and liquid velocity in figure 4.15 shows that the

advection of liquid volume fraction that implicitly captures the interface location, and the

solution of the momentum equation using the Ghost Fluid method has been implemented

accurately. The author would like to remind the reader that the energy equation and eval-

uation of mass flux are not incorporated in this solution and that Eq. (4.54) was used to
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(a) Interface position as the flow evolves in time. (b) Time variation of the uniform liquid velocity,
uL(x, t) = uL(t).

Figure 4.14: Comparison of phase change solver solutions with analytical values for Stefan
flow test case.

populate the mass flux values in the 1D domain.

An important distinction in the method proposed in §(4.3), compared to published phase

change work, is the implementation of pressure gradient jump at the interface that occurs

due to phase change. The pressure profile at two distinct times is presented in figure 4.15a.

The analytical pressure profile matches quite well with the results from the pressure Poisson

solution for the Stefan flow. The previous phase change methods [58, 60, 83, 89, 93, 97]

that presented the results for Stefan flow have not provided the pressure profile obtained in

the study. Furthermore, the method described here also captures the velocity discontinuity,

sharply as shown in figure 4.15b. While the velocity profile is shown only for one case, the

sharp profile remained consistent for all grid sizes tested in this work.
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(a) Pressure as a function of x at t = 0.2 and
t = 0.3. Analytical pressure profile is shown with
lines and the simulation values are shown with

marker points in the plots.

(b) Velocity profile of Stefan Flow at three
distinct time points. Result is shown for

N = 640 case.

Figure 4.15: Spatial pressure and velocity variation capturing sharp changes at the
interface.
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Chapter 5

Summary & Future Work

The primary goal of this thesis was to provide a robust, theoretical model for simulation

of single vapor bubbles, motivated by the growing use of controlled vapor bubble dynamics

in improved heat transfer processes [14], medical technologies [18, 41], and reduced erosion

damage [135]. Two different approaches for the bubble analysis were used. The first approach

used a spherically-symmetric physical system that considerably simplifies the governing sys-

tem of equations and the other approach aims to solve the complete three dimensional Navier

- Stokes equations for a two-phase flow undergoing phase change through a highly resolved

simulation (HRS) with only one main assumption that the bulk phases are incompressible.

While the former approach is useful for a fundamental analysis of the bubble growth and

collapse mechanisms [3, 10], the latter becomes necessary to capture the naturally occurring

asymmetries in the system like presence of walls [11, 136], gravitational forces [23, 137], bulk

liquid flow [92], or presence of multiple bubbles [138], which would almost inevitably be the

case in any application.

Our approach and the findings from the 3-part analysis on vapor bubbles, liquid-vapor
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phase change processes, and numerical simulations have been summarized below:

• First, we presented the development of a numerical model called Compressible Vapor

Saturated Interface solution or CVSI solution for a spherically symmetric system of a

collapsing bubble. This model was implemented and solved in MATLAB for different

cases of single vapor bubble collapse in an initially uniform liquid environment. The

study extended over a wide range of thermo-physical conditions for bubble collapse,

which has traditionally been categorized into thermal, intermediate, and inertial types.

An analysis was done on the less studied category of bubble collapse that undergoes

a moderately fast process, i.e., intermediate collapse. Such a collapse was shown to

exhibit large pressure and temperature variations during the entire collapse period,

a characteristic unique to this intermediate range of conditions. This was found to

be related to the bulk motion of vapor inside the bubble, which is often ignored in

spherical bubble analysis. Additionally, a generalized framework to categorize different

system conditions of bubble collapse was also provided, where the distinctions between

a very slow collapse, intermediate collapse, and fast collapse were redrawn [3]. A key

takeaway from this distinction was the notable effect of the rate of change in far-field

pressure conditions that initiate a collapse on the ensuing rate of collapse.

• The next step in this thesis was to review existing HRS methods that have been used

in the literature to study vapor bubbles. It was identified that the assumptions of vapor

incompressibility and constant interface temperature, taken almost universally by such

methods have not been verified by these studies. Prior experience with the CVSI model

developed for bubble collapse had shown that even for bubble growth, variations in
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interface temperature, and vapor density can be expected. Hence, the aforementioned

HRS assumptions were assessed as a separate study by using the canonical case of bub-

ble growth [1]. Even for a single growing spherical bubble, this assumption was found

to be limiting for an initial period of the bubble lifetime. During the initial stages of

bubble growth, vapor pressure, temperature, and density were found to exhibit notice-

able variation in time, which cannot be ignored. Therefore, an analytical expression

was derived that can approximate the extent of this initial period of bubble growth.

This approximation can be used as a threshold beyond which the contemporary HRS

assumption of incompressibility can be used. Moreover, it highlighted the necessity to

reassess the assumptions used in HRS methods on a case-by-case basis.

• Through the review of HRS methods, it was also recognized that an easy to implement,

and scalable framework to study phase change problems like vapor bubble dynamics,

was not present. It also helped identify that the primary challenge of phase change

methods is to capture the discontinuity of velocity observed close to an interface. A

useful method implemented to capture this discontinuity is called the Ghost Fluid

Method (GFM). Interestingly, we highlighted that the existing implementations of

GFM assume that phase change does not cause a jump in the pressure gradient at the

interface, which is shown to be inaccurate even for a spherical growing bubble in this

work. Hence, we have proposed a new Finite-Volume based phase change HRS method

implemented in the scalable environment of OpenFOAM. The capture of interface ad-

vection under bulk flow with phase change was improved by proposing a concept of

effective flux that can be used for interfacial faces to transport the extra fluid generated
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due to phase change. Secondly, the GFM approach for the pressure-velocity coupling of

a two-phase flow was modified to capture the pressure gradient jump. A detailed deriva-

tion to obtain an expression for this jump has also been presented. One-dimensional

tests has been conducted as a proof of concept, which have given promising results for

further development.

While fundamental improvements to the phase change numerical solver development

have already been proposed and implemented, the completion of such a solver is a massive

undertaking and several future steps have been listed below to advance this development:

• Energy Equation: The GFM idea proposed for pressure solution in §(4.3) can be

directly applied to solve the advection-diffusion equation for temperature in both liquid

and vapor phases near the interface.

• Evaluation of Mass Flux: Due to the dependence of mass flux calculation at the

interface on temperature profile Eq. (4.1c), and the evaluation of ghost temperature

values on the calculation of mass flux, an iterative method must be implemented. An

initial solution for the advanced value of temperature (T n+1) can be obtained using the

temperature gradient jump defined from the mass flux value of the previous time step

(ṁ′′ n). Using the updated values of T , and setting the interface temperature as Tsat,

the new value of ṁ′′ can be evaluated and the energy equation solution re-evaluated.

• Populating Ghost Values: The value for mass flux due to phase change, which is

only physically present at the interface, has to be populated in cell centers of interfacial

and adjacent cells. This is needed to calculate ghost velocity values in those cells. This

requires a constant-normal wise extrapolation of liquid temperature gradient at the
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interface ((∇TL)Γ) on the vapor side, and vapor temperature gradient at the interface

((∇TV )Γ) on the liquid side. These values can then directly be used with Eq. (4.1c)

to populate mass flux values in the interfacial region (ΩΓ). Such an extension may be

adopted from previous works [54, 60, 93], which have implemented a similar concept.
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Appendices
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Appendix A

Numerical Convergence of CVSI

Model Solutions

The numerical convergence behavior of the predictions from the CVSI model was evaluated

by considering the bubble radius versus time curves for a typical case of thermal, intermediate

and inertial dominated collapse. The numerical parameters invoved are (ζ, sL, sV , nL, nV ).

The extent of the liquid domain is determined by ζ, which is employed as a multiplier of

the initial bubble radius, Ro. Grid compression near the interface is employed to reduce the

overall computational burden and is controlled by the parameters sL in the liquid domain

(Eq. (2.31)) and sV in the vapor domain (Eq. (2.33)). The total number of liquid and

vapor computational cells is denoted by nL and nV , respectively. In all of the computations

presented in the paper, we employ a value of sL = 5 and sV = 5 to ensure an adequate level

of grid compression, and employ a corresponding value of nL and nV to ensure numerical

convergence as detailed below.

The first numerical test corresponds to the calculation of liquid temperature and the
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results are presented in figure A.1. In these calculations the following numerical parameters

are held fixed at ζ = 2, sL = 5, sV = 5, and nV = 2000, and nL is systematically varied

from 10 to 1000. The results show that beyond a value of nL = 100, the predictions have

essentially converged.

(a) Thermal Collapse: Case # 1 from table 3.1
(b) Intermediate Collapse: Case # 2 from

table 3.1

(c) Inertial Collapse: Case # 6 from table 3.1

Figure A.1: Bubble radius versus time plot for different levels of grid refinement for liquid
temperature equation, Eq. (2.24), with ζ = 2, sL = 5, sV = 5, and nV = 2000.

A similar analysis is conducted for the vapor side with parameters ζ = 2, sL = 5, sV = 5,

and nL = 1000, and by varying the value of nV from 10 to 1000. The results show that
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time variation of bubble radius is practically independent of nV . This is expected because

in figure 2.3a, we show that vapor side heat transfer is almost negligible when compared to

liquid side heat transfer, and that it does not affect the rate of condensation during collapse.

(a) Thermal Collapse: Case # 1 from table 3.1
(b) Intermediate Collapse: Case # 2 from

table 3.1

(c) Inertial Collapse: Case # 6 from table 3.1

Figure A.2: Bubble radius versus time plot for different levels of grid refinement for vapor
temperature equation, Eq. (2.18), with ζ = 2, sL = 5, sV = 5, and nL = 1000.

Lastly, the effect of the extent of liquid domain is evaluated by changing the value of ζ =

{1.05, 1.1, 2, 5}. This test is important as the solution of liquid temperature equation governs
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the rate of condensation and the results should be independent of the far-field boundary

condition, where TL (r∞, t) = T∞. Number of liquid shells, nL was varied such that the

average size of the shells can remain constant for different liquid domain sizes and hence,

nL = (ζ − 1) × 100. The remaining parameters are held fixed at sL = 5, sV = 5, and

nV = 100. Except for a very small liquid domain represented by ζ = 1.05, the results are

independent of the value of ζ. There is practically no difference in the results of bubble radius

for all three categories due to change in the physical domain that is solved for the liquid

temperature equation.
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(a) Thermal Collapse: Case # 1 from table 3.1
(b) Intermediate Collapse: Case # 2 from

table 3.1

(c) Inertial Collapse: Case # 6 from table 3.1

Figure A.3: Bubble radius versus time plot for different extent of the liquid domain for
Eq. (2.24), with sL = 5, sV = 5, nL = 100, and nV = 100.
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Appendix B

Relevant Derivations for Phase

Change

Several expressions used in the derivations presented in §(4.3) were referred to this section

for a complete derivation.

B.1 Relation between Material Volume and Control

Volume with a surface of discontinuity

Let a generic material volume containing a surface of discontinuity be given by figure B.1.

If figure B.1 is treated as a material volume then it’s salient features are:

• ∂ΩL and ∂ΩV are material surfaces, which means that they move with the same speed

as the local fluid velocity
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Figure B.1: Generic two-phase volume with interface

• Γ is a surface of discontinuity within the volume Ω = ΩL ∪ ΩV . This implies that ΩL

and ΩV are not material volumes.

Using the fundamental transport equation [139], we can write the conservation equation

for a variable ψ as,

d

dt

∫
ΩL

ψdV =

∫
ΩL

∂ψ

∂t
dV +

∫
∂ΩL

ψ (u · n) dS +

∫
Γ

ψL (ẋΓ · nΓ) dS, and (B.1a)

d

dt

∫
ΩV

ψdV =

∫
ΩV

∂ψ

∂t
dV +

∫
∂ΩV

ψ (u · n) dS +

∫
Γ

ψV (ẋΓ · (−nΓ)) dS (B.1b)

On adding both these equations, a transport equation for ψ is obtained for the entire

material volume, given by,

d

dt

∫
Ω

ψdV =

∫
Ω

∂ψ

∂t
dV +

∫
∂Ω

ψ (u · n) dS +

∫
Γ

(ψL − ψV ) (ẋΓ · nΓ) dS. (B.2)

If figure B.1 is treated as a control volume then it’s salient features are:

• ∂ΩL and ∂ΩV are static surfaces, and
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• Γ is a surface of discontinuity within the volume Ω = ΩL ∪ ΩV . This implies that ΩL

and ΩV are not control volumes.

Similar to Eq. (B.1), we can now write the conservation equation for ψ as,

d

dt

∫
ΩL,i

ψdV =

∫
ΩL,i

∂ψ

∂t
dV +

∫
Γ

ψL (ẋΓ · nΓ) dS, and (B.3a)

d

dt

∫
ΩV,i

ψdV =

∫
ΩV,i

∂ψ

∂t
dV +

∫
Γ

ψV (ẋΓ · (−nΓ)) dS. (B.3b)

On adding both these equations, a transport equation for ψ is obtained for the entire control

volume, given by,

d

dt

∫
Ωi

ψdV =

∫
Ωi

∂ψ

∂t
dV +

∫
Γ

(ψL − ψV ) (ẋΓ · nΓ) dS. (B.4)

By considering a material volume which coincides with a stationary control volume at

an instant of time, a relation between the transport equation of a material volume given by

Eq. (B.2) and control volume given by Eq. (B.4) can be established. This is given by,

d

dt

∫
Ω

ψdV =
d

dt

∫
Ωi

ψdV +

∫
∂Ωi

ψ (u · n) dS. (B.5)

B.2 Generalized equation for velocity divergence for a

Material Volume

Without phase change, ∇ · u or
∫
∂Ωi

u · ndS is equal to zero for two incompressible fluids in

the bulk phases as well as across the interface. This does not hold true for phase change. For
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a material volume enclosing a liquid-vapor interface, the velocity divergence can be written

as,

∫
∂Ωi

u · ndS =

∫
∂ΩV

uV · ndS +

∫
∂ΩL

uL · ndS. (B.6)

On adding and subtracting the vapor and liquid side integrals near the interface in Eq. (B.6)

gives,

∫
∂Ωi

u · ndS =

∫
∂ΩV

uV · ndS +

∫
Γ

uV,Γ · (−nΓ) dS (B.7)

+

∫
∂ΩL

uL · nΓdS +

∫
Γ

uL,Γ · nΓdS (B.8)

−
∫

Γ

uL,Γ · ndS −
∫

Γ

uV,Γ · (−nΓ) dS. (B.9)

Here nΓ is the interface normal pointing from liquid to vapor. Combining like integrals gives,

∫
∂Ωi

u · ndS =

∫
∂ΩV ∪Γ

uV · ndS +

∫
∂ΩL∪Γ

uL · ndS +

∫
Γ

(uV − uL)Γ · nΓdS. (B.10)

Considering that both liquid and vapor phases are incompressible, an integral completely

surrounding the liquid and vapor phases will be equal to zero. Hence, Eq. (B.10) simplifies

to,

∫
∂Ωi

u · ndS =

∫
Γ

(uV − uL)Γ · nΓdS. (B.11)
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Expressions for (uV,Γ · nΓ) and (uL,Γ · nΓ) are obtained from Eq. (4.1a) and substituted in

Eq. (B.12) to give,

∫
∂Ωi

u · ndS =

(
1

ρV
− 1

ρL

)∫
Γ

ṁ′′dS. (B.12)

In cases without phase change ṁ′′ will be equal to zero at the interface and divergence of

velocity will be zero throughout the domain as expected.

B.3 Jump in pressure gradient at the interface due to

phase change

Consider an interfacial control volume as shown in figure B.2. If the liquid in this volume

Figure B.2: Control volume (Ωi) that includes an interface between the liquid (blue) and
vapor (green) phases. The red dot denotes the center of the control volume.

is assumed to be behave as ghost vapor, the momentum equation for such a volume can be
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written as,

d

dt

∫
Ωi

uV dV +

∫
∂Ωi

uV (uV · n) dS = − 1

ρV

∫
Ωi

∇pV dV , (B.13)

where viscous and body forces have been assumed to be zero, and ∂Ωi refers to the boundary

of the control volume. In the same way, if vapor is assumed to behave as a ghost liquid, a

liquid momentum equation can be written for the same volume as,

d

dt

∫
Ωi

uLdV +

∫
∂Ωi

uL (uL · n) dS = − 1

ρL

∫
Ωi

∇pLdV , (B.14)

Subtracting Eq. (B.13) from Eq. (B.14) and rearranging the terms, we can write,

∫
Ωi

(
∇pV
ρV
− ∇pL

ρL

)
dV =

d

dt

∫
Ωi

(uL − uV ) dV +

∫
∂Ωi

(uL (uL · n)− uV (uV · n)) dS.

(B.15)

Both liquid and vapor values are assumed to be known at all points either directly from

fluid property or evaluated as a ghost value. The relation that defines the difference between

liquid and vapor velocity at a location can be obtained from Eq. (4.1a) given by,

JuK = uV (x, t)− uL (x, t) = ṁ′′ (x, t)

(
1

ρV
− 1

ρL

)
nΓ. (B.16)

This equation takes the assumption that tangential velocity along the interface remain con-
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tinuous between liquid and vapor phases, which is mathematically summarized as,

uL − (uL · nΓ) nΓ = uV − (uV · nΓ) nΓ. (B.17)

To enforce Eq. (B.16) away from the interface, the interfacial values of mass flux due to

phase change (ṁ′′) and interface normal (nΓ) must be extended in the entire volume. It is

assumed that these quantities are known at all locations, x ∈ Ωi, using a constant normal-

wise extrapolation given by,

∂ṁ′′

∂nΓ

= 0. (B.18)

On substituting Eq. (B.16) in Eq. (B.15) we get,

∫
Ωi

(
∇pV
ρV
− ∇pL

ρL

)
dV = − d

dt

∫
Ωi

ṁ′′
(

1

ρV
− 1

ρL

)
nΓdV

+

∫
∂Ωi

(
uL (uL · n)−

(
uL + ṁ′′

(
1

ρV
− 1

ρL

)
nΓ

)((
uL + ṁ′′

(
1

ρV
− 1

ρL

)
nΓ

)
· n
))

dS.

(B.19)

The right hand side can be reduced to give,

∫
Ωi

(
∇pV
ρV
− ∇pL

ρL

)
dV = −

(
1

ρV
− 1

ρL

)
d

dt

∫
Ωi

ṁ′′nΓdV

−
∫
∂Ωi

uLṁ
′′
(

1

ρV
− 1

ρL

)
(nΓ · n) dS

−
∫
∂Ωi

ṁ′′
(

1

ρV
− 1

ρL

)
nΓ (uL · n) dS

−
∫
∂Ωi

(
ṁ′′
(

1

ρV
− 1

ρL

))2

nΓ (nΓ · n) dS (B.20)
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This is a vector equation and consequently the equality should specifically hold in the direc-

tion of the interface normal as well. Equation (B.20) written in the interface normal direction

is given by,

∫
Ωi

s
∇p
ρ

{
· nΓdV = −

(
1

ρV
− 1

ρL

)(
d

dt

∫
Ωi

ṁ′′dV −
∫
∂Ωi

(uL · nΓ) ṁ′′ (nΓ · n) dS

−
∫
∂Ωi

ṁ′′ (uL · n) dS −
∫
∂Ωi

(
ṁ′′
(

1

ρV
− 1

ρL

))
(nΓ · n) dS

)
. (B.21)

Now, using the Gauss divergence theorem, the surface integrals on R.H.S. can be written as

volume integrals to give,

∫
Ωi

s
∇p
ρ

{
· nΓdV = −

(
1

ρV
− 1

ρL

)(
d

dt

∫
Ωi

ṁ′′dV −
∫

Ωi

∇ · (uLnṁ′′nΓ) dV

−
∫

Ωi

∇ · (ṁ′′uL) dV −
(

1

ρV
− 1

ρL

)∫
Ωi

∇ · (ṁ′′nΓ) dV

)
. (B.22)

Here, uLn = uL · nΓ.

In this equation, the last term refers to the divergence of mass flux in the interface normal

direction, which is equal to zero due to Eq. (B.18). For the first divergence term on the R.H.S.

of Eq. (B.22),

∇ · (uLnṁ′′nΓ) =
∂ (uLnṁ

′′)

∂nΓ

,

which can be further reduced due to Eq. (B.18) to give,

∇ · (uLnṁ′′nΓ) = ṁ′′
∂uLn
∂nΓ

.
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Assuming that the size of control volume is small such that all points remain near the

interface, we can approximate uLn = ẋΓ · nΓ + ṁ′′/ρL due to Eq. (4.35a). On substituting

this it can be shown that,

∇ · (uLnṁ′′nΓ) ∼ ṁ′′
∂ (ẋΓ · nΓ)

∂nΓ

+
ṁ′′

ρL

∂ṁ′′

∂nΓ

, (B.23)

which is also equal to zero.

The remaining divergence term on the R.H.S. of Eq. (B.22) can be rewritten as,

∇ · (ṁ′′uL) = uL · ∇ṁ′′ + ṁ′′∇ · uL. (B.24)

Due to the incompressibility of liquid phase, ∇ · uL = 0 for the entire volume. To simplify

the last remanining term on R.H.S. of Eq. (B.24), we first define an orthogonal coordinate

system with directions, nΓ, z1 and z2. Using this system, that term can be written as,

∇ · (ṁ′′uL) = ut1
∂ṁ′′

∂z1

+ ut2
∂ṁ′′

∂z2

. (B.25)

While this term is not equal to zero in general, for most practical applications related to

bubble dynamics, the change in rate of mass flux along the interface tangent direction will

be very small. Hence, it can also be neglected.

Considering that all three terms related to the advection of mass flux due to phase change

in a generic interfacial control volume shown in figure B.2 are equal to zero, the jump in
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pressure gradient is found to be,

s
∇p
ρ

{
· nΓ = −

(
1

ρV
− 1

ρL

)
dṁ′′

dt
. (B.26)

B.3.1 Test for the derived expression of jump in pressure gradient

for vapor bubble

For a spherical vapor bubble with incompressible liquid and vapor phases, undergoing growth

or collapse, Plesset [10] derived that,

ṁ′′ = ρV Ṙ, and (B.27)

pL (r, t) = p∞ (t) + ρL

(
1

r

(
2RṘ2 +R2R̈

)
− 1

2

(
R4Ṙ2

r4

))
. (B.28)

under the assumption that ρV � ρL. Due to vapor incompressibility, velocity of vapor inside

the bubble is zero and the pressure is considered to be uniform. This implies that pressure

gradient of vapor remains zero (∇pV = 0).

Due to the sign convention observed in this work, interface normal points from liquid to

the vapor phase, and hence, nΓ = −r̂. At first, we evaluate the left hand side of Eq. (B.26),

which can be expressed as,

s
∇p
ρ

{
· nΓ =

(
∇pV
ρV
− ∇pL

ρL

)
Γ

· nΓ. (B.29)
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Considering the spherical symmetry of the bubble system, this equation can be rewritten as,

s
∇p
ρ

{
· nΓ =

(
1

ρV

∂pV
∂r

∣∣∣∣
Γ

− 1

ρL

∂pL
∂r

∣∣∣∣
Γ

)
(r̂) · (−r̂) . (B.30)

As noted earlier, the pressure gradient in the vapor phase remains zero. Pressure gradient

on the liquid side can be evaluated from Eq. (B.28) at r = R(t). Equation (B.30) can thus

be written as,

s
∇p
ρ

{
· nΓ = −

(
− 1

ρL

(
−ρLR̈

))
= −R̈. (B.31)

Hence, the jump in pressure gradient along the normal direction is proportional to the

acceleration of bubble interface.

Now, evaluating the right hand side of Eq. (B.26) with the assumption that ρV � ρL

gives,

−
(

1

ρV
− 1

ρL

)
dṁ′′

dt
= − 1

ρV

dṁ′′

dt
. (B.32)

On substituting the expression in Eq. (B.27) we get,

−
(

1

ρV
− 1

ρL

)
dṁ′′

dt
= − 1

ρV

(
ρV R̈

)
= −R̈. (B.33)

The final expression for both left and right hand sides of Eq. (B.26) simplifies to −R̈, which

validates the derived expression for the jump in pressure gradient along the normal direction

of an interface undergoing phase change for a spherical bubble.
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Appendix C

Derivations for Ghost Fluid Method

In this section, we derive the expressions for ghost values of a general variable Z, which is

characterized by the following jump conditions at the interface:

JZKΓ = ZV,Γ − ZL,Γ = ∆Z, and (C.1a)

Jη∇ZKΓ · nΓ = (ηV∇ZV − ηL∇ZL)Γ · nΓ = δΓ. (C.1b)

A ghost value is needed in the adjacent computational volume if a cell face lies between

a liquid and a vapor cell. Such faces are termed as interfacial faces identified by Eq. (4.33).

Graphical representation of such a system is shown in figure C.1a and figure C.1b. In the

case of figure C.1a, the pressure and velocity values stored at cell - center P belong to the

liquid phase, and those stored at the cell - center N belong to the vapor phase. To obtain

a liquid or vapor, velocity or pressure value at face f requires interpolation between cells P

and N with values belonging to the same phase. Hence, a ghost liquid must be defined for
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(a) An interfacial face (red line) owned by a
liquid cell (P) and shared by a neighbor vapor

cell (N).

(b) An interfacial face (red line) owned by a
vapor cell (P) and shared by a neighbor liquid

cell (N).

Figure C.1: Graphical representation of an interfacial face. In both figures, interface
normal (nΓ) points from liquid to vapor phase, and face normal (nf ) faces from the owner

cell (P ) to neighbor cell (N).

cell N and similarly a ghost vapor for cell P . The same holds true for figure C.1b.

Note that the interface is represented with a line parallel to the face. This is a simplifying

assumption for the Ghost Fluid Method. In all the following calculations, we primarily use

the jump in discontinuities along the face normal, nf . Distance of the interface is stored as

a ratio given by,

PΓ

PN
=

xΓ − xP
xN − xP

∼ αP − 0.5

αP − αN
= λj. (C.2)

This is similar to another Ghost Fluid work by Vukčević et al. [112]. The position of xΓ is

assumed to coincide with the iso-surface α = 0.5 for the purpose of pressure and velocity

calculations using GFM.
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C.1 Ghost values related to an interfacial face owned

by liquid cell

This situation is represented by figure C.1a. Firstly, using the gradient jump condition given

by Eq. (C.1b), an expression for the value of ZΓ can be obtained in terms of the known

values, ZP , ZN , ∆ZΓ, λj, and δΓ.

Using OpenFOAM terminology, each face has a designated owner cell, and a neighbor

cell. The sign convention dictates that the face normal (nf ), faces from its owner to the

neighbor. With this sign convention, a discrete form of Eq. (C.1b) can be written as,

ηV
ZN − ZV,Γ

(1− λj) ∆x
− ηL

ZL,Γ − ZP
λj∆x

= δΓ. (C.3)

Rearranging this equation,

λjηV (ZN − ZV,Γ)− ηL (1− λj) (ZL,Γ − ZP ) = δΓ (1− λj)λj∆x. (C.4)

Substitute Eq. (C.1a) in the above equation to give,

λjηV (ZN − ZL,Γ −∆ZΓ)− ηL (1− λj) (ZL,Γ − ZP ) = δΓ (1− λj)λj∆x. (C.5)
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Collecting all the ZL,Γ values on the left hand side gives,

(λjηV + (1− λj) ηL)ZL,Γ = λjηVZN + (1− λj) ηLZP − λjηV ∆ZΓ − δΓ (1− λj)λj∆x.

(C.6)

The final expression for ZL,Γ can be written as,

ZL,Γ = λj
ηV
η∗j
ZN + (1− λj)

ηL
η∗j
ZP − λj

ηV
η∗j

∆ZΓ − (1− λj)λj
1

η∗j
δΓ∆x, (C.7)

where η∗j = (λjηV + (1− λj) ηL). The vapor side value at the interface can be obtained by

adding ∆ZΓ to Eq. (C.7), which gives,

ZV,Γ = λj
ηV
η∗j
ZN + (1− λj)

ηL
η∗j
ZP + (1− λj)

ηL
η∗j

∆ZΓ − (1− λj)λj
1

η∗j
δΓ∆x, (C.8)

Liquid value in cell N

Using Taylor series expansion the liquid value evaluated at the interface in Eq. (C.7) can be

extrapolated to the vapor cell N . The expansion is written out as,

(
Zghost
L

)
N

= ZL,Γ + ((xN − xΓ) · nΓ)
∂ZL
∂nf

. (C.9)

Substituting the distance of cell-center N from the interface, and writing the derivative in

discrete form, gives,

(
Zghost
L

)
N

= ZL,Γ + (1− λj) ∆x

(
ZL,Γ − ZP
λj∆x

)
. (C.10)
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On rearranging and substituting the expression for ZL,Γ from Eq. (C.7), we get,

(
Zghost
L

)
N

=
1

λj

(
λj
ηV
η∗j
ZN + (1− λj)

ηL
η∗j
ZP − λj

ηV
η∗j

∆ZΓ − (1− λj)λj
1

η∗j
δΓ∆x

)
− 1− λj

λj
ZP .

(C.11)

Collecting like terms, adding and subtracting ZN , gives,

(
Zghost
L

)
N

= ZN +

{
1− λj
λj

(
ηL
η∗j
− 1

)
ZP +

(
ηV
η∗j
− 1

)
ZN

}
− ηV
η∗j

∆ZΓ − (1− λj)
1

η∗j
δΓ∆x.

(C.12)

Interestingly, the term within {...} can be considerably simplified to give a final form for(
Zghost
L

)
N

as,

(
Zghost
L

)
N

= ZN + (1− λj)
ηL − ηV
η∗j

(ZP − ZN)− ηV
η∗j

∆ZΓ − (1− λj)
1

η∗j
δΓ∆x. (C.13)

Vapor value in cell P

Using Taylor series expansion the vapor value evaluated at the interface in Eq. (C.8) can be

extrapolated to the liquid cell P . The expansion is written out as,

(
Zghost
V

)
P

= ZV,Γ + ((xP − xΓ) · nΓ)
∂ZV
∂nf

. (C.14)
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Substituting the distance of cell-center P from the interface, and writing the derivative in

discrete form, gives,

(
Zghost
V

)
P

= ZV,Γ − λj∆x
ZN − ZV,Γ

(1− λj) ∆x
. (C.15)

On rearranging and substituting the expression for ZV,Γ from Eq. (C.8), we get,

(
Zghost
V

)
P

=
1

1− λj

(
λj
ηV
η∗j
ZN + (1− λj)

ηL
η∗j
ZP + (1− λj)

ηL
η∗j

∆ZΓ − (1− λj)λj
1

η∗j
δΓ∆x

)
− λj

1− λj
ZN .

(C.16)

Collecting like terms, adding and subtracting ZP , gives,

(
Zghost
V

)
P

= ZP +

{(
ηL
η∗j
− 1

)
ZP +

λj
1− λj

(
ηV
η∗j
− 1

)
ZN

}
+
ηL
η∗j

∆ZΓ − λj
1

η∗j
δΓ∆x.

(C.17)

Similar to Eq. (C.13), the term within {...} can be considerably simplified to give a final

form for
(
Zghost
V

)
P

as,

(
Zghost
V

)
P

= ZP + λj
ηL − ηV
η∗j

(ZP − ZN) +
ηL
η∗j

∆ZΓ − λj
1

η∗j
δΓ∆x. (C.18)
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C.2 Ghost values related to an interfacial face owned

by vapor cell

A similar analysis is done for the case shown in figure C.1b, where the interfacial face is owned

by a cell that is tagged as vapor. Due to the direction of face normal pointing opposite to

interface normal and λj∆x defined as the distance between vapor cell & interface, all the

expressions obtained in the previous section are somewhat modified.

In its discrete form, Eq. (C.1b) can be written as,

ηV
ZV,Γ − ZP
λj∆x

− ηL
ZN − ZL,Γ

(1− λj) ∆x
= −δΓ. (C.19)

The negative sign on the R.H.S. is because nΓ · nf < 0, when the owner of interfacial face is

a vapor cell. Rearranging above equation gives,

(1− λj) ηV (ZV,Γ − ZP )− λjηL (ZN − ZL,Γ) = −δΓ (1− λj)λj∆x. (C.20)

Substitute Eq. (C.1a) in the above equation to give,

(1− λj) ηV (ZL,Γ + ∆ZΓ − ZP )− λjηL (ZN − ZL,Γ) = −δΓ (1− λj)λj∆x. (C.21)
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Collecting all the ZL,Γ values on the left hand side gives,

(λjηL + (1− λj) ηV )ZL,Γ = (1− λj) ηVZP + λjηLZN − (1− λj) ηV ∆ZΓ − δΓ (1− λj)λj∆x.

(C.22)

The final expression for ZL,Γ can be written as,

ZL,Γ = (1− λj)
ηV
η∗∗j

ZP + λj
ηL
η∗∗j

ZN − (1− λj)
ηV
η∗∗j

∆ZΓ − δΓ
1

η∗∗j
(1− λj)λj∆x, (C.23)

where η∗∗j = (λjηL + (1− λj) ηV ). The vapor side value at the interface can be obtained by

adding ∆ZΓ to Eq. (C.23), which gives,

ZV,Γ = (1− λj)
ηV
η∗∗j

ZP + λj
ηL
η∗∗j

ZN + λj
ηL
η∗∗j

∆ZΓ − δΓ
1

η∗∗j
(1− λj)λj∆x, (C.24)

Not repeating the analysis presented in §(C.1) for the same cases when the owner of

interfacial face is a vapor cell, we directly write out the final expressions. In this case, the

owner cell P is populated with a ghost liquid value, while the neighbor cell N is populated

with a ghost vapor value. These values are given by,

(
Zghost
L

)
P

= ZP + λj
ηV − ηL
η∗∗j

(ZP − ZN)− ηV
η∗∗j

∆ZΓ −
1

η∗∗j
δΓλj∆x, and (C.25)

(
Zghost
V

)
N

= ZN + (1− λj)
ηV − ηL
η∗∗j

(ZP − ZN) +
ηL
η∗∗j

∆ZΓ −
1

η∗∗j
δΓ (1− λj) ∆x (C.26)
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C.3 Interpolated values at interfacial face

Based on the four separate ghost value expressions obtained from Eq. (C.13), Eq. (C.18),

Eq. (C.25), and Eq. (C.26), Z can now be interpolated to get a liquid and vapor value at

the interfacial faces. These values are given by,

1. Liquid value at the interfacial face when face is owned by a liquid cell

(ZL)∗j =
ZP +

(
Zghost
L

)
N

2
,

which can be rewritten with substitution from Eq. (C.13) to give,

(ZL)∗j = (1− λj)
ηL − ηV
η∗j

ZP +
ηV
η∗j

ZP + (ZN −∆ZΓ)

2
− 1

2

1

η∗j
δΓ (1− λj) ∆x. (C.27)

2. Vapor value at the interfacial face when face is owned by a liquid cell

(ZV )∗j =
ZN +

(
Zghost
V

)
P

2
,

which can be rewritten with substitution from Eq. (C.18) to give,

(ZV )∗j = −λj
ηL − ηV
η∗j

ZN +
ηL
η∗j

(ZP + ∆ZΓ) + ZN
2

− 1

2

1

η∗j
δΓλj∆x. (C.28)

3. Liquid value at the interfacial face when face is owned by a vapor cell

(ZL)∗∗j =
ZN +

(
Zghost
L

)
P

2
,
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which can be rewritten with substitution from Eq. (C.25) to give,

(ZL)∗j = −λj
ηV − ηL
η∗∗j

ZN +
ηV
η∗∗j

(ZP −∆ZΓ) + ZN
2

− 1

2

1

η∗∗j
δΓλj∆x. (C.29)

4. Vapor value at the interfacial face when face is owned by a vapor cell

(ZV )∗∗j =
ZP +

(
Zghost
V

)
N

2
,

which can be rewritten with substitution from Eq. (C.26) to give,

(ZV )∗j = (1− λj)
ηV − ηL
η∗∗j

ZP +
ηL
η∗∗j

ZP + (ZN + ∆ZΓ)

2
− 1

2

1

η∗∗j
δΓ (1− λj) ∆x. (C.30)

C.4 Gradient calculations at interfacial face

Using the owner-neighbor values for individual phases, we can evaluate both liquid and vapor

gradient at an interfacial face. These expression are given by,

1. Liquid value at the interfacial face when face is owned by a liquid cell

(
∇⊥j Z

)∗
L

=

(
Zghost
L

)
N
− ZP

∆x
,

which can be rewritten with substitution from Eq. (C.13) to give,

(
∇⊥j Z

)∗
L

=
ηV
η∗j

(
ZN − ZP

∆x

)
+
ηV
η∗j

(
0−∆ZΓ

∆x

)
− 1

η∗j
δΓ (1− λj) . (C.31)
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2. Vapor value at the interfacial face when face is owned by a liquid cell

(
∇⊥j Z

)∗
V

=
ZN −

(
Zghost
V

)
P

∆x
,

which can be rewritten with substitution from Eq. (C.18) to give,

(
∇⊥j Z

)∗
V

=
ηL
η∗j

(
ZN − ZP

∆x

)
+
ηL
η∗j

(
0−∆ZΓ

∆x

)
+

1

η∗j
δΓλj. (C.32)

3. Liquid value at the interfacial face when face is owned by a vapor cell

(
∇⊥j Z

)∗∗
L

=
ZN −

(
Zghost
L

)
P

∆x
,

which can be rewritten with substitution from Eq. (C.25) to give,

(
∇⊥j Z

)∗∗
L

=
ηV
η∗∗j

(
ZN − ZP

∆x

)
+
ηV
η∗∗j

(
∆ZΓ − 0

∆x

)
+

1

η∗∗j
δΓλj. (C.33)

4. Vapor value at the interfacial face when face is owned by a vapor cell

(
∇⊥j Z

)∗∗
V

=

(
Zghost
V

)
N
− ZP

∆x
,

which can be rewritten with substitution from Eq. (C.26) to give,

(
∇⊥j Z

)∗∗
V

=
ηL
η∗∗j

(
ZN − ZP

∆x

)
+
ηL
η∗∗j

(
∆ZΓ − 0

∆x

)
− 1

η∗∗j
δΓ (1− λj) . (C.34)
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