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Abstract

This thesis presents a detailed analysis of vapor bubble dynamics and the interfacial process
of liquid-vapor phase change. A spherically symmetric model for single vapor bubble is
employed to present a numerical and theoretical analysis of the intermediate bubble collapse,
where in contrast to the thermally induced or inertia dominated collapse, both the effects
of liquid-vapor interfacial heat transfer and the advection of the surrounding liquid play an
important role. The contrast in thermal, intermediate, and inertial behavior of collapse is
represented in the form of a regime map defined by two non-dimensional quantities, By, and
&, which can be directly evaluated from the initial system conditions of collapse.

The same model is also used to simulate a spherically symmetric bubble growth configu-
ration to assess the physical validity of a constant interface temperature assumption made by
Highly-Resolved Simulation (HRS) studies aimed at solving flows undergoing phase change.
Results show that HRS predictions are inaccurate during the initial period of bubble growth,
which coincides with the inertial growth stage. A closed-form expression for a threshold time
is derived, beyond which the commonly employed HRS assumptions hold.

Forgoing the limitation of spherical symmetry, the second theme of this thesis is on the
development of a general two-phase flow solver that can handle the phase change process.
Under a finite volume framework using a geometric Volume of Fluid (gVoF) approach, two
key challenges with phase change flows have been addressed in this work, namely, (i) added
deformation of the interface, and (ii) capture of velocity and pressure gradient discontinuity
at the interface, both caused due to phase change. To track the interface in the gVoF scheme,

an effective flux is defined that captures the effect of phase change on interface motion. This
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method improves upon the source term approach used in other studies. For the solution of
velocity, and pressure, a ghost fluid approach has been implemented, which is the first of its

kind in a VoF-based phase change solver.
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Chapter 1

Introduction

Bubble dynamics refers to the motion of an enclosed gas-filled entity present inside a liquid
phase. Gas inside the bubble can be the vapor phase of the liquid that surrounds the bubble
or a non-condensable gas, like air in water. The focus of this study is on the former, pure
vapor bubbles. Such bubbles are oftentimes a point of interest in the context of boiling [4-
7] or cavitation [8-11] phenomenon. Boiling refers to the process of vapor formation that
occurs when liquid is heated beyond its saturation temperature (or boiling point); while
cavitation is a term used for vapor formation due to sudden decrease in local pressure below
its saturation value (de-pressurization) at the local temperature [12]. These phenomenon are

important for several applications [13], such as,

e for heat and mass transfer processes [14, 15] in the power, electronics, and chemical

industries,
e in dispersion processes [16, 17] in petroleum industry and atmospheric processes, and

e in surface erosion [18] processes for medical applications and in naval industry.



With such a wide range of applications, understanding the physics of bubbles has remained
an active field of research in the past century.

Early research on vapor bubbles mainly relied on experiments [9, 19-31], and theoretical
models that were essentially a reduced form of the Navier - Stokes equations [8, 10, 30, 32—40]
under strict, simplifying assumptions. It has been well-established that vapor bubbles have a
short length scale, and a small lifetime in physical processes, which implies clear limitations
for experiments used to study bubble dynamics. Yet, excellent experimental works have
provided insightful photographic evidence for bubble growth and collapse under various
conditions that allowed for the validation or improvement of existing theoretical models
[41]. While experiments have the factor of uncertainty, the theoretical analysis also tends
to be impractical for realistic systems due to the departure from sphericity, presence of a
multitude of bubbles, presence of multiple species/components, and a wide range of initial
thermo-physical conditions. Nonetheless, they have provided a strong fundamental basis
related to the governing mechanisms, and the relative importance of various physical factors
in the process of bubble growth or collapse.

More recently, with the advancement in computing power, direct numerical simulations
(DNS) have gained importance [11, 42-55]. Such analysis employs a solution for the numer-
ically discretized form of the partial differential equations governing the coupled behavior of
flow dynamics and energy transfer in a system of vapor bubbles. These methods are referred
to as DNS methods with the underlying assumption that all time and length scales associ-
ated with the physical process are resolved in these simulations. However, to avoid ambiguity
with different simulations, we prefer to refer to these methods as Highly Resolved Simulation

methods or HRS methods. While powerful, the development of a robust and stable technique



using this method is not straightforward. Besides, there is a rapid increase in the computa-
tional cost for even moderately complex applications. Each mode of research must synergize
with another, to provide meaningful insights about any process involving vapor bubbles.

This dissertation provides a numerical and theoretical take on the analysis for two of
the most common phenomenon associated with vapor bubbles, namely, bubble growth and
collapse. Furthermore, new ideas have been proposed as part of this thesis for the develop-
ment of a generalized HRS method that can simulate the phenomenon of the phase change
(boiling or condensation associated with vapor bubbles). Notably, the methods developed
in this dissertation are not specific to any particular application and can be used to study
any thermo-physical condition for vapor bubbles or phase change that satisfy the underlying
assumptions of the proposed method.

The research work has been divided into three chapters:

e The work in chapter 2 is a detailed analysis of the physics of bubble collapse (Bardia
and Trujillo [3]). At first, the existing literature about the physics of bubble dynamics
is reviewed. Based on that, a numerical model is developed for a canonical system of
single, spherical vapor bubbles from the two-phase momentum and energy equations.
This model is then employed to obtain a bubble collapse rate for a range of system
conditions. A closer look at the results revealed that certain cases of collapse had useful
similar characteristics, and hence, a novel categorization for the process of vapor bubble

collapse has been proposed.

e In chapter 3, the same model developed in chapter 2 is employed to study the limita-

tions in existing HRS methods (Bardia and Trujillo [1]). These limitations are associ-



ated with the assumptions used to simplify the complex 3-D, coupled two-phase flow

equations. An analytical expression is also proposed to circumvent these limitations.

e The third aspect of this research presented in chapter 4 describes the development
of an in-house numerical solver for highly resolved simulations of vapor bubbles. The
development focuses on the specific physical process of the phase change (evaporation or
condensation), which is a critical surface phenomenon governing the behavior of vapor
bubbles. The code has been developed using C++ within the OpenFOAM-v1706+
framework and builds upon the pre-existing two-phase fluid flow solver, interlsoFoam.

Two key components have been completed and presented as part of this thesis:

— A scalable and physically accurate tracking of the liquid-vapor interface, which

deforms under the effect of bulk flow as well as phase change, and

— A finite-volume Ghost Fluid Method (GFM) implementation to capture pressure
gradient, and velocity discontinuities at the liquid-vapor interface arising due to

phase change.

The novelty in this method especially stems from the enforcement of a jump in pressure
gradient often ignored in older works [54, 56-60] of phase change numerical methods.

These modifications have been tested without the solution of an energy equation.

Remaining aspects of the proposed phase change solver related to the temperature equation
and evaluation of the rate of phase change will be points of future work as described in

chapter 5.



Chapter 2

An Improved Categorization of Vapor
Bubble Collapse: Explaining the
Coupled Nature of Hydrodynamic

and Thermal Mechanisms

This chapter elaborates on two objectives that were identified to have remained unexplored

in the literature related to bubble collapse, namely:
1. An in-depth characterization of an intermediate category of vapor bubble collapse.

2. A new categorization that accounts for the effect of the transient period for changes in

system or far-field conditions.



2.1 Literature Review

Vapor bubble collapse occurs either due to an increase in the liquid pressure surrounding the
bubble (Py) or due to a decrease in the liquid temperature (7,) [61]. In one of the early works
on bubble collapse, Florschuetz and Chao [20] showed that the severity or nature of bubble
collapse is primarily governed by (i) the magnitude of liquid inertia or inertial mechanism
and (ii) the rate of interfacial heat transfer or thermal mechanism. They characterized the
relative importance of these two mechanisms by defining a non-dimensional parameter called
Bey¢. Physically, B.s¢ can be interpreted as a ratio of the time taken by a bubble to collapse
completely in a purely heat-transfer controlled and a purely liquid inertia controlled process.

Mathematically, Besy is given by

Co AT\ o oL
By = o? (Ppt=oe) OL [ PL 2.1
vt (Mo o [ (2.)

where subscript L denotes liquid, and V' denotes vapor. The variable 1 is a measure of
the non-linearity in the saturation Pressure-Temperature curve of a real fluid, and py is
the average vapor density of the bubble during the collapse process. The latent heat, liquid
density, specific heat, and thermal diffusivity are respectively given by hrv, pr, Cp 1, ar, and

R, is the initial bubble radius. Furthermore,

ATy = Tyoy (PT9%) — T, (2.2)

AP* = P7% — P, (Ts,), (2.3)



where AT, refers to the degree of liquid temperature sub-cooling, and AP* refers to the
maximum theoretical pressure difference. Subscripts sat and oo represent saturated values
and far-field system conditions, while the superscript maz refers to the maximum system
pressure.

Depending on the magnitude of By, Florschuetz and Chao [20] proposed three categories

of collapse:

B.sr < 0.05, Thermal Collapse
0.05 < Beyr < 10, Intermediate Collapse (24)

By > 10, Inertial Collapse.

A fundamental limitation of this categorization was that these distinctive values were pro-
posed only for systems where the collapse was initiated by a sudden, step change in system
pressure. But in any practical system, it takes a finite amount of time to increase the pressure
of the surrounding liquid to the desired level.

Disregarding this limitation for the moment, Florschuetz and Chao [20] showed that in
the limit as B.ys — 0, the process is initiated by a small pressure difference resulting in a slow
collapse, which is governed by a thermal mechanism [41] and is often described as thermal
collapse. In such a case, the pressure inside the bubble increases almost instantaneously
with the system pressure, maintaining a mechanical equilibrium at the bubble surface. It
implies that the temperature of the saturated vapor near the interface (T4 (Py(t))) increases,
while liquid away from the bubble remains sub-cooled at the far-field temperature, T,. The

subsequent development of a thermal boundary layer in the liquid phase and condensation



at the bubble surface drive the bubble collapse. Due to the importance of heat transfer
for such cases, the evolution of liquid temperature as a function of space and time for the
moving bubble interface has been the focus of studies in the past [33, 62, 63]. Other works
have studied the effect of buoyancy [23, 31, 64] because, due to the longer lifetime of such
bubbles, an appreciable bulk motion may be observed.

For B.fr > O (10), the process is initiated by a large difference between the bubble
pressure and far-field liquid pressure ( Py (t)) producing pronounced inward movement of the
surrounding liquid, and hence, the term liquid inertia collapse [8, 65]. For such cases, the
collapse occurs very rapidly and the bubble pressure remains close to its initial value, Py,
for nearly the entire process. Correspondingly, the value of the vapor temperature remains
nearly unchanged. Hence, only a small temperature difference persists between the bubble
and far-field liquid temperature separated by an almost infinitesimal boundary layer. Due to
the minute dimensions of this layer, the temperature gradient is sufficiently strong to balance
the heat released due to condensation.

The third, intermediate category of collapse is governed by both liquid inertia and heat
transfer and compared to the former two regimes has received much less attention. Unlike
thermal and inertial cases, no simplifying relations can be made regarding the vapor pressure
or temperature and the coupling of both inertial and heat transfer augments significantly the
complexity of the phenomenon. For instance, the bulk motion of vapor has been suggested [20]
as being important for the intermediate regime, which is commonly ignored in the analysis
of thermal and inertial collapse. However, a review of the literature shows that this vapor
side analysis for the intermediate collapse case is yet to be done. Furthermore, only a limited

number of experimental studies [28, 66, 67] have presented bubble radius and liquid pressure



data for vapor bubble collapse under conditions that correspond with 0.05 < B.;r < 10.
Even within these works, the key differences between intermediate collapse from the more
established thermal and inertial collapse are not analyzed.

Interestingly, intermediate bubble collapse behavior is important for a growing number
of studies on bubble condensation in nucleate boiling at high sub-coolings [28, 68-70], and in
the generation of micro-bubbles as a result of the collapse of a larger bubble [71-73] in heat
exchangers. System conditions reported for these applications in the literature are typically
in the range of 10 — 50 K sub-cooling at 1 atm pressure for water, which corresponds to
0.04 < B¢ < 3.0 for an initial bubble size of 1 mm, which places these studies within the
intermediate category.

Another salient aspect of bubble collapse, which is often ignored, is the rate of change
in far-field system pressure or temperature (system level metrics are represented by oo sub-
script) that cause the collapse to occur [20]. While the finite rate of pressure increase has
been reported in many previous works [20, 28, 29, 48], its effect on the collapse dynamics
has not been studied. Only the total magnitude of the pressure change is considered, which
may not even be realized if the collapse is faster than the system transient period. This
can modify the behavior of the collapse process, which may result in a deviation from the
regime characterization presented in Eq. 2.4, which is precisely what is found from the results

presented later in this chapter.
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2.2 Description of the Collapse Study

At first, we systematically delineate the differences in the dynamics of an intermediate col-
lapse from the well established thermal and inertial cases. Moreover, the role of vapor ve-
locity, often overlooked for collapse analysis, is investigated for intermediate systems. This
description lays the foundation for a new generalized bubble collapse categorization, which
is an extension of the work of Florschuetz and Chao [20]. Again in their work, summarized
by Eq. (2.4), the collapse processes were initiated by a step change in pressure, i.e. having
a Heaviside character in time. In the present study, we include the finite rate of rising in
system pressure instead of an instantaneous change.

In §(2.3), the set of governing equations for bubble dynamics is presented. The numer-
ical method used to solve this system of equations is described in §(2.3.2) followed by its
validation against experimental data. In §(2.4), a typical case belonging to the intermedi-
ate category of collapse is analyzed using the transient behavior of individual terms in the
Rayleigh-Plesset equation and energy balance at the interface. Comparison of vapor velocity
magnitude against the rate of collapse is also shown in §(2.4.1). The discussion is facilitated
with contrasting plots from the more established [20, 48, 62, 74] thermal and inertial regimes
of collapse. A generalized categorization of the collapse process is mathematically proposed
in §(2.5), which is subsequently supported by over 550 simulations to create a generalized

categorization map. Finally, the key details of this chapter are summarized in §(2.6).
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2.3 Compressible Vapor Saturated Interface (CVSI)

Solution for Bubble Collapse

In this section, we present a spherically-symmetric model for a single vapor bubble sur-
rounded by a homogeneous, pressurized liquid phase. Under spherical symmetry, the single

phase governing equations for mass, momentum, and energy are respectively,

op  10(pur®) 95
T e =0 (25)

oo\ _ 0P (N0 (100"
p@t u@r_ar 3 H@r r2  Or ’

p (36 ‘%) __p (iM) _ 1ok (G) ")

ot + UE r2  Or r2 or

(2.7)
+ O,

where p, u, P, i, k, e, k, and ® represent the density, radial flow velocity, pressure, dynamic
viscosity, bulk viscosity, internal energy, thermal conductivity, and viscous dissipation, re-

spectively.
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In addition, the interfacial mass, momentum, and energy transfer are given by

m'" = PL (R - UL,F) = pv <R - Uv,r) ) (2'8)

2c dpy (Ouy  uy dpr, (Our  ug,
(Py = Pu)p = 5 =" (up —uy)p + —5= (W_T)F__ (———>F (2.9)

1 9 (r*uy) 19 (r*ur)
oo (7 e )

r'n"hLV = kg, (%) — /{?V (aﬂ) s (210)
or ) or )r

where subscript I' denotes the value of a property at the interface. The variable T" stands for
temperature, m”, and o represent respectively mass flux due to phase change, and surface
tension. Quantities that are dotted reflect temporal derivative; for instance, the interface

velocity is written as,

. dR
k=0 (2.11)

The CVSI method bears various similarities with other past approaches [42, 48, 74, 75],
but the solution procedure has some unique characteristics described in §(2.3.2). Also, all
fluid properties used in the method for various calculations are obtained from the Engineering

Equation Solver [76].
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2.3.1 Description of the Physical System & the CVSI Model

The general system studied here consists of a vapor bubble with an initial radius, R(t =
0) = R,, surrounded by a liquid domain having a maximum radial extent of r... Initially,

the bubble interior is at thermal equilibrium with the liquid phase, such that

T(rel0,rw),t=0)="T, (2.12)

where r = 0 represents the bubble center location. The far-field location, r4, is sufficiently
removed from the bubble interface such that it does not affect the observed dynamics of

bubble collapse. The pressure inside the bubble corresponds to its saturated value given by

PV(T € [07 RO]at = 0) = PV,o = sat(Too)7 (213)

where subscript o refers to the initial value of a variable. Initially, the bubble is also at a

mechanical equilibrium with the surrounding liquid, hence, the system pressure is given by,

Poo(t = 0) = Pouy(Too), (2.14)

which is the same as Eq. (2.13). It can be shown that the capillary pressure difference due
to surface tension can be ignored for an initially large bubble.

The collapse of a bubble is triggered by increasing the system pressure [20, 28, 29, 77].



14

Here, the rate of increase is given by,

ngax - Psat<Too)
dPoo 0 S t S trise

t.;
— rise 2.15
% (2.15)

0 t> trise;
creating a far field pressure that rises linearly with time to P*** over a finite period, t,;sc.

Consequently, the far-field pressure can be expressed as,

dPy

! N max AP*
Po(t) = Psr(Too) + P dt = min | P2 Py (Tso) +
0

t]. (2.16)

trise

The assumption of a linear increase in system pressure is consistent with the experimental
details of two previous studies [20, 29], which reported a linearly increasing system pressure.
Both these studies are used in this work to validate the numerical solution for bubble collapse
in §(2.3.3). Consistent with this behavior, Eq. (2.16) is used to describe the system pressure,
P (t), for all bubble collapse cases described in this study.

For the bubble interior, the vapor phase is assumed to follow the ideal gas equation
of state. Separate calculations, where the vapor phase was treated as a Van-der-Waals gas
and a uniform bubble temperature (not included here for the sake of brevity) were done to
assess this assumption. The use of a more elaborate equation of state had no perceivable
effect on the bubble radius time histories. Also, vapor thermal conductivity and specific heat,
are assumed to be constant as their variation with temperature has a negligible effect on
bubble collapse behavior. An important assumption regarding the vapor phase pertains to

the consideration of a uniform pressure inside the bubble. This assumption was analyzed
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in a previous numerical study on bubble collapse [48] by calculating the radial variation of
vapor pressure within the bubble interior. The uniform pressure approximation was found to
hold quite well even for very high interface speed (R) that were realized close to the rebound
stage of an inertial collapse in that study. Pressure changes at the interface are propagated
through the bubble volume with the speed of sound (cy ), but even the maximum interface
speed associated with the collapse calculations performed in this work is comparatively much
smaller in magnitude than ¢y (Mach Number, My (t) = R(t)/cy(t) = R(t)/\/1w Ry Tvr(t) <
0.3).

Under the above conditions, a homo-baric model for a spherical vapor bubble is presented
below. This model has been previously used in the literature [48, 75, 78, 79| to study inertial
or thermal cases of collapse. From the continuity and energy equations along with the ideal

gas equation of state, an expression for vapor velocity and evolution for vapor temperature

is obtained, namely,

1 1 8TV r dPV
_ 1 _ 2.17
wlnt) =g, ( w) o ( or ) A A )
oTy Ty 10 [, OTy\ dPy
-V )\ === v -7 2.18
pvCov ( ot Ty or ) r2or <7’ by or > * dt (2.18)

Here, vy stands for the ratio of specific heats for vapor, and C, is specific heat at constant
pressure. The vapor properties of vy and C)y are assumed to be constants as their variation
was found to be unimportant for the working conditions used in the study. Thermal con-

ductivity of vapor ky is evaluated as a function of interface temperature Tr(t). Using the
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interfacial jump condition for mass balance given by

uV,F = R — (219)
PV

the boundary condition at r = R(t) for vapor velocity (Eq. 2.17) yields an expression for
vapor pressure,

R dPy 1 0Ty
—_— = (1-— )k —_— — P . 2.20
3yy dt ( ’Yv) v ( or )r vuvr ( )

The ideal gas equation of state is employed to obtain density of vapor phase as,

pv(r,t) = %, (2.21)

where Ry is the gas constant of the vapor phase.
On the liquid side, As compressibility effects are unimportant for the relevant working
conditions the continuity equation is simply V - u; = 0. It is integrated along the radial

coordinate, and the mass jump condition given by Eq. (2.8) is employed to yield the equation

up(r,t) = — <R - —> : (2.22)

This expression is substituted in the radially-integrated liquid-phase momentum equation
(Eq. (2.6)), where the viscous contribution cancels due to incompressibility. The resulting
expression is further reduced by substituting liquid pressure at the interface from the mo-

mentum jump condition (Eq. (2.9)) and by neglecting the bulk viscosity contribution from
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the vapor phase. This yields

- PV t)— P, 3 - 20 41/L : m” m’ .
RR = M —§R2 _R_ —7 R—— +—R
Acceleration Term 45—/ ~—— AL ~ pL LL
Pressure Term  Inertia Term  Gyrface Tension Term Viscosity Term Mass Flux Term - 1
. . 2
R dm” m” 1 pr
+= (=) (s-2).
pr dt PL 2 pv
\- -~ N -~
Mass Flux Term - 2 Mass Flux Term - 3
(2.23)

Here v is the kinematic viscosity of the fluid. Last three terms in Eq. (2.23) are associated
with mass flux due to phase change, which are often ignored in the common uses of the
Rayleigh-Plesset equation due to their small magnitude. These terms will be referred to as
Mass flux term - 1, 2 and 3, respectively in the subsequent discussion.

The remaining unknown variable on the liquid side of the bubble surface is temperature,
which is evaluated from the solution of the liquid energy equation,

0 (CpLTL) 10 (T’QTLUL) 10 28TL
o — ) (2 2.24

where liquid thermal conductivity (kr), and specific heat (C,;) are evaluated at a film
temperature, defined as Ty, = (I1(t) + Tw) /2.
Finally, at the interface, mass flux due to phase change is governed by the energy balance

[60] given by Eq. (2.10) rewritten here with a brief description of individual terms,

- oTr, 0Ty
h = — — — . 2.2
g k(@) ’W(ar>r (2.25)
~———

Latent Heat Term ~—_———
Liquid Heat Transfer Term Vapor Heat Transfer Term
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Similar to the interface property of surface tension, latent heat is also evaluated as a function
of interface temperature, Tr(t). In this complete description of bubble dynamics, the key
governing equations are Eq. (2.23) and Eq. (2.10), which are used to evaluate the rate of

collapse, and the rate of condensation, respectively.

2.3.2 Numerical Solution

Our model consists of two partial differential equations for vapor temperature (Ty (r,t) Eq.
2.18) and liquid temperature (77 (r,t) Eq. 2.24), three ordinary differential equations, for
vapor pressure (Py (t) Eq. 2.20), bubble radius (R(t) Eq. 2.11), and interface speed (R Eq.
2.23), and three algebraic equations for vapor velocity (uy(r,t) Eq. 2.17), vapor density
(py(r,t) Eq. 2.21), and mass flux due to phase change (m”(t) Eq. 2.25), respectively. The
main difference in the CVSI model with respect to previous collapse studies [20, 48, 80] lies in
the solution methodology employed to solve the two PDE’s and the use of an adaptive time
stepping scheme that significantly reduces the computational burden, which is necessary for
the extensive categorization analysis done in §(2.5). Note that for the current focus, collapse
calculations are not performed to the extent when bubble radius approaches the value of
zero, where the above-mentioned assumptions may prove to be limiting.

The initial conditions for this system of equations are given by



R(t=0) = R, (2.26a)
R(t =0) =0, (2.26b)
'’ (t = 0) =0, (2.26¢)

(2.26d)

The relevant boundary conditions are

aTy

=V (r = — 2.28a
o (r=0,t)=0, ( )

Ty(R(t),t) = Tr(t), and  (2.28b)

Tr(R(t),t) = Tr(t),

TL<Too>t> = Tooa

where T (t) is obtained from the Clausius-Clapeyron equation, namely

dPy(t)  pv(R@), )hpv(Tr(t))

dTr (1)

9

equations solved are equally applicable to both bubble collapse or growth.
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(2.29a)

(2.29D)

(2.30)

under the stipulation that the interface remains at thermodynamic equilibrium. The expres-
sion on the left-hand-side (LHS) of the equation is approximated numerically by the solution
of Py and Tr. Above conditions reflect a system for bubble collapse, but it is instructive
to point out that the CVSI solution can also be used to study bubble growth by making

relevant changes to initial and boundary conditions, as is done in chapter 3. The governing

Liquid temperature field is solved using an Arbitrary Lagrangian-Eulerian (ALE), which
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has been modified from the work of Ryddner and Trujillo [2], where it was used for droplet
evaporation. The liquid domain, €2, spans from the bubble radius, R(t), to an external
radius, 7 (), and is discretized into spherical shell volumes, which are temporal displaced

at some arbitrary velocity. The radial location of these shell boundaries is given by
, 1€1,2,3,...,np + 1. (2.31)

In this expression, ny, is the total number of spherical shell volumes and i = 1 corresponds
to the innermost shell whose internal boundary coincides with the bubble surface. As noted
previously, the extent of the liquid domain is given by ro, = R(t) + R, x (¢ — 1), where (
determines the extent of the liquid domain and sy, is a parameter that is employed to locally
refine the grid near R(t). Using sz, > 0, these shells are clustered around the bubble surface
for adequate resolution of the thermal boundary layer. The rate of displacement of each of

these element boundaries is then given by

A-L

= R(t") <1 +(E-1) (eef—__11>> , where j =0,1,2,..., (M —1). (2.32)

Inside the bubble, the vapor temperature equation is solved using a finite difference
approach used by [78] but with a non-uniform grid spacing. The radial coordinates are
transformed to a non-dimensional form, n = r/R(t). The non-uniform spatial discretization

is again leveraged to improve the resolution of the thermal boundary layer close to the bubble



21

surface. The locations of the boundaries of the computational volumes are given by

6(—%><sv) —1

e v —1

rvj = R(t) x . JEL23, . ny+1, (2.33)

where ny is the number of nodes in the vapor phase, and j = ny + 1 corresponds to the
bubble surface. Similar to the parameter s;, in Eq. (2.31), sy sets the density of points close
to the interface inside the bubble.

Besides the liquid and vapor temperature equations, the remaining differential equations
are integrated using the Euler scheme, and the algebraic equations are employed throughout
the solution. The entire system of equations is solved using an adaptive time stepping scheme,
where the time step size is determined such that 0.1 < CFL < 0.4, where

R x At

CFL = . and (2.34)

min (min (Arg ;) , min (Ary;))

ATL,i =TLi+1 —TL; 3 A?”V’j =Tvj+1 — TV,j, (2.35)

for i € {1,2,3,...,n.} and j € {1,2,3,...,ny}. The time step size is At, thickness of i
shell in liquid domain is Ary; and the distance between consecutive radial points in the
discretized vapor domain is Ary;.

In appendix A, a numerical sensitivity analysis is reported leading to the conclusion that
with parameters ( = 2, s;, = 5, sy = b, ny = 100, and ny = 100, grid convergent results
are obtained. Hence, in the bubble collapse calculations, these are the numerical parameters

that are employed.
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2.3.3 Validation of the CVSI Model

To validate the CVSI model, six different bubble collapse cases are considered. The system
conditions for these cases are given in table 2.1 and are obtained from previously published
experimental studies. To quantify the degree of agreement, the following error metric is

employed

Nref

1 Rovsi (L) Ryey (i)

R, R,

. i€1,2,3, . .Nyy, (2.36)

Emean =

ref =1

where R,.f(t;) is the bubble radii obtained from the reference study, N,.; is the number of
data points obtained from those studies, and Roysy(t;) are the corresponding bubble radius

computed from the CVSI model.

Case # and | Fluid | Subcooling | System pressure | Pressure rise time | Initial radius | Besy trey | Mean error

Ref. (in K), AT, | (in atm), P2** (in ms), tyise (in mm), R, Eq. (2.1) | (in ms) FErnean

1 [20] Water 12.20 0.987 2.50 3.66 1.04 0.02 .53 72 %

2 [28] Water 29.80 1.000 0.20 11.80 1.16 0.05 1.4 5.9 %
3 (28] Water 33.90 1.000 0.20 13.80 1.18 0.06 1.6 5.0 %
4 [28] Water 39.50 1.000 0.20 12.70 1.22 0.10 1.4 3.0 %
5 [28] Water 53.40 1.000 0.20 11.80 1.30 0.32 1.2 6.3 %
6 [29] Water 70.40 0.7025 1x 1076 1.00 141 27.62 12 22 %

Table 2.1: Description of published vapor bubble collapse cases used for validation of the
CVSI method. Here, ¢ = 2/(AT,AP*) |, Toar(Poc™) (P — Pyt (T)) dT, is used in the
evaluatlon of Beyy.

The range of B,y values in table 2.1 suggests that the cases considered in this validation
span all three categories of collapse. In each plot, the bubble radius is non-dimensionalized
using initial bubble radius as a reference, and time is non-dimensionalized using the charac-
teristic time for the inertial effects [20], namely,

PL
tref = Rot | ——. 2.37
f Ap (2.37)
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Figure 2.1: Comparison between CVSI and experimental data sets for cases described in
table 2.1 along with mean error values.
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Results from figure 2.1 show that the CVSI solution matches experimental results for a
range of cases for bubble collapse. Case # 1 represents a thermal collapse and its bubble
radius trend is shown in figure 2.1a. This collapse has a gradual and decelerating rate of
motion as expected for a thermally-dominated process. Experimental data for the following
four cases shown in figure 2.1b - figure 2.1e are obtained from Board and Klimpton [2§]
and pertain to the intermediate category of collapse. All four collapses are captured quite
well with most of the error originating from model predictions close to the minimum radius.
Finally, for figure 2.1f, the result shows an inertial collapse for which the bubble radius time
history from the CVSI method has an excellent agreement with the experimental data. Across
all the six cases, the CVSI model predicts the bubble radius with a mean error, E,,cqn < 7.5%,
where most of the discrepancy occurs when the bubble has reached a smaller size. For the
thermal collapse, the reason for the discrepancy may be attributed to the bulk motion of
bubble [20], which may occur after an initial time period of acceleration due to buoyant
forces. For the intermediate cases, experimental measurements by Board and Klimpton [28§]
were reported to be affected by the presence of vessel walls close to the bubble, whereas the
CVSI model corresponds to a stationary spherical vapor bubble collapse. Notwithstanding,

for all six validation cases the error is within a reasonable magnitude.

2.4 Intermediate Bubble Collapse

To analyze the key features of intermediate collapse, Case # 2 described in table 2.1 is
employed as a representative case. For all of the following calculations, CVSI model has

been employed up to a final time equal to the time required for the bubble to collapse to 5%
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of its initial volume. This has been done to strike a balance between the time needed for the
dominating characteristics of a collapse to be evident and to avoid working with very small
bubble sizes, which are difficult to study in practical systems [20, 28, 41, 61].

At first, a comparison of the time history of the Rayleigh-Plesset terms defined in
Eq. (2.23) are presented in figure 2.2, where the intermediate collapse is represented by
figure 2.2a. To contrast its characteristics with the more established thermal and inertial
regimes [20, 48, 62, 74|, the temporal variation of the Rayleigh-Plesset terms for a typical
thermal and inertial collapse is also shown in figure 2.2b and figure 2.2c, respectively. The
terms are non-dimensionalized using R?/t?, > where t,.c¢ is given by Eq. (2.37). Also, over the
entire collapse period shown for the three cases, the dominant terms that contribute to the
acceleration of the bubble radius are pressure and inertial terms. Surface tension, viscous,
and mass flux terms remain negligible for the entire period.

Before presenting a more detailed description about the intermediate collapse and its
unique transient behavior, we would like to note that the oscillation of pressure and acceler-
ation terms for the thermal collapse in figure 2.2b is not an anomaly. It has been observed
in previous studies [20, 31, 80, 81] as well. Hao and Prosperetti [81] provide a more detailed
explanation for this phenomenon and relate it to the imbalance between the increasing sys-
tem pressure (Px(t)), and vapor pressurization (Py(t)) due to a sudden, rapid collapse. This
initial transient period for thermal collapse can usually be ignored as those acceleration val-
ues are small in magnitude and only last for a small duration in comparison to the overall
collapse period.

For the intermediate collapse represented by figure 2.2a, initially the system pressure,

P, (t), increases at a constant rate for a period corresponding to t,;s (introduced in Eq. (2.16)),
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Figure 2.2: Transient variation of individual terms in generalized Rayleigh-Plesset equation
for (a) Case # 2, (b) Case # 1, and (c) Case # 6 from table 2.1. Figure (b) and (c) are
provided for reference from the more established thermal and inertial categories of collapse.
Entries for all three plots in the legend are in the same order as the order of terms in

Eq. (2.23), starting with the acceleration term (RR>

which is depicted by a nearly linear decrease in the pressure term. Due to the negative value
of the pressure difference, the bubble begins to collapse. After t,s, the system pressure
(Ps (t > trise) = PI°") remains constant but the pressure term magnitude decreases due
to an increasing vapor pressure (Py). Eventually, vapor pressure inside the bubble becomes

larger than the system pressure, which reverses the sign of the pressure term and begins
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to act as a decelerating force for bubble collapse. This behavior is unlike a thermal collapse
where, after an initial transient of vapor pressure, its magnitude stabilizes at a constant value
as shown in figure 2.2b. Also, it is unlike an inertial collapse, where the vapor pressure is
known to remain nearly constant at its initial value for most of the collapse period, precisely
as found in our calculations shown in figure 2.2c.

The initial acceleration for the intermediate collapse shown in figure 2.2a triggers the
manifestation of the inertia term, which always remains negative and promotes the contrac-
tion of the bubble. After its initial gradual increase, the magnitude of liquid inertia becomes
the dominant term in the Rayleigh-Plesset equation. This dominance is only sustained for a
short period after which the collapse begins to decelerate under the influence of a stronger,
positive pressure term. Such a time variation of the inertia term is unique to an intermedi-
ate collapse. Otherwise, inertia term either remains insignificant for a thermally-dominated
collapse as shown in figure 2.2b or it gradually increases and then sustains its dominance in
case of an inertially-dominated collapse as shown in figure 2.2c.

With respect to the energy balance at the interface (Eq. 2.10), the time history of each
of the terms for the intermediate collapse is shown in figure 2.3a along with similar plots for
a thermal, figure 2.3b and inertial collapse, figure 2.3c, for reference. Again, we observe a
short time period of initial oscillation of different energy terms for the thermal collapse in
figure 2.3b. Similar to the description for figure 2.2b, the pressure imbalance [81] also affects
the temperature difference that exists in the liquid phase, causing these oscillations. Barring
this short initial transient period, the remaining behavior of thermal collapse is not affected
by those oscillations.

The energy terms in all the plots are normalized by |k AT /\/art,er|, which is a measure
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of the liquid heat flux given by the degree of sub-cooling (A7) and a reference boundary layer

thickness (y/art,er). Evidently, from figure 2.3, the rate of heat transfer is nearly balanced
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Figure 2.3: Transient variation of individual terms in energy jump condition for (a) Case #

2, (b) Case # 1, and (c) Case # 6 from table 2.1. Figure (b) and (c) are provided for

reference from the more established thermal and inertial categories of collapse. Entries for

all three plots in the legend are in the same order as the order of terms in Eq. (2.10),

starting with the latent heat term (r"hpy).

by the latent heat term for the entire time period for all three categories of collapse. It

suggests that heat released during condensation is almost entirely transferred to the liquid

phase, while heat transfer in the vapor phase is negligible.
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Focusing on the intermediate collapse shown in figure 2.3a, as the collapse unfolds, bubble
temperature increases, which results in the initial increase in liquid heat transfer. While the
temperature difference between bubble surface and far-field liquid increases, diffusion of heat
also leads to the growth of thermal boundary layer thickness (d1). These competing factors
result in a complex transient system for intermediate collapse, where both these effects are
equally important. In comparison, for a thermal collapse, the boundary layer growth is more
dominant and the process is characterized by an asymptotically decreasing rate of liquid
heat transfer evident from figure 2.3b. On the other hand, the inertial collapse in figure 2.3c
shows a similar behavior of energy balance as the intermediate collapse with a continuously

increasing rate of liquid heat transfer as well as condensation.

2.4.1 Explaining the Different Characteristics of Intermediate Col-
lapse

In the preceding discussion, the main distinctive trait of an intermediate collapse is the
continuous variation of vapor pressure and inertia term in the Rayleigh-Plesset equation.
Since the pressure term plays a dominant role in the dynamics, we consider the contributing
factors to the rate of change of Py. These are given in Eq. (2.20) and consist of a heat
transfer contribution, (1 — 1/) ky(0Ty/Or)r and pressure work, Pyuyr.

The time histories of these contributing factors for the intermediate collapse are plotted
in figure 2.4a, non-dimensionalized by R, AP*/t,.; along with similar plots for a thermal,
figure 2.4b and inertial collapse, figure 2.4c, for reference. The reason behind oscillations for

thermal collapse in figure 2.4b is the same as described in the discussion for figure 2.2b and
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figure 2.3b above.
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Figure 2.4: Time histories of terms in the vapor pressure rate of change equation
(Eq. (2.20)) corresponding to (a) Case # 2, (b) Case # 1, and (c) Case # 6 from table 2.1.
The rate of change of vapor pressure is given by [1/v R(t) dPy/dt]/[R, AP*/t,.s], the heat
transfer by [(1 — 1/yy) kv (9Tv/0r)r]/[Ro AP*/t,cs], and pressure work by
[Pvuvj]/[Ro AP*/tTef].
Results from figure 2.4 show that any change in vapor pressure is a result of the pres-
sure work contribution with a negligible role from the gas-side heat flux on the interface.

The magnitude of pressure work and the resulting pressure variation are significant for the

entire collapse period in the intermediate regime as shown in figure 2.4a. In contrast, these
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terms remain essentially negligible for a thermal collapse as shown in figure 2.4b. For in-
ertial collapse shown in figure 2.4c the pressure work and change in vapor pressure has an
increasing trend, but the values are 3 orders of magnitude lower than what is observed for
the intermediate collapse, rendering the pressure variation as insignificant for most of the
inertial regime. This is also corroborated from a nearly constant pressure difference term in
figure 2.2¢, above.

In intermediate collapse, the reason for the importance of pressure work term (Pyuy, r)
can be traced back to the expression for interfacial vapor velocity given by Eq. (4.35b), i.e.
uy, r = R —m" /pv. This equation can be interpreted in terms of expressing uy, r as an
imbalance between the rate of bubble collapse (R) and the rate of condensation (1 /py). To
analyze its magnitude, the time histories of R and uy, r for a typical intermediate collapse are
plotted in figure 2.5a, non-dimensionalized by R,/t,.; along with similar plots for thermal
(figure 2.5b) and inertial (figure 2.5¢) types of bubble collapse.

An inspection of the results in figure 2.5a reveals that the magnitude of the interfacial
vapor velocity is of the same order as the speed of the bubble interface for the entire collapse
period for an intermediate collapse. This implies that for an intermediate collapse, R is
not matched by an equal rate of condensation (1" /py ). As a result, the contraction of the
bubble is additionally balanced by bulk motion of the vapor inside the bubble, i.e. uy p,
which contributes to a continuous change in vapor pressure as shown in figure 2.4a. This is
in clear contrast with a thermal or inertial collapse [20], where vapor velocity is justifiably
ignored as shown by its small magnitude in figure 2.5b and figure 2.5¢, which in turn means

that R 2 1" /py for those two regimes of collapse.
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Figure 2.5: Time histories for interfacial velocities corresponding to (a) Case # 2, (b) Case
# 1, and (c) Case # 6 from table 2.1.

2.5 Vapor Bubble Collapse Categorization

As mentioned in the introduction, one of the main goals of this study is to define a generalized
metric to categorize vapor bubble collapse over a variety of system conditions and working
fluids beyond an earlier categorization [20], which was solely based on B.ss. Specifically,
collapse is bound to depend on the time taken to change the system pressure given by

trise, which is ignored in prior work. A detailed description of the significance of t,;, is
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given below through a non-dimensional analysis of the generalized Rayleigh-Plesset equation

(Eq. (2.23)). To clarify the presentation of results, the definition of the relevant variables are

included in table 2.2.

Time, 7= t
tref
Bubble radius, (r) = R;;)
— R(t
Radial coordinate, n = T(S—()
L

Vapor pressure, my(t) = N

Vapor pressure, 7y (t) = N

Latent heat, w = —
hiv

Vapor velocity, uj(n,7) = —
}%ref

prCLAT

Jakob number, Ja = ———
pVhLV

Liquid thermal boundary layer, 05 = Ciy/artyes

(Cy is a constant of proportionality)

T - Too
Temperature, 6(n,7) = %
R(t),t
Vapor density, ey (1) = LE)’)
Pv
R,
Time Scale Ratio, & = -~ A'OZLD*

Reference vapor density, pi, = pvisat (Tsat (P®®))
PR — Py(t)

_ B = Po(t)

Reference latent heat, hj, = hpy (Tsat (Pm™))
o QL$/<7777-)

Categorization Parameter, By, = Ja

Table 2.2: Non-dimensional form of key variables for bubble dynamics equations.

From the results in §(2.4), the dominant terms in the generalized Rayleigh-Plesset equa-
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tion are the acceleration, pressure, and inertia terms. Considering these leading order terms,

the Rayleigh-Plesset equation is

3 Py (t) — Px(t)

RR+-R*= 2.38
2 PL ( )
This expression can be manipulated to yield,
. . — (pmar _ Do (¢ pmazr _ Poo t
L

Using the non-dimensional variables for time, bubble radius, vapor pressure and system

pressure defined in table 2.2, this equation can be rewritten in its non-dimensional form as

R [ . 3.\ AP praz _ p_(4)
o 4+ 2 — — 4= ). 2.4
tzef (77 2V > PL ( mv(7) AP* (2.40)

From the expression for ¢,y defined in Eq. (2.37), the coefficients R /t2,; and AP*/py, cancel

out. On substituting P (t) from Eq. (2.16), we obtain

AP*

P — min | P72 Py (Too) + t

tm’se
. (2.41)

. 3.
Vi + =4 = —mv(T) +

2 AP*

Combining the P2 and the terms inside the min() function and using the expression for

AP* = (Pl — Py(Tw)) (defined in Eq. (2.3)), this expression is further reduced to

AP*

5 max |0, AP* —t

. . trise
Vi + 5,}/2 = —my (1) + N . (2.42)
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Expressing time, ¢ as 7t,.f, a final equation for the momentum dynamics is obtained, namely

3
Yy + 512 = —7my (1) + max [0, 1 — &7 where (2.43)

t f R PL
_ brer _ Ho | ‘ 9.44
é trise trise AP* ( )

Specifically, for t < t,;,, which may be a large fraction of the total collapse time, the

momentum is given by

. 3. t
Y+ 5Y =t =mv(r) - —, (2.45)
and for t > t,;.
. 3.
YV + 57 = —mv(7T). (2.46)

2

In previous studies on bubble collapse [20, 48, 74], it is tacitly assumed that the system
pressure rise occurs extremely fast. In the framework of this analysis, this situation is equiva-
lent to t,;5 being very small such that £ > 1. Consequently, this leads to maz [1 — £7,0] =0,
and the momentum dynamics reduces to Eq. (2.46). Hence, under the established treatment
of momentum in the literature, the role of varying system pressure is absent in the mathe-
matical framework.

To complete the description of the dynamics, the energy jump condition is considered
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(Eq. (2.10)) and rewritten here accounting only for the leading order terms. This gives

oT, .
k1, (a—L) = pv (R - Uv,r) hrv, (2.47)
" Jr
where the negligible heat flux from the gas side has been omitted. Note, this omission is
valid in all collapse regimes.
Introducing the non-dimensional form for liquid temperature, radial coordinate, vapor

density, interface speed, vapor velocity, and latent heat from table 2.2, yields

k ATS 89 . * RO *
L <—) — vy [(v i) —} (whiy) . (2.48)
5L 877 T tref

Rearranging these terms to obtain an explicit expression for the liquid side heat flux gives

89L) 4 .
— = evw [y —uj (n=0,7)], where 2.49
(an =Tl =07) (2.49)

_g,2% | PL 2.50
Bt JaRO,/AP*. (2.50)

The above analysis summarized by Eq. (2.43) and Eq. (2.49), shows that the bubble dynamics
are categorized by two parameters, &, and B,,. The transient nature of the pressure change
that is used to induce a bubble collapse is dictated by &, and and the dependence of collapse
behavior on fluid properties and liquid sub-cooling is represented by Bs,;. This categorization
sets apart the present work from the earlier categorization advanced in [20], which is only
based on Bsy or essentially By,:. An analysis of the non-dimensional form of the auxiliary

equations in the CVSI model defined in §(2.3.1) that are used to evaluate variables, 7y and
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01, in Eq. (2.43) and Eq. (2.49) was also done. It revealed that non-dimensional quantities
obtained from those equations use the same physical properties as ¢ and B, and do not
introduce any new parameter, except the ratio of vapor specific heats (7 = Cpy /Cyv ).

The value of vy affects the rate of change in vapor pressure (Eq. (2.20)) during bubble
collapse. To ascertain its importance for this categorization, in §(2.5.2), we have shown cases
for R113 and Water; two fluids with distinct values of ~y . Tests were conducted for similar
values of By, and £ with both fluids. The thermal, inertial and intermediate regions on the
map overlapped even with these different values of vy,. Changing the fluid affects all thermo-
physical properties and isolating the effect of vy, from the variation of other fluid properties
(pLs pv, hrv, ki, Cpr) that are included in the mathematical form of B, has been left for
investigation in a future study.

Now, to determine the corresponding collapse regimes pertaining to specific values for
each pair {, Bsu}, we compute a large set of calculations as described in the following

sections.

2.5.1 Metric for Bubble Collapse

We refer to the discussion in §(2.1) and §(2.4), where it was highlighted that the time varia-
tion of interface temperature (11(¢)) has different characteristics across all three categories.
Hence, to identify collapse regimes, we compare the trend of interface temperature for col-
lapse with the expected behavior if the collapse was a purely thermal or a purely inertial
collapse. First, to establish the baseline behavior with respect to the limiting cases of purely

thermal or inertial collapse, we have the following:
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e (Purely Thermal Collapse) Bubble remains at a mechanical equilibrium (Py(t) =
P, (t)) and interface temperature is always equal to the corresponding saturation value
20] Tr(t) = Tsat(Ps(t)). In its non-dimensional form, the interface temperature for

this collapse is given by

Tsat (POO (t)) _ Too

2.51
AT, (2.51)

eTherm(n = 07 t) =

e (Purely Inertial Collapse) The rate of collapse is adequately balanced by condensation,
resulting in little to no mass accumulation inside the bubble and constant pressure.
Hence, Tr(t) can be adequately approximated by Ty, [8, 20], and the theoretical ex-

pression for non-dimensional interface temperature for such a case is

Orner(n = 0,1) = 0. (2.52)

Although any practical setup would deviate from these limiting behaviors, it is reasonable

to expect that a non-dimensional interface temperature, 0r, defined as

Tr(t) — T

er(t) - Tsat(ngax> - Too

(2.53)

will resemble the trend of 07, for a thermal collapse, while an inertial collapse will have
Or(t) = Opner. In contrast, an intermediate collapse has a large variation of bubble pres-
sure and interface temperature during the collapse, and the corresponding 6r trend will

significantly deviate from both Orpen and 0,.,.. Therefore, the deviation of fr from these
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corresponding values can be used in the metrics for defining the collapse regimes. In the

present work, these metrics are obtained in a time integrable sense, namely,

1 [
ATherm == _/ |6The7'm(7-) — er (T)‘ dT, and (2543)
TT 0
1 [ 1 [
Alner = _/ yelner(T) - HF(T)| dr = _/ |0F(T)‘ dr. (254b)
T Jo T Jo

Here, A7perm gives the average difference of a given collapse case from purely thermal
behavior, Aj,., gives the same difference from a purely inertial collapse, and 7 represents
a threshold time until which the differences are computed. Keeping in line with the compu-
tations done in this study and as described in §(2.4), we employ a value of 77 equal to the

time required for the bubble to collapse to 5% of its initial volume.

4 — - -
= Numerical Solution, fr
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Figure 2.6: Comparison of transient variation of interface temperature for Case # 2 of
table 3.1 with O7perm and Op,e,.

To explain the use of the categorization metrics, we first give a graphical representation
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of Or with respect to Orpe and Orpern, in figure 2.6. The shaded area represents the integrated
difference of #r from pure inertia or pure thermal behavior, which is respectively equal to
Agner X 7 and Arperm X 7r. To clearly define the similarity of a bubble collapse towards

either thermal or inertial collapse, the categorization is given by

Arherm/Amer < 0.1 Thermal Collapse
0.1 < Afnerm/ADmer < 10 Intermediate Collapse (2.55)
Arherm/Amer > 10 Inertial Collapse

where this ratio can be explicitly written as

Atherm  Jo37" |Orherm (1) — Or ()| dr _ I3 | Trnerm (t) — Tr ()] dt

Arfper Jo 10 (7)) dr Jo 1 Tr = Teo (2)] dt

(2.56)

With reference to the specific thresholds used in Eq. (2.55), the value of 0.1 represents
that the difference of collapse behavior from a purely thermal case is less than 10% of the
difference from purely inertial case. On the other hand, the value of 10 represents that the
difference from a purely inertial behavior is less than 10% of the difference from purely
thermal behavior. These thresholds were found to reasonably predict the category of a range

of test cases described in §(2.5.2) and also the experimental cases used in numerical validation

in §(2.3.3).

2.5.2 Categorization Map

To visualize the new collapse categorization, 558 different collapse calculations using the

CVSI model were performed for which, By € [1x 107%,1.4 x 10%] and € € [1.3 x 1072, 1.6 x
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10°]. These calculations were done across two different fluids, namely, water and R113,

different maximum system pressures (P2%"), different length of system transient period

(trise), and different superheats (ATy). The results are shown in terms of a generalized
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Figure 2.7: Categorization map for spherical vapor bubble collapse based on By, and &
values. Collapse categories: Thermal (o), intermediate (4), and inertial (x). Table 2.1 cases

are also marked in the map: Case # 1 - x; Case # 2 - ; Case # 3 - x; Case # 4 - [J; Case
#5-/\; Case # 6 - /.

collapse map presented in figure 2.7, where each point in the map represents an individual

collapse event, i.e. a single calculation. Each event is categorized based on the metric defined

by Eq. (2.55). Additionally, all six experimental cases described in table 2.1 are included and

it is reassuring to see that the category for each case matches the one obtained with the new

collapse categorization.

Starting from the top portion of the map, for a value of £ > 1, the regime identification

is essentially independent of the specific value of ¢ and only dependent on B,,. For such
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large values of &, the far-field pressure rise rate is quick, matching the conditions that have
been employed in the earlier categorization [20]. Therefore, our results corroborate previous
findings where B, is the key category-identifying parameter. The only slight difference is
that a sharp distinction between the intermediate and thermal collapse is lacking. The present
results indicate more of a gradual transition between these two categories of collapse.

For £ < 1, however, the regime map becomes much richer and the regime distinction
deviates from this By, only categorization. Looking at the transition from thermal to in-
termediate collapse, the mapping from figure 2.7 indicates that as the value of £ decreases
below 1, we observe a slower collapse resembling thermal regime behavior even for larger
Bgq: values. The deviation continues to increase with decreasing values of £ to such an ex-
tent that even with B, as large as 1, the behavior is representative of thermal collapse.
This represents two orders of magnitude deviation from the threshold observed for & > 1.
Similar deviations are observed for intermediate-inertial regime boundary, where cases with
¢ < 1 are found to behave like an intermediate collapse even for large B, values of ~ 100.
The authors would like to note that in some cases, where £ < 1, the system pressure (Px (%))
realized in far-field liquid until the bubble reaches 5% of its initial volume (Px (t5%)) is
smaller than the maximum prescribed value of P'**. This choice of maximum system pres-
sure, which is used in evaluating AP* only affects the value of £ and By, i.e., position of
a specific point on the collapse map. Hence, for clarity of representation the values of £ and
By are always evaluated using AP* as defined in Eq. (2.3) in this study. In cases where
P* is not realized, AP* serves as a notional pressure difference.

This tendency towards a milder collapse is expected for small values of . It represents a

slower rate of increase in system pressure (larger ¢,;s.), which implies that the effective pres-
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sure difference forcing the bubble collapse remains much smaller than the possible maximum,
(P (t) — Py(t) < AP*). Moreover, this gradual change in system pressure allows more heat
diffusion in liquid before the system reaches its maximum pressure. It results in a larger
thermal boundary layer, which limits the rate of heat transfer and hence, condensation.
Therefore, even when By, > 0.01, we may observe a slow and gradual collapse if ;.. is large
or equivalently, £ is small. Slow system pressure rise allows time to establish a mechanical
equilibrium across the bubble surface, which resembles a thermal collapse. Similarly, at the
intermediate-inertial boundary, even if By, > 30, a slow rise in the system pressure allows
time for thermal boundary thickness to increase around the bubble. Slow liquid heat trans-
fer starts to limit the rate of condensation resulting in an imbalance between collapse rate
and condensation rate described in §(2.4.1). Consequently, the resulting process falls in the

category of an intermediate collapse.

2.6 Summary

This chapter revisits the dynamics of a vapor bubble collapsing in a homogeneous surround-
ing liquid phase. It has been presented into two parts, where first the dynamics of an inter-
mediate type of collapse are analyzed and explained, and second, a generalized framework
for categorizing bubble collapse is introduced.

With respect to the first aspect of the work, an analysis of intermediate collapse, where
both heat transfer and liquid inertia are important, reveals that it is characterized by a
continuous change in interface temperature and vapor pressure. This distinguishes the inter-

mediate regime from thermal or inertia-dominated collapse. The fundamental reason for the
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pressure and temperature variation is found to be caused by a substantial interfacial vapor
velocity, which can be interpreted as an imbalance between the bubble surface regression
rate and the rate of condensation.

In the second part of this work, it is mathematically shown that the behavior of bubble
collapse is not solely dependent on the fluid properties and liquid sub-cooling, but also on
the rate of increase in system pressure that initiates the collapse. It is shown that at the same
level of liquid sub-cooling, the behavior of bubble collapse can be modified by changing the
rate of change of system pressure by adjusting t,;s.. For more gradual changes in the system
pressure, the thermal mechanism of bubble collapse increases in importance. These findings
are quantified by creating a generalized categorization map shown in figure 2.7, where the

parameter space is defined by the following two non-dimensional quantities, namely,

R, PL 20V, PL
= and Bgot = Ja* = :
g trise \/ngax - Psat<Too)’ ‘ ¢ Ro POTZM - Psat<Too)

The resulting map divides the bubble collapse process into three regimes representing
thermal, intermediate, and inertial dominated collapse. For values of ¢ exceeding one, it
is observed that the influence of this parameter is negligible in the distinction of collapse
regimes reducing the categorization to the traditional given by By, [20]. However, for values
¢ below one, this parameter along with By, play an active role in identifying the bubble
collapse regime. As such, this study shows that the rate of change in system pressure can be

effectively used to alter the behavior of vapor bubble collapse.
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Chapter 3

Assessing the Physical Validity of
Highly Resolved Simulation
Benchmark Tests for Flows

Undergoing Phase Change

A more versatile method for studying bubble dynamics is by performing three-dimensional
Highly Resolved Simulations. Such a simulation for a vapor bubble needs to solve a general
three-dimensional two phase flow with a continuously deforming interface, and capture the
interfacial process of phase change. Development of such methods for two phase flows that
can handle the phase change phenomenon by directly implementing the interfacial conditions
has been a subject of wide interest in the past few years [50, 54, 58-60, 82-97]. These studies

can be categorized based on the underlying scheme used for the advection of the liquid-
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vapor interface, namely, Volume of Fluid (VoF) [83, 89, 90, 92, 93, 95, 96], Level Set (LS)
[54, 58, 85-88], coupled LS-VoF [50, 91], or Front-Tracking (FT) [82, 84, 97]. In the course
of developing these numerical methods to handle the interfacial jump conditions, certain
physical assumptions have become almost universally adopted [50, 54, 58, 60, 83, 85-96].

These assumptions are:

i) Incompressibility in both the liquid and vapor phases (except at the interface), implying

respectively that the liquid and vapor densities are constant.

ii) A constant interface temperature equal to the saturation temperature corresponding

to far-field pressure, namely T (t) = Tysar(Pso)-

The above assumptions will be referred to as the underlying HRS assumptions in this study.

A key validation exercise found in many HRS studies consists of the growth of a bubble
immersed in a superheated liquid domain. This test case represents a fundamental and
necessary step in the confident application of a numerical technique to more general phase
change problems. In the aforementioned simulation papers [54, 84, 85, 90, 92-94, 96], none
of them have thoroughly inspected the physical characteristics of bubble growth and in
that context examined the validity of the underlying HRS assumptions. Hence, before diving
deeper into the development of such an in-house simulation tool, we leverage the CVSI model
developed in chapter 2 to better understand the limitation of the HRS assumptions.

In this chapter, we use the canonical bubble growth test case to demonstrate the extent
to which the incompressibility and constant interfacial temperature assumptions hold under
pertinent phase change conditions. Solving for bubble growth using the CVSI model allows

for temporal changes in the interface temperature, vapor pressure, and vapor density inside
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the bubble. This makes the CVSI model, physically more general for spherically symmetric
bubble dynamics than existing HRS solution methods [50, 54, 58, 60, 83, 85-96], and hence,
it offers the necessary benchmark information from which to analyze the applicability of the
underlying assumptions for phase change HRS methods. In §(3.1), the results are compared
with experimental data to show that the CVSI predicts bubble growth accurately, similar
to the collapse validation presented in §(2.3.3). This is followed by a comparison of CVSI
and HRS results in §(3.2), as well as commonly used analytical solutions, which lead to the
finding that the discrepancy with HRS lies in the initial inertial-controlled bubble growth
stage. The identification of this initial period under variable operating conditions is done in a

closed analytical form in §(3.2.1). Finally, in §(3.3), a summary of this chapter is presented.

3.1 Validating the CVSI Solution

The first step in critically analyzing the underlying HRS assumptions is to ascertain that the
physically more accurate CVSI model for spherical vapor bubble growth performs as well
as it does for a collapse as discussed in chapter 2. With this goal in mind, CVSI results are
compared to six different experimental datasets of bubble growth. The parameters of these
experiments are provided in table 3.1. An important system parameter is related to the liquid
superheat that governs the process of bubble growth. Here, it is denoted by ATy, = —ATj,
where AT} is defined in Eq. (2.2). Note that unlike the previous study on collapse, the far-field
pressure is assumed to remain a constant. Hence, P’** is simply equal to P.,. Additionally,
an analytical solution for bubble radius given by Scriven [35] is also plotted in the experiment

vs CVSI comparison. This analytical solution is often used in validating HRS approaches. It
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Case # and | Fluid | Superheat | System Pressure | Initial Radius | Jakob Number

Refs. (in K), ATs, | (in atm), P (in mm), R, Ja

la,b [25] | Water 2.9 1.00 0.021 8.68
2 [24] Water 10.5 1.19 0.004 26.70
3[26] | Water 9 0.38 0.014 65.11
4 [27] Water 20.3 0.318 0.007 128.55
5 [26] Water 7.34 0.132 0.025 142.16
6 [30] R113 34.11 0.083 0.005 413.98

Table 3.1: Description of experimental datasets used for validation of the CVSI method.

is based on a saturated vapor state for the bubble contents that is constant in time; hence,
it directly implies constant vapor density and interfacial temperature, i.e. the assumptions
under scrutiny in the present work. The analytical expression for bubble radius given by

Scriven [35] is

R(t)=2B8vait or R(t)=8 % (3.1)
where [ is evaluated from the following transcendental equation
03 /1 6(7/32((174)—272(17%)471))61C _ prCpr ATy,
0 pv (hoy + (Cpr — Cpv) AT)
B Ja (3.2)
Bl (1 + (CpL — OpV) ATsh> '
hrv

Here, Cp,r, and Cpy are the respective liquid and vapor specific heats at constant pressure,

and Ja is the Jakob number defined as

_ prCpr ATy,

Ja
pvhry

(3.3)
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The Jakob number is evaluated using the liquid properties p;, and C,, obtained at T; while,
py and hry are evaluated at Tsu(Pso)-

The comparison between the bubble radius time histories obtained from experimental
data, analytical solution, and CVSI predictions are shown in figure 3.1 for the six dif-
ferent cases described in table 3.1. The bubbles observed in these experiments were not
entirely spherical as described in those papers. Even then, the equivalent radius obtained
in those studies from the oblate or prolate shapes of the bubbles matches well with the
radius vs. time predictions from the CVSI solution. For datasets #1 and #2, the agree-
ment among the CVSI and analytical predictions, as well as the experimental data, is
good. The only minor difference between analytical and CVSI result is at early times. For
Ja = 65.11, 128.55, 142.16, and 413.98, the CVSI results match the experiments quite
well over the entire time period, while the analytical solutions show a noticeable deviation,
which is particularly pronounced at earlier times. The explanation for this discrepancy is
postponed until after the comparison to HRS results is presented in the next section, since

the discussion shares some of the same issues faced by HRS.

3.2 Departure from Physically Accurate Behavior in

Published HRS Results

The validated CVSI method is used in this section to simulate three distinct systems of bubble
growth that have been previously used as test cases in HRS studies [54, 90, 93, 94, 96]. The

comparison is shown in figure 3.2 and the operating parameters for these cases are given
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Figure 3.1: Comparison between CVSI predictions, analytical solutions, and datasets
presented in table 3.1
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in table 3.2. These HRS studies used the Scriven solution (Eq. (3.1)) as a reference, and
hence, it is also included in figure 3.2.

At Ja = 9.88, over the time period shown, the CVSI solution nearly overlaps with both
the Scriven solution and the HRS results. At Ja = 14.95, a clear difference is noted between
the CVSI solution and both, the Scriven and the HRS predictions. For this particular case
(shown in figure 3.2b), the time period corresponds to the early phase of bubble growth,
where the time window ranges from 1072 to 10~! ms, as opposed to the case for Ja = 9.88,
where the time range is 10° to 10® ms. For the larger Ja case (Ja = 27.92), the comparison
between all three bubble radius calculations is shown for the latter part of the bubble growth
period, namely between 2 x 107! and 3 x 10° ms. And in this period the agreement between
CVSI, Scriven, and HRS is fairly good. However, at earlier times a noticeable discrepancy is
noted between the Scriven and CVSI solutions in a similar fashion as the results presented
in figure 3.1.

Based on the comparison presented in figure 3.2, it appears that the Scriven and HRS
results are in close agreement for all cases presented. This is not entirely surprising since
both formulations use a constant interface temperature and vapor density. In contrast, with

respect to the CVSI solution, it is observed that during the early phase of bubble growth, the

Case # and Fluid Superheat | System Pressure | Initial Radius | Jakob Number
References
(in K), ATy, | (in atm), Py (in mm), R, Ja
1 [54] Water 3.30 1.00 0.018 9.88
2 [90, 93, 94, Water 5.00 1.00 0.006 14.95
96]
3 [90] HFE-7100 10.00 0.493 0.002 27.92

Table 3.2: Description of cases used in HRS studies.
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Figure 3.2: Comparison between CVSI predictions, HRS results, and analytical solutions
pertaining to the cases included in table 3.2

discrepancy between the CVSI results and the results obtained with both Scriven and HRS
is noticeable. We interpret this difference as an error in the HRS predictions. To examine

this error in more detail and to investigate the role of constant interface temperature and



vapor density, these quantities are first put in non-dimensional form, namely

Non-Dimensional Vapor Density at Interface, 8, =

Non-Dimensional Interface Temperature, 07 =

Non-Dimensional Time, 7 = — =

Tr(t) — Tsat(Pso)
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(3.4)
- Tsat<POO) ’
pV,F@) - psat(Tsat(POO)) (35)
psat(TOO) - psat (7—19(175(POO))7
Jalag,
- (3.6)

Note that the non-dimensional time used for this work is different from the one defined in

table 2.2. Here, the reference time, t*, comes from the time required to achieve the initial

bubble radius nucleus, R,, based on Scriven’s solutions (Eq. (3.1)). Namely, t* = R?/(arJa?),

where 3 value of the Scriven solution has been approximated by Ja, which is an excellent

approximation when py < pr, and (Cp ATy, /hry) 2 0.01. The reference denominator values

used to obtain non-dimensional interface temperature and vapor density, in Eq. (3.4) and

Eq. (3.5) are the maximum variation these quantities can theoretically experience.
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Figure 3.3: Non-dimensional interface temperature (left) and vapor density (right) as a
function of time for the cases described in table 3.2. The arrows mark the time period for
which HRS results have been reported [54, 90, 93, 94, 96].
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The time histories for non-dimensional temperatures and densities are plotted in fig-
ure 3.3 showing a monotonic decrease to zero from an initial finite value. Superimposed
on these curves are the time periods over which the HRS results were reported in various
studies [54, 90, 93, 94, 96]. Clearly, the error in HRS occurs precisely before 67 and 6, have
approached their asymptotic values of 0. During the initial transient period both the in-
terfacial temperature, Tr(t) and density (=pysat(1T(t))) are changing in time. Hence, the
discrepancy or error in HRS results stems directly from the fact that this time evolution of
vapor contents is not taken into account.

Considering the literature on the subject of bubble growth, particularly the work of
Plesset and Zwick [33], Prosperetti [41], Robinson and Judd [49], Plesset and Prosperetti
(98], we find that the initial transient period corresponds to the inertial bubble growth phase.
During this period, the bubble vapor pressure undergoes significant changes, and depending
on the Jakob number, various terms in the Rayleigh-Plesset equation become active. Beyond
this inertia-controlled time period, we enter into the heat-transfer dominated stage, which is
characterized by a nearly constant interface temperature, vapor pressure, and vapor density.
Basically, the two underlying HRS assumptions are valid during this latter stage of bubble
growth. Hence, the key to avoiding issues associated with the violation of the underlying
assumptions in HRS lies in identifying apriori the heat transfer dominated regime. This is

elaborated in the following subsection.
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3.2.1 Identifying Apriori Conditions Favorable to the Current HRS
Treatment

A previous attempt at quantifying the threshold time beyond which the bubble growth can
be assumed to be in the heat transfer dominated period of growth was reported by Lee and
Merte Jr. [45]. The basis was comparing a semi-empirical solution, i.e. the MRG solution [36],
which holds over both inertial and heat transfer stages to a solution derived by Plesset and
Zwick [33] for exclusive use in the heat transfer dominated stage. Lee and Merte Jr. [45]

indicated that beyond a threshold time, given by

18‘]a2 pLTsataL

50 re :50 )
X Tref T hrypy ATy,

(3.7)

the difference in the bubble radius predictions from the two solutions is less than 10%,
and hence, it can be interpreted that beyond ¢ = 507,.f, the bubble has entered the heat-
transfer dominated stage. In this expression, all thermophysical properties are evaluated at
the saturation temperature, Tsu;(Ps)-

To examine the accuracy of Eq. (3.7), we employ predictions generated by the CVSI
numerical procedure, which are more accurate than the MRG solution, and compare these
predictions to the Scriven solution [35]. Our rationale is that the Scriven solution, which holds
in the heat-transfer regime, does not make additional assumptions concerning the thickness
of the boundary layer (§; < R) as opposed to the expression given by Lee and Merte Jr. [45].
Hence, it is interpreted as being more accurate. We can subsequently compare the CVSI and

Scriven’s predictions to determine the threshold time when both of these predictions agree
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within 10%. The results show that for Ja = 8.68, this threshold time begins at ¢ ~ 236 X Ty ;
while, for Ja = 413.98, this same reference time begins at ¢t ~ 13 X 7,.;. For all of the other
cases, the results lie between this range demonstrating an undesirable level of variability
in the prediction of threshold time using Eq. (3.7). To address this problem we develop an
alternative approach.

We begin with simplifying the Rayleigh-Plesset equation (Eq. (2.23)) to its most dominant

terms [10] during the bubble growth process, namely

“R?+ = . 3.8
2 Rpr, PL ( )

RR +

The RHS of Eq. (3.8) can be written in terms of temperature by using a first order approx-

imation of Clausius-Clapeyron equation given by

Pv(t) — P - pV,sat(Tsat(Poo))hLV
TF(t) - Tsat(Poo) B Tsat(Poo> '

On substituting Eq. (3.9) into Eq. (3.8) we get

RR+§R2+ 20 _ pvhiy <Tr(t)_T8“t(P°°))— vhiv o WAT,.,  (3.10)

RPL B Tsat(Poo) PL B pLTsat(Poo)

where py, hry, and pp, correspond to saturation properties at P, and the temperature
difference on the RHS is rewritten in non-dimensional form (Eq. (3.4)).

In the heat transfer controlled regime, we can express R(t) as 20+v/art (Eq. (3.1)) from
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the Scriven solution. This can be substituted directly into Eq. (3.10), yielding

(2B\/ OéLt) dtQ B dt = QT(t)ATSh.

@ (28vard) 3 (d@8vad)) | 2 pvhiy
(25\/05_1175) PL a prLsar(Poo)

(3.11)

This expression only holds in the heat transfer controlled-regime, where it is expected that
67 < 1. Denoting x = /%, the above expression can be rearranged to give the following

quadratic expression for y;,

pvhry 2 ( 20 > 2
20 ——F——— AT, — | =—= — Bar, =0, 3.12
( TpLTsat(Poo) h) X BPL\/ ay, X 6 L ( )

where the thermo-physical properties are evaluated at Ty, (Ps). To compute the extent of
the initial transient period or threshold time, t;,csn014, for a given bubble growth case, we

directly solve Eq. (3.12) using a suitably small value of 67. This gives us

A7 pyhpy ATy ]~ 2 2 ? Orpvh
Uihreshold = { LPvILY h] 2 + (—U> + (M) BPap ATy,
pLTsat<Poo> ﬁpL\/ Qg BﬂLv ar, pLTsat(Poo)
(3.13)
where the largest root is chosen, since it coincides with the physically relevant situation of

being situated within the heat-transfer dominated period.

For 6 = 0.1, we found that the difference in bubble radius predicted by the Scriven
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solution, and CVSI solution, given by

_ ’RCVSI (tthreshold) - RScriven (tthreshold)|

x 100, (3.14)

€R
Revsi(tinreshold)

was less than 10% for all the cases presented in this work. This is shown in table 3.3.
Values of 07 larger than 0.1 place the solution either within the inertial range or close to it
thereby increasing the error, er. For 07 <0.1, unreasonably large values of t;,,.csnoiq Can be
predicted. Although this would ensure that the bubble growth is more accurately predicted
by the Scriven solution, such a conservative estimate is not found to be necessary because
even at Oy = 0.1, € is already sufficiently low. Hence, the value of 67 = 0.1 provides a

reasonable approximation for ¢;,,csno1d, beyond which the HRS assumptions remain valid.

Case Lihreshola from €R
Description Eq. (3.13) for 67 = 0.10 | from Eq. (3.14)
# 1 from table 3.1 2.01 ms 7.55 %
# 2 from table 3.1 0.38 ms 1.53 %
# 3 from table 3.1 2.85 ms 3.34 %
# 4 from table 3.1 9.10 ms 0.97 %
# 5 from table 3.1 26.21 ms 6.31 %
# 6 from table 3.1 171.97 ms 6.41 %
# 1 from table 3.2 1.59 ms 5.31 %
# 2 from table 3.2 0.79 ms 0.49 %
# 3 from table 3.2 0.30 ms 5.60 %

Table 3.3: Prediction of threshold times for achieving solutions in the
heat-transfer-dominated regime and the associated error with respect to the CVSI solution.

HRS based on incompressibility and constant interface treatment should initialize bubbles
with a radius given by Rinitiar > 206V QLtihreshoid; Where tipresnola 18 given in Eq. (3.13). This
should be combined with a Scriven temperature profile [35]. Adopting these measures would

ensure that the underlying HRS assumptions would not be violated during the bubble growth
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process.

3.2.1.1 Departure from sphericity

In various applications, the vapor bubble may depart from spherical symmetry due to trans-
lation under the effect of buoyancy. For the analysis presented in the paper to remain ap-
plicable, the bubble must be nearly spherical up to at least the threshold time described
by Eq. (3.13). Following the line of reasoning provided by Brennen [61], a significant de-
viation from sphericity would happen if the viscous force, which is of the form pW,, D is
comparable to the characteristic force maintaining sphericity, oD, for a Reynolds number
(Re = pW,D/p) range such that Re < 1. In this viscous dominated regime the ratio of
destabilizing and stabilizing forces can be shown to be given by We/Re , where We is the
Weber number (pW2 D /o). In the opposite extreme, for Re > 1, the destabilizing force
would be pW2 D? and the aforementioned ratio becomes simply We. Thus, over the full
range of Re, we can interpret maz(We/Re, Re) as the ratio of destabilizing over stabilizing
forces. When this ratio reaches the limit of one, we expect departures from sphericity to be-
come significant. In the above expressions u, W, o, p, and D, are respectively the dynamic
viscosity, terminal bubble velocity, surface tension coefficient, liquid density, and diameter.
The terminal velocity, which is required in the calculation of the pertinent non-dimensional
quantities is given by [61]

4Dg 1/2
Weo == , 3.15
(3CD> (3.15)
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where the drag coefficient can be obtained over a broad range of Re from the work of Mikhailov
and Freire [99] (Equation 8 in their paper). This allows for the direct calculation of max(We/Re, Re)

as a function of bubble diameter as shown in figure 3.4.

10°

——maz(We/Re,We)m,o
—e—max(We/Re, We)pi13
——Limit

1075}

10-10 ] i ]
10°® 10°° 10 102 102
Bubble Diameter (m)

Figure 3.4: Ratio of destabilizing over stabilizing forces (maz(We/Re, Re)) for the
preservation of bubble sphericity as function of diameter for water and R113 systems.

The results in figure 3.4 indicate that significant departures from sphericity are not ex-
pected to occur until the bubble diameter reaches a threshold size of approximately 1 mm.
At this point, the ratio reaches a critical value of 1 indicated in the plot by the blue limit
line. Results using water and R113 properties are relatively close and lead to a similar
threshold size for the bubble. For most practical fluids, the Haberman-Morton Number,
Hm = gu*/(pc?), is Hm < 107! and in this Hm range similar values for the threshold
bubble size are obtained.

Considering the various CVSI to experimental data set comparisons included in figure 3.1
of the present paper, the most significant deviations from the incompressibility and constant

interface temperature assumptions (HRS assumptions) take place when the bubble is sub-
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stantially smaller than 1 mm. In fact, once the bubble reaches the 1 mm size for cases where
the Ja is less than &'(100), the deviations from the HRS assumptions are negligible. This
means that HRS can be performed under the current assumptions with no problem. For cases
where Ja is ¢(100) or greater, serious deviations from the HRS assumptions are recorded
at a bubble size of 1 mm. However, under these demanding conditions, the HRS would face
additional formidable numerical challenges imposed by stringent requirements of numerical

resolution at large values of Ja.

3.3 Summary

Bubble growth process is well-known to be comprised of an initial inertia-controlled phase
followed by a heat-transfer controlled phase. The HRS methods are shown here to be inac-
curate in the inertia-controlled stage of the growth process. The reason for this inaccuracy is
the inability of these methods to capture the time variation of the interface temperature, and
its coupling with the bubble pressure. Usually, HRS methods are judged against the Scriven
solution [35], which by construction only holds in the heat-transfer-dominated regime; hence,
the initial discrepancy associated with the inertial-controlled growth stage cannot be tested
accurately if the reference solution is invalid. Furthermore, this initial transient period be-
comes more dominant with increasing Jakob (Ja) number. Beyond this initial transient, once
the bubble enters the heat transfer dominated regime, the underlying HRS assumptions of
incompressibility and constant interface temperature hold remarkably well.

The work presented in this chapter provides a theoretical framework for specifying ap-

propriate initial set of conditions, which hold under incompressibility and constant interface
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temperature, since most of the methods operate under these assumptions. It does not pro-
pose a change in HRS simulation methodology but establishes the time period during which
such methods are physically valid. This is accomplished in this work by first determining the
time required for a bubble to enter the heat transfer dominated regime using a reduced form
of the Rayleigh-Plesset equation along with Scriven solution for bubble radius. This results
in an analytical closed form expression for this time, denoted as the tireshoa (Eq. (3.13)),
which can be subsequently employed to calculate the corresponding bubble radius, namely
26v/artinreshola- This bubble radius can be combined with the Scriven temperature pro-
file [35] to provide the appropriate initial conditions. Even for aspherical bubbles found in a
variety of applications, it is reasonable to infer that simulations should only deal with bubble
sizes that have an equivalent bubble radius greater than 28+v/artinreshod, if the numerical

methodology uses the underlying HRS assumptions.
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Chapter 4

Numerical Method Development for

Two-Phase Flows With Phase Change

In the previous chapter, we have reported about the limitations of the constant interface
temperature and vapor density assumptions used in previously published phase change sim-
ulation methods [50, 54, 5860, 82-97]. However, the usefulness of those methods was also
noted and we prescribed the conditions for the fundamental case of bubble growth that can
be solved without relaxing the HRS assumptions. Based on the literature review presented
in §(4.1) and through the work of Ryddner [100] & Anumolu [101] within our research group,
it was identified that a physically correct, easy to implement, robust and scalable implemen-
tation of phase change is not readily available. Moreover, as identified in chapter 1, such a
solver is a natural extension to the theoretical work on vapor bubble dynamics presented in
chapter 2 and chapter 3. It will lead to the development of a necessary capability to study
more complex vapor bubble systems for specific applications.

The phase change solver developed in this thesis describes the numerical solution for the
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continuity and momentum equations, but leaves the solution of energy equation as part of
future work. It includes a procedure to capture the deformation of an interface due to phase
change in addition to the bulk flow and also describes a novel method to capture the velocity
and pressure gradient discontinuities in a finite-volume framework. Importantly, the pressure
gradient discontinuity is often ignored in previous studies. An analytical expression for the
jump in pressure gradient has been derived as part of this thesis, its physical relevance is
validated, and it has been included in the numerical discretization through the Pressure-
Poisson equation.

The chapter is divided into four sections. The existing phase change HRS methods are
first reviewed in §(4.1). This is followed by §(4.2), which provides a description of an incom-
pressible two-phase flow solver without the capability of phase change, which is used as the
basic solver for further development. Then the numerical method for interface advection and
pressure-velocity solution related to phase change is presented in §(4.3). Finally, the coding

algorithm and relevant tests are presented in §(4.4).

4.1 A Review of Phase Change Simulation Methods

A large part of the discussion related to phase change methods is on the correct implemen-

tation of the interfacial conditions, hence, at first these equations are established here [60],
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m" = pr (upr —%r) - nr = py (uyr — Xr) - nr, (4.1a)
[pal = (2u[E]) - nr —m"[u] - nr —okr + [p] (g-x),  and (4.1b)
hLVm” = [[k?VT]] - 1r. (4.1C)

Here, xr is the local rate of change in interface position, nr is the normal directed from liquid

to vapor phase at the interface, m” is the mass flux due to phase change, [¢] = ¢vr — ¢
represents the difference between the two phases at the interface for any quantity ¢, E is
the strain tensor given by (Vu + VuT) /2, and kr is the local curvature of the interface.
Also, pg = p — p(g - x) refers to the dynamic pressure, where g refers to the gravitational
acceleration or more generally, acceleration due to body forces. Note that the expressions
in Eq. (4.1) are the generalized form of Eq. (2.8), Eq. (2.9), and Eq. (2.10), which were
specialized for a spherically symmetric system of vapor bubble.

A correct phase change numerical method should satisfy Eq. (4.1), and evaluate property
gradients (VT and Vu) near the interface, while accounting for those jump conditions [60].
Several such computational methods have been proposed in the literature. For succinctness,
these can be categorized based on the underlying scheme used for the advection of the liquid-
vapor interface, broadly, Volume of Fluid (VoF) [83, 89, 90, 92, 93, 95, 96], Level Set (LS)
[54, 58, 85-88], or Front-Tracking (FT) [82, 84, 97].

Among the early works on numerical simulations for phase change, Welch [44], and Son

and Dhir [102] presented Lagrangian approaches to track the interface, but such methods
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could not be scaled in cases of large deformations. Consequently, the focus shifted to the
Eulerian based approach for phase change problem, and the first work in this regard may be
attributed to Juric and Tryggvason [82]. They proposed a front-tracking method, where the
interface is marked by several points. Its deformation is tracked by advecting and re-adjusting
those points. Source terms were added to the underlying Eulerian fluid equations to simulate
phase change. This method is known to be very complicated in terms of implementation and
handling the rearrangement of the interface markers in cases of topological changes. Recent
work by Irfan and Muradoglu [97] has extended the front-tracking phase change method to
include cases where the mass transfer is due to species gradient. This is done by using the
Clausius-Clapeyron equilibrium relation to evaluate vapor mass fraction near an interface
and subsequently evaluating the resulting rate of mass flux.

Another early work on phase-change was published by Son and Dhir [103], who proposed a
level-set based approach. In a level-set method, the interface is treated as a zero-level contour
of a smooth, differentiable function defined over the entire domain. This function is taken
to be a signed distance function, which is advected with the fluid flow. The discontinuous
step change in the fluid velocity at the interface was handled by smoothing this change
over several computational cells near the interface. This concept of smearing introduced by
Son and Dhir [103] was contrary to the concept of the sharp interface [60] but due to the
numerical stability obtained from this approach, several other authors have continued to use
the ‘smearing’ concept [89, 90, 92, 104] to account for phase change. More recently, a number
of level-set based phase change methods [54, 60, 105] have instead used a method called the
Ghost Fluid Method to sharply capture interfacial discontinuities. As this method is used in

the current work, it is discussed in more detail later in this section.
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The third category of phase change methods has used the volume of fluid (VoF) method
for the interface advection. The first VoF based phase change method was proposed by Welch
and Wilson [83]. In VoF, phases are distinguished based on the fluid volume fraction («) in
every computational cell. We follow the convention that o = 1 for liquid and o« = 0 for
vapor. For an interfacial cell, o assumes a value in the range (0,1). The a value changes
sharply near the interface from a value of 0 to 1. In the solution of the momentum equation,
the discontinuity of the velocity field, the velocity gradients, and the viscosity due to phase
change were treated in [83] by smearing the change over several computational cells. A
recent methodology based on the interface reconstruction using an iso-surface of a = 0.5
was developed by Tsui and Lin [95] to solve for phase change. In this method, while density
and viscosity were still treated as smeared variables, thermal properties were treated sharply
and one-sided temperature gradients were obtained to evaluate the rate of mass flux due to
phase change.

An algebraic method similar to VoF was used by Sato and Niceno [93] to propose a
phase change solver, where they used a color function (0 < ¢ < 1) to advect the interface
(¢ = 0.5) using the constrained interpolation profile (CIP) method [106]. The method used
a source term to account for the motion of interface due to phase change, and in the energy
equation. In their work, they combine a finite volume formulation for the bulk fluids and
finite-difference formulation close to the interface for the temperature equation. While it
was noted that the velocity jump is handled sharply, the method used to capture this jump
through the pressure-velocity coupling using the Chorin projection [107] method was not
explicitly explained. This method has been used by the same authors for studying nucleate

boiling [108], pool boiling [109], and flow boiling [110] problems.
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Prominently, two methods have been used in previous literature to account for the dis-
continuities at the liquid-vapor interface: smoothing/smearing, or Ghost Fluid Method. The
latter is physically more accurate and its implementation has been extensively discussed
for the finite-difference formulation of the Navier - Stokes equations, which are used in the
level-set methods. However, the extension of level set methodologies to more realistic non-
orthogonal grids is very challenging. Instead, finite volume methods such as the VoF tech-
nique can be extended more easily. The OpenFOAM solver, which will be used in this thesis
also has existing VoF based solvers that can be further developed to include the capability
for phase change. Hence, this thesis describes the development of the Ghost Fluid Method
for a finite volume method of phase change. Before proceeding, the following sub-section

reviews the important pieces of literature related to GFM.

Review of Ghost fluid method

This method was first introduced in the work of Fedkiw et al. [111] within a Level-Set based
fluid flow solver to sharply capture material discontinuities exhibited at the liquid-vapor
phase interface. The initial development was motivated by a need to eliminate spurious
currents that arose due to the smearing of the interface discontinuities. In this method, the
liquid phase is assumed to extend beyond the interface into the vapor phase as a ghost fluid.
Liquid values are populated in this ghost region by some form of extrapolation, either using
a normal-wise constant extrapolation approach or by Taylor series expansion that accounts
for the discontinuities. Similarly, ghost vapor is also defined for liquid points in the domain.

Such an extension leads to two continuous fields in the domain, one pertaining to the liquid
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phase and the other related to the vapor phase. Consequently, the phase-specific gradients
that need to be calculated close to the interface can be evaluated directly.

While this method has been used extensively in finite-difference methods, finite vol-
ume techniques have only recently begun to apply GFM. A recent work by Vukéevié et al.
[112] used GFM to capture the dynamic pressure (p;) discontinuity related to gravitational
forces. The implementation was done within an algebraic VoF solver within the OpenFOAM
framework. It delineated the fundamental idea that all cells (including mixture cells with
0 < a < 1) are treated either as a pure liquid or vapor cell when writing the discrete form
of the momentum equation. In doing so, the pressure gradients evaluated at the faces of
interfacial computational cells have to be corrected to include the appropriate pressure jump
using the ghost fluid approach. Similarly, another study that was published as a short note
by Haghshenas et al. [113] implemented GFM to capture the pressure jump related to surface
tension. This was done within a Coupled Level Set-Volume of Fluid framework (CLSVoF),
where the value of curvature was determined from the level set.

For phase change problems, which is the focus of this thesis, the first use of GFM was in
the work of Nguyen et al. [56], where they extended the capture of material discontinuities
at the interface to the jump in velocity field at the interface. Interestingly, to obtain a
relation between vapor and liquid pressure gradients near the interface, they used the non-
conservative form of the momentum equation to argue that the momentum equation remains
continuous across the interface even with phase change, without sufficient justification. This

assumption led to the following relation for liquid and vapor pressure gradients near the
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interface,

(m) .nr:(m) . (4.2)
PL T [4% T

This relation along with Eq. (4.1b) served as the interfacial conditions for pressure to develop
the ghost fluid extrapolation across the interface based on the work of Liu et al. [114].
Following [56], phase change methods that employed Ghost Fluid method to handle interface
discontinuity [54, 57-60] continued the use of Eq. (4.2) in the solution of the Poisson equation
for pressure. These methods largely focused on improvements in the ghost fluid extension of
velocity and the use of improved advection schemes.

However, the velocity discontinuity observed due to phase change at the interface breaks
the continuity of the momentum equation and Eq. (4.2) no longer holds. Even for a sim-
ple case of spherical vapor bubble, using the well-known analytical expression for pj, (x,1),
pv (X,1), ur (x,t), and uy (x,t) [8, 10], it can be shown that pressure gradient suffers a
jump along the radial coordinate at the bubble surface (shown in §(B.3)). This shortcoming
of existing phase change methods is overcome in §(4.3.2) by incorporating a jump in pressure
gradient at the interface due to phase change and implementing the concept of Ghost Fluid

Method in a finite volume scheme, similar to the aforementioned work of Vukcevi¢ et al.

[112).
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4.2 Framework for Phase Change Solver Development

For this work, the open-source framework of OpenFOAM v1706+ [115] was chosen for its
coding-friendly paradigms, plenty of online resources, and extensive in-house experience
with these libraries [116, 117]. The interlsoFoam solver within this version of OpenFOAM
is used as the base two-phase solver for the development of phase change capability within

it. Comprehensive testing done for interlsoFoam is presented below.

Testing the performance of base solver: interIsoFoam

For assessing the performance of, interlsoFoam, several tests are presented in this section. Its
results are compared against the more widely used interFoam solver, which has been in use
within our group for over a decade and has been thoroughly tested for its accuracy and ro-
bustness [118]. The fundamental difference between the two solvers is related to the advection
of liquid volume fraction, «, which implicitly tracks the deformation of the interface.

The interlsoFoam solver [119] is based on a geometric VoF methodology that explicitly
performs a geometric reconstruction of the interface and tracks its motion over time to evalu-
ate the advection of liquid volume across the boundaries of a computational cell. In contrast,
the interFoam solver incorporates an algebraic manipulation in the advection equation for
« that serves to limit the diffusion of « field close to the interface and somewhat preserve
the sharpness of a liquid-vapor interface. While it results in a stable and easily scalable algo-
rithm, a major drawback with the interFoam solver is the absence of a sharp location of the
interface (available in the interlsoFoam algorithm), which is substituted with an interfacial

region that spans over several computational cells.
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In the following comparison, results from interFoam will be referred to as aVoF, which
stands for algebraic volume of fluid method, and results from interlsoFoam will be referred

to as gVoF which stands for geometric volume of fluid method.

4.2.1 Advection Tests

In this section, we exclusively analyze the performance of the liquid volume fraction advection

equation given by,

oo

—+/ I[(u-n)dS =0. (4.3)
ot Jaq,

Here, u represents the velocity, n represents the normal pointing outwards from the control

volume, and I represents the indicator function, given by,

1 x € Liquid
I(x,t) = = x(x,t) = xel(x,t) + xv (1 - 1(x,1)), (4.4)
0 x € Vapor
where Y represents any physical quantity.

The problem with solving a hyperbolic equation such as Eq. (4.3) lies in the evaluation
of the second term on the left-hand side of the equation referred to as the advection term.
As briefly explained above, this evaluation of liquid flux through a computational volume
is done in interlsoFoam by first approximating a geometric reconstruction of the sub-grid
interface, and then subsequently tracing its sub-grid movement at the computational volume

boundaries during a time step. Conceptually, this method is similar to the popular PLIC

geometric VoF scheme [120-123], but the reconstruction and time-evolution of the interface
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slightly differ from the traditional method.

In PLIC, the interface is oriented using normals calculated from volume fraction gradient,
and then located such that the cell liquid fraction is satisfied. The first step that includes the
calculation of interface normal itself introduces error in the formulation. In the new method
implemented in interlsoFoam, an interpolation of the « field on each cell-edge is done to
reconstruct an iso-surface that cuts the cell into liquid and vapor volumes that correspond
with the volume fraction of the cell [119]. This reconstruction of iso-surface is independently
done in each of the interfacial cells, without the need to orient the interface with respect to
a separately calculated interface normal direction.

Tests on the implemented solution for Eq. (4.3) in interlsoFoam are shown in this section
for simple geometries that undergo interface deformation under a prescribed velocity field. No
velocity-pressure solutions are obtained in these tests. The velocity fields are prescribed such
that the object should ideally retain its original position and shape at the end of simulation
time. This provides an easy benchmark to compare the final volume fraction field with the
initial state and find the error that is induced only due to the inaccuracy of the o advection

methodology.

Notched Disk: Pure Rotation

This is a popular case used in several other papers as the first test of their interface advection
scheme. The initial geometry consists of a circular object in a square domain ([0, 1] x [0, 1]).
The circular object has a rectangular notch and the shape is shown in figure 4.1a. The center
of the circle is kept at (0.5,0.75), and its radius is 0.15, while the notch width is 0.06, and

the top-most edge of the notch is at y = 0.85. This disk undergoes a pure rotation around
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the center of the domain and should ideally come back to its original position, where the

prescribed velocity is given by,

X-Velocity, u = - (y —0.5),and (4.5a)
3.14
T
Y-Velocity, v = 314 (x —0.5). (4.5b)
Error metric used for this test is given by,
1 107
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(a) Comparison of @ = 0.5 contour for grid size - (b) Error in the final « field compared to initial
400 x 400 setup as described in Eq. (4.6).

Figure 4.1: Results for Notched Disk Advection.

Error = < Z A; |0 final — ai,initial|> ) (4.6)

1€All cells

where error between the initial and final volume fraction field is integrated over the entire
2-D domain. Both the qualitative visual result in figure 4.1a and the quantitative error in
figure 4.1b show that the performance of the interlsoFoam solver is superior when compared

to the inter Foam solver.



75

Two-Dimensional Vortex: Highly Deforming Interface

This test is designed to test advection performance where an interface severely deforms
from an initial circular disk under a vortex field. After achieving maximum deformation the
velocity field is reversed such that the object should attain its original position after one
complete period. In a square domain ([0, 1] x [0,1]) an initial circular disk of radius 0.15 is

centered at (0.5,0.75). The deformation velocity field is,

7t

0= (u,0) = (sin2 () sin(27y) cos (g) | — sin? (my) sin(272) cos(%t» @

The contour obtained from geometric VoF retains the original shape of the circle more

1
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(a) Comparison of = 0.5 contour for grid size (b) Error in the final « field compared to initial
256 x 256 setup as described in Eq. (4.6).

Figure 4.2: Results for 2-D Vortex Deformation Advection.

accurately than the algebraic VoF as shown in figure 4.2a. Quantitatively, the error in the
« field decreases more significantly for the geometric VoF method on the refinement of the

mesh.
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4.2.2 Surface Tension and Pressure Velocity Coupling Tests

Momentum equation in a whole domain formulation of two phase flows is given by,

a'.;udV—i-/ pu(u-n) dS:—/ VpddV—/ (g-x) VpdV—l—/ okVadV  (4.8)
o Ot 09, Q, Q o)

+/ (uVu)-ndS—l—/ (Vu-Vp)ds,

The above equation is repeated from the work of Deshpande et al. [116].

The solution for Eq. (4.8) is performed by the Chorin projection method [124]. First, an
intermediate velocity field is constructed without considering pressure term, and then the
resulting velocity field is corrected using the Pressure Implicit with Splitting of Operators
(PISO) [125] method. It is an implicit pressure correction procedure to time advance the
pressure. The interested reader is referred to Deshpande et al. [116] for explicit numerical
details of the method.

Both density and viscosity used in the solution of the momentum equation are given by,

pi=ajip,+(1—af)py,  and (4.9)

pi = o pn + (1 —ai) py, (4.10)

where i refers to the computational cell index, and n refers to the time step-index. Equa-
tion (4.10) shows that the change in density and viscosity happens continuously over an
interfacial region rather than discontinuously at the interface.

The surface tension term in Eq. (4.8) is calculated using the Continuum Surface Force
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(CSF) model in both inter Foam and interlsoFoam solvers, which is given by,

n =V, (4.11)
kr =V -n=V-Vaq, and (4.12)
AP =0 (V- -Va). (4.13)

Laplacian of the liquid volume fraction field in any VoF scheme will naturally result into
non-zero values over several computational cells. Again, Eq. (4.13) suggests that a smoothed
profile of change in pressure due to surface tension is implemented in the OpenFOAM frame-
work.

Regarding the comparative study here, the key difference between the test solver inter-
IsoFoam and the benchmark solver interFoam lies in the volume fraction field. The time
evolution of o from both methodologies is different, which will directly affect the evalua-
tion of density & viscosity and consequently the pressure-velocity solution for momentum

equation obtained from the PISO loop.

Interfacial Curvature Calculation

Here, an initial system is set up with a simple droplet of radius, R = 0.25 kept at the center
of a square domain of span [0, 1] x [0, 1]. The two phases have identical properties of p = 10%,
and p = 1, while the surface tension at the droplet interface is set at 0 = 1. The curvature
of a 2-D shape is simply given by 1/R, and hence, the analytical value of curvature is equal
to 4. Correspondingly, the pressure jump across the surface should be equal to ok = 4.

Comparison of this analytical value to the value computed from the interlsoFoam and



78

inter Foam solvers is shown below.
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Figure 4.3: Evaluation of Pressure Jump from at different grid sizes.

In figure 4.3b, the pressure jump occurs across one cell for the interlsoFoam solver based
on geometric VoF, while the pressure jump occurs over at least 2 cells in the inter Foam
results. The former is more in line with the sharper treatment of the interface as described
in §(4.1). However, it is also evident that the computed pressure jump has a higher error in
the geometric VoF method than the algebraic method. As the variation of a in gV oF occurs
more sharply, it results in greater error in calculating the divergence of its gradient used in

Eq. (4.13).

Standing Capillary Wave

The two-phase setup for this case is shown in figure 4.4. The horizontal dimension of the
domain is 107* m and the vertical dimension is 5 x 107* m. As shown in the figure, an
initial perturbation of wavelength A = 10~* is added to the liquid-gas interface, which has
an amplitude, a = \/20 = 0.05 x 10~*. Density of liquid and vapor phases are 1 kg/m? and

999 kg/m? respectively, while kinematic viscosity is equal to 0 and 107% m?/s. The left and
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right walls have a cyclic boundary condition as shown in figure 4.4, while the top and bottom

sides are simply treated as constant pressure, and zero velocity gradients.

aVoF gVoF
TaVoF |7_aV0F _ Toscl/Tosc x 100 TgVoF ’TgVoF B 7—osc|/7—osc x 100
AAz =5 |3.702 x 107° 55.285% 3.152 x 107° 32.201%
AAz =20 | 2473 x 107° 3.747% 2.487 x 107 4.31%
A Ax =30 | 2.444 x 107° 2.517% 2.476 x 107° 3.859%
A/ Az =40 | 2.436 x 107° 2.181% 2.453 x 107° 2.908%

Table 4.1: Error in calculation of oscillation time period for standing capillary wave.

Due to the difference in densities, the interface
undergoes periodic oscillations that are eventually
damped out due to the liquid viscosity. The results
are compared to the analytical solution as shown in
the test cases of Deshpande et al. [118]. The analytical

solution is given by,

oK3
pL+ Pyg

2
Wose = , where k= Tﬂ (4.14)

For this case, analytical period of oscillation given by,

1 27

Tose = =

wOSC

BC.

U, P - Cyclic

-

BC.
U, P - Cyclic

Figure 4.4: Initial setup of the
standing capillary wave test.

=2384 x 1077 s,

(4.15)

which is compared with the numerical period of oscillation obtained as an average of 10

cycles.

Results in table 4.1 show that for the coarsest grid of 5 grid cells across the wavelength,
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both aVoF', and gV oF methods perform poorly, and the former has a higher magnitude of
error. A significant improvement in the results is observed for A\/Az = 20 for both method-
ologies and the rate of decrease in error on further refinement of the grid is small. The test
shows that the geometric volume of fluid implementation in interlsoFoam has a comparable
performance compared to the well-established algebraic volume of fluid, inter Foam solver

for surface tension dominated dynamic test cases.
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(a) inter Foam solver (b) interIsoFoam solver

Figure 4.5: Time variation of kinetic energy in the domain for a standing capillary wave
test case.

Rising Bubbles due to Buoyancy

Keeping in mind the final application intended for the interlsoFoam solver, the final test
case is chosen to be directly related to bubble dynamics. The following tests are done for
pressure-velocity coupling in case of rising gas bubble under the effect of buoyancy. Here,
we present a comparison between the experimental results of Bhaga and Weber [126] and
the numerical results obtained from the interlsoFoam solver for rising air bubbles in water-

sugar solution column similar to previous numerical works [84, 106, 127-131]. The solution
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concentration was varied to obtain different values of the following non-dimensional numbers

[126],

D
Reynolds Number, Re = M, (4.16a)
I
D2
Eotvos Number, Fo = J p7 and (4.16b)
o
4
Morton Number, Mo = g_,u3 (4.16¢)
po

Present Work Magnini [132] Results
Case | Fo Mo Reezpem’mental Recalculated ARe Recalculated ARe
a 116 | 848 2.47 2.33 5.66 % 2.37 4%
b 116 | 41.1 7.16 6.96 2.79 % 6.94 3.1 %
¢ 116 | 1.3 20.4 19.51 4.36 % 19.55 42 %
d 116 | 0.103 42.2 38.58 8.58 % 39 7.6 %

Table 4.2: Test cases for bubbles rising in liquid columns of different liquid properties.

The system setup is obtained from Magnini [132]. A gas bubble of diameter D is centered
at [0,2D] in an axisymmetric domain that spans [0,4D] x [0,12D]. The grid size is kept
fixed for all cases at 80 x 240. Density ratio between vapor and liquid was kept at 1000,
and viscosity ratio as 100. Values of the Eo, and Mo were varied for different cases and the
computed Re value of the bubble are logged in table 4.2. Difference of the computed values
from experimental data are shown as ARe.

Reynolds number obtained for the terminal velocity of the bubble from the present cal-
culations are within 10% of the experimental values. Also, the results match very well with
a similar numerical methdology used by [132], where they use PLIC method of geometric
reconstruction in the volume of fluid algorithm.

The results presented above show that interlsoFoam is a stable two phase flow solver
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(d) Case (d)

Figure 4.6: Test cases for bubbles rising in liquid columns of different liquid properties.
Experimental pictures on the left [126] and results from interlsoFoam solver on the right.

with the ability to provide information about the sub-grid interface location. This property
is useful in implementing the capability to handle phase change phenomenon, which results

in velocity, pressure gradient and temperature gradient discontinuity at the interface.
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4.3 Phase Change Numerical Method Development

To add the capability of phase change in the interlsoFoam solver, following equations must

be modified or added to the solver:

Interface advection: a equation

Momentum: Chorin projection and Pressure-Poisson equation

Temperature: Energy equation

Mass Flux: Rate of phase change at the interface evaluated from Eq. (4.1c)

In this thesis, methods related to the first two aspects of a phase change solver, namely,
advection and momentum equations have been presented. It includes the critical component

related to capturing the velocity discontinuity at the interface.

4.3.1 Alpha Equation

The liquid volume fraction advection equation given by Eq. (4.3) only accounts for the
interface motion that occurs along with the bulk flow. This needs to be modified for a flow

with phase change due to two reasons:

1. The velocity field has a discontinuity at the interface, which is absent in flows without

phase change.

2. Besides interface advection with the flow, there is an additional motion of the interface

due to the phase change process.
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To derive a generalized equation for the advection of liquid volume fraction, we begin
with the integral form of continuity equation given by Eq. (B.5), specialized for mass with

1 = p. This is given by,

d d

d -nd 4.1
i ), % Qip V+/89i,0u nds, (4.17)

where the integral on left hand side represents the time rate of change in the mass of a
material volume, first term on the right hand side represents the time rate of change in the
mass for a control volume that coincides with the material volume at an instant of time
t, and the last term represents the mass flux across the bounding surface. By definition,
L.H.S. =0 and the equation reduces to,

d
— [ pdV +/ pu-ndS = 0. (4.18)
dt Jo, o0,

Using the indicator function, I, given by Eq. (4.4), density at any point, x, in the domain
can be expressed in terms of liquid and vapor densities. Rewriting Eq. (4.18) in terms of py,

and py, we get,

d

a Jo (pl+ pv (1 =T))dV +/ (pl+ pv (1 =T))u-ndS = 0. (4.19)

00

Collecting the indicator function terms on one side, we get,

d d
(o1, — pv) (—/ ]IdV+/ ]Iu-ndS> - ——/ pvdV—/ pyu-ndS.  (4.20)
dt Jo, o9 dt Jg, 0%

—_————
=0
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Phase densities, py and py, are assumed to remain constant in writing Eq. (4.20), which can

be further rearranged as,

dov / pv /
L TundS=——" [ w.nds, 4.21
dt o (oL — pv) Joq (4.21)

where, a = fQ IdV. For cases without phase change, the divergence of velocity on R.H.S. is
zero even for interfacial cells. Equation (4.21) would be identical to Eq. (4.3) in that case.
However, due to Eq. (4.1a), the divergence of velocity over a control volume is no longer zero
for interfacial cells.

A derivation for the divergence of velocity for a control volume containing the interface
in a flow with phase change was presented in §(B.2) and given by Eq. (B.12). Substituting

Eq. (B.12), Eq. (4.21) can be rewritten as,

d 11
e +/ Tu-ndS=——"" (— — —> /m”ds. (4.22)
At Jaq, (o —pv) \pv  pr) Jr

Another important modification needed for o advection with phase change is related to the
velocity that is used to advect this quantity. The general variable u, which remains continuous
for cases without phase change no longer holds that property due to the velocity discontinuity
in phase change problems. Rewriting, u in terms of uy and uy using the indicator function
distinctly identifies the vapor and liquid velocity, which is physically accurate at the interface.

Using such a relation in Eq. (4.22) and simplifying R.H.S. gives,

d 1
ca / I(ugl+uy(1—1))-ndS=—— [ m"ds. (4.23)
dt a9, PL Jr
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Considering, I(x,t)[(x,t) = I(x,t) and I(x,?) (1 —I(x,t)) = 0, the final reduced form of

this equation is given by,
— ~|—/ I(uz-n)dS =—— [ m"dS. (4.24)
0%

Different from Eq. (4.3) used in the original solver without phase change, the advection of
liquid volume fraction in this phase-change formulation is performed with the liquid velocity
as it forgoes the notion of a general velocity that describes the entire domain. Also, the
additional motion of interface due to phase change is included in the source term given by

the right hand side of Eq. (4.24).

4.3.1.1 Numerical Solution of Alpha Equation

In the implemented solver, Eq. (4.24) is written for each discrete computational cell as,

¢n t+At 1 t+AL
att=al+ Y (Lf / / ]Idet> . / / " dSdt. (4.25)
|Sf| t f PL Jt r

f€Cell Faces

Here, the superscript n refers to the previous time step for which the velocity, liquid volume
fraction, and mass flux fields are known. The superscript n+1 refers to the time step for which
a needs to be evaluated through Eq. (4.25). In writing Eq. (4.25), we have assumed that
face volume flux, ¢ = ur ;- Sy remains a constant for the time step At. This assumption
is similar to the solution taken without phase change in the interlIsoFoam solver [119].
Using the same notation as used in [119], the advection integral can be written in terms

of Ay = [ f [dS, which refers to the face area submerged in liquid at a given instant of time.
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We can further assume that mass flux due to phase change for a given interfacial cell is

uniform and constant for time step At¢. This reduces Eq. (4.25) to,

¢7Lz t+At (m//)ﬁ
't =l 4 (—f/ A dt) - LA AL, 4.26
% 7 Z ’Sf‘ ] f oL 1% ( )

f€Cell Faces

where Ar; represents the area of the sub-grid reconstruction of the interface. The evaluation
of Ay and its time integral remains unmodified from the solution of inter/soFoam as presented
in detail in [119]. Equation (4.26) serves as the first step in the advection of a.

The resultant « field is not bounded, however. The source term in Eq. (4.26) allows the
value of a in some computational cells to overshoot its maximum value of 1 or undershoot
the minimum value of 0. In the original implementation in interlsoFoam, this step of «
advection is handled by transferring the additional fluid volume to downwind cells by using
the volume flux values at the faces. We employ a similar strategy, albeit, with some needed
modifications. The flux values used for a advection in Eq. (4.26) correspond with the liquid
flux. These values do not reflect the additional volume that is generated due to phase change
and only represent the bulk liquid flow.

Hence, for this step we reformulate the o equation starting from Eq. (4.21). Here, instead
of substituting Eq. (B.12) on the R.H.S., velocity on the R.H.S. is also written in terms of

uz, and uy. The resulting expression is given by,

d_&“‘/ ]I(LIL]I—FUV (1 —]I)) -ndS = —p—V/ (uLI[—i-uV (1—]1)) -ndS. (427)
dt o0 (pr = pv) Joo
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Combining uy terms and uy terms separately on the R.H.S., we get,

d
_a:_(1+P—v)/ ]I(uL-n)dS—p—V/ uv-nd8+p—v/ Iuy - ndS.
dt pr — pv /) Joa, pL — pv Joaq, pL — pv Joagq,

(4.28)

Second term on R.H.S. is equal to zero due to vapor incompressibility ( |, o0, WV - ndS = 0).
Note that this step assumes that vapor velocity is populated on faces of interfacial computa-
tional cells, which may be completely submerged in the liquid face. Hence, the assumption
inherently implies that fictional values populated for vapor beyond the interface also follow

the incompressibility condition. On further simplifying Eq. (4.28), it is reduced to,

d
o _/ I ( Pr_ oy, — PV uv> m | ds. (4.29)
dt 89 PL = Pv pL—pv. /)

[\

~
Effective face velocity

Using this effective face velocity, we evaluate an effective face flux given as,

PL

4%
———u}  +———uy, | -n|Sy, 4.30
PL — pPv s PL — pv V’f> 571 ( )

; N (
Ef fective,f —

which is used to advect the additional volume obtained from the overfill or underfill.

The author would like to note that Eq. (4.29) has been derived with no major assumptions
besides bulk-phase incompressibility of liquid and vapor. Hence, Eq. (4.30) can ideally be
used directly to advect o. However, in practice, @gffective, that employs the values of both
u; and uy, is physically inconsistent for faces, which are completely submerged in liquid or

vapor. Switching between ¢, and ¢gyfective depending on the instantaneous state of a face
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(completely submerged in liquid /vapor or intersected by the interface) requires complicated
book-keeping. Hence, it is only invoked for cases where the computational cell overshoots or
undershoots.

Finally, the evolution of a is composed of two parts:

1. At first, « is advected using Eq. (4.26). The flux value in advection term, represented

by ¢, s refers to the volume flux associated with liquid bulk velocity.

2. The second step uses Eq. (4.30), which defines an effective volume flux, to transfer

additional fluid volume from computational cells that have o > 1 or o < 0.

4.3.2 Pressure - Velocity Coupling (Ghost Fluid Method)

After the interface advection, the density and viscosity values at cell centers is updated using
the new values of . A whole-domain formulation is traditionally used for the solution of
momentum equation in the base, interlsoFoam solver, which uses the volume averaged value
of p and p. This formulation is not consistent with the velocity discontinuity, characteristic of
a two-phase flow with phase change. To tackle this challenge, we present a hybrid approach
below. Instead of treating cells with 0 < a < 1 as mixture cells, we first categorize each
computational cell as either liquid or vapor (even the interfacial cells) depending on the
location of their cell centers relative to the interface as shown in figure 4.7. The geometric
volume of fluid method for advection of liquid volume fraction ensures that the interfacial
region is not diffused and a planar interface may be reconstructed from the « field with a
reasonable assumption that the interface curvature is larger than the grid size. Due to this

planar nature of a sub-grid interface, the location of cell-center can be easily defined to reside
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[] uquip [ ] vaPOR

Figure 4.7: An instantiation of cells tagged as liquid or vapor to be treated as such in the
solution of momentum equation. Cell faces shared by a liquid and vapor cell have been
highlighted in red and are the interfacial faces, where the changes due to Ghost Fluid

Method are directly implemented.

either in the liquid or vapor side based on the following expression,

al > 0.5 Liquid Cells
== , (4.31)

o) < 0.5 Vapor Cells
where = identifies whether a computational cell is tagged as liquid or vapor. The definition
is in-line with a prior GFM implementation in finite volume framework by Vukcevi¢ et al.
[112], where they implemented the gravity force jump given in Eq. (4.1Db).
Under this categorization, the momentum equation valid at each cell center is the single
phase momentum equation instead of the whole domain formulation. Numerically, each cell
assumes the density, and viscosity values that the cell-center is assigned based on Eq. (4.31).

For incompressible flows and Newtonian fluids, the momentum equation for a single phase
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can be written as,

4 udV+/ u(u-n)dS:—/ mdv+/ v(Vu-n)dS. (4.32)
dt Jo, 09 o P 09

In solving Eq. (4.32) for cells near the interface, the velocity flux, pressure gradient, and
velocity gradient near the interface must be corrected to include the effect of jump conditions
defined by Eq. (4.1a) and Eq. (4.1b). These corrections must be implemented at all the faces
that lie between a liquid tagged cell and a vapor tagged cell, or mathematically represented

by,
(or)F = . (4.33)

Here 0T is used to refer the computational cell faces that are shared by a liquid and vapor cell
(also referred as interfacial faces in the remaining text). A simple graphical representation of
the proposed concept is shown in figure 4.8. On performing any surface integral that includes
OI' in figure 4.8, care has to be taken for using a liquid value for liquid cell, and vapor value
for vapor cell. Hence, all interfacial faces must be populated with both liquid and vapor
values of a variable, like volume flux (¢y), or face normal pressure gradient (Vj%pd).

As the focus of this work is to capture the velocity discontinuity due to phase change
at the interface, we relax the sharp treatment of some of the terms in Eq. (4.32) and jump
conditions, Eq. (4.1a) and Eq. (4.1b), which converts the formulation into a hybrid approach.

These relaxations are:

e Surface Tension Jump (treated smoothly): The jump in pressure due to surface ten-
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o, =09

(Treated as
Liquid Cell)

oI’

(ZP=.O.4

(Treated as
Vapor Cell)

Figure 4.8: An example pair of cells showing them tagged as liquid and vapor, and
highlighting the interfacial face between them.

sion given by ok is not treated sharply in this treatment. We continue to handle this
interfacial discontinuity using the existing CSF formulation [133], where the capillary
force pressure jump is smoothed close to the interface. The related expression given by

Eq. (4.13) is added to Eq. (4.32) to reflect this jump in pressure.

e Viscous forces (1 = 0): Viscosity is assumed to be zero due to its relative unimportance

for the intended bubble dynamics applications.

e Gravitational forces (g = 0): Dynamic pressure (py) used in OpenFOAM calculations
as a proxy for pressure has a jump in its value associated with gravitational forces as

shown in Eq. (4.1b). For the present work, it is assumed to be zero.

The extension of surface tension pressure jump using Ghost Fluid method would require a
more robust method of curvature calculation, which adds another dimension of complexity

to the method. However, updates to the viscous and gravitational force calculations are
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straightforward. GFM Implementation of the gravitational jump for p; in OpenFOAM has
already been published by Vukcevi¢ et al. [112] and will be included in the solver at a later
stage of development.

With above simplifications, the final momentum equation that must be solved in each

computational cell is given by,

d
— [ udV + / u(u-n)dS =— @dv + / okVadV. (4.34)
dt Jo, a0, Q P Q4

Along with this equation, the interfacial conditions that must be satisfied by velocity used

in the momentum flux represented by the advection term is given by,

s I

uLr-0r =Xr-0r+ m—, and (4.35a)
PL
m//

Uy - Np = Xr-nr + —. (435b)
PV

Finally, the evaluation of pressure term must follow the following jump conditions,

1 1
pvr —prr = Apr = —m" ? (— + —) : and (4.36a)
pPv  PL

(@) _ (@) np = — (i _ i) dri” (4.36b)
P Jvr P J)rLr pv  pr/) dt

These jump conditions are imposed by using the Ghost fluid approach to evaluate the ad-
vection and pressure terms for liquid and vapor cells near an interface.

An important concept is introduced in Eq. (4.36b). In most previous formulations of
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GFM, the R.H.S. of this equation is assumed to be zero as described in §(4.1). However, a
detailed derivation to evaluate the jump in pressure gradient at the interface has been done
as part of this work starting from the general conservation expression given by Eq. (B.5). For
a good organization of the details related to this derivation, it has been presented in §(B.3)

along with a suitable test case verifying the validity of the expression given in Eq. (4.36b).

Intermediate Velocity

Following the established projection method of Chorin [124] to solve the momentum equation,
an intermediate velocity needs to be computed without contribution from the pressure term.
In the finite volume framework, this is accomplished in two steps. At first, we only consider

the temporal and advection terms from Eq. (4.34), which in its discretized form is given by,

up — u’p /
PA—tP\QPH— > gy =o. (4.37)
feop

Here, P refers to the computational cell for which the projection velocity (u}) is evaluated
and u;' refers to an implicit calculation of face value that is described below.

To simplify the following discussion on implementation of the jump conditions, we con-
sider the case of a liquid cell. Expanding Eq. (4.37) for a liquid cell, and writing the advection
term as a sum of pure liquid faces and interfacial faces, it gives,

up — (up);

el b DD s+ Y By, =0, (4.38)
feoQp/or feoapnol

Here, 0Q2p NOT refers to the interfacial cell faces as defined in Eq. (4.33), and 0Q2p /0T refers
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to all other cell faces that circumscribe a computational cell. This distinction is graphically
represented in figure 4.9. Also note that in the temporal term, the quantity that denotes the
n™ time step has been specialized to have a liquid value. If a computational cell has changed
from vapor to liquid due to interface motion over the current time step, the corresponding
value from the previous time step must be updated.

The face velocity used to compute volume flux ¢y, s (or ¢y in case of vapor cell) are
obtained by interpolation from the velocities stored at cell centers. Figure 4.9 depicts the

values stored for a typical GFM computational cell grid. The interpolated velocity for f €

“L
feon,/ar
reaa)ar feo@inar
__ghost ghost
u; u,.uy u,.u;
fedn, nar
ghost
u,,u;

Figure 4.9: An example computational cell grid, where the green cells represent liquid cells
and white cells represent vapor cells. The red highlighted cell boundaries are the interfacial
faces. Cells sharing an interfacial face are populated with two velocity values, one
corresponding to its original phase and another ghost value.

0Qp /0T is simply given by,

ufy, (4.39)
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where 6(f) refers to the sign convention used in OpenFOAM related to the owner-neighbor
relation of a cell with the face, and w refers to the interpolation weight calculated depending
on the interpolation scheme used [116]. For interfacial faces (f € 9T), the ghost liquid value

of the neighbor cell must be employed to evaluate the face velocity, which is given by,

r/ I+ Q(f)w * - H(f)w n 08
up ;= 5 up + 5 (uN)%h .

. 1+06 1—-6 A
Uz,f _ + 2(f)wu; + 2(f)w (117\/ . (m//)N (p_v . p_L> np) ) (4'40)

Substituting Eq. (4.39) and Eq. (4.40) in Eq. (4.38) we get,

- " 146 1-16
fEan/al—‘

S (PG SR (g g (- ) Yo =0, @

fedQpNAT pv PL

On rearranging all the terms, Eq. (4.41) can be written as,

<%+ > (L) ’zf> ap = (ur 5 5 (S0 ) e,

fedp Fedp

b (R (- ) wie

FedQ pNAT PL

(4.42)

Succinctly, the coefficient of u}, on the left hand side of the above equation is termed as Ap
and the right hand side is termed H(u"). Equation (4.42) represents the equation for a liquid
cell. Compared to the solver without phase change, we have one additional component given

by the last term that will be zero in the absence of phase change leading to a continuous
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velocity field.
The expression defined in Eq. (4.42) was specialized for a liquid cell. For a vapor cell, it
will have a similar form except that the velocity correction term for interfacial faces changes

its sign, and the first step for a vapor cell looks like,

<% £y (B0 ’&f) O e Ol C )

feop
1-0(f)Hw om0 1 1 " on
Z ( 9 ) (1 )N (P_V - p_L) nr¢Vf-

feoQpnor

(4.43)

For a liquid cell near the interface, the intermediate velocity corresponding to the liquid
phase will be evaluated by Eq. (4.42). But in a finite volume framework, these values are
interpolated at the faces before they are used in the Poisson equation. Hence, u} value in
the adjacent vapor cell must be corrected to obtain a consistent liquid value at the faces.
The same should be implemented for vapor cells. As a result, on the interpolation of these
cell-centered projection velocities calculated from Eq. (4.42) and Eq. (4.43), each interfacial
face will have two separate face values, each corresponding to a liquid and vapor phase.

The associated volume flux from these expressions of intermediate velocity can be math-

ematically written as,

¢} = <HIE“;") K Sy — (1_9§f)“’> (m")'y <9Av — p%) nit-S; f € 0l and solving for liquid cell -
\ <H£“;n))f Sy + <1_0§f)w> (m") 'y (va — piL) nt-S; f € 9l and solving for vapor cell

(4.44)



98

Surface tension term from Eq. (4.34) is added to Eq. (4.44) to obtain the final projection

velocity flux. The final expression is given by,

P = o7 + (Aip)f (m);“ (v;a)”“ S| (4.45)

Poisson Equation

The contribution of pressure is added to correct Eq. (4.45) and obtain the final velocity flux

given by,

1 1 m—+1

=gl — — ] = (Vs S¢l. 4.46
o =01 (57) 5 (T 84 (440
If the face is shared by computational cells of the same phase, the ¢ values are the same for
equations written for either cell. However, if f is an interfacial face, ¢ values used at the face
for liquid cell are different from the case when the face values are used for the sharing vapor

cell as described in Eq. (4.44).

Taking a divergence based on these fluxes over all the faces of a computational cell gives,

> oot = 3 o= 3 () M s

feaQp feaQp feaQp P

which due to continuity of each cell (treated either as liquid or vapor) reduces to,

S o) (Aip)f (%) (Vi)™ 18, = 3 0h)e;. (4.47)

feop feop

While the R.H.S. in Eq. (4.47) is evaluated using Eq. (4.45), left hand side must be
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corrected to evaluate the pressure gradient for either liquid or vapor phase at the interfacial
cells. The corrections can be derived by substituting the pressure jump conditions, Eq. (4.36a)
and Eq. (4.36b) in the corrections proposed using Ghost Fluid Method in §(C.4). At the

interfacial cells, if face f is owned by a liquid cell,

1 1 1 1 (pd — APF) — (pd) oL — Py dm”"
i), o) (Ve = (_) o ( . "+ 1—=Xp))ISsl,  and
(AP)f <PL) ( fpd)L Ap ) p* Az oL dt ( 1)) 184 n

(4.48a)
1 1 1 1 ((pa)y — (pa+ Apr) pr — py dm” )
_ — | (VE (- ) = N P \ S/l
(AP>f (PL) ( fpd)v (Ap)f p* ( Az pv atr 7 | f|
(4.48Db)

where Ay is a non-dimensional quantity representing an approximate distance of the interface

from the cell centers given by Eq. (C.2). Similarly, if face f is owned by a vapor cell,

1 1 1 L ((pa)y — (pa — Apr)p . pr — pv din”
) =) (Vipa), = <—) ( - P4 A )ISsl, and
(Ap>f <pL> ( fpd)L AP ; p** Af[,' oL dt I | f| 11
(4.49a)
! 1 1 1 ((pa+ Apr)y — (pa) pr — py dm”
. . VJ- — <_) < N P 1.\ .|
(AP>f (pL) ( fpd)v Ap ) p** Az oy dt ( 1)) 1Sy
(4.49b)

Using the updated gradient calculations in Eq. (4.47) results in a symmetric linear system
of equations, which is solved using the preconditioned conjugate gradient (PCG) method.
Note that Eq. (4.48) and Eq. (4.49) are used for the interfacial faces. The evaluated value

for py is then used to calculate the pressure gradient flux at the cell faces needed to update
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the value of volume flux defined in Eq. (4.46). The corrected flux is reconstructed to get

cell-centered velocity values as described in [116] and repeated here for completeness,

—1

1 S;®8S o7 —uh-Sp | S

a4 <_) F®8Sr\ f ! i s

P () |2 TR py Bk 450
Ap )

At the interfacial faces, both ¢, and u} will have two values corresponding to the liquid

and vapor phase. These values are carefully used in the reconstruction of liquid or vapor

cell-centered value near the interface, respectively.

4.4 Solver Development: ghostFluidPhaseChangeFoam

A graphical work flow of the developed OpenFOAM code is presented below in figure 4.10.

4.4.1 Phase Change Tests

Two tests are presented in this section. The first test pertains to the o advection equation
and assesses that the interface advection due to a source term is done correctly as defined in
§(4.3.1). The second test is for the solution of pressure and velocity along with an advecting
interface. It is a one-dimensional test called the Stefan-Flow problem, which assesses the
implementation of the pressure-velocity coupling using the Ghost Fluid Method in the PISO

iteration as defined in §(4.3.2).
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Pure advection due to mass flux source at the interface

To test the correct implementation of v advection under the effect of a source term, a simple
test case is used. A two-dimensional domain of size ([0,8 x 107],[0,8 x 107?]) is initialized
with a circular zone at the geometric center of the domain with radius R, = 1073. This region
is initialized with av = 0 and the rest of the domain with ov = 1 as shown in figure 4.11 (a). The
pressure and velocity solution is turned off. Both bulk fluids are assumed to remain stationary
and simply a constant interface velocity is prescribed, Xr - np = —2 x 1072 that is used to
move the interface. The negative sign is because of the interface normal pointing inwards
(np = —r, where 1 refers to the radial direction corresponding to the initialized circle).
Bulk velocity inside the disk remains equal to zero, while a radial velocity is analytically
prescribed outside the disk. In addition to advection in the @ = 1 region due to the bulk
flow, values of o change due to the source term associated with the phase change process,

and the information is transferred to other cells using the effective flux defined in §(4.3.1).

Time: 0.16 Time: 0.32 Time: 0.50

(a) ®) (©) ()
— | —

| | |
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Liquid Volume Fraction

Figure 4.11: Alpha field with o = 0.5 contour (in white) for a circle growing purely due to
a prescribed mass flux at the interface. Results shown for grid size 64 x 64.

Analytically, the circle should expand with the interface speed determining the rate of
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change in the circle radius, i.e., the circle radius should increase linearly. This is correctly

obtained in the results shown in figure 4.12. Here, N, refers to the grid size in one direction,

-3
9 X 10
1.8
% 1.6
~ 14 &
'_TAQ © ’d
o= ’/
A 1.2 28 —©— Analytical Radius
-=- N, =32
N, =128
—+- N, = 256
0.8
0 0.1 0.2 0.3 0.4 0.5

Time

Figure 4.12: Circle radius growing purely due to a prescribed mass flux at the interface.

and the disk radius obtained from simulations is simply evaluated as,

1/3
Rsimulation = ( Z (1 - az)Qz> ) (451)

€Al cells

where €; is the i"® computational cell volume. Figure 4.12 clearly shows a converging trend
of the bubble radius results and it affirms that the implementation of a advection under the

influence of interfacial source has been done correctly.

1-D Stefan Flow

In this section, we present a 1-D test for phase change, which is commonly referred to as the
Stefan Flow test [54, 60]. A graphical representation for this flow is shown in figure 4.13.
In this simple configuration, the vapor domain is near the wall and the liquid domain

is closer to an outlet. Due to vaporization at the interface (xr(t)), the extent of the vapor
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Figure 4.13: Representation of the liquid-vapor system in Stefan Flow.

domain increases. The vapor side remains stationary, while velocity jump results in an out-
ward flow in the liquid phase (in this case a flow towards the right side of the domain).
Physically, the vaporization occurs due to the temperature difference between the liquid and
vapor phases. However, the current formulation has not been extended to solving the energy
equation. Therefore, we simply include an analytical expression in the formulation that cal-
culates the mass flux due to phase change (1" (t)) at the interface resulting in the ensuing

flow. This mass flux is given by [134],

kV AT _§2
— 4.52
hry /mayt erf () c (4.52)

m” (t)

where hry refers to the latent heat of vaporization, ky is the thermal conductivity of vapor
phase, AT = T,uu — Tsat 18 the temperature difference which causes the vaporization, ay is
vapor thermal diffusivity, and ¢ is obtained from the solution of a transcendental equation

given by [134],

C vAT
2) orf(c) = V=2 4.53
s exp (¢7) erf(c) NG (4.53)

Here, C,y refers to the specific heat of vapor at constant pressure. All the parameters defined

for this case are tabulated in table 4.3.
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Fluid p k C, I o hry
kg/m? | W/m-K | J/kg-K Pa-s N/m J/kg

Vapor 0.597 0.025 2030 | 1.26 x107° | 0.059 | 2.26 x10°

Liquid 958.4 0.679 2030 | 2.80 x1074 - -

Table 4.3: Thermophysical properties for Stefan Flow.

With Tyany = 383 K and T, = 373 K, the function for 7" (t), which is directly imple-

mented in the solution is given by,

_ 1.8144 x 1074

() = v (4.54)

Also, the analytical expression for the location of interface, and liquid velocity as a function

of time are given by,

zr(t) = 6.0785 x 107*Vt,  and (4.55)

3.0373 x 1074

= (4.56)

ur(x > ar,t) =

The system is initialized with values at ¢ = 0.1. Interface position and liquid velocity values
obtained in the simulation are compared with the analytical expressions defined in Eq. (4.55)
and Eq. (4.56) for ¢ € [0.1,0.3].

The time series of interface location and liquid velocity in figure 4.15 shows that the
advection of liquid volume fraction that implicitly captures the interface location, and the
solution of the momentum equation using the Ghost Fluid method has been implemented
accurately. The author would like to remind the reader that the energy equation and eval-

uation of mass flux are not incorporated in this solution and that Eq. (4.54) was used to
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(a) Interface position as the flow evolves in time. (b) Time variation of the uniform liquid velocity,
ur(x,t) = ur(t).

Figure 4.14: Comparison of phase change solver solutions with analytical values for Stefan
flow test case.

populate the mass flux values in the 1D domain.

An important distinction in the method proposed in §(4.3), compared to published phase
change work, is the implementation of pressure gradient jump at the interface that occurs
due to phase change. The pressure profile at two distinct times is presented in figure 4.15a.
The analytical pressure profile matches quite well with the results from the pressure Poisson
solution for the Stefan flow. The previous phase change methods [58, 60, 83, 89, 93, 97]
that presented the results for Stefan flow have not provided the pressure profile obtained in
the study. Furthermore, the method described here also captures the velocity discontinuity,
sharply as shown in figure 4.15b. While the velocity profile is shown only for one case, the

sharp profile remained consistent for all grid sizes tested in this work.
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(a) Pressure as a function of x at ¢ = 0.2 and (b) Velocity profile of Stefan Flow at three
t = 0.3. Analytical pressure profile is shown with distinct time points. Result is shown for
lines and the simulation values are shown with N = 640 case.

marker points in the plots.

Figure 4.15: Spatial pressure and velocity variation capturing sharp changes at the
interface.
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Chapter 5

Summary & Future Work

The primary goal of this thesis was to provide a robust, theoretical model for simulation
of single vapor bubbles, motivated by the growing use of controlled vapor bubble dynamics
in improved heat transfer processes [14], medical technologies [18, 41], and reduced erosion
damage [135]. Two different approaches for the bubble analysis were used. The first approach
used a spherically-symmetric physical system that considerably simplifies the governing sys-
tem of equations and the other approach aims to solve the complete three dimensional Navier
- Stokes equations for a two-phase flow undergoing phase change through a highly resolved
simulation (HRS) with only one main assumption that the bulk phases are incompressible.
While the former approach is useful for a fundamental analysis of the bubble growth and
collapse mechanisms [3, 10], the latter becomes necessary to capture the naturally occurring
asymmetries in the system like presence of walls [11, 136], gravitational forces [23, 137], bulk
liquid flow [92], or presence of multiple bubbles [138], which would almost inevitably be the
case in any application.

Our approach and the findings from the 3-part analysis on vapor bubbles, liquid-vapor
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phase change processes, and numerical simulations have been summarized below:

e First, we presented the development of a numerical model called Compressible Vapor
Saturated Interface solution or CVSI solution for a spherically symmetric system of a
collapsing bubble. This model was implemented and solved in MATLAB for different
cases of single vapor bubble collapse in an initially uniform liquid environment. The
study extended over a wide range of thermo-physical conditions for bubble collapse,
which has traditionally been categorized into thermal, intermediate, and inertial types.
An analysis was done on the less studied category of bubble collapse that undergoes
a moderately fast process, i.e., intermediate collapse. Such a collapse was shown to
exhibit large pressure and temperature variations during the entire collapse period,
a characteristic unique to this intermediate range of conditions. This was found to
be related to the bulk motion of vapor inside the bubble, which is often ignored in
spherical bubble analysis. Additionally, a generalized framework to categorize different
system conditions of bubble collapse was also provided, where the distinctions between
a very slow collapse, intermediate collapse, and fast collapse were redrawn [3]. A key
takeaway from this distinction was the notable effect of the rate of change in far-field

pressure conditions that initiate a collapse on the ensuing rate of collapse.

e The next step in this thesis was to review existing HRS methods that have been used
in the literature to study vapor bubbles. It was identified that the assumptions of vapor
incompressibility and constant interface temperature, taken almost universally by such
methods have not been verified by these studies. Prior experience with the CVSI model

developed for bubble collapse had shown that even for bubble growth, variations in
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interface temperature, and vapor density can be expected. Hence, the aforementioned
HRS assumptions were assessed as a separate study by using the canonical case of bub-
ble growth [1]. Even for a single growing spherical bubble, this assumption was found
to be limiting for an initial period of the bubble lifetime. During the initial stages of
bubble growth, vapor pressure, temperature, and density were found to exhibit notice-
able variation in time, which cannot be ignored. Therefore, an analytical expression
was derived that can approximate the extent of this initial period of bubble growth.
This approximation can be used as a threshold beyond which the contemporary HRS
assumption of incompressibility can be used. Moreover, it highlighted the necessity to

reassess the assumptions used in HRS methods on a case-by-case basis.

Through the review of HRS methods, it was also recognized that an easy to implement,
and scalable framework to study phase change problems like vapor bubble dynamics,
was not present. It also helped identify that the primary challenge of phase change
methods is to capture the discontinuity of velocity observed close to an interface. A
useful method implemented to capture this discontinuity is called the Ghost Fluid
Method (GFM). Interestingly, we highlighted that the existing implementations of
GFM assume that phase change does not cause a jump in the pressure gradient at the
interface, which is shown to be inaccurate even for a spherical growing bubble in this
work. Hence, we have proposed a new Finite-Volume based phase change HRS method
implemented in the scalable environment of OpenFOAM. The capture of interface ad-
vection under bulk flow with phase change was improved by proposing a concept of

effective flux that can be used for interfacial faces to transport the extra fluid generated
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due to phase change. Secondly, the GFM approach for the pressure-velocity coupling of
a two-phase flow was modified to capture the pressure gradient jump. A detailed deriva-
tion to obtain an expression for this jump has also been presented. One-dimensional
tests has been conducted as a proof of concept, which have given promising results for

further development.

While fundamental improvements to the phase change numerical solver development
have already been proposed and implemented, the completion of such a solver is a massive

undertaking and several future steps have been listed below to advance this development:

e Energy Equation: The GFM idea proposed for pressure solution in §(4.3) can be
directly applied to solve the advection-diffusion equation for temperature in both liquid

and vapor phases near the interface.

e Evaluation of Mass Flux: Due to the dependence of mass flux calculation at the
interface on temperature profile Eq. (4.1¢), and the evaluation of ghost temperature
values on the calculation of mass flux, an iterative method must be implemented. An
initial solution for the advanced value of temperature (T""!) can be obtained using the
temperature gradient jump defined from the mass flux value of the previous time step

s n

(m” ™). Using the updated values of T', and setting the interface temperature as Ty,

the new value of m” can be evaluated and the energy equation solution re-evaluated.

e Populating Ghost Values: The value for mass flux due to phase change, which is
only physically present at the interface, has to be populated in cell centers of interfacial
and adjacent cells. This is needed to calculate ghost velocity values in those cells. This

requires a constant-normal wise extrapolation of liquid temperature gradient at the
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interface ((V71})r) on the vapor side, and vapor temperature gradient at the interface
((VTv)p) on the liquid side. These values can then directly be used with Eq. (4.1c)
to populate mass flux values in the interfacial region (Qr). Such an extension may be

adopted from previous works [54, 60, 93], which have implemented a similar concept.
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Appendix A

Numerical Convergence of CVSI

Model Solutions

The numerical convergence behavior of the predictions from the CVSI model was evaluated
by considering the bubble radius versus time curves for a typical case of thermal, intermediate
and inertial dominated collapse. The numerical parameters invoved are ((, sp, sy, ng,ny).
The extent of the liquid domain is determined by (, which is employed as a multiplier of
the initial bubble radius, R,. Grid compression near the interface is employed to reduce the
overall computational burden and is controlled by the parameters sz, in the liquid domain
(Eq. (2.31)) and sy in the vapor domain (Eq. (2.33)). The total number of liquid and
vapor computational cells is denoted by n; and ny, respectively. In all of the computations
presented in the paper, we employ a value of s;, = 5 and sy, = 5 to ensure an adequate level
of grid compression, and employ a corresponding value of ny and ny to ensure numerical
convergence as detailed below.

The first numerical test corresponds to the calculation of liquid temperature and the
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results are presented in figure A.1. In these calculations the following numerical parameters
are held fixed at ( = 2, s, = 5, sy = 5, and ny = 2000, and ny, is systematically varied
from 10 to 1000. The results show that beyond a value of n; = 100, the predictions have

essentially converged.

1
—enp =10
—o—-np =25 0.8
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(c) Inertial Collapse: Case # 6 from table 3.1

Figure A.1: Bubble radius versus time plot for different levels of grid refinement for liquid
temperature equation, Eq. (2.24), with ( =2, s; =5, sy = 5, and ny = 2000.

A similar analysis is conducted for the vapor side with parameters ( = 2, s;, = 5, sy = 5,

and ny = 1000, and by varying the value of ny from 10 to 1000. The results show that
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time variation of bubble radius is practically independent of ny. This is expected because
in figure 2.3a, we show that vapor side heat transfer is almost negligible when compared to

liquid side heat transfer, and that it does not affect the rate of condensation during collapse.
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& >
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t/trr*f

(c) Inertial Collapse: Case # 6 from table 3.1

Figure A.2: Bubble radius versus time plot for different levels of grid refinement for vapor
temperature equation, Eq. (2.18), with ( =2, s;, =5, sy = 5, and ny, = 1000.

Lastly, the effect of the extent of liquid domain is evaluated by changing the value of ( =

{1.05,1.1,2,5}. This test is important as the solution of liquid temperature equation governs
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the rate of condensation and the results should be independent of the far-field boundary
condition, where T}, (roo,t) = To. Number of liquid shells, n; was varied such that the
average size of the shells can remain constant for different liquid domain sizes and hence,
ny = (¢ —1) x 100. The remaining parameters are held fixed at s, = 5, sy = 5, and
ny = 100. Except for a very small liquid domain represented by ¢ = 1.05, the results are
independent of the value of (. There is practically no difference in the results of bubble radius
for all three categories due to change in the physical domain that is solved for the liquid

temperature equation.
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Figure A.3: Bubble radius versus time plot for different extent of the liquid domain for
Eq. (2.24), with sp =5, sy = 5, n, = 100, and ny = 100.
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Appendix B

Relevant Derivations for Phase

Change

Several expressions used in the derivations presented in §(4.3) were referred to this section

for a complete derivation.

B.1 Relation between Material Volume and Control

Volume with a surface of discontinuity

Let a generic material volume containing a surface of discontinuity be given by figure B.1.

If figure B.1 is treated as a material volume then it’s salient features are:

e 00Q); and 0y are material surfaces, which means that they move with the same speed

as the local fluid velocity
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.
Figure B.1: Generic two-phase volume with interface

e ['is a surface of discontinuity within the volume Q2 = Q; U Q. This implies that €,

and €0y, are not material volumes.

Using the fundamental transport equation [139], we can write the conservation equation

for a variable v as,

d B o .
&/QL ¢dV—/QL Ed‘/‘i‘ 8QL¢(u~n)ds+/FQ/}L (;L’F~nr)ds7 and (Bla)

d = 6_¢ ‘ Y . J—
E/vadv_ i dv + 6)va(u n)dS—l—/Fz/JV(xp (—nr))dS (B.1b)

On adding both these equations, a transport equation for v is obtained for the entire

material volume, given by,

d [ .
&/ﬂwdv = EdV + Y (u-n)dS + /F (Y —Yy) (r - nr)dS. (B.2)

oN

If figure B.1 is treated as a control volume then it’s salient features are:

e 0€); and 0}y are static surfaces, and
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e ['is a surface of discontinuity within the volume Q2 = Q; U Q. This implies that €,

and €0y, are not control volumes.

Similar to Eq. (B.1), we can now write the conservation equation for 1) as,

4 / vav = [ Lav 4 / r, (@r -np)dS,  and (B.3a)
dt Jo, . 0y, Ot

d

— = B.3b
a o, 1/)dV o, at dV—f—/’QDV J}F np))dS ( 3 )

On adding both these equations, a transport equation for ¢ is obtained for the entire control

volume, given by,

/ pdv = / Wav+ / (1, — ) (&1 - nr) dS. (BA)

By considering a material volume which coincides with a stationary control volume at
an instant of time, a relation between the transport equation of a material volume given by

Eq. (B.2) and control volume given by Eq. (B.4) can be established. This is given by,

d d

B.2 Generalized equation for velocity divergence for a

Material Volume

Without phase change, V - u or f a0, W ndS is equal to zero for two incompressible fluids in

the bulk phases as well as across the interface. This does not hold true for phase change. For
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a material volume enclosing a liquid-vapor interface, the velocity divergence can be written

as,

/ u-ndS:/ uv-ndS+/ uy, - nds. (B.6)
3Qi 89\/ 8QL

On adding and subtracting the vapor and liquid side integrals near the interface in Eq. (B.6)

gives,

/ u-ndS :/ uy - ndS + / uyr - (—nr)dS (B.7)
09 o0y r

+ / uy - IlpdS + / urr - IlpdS (BS)
121973 r

— / urr - ndS — / Uyr (—l’lp) ds. (Bg)
r r

Here nr is the interface normal pointing from liquid to vapor. Combining like integrals gives,

/ u-ndS = uy - ndS + / uz -ndS + / (uy —ug)p - npdS. (B.10)
0Q; oQyul oQpul r

Considering that both liquid and vapor phases are incompressible, an integral completely
surrounding the liquid and vapor phases will be equal to zero. Hence, Eq. (B.10) simplifies

to,

/ u-ndS = / (uy —ug)p - npdS. (B.11)
80 r

i
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Expressions for (uy,r - nr) and (uzr - nr) are obtained from Eq. (4.1a) and substituted in

Eq. (B.12) to give,

/ u-ndS = (i — i) /m"dS. (B.12)
09Q; PV PL r

In cases without phase change " will be equal to zero at the interface and divergence of

velocity will be zero throughout the domain as expected.

B.3 Jump in pressure gradient at the interface due to

phase change

Consider an interfacial control volume as shown in figure B.2. If the liquid in this volume

Figure B.2: Control volume (£2;) that includes an interface between the liquid (blue) and
vapor (green) phases. The red dot denotes the center of the control volume.

is assumed to be behave as ghost vapor, the momentum equation for such a volume can be
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written as,

d 1
— llvdv + / uy (LIV : 1’1) dS =—— VdeV, (Blg)
dt Jo, o9 pv Jo,

where viscous and body forces have been assumed to be zero, and 0€; refers to the boundary
of the control volume. In the same way, if vapor is assumed to behave as a ghost liquid, a

liquid momentum equation can be written for the same volume as,

d 1
-— uLdV + / uy, (uL . Il) dS = —— VpLdV, <B14)
dt Jo, 09 pL Jo,

Subtracting Eq. (B.13) from Eq. (B.14) and rearranging the terms, we can write,

\Y% \Y d
/ ( v pL)dV:— (uL—uV)dV+/ (ur (u -n) —uy (uy -n))ds.
Q, PV PrL dt Q o

(B.15)

Both liquid and vapor values are assumed to be known at all points either directly from
fluid property or evaluated as a ghost value. The relation that defines the difference between

liquid and vapor velocity at a location can be obtained from Eq. (4.1a) given by,

[u] = wy (x,£) — up, (x,£) = 1" (x, 1) (i - i) nr. (B.16)

PV PL

This equation takes the assumption that tangential velocity along the interface remain con-
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tinuous between liquid and vapor phases, which is mathematically summarized as,

uy; — (llL . n[‘) nr =uy — (LIV : 1’11'*) nr. (Bl?)

To enforce Eq. (B.16) away from the interface, the interfacial values of mass flux due to
phase change (") and interface normal (nr) must be extended in the entire volume. It is
assumed that these quantities are known at all locations, x € €;, using a constant normal-

wise extrapolation given by,

87,;,1///

an

=0. (B.18)

On substituting Eq. (B.16) in Eq. (B.15) we get,

1 1
/ (m—m) av— L[ (———) nrdV
o, \ PV oL dt Jo, pv  PL

/mi (UL (uz-n) — (uL + i’ (piv — p%) np> ((uL + i’ (piv - piL) nr) n)) S
i

(B.19)

The right hand side can be reduced to give,

/ (m _ m) qv — — (L _ L) A meay
Q; \ PV PL pv pr) dt Jg,
1 1
- / uym” (— - —) (nr-n)dS
9 pPv - PL
1 1
—/ m” (———) nr (uz -n)dS
9 pPv  PL

- /m <m (piv _ p%))znp (nr - n) dS (B.20)
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This is a vector equation and consequently the equality should specifically hold in the direc-
tion of the interface normal as well. Equation (B.20) written in the interface normal direction

is given by,

/ H@ﬂ ‘npdV = — (i — i) i/ m"dV —/ (ug, - nr)m” (nr - n)dS
o ll P pv  pr/) \dt Jg, o9

Now, using the Gauss divergence theorem, the surface integrals on R.H.S. can be written as

volume integrals to give,

/ ﬂ@ﬂ : npdV = — (i — i) i/ m”dV - / V- (uan//nr) dVv
o L P pv  pr/) \dt Jg, o
N/ 1 1 N/
—/V-(muL)dV—<———>/V~(mnp)dV>. (B.22)
Q pPv. PL) Jo,

Here, Urn, = Uur, - Nr.
In this equation, the last term refers to the divergence of mass flux in the interface normal
direction, which is equal to zero due to Eq. (B.18). For the first divergence term on the R.H.S.

of Eq. (B.22),

0 (uppm’)

V . (uan"np) = anr

Y

which can be further reduced due to Eq. (B.18) to give,

. . 8uL
V - (up,mnr) = m” —=.
877,[‘
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Assuming that the size of control volume is small such that all points remain near the
interface, we can approximate ur,, = Xr - np + m”/py, due to Eq. (4.35a). On substituting

this it can be shown that,

9 (ke -nr) o o

V - (up,nnr) ~ m — , B.23
(e r) onr pr Onr ( )
which is also equal to zero.
The remaining divergence term on the R.H.S. of Eq. (B.22) can be rewritten as,
V- (m"uy) =ug - Vi +m"V - up. (B.24)

Due to the incompressibility of liquid phase, V - u; = 0 for the entire volume. To simplify
the last remanining term on R.H.S. of Eq. (B.24), we first define an orthogonal coordinate
system with directions, nr, z; and z,. Using this system, that term can be written as,

" N o
u .
82’1 2 822

V . (m"uL) = U1

(B.25)

While this term is not equal to zero in general, for most practical applications related to
bubble dynamics, the change in rate of mass flux along the interface tangent direction will
be very small. Hence, it can also be neglected.

Considering that all three terms related to the advection of mass flux due to phase change

in a generic interfacial control volume shown in figure B.2 are equal to zero, the jump in
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pressure gradient is found to be,

Vpﬂ (1 1)dm”
| np=—-{(——-— . B.26
|[p ' pv  pr) di (B.26)

B.3.1 Test for the derived expression of jump in pressure gradient

for vapor bubble

For a spherical vapor bubble with incompressible liquid and vapor phases, undergoing growth

or collapse, Plesset [10] derived that,

m" = pyR,and (B.27)

pr(rt) = peo (t) + pr (% <2RRQ + R2R) — % (Rif2>> : (B.28)

under the assumption that py < pr. Due to vapor incompressibility, velocity of vapor inside
the bubble is zero and the pressure is considered to be uniform. This implies that pressure
gradient of vapor remains zero (Vpy = 0).

Due to the sign convention observed in this work, interface normal points from liquid to
the vapor phase, and hence, np = —7. At first, we evaluate the left hand side of Eq. (B.26),

which can be expressed as,

H:E:ﬂ N = (m — vpL) - nNr. (B29)
PV PL r
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Considering the spherical symmetry of the bubble system, this equation can be rewritten as,

HVPH ( 1 dpy
- . nF — -
P pv Or

As noted earlier, the pressure gradient in the vapor phase remains zero. Pressure gradient

) (#) - (—1). (B.30)

on the liquid side can be evaluated from Eq. (B.28) at r = R(t). Equation (B.30) can thus

be written as,

H%ﬂ np = (_piL <—pLR)) ) (B.31)

Hence, the jump in pressure gradient along the normal direction is proportional to the
acceleration of bubble interface.
Now, evaluating the right hand side of Eq. (B.26) with the assumption that py < pr

gives,

(1 1Ndm 1 da (B.32)
pv pu) At py dt '

On substituting the expression in Eq. (B.27) we get,

_ (L _ L) di” 1 (ovit) = —F (B.33)

The final expression for both left and right hand sides of Eq. (B.26) simplifies to — R, which
validates the derived expression for the jump in pressure gradient along the normal direction

of an interface undergoing phase change for a spherical bubble.
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Appendix C

Derivations for Ghost Fluid Method

In this section, we derive the expressions for ghost values of a general variable Z, which is

characterized by the following jump conditions at the interface:

Zr = Zvyr — Zyr = AZ, and (C.1a)

[[UVZ]]F sNp = (anZV - T]LVZL)F sNp = (51". (Clb)

A ghost value is needed in the adjacent computational volume if a cell face lies between
a liquid and a vapor cell. Such faces are termed as interfacial faces identified by Eq. (4.33).
Graphical representation of such a system is shown in figure C.1a and figure C.1b. In the
case of figure C.1a, the pressure and velocity values stored at cell - center P belong to the
liquid phase, and those stored at the cell - center N belong to the vapor phase. To obtain
a liquid or vapor, velocity or pressure value at face f requires interpolation between cells P

and N with values belonging to the same phase. Hence, a ghost liquid must be defined for
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(a) An interfacial face (red line) owned by a (b) An interfacial face (red line) owned by a
liquid cell (P) and shared by a neighbor vapor  vapor cell (P) and shared by a neighbor liquid
cell (N). cell (N).

Figure C.1: Graphical representation of an interfacial face. In both figures, interface
normal (nr) points from liquid to vapor phase, and face normal (ny) faces from the owner
cell (P) to neighbor cell (N).

cell N and similarly a ghost vapor for cell P. The same holds true for figure C.1b.

Note that the interface is represented with a line parallel to the face. This is a simplifying
assumption for the Ghost Fluid Method. In all the following calculations, we primarily use
the jump in discontinuities along the face normal, ns. Distance of the interface is stored as

a ratio given by,

ﬁ Xr — Xp OKP—O.5_

PN Xy—Xp ap—ay

A (C.2)

This is similar to another Ghost Fluid work by Vukéevié et al. [112]. The position of xr is
assumed to coincide with the iso-surface o = 0.5 for the purpose of pressure and velocity

calculations using GFM.
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C.1 Ghost values related to an interfacial face owned
by liquid cell

This situation is represented by figure C.1a. Firstly, using the gradient jump condition given
by Eq. (C.1b), an expression for the value of Zr can be obtained in terms of the known
values, Zp, Zy, AZr, A\;, and Or.

Using OpenFOAM terminology, each face has a designated owner cell, and a neighbor
cell. The sign convention dictates that the face normal (ny), faces from its owner to the

neighbor. With this sign convention, a discrete form of Eq. (C.1b) can be written as,

ZN — Zvr Zrr — Zp

WA A ™ (€3)

Rearranging this equation,

)\j77V (ZN — ZV,F) — L (1 — )\]> (ZL,F — Zp) = (Sr (1 — )\]) )\]AQT (C4)

Substitute Eq. (C.1a) in the above equation to give,

/\j?’]v (ZN — ZL,F — AZF) — L (1 — )\]) (ZL,F — Zp) = 5F (1 — )\]) )\]AZE (05)
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Collecting all the Zy r values on the left hand side gives,

(/\j’l’}v + (1 — )\J) 77L) ZLJ‘ = /\jnVZN + (1 — )\]) nLZP — /\j’l]\/AZF — (SF (1 — )\j) )\JAZE

(C.6)
The final expression for Z r can be written as,
1
ZL,F = )\jn—‘:ZN —f- (]_ — /\J> n—in — )\JU—ZAZF — (]_ — /\]) /\j—*5pr, (C?)
7; 1, j 7;

where n; = (Ajnv + (1 — A;) 7). The vapor side value at the interface can be obtained by
adding AZr to Eq. (C.7), which gives,

1
Zvr = /\jZ_VZN +1=X) Z_iZP +1=%) Z—LAZF —(1=X) )\J'FCSFA% (C.8)

* *

J J J J

Liquid value in cell N

Using Taylor series expansion the liquid value evaluated at the interface in Eq. (C.7) can be

extrapolated to the vapor cell N. The expansion is written out as,

07y,

<Z§h°8t>N = Zpr + ((xy —xr) - nr) a_nf (C.9)

Substituting the distance of cell-center N from the interface, and writing the derivative in

discrete form, gives,

Zir—7Z
(20°) = Zur+ (1= ) Ae (—L’F P> .

e (C.10)
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On rearranging and substituting the expression for Z; r from Eq. (C.7), we get,

1— )\

1 1
(Zg’wst)N == (Aj"—ZZN 1= Ez - N Az - (1- ) AstFA:L) -
. . . .

5 nj 77] J

Collecting like terms, adding and subtracting Zy, gives,

1— ) 1
<Zghost> _ ZN + { J (n_L _ 1) ZP + (7]_‘: — 1) ZN} — T]—ZAZF — (1 — )\]) _*5I‘A.CE
N n; n; n;

. *
)\J nj J J J

(C.12)

Interestingly, the term within {...} can be considerably simplified to give a final form for

host
<Zj-i o8 ) as,
N

*

J J J

— 1
(Zlg:host)N — ZN + (1 _ A]) L v (ZP — ZN) — n—‘:AZF - (1 - )\]) F(SI‘A.T (C].S)

Vapor value in cell P

Using Taylor series expansion the vapor value evaluated at the interface in Eq. (C.8) can be

extrapolated to the liquid cell P. The expansion is written out as,

07y

T (C.14)

(Z‘g/hOSt)P = ZV,F + ((Xp — Xp) . Ilp)
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Substituting the distance of cell-center P from the interface, and writing the derivative in
discrete form, gives,

ZN - ZV,F

ESRYs (C.15)

(Z‘%hOSt)P = ZV,F — )\]A.’E

On rearranging and substituting the expression for Zy from Eq. (C.8), we get,

1 ny nL nL 1
Zghost> _ P 1— )\ 2Lz 1= X)) E=ZAZ — (1= AN —0rAx | — L 7.

(C.16)

Collecting like terms, adding and subtracting Zp, gives,

by 1
(Zghost> 7 {(n_L _ 1> Tt (”_V _ 1) ZN} + EAZr — A =br Az,

(C.17)

Similar to Eq. (C.13), the term within {...} can be considerably simplified to give a final

form for (Zf’/hOSt) as,
P

*

— 1
(ng/hOSt> = Zp + N (Zp — Zy) + Az — \— v A (C.18)
p n; ; j
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C.2 Ghost values related to an interfacial face owned

by vapor cell

A similar analysis is done for the case shown in figure C.1b, where the interfacial face is owned
by a cell that is tagged as vapor. Due to the direction of face normal pointing opposite to
interface normal and A\;Az defined as the distance between vapor cell & interface, all the
expressions obtained in the previous section are somewhat modified.

In its discrete form, Eq. (C.1b) can be written as,

ZV,F - ZP B ZN - ZL,I‘ _
v )\]AZL‘ L (]_ — )\]) AI’

— 6. (C.19)

The negative sign on the R.H.S. is because nr - ny < 0, when the owner of interfacial face is

a vapor cell. Rearranging above equation gives,

(1 — )\]) v (ZV,F - Zp) — )\jnL (ZN — ZL,F) = —5F (1 — /\]) /\]A.T (020)

Substitute Eq. (C.1a) in the above equation to give,

(1 — )\J) nv (ZL7F + AZF — ZP) — )\jnL (ZN — ZL,F) = _5F (1 — )\]) )\]A$ (021)
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Collecting all the Zy r values on the left hand side gives,

N+ (X =XN)nv) Zer = (1= Nj)nvZp + AmrZn — (1= Xj) nvAZr — 6o (1 = )j) \jAz.

(C.22)

The final expression for Z; r can be written as,

1
ZLJ‘ = (1 — /\J) i1l Zp + /\j%ZN — (1 — /\J) %AZF — 5FF (1 — )\]) )\jA[L‘, (023)

*%

J J J J

where 75" = (A\jnr + (1 — Aj) nv). The vapor side value at the interface can be obtained by

adding AZr to Eq. (C.23), which gives,

1
ZV,I‘ = (1 — )\]) %Zp + )\j%ZN -+ )\]%AZF — (Spm (1 — )\]) )\jAQf, (024)
1; 1j 1j 1

Not repeating the analysis presented in §(C.1) for the same cases when the owner of
interfacial face is a vapor cell, we directly write out the final expressions. In this case, the
owner cell P is populated with a ghost liquid value, while the neighbor cell N is populated

with a ghost vapor value. These values are given by,

koK koK

J J J

. 1
(Zghost)P = Zp+ N (7~ 2y) = Az - eorhArand (C.25)

_ 1
(Z\g/hOSt)N — ZN + (1 _ )\]) nvn**nL (ZP — ZN) + nik AZF - Kok

J J J

5 (1— X)) Az (C.26)
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Based on the four separate ghost value expressions obtained from Eq. (C.13), Eq. (C.18),

Eq. (C.25), and Eq. (C.26), Z can now be interpolated to get a liquid and vapor value at

the interfacial faces. These values are given by,

1. Liquid value at the interfacial face when face is owned by a liquid cell

ZP + (Zzhost)

(ZL);k - 9 N7

which can be rewritten with substitution from Eq. (C.13) to give,

— Zp+(In—AZp) 11
(Zo)i=(1—n) =Wz, IV Pt 2y F)—-—*5F(1—Aj)m.
nj nj 2 21

2. Vapor value at the interfacial face when face is owned by a liquid cell

A (Zghost>
N+ % .
2 Y

(Zv); =

which can be rewritten with substitution from Eq. (C.18) to give,

, - Zp+ A7)+ 2y 11
(Zv); = =Nk n,f”V Ty + ”—i( = 0) ¥ 2y _ 35T NA
J J J

3. Liquid value at the interfacial face when face is owned by a vapor cell

(C.27)

(C.28)



which can be rewritten with substitution from Eq. (C.25) to give,

— Zp —AZ A 11
(Z,)7 = AWty v (Ze DtZv L1 As
J J *k *x 2 9 J
i Ui nj

4. Vapor value at the interfacial face when face is owned by a vapor cell

7 (Zghost>
p+ Y4 N
9 )

(Zv)]" =

which can be rewritten with substitution from Eq. (C.26) to give,

= A Z AZ 11
(7= (=) Mg,y I Ze I B2 2
i g 2 2

C.4 Gradient calculations at interfacial face
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(C.29)

(C.30)

Using the owner-neighbor values for individual phases, we can evaluate both liquid and vapor

gradient at an interfacial face. These expression are given by,

1. Liquid value at the interfacial face when face is owned by a liquid cell

<Z£host> . _ ZP
Az ’

(V7). =

which can be rewritten with substitution from Eq. (C.13) to give,

. In— 2 0—-AZ 1
iy (B ) e (V85 Ly

n; Az n; Az m;

(C.31)
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2. Vapor value at the interfacial face when face is owned by a liquid cell

wiy -,

which can be rewritten with substitution from Eq. (C.18) to give,

n * n_L ZN — ZP 77_L 0— AZF i ‘
(Vi2), = - <—Ag; ) + 0 (—Ax + ;cw\, (C.32)

3. Liquid value at the interfacial face when face is owned by a vapor cell

hos
Zy—(21),
Az ’

(V32), =

which can be rewritten with substitution from Eq. (C.25) to give,

. Iy -2 AZp — 1
(Viz)" = (u) + (F—O) + =0 (C.33)

L *% %
r Az ;

4. Vapor value at the interfacial face when face is owned by a vapor cell

(Z‘g/host) . . ZP
Az ’

(Vi2)y =

which can be rewritten with substitution from Eq. (C.26) to give,

*K
J

(Viz), =" (M> + (%) _Lsa- A) (C.34)
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