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Abstract 

Surgical performance lacks an objective framework to promote quantifiable skill 

assessment. Expert surgeons naturally recognize features of good performance when they see it 

but quantifying and consistently reproducing such features remains an open problem. Statistical 

modeling through computer vision of hand motion – enabled by increasing and easily scalable 

access to digital video records – may hold the key to quantify surgical performance without 

depending on robotic or sensor-based systems. This dissertation investigates how video and 

computer vision of surgical hand motion can effectively quantify performance in and out of the 

operating room.  

The specific aims of this dissertation use video to: (1) identify kinematic features of hand 

motion associated with increasing clinician experience, (2) train machine learning algorithms to 

identify periods of suturing and tying from a continuous video record, (3) automatically predict 

expert-rated performance of common benchtop suturing tasks, and (4) examine the validity of 

expert-rated performance predictions in live operating room procedures. A new model defining 

surgical skill terminology is also proposed to ensure consistency describing surgical skill, and to 

frame future study. Each portion of this work takes a necessary step to enable continuing surgical 

skill analysis utilizing digital video. 

These aims are accomplished from video analysis of 92 surgeons and students performing 

common suturing and tying tasks. Video (9 hours and 32 minutes) of clinicians of varying 

experience suturing on foam and pig feet were collected and analyzed. Residents exhibited 

greater movements with their dominant hands than medical students, while reducing the path 

length needed to complete the same task. Experience as an attending surgeon was associated 

with increased or similar cycle frequency, but reduced acceleration and path length per cycle of 

the non-dominant hand compared to residents. These results suggest that early increases in tenure 
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are associated with more purposeful dominant hand use, while gains in residency and through 

attending roles promote simple movements and conserve energy where possible.  

In the second section, video records served as fodder to train a series of machine learning 

algorithms to recognize suturing and tying tasks from a continuous record. A Hidden Markov 

Model (HMM) predicted 79% of states for a reserve set of participants, and reasonably predicted 

the completion rate of each participant: slope = 0.88, intercept = 0.03, correlation = 0.83, 𝑅𝑅2 = 

0.72.  

In the third and fourth phases of this work, experts rated performance for 219 clips using 

a custom program. Four visual-analog rating scales developed in previous work (Azari et al., 

2017) were used: fluidity of motion, motion economy, tissue handling, and hand coordination. 

Motion records of the hands were then used to predict the expert ratings of each scale. Fluidity of 

motion provided the best prediction for expert-rated scores (slope = 0.71, intercept = 1.98, 𝑅𝑅2 = 

0.77, correlation = 0.88,  𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  = 0.70) and extrapolated well to video clips (n = 48) collected in 

the operating room (slope = 0.83, intercept = 1.75). Motion economy provided a good 

relationship between predicted and expert rated scores (slope = 0.65, intercept = 2.36, 𝑅𝑅2 = 0.66, 

correlation = 0.81, 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  = 0.61) and extrapolated moderately well to the operating room (slope 

= 0.73, intercept = 2.04). Both models were sensitive (𝑅𝑅2 = 0.55, 0.49) to contextual features of 

the operating room like changing postures and false starts suturing in friable tissues. 

This research provides a timely model of surgical skill terminology, extends automatic 

segmentation of surgical video, and completes the first empirical study extrapolating automatic, 

video-based predictions of surgical performance from benchtop settings to the real-world setting 

of the operating room. These developments could be used to build a video-based formative 

assessment and feedback tool, aimed at quantifying performance throughout a surgeon’s career. 
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Introduction 

Background 

Improved surgical skill decreases the length and variability of operations (Carty, Chan, 

Huckman, Snow, & Orgill, 2009), frees up cognitive resources (O’Neil, Perez, & Baker, 2014) 

and promotes better patient outcomes (Birkmeyer et al., 2013). After years of deliberate practice, 

surgeons hone and test their skills during difficult cases; building “surgical wisdom” (Francis, 

2009) and sharing “war stories” (Y. Y. Hu et al., 2012) of what went right (and wrong) along the 

way. Attendings draw a resident’s attention to important cues and provide valuable feedback 

(Hauge, Wanzek, & Godellas, 2001), while tailoring interaction to guard the patient’s safety 

(Glarner et al., 2017). The lessons and patterns observed over time, commonly called “illness 

scripts” (Schmidt, Norman, & Boshuizen, 1990), help to construct the expectations of future 

surgeons and promote readiness to engage in stressful and demanding situations (O’Neil et al., 

2014). Despite such rigorous training, however, Mattar et. al., (2013) found lackluster operative 

autonomy among graduated residents, with many (56%) not able to suture effectively and 

needing “remedial training” (Bell, 2009). There is also little emphasis on continuing evaluation 

of surgical skills for attending clinicians, to facilitate professional transitions (Alleman & Al-

Assaf, 2005). Objective performance assessment, supported through computer vision of video 

records, may be able to address these challenges. 

Growing ability to integrate surgical information – termed “surgical data science” 

(Maier-Hein et al., 2017) – and quantify surgical performance with engineering tools in 

particular (Rutherford, D’Angelo, Law, & Pugh, 2015), are promoting continued development of 

objective computer-aided technical skill evaluation (OCASE-T) (Vedula, Ishii, & Hager, 2017). 

The majority of these efforts examining psychomotor skills rely on sensors and markers; 

recording hand movements, forces, and joint angles or orientations. The publicly accessible 
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Gesture and Skill Assessment Working Set (JIGSAWS) (Gao et al., 2014) and Robotics Video 

and Motion Assessment Software (ROVIMAS) (A. Dosis et al., 2003) utilizing the da Vinci 

robot-assisted platform, are good examples. Hand movements measured through the Imperial 

College Surgical Assessment Device (ICSAD) also have an impressive track record observing 

differences between clinician experience (Corvetto et al., 2017; Datta, Mackay, Mandalia, & 

Darzi, 2001). These advances require access to sensor and data collection systems, limiting their 

feasibility in open surgical settings.  

Our approach, in contrast, uses computer processing of digital video to capture surgeon 

hand motions. This video is easy to collect, cheap, and scalable even in remote and difficult-to-

access areas. Using computer vision to automatically deconstruct surgical video and predict 

performance, however, remains understudied. In previous work, our group has used video 

recording in the operating room to: (1) quantify differences in hand motion while attendings and 

residents conduct the same task (Frasier et al., 2016; Glarner et al., 2014; Radwin et al., 2014), 

and (2) predict expert ratings of surgical performance during short clips of tying and suturing 

maneuvers (Azari et al., 2017). These studies, despite their success, were limited by range of 

clinician experience and setting. They were not able to generalize video-based predictions of 

performance across a surgical career or extrapolate scores between repeatable benchtop 

simulations and real-world settings. This dissertation extends the existing body of work to 

produce novel, computational models of surgical performance across a range of clinician 

experiences and settings, while improving automatic deconstruction of surgical video into 

discrete periods of suturing and tying. 
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Research Questions 

This dissertation addresses the following research questions:  

1) How does experience impact features of observable hand motion?  

2) Can common machine learning techniques classify maneuvers from uninterrupted video 

with similar accuracy as robotic platforms?  

3) How well can features of hand motion predict expert-rated surgical performance during 

common benchtop suturing tasks?  

4) How well do automatic predictions of surgical performance in benchtop settings 

extrapolate to the operating room?  

Dissertation Structure 

Chapter 1 develops a nascent model to define common surgical skill terminology to 

support and frame the remaining chapters. Chapter 1 also discusses existing surgical assessment 

methods and current frameworks of expertise underpinning surgical skill development. Chapter 2 

summarizes observed differences between students and clinicians of varying experience while 

completing common benchtop suturing tasks on foam, pig feet, and bowel. Chapter 3 explores 

automatic segmentation of surgical video into discrete periods of suturing and tying using 

common machine learning techniques in benchtop settings. Chapter 4 uses expert-ratings to 

automatically predict performance of clinicians of varying experience while suturing on foam. 

Chapter 5 tests how well prediction models of performance on benchtop simulations extrapolate 

to open procedures in the operating room. The last portion of this dissertation summarizes future 

directions of this work, presents several suggestions for optimal video collection and processing 

in healthcare settings, and proposes a conceptual software interface, which could help students 

and residents identify their strengths and weaknesses in completing common benchtop suturing 

tasks. 
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1. In Search of Characterizing Surgical Skill 

1.0 Manuscript Information 

This manuscript will be submitted to The Journal of Surgical Education.  

1.1 Abstract 

Objective surgical skill analysis depends on consistent definitions of terms like 

performance, expertise, experience, aptitude, ability, competency, and proficiency. This paper 

provides a discussion of surgical skill terminology and proposes a set of unique definitions to 

facilitate shared understanding among efforts to quantify surgical skill. A new model is proposed 

to cement a common and consistent lexicon for future skills analysis and describe a surgeon’s 

performance throughout their career. 

1.2 Introduction 

Inconsistent use of surgical skill terminology is pervasive. Common descriptors like 

superior performance (or elite performance), aptitude and ability, competency and proficiency, 

mastery, expertise and experience commonly lack unique interpretation. Experience is 

sometimes used as a proxy for expertise, but also as a signal of professional status, without 

supporting evidence of best practices. Laufer and colleagues (2016), for instance, observed that 

clinicians of similar experience exhibit different approaches (sometimes radically) while 

completing simulated clinical breast exams. Should physicians with the greatest experience be 

considered experts even if – as Choudhry and colleagues (2005) found – greater experience 

doesn’t always produce greater quality of care? Or, are only some experts whose patients achieve 

better outcomes exhibiting what we would think of as “truly expert” behaviors?  

Uncovering features to accurately describe surgical expertise is similarly an intricate 

challenge. Advanced performance in the operating room is known to depend on combining 

various skill sets (Madani et al., 2017; S Yule, Flin, Paterson-Brown, & Maran, 2006), for which 
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any objective assessment must be tailor made (Yule & Paterson-Brown, 2018) and rigorously 

tested (Jelovsek, Kow, & Diwadkar, 2013). Variable terminology hinders this effort, and makes 

it more difficult to validate assessments in line with robust evidentiary requirements of modern 

frameworks (Cook & Reed, 2015; Cook, Zendejas, Hamstra, Hatala, & Brydges, 2014). The rise 

of “surgical data science” (Maier-Hein et al., 2017) and engineering approaches to quantify 

surgery (Rutherford et al., 2015), in part through simulation (Scott et al., 2008; Vedula et al., 

2017), offers the opportunity to address boundary conditions of amorphous terms such as 

“expert” through quantifying behavior. This paper explores common surgical skills terminology 

and proposes a lexicon encourage reproducibility among future studies of surgical performance. 

1.3 Background 

1.3.1 What is surgical skill? 

Surgical skills are commonly split into either technical or non-technical categories (Yule 

et al., 2006), despite known impacts of non-technical skill on technical performance (Hull et al., 

2012). It is also widely accepted that “operative skills” are not just technical in nature (Bell, 

2009). Still this artificial bifurcation has helped to frame studies examining hand motion (Azari 

et al., 2015, 2017; Datta, Chang, Mackay, & Darzi, 2002; Frasier et al., 2016; Glarner et al., 

2014; Radwin et al., 2014), errors and error management strategies (Law Forsyth et al., 2017; 

Nathwani et al., 2017; Regenbogen et al., 2007; Rogers et al., 2006), cognitive readiness (O’Neil 

et al., 2014), decision making (Pugh & DaRosa, 2013) and communication and teamwork (Dedy, 

Fecso, Szasz, Bonrath, & Grantcharov, 2016; Moorthy, Munz, Adams, Pandey, & Darzi, 2005; 

Wiegmann, ElBardissi, Dearani, Daly, & Sundt, 2007).  

In a discussion of non-technical skills, Yule et al., (2006) proposed the interrelated 

category of cognitive skills, to better describe features of surgical performance such as mental 

readiness, decision making and situational awareness. This deconstruction is additionally 
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supported by surveys of master surgeons (in this case, defined as those with high peer rankings 

and consistent involvement as trainers), who describe cognitive factors, innate dexterity, and 

personality as “important attributes” of surgical competence (Cuschieri, Francis, Crosby, & 

Hanna, 2001). Greenberg et al. (2015) advocates that cognitive skills should also be integrated as 

part of the Wisconsin Surgical Coaching Framework (Figure 1).  
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- Inform 
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Interpersonal Skills 
Disposition/personality                       Communication 

Adaptability                                           Style 

Figure 1: Wisconsin Surgical Coaching Framework (Adapted from Greenberg et al., 2013) 

Madani and colleagues (2017) have since developed a novel interoperative performance 

framework, composed of five inter-related performance domains: psychomotor skills (i.e. 

technical performance), declarative knowledge (i.e. recitable facts acquired outside the operating 

room), interpersonal skills (i.e. teamwork, leadership), personal resourcefulness (i.e. self-

awareness and metacognition), and advanced cognitive skills (i.e. planning, error recovery) 

(Madani, as summarized by Perdanasari & Hollier, 2017). This framework provides an excellent 

description of various domains or “competencies” in which surgeons perform. It facilitates 

continuing ontological understanding of a skill’s “microstructure” – a necessary first step in 
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designing “deliberate practice activities that allow performers to stretch their performance to a 

higher level” (Ericsson, 2005, p. 237), and helps to incorporate the “reasoning and motivation” 

behind successful operations in challenging professional settings (Ginsburg, Regehr, & Lingard, 

2004).  

Madani and colleagues maintain that “competence has yet to be defined to a level that 

allows credentialing and licensing bodies to ascertain whether or not an individual has achieved 

the standards deemed to represent competent performance.” In other words, it remains a 

challenge to establish “pass-fail standards,” critical parts of competence-based education 

(Reznick & MacRae, 2006). They are also careful not to refer to their framework as a “skills 

framework,” presumably to avoid any confusion or contradiction between thinking of knowledge 

and performance as a skill or vice-versa. Rather, Madani’s work presents a series of performance 

domains, the creative and fluid synthesis of which, through deliberate practice and rehearsal, 

may characterize surgical expertise. The authors adroitly navigate the difficulty in defining such 

terms and focus on the underlying surgical behaviors. They redirect emphasis from examining 

“skills” to interrelated “performance domains” that are widely applicable across procedures. 

1.4 Terminology 

Using surgical skills terminology to describe how a surgeon’s performance 

changes throughout their career is an intricate puzzle. A trainee’s aptitude in one domain, 

for instance, hinges on a “working definition of superior surgical performance” (Graham 

& Deary, 1991). Yet what it means to be superior, generally considered a hallmark of 

medical expertise, presupposes measurement and attainment of competency (Charness & 

Tuffiash, 2016). Expertise, meanwhile, is interwoven with notions of both performance 

and skill. Murinson, Agarwal, & Haythornthwaite (2008), for example, frame expertise as 

the aggregation of “essential skills” (p. 975); while Krawczyk and colleagues (2013), 
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argue that expertise exists as a set of “exceptional skills” (p. 364) that can be measured 

and compared in laboratory tasks. In the same vein, Ericsson and Charness (1994) 

describe experts as natural outliers: “performing at least two standard deviations above 

the mean level in the population” (p. 731).  

The implicit assumption that performance can be sufficiently (1) observed and (2) 

quantified to sort or rank performance in a meaningful way remains dubious: “[n]o single 

assessment method can provide all the data required for judgement of anything so 

complex as the delivery of professional services by a successful physician” (Miller, 

1990). Instead, the Accreditation Council for Graduate Medical Education’s (ACGME) 

Competency Based Medical Education (CBME) milestones approach (2013), continues 

to promote operative autonomy through guidelines to document and show performance as 

a precursor. Any valid assessment to demonstrate these skills must be grounded within a 

robust basis of evidence (Cook, Brydges, Ginsburg, & Hatala, 2015; Cook et al., 2014; 

Kane, 2006, 2013). Clear and consistent skill terminology will promote better evaluation 

and eventual application of assessment tools. 

1.4.1 Performance 

Like other performance domains (music, athletics, for example) surgical 

performance is repeatedly created anew at each opportunity, where contextual factors can 

change rapidly (Davids, Button, & Bennett, 2008). Subsequently, and stemming from 

notions that there exists a “maximal” level, performance is a dynamic, temporary, and 

alterable characteristic. Deliberate practice improves performance over time (Ericsson, 

2004), but performance is also subject to the context of the surgery (Feltovich, Ford, & 

Hoffman, 1997) and various factors within the work-system (Francis, 2009). Even those 

most practiced surgeons are not immune from committing errors, or not managing errors 
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properly. Surgical performance thus represents the observable quality of a sequence of 

surgical actions at a specific point in time. It is possible (albeit unlikely) for a novice to 

outperform an expert, or an expert to underperform relative to their position. Such 

situations would be the exception, rather than the rule. 

Defining maximum performance has a long history of debate. Francis Galton – 

contemporary of Charles Darwin, and who is generally credited with developing both 

“nature vs nurture” and “eugenics” terms – argued in Hereditary Genius (1904) that 

maximal performance is a rigid and individually determined limit of one’s genetic 

potential. Although he acknowledged that practice improves performance, Galton argued 

that “genius” depended foremost on your family tree. Later, Snoddy (as cited by Stratton, 

Liu, Hong, Mayer-Kress, & Newell, 2007) developed the now “ubiquitous” power law of 

learning, composed of the distinct cognitive, associative and autonomous classical stages 

of skill acquisition (Anderson, 1982; Fitts & Posner, 1967). Galton’s concept of an 

individual limit was re-envisioned as task-based performance limit – the asymptote of a 

“learning curve” governed by a power law. In an invited address to Academic Medicine, 

K. Anders Ericsson expands this definition and argues that achieving an “expert” level of 

performance hinges on intentional and deliberate practice, implemented over long periods 

(Ericsson, 2004). Davids (2008) reflects Ericsson’s productive framework, in describing 

that “the power law of practice simply states that performance improves with practice, 

although there are eventual physical limits to this relationship.”  

Even though these definitions have changed, surgical performance can be thought 

of as a temporary snapshot into the observable skills a surgeon brings to bear within a 

given situation. Performance can improve due to amount and style of deliberate practice 

but remains bounded to some asymptotic limit. Over longer periods, performance can 
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improve or decline as surgeons age or switch to different types of operations. While 

transitioning to military service, for example, surgeons struggle to adapt their specialty 

based expertise to new challenges such as truncal hemorrhage or skeletal reconstruction 

from penetrating injuries (Kelly et al., 2008; Tyler, Clive, White, Beekley, & 

Blackbourne, 2010), while their other clinical skills, especially laparoscopy (Perez et al., 

2013), decay. Given the intense training required to achieve high performance in any 

surgical task, there is an ever-present interest in testing surgical residents for their 

abilities and aptitudes, to see who may be better equipped to gain operative skills with 

less training and coaching. Improving pedagogical techniques ( Evans & Schenarts, 

2016) may ease the difficulty on early learners, but the amount of training required for 

some individuals to achieve high surgical performance could still be prohibitive. 

Techniques to measure performance limits continue to improve, prompted by 

increasing computational ability to quantify surgery in various contexts (Maier-Hein et 

al., 2017). There are increasing improvements automatically measuring performance in 

open (Azari et al., 2017; Mackenzie, Watts, Patel, Yang, Garofalo, et al., 2016) and 

laparoscopic procedures (Aggarwal et al., 2007), as well as with eye tracking (Richstone 

et al., 2010), and automatic “stroke” recognition (Ahmidi et al., 2015). The vast majority 

of these efforts, however, are limited to benchtop simulations or robot-assisted devices 

(Vedula et al., 2017). 

1.4.2 Aptitude and Ability 

Surgeons may lament a lack of manual dexterity and psycho-motor coordination (i.e. 

coordination, balance, haptic force control) of incoming residents, behaviors largely unpracticed 

in medical school until clinical rotations and outside the scope of common pre-medical 

undergraduate programs. In contrast, elite musicians and professional athletes often begin 
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deliberate practice in their field at an early age, engendering significant advantages later in life 

(Ericsson, Krampe, & Tesch-Römer, 1993). Decreased training time among residents (Nasca, 

Day, & Amis, 2010), little emphasis on mid-career training interventions (Bell, 2009; Cuschieri 

et al., 2001), and increasing complexity of the operating room (Bharathan, Aggarwal, & Darzi, 

2013), have rekindled interest in “aptitude testing” to jumpstart selection and training of 

residents (Buckley et al., 2014; Moglia et al., 2014; Roitberg et al., 2013). Even “intellectual 

prowess” and “emotional stability” have been proposed as potential avenues to test for surgical 

aptitude (McDonald, 1998).  

Aptitude is commonly described as a “natural” advantage a trainee brings to the table 

(Schendel, Shields, & Katz, 1974). This definition does not preclude new pedagogical techniques 

or better coaching from improving the performance of new trainees. Hislop et al. (2006), while 

examining aptitude for endovascular procedures, found that clinicians with extensive video game 

experience completed virtual reality tasks more quickly than those without prior video game 

experience. Willis et al. (2014), also found virtual reality and video game performances were 

related to one another, suggesting that pre-existing experience with video-games may transfer 

well to some simulations. Both studies sought to connect pre-existing strengths to an increased 

rate of performance gains during surgical training, relative to other trainees.  

Existing literature, however, also tends to confound aptitude and ability. Ability is 

often qualified as “natural” “innate” or “fundamental,” to describe an advantage someone 

brings to the selection process and training curriculum. Alfred Cuschieri (2003), for 

instance, uses aptitude as an intermediary to distinguish between skills (i.e. trained) and 

abilities (i.e. untrained): “abilities are the innate aptitudes that people can bring to given 

tasks and determine the level of proficiency that individuals obtain with training.” In that 

view, skills require training, while abilities (being innate aptitudes) are brought 
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exclusively by the individual. Groenier et al. (2015) similarly uses “ability” to describe 

incoming trainee cognitive and psychomotor performance scores. In that study, 

participants with higher psychomotor scores learned to complete laparoscopic tasks more 

quickly, and with greater efficiency of movement. Szasz et al. (2016) also used “ability” 

to indicate a resident’s likelihood of promotion, measuring how they could meet 

performance thresholds for both the Objective Structured Assessment of Technical Skills 

(OSATS) and Objective Structured Assessment of Non-Technical Skills (OSANTS) 

concurrently. Moglia et al., (2014) refers to “innate aptitude” and “innate ability” 

synonymously in examining how psychomotor performance scores performance on the 

da Vinci Skills Simulator.  

While individual strengths clearly impact outcomes of surgical training, merging 

aptitude and ability as a single concept creates problems defining performance. Reserving 

ability to express untrained strengths would suggest that no surgeon would have an 

ability to suture or complete any techniques where training is required. In contrast, ability 

is  commonly used to describe training outcomes: Mattar et al. (2013) stipulates that 

many residents are “unable to operate for 30 unsupervised minutes of a major procedure” 

upon graduation. Referring to individually different strengths in absence of training or 

outside practice as abilities (whether fundamental, innate, or natural) limits the role of 

ability to account for trained skills.    

To prevent overlapping interpretation between ability and aptitude, and to 

promote aptitude as a term in its own right, an individual’s pre-existing strength should 

be described as an aptitude that would impact the rate of performance gain. This would 

free the term “aptitude” from needing to rely on “ability” as a stepping stone. It allows 

“ability” to represent formally trained techniques that need not be innate or fundamental 
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and integrates aptitude into the training process. Separating these definitions maintains 

the notion of pre-existing strengths (i.e. aptitudes) without sacrificing the importance of 

training to increase surgical performance (i.e. abilities).  

For this paper, ability represents the maximal performance an individual can offer 

under ideal circumstances, based on exigent training and previous experience. 

Recognizing that someone is able to perform a task implies they consistently meet or 

exceed some arbitrary threshold of acceptable performance (McGaghie, Miller, Sajid, & 

Telder, 1978). In this context, an ability would be demonstrable performance recognized 

as competent or higher. Ability grows over a career, commensurate with deliberate 

practice and exposure to difficult situations. Ability is also different than aptitude, as no 

trainee is considered “able” to perform a procedure because they score well on an 

aptitude test. However, both features are brought to bear in difficult operating room 

situations where surgeons use all advantages (trained or otherwise) to maximize 

performance.  

Aptitude and ability are also domain-specific and nested within the taxonomy of 

Madani’s framework discussed previously. For example, sewing aptitude and decision-

making aptitude are quite different for early trainees, and ought to be described within the 

context of a relevant level of training and task, so as not to lose specificity or increase 

bias in selection. A software tool to provide quantitative feedback of performance 

without the need for coach intervention, could test for aptitudes, and help to improve 

student abilities before starting clinical rotations. 

1.4.3 Experience  

Lord Smith, a past President of The Royal College of Surgeons of England wrote “it 

would take me one year to teach a trainee how to do an operation, five years to teach them when 
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to do the operation, but a lifetime to teach them when not to do an operation” (2006). Experience 

describes the amount and breadth of familiarity a surgeon has in the operating room. This is 

typically expressed in the number of cases completed or amount of years in an attending role, but 

also manifests through “war stories” (Y. Y. Hu et al., 2012) and efficient “case scripts” or 

“illness scripts” (Norman, Eva, Brooks, & Hamstra, 2006; Schmidt et al., 1990) that improve 

expectations in the operating room.  

Robust mental scripts show how experienced clinicians compose a litany of creative, fail-

safe approaches to help deal with new challenges. These are complex representations that include 

“kinaesthetic and visual imagery” that help in psychomotor planning and movement (Holmes & 

Collins, 2001), and may be improved by mental practice (Louridas, Bonrath, Sinclair, Dedy, & 

Grantcharov, 2015). Previous experience helps form and represent critical patterns and cues 

which would otherwise go undetected. The set of expectations and scripts have also been 

described as a mental schema (Norman et al., 2006) to ease the burden of planning several steps 

ahead and recalling and integrating vast amounts of declarative knowledge on the fly (Sweller, 

2008). By incorporating principles into patterns and schemas, surgeons also reduce the demand 

on cognitive resources, enabling greater flexibility to direct attention where most needed (O’Neil 

et al., 2014). Clinicians form crucial components of expertise by incorporating feature-based 

patterns and expectations of their own experience into these mental models (Schmidt et al., 

1990).  

In the search for objective measures, experienced surgeons offer a window into 

successful techniques that are tailored and honed over years of difficult practice. Carty and 

colleagues (2009) found that operative time decreased when surgeons reached 10 or more years 

of experience. Still, studying experienced surgeons – in the absence of more detailed objective 

measures – may fall short of guaranteeing positive outcomes. Geoff Norman summarized the 
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insufficiency of experience as a measure of surgical expertise in his personal correspondence to 

David Cook, facetiously suggesting that “gray hair and baldness would be good measures of 

expertise when comparing senior surgeons and third-year medical students” (Cook et al., 2014). 

Clarified by Norman’s wry attitude, experience is a necessary, albeit insufficient prerequisite for 

expertise. In fact, there is some evidence to support that individuals who consider themselves 

more experienced may be more resistant to contradictory information (Staats, KC, & Gino, 

2018). Combating this trend, where it exists, and promoting so called “intellectual humility” 

(Gino, 2018) will be an ongoing effort.  

1.4.4 Expertise  

Understanding how surgical expertise develops is hindered by a lack of objective 

performance measures. This challenge is highlighted by Harald Mieg, who found that 

professionalism itself serves as the prevailing factor of expertise across fields where “standards 

of best practice still need to be established” (2009). Surgery fits the bill (Maier-Hein et al., 2017; 

Vedula et al., 2017), as clinicians “tend to conceptualize ‘mastery’ or ‘expertise’ as having 

conquered a specific set of skills, while other disciplines commonly associate these terms with a 

“continual learning state or perpetual devotion to improvement” (Greenberg & Klingensmith, 

2015). Achieving expertise, rather than practicing it, reflects the strict social dichotomy between 

master and apprentice roles in surgical training. 

Early attempts by Simon and Chase (1973) to define expertise emphasized direct testing 

of memory capacity. Although such measures provided a “convenient substitute for studies of 

actual performance” (Ericsson, 2005, p. 231), they did not provide sufficient explanations for the 

mechanisms supporting how expertise manifests across domains. Later approaches paralleled the 

proliferation of technology, describing the brain as a “computational device” which stored, 
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responded and retrieved information in “motor programs” analogous to software operating on 

computer platforms (Davids et al., 2008, p. 27). 

The early emphasis on memory recall has been reframed over time to describe how 

expert performance manifests as a set of “exceptional skills in a particular domain” (Krawczyk, 

Bartlett, Kantarcioglu, Hamlen, & Thuraisingham, 2013, p. 364). Growing efforts to observe, 

measure and compare expert behavior (see Chi, 2011), have been bolstered by procedural and 

technological advances in cognitive task analysis (Tofel-Grehl & Feldon, 2013), brain imaging, 

(Krawczyk et al., 2013), protocol analysis and eye tracking (Charness & Tuffiash, 2016), 

simulation (Bond et al., 2008) and domain-specific factor analysis (Prietula, Feltovich, & 

Marchak, 2000), among others. 

It is widely accepted today, that expertise is achieved through deliberate practice over 

time (Ericsson & Charness, 1994; Ericsson et al., 1993; Hashimoto et al., 2015; O’Neil et al., 

2014; Palter & Grantcharov, 2014). Performers can target unique skills and reflect on their 

progress during planned periods where they “construct and seek out training situations in which 

the desired goal exceeds their current level of performance” (Ericsson, 2004). Exposure to 

difficult and variable situations is also critical (Spruit, Band, Hamming, & Ridderinkhof, 2014), 

enabling performers can become “adaptable for a range of varying performance characteristics” 

and “less vulnerable to transitory factors such as fatigue, audience effects, and anxiety” (Davids 

et al., 2008, p. 4). Unfortunately, the chance to reflect on these lessons is limited in the rapid and 

stressful environment of resident training (Jeffree & Clarke, 2010), resulting in a missed 

opportunity to promote metacognition and resident development (Pugh, 2014). Indeed, “practice 

without reflection and striving for continued improvement is a formula for mediocrity” 

(Weinbergger, Duffey, & Cassel, 2005). 
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Difficulty and expertise also have an intricate relationship. Experts “have adapted 

efficient ways to solve problems in their domains” and attack problems “by qualitatively 

different techniques” depending on the difficulty of the problem itself (Prietula, Feltovich, & 

Marchak, 2000, p. 64). Sufficient surgical training develops cue recognition, planning and error 

recovery during cases complex enough to integrate of both conscious (controlled) and 

unconscious (automated) actions (Pugh, Santacaterina, DaRosa, & Clark, 2011). An expert 

would thus be more responsive to the complexity of the task; able to conceptualize and plan a 

difficult operation at a high level of abstraction while integrating varying kinds of information 

(Ruis et al., 2017; van Merriënboer, Clark, & de Croock, 2002). Bond et al. (2008) supports this 

idea in describing how surgeons exhibiting superior performance use “pattern recognition to be 

efficient at the mundane,” and “recognize when the pieces do not fit” (p. 1038), thereby adjusting 

their style of thinking to observe and adapt to evolving risks. Before the recent advances in 

developing surgical performance domains, recognizing these kinds of patterns, or “chunks” of 

knowledge, studied for years as part of successful performance in chess (Burns, 2004; Simon & 

Chase, 1973), was criticized for yielding “little direction for improving education of medical 

students” (Norman et al., 2006). 

Jerome Groopman, author of How Doctors Think (2008), instead, frames the advantages 

afforded by medical expertise as a break from traditional training: “studies show that while it 

usually takes twenty to thirty minutes in a didactic exercise for the senior doctor and students to 

arrive at a working diagnosis, an expert clinician typically forms a notion of what is wrong with 

the patient within twenty seconds.” He contends that practicing physicians pull cues in from all 

directions simultaneously – a non-linear mental process – but the taught method is rigidly linear: 

“Medical students are taught that the evaluation of a patient should proceed in a discrete linear 

way; you first take the patient’s history, then perform a physical examination, order tests and 
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analyze the results. Only after all the data are compiled should you formulate hypotheses as to 

what might be wrong.” In-context training for surgical residents is clearly crucial to build 

meaningful experience – despite the high cost to attending staff (Babineau et al., 2004).  

Feltovich, Ford, & Hoffman (1997), creators of the TEMPEST model of expertise 

(Figure 2), describe expert adaptability in terms of preplanned actions. Termed “predictive 

encoding,” the authors emphasize the role of advanced cognitive skills and command of dynamic 

knowledge in demonstrating expert performance. Such strategies help the expert draw on 

relevant experience, select useful tools and information, and balance the various forces at play 

during an operation.  

The TEMPEST model highlights the various experiences, goals, materials and strategies 

of familiar tasks that experts may employ. Experts are driven and constrained by external forces 

like performance expectations, motives, and the rule of law. The “tail” – selection criteria, 

training, and professional standards – acts as a stabilizing force. The authors develop the model 

to represent completing a task. 

 



16 
 

 

 

Figure 2: TEMPEST model describing the general framework of expertise (Adapted from 
Feltovich, Ford and Hoffman, 1997)  

 

The TEMPEST model does not differentiate between the relative quality of performance 

between experts, even though the various inputs and forces imply performance among each 

expert are different. No two experts will have the exact same background experience or 

motivations. A helpful sorting scheme for this purpose is presented by Ericsson and colleagues 

(1993); arranging performers into “Least Accomplished”, “Good”, “Best” and “Professional,” 

but once again these boundaries lack objective thresholds. Surgeons, similarly, who might not 

pass an “Olympic” or “excellent” bar of performance, may be recognized as experts nonetheless 

(Alleman & Al-Assaf, 2005; Bell, 2009). Without a quantifiable performance standard, social 

standing and sense of professionalism serves as a stop-gap, with status conferred based on 

established case history, board certification, and leadership roles. Such attributes are highly 

valued and enshrined in the professional model of medicine, but social signifiers are only a piece 

of the puzzle in pursuing quantitative standards; they are notably absent in the TEMPEST model.  
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Expertise in surgery is thus challenging to pin down because it is used to refer both to the 

existing social hierarchy, and to the suite of practiced skills an individual can perform with 

consistency. In other words, surgical expertise continues to represent both professionalism and 

excellence; each of which are difficult, if not impossible, to define in their entirety. 

Professionalism is more easily understood; the Hippocratic oath is recognized centuries over as 

part of the social contract of medicine. Measures of “excellence” as Mieg describes, however, 

continue to evolve and face scrutiny as technology-assisted measurements of skill and 

performance grow (Vedula et al., 2017). These latter advances may be more effective than 

professionalism at promoting guidelines of physician best practices (see Laufer et al., 2016).  

1.4.5 Competency  

Competency, like expertise, is dual-faceted. A competent surgeon, and a competent 

surgical performance, for example, may describe different ideas. George Miller (1990) advocated 

that residents should achieve “competence,” before performing and demonstrating skills on live 

patients. The US Accreditation Council for Graduate Medical Education (ACGME), meanwhile, 

is pushing for assessments across a series of job functions or “competencies,” as part of the 

competency-based medical education (CBME) milestones project (ACGME, 2013). In light of 

these uses, a surgeon could be considered competent within a particular domain (i.e. consistently 

achieving a pre-defined rating in completing a procedure) or deemed competent overall (i.e. 

graduating from residency). For clarity, we define competency within a performance domain to 

mean meeting a quantifiable assessment threshold on a consistent and repeated basis. Referring 

to a clinician as a “competent surgeon,” on the other hand, could also connote how that surgeon 

is perceived and trusted as a professional doctor, rather than how their skills have been 

quantifiably assessed. Firmly attaching competency to the underlying assessment content and 
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context will help to promote consistent interpretation of a clinician’s practiced skills as 

performance assessments become increasingly embedded in surgical training.  

The colloquial understanding of competency as something an individual ought to 

conquer, rather than practice, much like expertise, is a driving force in defining competence as a 

testable threshold of performance. These kinds of performance-based competency assessments 

are currently under development for laparoscopy (Miskovic et al., 2013) and for various skills 

associated with professionalism (Hochberg et al., 2010). Jelovsek et al., (2013) provides a broad 

overview of reliability evidence for operative assessments. For a discussion on evolving 

educational approaches, consult Evans and Schenarts (2016). 

Outside of surgery, competency has been described as tantamount to the “attributes” arm 

of the Knowledge, Skills and Attributes (KSA) approach (McLagan, 1997). KSA is a lens 

popular for military analysis which frames attributes as task-applicable, but relatively domain 

independent and difficult to train. O’Neil, Perez, and Baker (2014) provide an in-depth 

discussion of the relationships between these constructs in their book Teaching and Measuring 

Cognitive Readiness.  

1.4.6 Proficiency 

Little emphasis is typically directed towards the difference between competency and 

proficiency. The Dreyfus Model of Skill Acquisition (Table 1, Dreyfuss & Dreyfus, 1980) offers 

a potential distinction, despite criticism for relying on intuition and omitting the utility of 

planning (Peña, 2010).  

In the Dreyfus Model, competency is exhibited by active decision making and 

categorizing information. Proficiency, on the other hand, is analogous to Miller’s “shows how” 

stage and reflects gains in operative autonomy as residents become attending surgeons. This 
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transition is earmarked by an increasing sense of responsibility commensurate with experience, 

and active demonstration of their abilities with decreasing oversight.  

Table 1. The “Dreyfus Five Stage Model of Mental Stages in Skill Acquisition”(Dreyfuss & 
Dreyfus, 1980). 

Stage Autonomy Mental Activities 

1. Novice 
Only feels 

responsible to 
follow the rules 

Follows specific 
rules for specific 
situations. Rules 

are not 
conditional. 

2. Advanced 
Beginner 

Still does not 
experience 
personal 

responsibility 

Begins to create 
and identify 

conditional rules. 
All decisions still 

follow rules. 

3. Competent 

Sense of 
responsibility 
arises from 

actively making 
decision 

Learns organizing 
principles. 

Information 
sorting by 

relevance begins. 

4. Proficient 

Sense of 
responsibility 
increases with 

experience 

Uses pattern 
recognition to 

assess what to do. 
Uses rules to 

determine how to 
do it. 

5. Expert 

Responsibility 
extends to others 

and the 
environment 

No analysis or 
planning. Pattern 

recognition 
extends to plan as 

well as action. 
 

Competency in the Dreyfus Model can also be construed as the lowest suitable level of 

performance. Proficiency, in contrast, represents greater consistency and responsibility, albeit not 

yet at levels considered “expert.” In analyzing surgical skill, competency would represent 

meeting a minimum required assessment and starting to “actively make decisions” with 

autonomy. Brian George and colleagues (2014), in developing the Procedural Autonomy and 

Supervision System (PASS) on smartphones, describe similar stages of autonomy as “show and 
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tell,” “active help”, “passive help” and “supervision only.” Proficiency represents consistency in 

performance in excess of competent levels. Proficiency would be characterized more by 

achieving repeated, stable, and efficient outcomes. Such thresholds would need to be drawn 

based on the procedure and task at hand and would revisited as disruptive technologies like 

laparoscopy are introduced. 

1.5 Quantified Performance Model 

The following model (Figure 3) is newly proposed to represent each of the skills-based 

terms discussed previously. The model represents performance as it develops over years of 

practice and exposure to challenging situations. Performance is represented as a quantifiable 

property over a surgeon’s career and progresses through several stages, each with distinct 

exposure and responsibilities which change the rate of learning. Average performance is 

included to account for contextual and transitory factors. The model is adapted from the “three 

phases of development” model by Ericsson and Charness (1994). Competency is represented as 

an arbitrary, yet quantifiable threshold of performance and a gateway for increasing operative 

independence, with ability reserved to describe the sum of all actions for which a surgeon has 

already demonstrated competency – the integral under the continuous performance curve(s). 

Aptitude, on the other hand, is the rate (slope) of the curve from the time at which deliberate 

practice begins, to when a surgeon demonstrates competency on a regular basis. Experience, 

meanwhile, is represented as an expanding space and breadth of familiarity: the sum of unique 

exposure and instances of practice over the course of a career.    
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Figure 3: Skills terminology model depicting relationship between common descriptors. Average Quantified Performance (AQP) is used 
to account for performance deviations due to transitory factors. The model combines both the Madani et al. (2017) performance domains 
framework, as well as the Three-Stage model of expert performance development, put forth by Ericsson and Charness (1994). 
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The Quantified Performance Model is designed to strike a balance between literature 

describing expertise and colloquial uses for the various terms at issue describing skill. 

Experience, for instance, while represented as a growing “bank” of lessons over the course of a 

career, is directly traceable to instances of deliberate practice and solving challenging cases as an 

attending. Excellent performance is superior to that of proficient and competent thresholds and 

associated with meaningful experiences. Because aptitude is typically used to describe the 

amount of effort or remedial training required at the beginning of surgical education, it is 

represented as the rate (slope) of the curve starting at the novice stage. The model assumes that 

the performance thresholds would be defined (and likely re-defined) as surgical technique and 

approach evolves – much as the current Milestones project defining various surgical 

competencies evolves (ACGME, 2013). Although several performance thresholds may be drawn, 

the thresholds for each of the performance stage (competency, proficiency, mastery) are intended 

to represent developments over the course of a surgical career.   

Consider, as an example, the University of Wisconsin-Madison Urology Department 

residency training approach. In PGY 2, resident operations are “completely supervised by an 

attending faculty. The attention is on learning proper surgical skills, instrument identification and 

handling, and the proper steps to simple surgical procedures. By the completion of the [first] 

year, residents are expected to be able to perform all steps of simple surgical procedures with 

minimal guidance, but always under careful supervision.”  

Threshold performance at this stage is commensurate with the “novice” level. Operative 

autonomy is prohibited, and aptitude for general surgical practices is still being evaluated. 

Deliberate practice of in-vivo surgical skill is minimal but grows over the course of the year; 

initializing a set of experiences from which to form basic “illness scripts.” At this stage, it may 
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be reasonable to use performance assessments to generate formative feedback, or to examine 

aptitude. 

Between the third (PGY 3) and fourth (PGY 4) years, residents are expected to move up 

the performance curve. There are “increasing opportunities to conduct certain steps” as skills 

develop. Residents approach “conducting an entire procedure independently,” albeit under direct 

supervision. Mentors provide “immediate feedback and remediation of any deficiencies” (PGY 

4). Within the Quantified Performance Model, these improvements describe progress towards 

competent levels of performance in each domain. Instances of deliberate practice are increasing 

and building experience commensurate with the “active help” stage of PASS.  

By the time a resident enters their 5th year, and as a chief resident, they are expected to 

“perform all steps of major urologic surgeries,” and achieve “autonomy in performing basic 

surgical procedures.” At this point, residents working with autonomy are not considered or 

consulted as experts, but their experience enables greater independence in the operating room 

and helps to inform those of lesser training. Objective assessments within the Quantified 

Performance Model may indicate a competent level in many of the performance domains for 

several procedures. Only after consistent passage, however, would that resident be considered 

“competent” for those procedures. Residents may also exhibit proficient levels of performance 

for a handful of simpler bedside or out-patient procedures. Completion of these five PGYs would 

be similar to completing the first three stages in the Dreyfus model of skill acquisition.  

As residents become attending surgeons and transition to the new expectations of their 

full-time role, they would pursue a proficient level of performance. In contrast to residency, 

which places greater emphasis on focusing attention on to enable periods of deliberate practice, 

time spent operating as an attending surgeon places greater emphasis on achieving efficient, 

positive outcomes, even in difficult situations. One study found that variation in operation time 
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and complication rates during mammaplasty stabilized only after 12 years of active practice as an 

attending surgeon (Carty et al., 2009). Still, lapses in planning, neglecting to complete or recall 

steps in an operation, or increased variability may indicate declines in performance at any stage 

in a surgeon’s career. To enable consistent results in the OR, these surgeons would need exhibit 

more efficient and robust error-management techniques. It is reasonable to assume that an 

attending performing at a master level have reached this point of stability and gained 12 or more 

years of experience. Within the proposed model, performance traits of an individual exhibiting 

mastery would serve as a template and resource to improve the rate of achieving proficiency for 

others in various difficult procedures.   

As a surgeon progresses through these stages and strives for higher levels of 

performance, assessments would need to target more complex attributes of Madani’s domains. 

Proficiency would need to be assessed through clinical simulations of increasingly difficult 

scenarios. At the same time, however, testing of previously surpassed performance thresholds 

would expose areas of needed practice to maintain skill with age, changes in life circumstance, 

or to demonstrate readiness to transition to another kind of surgery. Quantified performance 

testing throughout a surgical career may also serve to share expert strategies and mental models, 

while limiting patient exposure. Identifying features of performance commensurate with 

advanced tenure (i.e. expert and master surgeons) is an ongoing avenue of research.  

1.6 Discussion 

The standard lexicon proposed by the Quantified Performance Model (QPM) of surgical 

skills terminology (Figure 3) focuses on defining performance as surgeons gain skills, age, and 

eventually retire. It is applicable to each of the five surgical performance domains (Madani et al., 

2017) and is particularly timely for increasing efforts to quantify psychomotor skills. The model 

incorporates the role of deliberate practice in building expertise and paves the way to frame 
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operative assessments as a consistent, repeated demonstration of performance rather than a one-

time credential. The model does not, on the other hand, specify the content of these assessments. 

Described as an “instructional design problem,” developing meaningful assessments is a 

continuing area of research subject to validity (Kane, 2006) and overall utility (van der Vleuten 

& Schuwirth, 2005) analysis.  

It is assumed that assessments will continue to adapt as technology and surgical 

techniques evolve. Procedure difficulty must also be considered. Planning, situational awareness, 

or other “advanced cognitive skills,” for instance, may expose greater abilities in experienced 

clinicians than less complex assessments of salient psychomotor skills while suturing on 

simulated benchtop models.  

The proposed model integrates potential assessment measures as an attempt to reach 

competency, and as a building block to proficiency (much like the Dreyfus model). Competency 

represents a transition to increasing responsibility and operative autonomy. The model reflects 

George Miller’s focus on being able to show or perform skills. In addition, it uniquely frames 

performance as a repeated and consistent measure, to account for situational context and 

variation. It supports regular, repeated performance testing and reflects the ongoing push to 

demonstrate skills over time, even as they degrade due to advanced age or change in professional 

status. The model also supports the construction of various pass-fail thresholds, fitting well 

within the rhetoric of Madani, by encouraging active assessment for “a competent level of 

performance” (2017).  

Educational literature often uses similar terms, however, to detail a pedagogical 

approach. Consistently reaching a competent threshold, for example, is commonly referred to as 

“mastery” of the assessment topic (McGaghie et al., 1978). In contrast, “master” surgeons are 

commonly described as those with substantial operative experience and involved in training 
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efforts (Cuschieri et al., 2001). Performance, too, has held a unique educational meaning, 

connoting the final stage of one-on-one manual skill training (Peyton, 1998). Over time, the term 

“execution” has replaced “performance” in the these contexts (Munster, Stosch, Hindrichs, 

Franklin, & Matthes, 2016), with performance describing a more continuous scale of 

development (Jeffree & Clarke, 2010) similar to the proposed model.  

Over-simplifying any assessment framework poses a natural challenge to physician and 

patient autonomy – an evolving, yet fundamental tenet in the professional model of medicine 

(ABIM Foundation, 2002). If quantification of skill is implemented poorly and becomes 

anathema to the “secret glory” of medicine as a craft profession (Donabedian, 1988), surgeons 

may opt instead to retreat to their respective corners; offering additional challenges to the already 

difficult prospect of competency-based medical education (Touchie & Ten Cate, 2016). 

Worthwhile assessments could be overlooked before they have a chance to mature – 

undermining improvements to quality patient care and wasting valuable resources. Graham and 

Deary (1991) argued that widespread adoption of such testing requires maturity of three things: 

robust understanding of skill, studies with subjective ratings as dependent variables, and an 

appropriate “working definition of superior surgical performance.”  

The proposed model in this paper offers a productive and traceable way to use surgical 

skills terminology in quantifying performance. The model integrates well with existing validity 

frameworks by promoting clear inferences and uses throughout a surgical career. To promote 

easier adoption among the medical community, the proposed definitions integrate existing 

literature and colloquial understanding.  

1.7 Conclusion 

This paper has focused on defining surgical skill terms that, despite their ubiquity, lack 

unique interpretations. A novel model of terminology is proposed to assist in framing objective 
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and feature-based surgical skills along a continuous scale of performance. Experience is 

represented as a growing “bank” of exposure to difficult situations; and includes the sum of 

instances of deliberate practice. Competency represents an arbitrary performance threshold, 

generally commensurate with graduation from residency and full-time involvement as an 

attending surgeon. Proficiency is characterized by decreasing variation and increasingly efficient 

outcomes. While attendings will pursue proficiency for the most difficult and complex 

operations, some residents may also reach proficient levels of performance for familiar 

operations and bedside procedures. Ability represents all performance a surgeon can offer in 

excess of a competent level, drawn as the integral under the performance curve after reaching 

competency. Aptitude is the rate at which one could achieve a competent performance level, 

given current pedagogical techniques. Mastery represents a performance threshold in excess of 

proficiency; characterized by excellent outcomes and novel techniques beyond those expected at 

proficient levels. Descriptors like elite and superior may be reserved for performances at the 

mastery level. 

Many of these definitions (consider competence, for example) depend on reaching a 

quantitative threshold of performance that has yet to reach maturity. Establishing validity 

evidence for such assessments in accordance with modern frameworks (Kane, 2013) is ongoing. 

The proposed model frames quantitative assessments within a continuous performance curve 

throughout stages of a surgical career. Each stage is associated with different training regiments 

and responsibilities, adapted from the “three phases of development” model by Ericsson and 

Charness (1994). To be considered competent or proficient to conduct an operation, a surgeon 

would need to consistently and repeatedly meet those relevant performance thresholds for 

relevant assessments in each surgical domain (Madani et al., 2017). 
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As objective surgical skill analysis research continues to grow, consistent terminology 

will be critical in translating objective measures into formative feedback, and eventually, valid 

assessments. The quantified performance model – accompanied by increasing abilities to 

measure performance – may aid in clarifying the duality of surgical expertise as a measure of 

professionalism and excellence. It may never be possible to quantify the artistry inherent in 

advanced surgery or define unique attributes of skill for complex operations. But, it may be 

possible to identify performance with enough specificity to discern surgeon progression from 

novice, to competent, proficient, and beyond. These thresholds could facilitate training, aptitude 

testing, placement, remediation, and timing of professional transition or retirement.  
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2. Marker-less hand motion kinematics of simulated surgical tasks for 

quantifying surgeon experience 

2.0 Manuscript Information  

This manuscript will be submitted to special issue of Applied Ergonomics on human 

factors/ergonomics in health and healthcare, in honor of the late Bentzi Karsh.  

2.1 Abstract 

This paper summarizes observed hand motion differences among 85 clinicians and 

students performing benchtop suturing tasks. Medical students (32), residents (41), attending 

surgeons (10), and retirees (2) were recorded on digital video while suturing on one of foam, pig 

feet, or porcine bowel tissues. Each clinician was classified as junior or senior, within their role. 

Utilizing custom software, the location of each of the participants hands were automatically 

recorded throughout each frame of the video, producing a rich spatiotemporal feature set for 

subsequent comparison across participants. Observed differences between experience levels 

within each setting are described, with emphasis given to trends associated with increasing 

tenure. Increasing clinician tenure was associated with conserved path length per cycle of the 

non-dominant hand on the foam simulation, significantly reducing from early medical students 

(mean = 73.63 cm, sd = 33.21 cm) to senior residents (mean = 46.16 cm, sd = 14.03 cm, p = 

0.015), and again between senior residents and senior attendings (mean = 30.84 cm, sd = 14.51 

cm, p = 0.045). Attendings also accelerated less with their non-dominant hand (mean = 16.27 

cm/s2, sd = 81.12 cm/s2, p = 0.002) than senior residents (mean = 24.84 cm/s2, sd = 68.29 cm/s2, 

p = 0.002), despite similar cycle rates. Medical students moved their dominant hands slower 

(mean = 4.39 cm/s, sd = 1.73 cm/s, p = 0.033) than senior residents (mean = 6.53 cm/s, sd = 2.52 

cm/s) while tying. These results suggest that increases at early stages of training are gained by 
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improved dominant hand function, while increases in later stages are characterized by efficiently 

distributing work between hands.  

2.2 Background 

Stefanidis and colleagues (2015) describe a simulation-based training mantra for the 21st 

century as a transition from: “see one, do one, teach one” to “see one, simulate many 

deliberately, do one.” As part of this effort, and commensurate with burgeoning “surgical data 

science” (Maier-Hein et al., 2017), video review of surgery (Xiao et al., 2007) has led to 

improvements in skills analysis (Berger, Gaster, & Lee, 2013), coaching (Greenberg et al., 2015; 

Y.-Y. Hu et al., 2012; Soucisse et al., 2017), and error detection (Law Forsyth et al., 2017). In 

reviewing surgical assessment-oriented technologies, Vedula et al. (2017) describe how many 

objective computer-aided technical skill evaluation (OCASE-T) technologies depend on robotics 

or laparoscopy.  

Our approach to surgical analysis, in contrast, uses motion capture of surgeon hand 

movements to analyze differences commensurate with experience. Video recording of the 

surgeon’s hands while operating, needing no sensors or markers, offers many advantages in 

portability and scalability otherwise limited in successful robot-assisted surgical systems like 

ROVIMAS (Aggarwal et al., 2007), and ICSAD (Bann, Khan, & Darzi, 2003; Datta et al., 2002; 

Hayter et al., 2009). Such platforms consistently discriminate novices from experts (Aristotelis 

Dosis et al., 2005; Overby & Watson, 2014) using metrics like the number of hand movements 

(sometimes referred to as economy), and overall path length. Our group found similar results in 

previous work using marker-less motion tracking and observed that attending surgeons move 

their non-dominant hands more than residents while suturing, yet distribute workload between 

hands more evenly, and generally conserve motion while tying (Glarner et al., 2014). We have 
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subsequently identified differences in dominant hand motion by role and task in the operating 

room (Frasier et al., 2016), to predict expert-rated performance (Azari et al., 2017).  

This study represents an application of marker-less hand motion tracking to generalize 

findings between novices and experts for a broader range of experience levels within controlled 

settings. Video records of bench-top simulations offer a repeatable environment in which to hone 

and refine hand-motion kinematics for common procedures. Previous studies examining surgical 

motion have simulated small bowel anastomoses and vein patch insertions (Datta, Bann, 

Mandalia, & Darzi, 2006; Watson, 2014), and interrupted suturing tasks with commonly 

accessible materials like foam, balloons, and tissue paper (D’Angelo, Rutherford, Ray, Laufer, et 

al., 2015; D’Angelo, Rutherford, Ray, Mason, & Pugh, 2015).  

This goal of this study is to examine differences in hand motions commensurate with a 

continuous range of experience as surgeons perform simulated suturing tasks on different 

materials. Grounded in previous work, we hypothesize that more experienced participants will 

exhibit faster completion rates and higher economy of motion in each setting. We manually 

calculate cycle frequency to provide common comparison in path lengths between different 

techniques. Parallel work described by Azari (2018) explores automatic prediction of these cycle 

rates through common machine learning techniques to remove the need for human labeling in 

surgical video analysis.  

2.3 Methods 

2.3.1 Participants and Setting 

This study compares the hand motion results of 85 participants completing common 

benchtop suturing tasks. Three tissue conditions were used: foam, porcine feet and porcine 

bowel. Participants performed both simple interrupted and running subcuticular suturing on foam 

and pig feet, and anastomoses on bowel tissue. Thirty-seven participants were recruited through 
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grand-rounds announcements, email lists and live announcements to complete simple interrupted 

suturing and running subcuticular suturing on foam. Twenty-six participants were recruited to 

allow video recording during training sessions while suturing on pig’s feet, while twenty-two 

participants were recruited via email to complete porcine bowel anastomosis (Figure 4). Third 

year medical students, residents with three or less years, and attendings with less than six years 

in their current role were classified as “junior,” within each respective role.  

Each participant agreed to have their hand movements recorded on digital video while 

they performed the suturing tasks. The University of Wisconsin-Madison Institutional Review 

Board approved this study. The number of participants and their relative experience levels are 

listed in Table 2. 

Cameras were positioned to observe the hands and working space of each participant, 

minimizing visibility of faces in each setting (Figure 5). Cameras collected orthogonal 2D planar 

video with 720 x 480 pixel resolution at 30 frames per second utilizing software developed by 

the Occupational Ergonomics and Biomechanics Laboratory at the University of Wisconsin-

Madison to synchronously record multiple views.  

 
Figure 4: Example of camera view for training suturing tasks on foam (A), and porcine feet (B) 
and bowel (C). 
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Video recording began after reviewing and signing a consent agreement. Each video was 

calibrated to convert pixel measurements from the video into real-world (mm) units using the 

size of a known object (e.g. ruler or notecard) in view of the camera (Equation 1).  

𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
# 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

     (1) 
 

Table 2: Number of participants, by role and tissue type.  

Role Year in 
Position 

Foam 
Dressing 

(A) 

Porcine 
Feet  
(B) 

Porcine 
Bowel 

(C) 
Participants 

Medical Student 
(n = 32) 

3 4 22 - 26 
4 6 - - 6 

Resident   
(n = 41) 

1 2 2 3 7 
2 3 - 7 10 
3 3 2 10 15 
4 3 - 1 4 
5 4 - 1 5 

Attending  
(n = 10) 

< 6 4 - - 4 
≥ 6 6 - - 6 

Retired  
(n = 2) NA 2 - - 2 

Total 37 26 22 85 
 
Extraneous footage (e.g. setting up, tearing down, time between stations) was trimmed 

from the video before motion tracking and labeling. However, there were occasional periods 

where participants would ask questions, discuss technique, remove their hands from the field or 

otherwise pause for long periods. These periods were manually identified and excluded from 

subsequent analysis.   

2.3.2 Motion Tracking 

A region of interest (ROI) in the video was defined over each of the participants’ hands 

including the distal ends of two metacarpal bones. Utilizing custom software written in C# and 

employing the OpenCVSharp libraries (Chen, Hu, & Radwin, 2014), we were able to record and 

save the two-dimensional position of ROI’s for both hands throughout the experiment. To 
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operate this software, an analyst would define the position and size of the ROI, initiate the 

algorithm, and provide manual corrections if the hands move off screen, or are otherwise 

occluded. The changing position of the ROI produced a unique position of each hand every 

1/30th of a second, enabling speed, acceleration, and various other kinematic features to comprise 

a vector of attributes for each participant and task combination. 

 

 
Figure 5: Video collection stations for two participants suturing on foam (left) and four 
participants suturing on pig feet (right).  
 
2.3.3 Feature Extraction 

From the two-dimensional position data for each frame it is possible to quantify 

instantaneous displacement, speed, and acceleration of both hands for each frame both 

instantaneously and over the course of a video Figure 6. Additional measures including jerk 

(Hogan & Sternad, 2009) and spatiotemporal curvature (Rao, Yilmaz, & Shah, 2002) are 

drawing increasing interest from research aiming to assess motion quality (Ghasemloonia et al., 

2017). Jerk is the third derivative of position with respect to time and generally represents how 

smooth a motion is, while the spatiotemporal curvature function is a measure of direction change 
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based on multiple derivatives of the position signal and is used to indicate the number of discrete 

movements.  

2.3.4 Cycle Analysis 

After trimming extraneous portion of video, the remaining footage was screened in 

Multimedia Video Task Analysis (MVTA). MVTA is a software specially developed at the 

University of Wisconsin-Madison, (Yen & Radwin, 2007) to mark and save cycle starting and 

ending times for any task. Each frame of video was manually labeled in MVTA to provide 

ground truth for comparison across tasks and participants. A total of 10 states were identified, to 

provide sufficient resolution for state-prediction models (discussed in later chapters). These 

included suturing, tying (instrument, or one or two-handed), cutting, reach, maintaining tension, 

tissue manipulation, needle loading (or unloading) and extraneous/unrelated. The extraneous 

state comprised all periods of participant interaction, paperwork, significant pauses to ask 

questions or reposition equipment.  

Each state included a series of motions, sometimes called “surgemes” (Lin, 2010). By 

convention, the surgical states identified here are commonly described as “maneuvers” within a 

broader series of “tasks” (e.g. closing an incision) and “procedures” (e.g. cholecystectomy) 

(Vedula, Malpani, Tao, et al., 2016). Progress in automatically predicting the arrival and 

transitions between these states are discussed by Azari (2018). The current paper uses labeled 

task breakdowns to segment the motion record and exclude unrelated activity.  
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Figure 6: Example of data abstraction in X-Y pixel locations over time (top) and density of hand 
position over time (bottom) derived from video of hand motion (center). 
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2.3.5 Data Analysis 

Following Shapiro-Wilks tests for normality, one-way ANOVA (analysis of variance) 

tests were performed to examine the impact of experience on hand motion within each one of the 

experimental settings. Interactions across settings were not within the scope of this paper. The 

amount of experience was the independent variable, with a kinematic feature as the dependent 

variable. Where significant differences were found, a Tukey Honestly Significant Difference 

(HSD) test and confidence intervals are used to describe the effect sizes between each of the 

respective groups. F values are reported for the grouped comparison. Kruskal-Wallis tests were 

used under non-normal or heteroscedastic (unequal variance) conditions to test for overall 

differences, with non-parametric pair-wise Wilcox tests examining differences between groups. 

We accounted for multiple comparisons using the Benjamini and Hochberg p-value correction. 

These tests are oriented to establish content evidence in accordance with Kane’s framework 

(Cook et al., 2014) and compare performance with greater granularity than traditionally seen 

with binary experienced and novice distinctions. Features common to increasing tenure across 

different experimental settings are reported. For the purposes of this paper, ground-truth cycle 

frequency is used to compare experience categories, as well as to standardize comparisons of 

path length over the course of different length tasks. Future work examines automatic frequency 

calculation.  

2.4 Results 

The kinematic features exhibiting distinct trends are represented in Table 3. These 

include increasing cycle frequency (CF, Figure 7), decreasing path length per cycle (PLC, Figure 

8), and changes in mean speed for dominant (D) and non-dominant (ND) hands. ND hand 

acceleration and standard deviation of speed also exhibits several differences. 
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Table 3: Features exhibiting significant differences by experience level. P = pigs feet; B = 
porcine bowel; F = foam dressing; A = combined (all) settings; M = medical student; JS = Junior 
medical student; SS = senior medical student; R = resident; A = attending; JR = junior resident; 
SR = senior resident; JA = junior attending; SA = senior attending. Pk = peak, Accl. = 
acceleration. 

Feature Hand Settings Task F value Significant 
Comparisons p value 

Cycle frequency (Hz)  Both FD All 4.52 M – SR 0.01 
Cycle frequency (Hz) Both FD Tying 10.24 A – JR 0.031 
Cycle frequency (Hz) Both FD Tying 9.66 JS – All < 0.01 
Cycle frequency (Hz) Both FD Tying 9.66 JR – SA 0.013 
Cycle frequency (Hz)  Both FD Suturing 6.45 SS – SR 0.001 
Cycle frequency (Hz)  Both FD Suturing 9.55 JR – A 0.03 
Cycle frequency (Hz) Both PF All 34.40 JS – All < 0.01 
       
Path length per cycle (PLC) ND FD All 6.88 SR – A 0.045 
Path length per cycle (PLC) ND FD All 5.72 SR – JS 0.015 
Path length per cycle (PLC) ND FD Active 5.58 SR – A 0.049 
Path length per cycle (PLC) ND PF All 3.04 JS – R < 0.01 
Path length per cycle (PLC) ND BA Suturing 6.52 SR – JR 0.019 
Path length per cycle (PLC) D FD All 6.46 M – SR < 0.01 
Path length per cycle (PLC) D PF All 3.30 JS – R < 0.01 
Path length per cycle (PLC) D BA Suturing 5.40 SR – JR 0.031 
       
Median Speed (mm/s) ND PF Tying 23.06 JR – SR 0.019 
Median Speed (mm/s) ND PF Tying 23.06 M – SR  < 0.01 
Median Speed (mm/s) ND FD Tying 4.24 M – SR 0.033 
Median Speed (mm/s) ND FD Tying 4.24 SR – A 0.035 
Median Speed (mm/s) D PF All 6.48 M – R < 0.015 
       
Maximum Accl. (mm/s2) ND FD All 7.16 SR – A 0.001 
Smooth Accl. Pk. Rate (Hz) D FD All 1.96 M – SR 0.01 
Smooth Accl. Pk. Rate (Hz) D PF Tying 15.79 JS – SR < 0.01 
Smooth Accl. Pk. Rate (Hz) D PF Tying 15.79 JR – SR 0.019 

 
Cycle Frequency  

Mean cycle frequency for all tasks on foam increased across student (mean = 0.12 Hz, sd 

= 0.05 Hz) and resident populations (mean = 0.17, sd = 0.06, p = 0.03), but plateaued between 

senior residents and attending roles (mean = 0.18, sd = 0.06). While tying on foam, junior 

medical students (mean = 0.12 Hz, sd = 0.05 Hz) were significantly slower (p < 0.01) than all 

other groups. Senior medical students (mean = 0.21 Hz, sd = 0.05 Hz) tied at similar rates to 

junior residents (mean = 0.22 Hz, sd = 0.07 Hz), and senior residents (mean = 0.27 Hz, sd = 0.08 
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Hz) tied similarly to junior attendings (mean = 0.25 Hz, sd = 0.07 Hz). Senior attendings (mean 

= 0.31 Hz, sd = 0.06 Hz), however, tied significantly faster (p = 0.002) than junior residents 

(Figure 7).   

 

Figure 7: Cycle frequency for tying tasks on foam by experience level. Means are marked by 
“+”. (J = Junior medical student (8); SS = senior medical student (12); JR = junior resident (10); 
SR = senior resident (20); JA = junior attending (8); SA = senior attending (12); RT = retired 
(4)). 

Path Length  

Differences in observed path length per cycle (PLC) were the most pronounced for non-

dominant (ND) hand use while sewing on foam (Figure 8). Senior attendings (mean = 30.84 cm, 

sd = 14.51 cm) exhibited a slightly significant (p = 0.045) reduction in path length per cycle 

compared to senior residents (mean = 46.16 cm, sd = 14.03 cm), who exhibited significantly less 

PLC-ND than junior medical students (mean = 73.63 cm, sd = 33.21 cm, p = 0.015).  
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Figure 8: Path length per cycle of non-dominant hand (PLC-ND) use for simulated foam cases. 
Means are marked by “+”. (J = Junior medical student (8); SS = senior medical student (12); JR 
= junior resident (10); SR = senior resident (20); JA = junior attending (8); SA = senior attending 
(12); RT = retired (4)). 

Attending clinician PLC-ND excluding transitional periods for needle reloading or tissue 

repositioning (mean = 31.33 cm, sd = 15.29 cm) was also slightly lower (p = 0.049) than for 

senior residents (mean = 47.53 cm, sd = 15.67 cm). PLC-ND for these periods was also 

monotonic decreasing across experience categories, with the mean of retired samples (mean = 

32.85 cm, sd = 18.19 cm, n = 4) close to junior attendings (mean = 32.11 cm, sd = 17.06 cm).  

On pig feet, medical students (mean = 98.07 cm, sd = 79.28) had higher PLC-ND (p < 

0.01) than both junior (mean = 46.7 cm, sd = 18.55 cm) and senior residents (mean = 50.66 cm, 

sd = 16.15 cm), although the difference within the resident population was insignificant. For 

bowel tissue, reduced PLC-ND was significant for active periods of suturing (p < 0.02) for senior 

residents (mean = 205.71 cm, sd = 82.88 cm) compared to junior residents (mean = 316.47 cm, 

sd = 120.15 cm), but not for tying, or for the overall task.   
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 PLC of the dominant hand (PLC-D) while sewing on foam decreased across experience 

categories, with medical students exhibiting the highest path length (mean = 69.12 cm, sd = 

28.67 cm), through residents (mean = 43.04 cm, sd = 15.80 cm), to attendings (mean = 40.32 cm, 

sd = 18.2 cm) and retirees (mean = 38.90 cm, sd = 19.15 cm). Senior resident PLC-D was 

significantly less than medical student PLC-D (p < 0.01), but the observed decreases from junior 

to senior resident, and from senior resident to attending were not significant.  

 Junior medical students (mean = 86.37 cm, sd = 59.57 cm) PLC-D on pig feet was 

similarly less than the combined resident population (mean = 47.74 cm, sd = 13.26 cm, p < 0.01). 

Senior resident PLC of the dominant hand (PLC-D) (mean = 264.55 cm, sd = 154.16 cm) while 

sewing on bowel, was significantly lower (p = 0.031) than junior resident PLC-D (mean = 

391.33 cm, sd = 83.79 cm), despite greater standard deviation within the senior resident 

population.  

Speed 

Median speed of the non-dominant hand of junior residents (mean = 6.66 cm/s, sd = 2.26 

cm/s) was significantly lower (p = 0.019) than median speed of senior residents (mean = 9.29 

cm/s, sd = 3.06 cm/s) while tying on pig feet, but the differences for senior residents (mean = 4.3 

cm/s, sd = 1.6 cm/s) and junior residents (mean = 4.21 cm/s, sd = 1.59 cm/s) tying on the more 

friable bowel material were not significant. While tying on foam, meanwhile, median speed of 

the non-dominant hand significantly increased (p = 0.033) from medical students (mean = 4.39 

cm/s, sd = 1.73 cm/s) to senior residents (mean = 6.53 cm/s, sd = 2.52 cm/s), but attending 

median speed (mean = 4.41 cm/s, sd = 2.41 cm/s) resembled that of medical students and was 

significantly lower than the senior residents (p = 0.035, Figure 9). 
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Figure 9: Median speed of non-dominant hand (ND) use for simulated foam cases. Means are 
marked by “+”. (J = Junior medical student (8); SS = senior medical student (12); JR = junior 
resident (10); SR = senior resident (20); JA = junior attending (8); SA = senior attending (12); 
RT = retired (4)). 

Resident sewing on pig feet exhibited greater average dominant (D) hand speed (mean = 

7.67 cm/s, 8.25 cm/s, sd = 2.03 cm/s, 1.60 cm/s) than medical students (mean = 5.97 cm/s, sd = 

1.53 cm/s, p < 0.015), but differences within the resident population were insignificant.  

Acceleration 

Maximum (90th percentile) acceleration (ND) while sewing on foam increased from 

medical students (mean = 18.90 cm/s2, sd = 60.07 cm/s2) through junior (mean = 20.01 cm/s2, sd 

= 69.30 cm/s2) and senior (mean = 24.84 cm/s2, sd = 68.29 cm/s2) residents, but significantly 

declined between senior residents and attendings (mean = 16.27 cm/s2, sd = 81.12 cm/s2, p = 

0.002), and continued to decline in retirement (mean = 98.92 cm/s2, sd = 21.38 cm/s2).  

Like cycle frequency, the median Butterworth smoothed acceleration peak rate (D) for 

sewing on foam increased across early experience categories (Figure 10). Medical student peak 
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rates (mean = 0.18 Hz, sd = 0.17 Hz) were significantly slower than senior residents (mean = 

0.26 Hz, sd = 0.07 Hz, p = 0.01). The increase observed at the entry levels, however, tapered off 

for junior (median = 0.28 Hz, sd = 0.11 Hz) and senior attendings (mean = 0.25 Hz, sd = 0.12 

Hz) and again reduced for retirees (mean = 0.22 Hz, sd = 0.12 Hz).  

While tying on pig feet, a similar trend was observed as medical students (mean = 1.09 

Hz, sd = 0.61 Hz) became junior (mean = 1.52 Hz, sd = 0.68 Hz) and senior residents (mean = 

2.41 Hz, sd = 0.80 Hz). There were significant differences between the senior residents and 

medical students (p < 0.01), and within the resident population (p = 0.019). Since no attendings 

were involved in tying on pig’s feet, however, it is not possible to examine the subsequent trend 

to confirm a later reduction in peak acceleration arrival rates for this setting. 

 
Figure 10: Median smoothed acceleration (accl.) peak arrival rate (Hz) for dominant hands by 
experience category. (J = Junior medical student (63); SS = senior medical student (12); JR = 
junior resident (28); SR = senior resident (43); JA = junior attending (8); SA = senior attending 
(12); RT = retired (4)). 
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2.5 Discussion 

This study identifies features commensurate with increasing surgical tenure. Medical 

students, residents, and attendings were each classified as junior or senior, depending on their 

time in position. Retirees were treated as one group and, due to the limited sample size in that 

population, excluded from statistical testing. Members of each tier completed common suturing 

and tying maneuvers, and all groups sutured on foam. Only medical students and residents 

sutured on pig feet and porcine bowel. The range of experiences in the study provided greater 

resolution than the traditional distinction between novices and experts. In comparing trends of 

features across all experience levels, it is common that comparisons are significant only for non-

adjacent categories. 

Medical students and residents often exhibited differences in speed and acceleration for 

dominant hand use, while attendings and residents exhibited differences in their non-dominant 

hand for path length, speed, and acceleration. For suturing on foam, non-dominant hand speed 

increased as medical students became residents, and then reduced as residents became 

attendings, despite faster completion times. This may reflect a transition from learning to 

perform the task (medical student) and completing the task quickly (residents) to conserving 

energy and motion in performing a short familiar exercise (attendings).  

The observed differences in cycle frequency, path length per cycle, median speeds, and 

acceleration suggest a pattern of increasing efficiency of movement along with tenure. 

Attendings exhibited greater cycle frequency, and less path length per cycle (PLC) for both 

dominant and non-dominant hands. Despite increased frequency, attendings also exhibited 

reduced speed of the non-dominant hand compared to residents while tying on foam. The 

smoothed acceleration signal for the dominant hand differentiated between medical students and 

residents (on foam), and within the resident population (on bowel).  
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Path length per cycle (PLC) of the surgeon’s non-dominant (ND) hand showed a 

monotonic reduction across each experience category, with significant differences between 

attendings and senior residents, and between senior residents and medical students. Median 

speeds and maximum acceleration generally increased as medical students became residents but 

decreased across junior and senior attending roles. The peak arrival rate in the smoothed 

acceleration signal closely resembled the cycle frequency trend, with significant differences 

between medical students and residents, and diminishing increases once surgeons entered the 

attending role. Future study will examine how well the peak arrival rate in the acceleration signal 

can serve as an effective proxy for cycle frequency.  

The limited number of retired surgeons in this study limits inference on skill decay 

beyond attending roles and into retirement. Deliberate practice may stave off effects of aging in 

psychomotor performance (Ericsson, 2004), but the rate of decay is thought to be independent of 

individual aptitude (Schendel et al., 1974). Future work would benefit from examining how the 

features identified in this study change following retirement or change of professional role.  

Previous studies found that attendings, in general, use their non-dominant hands more 

than residents, yet reduce movement and conserve path length when appropriate (Glarner et al., 

2014). In a similar light, we observed a decreasing path length per cycle in attendings non-

dominant hands, accompanied by a reduction in maximum acceleration as residents became 

attendings. Increasing acceleration and hand speed prior to attending role were seen for foam and 

pig feet, but not for suturing on friable bowel material. The difficulty of this material may have 

prompted senior residents to slow down and spend greater time planning than they did for the 

more familiar materials. This may also suggest a greater amount of comfort and familiarity with 

the task surroundings and tool placement than their less experienced counterparts.  
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Davids et al., (2008) describes psychomotor performance in context of achieving stable 

“states” within a dynamic landscape of options. The increased acceleration within the resident 

population compared to attendings, could be an attempt to expedite time spent in familiar 

territory (practiced motions); a mirror image of Mouton’s popular idea of “slowing down” to 

remain attentive (Moulton, Regehr, Lingard, Merritt, & MacRae, 2010). The increased pace 

during familiar portions may be rewarded by additional opportunity to “slow down” later and 

facilitate planning, decision making or error recovery, as referenced within Madani’s surgical 

performance domain framework.  

It is also difficult to rule out the possibility that clinicians of different standing 

intentionally sped up, slowed down, or altered their technique due to being aware of the video 

recording. Residents may have felt compelled to move noticeably faster than the medical 

students they train, and attendings with greater equanimity overall.  

While we collected surgical motion across three settings, this study may not have targeted 

sufficiently difficult tasks to discriminate between junior and senior residents attendings in all 

cases. Significant differences observed within residents tying on friable bowel, but not on pig 

feet, could be an example of this principle. There may be similar features between attendings 

which are not as readily observable in the current scheme. More difficult tasks may demand 

proficiency in different domains (e.g. advanced cognitive skills) which may not be detected by 

our motion tracking algorithms in non-stressful operating situations. In other words, the 

“fundamentally different” approach and knowledge structure that an expert brings to the task 

(Prietula et al., 2000; Silber & Foshay, 2009), may not be observable in these kinds of benchtop 

tasks, or within the scope of motion tracking for randomly sampled video segments. 

The kind of motion analysis applied in this study also does not account for successfully 

completed procedures, and rests on the assumption that all participants completed the task. 
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Future regression analyses or deep learning algorithms may take advantage of the observable 

hand motion, however, to predict more about relative performance and contextual state. 

Automatic routines to predict performance and identify periods of suturing, tying, or transitional 

activity from raw video are explored in accompanying work (Azari, 2018) currently under 

review.  

Creating a motion record for each participant and ensuring that all periods of extraneous 

activity were accounted for, including out of frame motion, proved to be the most time-

consuming portion of this study. Rapid changes in viewable hand size and shape, for instance, 

caused the motion tracking algorithm to lose track, and required manual intervention. Despite 

these current challenges, computer vision capabilities will continue to improve and reduce the 

burden to apply motion tracking. We have recently enhanced our ability to supervise the ROI 

throughout a video with a new interface design. We have also implemented simultaneous 

multiple ROI tracking for one video. These advantages will not correct for out of frame motion 

irregular behavior, or changing hand shape, but they will decrease the number of passes needed 

to create a motion record and reduce the burden of checking and controlling for extraneous 

activity. The software is also designed for modularity, in that pixel information can be passed on-

demand to any selected algorithm, promoting further algorithm refinement.  

2.6 Conclusion 

This study explored hand motion features associated with increasing surgeon experience. 

Participants from six experienced categories completed common suturing tasks on three kinds of 

tissue. Increasing tenure was associated with greater cycle frequency, decreased path length per 

cycle for both hands, increased speed and acceleration as medical students became residents, but 

reducing speed and acceleration for attending surgeons. The peak arrival rate in the smoothed 

acceleration signal may be a proxy for cycle frequency and should be explored further in future 
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work. Taken as an ensemble, the features identified in this study describe how marker-less 

motion tracking can quantify “surgical dexterity” for simulated benchtop tasks in various settings 

and for a range of experience levels.  
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3. Using surgeon hand motions to predict surgical maneuvers 

3.0 Manuscript Information  

This manuscript will be submitted to the journal Human Factors. 

3.1 Abstract 

Automatic computer vision recognition of surgical maneuvers (e.g. suturing and tying) 

would expedite video review and support objective assessment. We recorded the hand 

movements of 37 clinicians performing simple and running subcuticular suturing benchtop 

simulations and applied three machine learning techniques (decision trees, random forests, and 

hidden markov models) to classify surgical maneuvers for every two seconds (60 frames) of 

video. Random forest predictions of surgical video into suturing, tying, and transition states 

correctly classified 74% of all video segments in a randomly selected test set. Hidden markov 

model adjustments improved the random forest predictions to 79% for simple interrupted 

suturing on a subset of randomly selected set of participants. These results enable automatic 

calculation of cycle frequency and path length per cycle – meaningful metrics in surgical skill 

and performance assessment.  

3.2 Background 

A surgical operation can be described as a series of procedures, tasks, maneuvers, and 

gestures. Vedula et al. (2016) provide a “hierarchical semantic decomposition of surgical 

activity” which defines a mutually exclusive set of terms to represent unique hand-tool 

movements of tasks within a procedure (e.g. appendectomy). A task necessary to complete a 

procedure (e.g. close incision) would include maneuvers like suturing (e.g. stitch) or tying (e.g. 

two-loop or one loop knot). Gestures would include several intermediate steps (Figure 11) within 

each maneuver, sometimes called “surgemes” (Lin, 2010), or “strokes” (Ahmidi et al., 2015). 
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Some studies further deconstruct “surgemes” into “dexemes” to facilitate highly granular 

segmentation (Despinoy et al., 2016). 

Automatic classification of surgical procedures into similar terms through video would 

offer a more efficient after-action review; it would provide a “black box” to identify common 

motion patterns, and perhaps help identify errors or examples for future training. Automatic 

classification would support quantitative feedback during coaching sessions by comparing a 

learner’s motion trajectory throughout a procedure to a template “expert” trajectory – a common 

strategy for other psychomotor performance-based tasks like dance, soccer and tennis (Davids et 

al., 2008). Automatic state deconstruction further enables automatic quantification of cycle 

frequency. This removes the burdensome relationship in assessing overall path length – a 

common discriminator of skill (Aggarwal et al., 2007) – with the overall time of the procedure. 

Efforts to deconstruct surgical hand motion into gestures is part of a broader effort to develop an 

“ontological language of surgery” (Zappella, Béjar, Hager, & Vidal, 2013).  Deconstructing 

surgical performance also represents a compelling problem for machine learning and image 

processing.  

These kinds of gesture recognition and classification through computer vision are varied 

(Gavrila, 1999; Poppe, 2007; Wang, Hu, & Tan, 2003), and continue to grow. Motion chain-

codes and recurrent neural networks, for example, are employed to recognize numbers traced by 

hand (Bhuyan, Ajay Kumar, MacDorman, & Iwahori, 2014), and maneuvers for robot-assisted 

suturing (Dipietro et al., 2016). Additional work by Reiley and colleagues (2008), in testing 

recognition of eleven “surgemes” performed while operating the da Vinci surgical system, 

classified more than 70% of tasks for participants of varying skill. The authors acknowledged the 

difficulty in addressing the variety of techniques participants exhibit while completing the same 

task. Ahmidi et al., (2017), similarly reported a 10% decrease in accuracy for user or participant 
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controlled cross validation in testing various state of the art methods for laparoscopic state 

prediction. Numerous approaches applying machine learning to surgical skill and state analysis, a 

portion of what is known more broadly as artificially intelligent medicine (Patel et al., 2009) and 

“surgical data science” (Maier-Hein et al., 2017), are identified in Table 4. 

 
Figure 11: Observable “surgemes” for common tool-suturing technique while closing along the 
body wall. Completion represents one full cycle within the larger suturing maneuver.  
 

Most instances of surgical gesture classification depend primarily on active sensor or 

robotic record tracking (Reiley et al., 2008). Indeed, there are increasing studies of the publicly 

accessible Gesture and Skill Assessment Working Set (JIGSAWS) (Gao et al., 2014) based on 

output by the da Vinci robot-assisted platform (Ahmidi et al., 2017; Lea, Hager, & Vidal, 2015; 

Lea, Vidal, & Hager, 2016). Ahmidi (2013), for example, used the da Vinci platform to predict 

three gestures (“grab”, “pull”, “rotate”) for different performance levels with over 90% accuracy. 

Unsupervised approaches, including temporal clustering have demonstrated up to 88% 

classification accuracy of what the authors call “pseudo laparoscopic procedures” or “surgical 

phases” on training data (Zia, Zhang, Xiong, & Jarc, 2017) and 82% on testing data (Despinoy et 
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al., 2016). Automatic tool recognition through video to classify surgical state is also of growing 

interest (Bouget, Allan, Stoyanov, & Jannin, 2017). 

Table 4: Pertinent machine learning algorithms for surgical state and skill analysis. 
 
Supporting 
Literature Method Common Uses Rationale & Intended Use 

(Padoy et al., 
2012) 

Dynamic 
Time Warping 
(DTW) 

Precursor to HMMs; 
can compare similarity 
of signals at different 
speeds 

Symbolically group tying or suturing 
tasks together; similarity in motion 
signals may indicate different 
experience levels performing the same 
task (Ahmidi et al., 

2013) 

Common 
String Models 
(CSMs) 

Longest-string 
similarity comparisons 

(J. Rosen, Brown, 
Chang, Sinanan, 
& Hannaford, 
2006) 

k-means 
clustering 

Unsupervised learning 
classification 
algorithm 

Without relying on any ground-truth 
data, partition kinematics by experience 
levels and expert ratings 

(Gaber, 
Zaslavsky, & 
Krishnaswamy, 
2005) 

k-Nearest 
Neighbors (k-
NNs) 

Supervised learning 
classification 
algorithm 

Using ground-truth data, partition 
kinematics by experience levels and 
expert ratings 

(Watson, 2014) 

Support 
Vector 
Machines 
(SVMs) 

Classification of test 
sequences into 
families 

Use kinematic features and/or HMM 
representations to classify motion 
patterns by skill levels 

(Fating & 
Ghotkar, 2014; 
Iivarinen & Visa, 
1996) 

Chain Code 
Histograms 
(CCHs) 

Group together similar 
2D representations 

Associate shapes of surgeon hand 
motions by task, or experience levels 
within a task 

(Uemura et al., 
2014) 

Detrended 
Fluctuation 
Analysis 
(DFA) 

Assess adherence to 
repeated sequences 

Examine similarity of kinematics for 
tasks of different individuals Unstable 

Periodic Orbit 
Analysis 
(UPOA) 

Assess amount of 
stability in repeating 
sequences 

(Mackel, Rosen, 
& Pugh, 2007) 

Hidden 
Markov 
Models 
(HMMs) 

Speech recognition 
systems, state-based 
and sequential 
(hierarchical) pattern 
matching 

Represent motions and transitions 
between motions as unique properties of 
a cohort (i.e. similarly rated and/or 
experienced) 

 

While robotic and sensor-aided surgical gesture classification grows in complexity and 

accuracy, classification and assessment of hand motion during open procedures – those 

necessarily without sensors or robotic feedback – remain underdeveloped (Vedula et al., 2017). 
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The goal of this study is to classify surgical maneuvers from digital video of the hands with 

similar accuracy to existing studies of robot-assisted surgery. We explore the potential of 

decision trees, random forests and Hidden Markov Models (HMM) to appropriately distinguish 

between surgical maneuvers. 

3.2.1 Motion Tracking 

We have demonstrated how tracked hand motion in videos quantify kinematic properties 

of movements and exertions for specific tasks without special sensors or markers (Akkas et al., 

2014; Azari et al., 2015; C. H. Chen et al., 2014), and explored novel visualization techniques to 

describe repetitive motion (Greene, Azari, Hu, & Radwin, 2017). Previous studies by our group 

applying this technology to surgical procedures have focused on testing the feasibility of marker-

less video of motion analysis to isolate kinematic differences (i.e. displacement, speed, 

acceleration) (Glarner et al., 2014), predict performance (Azari et al., 2017), and identify 

meaningful differences between attendings and residents performing live surgery in the operating 

room (Frasier et al., 2016). These studies have established that marker-less video motion analysis 

of open procedures is feasible, and that it can identify differences in behavior between tasks and 

levels of experience.  

3.2.2 Decision Trees and Random Forests  

Decision trees are interpretable “white box” classification techniques that split data into 

categories based on simple rules, represented as an intelligible flowchart of if-then statements. 

Known as “greedy” algorithms, however, decision trees have also long been criticized for poorly 

balancing variance, bias, over-fitting and complexity (Barros, de Carvalho, & Freitas, 2015; 

Criminisi, 2011).  

Random forests are “black box” ensembles of decision trees, intended to improve the 

accuracy and reliability of decision tree classification. A random forest is comprised of many 
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decision trees, each of which randomly select many subsets of features. Each tree “votes” for a 

classification outcome (Breiman, 2001). The final classification depends on the average of the 

forest, rather than on a single tree. Random forests provide additional advantage over other 

ensemble methods such as “bagging” (bootstrap aggregation) through selecting random subsets 

of features, and over single trees in general by partitioning the data to create multiple competing 

predictions – thereby lessening the “greediness” in early branches.  

Despite these advantages, decision trees (ensemble or otherwise) do not retain temporal 

state information. The state prediction from a random forest for a period of video has no memory 

of the previous state, and no expectation for the following. A surgeon completing each task, on 

the other hand, is reasonably expected to progress through a procedure in a predictable pattern. 

As a result, this study applies HMMs, in combination with decision tree predictions, to improve 

surgical state classification.  

3.2.3 Hidden Markov Models 

HHMs are commonly used to analyze spoken (Rabiner, 1989), and sign languages 

(Starner & Pentland, 1995). Designed to examine “indirect evidence” associated with an 

underlying (hidden) state, HMMs may also predict the state of surgery by examining observable 

hand gestures. Such “gestemes” have successfully predicted human-machine interaction joint 

painting tasks (Hundtofte, Hager, & Okamura, 2002) and modeled sequences of hand 

movements during robotic surgery (Haro Bejar, Zappella, & Vidal, 2012; Tao & Elhamifar, 

2012; Tao, Zappella, Hager, & Vidal, 2013; Zappella et al., 2013). HMMs have also 

demonstrated success in discriminating between novice and expert surgeons during laparoscopy 

(Rosen, Hannaford, Richards, & Sinanan, 2001). 

However, designing HMMs is not without challenge. In 2007, Mackel, Rosen, & Pugh 

found that accuracy of HHMs was sensitive to the number of states chosen while predicting 
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experience from sensor data during an simulated pelvis exam. Representing a time series as a 

symbolic representation acceptable to model with an HMM is also an avenue of continuing 

research (Zucchini, MacDonald, & Langrock, 2016). This study explores the utility of HMMs to 

improve the classification of surgical video, without sensors or markers, during common 

benchtop suturing tasks.  

HMMs are a probabilistic representation of a sequence of states. They consist of states, 

transitions between those states, and the probability of observing some feature associated with 

state (called an emission matrix). For classification of continuous time-series data, each record is 

first converted to a series of symbols before HMMs are trained in a supervised approach, where a 

log-likelihood trained model is applied to testing data (Zucchini et al., 2016). A surgeon’s hand 

motion can be represented as a bivariate time series of step lengths and turning angles; and in the 

case of video, measured 30 times a second (Figure 12).  

 
Figure 12: X and Y pixel locations at each frame (f), with deviations in angle (α) at every step. 

The best HMM classification rates of robotically assisted surgery into three states is 

generally between 70 and 80 percent (Tao et al., 2013), with some periods of tying recognized as 

high as 93% when integrating sensor and video data into a hybrid classification approach 

(Zappella et al., 2013). Accuracy predicting surgemes during knot tying such as “both hands 

pull” have been classified correctly as high as 97% (Haro Bejar et al., 2012).  

The goal of this study is to demonstrate that video motion capture can be used to predict 

surgical states with similar accuracy. We compare existing classification accuracy of robotic 
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three-state models to those derived only from digital video motion capture, quantifying both the 

number of time periods classified correctly and the number of cycles correctly identified in each 

video record.  

3.3 Methods 

3.3.1 Participants and Setting 

We recruited clinicians of varying experience for this study to address high variability 

among individual and skill-levels observed in previous studies. Attending surgeons were 

recruited via email request and announcements during grand rounds, while resident and medical 

student participants were recruited through announcements during common surgical skills 

training sessions. A total of thirty-seven participants agreed to have their hand motions recorded 

on digital video while performing two common suturing tasks. Medical students (n=10), 

residents (n=15), attending surgeons (n=10), and retirees (n=2), completed three simple 

interrupted stiches, followed by a running subcuticular suture (approximately 5 cm in length). 

Residents who completed up to three post-graduate years (PGY) are classified as “junior 

residents” (n=5). Participation required 12-15 minutes, including review and signing of the 

consent agreement, completion of a demographic questionnaire, and video recording.  

The two incisions (one for each task) were simulated by cuts (7.6 cm long) in an allevyn 

hydrocelluar foam dressing (10.2 cm x 10.2 cm), mounted to a wood block (15.2 cm x 15.2 cm) 

for stability. A small towel was placed under each dressing so that it would “pucker,” exposing 

the interior of the incision. Participants completed the simple interrupted suturing task on one 

incision, followed by the running subcuticular task on the other. Prior to the experiment, each 

participant completed a brief demographic survey detailing their surgical role and experience and 

reviewed the consent agreement. Participation and recruitment were approved by the Social and 
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Behavioral Health and Science Institutional Review Board at the University of Wisconsin-

Madison.  

3.3.2 Video Motion Tracking 

Cameras were mounted overhead and positioned to observe only the participant’s 

working area (see Figure 13). Faces were not visible. We used software that our group has 

developed for marker-less video processing single camera digital video to reliably track the 

motion trajectory of a selected region of interest over each video frame without the need for 

sensors or markers (C.-H. Chen, Hu, Yen, & Radwin, 2012; Chia-Hsiung Chen et al., 2015, 

2014). Written in Matlab and C# with the open-source OpenCVSharp (.Net wrapper for the 

OpenCV) vision library, this software is based on a cross-correlation template matching 

algorithm which anticipates possible trajectories across the video (known as a sequential 

Bayesian estimation framework). Without any additional sensors or instruments to track hand 

motion, given a frame of video the software will save the spatiotemporal location of the ROI in 

that frame. The software allows us to identify an initial square region on an arbitrary moving 

object in a video clip such as the hand, called the region of interest (ROI), and track that object 

as it moves in the plane of view. The position of the ROI (seen in) is tracked across each frame 

of a video and stored within a vector in a unique data-frame. This approach enables mathematical 

abstraction of motion for subsequent pattern and feature analysis.  

3.3.3 Surgical State Model 

The tasks in this study were represented by a three-state model: (1) suturing, (2) tying, 

and (3) transition. A suturing maneuver began when a participant first touched tissue to drive a 

needle, continued while the participant pulled the ligature to the desired tension and ended when 

the ligature had reached its final position. Tying began at the first change in direction to initiate a 

knot and ends similarly when tension on the ligature is released to initiate the next gesture. Each 
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knot was marked as a unique tying cycle. The transitional state comprises switching from 

suturing to tying or vice-versa and includes reaching and cutting. The transition state may also 

encapsulate any other periods of extraneous activity (e.g. writing, adjusting the chair, filling out 

paper work, adjusting the simulation, or selecting a new suture or needle driver), where it occurs. 

The first labeled state began when the participant first touched the tissue to begin the task.  

 
Figure 13: Video collection station (left) and region of interest (ROI, right) on participant's right 

hand, encompassing unique portion of hand. 

 

The two-dimensional position record of both dominant and non-dominant hands (Figure 

14), enable automatic calculation of numerous features including speed, acceleration, jerk, their 

fast-Fourier transforms (FFT), as well as the frequency and peak arrival rates of raw and 

butterworth-smoothed signals for both hands. Utilizing the position records relative to one 

another, the distance between the hands, relative distance from the simulation center, and hand 

angle are also computed, in addition to the speed and acceleration of these changes. In total, a 

feature set of 1213 predictor variables were computed for each video.  
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Figure 14: X and Y pixel location of the hands (background) over 30 seconds of a simple 
interrupted suturing task. 

For a simple interrupted suturing task, a participant would generally repeat the following 

sequence: suture, tie, and transition (Figure 15). A transition typically included reaching, cutting, 

reloading the needle driver, and at times, a temporary pause in motion called “maintaining 

tension.”  Reaching included periods of unloaded hand-movement, after which a new gesture 

began. Cutting included any time when the participant was holding scissors. Although this paper 

focuses on comparing accuracy of a three-state prediction to existing three-state robotic 

classifications at a maneuver level, future work may utilize these additional states test gesture-

level classification methods. Running subcuticular suturing included several periods of suturing, 

followed by a period of tying and transition.  
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Figure 15: State representation of interrupted suturing task over time. The plot includes five state 
categories (e.g. tying, suturing, reaching, cutting, other) and the transitional "maintaining 
tension" state. 

Each video was manually labeled using Multimedia Video Task Analysis (MVTA); a 

software platform developed at the University of Wisconsin-Madison (Yen & Radwin, 2007). 

Overall accuracy is determined by the percentage of periods (2s) classified correctly, while 

confusion matrices are presented to fully disclose the classification performance by task. Cycle 

estimations were calculated assuming five transitions within each transitional period, and 

completion of four knots in each tying period in order to complete the task.  

3.3.4 Segmentation 

To discretize the position record of the hands, successive spans of 60 frames (2 seconds) 

were chosen to encompass the lowest 5th percentile of tying tasks (mean = 5.1s, sd = 4.5s) and 

the minimum of suturing tasks (mean = 17s, sd =10s). These segments produced small periods to 

train the decision tree and decision tree ensemble. The classification was additionally improved 

through hidden markov modeling for simple interrupted suturing, in which the outputs from the 

decision tree ensemble provided emission symbols to the HMM. Running subcuticular suturing 



73 
 

 

state prediction was not tested in conjunction with HMMs, due to limited transitions between 

suturing and tying.  

3.3.5 Machine Learning Approach 

We tested three approaches to classify segments of surgical video into discrete states: 

decision trees, random forests, and HHMs. Decision trees are analogous to flow-charts, in which 

a series of if-statements are used to specify an outcome. Random forests, meanwhile, were used 

as an ensemble method (collection of decision trees) to decrease the variance in the prediction. 

HMMs were further employed to improve the random forest prediction by incorporating 

temporal transition information. HMMs were tested on a both a random subset of video 

segments, and a random set of participants. The random forest in each case provided the 

provided the observed emissions or symbolic input to the HMM, while the training data provided 

the transition probabilities. From these components, the HMM could predict a sequence of 

"likely states" for each of the testing cases.  

Twenty percent of all video segments were randomly selected to serve as a test set for 

random forest prediction across all tasks, while thirty percent of participants from each 

experience group (medical students, junior residents, senior residents, attendings) comprised a 

testing set of twelve participants. This allowed for both random selection and within-user 

population accuracy prediction estimates.  

3.4 Results  

3.4.1 State Classification  

Classification accuracy rates are presented in Table 5, with the best prediction models in 

bold. The cross-validation accuracy rate while training the random forest was 74%. The random 

selection of all participants (R) yielded similar accuracy (74%) on both the cross-validated 

training and testing data sets, while the participant-controlled approach (P) exhibited greater 
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difference between the training and testing sets, indicating some sensitivity to individual 

participant style or technique. Meaningful variables isolated every two seconds in the decision 

tree algorithm included: mean curvature values of the non-dominant hand, maximum distance 

between both hands, time the dominant hand spent within a radius of 22.5 centimeters of the 

simulation center, relative distance between the non-dominant hand and the simulation center, 

and the lateral path density of the non-dominant hand.  

Table 5: Classification accuracy rates on testing set for each method. DT, decision tree; RF, 
random forest; CV, 10-fold cross validation accuracy; HMM, Hidden Markov Model; R, 
Random video segments across all participants; P, random selection of participants.  

Segment Type Decision Tree Random Forest (CV) RF + HMM*  

Static (2s) R: 0.64 
P: 0.60 

R: 0.74 (0.74) 
P: 0.68 (0.78) 

R: 0.90 
P: 0.79 

*HMM are only applicable to simple interrupted suturing tasks.  

 

The accuracy of RA+HMM for random selection (90%) is inflated because the HMM 

state prediction necessarily draws from time segments used both to train and test the random 

forest. The within-participant analysis (79% accuracy), on the other hand, predicts on a wholly 

reserved data partition. This is a better estimate of HMM improvement and thus shown in bold. 

The confusion matrix for the RF+HMM approach is presented in Table 6, while representative 

examples of good (> 90% accuracy) and poor (< 70% accuracy) state predictions are depicted as 

step plots in Figure 16.  
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Table 6: Confusion matrix for combined random forest and HMM classification (79% accuracy) 
approach on random subset of participants. 

 

 

 

 

 

 

 

 

Figure 16: Representative examples of ground truth (solid) and predicted (dashed) good state 
prediction (A) with 91% classification accuracy, and poorer state prediction (B) with 70% 
classification accuracy. 

3.4.2 Cycle Frequency 

Inspection of Figure 16 indicates that even poorer models may still exhibit good sequence 

accuracy and be able to identify the number of cycles the rate of completion for repetitive tasks. 

Despite the small reserved sample size of participants, the HMM-derived cycle frequency 

  Predicted  
Actual Other Suturing Tying 
Other 73.8%  

(330) 
13.6% 
(64) 

9.6% 
(43) 

Suturing 5.8% 
(21) 

75.1% 
(274) 

19.2% 
(70) 

Tying 8.2% 
(35) 

6.3% 
(27) 

85.5% 
(366) 
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reasonably predicted the ground-truth labeled cycle rates on reserved test cases of at least two 

observed periods of suturing (Figure 17; slope = 0.88, intercept = 0.03, correlation = 0.83, 𝑅𝑅2 = 

0.72).  

 

Figure 17: Predicted cycle frequency (hz) of combined tasks for reserved test cases.  

3.5 Discussion 

This study applied machine learning algorithms to classify surgical maneuvers and 

describe a participant’s rate of progress through common benchtop suturing tasks. Three 

algorithms are implemented: decision trees, random forests, and Hidden Markov Models 

(HMMs). Random forest classification improved by HMMs yielded the best classification 

accuracy (79%) for a random subset of participants. The classification accuracy for the same 

approach on a random subset of time intervals across all participants approached 90%, however, 

this result is necessarily inflated by training data temporally interspersed with testing data. The 

classification schemes, like in other studies (Ahmidi et al., 2017), exhibited sensitivity to the 
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number of individual participants selected in the training data. Random sampling across all 

experience levels outperformed a subset of participants for each model. For the reserved cases, 

random forest prediction accuracy (68%) compared to the cross-validation accuracy (78%), is an 

indication of that the forest may be recognizing common, yet potentially inconsequential, 

attributes of behavior and over-fitting to the training set. Some participants, for instance, opted to 

cut with their non-dominant hand, rather than with their dominant hand, as most participants 

chose. Some participants also repositioned the tools mid-way through the experiment, 

introducing variability during periods of transition. Excluding these behaviors in the training set 

may drive mis-recognition.  

Prasad and colleagues (2018), in a broad literature review on the implications of 

handedness among surgeons, identify concerns for non-dominant or hand-switching techniques, 

including the potential for needlesticks, and some evidence of increased complication rates. Still, 

the authors suggest that commitment to a selected technique, even if that technique deviates from 

the traditional approach, may outweigh only occasional “handed-appropriate action.” Our 

algorithms may be identifying similar patterns, as the locations and style of state transitions may 

be affected by these technique choices. Including such variation, to a reasonable degree, will be 

crucial for extrapolating state findings to other participants and settings.  

The results of this study are consistent with a general 70-80% classification range for 

other maneuver-based classification studies (Reiley et al., 2008; Tao et al., 2013), but fall short 

of some surgeme level classifications such as “both hands pull” during knot tying, classified at 

close to 97% (Haro Bejar et al., 2012). Future work increasing the number of segments to 1 

second or ½ second intervals and examining an increasing number of states may be able to 

incorporate these gesture-level movements and enable more direct comparison to more granular 

studies. However, part of the longer-term goal of this work is to facilitate retroactive digital 
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video review at a maneuver (or greater) level. Fast forwarding to portions of suspected suturing, 

for instance, would be of greater utility than identifying surgeme movements. Such a record 

would also better integrate with and support ongoing efforts to employ digital video as a 

coaching tool (Greenberg, Dombrowski, & Dimick, 2016; Y. Y. Hu et al., 2017; Soucisse et al., 

2017). Still, surgeme or dexeme level quantification is contributing to building out the 

“ontological language of surgery,” and continue to support quantitative novice-expert 

comparisons (French, Lendvay, Sweet, & Kowalewski, 2017). In parallel work (Azari, 2018), we 

have identified several kinematic features associated with changing status and tenure. Increasing 

the resolution of the state model in future work would allow for a more detailed comparison 

between maneuver based and surgeme based predictions for robotic and video-based surgical 

analysis. 

This study predicts a state every two seconds, even though digital video is captured 30 

times a second. Increasing the number of predictions per second or employing dynamic 

segmentations in future work may also yield greater flexibility and fine-tuning of start and end 

times of maneuvers. Previous explorations of hand motion signals captured with our tracking 

software suggest that the amplitude of the curvature signal may provide a reliable indicator of 

distinct motions (Akkas, Lee, Hu, Yen, & Radwin, 2016). In other words, local maxima in the 

curvature signal, accompanied by changes in speed, may indicate the beginning of a new 

movement. A movement-based segmentation function would depend on meeting three criteria: 

reaching some cumulative curvature angle value (A), over some distance (D), and spanning a 

minimal amount of time (T) (Figure 18), similar to that described by Beh and colleages (2011). 

The variation in arrival rates of dynamic segments, however, would render HMMs less 

appropriate for the prediction task, as a movement-determined transition rate from state to state 

would confound the probability of transition with the underlying hand movement metric.  
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Figure 18: Flowchart of potential future, dynamic and trajectory-based segmentation function. 
New segments are defined if all three criteria are met: A, angle threshold; D, distance threshold; 
and T, time threshold.  

Additional machine learning algorithms may address these limitations. Conditional 

Random Fields (CRF), in particular, are increasingly used to predict surgical gestures (Ahmidi et 

al., 2017; Dipietro et al., 2016; Elmezain, Al-Hamadi, & Michaelis, 2009; Sutton, 2012; Sutton 

& Mccallum, 2002; Sutton & McCallum, 2011), and may be more resilient to individual user 

style (Lea et al., 2015). CRF algorithms are built to optimize the conditional probability of states 

given all observations, rather than the joint probability of emissions while transitioning from 

state to state (i.e. markov process) optimized through HMM. There are a few existing software 

packages implemented across common programming platforms including Java, Python, R, 

Matlab, C# and C++ to assist in designing CRFs, but these sources lack the same level of 

maturing and customizability currently available to longer-studied models such as HMMs and 

random forests. Exploring the utility of custom CRF’s in future work may improve classification 



80 
 

 

for marker less video tracking and dynamic segmentation functions, especially for longer and 

more variable task videos, such as running subcuticular suturing and porcine bowel anastomoses. 

3.6 Conclusion 

This study applied machine learning computer algorithms to automatically deconstruct 

surgical hand motion into discrete maneuvers. Random forest predictions improved through 

Hidden Markov Modeling achieved up to 90% accuracy on combined training and testing data, 

and 79% across experience levels on a reserved testing set. These results are similar to 

classification rates for robotic and laparoscopic studies for three-state models but fall short of 

current gesture-level classifications for distinct movements such as “both hands pulling”. Future 

directions for this work include increasing the number or flexibility of states employed to 

classify at the gesture and surgeme levels, implementing CRF prediction for digital video 

(thereby easing the reliance on transition probabilities), and extending random forest and HMM 

prediction to recorded video operating in different settings.  
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4. Automated video assessment for simulated surgical tasks of varying 

experience 

4.0 Manuscript Information  

This manuscript will be submitted to Academic Medicine. 

4.1 Abstract 

This study uses linear and generalized additive models of video-recorded hand motion to 

automatically predict expert-assessed surgical performance. Five experts rated anonymized video 

clips of benchtop suturing and tying tasks (n = 219) along four visual-analog (0-10) performance 

scales: motion economy, fluidity of motion, hand coordination, and tissue handling. Custom 

software enabled us to track the location of each of the recorded hand positions for all video 

frames and populate a robust feature set. A generalized additive model predicted fluidity of 

motion ratings with slope = 0.71, intercept = 1.98, and 𝑅𝑅2 = 0.77. Fluidity of motion and motion 

economy models outperformed hand coordination and tissue handling. While hand motion 

tracking may not address all contextual features of surgical video, the kinematic features 

demonstrate that models of fluidity of motion and motion economy are generalizable across 

clinicians of different experience levels while suturing on foam. Future work will explore how 

well these simulation-based models extrapolate to the more dynamic settings of the operating 

room. 

4.2 Background 

There is increasing evidence that suggests improving skills promotes better patient 

outcomes (Birkmeyer et al., 2013). Surgical skill is traditionally comprised of technical and non-

technical components (Yule et al., 2006; Steven Yule & Paterson-Brown, 2018). Madani and 

colleagues (2017) expanded these definitions through a broader conceptual framework of 

intraoperative performance. Using cognitive task analysis and literature review, the authors 
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identified five domains pertinent to surgical performance: 1) psychomotor skills, 2) declarative 

knowledge, 3) advanced cognitive skills, 4) interpersonal skills, and 5) personal resourcefulness. 

Surgeons must reach a competent level of performance in each of these domains lest they 

practice operating on live patients; an act for which, in the words of William Mayo is, “there’s 

no excuse” (Murphy, Torsher, & Dunn, 2007). Still, experience is gained while on the job: “you 

learn best from your mistakes, mistakes made on living people” (Groopman, 2008, p. 50). 

Reflection of these difficult instances is considered a crucial component of expertise 

(Weinbergger et al., 2005). But during and after stressful situations, there is often little time to 

discuss; just when it is needed most (Pugh, 2014). Retrospective performance recall and 

feedback, a potential stop-gap for this issue, can “go stale” and lack reliability after just a few 

days (Bello et al., 2016, 2017). Judging competency and proficiency in these settings, as a result, 

still depends on direct, in-person, and real-time subjective observation. Without valid objective 

standards, Mieg (2009) found that socially determined ideas of professionalism like engagement 

and adherence to standards or educational involvement, may serve as stand-ins for more 

objective and quantified measures of skill and expertise, and what attributes comprise desirable 

performance.  

The nearly “ubiquitous” (Newell & Rosenbloom, 1981) power law of learning, originally 

described by Snoddy (1926), and summarized by Stratton and colleagues (2007), is commonly 

applied to describe this performance in a series of skill acquisition stages (Anderson, 1982; Fitts 

& Posner, 1967). Movement through each of cognitive, associative and autonomous stages of 

skill acquisition are demonstrated by increased smoothness (Mohamadipanah et al., 2016), 

fluidity and automaticity (Crochet et al., 2011). Observable patterns like “slowing down” 

(Moulton et al., 2010), for instance, may indicate a transition from what Anderson, (1982) calls 

“autonomous” performance – invoking Kahneman's (2013) popularized “fast” or “automatic” 
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thinking as part of the dual processing theory (Evans & Stanovich, 2013) – to a more deliberate, 

cautious and state characterized by seeking for relevant cues, managing errors, and adjusting 

plans for several steps ahead. These kinds of cognitive transitions are a product of both surgeon 

expertise and case difficulty. A surgeon may employ great focused attention on the most 

complex aspects of a case, sometimes resulting in confusion during team changes and hand-offs 

(Wiegmann, Eggman, ElBardissi, Parker, & Sundt, 2010).  

Davids and colleagues (2008) characterizes “skill acquisition as a learner (a dynamical 

movement system) searching for stable and functional states of coordination.” While surgeons 

are required to demonstrate declarative knowledge, there is no comparable and widely accepted 

method to demonstrate operative dexterity. The best measure of psychomotor performance, the 

Objective Structured Assessment of Technical Skills (OSATS), is based on two criteria: (1) 

rating candidates along a series of Likert-based hand-motion scales and (2) tracking progress 

during a procedure on a specially-tailored checklist (Martin et al., 1997). Using the Spearman 

Brown prophecy formula (output = 2.15), the authors predicted that 8 stations would be needed 

to reach an 0.80 level of reliability across OSATS testing stations. Such expectations have 

largely borne out over time (Hatala, Cook, Brydges, & Hawkins, 2015). A meta-analysis of 

psychomotor skills assessments conducted by Jelovsek et al. (2013) found methodologically 

sound and well documented evidence for the OSATS Global Rating Scale (GRS) in accordance 

with the Accreditation Council for Graduate Medical Education (ACGME) guidelines. 

Additional studies examining OSATS have shown the prescribed assessment provides valid 

feedback as a formative assessment during coaching or training sessions (Hatala et al., 2015). 

Unfortunately, fully implementing OSATS has been described as requiring “effort and a budget 

outside that for daily medical practices” (Niitsu et al., 2013) and is generally considered too 

difficult to perform with regularity (Reznick, Regehr, MacRae, Martin, & McCulloch, 1997).  
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Objective computer-aided technical skill evaluation (OCASE-T) is of growing interest to 

expedite surgical skill assessment (Vedula et al., 2017). Sharma and colleages (2014), for 

example, have utilized frame kernel matrices and space time interest points (STIPS) to predict 

OSATS scores. Our group has previously collected open videos from the operating room for 

various tasks (Frasier et al., 2016) and predicted performance along a series of OSATS-derived 

scales from video-recorded hand motion (Azari et al., 2017).  

There are also continued attempts to streamline assessment techniques, focusing on 

“shortcut assessments” (Hossein Mohamadipanah et al., 2018), “snap shot assessments” (Datta et 

al., 2006), text message rating schemes using the Zwisch performance scale (George et al., 

2014), and 10-second classifications (French et al., 2017) based on the relationship between 

changing angle and speed of movement (Lacquaniti, Terzuolo, & Viviani, 1983). Crowd-sourced 

ratings, due to their expediency, are also being explored for dry lab suture tasks (White et al., 

2014), laparoscopic procedures (Deal et al., 2016), and cricothyrotomy performed on a simulator 

(Aghdasi et al., 2015), among others. Vernez and colleagues (2017) found that applying crowd-

sourced ratings of OSATS and Global Operative Assessment of Laparoscopic Skills (GOALS) 

(Gumbs, Hogle, & Fowler, 2007; Vassiliou et al., 2005) for laparoscopic skills “consistently 

identified top and bottom performers” in medical student populations seeking to enter residency. 

There is some evidence, however, that crowd-sourced ratings may be more lenient than expert 

ratings (Chen et al., 2014), and that individuals in the crowd, based on their reasoning, are not all 

equally accurate. The implications of using crowd-sourced assessment measures have yet to 

mature into actionable models of hands-on clinical performance. We seek to use expert generated 

performance ratings of short clips to develop a “gold standard” of hand-motion based 

performance measures across a spectrum of experience levels.  

4.3 Hand Motion 
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Hand-motion patterns (i.e. kinematics) are of growing interest to objectively measure and 

predict a surgeon’s skill before they are judged competent to operate. Studies have developed 

various metrics, ranging from motion density and movement rates (Azari et al., 2017), speed and 

acceleration (Frasier et al., 2016; Glarner et al., 2014), and signal entropy (Mackenzie, Watts, 

Patel, Yang, Hagegeorge, et al., 2016; Watson, 2014), to smoothness (Ghasemloonia et al., 

2017), periods of idle time (D’Angelo, Rutherford, Ray, Laufer, et al., 2015), and total path 

length (Aggarwal et al., 2007), among others. Performance assessments in minimally invasive 

surgery (George, Skinner, Pugh, & Brand, 2018) and hands-on clinical palpation techniques 

(Laufer et al., 2016; Pugh, 2013) have been particularly amenable to instrumentation. Chmarra, 

Grimbergen, & Dankelman (2007) described 16 such tools and systems, the community of which 

has only grown since, to support what Maier-Hein and colleagues (2017) describe as the field of 

“surgical data science.”  

While many of these measures have intuitively and necessarily discriminated between 

experienced and novice performers, the binary “confirmation of such differences adds little” 

(Cook, 2015) to the overall validity argument (Kane, 2006, 2013). We hypothesize that in 

conjunction with expert rated performance along a continuous spectrum of experience, features 

of hand motion can form the basis of a performance model over the course of a career to predict 

and progression towards surgical proficiency and eventual decline. The goal of this study is to 

model performance ratings made by expert surgeons for a range of experience levels as 

participants complete two common benchtop suturing tasks.  

This study builds on and extends preliminary work published by Azari, Frasier, et al., 

(2017). That study created regression models based on a series of kinematic features and used 

those models to predict subjective expert ratings of short segments of observed procedures. The 

current study extends this approach to test whether computer algorithms can discriminate 



91 
 

 

between subjective ratings for varying experiences. We hypothesize that the features of hand 

motion (synonymously referred to as hand movements or hand kinematics) can serve to model 

average expert ratings on observable performance for benchtop suturing tasks for varying 

experience levels. 

4.4 Methods 

4.4.1 Visual Analog Scales 

We employed a series of subjective visual-analog rating scales (from 0 to 10) created and 

tested in a previous study (Azari et al., 2017). These scales include (A) fluidity of motion, (B) 

motion economy, (C) tissue handling and (D) hand coordination. These four scales were created 

to evaluate performance of short clips taken during live procedures of suturing and tying tasks. 

They are based upon existing OSATS global rating scales of instrument handling, time and 

motion, and respect for tissue. The goal of this study is to predict expert ratings along these 

scales of surgeons of various experience, as they complete common benchtop suturing tasks.  

Fluidity of motion is a measure of hesitancy, pauses, or changes in direction and “resets,” 

which may be a component of Moulton’s “slowing down” (Moulton et al., 2010), contribute to 

time spent idle (D’Angelo, Rutherford, Ray, Laufer, et al., 2015), and represent the broader 

sensorimotor construct of “movement smoothness” (Balasubramanian, Melendez-Calderon, 

Roby-Brami, & Burdet, 2015). Motion economy is defined as efficiency of movement, or 

conservation of energy in any trajectory. Such behavior is consistently documented as a mark of 

expert psychomotor behavior (Davids et al., 2008) and has been suggested in creating surgical 

competency measures (Grober, Roberts, Shin, Mahdi, & Bacal, 2010). Tissue handling quantifies 

the appropriateness of the surgeon’s force and tension when manipulating the tissue, and varies 

based on the tissue’s friability (D’Angelo, Rutherford, Ray, Mason, et al., 2015; Laufer et al., 

2016; Pugh, 2013). Coordination represents the simultaneous use of both hands – a potential 
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indicator of superior dexterity (Davids et al., 2008), and is reflected in the six domains in the 

Global Operative Assessment of Laparoscopic Skills (GOALS) (Gumbs et al., 2007; Vassiliou et 

al., 2005).  

 
Figure 19: Visual analog performance rating scales (0-10) for expert review of tying and suturing 

video clips. 

Two additional visual analog ratings scales: (E) independence, and (F) difficulty, adapted 

from the original GOALS (Vassiliou et al., 2005), were reserved for self-rating after the 

participants completed each task (Figure 20). Differences of self-ratings by task are described in 

parallel work by Azari et al., (2018, in press).  
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Figure 20: Visual analog scales for self-rating performance (0-10) 
 

Procedure checklists were intentionally excluded from these rating schemes. The rating 

scales were designed to encompass the possible range of behavior (0-10). We have demonstrated 

the use of similar visual-analog rating scales to assess driver engagement and distraction 

(Radwin, Lee, & Akkas, 2017). 

4.4.2 Participants and Setting 

Thirty-seven participants enrolled in this study; each performing at least three simple 

interrupted stitches and a running subcuticular stitch of approximately 10 cm. Each participant’s 

hand motions during the tasks were recorded and analyzed using digital video (Figure 21). 

Medical students (n=10) and surgical residents (n=15), were recruited to participate through 

announcements at the beginning of training and teaching sessions, while attending surgeons 

(n=10) and retired surgeons (n=2) were recruited through announcements at grand rounds, email 

list-serves and in-person discussion. Within the medical student population, six participants were 

in their fourth year, while with the resident population, ten “senior residents” had completed 

more than three post graduate years (PGY). Four of ten attending surgeons had six or more year 

of experience in their current position. 
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The University of Wisconsin Social and Behavioral Health and Science Institutional 

Review Board approved participant recruitment and participation. Prior to suturing, each 

participant reviewed and signed the consent agreement, and completed a short demographic 

survey to report their time in position, training status, and case load. Participation required 

approximately 10-15 minutes. While participant interaction was minimal, there were occasional 

periods where medical students would ask how to begin a task, or what kind of knot to use. 

These periods were manually identified and excluded from subsequent review.  

             
Figure 21: Benchtop station (left) for anonymized video of suturing tasks (right). 

Video cameras were positioned above each participant’s working area to obtain a clear 

view of the working area while maintaining anonymity. Surgeon’s faces were not visible. 

Cameras were activated only after signing the consent form, when the participant had the 

opportunity to ask questions. Notecards of known size allowed for video calibration.  

The suturing tasks were simulated by two incisions – one for interrupted suturing and one 

for running subcuticular suturing. Incisions were cut in allevyn hydrocellular foam dressing (10.2 

cm by 10.2 cm). The foam dressings were mounted to wood blocks (15 cm x 15 cm) so they 

would remain stable throughout the experiment. A small towel was placed under each dressing 

so that the foam would “pucker” and expose the interior of the incisions. 
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4.4.3 Motion Tracking 

We used custom motion tracking software to record the position of the participants hands 

for each task. Written in C#, and using the OpenCVSharp vision libraries, this software can 

capable of recording the position of a region of interest (ROI) over the hand and track the 

position of the hand as it moves without sensors or markers. An analyst defines the initial ROI 

and monitors the software to ensure that any errors or jumps are manually corrected. In this 

study, the two-dimensional position of the hand was recorded every 1/30th of a second, thereby 

enabling calculation of speed, acceleration, displacement, 2D-density, and path length measures, 

among others. 

4.4.4 Video Review 

Each video was examined for periods of between 20 and 80 seconds, in which several 

suturing cycles (i.e. stitches) were clearly visible. Initial cycles of medical student and resident 

suturing were treated as an adjustment period and omitted from expert review. Samples from 

simple interrupted suturing tasks (n=85) and running subcuticular tasks (n=134) comprised a 

dataset of 219 video clips, totaling 2 hours and 42 minutes of active suturing and tying.  

Five expert surgeons independently rated each video clip from 0 to 10 along the four 

visual analog scales (Figure 19). Each panelist had at least three years of experience as an 

attending surgeon. The panelists viewed the clips and saved their scores via a software applet 

programmed in C# and distributed by USB (Figure 22). Raters completed a calibration activity to 

practice rating clips and compare their initial expectations to consensus scores from a previous 

study (Azari, Frasier, et al., 2017). Raters completed the activity at their convenience, and on 

different computers – saving progress over multiple sessions. Still, due to time constraints, not 
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all surgeons completed all ratings. Experts abstained from rating their own, performance, if 

applicable.  

 
Figure 22: Rating applet showing auto-loaded video (upper-left) and visual analog scales (right). 
The first two visual analog scales have been manipulated to show that the interface provides 
active confirmation of all input ratings. 

The average of judge ratings was considered appropriate for modeling if all ratings fell 

within a span of ±1.5 (range of 3). Clips where expert ratings spanned more than 3 were 

examined for outliers. If, after the removal of a suspected outlier, three of four total ratings fell 

within ±1 (range of 2), or four of five judges fell within ±1.25 (range of 2.5) the average of the 

remaining clip ratings were accepted for modeling. This approach is similar to existing methods, 

including randomly selecting of a subpanel of judges (Emerson & Arnold, 2011), or “mean-

trimming,” common in Olympic sport judgement, in which both high and low scores are 

removed (Emerson, Seltzer, & Lin, 2009; ISU, 2017). Our approach to outlier removal offers an 

additional advantage over many techniques, in that it avoids “outlier aversion” (J. Lee, 2004) by 

valuing both high and low ratings from each expert. This resembles the outlier detection 
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algorithm for academic judging proposed by Clemmensen et al. (2013), by examining the 

distribution of scores both before and after outlier removal. In this study, one outlier (at most) is 

removed if and only if the remaining panel ratings are sufficiently dense. The number of clips 

accepted for modeling along with the rates of clip acceptance by experience are shown in Table 

7. 

4.4.5 Rating Differences 

Two non-parametric measures were used to examine interrater reliability: Krippendorff’s 

alpha (∝) and the average of pair-wise Spearman rank order correlation coefficients (𝜌̅𝜌). 

Krippendorff’s alpha was selected for its ability to handle tied ranks and missing data efficiently 

(Krippendorff & Krippendorff, 2010), while the Spearman coefficient was selected due to its 

similarity to Kendall’s W statistic as a non-parametric measure of concordance among several 

judges (Coleman & Coleman, 2015; Legendre, 2010; Olkin, Lou, Stokes, & Cao, 2015). The null 

hypothesis for Krippendorff’s alpha is that rater agreement arises from chance. Tentative 

agreement measures are greater than 0.67, with better agreement at 0.80 or higher, and perfect 

agreement approaching 1.00. The Spearman rank correlation coefficient (𝜌𝜌) also tests the null 

hypothesis that relationships between each pair of raters is random. Values of 𝜌𝜌 greater than 

0.50, accompanied by p values less than 0.05 indicate a low probability of randomness between 

the raters (Coleman & Coleman, 2015). 

Interrater reliability (IRR) among panelists was also assessed using the intraclass 

correlation coefficient (ICC). ICC was applied as a two-way parametric comparison, assuming 

mixed-effects with multiple raters, adjusted to handle missing cases. Both consistency and 

absolute measures are reported. For more information on intraclass correlation coefficients and 

general assessment of interrater reliability, consult Koo and Li (2016) and Hallgren (2012), 

respectively.  
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Table 7: Number of ratings and percent (in parentheses) of clips meeting agreement criteria for 
each rating scale and participant experience level.  

Experience Years 
in Role 

Fluidity of 
Motion 

Motion 
Economy 

Tissue 
Handling 

Coordination 

Junior Medical Student ≤ 3 16 (84%) 12 (63%) 12 (63%) 10 (53%) 
Senior Medical Student 4 17 (65%) 18 (69%) 19 (73%) 19 (73%) 

Junior Resident < 3 18 (69%) 21 (81%) 20 (77%) 21 (81%) 
Senior Resident ≥ 3 35 (70%) 40 (80%) 35 (70%) 44 (88%) 

Junior Attending < 6 29 (94%) 29 (94%) 28 (90%) 30 (97%) 
Senior Attending ≥ 6 42 (78%) 44 (81%) 44 (81%) 44 (81%) 

Retired NA 6 (46%) 7 (54%) 8 (62%) 6 (46%) 
Total  163 (74%) 171 (78%) 166 (76%) 174 (79%) 

      

4.4.6 Modeling Process 

A series of linear regression and grouped-lasso penalized generalized additive models 

(GAMS) were created, one for each rating scale, to predict the average ratings for each clip. 

GAMS represent each linear predictor as a sum of smoothed functions and enable less rigid 

relationship modeling (Chouldechova & Hastie, 2015). Features of tracked hand-motion served 

as independent variables and were examined for collinear relationships through standard Pearson 

correlations (Beysolow II, 2017; Kutner, Nachtsheim, Christopher, Neter, & Li, 2005). 

Parameters exhibiting variable inflation factors greater than 4 were also excluded. Skewed 

distributions of the response variables were transformed by subtracting each value from one 

greater than distribution maximum and applying a square root. Responses were transformed back 

to their original scale for plotting and comparison. Variables were selected utilizing penalized 

regression shrinkage methods including Ridge, LASSO, and Elastic Net (Hastie, Tibshirani, & 

Friedman, 2001). The number of parameters in each model was balanced against the mean-

squared error (MSE) utilizing stepwise Akaike information criterion (AIC) selection (Akaike, 

1974; Neter, Wasserman, & Kutner, 1990). Due to the complexity of generalized additive 
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models, the significance values associated with each coefficient in GAM models are associated 

with only linear components within the broader GAM. They are reported for comparison 

between variables but are generally considered therefore less reliable than those p-values 

provided for linear fits – a known phenomenon (J. D. Lee, Sun, Sun, & Taylor, 2016; Tibshirani, 

2015), and may be improved in future techniques.  

Judgement of model fit was contingent on plotting the predicted versus expert ratings, 

ideally appearing as a diagonal (0,0) to (10,10). The best models were arbitrarily defined to 

exhibit a slope between 0.5 and 1.5, with an intercept within ±2.5 of zero, and an R2 ≥ 0.7. Model 

validity was examined by comparing the leave-one-out predicted residual sum of squares 

(PRESS) measure, to the sum of squared errors (SSE), the same approach employed in a 

previous study examining surgical performance in the operating room (Azari et al., 2017). The 

PRESS measures were additionally converted to a predicted R2 measure (𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 ) for ease of 

interpretation.   

4.5 Results 

4.5.1 Task Expert Rating Scales 

In total, 219 video clips (mean time = 44 s, total time = 2.7 hrs) were individually rated 

by 5 attending surgeons along a series of visual analog scales. Raters observed 1476 active 

surgical cycles, including periods of suturing (n = 496), tying (n = 496), reaching (n = 181), 

cutting (n=139), and the transitional state between suturing and tying called maintaining tension 

(n = 177). Suturing comprised 60% of video clips, while tying comprised 24%. Less than 6% of 

observable time was classified as “other,” stemming for a small grace period at the beginning of 

each video clip for the rater to adjust to the new view. Video records of medical students yielded 

45 clips from third year students (19 clips) and fourth year students (26 clips). Resident video 

yielded 76 clips, distributed between student in each of the post graduate years (PGY): PGY1 (11 
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clips), PGY2 (15 clips), PGY3 (15 clips), PGY4 (15 clips) and PGY5 (20 clips). Attending 

surgeon records yielded 85 samples, 54 of which were produced by attendings with more than 6 

or more years tenure. Retired participants generated 13 clips.   

Each scale was benchmarked from 0 to 10, intending to encompass the range of possible 

participant performance. Motion economy, fluidity of motion, tissue handling, and coordination 

were each rated for several cycles of simple interrupted and running subcuticular suturing. All 

expert ratings (n = 876) ranged from 0 to 10 for motion economy and coordination (mean = 6.1, 

6.9, sd = 2.2, 2.0), and between 1 and 10 for fluidity and tissue handling (mean = 6.0, 7.0, sd = 

2.3, 1.8). Ratings selected for modeling (n = 674) had similar means and standard deviations for 

each of motion economy (mean = 6.1, sd = 2.2), fluidity (mean = 6.1, sd = 2.3), tissue handling 

(mean = 7.2, sd = 1.7) and coordination (mean = 7.0, sd = 2.0), shown in Figure 23. Raters 

exhibited the greatest agreement for fluidity of motion both before and after outlier removal 

given Krippendorff’s alpha (∝ = 0.78, 0.81), and the average of the Spearman rank correlation 

coefficient (𝜌̅𝜌 = 0.75, 0.78). Motion economy exhibited good, but slightly reduced agreement (∝ 

= 0.70, 0.75; 𝜌̅𝜌 = 0.67, 0.73). There was less agreement for coordination (∝ = 0.49, 0.56; 𝜌̅𝜌 = 

0.56, 0.57) and tissue handling (∝ = 0.41, 0.52; 𝜌̅𝜌 = 0.41, 0.51). The value of the Spearman rank 

correlation coefficient value 𝜌̅𝜌 was significant (p < 0.03) for all scales but least meaningful for 

tissue handling (p = 0.026). Intraclass correlation coefficients (ICCs) between the means of all 

raters both before and after outlier removal are presented in Table 8.  
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Figure 23: Distribution of expert ratings (0-10) selected for modeling for (A) fluidity of motion, 
(B) motion economy, (C) tissue handling and (D) hand coordination. 

 

Table 8: Intraclass correlation coefficient (ICC) values (absolute / consistency) for each scale 
before (A) and after (B) outlier removal.  

ICC Type Fluidity of 
Motion 

Motion 
Economy 

Tissue 
Handling Coordination 

Single Raters A 
B 

0.52 / 0.56 
0.65 / 0.68 

0.50 / 0.55 
0.63 / 0.66 

0.30 / 0.34 
0.40 / 0.45 

0.47 / 0.47 
0.49 / 0.55 

Average Raters A 
B 

0.84 / 0.86 
0.90 / 0.91 

0.84 / 0.86 
0.89 / 0.91 

0.69 / 0.72 
0.77 / 0.80 

0.78 / 0.82 
0.83 / 0.86 

      

4.5.2 Prediction Models of Expert Ratings 

Variables and significance values for predictors in each model are included in Table 9. 
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Fluidity of Motion 

A GAM to predict fluidity of motion ratings (Figure 24A; slope = 0.71, intercept = 1.98, 

𝑅𝑅2 = 0.77, correlation = 0.88,  𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  = 0.70) provided a generally better fit than the linear model 

(slope = 0.67, intercept = 2.21, 𝑅𝑅2 = 0.69, correlation = 0.83, 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  = 0.68), with similar 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  

values. 

Motion Economy 

The linear model for motion economy (Figure 24B; slope = 0.65, intercept = 2.36, 𝑅𝑅2 = 

0.66, correlation = 0.81) exhibited small sensitivity to individual cases (𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  = 0.61). A GAM 

for motion economy improved the 𝑅𝑅2 value (slope = 0.76, intercept = 1.68, 𝑅𝑅2 = 0.76, 

correlation = 0.87) but sacrificed generalizability by increasing reliance on individual case 

performance (𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  = 0.59). 

Tissue Handling 

A linear model for tissue handling (Figure 24C; slope = 0.52, intercept = 3.65, 𝑅𝑅2 = 0.57, 

correlation = 0.75, 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  = 0.50) performed slightly better than its GAM counterpart (slope = 

0.45, intercept = 4.19, 𝑅𝑅2 = 0.54, correlation = 0.74, 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  = 0.49). The slopes and intercepts for 

these predictions were not substantially different for those clips rated greater than five, despite 

the lower density of ratings. 

Hand Coordination 

The GAM to predict hand coordination rating (Figure 24D; slope = 0.55, intercept = 3.40, 

𝑅𝑅2 = 0.63, correlation = 0.79, 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  = 0.44) provided a slightly better fit than the linear model 

(slope = 0.43, intercept = 4.33, 𝑅𝑅2 = 0.46, correlation = 0.68, 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  = 0.42), but both versions 

exhibited sensitivity to individual records as evident in their low 𝑅𝑅2 and 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  values.  
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Figure 24: Predicted ratings vs the observed expert ratings for rating scales (A) fluidity of 
motion, (B) motion economy, (C) tissue handling, and (D) hand coordination. 
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Table 9: Regression model summary statistics and variables. GAM = generalized additive model; 
LM = linear model; Pred = predicted, Obs = observed, m = slope, b = intercept, with predicted = 
m * (observed) + b; 𝑅𝑅2 = coefficient of determination; 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  = PRESS statistic derived 
coefficient of determination; FFT, Fast Fourier Transform, D indicates dominant hand; N, non-
dominant hand; B, combined hands; F, frames; T, threshold in in mm for distance, mm/s for 
speed, mm/s2 for acceleration, counts for path densities. 

Fluidity of Motion (GAM) 
Pred vs Obs Variables p-value 
m = 0.71 
b = 2.01 
c = 0.88 
𝑅𝑅2 = 0.76 
𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  = 0.69 

Cycle rate (hz) 0.000 
Curvature signal peak variance (N, T = 0.5) 0.005 
Minimum forward distance from center (D) 0.012 
Minimum (5%) distance between hands  0.000 
Peak arrival rate in speed signal (N, T = 250) 0.189 
Time (F) spent within center radius (N, T = 175) 0.000 
FFT frequency component of acceleration (D) 0.000 
Time (%) of both hands in motion above speed 75 mm/s 0.053 
Peaks in curvature signal (D, T = 0.5) 0.001 
Lateral path density (N, 40 mm sections, F = 180) 0.000 

Motion Economy (LM) 
Pred vs Obs Variables p-value 
m = 0.65 
b = 2.36 
c = 0.81 
𝑅𝑅2 = 0.66 
𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  = 0.61 

Cycle rate (hz) 0.000 
Curvature signal peaks (D, T = 0.5) 0.005 
Curvature signal peaks (N, T = 0.0) 0.003 
Smoothed speed signal peaks (N, T = 100) 0.024 
Minimum (5%) distance between hands 0.109 
Standard deviation of distance between hands 0.091 
Peak arrival rate of speed (N, T = 200) 0.005 
Minimum forward distance from center (D) 0.158 
Time (F) spent within center radius (N, T = 150) 0.000 
Time (%) of both hands moving above speed 75 mm/s 0.018 
Lateral path density (N, 40mm range, F = 90) 0.001 
Path length per cycle (B) 0.029 

Tissue Handling (LM) 
Pred vs Obs Variables p-value 
m = 0.52 
b = 3.65 
c = 0.75 
𝑅𝑅2 = 0.57 
𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  = 0.50 

Cycle rate (hz) 0.000 
Curvature signal peaks (D, T = 0.5) 0.000 
Curvature signal peak variance (N) 0.031 
Standard deviation of distance center (D) 0.000 
Time (%) within radius of center (D, T = 125) 0.005 
FFT frequency component of acceleration (D) 0.002 
Path density (N, 40 mm range, T = 30) 0.000 

Hand Coordination (GAM) 
Pred vs Obs Variables p-value 
m = 0.53 Cycle rate (hz) 0.000 
b = 3.60 Curvature signal peak variance (N) 0.093 
c = 0.77 Smoothed acceleration peaks (N) 0.000 
𝑅𝑅2 = 0.60 Minimum forward distance from center (D) 0.205 
𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  = 0.44 FFT frequency component of acceleration (D) 0.125 
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4.6 Discussion 

This study uses digital video and motion tracking of clinician hand movements to predict 

expert ratings along four subjective scales: fluidity of motion, motion economy, tissue handling, 

and hand coordination. The scales are adapted for short clips from the existing global motion 

scales of OSATS and GOALS and designed to encompass the full range of participant behavior. 

While a broad selection of scores for each scale were generated, the scores were not uniformly 

distributed. All scales showed average ratings between 6 and 8, with tissue handling, and hand 

coordination ratings appearing most skewed (Figure 23). Expert ratings for fluidity of motion 

and motion economy were the most concordant, as judged by ICC and the non-parametric 

Kendall’s W.  

Two modeling approaches were employed: ordinary least squares linear regression with 

AIC stepwise reduction and generalized additive modeling (GAM). Multicollinear variables 

were removed utilizing pairwise elimination, variable inflation factor analysis, and a series of 

penalized regression shrinkage methods. The generalized additive model performed best in 

predicting fluidity of motion ratings, while a linear model best predicted expert ratings best for 

motion economy, despite some underprediction for expert ratings of 4 or less (see Figure 24B). 

Tissue handling predictions and hand coordination predictions underperformed relative to motion 

economy and fluidity of motion, but consistently predicted performance ratings of 7 and higher.  

The GAM for fluidity of motion offered the best prediction results, with over 95% of 

residuals falling within ± 1.5. The fluidity ratings differed significantly between medical students 

(mean = 4.1, sd = 1.9) and all other groups (p < 0.04), as well as between senior (mean = 6.8, sd 

= 1.5) and junior (mean = 5.7, sd =  1.6) residents (p < 0.03). These differences support 

generalization of this model within a testing environment. It is important to note that the 
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significance of each of the predictors in the GAM were reported using only their linear 

components and is a general limitation of this technique.  

There were several variables common to each of the prediction functions. Cycle 

frequency (Hz), peak arrival in the curvature signal, as well as the FFT frequency transform of 

acceleration of the dominant hand were common predictors across each of the sets. Similarly, the 

peak arrival rates in both the filtered and unfiltered speed and acceleration signals repeatedly 

appeared to be significant factors in predicting fluidity and motion economy. Positional 

relationships between both hands also held an important role in fluidity of motion, motion 

economy, and tissue handling. Consistent significance of both dominant and non-dominant hand 

movements reflect findings in previous studies: that more experienced surgeons leverage activity 

of the non-dominant hand to improve overall efficiency (Glarner et al., 2014).  

Given the central role of cycle rates in predicting these performance ratings, it is crucial 

to note that the cycle rates were determined manually for these tasks – a significant caveat. 

However, accompanying work by (Azari, 2018) has developed automatic recognition and 

prediction of observed cycle rates, enabling video-based calculation of cycle frequency for 

simple benchtop tasks. Future work will need to integrate the cycle rates into the prediction 

models.  

Despite the progress made predicting fluidity of motion and motion economy, this study 

is limited to performance predictions that are only proxy measures of skill, and do not account 

for contextual variations in the surgical setting, team, and overall case complexity – necessary 

considerations to reduce surgical errors more broadly as part of a work-systems based approach 

(Wiegmann et al., 2010). Similarly, this approach to motion tracking, despite good predictions 

for fluidity of motion and motion economy, cannot assess the quality of the completed maneuver, 

or ensure that the maneuver is complete. In comparing two trajectories, for instance – one in 
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which a clinician is holding a ligature and completing a suturing task, and one where the 

clinician is demonstrating the hand motion of suturing while empty-handed – may look identical 

to the computer. A rater, however, may recognize the context of these two cases and discount 

early empty-handed movements, and adjust their rating. Participants may also reposition 

themselves to gain better leverage during a task, changing the location density of the hands, but 

not necessarily impact the rating score. We suspect that these kinds of contextual inferences are 

driving the reduced R2 value and outliers in the motion economy prediction scheme, in which 

one of the greater outlier cases (expert rating of 3) consists of a participant repeatedly changing 

positions to gain a stable posture before driving a needle through tissue. These examples are 

important to include to paint a complete picture of how the interface handles less-prevalent 

behaviors, or behaviors over significantly different time periods than provided in the training 

data. 

Tissue handling ratings may depend on similar contextual inferences. When describing 

tissue handling, surgeons may address how tissue responds to changing force (e.g. “the skin 

puckers”, or “raises up”), and an improved sensitivity along a finger pad to help to fine tune the 

amount of force applied on sensitive tissue, rather than larger muscle movements initiated from 

the shoulder or forearm applying additional leverage during instrument tying. These factors are 

not readily observed by our tracking routine, but their impact in real-world situations represents a 

substantial risk. Knowing that the tissue in these videos was foam, may have rendered this study 

less applicable to a stable prediction of tissue handling ratings. Tissue handling predictions in 

previous studies have also underperformed relative to fluidity of motion and motion economy 

rating predictions (Azari et al., 2017). In both studies, the range of observed tissue handling 

scores was also reduced compared to fluidity of motion and motion economy. Tissue handling 

may be more difficult to predict from two-dimensional hand position records but may also be 
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more difficult to assess from limited cues available during short clips of video. Discerning forces 

from video is an ongoing effort in a variety of industrial engineering applications. Future study is 

needed to solidify the relationship between video-derived hand motion records and contextual 

adaptations and forces central to respecting tissue. Additional studies may benefit by comparing 

performance recorded on both video-based and senor-integrated platforms.  

Hand coordination ratings, meanwhile, may be affected by a clinician preference of how 

best to alternate use of dominant and non-dominant hands. Previous work by our group has 

identified significant differences in non-dominant hand movement and displacement 

commensurate with clinician experience (Glarner et al., 2014). There is continuing discussion on 

how to balance workload between dominant and non-dominant hands (Burdett, Dunning, 

Goodwin, Theakston, & Kendall, 2016; Prasad et al., 2018), and on training implications of left-

handed surgeons in general (M. Anderson, Carballo, Hughes, Behrer, & Reddy, 2017; Dobson, 

2005).  

The underlying premise of hand coordination is that sharing workload between the hands 

can maximize efficiency. This may manifest differently by chosen technique, or by experience. 

Attendings, for instance, accelerated their non-dominant hand less frequently than senior 

residents, despite completing the task faster utilizing both hands (Azari, 2018). One-handed or 

two-handed tying in the operating room could also prompt different hand coordination scores, 

despite a similar task outcome. Although unavailable for this study, future work may express 

hand coordination as active engagement by both hands or passing materials between hands, as it 

has been in laparoscopic studies (Law et al., 2016), and inferred during periods of reduced speed 

during simulated clinical breast exams (Azari et al., 2015). While it is possible that the motion 

economy ratings may already encompass hand coordination as a constituent, future research is 
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needed to determine the extent to which effective hand coordination depends on unevenly 

balancing work between hands.  

There were many challenges in completing this study. Rating collection, due to the 

valuable time experts devoted, was the most laborious. A custom rating applet was programmed 

and distributed on USB to ease the burden on experienced clinicians. Raters could complete the 

experiment at their convenience over multiple periods. Over the course of the study, the program 

was improved to allow rating on different computers, and better control over multiple sessions. 

Rating each clip, however, still required several hours, and comprised the most substantial 

portion of this work. This challenge clarifies the underlying difficulty in implementing OSATS 

more broadly and highlights the future utility automated feedback routines.  

Recent excitement surrounding crowdsourcing to predict performance of laparoscopic 

video (Vernez et al., 2017) suggests that large numbers of inexperienced viewers may be a 

reliable alternative to collecting expert rating performance. Such an approach, however, is not 

without concerns. Reliance on expert opinion – especially individuals in positions to grade and 

assess potential students, grounds expectation of surgical performance within existing uses, and 

casts less doubt on the source of scores. Despite the additional time and effort, the expert ratings 

in this study provide an excellent backdrop from which to quantify surgical motion without 

relying on large numbers of untrained eyes. 

Supervision of the software platform while motion tracking also posed a substantial 

burden – primarily to identify and manually control for periods of out-of-frame motion or 

unexpected occlusions. A five-minute video clip required between 20 and 60 minutes to track 

both participant hands effectively. Continuing improvements in motion tracking algorithms, in 

conjunction with greater interface control over tracking parameters (currently under 

development) will ease this burden in the future.  
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4.7 Conclusion 

This study created prediction models of expert-rated performance assessments (0-10) for 

clinicians of varying experience completing common benchtop suturing tasks. The best 

prediction model was achieved for fluidity of motion (slope = 0.71, intercept = 2.01, 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  = 

0.69). Several variables were significant predictors across each scale, including the cycle 

frequency, the peak arrival rate in the speed and acceleration signals, and the main frequency 

component of the FFT for acceleration of the dominant hand. While cycle frequency is manually 

calculated for the current study, the subsequent chapter describes increasing success in 

automatically predicting cycle rates. The prediction functions created in this study, if packaged 

in a stand-alone application, could provide active feedback scores to medical students and 

residents hoping to improve their performance along each scale, and gain a general 

understanding of their current surgical dexterity. Considering Kane and Messick’s modern 

validity framework, the intended use of these prediction functions would be to offer a general 

suite of scores to augment formative feedback. They should not usurp or take the place of an 

experienced coach. 
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5. Modeling performance of open surgical cases 

5.0 Manuscript Information  

This manuscript is intended for submission to Surgery. 

5.1 Abstract 

This study extends automatic and computer-aided assessment of benchtop suturing tasks to 

the operating room. Prediction models of expert-rated motion economy and fluidity of motion 

performance (0-10) were previously created from video of 37 clinicians performing common 

benchtop suturing tasks. Enabled through computer vision of the hands, these models are tested 

on 47 video clips of expert-rated suturing and tying tasks completed in the operating room. 

Video comparison of the operating room was contingent on a clear, consistent view of both the 

surgeon’s hands. The relationship between predictive and observed expert ratings for fluidity of 

motion (slope = 0.82, intercept = 1.77, R2 = 0.56) performed better than motion economy (slope 

= 0.73, intercept = 2.04, R2 = 0.49), although 85% of ratings for both models were within ±2 of 

the predicted expert response. Models were sensitive to changing hand postures, dropped 

ligatures, and poor tissue contact while initiating a stitch. In line with Kane and Messick’s 

modern validity framework, these results suggest that performance ratings for suturing and tying 

tasks extrapolate reasonably well from simulated settings to more complex open surgeries and 

may helpful to generate formative feedback during deliberate practice on benchtop simulations.  

5.2 Background 

Objective surgical assessment is increasingly enabled by “surgical data science” (Maier-

Hein et al., 2017). Robotic platforms like ROVIMAS (Aggarwal et al., 2007), and the  ICSAD 

(Bann et al., 2003; Datta et al., 2002; Hayter et al., 2009), and virtual reality simulations (Grober 

et al., 2010), among others, can provide ready fodder for analyzing differences between novice 

and experienced clinicians. Corvetto et al., (2017), recently found that ICSAD metrics correlated 
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moderately well with global rating scales of performance on benchtop simulations, and 

significantly discriminated between experienced and novice performers. Marker-less video 

tracking hand motion has also demonstrated the ability to discriminate between clinician 

experience levels in and out of the operating room (Frasier et al., 2016; Glarner et al., 2014; 

Mackenzie, Watts, Patel, Yang, Garofalo, et al., 2016), and to predict operating room 

performance along a series of rating scales (Azari et al., 2017).  

Limiting comparisons to experienced and novice clinicians, however – the so called 

“gray hair index” (Cook, 2015) – may be insufficient to uncover what attributes truly comprise 

surgical skill and performance (Madani et al., 2017). In other words, in comparing expert and 

novice performance “the absence of hypothesized differences would suggest a serious flaw in the 

validity argument, but the confirmation of such differences adds little” (Cook, 2015). Modern 

validity frameworks (Kane, 2006, 2013), instead, require a robust basis of inferences to build a 

validity argument. David Cook (2015) has provided detailed discussions and guidelines of 

implementing this validity framework for medical education assessment and examining each 

inference in turn: scoring (i.e. quantifying observations into scores), generalization (i.e. 

associating scores and performance in constrained settings), extrapolation (i.e. how scores reflect 

real-world performance), and implications (i.e. impacts and associated decisions). This approach 

was adopted by the American Education Research Association (AERA) (Kane, 2006), to support 

reliable development of objective assessments.  

In a broad review of objective computer-aided technical skill evaluation (OCASE-T), 

Vedula and colleages (2017) discovered a dearth of OCASE-T focused in the operating room, 

representing a critical gap in extrapolating of assessment scores to meaningful real-world 

settings. We are in a unique position to leverage marker-less motion tracking of hand movements 

through video recording – of different settings, and of clinicians with varying experience – to 
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begin assembling a basis of validity evidence in line with Kane’s framework. This study aims to 

extend previous work predicting surgical performance across various experience categories 

(scoring and generalization) to the more complex settings of the operating room (extrapolation). 

These efforts promote a link between observed performance in training situations and observed 

performance in the operating room – connecting “performances in real life” (Hatala et al., 2015) 

to those we have automatically quantified in benchtop settings (Azari, 2018).  

5.2.1 Assessing Surgery 

In 2017, Madani and colleagues, after conducting a cognitive task analysis and broad 

literature review, rigorously expanded the various domains in which surgeons perform to include 

1. psychomotor skills, 2. declarative knowledge, 3. interpersonal skills, 4. personal 

resourcefulness, and 5. advanced cognitive skills. While the authors provide a much desired 

structure to address surgical performance, objective assessment and understanding within each of 

domains is a continuing challenge (Hopmans et al., 2014; Jelovsek et al., 2013; Moorthy, Munz, 

Sarker, & Darzi, 2003; Williams, Kim, & Dunnington, 2016; Wurzelbacher et al., 2010). 

Michael Kane’s modern argument-based approach to validity (2006, 2013), accompanied 

by  David Cook’s body of work applying Kane’s framework in healthcare settings at the Mayo 

Clinic (Cook et al., 2015, 2014), provides an excellent basis on which to examine the validity of 

potential assessment measures. Studies of the most widely applied surgical assessment, the 

Objective Structured Assessment of Technical Skills (OSATS), for instance, have found 

consistent evidence linking OSATS to a productive use in formative feedback (Hatala et al., 

2015). OSATS consists of a series of global rating scales and procedural checklists, and expert 

assessment of student performance on eight prescribed simulations.  

This paper represents a synthesis of work using digital video records of the hands to 

automatically quantify surgical performance along a series of subjective rating scales (adapted 
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from the five global rating scales of OSATS). Video from the operating room serves as a testing 

set for performance along both motion economy and fluidity of motion prediction ratings. We 

provide a discussion on the accuracy and utility of these models and implications for future 

training programs.  

5.3 Methods 

5.3.1 Participants and Settings 

Surgeons and students (n = 44) from the University of Wisconsin Hospital and Clinics 

were recruited to participate through email list-servs, in-person announcements, and 

recommendation. The University of Wisconsin Institutional Review Board approved each study. 

Prior to participation, each person completed a survey detailing the following demographic 

information: years of experience, handedness (i.e. right or left handed), specialty, and amount of 

training.  

Each participant completed a series of suturing and tying tasks, but only those surgeons 

who agree to be recorded sunder IRB approved protocol were filmed. Video data was collected 

across two settings, seen in Figure 25 and summarized in Table 10. Of collected video, a total of 

5 hours and 58 minutes of video records were selected for motion tracking and subsequent 

analysis for this study.  

5.3.2 Video Processing 

We utilized custom software (Chia-Hsiung Chen et al., 2014)  to track a region of interest 

(ROI) in each video frame over the course of a video (Figure 26). We have previously used this 

technology to observe differences between dominant and non-dominant hands (Glarner et al., 

2014), identify differences between tasks and roles (Frasier et al., 2016) and predict expert rated 

performance during short video clips from the operating room (Azari et al., 2017). 



122 
 

 

 

Figure 25: Top down view of common suturing tasks on foam (A) and of operating room (B) 

 
Table 10: Number of participants and length of video recorded by task and material. MS, 
Medical student; JR, Junior resident; SR, Senior resident; AT, Attending; RT, Retired; SI, 
Simple interrupted suturing; RS, Running subcuticular suturing; S, General suturing; T, General 
tying. 

Material Task MS JR SR JA  
 

SA RT Total 
Video 

(hh:mm:ss) 
Foam (A) SI, RS 10 5 10 4 6 2 37 05:47:58 

Operating room (B) S, T 0 0 2 2 3 0 7 00:10:19 
Totals (A+B)  10 5 12 6 9 2 44 05:58:17 

 

    
Figure 26: Region of interest (ROI) to track motion of participant’s non-dominant hand while 

operating.  
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Each video clip was calibrated to real-world distances using a notecard, ruler, or suture 

packet of known size. In the OR, the proximal interphalangeal joint breadths for males and 

females (Figure 27) provided calibration when no object of known size was visible. Pixel 

locations were identified through Multimedia Video Task Analysis (MVTA) software specially 

developed at the University of Wisconsin-Madison (Yen & Radwin, 2007). We have used hand-

breadth (Akkas et al., 2014) and joint breadth (Frasier et al., 2016) measurements with low 

coefficients of variation (Greiner, 1991) as calibration coefficients. MVTA allowed us to 

measure the objects in the video and calibrate pixel measurements to real-world units.  

   
 

Figure 27: Pixel to real-world calibration (top-left) using PIJB (Greiner, 1991) (bottom-left) if no 
standard markers are visible from operating room light-mounted camera system (right). 
 

5.3.3 Expert Rated Performance 

Video records of participants in Table 10 produced forty-eight clips of suturing and tying 

tasks (mean length = 13.06s) that met the following criteria: (1) clear view of both hands for 

entire clip, and (2) observable movement among both hands. While limiting, these criteria are 

necessary to allow prediction models a similar basis of kinematic data in both settings. Prediction 

models were drawn directly from those described by Azari (2018). 

5.4 Results 
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For fluidity of motion predictions (Figure 28, slope = 0.83, intercept = 1.75, R2 = 0.55). The 

majority of residuals (86%) fell within ±2 of the linear relationship. Motion economy predictions 

(Figure 29, slope = 0.73, intercept = 2.04, R2 = 0.49). For this model, 85% of residuals fell within 

±2 of the linear relationship. The mean squared errors were 1.58 and 1.74, respectively.  

 
Figure 28: Predicted ratings vs expert ratings for fluidity of motion (0-10) rating scale using 

(n=48) video clips from the operating room. Confidence intervals (95%) are shown on either side 
of the linear fit. 

Inspection of Figure 28 highlights one substantial underprediction at x = 5, y = 2.5. In the 

outlier clip, the surgeon changes posture twice, reaching across the patient to gain a better angle 

of access to suture on bowel tissue. The surgeon changes hand posture prior to actually driving 

the needle. These contextual adaptations represent an irregular behavior in the training set. On 

foam, this change could indicate a lack of automaticity or underdeveloped mental-schema to 

sufficiently represent the task. In the operating room, however, where access to the body is 

constrained, deliberate or purposeful postural changes in advance of suturing on sensitive tissue 
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could indicate familiarity with the task constraints. Repeated, indecisive changes in posture or 

balance in the OR, meanwhile, could indicate a lack of confidence or preparedness.  

 

 
Figure 29: Predicted ratings vs expert ratings for motion economy (0-10) rating scale using 

(n=48) video clips from the operating room. Confidence intervals (95%) are shown on either side 
of the linear fit.  

 Motion economy predictions exhibit greater deviation from the linear relationship 

between expert and predicted ratings (R2 = 0.47). Notable outliers in the motion economy 

predictions (A) x = 2, y = 5.9, (B) x = 4, y = 2.6, and (C) x = 4, y = 1.2, exhibited the following 

characteristics: (A) multiple missed suturing attempts while driving a needle, (B) a dropped 

ligature and (C) changing position and posture to access tissue.  

 Neither prediction performed as well as their benchtop counterparts (slope = 0.71, 

intercept = 1.98, 𝑅𝑅2 = 0.77, correlation = 0.88,  𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  = 0.70 for fluidity of motion, and slope = 

0.65, intercept = 2.36, 𝑅𝑅2 = 0.66, correlation = 0.81, 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  = 0.61 for motion economy). 
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5.5 Discussion 

This study has shown that automatically generated performance ratings in benchtop 

settings have real-world relevance in the operating room, albeit with greater variance and 

sensitivity to contextual factors like missing the tissue while driving a needle, changing postures 

to fit the hands inside the body cavity, and dropped ligatures. Fluidity of motion predictions 

performed better than motion economy predictions, and while the majority of residuals fell 

within a range of ±2, both bench-top derived prediction models exhibited relatively low 𝑅𝑅2 

values on the real-world data.  

Testing each model on video from the OR was hindered by the limited field of view of 

the overhead light. Forty-seven clips of active suturing and tying in the operating room had a 

clear and consistent view of both the surgeon’s hands. While these clips provide an excellent 

opportunity to test how well prediction models of benchtop tasks extrapolate to the OR, they do 

not account for all variations of activity in the OR, nor for all experience or skill levels, or 

overall case complexity. Future advances in OR video recording, however, may reduce this 

constraint and build out a bank of video-based surgical motion patterns.    

Examination of the outliers for both predictions suggests that the models make no 

distinction between errors and intentional movements, and how they may be perceived 

differently in context. A participant suturing on foam, for instance, may be more likely to drive a 

needle too deeply into the foam as opposed to glancing only the surface and having to reset the 

needle driver, where as an experienced surgeon in the operating room may prefer to reset the 

needle driver, rather than penetrate a sensitive tissue too deeply. These differences have 

significant implications for live surgery, and minimal implications for foam. They are not 

included in the automatic tracking routine and produce outliers in the new prediction. The 

motion tracking algorithm also makes no distinction between maneuver technique, such as 
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handed or tool-based tying. Different tool use may also be contributing to the reduced precision 

in the new setting.  

Segmenting video by the tool used or the type of tissue, as we have explored in the past 

(Frasier et al., 2016), may improve the relationship between predicted and expert ratings for two-

handed performance models in the operating room. However, this increases the burden on 

manual labeling of video data and limits the potential for comparison between short clips 

observed in the operating room and video records collected during benchtop trials. As a result, 

this study does not differentiate between suturing and tying maneuvers within the simulated 

suturing task. We apply all models equally in the operating room regardless of maneuver or 

tissue. Parallel work described by Azari (2018) has automatically classified suturing and tying 

periods every two seconds with 79% accuracy, and may be utilized in the future to further refine 

measures of fluidity of motion and motion economy within the simulated setting to address this 

limitation. Future work may also explore how different simulated tissues (e.g. foam, balloons, 

tissue paper) affect fluidity of motion and motion economy prediction models.  

These results of this study emphasize two things: first, that the performance predictions 

do resemble, on average, real-world operations in a more complex task environment, and second, 

that they are sensitive to context within the more complex environment, producing outliers under 

conditions of significant changes in posture or multiple attempts. The different approach towards 

achieving consensus in previous OR ratings (Azari et al., 2017) and removing outliers (Azari, 

2018) also reduces consistency between the expert-generated and predicted ratings. In the terms 

of Kane and Messick’s modern validity framework, these performance scores extrapolate 

moderately well to the meaningful situations of the operating room but should be limited to 

providing formative feedback in training scenarios. A “reliability index” could also be included 

during a formative exercise, to express the relative confidence of the prediction model to the 
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participant in training. Coaches and trainers may benefit from working with students who have 

already practiced suturing and tying with the support of automated feedback about how their 

fluidity of motion and motion economy may be perceived in a real-world operating room. It may 

also be possible to reverse-engineer these kinds of scores to examine what motion properties are 

most salient to raters or coaches.  

5.6 Conclusion 

This study extrapolates benchtop performance prediction models of fluidity of motion and 

motion economy to the more variable and complex real-world operating room. Prediction models 

are derived from expert ratings of video clips in each setting. Results are framed within Kane and 

Messick’s modern validity framework and suggest that computer vision of the hands during 

common benchtop suturing tasks could provide automatic, quantitative feedback of medical 

student and resident suturing performance. The prediction models provide a reasonable 

estimation of an average expert rating in the operating room, but do not account for contextual 

factors, or identify errors.  
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Summary 

This section presents a discussion of the results from chapters 1 through 5. The first 

portion discusses changes in observed motion features as clinicians gain years of experience. The 

second section describes progress in automatically predicting surgical maneuvers from 

continuous video and suggests directions to improve future surgical video collection and 

processing. The third discusses the success automatically predicting expert-rated performance for 

both benchtop and operating room procedures. Lastly is a discussion of the implications of the 

combined body of work in line with the nascent model of quantified performance introduced in 

the first chapter to support objective and computer aided skill evaluation. I also provide an 

overview of conceptual software design attributes and potential military implications of this 

work. 

Hand motion changes with experience  

 Across the three task settings (foam, pig feet, bowel), experience was associated with 

several changes in hand motion. As found in past studies, these were not reflected evenly among 

dominant and non-dominant hands (Glarner et al., 2014). Medical students and residents often 

exhibited differences in speed and acceleration for dominant hand use, while attendings and 

residents exhibited different path length, speed, and acceleration in their non-dominant hands. 

Residents, for example, exhibited significantly less path length per cycle of both hands and 

greater speeds for the dominant hand, resulting in increased cycle frequency of completion than 

medical students. Attending surgeons exhibited a similar increase in cycle frequency compared 

to junior residents, and reductions in path length per cycle of the non-dominant hand over 

residents in general. Attending surgeons also progressed through all stages of the task more 

quickly, while accelerating less frequently, accelerating less overall, and generally moving 

slower while tying with their non-dominant hands than both residents and medical students. Both 
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path length and cycle frequency exhibited clear trends across all seven experience categories, 

despite significant differences occurring only between junior status of one role and senior status 

of the following role. These trends suggest that future studies may be able to apply categorical 

linear regression models to establish validity evidence of generalization across tasks, rather than 

segmenting the population into discrete buckets as traditionally done.   

Machine learning classifies surgical maneuvers 

Even though video is easy to collect, analyzing video has many challenges. Health care 

settings easily capture more video than can be reviewed and may not be equipped to address 

more technical aspects of processing. Video formats, frame rates, compression schemes, and 

compatibility issues pose significant challenges to on-demand review, consistent time indexing, 

and frame-by-frame motion analysis. Automatic deconstruction of surgical video to expedite 

video review would help offset these challenges. This study trains machine learning models to 

classify the surgical maneuvers of suturing and tying, and the transitions between those 

maneuvers, with 79% accuracy of all two-second periods using a combination of random forest 

and hidden markov models on a reserved subset of participants. This is consistent with other 

three-state maneuver models for robotic and laparoscopic procedures and increases the potential 

of being able to scroll through a pre-labeled video record to select periods of interest for student 

or coach review. These results were also able to strongly predict the frequency of activity for a 

set of reserved participants  (slope = 0.88, intercept = 0.03, correlation = 0.83, 𝑅𝑅2 = 0.72), 

intersecting well the studies utilizing cycle frequency in categorizing experience and predicting 

performance. Additional techniques, such as conditional random fields (CRF) are introduced in 

the study, which may yield improvements for future video analysis of longer or more complex 

tasks collected in the operating room. 

Predicting performance in and out of the operating room 
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Chapters 4 and 5 study how predicted expert-ratings of four visual analog scales (0-10) of 

fluidity of motion, motion economy, tissue handling, and hand coordination generalize across 

participants on benchtop simulations and extrapolate to real-world settings. These scales were 

designed to encompass the full range of observable behavior during short ( < 90 s) clips of 

surgical maneuvers. Fluidity of motion exhibited the best relationship between predicted and 

expert ratings (slope = 0.71, intercept = 1.98, 𝑅𝑅2 = 0.77, correlation = 0.88,  𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  = 0.70), and 

also provided the most consistent extrapolation to real-world operating room settings (slope = 

0.83, intercept = 1.75, R2 = 0.55), albeit with greater variation as seen by the reduced R2 value. 

Motion economy predictions in benchtop settings (slope = 0.65, intercept = 2.36, 𝑅𝑅2 = 0.66, 

correlation = 0.81, 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  = 0.61) extrapolated moderately well to the operating room (slope = 

0.73, intercept = 2.04, R2 = 0.49), but were more sensitive to postural changes within the 

constrained working area. Tissue handling and hand coordination scores appeared most sensitive 

to contextual factors and were not tested in the operating room setting. These results assemble 

generalization and extrapolation evidence of validity for fluidity of motion and motion economy 

in line with Kane and Messick’s modern framework. They provide a connection between those 

benchtop simulation performance and the real-world operating room.  

Implications for surgical training 

Real time capture of surgical motion on video represents great opportunity for artificial 

intelligence and machine learning algorithms to automatically segment, process, and assess 

performance before patients are put at risk. Chapter 1 provides a consistent lexicon with which to 

describe performance gains across a surgeon’s career. Chapter 2 explores observed differences in 

hand motion across clinicians of varying experience, while chapter 3 advances abilities to 

automatically classify surgical video into discrete segments. Chapters 4 and 5 provide 

generalization and extrapolation evidence of automatic and quantified performance models. Each 
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of these studies addresses a necessary step in building automatic video-based formative 

assessment tools and promote subsequent development of video-based assessment platforms. 

Once observed and quantified, properties of surgical hand motion could be fed back to the 

surgeon through visual or tactile interfaces through a dynamic, on-demand dashboard to promote 

performance improvement of hands-on clinical skills.  

Focusing on performance 

Traditional domains of performance – music, art, and athletics, for example – showcase 

impressive and skills rehearsed and practiced over years of training. They are competitive, 

employ traditional apprenticeship relationships, and are appreciated subjectively. Surgery shares 

many such facets: it has been described as a craft (Reznick, 1993; Thomas, 2006), an art 

(Dartmouth, 2002; Khan, Bann, Darzi, & Butler, 2002), grounded through apprenticeship (Sealy, 

1999), and promoting structured social hierarchies favoring years of practice (Bosk, 1979; 

Williamson, 2004). Historically, the “operating theater” has even reflected a particular form of 

showmanship and wonderment (Fitzharris, 2017; Frumovitz, 2002).  

Just like these other fields, surgeons too, do not always perform at their best. They are 

subject to biases in judgement and recall (Williams, Klamen, & Mcgaghie, 2003), commit and 

need to manage errors of various types (Law, 2016), and are influenced by factors including 

those: (1) outside the control of the surgeon; (2) related directly to the surgeon; and (3) inherent 

in the particular decision to be made (Francis, 2009). Physical positioning and ergonomics play a 

role (Kruse, Luebbers, Grätz, & Obwegeser, 2010; Rosenblatt, McKinney, & Adams, 2013; 

Steinhilber et al., 2015), as do fatigue, caffeine, stress (Fargen, Turner, & Spiotta, 2016), and 

social relationships with patients and the care team (Rosen et al., 2010; Salas, Cooke, & Rosen, 

2008). Out of the sum of these factors – the available context (Feltovich et al., 1997) and work-

system (Carayon et al., 2014; Wiegmann et al., 2010) – emerges a unique, albeit temporary effect 
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on a surgeon’s observable behavior. While professional training may emphasize how to “get the 

job done” in difficult circumstances, it is also unreasonable to expect a surgeon to perform best 

and manage errors well while exhausted, distracted, or under duress.  

In his book, How Doctors Think, Jerome Groopman (2008) further describes how these 

kinds of transitory factors affect physician performance. He argues that such impacts are 

amplified through changing technology (p. 148), notions of hero worship (p. 72, 145), aspects of 

human biology that “can’t be predicted” (p. 124) and intense engrained biases (p. 59). Groopman 

warns that such preconceptions produce dangerous situations in which physicians may “become 

wedded to distorted conclusions” (p. 27), deleteriously impacting case outcomes and artificially 

limiting maximal performance than what one could otherwise achieve. 

Given the gravity of consequences to life and livelihood, understanding surgical 

performance may benefit from comparisons to other physically, mentally and morally demanding 

fields like aviation, astronautics, search and rescue, nuclear command and control, and military 

operations. Like these, surgeries are high-risk activities localized to a unique time and place, 

requiring extensive training and readiness to engage in suddenly changing circumstances (O’Neil 

et al., 2014). Outcomes are dependent on a confluence of difficult-to-predict factors; you can’t 

just “try again” if something goes wrong. Each attempt is unique, and there are often as many, if 

not more ways things can go wrong, than they can go right. Lessons and techniques from other 

fields – especially engineering (Rutherford et al., 2015) – are increasingly explored as avenues to 

improve surgical quality and healthcare overall (Gawande, 2011; Gordon, Mendenhall, & 

O’Connor, 2013). Even in the age of increasing healthcare simulation capabilities (Stefanidis et 

al., 2015) developing surgical skills on live patients remains an integral part of clinician growth, 

even as an attending (Birkmeyer et al., 2013; Carty et al., 2009). 
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Computer vision applied through digital video, offers a cheap and scalable method to 

measure performance in and out of the operating room while minimizing patient risk. This 

dissertation improves the ability of computer vision of surgical video to (1) identify changes in 

hand motion as clinicians gain experience, (2) automatically predict performance both in and out 

of the operating room, and (3) advance automatic deconstruction and labeling of benchtop task 

video such that it can be compared with longer-studied robotic and sensor-equipped simulations. 

These developments are necessary to promote objective and computer aided evaluation of 

surgical skills through easily collected video records. A medical student wishing to develop their 

surgical skill could set up a laptop and a webcam over a piece of foam, perform the simulation, 

and receive a formative assessment report for every trial. They could automatically compare their 

overall cycle frequency to that of more experienced clinicians, see how their path length per 

cycle has reduced over time, and monitor the acceleration peak rate in their dominant hand in an 

attempt to focus attentively on a smoother their trajectory. Increasing these scores, over time, 

would suggest they are climbing up the learning curve of the quantified performance model and 

would be better prepared for the meaningful interactions with attendings and coaches (Huang, 

Wyles, Chern, Kim, & O’Sullivan, 2016), or to take a summative assessment for a particular 

procedure.  

Software Development 

The new capabilities detailed in this dissertation naturally lend themselves to 

development of a responsive computer interface that can efficiently convey observed attributes 

of performance directly back to the participant or their coach, either in real-time or for after-

action review. This section describes the role of software assisted performance and conceptual 

design features of such a program, as well as current caveats and challenges.  
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Software assisted performance 

It is largely agreed clinician performance can be enhanced in various ways through 

computation. Decisions using a combination of model outputs and clinician decision outperforms 

judgements of just the clinician alone (Aldag, 2012; Dawes, 1979; Dawes, Faust, & Meehl, 

1989). Kleinmuntz (1992) highlights specific instances of programs which have helped clinicians 

to treat meningitis, manage chemotherapy, plan facilities and identify ideal antimicrobial 

treatments. He uses these case examples to say that computers certainly can think and learn in 

new environments, but that thinking of a computer as a “surrogate clinician” should be handled 

skeptically, at best. Arkes and colleagues (1986) consistently demonstrated that such 

computation can improve clinician decision (although at times with low accuracy). There is also 

beneficial evidence that decisions made with modeling and data outperform their clinician 

counterparts with greater reliability tracing (Goldberg, 1970). More recently, IBM has been 

using the supercomputer Watson to synthesize worldwide clinical results and propose novel 

treatments for cancer patients – albeit with increasing awareness of its limitations to address 

variations in cancer type (Ross & Swetlitz, 2017). Still, integration of information throughout 

medicine (Maier-Hein et al., 2017) represents a great opportunity for technological augmentation 

to help doctors to “keep up” with current research (Francis, 2009), and continue to test their 

skills throughout their career. Objective and easily collected measures of cycle frequency, 

fluidity of motion or motion economy would be a welcome tool to support coaching and 

development of student psychomotor skills; providing a structured opportunity to reflect and 

focus attention on specific attributes during surgical rehearsal – critical components of deliberate 

practice.  

https://www.mskcc.org/about/innovative-collaborations/watson-oncology
https://www.mskcc.org/about/innovative-collaborations/watson-oncology
https://www.mskcc.org/about/innovative-collaborations/watson-oncology
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Implementation challenges 

Implementing any assessment (formative or otherwise), however, risks alienating surgeon 

independence and challenging physician autonomy. As Charles Bosk describes in his book 

Forgive and Remember, doctors are inherently committed to (and primarily responsible for) 

providing morally sound judgements: “when things go awry, when the professional’s efforts to 

aid his client fail whatever the reason, the professional’s last line of defense –should he doubt 

himself, should his colleagues question him, should his clients or his representatives accuse him 

– is that he did everything possible....a moral defense, not a technical one” (p. 164.) Despite 

Bosk writing in the late 1970’s – a time that contributed, in part, to obscuring the gender of the 

female surgeons he worked with (Williamson, 2004) – he highlights the discrepancy between 

best practice standards and those derived from medical professionalism that Harald Mieg 

identified as late as 2009: “As far as control of performance is concerned, we would expect 

impersonal evaluations of techniques to have priority over personal judgments of individual’s 

moral performance. How are we to account for the fact that the opposite is the case?” (160.)  

Even in the low-states arena of formative assessment, implementing assessment 

techniques needs to be sufficiently framed such that dignity interests are respected. These 

challenges are plentiful throughout healthcare settings. In his book Checklist Manifesto, Atul 

Gawande (2011) argues that surgical outcomes may be improved rapidly and with low cost, by 

some of the most useful evidence-based practices guidelines from other professions, especially 

aviation (i.e. adapted checklists capable of lowering deaths by 1/3, or in some cases, by 47%). 

However, he builds the case, that data-based improvements and attempts to measure performance 

require a fundamental change to the culture of medicine, surgery and team roles. In her book, 

Beyond the Checklist, author Suzanne Gordon argues that cultural challenges must not prevent 

improvements to quality care: “No one can prove who experiences more job stress or complex 
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responsibility, and in the end, this is a spurious debate…if one industry can benefit from the 

experience of the other and reduce errors and thus enhance safety, why wouldn’t it try?” 

(Gordon, Mendenhall, & O’Connor, 2013). 

The presentation, style, framing, and general interpretation of formative feedback during 

potential training, as an example of such efforts, represents a crucial vector to ensure progress in 

clinical medical education (Ende, 1983). If feedback on a surgical assessment is inappropriately 

timed or configured, they may be more detrimental and unintentionally undermine support for 

training interventions. As Karsh (2004) describes, the effectiveness of new medical information 

technology could be limited by general dissatisfaction and ignoring existing workflows (on in a 

training scenario, expectations) within a work-system approach. Future development of a well-

received tool interface may benefit from the design parameters put forth by Brown and Bell in 

their paper “Authoring Adaptive Tutors for Simulations in Psychomotor Skills Domains” 

(Brown & Bell, 2017). Considering these implementation challenges and design suggestions will 

help to ensure that any tool is adopted and used with greater overall utility.  

Conceptual design 

A hypothetical feedback interface is depicted in Figure 30. This interface would provide 

relevant metrics that enable (1) continuing analysis of surgical hand motion, and (2) independent 

learning through directed, deliberate practice suggestions. Current considerations for such an 

interface are described in turn.   
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Figure 30: Conceptual dashboard design, for future interactive surgical skills quantification. 

(1) On-demand Recording and Tracking - A participant could perform a simulated 

procedure under a connected webcam, view, and save the digital video of their hands. 

Motion tracking would be conducted in real or near-real time. The video field would 

show multiple time-synchronized views (if available). Additional sensors or depth 

cameras would similarly be time-synchronized. 

(2) Multi-Mode Recording – A participant would be able to designate each trial as a 

practice or assessment round. This packaging would encourage reflection throughout 

recorded “practice periods” for all skill levels.  

(3) On-demand Formative Assessment – Objective assessment scores such as fluidity of 

motion (0-10) and motion economy (0-10) would be reported, with contributing 

kinematic features to each score identified accessible via drilldown. Any lagging or 
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underperforming attribute would be automatically brought to the forefront of the 

screen and the measure shown, along with the current score.  

(4) Practice Plan – Based on current performance, a host of “top suggestions” would 

automatically populate, accessible under individually customizable “practice plan.” 

These suggestions would take the form of a series of instructional recorded videos, 

key tips, animations showing different paths, and any other supporting material 

deemed useful in facilitating independent skills development.  

(5) Coaching Resources – Before (and after) completing a task, the participant will have 

the option to review a series of audio records / videos of highly experienced surgeons 

sharing tips, tricks, or examples of specific instances in their career. Such “war 

stories” (Y. Y. Hu et al., 2012) and verbal feedback from more experienced surgeons 

(Porte, Xeroulis, Reznick, & Dubrowski, 2007) are instrumental in building career 

and case expectations.  

(6) Historical Data – The participant could see aggregate performance data across all 

samples within a “progress report.”  

(7) Visualization – Relevant visualizations, including time plots within task (i.e. speed, 

acceleration), scatter plots of performance (i.e. score on one scale over several 

practice periods), relative population performance, and any other relevant summary 

information would be depicted graphically, preferably using an HTML/CSS interface. 

The C# Xamarin plugin to develop distributable code base across Windows, iOS and 

Android platforms may provide an advantage. Several visualizations like path length 

over time or a time plot vs speed could be loaded automatically, with more specific 

versions accessible on-demand. These visualizations and summaries could be 

exported to .pdf or .docx files as part of a “kinematic report card.” A growing number 
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of visualization routines for this type of cyclical behavior (Greene et al., 2017) may 

be established and tested to support the real-time and on-demand assessment 

feedback to assist physician psycho-motor development in accordance with these 

suggestions.  

(8) Impact – Physicians could use this system to gauge their own awareness, promote 

reflection on specific attributes (e.g. fluidity of motion) and examine their 

performance on a repeated basis throughout their career. Future study will need to 

solidify the recommendations proposed here, and test efficacy of different design 

parameters or feedback routines to facilitate surgical training for productive 

implementation of such an interface.  

Military Implications 

This type of dashboard would be especially useful for military surgeons who face 

substantial challenges in leveraging their expertise between active duty and civilian practice (or 

the reserves). Deployed surgeons may be underprepared to operate in combat situations and on 

combat-oriented injuries that fall outside their experience; such as truncal hemorrhage or skeletal 

reconstruction from penetrating injuries (Kelly et al., 2008; Tyler et al., 2010). At the same time, 

clinical and specialized surgical skills degrade while surgeons are deployed; especially for 

laparoscopic surgical skills (Perez et al., 2013).  

Surgeons who face intermittent mobilizations often have highly specialized practices, yet 

when deployed to a combat theater, are required to perform acute general and trauma surgery or 

in some cases, assigned to positions with limited operative opportunities. Deployed surgeons 

reported that deployment increases trauma skills (p < 0.001) but decreases the procedural skills 

required for civilian practice (p < 0.005), taking 3 to 6 months on average to return to pre-

deployment skill level upon returning to practice (Deering, Rush, Lesperance, & Roth, 2011). 
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These professionals face the challenge of maintaining the various procedural skills 

required for both military service and their civilian practice. While deployed, surgeons may have 

time to devote to simulation to maintain or refresh specialty-specific technical skills but lack the 

equipment to do so. Current approaches require sophisticated, expensive hardware only found in 

specialized simulation settings. This research advances a computational model of surgical 

performance and automatic video processing which would allow for performance assessment 

during periods away from practice or professional transition. Such a novel, portable system 

utilizes hardware that is broadly available, even in combat training settings such as digital video 

capture and cloud-based or local computer processing. 

This dissertation advances objective metrics for surgical tasks that have broad 

applicability to traumatic battlefield injuries. Access to immediate, reproducible kinematic-based 

feedback described previously, can inform self-assessment, and direct practice of specific 

surgical maneuvers and overall surgical performance. This may help to provide a venue in which 

skill development is quantifiably traceable and intentionally achieved before it is needed. The 

capacity to deconstruct surgical skill can provide a deeper understanding of the kinematics of 

surgical performance and aid in skill acquisition, even in difficult to access or remote areas.  

Future Challenges 

Quantitative observation of hand motion through digital video enables objective 

understanding of common maneuvers such as suturing and tying. In order to ensure that on-

demand performance feedback, will be, as Kleinmuntz (1992) advocates for computer aided 

healthcare settings “a welcome addition to the physician’s clinical armamentarium,” there are 

three main axes of necessary improvement not addressed by this thesis. First, the automaticity of 

tracking algorithm needs to be improved, and amount of manual interventions made by an 

operator would need to be reduced. This hurdle is ubiquitous, and commonly cited as a barrier to 
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engaging in marker-less motion tracking studies (Ganni, Botden, Chmarra, Goossens, & 

Jakimowicz, 2018). Second, audio-visual setup and collection would need to be streamlined, 

with software processing of variable frame rates, calibration, and compatibility issues resolved 

automatically. Third, and finally, the prediction and state models created by Azari (2018) would 

need to be re-packaged to operate either via cloud based video upload, or to run within stand-

alone programs. Lastly, seeing benefits in improved patient outcomes as a result of this work 

depends also on parallel and continuing efforts to promote surgical safety, improve training and 

coaching techniques, and enhance error detection and management strategies.  

References 

Aldag, R. J. (2012). Distinguished Scholar Invited Essay Behavioral Decision Making: 
Implications for Leadership and Organizations. Journal of Leadership & Organizational 
Studies, 19(2), 133–141. http://doi.org/10.1177/1548051812442745 

Arkes, H. R., Dawes, R. M., & Christensen, C. (1986). Factors influencing the use of a decision 
rule in a probabilistic task. Organizational Behavior and Human Decision Processes, 
37(1), 93–110. http://doi.org/10.1016/0749-5978(86)90046-4 

Azari, D. P. (2018). Quantifying Surgical Skill. University of Wisconsin-Madison. 

Birkmeyer, J. D., Finks, J. F., O’Reilly, A., Oerline, M., Carlin, A. M., Nunn, A. R., … 
Birkmeyer, N. J. O. (2013). Surgical skill and complication rates after bariatric surgery. 
New England Journal of Medicine, 369(15), 1434–42. 
http://doi.org/10.1056/NEJMsa1300625 

Bosk, C. L. (1979). Forgive and Remember: Managing Medical Failure (2nd ed.). Chicago: 
University of Chicago Press. 

Brown, D., & Bell, B. (2017). Authoring adaptive tutors for simulations in psychomotor skills 
domains. In MODSIM World 2017 (pp. 1–10). Retrieved from 
http://www.modsimworld.org/papers/2017/Authoring_adaptive_tutors_for_simulations_i
n_psychomotor_skills_domains.pdf 

Carayon, P., Wetterneck, T. B., Rivera-Rodriguez, A. J., Hundt, A. S., Hoonakker, P., Holden, 
R., & Gurses, A. P. (2014). Human factors systems approach to healthcare quality and 
patient safety. Applied Ergonomics, 45(1), 14–25. 
http://doi.org/10.1016/j.apergo.2013.04.023 

Carty, M. J., Chan, R., Huckman, R., Snow, D., & Orgill, D. P. (2009). A detailed analysis of the 
reduction mammaplasty learning curve: A statistical process model for approaching 



145 
 

 

surgical performance improvement. Plastic and Reconstructive Surgery, 124(3), 706–714. 
http://doi.org/10.1097/PRS.0b013e3181b17a13 

Dartmouth. (2002). The Art of Surgery. Dartmouth Medicine, Fall, 29–39. 

Dawes, R. M. (1979). The robust beauty of improper linear models in decision making. 
American Psychologist, 34(7), 571–582. http://doi.org/10.1037/0003-066X.34.7.571 

Dawes, R. M., Faust, D., & Meehl, P. E. (1989). Clinical versus actuarial judgment. Science, 
243(4899), 1668–1674. http://doi.org/10.1126/science.2648573 

Deering, S. H., Rush, R. M., Lesperance, R. N., & Roth, B. J. (2011). Perceived effects of 
deployments on surgeon and physician skills in the US Army Medical Department. The 
American Journal of Surgery, 201(5), 666–672. 
http://doi.org/10.1016/j.amjsurg.2011.01.006 

Ende, J. (1983). Feedback in Clinical Medical Education. JAMA: The Journal of the American 
Medical Association. http://doi.org/10.1001/jama.1983.03340060055026 

Fargen, K. M., Turner, R. D., & Spiotta, A. M. (2016). Factors That Affect Physiologic Tremor 
and Dexterity during Surgery: A Primer for Neurosurgeons. World Neurosurgery. 
http://doi.org/10.1016/j.wneu.2015.10.098 

Feltovich, P. J., Ford, K. M., & Hoffman, R. R. (1997). Exertise in Context. Cambridge: The 
MIT Press. 

Fitzharris, L. (2017, October). How Ether Transformed Surgery from a Race against the Clock. 
Scientific American. Retrieved from https://www.scientificamerican.com/article/how-
ether-transformed-surgery-from-a-race-against-the-clock/ 

Francis, D. M. A. (2009). Surgical decision making. ANZ Journal of Surgery, 79(12), 886–891. 
http://doi.org/10.1111/j.1445-2197.2009.05139.x 

Frumovitz, M. M. (2002). Thomas Eakins’ Agnew Clinic: A study of medicine through art. 
Obstetrics and Gynecology, 100(6), 1296–1300. http://doi.org/10.1016/S0029-
7844(02)02368-2 

Ganni, S., Botden, S. M. B. I., Chmarra, M., Goossens, R. H. M., & Jakimowicz, J. J. (2018). A 
software-based tool for video motion tracking in the surgical skills assessment landscape. 
Surgical Endoscopy and Other Interventional Techniques, 32(6), 2994–2999. 
http://doi.org/10.1007/s00464-018-6023-5 

Gawande, A. A. (2011). The Checklist Manifesto (1st ed.). New York: Metropolitan Books, 
Henry Holt and Company. 

Glarner, C. E., Hu, Y. Y., Chen, C. H., Radwin, R. G., Zhao, Q., Craven, M. W., … Greenberg, 
C. C. (2014). Quantifying technical skills during open operations using video-based 
motion analysis. Surgery (United States), 156(3), 729–734. 
http://doi.org/10.1016/j.surg.2014.04.054 



146 
 

 

Goldberg, L. (1970). Man versus model of man: A rationale, plus some evidence, for a method 
of improving on clinical inferences. Psychological Bulletin, 73(6), 422–432. 
http://doi.org/10.1037/h0029230 

Gordon, S., Mendenhall, P., & O’Connor, B. B. (2013). Beyond the Checklist (1st ed.). Ithaca: 
Cornell University Press. 

Greene, R. L., Azari, D. P., Hu, Y. H., & Radwin, R. G. (2017). Visualizing stressful aspects of 
repetitive motion tasks and opportunities for ergonomic improvements using computer 
vision. Applied Ergonomics, 65, 461–472. http://doi.org/10.1016/j.apergo.2017.02.020 

Groopman, J. (2008). How Doctors Think. Mariner Books. 

Hu, Y. Y., Peyre, S. E., Arriaga, A. F., Roth, E. M., Corso, K. A., & Greenberg, C. C. (2012). 
War stories: A qualitative analysis of narrative teaching strategies in the operating room. 
American Journal of Surgery, 203(1), 63–68. 
http://doi.org/10.1016/j.amjsurg.2011.08.005 

Huang, E., Wyles, S. M., Chern, H., Kim, E., & O’Sullivan, P. (2016). From novice to master 
surgeon: improving feedback with a descriptive approach to??intraoperative assessment. 
American Journal of Surgery, 212(1), 180–187. 
http://doi.org/10.1016/j.amjsurg.2015.04.026 

Karsh, B.-T. (2004). Beyond usability: designing effective technology implementation systems 
to promote patient safety. Quality & Safety in Health Care, 13(5), 388–94. 
http://doi.org/10.1136/qhc.13.5.388 

Kelly, J. F., Ritenour, A. E., McLaughlin, D. F., Bagg, K. a, Apodaca, A. N., Mallak, C. T., … 
Holcomb, J. B. (2008). Injury Severity and Causes of Death From Operation Iraqi 
Freedom and Operation Enduring Freedom: 2003–2004 Versus 2006. Journal of Trauma 
and Acute Care Surgery, 64(2), S21-S26; discussion S26-S27. 
http://doi.org/10.1097/TA.0b013e318160b9fb 

Khan, M. S., Bann, S. D., Darzi, A., & Butler, P. E. M. (2002). Suturing: A lost art. Annals of 
the Royal College of Surgeons of England, 84(4), 278–279. 
http://doi.org/10.1308/003588402320439748 

Kleinmuntz, B. (1992). Computers as clinicians: An update. Computers in Biology and 
Medicine, 22(4), 227–237. http://doi.org/10.1016/0010-4825(92)90062-R 

Kruse, A. L. D., Luebbers, H. T., Grätz, K. W., & Obwegeser, J. a. (2010). Factors influencing 
survival of free-flap in reconstruction for cancer of the head and neck: a literature review. 
Microsurgery, 30(3), 242–248. http://doi.org/10.1002/micr 

Law, K. E. (2016). Intra-operative errors and error management in chief surgical residents: 
Mechanisms of mistakes and strategies for recovery. 

Maier-Hein, L., Vedula, S., Speidel, S., Navab, N., Kikinis, R., Park, A., … Jannin, P. (2017). 
Surgical Data Science: Enabling Next-Generation Surgery. Retrieved from 
https://arxiv.org/abs/1701.06482 



147 
 

 

O’Neil, H. F., Perez, R. S., & Baker, E. L. (2014). Teaching and Measuring Cognitive Readiness. 
(H. F. O’Neil, R. S. Perez, & E. L. Baker, Eds.)Teaching and Measuring Cognitive 
Readiness (Vol. 9781461475). Boston, MA: Springer US. http://doi.org/10.1007/978-1-
4614-7579-8 

Perez, R. S., Skinner, A., Weyhrauch, P., Niehaus, J., Lathan, C., Schwaitzberg, S. D., & Cao, C. 
G. L. (2013). Prevention of surgical skill decay. Military Medicine, 178(10 Suppl), 76–
86. http://doi.org/10.7205/MILMED-D-13-00216 

Porte, M. C., Xeroulis, G., Reznick, R. K., & Dubrowski, A. (2007). Verbal feedback from an 
expert is more effective than self-accessed feedback about motion efficiency in learning 
new surgical skills. American Journal of Surgery, 193(1), 105–110. 
http://doi.org/10.1016/j.amjsurg.2006.03.016 

Reznick, R. K. (1993). Teaching and testing technical skills. The American Journal of Surgery, 
165(3), 358–361. http://doi.org/10.1016/S0002-9610(05)80843-8 

Rosen, M. A., Lazzara, E. H., Lyons, R., Salas, E., Mc Keever R. N., M., O., L. A. D., & N., M. 
B. R. (2010). Does Teamwork Improve Performance in the Operating Room? A 
Multilevel Evaluation. Number, 36(3), 133–142. Retrieved from All Papers/R/Rosen et 
al. 2010 - Does Teamwork Improve Performance in the Operating Room - A Multilevel 
Evaluation.pdf 

Rosenblatt, P. L., McKinney, J., & Adams, S. R. (2013). Ergonomics in the operating room: 
Protecting the surgeon. Journal of Minimally Invasive Gynecology, 20(6), 744. 
http://doi.org/10.1016/j.jmig.2013.07.006 

Ross, C., & Swetlitz, I. (2017). IBM pitched Watson as a revolution in cancer care. It’s nowhere 
close. Retrieved July 28, 2018, from https://www.statnews.com/2017/09/05/watson-ibm-
cancer/ 

Rutherford, D. N., D’Angelo, A.-L. D., Law, K. E., & Pugh, C. M. (2015). Advanced 
Engineering Technology for Measuring Performance. Surgical Clinics of North America, 
95(4), 813–826. http://doi.org/10.1016/j.suc.2015.04.005 

Salas, E., Cooke, N. J., & Rosen, M. a. (2008). On teams, teamwork, and team performance: 
discoveries and developments. Human Factors, 50(3), 540–7. 
http://doi.org/10.1518/001872008X288457. 

Sealy, W. C. (1999). Halsted is dead: Time for change in graduate surgical education. Current 
Surgery, 56(1–2), 34–39. http://doi.org/http://dx.doi.org/10.1016/S0149-7944(99)00005-
7 

Stefanidis, D., Sevdalis, N., Paige, J., Zevin, B., Aggarwal, R., Grantcharov, T., … Association 
for Surgical Education Simulation Committee. (2015). Simulation in surgery: what’s 
needed next? Annals of Surgery, 261(5), 846–53. 
http://doi.org/10.1097/SLA.0000000000000826 



148 
 

 

Steinhilber, B., Hoffmann, S., Karlovic, K., Pfeffer, S., Maier, T., Hallasheh, O., … Sievert, K. 
D. (2015). Development of an arm support system to improve ergonomics in laparoscopic 
surgery: study design and provisional results. Surgical Endoscopy and Other 
Interventional Techniques, 29(9), 2851–2858. http://doi.org/10.1007/s00464-014-3984-x 

Thomas, W. (2006). Teaching and assessing surgical competence. Annals of the Royal College 
of Surgeons of England, 88(5), 429–32. http://doi.org/10.1308/003588406X116927 

Tyler, J. A., Clive, K. S., White, C. E., Beekley, A. C., & Blackbourne, L. H. (2010). Current US 
Military Operations and Implications for Military Surgical Training. Journal of the 
American College of Surgeons, 211(5), 658–662. 
http://doi.org/10.1016/j.jamcollsurg.2010.07.009 

Wiegmann, D. A., Eggman, A. A., ElBardissi, A. W., Parker, S. H., & Sundt, T. M. (2010). 
Improving cardiac surgical care: A work systems approach. Applied Ergonomics, 41(5), 
701–712. http://doi.org/10.1016/j.apergo.2009.12.008 

Williams, R. G., Klamen, D. A., & Mcgaghie, W. C. (2003). Cognitive , Social and 
Environmental Sources of Bias in Clinical Performance Ratings. Teaching and Learning 
in Medicine, 15(4), 270–292. 

Williamson, R. (2004). Forgive and Remember: Managing Medical Failure, 2nd edition. Journal 
of the Royal Society of Medicine, 97(3), 147–148. http://doi.org/10.2307/2066542 

 

 

  



149 
 

 

Conclusion 

This thesis advances the role of digital video review in promoting objective performance 

measures of surgical skill. The papers in this dissertation: (1) define a unique and consistent 

terminology to frame surgical skill development throughout a surgical career, (2) identify 

meaningful features of hand-motion associated with increasing clinician experience, (3) 

automatically segment a continuous video record to support on-demand review, (4) predict 

expert rated surgical performance in benchtop settings and (5) extrapolate performance 

predictions to real-world settings in the operating room. While many studies focus on measuring 

surgical performance using sensors or robotic interfaces, this is the first study to accomplish 

these aims for open surgical tasks using marker-less motion tracking of digital video. A new 

model of surgical skill terminology is proposed, and each paper supports traceability within the 

modern argument-based approaches to validity. 

Increases in tenure through residency were associated with increasing movement of 

dominant hands, while the transition from residency to attending status was associated with 

reduced movement of the non-dominant hand, and less path length per cycle. This dissertation 

also advanced the ability to automatically deconstruct surgical video into discrete maneuvers and 

predict periods of suturing and tying with 79% accuracy – thereby enabling consistent 

predictions of cycle and completion rates for each participant. Expert rated performance was best 

predicted for fluidity of motion and motion economy rating scales. Both prediction models were 

extrapolated to video of operating room procedures and provided clear relationships between 

computer-predicted and expert-rated scores, albeit with an increased range of prediction for the 

real-world setting. The range of prediction in the operating room was similar to that of 

disagreement among the individual expert panelists of operating room tasks described in 

previous work. 
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The gains from each of these studies enable automatic and objective assessment of 

surgical performance, while providing consistent terminology and optimizing video collection, 

segmentation, and feedback. These abilities may culminate in future work with the design and 

testing of a software tool to provide formative assessment and feedback of surgical performance.  

 Despite these advances, the number of participants and settings involved in this study are 

limited. Not all experience levels completed all tasks, and the small number of retired 

participants, in particular, preclude findings which target the degradation of observable 

psychomotor skills following increased age or change in occupational role. Simulated tasks may 

not have been complex enough to uncover more intricate aspects of attending skill. This work 

also does not establish standards for objective summative assessments for competency or 

proficiency stages. Rather, we open the door to incorporate automatic deconstruction and 

performance assessment using surgical video. These results could be used for formative and 

ongoing quantitative assessment across all surgical roles.  

 Additional steps for this work include analyzing more complex simulated tasks that 

include shared workloads like bowel anastomoses. Promoting computer vision and video 

analysis of open surgical more broadly would also benefit from creation of publicly accessible, 

deidentified samples, similar to existing data sets available for robotic surgery. Continued 

recording in live operating room settings will enable additional extrapolation of performance and 

state predictions to real-world settings. Video capture, motion tracking, and calculation of 

meaningful metrics should also be integrated. These steps, while discussed here to promote study 

of surgical hand motion, are also widely beneficial to continuing efforts using video to detect and 

compare error management strategies, promote team coordination or communication, and 

improve operative skill through video-based coaching. 
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Appendices 

A. Can Surgical Performance for Varying Experience be Measured from Hand Motions? 

Article Citation: (Azari et al., 2018) 
 
Azari, D. P., Greenberg, J. A., Miller, B. L., Le, B. V., Greenberg, C. C., Pugh, C. M., … 
Radwin, R. G. (2018). Can Surgical Performance for Varying Experience be Measured from 
Hand Motion? [in press]. In 2018 Annual Meeting of the Human Factors and Ergonomics 
Society Conference Proceedings (p. 5). 

 

      Article included starting on following page.  
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Can Surgical Performance for Varying Experience be Measured 
from Hand Motions?

 
David P. Azari, Brady L. Miller, Brian V. Le, Jacob A. Greenberg, Caprice C. Greenberg,  

Carla M. Pugh, Yu Hen Hu, and Robert G. Radwin 
 

University of Wisconsin-Madison 
 

This study evaluates if hand movements, tracked using digital video, can quantify in-context surgical 
performance. Participants of varied experience completed simple interrupted suturing and running 
subcuticular suturing tasks. Marker-less motion tracking software traced the two-dimensional position of a 
region of the hand for every video frame. Four expert observers rated 219 short video clips of participants 
performing the task from 0 to 10 along the following visual analog scales: fluidity of motion, motion 
economy, tissue handling, and coordination. Expert ratings of attending surgeon hand motions (mean=7.5, 
sd=1.3) were significantly greater (p<0.05) than medical students (mean=5.0, sd=1.9) and junior residents 
(mean=6.4, sd=1.5) for all rating scales. Significant differences (p<0.02) in mean path length per cycle were 
also observed both between medical students (803 mm, sd=374) and senior residents (491 mm, sd=216), and 
attendings (424 mm, sd=250) and junior residents (609 mm, sd=187). These results suggest that substantial 
gains in performance are attained after the second year of residency and that hand kinematics can predict 
differences in expert ratings for simulated suturing tasks commensurate with experience – a necessary step 
to develop valid and automatic on-demand feedback tools.  
 

INTRODUCTION 
 

Surgeons must develop a wide array of skills to operate 
effectively. The intuitive connection between skill and patient 
outcome is increasingly apparent (Birkmeyer et al., 2013), 
further reinforcing pressure to quantify and document 
proficiency prior to operating on patients (Aggarwal & Darzi, 
2006). Assessing surgeon competency currently relies on 
subjective mentor observation and evaluation, in-training 
reports, and proxy measures such as case load and residency 
status (Hampton, 2015). Improving objective measures of skill 
is thus considered a critical step to systematically promote 
patient safety in the operating room (Reiley, Lin, Yuh, & 
Hager, 2011). The goal of this study is to examine the 
relationship between participant role (i.e. experience), 
observable hand motions, and expert-rated performance.
 The most studied surgical assessment scheme – the 
Objective Structured Assessment of Technical Skills (OSATS) 
– has a strong record of valid formative feedback during 
training (Hatala, Cook, Brydges, & Hawkins, 2015). 
Implementing OSATS, however, requires real-time review 
and rating along a series of Likert-based scales and procedure-
specific checklists. Correct application is resource intensive 
and time consuming (Reznick, Regehr, MacRae, Martin, & 
McCulloch, 1997); prompting exploration of more efficient 
assessment techniques such as “efficiency scores” and 
“snapshot assessments” (Datta, Bann, Mandalia, & Darzi, 
2006). We investigate if computer vision analysis of the hands 
can provide a valid, automatic and more efficient 
measurement of surgical performance. 
 
Motion Analysis 
 

Hand motions (also called hand kinematics) are 
increasingly examined as a mode to assess live surgical 
performance. Our previous studies have identified differences 

in speed, acceleration and displacement between dominant and 
non-dominant hands (Glarner et al., 2014), and during live 
cases in the operating room by role (attendings, residents), 
task (tying, suturing), and varying tissue types (Frasier et al., 
2016). There is also ongoing interest in representing surgical 
hand-motion patterns using computer automation (Ahmidi et 
al., 2015); and through metrics that seem to change with 
experience, such as “slowing down” (Moulton, Regehr, 
Lingard, Merritt, & MacRae, 2010), efficiency (Azari et al., 
2015), entropy (Mackenzie et al., 2016), and path length 
(Aggarwal et al., 2007). We hypothesize that these kinds of 
motion attributes may be used to measure expert-rated 
performance along a continuous scale of experience. 
 
Visual-Analog Scales 
 

Previously, we created and tested subjective rating scales 
for expert review of short video clips (5 to 30 seconds) of 
open procedures (Azari et al., 2017). We utilized the existing 
OSATS (i.e. respect for tissue, time and motion, and 
instrument handling) and the Global Operative Assessment of 
Laparoscopic Skills (GOALS, see Vassiliou et al., 2005) as 
assessment blueprints to create the following visual-analog 
scales ranging from 0-10: (1) fluidity of motion; (2) motion 
economy; (3) tissue handling; (4) coordination; (5) guidance; 
and (6) difficulty (see Figure 1). For the current study, experts 
rated performance along the first four scales using a custom 
computer program, while participants rated their own 
performance along all scales immediately after the task. 

 
METHOD 

 
Participants and setting 
 

Thirty-seven participants were recruited via 
departmental list serves and announcements during resident 
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training sessions. Medical students (n=10), junior residents 
(n=5), senior residents (n= 10), attending surgeons (n=10), and 
retired surgeons (n=2), agreed to have their hands recorded 
while completing three simple interrupted stitches, followed 
by a running subcuticular stitch. Junior residents were those 
who had completed up to three post-graduate years (PGY). 

 

Figure 1. Series of visual-analog scales used for expert (1-4) and 
participant retrospective (1-6) review, adapted from the Objective 
Structured Assessment of Technical Skills (OSATS) and Global 

Operative Assessment of Laparoscopic Skills (GOALS). 

Before suturing, each participant was asked to share their 
current training status (i.e. medical student, resident, 
attending, retired), years in position, and estimated case 
volume. Surgeon recruitment and participation was approved 
by the University of Wisconsin Social and Behavioral Health 
and Science Institutional Review Board. Written and informed 
consent was obtained from all participants. Interaction 
between participants was minimal. 

Digital video cameras were positioned to preserve 
anonymity, observing only the participants hands and working 
area (Figure 2). Standard size notecards enabled calibration of 
the video position record into physical units (i.e. mm). 
Recording began after participants reviewed and signed the 

consent agreement. Following each task, participants self- 
rated their performance along each of the visual analog scales 
(Figure 1).  

The incisions were simulated in 10.16cm x 10.16cm 
allevyn hydrocellular foam dressings. A scalpel was used to 
cut two incisions – one for each task – approximately 8cm in 
length and ½ the depth of the foam. Dressings were attached 
to 15.2cm x 15.2cm wood blocks for stability. A paper towel 
was folded and placed between the dressing and the wood 
block, stretching the foam so the interior of the incision would 
be visible.                              

 

 
Figure 2. Overhead camera view of standard suturing station.  
 
Motion Tracking 
 
 Clips of several active cycles (i.e. stitches) spanning 
20 to 80 seconds were extracted from each video. The first 
suturing cycle of medical student and resident activity was 
treated as an acclimation period and omitted from expert 
rating. All available cycles of attending and retired surgeons 
were included for review, due to their smaller numbers. In 
total, 219 clips were extracted from both simple interrupted 
suturing (n=85) and running subcuticular sewing (n=134) 
tasks. 
 We previously developed marker-less motion 
tracking software to trace the position of a region of interest 
(ROI) across successive video frames. This software was 
created in Matlab and C#, utilizing the open-source 
OpenCVSharp (.Net wrapper for the OpenCV) vision libraries. 
No sensors or unique features, other than the color and shape 
of a participant’s hand, are required to initialize the tracking 
program (Chen, Hu, & Radwin, 2015). Each frame of video 
produces a unique two-dimensional position as the ROI 
changes with the participant’s hand. Distinct ROI’s were 
created for each of the participant’s hands, and defined to 
include at least two knuckles, ensuring minimal migration in 
the ROI when the hand changed shape. An analyst initiated the 
tracking algorithm and provided manual corrections as 
necessary.  

The tracked record of the ROI location provides a rich 
spatiotemporal record. From the hand position at each frame, 
it is possible to calculate instantaneous displacement, speed, 
and acceleration. Additional measures compared by 
participant role (Table 1) include cycle frequency, path length 
per cycle, and jerk – the third derivative of position with 
respect to time. 
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Video Review 
 

Four expert reviewers rated each video along the first 
four measures in Figure 1. The videos were randomly 
presented via a custom software applet (Figure 3), distributed 
on USB stick. Each reviewer completed a calibration activity 
prior to rating, in which they watched several benchmark 
examples and compared any discrepancies between their 
hypothetical rating and a previously determined panel 
consensus (see Azari et al., 2017). 

 

 
Figure 3. Standalone USB program interface for expert review and 
rating of surgical clips. 

Rating Differences 
 

Interrater reliability was assessed using the intraclass 
correlation coefficient (ICC) assuming a two-way mixed-
effects model with multiple raters. Both absolute and 
consistency measures are reported. For clarity, single-rater 
coefficients are also reported. Median ratings among experts 
were used to generate the averages for each sample.  

Differences among experience levels for each scale were 
tested using One-Way ANOVA and Tukey’s Honestly 
Significant Difference (HSD) tests, given indications of 
normal distribution via the Shapiro-Wilks test. In the event 
data was non-normally distributed, Kruskal-Wallis tests were 
used to analyze significant differences, with pair-wise Wilcox 
tests utilizing the Benjamini and Hochberg p-value correction 
for multiple comparisons, to examine differences between 
groups. 

 
RESULTS 

 
This section describes how hand motion and expert and 

self-ratings of performance vary by role and skill levels.  
 
Hand motion 
 

Average dominant-hand kinematic results are provided 
in Table 1. Speed, acceleration, and jerk tended to increase as 
medical students became residents, and peak prior to 
becoming attendings. Retired surgeons exhibited slower speed 
and acceleration on average, but also a smaller path length per 
cycle. Path length per cycle of medical students differed 

significantly (p<0.02) from attendings, senior residents, and 
retired surgeons.  
 
Expert Ratings 
 

Intraclass correlation coefficients (ICC’s) revealed good 
reliability among the means (absolute, consistency) of the four 
raters for fluidity of motion (0.83,0.85). motion economy 
(0.82,0.84), coordination (0.77,0.81), with poorer reliability 
for tissue handling (0.69,0.69). However, there was less 
reliability among individual panelists (absolute, consistency) 
for each of fluidity of motion (0.55,0.58), motion economy 
(0.52,0.57), tissue handling (0.35,0.36), and coordination 
(0.46,0.51).  

Mean expert and self-ratings are summarized in Figure 4. 
Attending surgeon ratings were higher than all other groups 
for all scales, but there were no significant differences 
between attending surgeon and senior resident ratings. Due to 
the small sample size, retired surgeon ratings were omitted 
from significance testing. 
 

Table 1. Observed mean kinematics. 

 n Speed 
(mm/s) 

Accl. 
(mm/s2) 

Jerk 
(mm/s3) 

CF 
(hz) 

PLC 
(mm) 

Role       

MS 22 70.04 554.42 178.34 0.10 802.57 

JR 10 71.71 597.54 197.51 0.14 609.15 

SR 20 78.17 651.09 216.41 0.18 490.67 
AT 20 71.52 587.50 191.62 0.18 423.87 

RT 4 56.74 474.19 160.26 0.14 300.91 

Task       
SI 36 74.32 633.04 206.24 0.20 407.04 

RS 36 68.48 541.00 178.99 0.11 702.05 

Role by Task      

MS-SI 9 70.11 585.14 188.85 0.15 539.23 
MS-RS 9 63.53 483.91 154.65 0.07 1054.25 
JR-SI 5 72.87 615.72 197.45 0.18 463.82 
JR-RS 5 70.55 579.36 197.57 0.10 754.48 

SR-SI 10 77.77 669.32 220.52 0.23 357.34 

SR-RS 10 78.57 632.86 212.29 0.13 624.00 

AT-SI 10 78.01 667.73 217.14 0.23 337.47 
AT-RS 10 65.04 507.26 166.10 0.13 510.28 
RT-SI 2 61.11 537.03 180.55 0.18 266.56 
RT-RS 2 52.36 411.35 139.98 0.09 335.26 

MS, Medical student. JR, Junior resident. SR, Senior resident. AT, Attending 
surgeon. RT, Retired surgeon. SI, Simple interrupted suturing. RS, Running 
subcuticular suturing. Accl., Acceleration. CF, Cycle frequency. PLC, Path 
length per cycle.  
 

Fluidity of motion. Clips of attending surgeons were 
rated as more fluid (mean=7.1, sd=1.5) for all groups (p<0.05) 
other than senior residents (mean=6.8, sd=1.5). Medical 
students (mean=4.1, sd=1.9), were rated as less fluid than all 
other groups (p<0.04). Senior residents outperformed junior 
residents (mean=5.7, sd=1.6, p<0.03).  

Motion economy. Medical student ratings (mean=4.3, 
sd=1.8) were significantly lower (p<0.01) than those for junior 
residents (mean=5.8, sd=1.6), senior residents (mean=6.8, sd = 
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1.4), and attendings (mean=7.0, sd=1.3). Senior residents and 
attending surgeons were rated similarly (p=0.29).  
 Tissue Handling. Differences (p<0.01) were 
observed between attendings (mean=7.8, sd=0.9) and both 
medical students (mean=5.9, sd=1.4) and junior residents 
(mean=6.9, sd=1.1). While senior residents (mean=7.7, 
sd=0.9) were rated higher than junior residents (p=0.01), there 
was no difference between attendings and senior residents 
(p=0.38). 

Coordination. Attending surgeon coordination ratings 
(mean=7.8, sd=1.0) and senior resident ratings (mean=7.6, 
sd=1.2) were higher than those for medical students 
(mean=5.6, sd=1.9, p<0.02), but not for senior residents 
(p=0.22).  

 

 
Figure 4.  Mean performance on a 0 to 10 scale by participant role for 
expert ratings (A) and self-ratings (B).  

Self-Ratings 

Motion economy. Medical student self-ratings 
(mean=4.3, sd=22) were significantly lower (p<0.01) than 
senior residents (mean=6.7, sd=11) and attending surgeons 
(mean=7.2, sd=20), but not junior residents (mean=5.6, 
sd=1.1, p=0.08).  

Fluidity. Attendings rated their own fluidity (mean=7.4, 
sd=2.0) higher than medical students (mean=4.3, sd=2.0, 
p<0.01) and junior residents (mean=5.3, sd=1.0, p<0.01), but 
not senior residents (mean=6.6, sd=1.3, p>0.10). Senior 
residents (mean=6.6, sd=1.3) rated themselves higher than 
junior residents (p<0.01). 

Tissue handling. Attendings (mean=7.9, sd=1.4) and 
senior residents (mean=7.0, sd=1.5) rated their performance 
higher than medical students (mean=5.6, sd=1.8, p<0.02). 
There were no other significant differences by group. 

Coordination. Kruskal-Wallis tests did not indicate any 
significant differences in self-ratings by experience group. 

Guidance. Medical students (mean=7.4, sd=2.1) rated 
themselves lower than the combined residents (mean=9.2, 
sd=1.4, p=0.03), and attending surgeons (mean=9.9, sd=0.5, 
p=0.03).  

Difficulty.  There were no significant differences 
between difficulty ratings for residents (mean=3.0, sd=1.0) 
and attendings (mean=2.5, sd=1.9). Medical students, 
however, rated difficulty significantly higher than both 
residents (p<0.02) and attendings (p<0.15). 
 

DISCUSSION 
  

This study builds on previous work testing visual-analog 
rating scales of surgical performance. Recurring significant 
differences in expert ratings between junior and senior 
residents suggest that observable performance develops 
significantly following the second PGY. In turn, it may be 
possible to measure expert-rated performance as hand motion 
develops with experience. Self-ratings, however, among junior 
and senior residents only exhibited differences for the motion 
economy, fluidity and guidance scales. This indicates that 
residents are not recognizing or interpreting the same 
differences in coordination and tissue handling that experts are 
observing in their performance.  

While some differences in rating are consistently 
pronounced (consider medical students vs senior residents and 
junior residents vs attendings, for example) there was little 
difference in expert rating between senior residents and 
attending surgeons. This suggests that the selected tasks may 
not be robust enough to measure differences as residents 
prepare to graduate. Skills developed after residency may only 
be visibly distinct during more complex cases or during 
procedures involving friable tissues – tasks which require 
more intricate features of attendings’ practiced abilities like 
advanced cognitive decision making and efficient planning 
(Madani et al., 2017). Performance in these domains may be 
indicative of the lower path length observed for attendings, 
despite similar cycle frequencies between the two groups. 

Still, significant differences in hand motion observed by 
role in this study are limited. Additional motion measures such 
as curvature and idle time may further add to measuring 
performance. Applying cyclic measurements of hand motion 
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(i.e. path length per cycle) to measure performance, however, 
depends on automatically identifying distinct stages of a task 
such as tying a knot, reaching for a new suture, and driving a 
needle – avenues of future work.  

The techniques in this study do not rely on markers or 
sensors but require a clear, consistent, and non-obstructed 
view of the hands. Finding a camera position with minimal 
distortion and minimal occlusion from head movement is 
challenging. Even with ideal camera placement, the surgeon’s 
head occasionally occludes the hands, and all surgeons had 
periods where their hands leave the frame. These instances are 
processed manually, slowing down our ability to translate 
hand motion into a useful data record. Extensive time was also 
allocated to reviewing and ensuring that the tracking result 
matched the hand location for all frames, and that motions 
from any extraneous behaviors were excluded. Medical 
students would occasionally pause to ask a question, or 
otherwise make a statement in which they used their hands to 
gesture. These periods were manually identified and removed.  

There are also several audio-visual challenges to scaling 
up this kind of study, including correct frame identification, 
frame-rate (or dropped frame) and video codec conversion, 
compression, and calibration. These challenges can be 
overcome, given certain filming and software settings, but 
they pose a significant hurdle to wide-spread adoption and 
consistent review in healthcare. The required materials, on the 
other hand, are readily accessible (i.e. webcams, foam 
dressings, video software), and could be widely distributed.  

Future work will focus on expanding the available 
motion metrics, exploring the relationship between self and 
expert ratings by task type, and using significant kinematic 
measures identified in this study to automatically predict 
expert ratings across the range of experience and observed 
performance. 

 
CONCLUSIONS 

  
This study utilized digital video and computer vision of 

hand motion during simulated suturing tasks to examine the 
relationship between hand kinematics and performance 
ratings. Experts rated senior residents and attending surgeons 
consistently higher than medical students and junior residents 
for motion economy, fluidity of motion, tissue handling, and 
coordination. Statistically significant differences in ratings and 
hand motions were discovered for varying experience groups. 
Fluidity of motion and path length per cycle were the most 
distinct measures of participant performance. These results 
suggest that computer vision of hand motion can predict 
differences in expert ratings for simulated suturing tasks 
commensurate with experience, enabling valid and automatic 
on-demand feedback tools for surgical training and coaching. 
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B. Software Rating Program 

This program is written in C#, and accomplishes the following:  

1. Loads window to prompt for user name (demographic). 

2. Loads (randomly) all videos saved in video folder. 

3. Saves all user changes in summary file saved to “sessions” folder. 

Upon opening, the program saves a “session” with the username and date. This is also the 

name of a csv file, stored in a “sessions” folder which includes video order, and number of 

completed ratings after each “save and…” selection made by the user. All user interaction are 

saved in a “backups” folder for error tracing. The user can return to complete un-rated videos at a 

later time, given that they choose to open the previously saved “session” from the first screen.  
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Program.cs 
 

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Threading.Tasks; 
using System.Windows.Forms; 
namespace v3 
{ 
static class Program 
{ 
/// <summary> 
/// The main entry point for the application. 
/// </summary> 
[STAThread] 
static void Main() 
{ 
Application.EnableVisualStyles(); 
Application.SetCompatibleTextRenderingDefault(false); 
Application.Run(new Demographic()); 
} 
} 
} 
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Demographic.cs 
 

using System; 
using System.IO; 
using System.Collections.Generic; 
using System.ComponentModel; 
using System.Data; 
using System.Drawing; 
using System.Linq; 
using System.Text; 
using System.Threading.Tasks; 
using System.Windows.Forms; 
 
namespace v3 
{ 
    public partial class Demographic : Form 
    { 
        public static string userName; 
        public static string csvSessionToRead; 
        public static bool continuePreviousExperiment; 
        public static string mainPath = 
Path.GetFullPath(System.IO.Directory.GetCurrentDirectory());//MAIN PATH 
         
         
        public Demographic() 
        { 
            Console.WriteLine("Main path is:" + mainPath); 
 
            InitializeComponent(); 
            prevExperiment.Enabled = false; //Set initial state of prev exp button to false, so can't 
load up anything 
            Console.WriteLine("demographic activated"); 
             
 
            //Populate list of CSVs 
            string[] csvSessionFiles = Directory.GetFiles(mainPath + "\\sessions\\", 
"*.csv*").Select(Path.GetFileName).ToArray(); 
            for(int f = 0; f < csvSessionFiles.Length; f++) 
            { 
                listBox1.Items.Add(csvSessionFiles[f]); 
                Console.WriteLine(csvSessionFiles[f] + " added to box."); 
            } 
        } 
 
        private void StartExperiment_Click(object sender, EventArgs e) 
        { 
            //string filePath = Environment.GetFolderPath(Environment.SpecialFolder.Desktop); 
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            //string fullSaveFolderPath = filePath + "\\TestCSVWrite\\" + nameField.Text + ".csv"; 
            userName = nameField.Text; 
            Console.WriteLine("userName" + userName); 
 
            continuePreviousExperiment = false; //Start with clean slate... 
 
 
            RatingApplet R = new RatingApplet(); 
            R.Show(); 
            this.Hide(); 
            Console.WriteLine("Start Experiment Button Clicked"); 
        } 
 
        private void prevExperiment_Click(object sender, EventArgs e) 
        { 
            continuePreviousExperiment = true; //Continue where we left off... 
            userName = nameField.Text; 
            Console.WriteLine("userName" + userName); 
 
            RatingApplet R = new RatingApplet(); 
            R.Show(); 
            this.Hide(); 
            Console.WriteLine("Cont Prev Experiment Button Clicked"); 
        } 
              
 
 
        private void Demographic_Load(object sender, EventArgs e) 
        { 
            nameField.Text = Environment.UserName; 
 
            Console.WriteLine("demographic load"); 
        } 
 
        private void name_TextChanged(object sender, EventArgs e) 
        { 
            userName = nameField.Text; 
            Console.WriteLine(userName); 
        } 
 
        private void userNamePrompt_Click(object sender, EventArgs e) 
        { 
            userName = nameField.Text; 
            Console.WriteLine(userName); 
        } 
 
 
        private void listBox1_SelectedIndexChanged_1(object sender, EventArgs e) 
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        { 
            if (listBox1.SelectedItem == null) 
            { 
                prevExperiment.Enabled = false; //Disallow button click 
 
                //DO NOTHING 
                Console.WriteLine("NOTHING DONE"); 
                listBox1.ClearSelected(); 
 
            } else //SAVE CSV FILE FOR LATER READ IN 
            { 
                prevExperiment.Enabled = true; //allow button click 
 
                csvSessionToRead = mainPath + "\\sessions\\" + listBox1.SelectedItem.ToString(); 
                Console.WriteLine(csvSessionToRead); 
            } 
        } 
 
        private void label2_Click(object sender, EventArgs e) 
        { 
 
        } 
    } 
} 
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Demographic.Designer.cs 
 

using System; 
using System.IO; 
 
namespace v3 
{ 
    partial class Demographic 
    { 
        /// <summary> 
        /// Required designer variable. 
        /// </summary> 
        private System.ComponentModel.IContainer components = null; 
 
        /// <summary> 
        /// Clean up any resources being used. 
        /// </summary> 
        /// <param name="disposing">true if managed resources should be disposed; otherwise, 
false.</param> 
        protected override void Dispose(bool disposing) 
        { 
            if (disposing && (components != null)) 
            { 
                components.Dispose(); 
            } 
            base.Dispose(disposing); 
        } 
 
        #region Windows Form Designer generated code 
 
        /// <summary> 
        /// Required method for Designer support - do not modify 
        /// the contents of this method with the code editor. 
        /// </summary> 
        private void InitializeComponent() 
        { 
            this.nameField = new System.Windows.Forms.TextBox(); 
            this.StartExperiment = new System.Windows.Forms.Button(); 
            this.userNamePrompt = new System.Windows.Forms.Label(); 
            this.prevExperiment = new System.Windows.Forms.Button(); 
            this.listBox1 = new System.Windows.Forms.ListBox(); 
            this.label1 = new System.Windows.Forms.Label(); 
            this.label2 = new System.Windows.Forms.Label(); 
            this.SuspendLayout(); 
            //  
            // nameField 
            //  
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            this.nameField.Font = new System.Drawing.Font("Microsoft Sans Serif", 12F, 
System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0))); 
            this.nameField.Location = new System.Drawing.Point(252, 20); 
            this.nameField.Margin = new System.Windows.Forms.Padding(2); 
            this.nameField.Name = "nameField"; 
            this.nameField.Size = new System.Drawing.Size(167, 26); 
            this.nameField.TabIndex = 0; 
            this.nameField.Text = "<username>"; 
            this.nameField.TextAlign = System.Windows.Forms.HorizontalAlignment.Center; 
            this.nameField.TextChanged += new System.EventHandler(this.name_TextChanged); 
            //  
            // StartExperiment 
            //  
            this.StartExperiment.Font = new System.Drawing.Font("Microsoft Sans Serif", 14.25F, 
System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0))); 
            this.StartExperiment.Location = new System.Drawing.Point(41, 67); 
            this.StartExperiment.Margin = new System.Windows.Forms.Padding(2); 
            this.StartExperiment.Name = "StartExperiment"; 
            this.StartExperiment.Size = new System.Drawing.Size(378, 75); 
            this.StartExperiment.TabIndex = 1; 
            this.StartExperiment.Text = "Begin new rating session"; 
            this.StartExperiment.UseVisualStyleBackColor = true; 
            this.StartExperiment.Click += new System.EventHandler(this.StartExperiment_Click); 
            //  
            // userNamePrompt 
            //  
            this.userNamePrompt.AutoSize = true; 
            this.userNamePrompt.Font = new System.Drawing.Font("Microsoft Sans Serif", 12F, 
System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0))); 
            this.userNamePrompt.Location = new System.Drawing.Point(37, 23); 
            this.userNamePrompt.Name = "userNamePrompt"; 
            this.userNamePrompt.Size = new System.Drawing.Size(192, 20); 
            this.userNamePrompt.TabIndex = 2; 
            this.userNamePrompt.Text = "Please confirm username:"; 
            this.userNamePrompt.Click += new System.EventHandler(this.userNamePrompt_Click); 
            //  
            // prevExperiment 
            //  
            this.prevExperiment.Font = new System.Drawing.Font("Microsoft Sans Serif", 14.25F, 
System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0))); 
            this.prevExperiment.Location = new System.Drawing.Point(41, 387); 
            this.prevExperiment.Name = "prevExperiment"; 
            this.prevExperiment.Size = new System.Drawing.Size(378, 65); 
            this.prevExperiment.TabIndex = 3; 
            this.prevExperiment.Text = "Continue previous session"; 
            this.prevExperiment.UseVisualStyleBackColor = true; 
            this.prevExperiment.Click += new System.EventHandler(this.prevExperiment_Click); 
            //  
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            // listBox1 
            //  
            this.listBox1.FormattingEnabled = true; 
            this.listBox1.Location = new System.Drawing.Point(41, 248); 
            this.listBox1.Name = "listBox1"; 
            this.listBox1.Size = new System.Drawing.Size(378, 121); 
            this.listBox1.TabIndex = 4; 
            this.listBox1.SelectedIndexChanged += new 
System.EventHandler(this.listBox1_SelectedIndexChanged_1); 
            //  
            // label1 
            //  
            this.label1.AutoSize = true; 
            this.label1.Font = new System.Drawing.Font("Microsoft Sans Serif", 12F, 
System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0))); 
            this.label1.Location = new System.Drawing.Point(27, 212); 
            this.label1.Name = "label1"; 
            this.label1.Size = new System.Drawing.Size(413, 20); 
            this.label1.TabIndex = 5; 
            this.label1.Text = "Select a session below, and click on \"continue\" to resume"; 
            //  
            // label2 
            //  
            this.label2.AutoSize = true; 
            this.label2.Font = new System.Drawing.Font("Microsoft Sans Serif", 12F, 
System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0))); 
            this.label2.Location = new System.Drawing.Point(192, 180); 
            this.label2.Name = "label2"; 
            this.label2.Size = new System.Drawing.Size(59, 20); 
            this.label2.TabIndex = 6; 
            this.label2.Text = "~ OR ~"; 
            this.label2.Click += new System.EventHandler(this.label2_Click); 
            //  
            // Demographic 
            //  
            this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F); 
            this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font; 
            this.ClientSize = new System.Drawing.Size(461, 473); 
            this.Controls.Add(this.label2); 
            this.Controls.Add(this.label1); 
            this.Controls.Add(this.listBox1); 
            this.Controls.Add(this.prevExperiment); 
            this.Controls.Add(this.userNamePrompt); 
            this.Controls.Add(this.StartExperiment); 
            this.Controls.Add(this.nameField); 
            this.Margin = new System.Windows.Forms.Padding(2); 
            this.Name = "Demographic"; 
            this.Text = "Demographic"; 
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            this.Load += new System.EventHandler(this.Demographic_Load); 
            this.ResumeLayout(false); 
            this.PerformLayout(); 
 
        } 
 
        #endregion 
 
        private System.Windows.Forms.TextBox nameField; 
           
        private System.Windows.Forms.Button StartExperiment; 
        private System.Windows.Forms.Label userNamePrompt; 
        private System.Windows.Forms.Button prevExperiment; 
        private System.Windows.Forms.ListBox listBox1; 
        private System.Windows.Forms.Label label1; 
        private System.Windows.Forms.Label label2; 
    } 
}  
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Main Form 
 
using System; 
using System.IO; 
using System.Collections.Generic; 
using System.ComponentModel; 
using System.Data; 
using System.Drawing; 
using System.Linq; 
using System.Text; 
using System.Threading.Tasks; 
using System.Windows.Forms; 
using System.Text.RegularExpressions; 
using System.Net.Mail;//1116 
 
namespace v3 
{ 
    public partial class RatingApplet : Form 
    { 
        //PRELOAD DEMOGRAPHIC FORM: 
        //The first screen to collect information and setup experient 
        Demographic userData = new Demographic(); 
        
        //DECLARE THINGS 
        public int pageIndex = 0; //Will follow pages (i.e. videos) 
        public int btnClick = 0; //Will follow clicks of "save results" (i.e. rows in the tracking 
spreadsheet...  
 
        bool emailAvailed = false; 
 
        string oldFileName; 
        string copyFileName; 
 
        string sessionName = (Demographic.userName + "_" + 
DateTime.Now.ToString("yyyyMMddhhmmssfff") + ".csv"); 
 
        string driveLetter = Demographic.mainPath.Split(':')[0]; // NEW FOR 20180327 
        string trueUserName = Demographic.userName; // REPLACED W. PREVIOUS IS 
LOADED 
 
        string sessionPathFolder; 
        string sessionPathFull; //Holds the path for ALL RESULTS (timeseries of interactions) 
         
        string[] videoFiles; //Contains all the paths for all videos within a defined directory... 
 
        //string vFile; //Container for my own stupid programming mistakes :( 
 
        Random rnd = new Random(); //Enables random function below 
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        int[] randOrder; //Contains the randomized order of all videos to be loaded...  
 
        int numComp = 0; //Initialized just in case open and don't finish anything 
 
        //RATING ARRAYS 
        string[] videoFilePaths; 
         
        int[] rateS1; 
        int[] rateS2; 
        int[] rateS3; 
        int[] rateS4; 
 
        string[] annot;//Store annotations for each video 
        string[] vidCompleteYrN; 
 
        List<string> lines = new List<string>(); 
 
        public RatingApplet() 
        { 
            InitializeComponent(); 
            TopMost = true; 
            selectVideoSet();//MOVED FROM AXMEDIA PLAYER 
            loadVideo(pageIndex);//MOVED FROM AXMEDIA PLAYER 
            resetSliderValues(pageIndex); 
            updateProgressBar(pageIndex); 
 
        } 
 
        private int[] getRandomOrder(int numberOfVideoFiles) 
        { 
            int[] randomOrder = new int[numberOfVideoFiles];//Initialize random order array of size 
#videos! 
 
            for (int k = 0; k < numberOfVideoFiles; k++) 
            { 
                randomOrder[k] = -1; 
            } 
            int i = 0; 
            while (i < numberOfVideoFiles) 
            { 
                var ii = rnd.Next(0, numberOfVideoFiles); 
                if (!randomOrder.Contains(ii)) 
                { 
                    randomOrder[i] = ii; 
                    i++; 
                } 
            } 
            return randomOrder; 
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        } 
 
        private void loadVideo(int videoNumberToLoad) 
        { 
            Console.WriteLine("Drive letter is: " + driveLetter); 
             
            string fileHolderTemp; 
            //Console.WriteLine("annotation herez: " + annot[videoNumberToLoad]); 
            annotations.Text = annot[videoNumberToLoad]; //Update annotation 
 
            if (Demographic.continuePreviousExperiment == true) 
            { 
               fileHolderTemp = videoFilePaths[videoNumberToLoad].Split(':')[1]; 
               videoPlayer.URL = string.Concat(driveLetter + ":" + fileHolderTemp); 
                //videoPlayer.URL = videoFilePaths[videoNumberToLoad]; //REMOVED FOR 
TESTING 
                //vFile = videoFilePaths[videoNumberToLoad]; 
                //Console.WriteLine("LoadVid: " + videoFilePaths[videoNumberToLoad]); 
                Console.WriteLine("LoadVid: " + string.Concat(driveLetter, ":", fileHolderTemp)); 
            } else { 
                 
                fileHolderTemp = videoFilePaths[randOrder[videoNumberToLoad]].Split(':')[1]; 
                videoPlayer.URL = string.Concat(driveLetter + ":" + fileHolderTemp); 
                //videoPlayer.URL = videoFilePaths[randOrder[videoNumberToLoad]]; 
                //vFile = videoFilePaths[randOrder[videoNumberToLoad]]; 
                Console.WriteLine("LoadVid: " + string.Concat(driveLetter, ":", fileHolderTemp)); 
 
            } 
                 
               // Console.WriteLine("RandVid: " + randOrder[videoNumberToLoad]); 
                Console.WriteLine("BtnClck: " + btnClick); 
                Console.WriteLine("PageInd: " + videoNumberToLoad); 
                Console.WriteLine("SliderV: " + (((double)slider1.Value) / 10).ToString()); 
                Console.WriteLine("RaterS1: " + rateS1[videoNumberToLoad]); 
             
        } 
 
        private void selectVideoSet() 
        { 
            DialogResult closing = MessageBox.Show( 
                "Please watch each video and drag the sliders accordingly. Any changes you make to 
the slider positions are saved as you go." + Environment.NewLine + Environment.NewLine + 
                "SAVE AND CONTINUE LATER: Since your progress is saved, feel free to skip over 
individual videos or navigate with the 'go to next' and 'go to back' buttons, or quit at any time." + 
Environment.NewLine + Environment.NewLine + 
                "You can return later, and as many times as you wish in order to finish previous 
sessions (listed on the previous page). You won't have to re-rate any videos if you load a 
previous session." + Environment.NewLine + Environment.NewLine + 
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                "If you have trouble, please let David know: [Contact Information Redacted]." + 
                Environment.NewLine + 
                sessionPathFull, 
                //+ Environment.NewLine , 
                //+ Environment.NewLine + "Would you like to close the program now?"), 
                "Thank you for taking the time to participate!", 
               MessageBoxButtons.OK); 
 
            if (Demographic.continuePreviousExperiment == true) 
            { 
                 
                sessionName = Demographic.csvSessionToRead; 
                trueUserName = sessionName.Split('\\').Last(); 
                trueUserName = trueUserName.Split('_').First(); // FOR DISPLAY ONLY 
 
                MessageBox.Show("Program will resume previous session, " + trueUserName + " 
from the first incomplete video. "); 
 
                string[] words = sessionName.Split('\\'); 
                oldFileName = words[words.Length-1]; 
                Console.WriteLine("select video set: oldFileName = " + oldFileName); 
                string[] temp = oldFileName.Split('-'); 
                sessionName = temp[temp.Length - 1]; 
                oldFileName = Demographic.mainPath + "\\sessions\\" + oldFileName; 
 
                copyFileName = Demographic.mainPath + "\\backups\\" + "RELOADED - " + 
sessionName + DateTime.Now.ToString("yyyyMMddhhmmssfff") + ".csv"; 
                System.IO.File.Copy(oldFileName, copyFileName); 
                 
                sessionPathFolder = Demographic.mainPath + "\\output\\"; 
                sessionPathFull = sessionPathFolder + sessionName; 
 
                //Console.WriteLine("TRUE SESSION NAME ADAPTITION!" + sessionName); 
                                
                //Console.WriteLine("REACHED NEW SECTION, BOOYAH"); 
 
                var path = @Demographic.mainPath; 
 
                List<string> retro_vidPath = new List<string>(); 
                List<int> retro_vidOrdr = new List<int>(); 
                List<int> retro_c01 = new List<int>(); 
                List<int> retro_c02 = new List<int>(); 
                List<int> retro_c03 = new List<int>(); 
                List<int> retro_c04 = new List<int>(); 
                List<string> retro_annot = new List<string>(); 
                List<string> retro_vidComplete = new List<string>(); 
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                //string[] compSwitch; 
 
                using (var reader = new StreamReader(Demographic.csvSessionToRead)) 
                { 
                    //int f = 0; 
                    while (!reader.EndOfStream) 
                    { 
                        var line = reader.ReadLine(); 
                        var values = line.Split(','); 
 
                        //compSwitch = values[0].Split('\\'); //ADDED S.T. ONLY pATH AFTER 
INITIAL LETTER  
                        retro_vidPath.Add(values[0]); 
                        //retro_vidPath.Add(compSwitch[2]); 
                        //retro_vidOrdr.Add(Convert.ToInt32(values[1])); 
                        retro_c01.Add(Convert.ToInt32(values[1])); 
                        retro_c02.Add(Convert.ToInt32(values[2])); 
                        retro_c03.Add(Convert.ToInt32(values[3])); 
                        retro_c04.Add(Convert.ToInt32(values[4])); 
                        retro_vidComplete.Add(values[5]); 
                        retro_annot.Add(values[6]); 
 
                        Console.WriteLine("should see the annotation here: " + values[6]); 
                                                
                    } 
                };  
                //UPDATE TRACKER ARRAYS TO MATCH LOADED CSV FILE 
                videoFilePaths = retro_vidPath.ToArray(); 
                randOrder = Enumerable.Range(0,videoFilePaths.Length).ToArray(); 
                rateS1 = retro_c01.ToArray(); 
                rateS2 = retro_c02.ToArray(); 
                rateS3 = retro_c03.ToArray(); 
                rateS4 = retro_c04.ToArray(); 
                vidCompleteYrN = retro_vidComplete.ToArray(); 
                annot = retro_annot.ToArray(); 
                videoFiles = videoFilePaths; 
 
                //After storing all variables into arrays, delete!  
                //System.IO.File.Delete(oldFileName); 
 
                Console.Write(vidCompleteYrN); 
                 
                //NEW 1114 update to last completed :D 
                int v = 0; 
                while (vidCompleteYrN[v] == "y") 
                { 
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                  Console.WriteLine(vidCompleteYrN[v] + " is entry in vidComplete arry ind of " + 
v); 
                    v++; 
                   
                    if(v + 1 > vidCompleteYrN.Length) 
                    { 
                        //v = v - 1;  
                       Console.WriteLine("BOOYAAAA TIS OK - SHOULD LOAD #7!"); 
                       pageIndex = vidCompleteYrN.Length-1; Console.WriteLine("v pg ind = " + 
pageIndex); 
                        emailDavid(); 
                        break; 
                    } else 
                    { 
                        pageIndex = v; 
                    } 
                } 
 
            } 
            else 
            { 
                //DEFINE VIDEO DIRECTORY 
                string videoFilesPath = (Demographic.mainPath + "\\videos\\"); 
                Console.WriteLine(("Video Directory: " + videoFilesPath)); 
                videoFilePaths = Directory.GetFiles(videoFilesPath); 
 
 
                //RANDOMIZE LOAD ORDER OF FOR ALL DIRECTORY VIDEO FILES 
                randOrder = getRandomOrder(videoFilePaths.Length); 
                Console.WriteLine(randOrder); 
 
                //INITIALIZE ALL THE SLIDER STORAGE ARRAYS 
                rateS1 = Enumerable.Repeat(-1, videoFilePaths.Length).ToArray(); 
                rateS2 = Enumerable.Repeat(-1, videoFilePaths.Length).ToArray(); 
                rateS3 = Enumerable.Repeat(-1, videoFilePaths.Length).ToArray(); 
                rateS4 = Enumerable.Repeat(-1, videoFilePaths.Length).ToArray(); 
                annot = Enumerable.Repeat(String.Empty, videoFilePaths.Length).ToArray(); 
                vidCompleteYrN = Enumerable.Repeat("n", videoFilePaths.Length).ToArray(); 
            } 
 
            //MOVED UP FROM BELOW! Hope this helps... 
            sessionPathFolder = (Demographic.mainPath + "\\output\\"); 
            sessionPathFull = (Demographic.mainPath + "\\output\\" + sessionName); //Session 
names will not overwrite, as they are uniquely dated. 
 
 
        } 
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        private void emailDavid() 
        { 
            string mailto = string.Format("mailto:{0}?Subject={1}&attachment={2}&Body={3}", 
                "[contact info redacted]", 
                "COMPLETED "+sessionName, 
                sessionPathFull, 
                Demographic.userName + " has completed all ratings. Please arrange to pick up the 
USB.    " + DateTime.Now.ToString("yyyyMMddhhmmssfff")); 
 
            if (!emailAvailed) //IF HAVEN"T OPENED WINDOW YET, DO SO. Otherwise, do 
nothing!  
            { 
               System.Diagnostics.Process.Start(mailto); 
            } 
 
            emailAvailed = true;  
        } 
 
        private void axWindowsMediaPlayer1_Enter(object sender, EventArgs e) 
        { 
            int temp = 1; //Just check for ALL COMPLETED --> replaced temp = pageIndex 
            Console.WriteLine("reached axMedia main loop - page index is " + pageIndex + " temp 
is" + temp); 
            //TRYING TO MOVE THINGS AROUND 1134, moved from AXMediaPlayer 
MENACE - tried at 11:44 
            while (vidCompleteYrN[temp] == "y") 
            { 
                temp++; Console.WriteLine("reached AXMedia while loop temp val: " + temp); 
                if (temp + 1 > vidCompleteYrN.Length) 
                { 
                    MessageBox.Show(("All videos in this session have been rated! You can still review 
these videos, if you wish. Otherwise, the USB is ready to be returned! Please email David at 
[contact info redacted]")); 
                    pageIndex = vidCompleteYrN.Length - 1; 
                    Console.WriteLine("About to break..."); 
                    break; 
                }  
            } 
            Console.WriteLine("ENDED axMedia main loop - page index is " + pageIndex + " temp 
is" + temp); 
 
 
            //First Time Session Output Formation 
             
            if (!Directory.Exists(sessionPathFolder)) 
            { //CHECK to ensure that the directory exists - if not, create it!  
                Directory.CreateDirectory(sessionPathFolder); 
                Console.WriteLine("Output Directory Created!"); 
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                MessageBox.Show(("New output directory (to save all future ratings) created in: " + 
sessionPathFolder), "Output directory created."); 
            } 
 
 
            //Output PREEMPTIVE! 
            string[][] output = new string[][]{ 
                     new string[]{ 
                         ("Timestamp"),//DateTime.Now.ToString("yyyyMMddhhmmssfff"), 
                         ("Username"),//Demographic.userName, 
                         ("ButtonClx"), 
                         ("PageIndex"),//("PgInd: " + videoNumberToLoad), 
                         //("RandIndex"),//Num: " + randOrder[videoNumberToLoad].ToString()), 
                         ("VideoPath"),//videoFiles[randOrder[videoNumberToLoad]], 
                         (slider1.Name),//(((double)slider1.Value)/10).ToString(),//COULD REPLACE 
THESE DIRECT CALLS WITH ARRAY REFERENCES.... 
                         (slider2.Name),//(((double)slider2.Value)/10).ToString(), 
                         (slider3.Name),//(((double)slider3.Value)/10).ToString(), 
                         (slider4.Name),//(((double)slider4.Value)/10).ToString(), 
                         //(slider5.Name),//(((double)slider5.Value)/10).ToString(), 
                         //(slider6.Name),//(((double)slider5.Value)/10).ToString(), 
                         ("Annotations")//annot[videoNumberToLoad] 
                     }//End new string 
                }; 
 
            if (pageIndex < 1) //Page Index starts at 0 
            { 
                //WRITE OUT BIG FILE 
                int length = output.GetLength(0); 
                StringBuilder sb = new StringBuilder(); 
                for (int i = 0; i < length; i++) 
                { 
                    sb.AppendLine(string.Join(",", output[i])); 
                } 
                File.AppendAllText(sessionPathFull, sb.ToString());//SAVE FILE               
            } 
            //BY DEFAULT 
 
        } 
 
        private void saveValues(int videoNumberToLoad) 
        { 
            //On Every Save Define new file name based on completion rate 
            string moveFileName = Demographic.mainPath + "\\backups\\" + "from - " + 
sessionName + "  " + numComp.ToString() + " of " + 
            videoFilePaths.Length.ToString() + "  " + 
DateTime.Now.ToString("yyyyMMddhhmmssfff") + ".csv"; 
            Console.WriteLine(moveFileName + " created as movefilename"); 
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            if (File.Exists(oldFileName)) 
            { 
                System.IO.File.Copy(oldFileName, moveFileName); 
            } 
            //annot[videoNumberToLoad] = 
annotations.Text.Replace(System.Environment.NewLine, " "); 
            annot[videoNumberToLoad] = Regex.Replace(annotations.Text, @"\r\n?|\n|,", " "); 
 
            string[][] output = new string[][]{ 
                     new string[]{ 
                         DateTime.Now.ToString("yyyyMMddhhmmssfff"), 
                         Demographic.userName, 
                         (""+btnClick), 
                         (""+videoNumberToLoad), 
                         //(randOrder[videoNumberToLoad].ToString()), 
                         videoFilePaths[randOrder[videoNumberToLoad]], 
                         
(""+rateS1[videoNumberToLoad]),//(((double)slider1.Value)/10).ToString(),//COULD 
REPLACE THESE DIRECT CALLS WITH ARRAY REFERENCES.... 
                         (""+rateS2[videoNumberToLoad]),//(((double)slider2.Value)/10).ToString(), 
                         (""+rateS3[videoNumberToLoad]),//(((double)slider3.Value)/10).ToString(), 
                         (""+rateS4[videoNumberToLoad]),//(((double)slider4.Value)/10).ToString(), 
                         //(((double)slider5.Value)/10).ToString(), 
                         //(((double)slider6.Value)/10).ToString(), 
                         annot[videoNumberToLoad] 
                     }//End new string 
                       }; 
            int length = output.GetLength(0); 
            StringBuilder sb = new StringBuilder(); 
            for (int i = 0; i < length; i++) 
            { 
                sb.AppendLine(string.Join(",", output[i])); 
            } 
            Console.WriteLine("FULL PATH IS: " + sessionPathFull); 
            File.AppendAllText(sessionPathFull, sb.ToString());//SAVE FILE 
 
             
 
            //On Every Save, Update Completion Rate - resave CSV 
            numComp = 0; 
            for (int v = 0; v < videoFilePaths.Length; v++) 
            { 
                if (rateS1[v] < 0) { vidCompleteYrN[v] = "n"; } 
                else if (rateS2[v] < 0) { vidCompleteYrN[v] = "n"; } 
                else if (rateS3[v] < 0) { vidCompleteYrN[v] = "n"; } 
                else if (rateS4[v] < 0) { vidCompleteYrN[v] = "n"; } 
                else { vidCompleteYrN[v] = "y"; numComp++; } 
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                } 
            double compRate = numComp / videoFilePaths.Length; 
 
            //OVERWRITE NEW FILE NAME AFTER UPDATE 
            string newFileName = Demographic.mainPath + "\\sessions\\" + numComp.ToString() + 
" of " + 
                videoFilePaths.Length.ToString() + " complete -" + sessionName; 
 
            //Create NEW file it if exists... 
            if (File.Exists(newFileName)) 
            { 
                File.WriteAllText(newFileName, String.Empty); 
            } 
            //string newFileName = Demographic.mainPath + "\\sessions\\" + sessionName; 
                            
            for (int v = 0; v < videoFilePaths.Length; v++) 
            { 
                using (StreamWriter sw = new StreamWriter(newFileName, true)) 
                { 
                    sw.WriteLine(string.Join(",", videoFilePaths[randOrder[v]].ToString(), 
                                                  //randOrder[v].ToString(), 
                                                  rateS1[v].ToString(), 
                                                  rateS2[v].ToString(), 
                                                  rateS3[v].ToString(), 
                                                  rateS4[v].ToString(), 
                                                  vidCompleteYrN[v].ToString(), 
                                                  annot[v].ToString().Replace(",","-"))); 
                                                   
                } 
            } 
 
            if (File.Exists(oldFileName)) //If old file exists 
            { 
                if(oldFileName != newFileName) //And that old file is different than the new one 
which was just written 
                { 
                    System.IO.File.Delete(oldFileName); 
                } 
            } 
            oldFileName = newFileName; //Set old for next go around... 
        } 
 
        private void updateProgressBar(int videoNumberToLoad) 
        { 
            string vidCompletionRate = ""; 
            if(vidCompleteYrN[videoNumberToLoad] == "y") 
            { 
                vidCompletionRate = (trueUserName 
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                + " Rating Video " + (videoNumberToLoad + 1) + " of " + videoFilePaths.Length 
                + " complete.");  
 
            } else 
            { 
                vidCompletionRate = (trueUserName 
                + " Rating Video " + (videoNumberToLoad + 1) + " of " + videoFilePaths.Length); 
            } 
            StatusLabel.Text = vidCompletionRate; 
            annotations.Text = annot[videoNumberToLoad]; 
        } 
 
        private void resetSliderValues(int videoNumberToLoad) 
        { 
            annotations.Text = annot[videoNumberToLoad]; 
 
            //CHECK IF NOT SAVED, Fill w. Defaults, Otherwise, load active data 
            //S1 
            if (rateS1[videoNumberToLoad] == -1) 
            { 
                slider1.Value = 50; label1.Text = "NA"; 
                label1.ForeColor = System.Drawing.Color.Black; label7.ForeColor = 
System.Drawing.Color.Black; 
            } else 
            { 
                slider1.Value = rateS1[videoNumberToLoad]; 
                label1.Text = (((double)slider1.Value) / 10).ToString(); 
                label1.ForeColor = System.Drawing.Color.Blue; label7.ForeColor = 
System.Drawing.Color.Blue; 
            } 
            //S2 
            if (rateS2[videoNumberToLoad] == -1) 
            { 
                slider2.Value = 50; label2.Text = "NA"; 
                label2.ForeColor = System.Drawing.Color.Black; label8.ForeColor = 
System.Drawing.Color.Black; 
            } 
            else 
            { 
                slider2.Value = rateS2[videoNumberToLoad]; 
                label2.Text = (((double)slider2.Value) / 10).ToString(); 
                label2.ForeColor = System.Drawing.Color.Blue; label8.ForeColor = 
System.Drawing.Color.Blue; 
            } 
            //S3 
            if (rateS3[videoNumberToLoad] == -1) 
            { 
                slider3.Value = 50; label3.Text = "NA"; 
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                label3.ForeColor = System.Drawing.Color.Black; label9.ForeColor = 
System.Drawing.Color.Black; 
            } 
            else 
            { 
                slider3.Value = rateS3[videoNumberToLoad]; 
                label3.Text = (((double)slider3.Value) / 10).ToString(); 
                label3.ForeColor = System.Drawing.Color.Blue; label9.ForeColor = 
System.Drawing.Color.Blue; 
            } 
            //S4 
            if (rateS4[videoNumberToLoad] == -1) 
            { 
                slider4.Value = 50; label4.Text = "NA"; 
                label4.ForeColor = System.Drawing.Color.Black; label10.ForeColor = 
System.Drawing.Color.Black; 
            } 
            else 
            { 
                slider4.Value = rateS4[videoNumberToLoad]; 
                label4.Text = (((double)slider4.Value) / 10).ToString(); 
                label4.ForeColor = System.Drawing.Color.Blue; label10.ForeColor = 
System.Drawing.Color.Blue; 
            } 
            updateProgressBar(videoNumberToLoad); //Call progress bar from here... 
        } 
         
        private void prevVideo_Click(object sender, EventArgs e) 
        { 
            saveValues(pageIndex); 
            if (pageIndex > 0) 
            { 
 
                pageIndex = pageIndex - 1; //If not at first page, decrement, load associated video, and 
reset slider values 
                //MessageBox.Show("Saved values. PI Decremented one to " + pageIndex); 
                loadVideo(pageIndex); //Load associated video 
                resetSliderValues(pageIndex); 
            } 
            else 
            { 
                pageIndex = 0; //RESET TO BASE VALUE 
                MessageBox.Show("This is the first video in the set.", "No previous video to load."); 
            } 
            resetSliderValues(pageIndex); 
            btnClick = btnClick + 1; //btnClick is for ALL EVENTS 
        }//End Previous Video 
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        private void button1_Click(object sender, EventArgs e)//GO TO NEXT VIDEO 
        { 
            saveValues(pageIndex); 
          
            pageIndex = pageIndex + 1; 
             
            //CHECK FOR ENDING CONDITION, AND, IF SO, CAN CLOSE THE FORM 
            if ((pageIndex + 1) > videoFilePaths.Length) 
            { 
                //MessageBox.Show(("Thank you for your participation! You can now close the rating 
program. Results are saved here: " + sessionPathFull), "Experiment Complete!"); 
                pageIndex = videoFilePaths.Length - 1; 
                //resetSliderValues(pageIndex); 
                Console.WriteLine("pageIndex reset to max videos: " + pageIndex); 
                //POPUP MESSAGE 
                DialogResult closing = MessageBox.Show(("Thank you for your participation! Feel 
free to go back and review your ratings. You can also load this session later to finish any videos 
you skipped." 
                                                        //+ Environment.NewLine + Environment.NewLine +"Results 
are saved here: " + sessionPathFull  
                                                        + Environment.NewLine + Environment.NewLine +  
                                                        "You have completed " + numComp.ToString() + " of " + 
videoFilePaths.Length + " videos." 
                                                        + Environment.NewLine + Environment.NewLine +  
                                                        "Would you like to close the program now?"), "Reached last 
video!", 
                                                       MessageBoxButtons.YesNo); 
 
                string lastFileName = Demographic.mainPath + "\\backups\\" + "REACHED THE 
END " + " -from- " + sessionName + " " + numComp.ToString() + " of " + 
                videoFilePaths.Length.ToString() + " curTime is " +  
DateTime.Now.ToString("yyyyMMddhhmmssfff") + ".csv"; 
                Console.WriteLine(lastFileName + " created as lastFileName"); 
                if (File.Exists(oldFileName)) 
                { 
                    System.IO.File.Copy(oldFileName, lastFileName); 
                } 
 
                //SEE IF NEED TO EMAIL!  
                if (vidCompleteYrN.Contains("n")) 
                { 
                    //DO NOTHING 
                } else { 
                    emailDavid(); 
                 
                } 
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                if (closing == DialogResult.Yes)//CLOSE IF DESIRED! 
                { 
                    Application.Exit(); //Exit v3  
                    this.Close(); //CLOSE PROGRAM CORRECTLY 
                    System.Diagnostics.Process.Start(@sessionPathFolder); //Open up folder to view 
saved CSV 
                } 
            } 
            else//Otherwise 
            { 
                resetSliderValues(pageIndex); 
                loadVideo(pageIndex);         
            } //End Latter IF statement chain 
            btnClick = btnClick + 1; 
        }//End button click function :) 
         
        //SLIDER REAL TIME VALUES SEE 
        private void slider1_Scroll(object sender, EventArgs e) 
        { 
            rateS1[pageIndex] = (slider1.Value); //Save Value! 
            label1.Text = (((double)slider1.Value) / 10).ToString(); 
            label1.ForeColor = System.Drawing.Color.Blue; 
            label7.ForeColor = System.Drawing.Color.Blue; 
        } 
        private void slider2_Scroll(object sender, EventArgs e) 
        { 
            rateS2[pageIndex] = (slider2.Value); //Save Value! 
            label2.Text = (((double)slider2.Value) / 10).ToString(); 
            label2.ForeColor = System.Drawing.Color.Blue; 
            label8.ForeColor = System.Drawing.Color.Blue; 
        } 
        private void slider3_Scroll_1(object sender, EventArgs e) 
        { 
            rateS3[pageIndex] = (slider3.Value); //Save Value! 
            label3.Text = (((double)slider3.Value) / 10).ToString(); 
            label3.ForeColor = System.Drawing.Color.Blue; 
            label9.ForeColor = System.Drawing.Color.Blue; 
        } 
        private void slider4_Scroll_1(object sender, EventArgs e) 
        { 
            rateS4[pageIndex] = (slider4.Value); //Save Value! 
            label4.Text = (((double)slider4.Value) / 10).ToString(); 
            label4.ForeColor = System.Drawing.Color.Blue; 
            label10.ForeColor = System.Drawing.Color.Blue; 
        } 
 
        private void RatingApplet_Load(object sender, EventArgs e) 
        { 
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           TopMost = false; 
        } 
        private void label13_Click(object sender, EventArgs e) 
        { 
 
        } 
        private void label15_Click(object sender, EventArgs e) 
        { 
 
        } 
        private void label37_Click(object sender, EventArgs e) 
        { 
 
        } 
        private void label1_Click(object sender, EventArgs e) 
        { 
 
        } 
 
        private void StatusLabel_Click(object sender, EventArgs e) 
        { 
 
        } 
 
        private void RatingApplet_FormClosing(object sender, FormClosingEventArgs e) 
        { 
            saveValues(pageIndex); 
 
            //MessageBox.Show("Thank you! All ratings are saved in the session: " + 
            //    sessionName); 
 
            Application.Exit(); 
 
         } 
 
        private void button1_Click_1(object sender, EventArgs e) 
        { 
            DialogResult closing = MessageBox.Show( 
                            "Please watch each video and drag the sliders accordingly. Any changes you 
make to the slider positions are saved as you go." + Environment.NewLine + 
Environment.NewLine + 
                            "SAVE AND CONTINUE LATER: Since your progress is saved, feel free to 
skip over individual videos or navigate with the 'go to next' and 'go to back' buttons, or quit at 
any time." + Environment.NewLine + Environment.NewLine + 
                            "You can return later, and as many times as you wish in order to finish previous 
sessions (listed on the previous page). You won't have to re-rate any videos if you load a 
previous session." + Environment.NewLine + Environment.NewLine + 
                            "If you have trouble, please let David know: [contact info redacted] " + 
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                            sessionPathFull, 
                            //+ Environment.NewLine , 
                            //+ Environment.NewLine + "Would you like to close the program now?"), 
                            " Thank you for taking the time to participate!", 
                           MessageBoxButtons.OK); 
        } 
 
        private void label33_Click(object sender, EventArgs e) 
        { 
 
        } 
 
        private void label30_Click(object sender, EventArgs e) 
        { 
 
        } 
 
        private void label58_Click(object sender, EventArgs e) 
        { 
 
        } 
 
        private void label58_Click_1(object sender, EventArgs e) 
        { 
 
        } 
 
        private void button2_Click(object sender, EventArgs e) 
        { 
            saveValues(pageIndex); 
 
            MessageBox.Show("Thank you! All ratings are saved in the session: " + 
                sessionName); //DONT NEED THIS - ALREADY DOES ON CLOSING 
 
            Application.Exit(); 
        } 
 
        private void label23_Click(object sender, EventArgs e) 
        { 
 
        } 
    } // Partial Class 
} //End Namespace 
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