
Learning data-driven reduced-order models of complex
flows

by

Carlos E. Pérez De Jesús

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Chemical and Biological Engineering)

at the

UNIVERSITY OF WISCONSIN - MADISON

2024

Date of final oral examination: May 22, 2024

This dissertation is approved by the following members of the Final Oral Committee:

Michael D. Graham, Professor, Chemical and Biological Engineering

Victor M. Zavala, Professor, Chemical and Biological Engineering

Reid C. Van Lehn, Professor, Chemical and Biological Engineering

Wenxiao Pan, Professor, Mechanical Engineering

i

“Preparemos el terreno

Para sembrar la semilla.”

– Celestina Cruz Jiménez, La Cosecha

ii

Dedication

A mi familia:

Papi y mami, gracias por ser modelos a seguir, por inculcar en mí valores, y por apoyarme

en las buenas y en las malas. Gracias por siempre creer en mí y enseñarme la importancia de

la educación. Obtener este grado académico hubiera sido casi imposible sin tenerlos ustedes

a mi lado. Alain y Mateo, gracias por ser los mejores hermanos. Alain, gracias por siempre

estar ahí para mí. Admiro tu pasión por lo que haces y el apoyo que das a todos los que amas.

Mateo, gracias por llenar nuestra familia de tanta felicidad. Te deseo lo mejor mientras vas

creciendo y aprendiendo.

Abuela Carmen, abuela Aurea, abuela Tina y abuelo Manolo, gracias por todo el apoyo

que me han brindado. Gracias a usted he aprendido la importancia de siempre mantener

la fe. Padrino Men, tío Fanchy, tío Javi, tía Diana, tío Tony, tía Katia y madrina Lourdes,

gracias por siempre estar ahí mientras crecía y ser una parte tan importante en mi desarrollo

como persona. Primos Valerie, Diego, Gaby, Francis, Zohary y Katiria, los mejores momentos

los he pasado criándome con ustedes.

Mandy, gracias por llegar a mi vida durante mis años de escuela graduada. Gracias a

ti aprendí lo que es amar a una mascota. Escuchar tus maullidos en las mañanas pidiendo

comida siempre me llena de felicidad.

To my friends:

Juan and Jean, thanks for being there for me and giving me all the support I needed

in my undergraduate days. Juan, I learned so much from you about how to communicate

iii

in english. Thanks to you I always felt confident when I had to write something up. Jean,

growing up with you has been the best. I admire how you are always calm and collected and

the level of trust that everyone has in you.

Bryce, RJ, Atharva, Ricardo, Alec, Kevin, Eric and Xiaopo, thanks for being amazing

friends and helping me throughout my years in graduate school. Bryce, one of the best parts

of graduate school was all of the super fun concerts we went to. Thanks for always caring

about me and even cooking for me when you saw me stressed about work. RJ, sharing

the office with you has been an amazing time. I always looked forward to our daily coffee

with Ricardo and Kevin, and our weekend TV and pizza nights. Ricardo, thanks for always

helping me when I ask you for help. I have learned so much from you and I wish you the

best as a future professor. Alec, getting to brainstorm with you about science has been so

fun. Thanks for always helping me understand challenging science concepts. Kevin, thanks

for always helping me when I felt overwhelmed. Thanks to you I learned a lot about how to

approach science problems. Eric I always admire how thorough you are in your work. I am

excited to see all the amazing science problems you will tackle in the future. Xiaopo I got to

learn so much from you about coding. Thanks so much for taking your time and explaining

to me these concepts.

Thanks to all of the amazing friends I have met in my graduate school years: Will,

Lawrence, Gary, Zach, Erin, Christine, Maya, Jack, Kyle, Javiera, Jadiel, Carlos Huang,

Kevin Sánchez, Jaron, Nestor and Paolo. Thanks to all of my friends from my undergraduate

institution and hometown: Oneil, Alberto, Susana, Jonathan and John. And of course,

thanks to all the super smart and supportive group members in the Graham group, past

and present: Manish, Jake, Alex, Daniel, Andrew, Ashwin, Charlie, Joysy, and Rafa. I have

learned so much from all of you during my time in the group.

To my advisor and committee:

Professor Mike Graham, thanks for taking me in under your guidance and introducing

me to this amazing world of research. Your support has been amazing through all this years.

iv

I really appreciate how much you care about your students and this supportive environment

has been an important reason of all the work I have accomplished during graduate school.

Finally, I would like to thank my committee for following my growth all these years and

giving me great feedback on my work.

v

Abstract

Dynamical models play a crucial role for understanding and solving problems in many en-

gineering applications or natural systems. In turbulence, weather modeling, chemical pro-

cesses, and other interesting areas in engineering it is desired to find reduced-order models

that can make time predictions. The nature of high-dimensionality in fluid systems and

recent advances in machine learning have pushed the boundaries of what can be learned

when data and physical knowledge of a system is available. The objective of this thesis is

to develop deep learning architectures to learn efficient reduced-order models that can faith-

fully capture the most important features of flows in a low-dimensional representation. We

leverage the use of autoencoders to learn low-dimensional representations and dense neural

networks to learn an evolution equation on this low-dimensional space. By enforcing sym-

metry constraints that appear in the Navier-Stokes equations we show how more accurate

models for time prediction can be learned, while reducing significantly the dataset. Finally,

we present a framework capable of giving estimates of the minimal dimensions needed to

represent systems featuring complex dynamics and intricate behavior.

vi

Contents

1 General introduction 1

1.1 Building Reduced-Order Models . 3

1.2 Manifolds . 4

1.2.1 Coordinate charts . 5

1.3 Dimension Reduction and Neural Networks 6

1.3.1 Dimension Reduction with Principal Component Analysis 6

1.3.2 Neural Network Operations and Autoencoders 6

1.3.3 Learning Time Maps . 8

1.4 More Neural Network Frameworks . 10

1.4.1 Dropout . 10

1.4.2 Contrastive Learning . 10

1.5 Symmetries in Dynamical Systems . 11

1.5.1 Continuous Symmetry and Phase Aligning 12

1.5.2 Factoring Out Discrete Symmetries 12

1.6 Outline of this work . 13

2 Data-driven low-dimensional dynamic model of Kolmogorov flow 14

2.1 Introduction . 15

2.2 Kolmogorov flow formulation and dynamics 21

2.3 Data-driven dimension reduction and dynamic modeling 24

vii

2.3.1 Dimension reduction with autoencoders 24

2.3.2 Time evolution via a dense NN . 27

2.4 Results . 28

2.4.1 Dimension reduction with autoencoders 29

2.4.2 Time evolution as a function of dimension - Short time predictions . . 31

2.4.3 Time evolution as a function of dimension - Long time predictions . . 34

2.4.4 Phase prediction . 40

2.4.5 Bursting prediction . 43

2.5 Summary . 46

3 Building symmetries into data-driven manifold dynamics models for com-

plex flows 48

3.1 Introduction . 49

3.2 Kolmogorov flow, symmetries, and projections 54

3.3 Data-driven dimension reduction and dynamic modeling 57

3.3.1 Map to fundamental domain . 57

3.3.2 Finding a manifold coordinate representation with IRMAE-WD . . . 63

3.3.3 Time evolution of pattern with neural ODEs 66

3.3.4 Time evolution of phase with neural ODEs 69

3.4 Results . 72

3.4.1 Dimension reduction with IRMAE-WD 72

3.4.2 Time evolution . 76

3.5 Summary . 84

4 Improving robustness of dimension estimates with implicit rank minimiz-

ing autoencoders 86

4.1 Introduction . 87

4.2 Formulation . 89

viii

4.3 Results . 92

4.3.1 Dimension estimates for a library of systems 92

4.3.2 Hierarchical clustering . 97

4.4 Summary . 99

5 Conclusions 102

5.1 General summary . 102

5.2 Future work . 103

5.2.1 Symmetry charting applied to pipe flow 103

5.2.2 Regularizing using dropout . 107

5.2.3 Contrastive learning with symmetries 108

5.2.4 Forecasting and hierarchical clustering 109

5.2.5 IRMAE-WD-B in more complex cases 109

References 109

ix

List of Figures

1.1 Schematic of state space with initial conditions collapsing onto an invariant

manifold. 5

1.2 (a) Linear NN operation: single neuron input (b) three neurons input 7

1.3 Linear autoencoder structure as depicted by a dense NN 8

2.1 Schematic of state space with initial conditions collapsing onto an invariant

manifold where the long time dynamics occur. 17

2.2 (a) Time evolution of KE at Re = 13.5. (b) Time evolution of KE at Re =

14.4. (c) Time evolution of D and I at Re = 14.4. 22

2.3 Evolution of the real and imaginary components corresponding to the a0,1(t)

Fourier mode for Re = 13.5 and Re = 14.4. 23

2.4 Autoencoder loss versus epochs over training and test data sets corresponding

to a trial from the case Re = 14.4, dh = 9. 28

2.5 Neural network frameworks for (a) autoencoder (b) discrete-time map for

pattern prediction and (c) discrete-time for phase prediction. 29

x

2.6 MSE versus dimension dh over the test data corresponding to (a) Re = 13.5

and (b) Re = 14.4. The PCA curve corresponds to the MSE of the re-

construction for the test data set with respect to the true data ω(t), with

no symmetries factored out, using the truncated U into dh dimensions such

that ω̃(t) = UdhU
T
dh
ω(t) ; the ‘Original’, ‘Phase’, ‘Phase-SR’, and ‘Phase-SR-

Rotation’ curves correspond to the MSEs of the reconstruction for the test

data set with respect to the true data using AEs. In the curve labeled ‘Origi-

nal’, no symmetries are factored out and in the other curves the corresponding

symmetries in the labels are factored out. 30

2.7 Trajectory of I(t) vs D(t) corresponding to Re = 13.5 for (a) true and (b)

predicted data corresponding to dimensions dh = 2. 31

2.8 Labeling of ω̂(t) snapshots in a short time series where 1 corresponds to burst-

ing and 0 to quiescent. 34

2.9 Example trajectories of KE at different dh for (a) a quiescent initial condition

and (b) a bursting initial condition, for dimensions dh = 3, 5, 7, 9, and 11. . . 35

2.10 Difference between true vorticity evolution and vorticity evolution obtained

from the time map F from h(t) where (a) correspond to averages taken over

bursting and quiescent ICs and (b) averages over all the data. (c) Difference

between true vorticity evolution and vorticity evolution obtained from the

time map F from h(t) with varying dh for increasing tL. This corresponds to

averages over all the data. 36

2.11 Re = 14.4: Joint PDFs of I-D corresponding to Re = 14.4 for (a) true and

(b)-(f) predicted data corresponding to dimensions dh = 3, 5, 7, 9, and 11. . . 38

2.12 Re = 14.4: Joint PDFs of Re [a0,1(t)]− Im [a0,1(t)] corresponding to Re = 14.4

for (a) true and (b)-(f) predicted data corresponding to dimensions dh =

3, 5, 7, 9, and 11. 39

xi

2.13 Re = 14.4: DKL vs dimension dh for (a) I-D and (b) Re [a0,1] − Im [a0,1]

predicted vs true joint PDFs. Dashed grey line corresponds to DKL calculated

over true data sets. 40

2.14 PDFs of tq and tb at Re = 14.4 for (a) true and (b)-(f) predicted data for

dimensions dh = 3, 5, 7, 9, and 11. 41

2.15 Re = 14.4: DKL vs dimension dh corresponding to PDFs for (a) tq (b) tb.

Dashed grey line corresponds to DKL calculated over different true data sets. 42

2.16 (a) Time evolution of φx corresponding to the true data and models with

dimensions dh = 3, 5, 7, 9, and 11. (b) MSD of φx(t) corresponding to true

data and models with dimensions dh = 3, 5, 7, 9, and 11. 43

2.17 Time evolution of KE and amplitudes corresponding to (1, 0) and (0, 2)

Fourier mode for Re = 14.4. 44

2.18 Percent of correctly classified bursting events at τb forward in time for: (a)

PdhU
Tω and h at dh = 5, 9, (b) and indicators ∆φ, (1, 0), and (0, 2). Note

that the vertical scales on (a) and (b) are very different. 45

3.1 (a) Vector field q with symmetry group R in state space. (b) Data in each

quadrant can be mapped to another quadrant by operating with R. (c) After

mapping everything to the positive quadrant data lies on top of each other. . 53

3.2 (a) Time evolution of ‖ω(t)‖ at Re = 13.5. (b) State-space projection of the

trajectory into the subspace ω̂R(0, 1)− ω̂I(0, 1)− ω̂I(0, 2) for Re = 13.5. . . 56

3.3 (a) Time evolution of ‖ω(t)‖ at Re = 14.4. (b) State-space projection of the

trajectory into the subspace ω̂R(0, 1) − ω̂I(0, 1) − ω̂I(0, 2) for Re = 13.5 and

Re = 14.4. 56

3.4 State-space projection of the different RPOs into the plane ω̂R(0, 1)−ω̂I(0, 1)−

ω̂I(0, 2) for Re = 13.5. The different colors are for different discrete symmetry

indicators which are shown in the legend. 61

xii

3.5 (a) State-space projection of a trajectory into the subspace ω̂R(0, 1)−ω̂I(0, 1)−

ω̂I(0, 2) for Re = 14.4. Colors correspond to the discrete symmetry indicator.

(b) Zoom into the region near the RPO corresponding to I = 1, 7. Solid

markers correspond to interior points and open markers to exterior points –

e.g. the blue solid markers within an open orange marker are in the interior

region of chart 7 and exterior region of chart 1. 61

3.6 (a) Snapshots mapped to the fundamental chart (ω̂R(0, 1) > 0, ω̂I(0, 1) > 0,

ω̂I(0, 2) > 0). (b) and (c) are the state-space projection of the trajectory into

the planes ω̂R(0, 1)− ω̂I(0, 1) and ω̂R(0, 1)− ω̂I(0, 2), respectively. The dotted

lines give the boundary between interior and exterior points. 62

3.7 Implicit Rank Minimizing autoencoder with weight decay (IRMAE-WD) frame-

work: a) network architecture with regularization mechanisms, b) singular

value decomposition of the covariance of the learned latent data representa-

tion Z, c) projection of latent variables onto manifold coordinates d) isolated

projection of latent variables onto manifold coordinates. Image reproduced

with permission from [74]. 65

3.8 (a) Initial condition (IC) starting at I = 0 is evolved and exits into the chart

I = 5. This exit is mapped back to I = 0 to keep evolving in the fundamental

chart. (b) Two-dimensional projection showing the exit from the fundamental

chart. Here we selected an IC near the RPO, which is the reason why this

trajectory nearly closes on itself. 67

xiii

3.9 Graph representation of connections between the symmetry subspaces where

pairs {2,4}, {0,5}, {6,3}, {7,1} correspond to the top and bottom sections of

the octants where each unstable RPO lies. The intensity of each connection

is related to the probability of the trajectory transitioning to another chart.

The probability of staying in the same chart (not included in this depiction)

is ∼ 94%, . Darker lines correspond to forward and reverse probabilities of

∼ 5%. Lighter lines correspond to forward and reverse probabilities of ≤ 1%. 68

3.10 (a) Time evolution of h(t) with NODE and (b) symmetry operation check to

map back to fundamental space if needed. 70

3.11 MSE vs number of data size used for training IRMAE-WD corresponding to a

test data of 20,000 samples for Re = 14.4. The parameters used are L = 4 and

λ = 10−4 and three trials are considered for each case. The data is reduced

to a dimension of dz = 40. 74

3.12 Evolution of singular values of the covariance matrix of the encoded test data

ZZT during training of an IRMAE-WD model with L = 4 and λ = 10−4.

Here the drop happens at dh = 10. 75

3.13 MSE vs dimension dh given by the spectral gap of the singular values for

the original (black), phase-aligned (red), and fundamental chart (blue) cases.

Each case contains three trials of combinations of parameters L = 0, 4, 6, 8, 10

and λ = 10−4, 10−6, 10−8. 75

3.14 TE(t) vs t for Fundamental and Phase-aligned case where TE(t) corresponds

to the error calculation between predicted NODE trajectories, from a model

with dh = 10, from initial conditions that are related by symmetry transfor-

mations. 77

xiv

3.15 ‖ω(t)‖ vs time for initial conditions integrated with the (a) Fundamental and

(b) Phase aligned NODE model for dh = 10. Colors correspond to initial

conditions starting in different fundamental domains (red – I = 0, blue –

I = 1, and green – I = 2). In (a), all the different-colored trajectories coincide. 78

3.16 Difference between true vorticity evolution and vorticity evolution obtained

from the Fundamental and Phase aligned NODEs from h(t) of dh = 10, where

(a) corresponds to averages over all initial conditions, and (b) corresponds to

averages taken over bursting and quiescent initial conditions. 79

3.17 Joint PDFs of ω̂R(0, 1)-ω̂I(0, 1) of (a) true, and predicted data corresponding

to dimension dh = 10 from the (b) Fundamental and (c) Phase-aligned models. 81

3.18 Joint PDFs of I-D of (a) true, and predicted data corresponding to dimension

dh = 10 from the (b) Fundamental and (c) Phase-aligned models. 82

3.19 MSD of φx(t) corresponding to models with dimension dh = 10. 83

4.1 Implicit Rank Minimizing autoencoder with weight decay and branching (IRMAE-

WD-B.) framework: a) network architecture with regularization mechanisms,

b) singular value decomposition of the covariance of the learned latent data

representation Zi. 91

4.2 Visualization of arc data used for training and testing. 93

4.3 Evolution of singular values of the covariance matrix of the encoded test data

ZZT during training of an IRMAE-WD model with L = 6 and λ = 10−6 for

three trials. Here the drops happen at (a) dh = 2, (b) dh = 1, and (c) dh = 2. 94

4.4 Arc: MSE vs dimension dh given by the spectral gap of the singular values for

L = 4, 6, 8 and λ = 10−6 and our proposed architecture. Each case of varying

L contains three trials and for our architecture we consider five trials. 95

4.5 Evolution of singular values of the covariance matrix of the encoded test data

ZZT during training of our model for the KSE with a final linear layer of

L = 9 and λ = 10−6. Here the drop happens at dh = 8 as expected. 96

xv

4.6 Kolmogorov Flow, Re = 14.4: MSE vs dimension dh given by the spectral gap

of the singular values for L = 4, 6, 8 and λ = 10−6 and our proposed architec-

ture. Each case of varying L contains three trials and for our architecture we

consider five trials. 98

4.7 (a) State-space projection of a trajectory into the subspace ω̂R(0, 1)−ω̂I(0, 1)−

ω̂I(0, 2) for Re = 14.4. Colors correspond to the different clusters. (b)

〈‖ω(t)‖2〉 vs time with colors corresponding to different clusters. 100

4.8 Kolmogorov Flow, Re = 14.4, k-means: MSE vs dimension dh given by the

spectral gap of the singular values for. Black markers correspond to IRMAE-

WD-B models and blue markers correspond to IRMAE-WD models with va-

lying number of linear layers L = 4, 6, 8. 100

5.1 Magnitude of velocities of pipe flow for m = 4, Re = 2500. 105

5.2 Reconstruction of POD modes for the case m = 1, Re = 2500 from models

trained with IRMAE-WD on original data and data mapped to the funda-

mental chart. These are compared with the real POD modes. 108

1

1

General introduction

Turbulence is notoriously difficult to study and predict due to its nonlinear and chaotic

behavior. The flow is “chaotic” in the sense that any small changes in initial conditions of

the velocity field will result in trajectories diverging after some amount of time. Turbulent

flows can be observed in many industrial and commercial applications, particularly those

that involve pumping or transporting fluids. It has been estimated that nearly half of energy

consumption in fluid transport in pipes is dissipated by turbulence near the walls. A main

issue when flowing a fluid in the turbulent regime (or high velocities) is the increase in drag,

giving rise to energy losses as well as CO2 emissions. As an example, wall-bounded flows

account for about 5% of the global carbon emission footprint [31]. Hence, drag reduction

is key to reducing energy costs and this can be achieved by implementing control schemes,

such as wall actuations that push and pull fluid within the domain to drive the system

towards a low drag state. The Navier-Stokes equations (NSE) describes the time evolution

of fluids. By tracking the velocities over the domain of interest one can understand the

behavior of the system, and subsequently decrease the drag. However, the turbulent nature

of the flows requires many grid points (or sensors) to correctly resolve all the relevant spatial

and temporal scales of the system. This makes the system high dimensional which leads to

challenges in the search of control strategies. Hence, there is a need to find simpler ways

to achieve this goal. One way is to build reduced-order models (ROMs), which contain the

2

essential information, and are useful because they can be used to simulate fluids much faster.

The ideal ROM has minimal degrees of freedom compared to the full velocity field data, with

reduction of up to three orders of magnitude, and the necessary information to evolve in time

such that statistics and features of the flow are faithfully captured.

In this work we leverage recent advances in machine learning in order to learn data-driven

ROMs. Then, we do the modeling of turbulence from a dynamical system point of view (we

learn the right-hand-side of the ordinary differential equation). Most of the focus throughout

this thesis is in a two-dimensional flow problem known as Kolmogorov flow which is driven

by a sinusoidal force and can exhibit chaotic dynamics. This system is of interest because

it shows intermittent behavior, which is common in many flow processes, is challenging to

model, and captures the essence of fluid turbulence.

To learn data-driven ROMs we use a combination of different variations of autoencoders

(AE) to reduce dimensions and dense neural networks (NN) to evolve in time. We show in

this thesis that we are able to learn efficient models that can capture important features of

flows. In addition, we also include symmetries of the system that leads to the improving

of the model performance. Finally, we present an architecture that automatically estimates

the minimal dimensions needed to represent complex systems.

In the following introduction we start by motivating the need to learn reduced-order

models. This is followed by an introduction to manifolds. Then, we discuss dimension

reduction techniques, neural networks, and finish by motivating the need to understand

symmetries in dynamical systems and ways to address them.

3

1.1 Building Reduced-Order Models

Development of reduced-order models (ROM) for complex flows is an issue of long-standing

interest, with applications in improved understanding, as well as control of flow systems. For

flows and many other cases, the dynamical system can be written as

dx

dt
= f(x, t; β), (1.1)

whose right-hand-side (RHS) is defined as the function f , and β correspond to the parameters

of the equations. In the case of the Navier-Stokes Equations (NSE) this could be the density,

viscosity, and the length scale. Analytical solutions are only known for simple problems.

Then, defining an initial condition and boundary conditions one can solve this "infinte-

dimensional" dynamical system using numerical methods. In many flow problems, an issue

that arises is the high-dimensionality of the grid (discretization of the equations) that is

necessary to correctly represent the state.

Due to this high-dimensionality, it is important to find ROMs for computational speed

and to apply control strategies [41]. A successful ROM should capture the important features

and dynamics of the true system. In this thesis we use solely data to learn ROMs. The data

comes from direct numerical simulations that results from solving the governing equations

of motion. Then, the dynamical system for a low-dimensional representation h is given as

dh

dt
= g(h), (1.2)

where x 7→ h. This representation h can be estimated using different approaches. Principal

Component Analysis (PCA) provides the best linear representation of a data set, discussed

in Section 1.3.1, and gives a set of orthogonal basis vectors that are ordered by the total

contribution to the energy of the flow. Projecting onto this basis, and doing a Galerkin

approximation results in a classical framework for a ROM. However, in this scenario the

4

equations need to be known, the basis is projected onto the equations to find the model.

The major limitation of PCA is that it assumes that the subspace is flat, which is not

true for complex chaotic nonlinear systems. Hence, a nonlinear transformation is desired.

Popular nonlinear methods for dimension reduction include kernel PCA, diffusion maps, local

linear embedding (LLE), isometric feature mapping (Isomap), and t-distributed stochastic

neighbor embedding (tSNE) [64]. A drawback of these methods is that they do not provide

the function that maps h 7→ x̂.

In this thesis we will consider neural networks (NN) to learn the mapping from x 7→ h.

These have shown great success in different flow and dynamical systems as will be shown in

further chapters. We specifically want to focus on finding the minimal dimensions needed

to capture the data manifold and dynamics.

1.2 Manifolds

For dissipative systems, such as the NSE, it is known that the long-time dynamics will

collapse on an manifold M, which has fewer dimensions than the original state space. A

depiction of this manifold is shown in Figure 1.1. In fluid mechanics, this manifold is often

called an inertial manifold [24, 62, 71]. As discussed by Lee [35] this manifoldM of dimension

n has some properties that we discuss in this section. The first being that it is a Hausdorff

space. This means that for every pair of distinct points p, q ∈ M there are disjoint open

subsets U, V ⊆M such that p ∈ U and q ∈ V . Hence, the pair is separated but lives in the

manifold. The second property is thatM is second-countable which means that there exists

a countable basis for the topology ofM. The third property is that this manifold is locally

Euclidean of dimension n.

This third property implicates that we can find a homeomorphism ϕ : U → Û locally.

This means that to find a map to the dimension RdM of M one would need to "cut" the

manifold into local representations. A global map of dimension RdM is not guaranteed.

5

M
<latexit sha1_base64="O0ZuVSc93kx5NZ9IzTaY5ls9v1g=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFN26ECvYB06Fk0kwbmkmGJCOUoZ/hxoUibv0ad/6NmXYW2nogcDjnXnLuCRPOtHHdb6e0tr6xuVXeruzs7u0fVA+POlqmitA2kVyqXog15UzQtmGG016iKI5DTrvh5Db3u09UaSbFo5kmNIjxSLCIEWys5PdjbMYE8+x+NqjW3Lo7B1olXkFqUKA1qH71h5KkMRWGcKy177mJCTKsDCOczir9VNMEkwkeUd9SgWOqg2weeYbOrDJEkVT2CYPm6u+NDMdaT+PQTuYR9bKXi/95fmqi6yBjIkkNFWTxUZRyZCTK70dDpigxfGoJJorZrIiMscLE2JYqtgRv+eRV0mnUvYt64+Gy1rwp6ijDCZzCOXhwBU24gxa0gYCEZ3iFN8c4L86787EYLTnFzjH8gfP5A4PYkWc=</latexit>

Initial Conditions
<latexit sha1_base64="ph8E7ofy6QB2q4cU0dtz3ZdmpZg=">AAACAnicbVDLSsNAFJ34rPUVdSVuBovgqiRV0GWxG91VsA9oQ5lMpu3QySTM3IglFDf+ihsXirj1K9z5N07aLLT1wIXDOfdyOcePBdfgON/W0vLK6tp6YaO4ubW9s2vv7Td1lCjKGjQSkWr7RDPBJWsAB8HasWIk9AVr+aNa5rfumdI8kncwjpkXkoHkfU4JGKlnH3aBPUB6IzlwInAtkgHPHD3p2SWn7EyBF4mbkxLKUe/ZX90goknIJFBBtO64TgxeShRwKtik2E00iwkdkQHrGCpJyLSXTiNM8IlRAtyPlBkJeKr+vkhJqPU49M1mSGCo571M/M/rJNC/9FIu4wSYpLNH/URgiHDWBw64YhTE2BBClclOMR0SRSiY1oqmBHc+8iJpVsruWblye16qXuV1FNAROkanyEUXqIquUR01EEWP6Bm9ojfryXqx3q2P2eqSld8coD+wPn8A74CXxg==</latexit> M

<latexit sha1_base64="O0ZuVSc93kx5NZ9IzTaY5ls9v1g=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFN26ECvYB06Fk0kwbmkmGJCOUoZ/hxoUibv0ad/6NmXYW2nogcDjnXnLuCRPOtHHdb6e0tr6xuVXeruzs7u0fVA+POlqmitA2kVyqXog15UzQtmGG016iKI5DTrvh5Db3u09UaSbFo5kmNIjxSLCIEWys5PdjbMYE8+x+NqjW3Lo7B1olXkFqUKA1qH71h5KkMRWGcKy177mJCTKsDCOczir9VNMEkwkeUd9SgWOqg2weeYbOrDJEkVT2CYPm6u+NDMdaT+PQTuYR9bKXi/95fmqi6yBjIkkNFWTxUZRyZCTK70dDpigxfGoJJorZrIiMscLE2JYqtgRv+eRV0mnUvYt64+Gy1rwp6ijDCZzCOXhwBU24gxa0gYCEZ3iFN8c4L86787EYLTnFzjH8gfP5A4PYkWc=</latexit>

Invariant Manifold
<latexit sha1_base64="jt1DLDuVQce3uGlEPpF4t+Fdfc8=">AAACAnicbVDLSgNBEJyNrxhfUU/iZTEInsJuFPQY9KIHIYJ5QLKE3tlJMmR2dpnpDYYlePFXvHhQxKtf4c2/cfI4aGJBQ1HVTXeXHwuu0XG+rczS8srqWnY9t7G5tb2T392r6ShRlFVpJCLV8EEzwSWrIkfBGrFiEPqC1f3+1divD5jSPJL3OIyZF0JX8g6ngEZq5w9ayB4wvZEDUBwk2rdg7EgEo3a+4BSdCexF4s5IgcxQaee/WkFEk5BJpAK0brpOjF4KCjkVbJRrJZrFQPvQZU1DJYRMe+nkhZF9bJTA7kTKlLliov6eSCHUehj6pjME7Ol5byz+5zUT7Fx4KZdxgkzS6aJOImyM7HEedsAVoyiGhgBV3Nxq0x4ooGhSy5kQ3PmXF0mtVHRPi6W7s0L5chZHlhySI3JCXHJOyuSaVEiVUPJInskrebOerBfr3fqYtmas2cw++QPr8wfbhZe4</latexit>

Trajectories in state space
<latexit sha1_base64="/glb7Suyk7Vjgrr25YdjPDlf3Z4=">AAACC3icbVC7SgNBFJ31GeNr1dJmSBCswm4UtAzaWEbIC5IQZic3yZjZ2WXmrhiW9Db+io2FIrb+gJ1/4+RRaOKBC4dz7p259wSxFAY979tZWV1b39jMbGW3d3b39t2Dw5qJEs2hyiMZ6UbADEihoIoCJTRiDSwMJNSD4fXEr9+DNiJSFRzF0A5ZX4me4Ayt1HFzLYQHTCua3QHHSAswVChqkCFQEzMO446b9wreFHSZ+HOSJ3OUO+5XqxvxJASFXDJjmr4XYztlGgWXMM62EgP25SHrQ9NSxUIw7XR6y5ieWKVLe5G2pZBO1d8TKQuNGYWB7QwZDsyiNxH/85oJ9i7bqVBxgqD47KNeIilGdBIM7QptE5AjSxjXwu5K+YBpxtHGl7Uh+IsnL5NaseCfFYq35/nS1TyODDkmOXJKfHJBSuSGlEmVcPJInskreXOenBfn3fmYta4485kj8gfO5w+sA5tv</latexit>

Figure 1.1: Schematic of state space with initial conditions collapsing onto an invariant manifold.

However global map to R2dM does exist, giving an upperbound [65].

1.2.1 Coordinate charts

As discussed by Lee [35] we formalize in this section the concept of charts which will motivate

our work on finding minimal dimension models. A coordinate chart on M is a pair (U,ϕ)

where U is an open subset of M and ϕ : U → Û is a homeomorphism from U to an open

subset Û . Here U is a coordinate domain and ϕ is a coordinate map. To form the manifold

one needs a collection of many charts that will cover the manifold. This collection is called

an atlas.

6

1.3 Dimension Reduction and Neural Networks

1.3.1 Dimension Reduction with Principal Component Analysis

Principal Component Analysis (PCA), also known as proper orthogonal decomposition (POD)

and Karhunen-Loéve decomposition [27] seeks a linear transformation such that data is pro-

jected into an orthogonal coordinate system. These coordinates are organized by variance

and in the case of velocity fields correspond to the energy content. Given Ns data vectors

("snapshots") xi ∈ RN , one can obtain these basis vectors by performing singular value

decomposition (SVD) on the data matrix X = [x1, x2, · · ·] ∈ RN×Ns such that X = UΣV T .

Note, this U and V are different from the one in the previous section. Projecting the data

onto the first dh basis vectors (columns of U) then gives a low-dimensional representation –

a projection onto a linear subspace of the full state space.

1.3.2 Neural Network Operations and Autoencoders

In this section we show the operations involved in NNs. Tensors and vectors are bolded for

a clearer understanding, however in the following sections of this thesis we will sometimes

drop this convention. NNs, are a machine learing model which contain units or neurons,

that are connected and form what is called a network. These units are scalar values and

weights w ∈ Rm connect these through the network as seen in Figure 1.2a where m = 3

and w = (w1,1, w2,1, w3,1) maps the input neuron x1 into the vector y = (y1, y2, y3) with the

operation y = wx1. Let us now look at the NN in Figure 1.2b. This type of NN is called

dense because all the input units are connected with the output units. The output y now

takes the form of y = Wx, where the matrix W ∈ R3×3 operates on the input x ∈ R3.

In this case the weight matrix contains the individual weight vectors that connect the input

neurons where W = [wT
1w

T
2w

T
3].

The values that W takes come from an optimization problem using gradient descent,

where the goal is for the NN to achieve a specific task. One of the tasks is to reduce the

7

Figure 1.2: (a) Linear NN operation: single neuron input (b) three neurons input

dimensions of an input x to a lower dimensional representation in space h and from this

space reconstruct x̂ (i.e. x̂ ≈ x). The NN for this case can be seen in Figure 1.3 (for the

sake of simplicity, we assume bi = 0). The weights then take the form W = W 2W 1 and

the output is x̂ = W 2W 1x. This type of NN takes the name of an autoencoder (AE) where

the mapping x 7→ h is called the encoder and h 7→ x̂ the decoder. The weights come from

optimizing what is called the cost or loss function L. We consider the mean squared error

(MSE) where L = 1
kd·q
∑q

i=1‖x̂i−xi‖22. Here kd corresponds to the dimension of x, in the case

of a 32×32 flow field kd = 322, and q to the number of number of data. Using L to optimize a

NN can prove to be quite computationally expensive, hence mini-batch Stochastic Gradient

Descent (SGD) can be used to optimize W where a random batch of data size p� q is used

to compute Lp = 1
kd·p
∑p

i=1‖x̂i − xi‖22 then the weights can be updated by

wm+1
i,j = wmi,j − η

∂Lp
∂wi,j

, (1.3)

where η is a tunning parameter called the learning rate. With backpropagation the derivative

∂Lp/∂wi,j is computed, by repeatedly using the chain rule.

Nonlinearities can be introduced in the AE as a function σ(ni) where ni corresponds

to different neurons in the network. A linear operation involves σ(ni) = ni while common

nonlinear functions used in machine learning include the Rectified linear unit (ReLU), which

is defined as σ(ni) = max(ni, 0), and the tanh function, which takes the form σ(ni) =

8

Figure 1.3: Linear autoencoder structure as depicted by a dense NN

tanh(ni). If nonlinearities were to be introduced in Figure 1.3, the mapping from x to h

would take the form h = σ(Wx), where the function σ operates elementwise on Wx. For

the sake of simplicity and to be able to directly connect ideas of linear algebra with NNs,

an extra parameter that comes into play which is called the bias bi was set to zero. This

parameter comes into play as an addition to the weight operation on the input and appears

as h = σ(W 1x + b1). This parameter is also updated with Equation 1.3. Here, linear

networks refer to x̂ = W 2W 1x, and nonlinear networks refer to the inclusion of σ and b.

1.3.3 Learning Time Maps

After training an AE we can obtain h(t), to learn the data-driven ROM. Different approaches

in literature consist in using long short-term memory (LSTM) and recurrent neural networks

(RNN) [20, 46]. However, we know that the NSE are Markovian in nature. This means that

we only need the sate at time t to evolve the system to time t+ τ . In this section we discuss

our approaches to learn the time evolution where h(t) is mapped to h(t+ τ).

9

Discrete Time Map

After learning a low dimensional representation h(t), we can seek a discrete time map

h(t+ τ) = F (h(t)) (1.4)

that evolves h(t) from time t to t+ τ . The function F can be expressed as a dense NN which

is trained with the following loss

Lt = ‖h̃(t+ τ)− h(t+ τ)‖2, (1.5)

where h(t+ τ) comes from true data and h̃(t+ τ) = F (h(t)) from the prediction.

Neural Ordinary Differential Equations

Another framework to forecast in time is the the neural ODE (NODE) [14, 38, 40] which

are continuous models and has shown to be successful at this task. We use in this thesis a

stabilized version used by Linot et. al. [40] where the dynamics on the manifold are described

by the equation

dh

dt
= gh(h)− Ah. (1.6)

Here A is chosen to have a stabilizing effect that keeps solutions from blowing up. The

equation is integrated to estimate hr(t+ τ) as

hr (t+ τ) = h (t) +

∫ t+τ

t

(gh (h(t′); θt)− Ah)dt′ (1.7)

where θt are the weights of the NN gh which are determined by minimizing the loss

LNODE (h; θt) =
〈
‖h(t+ τ)− hr(t+ τ)‖22

〉
. (1.8)

10

1.4 More Neural Network Frameworks

1.4.1 Dropout

Overfitting is a common problem in networks with large number of parameters. To address

this, dropout has been introduced as a technique that helps prevent units from co-adapting

[60]. During training random units in the network are dropped, resulting in the training of

"thin" networks. As discussed in [60], the feed-forward operation becomes

r
(l)
j ∼ Bernoulli(p)

ỹ(l) = r(l) ∗ y(l)

z
(l+1)
i = w

(l+1)
i ỹl + b

(l+1)
i

y
(l+1)
i = f

(
z
(l+1)
i

)

(1.9)

where ∗ is an element-wise product, l is the layer, and r is a vector of independent Bernoulli

random variables each of which has a probability p of being 1. In the optimization step the

active units get updated, only these affect the loss. When testing, all the units are always

present and are multiplied by p.

1.4.2 Contrastive Learning

The goal in contrastive learning is to learn representations by maximizing agreement between

augmented versions of the same data via a contrastive loss [15]. These augmented versions

correspond to a positive pair. In image classification tasks these can be: crops, color distor-

tions, and gaussian blur to mention a few. In the context of an autoencoder, to apply the

contrastive loss, h from an encoder can be extracted and combined with a projection head

s(·) that maps to the space where the loss in applied, z. The loss function for a positive pair

11

of examples (i, j) is defined as

`i,j = − log
exp (sim (zi, zj) /τ)∑2N

k=1 1[k 6=i] exp (sim (zi, zk) /τ)
(1.10)

where sim(u, v) = u>v/‖u‖‖v‖, 1[k 6=i] ∈ {0, 1} is an indicator function, and τ is a hyperpa-

rameter.

1.5 Symmetries in Dynamical Systems

We finalize this introduction by motivating the need to understand symmetries in dynamical

systems. The presence of symmetries can prove to play a crucial role when learning models

from data. This is in part because these have to spend efforts in learning the different copies

of the same data.

Previous work in computer vision has shown that the performance of NN improves when

addressing the symmetries of the problem considered, as opposed to data augmentation.

Winkels & Cohen applied this concept to pulmonary nodule detection where they used

3D discrete rotation equivariant convolutional neural networks in CT scans [67, 68]. They

showed a 10x increase in performance in terms of the data used for training as opposed to

using regular CNNs. This means that when the symmetries of the system are known, it

desired to address them instead of resorting to data augmentation. In dynamical systems

this has shown to also be the case. Linot & Graham addressed the continuous symmetry of

the Kuramoto-Sivashinsky equation with improvements in dimension estimates and MSEs

and in this thesis (Chapters 2 and 3) we show how this improves models for the NSE.

Addressing symmetries is of importance because any successful attempt to learn ROMs

involves dense coverage of the regions that the trajectories explore which are related to the

symmetries of the system. Let G be a group of symmetries acting on a dynamical system

f(x). The group of symmetries is said to be equivariant given f(Gx) = Gf(x). This means

that any symmetry operation applied to the given state will give the same dynamics under

12

a transformation, making these equivalent. In the invariant case f(Gx) = f(x). Hence

dynamics will be the same. In the NSE symmetries appear in discrete and continuous forms

as we will see in this thesis.

1.5.1 Continuous Symmetry and Phase Aligning

The method of slices [10, 11] will prove to be useful due to the translational invariance nature

of the data as will be seen in further chapters. This method consists in taking the Discrete

Fourier Transform

u(x, τ) =
N∑

k=−N

ûk(τ)eikx, (1.11)

and phase shifting by using the phase φ =atan2(Im(û1)/Re(û1)) where û1 corresponds to the

first Fourier mode. By shifting the flow fields before training the network, data is translated

to a unique location. This is desired because the network does not have to account for

trajectories with the same structure in different locations. Another way to do this is to

consider a slice template instead of the first Fourier mode. This has been done for pipe flow

with great success and more details are given in Section 5.2.

1.5.2 Factoring Out Discrete Symmetries

In the context of the systems we study in this thesis, discrete symmetries can appear in the

form of rotations and reflections. Similar to the continuous symmetry, the Fourier modes

can be used to factor out the symmetries and map the snapshots to a fundamental space.

Budanur & Cvitanovic showed how this can be done for the Kuramoto–Sivashinsky system

[7]. In this work they used a polynomial basis from the Fourier coefficients such that the

different symmetric versions of the snapshots have the same signs. In Chapter 3 we take a

similar approach and use a set of Fourier mode to factor out the symmetries for the NSE.

13

1.6 Outline of this work

The main goal of this thesis is to develop deep learning architectures to learn efficient data-

driven reduced-order models that can faithfully capture the most important features of flows

in a low-dimensional representation. We also present a framework capable of giving robust

estimates of the minimal dimensions needed to represent complex systems. Our benchmark

throughout this thesis is two-dimensional Kolmogorov flow. In the range considered this

system is high-dimensional, chaotic, and intermittent which makes it challenging to model.

In the remainder of this thesis we present our work towards modeling these complex

systems. In Chapter 2, we present a data-driven framework for minimal-dimensional models

that effectively capture the dynamics and properties of the flow. We are able to learn low

dimensional models that capture short-time tracking, long-time statistics, and even extreme

events with great success. In Chapter 3, we factor out the continuous and discrete symmetries

of the system, and build models with improved performance where less data is needed to

train the models and equivariance is satisfied. We also use a variation of an autoencoder

called implicit rank minimizing autoencoder (IRMAE) that gives estimates of the minimal

dimension needed to represent the system. In Chapter 4 the focus is to improve IRMAE

by introducing an extension to this framework. We show that this modification improves

robustness of dimension estimates.

We conclude this thesis in Chapter 5 where we discuss preliminary results on pipe flow

using our presented frameworks and give insights on using different machine learning methods

to improve dimension estimates and for addressing symmetries.

14

2

Data-driven low-dimensional dynamic

model of Kolmogorov flow 1

Reduced order models (ROMs) that capture flow dynamics are of interest for decreasing

computational costs for simulation as well as for model-based control approaches. This work

presents a data-driven framework for minimal-dimensional models that effectively capture

the dynamics and properties of the flow. We apply this to Kolmogorov flow in a regime

consisting of chaotic and intermittent behavior, which is common in many flows processes

and is challenging to model. The trajectory of the flow travels near relative periodic orbits

(RPOs), interspersed with sporadic bursting events corresponding to excursions between

the regions containing the RPOs. The first step in development of the models is use of

an undercomplete autoencoder to map from the full state data down to a latent space of

dramatically lower dimension. Then models of the discrete-time evolution of the dynamics in

the latent space are developed. By analyzing the model performance as a function of latent

space dimension we can estimate the minimum number of dimensions required to capture the

system dynamics. To further reduce the dimension of the dynamical model, we factor out

a phase variable in the direction of translational invariance for the flow, leading to separate

1The text of this chapter is adapted from the publication by C. E. Pérez De Jesús and M. D. Graham
Physical Review Fluids, 8, 2023

15

evolution equations for the pattern and phase dynamics. At a model dimension of five for the

pattern dynamics, as opposed to the full state dimension of 1024 (i.e. a 32×32 grid), accurate

predictions are found for individual trajectories out to about two Lyapunov times, as well

as for long-time statistics. Further small improvements in the results occur as dimension

is increased to nine, beyond which the statistics of the model and true system are in very

good agreement. The nearly heteroclinic connections between the different RPOs, including

the quiescent and bursting time scales, are well captured. We also capture key features of

the phase dynamics. Finally, we use the low-dimensional representation to predict future

bursting events, finding good success.

2.1 Introduction

Development of reduced order dynamical models for complex flows is an issue of long-

standing interest, with applications in improved understanding, as well as control, of flow

phenomena. The classical approach for dimension reduction of these systems consists of

extracting dominant modes from data via principal component analysis (PCA), also known

as proper orthogonal decomposition (POD) and Karhunen-Loéve decomposition [27]. PCA

determines a set of basis vectors ordered by their contribution to the total variance (fluc-

tuating kinetic energy) of the flow. Given Ns data vectors (“snapshots") xi ∈ RN , one can

obtain these basis vectors by performing singular value decomposition (SVD) on the data

matrix X = [x1, x2, · · ·] ∈ RN×Ns such that X = UΣV T . Projecting the data onto the first

dh basis vectors (columns of U) then gives a low-dimensional representation – a projection

onto a linear subspace of the full state space. To find a reduced order model (ROM), a

Galerkin approximation of the Navier-Stokes Equations (NSE) using this basis can be im-

plemented; these have shown some success in capturing the dynamics of coherent structures

[3, 50]. Previous research has also used POD as well as a filtered version thereof [58], which

are linear reduction techniques, to reduce dimensions and learn a time evolution map from

16

data with the use of neural networks (NNs) [43].

Although PCA provides the best linear representation of a data set in dh dimensions, in

general the long-time dynamics of a general nonlinear dynamical systems are not expected

to lie on a linear subspace of the state space. For a primer and more details on data-driven

dimension reduction methods for dynamical systems refer to Linot & Graham [38]. For

dissipative systems, such as the NSE, it is expected that the long-time dynamics will lie

on an invariant manifold M, which can be represented locally with Cartesian coordinates,

but may have a complex global topology [28]. In fluid mechanics, this manifold is often

called an inertial manifold [24, 62, 71]. Figure 2.1 schematically illustrates a simple example

of this idea. Consider a dynamical system ẋ = F (x) for state variable x ∈ RN . As time

proceeds, general initial conditions in this space evolve toward an invariant manifoldM of

dimension dM, which in this example can be described by the equation q = Φ(p) where

x = p+ q, p ∈ RdM , q ∈ RN−dM . Furthermore, if we write the dynamics in terms of p and q

as ṗ = f(p, q), q̇ = g(p, q), then trajectories onM evolve according to ṗ = f(p,Φ(p)): i.e. the

long time dynamics are given by a set of ordinary differential equations in dM dimensions,

rather than the N dimensions of the original system. More generally, sinceM is invariant

under the dynamics, the vector field on M is always tangent to M, and the dynamics on

M are determined by this vector field. In the present work we do not require that the

manifold be represented in this simple form, but rather a more general form G(x) = 0. In

this example, G(x) = q − Φ(p).

In general one can think of breaking upM into overlapping regions that cover the domain,

to find a local representation. These are called charts and are equipped with a coordinate

domain and a coordinate map [36]. The strong Whitney’s embedding theorem states that

any smooth manifold of dimension dM can be embedded into a Euclidean space of so-called

embedding dimension 2dM [36, 65]. This means that in the worst case we can expect in

principle to be able to find a 2dM-dimensional Euclidean space in which the dynamics lie.

To find a dM-dimensional Euclidean space one would in general need to develop overlapping

17

M
<latexit sha1_base64="O0ZuVSc93kx5NZ9IzTaY5ls9v1g=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFN26ECvYB06Fk0kwbmkmGJCOUoZ/hxoUibv0ad/6NmXYW2nogcDjnXnLuCRPOtHHdb6e0tr6xuVXeruzs7u0fVA+POlqmitA2kVyqXog15UzQtmGG016iKI5DTrvh5Db3u09UaSbFo5kmNIjxSLCIEWys5PdjbMYE8+x+NqjW3Lo7B1olXkFqUKA1qH71h5KkMRWGcKy177mJCTKsDCOczir9VNMEkwkeUd9SgWOqg2weeYbOrDJEkVT2CYPm6u+NDMdaT+PQTuYR9bKXi/95fmqi6yBjIkkNFWTxUZRyZCTK70dDpigxfGoJJorZrIiMscLE2JYqtgRv+eRV0mnUvYt64+Gy1rwp6ijDCZzCOXhwBU24gxa0gYCEZ3iFN8c4L86787EYLTnFzjH8gfP5A4PYkWc=</latexit>

Initial Conditions
<latexit sha1_base64="ph8E7ofy6QB2q4cU0dtz3ZdmpZg=">AAACAnicbVDLSsNAFJ34rPUVdSVuBovgqiRV0GWxG91VsA9oQ5lMpu3QySTM3IglFDf+ihsXirj1K9z5N07aLLT1wIXDOfdyOcePBdfgON/W0vLK6tp6YaO4ubW9s2vv7Td1lCjKGjQSkWr7RDPBJWsAB8HasWIk9AVr+aNa5rfumdI8kncwjpkXkoHkfU4JGKlnH3aBPUB6IzlwInAtkgHPHD3p2SWn7EyBF4mbkxLKUe/ZX90goknIJFBBtO64TgxeShRwKtik2E00iwkdkQHrGCpJyLSXTiNM8IlRAtyPlBkJeKr+vkhJqPU49M1mSGCo571M/M/rJNC/9FIu4wSYpLNH/URgiHDWBw64YhTE2BBClclOMR0SRSiY1oqmBHc+8iJpVsruWblye16qXuV1FNAROkanyEUXqIquUR01EEWP6Bm9ojfryXqx3q2P2eqSld8coD+wPn8A74CXxg==</latexit> M

<latexit sha1_base64="O0ZuVSc93kx5NZ9IzTaY5ls9v1g=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFN26ECvYB06Fk0kwbmkmGJCOUoZ/hxoUibv0ad/6NmXYW2nogcDjnXnLuCRPOtHHdb6e0tr6xuVXeruzs7u0fVA+POlqmitA2kVyqXog15UzQtmGG016iKI5DTrvh5Db3u09UaSbFo5kmNIjxSLCIEWys5PdjbMYE8+x+NqjW3Lo7B1olXkFqUKA1qH71h5KkMRWGcKy177mJCTKsDCOczir9VNMEkwkeUd9SgWOqg2weeYbOrDJEkVT2CYPm6u+NDMdaT+PQTuYR9bKXi/95fmqi6yBjIkkNFWTxUZRyZCTK70dDpigxfGoJJorZrIiMscLE2JYqtgRv+eRV0mnUvYt64+Gy1rwp6ijDCZzCOXhwBU24gxa0gYCEZ3iFN8c4L86787EYLTnFzjH8gfP5A4PYkWc=</latexit>

q = �(p)
<latexit sha1_base64="aJDy6ajPWa2iHydvKYqeBl5/rU4=">AAAB8XicbVBNSwMxEJ3Ur1q/qh69BItQL2W3CnoRil48VrAf2C4lm2bb0Gx2TbJCWfovvHhQxKv/xpv/xrTdg7Y+GHi8N8PMPD8WXBvH+Ua5ldW19Y38ZmFre2d3r7h/0NRRoihr0EhEqu0TzQSXrGG4EawdK0ZCX7CWP7qZ+q0npjSP5L0Zx8wLyUDygFNirPTweNWtDzkux6e9YsmpODPgZeJmpAQZ6r3iV7cf0SRk0lBBtO64Tmy8lCjDqWCTQjfRLCZ0RAasY6kkIdNeOrt4gk+s0sdBpGxJg2fq74mUhFqPQ992hsQM9aI3Ff/zOokJLr2UyzgxTNL5oiAR2ER4+j7uc8WoEWNLCFXc3orpkChCjQ2pYENwF19eJs1qxT2rVO/OS7XrLI48HMExlMGFC6jBLdShARQkPMMrvCGNXtA7+pi35lA2cwh/gD5/ACuOj+4=</latexit>

Invariant Manifold
<latexit sha1_base64="jt1DLDuVQce3uGlEPpF4t+Fdfc8=">AAACAnicbVDLSgNBEJyNrxhfUU/iZTEInsJuFPQY9KIHIYJ5QLKE3tlJMmR2dpnpDYYlePFXvHhQxKtf4c2/cfI4aGJBQ1HVTXeXHwuu0XG+rczS8srqWnY9t7G5tb2T392r6ShRlFVpJCLV8EEzwSWrIkfBGrFiEPqC1f3+1divD5jSPJL3OIyZF0JX8g6ngEZq5w9ayB4wvZEDUBwk2rdg7EgEo3a+4BSdCexF4s5IgcxQaee/WkFEk5BJpAK0brpOjF4KCjkVbJRrJZrFQPvQZU1DJYRMe+nkhZF9bJTA7kTKlLliov6eSCHUehj6pjME7Ol5byz+5zUT7Fx4KZdxgkzS6aJOImyM7HEedsAVoyiGhgBV3Nxq0x4ooGhSy5kQ3PmXF0mtVHRPi6W7s0L5chZHlhySI3JCXHJOyuSaVEiVUPJInskrebOerBfr3fqYtmas2cw++QPr8wfbhZe4</latexit>

Trajectories in state space
<latexit sha1_base64="/glb7Suyk7Vjgrr25YdjPDlf3Z4=">AAACC3icbVC7SgNBFJ31GeNr1dJmSBCswm4UtAzaWEbIC5IQZic3yZjZ2WXmrhiW9Db+io2FIrb+gJ1/4+RRaOKBC4dz7p259wSxFAY979tZWV1b39jMbGW3d3b39t2Dw5qJEs2hyiMZ6UbADEihoIoCJTRiDSwMJNSD4fXEr9+DNiJSFRzF0A5ZX4me4Ayt1HFzLYQHTCua3QHHSAswVChqkCFQEzMO446b9wreFHSZ+HOSJ3OUO+5XqxvxJASFXDJjmr4XYztlGgWXMM62EgP25SHrQ9NSxUIw7XR6y5ieWKVLe5G2pZBO1d8TKQuNGYWB7QwZDsyiNxH/85oJ9i7bqVBxgqD47KNeIilGdBIM7QptE5AjSxjXwu5K+YBpxtHGl7Uh+IsnL5NaseCfFYq35/nS1TyODDkmOXJKfHJBSuSGlEmVcPJInskreXOenBfn3fmYta4485kj8gfO5w+sA5tv</latexit>

p
<latexit sha1_base64="YCRLqY3FYFMPr169IIibebwVZHg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZtIvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucP22eM+A==</latexit>

q
<latexit sha1_base64="b+n3e1YQEa9MneUTanzPe56IiCk=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7Ow6M2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJb3ZpygH9GB5CFn1Fip/tgrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+ANzrjPk=</latexit>

Figure 2.1: Schematic of state space with initial conditions collapsing onto an invariant manifold
where the long time dynamics occur.

local representations and evolution equations – this avenue is not pursued in the present

work but has been done elsewhere [23]. In this work we aim to find a high-fidelity low-

dimensional dynamical model using data from simulations of two-dimensional Kolmogorov

flow. In this work, the governing Navier-Stokes Equations will only be used to generate

the data – the models will only use this data, not the equations that generated it. Neural

networks (NNs) will be used to map between the full state space and the manifold, as well

as for the dynamical system model on the manifold.

A number of previous studies have focused on finding data-driven models for fluid flow

problems with the use of NNs. Srinivasan et al. [59] developed NN models to attempt

to predict the time evolution of the Moehlis-Faisst-Eckhardt (MFE) model [46], which is

a nine-dimensional model for turbulent shear flows. They used two approaches to finding

discrete-time dynamical systems. The first is to simply use a neural network as a discrete-

time map, yielding a Markovian representation of the time evolution. The second is to

use a long short-term memory (LSTM) network, which yields a non-Markovian evolution

18

equation. Despite the fact that the dynamics are in fact Markovian, the LSTM approach

worked better, yielding reasonable agreement with the Reynolds stress profiles. Page et al.

used deep convolutional autoencoders (CAEs) to learn low-dimensional representations for

two-dimensional (in physical space) Kolmogorov flow, showing that these networks retain

a wide spectrum of lengthscales and capture meaningful patterns related to the embedded

invariant solutions [52]. They considered the case where bursting dynamics is obtained at

a Reynolds number of Re = 40 and n = 4 wavelengths in the periodic domain. Nakamura

et al. used CAEs for dimension reduction combined with LSTMs and applied it to minimal

turbulent channel flow for Reτ = 110 where they showed to capture velocity and Reynolds

stress statistics [47]. They studied various degrees of dimension reduction, showing good

performance in terms of capturing the statistics; however for drastic dimension reduction

they showed how only large vortical structures were captured. Hence, the selection of the

minimal dimension to accurately represent the state becomes a challenging task. Reservoir

networks have also shown great potential in learning nonlinear models for time evolution.

For example, Doan et al. trained what they call an Auto-Encoded Reservoir-Computing

(AE-RC) framework where the latent space is fed into an Echo State Network (ESN) to

model evolution in discrete time [20]. By considering the two-dimensional Kolmogorov flow

for Re = 30 and n = 4 good performance was obtained when comparing the kinetic energy

and dissipation evolution in time. They also showed how the model captures the velocity

statistics. However, the nature of the reservoir in the ESN stores past history, making the

model non-Markovian.

Although previous research has found data-driven ROMs for fluid flow problems, the

focus on these has not been to find the minimal dimension required to capture the data

manifold and dynamics. Linot & Graham have addressed this issue for the Kuramoto-

Sivashinsky equation (KSE) [37, 38]. They showed that the mean squared error (MSE) of

the reconstruction of the snapshots using an AE for the domain size of L = 22 exhibited an

orders-of-magnitude drop when the dimension of the inertial manifold is reached. Further-

19

more, modeling the dynamics with a dense NN at this dimension either with a discrete time

map [37] or a system of ordinary differential equations (ODE) [38] yields excellent trajectory

predictions and long-time statistics. Increasing domain size to L = 44 and L = 66, which

makes the system more chaotic, affects the drops of MSE significantly. However a drop is

still seen, and when obtaining the dynamics and calculating long time statistics, good agree-

ment with the true data is obtained. This work, denoted “Data-driven manifold dynamics"

(DManD) has been extended to incorporate reinforcement learning control for reduction of

dissipation in the KSE, yielding a very effective control policy [73].

We aim to extend this approach to the NSE, specifically to the two-dimensional Kol-

mogorov flow, where an external forcing drives the dynamics. As Re increases, the trivial

state becomes unstable, giving rise to periodic orbits (POs), relative periodic orbits (RPOs)

and eventually chaos. Relative periodic orbits correspond to periodic orbits in in a moving

reference frame, such that in a fixed frame, the pattern at time t + T is a phase-shifted

replica of the pattern at time t. The nature of the weakly turbulent dynamics at a Reynolds

number of Re = 14.4, and connections with RPO solutions are the focus of this study.

Due to the symmetries of the system the chaotic dynamics travels between unstable RPOs

[18] through bursting events [2] that shadow heteroclinic orbits connecting the RPOs. A

past study [1] shows that low-dimensional representations can be found with PCA for two-

dimensional Kolmogorov flow where in the case of weakly turbulent data, the first two PCA

basis in the streamfunction formulation capture most of the energetic content when filtering

out the bursting events before the analysis, and including a third basis function captures

the bursting information. This point hints at the low-dimensional nature of this system,

where a low number of PCA basis functions can energetically represent the data. However,

even though the energy can be contained in a low number of basis functions, this does not

imply that these will properly capture the dynamics [56]. In [1], development of a model of

time-evolution was not considered.

Returning to the aims of the present work, our focus is twofold. We aim to learn a

20

minimal-dimensional high fidelity data-driven model for the long-time dynamics of two-

dimensional Kolmogorov flow with the use of an autoencoder (AE), and a discrete-time

map, in the form of a dense NN, of the dynamics on the invariant manifold. In this map,

the future time prediction only depends on the present state (on the manifold), in keeping

with the Markovian nature of the dynamics on the manifold. This approach contrasts with

models that use an RNN such as an LSTM, which carry a memory of past states so are not

Markovian. It is important to note, however, that the dimension of the invariant manifold is

not known a priori, and if we map the data onto a manifold of too low a dimension, then the

dynamics on that manifold will not be Markovian. Accordingly, in this work we will carefully

assess the performance of our Markovian models as a function of manifold dimension. For

our results, the model predictions will be evaluated as a function of dimension, considering

short-time trajectories, long-time statistics, quiescent and bursting time distributions, and

predictions of bursting events. This paper is structured as follows: in Section 2.2 we present

the governing equations together with the symmetries of the system. We also present the

dynamics at the two values of Re considered and the connections of the RPOs with the chaotic

regime. In Section 2.3 we show the methodology for data-driven dimension reduction and

dynamic modeling, which includes the AE architecture and the time map NN. Section 2.4

shows the results, and concluding remarks are given in Section 2.5.

21

2.2 Kolmogorov flow formulation and dynamics

The two-dimensional Navier-Stokes equations (NSE) with Kolmogorov forcing are

∂u

∂t
+ u · ∇u +∇p =

1

Re
∇2u + sin(ny)x̂ (2.1)

∇ · u = 0 (2.2)

where u = [u, v] is the velocity vector, p is the pressure, n is the wavenumber of the forcing,

and x̂ is the unit vector in the x direction. Here Re =
√
χ

v

(
Ly
2π

)3/2
where χ is the dimensional

forcing amplitude, ν is the kinematic viscosity, and Ly is the size of the domain in the y

direction. We consider the periodic domain [0, 2π/α]×[0, 2π] with α = 1. Vorticity is defined

as ω = ∇× u. The equations are invariant under several symmetry operations [13], namely

a shift (in y)-reflect (in x), a rotation through π, and a continuous translation in x:

S : [u, v, ω](x, y)→ [−u, v,−ω]
(
−x, y +

π

n

)
, (2.3)

R : [u, v, ω](x, y)→ [−u,−v, ω](−x,−y), (2.4)

Tl : [u, v, ω](x, y)→ [u, v, ω](x+ l, y) for 0 6 l <
2π

α
. (2.5)

The total kinetic energy for this system (KE), dissipation rate (D) and power input (I) are

KE =
1

2

〈
u2
〉
V
, D =

1

Re

〈
|∇u|2

〉
V
, I = 〈u sin(ny)〉V (2.6)

where subscript V corresponds to the average taken over the domain. For the case of n = 1

the trivial solution is linearly stable at all Re [30]. It is not until n = 2 that the laminar

state becomes unstable, with a critical value of Rec = n3/221/4[26, 44, 63].

The NSE are evolved numerically in time in the vorticity representation on a [dx× dy] =

[32×32] grid following the pseudo-spectral scheme given by Chandler & Kerswell [13], which

is based on the code by Bartello & Warn [4]. We show here time series results for the two

22

0 100 200 300 400 500
t

0.740

0.741

0.742

0.743

0.744

0.745

K
E

(a)

0 200 400 600 800 1000
t

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

K
E

(b)

0 200 400 600 800 1000
t

0.150

0.185

0.220

0.255

0.290

0.325

0.360

0.395

D
,I

D

I

(c)

Figure 2.2: (a) Time evolution of KE at Re = 13.5. (b) Time evolution of KE at Re = 14.4. (c)
Time evolution of D and I at Re = 14.4.

23

−0.4 −0.2 0.0 0.2 0.4
Re [a0,1(t)]

−0.4

−0.2

0.0

0.2

0.4

Im
[a

0,
1
(t

)]

Re=13.5

Re=14.4

Figure 2.3: Evolution of the real and imaginary components corresponding to the a0,1(t) Fourier
mode for Re = 13.5 and Re = 14.4.

dynamical regimes considered in this work, an RPO regime at Re = 13.5 and a chaotic regime

at Re = 14.4. Figure 2.2a shows the KE evolution for an RPO obtained at Re = 13.5. Due

to the discrete symmetries of the system, there are several RPOs [2], as we further discuss

below. Figure 2.2b shows the KE evolution for a trajectory at Re = 14.4. The dynamics are

characterized by quiescent intervals where the trajectories are close to RPOs (which are now

unstable), punctuated by heteroclinic-like excursions between the RPOs, which are indicated

by the intermittent increases of the KE. The RPOs are all related by the symmetries S

and R [2, 49, 55]. This behavior can also be seen in Figure 2.2c, where the black curve

corresponds to the time evolution of D and the blue curve to the time evolution of I. Figure

2.3, shows a state-space projection of a trajectory onto the plane Re [a0,1(t)] − Im [a0,1(t)]

where a(kx, ky, t) = akx,ky(t) = F{ω(x, y, t)} is the discrete Fourier transform in x and y.

The grey curve corresponds to Re = 14.4 and the different blue curves show four different

RPOs related by the shift-reflect symmetry S at Re = 13.5.

24

2.3 Data-driven dimension reduction and dynamic mod-

eling

2.3.1 Dimension reduction with autoencoders

To learn a minimal-dimensional model for the two-dimensional Kolmogorov flow we first

have to find a low-dimensional nonlinear mapping from the full state to the reduced repre-

sentation. For this purpose we consider a common machine learning architecture known as

an undercomplete autoencoder (AE), whose purpose is to learn a reduced representation of

the state such that the reconstruction error with respect to the true data is minimized. The

AE consists of an encoder, E(·), that maps from the full space RN to the lower dimensional

latent space h(t) ∈ Rdh (i.e., coordinates on the manifold M), and a decoder, D(·), that

maps back to the full space. Flattened versions of ω(x, y, t) are used, which we refer from

this point on as ω(t), so N = 32×32 = 1024. We shall see that the latent space dimension dh

will be much smaller than the dimension N of the full spatially-resolved state. The encoder

E(ω(t)) is a coordinate mapping from RN to M, and the decoder D(h(t)) is the mapping

back fromM to RN .

We train the AEs with ω(t) obtained from the evolution of NSE for the original data as

well as accounting for the discrete and continuous symmetries. By accounting for the symme-

tries it is expected that the networks will perform better, by not having to learn the symme-

tries in the latent space mapping. We account for the continuous symmetry in x, Tl, with the

method of slices [10, 11]. The kx = 1, ky = 0 Fourier mode is used to find the spatial phase:

φx(t) = atan 2 {Im [a1,0(t)] ,Re [a1,0(t)]}. This can then be used to phase-align the vorticity

snapshots such that this mode is a pure cosine: ω̂(x, y, t) = F−1
{
F{ω(x, y, t)}e−ikφx(t)

}
.

Doing this ensures that the snapshots lie in a reference frame were no translation happens

in the x direction. We will learn evolution equations for both ω̂(t) and φx(t), which we

will denote as the pattern dynamics and phase dynamics, respectively. We also consider

the shift-reflect (SR) symmetry, S , as well as the rotation through π, R. To account for

25

the SR symmetry the goal is to collapse the phase-aligned snapshots to the same common

state. We can define two indicator functions such that the SR subspace is specified. The

first one, IEven = sgn(φy), where φy(t) = atan 2 {Im [a0,1(t)] ,Re [a0,1(t)]} is the spatial phase

in y. The second indicator function is Iodd = sgn(Re[a2,0(t)]), the sign of the real part of

the second Fourier mode in x. We can then map the vorticity snapshots in such a way that

IEven, IOdd > 0 by applying SR operations to the state. The rotation symmetry is accounted

for, on top of the SR symmetry, by minimizing the l2-norm of the data with respect to a

template snapshot. This is done by applying the discrete operation that rotates and shift-

reflects the vorticity snapshots and selecting the snapshot that minimizes the norm. We

note that we take a different approach for reducing the symmetries compared to previous

research on symmetry-aware AEs [34].

Previous work [37] has shown that training a NN to learn the difference between the data

and the projection onto the leading PCA basis vectors improved reconstruction performance

compared to learning a latent space directly from the full data. To present the framework,

we will use the phase-aligned and flattened vorticity ω̂(t), since that is what we use for the

time-evolution. Below, however, we will present some results where other versions of the

data are used – e.g. the data with phase-shifting. The autoencoder aspect of the analysis is

identical.

We begin the process by computing the projection of the data onto the first dh basis

vectors, PdhU
T ω̂(t). We then seek to learn a dh-dimensional correction to that projection,

E
(
UT ω̂(t)

)
– the sum of these is the latent-space representation h(t). In other words, the

encoding step learns the deviation from PCA

E
(
UT ω̂(t)

)
= h(t)− PdhUT ω̂(t). (2.7)

We emphasize that this step is not simply a projection onto a linear subspace defined by

dh PCA modes– rather it is an approach that learns the deviation of the data from that

26

projection. Similarly the decoding section learns the difference

D(h(t)) = UT ˜̂ω(t)−



h(t)

0


 , (2.8)

where ˜̂ω(t) corresponds to the reconstruction of ω̂(t). Inserting Equation 2.7 into Equation

2.8 and noting that by definition ˜̂ω(t) = U [PdhU
T ω̂(t), Pd−dhU

T ω̂(t)]T we get that the exact

solution satisfies E
(
UT ω̂(t)

)
+ Ddh((h(t)) = 0. To satisfy this constraint we add it to the

loss function as a penalty to obtain

L = ‖ω̂(t)− ˜̂ω(t)‖2 + αL
∥∥E(UT ω̂(t)) +Ddh(h(t))

∥∥2 (2.9)

where ‖ · ‖ is the l2-norm and we select αL = 1. We can now train the AEs by minimizing

L via stochastic gradient descent. We train 4 AEs at each of several values of dh to study

the MSE of the reconstruction of ω̂(t). All models were trained for 300 epochs with an

Adam optimizer using Keras. After 300 epochs no further improvement over the test data

was observed; see Figure 2.4. The training data consists of long time series from the direct

simulations, with initial transients removed. We use a total of 105 snapshots separated by

τ = 5 time units for Re = 14.4, and 104 snapshots separated by τ = 5 for Re = 13.5. We

do an 80%/20% split for training and testing respectively. Figure 2.5a shows a summary

of the AE and Table 2.1 gives information on the layer dimensions, and activations used in

each layer of the encoder and decoder. At each value of dh, the model with the smallest

MSE over a test data set from the phase-aligned data is then selected for the discrete time

map. We will show in Section 2.4.1 that factoring out the phase dramatically increases AE

performance.

27

2.3.2 Time evolution via a dense NN

After finding h(t) from the AEs, we seek a discrete-time map

h(t+ τ) = F (h(t)) (2.10)

that evolves h(t) from time t to t + τ . We fix τ = 5. The function F is also expressed as a

dense NN. Here we train 5 NNs for the different dh cases with the following loss

Lt = ‖h̃(t+ τ)− h(t+ τ)‖2, (2.11)

where h(t+ τ) comes from true data and h̃(t+ τ) = F (h(t)) from the prediction, and select

the one with the best performance. For the discrete time map we trained for 600 epochs

with the use of a learning rate scheduler. In this case we noticed an increase in performance

when dropping the learning rate hyperparameter by an order of magnitude after 300 epochs.

Figure 2.5b shows a summary the framework just described, and Table 2.1 gives information

on the layer dimensions and activations used in each layer.

As discussed previously, the time evolution is done in the phase-aligned space. To com-

plete the dynamical picture we seek a discrete-time map for the phase evolution

∆φ̃x(t+ τ) = G(h(t)), (2.12)

where ∆φx(t+ τ) = φx(t+ τ)− φx(t). Because of translation equivariance, the actual phase

is only unique to within a constant. We train 5 NNs for the the different dh cases with the

following loss

Lp = ‖∆φ̃x(t+ τ)−∆φx(t+ τ)‖2, (2.13)

such that ∆φ̃x(t + τ) = G(h(t)). Figure 2.5c shows a summary of the framework we have

described, and Table 2.1 gives information on the layer dimensions and activations used in

28

0 50 100 150 200 250 300
Epochs

10−3

10−2

10−1

L

Train

Test

Figure 2.4: Autoencoder loss versus epochs over training and test data sets corresponding to a
trial from the case Re = 14.4, dh = 9.

each layer.

Table 2.1: Neural network layer dimensions and activations used in each layer. Sigmoid function
are denoted ’S’.

Function Shape Activation
Encoder E 1024 : 5000 : 1000 : dh S:S:S
Decoder D dh : 1000 : 5000 : 1024 S:S:linear
Evolution F dh : 500 : 500 : dh S:S:linear
Phase Prediction G dh : 500 : 500 : 500 : 1 S:S:S:linear

2.4 Results

We present results as follows. First we will show the AE performance for the various dh and

symmetries considered. We then report results for time evolution models, again studying

performance as a function of the number of dimensions. Both evolution of the pattern and

phase dynamics are considered. We wrap up the results by predicting bursting events based

on the low-dimensional representation.

29

(a) Autoencoder
<latexit sha1_base64="FsL4Ci6izTE3d7f/+SY8oSJxBBs=">AAAB/3icbVDLSgNBEJyNrxhfUcGLl8EgxEvYjYIeo148RjAPSEKYnXSSIbM7y0yvGNYc/BUvHhTx6m9482+cPA6aWNBQVHXT3eVHUhh03W8ntbS8srqWXs9sbG5t72R396pGxZpDhSupdN1nBqQIoYICJdQjDSzwJdT8wfXYr92DNkKFdziMoBWwXii6gjO0Ujt70ER4wCTPTuhljApCrjqgR+1szi24E9BF4s1IjsxQbme/mh3F4wBC5JIZ0/DcCFsJ0yi4hFGmGRuIGB+wHjQsDVkAppVM7h/RY6t0aFdpWyHSifp7ImGBMcPAt50Bw76Z98bif14jxu5FKxFhFKP9bLqoG0uKio7DoB2hgaMcWsK4FvZWyvtMM442sowNwZt/eZFUiwXvtFC8PcuVrmZxpMkhOSJ54pFzUiI3pEwqhJNH8kxeyZvz5Lw4787HtDXlzGb2yR84nz/AipXv</latexit>

h(t)
<latexit sha1_base64="kYifb+orZzGVOhy1dMhgoldxxlk=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBahXkpSBT0WvXisYGqhDWWz3bRLN5uwOxFK6W/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlQKg6777RTW1jc2t4rbpZ3dvf2D8uFRyySZZtxniUx0O6SGS6G4jwIlb6ea0ziU/DEc3c78xyeujUjUA45THsR0oEQkGEUr+cMqnpNeueLW3DnIKvFyUoEczV75q9tPWBZzhUxSYzqem2IwoRoFk3xa6maGp5SN6IB3LFU05iaYzI+dkjOr9EmUaFsKyVz9PTGhsTHjOLSdMcWhWfZm4n9eJ8PoOpgIlWbIFVssijJJMCGzz0lfaM5Qji2hTAt7K2FDqilDm0/JhuAtv7xKWvWad1Gr319WGjd5HEU4gVOoggdX0IA7aIIPDAQ8wyu8Ocp5cd6dj0VrwclnjuEPnM8fwT6N/Q==</latexit>

+
<latexit sha1_base64="HFb7vPGXWshKfdtTiumEDK16me0=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CnoMevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9YteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0qyUvctypX5Vqt5mceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB3LTjLM=</latexit>

+
<latexit sha1_base64="HFb7vPGXWshKfdtTiumEDK16me0=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CnoMevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9YteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0qyUvctypX5Vqt5mceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB3LTjLM=</latexit>


h(t)
0

�

<latexit sha1_base64="Zs/tmUcEWisOvTN/1eLWv0ylAj4=">AAACGnicbVBNS8NAEN34bf2qevSyWAS9lEQFPYpePFawKjShbDaTdHGzCbsToYT+Di/+FS8eFPEmXvw3btsctPXBwOO9md2ZF+ZSGHTdb2dmdm5+YXFpubayura+Ud/cujFZoTm0eSYzfRcyA1IoaKNACXe5BpaGEm7D+4uhf/sA2ohMXWM/hyBliRKx4Ayt1K17voQYO34IiVAl05r1ByUf9PbxgPo+dX1QUSX7WiQ9DLr1htt0R6DTxKtIg1RodeuffpTxIgWFXDJjOp6bY2AfRcElDGp+YSBn/J4l0LFUsRRMUI5OG9A9q0Q0zrQthXSk/p4oWWpMPw1tZ8qwZya9ofif1ykwPg1KofICQfHxR3EhKWZ0mBONhAaOsm8J41rYXSnvMc042jRrNgRv8uRpcnPY9I6ah1fHjbPzKo4lskN2yT7xyAk5I5ekRdqEk0fyTF7Jm/PkvDjvzse4dcapZrbJHzhfP0mtoaQ=</latexit>

D(h(t))
<latexit sha1_base64="QwmHZq4UCfpaWk8NvcVFF3hPq5g=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBCSS9iNgh6DevAYwTwgWcLsZDYZMju7zPQKIeQjvHhQxKvf482/cZLsQRMLGoqqbrq7gkQKg6777aytb2xubed28rt7+weHhaPjpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDvzW09cGxGrRxwn3I/oQIlQMIpWat2VhiUsl3uFoltx5yCrxMtIETLUe4Wvbj9macQVMkmN6Xhugv6EahRM8mm+mxqeUDaiA96xVNGIG38yP3dKzq3SJ2GsbSkkc/X3xIRGxoyjwHZGFIdm2ZuJ/3mdFMNrfyJUkiJXbLEoTCXBmMx+J32hOUM5toQyLeythA2ppgxtQnkbgrf88ippViveRaX6cFms3WRx5OAUzqAEHlxBDe6hDg1gMIJneIU3J3FenHfnY9G65mQzJ/AHzucPvtuOhg==</latexit>

Decode

D(h(t))
<latexit sha1_base64="54rF83mDifGfcYkxTCvDGOoIEig=">AAACC3icbVDJSgNBEO2JW4xb1KOXJkFILmEmCnoMmoPHCGaBTAg9nUrSpGehu0YMQ+5e/BUvHhTx6g9482/sLAdNfFDweK+KqnpeJIVG2/62UmvrG5tb6e3Mzu7e/kH28Kihw1hxqPNQhqrlMQ1SBFBHgRJakQLmexKa3uh66jfvQWkRBnc4jqDjs0Eg+oIzNFI3m3MRHjCpAg97MKGuS12f4ZAzmVQnhWEBi8VuNm+X7BnoKnEWJE8WqHWzX24v5LEPAXLJtG47doSdhCkUXMIk48YaIsZHbABtQwPmg+4ks18m9NQoPdoPlakA6Uz9PZEwX+ux75nO6aF62ZuK/3ntGPuXnUQEUYwQ8PmifiwphnQaDO0JBRzl2BDGlTC3Uj5kinE08WVMCM7yy6ukUS45Z6Xy7Xm+crWII01OSI4UiEMuSIXckBqpE04eyTN5JW/Wk/VivVsf89aUtZg5Jn9gff4A4l+aSA==</latexit>

h(t)
<latexit sha1_base64="kYifb+orZzGVOhy1dMhgoldxxlk=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBahXkpSBT0WvXisYGqhDWWz3bRLN5uwOxFK6W/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlQKg6777RTW1jc2t4rbpZ3dvf2D8uFRyySZZtxniUx0O6SGS6G4jwIlb6ea0ziU/DEc3c78xyeujUjUA45THsR0oEQkGEUr+cMqnpNeueLW3DnIKvFyUoEczV75q9tPWBZzhUxSYzqem2IwoRoFk3xa6maGp5SN6IB3LFU05iaYzI+dkjOr9EmUaFsKyVz9PTGhsTHjOLSdMcWhWfZm4n9eJ8PoOpgIlWbIFVssijJJMCGzz0lfaM5Qji2hTAt7K2FDqilDm0/JhuAtv7xKWvWad1Gr319WGjd5HEU4gVOoggdX0IA7aIIPDAQ8wyu8Ocp5cd6dj0VrwclnjuEPnM8fwT6N/Q==</latexit>

h̃(t + ⌧)
<latexit sha1_base64="XMlrvZV9rM2Bakzh+lUppWusNGQ=">AAAB+3icbVDLSsNAFJ3UV62vWJduBotQEUpSBV0W3bisYB/QhDKZTNqhkwczN2IJ+RU3LhRx64+482+ctllo64ELh3Pu5d57vERwBZb1bZTW1jc2t8rblZ3dvf0D87DaVXEqKevQWMSy7xHFBI9YBzgI1k8kI6EnWM+b3M783iOTisfRA0wT5oZkFPGAUwJaGppVB7jwWTbO63DuAEnP8NCsWQ1rDrxK7ILUUIH20Pxy/JimIYuACqLUwLYScDMigVPB8oqTKpYQOiEjNtA0IiFTbja/PcenWvFxEEtdEeC5+nsiI6FS09DTnSGBsVr2ZuJ/3iCF4NrNeJSkwCK6WBSkAkOMZ0Fgn0tGQUw1IVRyfSumYyIJBR1XRYdgL7+8SrrNhn3RaN5f1lo3RRxldIxOUB3Z6Aq10B1qow6i6Ak9o1f0ZuTGi/FufCxaS0Yxc4T+wPj8ATr5k+c=</latexit>

F (h(t))
<latexit sha1_base64="8xpGaRUjmUNv6vfXeHP/lCzHnag=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBCSS9iNgh6DgniMYB6QLGF2MpsMmZ1dZnqFEPIRXjwo4tXv8ebfOEn2oIkFDUVVN91dQSKFQdf9dtbWNza3tnM7+d29/YPDwtFx08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwup35rSeujYjVI44T7kd0oEQoGEUrte5KwxKWy71C0a24c5BV4mWkCBnqvcJXtx+zNOIKmaTGdDw3QX9CNQom+TTfTQ1PKBvRAe9YqmjEjT+Znzsl51bpkzDWthSSufp7YkIjY8ZRYDsjikOz7M3E/7xOiuG1PxEqSZErtlgUppJgTGa/k77QnKEcW0KZFvZWwoZUU4Y2obwNwVt+eZU0qxXvolJ9uCzWbrI4cnAKZ1ACD66gBvdQhwYwGMEzvMKbkzgvzrvzsWhdc7KZE/gD5/MHwe+OiA==</latexit>

h(t)
<latexit sha1_base64="kYifb+orZzGVOhy1dMhgoldxxlk=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBahXkpSBT0WvXisYGqhDWWz3bRLN5uwOxFK6W/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlQKg6777RTW1jc2t4rbpZ3dvf2D8uFRyySZZtxniUx0O6SGS6G4jwIlb6ea0ziU/DEc3c78xyeujUjUA45THsR0oEQkGEUr+cMqnpNeueLW3DnIKvFyUoEczV75q9tPWBZzhUxSYzqem2IwoRoFk3xa6maGp5SN6IB3LFU05iaYzI+dkjOr9EmUaFsKyVz9PTGhsTHjOLSdMcWhWfZm4n9eJ8PoOpgIlWbIFVssijJJMCGzz0lfaM5Qji2hTAt7K2FDqilDm0/JhuAtv7xKWvWad1Gr319WGjd5HEU4gVOoggdX0IA7aIIPDAQ8wyu8Ocp5cd6dj0VrwclnjuEPnM8fwT6N/Q==</latexit>

��̃x(t + ⌧)
<latexit sha1_base64="fE1lhHzpnmxswTNS/ydEoTPTuXc=">AAACCHicbVDJSgNBEO2JW4zbqEcPNgYhIoSZKOgxqAePEcwCmRB6OpWkSc9Cd40Yhhy9+CtePCji1U/w5t/YWQ4afVDweK+Kqnp+LIVGx/myMguLS8sr2dXc2vrG5pa9vVPTUaI4VHkkI9XwmQYpQqiiQAmNWAELfAl1f3A59ut3oLSIwlscxtAKWC8UXcEZGqlt73tXIJFRD4XsQOrFfTFq3xeQHhuJJUdtO+8UnQnoX+LOSJ7MUGnbn14n4kkAIXLJtG66ToytlCkUXMIo5yUaYsYHrAdNQ0MWgG6lk0dG9NAoHdqNlKkQ6UT9OZGyQOth4JvOgGFfz3tj8T+vmWD3vJWKME4QQj5d1E0kxYiOU6EdoYCjHBrCuBLmVsr7TDGOJrucCcGdf/kvqZWK7kmxdHOaL1/M4siSPXJACsQlZ6RMrkmFVAknD+SJvJBX69F6tt6s92lrxprN7JJfsD6+AXy2mPs=</latexit>

G(h(t))
<latexit sha1_base64="EgrUrDyAnIoTieW1CBFYxebRh7A=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBCSS9iNgh6DHvQYwTwgWcLsZDYZMju7zPQKIeQjvHhQxKvf482/cZLsQRMLGoqqbrq7gkQKg6777aytb2xubed28rt7+weHhaPjpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDvzW09cGxGrRxwn3I/oQIlQMIpWat2VhiUsl3uFoltx5yCrxMtIETLUe4Wvbj9macQVMkmN6Xhugv6EahRM8mm+mxqeUDaiA96xVNGIG38yP3dKzq3SJ2GsbSkkc/X3xIRGxoyjwHZGFIdm2ZuJ/3mdFMNrfyJUkiJXbLEoTCXBmMx+J32hOUM5toQyLeythA2ppgxtQnkbgrf88ippViveRaX6cFms3WRx5OAUzqAEHlxBDe6hDg1gMIJneIU3J3FenHfnY9G65mQzJ/AHzucPw3mOiQ==</latexit>

!̂(t)
<latexit sha1_base64="jWjdJ36TLboYyPgBo/Ji7denjEc=">AAAB+XicbVBNSwMxEM3Wr1q/Vj16CRahXspuFfRY9OKxgv2A7lKyadqGJtklmS2Upf/EiwdFvPpPvPlvTNs9aOuDgcd7M8zMixLBDXjet1PY2Nza3inulvb2Dw6P3OOTlolTTVmTxiLWnYgYJrhiTeAgWCfRjMhIsHY0vp/77QnThsfqCaYJCyUZKj7glICVeq4bjAhkQSzZkMwqcIl7btmregvgdeLnpIxyNHruV9CPaSqZAiqIMV3fSyDMiAZOBZuVgtSwhNAxGbKupYpIZsJscfkMX1iljwextqUAL9TfExmRxkxlZDslgZFZ9ebif143hcFtmHGVpMAUXS4apAJDjOcx4D7XjIKYWkKo5vZWTEdEEwo2rJINwV99eZ20alX/qlp7vC7X7/I4iugMnaMK8tENqqMH1EBNRNEEPaNX9OZkzovz7nwsWwtOPnOK/sD5/AHkapMq</latexit>

Encode

E(!̂(t))
<latexit sha1_base64="GegkHWqtVP7ypchKRnf0ruWpCbk=">AAACFnicbVA9axtBEN2TncRRvmS7TLNEBKQi4k4x2KVwMLh0ILINOiHmViNp0d7usTsXLI77FW78V9K4sDFpgzv/m+zJKhLLDwYe780wMy/JlHQUhg9BbWPzxctXW6/rb96+e/+hsb1z6kxuBfaFUcaeJ+BQSY19kqTwPLMIaaLwLJl/q/yzn2idNPoHLTIcpjDVciIFkJdGjS8x4QUVR1qYMZY8jnmcAs0EqOKobMUzoCI2KU6hbFG7PWo0w064BF8n0Yo02Qono8Z9PDYiT1GTUODcIAozGhZgSQqFZT3OHWYg5jDFgacaUnTDYvlWyT97ZcwnxvrSxJfqvxMFpM4t0sR3Vje7p14lPucNcpocDAups5xQi8dFk1xxMrzKiI+lRUFq4QkIK/2tXMzAgiCfZN2HED19eZ2cdjvR1073+16zd7iKY4t9ZJ9Yi0Vsn/XYMTthfSbYJfvFbthtcBVcB3fB78fWWrCa2WX/IfjzFxwPn08=</latexit>

Pdh
UT !̂(t)

<latexit sha1_base64="3ILVY74mxmKUCkeTKnB9meLkzLI=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahbkpSBV0W3bis0LSFtobJdNIMnTyYuRFKyNKNv+LGhSJu/QR3/o3Tx0JbD1w4nHMv997jJYIrsKxvo7Cyura+UdwsbW3v7O6Z+wctFaeSMofGIpYdjygmeMQc4CBYJ5GMhJ5gbW90M/HbD0wqHkdNGCesH5JhxH1OCWjJNY8bbjZwsyDPsXOfNXPcCwhkvThkQ5JX4Mw1y1bVmgIvE3tOymiOhmt+9QYxTUMWARVEqa5tJdDPiAROBctLvVSxhNARGbKuphEJmepn00dyfKqVAfZjqSsCPFV/T2QkVGocerozJBCoRW8i/ud1U/Cv+hmPkhRYRGeL/FRgiPEkFTzgklEQY00IlVzfimlAJKGgsyvpEOzFl5dJq1a1z6u1u4ty/XoeRxEdoRNUQTa6RHV0ixrIQRQ9omf0it6MJ+PFeDc+Zq0FYz5ziP7A+PwBi/WZqQ==</latexit>

E
�
UT !̂(t)

�
<latexit sha1_base64="GkNlIzVSd6QZgaa7ZS/bUhETFDI=">AAACDHicbVDJSgNBFOxxjXGLevTSGITkEmaioMegCB4jZINMDD2dN0mTnoXuN0IY8gFe/BUvHhTx6gd482/sLAdNLGgoqurx+pUXS6HRtr+tldW19Y3NzFZ2e2d3bz93cNjQUaI41HkkI9XymAYpQqijQAmtWAELPAlNb3g98ZsPoLSIwhqOYugErB8KX3CGRurm8jeuBB8L9fu0NqbugGHqRgH02biARVeJ/gCLJmWX7CnoMnHmJE/mqHZzX24v4kkAIXLJtG47doydlCkUXMI46yYaYsaHrA9tQ0MWgO6k02PG9NQoPepHyrwQ6VT9PZGyQOtR4JlkwHCgF72J+J/XTtC/7KQijBOEkM8W+YmkGNFJM7QnFHCUI0MYV8L8lfIBU4yj6S9rSnAWT14mjXLJOSuV787zlat5HRlyTE5IgTjkglTILamSOuHkkTyTV/JmPVkv1rv1MYuuWPOZI/IH1ucPEOea/g==</latexit>

˜̂!(t)
<latexit sha1_base64="iHBjRDTxQy+lyFHp4eN2ZfBun/c=">AAACAXicbVDJSgNBEO2JW4xb1IvgpTEI8RJmoqDHoBePEcwCmSH0dCpJk56F7hohDOPFX/HiQRGv/oU3/8bOctDEBwWP96qoqufHUmi07W8rt7K6tr6R3yxsbe/s7hX3D5o6ShSHBo9kpNo+0yBFCA0UKKEdK2CBL6Hlj24mfusBlBZReI/jGLyADULRF5yhkbrFIxeF7EHqDhmmbhTAgGVZGc9ot1iyK/YUdJk4c1Iic9S7xS+3F/EkgBC5ZFp3HDtGL2UKBZeQFdxEQ8z4iA2gY2jIAtBeOv0go6dG6dF+pEyFSKfq74mUBVqPA990BgyHetGbiP95nQT7V14qwjhBCPlsUT+RFCM6iYP2hAKOcmwI40qYWykfMsU4mtAKJgRn8eVl0qxWnPNK9e6iVLuex5Enx+SElIlDLkmN3JI6aRBOHskzeSVv1pP1Yr1bH7PWnDWfOSR/YH3+AHWPluA=</latexit>

(b) Discrete-time map for pattern prediction
<latexit sha1_base64="IUhH2VnxtSMVFy6/XT1CzHyVTNs=">AAACHHicbVA9SwNBFNzz2/gVtbRZDEIsDHdR0FLUwlLBqJCEsLd5lyzZ3Tt234nhyA+x8a/YWChiYyH4b9yLKTRxqmHmze57EyZSWPT9L29qemZ2bn5hsbC0vLK6VlzfuLZxajjUeCxjcxsyC1JoqKFACbeJAaZCCTdh7zT3b+7AWBHrK+wn0FSso0UkOEMntYr7DYR7zMrhLj0TlhtA2EOhgCqW0Cg2NGGIYDR1r7YFz0ODVrHkV/wh6CQJRqRERrhoFT8a7ZinCjRyyaytB36CzYwZFFzCoNBILSSM91gH6o5qpsA2s+FxA7rjlPZwlSjWSIfq70TGlLV9FbpJxbBrx71c/M+rpxgdNTOhkxRB85+PolRSjGneFG0LAxxl3xHGjXC7Ut5lhnHXhy24EoLxkyfJdbUS7Feqlwel45NRHQtki2yTMgnIITkm5+SC1AgnD+SJvJBX79F79t6895/RKW+U2SR/4H1+A9Nfodw=</latexit>

(c) Discrete-time map for phase prediction
<latexit sha1_base64="fBawrP4hryGbthAE8nQNYATF+Zg=">AAACGnicbVC5TsNAFFxzE64AJc2KCAkKIjsgQRkBBSVI5JASK1pvnsmKXdvafUZEVr6Dhl+hoQAhOkTD37B2UnBNNZp55wSJFAZd99OZmp6ZnZtfWCwtLa+srpXXN5omTjWHBo9lrNsBMyBFBA0UKKGdaGAqkNAKbk5zv3UL2og4usJhAr5i15EIBWdopV7Z6yLcYbbL9+iZMFwDwj4KBVSxhIaxpsnATqd2Zl/wvGXUK1fcqluA/iXehFTIBBe98nu3H/NUQYRcMmM6npugnzGNgksYlbqpgYTxG3YNHUsjpsD4WfHaiO5YpV8cEsYR0kL93pExZcxQBbZSMRyY314u/ud1UgyP/UxESYoQ8fGiMJUUY5rnRPtCA0c5tIRxLeytlA+YZhxtmiUbgvf75b+kWat6B9Xa5WGlfjKJY4FskW2ySzxyROrknFyQBuHknjySZ/LiPDhPzqvzNi6dciY9m+QHnI8v/FCg3A==</latexit>

Figure 2.5: Neural network frameworks for (a) autoencoder (b) discrete-time map for pattern
prediction and (c) discrete-time for phase prediction.

2.4.1 Dimension reduction with autoencoders

We begin by showing results for Re = 13.5. In Figure 2.6a we see the MSE versus dh

trend where the grey curve corresponds to the PCA reconstruction for the original data

(ω̃(t) = UdhU
T
dh
ω(t)), the black curve to the AE with the original data, and the blue curve

to the AE with the phase factored out before training. The MSE is calculated over the test

data set. Notice that, as expected, the AEs perform better than PCA. This is because of the

nonlinearities that are added to the linear optimal latent space found in PCA in combination

with the nonlinear decoder. The blue curve exhibits a sharp drop in the MSE at a dimension

of dh = 2, which is the correct embedding dimension for a limit cycle. This happens because

the phase is accounted for; the dynamics of the system in the phase-aligned reference frame

corresponds to a PO and the autoencoder does not have to learn all the possible phases due

to the continuous translation in x. The overall embedding dimension is dh + 1 = 3, where 1

corresponds to the phase. Hence we are able to estimate the dimension for this system by

looking at the drop in the MSE curve.

We now consider the Re = 14.4 case, where the dynamics are chaotic, moving between

30

1 2 3 4 5 6
dh

10−7

10−5

10−3

10−1

M
S

E

PCA

Original

Phase

(a)

0 5 10 15 20
dh

10−4

10−3

10−2

10−1

100

M
S

E

PCA

Original

Phase

Phase-SR

Phase-SR-Rotation

(b)

Figure 2.6: MSE versus dimension dh over the test data corresponding to (a) Re = 13.5 and (b)
Re = 14.4. The PCA curve corresponds to the MSE of the reconstruction for the test data set
with respect to the true data ω(t), with no symmetries factored out, using the truncated U into
dh dimensions such that ω̃(t) = UdhU

T
dh
ω(t) ; the ‘Original’, ‘Phase’, ‘Phase-SR’, and ‘Phase-SR-

Rotation’ curves correspond to the MSEs of the reconstruction for the test data set with respect
to the true data using AEs. In the curve labeled ‘Original’, no symmetries are factored out and in
the other curves the corresponding symmetries in the labels are factored out.

the regions near the now unstable RPOs. In Figure 2.6b we show the same curves as in

Figure 2.6a but we also include the green and magenta curves, which in addition factor out

the SR and the SR-Rotation symmetries respectively before training the AEs. These are

included due to the added complexity of Re = 14.4, where the chaotic trajectory travels in

the vicinity of the RPOs related by the symmetry groups previously discussed. A monotonic

decrease in MSE can be seen for the different symmetries considered in the blue, green,

and magenta curves, but no sharp drop is apparent. Instead we notice that the MSE drops

at different rates in different regions. For example, in the blue curve corresponding to the

phase aligned data, we see a sharp drop from dh = 1 − 6 followed by a more gradual drop

from dh = 6− 13. In the following sections we couple the dimension-reduction analysis with

models for prediction of time evolution for the phase aligned data. We expect that this

combination will help us determine how many dimensions are needed to correctly represent

the state.

31

0.1990 0.2005 0.2020 0.2035 0.2050

I(t)

0.2005

0.2015

0.2025

0.2035

0.2045
D

(t
)

True

(a)

0.1990 0.2005 0.2020 0.2035 0.2050

I(t)

0.2005

0.2015

0.2025

0.2035

0.2045

D
(t

)

dh = 2

(b)

Figure 2.7: Trajectory of I(t) vs D(t) corresponding to Re = 13.5 for (a) true and (b) predicted
data corresponding to dimensions dh = 2.

2.4.2 Time evolution as a function of dimension - Short time pre-

dictions

The focus of this work is the chaotic dynamics at Re = 14.4. Before considering that case,

for completeness we briefly present results for Re = 13.5. In Figure 2.7 we see D(t) versus

I(t) for the true and predicted dynamics at dh = 2; they are indistinguishable. At dh = 1,

which is not shown, the model fails and the dynamics can not be captured. The reason for

this is simple – the embedding dimension for a limit cycle is two.

Now we return to the case of Re = 14.4, focusing first on short-time trajectory predictions.

The Lyapunov time tL for this system is approximately tL ≈ 20 [29], hence tL ≈ 4τ . We

take initial conditions h(t) ∈ Rdh to evolve recurrently with the discrete time map F (·), such

that h̃(t+ τ) = F (h(t)), h̃(t+ 2τ) = F (h̃(t+ τ)), h̃(t+ 3τ) = F (h̃(t+ 2τ)) and so on. After

evolving in time the data is then decoded to get ˜̂ωh(t) and compared with ω̂(t). We consider

trajectories with ICs starting in the quiescent as well as in the bursting regions. The nature

of the intermittency of the data makes it challenging to assign either bursting or quiescent

labels. We consider a window of past and future snapshots and a criterion on ‖ω̂(t)‖ to make

this decision, using the algorithm described in Algorithm 1.

Doing this we ensure that snapshots that are contained in the bursting events and have a

value of ‖ω̂(t)‖ similar to quiescent snapshots are correctly classified. We use a threshold

32

on ‖ω̂(t)‖ to determine if a check is needed. For the classification strategy any snapshot

above a threshold of 60 is classified as bursting with a label of 1, below 60 we enter a loop as

shown in Algorithm 1 to determine if it should be classified as bursting or quiescent, where

quiescent corresponds to a label of 0. This check is needed to correctly label snapshots that

have comparable ‖ω̂(t)‖ but are still in the bursting regime. Figure 2.8 shows a short time

trajectory where the black line corresponds to ‖ω̂(t)‖ and the red to the 0/1 labels. Notice

that, as shown in Algorithm 1, some of the data at the beginning and at the end of the time

series will not be labeled, there are no past or future snapshots to compare to, and can be

removed.

After labeling the data as quiescent or bursting, we then consider the time evolution from

ICs of h(t) using the models of various dimensions. We will first show sample trajectories

from ICs starting in the two regions, then show the ensemble-averaged prediction error as

a function of time. Figure 2.9a shows the KE evolution for an IC starting in the quiescent

region. The black curve corresponds to the true data and the colored curves to the different

dh models. At a dimension of dh = 3 the predicted KE diverges quickly with respect to the

true KE. In the case of dh = 5 we see that the bursting event is correctly captured, but with

a slight lag. However dh = 7 does not capture the bursting in this time frame considered. For

dh = 9 the bursting event happens with a significant lag with respect to the true data and

dh = 11 captures the event similar to dh = 5. Figure 2.9b shows the KE evolution for an IC

starting in the bursting region. The black curve corresponds to the true data and the colored

curves to the different dh models. At a dimension of dh = 3 the KE stays bursting and does

not show agreement with the true KE. However dh = 5 shows better agreement and is also

capable of closely predicting the end of the bursting event. In the case of dh = 7, 9, and 11

these agree closely with the KE evolution before traveling to the quiescent region.

33

Algorithm 1 Quiescent/Bursting labeling of vorticity snapshots

W ← [ω̂(t1), ω̂(t2) · · ·] . Matrix with Ns vorticity snapshots, W ∈ RN×Ns

S . Initialize label array S
Wl2 ← ‖W‖ . Calculate l2-norm of snapshots, Wl2 ∈ RNs

b← 10 . Number of past snapshots in time to consider
f ← 10 . Number of future snapshots in time to consider
for i = b, b+ 1, . . . Ns − f do . i is snapshot I.D.

if Wl2[i] < 60 then
dp ← abs(Wl2[i− b : i]−Wl2[i]) . Difference between current and past snapshots
bp ← sum(dp > 5) . Sums values that exceed a threshold of 5 (user defined)
df ← abs(Wl2[i : i+ f]−Wl2[i]) . Difference between current and future snapshots
bf ← sum(df > 5) . Sums values that exceed a threshold of 5 (user defined)
if bp = 0 or bf = 0 then

S[i− b]← 0
else

S[i− b]← 1
end if

else
S[i− b]← 1

end if
end for

Turning from examples of individual trajectories to ensemble averages, Figure 2.10a shows

ensemble averages of the difference between the true and predicted trajectories, separately

considering ICs in the bursting and quiescent regions. Solid curves correspond to quiescent

ICs and dashed curves to bursting ICs. Starting from dh = 3 we increase up to dh = 12.

We selected 104 ICs in total where approximately 1/3 of the ICs correspond to bursting. As

expected, predictions at dh = 3 diverge quickly from the true dynamics in both quiescent

and bursting IC scenarios. With increasing dh, trajectories track better for both types of

ICs. We can also notice that the two darkest curves, corresponding to dh = 11, 12, fall on

top of each other in the case of quiescent ICs and the trajectories for the quiescent ICs track

almost perfectly for approximately two Lyapunov times for dimensions dh = 5 and higher.

In Figure 2.10b we show ensemble averages of the difference between the true and predicted

dynamics based on all ICs. The same trend is obtained as discussed for Figure 2.10a with

dimensions of dh = 9 and higher in similar agreement, and as expected the errors increase

34

3800 4000 4200 4400 4600
t

55

60

65

70

75

‖ω̂
(t

)‖

0

1

L
ab

el

Figure 2.8: Labeling of ω̂(t) snapshots in a short time series where 1 corresponds to bursting and
0 to quiescent.

for all of the curves due to the divergence of the bursting ICs. We can conclude that models

of dimensions dh = 5 and higher are very good at capturing trajectories in the quiescent

regions, which happens through the accurate prediction of the oscillatory behavior of the

unstable RPO right before a bursting occurs. Prediction from bursting ICs is harder, due

to the complex dynamics involved in this region. We also consider , in Figure 2.10c the

ensemble averages of the difference between the true and predicted trajectories versus dh for

all ICs with at time instants t = 0, tL, 2tL, 3tL. As expected, with increasing t the trajectories

deviate from the true data. However we notice that for all of the curves the error decreases

with increasing dh and after dh = 9 little to no improved performance is observed.

2.4.3 Time evolution as a function of dimension - Long time pre-

dictions

In this section we present long time statistics for the models and true data at Re = 14.4.

From ICs on the attractor, we evolve for 2×105 time units, yielding to get 4×104 snapshots

of data. This duration is sufficient to densely sample the quiescent and bursting regions. We

note that long time statistics did not change if the IC was in a bursting or quiescent region.

35

0 50 100 150 200 250 300
t

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15
K
E

True

3

5

7

9

11

dh

(a)

0 50 100 150 200 250 300
t

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

K
E

True

3

5

7

9

11

dh

(b)

Figure 2.9: Example trajectories of KE at different dh for (a) a quiescent initial condition and
(b) a bursting initial condition, for dimensions dh = 3, 5, 7, 9, and 11.

Figure 2.11 shows the joint probability density function (PDF) of I and D for true and

predicted data from models with dh = 3, 5, 7, 9, and 11 – note the logarithmic scale, here and

below. We notice that at dh = 3 the different areas corresponding to quiescent and bursting

regions are populated similarly in terms of the probability intensity compared with the true

PDF shown, but the shape of the predicted PDF takes a curved form that is not seen in the

true PDF. When we get to dh = 5 the D and I events are captured better, and similarly

for increasing dimensions. We also compute the joint PDF of Re [a0,1] and Im [a0,1], shown

in Figure 2.12. From this quantity we can observe the heteroclinic-like connections between

the unstable RPOs, which correspond to the four ribbon-like regions of high probability.

Here we see similar trends as in the joint PDF for I-D: dh = 3 shows poor qualitative

reconstruction compared with higher dimensions, and once dh ≥ 5, the joint PDFs from the

model prediction are virtually indistinguishable from the true PDFs. To further quantify the

relationship of the PDFs from the models to the true data, we calculate the Kullback-Leibler

(KL) divergence,

DKL(P̃ ||P) =

∫ ∞

−∞

∫ ∞

−∞
P̃{a, b}ln P̃{a, b}

P{a, b}da db, (2.14)

where P̃ corresponds to the predicted PDF and P to the true PDF. Due to the approximation

36

0 20 40 60 80
t

0.0

0.2

0.4

0.6

0.8

1.0

〈‖
ω̂

(t
)
−

˜̂ ω
h
(t

)‖
/‖
ω̂

(t
)‖
〉

Quiescent ICs

Bursting ICs

3

4

5

6

7

8

9

10

11

12

dh

(a)

0 20 40 60 80
t

0.0

0.2

0.4

0.6

0.8

1.0

〈‖
ω̂

(t
)
−

˜̂ ω
h
(t

)‖
/‖
ω̂

(t
)‖
〉

3

4

5

6

7

8

9

10

11

12

dh

(b)

4 6 8 10 12
dh

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

〈‖
ω̂

(t
)
−

˜̂ ω
(t

)‖
/‖
ω̂

(t
)‖
〉

t = 0

t = tL
t = 2tL
t = 3tL

(c)

Figure 2.10: Difference between true vorticity evolution and vorticity evolution obtained from the
time map F from h(t) where (a) correspond to averages taken over bursting and quiescent ICs and
(b) averages over all the data. (c) Difference between true vorticity evolution and vorticity evolution
obtained from the time map F from h(t) with varying dh for increasing tL. This corresponds to
averages over all the data.

37

of the integral to discrete data we ignore areas where either the true or predicted PDFs are

zero. Let us first consider the case a = I and b = D. Figure 2.13a shows DKL calculated

with varying dh. The dashed grey line corresponds to DKL calculated over different true

data sets. This serves as a baseline for comparison to the predicted PDFs. A significant

decrease happens at dh = 4 followed by small decreases at higher dimensions. We see that

after dh = 5 no significant information is gained, with errors plateauing at approximately

dh ≥ 7. We can also look at the case where a = Re [a0,1] and b = Im [a0,1] in Figure 2.13b.

We notice that errors of the joint PDF in Figure 2.13b show a similar trend as Figure 2.13a

with errors plateauing at approximately dh ≥ 9. We can infer from these results that the

embedding dimension of this system lies in the range dh = 5− 9, and furthermore that the

data-driven model can reproduce the long-time statistics with very high fidelity.

The above PDFs yield no information about the temporal behavior of the system. One

temporal feature of significant interest in problems with intermittency is the probability

density of the durations of time intervals with different behavior. To address this, we consider

the PDFs of time spent in bursting (tb) and in quiescent (tq) regions. The labeling method

discussed in the previous section is used. For this calculation we take a trajectory of 105

snapshots from an arbitrary IC. The PDF for the true data is shown in Figure 2.14a followed

by the PDFs that come from the dh = 3, 5, 7, 9, and 11 models in Figures 2.14b - 2.14f. The

true data shows that tq is mostly concentrated between t ≈ 200− 300 with a high intensity

peak shown at t = 5. We attribute this peak to a small fraction of snapshots in the bursting

region that get mislabeled as quiescent due to the weakly chaotic nature of the data. We do

not expect for this to drastically change our conclusions because the same labeling system

is used for the true data and the models. In the case of tb we notice that these are mostly

concentrated between t ≈ 0− 200. Looking at both the PDFs and averages of the times we

see that dh = 3 fails to correctly capture the shape of the PDF and also underpredicts 〈tq〉

and 〈tb〉. At dh = 5 we start getting better agreement where we see that the PDFs clearly

show the two regions where tb and tq are concentrated. In the case of dh = 7 we can see

38

0.20 0.25 0.30 0.35 0.40
I

0.20

0.25

0.30

0.35

0.40

D

True

101

102

103

P
{I
,D
}

(a)

0.20 0.25 0.30 0.35 0.40
I

0.20

0.25

0.30

0.35

0.40

D

dh = 3

101

102

103

(b)

0.20 0.25 0.30 0.35 0.40
I

0.20

0.25

0.30

0.35

0.40

D

dh = 5

101

102

103

(c)

0.20 0.25 0.30 0.35 0.40
I

0.20

0.25

0.30

0.35

0.40
D

dh = 7

101

102

103

(d)

0.20 0.25 0.30 0.35 0.40
I

0.20

0.25

0.30

0.35

0.40

D

dh = 9

101

102

103

(e)

0.20 0.25 0.30 0.35 0.40
I

0.20

0.25

0.30

0.35

0.40

D

dh = 11

101

102

103

(f)

Figure 2.11: Re = 14.4: Joint PDFs of I-D corresponding to Re = 14.4 for (a) true and (b)-(f)
predicted data corresponding to dimensions dh = 3, 5, 7, 9, and 11.

39

−0.4 −0.2 0.0 0.2 0.4
Re [a0,1]

−0.4

−0.2

0.0

0.2

0.4

Im
[a

0,
1
]

True

100

101

P
{R

e[
a

0,
1
] ,

Im
[a

0,
1
] }

(a)

−0.4 −0.2 0.0 0.2 0.4
Re [a0,1]

−0.4

−0.2

0.0

0.2

0.4

Im
[a

0,
1
]

dh = 3

100

101

(b)

−0.4 −0.2 0.0 0.2 0.4
Re [a0,1]

−0.4

−0.2

0.0

0.2

0.4

Im
[a

0,
1
]

dh = 5

100

101

(c)

−0.4 −0.2 0.0 0.2 0.4
Re [a0,1]

−0.4

−0.2

0.0

0.2

0.4

Im
[a

0,
1
]

dh = 7

100

101

(d)

−0.4 −0.2 0.0 0.2 0.4
Re [a0,1]

−0.4

−0.2

0.0

0.2

0.4

Im
[a

0,
1
]

dh = 9

100

101

(e)

−0.4 −0.2 0.0 0.2 0.4
Re [a0,1]

−0.4

−0.2

0.0

0.2

0.4

Im
[a

0,
1
]

dh = 11

100

101

(f)

Figure 2.12: Re = 14.4: Joint PDFs of Re [a0,1(t)] − Im [a0,1(t)] corresponding to Re = 14.4 for
(a) true and (b)-(f) predicted data corresponding to dimensions dh = 3, 5, 7, 9, and 11.

40

3 4 5 6 7 8 9 10 11 12
dh

0.0

0.2

0.4

0.6

0.8

1.0

D
K
L

(a)

3 4 5 6 7 8 9 10 11 12
dh

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
K
L

(b)

Figure 2.13: Re = 14.4: DKL vs dimension dh for (a) I-D and (b) Re [a0,1]− Im [a0,1] predicted
vs true joint PDFs. Dashed grey line corresponds to DKL calculated over true data sets.

that the quiescent PDF spreads into regions with higher tq and for dh = 9, 11 these seem

to agree better with the true PDF. Figure 2.15 shows DKL with varying dh for these PDFs.

As expected from observing the PDFs we see that DKL decreases up until dh = 5 for both

cases. In the case of tq we see an increase in the error after dh = 5 which agrees with the

above observation of the PDF at dh = 7. For tb, DKL seems to keep slightly decreasing

after dh = 5. We also notice that for tq, DKL reaches a minimum at dh = 9 and for tb no

significant decrease is observed at dh ≥ 9. In short, these duration statistics achieve similar

agreement at dh = 9, and for the case of tb errors keep decreasing with increasing dh. We

also calculate the mean of tq and tb for the case of dh = 9 and obtain values of 〈tq〉 = 174

and 〈tb〉 = 97 which agree closely with the true values of 〈tq〉 = 176 and 〈tb〉 = 97.

2.4.4 Phase prediction

Recall that we gain substantial accuracy in dimension reduction by factoring out the spatial

phase φx(t) of the data. Here we complete the dynamical picture of the model predictions at

Re = 14.4 by illustrating the predictions of phase evolution, as given by the learned phase

evolution equation (2.12). Figure 2.16a shows a short time evolution of φx(t) corresponding to

the true and predicted data for the dh = 3, 5, 7, 9, and 11 models. The smooth increases and

41

0 100 200 300 400 500 600
t

0.000

0.004

0.008

0.012

0.016

P
{t
q
},
P
{t
b}

True

tq
tb

(a)

0 100 200 300 400 500 600
t

0.000

0.004

0.008

0.012

0.016

P
{t
q
},
P
{t
b}

dh = 3

(b)

0 100 200 300 400 500 600
t

0.000

0.004

0.008

0.012

0.016

P
{t
q
},
P
{t
b}

dh = 5

(c)

0 100 200 300 400 500 600
t

0.000

0.004

0.008

0.012

0.016

P
{t
q
},
P
{t
b}

dh = 7

(d)

0 100 200 300 400 500 600
t

0.000

0.004

0.008

0.012

0.016

P
{t
q
},
P
{t
b}

dh = 9

(e)

0 100 200 300 400 500 600
t

0.000

0.004

0.008

0.012

0.016

P
{t
q
},
P
{t
b}

dh = 11

(f)

Figure 2.14: PDFs of tq and tb at Re = 14.4 for (a) true and (b)-(f) predicted data for dimensions
dh = 3, 5, 7, 9, and 11.

42

3 4 5 6 7 8 9 10 11 12
dh

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

D
K
L

(a)

3 4 5 6 7 8 9 10 11 12
dh

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
K
L

(b)

Figure 2.15: Re = 14.4: DKL vs dimension dh corresponding to PDFs for (a) tq (b) tb. Dashed
grey line corresponds to DKL calculated over different true data sets.

decreases in Figure 2.16a correspond to trajectories during time intervals where they are near

an RPO and thus are traveling in the x-direction. The intervals where the phase flucuates

rapidly are the bursts during which the trajectories are moving between the RPO regions.

This behavior is well-captured for all of the dimensions shown except for dh = 3. Notice that

although the trajectories diverge, for short times we get around two tL of prediction horizon

where the models still capture the correct dynamics, and Figure 2.16a provides a clear visual

indications that the loss of predictability occurs during the bursts.

We now take an approach to quantify how well the model performs with respect to the

true data. Taking a look at the drops and increases for φx(t) we can observe that after every

burst the trajectory will either travel, essentially randomly, in the positive (increasing φx)

or negative (decreasing φx) x direction. This behavior is essentially a run and tumble or

random walk behavior in the sense that the long periods of positive or negative phase drift

correspond to “runs" that are separated by “tumbles" that correspond to the bursts, in which

the direction of phase motion is reset. Hence, a natural analysis of quantification for this

type of dynamics consists of calculating the mean squared displacement (MSD) of the phase:

MSD(t) = 〈(φx(t)− φx(0))2〉. (2.15)

43

0 100 200 300 400 500 600 700
t

−8

−6

−4

−2

0

2

4
φ
x
(t

)

True

3

5

7

9

11

dh

(a)

101 102 103 104

t

10−1

100

101

102

103

M
S

D

Slope=1

Slope=1.5

True

3

5

7

9

11

dh

(b)

Figure 2.16: (a) Time evolution of φx corresponding to the true data and models with dimensions
dh = 3, 5, 7, 9, and 11. (b) MSD of φx(t) corresponding to true data and models with dimensions
dh = 3, 5, 7, 9, and 11.

Figure 2.16b shows the time evolution of MSD of true and predicted data. The black

line corresponds to the true data and the black and green dashed lines serve as references

with slopes of 1 and 1.5, respectively. The colored lines correspond to models with various

dimensions. Looking at the true curve we notice a change from superdiffusive (slope = 1.5)

to diffusive (slope = 1) scaling that happens around t ≈ 200, which corresponds to the

mean duration of the quiescent intervals, as discussed above: i.e., to the average time the

trajectories travel along the RPOs before bursting. The trajectory then bursts and reorients

which is captured by the long time diffusive trend. Looking at the performance of the models

we observe that dh = 3 does a good job at capturing the short time scaling, however it is

not to able capture the change in slope that is observed in the true data. It is not until

dh ≥ 5 that the correct behavior at long times is observed – indeed the predictions agree

very well with the data, with a slight upward shift at long times corresponding to the slight

overprediction of the mean duration of the quiescent periods.

2.4.5 Bursting prediction

Previous research has focused on finding indicators that guide predictions of when a burst will

occur. It has been shown for the Kolmogorov flow that before a burst there is a depletion

44

0 200 400 600 800 1000
t

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

K
E

KE

(1,0)

(0,2)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

|a
k
x
,k
y
|

Figure 2.17: Time evolution of KE and amplitudes corresponding to (1, 0) and (0, 2) Fourier
mode for Re = 14.4.

of the content in the (1, 0) Fourier mode, which then feeds into the forcing mode (0, n)

[49]. Figure 2.17 shows how this looks for Re = 14.4, n = 2. By considering a variational

framework and finding solutions to a constrained optimization problem it was also found

that examination of these modes can lead to predictions of when a burst will occur [22].

With our framework, natural indicators are the latent variables h, which we will consider

here along with some variations, including the indicators used in previous work. To predict

bursting events based on a given indicator, we will use a simple binary classifier in the form

of a support vector machine (SVM) with a radial basis function kernel [6]. These have

shown success in predicting extreme events for problems such as extreme rainfall [48]. With

this approach, data at time t is used to learn a function that outputs a binary label of

bursting/not bursting at time t + τb. For all of the cases considered we use the dh = 5, 9

models, taking a dataset of 5 × 104 snapshots to train the SVM and another 5 × 104 as a

test set.

Figure 2.18a shows the percent correct classification of bursting events with varying time

τb in the future. The black and gray curves corresponds to predicting the events based on

the PCA projection of the data, PdhU
Tω, into the first dh = 5 and 9 coefficients respectively.

45

0 5 10 15 20 25 30 35 40
τb

80

82

84

86

88

90

92

%
co

rr
ec

t

PdhU
Tω, dh = 5

h, dh = 5

PdhU
Tω, dh = 9

h, dh = 9

(a)

0 5 10 15 20 25 30 35 40
τb

50

55

60

65

70

75

%
co

rr
ec

t

(1, 0)

(0, 2)

∆φ

(b)

Figure 2.18: Percent of correctly classified bursting events at τb forward in time for: (a) PdhU
Tω

and h at dh = 5, 9, (b) and indicators ∆φ, (1, 0), and (0, 2). Note that the vertical scales on (a)
and (b) are very different.

The cyan and red curves corresponds to h of dimensions dh = 5 and dh = 9 respectively.

We notice that the PCA and h curves fall on top of another and have a high probability of

correct classification when considering prediction horizons less than one tL. For this purpose

we see that PCA is enough to predict bursting events. Figure 2.18b shows the percent correct

classification of bursting at time τb in the future for the previous discussed indicators. None

of these work nearly as well as PdhU
Tω or h. The blue curve corresponds to (1, 0) amplitude

of the original true data, the green curve to the forcing (0, 2) amplitude, and we also consider

∆φ in the purple curve. In the case of ∆φ we see some predictability at times longer than

one tL and less than two. This also happens for the case of (1, 0), however there seems to be

no decrease or increase in the probability of correct classification. We can see from Figure

2.17 that even though there is a depletion in the (1, 0) mode preceding bursts, its amplitude

does not change dramatically between quiescent and bursting intervals, which may be a

reason that it does not provide much predictive power. The amplitude (0, 2), which changes

more strongly between quiescent and bursting regions, is seen to be the better predictor

for bursting events. At small τb its predictions outperform (1, 0) and ∆φ, however at times

larger than one tL, ∆φ performs better.

46

2.5 Summary

The nonlinearity of the NSE poses challenges when using ROMs, where the dynamics are

expected to evolve on an invariant manifold that will not lie in a linear subspace. Neural

networks have proven to be powerful tools for learning efficient ROMs solely from data,

however finding and exploiting a minimal -dimensional model has not been emphasized. We

present a data-driven methodology to learn an estimate of the embedding dimension of the

manifold for chaotic Kolmogorov flow and the time evolution on it. An autoencoder is used

to find a nonlinear low-dimensional subspace and a dense neural network to evolve it in time.

Our autoencoders are trained on vorticity data from two cases: a case where the dynamics

show a relative periodic orbit solution (Re = 13.5), and a case with chaotic dynamics (Re =

14.4). The chaotic regime we consider comes with challenges due to the intermittent behavior

observed where the trajectory travels in between quiescent intervals and bursting events.

We factor out the rich symmetries of Kolmogorov flow before training of the autoencoders,

which dramatically improves reconstruction error of the snapshots. This improves training

efficiency by not having to learn a compression of the full state. Specifically, factoring

out the translation symmetry decreases the mean-squared reconstruction error by an order

of magnitude compared to the case where phase is not factored out, and several orders

of magnitude compared to PCA. The phase-aligned low-dimensional subspace is then used

for time evolution where the RPO dynamics is learned essentially perfectly at dh = 2 for

Re = 13.5 and very good agreement for short and long time statistics is obtained at dh = 5

for Re = 14.4. Further small improvements in the results occur as dimension is increased to

nine, beyond which the statistics of the model and true system are in very good agreement.

For comparison, the full state space of the numerical simulation data is N = 1024.

We also show phase prediction evolution results based on the low-dimensional subspace

learned. The time evolution of the true phase exhibits a superdiffusive scaling at short

times and a diffusive scaling at long times which we attribute to the traveling near an RPO

and the reorientation due to bursting. Finally, using the low-dimensional representation

47

enables accurate prediction of bursting events based on conditions about a Lyapunov time

ahead of the event. This work opens new avenues for data-driven ROMs with applications

such as control for drag reduction, an example of which is presented for turbulent Couette

flow in [41]. One important challenge that remains is more effective treatment of systems

with intermittent dynamics like those described here. A recent study [23] has introduced a

method that uses the differential topology formalism of charts and atlases to develop local

manifold representations and dynamical model that can be stitched together to form a global

dynamical model. One attractive feature of that formalism is that it enables use of separate

representations for regions of state space with very different dynamics, and has already shown

in specific cases to provide dramatically improved results for dynamics with intermittency.

48

3

Building symmetries into data-driven

manifold dynamics models for

complex flows 1

Symmetries in a dynamical system provide an opportunity to dramatically improve the per-

formance of data-driven models. For fluid flows, such models are needed for tasks related

to design, understanding, prediction, and control. In this work we exploit the symmetries

of the Navier-Stokes equations (NSE) and use simulation data to find the manifold where

the long-time dynamics live, which has many fewer degrees of freedom than the full state

representation, and the evolution equation for the dynamics on that manifold. We call this

method “symmetry charting”. The first step is to map to a “fundamental chart”, which is a

region in the state space of the flow to which all other regions can be mapped by a sym-

metry operation. To map to the fundamental chart we identify a set of indicators from

the Fourier transform that uniquely identify the symmetries of the system. We then find

a low-dimensional coordinate representation of the data in the fundamental chart with the

use of an autoencoder. We use a variation called an implicit rank minimizing autoencoder

1The text of this chapter is adapted from the prepublication by C. E. Pérez De Jesús, A. J. Linot, and
M. D. Graham on arXiv.

49

with weight decay, which in addition to compressing the dimension of the data, also gives

estimates of how many dimensions are needed to represent the data: i.e. the dimension

of the invariant manifold of the long-time dynamics. Finally, we learn dynamics on this

manifold with the use of neural ordinary differential equations. We apply symmetry chart-

ing to two-dimensional Kolmogorov flow in a chaotic bursting regime. This system has a

continuous translation symmetry, and discrete rotation and shift-reflect symmetries. With

this framework we observe that less data is needed to learn accurate data-driven models,

more robust estimates of the manifold dimension are obtained, equivariance of the NSE is

satisfied, better short-time tracking with respect to the true data is observed, and long-time

statistics are correctly captured.

3.1 Introduction

In recent years, neural networks (NNs) have been implemented to learn data-driven low-

dimensional representations and dynamical models of flow problems, with success in sys-

tems including the Moehlis-Faisst-Eckhardt (MFE) model [59], Kolmogorov flow [20, 52],

and minimal turbulent channel flow [47]. For the most part however, these approaches do

not explicitly take advantage of the fact that for dissipative systems like the Navier-Stokes

Equations (NSE), the long-time dynamics are expected to lie on an invariant manifold M

(sometimes called an inertial manifold [24, 62, 71]), dM, whose dimension may be much

smaller than the nominal number of degrees of freedom N required to specify the state

of the system. Ideally, one could identify dM from data, find a coordinate representation

for points on M, and learn the time-evolution on M in those coordinates. This would

be a minimal-dimensional data-driven dynamic model. Linot & Graham explored this ap-

proach for chaotic dynamics of the Kuramoto-Sivashinsky equation (KSE) [37, 38]. They

showed that the mean-squared error (MSE) of the reconstruction of the snapshots using

an autoencoder (AE) for dimension reduction for the domain size of L = 22 exhibited an

50

orders-of-magnitude drop when the dimension of the inertial manifold is reached. Further-

more, modeling the dynamics with a dense NN at this dimension either with a discrete-time

map [37] or a system of ordinary differential equations (ODE) [38] yielded excellent trajec-

tory predictions and long-time statistics. The approach they introduced is referred to here as

data-driven manifold dynamics (DManD). For the KSE in larger domains, it was found that

simply observing MSE vs. autoencoder bottleneck dimension was not sufficient to determine

the manifold dimension and exhaustive tests involving time evolution models vs. dimension

were necessary to estimate the manifold dimension. Pérez De Jesús & Graham extended

this approach to two-dimensional Kolmogorov flow in a chaotic regime [53]. Here dimension

reduction from 1024 dimensions to ≤ 10 was achieved, with very good short-time tracking

predictions, long-time statistics, as well as accurate predictions of bursting events. Linot

& Graham considered three-dimensional direct numerical simulations of turbulent Couette

flow at Re = 400 and found accurate data-driven dynamic models with fewer than 20 de-

grees of freedom [39]. These models were able to capture characteristics of the flows such

as streak breakdown and regeneration, short-time tracking, as well as Reynolds stresses and

energy balance. They also computed unstable periodic orbits from the models with close

resemblance to previously computed orbits from the full system. Relatedly, Zeng et al. [74]

exploited advances in autoencoder architecture [32] to yield more precise estimates of dM

for data from high-dimensional chaotic systems. The present work illustrates how symme-

tries of a flow system can be exploited in the DManD framework to yield highly efficient

low-dimensional data-driven models for chaotic flows.

A fundamental notion in the topology of manifolds, which will be useful in exploiting

symmetry, is that of charts and atlases [36]. Simply put, a chart is a region of a manifold

whose points can be represented in a local Cartesian coordinate system of dimension dM and

which overlaps with neighboring charts, while an atlas is a collection of charts that covers

the manifold. This representation of a manifold has several advantages. First, for a man-

ifold with dimension dM, it may not be possible to find a global coordinate representation

51

in dM dimensions: Whitney’s embedding theorem states that generic smooth maps for a

smooth manifold of dimension dM can be embedded into a Euclidean space of 2dM. Divid-

ing a manifold into an atlas of charts enables minimal-dimensional representations locally

in dM dimensions. Second, from the dynamical point of view, dynamics on different parts

of a manifold may be very different and a single global representation of a manifold and

the dynamics on it may not efficiently capture the dynamics, especially in the data-driven

context. These two advantages of an atlas-of-charts representation have been exploited for

data-driven modeling. Floryan & Graham developed a method to implement data-driven

local representations for dynamical systems such as the quasiperiodic dynamics on a torus, a

reaction-diffusion system, and the KSE to learn dynamics on invariant manifolds of minimal

dimension [23]. They refer to this method as Charts and Atlases for Nonlinear Data-Driven

Dynamics on Manifolds – “CANDyMan". Fox et al. then applied this to the MFE model,

which displays highly intermittent behavior in the form of quasilaminarization and full relam-

inarization events, demonstrating more accurate time evolution predictions as global (“single

chart") model [25]. In the present work, we use the charts and atlases framework to exploit

symmetries.

In the Navier-Stokes equations (NSE), symmetries appear in the form of continuous and

discrete symmetry groups. The symmetries of the NSE in physical space are reflected in

state space as symmetries of the vector field, and these can generate natural charts of the

system. Consider the vector field q shown in Fig. 3.1a where the operation Rq rotates the

vector field by π/2 in the clockwise direction. Trajectories of the ODE ẏ = q will reflect

this symmetry. Without exploiting symmetry, any model trained on this data will need to

represent the whole state space and even so will generally not obey the exact symmetries

of the true system due to finite sampling effects. In this work we leverage knowledge of

the charts by explicitly considering and factoring out the symmetries. We show a depiction

of this in Fig. 3.1b where we know that by applying R to the data we can map it to a

different quadrant, and that by mapping points in quadrants 2, 3, and 4 with R, R2, and

52

R3, respectively, they all end up in quadrant 1. This is shown in Fig. 3.1c where the data

collapses on top of each other when mapped to the first quadrant. We will call this region the

“fundamental domain" for the state space, and when expanded to overlap with its neighbors,

the “fundamental chart".

Some previous work has focused on factoring out symmetries of dynamical systems for

dimension reduction in the data-driven context. However, symmetries have not been consid-

ered explicitly for data-driven reduced-order models (ROMs). Kneer et al. built symmetries

into an AE architecture for dimension reduction and applied it to the Kolmogorov flow

system [34]. With the use of branches that receive the different discrete symmetries of the

snapshots and spatial transformer networks that manipulate the continuous phase, they were

able to map to a fundamental domain by selecting the branch that gives the smallest MSE

and backpropagating through it. By doing this, the AE naturally selects a path that leads

to the lowest MSE of reconstruction while considering the symmetries of the system. The

purpose of this work was not to find the minimal dimension or learn ROMs. Budanur & Cvi-

tanovic formulated a symmetry-reducing scheme, previously applied to the Lorenz equations

[45], to the KSE, where a polynomial transformation of the Fourier modes combined with

the method-of-slices for factoring out spatial phase leads to a mapping in the fundamental

domain [7]. Applying this method to more complicated systems, such as Kolmogorov flow,

may be quite challenging. Symmetry reduction has also been successfully used for control-

ling the KSE with synthetic jets. Zeng & Graham applied discrete symmetry operations to

map the state to the fundamental domain, and used this as the input to a reinforcement

learning control agent, the performance of which is dramatically improved by exploitation

of symmetry [72].

In the present work, we present a framework for learning DManD models in the fun-

damental chart, as in Fig. 3.1c, where the dynamics of the flow occur, and apply it to

chaotic dynamics of the NSE. We refer to this method as “symmetry charting”, which results

in (at least approximately) minimal-dimensional data-driven models that are equivariant to

53

R
<latexit sha1_base64="HE8dhDNLhGJlVAgw6eEHnguJlo0=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy6r2AdMh5JJM21oJhmSjFCGfoYbF4q49Wvc+Tdm2llo64HA4Zx7ybknTDjTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkqQttEcql6IdaUM0HbhhlOe4miOA457YaT29zvPlGlmRSPZprQIMYjwSJGsLGS34+xGRPMs4fZoFpz6+4caJV4BalBgdag+tUfSpLGVBjCsda+5yYmyLAyjHA6q/RTTRNMJnhEfUsFjqkOsnnkGTqzyhBFUtknDJqrvzcyHGs9jUM7mUfUy14u/uf5qYmug4yJJDVUkMVHUcqRkSi/Hw2ZosTwqSWYKGazIjLGChNjW6rYErzlk1dJp1H3LuqN+8ta86aoowwncArn4MEVNOEOWtAGAhKe4RXeHOO8OO/Ox2K05BQ7x/AHzucPi3GRbA==</latexit>

R
<latexit sha1_base64="HE8dhDNLhGJlVAgw6eEHnguJlo0=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy6r2AdMh5JJM21oJhmSjFCGfoYbF4q49Wvc+Tdm2llo64HA4Zx7ybknTDjTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkqQttEcql6IdaUM0HbhhlOe4miOA457YaT29zvPlGlmRSPZprQIMYjwSJGsLGS34+xGRPMs4fZoFpz6+4caJV4BalBgdag+tUfSpLGVBjCsda+5yYmyLAyjHA6q/RTTRNMJnhEfUsFjqkOsnnkGTqzyhBFUtknDJqrvzcyHGs9jUM7mUfUy14u/uf5qYmug4yJJDVUkMVHUcqRkSi/Hw2ZosTwqSWYKGazIjLGChNjW6rYErzlk1dJp1H3LuqN+8ta86aoowwncArn4MEVNOEOWtAGAhKe4RXeHOO8OO/Ox2K05BQ7x/AHzucPi3GRbA==</latexit>

R
<latexit sha1_base64="HE8dhDNLhGJlVAgw6eEHnguJlo0=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy6r2AdMh5JJM21oJhmSjFCGfoYbF4q49Wvc+Tdm2llo64HA4Zx7ybknTDjTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkqQttEcql6IdaUM0HbhhlOe4miOA457YaT29zvPlGlmRSPZprQIMYjwSJGsLGS34+xGRPMs4fZoFpz6+4caJV4BalBgdag+tUfSpLGVBjCsda+5yYmyLAyjHA6q/RTTRNMJnhEfUsFjqkOsnnkGTqzyhBFUtknDJqrvzcyHGs9jUM7mUfUy14u/uf5qYmug4yJJDVUkMVHUcqRkSi/Hw2ZosTwqSWYKGazIjLGChNjW6rYErzlk1dJp1H3LuqN+8ta86aoowwncArn4MEVNOEOWtAGAhKe4RXeHOO8OO/Ox2K05BQ7x/AHzucPi3GRbA==</latexit>

R2
<latexit sha1_base64="Wn2zD7yMwNiozIlj4CUTbSmS4RE=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyWpBV0W3bisYh/QxjKZTtqhk0mYmQg19EvcuFDErZ/izr9x0mahrQcGDufcyz1z/JgzpR3n2yqsrW9sbhW3Szu7e/tl++CwraJEEtoiEY9k18eKciZoSzPNaTeWFIc+px1/cp35nUcqFYvEvZ7G1AvxSLCAEayNNLDL/RDrse+nd7MHVEOlgV1xqs4caJW4OalAjubA/uoPI5KEVGjCsVI914m1l2KpGeF0VuonisaYTPCI9gwVOKTKS+fBZ+jUKEMURNI8odFc/b2R4lCpaeibySymWvYy8T+vl+jg0kuZiBNNBVkcChKOdISyFtCQSUo0nxqCiWQmKyJjLDHRpqusBHf5y6ukXau659Xabb3SuMrrKMIxnMAZuHABDbiBJrSAQALP8Apv1pP1Yr1bH4vRgpXvHMEfWJ8/UJmSMw==</latexit>

(a)
<latexit sha1_base64="7pag3kVXJubzvn74ms9kziE65QM=">AAAB/HicbVDLSsNAFJ3UV62vaJdugkWom5JUQZdFNy4r2Ae0oUymk3boZBJmbsQQ4q+4caGIWz/EnX/jNM1CWw/cy+Gce5k7x4s4U2Db30ZpbX1jc6u8XdnZ3ds/MA+PuiqMJaEdEvJQ9j2sKGeCdoABp/1IUhx4nPa82c3c7z1QqVgo7iGJqBvgiWA+Ixi0NDKrQ6CPkObd89M6PsuykVmzG3YOa5U4BamhAu2R+TUchyQOqADCsVIDx47ATbEERjjNKsNY0QiTGZ7QgaYCB1S5aX58Zp1qZWz5odQlwMrV3xspDpRKAk9PBhimatmbi/95gxj8KzdlIoqBCrJ4yI+5BaE1T8IaM0kJ8EQTTCTTt1pkiiUmoPOq6BCc5S+vkm6z4Zw3mncXtdZ1EUcZHaMTVEcOukQtdIvaqIMIStAzekVvxpPxYrwbH4vRklHsVNEfGJ8/K9+VGQ==</latexit>

(b)
<latexit sha1_base64="D15rREf0B8pNwBL3/dTeq7liq4c=">AAAB/HicbVDLSsNAFJ3UV62vaJdugkWom5JUQZdFNy4r2Ae0oUymk3boZBJmbsQQ4q+4caGIWz/EnX/jNM1CWw/cy+Gce5k7x4s4U2Db30ZpbX1jc6u8XdnZ3ds/MA+PuiqMJaEdEvJQ9j2sKGeCdoABp/1IUhx4nPa82c3c7z1QqVgo7iGJqBvgiWA+Ixi0NDKrQ6CPkObd89O6d5ZlI7NmN+wc1ipxClJDBdoj82s4DkkcUAGEY6UGjh2Bm2IJjHCaVYaxohEmMzyhA00FDqhy0/z4zDrVytjyQ6lLgJWrvzdSHCiVBJ6eDDBM1bI3F//zBjH4V27KRBQDFWTxkB9zC0JrnoQ1ZpIS4IkmmEimb7XIFEtMQOdV0SE4y19eJd1mwzlvNO8uaq3rIo4yOkYnqI4cdIla6Ba1UQcRlKBn9IrejCfjxXg3PhajJaPYqaI/MD5/AC1mlRo=</latexit>

(c)
<latexit sha1_base64="AIRbPBYx9kEXAKeYQU9+fAM1+ZQ=">AAAB/HicbVDLSsNAFJ3UV62vaJdugkWom5JUQZdFNy4r2Ae0oUymk3boZBJmbsQQ4q+4caGIWz/EnX/jNM1CWw/cy+Gce5k7x4s4U2Db30ZpbX1jc6u8XdnZ3ds/MA+PuiqMJaEdEvJQ9j2sKGeCdoABp/1IUhx4nPa82c3c7z1QqVgo7iGJqBvgiWA+Ixi0NDKrQ6CPkObd89M6OcuykVmzG3YOa5U4BamhAu2R+TUchyQOqADCsVIDx47ATbEERjjNKsNY0QiTGZ7QgaYCB1S5aX58Zp1qZWz5odQlwMrV3xspDpRKAk9PBhimatmbi/95gxj8KzdlIoqBCrJ4yI+5BaE1T8IaM0kJ8EQTTCTTt1pkiiUmoPOq6BCc5S+vkm6z4Zw3mncXtdZ1EUcZHaMTVEcOukQtdIvaqIMIStAzekVvxpPxYrwbH4vRklHsVNEfGJ8/Lu2VGw==</latexit>

q
<latexit sha1_base64="nnmQPdSA7Ko5uYC+KEXhC8Wy8qc=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae0Y8mkmTY0k4xJRilD/8ONC0Xc+i/u/Bsz7Sy09UDI4Zx7yckJYs60cd1vp7Cyura+UdwsbW3v7O6V9w9aWiaK0CaRXKpOgDXlTNCmYYbTTqwojgJO28H4OvPbj1RpJsWdmcTUj/BQsJARbKx03wskH+hJZK/0YdovV9yqOwNaJl5OKpCj0S9/9QaSJBEVhnCsdddzY+OnWBlGOJ2WeommMSZjPKRdSwWOqPbTWeopOrHKAIVS2SMMmqm/N1Ic6SyanYywGelFLxP/87qJCS/9lIk4MVSQ+UNhwpGRKKsADZiixPCJJZgoZrMiMsIKE2OLKtkSvMUvL5NWreqdVWu355X6VV5HEY7gGE7Bgwuoww00oAkEFDzDK7w5T86L8+58zEcLTr5zCH/gfP4ASfeTBg==</latexit>

Rq
<latexit sha1_base64="4DIetsizaOxgt767+xl4r17PpGk=">AAACAnicbVC7TsMwFHXKq5RXgAmxWFRITFVSkGCsYGEsiD6kJqocx22tOnawHaQqilj4FRYGEGLlK9j4G5w2A7RcyfLROffqnnuCmFGlHefbKi0tr6yuldcrG5tb2zv27l5biURi0sKCCdkNkCKMctLSVDPSjSVBUcBIJxhf5XrngUhFBb/Tk5j4ERpyOqAYaUP17QMvQnqEEUtvMy8QLFSTyHzpfda3q07NmRZcBG4BqqCoZt/+8kKBk4hwjRlSquc6sfZTJDXFjGQVL1EkRniMhqRnIEcRUX46PSGDx4YJ4UBI87iGU/b3RIoilVsznblhNa/l5H9aL9GDCz+lPE404Xi2aJAwqAXM84AhlQRrNjEAYUmNV4hHSCKsTWoVE4I7f/IiaNdr7mmtfnNWbVwWcZTBITgCJ8AF56ABrkETtAAGj+AZvII368l6sd6tj1lrySpm9sGfsj5/AIHRmCU=</latexit>

R2q
<latexit sha1_base64="uT/lnLHxuAw2RCbOm6z2aMVBZ2I=">AAACBHicbVC7TsMwFHV4lvIKMHaxqJCYqqQgwVjBwlgQfUhtqBzHaa06drAdpCrKwMKvsDCAECsfwcbf4LQZoOVKlo/OuVf33OPHjCrtON/W0vLK6tp6aaO8ubW9s2vv7beVSCQmLSyYkF0fKcIoJy1NNSPdWBIU+Yx0/PFlrnceiFRU8Fs9iYkXoSGnIcVIG2pgV/oR0iOMWHqT3dX7vmCBmkTmS++zgV11as604CJwC1AFRTUH9lc/EDiJCNeYIaV6rhNrL0VSU8xIVu4nisQIj9GQ9AzkKCLKS6dHZPDIMAEMhTSPazhlf0+kKFK5NdOZW1bzWk7+p/USHZ57KeVxognHs0VhwqAWME8EBlQSrNnEAIQlNV4hHiGJsDa5lU0I7vzJi6Bdr7kntfr1abVxUcRRAhVwCI6BC85AA1yBJmgBDB7BM3gFb9aT9WK9Wx+z1iWrmDkAf8r6/AG3xpjJ</latexit>

R3q
<latexit sha1_base64="a82OQU1RwA5H7NJ2Lljed/nN8Vk=">AAACBHicbVC7TsMwFHXKq5RXgLFLRIXEVCUtEowVLIwF0YfUhMpxnNaqYwfbQaqiDCz8CgsDCLHyEWz8DU6bAVquZPnonHt1zz1+TIlUtv1tlFZW19Y3ypuVre2d3T1z/6AreSIQ7iBOuej7UGJKGO4ooijuxwLDyKe4508uc733gIUknN2qaYy9CI4YCQmCSlNDs+pGUI0RpOlNdtd0fU4DOY30l95nQ7Nm1+1ZWcvAKUANFNUeml9uwFESYaYQhVIOHDtWXgqFIojirOImEscQTeAIDzRkMMLSS2dHZNaxZgIr5EI/pqwZ+3sihZHMrenO3LJc1HLyP22QqPDcSwmLE4UZmi8KE2opbuWJWAERGCk61QAiQbRXC42hgEjp3Co6BGfx5GXQbdSdZr1xfVprXRRxlEEVHIET4IAz0AJXoA06AIFH8AxewZvxZLwY78bHvLVkFDOH4E8Znz+5WJjK</latexit>

q
<latexit sha1_base64="nnmQPdSA7Ko5uYC+KEXhC8Wy8qc=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae0Y8mkmTY0k4xJRilD/8ONC0Xc+i/u/Bsz7Sy09UDI4Zx7yckJYs60cd1vp7Cyura+UdwsbW3v7O6V9w9aWiaK0CaRXKpOgDXlTNCmYYbTTqwojgJO28H4OvPbj1RpJsWdmcTUj/BQsJARbKx03wskH+hJZK/0YdovV9yqOwNaJl5OKpCj0S9/9QaSJBEVhnCsdddzY+OnWBlGOJ2WeommMSZjPKRdSwWOqPbTWeopOrHKAIVS2SMMmqm/N1Ic6SyanYywGelFLxP/87qJCS/9lIk4MVSQ+UNhwpGRKKsADZiixPCJJZgoZrMiMsIKE2OLKtkSvMUvL5NWreqdVWu355X6VV5HEY7gGE7Bgwuoww00oAkEFDzDK7w5T86L8+58zEcLTr5zCH/gfP4ASfeTBg==</latexit>

q
<latexit sha1_base64="nnmQPdSA7Ko5uYC+KEXhC8Wy8qc=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae0Y8mkmTY0k4xJRilD/8ONC0Xc+i/u/Bsz7Sy09UDI4Zx7yckJYs60cd1vp7Cyura+UdwsbW3v7O6V9w9aWiaK0CaRXKpOgDXlTNCmYYbTTqwojgJO28H4OvPbj1RpJsWdmcTUj/BQsJARbKx03wskH+hJZK/0YdovV9yqOwNaJl5OKpCj0S9/9QaSJBEVhnCsdddzY+OnWBlGOJ2WeommMSZjPKRdSwWOqPbTWeopOrHKAIVS2SMMmqm/N1Ic6SyanYywGelFLxP/87qJCS/9lIk4MVSQ+UNhwpGRKKsADZiixPCJJZgoZrMiMsIKE2OLKtkSvMUvL5NWreqdVWu355X6VV5HEY7gGE7Bgwuoww00oAkEFDzDK7w5T86L8+58zEcLTr5zCH/gfP4ASfeTBg==</latexit>

Rq
<latexit sha1_base64="4DIetsizaOxgt767+xl4r17PpGk=">AAACAnicbVC7TsMwFHXKq5RXgAmxWFRITFVSkGCsYGEsiD6kJqocx22tOnawHaQqilj4FRYGEGLlK9j4G5w2A7RcyfLROffqnnuCmFGlHefbKi0tr6yuldcrG5tb2zv27l5biURi0sKCCdkNkCKMctLSVDPSjSVBUcBIJxhf5XrngUhFBb/Tk5j4ERpyOqAYaUP17QMvQnqEEUtvMy8QLFSTyHzpfda3q07NmRZcBG4BqqCoZt/+8kKBk4hwjRlSquc6sfZTJDXFjGQVL1EkRniMhqRnIEcRUX46PSGDx4YJ4UBI87iGU/b3RIoilVsznblhNa/l5H9aL9GDCz+lPE404Xi2aJAwqAXM84AhlQRrNjEAYUmNV4hHSCKsTWoVE4I7f/IiaNdr7mmtfnNWbVwWcZTBITgCJ8AF56ABrkETtAAGj+AZvII368l6sd6tj1lrySpm9sGfsj5/AIHRmCU=</latexit>

R2q
<latexit sha1_base64="uT/lnLHxuAw2RCbOm6z2aMVBZ2I=">AAACBHicbVC7TsMwFHV4lvIKMHaxqJCYqqQgwVjBwlgQfUhtqBzHaa06drAdpCrKwMKvsDCAECsfwcbf4LQZoOVKlo/OuVf33OPHjCrtON/W0vLK6tp6aaO8ubW9s2vv7beVSCQmLSyYkF0fKcIoJy1NNSPdWBIU+Yx0/PFlrnceiFRU8Fs9iYkXoSGnIcVIG2pgV/oR0iOMWHqT3dX7vmCBmkTmS++zgV11as604CJwC1AFRTUH9lc/EDiJCNeYIaV6rhNrL0VSU8xIVu4nisQIj9GQ9AzkKCLKS6dHZPDIMAEMhTSPazhlf0+kKFK5NdOZW1bzWk7+p/USHZ57KeVxognHs0VhwqAWME8EBlQSrNnEAIQlNV4hHiGJsDa5lU0I7vzJi6Bdr7kntfr1abVxUcRRAhVwCI6BC85AA1yBJmgBDB7BM3gFb9aT9WK9Wx+z1iWrmDkAf8r6/AG3xpjJ</latexit>

R3q
<latexit sha1_base64="a82OQU1RwA5H7NJ2Lljed/nN8Vk=">AAACBHicbVC7TsMwFHXKq5RXgLFLRIXEVCUtEowVLIwF0YfUhMpxnNaqYwfbQaqiDCz8CgsDCLHyEWz8DU6bAVquZPnonHt1zz1+TIlUtv1tlFZW19Y3ypuVre2d3T1z/6AreSIQ7iBOuej7UGJKGO4ooijuxwLDyKe4508uc733gIUknN2qaYy9CI4YCQmCSlNDs+pGUI0RpOlNdtd0fU4DOY30l95nQ7Nm1+1ZWcvAKUANFNUeml9uwFESYaYQhVIOHDtWXgqFIojirOImEscQTeAIDzRkMMLSS2dHZNaxZgIr5EI/pqwZ+3sihZHMrenO3LJc1HLyP22QqPDcSwmLE4UZmi8KE2opbuWJWAERGCk61QAiQbRXC42hgEjp3Co6BGfx5GXQbdSdZr1xfVprXRRxlEEVHIET4IAz0AJXoA06AIFH8AxewZvxZLwY78bHvLVkFDOH4E8Znz+5WJjK</latexit>

Figure 3.1: (a) Vector field q with symmetry group R in state space. (b) Data in each quadrant
can be mapped to another quadrant by operating with R. (c) After mapping everything to the
positive quadrant data lies on top of each other.

symmetry operations. In addition the model only need to be learned in one chart because

a combination of its symmetric versions will cover the manifold. We first learn minimal-

dimensional representations in the fundamental chart followed by an evolution equation for

the dynamics on it. To this end we use information about the symmetries of the system

combined with NNs to learn the compressed representation and dynamics.

We apply symmetry charting to two-dimensional Kolmogorov flow in a regime where

the chaotic dynamics travels between unstable relative periodic orbits (RPOs) [18] through

bursting events [2] that shadow heteroclinic orbits connecting the RPOs. RPOs correspond

to periodic orbits in a moving reference frame, such that in a fixed frame, the pattern at

time t + T is a phase-shifted replica of the pattern at time t. To achieve this goal we map

the data to a fundamental chart which is then used to train undercomplete AEs to find low-

dimensional representations. To this end, we use Implicit Rank Minimizing autoencoders

with weight decay (IRMAE-WD) [74]. This architecture was introduced by Zeng & Graham

as a method that estimates dM without the need to sweep over dimensions and using MSE

and statistics as indicators [37, 53]. We give an overview of IRMAE-WD in Section 3.3.2.

After learning a low-dimensional representation with IRMAE-WD we learn a time map with

the use of the neural ODE (NODE) [14], which we discuss in Section 3.3.3. We then show

54

results in Section 3.4 and finish with concluding remarks in Section 3.5.

3.2 Kolmogorov flow, symmetries, and projections

The two-dimensional NSE with Kolmogorov forcing are

∂u

∂t
+ u ·∇u + ∇p =

1

Re
∇2u + sin(ny)x̂, (3.1)

∇ · u = 0, (3.2)

where flow is in the x− y plane, u = [u, v] is the velocity vector, p is the pressure, n is the

wavenumber of the forcing, and x̂ is the unit vector in the x direction. Here Re =
√
χ

v

(
Ly
2π

)3/2

where χ is the dimensional forcing amplitude, ν is the kinematic viscosity, and Ly is the size

of the domain in the y direction. We consider the periodic domain [0, 2π/α] × [0, 2π] with

α = 1. Vorticity is defined as ω = ẑ ·∇ × u, where ẑ is the unit vector in the z direction

(orthogonal to the flow). The equations are invariant under several symmetry operations

[13], namely a shift (in y)-reflect (in x), a rotation through π, and a continuous translation

in x:

S : [u, v, ω](x, y)→ [−u, v,−ω]
(
−x, y +

π

n

)
, (3.3)

R : [u, v, ω](x, y)→ [−u,−v, ω](−x,−y), (3.4)

Tl : [u, v, ω](x, y)→ [u, v, ω](x+ l, y). (3.5)

For n wavelengths the state can be shift-reflected 2n−1 times with the operation S . Together

with the rotation R there will be a total of 4n states that are related by symmetries. In the

case of n = 2 this results in eight regions of state space that are related to one another by

symmetries. In the chaotic regime that we consider, trajectories visit each of these regions.

Relatedly, velocity fields for the Kolmogorov flow satisfy the equivarance property associated

with these actions: if u is a solution at a given time, then so are Su, Ru, and Tlu. We

55

elaborate on this property in Sec. 3.3.1.

The total kinetic energy for this system (KE), dissipation rate (D) and power input (I)

are

KE =
1

2

〈
u2
〉
V
, D =

1

Re

〈
|∇u|2

〉
V
, I = 〈u sin(ny)〉V (3.6)

where 〈·〉V corresponds to the average taken over the domain. For the case of n = 1 the

laminar state is linearly stable at all Re [30]. It is not until n = 2 that the laminar state

becomes unstable, with a critical value of Rec = n3/221/4[26, 44, 63]. In what follows, we

evolve the NSE numerically in the vorticity representation on a [dx × dy] = [32 × 32] grid

following the pseudo-spectral scheme given by Chandler & Kerswell [13], which is based on

the code by Bartello & Warn [4].

In Fig. 3.2 we show the time-series evolution of ‖ω(t)‖, where ‖ · ‖ is the l2-norm, for an

RPO obtained at Re = 13.5, n = 2, as well as the state-space projection of the trajectory into

the subspace ω̂R(0, 1)− ω̂I(0, 1)− ω̂I(0, 2) where ω̂(kx, ky, t) = F{ω(x, y, t)} = ω̂R(kx, ky, t)+

iω̂I(kx, ky, t) is the discrete Fourier transform in x and y, and subscripts R and I correspond

to real and imaginary parts. We also consider chaotic Kolmogorov flow with Re = 14.4,

n = 2. Fig. 3.3 shows the time-series evolution of ‖ω(t)‖ as well as the state-space projection

of the trajectory into the subspace ω̂R(0, 1)− ω̂I(0, 1)− ω̂I(0, 2) for this chaotic regime. Due

to the discrete symmetries of the system, there are several RPOs [2]. The dynamics are

characterized by quiescent intervals where the trajectories approach the RPOs (which are

now unstable), punctuated by fast excursions between the RPOs, which are indicated by the

intermittent increases of the ‖ω(t)‖ in Fig. 3.3a. Under the projection shown in Fig. 3.3b, we

see four RPOs, which initially seems surprising as there are eight discrete symmetries and a

continuous symmetry. However, the continuous symmetry is removed under this projection

(it will only appear for kx 6= 0), and the discrete symmetry operations of R and S will

flip the signs of ω̂R(0, 1), ω̂I(0, 1), and ω̂I(0, 2) such that portions of the different RPOs are

covered. Specifics of the sign changes will be made clear in Section 3.3.1.

56

0 20 40 60 80
t

52.6

52.7

52.8

52.9

53.0

53.1

‖ω
(t

)‖

(a)

ω̂R(0, 1)

0.18
0.20

0.22
0.24

0.26
0.28

ω̂ I
(0
, 1

)

0.18
0.20

0.22
0.24

0.26
0.28

ω̂
I
(0
, 2

)

−0.02

0.00

0.02

(b)

Figure 3.2: (a) Time evolution of ‖ω(t)‖ at Re = 13.5. (b) State-space projection of the trajectory
into the subspace ω̂R(0, 1)− ω̂I(0, 1)− ω̂I(0, 2) for Re = 13.5.

0 500 1000 1500 2000 2500 3000 3500
t

55

60

65

70

75

‖ω
(t

)‖

(a)

ω̂R(0, 1)

−0.4
−0.2

0.0
0.2

0.4

ω̂ I
(0
, 1

)

−0.4

−0.2

0.0

0.2

0.4

ω̂
I
(0
, 2

)

−0.2

−0.1

0.0

0.1

0.2

Re= 14.4

Re= 13.5

(b)

Figure 3.3: (a) Time evolution of ‖ω(t)‖ at Re = 14.4. (b) State-space projection of the trajectory
into the subspace ω̂R(0, 1)− ω̂I(0, 1)− ω̂I(0, 2) for Re = 13.5 and Re = 14.4.

57

3.3 Data-driven dimension reduction and dynamic mod-

eling

In the following sections, we describe the steps involved in symmetry charting: 1) mapping

data to the fundamental space, 2) finding a minimal-dimensional coordinate representation,

and 3) evolving the minimal-dimensional state and symmetry indicators forward through

time. The parts of this procedure separating it from other data-driven reduced order models

are how we map to the fundamental and how we evolve the symmetry indicators through

time. Our approach guarantees equivariance under symmetry operations.

3.3.1 Map to fundamental domain

First we discuss a method to map trajectories of Kolmogorov flow to the fundamental domain

where symmetries are factored out [7]. The first step is to identify a set of indicators that are

related to the group of symmetries. In order to find these indicators we consider the effect of

these symmetry operations in Fourier space. After Fourier transforming the equations and

simplifying these are the actions of the symmetry operations on the Fourier coefficients:

S : ω̂(kx, ky)→ −ω̂(−kx, ky)eikyπ/n, (3.7)

R : ω̂(kx, ky)→ ¯̂ω(kx, ky), (3.8)

Tl : ω̂(kx, ky)→ ω̂(kx, ky)e
−ikxl, (3.9)

where ·̄ denotes the complex conjugate.

Now, we will show how these symmetry operations act on the Fourier coefficients in

specific ways that we can exploit to classify any given state as lying within a specific region

or domain of state space. We refer to this classification of the continuous symmetry as the

“phase” and the discrete symmetry as the “indicator”. To compute the phase and remove

58

the continuous symmetry Tl, we use the First Fourier mode method-of-slices [10, 11]. This

method involves computing the spatial phase φx of the kx = 1 and ky = 0 Fourier mode:

φx(t) = atan 2 {ω̂I(1, 0), ω̂R(1, 0)}. Then, to phase-align the data, we shift the vorticity

snapshots such that this mode is a pure cosine: ωl(x, y, t) = F−1
{
F{ω(x, y, t)}e−ikφx(t)

}
.

Doing this ensures that the snapshots lie in a reference frame where no translation happens

in the x direction. From Eq. 3.9 we see that this operation only modifies Fourier coefficients

with kx 6= 0. Thus, if we use kx = 0 coefficients to determine the discrete indicator it will

be independent of the phase.

For the shift-reflect operation, we consider the (kx = 0, ky = 1) mode. In Eq. 3.7 the

shift-reflect operation modifies this Fourier coefficient in this manner: ω̂R(0, 1)+ iω̂I(0, 1)→

ω̂I(0, 1)− iω̂R(0, 1). This shows that the shift-reflect operation maps between different quad-

rants of the ω̂R(0, 1) − ω̂I(0, 1) plane. Next, we consider the rotation operation on the

(kx = 0, ky = 2) mode. In Eq. 3.8 we see this operation simply flips the sign of the imagi-

nary component ω̂I(0, 2)→ −ω̂I(0, 2). Thus, applying the eight possible discrete symmetry

operations (including the identity operation) to a vorticity field will map us to eight unique

points in the ω̂R(0, 1), ω̂I(0, 1), ω̂I(0, 2) space. As such, we may classify each octant with an

I between 0 − 7. This means that any snapshot can be mapped to a fundamental domain

and be uniquely identified by I. In Fig. 3.4 we show the indicators for Re = 13.5. The

colored curves correspond to the sections of the different RPOs that are related by discrete

symmetries. Notice that each section of the different RPOs can be uniquely identified by

I. Table 3.1 shows how any snapshot in any octant can be mapped to the I = 0 octant by

applying the corresponding discrete symmetry operations. These same indicators extend to

the chaotic case Re = 14.4 and in the rest of this work we refer to the fundamental domain

as the space corresponding to I = 0. Fig. 3.5 shows the state-space projection of a chaotic

trajectory at Re = 14.4 into the region ω̂R(0, 1) − ω̂I(0, 1) − ω̂I(0, 2), where the different

colors give the indicator for the chart in which that data point lies. More generally, we note

that any point in the state space of the system can represented by a point in the fundamental

59

domain along with an indicator I and phase φx.

This representation is satisfactory for static data, but not for modeling trajectories rep-

resented in the fundamental domain, because when a trajectory exits one region, its corre-

sponding trajectory in the fundamental domain leaves there and instantaneously enters at a

different point: i.e. the time evolution is discontinuous in this representation.

To address this issue we use the concept of charts and atlases that is fundamental to the

study of manifolds [36], in a way that is closely related to that of Floryan & Graham [23]. An

atlas for a manifold is a collection of patches, each of which must overlap with its neighbors,

that are called charts. In each chart, a local coordinate representation can be found, and

for each pair of overlapping charts, a transition map takes coordinates in one chart to those

in the neighboring one – with this coordinate tranformation there are no discontinuities. To

use this formalism in the present case requires us to expand the fundamental domain so that

it overlaps with its neighbors, so the fundamental chart is simply the fundamental domain,

comprised of “interior points" plus the overlap region (“exterior points"), and there are

seven other charts, each generated by the symmetry operation acting on the fundamental

chart including the overlap regions. We choose a coordinate representation for all charts

that corresponds to that for the fundamental chart, and for a trajectory that leaves the

fundamental domain with e.g. I = 4 and reenters with I = 6, the transition map is the

function that moves the point in the fundamental chart from the “exit" of the I = 4 chart

to the “entrance" of the I = 6 chart.

In Fig. 3.5a we show the state space projection of a trajectory, identifying interior points

with solid markers and exterior points with open markers. We isolate the region close to an

RPO in Fig. 3.5b to make this more clear. Solid markers correspond to data points that

lie in the interior of a chart. Open markers correpond to the data points in the connecting

chart that will be included together with the interior data. Many different approaches

can be taken to identify points to include in the exterior. Here we simply identified all

points in a small volume around each octant as exterior points. We did this by finding the

60

dimensions of a box surrounding the octant (by calculating the maximum absolute value

in the ω̂R(0, 1) − ω̂I(0, 1) − ω̂I(0, 2) directions) and then increasing the size of this box by

expanding each direction 20%. Any point that lies in the volume between the octant and

this expanded domain is an exterior point. We varied the percent increase to 5%, 10%, and

30% and observed no change in the results.

Now that we have identified these exterior points we can continue with the procedure of

mapping the data to the fundamental chart. To do this, we apply the appropriate discrete

operations to the interior and exterior points of each chart to map the state such that the

interior points fall in I = 0 (ω̂R(0, 1) > 0, ω̂I(0, 1) > 0, ω̂I(0, 2) > 0). Fig. 3.6a shows

the colored clusters mapped onto the positive octant, dark blue cluster. Figures 3.6b and

3.6c show projections in the planes ω̂R(0, 1)− ω̂I(0, 1) and ω̂R(0, 1)− ω̂I(0, 2) respectively of

data mapped to the positive octant. The dashed lines correspond to the boundaries between

the different octants. We see clearly that mapping the data to the fundamental chart leads

to a much higher density of data points and thus to better sampling than if we considered

the whole state space without accounting for the symmetries. Following the mapping to the

fundamental chart we phase-align the snapshots and refer to this data as ω̃ from this point

on.

Table 3.1: Indicators I and the corresponding operations required to map to I = 0

I Discrete operations
0 None
1 Rω
2 S 3ω
3 S 3Rω
4 S 2Rω
5 S Rω
6 S 2ω
7 S ω

61

ω̂R(0, 1)

−0.3−0.2−0.1
0.0

0.1
0.2

0.3

ω̂ I
(0
, 1

)

−0.3
−0.2
−0.1

0.0
0.1

0.2
0.3

ω̂
I
(0
, 2

)

−0.10

−0.05

0.00

0.05

0.10I = 0

I = 1

I = 2

I = 3

I = 4

I = 5

I = 6

I = 7

Figure 3.4: State-space projection of the different RPOs into the plane ω̂R(0, 1)−ω̂I(0, 1)−ω̂I(0, 2)
for Re = 13.5. The different colors are for different discrete symmetry indicators which are shown
in the legend.

(a) (b)

Figure 3.5: (a) State-space projection of a trajectory into the subspace ω̂R(0, 1)−ω̂I(0, 1)−ω̂I(0, 2)
for Re = 14.4. Colors correspond to the discrete symmetry indicator. (b) Zoom into the region
near the RPO corresponding to I = 1, 7. Solid markers correspond to interior points and open
markers to exterior points – e.g. the blue solid markers within an open orange marker are in the
interior region of chart 7 and exterior region of chart 1.

62

(a)

(b) (c)

Figure 3.6: (a) Snapshots mapped to the fundamental chart (ω̂R(0, 1) > 0, ω̂I(0, 1) > 0, ω̂I(0, 2) >
0). (b) and (c) are the state-space projection of the trajectory into the planes ω̂R(0, 1)−ω̂I(0, 1) and
ω̂R(0, 1)− ω̂I(0, 2), respectively. The dotted lines give the boundary between interior and exterior
points.

63

3.3.2 Finding a manifold coordinate representation with IRMAE-

WD

In the previous section we discussed how to obtain the fundamental chart. We have defined

a natural subdivision of the state space, where the invariant manifold of the dynamics is

represented by an atlas of charts that are related by symmetry operations. This means

that we do not need to learn the full invariant manifold, only the piece in the fundamental

chart. To find a low-dimensional representation of the fundamental chart we use a variant

of a common machine-learning architecture known as an undercomplete autoencoder (AE),

whose purpose is to learn a reduced representation of the state such that the reconstruction

error with respect to the true data is minimized. We flatten the vorticity field ω̃ such that

N = 32 × 32 = 1024. The AE consists of an encoder and a decoder. The encoder maps

from the full space ω̃ ∈ RN to the lower-dimensional latent space h(t) ∈ Rdh , where ideally

dh = dM � N , and the decoder maps back to the full space ω̃r.

Previous works have focused on tracking MSE and dynamic model performance as dh

varies to find good low-dimensional representations [37, 39, 53]. This is a tedious trial-and-

error process that in general does not yield a precise estimate of dM. Other works have

learned compressed representations of flow problems [20, 47, 52]. However, performance

over a systematic range of dh is not examined in these cases. A more systematic alternative

would be highly desirable. In recent work, Zeng et al. [74] showed that a straightforward

variation on a standard autoencoder can yield robust and precise estimates of dM for a

range of systems, as well as an orthogonal manifold coordinate system. The architecture

they study is called an Implicit Rank Minimizing Autoencoder with weigh decay (IRMAE-

WD), and involves inserting a series of linear layers between the encoder and decoder and

adding an L2 regularization on the neural network weights in the loss. The effect of these

additions is an AE for which the standard gradient descent algorithm for learning NN weights

drives the rank of the covariance of the data in the latent representation to a minimum while

maintaining representational capability. Applying this to the KSE and other systems resulted

64

in the rank being equal to the dimension of the inertial manifold dM. IRMAE was originally

presented by Jing et al. [32] to learn low-rank representations for image-based classification

and generative problems.

Fig. 3.7a shows the IRMAE-WD framework. The encoder, denoted by E (ω̃; θE) reduces

the dimension from N to dz. We then include a linear networkW (·; θW) between the encoder

and the decoder which consists of several linear layers (matrix multiplications). Finally, the

decoder ω̃r = D (z; θD) maps back to the full space. An L2 (“weight decay") regularization

to the weights is also added, with prefactor λ. The loss function for this architecture is

L (ω̃; θE, θW , θD) =
〈
‖ω̃ −D (W (E (ω̃; θE) ; θW) ; θD)‖22

〉
+
λ

2
‖θ‖22. (3.10)

where 〈·〉 is the average over a training batch, θE the weights of the encoder, θD the weights

of the decoder, and θW the weights of the linear network. Zeng et al. [74] found dimension

estimates for the KSE to be robust to the number of linear layers, λ, and dz. However, as

we will show, there is more variability when selecting these parameters for Kolmogorov flow.

Nevertheless, we will see that IRMAE-WD yields a robust estimate of the upper bound of

dM that proves very useful.

After training, we can perform SVD on the covariance matrix of the encoded data matrix

Z to obtain the singular vectors U and singular values S as shown in Fig. 3.7b. Projecting

z onto ÛT gives an orthogonal representation h+ = UT z as illustrated in Fig. 3.7c. Then,

by choosing only the singular values above some very small threshold (typically & 6 orders

of magnitude smaller than the leading singular values), we may project down to fewer di-

mensions by projecting onto the corresponding singular vectors U , denoted Û to yield the

low-rank manifold representation h = Ûz (Fig. 3.7d). We refer to Table 3.2 for details on

the architecture.

65

Figure 3.7: Implicit Rank Minimizing autoencoder with weight decay (IRMAE-WD) framework:
a) network architecture with regularization mechanisms, b) singular value decomposition of the
covariance of the learned latent data representation Z, c) projection of latent variables onto manifold
coordinates d) isolated projection of latent variables onto manifold coordinates. Image reproduced
with permission from [74].

66

3.3.3 Time evolution of pattern with neural ODEs

In the previous two steps we first mapped our data to the fundamental chart, allowing us to

represent the state with ω̃, I, and φx. Then we reduced the dimension of ω̃ by mapping it to

the manifold coordinates h. Next, we need to find a method to evolve h, I, and φ through

time. To forecast h(t) in time we use the neural ODE (NODE) framework[14, 38, 40]. We

use a stabilized version proposed by Linot et. al. [40] where the dynamics on the manifold

in the fundamental chart are described by the equation

dh

dt
= gh(h)− Ah. (3.11)

Here A is chosen to have a stabilizing effect that keeps solutions from blowing up. We can

define this parameter as A = diag(κ[std(h)]) where κ = 0.1 is multiplied by the element-wise

standard deviation of h. The value of κ can be changed, but we see good prediction for the

selected value. The equation is integrated to estimate hr(t+ τ) as

hr (t+ τ) = h (t) +

∫ t+τ

t

(gh (h(t′); θt)− Ah)dt′ (3.12)

where θt are the weights of the NN gh, refer to Table 3.2, which are determined by minimizing

the loss

LNODE (h; θt) =
〈
‖h(t+ τ)− hr(t+ τ)‖22

〉
. (3.13)

To train the NODE model we first gather ω(t) and ω(t + τ). We then map to the

fundamental chart in pairs. As an example, if a snapshot ω(t) lies in I = 5 we apply the

corresponding discrete operations such that h(t) falls in the interior of the fundamental chart

I = 0. The same discrete operations, which are S R (refer to Table 3.1), are applied to

ω(t + τ). This means that h(t + τ) does not need to fall in the interior. We select τ = 0.5

which is a small enough time such that the exterior region is covered by the autoencoder.

Now that we trained the NODE models we want to evolve trajectories in time. To do

67

ω̂R(0, 1)
0.0

0.1
0.2

0.3
0.4 0.5

ω̂I (0, 1) 0.0
0.1

0.2
0.3

0.4
0.5

ω̂
I (0, 2)

0.00

0.02

0.04

0.06

0.08

0.10

IC, I = 0

Exit, I = 5

Map I = 5 to fundamental chart

(a)

0.0 0.1 0.2 0.3 0.4 0.5

ω̂R(0, 1)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

ω̂
I
(0
,1

)

(b)

Figure 3.8: (a) Initial condition (IC) starting at I = 0 is evolved and exits into the chart I = 5.
This exit is mapped back to I = 0 to keep evolving in the fundamental chart. (b) Two-dimensional
projection showing the exit from the fundamental chart. Here we selected an IC near the RPO,
which is the reason why this trajectory nearly closes on itself.

this we need to track the pattern h and the indicator I at every time. We first show an exit

and entry in the state space representation in Fig. 3.8. The initial condition (IC) starts in

I = 0 and exits through the bottom part of the domain. Looking at Fig. 3.4 we see that this

corresponds to a transition from I = 0 to I = 5. Hence, to keep evolving in the fundamental

chart we need to apply the corresponding discrete operations to map to I = 0 and keep track

of the new indicator I = 5. Notice that we need to keep track of the new indicator to map

back to the full space at the end. This can generalize to a longer trajectory in which case

the indicator changes depending on where the trajectory leaves the fundamental chart. The

transitions between indicators corresponding to the different charts are shown in Fig. 3.9.

Here we see a graph representation of the connections between the 8 symmetry charts for a

trajectory of 105 snapshots. The intensity of each connection is related to the probability

of the trajectory transitioning to another chart. The four darker lines correspond to the

shadowing of the RPOs and the lighter lines are related to the bursting events. Now that

we know how the indicators change we can evolve initial conditions with the NODE models

to obtain predicted trajectories in h.

68

0
<latexit sha1_base64="rsPGDo38dCUrLsAt/ftnosrChUA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptsvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPemeMuA==</latexit>

1
<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit>

2
<latexit sha1_base64="jk/1fpohXujb3eq/tOFNvjxoFrw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZq1frrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8ffW+Mug==</latexit>

3
<latexit sha1_base64="LNUgVcgcWmrkAqMqFwJgrNe8JZM=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbBRI9ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9ovltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia88adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyVy1XGlel2m0WRx7O4BwuwYNrqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AH7zjLs=</latexit>

4
<latexit sha1_base64="WqJ6Lk3Ioj0kJGz21f+UCQW7454=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaRRI9ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9ovltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia88adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNKql2m0WRx7O4BwuwYNrqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AIB3jLw=</latexit>

5
<latexit sha1_base64="AhcfTCM0SoNzrW5wWWD2fdOk/P0=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHZRo0eiF4+QyCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvPaHSPJYPZpygH9GB5CFn1FipftUrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa88SdcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1dssjjycwCmcgwfXUIV7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AIH7jL0=</latexit>

6
<latexit sha1_base64="isA7HMw1IyBJaGe6fSsV01e5RXQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRqEeiF4+QyCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvPaHSPJYPZpygH9GB5CFn1FipftUrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa88SdcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1dssjjycwCmcgwfXUIV7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AIN/jL4=</latexit>

7
<latexit sha1_base64="5jzFicLO/EBTMke3t2v3skIe5VM=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRBI9ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9ovltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia88adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNK5LtdssjjycwTlcggdVqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AIUDjL8=</latexit>

Figure 3.9: Graph representation of connections between the symmetry subspaces where pairs
{2,4}, {0,5}, {6,3}, {7,1} correspond to the top and bottom sections of the octants where each
unstable RPO lies. The intensity of each connection is related to the probability of the trajectory
transitioning to another chart. The probability of staying in the same chart (not included in this
depiction) is ∼ 94%, . Darker lines correspond to forward and reverse probabilities of ∼ 5%. Lighter
lines correspond to forward and reverse probabilities of ≤ 1%.

69

Here we discuss the detailed operations for evolving trajectories in the fundamental chart

with the NODE models. Fig. 3.10a summarizes the methodology for evolving in time. An

initial condition in the fundamental space is first encoded and projected with Û to obtain

h(t). Then the NODE maps a trajectory forward T time units to yield htemp(t + T) (note

the indicator does not change in this step). We select T = τ . After this, we perform the

appropriate symmetry operations, detailed below, to find hr(t + T) and update the new

indicator I(t+ T). This is repeated to continue evolving forward in time. In Fig. 3.10b we

present the method for performing these symmetry operations.

There are two main steps in applying the symmetry operations: 1) determining I from

htemp, and 2) getting the values of hr(t + T) and I(t + T). Step 1 is simply a classification

problem where we wish to find a function that classifies new values of htemp as either lying

within or outside the fundamental domain. In Floryan & Graham [23] this was performed

by identifying the nearest neighbor of the training data in the manifold coordinates and

classifying htemp with the same label. However, any classification technique can work – for

example, support vector machines (SVM) [6] also worked well at this task. In the case of our

specific problem, we found the fastest method was to map htemp to the ambient space ωtemp

at every step and calculate ω̂R(0, 1), ω̂I(0, 1), ω̂I(0, 2) to verify if htemp lies in the fundamental

space. Step 2 involves updating the manifold coordinates to get hr(t + T). If the indicator

changes, symmetries are factored out with I(t+ T) and the snapshot is encoded to get the

new hr(t+T). If the indicator stays the same hr(t+T) = htemp(t+T) and I(t+T) = I(t).

3.3.4 Time evolution of phase with neural ODEs

We also wish to time-evolve the phase φx(t). The dynamics of the phase only depend upon

the fundamental-chart vorticity pattern h and the indicator I, so we can describe them with

dφx
dt

= gI(I)gφ(h; θφ). (3.14)

70

NODE

Time Map
<latexit sha1_base64="yal6HBQpx51A28R+d3UDKAYuKqs=">AAACCHicbVDJSgNBEO1xjXGLevRgYxA8hZko6DG4gBc1QjbIhNDTqSRNeha6a8Qw5OjFX/HiQRGvfoI3/8bOctDEBwWv36uiq54XSaHRtr+tufmFxaXl1Ep6dW19YzOztV3RYaw4lHkoQ1XzmAYpAiijQAm1SAHzPQlVr3c+9Kv3oLQIgxL2I2j4rBOItuAMjdTM7LkID5jc3F5cDqjr0vGzJHyg1ywa0GYma+fsEegscSYkSyYoNjNfbivksQ8Bcsm0rjt2hI2EKRRcwiDtxhoixnusA3VDA+aDbiSjQwb0wCgt2g6VqQDpSP09kTBf677vmU6fYVdPe0PxP68eY/u0kYggihECPv6oHUuKIR2mQltCAUfZN4RxJcyulHeZYhxNdmkTgjN98iyp5HPOUS5/d5wtnE3iSJFdsk8OiUNOSIFckSIpE04eyTN5JW/Wk/VivVsf49Y5azKzQ/7A+vwBt2WZIg==</latexit>

6=
<latexit sha1_base64="mmSifh/t9bsa9iwIbQRSu32qLJw=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2k3bpZhN3N0IJ/QtePCji1T/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzamZST+Jjv1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7rlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jgZcIXMiIkllClubyVsRBVlxsZTsiF4yy+vklat6l1Ua/eXlfpNHkcRTuAUzsGDK6jDHTSgCQxG8Ayv8OZEzovz7nwsWgtOPnMMf+B8/gAZW45G</latexit>

Encode

ÛT E(!̃(t))
<latexit sha1_base64="8BnHzKYh0d9FefL+A1H1w2KHvsE=">AAACIXicbVBNaxsxENUm/UjdLzc99iJiCvbF7CaB+hhSAj2mEMcByzWz2rEtopUWabbELPtXeulfySWHhpBb6Z+p7PjQ2H0w8Hhvhpl5aaGVpzj+HW1tP3n67PnOi8bLV6/fvG2+2z33tnQS+9Jq6y5S8KiVwT4p0nhROIQ81ThILz8v/MF3dF5Zc0bzAkc5TI2aKAkUpHGzJwivqDox0mZYcyG4mAFV/frbmciBZhJ0dVK3BSmdYSVsjlOo29TpjJutuBsvwTdJsiIttsLpuHkvMivLHA1JDd4Pk7igUQWOlNRYN0TpsQB5CVMcBmogRz+qlh/W/GNQMj6xLpQhvlT/nagg936ep6FzcbVf9xbi/7xhSZPeqFKmKAmNfFg0KTUnyxdx8Uw5lKTngYB0KtzK5QwcSAqhNkIIyfrLm+R8v5scdPe/HraOjldx7LAPbI+1WcI+sSP2hZ2yPpPsB7tmv9ht9DO6ie6i+4fWrWg18549QvTnL0SLpCo=</latexit>


!̃(t)
I(t)

�

<latexit sha1_base64="98ePaGlqEhNUE/PRaGQYjX/p+iQ=">AAACNXicbVBNb9NAEF239INAS2iPXFZESOES2S0SHCu4gMShSKSJlLWi8XrsrLpeW7vjSpHlP8WF/8GJHnoAVVz5C2xSH6DhSSs9vZk3O/OSSitHYXgdbG0/2Nnd23/Ye/T44PBJ/+nRhStrK3EsS13aaQIOtTI4JkUap5VFKBKNk+Ty3ao+uULrVGk+07LCuIDcqExJIC/N+x+FxoxmIsFcmQashWXbyFaQ0ik2oiwwh5YP6SUXgosCaCFBNx9arwg0aecQVuULiuf9QTgK1+CbJOrIgHU4n/e/ibSUdYGGpAbnZlFYUeyHkpIa256oHVYgLyHHmacGCnRxs7665S+8kvKstP4Z4mv1b0cDhXPLIvGdq73d/dpK/F9tVlP2Jm6UqWpCI+8+ymrNqeSrCHmqLErSS09AWuV35XIBFiT5oHs+hOj+yZvk4mQUnY5OPr0anL3t4thnz9hzNmQRe83O2Ht2zsZMsi/sO/vBfgZfg5vgNvh117oVdJ5j9g+C338A1WetQQ==</latexit>

(a) Time evolution
<latexit sha1_base64="6oRcFLVmV8blxjaGljuCmjAdjgo=">AAACAnicbVDLSgNBEJz1GeMr6km8DAYhXsJuFPQY9OIxQl6QLGF20kmGzD6Y6Q2GJXjxV7x4UMSrX+HNv3GS7EETCxqKqm66u7xICo22/W2trK6tb2xmtrLbO7t7+7mDw7oOY8WhxkMZqqbHNEgRQA0FSmhGCpjvSWh4w9up3xiB0iIMqjiOwPVZPxA9wRkaqZM7biM8YFJg57QqfKAwCmU8tSadXN4u2jPQZeKkJE9SVDq5r3Y35LEPAXLJtG45doRuwhQKLmGSbccaIsaHrA8tQwPmg3aT2QsTemaULu2FylSAdKb+nkiYr/XY90ynz3CgF72p+J/XirF37SYiiGKEgM8X9WJJMaTTPGhXKOAox4YwroS5lfIBU4yjSS1rQnAWX14m9VLRuSiW7i/z5Zs0jgw5IaekQBxyRcrkjlRIjXDySJ7JK3mznqwX6936mLeuWOnMEfkD6/MH9SaXKA==</latexit>

Symmetry

Operations
<latexit sha1_base64="vYgxWlTbD/XLL0wQYSXiUyBzqCo=">AAACDnicbVDLSsNAFJ34tr6qLt0MloKrkqigy6IbdyraBzShTKY3OjiThJkbMYR+gRt/xY0LRdy6duffOE278HVg4HDOudy5J0ylMOi6n87U9Mzs3PzCYmVpeWV1rbq+0TZJpjm0eCIT3Q2ZASliaKFACd1UA1OhhE54czzyO7egjUjiS8xTCBS7ikUkOEMr9at1H+EOi4tcKUCdD6nv07F0moIuQ2ZI+9Wa23BL0L/Em5AameCsX/3wBwnPFMTIJTOm57kpBgXTKLiEYcXPDKSM37Ar6FkaMwUmKMpzhrRulQGNEm1fjLRUv08UTBmTq9AmFcNr89sbif95vQyjw6AQcZohxHy8KMokxYSOuqEDoYGjzC1hXAv7V8qvmWYcbYMVW4L3++S/pL3b8PYau+f7tebRpI4FskW2yQ7xyAFpkhNyRlqEk3vySJ7Ji/PgPDmvzts4OuVMZjbJDzjvX3D/nPk=</latexit>

(b) Symmetry Operations
<latexit sha1_base64="OyZs5CpDEeUXMmL6mLuydeiddwc=">AAACCHicbVA9SwNBEN3z2/gVtbRwMQixCXdR0DJoY6eiMYHkCHububi4e3fszonHkdLGv2JjoYitP8HOf+MmptDEBwOP92aYmRckUhh03S9nanpmdm5+YbGwtLyyulZc37g2cao51HksY90MmAEpIqijQAnNRANTgYRGcHsy8Bt3oI2IoyvMEvAV60UiFJyhlTrF7TbCPeblYI9eZkoB6oyeJaCHtunTTrHkVtwh6CTxRqRERjjvFD/b3ZinCiLkkhnT8twE/ZxpFFxCv9BODSSM37IetCyNmALj58NH+nTXKl0axtpWhHSo/p7ImTImU4HtVAxvzLg3EP/zWimGR34uoiRFiPjPojCVFGM6SIV2hQaOMrOEcS3srZTfMM042uwKNgRv/OVJcl2tePuV6sVBqXY8imOBbJEdUiYeOSQ1ckrOSZ1w8kCeyAt5dR6dZ+fNef9pnXJGM5vkD5yPb3bcmZ8=</latexit>

I(t)
<latexit sha1_base64="56SCCk/J67RaHdjwUFDvzndyvPo=">AAAB9XicbVDLSgNBEOyNrxhfUY9eBoMQL2E3CnoMetFbBPOAZA2zk0kyZPbBTK8SlvyHFw+KePVfvPk3ziZ70MSCgaKqm64pL5JCo21/W7mV1bX1jfxmYWt7Z3evuH/Q1GGsGG+wUIaq7VHNpQh4AwVK3o4Up74necsbX6d+65ErLcLgHicRd306DMRAMIpGeuj6FEeMyuR2WsbTXrFkV+wZyDJxMlKCDPVe8avbD1ns8wCZpFp3HDtCN6EKBZN8WujGmkeUjemQdwwNqM+1m8xST8mJUfpkECrzAiQz9fdGQn2tJ75nJtOUetFLxf+8ToyDSzcRQRQjD9j80CCWBEOSVkD6QnGGcmIIZUqYrISNqKIMTVEFU4Kz+OVl0qxWnLNK9e68VLvK6sjDERxDGRy4gBrcQB0awEDBM7zCm/VkvVjv1sd8NGdlO4fwB9bnDyWNkkY=</latexit>

Map to fundamental
<latexit sha1_base64="6ncE7yklG/1zZiMaIlEG3rKQnRE=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBbBVUmqoMuiGzdCBfuANpTJdNIOnUzCzI1YQsGNv+LGhSJu/Ql3/o2TNgttPTBwOOde7pzjx4JrcJxvq7C0vLK6VlwvbWxube/Yu3tNHSWKsgaNRKTaPtFMcMkawEGwdqwYCX3BWv7oKvNb90xpHsk7GMfMC8lA8oBTAkbq2QddYA+Q3pAYQ4SDRPZJyCQQMcE9u+xUnCnwInFzUkY56j37q9uPaJLtU0G07rhODF5KFHAq2KTUTTSLCR2RAesYKs0l7aXTDBN8bJQ+DiJlngQ8VX9vpCTUehz6ZjIkMNTzXib+53USCC68lMs4ASbp7FCQiCxuVgjuc8UoiLEhhCpu/orpkChCwdRWMiW485EXSbNacU8r1duzcu0yr6OIDtEROkEuOkc1dI3qqIEoekTP6BW9WU/Wi/VufcxGC1a+s4/+wPr8Af1Sl7w=</latexit>

True
<latexit sha1_base64="OEOPbVxFqGky+9YCKpCqIp3cAyw=">AAAB83icbVBNS8NAEN34WetX1aOXxSJ4KkkV9Fj04rFCv6AJZbOdtks3m7A7EUvo3/DiQRGv/hlv/hu3bQ7a+mDg8d4MM/PCRAqDrvvtrK1vbG5tF3aKu3v7B4elo+OWiVPNocljGetOyAxIoaCJAiV0Eg0sCiW0w/HdzG8/gjYiVg2cJBBEbKjEQHCGVvJ9hCfMGjqFKe2Vym7FnYOuEi8nZZKj3it9+f2YpxEo5JIZ0/XcBIOMaRRcwrTopwYSxsdsCF1LFYvABNn85ik9t0qfDmJtSyGdq78nMhYZM4lC2xkxHJllbyb+53VTHNwEmVBJiqD4YtEglRRjOguA9oUGjnJiCeNa2FspHzHNONqYijYEb/nlVdKqVrzLSvXhqly7zeMokFNyRi6IR65JjdyTOmkSThLyTF7Jm5M6L86787FoXXPymRPyB87nDz01kc8=</latexit>

False
<latexit sha1_base64="BvAS2bedbAsZV4jqVIJ8js3xuY8=">AAAB9HicbVDLSgNBEJz1GeMr6tHLYBA8hd0o6DEoiMcI5gHJEmYnnWTI7Ow60xsMS77DiwdFvPox3vwbJ8keNLGgoajqprsriKUw6Lrfzsrq2vrGZm4rv72zu7dfODismyjRHGo8kpFuBsyAFApqKFBCM9bAwkBCIxjeTP3GCLQRkXrAcQx+yPpK9ARnaCW/jfCE6S2TBia0Uyi6JXcGuky8jBRJhmqn8NXuRjwJQSGXzJiW58bop0yj4BIm+XZiIGZ8yPrQslSxEIyfzo6e0FOrdGkv0rYU0pn6eyJloTHjMLCdIcOBWfSm4n9eK8HelZ8KFScIis8X9RJJMaLTBGhXaOAox5YwroW9lfIB04yjzSlvQ/AWX14m9XLJOy+V7y+Klessjhw5JifkjHjkklTIHamSGuHkkTyTV/LmjJwX5935mLeuONnMEfkD5/MH2D6SJA==</latexit>


!temp(t + T)

I(t)

�

<latexit sha1_base64="PgiOJq1QwOLZKFlijEhqmJ51MPg=">AAACPXicbVBNaxRBEO2J0cT1a9Wjl8ZF2CAsM1HQYzCXeIuwmwS2h6Wmt2a2SXfP0F0TXIb5Y178D7l585KDIl69pnczh5jkQcPjVb3qqpdVWnmK4x/Rxr3N+w+2th/2Hj1+8vRZ//mLI1/WTuJElrp0Jxl41MrihBRpPKkcgsk0Hmen+6v68Rk6r0o7pmWFqYHCqlxJoCDN+mOhMaepyLBQtgHnYNk2shWlwQJmjSD8Sg2hqdqWD+nteIcLwYUBWkjQzed2SDsC7bxzCqeKBaWz/iAexWvw2yTpyIB1OJz1z8W8lLVBS1KD99MkrigNQ0lJjW1P1B4rkKdQ4DRQCwZ92qyvb/mboMx5XrrwLPG1et3RgPF+abLQudrb36ytxLtq05ryj2mjbFUTWnn1UV5rTiVfRcnnyqEkvQwEpFNhVy4X4EBSCLwXQkhunnybHO2Oknej3S/vB3ufuji22Sv2mg1Zwj6wPXbADtmESfaN/WS/2O/oe3QR/Yn+XrVuRJ3nJfsP0b9L9DOw0A==</latexit>

!h,r(t + T)
<latexit sha1_base64="1gT5LaldJGMFJ+DSUx4HeyNOK1s=">AAAB+nicbVDLSgNBEJyNrxhfGz16GQxCRAm7UdBj0IvHCHlBsiyzk0kyZB7LzKwS1nyKFw+KePVLvPk3TpI9aLSgoajqprsrihnVxvO+nNzK6tr6Rn6zsLW9s7vnFvdbWiYKkyaWTKpOhDRhVJCmoYaRTqwI4hEj7Wh8M/Pb90RpKkXDTGIScDQUdEAxMlYK3WJPcjJEYTo6U9OyOW2chG7Jq3hzwL/Ez0gJZKiH7mevL3HCiTCYIa27vhebIEXKUMzItNBLNIkRHqMh6VoqECc6SOenT+GxVfpwIJUtYeBc/TmRIq71hEe2kyMz0sveTPzP6yZmcBWkVMSJIQIvFg0SBo2EsxxgnyqCDZtYgrCi9laIR0ghbGxaBRuCv/zyX9KqVvzzSvXuolS7zuLIg0NwBMrAB5egBm5BHTQBBg/gCbyAV+fReXbenPdFa87JZg7ALzgf308tk18=</latexit>

Get new Indicator

H(!h,r(t + T))
<latexit sha1_base64="DI2IAAmEnrIuUslCI1Sip2LK81g=">AAACGXicbVDLSgNBEJz1GeMr6tHLYBAiSthVQY+iB+NNwaiQDWF20kmGzM4sM71qWPIbXvwVLx4U8agn/8ZJzMFXQUNR1U13V5RIYdH3P7yx8YnJqencTH52bn5hsbC0fGF1ajhUuZbaXEXMghQKqihQwlVigMWRhMuoezTwL6/BWKHVOfYSqMesrURLcIZOahT8EOEWs2NAquCGnqjmwNKmT8OQVkqhjqHNGllny/RLuHm+sdEoFP2yPwT9S4IRKZIRThuFt7CpeRqDQi6ZtbXAT7CeMYOCS+jnw9RCwniXtaHmqGIx2Ho2/KxP153SpC1tXCmkQ/X7RMZia3tx5Dpjhh372xuI/3m1FFv79UyoJEVQ/GtRK5UUNR3ERJvCAEfZc4RxI9ytlHeYYRxdmHkXQvD75b/kYrsc7JS3z3aLB4ejOHJklayREgnIHjkgFXJKqoSTO/JAnsizd+89ei/e61frmDeaWSE/4L1/AtdXn4Y=</latexit>


!h,r(t + T)
I(t + T)

�

<latexit sha1_base64="dP0FmEZsY0wvtsECOFKW/yEPkG4=">AAACN3icbVBNSxxBEO3RfJhNTFZzzKXJEjBElhkT0KPoJV6CgqvC9rDU9NbMNvb0DN01wjLMv/Li3/BmLjkokmv+QXrXOfj1oOHxql511UtKrRyF4VWwsPji5avXS286b98tv//QXVk9ckVlJQ5koQt7koBDrQwOSJHGk9Ii5InG4+R0d1Y/PkPrVGEOaVpinENmVKokkJdG3V9CY0pDkWCmTA3WwrSpZSOKHDMY1ZN12/A1+nb4lQvBRQ40kaDrvWauCTTj1iOsyiYUj7q9sB/OwZ+SqCU91mJ/1L0U40JWORqSGpwbRmFJsR9KSmpsOqJyWII8hQyHnhrI0cX1/O6Gf/HKmKeF9c8Qn6v3HTXkzk3zxHfONnePazPxudqwonQrrpUpK0Ij7z5KK82p4LMQ+VhZlKSnnoC0yu/K5QQsSPJRd3wI0eOTn5KjjX70vb9x8KO3vdPGscQ+sc9sjUVsk22zn2yfDZhk5+w3u2Y3wUXwJ7gN/t61LgSt5yN7gODffy1erUo=</latexit>

I(t + T)
<latexit sha1_base64="7uPMhaBzCqcJlcKIhiuX+esy8Dw=">AAAB+nicbVDLSgMxFM34rPU11aWbYBEqQpmpgi6LbnRXoS9oS8mkmTY0kxmSO0oZ+yluXCji1i9x59+YaWehrQcCh3Pu5Z4cLxJcg+N8Wyura+sbm7mt/PbO7t6+XTho6jBWlDVoKELV9ohmgkvWAA6CtSPFSOAJ1vLGN6nfemBK81DWYRKxXkCGkvucEjBS3y50AwIjSkRyNy3BWf0U9+2iU3ZmwMvEzUgRZaj17a/uIKRxwCRQQbTuuE4EvYQo4FSwab4baxYROiZD1jFUkoDpXjKLPsUnRhlgP1TmScAz9fdGQgKtJ4FnJtOgetFLxf+8Tgz+VS/hMoqBSTo/5McCQ4jTHvCAK0ZBTAwhVHGTFdMRUYSCaStvSnAXv7xMmpWye16u3F8Uq9dZHTl0hI5RCbnoElXRLaqhBqLoET2jV/RmPVkv1rv1MR9dsbKdQ/QH1ucPDiWTNA==</latexit>


!̃h,r(t + T)
I(t + T)

�

<latexit sha1_base64="Pz1t52sXCjM5GJJROzU3ySNiGUc=">AAACP3icbVBNb9NAEF23QEP4aEqPXFZESEWgyC5I7bGil3ILUpNWylrReD12Vl2vrd1xpcjyP+uFv8Ct1144gBBXbmxSH6DlSSs9vZk3O/OSSitHYXgdbGw+ePhoq/e4/+Tps+fbg50XU1fWVuJElrq05wk41MrghBRpPK8sQpFoPEsujlf1s0u0TpXmlJYVxgXkRmVKAnlpPpgKjRnNRIK5Mg1YC8u2ka0gpVNsRFlgDu28WbyzLd+jt6dvuBBcFEALCbr51K41gSbtvMKqfEHxfDAMR+Ea/D6JOjJkHcbzwVeRlrIu0JDU4NwsCiuK/VBSUmPbF7XDCuQF5Djz1ECBLm7W97f8tVdSnpXWP0N8rf7taKBwblkkvnO1ubtbW4n/q81qyg7jRpmqJjTy9qOs1pxKvgqTp8qiJL30BKRVflcuF2BBko+870OI7p58n0z3R9H70f7nD8Ojj10cPfaSvWJ7LGIH7IidsDGbMMmu2A37zn4EX4Jvwc/g123rRtB5dtk/CH7/AZRYsQA=</latexit>

Encode

E(ÛT !̃h,r(t + T))
<latexit sha1_base64="XblLRewO0WkXq0Vsu1BThB6M6A4=">AAACKXicbVBdaxNBFJ2tVWv8aNRHX4YGIUUJu21BH4Ol4GOFpC1kYrg7e5MMnZ1ZZu6KYdi/44t/xZcKivrqH+kkzUNtPTBwOOde7pyTV1p5StPfycadzbv37m89aD189PjJdvvpsxNvaydxKK227iwHj1oZHJIijWeVQyhzjaf5+eHSP/2EzitrBrSocFzCzKipkkBRmrT7gvAzhSMjbYENF4KLEmguQYejpivmQGHYfBwIUrrAIGyJM2gmYf7aNV16NdjdnbQ7aS9dgd8m2Zp02BrHk/Z3UVhZl2hIavB+lKUVjQM4UlJj0xK1xwrkOcxwFKmBEv04rJI2/GVUCj61Lj5DfKVe3whQer8o8zi5jOFvekvxf96opunbcVCmqgmNvDo0rTUny5e18UI5lKQXkYB0Kv6Vyzk4kBTLbcUSspuRb5OTvV6239v7cNDpv1vXscVesB3WZRl7w/rsPTtmQybZF/aN/WA/k6/JRfIr+XM1upGsd56zf5D8vQR9qKdW</latexit>

I(t + T) = I(t)
<latexit sha1_base64="7u8wOIVnYLs9cRdb4yxwvbfoq5U=">AAACCHicbVBNS8NAEN3Ur1q/oh49GCxCi1CSKuhFKHrRW4V+QRvKZrttl242YXcilNCjF/+KFw+KePUnePPfuGlzsK0PBh7vzTAzzws5U2DbP0ZmZXVtfSO7mdva3tndM/cPGiqIJKF1EvBAtjysKGeC1oEBp61QUux7nDa90W3iNx+pVCwQNRiH1PXxQLA+Ixi01DWPOz6GIcE8vp8U4KxWvJ4Til0zb5fsKaxl4qQkj1JUu+Z3pxeQyKcCCMdKtR07BDfGEhjhdJLrRIqGmIzwgLY1Fdinyo2nj0ysU630rH4gdQmwpurfiRj7So19T3cmV6pFLxH/89oR9K/cmIkwAirIbFE/4hYEVpKK1WOSEuBjTTCRTN9qkSGWmIDOLqdDcBZfXiaNcsk5L5UfLvKVmzSOLDpCJ6iAHHSJKugOVVEdEfSEXtAbejeejVfjw/ictWaMdOYQzcH4+gWp/5kZ</latexit>


h(t)
I(t)

�

<latexit sha1_base64="Ln45FXV0DUPjJHYUs9e9mj3ZVHk=">AAACJ3icbVBNS8QwEE39dv1a9egluAh6WVoV9CSiF70puCpsypJmp7vBNC3JVFhK/40X/4oXQUX06D8xu/bg14PA482bycyLMiUt+v67NzY+MTk1PTNbm5tfWFyqL69c2jQ3AloiVam5jrgFJTW0UKKC68wATyIFV9HN8bB+dQvGylRf4CCDMOE9LWMpODqpUz9gCmJsswh6UhfcGD4oC1H2N3GLMkZZwrEvuCpOS6cw0N3Kw4zs9THs1Bt+0x+B/iVBRRqkwlmn/sS6qcgT0CgUt7Yd+BmGbihKoaCssdxCxsUN70HbUc0TsGExurOkG07p0jg17mmkI/V7R8ETawdJ5JzDve3v2lD8r9bOMd4PC6mzHEGLr4/iXFFM6TA02pUGBKqBI1wY6Xalos8NF+iirbkQgt8n/yWX281gp7l9vts4PKrimCFrZJ1skoDskUNyQs5IiwhyRx7IM3nx7r1H79V7+7KOeVXPKvkB7+MT6bCnMg==</latexit>


htemp(t + T)

I(t)

�

<latexit sha1_base64="k65I+AfaBWUlf2s5rFkKenXs40Y=">AAACOXicbVBNa9tAEF25SZu4aeu2x1yWmIJNwUhuoT2a5pLcXIg/wCvMaj2yF69WYndUaoT+Vi/9F7kVeskhpfTaP5C1rUNi58HC48282ZkXZUpa9P1fXu3JweHTZ0fH9ecnL16+arx+M7RpbgQMRKpSM464BSU1DFCignFmgCeRglG0PF/XR9/AWJnqK1xlECZ8rmUsBUcnTRt9piDGCYtgLnXBjeGrshDlYlowhO9YICRZWbaQvqdXbcoYZQnHheCquHRqm4GeVS5m5HyB4bTR9Dv+BnSfBBVpkgr9aeOazVKRJ6BRKG7tJPAzDN1QlEJBWWe5hYyLJZ/DxFHNE7Bhsbm8pO+cMqNxatzTSDfqfUfBE2tXSeQ613vb3dpafKw2yTH+HBZSZzmCFtuP4lxRTOk6RjqTBgSqlSNcGOl2pWLBDRfowq67EILdk/fJsNsJPnS6Xz82e1+qOI7IKTkjLRKQT6RHLkifDIggP8hvckv+eD+9G++v92/bWvMqz1vyAN7/O/zYrss=</latexit>

Decode

D(Ûhtemp(t + T))
<latexit sha1_base64="Le7VmOtjI+yPxBnSaA619cOTcAY=">AAACFnicbVDJSgNBEO1xjXGLevTSGISIGGaioMegOXiMkA0yIfR0KkmTnoXuGjEM8xVe/BUvHhTxKt78GzvLwe1BweO9KqrqeZEUGm3701pYXFpeWc2sZdc3Nre2czu7DR3GikOdhzJULY9pkCKAOgqU0IoUMN+T0PRGVxO/eQtKizCo4TiCjs8GgegLztBI3dyJi3CHSQV42IOUui6tFNwhw6SeDrszD8GP0gIe146Ourm8XbSnoH+JMyd5Mke1m/tweyGPfQiQS6Z127Ej7CRMoeAS0qwba4gYH7EBtA0NmA+6k0zfSumhUXq0HypTAdKp+n0iYb7WY98znT7Dof7tTcT/vHaM/YtOIoIoRgj4bFE/lhRDOsmI9oQCjnJsCONKmFspHzLFOJoksyYE5/fLf0mjVHROi6Wbs3z5ch5HhuyTA1IgDjknZXJNqqROOLknj+SZvFgP1pP1ar3NWhes+cwe+QHr/QvH958b</latexit>


htemp(t + T)

I(t)

�

<latexit sha1_base64="k65I+AfaBWUlf2s5rFkKenXs40Y=">AAACOXicbVBNa9tAEF25SZu4aeu2x1yWmIJNwUhuoT2a5pLcXIg/wCvMaj2yF69WYndUaoT+Vi/9F7kVeskhpfTaP5C1rUNi58HC48282ZkXZUpa9P1fXu3JweHTZ0fH9ecnL16+arx+M7RpbgQMRKpSM464BSU1DFCignFmgCeRglG0PF/XR9/AWJnqK1xlECZ8rmUsBUcnTRt9piDGCYtgLnXBjeGrshDlYlowhO9YICRZWbaQvqdXbcoYZQnHheCquHRqm4GeVS5m5HyB4bTR9Dv+BnSfBBVpkgr9aeOazVKRJ6BRKG7tJPAzDN1QlEJBWWe5hYyLJZ/DxFHNE7Bhsbm8pO+cMqNxatzTSDfqfUfBE2tXSeQ613vb3dpafKw2yTH+HBZSZzmCFtuP4lxRTOk6RjqTBgSqlSNcGOl2pWLBDRfowq67EILdk/fJsNsJPnS6Xz82e1+qOI7IKTkjLRKQT6RHLkifDIggP8hvckv+eD+9G++v92/bWvMqz1vyAN7/O/zYrss=</latexit>

Keep the same values of htemp and I
<latexit sha1_base64="mnykKMGSrf+eOCb0pWCdynDM8cE=">AAACKnicbVDLSgNBEJz1bXxFPXoZTARPYVcFPfq4KF4UjApJCL2TXjM4O7vM9AbDst/jxV/x4kERr36Ik8fBV8FAUVXNdFeYKmnJ99+9icmp6ZnZufnSwuLS8kp5de3aJpkRWBeJSsxtCBaV1FgnSQpvU4MQhwpvwvuTgX/TQ2Nloq+on2IrhjstIymAnNQuHzUJHyg/R0w5dZFbiJH3QGVoeRLxarc9ChDGaVHloDu82oyBugJUflZUC94uV/yaPwT/S4IxqbAxLtrll2YnEVmMmoQCaxuBn1IrB0NSKCxKzcxiCuIe7rDhqHYb2VY+PLXgW07p8Cgx7mniQ/X7RA6xtf04dMnBlva3NxD/8xoZRQetXOo0I9Ri9FGUKU4JH/TGO9KgINV3BISRblcuumBAkGu35EoIfp/8l1zv1ILd2s7lXuXweFzHHNtgm2ybBWyfHbJTdsHqTLBH9sxe2Zv35L14797HKDrhjWfW2Q94n1/256bz</latexit>


hr(t + T)
I(t + T)

�

<latexit sha1_base64="c8fwgFcgmHdeXQcyvWjnfEpJTgc=">AAACL3icbVBNSyNBEO3xY9XsukY97qUxCBEhzKigR1EQvUVIVEgPoadTkzT29AzdNUIY5h958a94EdlFvPovtpPMwa8HDY9Xr6qrXpQpadH3n725+YXFH0vLK7Wfv1Z/r9XXN65smhsBXZGq1NxE3IKSGrooUcFNZoAnkYLr6PZ0Ur++A2Nlqjs4ziBM+FDLWAqOTurXz5iCGHssgqHUBTeGj8tClKO+aSLdpZ0dyhhlCceR4Kq4KJu429lhoAeVlxk5HGHYrzf8lj8F/UqCijRIhXa//sgGqcgT0CgUt7YX+BmGbihKoaCssdxCxsUtH0LPUc0TsGExvbek204Z0Dg17mmkU/V9R8ETa8dJ5JyTze3n2kT8rtbLMT4KC6mzHEGL2UdxriimdBIeHUgDAtXYES6MdLtSMeKGC3QR11wIweeTv5KrvVaw39q7PGgcn1RxLJM/ZIs0SUAOyTE5J23SJYLck0fyl/zzHrwn78V7nVnnvKpnk3yA9/Yf3nKpkQ==</latexit>


hr(t + T)
I(t + T)

�

<latexit sha1_base64="c8fwgFcgmHdeXQcyvWjnfEpJTgc=">AAACL3icbVBNSyNBEO3xY9XsukY97qUxCBEhzKigR1EQvUVIVEgPoadTkzT29AzdNUIY5h958a94EdlFvPovtpPMwa8HDY9Xr6qrXpQpadH3n725+YXFH0vLK7Wfv1Z/r9XXN65smhsBXZGq1NxE3IKSGrooUcFNZoAnkYLr6PZ0Ur++A2Nlqjs4ziBM+FDLWAqOTurXz5iCGHssgqHUBTeGj8tClKO+aSLdpZ0dyhhlCceR4Kq4KJu429lhoAeVlxk5HGHYrzf8lj8F/UqCijRIhXa//sgGqcgT0CgUt7YX+BmGbihKoaCssdxCxsUtH0LPUc0TsGExvbek204Z0Dg17mmkU/V9R8ETa8dJ5JyTze3n2kT8rtbLMT4KC6mzHEGL2UdxriimdBIeHUgDAtXYES6MdLtSMeKGC3QR11wIweeTv5KrvVaw39q7PGgcn1RxLJM/ZIs0SUAOyTE5J23SJYLck0fyl/zzHrwn78V7nVnnvKpnk3yA9/Yf3nKpkQ==</latexit>

hr(t + T) = htemp(t + T)
<latexit sha1_base64="LZLgjG9N+Biz/X9kKcEbZk2Qhq8=">AAACBHicbVDJSgNBEO2JW4xb1GMug0GICGEmCnoRgl48RsgGyTD0dCqZJj0L3TViGHLw4q948aCIVz/Cm39jZzlo4oOCx3tVVNXzYsEVWta3kVlZXVvfyG7mtrZ3dvfy+wdNFSWSQYNFIpJtjyoQPIQGchTQjiXQwBPQ8oY3E791D1LxKKzjKAYnoIOQ9zmjqCU3X/BdWcLT+smV73YRHjBFCOLxVHLzRatsTWEuE3tOimSOmpv/6vYilgQQIhNUqY5txeikVCJnAsa5bqIgpmxIB9DRNKQBKCedPjE2j7XSM/uR1BWiOVV/T6Q0UGoUeLozoOirRW8i/ud1EuxfOikP4wQhZLNF/USYGJmTRMwel8BQjDShTHJ9q8l8KilDnVtOh2AvvrxMmpWyfVau3J0Xq9fzOLKkQI5IidjkglTJLamRBmHkkTyTV/JmPBkvxrvxMWvNGPOZQ/IHxucPbn+XUQ==</latexit>

Determine I from htemp
<latexit sha1_base64="+pc/JEkj5rsbZ1JoFhk0JOoLXbc=">AAACHnicbVBNSwMxEM36WetX1aOXYCt4KrtV0WNRD3qrYKvQlpJNZ21osrsks2JZ9pd48a948aCI4En/jenHQasPAo83byYzz4+lMOi6X87M7Nz8wmJuKb+8srq2XtjYbJgo0RzqPJKRvvGZASlCqKNACTexBqZ8Cdd+/3RYv74DbUQUXuEghrZit6EIBGdopU7hsIVwj+kZIGhlZ9BSSzHscSbTi6xEAx0pWup10rENQcVZVso6haJbdkegf4k3IUUyQa1T+Gh1I54oCJFLZkzTc2Nsp0yj4BKyfCsxEDPeZ7fQtDRkCkw7HZ2X0V2rdGkQaftCpCP1Z0fKlDED5VvncHczXRuK/9WaCQbH7VSEcYIQ8vFHQSIpRnSYFe0KDRzlwBLGtbC7Ut5jmnEblsnbELzpk/+SRqXs7ZcrlwfF6skkjhzZJjtkj3jkiFTJOamROuHkgTyRF/LqPDrPzpvzPrbOOJOeLfILzuc3J/6jIA==</latexit>

Factor out symmetries

S�1

✓
!h,r(t + T)
I(t + T)

�◆

<latexit sha1_base64="qiS8k01U5VyslqH4rBKFAUi07yQ=">AAACbnicbVFNb9QwEHXCV1m+tkXiQIWwWCFtVVglLRI9VkVCcCui21Zah5XjnWStOnZkTxCrKMf+QW78hl74CTibHKBlLvP0Zp7t95yWSjqMol9BeOv2nbv3Nu4PHjx89PjJcHPr1JnKCpgKo4w9T7kDJTVMUaKC89ICL1IFZ+nFh3Z+9h2sk0af4KqEpOC5lpkUHD01H14yhB9Yf+QCjaWmQupWRQFoJbiGMka/fqvfxh4pyHA86PqMpZBLXXNr+aqpRcNMATmf18s3tqFj3D3Z8UpWcFwKrurPTUeBXvQSZmW+xIR2fWcwH46iSbQuehPEPRiRvo7nw59sYURVgEahuHOzOCox8aejFAqaAasclFxc8BxmHmpegEvqdVwNfe2ZBc2838xopGv2b0XNC+dTSP1ma8Fdn7Xk/2azCrODpJa6rBC06C7KKkXR0DZ7upAWBKqVB1xY6d9KxZJbn73/oTaE+Lrlm+B0bxLvT/a+vBsdHvVxbJBt8oqMSUzek0PyiRyTKRHkKtgMngfbwe/wWfgifNmthkGveUr+qXD8B0u1u/4=</latexit>

Map back with I(t)

S

✓
!temp(t + T)

I(t)

�◆

<latexit sha1_base64="zbwM1HCLCy6w+pwNXIozazZ64UY=">AAACeHicbVFNb9NAEF2brxI+GuDYy4qkIhFSZIdK5VjBBQ5IRTRtpawVrTdjZ9XdtbU7BiLLv4H/xo0fwoUT69gH2jLSap7ezJvZmUlLJR1G0a8gvHP33v0Hew8Hjx4/ebo/fPb83BWVFbAQhSrsZcodKGlggRIVXJYWuE4VXKRX79v4xVewThbmDLclJJrnRmZScPTUaviDIXzH+hMvacrFFf0mcUPHTHPcCK7qj80Ep+OGMka/UKYgw8mg80uWQi5Nza3l26YWDSs05HxVdwURdNk0dIKvz6ZefL0gA7PuhczKfIMJ7fx0sBqOolm0M3obxD0Ykd5OV8OfbF2ISoNBobhzyzgqMfHVUQoFzYBVDko/Gc9h6aHhGlxS7xbX0EPPrGlWWP8M0h37r6Lm2rmtTn1mO4C7GWvJ/8WWFWZvk1qaskIwomuUVYpiQdsr0LW0IFBtPeDCSv9XKjbccoH+Vu0S4psj3wbn81n8Zjb/fDQ6edevY48ckJdkQmJyTE7IB3JKFkSQ38FBMA4Ogz8hDV+F0y41DHrNC3LNwvlf8fO//g==</latexit>

Figure 3.10: (a) Time evolution of h(t) with NODE and (b) symmetry operation check to map
back to fundamental space if needed.

71

The term gI(I) equals 1 if an even number of discrete operations map h back to the funda-

mental space, or -1 if an odd number of discrete operations map h back to the fundamental

space. To understand how the signs of Equation 3.14 change consider the effect of discrete

symmetry operations on the phase calculation φx = atan 2 {ω̂I(1, 0), ω̂R(1, 0)}. Applying a

discrete symmetry operation on a snapshot changes the phase variable to either

φx,S = S φx = atan 2 {ω̂I(1, 0),−ω̂R(1, 0)} = π − φx, (3.15)

or

φx,R = Rφx = atan 2 {−ω̂I(1, 0), ω̂R(1, 0)} = −φx. (3.16)

Then, by simply taking the time derivative, we see that dφx,S /dt = −dφx/dt and dφx,R/dt =

−dφx/dt. Hence the operation of a discrete symmetry (rotation and shift-reflect) changes

the sign. Now, we train gφ by fixing the NODE gh to evolve h forward in time, and use

Equation 3.14 to make predictions φx,r. We update the parameters of gφ to minimize the

loss

Lφ,NODE (φx; θφ) =
〈
‖φx(t+ τ)− φx,r(t+ τ)‖22

〉
, (3.17)

and refer to Table 3.2 for details on the NODE architecture.

Table 3.2: Neural network layer dimensions and activations used in each layer. Sigmoid functions
are denoted ‘S’. Number of linear layers Wi can be varied.

Function Shape Activation
Encoder E 1024 : 2048 : 256 : 40 ReLU:ReLU:Linear
Decoder D 40 : 256 : 2048 : 1024 ReLU:ReLU:Linear
Linear Net W = W1W2... 40 : 40 Linear
Pattern NODE gh dm : 500 : 500 : 500 : dm S:S:S:Linear
Phase NODE gφ dm : 500 : 500 : 500 : 1 S:S:S:Linear

72

3.4 Results

We present results for the chaotic case Re = 14.4, whose trajectories sample all eight charts

introduced above. First we illustrate the effect of training data size on the autoencoder

performance when considering the fundamental chart data, as opposed to using the original

and phase-aligned data. These results are shown in Section 3.4.1. We then use IRMAE-WD

to estimate the minimal dimension needed to represent the data. We summarize these results

in Section 3.4.1. The time evolution model performance results are shown in Section 3.4.2.

Here we confirm the equivariance of the model, (Section 3.4.2) then show the performance

for short-time tracking, long-time statistics, and phase evolution (Sections 3.4.2, 3.4.2, and

3.4.2 respectively).

3.4.1 Dimension reduction with IRMAE-WD

To train our IRMAE-WD models we minimize L via stochastic gradient descent. Following

Zeng et al. [74], we use the AdamW optimizer, which decouples weight decay from the

adaptive gradient update and helps avoid the issue of weights with larger gradient amplitudes

being regularized disproportionately, as observed in Adam [42]. All models were trained for

a total of 1000 epochs and with a learning rate of 10−3. We consider 105 snapshots of the

original data (ω), the phase-aligned data (ωl), and the data mapped to the fundamental

space (ω̃) separated by τ = 0.5 time units.

Before training the AEs, the mean is subtracted and the data is divided by its standard

deviation. Three models are trained for each case of varying number of linear layers L =

0, 4, 6, 8, 10 and weight decay values of λ = 10−4, 10−6, 10−8 for a total of 45 models for the

ω, ωl, and ω̃ cases. For all of the networks discussed in this work, we use a 80/20 split of the

data for training and testing respectively. We select dz = 40, which is significantly higher

than the dimension expected based on our previous work [53].

73

Effect of training data size on performance

A major benefit of mapping our data to the fundamental chart is that it results in eightfold

denser sampling within that chart, as shown in Fig. 3.6. We also see that all the data is in a

much smaller part of state space, and only that part of state space needs to be represented.

As such, in this section, we test if this increased density allows us to use less data for training

AEs. We factor out the symmetries of our system as discussed in Section 3.3.1 and train

IRMAE-WD models for the case of L = 4 and λ = 10−4. In Fig. 3.11 we show the test MSE

of the IRMAE-WD models as we vary the amount of data for three cases: the original data

(ω), the phase-aligned data (ωl), and the data mapped to the fundamental space (ω̃). In

all cases, we use the same 20, 000 test snapshots to calculate the MSE, train 3 models at

each training data size, and reduce to a dimension of dz = 40. Notice that here we do not

project to a lower dimension; that will be done below. The purpose here is not to map to

the minimal dimension, but to study the effect of data size on training.

As can be seen in Fig. 3.11, removing phase results in an order of magnitude improvement

in the MSE over the original data, and mapping to the fundamental results in nearly another

order of magnitude improvement in the MSE over the phase-aligned data. Thus, this drastic

improvement in performance allows us to use far less data. For example, 800 snapshots in

the fundamental space performs nearly as well as 80, 000 snapshots in the original space.

Similarly, 8, 000 snapshots in the fundamental case outperforms 80, 000 snapshots in the

phase-aligned case. Now that we have shown the effect of the number of snapshots on

performance we use 80, 000 snapshots for the remaining studies.

Effect on dimension estimates with varying linear layers and weight decay

Here we study the effects on the dimension estimates when varying L and λ for the original,

phase-aligned, and fundamental case. As discussed in Section 3.3.2 we perform SVD on the

covariance matrix of the encoded data ZZT to obtain U and truncate to obtain h = ÛT z.

Zeng et al. [74] showed that structuring an autoencoder with linear layers and using weight

74

0 10000 20000 30000 40000 50000 60000 70000 80000

Number of samples

10−4

10−3

10−2

10−1

M
S

E

Original

Fundamental

Phase-aligned

Figure 3.11: MSE vs number of data size used for training IRMAE-WD corresponding to a test
data of 20,000 samples for Re = 14.4. The parameters used are L = 4 and λ = 10−4 and three
trials are considered for each case. The data is reduced to a dimension of dz = 40.

decay causes the latent space to become low-dimensional through training. In Fig. 3.12, we

show the evolution of these singular values through training. As the model trains for longer

times, the trailing singular values tend towards zero. These can be truncated without any

loss of information. For most cases, this drop is drastic (∼ 10 orders of magnitude) and

a threshold can be defined to select how many singular values to keep (i.e. to select the

number of dimensions).

In Fig. 3.13 we plot the estimate of dimension for the original (black), phase-aligned

(red), and fundamental chart (blue) data as we vary the number of linear layers L and the

weight decay parameter λ. For each case, there are two clear clusters – the cluster with

higher dimension corresponds to L = 0 and the other cluster has linear layers, L > 0.This

happens because in the absence of linear layers there is no mechanism to drive the rank to a

minimal value. When we factor out symmetries the dimension estimates become less spread

with ranges of dh = 7− 10 for fundamental, dh = 8− 13 for phase-aligned, and dh = 11− 18

for original. This narrowing of the distribution likely happens due to the dense coverage of

the state space in the fundamental chart, which better captures the shape of the manifold.

The dimension estimate range from the fundamental chart is in good agreement with our

75

Figure 3.12: Evolution of singular values of the covariance matrix of the encoded test data ZZT

during training of an IRMAE-WD model with L = 4 and λ = 10−4. Here the drop happens at
dh = 10.

10 15 20 25 30 35 40

dh

10−4

10−3

10−2

M
S

E

L = 0

L = 4

L = 6

L = 8

L = 10

Figure 3.13: MSE vs dimension dh given by the spectral gap of the singular values for the original
(black), phase-aligned (red), and fundamental chart (blue) cases. Each case contains three trials of
combinations of parameters L = 0, 4, 6, 8, 10 and λ = 10−4, 10−6, 10−8.

76

previous observations of dh = 9 in [53]. In the following analysis we select a conservative

estimate of the dimension which appears to be dh = 10 from the fundamental chart data.

3.4.2 Time evolution

To learn our NODE models we first train gh by minimizing Equation 3.13 (LNODE) and then

we fix gh and train gφ by minimizing Equation 3.14 (Lφ,NODE) via the Adam optimizer. We

train for a total of 40000 epochs and a learning rate scheduler that drops from 10−3 to 10−4

at epoch number 13334 (1/3 into training) and from 10−4 to 10−5 at epoch number 26667

(2/3 into training). As previously discussed we use τ = 0.5 which ensures the trajectory

spends some time steps in an overlap region as it moves from chart to chart, so we can learn

the dynamics there.

Equivariance

The results we obtain with this framework should be equivariant with respect to initial

conditions. This means that after we apply any of the symmetry operations described above

to an initial condition, the resulting trajectory from the original initial condition and the

new initial condition must be equivalent up to this symmetry operation. Here we show

that our methodology retains equivariance. We select the IRMAE-WD models with the

lowest MSEs at a dimension of dh = 10, which is a conservative dimension estimates for

the fundamental case, for both the phase-aligned and fundamental model. We then sample

1000 initial conditions separated by 10 time units such that we cover different regions of

state space. For every initial condition, we apply all the discrete symmetry operations in

the original Fourier space, mapping the data into every octant. Then we evolve these initial

conditions forward 1000 time units with the DManD model, with and without symmetry

charting. To test for equivariance, we compute the trajectory error TE between predicted

77

0 200 400 600 800 1000
t

0

5

10

15

20

25

30

35

T
E

(t
)

Fundamental

Phase aligned

Figure 3.14: TE(t) vs t for Fundamental and Phase-aligned case where TE(t) corresponds to the
error calculation between predicted NODE trajectories, from a model with dh = 10, from initial
conditions that are related by symmetry transformations.

trajectories as follows

TE(t) =
1

100× 7

100∑

i=1

7∑

j=1

‖ω̃i,j(t)− ω̃i,j=0(t)‖, (3.18)

where i corresponds to the trajectory number, and j to the initial chart (i.e. j = 0 corresponds

to the original initial condition of the ith trajectory). Fig. 3.14 presents this error through

time for our symmetry charting method (Fundamental) and for models with only phase-

alignment. As expected, the time integration from the model trained in the fundamental

space satisfies equivariance perfectly with a TE = 0. The phase-aligned curve does not

satisfy equivariance, and we see that trajectories diverge fairly quickly.

A more severe consequence of not enforcing the discrete symmetries can be seen in tra-

jectory predictions. Fig. 3.15 depicts ‖ω(t)‖ vs t for the true data (shown in black) and the

time integration of initial conditions starting in different charts (red – I = 0, blue – I = 1,

and green – I = 2) for both fundamental (a) and phase-aligned cases (b). In all cases, the

predicted trajectories diverge from the true trajectory after some time – this is expected

for a chaotic system, as explore further in Section 3.4.2. However, the symmetry-charted

78

0 200 400 600 800 1000
t

55

60

65

70

75
‖ω

(t
)‖

True

(a)

0 200 400 600 800 1000
t

50

55

60

65

70

75

80

85

‖ω
(t

)‖

True

(b)

Figure 3.15: ‖ω(t)‖ vs time for initial conditions integrated with the (a) Fundamental and (b)
Phase aligned NODE model for dh = 10. Colors correspond to initial conditions starting in different
fundamental domains (red – I = 0, blue – I = 1, and green – I = 2). In (a), all the different-colored
trajectories coincide.

predictions in Fig. 3.15a exhibit excellent short-time tracking and captures the bursting

event that happens around t = 100. At longer times, the prediction is not quantitatively

accurate but still captures the alternation between quiescent and bursting intervals observed

in the true data. By contrast, the predictions for the phase-aligned model, Fig. 3.15b, devi-

ate quickly from the true data, and furthermore do not even exhibit intermittency between

quiescent and bursting dynamics – they stay in a bursting regime. Thus the models that

do not account for the discrete symmetries do not capture the dynamics correctly, even at

a qualitative level. These results reinforce the major advantage of properly accounting for

symmetries, as the symmetry charting method does.

Short-time predictions

In this section, we focus on short-time trajectory predictions. The Lyapunov time tL for

this system is approximately tL ≈ 20 [29]. We take initial conditions of h(t) and evolve for

100 time units. These are then decoded and compared with the true vorticity snapshots.

We consider trajectories with initial conditions starting in the quiescent as well as in the

bursting regions. The dynamics at Re = 14.4 are characterized by quiescent intervals where

79

0 20 40 60 80
t

0.0

0.2

0.4

0.6

0.8

1.0

1.2
〈‖
ω
l(
t)
−
ω
h
,r

(t
)‖
〉/
〈‖
ω
l,
i
−
ω
l,
j‖
〉

Fundamental

Phase-aligned

(a)

0 20 40 60 80
t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

〈‖
ω

(t
)
−
ω
h
,r

(t
)‖
〉/
〈‖
ω
l,
i
−
ω
l,
j‖
〉

Quiescent ICs, Fundamental

Bursting ICs, Fundamental

Quiescent ICs, Phase-aligned

Bursting ICs, Phase-aligned

(b)

Figure 3.16: Difference between true vorticity evolution and vorticity evolution obtained from the
Fundamental and Phase aligned NODEs from h(t) of dh = 10, where (a) corresponds to averages
over all initial conditions, and (b) corresponds to averages taken over bursting and quiescent initial
conditions.

the trajectories are close to RPOs (which are now unstable), punctuated by heteroclinic-like

excursions (bursting) between the RPOs, which are indicated by the intermittent increases

of ‖ω(t)‖ as observed in Fig. 3.3a. The nature of the intermittency of the data makes it

challenging to assign either bursting or quiescent labels. To split the initial conditions as

quiescent or bursting we use the algorithm discussed in [53].

We first show in Fig. 3.16a the ensemble-averaged prediction error as a function of

time for 104 initial conditions. We use the same models as in the previous section which

corresponds to dh = 10 for both fundamental and phase-aligned case. The comparison is

done with true phase-aligned data, so after obtaining the prediction from the fundamental

case we use the indicators to include the symmetries. The error is normalized with random

differences of the true data, where i and j correspond to different snapshots. With this

normalization, when the curves approach 1 this means that on average the distance between

the model and the true data is the same as if we selected random points from the true data.

The DManD models using symmetry charting significantly outperform the phase-aligned

DManD models. This agrees with Fig. 3.15 as discussed above. Similar improvement is

80

observed in Fig. 3.16b, and can be attributed to the organized (near-RPO) nature of the

dynamics in the quiescent region. Also, the dynamics spend more time in this area, so there

is more data for the autoencoder to train on.

Long-time predictions

Now that we demonstrated the short-time predictive capabilities of the model, we next turn

to the ability of the model to reconstruct the long-time statistics of the attractor. For

this comparison, we sample 2 × 104 time units of data every 0.5 time units for the DNS

and the DManD models. Fig. 3.17 shows the joint probability density function (PDF) of

Re[a0,1(t)] and Im[a0,1(t)] for true and predicted data from the models with dh = 10 for the

fundamental and phase-aligned case. The true joint PDF (Fig. 3.17a) and the symmetry

charting fundamental joint PDF (Fig. 3.17b) are in excellent agreement. These PDFs both

show a strong, equal preference for trajectories to shadow the four unstable RPOs, and

lower probabilities between them where the bursting transitions of the RPO regions occur.

In contrast, the joint PDF for the phase-aligned model (Fig. 3.17c) shows that the model

samples the space before falling onto an unphysical stable RPO (bright closed curve) near

one of the true system’s unstable RPOs. Clearly, in this case, the phase-aligned model fails

to capture the system’s true dynamics.

Another important quantity to consider is the ability of the models to capture the energy

balance of the system. In Fig. 3.18 we show the joint PDF of I and D for the DNS

and the same models. Again, the model trained in the fundamental space closely matches

the joint PDF of the true data. The phase-aligned model both underestimates the energy

associated with the high probability RPOs, and overestimates the energy associated with

the low probability high power input and dissipation events.

81

−0.4 −0.2 0.0 0.2 0.4
ω̂R(0, 1)

−0.4

−0.2

0.0

0.2

0.4

ω̂
I
(0
,1

)

True

100

101

P
{ω̂

R
(0
,1

),
ω̂
I
(0
,1

)}

(a)

−0.4 −0.2 0.0 0.2 0.4
ω̂R(0, 1)

−0.4

−0.2

0.0

0.2

0.4

ω̂
I
(0
,1

)

dh = 10, Fundamental

100

101

P
{ω̂

R
(0
,1

),
ω̂
I
(0
,1

)}

(b)

−0.4 −0.2 0.0 0.2 0.4
ω̂R(0, 1)

−0.4

−0.2

0.0

0.2

0.4

ω̂
I
(0
,1

)

dh = 10, Phase-aligned

100

101

P
{ω̂

R
(0
,1

),
ω̂
I
(0
,1

)}

(c)

Figure 3.17: Joint PDFs of ω̂R(0, 1)-ω̂I(0, 1) of (a) true, and predicted data corresponding to
dimension dh = 10 from the (b) Fundamental and (c) Phase-aligned models.

82

0.20 0.25 0.30 0.35 0.40
I

0.20

0.25

0.30

0.35

0.40

D

True

101

102

103

P
{I
,D
}

(a)

0.20 0.25 0.30 0.35 0.40
I

0.20

0.25

0.30

0.35

0.40

D

dh = 10, Fundamental

101

102

103

P
{I
,D
}

(b)

0.20 0.25 0.30 0.35 0.40
I

0.20

0.25

0.30

0.35

0.40

D

dh = 10, Phase-aligned

101

102

103
P
{I
,D
}

(c)

Figure 3.18: Joint PDFs of I-D of (a) true, and predicted data corresponding to dimension
dh = 10 from the (b) Fundamental and (c) Phase-aligned models.

83

101 102 103

t

10−2

10−1

100

101

102

103

M
S

D

Slope=1

Slope=1.5

True

Fundamental

Phase

Figure 3.19: MSD of φx(t) corresponding to models with dimension dh = 10.

Phase variable prediction

To complete the dynamical picture we predict the phase evolution as given by Equation

3.14. We compare the models to the true data by calculating the mean squared displacement

(MSD) of the phase,

MSD(t) = 〈(φx(t)− φx(0))2〉 (3.19)

as was done in our previous work [53]. Due to the bursting region, where the direction of

phase evolution is essentially randomly reset, at long times the phase φx exhibits random-

walk behavior, which the MSD reflects. We take 420 initial conditions separated by 15 time

units and use the models of dh = 10 to predict φx(t) and calculate the MSD. This is done

for the fundamental and phase-aligned models.

Fig. 3.19 shows the evolution of MSD of true and predicted data. Here the black solid

line corresponds to the true data, and the black and green dashed lines serve as references

with slopes of 1 and 1.5 respectively. There is a change from superdiffusive (MSD ∼ t1.5)

to diffusive (MSD ∼ t) scaling around t ≈ 200, which corresponds to the mean duration

of the quiescent intervals: i.e., to the average time the trajectories travel along the RPOs

before bursting. The fundamental chart model accurately captures both the change in slope

84

and the timing of this change in slope. However, the curve of the phase-aligned model fails

to match the true MSD at long times. This happens because the phase-aligned model is

unable to predict h(t) correctly at long times as observed in Fig. 3.15b, hence resulting in

poor predictions for φx(t).

3.5 Summary

Symmetries appear naturally in dynamical systems and we show here that correctly account-

ing for them dramatically improves the performance of data-driven models for time evolution

on an invariant manifold. In this work, we introduce a method that we call symmetry chart-

ing and apply it to Kolmogorov flow in a chaotic regime of Re = 14.4. This symmetry

charting method factors out symmetries so we can train ROMs in a fundamental chart and

ensure equivariant trajectories – we are essentially learning coordinates and dynamics on one

region (chart) of the invariant manifold for the long-time dynamics rather than having to

learn these for the entire manifold. To do so, we first factor out the symmetries by identify-

ing a set of indicators that differentiate the set of discrete symmetries for the system. Here,

Fourier coefficients serve this purpose; we found that the signs of specific Fourier modes

could uniquely identify all discrete symmetry operations. We then use IRMAE-WD, an au-

toencoder architecture that tends to drive the rank of the latent space covariance of the data

to a minimum, to find a low-dimensional representation of the data. This method overcomes

the need to sweep over latent space dimensions. We observe that factoring out symmetries

improves the MSE of the reconstruction as well as the dimension estimates and robustness

to IRMAE-WD hyperparameters. When considering the original data (i.e. no symmetries

factored out) and the phase-aligned data (only continuous symmetry factored out) the MSE

is higher and the range of dimension estimates is wider. We also note that the dimension

estimate range in the fundamental chart agrees well with the dimension found in our previ-

ous work for the same system [53]. We then train a NODE with latent space of dimension

85

dh = 10 for both phase-aligned and fundamental space data. This dimension is the upper

bound of the dimension estimate obtained for the fundamental chart data. The resulting

models using symmetry charting to map to the fundamental space accurately reconstructed

the DNS at both short and long times. In contrast, the phase-aligned model quickly landed

on an unphysical stable RPO leading to poor reconstruction of the dynamics.

The approach described here is essentially a version of the “CANDyMan" (Charts and

Atlases for Nonlinear Data-driven Dynamics on Manifolds) approach described in [23, 25]. As

shown on those studies, learning charts and atlases to develop local manifold representations

and dynamical models can improve performance for systems with complex dynamics. There,

however, the charts were found by clustering; here that step is bypassed by using a priori

knowledge, about the system, namely its symmetries. The methodology presented in this

work can be applied to other dynamical systems with rich symmetries by identifying the

corresponding indicators. Future directions for symmetry charting and CANDyMan include

applications such as control in systems with symmetry (cf. [72]) as well as development of

hierarchical methods where the fundamental chart identified by symmetry can be further

subdivided using a cluster algorithm or a chart autoencoder [57].

86

4

Improving robustness of dimension

estimates with implicit rank

minimizing autoencoders

The manifold dimension is not known for many complex systems and its estimating is a

nontrivial task. This manifold will usually have many fewer degrees of freedom than the full

state representation. For fluid flows, such minimal dimensional representations are needed

to creat invariant-manifold-based data-driven models which can result in decreased compu-

tational cost for simulations and be used for model-based control approaches. In this work

we use a variation of implicit rank minimizing autoencoders with weight decay (IRMAE-

WD) to improve robustness of dimension estimates for a library of dynamical systems. We

introduce a set of paths, or branches, that the autoencoder can take in the forward pass

step. These branches vary by the number of linear layers used after the encoding part. We

call this architecture IRMAE-WD-B, where B stands for branching. With IRMAE-WD-B

we avoid the need to define a number of linear layers, resulting in less models trained, and

observe that dimension estimates become more consistent for complex dynamical systems.

87

4.1 Introduction

The Navier-Stokes Equations (NSE) are dissipative PDEs, so it is expected that the long-

time dynamics will lie on an invariant manifold M, which can be represented locally with

Cartesian coordinates, but may have a complex global topology [28]. In dissipative PDEs,

this manifold is often called an inertial manifold [24, 62, 71]. This manifold is of many fewer

degrees of freedom dM and will be embeded on an ambient space RN where often dM � N .

Then for the representation, we only need at least dM degrees of freedom. However, this is

in the local sense, meaning that no global representation of dimension dM is available. A

representation of dimension dM can be found by "cutting" the space into overlapping charts

which together form at atlas that covers the space [23]. Alternatively a global representation

with embedding dimension de ≤ 2dM can be guaranteed by Whitney’s theorem [36]. In this

work we aim to estimate manifold dimensions for different dynamical systems with the use

of autoencoders (AE) given access to only data. We will show how the addition of paths in

the AE with different amounts of linear layers improves robustness of dimension estimates.

Different methods to estimate manifold dimensions have been introduced in literature.

For the Kuramoto-Sivashinsky equation (KSE) the manifold dimension has been estimated

using covariant Lyapunov vectors and monitoring the drop of the Lyapunov spectrum [69, 70].

A Floquet mode approach has also been used for this system to estimate the dimension, which

involves knowledge of unstable periodic orbits [19]. These methods require access to the gov-

erning equations and high-precision solutions which is generally not available for the NSE.

On the other hand, data can also be used to estimate manifold dimensions. This is the case

of linear projection methods such as Principal Component Analysis (PCA) and variants of

it [5, 33, 75]. PCA determines a set of orthogonal basis vectors ordered by their contribu-

tion to the total variance (fluctuating kinetic energy) of the flow. Given Ns data vectors

(“snapshots") xi ∈ RN , one can obtain these basis vectors by performing singular value de-

composition (SVD) on the data matrix X = [x1, x2, · · ·] ∈ RN×Ns such that X = UΣV T .

Projecting the data onto the first dh basis vectors (columns of U) then gives a low-dimensional

88

representation – a projection onto a linear subspace of the full state space. However, these

low-dimensional representations can overestimate the dimension of the manifold where at

least dM + 1 dimensions will be required to represent the state.

Nonlinear methods are natural extensions to correctly capture these manifold dimensions.

For more details on different methods, we refer to Zeng et al. [74]. Here we focus on the use

of AEs to learn these low-dimensional representations. Neural networks (NNs) have been

used extensively to learn data-driven minimal dimensional models that can capture impor-

tant features of dynamical systems. Linot & Graham showed that for the KSE, tracking the

mean-squared error (MSE) of the reconstruction of the snapshots using an AE for the domain

size of L = 22 exhibited several orders-of-magnitude drop when the dimension of the inertial

manifold is reached. Furthermore, modeling the dynamics with a dense NN at this dimension

either with a discrete time map [37] or a system of ordinary differential equations (ODE) [38]

yields excellent trajectory predictions and long-time statistics. However by increasing the

domain size to L = 44 and L = 66, which makes the system more chaotic, they observed that

this MSE drop is affected significantly. Pérez De Jesús & Graham extended this approach

to two-dimensional Kolmogorov Flow in a chaotic regime where they noticed that this drop

in MSE does not appear [53]. Nevertheless, modeling the dynamics at dimensions where the

mean-squared error (MSE) stopped decreasing (dh = 5 as opposed to N = 1024) showed

that short and long time statistics can be captured as well as prediction of bursting events.

Similarly Linot & Graham found low-dimensional representations of minimal flow unit tur-

bulent planar Couette flow at Re = 400 where the MSEs leveled off at a dimension of dh = 18

[39]. They then learned minimal-dimensional models showing that these models were able to

capture characteristics of the flows such as streak breakdown and regeneration, short-time

tracking, as well as Reynolds stresses and energy balance. They also computed unstable

periodic orbits from the models with close resemblance to previously computed orbits from

the full system. The studies described above show how minimal-dimensional models can be

successfully learned with AEs. However, the question of estimating the inertial manifold

89

dimension still remains open. Recently, a variation of a standard AE was introduced by Jing

et al. [32] to learn low-rank representations for image-based classification and generative

problems. Zeng et al. [74] showed that this architecture can yield robust and precise esti-

mates of dM, as well as an orthogonal manifold coordinate system. The architecture they

study is called an Implicit Rank Minimizing Autoencoder with weight decay (IRMAE-WD),

and involves inserting a series of linear layers between the encoder and decoder and adding

an L2 regularization on the neural network weights in the loss. The effect of these additions

is an AE for which the standard gradient descent algorithm for learning NN weights drives

the rank of the covariance of the data in the latent representation to a minimum while main-

taining representational capability. Applying this to the KSE and other systems resulted

in the rank being equal to the dimension of the inertial manifold dM. Pérez De Jesús et.

al. [54] applied IRMAE-WD to Kolmogorov flow in a fundamental representation, where

symmetries are factored out, and observed that the dimension estimates lie in a range of

dh = 7 − 10. As opposed to the KSE, they observed that the dimension estimates change

when varying the number of linear layers and weight decay parameters.

In this work we explore an extension to IRMAE-WD that improves robustness of dimen-

sion estimates for more complex systems. These are more complicated in the sense that

they are either more chaotic, embedded in a higher dimension, or both. We show that this

is achieved with the addition of branches with different numbers of linear layers. We call

this architecture IRMAE-WD-B, where B stand for branching. In the following sections we

explain this framework and apply it to a library of dynamical systems.

4.2 Formulation

In this section we present IRMAE-WD-B, an extension of IRMAE-WD introduced by Zeng

et al. [74]. A schematic representation of the framework is shown in Figure 4.1. The encoder,

denoted by E (ω̃; θE) reduces the dimension from N to dz. We then include a linear network

90

Wi (·; θW) between the encoder and the different decoders which consists of several linear

layers (matrix multiplications). We note that the forward pass propagates through different

branches of varying number of linear layers, which differs from IRMAE-WD. This bypasses

the step of defining a specific number of linear layer. Finally, the decoders ω̃r,i = Di (zi; θDi)

map back to the full space. An L2 (“weight decay") regularization to the weights is also

added, with prefactor λ. The loss function for this architecture is

Li (ω̃; θE, θW , θDi) =
〈
‖ω̃ −Di (Wi (E (ω̃; θE) ; θW) ; θDi)‖22

〉
+
λ

2
‖θ‖22. (4.1)

where 〈·〉 is the average over a training batch, θE the weights of the encoder, θDi the weights

of the decoder i, and θW the weights of the linear network which contains the linear layers

used in the branch. Notice that this architecture will output a number of losses defined by the

number of linear layers. We can train this network by selecting a branch and backpropagating

through it to update the weights. To select the branch we first calculate the loss for each

of the paths. This is then weighted by calculating wi = e−Li and normalizing by the sum

of all of the paths ŵi = wi/
∑
wi. We can then define the ranges ŵ1, range = [0, ŵ1),

ŵ2, range = [ŵ1, ŵ1 + ŵ2), and so on for all of the paths. By generating a random number

between zero and one at every epoch during training we can select with higher probability

the path that has the lowest loss, while also giving it the opportunity to explore other paths.

To further improve the model at the end, we train using the lowest MSE in the last 10% of

the total number of epochs.

After training, we can perform SVD on the covariance matrix of the encoded data matrix

Zi to obtain the singular vectors Ui and singular values Si, as shown in Fig. 4.1b. Then,

by choosing only the singular values above some very small threshold (typically & 6 orders

of magnitude smaller than the leading singular values), we may project down to fewer di-

mensions by projecting onto the corresponding singular vectors U , denoted Û to yield the

low-rank manifold representation. We refer to Table 4.1 for details on the architecture.

91

Figure 4.1: Implicit Rank Minimizing autoencoder with weight decay and branching (IRMAE-
WD-B.) framework: a) network architecture with regularization mechanisms, b) singular value
decomposition of the covariance of the learned latent data representation Zi.

92

4.3 Results

4.3.1 Dimension estimates for a library of systems

We test IRMAE-WD-B on a library of systems in this section. First we show a comparison

between IRMAE-WD and IRMAE-WD-B applied to the case of a one-dimensional arc em-

bedded in an ambient space of N = 1000. Then, we increase complexity, and present results

for KSE, Kolmogorov flow, and finally we test IRMAE-WD-B in combination with k-means

clustering to learn local representations.

Table 4.1: Here we list the architecture and parameters utilized in the studies of this paper. For
brevity, the decoders, D, of each architecture is simply mirrors of the encoder, E . Each network
has a total of 10 linear layers with shape dz × dz between the encoder and decoder. Learning rates
were set to 10−3 and with mini-batches of 128.

Dataset E Activation dz

Arc 1000/2000/500/20 ReLU/ReLU/lin 20
KSE L = 22 64/512/256/20 ReLU/ReLU/lin 20

Kolmogorov flow 1024/2048/256/40 ReLU/ReLU/lin 40

One-dimensional arc embedded in higher dimensional space

In the case of the NSE, turbulent trajectories track solutions that appear in the form of

traveling waves (TW) and relative periodic orbits (RPO) which are known as exact coherent

states (ECS) [18]. Hence, these will be embedded in high dimensional spaces which can

be in the order of ∼ 100, 000 degrees of freedom. Inspired by this we build a toy problem

consisting of a one dimensional arc embedded in N = 1000. This resembles a portion of a

periodic orbit, hence we can represent and find a mapping to a dimension of dh = 1. To

embed this we first generate data as shown in Figure 4.2 which will have a dimension of

Xarc ∈ R2×Ns . To embed in a dimension of N = 1000 we generate a random matrix of

size Xrand ∈ R2×1000. By multiplying these matrices we can get the data used for training

X = XT
randXarc ∈ R1000×Ns . We first want to investigate if IRMAE-WD is able to capture

the drop in the singular values at a dimension of dh = 1. To do this we vary the number

93

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

x

0.0

0.2

0.4

0.6

0.8

1.0

y

Figure 4.2: Visualization of arc data used for training and testing.

of linear layers and use a value of λ = 10−6 for the weigh decay parameter. Specifics of the

NN architecture is given in Table 4.1. We consider the cases of L = 4, 6, 8, which fall in the

ranges studied by Zeng et al. [74] and train three models for each. Results for L = 6 are

shown in Figure 4.3. Here we see that only one of the trials is able to capture the drop at

dh = 1. For the case of L = 4 (not shown) all of the drops happen at dh = 2 and for L = 8

(not shown) only one of the trials captures the drop of dh = 1 similar to L = 6.

When the aim is to find the minimal-dimensional model, which we know should be of

dimension dh = 1, this poses a problem. With this we motivate a new modification in the

architecture presented in Section 4.2. We specifically ask the question if there is a correct

number of linear layers needed to correctly estimate the dimension. We select a total of

L = 10 which is in the range considered by Zeng et al. [74]. This means that the architecture

will be able to explore linear layers starting from L = 1 through L = 10. We train a total

of five models with the architecture discussed in Section 4.2. In Figure 4.4 we show results

of MSE versus dimension estimate from the models trained with IRMAE-WD and IRMAE-

94

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

i

10−20

10−17

10−14

10−11

10−8

10−5

10−2

101

σ
i/
σ

0

0

100

200

300

400

500

600

700

800

900

E
p

oc
h

(a)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

i

10−22

10−18

10−14

10−10

10−6

10−2

σ
i/
σ

0

0

100

200

300

400

500

600

700

800

900

E
p

oc
h

(b)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

i

10−22

10−19

10−16

10−13

10−10

10−7

10−4

10−1

σ
i/
σ

0

0

100

200

300

400

500

600

700

800

900

E
p

oc
h

(c)

Figure 4.3: Evolution of singular values of the covariance matrix of the encoded test data ZZT

during training of an IRMAE-WD model with L = 6 and λ = 10−6 for three trials. Here the drops
happen at (a) dh = 2, (b) dh = 1, and (c) dh = 2.

95

1.0 1.2 1.4 1.6 1.8 2.0

dh

10−8

10−7

10−6

10−5

M
S

E

IRMAE-WD-B

L = 4

L = 6

L = 8

Figure 4.4: Arc: MSE vs dimension dh given by the spectral gap of the singular values for
L = 4, 6, 8 and λ = 10−6 and our proposed architecture. Each case of varying L contains three
trials and for our architecture we consider five trials.

WD-B. The latter is able to correctly capture dh = 1 and performs better. In addition

we only have to train five models and we avoid changing L which is done automatically.

Interestingly, the number of L selected at the end for the five cases is different with values

of L = 5, 5, 6, 3, 2. This means that there is not a specific number of linear layers that can

correctly predict the dimension and there might be another factor involved. The success of

this architecture in this simple system motivates us to extend this to more complex problems

which are shown in the following sections.

Kuramoto-Sivashinsky equation (KSE)

The one-dimensional KSE takes takes the form

∂v

∂t
= −v ∂v

∂x
− ∂2v

∂x2
− ∂4v

∂x4
, (4.2)

Similar to Zeng et al. [74] we test our architecture on the KSE equation L = 22 with 40, 000

snapshots sampled on 64 mesh points. Details of the architecture is given in Table 4.1. For

this system it is known that the inertial manifold dimension is dh = 8 [19, 37, 61, 70]. We

see that this is the case for the five trials that we test with comparable MSEs. An example

of one of the trials is shown in Figure 4.5 which has an MSE over the test data of 5× 10−4.

96

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

i

10−17

10−14

10−11

10−8

10−5

10−2

σ
i/
σ

0

0

100

200

300

400

500

600

700

800

900

E
p

oc
h

Figure 4.5: Evolution of singular values of the covariance matrix of the encoded test data ZZT

during training of our model for the KSE with a final linear layer of L = 9 and λ = 10−6. Here the
drop happens at dh = 8 as expected.

This shows again the robustness of our method where we are able to estimate the correct

dimension and we avoid training many models with different amounts of linear layers.

Kolmogorov Flow - Re = 14.4

The two-dimensional NSE with Kolmogorov forcing are

∂u

∂t
+ u ·∇u + ∇p =

1

Re
∇2u + sin(ny)x̂, (4.3)

∇ · u = 0, (4.4)

where flow is in the x− y plane, u = [u, v] is the velocity vector, p is the pressure, n is the

wavenumber of the forcing, and x̂ is the unit vector in the x direction. Here Re =
√
χ

v

(
Ly
2π

)3/2

where χ is the dimensional forcing amplitude, ν is the kinematic viscosity, and Ly is the size

of the domain in the y direction. We consider the periodic domain [0, 2π/α] × [0, 2π] with

α = 1. Vorticity is defined as ω = ẑ ·∇ × u, where ẑ is the unit vector in the z direction

97

(orthogonal to the flow).

In the case of Kolmogorov flow the manifold dimension in the chaotic regime of Re = 14.4,

n = 2 is not known. However, recent articles have found minimal dimensional models where

dynamics can be predicted [53, 54]. Pérez De Jesús et al. [54] used IRMAE-WD to get

dimension estimates for this system in the fundamental representation where symmetries

are factored out. They observed that accounting for the symmetries drastically improved

the dimension estimates for the system, with ranges of dh = 7−10 for data with symmetries

factored out versus dh = 39−40 for the original data. They were also able to learn dynamical

models with neural ordinary differential equations with great success at a dimension of

dh = 10. Pérez De Jesús & Graham were also able to find great dynamical models at a

dimensions of dh = 5− 9 using autoencoders and tracking the performance of the MSE [53].

However, sweeping over dimensions was necessary for this analysis as well as training models

for each of the dimensions. We now want to test our method in this data for the case of

factored out symmetries. For more details on the symmetries and how we account for them

refer to [54]. In Figure 4.6 we show results of MSE versus dimension estimate from the

models trained with IRMAE-WD and our method. We can see that our method consistently

estimates a dimension of dh = 8 as opposed to varying the number of linear layers. The

performance of the models trained seem to be slightly affected based on the MSE, however

it is still in the same order of magnitude.

4.3.2 Hierarchical clustering

As discussed in Section 4.1 a system in the inertial manifold representation dM can be seen

as overlapping charts which together form an atlas. An example of this can be any dynamical

system that lies in a circle, which is the case of a limit cycle. Reducing the dimensions of the

global system to find a minimal representation results in 2dM = 2. One can only uniquely

represent this system with dM = 1 in the local sense. This is the case for the arc data showed

in Section 4.3.

98

8.00 8.25 8.50 8.75 9.00 9.25 9.50 9.75 10.00

dh

10−4

2× 10−4

M
S

E

IRMAE-WD-B

L = 4

L = 6

L = 8

Figure 4.6: Kolmogorov Flow, Re = 14.4: MSE vs dimension dh given by the spectral gap of the
singular values for L = 4, 6, 8 and λ = 10−6 and our proposed architecture. Each case of varying L
contains three trials and for our architecture we consider five trials.

For the arc case, data is generated such that y = [0, 1] for x = [−1, 1]. Hence the other

half corresponds to y = [−1, 0) and by stitching these two together one can represent the full

circle. Similarly, more complicated systems can be charted into many local representations

that together capture the full system. However, how to chart these systems might not be

as trivial as for the circle case. Floryan & Graham developed a method to implement data-

driven local representations for dynamical systems such as the quasiperiodic dynamics on a

torus, a reaction-diffusion system, and the KSE to learn dynamics on invariant manifolds

of minimal dimension [23]. They refer to this method as Charts and Atlases for Nonlinear

Data-Driven Dynamics on Manifolds – “CANDyMan". Pérez De Jesús et al. [54] took an

approach inspired by CANDyMan where a single chart is learned for Kolmogorov flow which

comes from the mapping of the symmetries to a fundamental chart.

In this section we extend the idea presented by Pérez De Jesús et al. [54] where we

further split the fundamental space into local charts similar to Floryan & Graham [23]. The

motivation comes from the complexity of chaotic systems governed by the NSE where the

dynamics can lie in the vicinity of many exact coherent states [18]. In the case of Kolmogorov

flow, Re = 14.4 due to the discrete symmetries of the system, there are several RPOs [2].

The dynamics are characterized by quiescent intervals where the trajectories approach the

99

RPOs (which are now unstable), punctuated by fast excursions. There are four RPOs related

by symmetries which means that at least four clusters are needed to capture each RPO. By

mapping to the fundamental chart we bypass this step and ideally less clusters are needed

to find the inertial manifold dimension.

Figure 4.7a displays k-means clustering with a total of five clusters to the fundamental

chart. Here we see the mapping of the data to the ω̂R(0, 1) − ω̂I(0, 1) − ω̂I(0, 2) projection

which comes from taking the Fourier transform of the data. Cluster three and four capture

the area near the RPO while the other clusters capture the regions corresponding to the

heteroclinic and homoclinic like connections between the different RPOS. Figure 4.7b shows

the time evolution of 〈‖ω(t)‖2〉 corresponding to the five clusters. We now look at the

MSEs versus dimension estimates for all of the clusters. Figure 4.8 shows the MSEs versus

dimension estimates for the different clusters. As in previous sections, we compare our

method with the original IRMAE-WD. The black markers correspond to our method and

the blue markers correspond to original IRMAE-WD. Different from the previous cases we

see that the dimension estimates are not as robust. Instead our method now estimates a

range of dimensions dh = 7− 9. As opposed to original IRMAE-WD, dh = 7− 13, the range

of dimensions our method estimates is smaller. We also observe that most of the estimates

happen at dh = 7.

4.4 Summary

In this work we introduce IRMAE-WD-B, an extension to IRMAE-WD as presented by Zeng

et al. [74]. The primary enhancement involves integrating branches into the AE architecture

to mitigate the framework’s dependency on the number of linear layers in the encoder. This

adjustment addresses a limitation present in the original IRMAE-WD, where the parameter

for the number of linear layers is predetermined. Thus, this new architecture reduces the

amount of models to be trained as it explores different paths. In this study, we observed

100

(a) (b)

Figure 4.7: (a) State-space projection of a trajectory into the subspace ω̂R(0, 1)−ω̂I(0, 1)−ω̂I(0, 2)
for Re = 14.4. Colors correspond to the different clusters. (b) 〈‖ω(t)‖2〉 vs time with colors
corresponding to different clusters.

7 8 9 10 11 12 13

dh

10−4

4× 10−5

6× 10−5

2× 10−4

3× 10−4

M
S

E

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Figure 4.8: Kolmogorov Flow, Re = 14.4, k-means: MSE vs dimension dh given by the spectral
gap of the singular values for. Black markers correspond to IRMAE-WD-B models and blue markers
correspond to IRMAE-WD models with valying number of linear layers L = 4, 6, 8.

101

that IRMAE-WD-B does not adhere to a specific pathway for the same system; rather, it

demonstrates an alternation of varying numbers of linear layers across all systems examined.

From this outcome, we suspect that there is a level of randomness that is helping improve the

dimension estimate. Moving forward we are interested in learning models for forecasting in

these minimal-dimensional representations. Code and sample data that support the findings

of this study are openly available at https://github.com/mdgrahamwisc/IRMAE_WD_B.

https://github.com/mdgrahamwisc/IRMAE_WD_B

102

5

Conclusions

5.1 General summary

In this thesis, we developed data-driven reduced-order models for the Navier-Stokes equa-

tions. We mainly focused on the two-dimensional Kolmogorov flow problem in a chaotic

regime which contains the essence characteristics of fluid turbulence. This is motivated by

the high-dimensionality of the systems, and subsequently the need to find efficient high fi-

delity reduced order models. These can further be deployed for controls to reduce drag in

the case of turbulent flows and for predictive purposes. Motivated by the recent advances in

machine learning we use autoencoders to learn low-dimensional representations of the data

and combine with neural ordinary differential equations and dense neural networks to predict

in time. We also develop a methodology which includes the physics of the system, and an

extension to IRMAE-WD, which improves dimension estimates for complex data.

In Chapter 2 we presented a data-driven methodology to learn an estimate of the em-

bedding dimension of the manifold for chaotic Kolmogorov flow and the time evolution on

it. An autoencoder is used to find a nonlinear low-dimensional subspace and a dense neural

network to evolve it in time. By analyzing the model performance as a function of latent

space dimension we can estimate the minimum number of dimensions required to capture the

system dynamics. We then calculated long and short time statistics based on the data-driven

103

reduced-order models showing great success compared with true data.

In Chapter 3 we introduced a method that we call symmetry charting and apply it to

Kolmogorov flow in a chaotic regime. This symmetry charting method factors out symme-

tries so we can train reduced-order models in a fundamental chart and ensure equivariant

trajectories – where we are essentially learning coordinates and dynamics on one region of

the invariant manifold for the long-time dynamics rather than having to learn these for

the entire manifold. We show great success when factoring out symmetries compared with

models that are trained with original data.

In Chapter 4 we presented an extension to IRMAE-WD which was introduced by Zeng

et al. [74] to automatically estimate the underlying dimensionality of a data set, and applied

it to a library of dynamical systems. The architecture is extended such that it can explore

various paths that contain different numbers of linear layers. This is shown to improve

robustness of dimension estimates for the Navier-Stokes equations, which is a hard prob-

lem, and we give insights on estimating inertial manifold dimensions for these complicated

systems.

In the following sections we discuss extensions of our work to a more complicated system

and potential avenues. We show how the symmetry charting method can be applied to pipe

flow with good preliminary results and how different regularizations and machine learning

methods can be used for robust dimension estimates and forecasting. We also discuss some

final thoughts on hierarchical clustering and discuss preliminary results on using IRMAE-

WD-B on other complex cases.

5.2 Future work

5.2.1 Symmetry charting applied to pipe flow

In our previous work we focused on two-dimensional Kolmogorov flow which exhibits chaotic

dynamics at Re = 14.4 and n = 2. However, turbulence appears in three dimensions in

104

industrial settings and nature. Hence, it is important to extend what we have learned to

more realistic scenarios. In this section we focus our attention to pipe flow. As discussed by

[17, 66] the governing equations are

∂u

∂t
+ U · ∇u + u · ∇U + u · ∇u = −∇p+ 32

β

Re
ẑ +

1

Re
∇2u, (5.1)

∇ · u = 0. (5.2)

The Reynolds number is defined as Re = UD/ν, where U , D, and ν are mean velocity of the

flow, diameter of the pipe, and kinematic viscosity. In this formulation u corresponds to the

deviation from the Hagen-Poiseuille flow equilibrium U(r) = 2 (1− (2r)2) ẑ. Pressure is p

and β = β(t) is the fractional pressure gradient needed to maintain a constant mass flux. The

computational domain is Ω = [1/2, 2π/m, π/α] ≡ (r, θ, z) ∈ [0, 1/2] × [0, 2π/m] × [0, π/α],

where L = π/α is the length of the pipe, and m is a parameter to account for shift-invariance

in the azimuthal direction. For this study α = 1.7 which has been used in previous works

[12, 66]. We show in Figure 5.1 a snapshot of the magnitude of the velocity components for

the case of m = 4 (‘shift-and-reflect’ invariant space), Re = 2500 which corresponds to a

fourth of the domain in the θ direction, the section of the pipe is copied to get the figure

shown. This minimal computational cell has been the focus of previous work to learn a

library of invariant solutions [12].

In this section we focus on the case where m = 1 (naturally periodic pipe flow). In many

systems and practical applications one has access to the full domain, and not the invariant

space as in the case of m = 4. Hence, it is important to address the symmetries in pipe flow

to build accurate data-driven reduced order models.

105

Figure 5.1: Magnitude of velocities of pipe flow for m = 4, Re = 2500.

Pipe flow symmetries

The equations for pipe flow are invariant under several symmetry operations [66], namely a

reflection along the θ = 0 azimuthal angle, and continuous translations in θ and z:

g(φ, `)[u, v, w, p](r, θ, z) = [u, v, w, p](r, θ − φ, z − `), (5.3)

σ[u, v, w, p](r, θ, z) = [u,−v, w, p](r,−θ, z). (5.4)

Similar to our previous work [54] where we developed the symmetry charting method, we are

interested in factoring out these symmetries to map to a fundamental chart. To apply this

method we first want to understand how the Fourier coefficients change under the symmetry

operations. This will provide a set of indicators that can be used to map to the fundamental

chart. After Fourier transforming the equations in the θ−z directions and simplifying, these

106

are the actions of the symmetry operations on the Fourier coefficients:

g(φ, `)[û, v̂, ŵ](r, kθ, kz)→ [û, v̂, ŵ](r, kθ, kz)e
−ikθφe−ikz`, (5.5)

σ[û, v̂, ŵ](r, kθ, kz)→ [û,−v̂, ŵ](r,−kθ, kz). (5.6)

Map to fundamental chart

To remove the continuous symmetry we use the method of slices as presented by Budanur

& Hof [8, 9]. A slice template is defined as

u′z(r, θ, z) = J0(αr) cos(2πz/L), (5.7)

where J0 is the Bessel function of the first kind which vanishes at the pipe wall, J0(α/2) = 0.

This template can be used to phase-align the snapshots as

uz(t) = gz (Lφz/2π)u(t), (5.8)

where

φz(t) = arg [〈u(t),u′z〉+ i 〈u(t), gz(−L/4)u′z〉] . (5.9)

Similarly for the θ direction

u′θ(r, θ, z) = J0(αr) cos(θ), (5.10)

uθ(t) = gθ (φθ)u(t), (5.11)

φθ(t) = arg [〈u(t),u′θ〉+ i 〈u(t), gθ(−π/2)u′θ〉] . (5.12)

To factor out the discrete symmetry we can consider the Fourier mode kθ = 1, kz = 0 as an

indicator. This modifies the Fourier coefficient as v̂R(r, 1, 0) + iv̂I(r, 1, 0)→ −v̂R(r,−1, 0)−

107

iv̂I(r,−1, 0) for the v̂ component of velocity. We can also pick other components of kθ, kz.

Setting the sign of v̂R(r, 1, 0) to be positive maps the snapshots to a fundamental subspace.

Autoencoder preliminary results

For this system we consider a grid of size (Nr, Nθ, Nz) = (64, 60, 48). Together with the

three components of velocity the state size is N = 552, 960. Instead of feeding the large

full velocity field in the AE we take the approach discussed by Linot & Graham [39] and

Duggleby et al. [21] where POD is performed to do an initial linear reduction. In this

step, we reduce the dimensions from N = 552, 960 to N = 4, 080 which contains 98% of the

energy. This linear reduction is crucial to train the AEs. Then, we train an IRMAE-WD

model to reduce the dimensions to dh = 50 with L = 4 linear layers and a weight decay value

of λ = 10−6. We show results of the reconstruction of the first 103 POD modes in Figure

5.2. Notice that factoring out the symmetries as discussed in the previous section vastly

improves the reconstruction of the POD modes. Moving forward in this work we want to

train NODEs for time integration in the fundamental chart. We expect that these NODEs

will outperform the models that do not have symmetries factored out. Ideally these will

show improved performance in short-time tracking and long-time statistics.

5.2.2 Regularizing using dropout

In Chapter 4 we introduced a methodology that improves robustness of dimension estimates

for a library of dynamical systems. We achieved this with addition of paths with different

number of linear layers. A natural follow-up to this work is the exploration of dropout.

This is analogous to the method we proposed in the sense that instead of pathing through

different branches, random connections are dropped during training [60]. This is equivalent

to many models trained and has shown to help with overfitting. We have tested this on

the case of the one-dimensional arc embedded in 1000 dimensions with preliminary results

showing success of drops at a dimension of dh = 1. Further tests in this area include varying

108

0 200 400 600 800 1000
i

10-5

10-4

10-3

10-2

10-1

〈 ‖a
n
‖2
〉

POD

Original

Fundamental

Figure 5.2: Reconstruction of POD modes for the case m = 1, Re = 2500 from models trained
with IRMAE-WD on original data and data mapped to the fundamental chart. These are compared
with the real POD modes.

the probability of zeroed elements in the architecture, varying number of linear layers or

combine with IRMAE-WD-B, and extending to more complicated systems.

5.2.3 Contrastive learning with symmetries

Throughout this thesis we have shown how accounting for symmetries improves forecasting

of reduced-order models. Specifically, short-time tracking is greatly affected when factoring

out continuous and discrete symmetries. This was shown in Chapters 2 and 3 for two-

dimensional Kolmogorov flow in a chaotic regime. A possible way to address symmetries and

learn more efficient models is to use contrastive learning. In contrastive learning positive

representations, which in this case corresponds to data in the same symmetry subspace, are

mapped such that these are similar and negative representations, from a different symmetry

subspace, are mapped such that these are more orthogonal [15, 16, 51]. This will result in

latent representations that are separated based on the symmetries of the system. Similar to

our previous work one can then train models for time evolution. An added benefit of using

contrastive learning is that one can also address noisy versions of the snapshots, which is

109

common in experimental data.

5.2.4 Forecasting and hierarchical clustering

We introduced in Chapter 4 the idea of hierarchical clustering which is inspired by CAN-

DyMan presented in [23] and our symmetry charting method discussed in Chapter 3. With

hierarchical clustering one can find local representations of minimal dimension in a funda-

mental chart where symmetries are factored out. Inspired by our previous works, we can

learn models for time integration by tracking the indicator related to the symmetry and the

local chart. The fundamental representation will typically contain data with different dy-

namical behavior. In the case of Kolmogorov flow there can be organized oscillating regions,

quiescent, and bursting regions of increased energy. As in CANDyMan, k-means can be used

to "cut" the space. However, different approaches can be taken depending on the type of

data like isolating the quiescent and bursting regions in Kolmogorov flow.

5.2.5 IRMAE-WD-B in more complex cases

In Chapter 4 we introduced our framework to improve robustness of dimension estimates.

We also tested this architecture, with preliminary results, on more complex cases including

Kolmogorov flow at Re = 20, n = 2 and plane Couette flow (fluid confined between two

plates) at Re = 400. In Kolmogorov flow (N = 1024) most of the dimension estimates are

close to dh = 20, however we did see some models that gave dimensions close to dh = 10.

This might be due to the added complexity of the system. For Couette flow (N = 502,

POD modes) the estimates are close to dh = 30 with one of the models predicting dh = 36.

In this case only one of the continuous symmetries was factored out. We would expect

the dimensions to be more robust when factoring all the symmetries, as is the case for

Kolmogorov flow. An interesting avenue is to systematically consider the symmetries of

more complicated systems before performing IRMAE-WD-B which could improve results.

110

References

[1] D. Armbruster, R. Heiland, E. J. Kostelich, and B. Nicolaenko. Phase-space analysis
of bursting behavior in Kolmogorov flow. Physica D: Nonlinear Phenomena, 58(1-4):
392–401, 1992.

[2] D. Armbruster, B. Nicolaenko, N. Smaoui, and P. Chossat. Symmetries and dynamics
for 2-D Navier-Stokes flow. Physica D: Nonlinear Phenomena, 95(1):81–93, 1996.

[3] N. Aubry, P. Holmes, J. L. Lumley, and E. Stone. The dynamics of coherent structures
in the wall region of a turbulent boundary layer. Journal of Fluid Mechanics, 192:
115–173, 1988.

[4] P. Bartello and T. Warn. Self-similarity of decaying two-dimensional turbulence. Journal
of Fluid Mechanics, 326:357–372, 1996.

[5] C. Bishop. Bayesian PCA. In M. Kearns, S. Solla, and D. Cohn, editors, Advances in
Neural Information Processing Systems, volume 11. MIT Press, 1998.

[6] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin
classifiers. In Proceedings of the fifth annual workshop on Computational learning theory,
pages 144–152, 1992.

[7] N. B. Budanur and P. Cvitanović. Unstable Manifolds of Relative Periodic Orbits in
the Symmetry-Reduced State Space of the Kuramoto–Sivashinsky System. Journal of
Statistical Physics, 167(3-4):636–655, 2017.

[8] N. B. Budanur and B. Hof. Heteroclinic path to spatially localized chaos in pipe flow.
Journal of Fluid Mechanics, 827:R1, 2017.

[9] N. B. Budanur and B. Hof. Complexity of the laminar-turbulent boundary in pipe flow.
Physical Review Fluids, 3(5):054401, 2018.

[10] N. B. Budanur, D. Borrero-Echeverry, and P. Cvitanović. Periodic orbit analysis of a
system with continuous symmetry—A tutorial. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 25(7):073112, 2015.

[11] N. B. Budanur, P. Cvitanović, R. L. Davidchack, and E. Siminos. Reduction of SO
(2) symmetry for spatially extended dynamical systems. Physical review letters, 114(8):
084102, 2015.

111

[12] N. B. Budanur, K. Y. Short, M. Farazmand, A. P. Willis, and P. Cvitanović. Relative
periodic orbits form the backbone of turbulent pipe flow. Journal of Fluid Mechanics,
833:274–301, 2017.

[13] G. J. Chandler and R. R. Kerswell. Invariant recurrent solutions embedded in a tur-
bulent two-dimensional Kolmogorov flow. Journal of Fluid Mechanics, 722:554–595,
2013.

[14] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural Ordinary
Differential Equations. Advances in neural information processing systems, 31, 2018.

[15] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive
learning of visual representations. In International conference on machine learning,
pages 1597–1607. PMLR, 2020.

[16] C. Y. Chuang, J. Robinson, Y. C. Lin, A. Torralba, and S. Jegelka. Debiased contrastive
learning. Advances in neural information processing systems, 33:8765–8775, 2020.

[17] C. R. Constante-Amores and M. D. Graham. Data-driven state-space and Koopman
operator models of coherent state dynamics on invariant manifolds. Journal of Fluid
Mechanics, 984:R9, 2024.

[18] C. J. Crowley, J. L. Pughe-Sanford, W. Toler, M. C. Krygier, R. O. Grigoriev, and M. F.
Schatz. Turbulence tracks recurrent solutions. Proceedings of the National Academy of
Sciences, 119(34):e2120665119, 2022.

[19] X. Ding, H. Chaté, P. Cvitanović, E. Siminos, and K. Takeuchi. Estimating the dimen-
sion of an inertial manifold from unstable periodic orbits. Physical review letters, 117
(2):024101, 2016.

[20] N. A. K. Doan, W. Polifke, and L. Magri. Auto-encoded reservoir computing for turbu-
lence learning. In International Conference on Computational Science, pages 344–351.
Springer, 2021.

[21] A. Duggleby, K. S. Ball, M. R. Paul, and P. F. Fischer. Dynamical eigenfunction
decomposition of turbulent pipe flow. Journal of Turbulence, (8):N43, 2007.

[22] M. Farazmand and T. P. Sapsis. A variational approach to probing extreme events in
turbulent dynamical systems. Science advances, 3(9):e1701533, 2017.

[23] D. Floryan and M. D. Graham. Data-driven discovery of intrinsic dynamics. Nature
Machine Intelligence, 4(12):1113–1120, 2022.

[24] C. Foias, O. Manley, and R. Temam. Modelling of the interaction of small and large
eddies in two dimensional turbulent flows. ESAIM: Mathematical Modelling and Nu-
merical Analysis, 22(1):93–118, 1988.

[25] A. J. Fox, C. R. Constante-Amores, and M. D. Graham. Predicting extreme events in
a data-driven model of turbulent shear flow using an atlas of charts. Physical Review
Fluids, 8(9):094401, 2023.

112

[26] J. Green. Two-dimensional turbulence near the viscous limit. Journal of Fluid Mechan-
ics, 62(2):273–287, 1974.

[27] P. Holmes, J. L. Lumley, G. Berkooz, and C. W. Rowley. Turbulence, coherent struc-
tures, dynamical systems and symmetry. Cambridge university press, 2012.

[28] E. Hopf. A mathematical example displaying features of turbulence. Communications
on Pure and Applied Mathematics, 1(4):303–322, 1948.

[29] M. Inubushi, M. U. Kobayashi, S. I. Takehiro, and M. Yamada. Covariant Lyapunov
analysis of chaotic Kolmogorov flows. Physical Review E, 85(1):016331, 2012.

[30] V. Iudovich. Example of the generation of a secondary stationary or periodic flow when
there is loss of stability of the laminar flow of a viscous incompressible fluid. Journal of
Applied Mathematics and Mechanics, 29(3):527–544, 1965.

[31] J. Jiménez and A. Lozano-Durán. Coherent structures in wall-bounded turbulence.
Journal of Fluid Mechanics, 842, 2018.

[32] L. Jing, J. Zbontar, et al. Implicit rank-minimizing autoencoder. Advances in Neural
Information Processing Systems, 33:14736–14746, 2020.

[33] I. Jolliffe. Principal Component Analysis. Springer Verlag, 1986.

[34] S. Kneer, T. Sayadi, D. Sipp, P. Schmid, and G. Rigas. Symmetry-Aware Autoencoders:
s-PCA and s-nlPCA. arXiv preprint arXiv:2111.02893, 2021.

[35] J. Lee. Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Springer,
2003.

[36] J. M. Lee. Smooth manifolds. In Introduction to smooth manifolds, pages 1–31. Springer,
2013.

[37] A. J. Linot and M. D. Graham. Deep learning to discover and predict dynamics on an
inertial manifold. Physical Review E, 101(6):062209, 2020.

[38] A. J. Linot and M. D. Graham. Data-driven reduced-order modeling of spatiotemporal
chaos with neural ordinary differential equations. Chaos: An Interdisciplinary Journal
of Nonlinear Science, 32(7):073110, 2022.

[39] A. J. Linot and M. D. Graham. Dynamics of a data-driven low-dimensional model of
turbulent minimal Couette flow. Journal of Fluid Mechanics, 973:A42, 2023.

[40] A. J. Linot, J. W. Burby, Q. Tang, P. Balaprakash, M. D. Graham, and R. Maulik.
Stabilized neural ordinary differential equations for long-time forecasting of dynamical
systems. Journal of Computational Physics, 474:111838, 2023.

[41] A. J. Linot, K. Zeng, and M. D. Graham. Turbulence control in plane Couette flow
using low-dimensional neural ODE-based models and deep reinforcement learning. In-
ternational Journal of Heat and Fluid Flow, 101:109139, 2023.

113

[42] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[43] H. F. Lui and W. R. Wolf. Construction of reduced-order models for fluid flows using
deep feedforward neural networks. Journal of Fluid Mechanics, 872:963–994, 2019.

[44] L. Meshalkin and I. G. Sinai. Investigation of the stability of a stationary solution of a
system of equations for the plane movement of an incompressible viscous liquid. Journal
of Applied Mathematics and Mechanics, 25(6):1700–1705, 1961.

[45] R. Miranda and E. Stone. The proto-Lorenz system. Physics Letters A, 178(1-2):
105–113, 1993.

[46] J. Moehlis, H. Faisst, and B. Eckhardt. A low-dimensional model for turbulent shear
flows. New Journal of Physics, 6(1):56, 2004.

[47] T. Nakamura, K. Fukami, K. Hasegawa, Y. Nabae, and K. Fukagata. Convolutional
neural network and long short-term memory based reduced order surrogate for minimal
turbulent channel flow. Physics of Fluids, 33(2):025116, 2021.

[48] M. A. Nayak and S. Ghosh. Prediction of extreme rainfall event using weather pattern
recognition and support vector machine classifier. Theoretical and applied climatology,
114(3):583–603, 2013.

[49] B. Nicolaenko and Z. S. She. Symmetry-breaking homoclinic chaos in Kolmogorov flows.
In Nonlinear world. 1990.

[50] B. R. Noack and H. Eckelmann. A low-dimensional Galerkin method for the three-
dimensional flow around a circular cylinder. Physics of Fluids, 6(1):124–143, 1994.

[51] A. V. D. Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

[52] J. Page, M. P. Brenner, and R. R. Kerswell. Revealing the state space of turbulence
using machine learning. Physical Review Fluids, 6(3):034402, 2021.

[53] C. E. Pérez De Jesús and M. D. Graham. Data-driven low-dimensional dynamic model
of Kolmogorov flow. Physical Review Fluids, 8(4):044402, 2023.

[54] C. E. Pérez De Jesús, A. J. Linot, and M. D. Graham. Building symmetries into data-
driven manifold dynamics models for complex flows. arXiv preprint arXiv:2312.10235,
2023.

[55] N. Platt, L. Sirovich, and N. Fitzmaurice. An investigation of chaotic Kolmogorov flows.
Physics of Fluids A: Fluid Dynamics, 3(4):681–696, 1991.

[56] C. W. Rowley and S. T. Dawson. Model reduction for flow analysis and control. Annual
Review of Fluid Mechanics, 49:387–417, 2017.

114

[57] S. Schonscheck, J. Chen, and R. Lai. Chart Auto-Encoders for Manifold Structured
Data. arXiv, 2019.

[58] M. Sieber, C. O. Paschereit, and K. Oberleithner. Spectral proper orthogonal decom-
position. Journal of Fluid Mechanics, 792:798–828, 2016.

[59] P. A. Srinivasan, L. Guastoni, H. Azizpour, P. Schlatter, and R. Vinuesa. Predictions of
turbulent shear flows using deep neural networks. Physical Review Fluids, 4(5):054603,
2019.

[60] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:
a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

[61] K. A. Takeuchi, H. L. Yang, F. Ginelli, G. Radons, and H. Chaté. Hyperbolic decoupling
of tangent space and effective dimension of dissipative systems. Physical Review E, 84
(4):046214, 2011.

[62] R. Temam. Do inertial manifolds apply to turbulence? Physica D: Nonlinear Phenom-
ena, 37(1-3):146–152, 1989.

[63] A. Thess. Instabilities in two-dimensional spatially periodic flows. Part I: Kolmogorov
flow. Physics of Fluids A: Fluid Dynamics, 4(7):1385–1395, 1992.

[64] L. Van Der Maaten, E. O. Postma, H. J. van den Herik, et al. Dimensionality reduction:
A comparative review. Journal of Machine Learning Research, 10(66-71):13, 2009.

[65] H. Whitney. The self-intersections of a smooth n-manifold in 2n-space. Annals of
Mathematics, 45(2):220–246, 1944.

[66] A. P. Willis, P. Cvitanović, and M. Avila. Revealing the state space of turbulent pipe
flow by symmetry reduction. Journal of Fluid Mechanics, 721:514–540, 2013.

[67] M. Winkels and T. S. Cohen. 3D G-CNNs for pulmonary nodule detection. arXiv
preprint arXiv:1804.04656, 2018.

[68] M. Winkels and T. S. Cohen. Pulmonary nodule detection in CT scans with equivariant
CNNs. Medical image analysis, 55:15–26, 2019.

[69] H. L. Yang and G. Radons. Geometry of inertial manifolds probed via a Lyapunov
projection method. Physical review letters, 108(15):154101, 2012.

[70] H. L. Yang, K. A. Takeuchi, F. Ginelli, H. Chaté, and G. Radons. Hyperbolicity and
the effective dimension of spatially extended dissipative systems. Physical review letters,
102(7):074102, 2009.

[71] S. Zelik. Attractors. Then and now. arXiv preprint arXiv:2208.12101, 2022.

[72] K. Zeng and M. D. Graham. Symmetry reduction for deep reinforcement learning active
control of chaotic spatiotemporal dynamics. Physical Review E, 104(1):014210, 2021.

115

[73] K. Zeng, A. J. Linot, and M. D. Graham. Data-driven control of spatiotemporal
chaos with reduced-order neural ODE-based models and reinforcement learning. arXiv
preprint ArXiv:2205.00579, to appear in Royal Society Proceedings A, 2022.

[74] K. Zeng, C. E. P. De Jesús, A. J. Fox, and M. D. Graham. Autoencoders for discovering
manifold dimension and coordinates in data from complex dynamical systems. Machine
Learning: Science and Technology, 5(2):025053, 2024.

[75] H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. Journal of
Computational and Graphical Statistics, 15(2):262 – 286, 2004.

	General introduction
	Building Reduced-Order Models
	Manifolds
	Coordinate charts

	Dimension Reduction and Neural Networks
	Dimension Reduction with Principal Component Analysis
	Neural Network Operations and Autoencoders
	Learning Time Maps

	More Neural Network Frameworks
	Dropout
	Contrastive Learning

	Symmetries in Dynamical Systems
	Continuous Symmetry and Phase Aligning
	Factoring Out Discrete Symmetries

	Outline of this work

	Data-driven low-dimensional dynamic model of Kolmogorov flow
	Introduction
	Kolmogorov flow formulation and dynamics
	Data-driven dimension reduction and dynamic modeling
	Dimension reduction with autoencoders
	Time evolution via a dense NN

	Results
	Dimension reduction with autoencoders
	Time evolution as a function of dimension - Short time predictions
	Time evolution as a function of dimension - Long time predictions
	Phase prediction
	Bursting prediction

	Summary

	Building symmetries into data-driven manifold dynamics models for complex flows
	Introduction
	Kolmogorov flow, symmetries, and projections
	Data-driven dimension reduction and dynamic modeling
	Map to fundamental domain
	Finding a manifold coordinate representation with IRMAE-WD
	Time evolution of pattern with neural ODEs
	Time evolution of phase with neural ODEs

	Results
	Dimension reduction with IRMAE-WD
	Time evolution

	Summary

	Improving robustness of dimension estimates with implicit rank minimizing autoencoders
	Introduction
	Formulation
	Results
	Dimension estimates for a library of systems
	Hierarchical clustering

	Summary

	Conclusions
	General summary
	Future work
	Symmetry charting applied to pipe flow
	Regularizing using dropout
	Contrastive learning with symmetries
	Forecasting and hierarchical clustering
	IRMAE-WD-B in more complex cases

	References

