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Abstract

In Chapter 1, I develop a theory of optimal interval division for capacity-constrained problems in

which a continuum is divided into finitely many intervals. Examples include the location of public

facilities by a social planner, the distribution of product characteristics by firms, coarse matching, and

bounded memory. Optimal interval division refers to the problem of finding the interval partition of a

given continuum maximizing an associated value, constrained by the number of classes. The value of

each finite interval partition is derived by summation from a basic primitive that I call a cell function

defined over all subintervals. I identify an important and common property of cell functions: they

are submodular over the interval structure. This yields the following results. First, the maximum

value exhibits decreasing marginal returns in the number of classes, and converges rapidly with an

additional condition. Second, I uncover a novel sandwiching property: when allowing an extra class,

the new optimal cut- offs are more spread in the sense that each new cut point lands in a different

original partition element. Third, I show that a submodular optimal interval division problem can

often be interpreted as scalar quantization with a general error function, despite arising from seemingly

unrelated contexts like coarse matching.

In Chapter 2, I develop a multi-dimensional sufficient condition for the interval dominance order

in Quah and Strulovici (2009), as well as a simple and unified proof by the method of convex cones.

My new ingredient is the notion of a diagonally increasing (DI) path. DI paths admit an intuitive

interpretation as the freedom of downwards switching within some contexts. Applications of this

extension include optimal switching time and monotone pragmatics.

In Chapter 3 (with Lones Smith and Peter Srensen), we give a welfare analysis of the traditional

herding model in which individuals ignore future informational gains to others in their discrete action

choices. We explore what happens when individuals optimally internalize this gain. The resulting

social planner’s problem is a Bayesian optimal experimentation exercise. Herding is socially efficient,

but occurs less readily. A simple reward scheme for selfish individuals can implement socially effi-

cient behavior. Under a robust new information log-concavity condition, efficiency entails contrarian

behavior individuals should optimally lean against taking the myopically more popular actions. Our

sufficient condition also precludes informational cascades.
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1 Optimal Interval Division

1.1 Introduction

Numerous economic problems involve a continuum divided into finitely many classes and choices or

services that are class-targeted, due to various capacity constraints. For example, consider Hotelling

City, in which residents are distributed along a (linear) interval. The mayor first distributes finitely

many merchants along this interval, then the residents buy a commodity from the closest merchant.

As a consequence, the residents are finitely partitioned into intervals so that everyone in a given

subinterval buys from the same merchant. The Hotelling story corresponds to real problems like loca-

tion of public facilities by a social planner or the distribution of finitely many product characteristics

by firms. I discuss other examples later, including coarse matching [Wilson, 1989, McAfee, 2002],

bounded memory [Dow, 1991], and mechanism design with limited communication [Rogerson, 2003,

Chu and Sappington, 2007].1

In this paper, I develop a theory of optimal interval division for capacity-constrained problems.

In my framework, the value of each finite interval partition of a given continuum is derived by sum-

mation from a basic primitive that I call a cell function defined over all the subintervals. Optimal

interval division refers to the problem of finding the interval partition maximizing the associated

value, constrained by the number of classes (i.e. partition elements).

For instance, in the Hotelling story, suppose that the mayor distributes the merchants to minimize

the aggregate transportation cost. I recast the mayor’s problem as an optimal interval division

problem. For each line segment, I ask what is the negative minimum total transportation cost for its

residents for one merchant to serve them. This gives the cell function. The value of each finite interval

division of Hotelling City is a sum of the cell function over the partition elements.2 We optimally

choose the interval partition where the allowed number of partition elements is the number of the

merchants. This determines an optimal division of Hotelling City. Finally, the merchants are located

optimally in each segment.

1The interval partition structure also appears in Crawford and Sobel [1982]. The relation between optimal interval
division and cheap talk is discussed later in the paper.

2I focus on continuous distributions, so there is no problem caused by subintervals sharing common endpoints.
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I identify an important and common property on cell functions: they are submodular over the

interval structure. Submodularity first implies that dividing an interval into two subinterval is always

profitable: the sum of the two subinterval values weakly exceeds that of the interval. Submodularity

further asserts that the marginal gain to dividing an interval decreases as the interval shrinks.

Submodularity allows me to explore two fundamental questions for optimal interval division. First,

how does the maximum value change with the number of classes? I show that if the cell function is

submodular, then the maximum value exhibits decreasing marginal returns in the number of classes.

This result applies to a large class of economic situations and subsumes a few existing results as

special cases.3 For a different thrust, I provide a simple sufficient condition on cell functions under

which the maximum value converges rapidly, more precisely, converges as the inverse square of the

number of classes. The convergence result addresses the question posed by Rogerson [2003] for costly

procurement.4

The second basic question is how do optimal cut-offs change with the number of classes? I uncover

a novel sandwiching property: when allowing an extra class, the new optimal cut-offs are more spread

compared with the original optimal ones in the sense that each new cut point lands in a different

original partition element. This helps elucidate the effect of capacity constraints on economic behavior,

or the welfare consequences of relaxing capacity constraints. For instance, in the Hotelling story, the

sandwiching property implies that residents in extreme locations always benefit from more merchants,

since they pay lower transportation costs. For residents with non-extreme locations, the welfare effect

of more merchants is indeterminate.5

Finally, by a characterization theorem, I show that a submodular optimal interval division problem

can often be interpreted as a Hotelling story with a general transportation cost function, despite arising

3As an easy corollary, the “greedy algorithm” [Fox, 1966] is commonly valid for the optimal assignment among
multiple projects, e.g., assigning a fixed number of merchants among multiple linear cities.

4Comparing Wilson [1989] and McAfee [2002], Rogerson [2003] says: “the mathematical structure of these mod-
els is somewhat different than the mathematical structure of the contracting models, so the results do not transfer
immediately. However, it seems possible that there is a more general result lurking underneath all of these results.”

5For an example of the effects of capacity constraints on economic behavior, assume the continuum as a space of
signal realizations of the net return of some risky asset. In this case the partition structure captures what is later
recalled [Dow, 1991]. Each interval partition is a different possible memory scheme. Now assume that in period one,
a small investor chooses a memory scheme with a given partition size. In period two, he sees the realized partition
element and then decides how much to invest in the risky asset. I pose a behavioral question: How does memory
capacity affect the investment behavior?
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from seemingly unrelated contexts like coarse matching.

The remainder of the paper is organized as follows. I briefly review the existing literature. In

Section 1.2, I introduce the model. Some important classes of cell functions are discussed. In Section

1.3, I introduce and interpret the notion of submodularity. Sufficient conditions for submodularity

are provided for the important classes. Section 1.4 is the main part of the paper. In Section 1.4.1,

I discuss the properties of decreasing marginal returns and quadratic convergence rate. In Section

1.4.2, I discuss the sandwiching property for optimal cut-offs. In Section 1.5, I briefly discuss the

structure of cell functions. I summarize the results in Section 1.6.

Related Literature. A notion of submodular set functions is involved in discrete resource

allocations and some known combinatorial optimization problems [Moulin, 1988, Gul and Stacchetti,

1999, Chade and Smith, 2006, Lehmann et al., 2006]. The interpretation of submodularity within our

context differs from the traditional one for utilities over commodity bundles. More importantly, the

basic questions and mathematical structures involved in the division problem are very different from

those in resource allocation.

Cell functions relate closely to the notion of capacity in measure theory [Choquet, 1954]. The latter

is widely involved in the economics of ambiguity [Schmeidler, 1989, Marinacci and Montrucchio, 2004,

Lehrer and Teper, 2008]. Cell functions capture exactly what we need to know to find the optimal

interval division, while capacity within this context contains redundant information.6 In addition, for

cell functions, submodularity and other properties are much easier to obtain. In many cases, simple

calculus reveals much about cell functions. This is not true for capacity.

The theory of optimal interval division developed here applies to the following specific problems:

scalar quantization in information theory [Oliver et al., 1948, Lloyd, 1982, Max, 1960], coarse matching

[Wilson, 1989, McAfee, 2002, Shao, 2011], bounded memory [Dow, 1991], and mechanism design with

limited communication [Rogerson, 2003, Chu and Sappington, 2007, Bergemann et al., 2012, Wong,

2014].

In information theory and quantization, Oliver, Pierce, and Shannon [1948] among others show

6The domain of capacity is commonly required to be a σ-algebra or an algebra or minimally, closed under the oper-
ations of union and intersection. In contrast, the domain of cell functions, i.e. the collection of all closed subintervals,
is not closed even under the operation of union.
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that the average distortion with the squared error measure by using a uniform quantizer and n classes

tends to 0 asymptotically at an order of 1/n2.7 Wilson [1989], Shao [2011], and Wong [2014] within

various specific economic contexts rediscover similar results. Dow [1991] first observes decreasing

marginal returns in a numerical example, but suspects its generality. Within the context of nonlinear

pricing, Wong [2014] first shows that the monopolist’s value exhibits decreasing marginal returns.

McAfee [2002], Rogerson [2003] and Chu and Sappington [2007] among others show that the gain

from very coarse schemes (two classes) may be large. The large gain from very coarse schemes relies

on highly special closed-form assumptions.

It is interesting to note that Crawford and Sobel [1982] contains a sandwiching property for

equilibrium cut-offs in their model. There it is a direct consequence of their monotone conditions on

equilibrium equations (their M and M′ conditions). In contrast, the sandwiching property here arises

as a basic feature from maximizing a coarse value with submodular cell functions.

Finally, in the context of observational learning, Smith, Sørensen, and Tian [2012] discuss how

optimal cut-offs change with respect to prior beliefs and show that their objective function is super-

modular in belief cut-offs. Their observation relies crucially on linear utilities. More importantly,

their objective function is not the coarse value discussed here, since the partition size there has to be

fixed.

1.2 The Model and Some Examples

1.2.1 The Model

Let P = {[a, b] : 0 ≤ a ≤ b ≤ 1} be the collection of all the closed subintervals of [0, 1], with a

generic element denoted by I. We refer to each element in P as a cell. Let R̃ = R ∪ {+∞}.

Definition 1. A cell function v maps P to R̃ with v([z, z]) = 0 for each z in [0, 1].

Let X0 = {1}. For each n ≥ 1, let Xn = {x ∈ [0, 1]n : x1 ≤ . . . ≤ xn}. Each x in Xn partitions

the interval [0, 1] into n + 1 (perhaps trivial) cells. To simplify notation, put x0 = 0 and xn+1 = 1.

7The most important non-asymptotic results are the basic optimality conditions and iterative-descent algorithms for
quantizer design, discussed by Lloyd [1982] and Max [1960] among others. See Gray and Neuhoff [1998] for an excellent
review.
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A cell function v induces a coarse value for each finite interval division of [0, 1] by summation, which

we denote by V . Formally,

V (x) =
n∑
k=0

v([xk, xk+1]) (1)

for each n ≥ 0 and x in Xn.

Optimal interval devision refers to the constrained optimization problem

V n = sup
x∈Xn

V (x). (2)

In (2), the allowed number of partition elements n corresponds to the capacity constraint. For instance,

in the Hotelling story, it is the number of merchants that the mayor affords to distribute. For each

n, let X∗(n) = arg max
x∈Xn

V (x). We are interested in how V n and X∗(n) change with n.

1.2.2 Two Important Classes

I now discuss two basic examples of cell functions induced by decision problems and matching

problems respectively. The latter is attributed to McAfee [2002].

A decision problem is defined as a collection {dµt = u(θ, t)dF}t∈T , where F a distribution function

over [0, 1] and for each t, u(θ, t) is in L1(dF ). The decision problem is atomless if F is atomless. A

cell function v is induced by an atomless decision problem {u(θ, t)dF}t∈T if for each cell I, we have

v(I) = sup
t∈T

∫
I

u(θ, t)dF. (3)

In (3), we may view T as a set of actions. For each t among T , u(θ, t) is the utility from action t,

depending on the type θ. The value v(I) arises from choosing an action t among T so as to maximize

the total utility over I weighted by F . The Hotelling story discussed before is a special case of (3).

Two additional examples are provided as below.

Example (Bounded Memory). In Dow [1991], a consumer observes the price of an item from the

first seller (θ ∈ [0, 1]) in period 1, but is able to recall it only among finitely many partition intervals

in period 2, when he observes the price offered by the second seller (p ∈ [0, 1]). In period 2 and based
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on his memory of the price offered by the first seller, the consumer decides whether to buy the item

from the second seller or return to the first seller. In period 1 and before his observation of the price

offered by the first seller, the consumer decides how to efficiently use his limited memory so as to

minimize his expected payment of the item. Let F be the distribution function of the possible prices

offered by the first seller and G, the one of the prices offered by the second seller and assume that

prices are drawn independently. The negative expected payment for each memory scheme x in Xn is

given by

V (x) =
n∑
k=0

W [(

∫ xk+1

xk

θdF )/(

∫ xk+1

xk

dF )]

∫ xk+1

xk

dF,

where

W (z) = −
∫ 1

0

min{z, p}dG.

Note that W in () is convex. Thus by convex duality, we can rewrite () as

V (x) =
n∑
k=0

sup
t∈T

∫ xk+1

xk

[θt+ y(t)]dF,

where {θt+ y(t)}t∈T is the collection of supporting lines of W . It is a coarse value with (3) as its cell

function where u(θ, t) is linear in θ for each t.

Example (Costly Procurement). In Bergemann et al. [2012] and Wong [2014], a continuum of types

(θ in [0, 1]) with the distribution function F is divided into finitely many classes, and the qualities

of some service are class-targeted. The utility function for each type θ is given by w(θ, t) + p where

t ∈ [0, 1] is the quality of the service at the choice of social planner, and p the transfer the agent

receives. Assume that w is supermodular with w(θ, 0) = 0. Let c(t) with c(0) = 0 be the social cost

incurred by providing the service at the quality of t. Suppose that the social planner only affords

to provide at most n different qualities. The maximal surplus is achieved by maximizing the upper

coarse value among Xn with (3) as its cell function where u(θ, t) = w(θ, t)− c(t).8

8The maximal surplus is not achieved by maximizing the coarse value among Xn−1 with (3) as its cell function
where u(θ, t) = w(θ, t)− c(t). Because the surplus from the extremely lower types is negative, by precluding them from
service (the planner can do this by pricing properly), social welfare increases. The surplus loss by using coarse value
instead of upper coarse value could be large when n is small.
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Now I turn to coarse matching [Wilson, 1989, McAfee, 2002]. Consider a two-sided matching

of men and women. Suppose that the types are random variables Y and Z, and without loss of

generality that these are uniformly distributed on [0, 1]. Let u(y, z) over [0, 1]2 be the value arising

from matching the type y of man with the type z of woman. Assume that u is integrable with respect

to Lebesgue measure. Given cut-offs x in Xn, matching with n+ 1 priority classes means associating

Y values in [xk, xk+1] with Z values in [xk, xk+1] randomly for each k. The social value of matching

is given by the coarse value with the cell function

vm(I) =

∫
I

[∫
I
u(y, z)dz

m(I)

]
dy, (4)

where m(·) denotes Lebesgue measure.

1.3 Cell Division and Submodularity

1.3.1 Submodularity

In this section, I identify a common and important effect of division of cells.

Definition 2. A cell function v is submodular if for each cell I1 and I2 with I1 ∩ I2 6= ∅, we have

v(I1 ∩ I2) + v(I1 ∪ I2) ≤ v(I1) + v(I2). (5)

For each cell I = [a, b] and c in I, denote by ∆v(c, I) = [v([a, c])+v([c, b])]−v(I) the marginal gain

(of the cut-off c) to dividing the cell I into wo cells. Note that if the cell function v is submodular,

then it is always profitable to divide cells, that is, ∆v(c, I) ≥ 0 for each cell I and c in I. The following

observation offers an intuitive and equivalent interpretation of the property of submodularity.

Observation 1. A cell function v is submodular if and only if for each cell I and I ′ with I ′ ⊂ I and

c in I ′, we have

∆v(c, I ′) ≤ ∆v(c, I). (6)

Proof. It is easy to verify that the property of submodualrity holds if and only if (6) holds for each c in
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I ′ and I ′ ⊂ I where I and I ′ share a common ending point. The general case follows from transitivity.

Q.E.D.

In (6), the marginal gain to dividing a cell decreases as the cell shrinks. For instance, in the

example of location of merchants, the larger the segment is, the larger the transportation cost saved

by introducing an additional merchant. Observation 1 adapts to our context a related equivalence

relation in combinatorial optimization [Lovasz, 1982]. The interpretation of submodularity within our

context is different from the traditional one for utilities over commodity bundles [Moulin, 1988, Gul

and Stacchetti, 1999].9

Now I turn to some standard notions in lattice analysis. Let “∨” and “∧” be the join and meet

operators over the n-dimensional Euclidean space (Rn,≥).10 Following Topkis [1978] or Milgrom and

Shannon [1994], a subset B ⊆ Rn is a sublattice (of Rn) if for each x and x′ in B, we have both

x∧x′ ∈ B and x∨x′ ∈ B. Note that each Xn as previously defined is a sublattice of Rn. A function f

over B is supermodular over B, if for each x and x′ in B, we have f(x∨x′) + f(x∧x′) ≥ f(x) + f(x′).

Observation 2. A cell function is submodular if and only if it is supermodular over X2 where each

(x1, x2) in X2 denotes the cell [x1, x2].

Based on it, the following observation is immediate.

Observation 3. The coarse value V is real valued and supermodular over each Xn if and only if its

cell function is real-valued and submodular.

1.3.2 Sufficient Conditions for Submodularity

I now show that with quite standard conditions, the cell functions for the two basic examples in

Section 1.2 are submodular. A real-valued function g(θ) over [0, 1] is weakly single crossing (WSC)

9The related notions for set functions in resource allocation are as follows. Let Ω be a finite set of items, and 2Ω

the power set of Ω, that is, the collection of all the possible bundles. A decision maker has a utility function u over 2Ω.
We say that u is submodular, if u(A ∪ B) + u(A ∩ B) ≤ u(A) + u(B) for each A and B in 2Ω; u exhibits decreasing
marginal returns if u(B∪{c})−u(B) ≤ u(A∪{c})−u(A) for each A ⊂ B in 2Ω and c 6∈ B. The property of decreasing
marginal returns here refers to that the marginal utility by adding a new item to the bundle B increases as B shrinks.
The classic equivalence relation states that u is submodular if and only if it exhibits decreasing marginal returns.

10For two points x and x′ in Rn, x′ ≥ x if x′i ≥ xi for each i; x′ > x if x′ ≥ x and x′ 6= x. For x and x′ in Rn,
x ∧ x′ = (min{x1, x

′
1}, · · · ,min{xn, x′n}), and x ∨ x′ = (max{x1, x

′
1}, · · · ,max{xn, x′n}).
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(in θ) if θ′ > θ and g(θ) > 0 imply g(θ′) ≥ 0. A decision problem {u(θ, t)dF}t∈T is WSC ordered if

for each t 6= t′, either u(θ, t)− u(θ, t′) is WSC, or u(θ, t′)− u(θ, t) is WSC.

Proposition 1 (Decision Problem). The cell function induced by a WSC ordered and atomless deci-

sion problem is submodular.

Proof. Let {dµt = u(θ, t)dF}t∈T be a WSC ordered atomless decision problem. Fix two cells I1 and

I2 with I1 ∩ I2 6= ∅. I show that for each t and t′ in T , we have

µt(I1 ∩ I2) + µt′(I1 ∪ I2) ≤ sup
t′′∈T

µt′′(I1) + sup
t′′∈T

µt′′(I2). (7)

First consider the case µt(I1 ∩ I2) ≤ µt′(I1 ∩ I2). We have

µt(I1 ∩ I2) + µt′(I1 ∪ I2) ≤ µt′(I1 ∩ I2) + µt′(I1 ∪ I2)

= µt′(I1) + µt′(I2).

Thus (7) holds. Next, consider the case µt(I1 ∩ I2) > µt′(I1 ∩ I2). By the weakly single crossing

condition, we have either µt(I1 ∩ IC2 ) ≥ µt′(I1 ∩ IC2 ) or µt(I2 ∩ IC1 ) ≥ µt′(I2 ∩ IC1 ). Without loss of

generality, consider the first case. We have

µt(I1 ∩ I2) + µt′(I1 ∪ I2) = µt(I1 ∩ I2) + µt′(I1 ∩ IC2 ) + µt′(I2)

≤ µt(I1 ∩ I2) + µt(I1 ∩ IC2 ) + µt′(I2)

= µt(I1) + µt′(I2).

Thus (7) holds. Since t and t′ in (7) are arbitrary, sup
t∈T

µt(I) is submodular. Q.E.D.

Hopenhayn and Presscott [1992] shows that the supremum over some dimensions of a supermodular

multi-dimensional function remains supermodular over the remaining dimensions. Proposition 1 is

not implied by their observation.11

11Suppose that T is a subinterval of the reals. The integral
∫ x2

x1
u(θ, t)dF as a function of (x1, x2, t) is not supermodular

over X2×T except the trivial case that all the actions are essentially the same. To see it, first consider the non-ordered
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Lemma 1 (Matching). Suppose that u in (4) is supermodular. Then vm is submodular.

The proof of Lemma 1 is appendicized. The single crossing condition involved in Proposition 1 is

satisfied for most common decision problems [Lehman, 1988, Milgrom and Shannon, 1994, Persico,

2000, Athey, 2002]. The condition of supermodularity for matching is standard in the matching

literature [Becker, 1973]. Thus, cell functions are commonly submodular.

1.4 General Properties

This section is the main part of the paper. The two basic questions of optimal interval division (2)

mentioned in the introduction are addressed. Also, the structure of cell functions is discussed with a

characterization theorem.

1.4.1 Value

We say the division problem (2) exhibits decreasing marginal returns if for each n ≥ 1, V n+1 +

V n−1 ≤ 2V n holds.

Theorem 1 (DMR). Let v be submodular. Then (2) exhibits decreasing marginal returns.

Proof of Theorem 1: Given x in Xn+1 and x′ in Xn−1, let x′′ = (0, x′, 1) in Xn+1. We have

V (x) + V (x′) = V (x) + V (x′′)

≤ V (x ∨ x′′) + V (x ∧ x′′) (8)

≤ 2V n.

The first inequality in (8) follows from Observation 3. The second inequality in (8) holds since the

last dimension of x ∨ x′′ equals 1 and the first dimension of x ∧ x′′ equals 0, hence both x ∨ x′′ and

x∧ x′′ are equivalent to some elements in Xn. Since x and x′ are arbitrary, the desired result follows.

pair (x1, x2, t
′) and (x1, x

′
2, t) with x′2 > x2 and t′ > t. Supermodularity requires

∫ x′
2

x2
u(θ, t′)dF ≥

∫ x′
2

x2
u(θ, t)dF .

Next, consider the non-ordered pair (x′1, x2, t) and (x1, x2, t
′) with x′1 > x1 and t′ > t, supermodularity requires∫ x′

1

x1
u(θ, t′)dF ≤

∫ x′
1

x1
u(θ, t)dF . This implies that for each x2 > x1 in [0, 1], we have

∫ x2

x1
u(θ, t′)dF =

∫ x2

x1
u(θ, t)dF and

thus u(·, t) = u(·, t′) a.e. in F .
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Figure 1: Failure of Decreasing Marginal Returns.

Q.E.D.

The intuition for Theorem 1 is clear from the preceding discussion of the submodular effect of

cell division, i.e., Observation 1. Theorem 1 implies a large class of coarse values obeying decreas-

ing marginal returns, including single crossing ordered decision problems by Proposition 1, coarse

matching with supermodular primitive by Lemma 1, and the class of decision problems involved in

Theorem 4 in Section 1.5.12

Example (Failure of Decreasing Marginal Returns). Consider the decision problem (3). Assume

that F is uniform and there are four actions: T = {0, 1, 2, 3}. Action 0 is safe with u(θ, 0) ≡ 0.

The utilities for the actions 1, 2, 3 are depicted respectively by the green, red, and blue lines in

Figure 1. The areas of A, B, C, D, E, F are the same, denoted by ∆ > 0. In this case, we have

V 2 − V 1 = 2∆ > V 1 − V 0 = ∆ and decreasing marginal returns fail. One may check that the cell

function in this case is not submodular, because the actions 0 and 2 are not weakly single crossing

ordered. On the other hand, if we drop action 0 and consider instead the set of actions T ′ = {1, 2, 3},

we have V 2− V 1 = 2∆ = V 1− V 0 and decreasing marginal returns are restored, despite a knife-edge

case. This is because the set of actions T ′ = {1, 2, 3} is weakly single crossing ordered and the induced

cell function now is submodular.

12Within the context of nonlinear pricing, Wong [2014] shows that the monopolist’s value exhibits decreasing marginal
returns. Wong [2014]’s observation is a special case of the single crossing ordered decision problems.
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Figure 2: Relative Gain as Integral of v12. The difference V (x)− V 0 is the area enclosed by the solid
line with v12 as the density function. The difference V ∞ − V 0 is the area of the whole triangle X2

with v12 as the density function.

Next, I turn to the problem of convergence. Assume that the cell function v as a function over X2

is second-order cross differentiable and that v12 is integrable. If v is submodular, then v12 is positive

(i.e. v12 ≥ 0). The following observation says that the cross derivative function v12 precisely captures

the potential gains in the involved division problem. Let V ∞ = lim
n→∞

V n.

Lemma 2. Suppose that v12 is positive. Then we have

V (x)− V 0 =
n∑
k=1

∫ xk

0

∫ xk+1

xk

v12dz1dz2, (9)

for each n ≥ 1 and x in Xn, and thus

V ∞ − V 0 =

∫
X2

v12dx1dx2. (10)

Proof. It is easy to verify directly that (9) holds, which gives (10) by v12 ≥ 0. Q.E.D.

For each x in Xn, the difference V ∞−V (x) is simply the summation of the areas of the n+1 small

triangles with v12 as the density function, as illustrated by Figure 2. Based on this observation, I now

provide a simple sufficient condition on the cell function such that V n converges at the rate of the

inverse square of the number of classes. A function f over X2 is M-sublinear, if f(x1, x2) ≤M(x2−x1)
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for each (x1, x2) in X2.

Theorem 2 (Inverse-Square Convergence). Suppose that v12 is positive and M-sublinear. Then for

each n, we have

V ∞ − V n <
M

6n2
.

Proof. For each n, let x(n) = (1/(n+ 1), . . . , k/(n+ 1), . . . , n/(n+ 1)). By (9) and (10) in Lemma 2,

we have

V ∞ − V n ≤ V ∞ − V (x(n)) =
n∑
k=0

∫ (k+1)/(n+1)

k/(n+1)

∫ (k+1)/(n+1)

z1

v12dz2dz1.

The desired result then follows from the observation that for each k,

∫ (k+1)/(n+1)

k/(n+1)

∫ (k+1)/(n+1)

z1

v12dz2dz1 ≤
∫ (k+1)/(n+1)

k/(n+1)

∫ (k+1)/(n+1)

z1

M(z2 − z1)dz2dz1

≤ M

6(n+ 1)3
.

Q.E.D.

Theorem 2 provides a simple unified perspective on the inverse-square convergence rate (see Ap-

pendix 1.7.2 for discussion).

1.4.2 Cut-offs

Two points x in Xn and x′ in Xn+1 are sandwiched if for each k, we have

x′k < xk < x′k+1. (11)

For instance, in the sequence of uniform cut-offs {(1/(n+ 1), . . . , n/(n+ 1))}n∈N, the cut-offs for each

n and n+ 1 are sandwiched.

We say that x and x′ are weakly sandwiched if both inequalities in (11) are replaced by “≤”.

Proposition 2 below implies that the weak sandwiching property holds commonly for extreme optimal

cut-offs, based on Observation 3, and the fact that cell functions are commonly submodular.
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Proposition 2 (A Weak Sandwiching Property). Let v be real-valued, continuous, and submodular.

Then for each n ≥ 1, the greatest (least) element in X∗(n) and the greatest (least) element in X∗(n+1)

are weakly sandwiched.

Before addressing the sandwiching property, I shall now pause to discuss some regular properties

of cell functions. For each cell I, let X2
I = {(x1, x2) ∈ I2 : x1 ≤ x2}. A cell function v has nontrivial

convex support, if there is a cell [b, c] with b < c such that v is strictly supermodular over X2
[b,c] and

modular over both X2
[0,b] and X2

[c,1]. In this case, call [b, c] the support of v, which we denote by

supp(v).

A cell function v is regular if 1) it is real-valued, continuous and submodular with nontrivial convex

support; and 2) v over X2

supp(v)
is partially differentiable and each vi increases strictly in x−i; and 3)

v(0, z) is both left-hand and right-hand differentiable in z over (0, 1) with v′(0, z+) ≥ v′(0, z−) and

the same also applies to v(z, 1). A sufficient condition for regularity is that v as a function over X2

is partially differentiable and each vi increases strictly in x−i or simply but more strongly v12 > 0. In

Appendix 1.7.5, I show that regular cell functions are common for the important classes.

Theorem 3 (A Sandwiching Property). Let v be regular. Then each x in X∗(n) and x′ in X∗(n+ 1)

are sandwiched for each n ≥ 1.

Crawford and Sobel [1982] derive a sandwiching property for equilibrium cut-offs (their Lemma

3), which is a consequence of their monotone assumptions on equilibrium equations (their M and M′

conditions).13 In contrast, the sandwiching property here arises as a basic feature from maximizing

supermodular coarse values. The example below illustrates the difference between optimal division

and equilibrium analysis.

Example (Efficient Language vs Equilibrium Language). Consider a version of Crawford and Sobel

[1982] where the sender and the receiver share the same preference [Lipman, 2009, Gerhard Jager and

Riedel, 2011]. Player 1 observes the state θ, a random draw from [0, 1] according to a continuous and

positive density function f . He then chooses a message m from a set M with |M | = n + 1. Player

13To the best of my knowledge, the most general conditions for this kind of monotonicity, given by Szalay [2012],
require smooth location forms of the utilities and log-concave densities.
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2 observes this message but not θ and then chooses an action t from T . Assume that the messages

themselves are costless. Both agents have the same utility function u(θ, t) which is twice continuously

differentiable with u22 < 0 and u12 > 0. The set of efficient cut-offs corresponds to arg max
x∈Xn

V (x) and

V is the coarse value with (3) as its cell function where F admits the density function f . By Lemma 9

in Appendix 9 and Theorem 3, the efficient cut-offs are sandwiched with partition sizes. The set of

equilibrium cut-offs are the ones satisfying the indifference condition:

u(xk, t
∗(xk−1, xk)) = u(xk, t

∗(xk, xk+1)),

where t∗(xk−1, xk) solves max
t∈T

∫ xk
xk−1

u(θ, t)f(θ)dθ. For equilibrium cut-offs to be sandwiched, we need

the M and M′ properties in Crawford and Sobel [1982].

1.5 Characterizing Submodular Cell Functions

In this subsection, I discuss briefly the structure of cell functions. Specifically, I show that sub-

modular cell functions can often be induced by decision problems. This is based on a tight relation

between cell functions and the notion of capacity in measure theory. The latter is first discussed by

Choquet [1954].

First, I introduce some common properties of cell functions. A cell function is monotone if for

each cell I1 and I2 with I1 ⊂ I2, v(I1) ≤ v(I2). In (3), if u(θ, t) ≥ 0, then the induced cell function is

monotone. Let X2 be endowed with the city block metric ρ, i.e., ρ(x, x′) = |x1−x′1|+|x2−x′2| for each x

and x′ in X.14 A cell function v is continuous if it is continuous over (X2, ρ); v is Lipschitz continuous

if there exits some M > 0 such that for each x and x′ in X2, we have |v(x)− v(x′)| ≤Mρ(x, x′).

Next, I adapt to our context the notion of weakly filtering which is involved in the characterization

of submodular capacity [Anger, 1977]. Let Q be a subset of P .

Definition 3 (Weakly Filtering). A decision problem {dµt = u(θ, t)dF}t∈T is weakly filtering on Q,

if for each cell I and I ′ in Q with I ⊆ I ′, we have both sup
t∈T

µt(I) = µt′(I) and sup
t∈T

µt(I
′) = µt′(I

′) for

14The city block metric is just for convenience. All metrics strongly equivalent to ρ apply, including the Euclidean
metric.
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some t′ in T .

A subset Q of P is dense in P , if for each cell I in P and open set O with I ⊆ O, there exists a

cell I ′ in Q with I ⊆ I ′ ⊆ O. The main result in this section is stated below.

Theorem 4 (Characterization). Let v be a real-valued cell function. Then

1. v is submodular, continuous and monotone if and only if it can be induced by some atomless deci-

sion problem {dµn = u(θ, n)dF}n∈N weakly filtering on a dense subset of P such that u(θ, n) ≥ 0

and sup
n∈N

µn([x1, x2]) is finite and continuous over X2;

2. v is submodular and Lipschitz continuous if and only if it can be induced by some decision

problem {u(θ, n)dm}n∈N weakly filtering on a dense subset of P such that sup
n∈N
|u(θ, n)| < M <∞.

The following result applies Theorem 4 to coarse matching in McAfee [2002].

Corollary 1. Suppose that u in (4) is supermodular and bounded. Then vm can be induced by some

decision problem with the properties stated in (2) of Theorem 4.

Proof. If u in (4) is bounded, then vm is Lipschitz continuous. The desired result then follows from

Lemma 1 and Theorem 4. Q.E.D.

1.5.1 Proof of Theorem 4

Let K be the collection of all the compact subsets of [0, 1], and R+ = {z ∈ R : z ≥ 0}. Following

Anger [1977] or Adamski [1977], a capacity c maps K to R+ such that 1) c(∅) = 0, and 2) c(K) ≤ c(K ′)

if K ⊂ K ′, and 3) for each K in K and each ε > 0, there exists an open neighborhood O of K, such

that c(K ′)− c(K) < ε for every K ′ in K with K ⊆ K ′ ⊂ O. A capacity c is submodular if for each A

and B in K, we have c(A ∩B) + c(A ∪B) ≤ c(A) + c(B). Submodular capacity is the focus in many

analyses [Choquet, 1954]. A cell function v admits submodular capacity extension if there exists a

submodular capacity c such that v and c coincide at each cell.

Lemma 3 (Cell Function and Capacity). A cell function admits atomless submodular capacity exten-

sion if and only if it is continuous, submodular and monotone.
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A measure µ is dominated by a capacity c, if for each K ∈ K, we have µ(K) ≤ c(K). Given a

capacity c, let U(c) be the collection of all the positive measures dominated by c. The next result,

due to Anger [1977] and Adamski [1977] among others, says that a submodular capacity is upper

envelopes of the positive measures dominated by it.

Lemma 4 (Anger [1977], Adamski [1977]). Let c be a submodular capacity. Then c(K) = max
µ∈U(c)

µ(K)

for each K ∈ K. Moreover, for each K ⊂ K ′ in K, there exists a µ in U(c) such that µ(K) = c(K)

and µ(K ′) = c(K ′).

Proof of the only if part of (1) in Theorem 4: Let v be continuous, monotone and submodular, and

let c be the submodular capacity extension of v in Lemma 3. By Lemma 4, for each cell I, we have

v(I) = max
µ∈U(c)

µ(I).

Now let Q be the collection of all the cells with rational ending points, which is dense in P .

For each pair of cells (I, I ′) in Q2 with I ⊆ I ′, we choose a positive measure µ in U(c) such that

µ(I) = v(I) and µ(I ′) = v(I ′). Such a µ exists by Lemma 4. Denote this collection of measures by

{µn}n∈N, which is weakly filtering on Q.

Next, I show that for each cell I, we have

v(I) = sup
n∈N

µn(I). (12)

(12) holds if I = [z, z] for some z. Now consider the non-degenerate cells. For each ε > 0, there exists

a cell I ′ in Q with I ′ ⊆ I and v(I ′) > v(I)− ε, due to continuity of v. Let µn′(I
′) = v(I ′). Since µn′

is positive, we have µn′(I) ≥ µn′(I
′) > v(I)− ε and so

v(I) ≥ sup
n∈N

µn(I) > v(I)− ε. (13)

Since ε is arbitrary, (13) implies (12). The desired result then follows from (12), the continuity of v,

and the fact that each µn is absolutely continuous with respect to
∑∞

n=1(1/2n)µn.

Q.E.D.
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The notion of cell functions is perfectly suited for optimal interval division in the sense that it

captures exactly what we need to know about the problem to find the optimal interval division. In

contrast, capacity within this context contains redundant information. Furthermore, for cell functions,

submodularity or other properties are much easier to obtain. In many cases, simple calculus reveals

lots about cell functions – this is not true for capacity.

1.6 Conclusion

In this paper, I developed a theory of optimal interval division for capacity-constrained problems.

My companion paper applies some of the analysis here to language and mechanism design with limited

communication [Tian, 2015]. This paper focuses on scalar cases. Whether and how the results here

extend to multidimensional contexts are important and deserve further efforts.

1.7 Appendix

1.7.1 Proof of Lemma 1

Proof. Let x1 < x′2 < x′′2 in [0, 1]. Since u is integrable over [0, 1]2, the cell function vm(x1, x2) =

(
∫

[x1,x2]2
u(y, z)dydz)/(x2 − x1) as a function of x2 is absolutely continuous and thus differentiable

almost everywhere over [x′2, x
′′
2]. Next, by rewriting the integral

∫
[x1,x2]2

u(y, z)dydz, we have

∫ x2

x1

{∫ t

x1

[u(y, t) + u(t, y)]dy
}
dt = vm(x1, x2)(x2 − x1). (14)

Both sides of (14) are differentiable at x2 if and only if vm is differentiable there, with

∂vm(x1, x2)

∂x2

=
1

(x2 − x1)2

∫
[x1,x2]2

w(x2, y, z)dydz, (15)

where

w(x2, y, z) = u(y, x2) + u(x2, z)− u(y, z). (16)



19

Since u is supermodular, the function w is increasing in (y, z) over [0, x2]2 for each x2. Thus by (15) we

have v′m(x′1, x2) ≥ v′m(x1, x2) for almost every x2 in [x′2, x
′′
2] whenever x1 < x′1 < x′2. So the difference

vm(x1, x
′′
2)− vm(x1, x

′
2) =

∫ x′′2

x′2

∂vm(x1, x2)

∂x2

dx2, (17)

which follows from Theorem 7.20 in Rudin [1987], increases in x1. This shows that the cell function

vm is supermodular over X2. Q.E.D.

1.7.2 Applications of Theorem 2

I now apply Theorem 2 to the important classes. First consider decision problem (3). Suppose

that in (3) F admits continuous and positive density function f , and T is a compact interval of the

reals, and u(θ, t) over [0, 1]× T is twice continuously differentiable with u22 < 0 and u2 strictly single

crossing in θ for each t. For each x1 < x2 in [0, 1], let t∗(x1, x2) solve (3) for I = [x1, x2]. By the

Envelope Theorem, we have

v12(x1, x2) = u2(x2, t
∗(x1, x2))f(x2)

∂t∗(x1, x2)

∂x1

,

which is α-Lipschitz continuous. Thus by Theorem 2, the inverse-square convergence rate holds for

decision problems with the conditions stated here.15 Turning to matching (4), Shao [2011] generalizes

Wilson [1989] and shows that if u in (4) is twice differentiable and u12 ≥ 0 and is bounded, then the

inverse-square convergence rate holds for coarse matching. One can verify that the condition in Shao

[2011] implies that the cross derivative of vm is α-Lipschitz continuous, and thus is a special case of

Theorem 2.

15Bergemann et al. [2012] consider a special case with linear quadratic utilities. Wong [2014] considers the case with
separable utilities. They both consider more general distribution functions.
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1.7.3 Proof of Proposition 2

Lemma 5. Let V be a coarse value with regular cell function. Then for each x in X∗(n) and x′ in

X∗(n+ 1), we have

{x ∨ x′−(n+1), x ∧ x′−1} ⊆ X∗(n) and {(x′1, x ∨ x′−1), (x ∧ x′−(n+1), x
′
n+1)} ⊆ X∗(n+ 1).

Proof. By V (x′)−V (x∧x′−(n+1), x
′
n+1) ≥ 0 and the supermodularity of V , we have V (x∨x′−(n+1), 1)−

V (x, 1) ≥ 0 and so x ∨ x′−(n+1) ∈ X∗(n). If V (x′) − V (x ∧ x′−(n+1), x
′
n+1) > 0, then V (x ∨ x′−(n+1)) −

V (x) > 0, contradicting x ∈ X∗(n). Thus V (x′)− V (x ∧ x′−(n+1), x
′
n+1) = 0 and (x ∧ x′−(n+1), x

′
n+1) ∈

X∗(n+ 1). The rest is similar and omitted.

Q.E.D.

Proof of Proposition 2. Since V is continuous and supermodular and each Xn is compact, each X∗(n)

is a nonempty compact sublattice of Rn, by Corollary 2 in Milgrom and Shannon [1994]. Thus for

each n ≥ 1, both the greatest element and the least element in X∗(n) exist (e.g., Corollary 2.3.2 in

Topkis [1998]). Let x be the greatest element in X∗(n), and x′ the greatest element in X∗(n+ 1). If

x 6≤ x′−1, we have x′ < (x′1, x ∨ x′−1), which contradicts that x′ is the greatest element in X∗(n + 1),

since (x′1, x ∨ x′−1) is in X∗(n + 1) by Lemma 2. If x′−(n+1) 6≤ x, we have x < x ∨ x′−(n+1), which

contradicts that x is the greatest element in X∗(n), since x ∨ x′−(n+1) is in X∗(n) by Lemma 2. Thus

x′k ≤ xk ≤ x′k+1 for each k. The case of the least element is similar and omitted. Q.E.D.

1.7.4 Proof of Theorem 3

A subset of Rn, say, Z, is strictly totally ordered, if for each y 6= z in Z, either y << z or z << y

where the notation “z << y” means zk < yk for each k.

Lemma 6. Let V be a coarse value with regular cell function. Then ∀n ≥ 1, X∗(n) is strictly totally

ordered.

Proof. Step 1. I first show that for each x ≤ x′ in X∗(n), either x = x′ or x << x′. By Lemma 7
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below and Corollary 2 in Milgrom and Segal [2002], the FOC applies:

v2(xk−1, xk) + v1(xk, xk+1) = 0, k = 1, . . . , n. (18)

If x′k = xk for some k between 1 and n, then we have x′k+1 = xk+1 and x′k−1 = xk−1, by the condition

that each vi increases strictly in x−i. Repeating this logic, we have x′ = x.

Now let x 6= x′ in X∗(n). Since X∗(n) is a sublattice, x ∨ x′ ∈ X∗(n). Since x ∨ x′ ≥ x, Step 1

implies either x ∨ x′ = x or x << x ∨ x′. The former case implies x′ ≤ x and thus x′ << x by Step 1

and x 6= x′. The latter case implies x << x′. Q.E.D.

Lemma 7. Let V be a coarse value with a regular cell function v. Then for each x in X∗(n) and k,

xk is in the interior of supp(v) with xk 6= xj whenever k 6= j.

Proof. First, ∆v(c, I) > 0 for each non-degenerate I ⊆ supp(v) and c in the interior of I. As a result,

for each x in X∗(n), we have xk 6= xj for k 6= j among {0, 1, . . . , n, n+ 1}.

Now suppose that supp(v) = [b, 1] where b > 0. I show x1 > b. Since v is modular over [0, b], if we

substitute by b the components of x which are strictly smaller than b, the new cut-off vector remains

optimal. Thus it suffices to show that for each x ∈ X∗(n), we have x1 6= b. Suppose the contrary that

x1 = b. Then b solves max
z∈(0,x2)

v(0, z) + v(z, x2). Now I argue that for each e in (b, x2), b also solves

max
z∈(0,e)

v(0, z) + v(z, e). (19)

Suppose not. Since v is modular over [0, b], there exists some q in (b, e) such that v(0, q) + v(q, e) >

v(0, b) + v(b, e), or equivalently v(q, e) − v(b, e) > v(0, b) − v(0, q). Then by q > b, x2 > e and

submodularity of v, we have v(q, x2) − v(b, x2) > v(0, b) − v(0, q) or equivalently v(0, q) + v(q, x2) >

v(0, b) + v(b, x2). This is a contradiction. Thus (19) holds. By Corollary 2 in Milgrom and Segal

[2002], FOC holds at b in (19) for each e in (b, x2]. But this is impossible, since by regularity, v1(b, e)

increases strictly in e over (b, c). The other cases are similar and omitted. Q.E.D.

Proof of Theorem 3: Suppose that v is regular with supp(v) = [b, c]. Let x in X∗(n) and x′ in

X∗(n+1). By Lemma 6 and (x∧x′−(n+1), x
′
n+1) ∈ X∗(n+1) in Lemma 2, we have x∧x′−(n+1) = x′−(n+1)
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or equivalently x′−(n+1) ≤ x. Next, by the submodularity of v, we have v1(xn, c) ≤ v1(xn±, 1). Then

we have v1(xn, xn+1) < v1(xn±, 1) by xn+1 < c in Lemma 7. Step 1 in the proof of Lemma 6 then

implies x′−(n+1) << x. The argument for x << x′−1 is similar and omitted. Thus x′k < xk < x′k+1.

Q.E.D.

Proof of Lemma 3

Proof. (Necessity). Let v be a cell function and c its submodular capacity extension. By continuity

of c from above, the cell function v(x1, x2) over X2 is left continuous at x1 and right continuous at

x2. To see that v is right continuous at x1, suppose x1 < x2, and let {zn} be any sequence convergent

to x1 from above with each zn < x2. By submodularity and monotonicity of c, we have

v(x1, x2)− v(x1, zn) ≤ v(zn, x2) ≤ v(x1, x2). (20)

Since h(z) = v(x1, z) as a function of z is right continuous at z = x1, we have lim
n→∞

v(x1, zn) = 0 by

v(x1, x1) = 0, and so lim
n→∞

v(zn, x2) = v(x1, x2) by (20). Similarly, v is left continuous at x2. The

properties of submodularity and monotonicity are satisfied automatically.

(Sufficiency). (Step 1). Let O be the collection of all the open sets which are finite unions of

disjoint open intervals, including also the empty set. O is closed under the operations of union and

intersection. We first define a function c̃ over O through summation of values of cells. That is, for

each U as the union of disjoint open intervals {(an, bn)}1≤n≤N , let c̃(U) =
N∑
n=1

v([an, bn]).

Observation 4. 1) c̃((a, b)) = v([a, b]) for each a ≤ b, and 2) for each cell I and each open set U in

O covering I, we have c̃(U) ≥ v(I) by the monotonicity of v and thus v ≥ 0.

I now show that c̃ is submodular over O. Let U1 be the union of disjoint open intervals {(an, bn)}n∈N1

and U2 the union of {(an, bn)}n∈N2 . Choose the index sets N1 and N2 such that N1 ∩N2 = ∅. Denote

U1∪U2 as the union of disjoint open intervals {(cn, dn)}n∈N , and U1∩U2 as the union of {(en, fn)}n∈N4 .

We show

c̃(U1 ∪ U2) + c̃(U1 ∩ U2) ≤ c̃(U1) + c̃(U2). (21)
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First, we can express each (cn, dn) as

(cn, dn) = ∪Jnj=1(anj , bnj), (22)

where 1) each nj ∈ N1 ∪ N2 and 2) if Jn > 1, then bnj > anj+1
for each j, and if nj ∈ Ni, then

nj+1 ∈ N−i for i = 1, 2. Let N3 = ∪n∈N{n1, . . . , nJn}.

Applying the general submodular inequalities in Choquet [1954] to (22) successively, we have

v([cn, dn]) +
Jn−1∑
j=1

v([anj+1
, bnj ]) ≤

Jn∑
j=1

v([anj , bnj ]). (23)

Summing (23) across n in N , we have

c̃(U1 ∪ U2) +
∑

n∈N :Jn>1

Jn−1∑
j=1

v([anj+1
, bnj ]) ≤

∑
n∈N3

v([an, bn]). (24)

Note that each (anj+1
, bnj) in the second summation on the left hand side of (24) equals some (en, fn).

Next, for each (en, fn) that does not appear in the second summation on the left hand side of (24),

we have (en, fn) = (an, bn) for some n in N1 ∪N2 and n 6∈ N3. This implies that (21) holds.

(Step 2). Define the function c over K by covering and using elements in O, that is, c(K) =

inf{c̃(U) : U ∈ O, K ⊆ U} for each K in K. The function c is well-defined because each compact set

can be covered by some element in O. By the definition, c is monotone and continuous from above

with c(∅) = 0 and thus a capacity. In addition, by Observation 4 and continuity of v, c coincides with

v on the cells.

I now show that c is submodular over K. For each K1 and K2 in K, let U1 in O cover K1 and U2

in O cover K2. Then U1 ∪ U2 covers K1 ∪ U2, and U1 ∩ U2 covers K1 ∩K2. Thus we have

c(K1 ∪K2) + c(K1 ∩K2) ≤ c̃(U1 ∪ U2) + c̃(U1 ∩ U2) ≤ c̃(U1) + c̃(U2).



24

Since U1 and U2 are arbitrary open covers of K1 and K2 respectively, we have

c(K1 ∪K2) + c(K1 ∩K2) ≤ c(K1) + c(K2). (25)

Q.E.D.

Finishing the Proof of Theorem 4

Proof of the If Part of (1) in Theorem 4: Let {µn}n∈N satisfy the conditions in (1), and v(I) = sup
n∈N

µn(I).

First, we have v([z, z]) = 0 for each z ∈ [0, 1] and so v is a cell function. The properties of continuity

and monotonicity of v hold trivially. Before proving the property of submodularity, I first point out

the following fact. Since v is continuous over X2 and X2 is compact, v is uniformly continuous over

X2. Then since v([z, z]) = 0 for each z in [0, 1], we have that for each ε > 0, there exists a δ > 0 such

that for each I with m(I) < δ, v(I) < ε. Since each µn is dominated by v, we have µn(I) < ε.

Now fix arbitrary numbers a < b ≤ c < d in [0, 1] and ε > 0. Choose δ > 0 such that for each

cell I with m(I) < δ, we have µn(I) < ε/4 for each n in N. Next, choose two cells I1 = [e, f ] and

I2 = [g, h] in Q such that 1) e ≤ a < g ≤ b ≤ c ≤ h < d ≤ f , and 2) m([e, f ]) −m([a, d]) ≤ δ and

m([g, h])−m([b, c]) ≤ δ. Now let µn′ in {µn}n∈N be such that µn′([e, f ]) = v([e, f ]) and µn′([g, h]) =

v([g, h]). Then we have

v([a, d]) + v([b, c]) ≤ v([e, f ]) + v([g, h]) = µn′([e, f ]) + µn′([g, h])

= µn′([e, h]) + µn′([g, f ]) = µn′([a, c]) + µn′([b, d])

+ [µn′([e, a]) + µn′([g, b]) + µn′([c, h]) + µn′([d, f ])]

≤ v([a, c]) + v([b, d]) + ε.

Since ε > 0 is arbitrary, we have v([a, d]) + v([b, c]) ≤ v([a, c]) + v([b, d]). Since [a, c] and [b, d] are

arbitrary two cells with nonempty intersection, the desired result follows. Q.E.D.

Lemma 8. If a cell function is monotone, submodular and Lipschitz continuous, then it can be induced

by some decision problem {u(θ, n)dm}n∈N with sup
n∈N
|u(θ, n)| < M <∞.
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Proof. Let v satisfy the conditions in the above lemma with Lipschitz constant M , and {dµn =

u(θ, n)dµ}n∈N the decision problem inducing v in part (1) of Theorem 4. For each µn, the fact that

µn(I) ≤ v(I) ≤ Mm(I) for each cell I implies that µn is absolutely continuous with respect to the

Lebesgue measure m with dµn/dm ≤M . Q.E.D.

Proof of (2) in Theorem 4: The if part of (2) is same as the if part of (1). I show the only if part

of (2). Consider the cell function v′(I) = v(I) + M ′m(I) with M ′ > M . As a summation of two

submodular and Lipschitz continuous cell functions (M ′m(I) is modular and Lipschitz continuous), v′

is submodular and Lipschitz continuous. For each cell I ⊂ I ′, we have v′(I ′)− v′(I) = [v(I ′)− v(I)] +

M ′[m(I ′) − m(I)] ≥ (M ′ −M)[m(I ′) − m(I)] ≥ 0. Thus v′ is monotone. By Lemma 8, v′ can be

induced by some decision problem {dµn = u(θ, n)dm}n∈N weakly filtering on a dense subset Q of P ,

with sup
n∈N
|u(θ, n)| < M for some M <∞. As a result, v(I) can be induced by {[u(θ, n)−M ′]dm}n∈N.

Q.E.D.

1.7.5 Regular Cell Functions

A real-valued function g(θ) over [0, 1] is single crossing (SC) if θ′ > θ and g(θ) > 0 imply g(θ′) > 0;

strictly single crossing (SSC) if θ′ > θ and g(θ) ≥ 0 imply g(θ′) > 0; A utility function u(θ, t) over

[0, 1] × T where T is a nondegenerate and compact subinterval of the reals, is regular if 1) it is

continuous and SC ordered and 2) partially differentiable in t with u2 continuous in (θ, t), SSC in

θ and strictly decreasing in t, and 3) max
t∈T

u(θ, t) has interior solution for θ over a non-degenerate

subinterval of [0, 1].

Lemma 9 (Regular Cell Functions). The cell function v in (3) is regular if F admits continuous and

positive density and u is regular. The cell function vm in (4) is regular, if u in (4) is continuous and

strictly supermodular.

Proof. Suppose that max
t∈T

u(θ, t) admits interior solutions for each θ in (b, c) with b < c. Then v in (3)

is continuous and submodular with non-trivial convex support [b, c]. The existence of the directional

derivative of v′(0, z±) follows simply from the continuity of u and Theorem 3 in Milgrom and Segal

[2002]. Theorem 1 in Milgrom and Segal [2002] implies the right size comparison.



26

Figure 3: Illustration of (26) and (27) in the Proof of Lemma 9.

Next, for each cell I = [x1, x2] with b ≤ x1 < x2 ≤ c, (3) also admits a unique interior solution,

denoted by t∗(x1, x2), which is continuous in (x1, x2) by the continuity of u2. Since both u(θ, t)f(θ) and

t∗(x1, x2) are continuous, the Envelope theorem applies, and so v over X2
[b,c] is partially differentiable

with

∂v(x1, x2)

∂x2

= u(x2, t
∗(x1, x2))f(x2).

Now I show that for each x1 < x′1 < x2 in [b, c],

∂v(x′1, x2)

∂x2

>
∂v(x1, x2)

∂x2

, (26)

by showing

u(x2, t
∗(x′1, x2)) > u(x2, t

∗(x1, x2)). (27)

Suppose the contrary: u(x2, t
∗(x′1, x2)) − u(x2, t

∗(x1, x2)) ≤ 0. First, we have t∗(x′1, x2) > t∗(x1, x2),

since u2 is SSC in θ. Then the function u(θ, t∗(x′1, x2)) − u(θ, t∗(x1, x2)) is SC in θ, since u is SC

ordered and t∗(x′1, x2) > t∗(x1, x2). Then since u(x2, t
∗(x′1, x2)) − u(x2, t

∗(x1, x2)) ≤ 0, we have

u(θ, t∗(x′1, x2))−u(θ, t∗(x1, x2)) ≤ 0 for each θ in [0, x2). This contradicts that t∗(x′1, x2) solves (3) for

I = [x′1, x2]. So (27) and thus (26) hold. The same also applies to v1(x1, x2).
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The case of vm follows easily from (14) and (15) in the proof of Lemma 1.

Q.E.D.
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2 Comparative Statics for Cut-offs

2.1 Introduction

Milgrom and Shannon [1994] derived an important method of comparative statics, greatly ex-

tending the monotone methods introduced in Topkis [1978]. They imposed a strong single crossing

property (SCP) on the objective function that guaranteed comparative statics valid for every possible

lattice choice set. In an important extension, Quah and Strulovici [2009] (QS) relaxed the robustness

condition, arguing that the choice sets in many cases are intervals. Their new condition, interval

dominance Order (IDO), was thus weaker than the SCP.

In this note, I show that by taking path integral along the so-called diagonally increasing path,

the scalar logic in QS’s main sufficient conditions for IDO (Proposition 2 and 3) can be powerfully

extended to cases like comparative statics for cut-offs.

2.2 QS’s scalar result

Let X be a subset of the real line. All the intervals involved below are relative to X16. Following

QS, for two real-valued functions f and g defined on X, we say that g dominates f in interval

dominance order (denoted by g �I f) if f(x′′)− f(x′) ≥ (>)0 =⇒ g(x′′)− g(x′) ≥ (>)0 for all x′′ > x′

in X satisfying that f(x′′) ≥ f(x) for all x in [x′, x′′].

The Propositions 2 and 3 in QS are two important and easily verifiable sufficient conditions for

interval dominance order (IDO) in scalar cases. I now provide a quick unified proof of them. Consider

an integral inequality of Banks [1963]. Let f and φ be measurable functions over a measure space

(X,µ). Assume φ bounded below, with f and fφ integrable. For y ∈ R, define the upper set of φ by

Uφ(y) = {x ∈ X : φ(x) ≥ y},17 and put Lφ(y) = X − Uφ(y).

Lemma 10 (Banks (1963)). If
∫
Uφ(y)

fdµ ≥ 0, ∀y ∈ R, then
∫
X
fφdµ ≥ (inf φ)

∫
X
fdµ.

When X ⊆ R and φ is (weakly) increasing, the upper sets are simple: either Uφ(y) = [x,∞) or

Uφ(y) = (x,∞) for some x ∈ X. But if
∫

[x,∞)
fdµ ≥ 0 for all x ∈ X, then

∫
(x,∞)

fdµ ≥ 0 for all

16For example, [x′, x′′] = {x ∈ X : x′ ≤ x ≤ x′′}, and [x′,∞) = {x ∈ X : x ≥ x′}.
17All the results in this comment hold if we instead define Uφ(y) = {x ∈ X : φ(x) > y}.
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x ∈ X, by the Dominated Convergence Theorem. Thus:

Corollary 2. Assume X ⊆ R and φ increasing. If
∫

[x,∞)
fdµ ≥ 0 for all x ∈ X, then

∫
X
fφdµ ≥

(inf φ)
∫
X
fdµ.

I now give a self-contained proof of Lemma 10, differing from Banks’s proof for bounded φ, which

appealed to a layer cake representation. Let IA be the indicator function of A.

Proof. since any nonnegative bounded function lies in the closed convex cone generated (in the sup

norm) by the indicator functions of the upper sets, we have
∫
X

(φ−inf φ)fdµ ≥ 0, and thus
∫
X
fφdµ ≥

(inf φ)
∫
X
fdµ. Next, since any unbounded φ is the limit of truncations φILφ(y) +yIUφ(y), we may apply

the Dominated Convergence Theorem. Q.E.D.

Corollary 2 subsumes Lemmas 1 and 4 in QS as special cases, and thus affords a unified concise

treatment of Proposition 2 and 3 in QS. Let (X,µ) be a positive measure space, where X ⊆ R. Let

V1(x) = c1 +
∫

(−∞,x)
u1dµ and V2(x) = c2 +

∫
(−∞,x)

u2dµ, where u1 and u2 are integrable and c1, c2 ∈ R.

Proposition 3 (Quah and Strulovici [2009]). If u2 ≥ u1φ a.e.-µ for some strictly positive and in-

creasing φ, then V2 �I V1.

Proof. let x′′ > x′ in X with V1(x′′) ≥ V1(x) for all x in [x′, x′′]. I need to show that V2(x′′) ≥ V2(x′)

and V2(x′′) > V2(x′) if additionally V1(x′′) > V1(x′).

V2(x′′)− V2(x′) =

∫
[x′,x′′)

u2(z)dµ ≥
∫

[x′,x′′)

φ(z)u1(z)dµ. (28)

For every x in [x′, x′′),
∫

[x,x′′)
u1(z)dµ = V1(x′′)−V1(x) ≥ 0. By Corollary 2, we have

∫
[x′,x′′)

φ(z)u1(z)dµ ≥

φ(x′)
∫

[x′,x′′)
u1(z)dµ, since φ is increasing. Thus by (28), V2(x′′) − V2(x′) ≥ φ(x′1)(V1(x′′) − V1(x′)),

since
∫

[x′,x′′)
u1(z)dµ = V1(x′′)− V1(x′). This implies the desired result, given φ > 0. Q.E.D.

2.3 Comparative statics for cut-offs

In this section, I extend the scalar logic in Proposition 3 to problems with multiple cut-offs. Let

(Rn,≥) be the n-dimensional Euclidean space, 1 the unit vector, and “∨”, “∧” the join and meet
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Figure 4: The DI path from (1, 2) to (3, 4) is the solid path; the dashed path is not DI. For an
example in R3, the DI path from (4, 2, 1) to (5, 3, 6) is given by {(4, 2, y) : y ∈ [1, 2]} ∪ {(4, y, y) : y ∈
[2, 3]} ∪ {(4, 3, y) : y ∈ [3, 4]} ∪ {(y, 3, y) : y ∈ [4, 5]} ∪ {(5, 3, y) : y ∈ [5, 6]}.

operators18 . For each x′ > x in Rn, the diagonally increasing (DI) path from x to x′ is defined as the

set {x∨ y1∧ x′ : y ∈ R}. Figure 1 illustrates the DI path from (1, 2) to (3, 4) in R2 by the solid line.

A subset X of Rn is diagonally monotone (DM) connected if for every x′ > x in X, and y ∈ R, we

have x ∨ y1 ∧ x′ ∈ X. The following are three convenient classes of DM connected sets by definition:

(a) {x ∈ In : x1 ≤ · · · ≤ xn} where I is an interval of R, such as cut-off problems; (b) products of

intervals; (c) budget sets. In the analysis below, I focus on cut-off problems with cut-offs. The results

in this section applies more generally to DM connected sets with minor adaption.

2.3.1 Optimal Switching Time

I now give an intuitive interpretation of DM connectedness within the context of optimal switching

time. Assume n+1 projects. An agent decides the optimal project switching timing, and must choose

the projects in the precise order 1, 2, . . . , n+ 1. One is only allowed to choose one project at a time,

and the decision to quit a project is irreversible. The choice set is given by X = {x ∈ [0,∞)n|x1 ≤

· · · ≤ xn}, which rules that project k is implemented during the time interval [xk−1, xk], if we interpret

x0 = 0 and xn+1 =∞.

An important observation in this example is the freedom of downwards switching. That is, for each

x′ > x in X, and each t ∈ [0,∞), it is always feasible for the agent to follow x′ till time t, and deviate to

18For two points x and x′ in Rn, x′ ≥ x if x′i ≥ xi for each i; x′ > x if x′ ≥ x and x′ 6= x. x ∧ x′ =
(min{x1, x

′
1}, · · · ,min{xn, x′n}), and x ∨ x′ = (max{x1, x

′
1}, · · · ,max{xn, x′n})
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x since then19. If the agent does so, he actually uses the thresholds x∨ t1∧x′. For example, let n = 3,

x = (1, 4, 7), and x′ = (2, 6, 8). Suppose that the agent plans to follow x′ till t = 5 and to deviate to

x since then. He will use project 1 over [0, 2), project 2 over (2, 5), project 3 over (5, 7) and project 4

over (7,∞). This plan is equivalent to choosing the thresholds (2, 5, 7) = (1, 4, 7) ∨ 51 ∧ (2, 6, 8). 20

To summarize, in this example, for each x′ > x in X, and each y ∈ R+, the vector x ∨ y1 ∧ x′ is

the thresholds that one uses if he follows x′ till t = y and switches to x since then. The DI path from

x to x′ is the set of all the possible thresholds, due to the freedom of switching from x′ to x at any

time one wants. The property of DM connectedness of X is equivalent to the freedom of downwards

switching for any x′ > x in X.

Following Quah and Strulovici [2007], for two real-valued functions f and g defined on X, we say

that g dominates f in interval dominance order (denoted by g �I f) if f(x′′) − f(x′) ≥ (>)0 =⇒

g(x′′)− g(x′) ≥ (>)0 for all x′′ > x′ in X satisfying that f(x′′) ≥ f(x) for all x in [x′, x′′]. Let ≥S be

the common strong set order.

Proposition 4 (Optimal Switching time). If 0 < δ1 < δ2, then

arg max
x∈X

Vδ1(x) ≥S arg max
x∈X

Vδ2(x).

Proof. I first show Vδ1 �I Vδ2 . Let x′′ > x′ in X be such that Vδ2(x
′′) ≥ Vδ2(x) for all x ∈ [x′, x′′]. I

need to show that Vδ1(x
′′) ≥ Vδ1(x

′) and Vδ1(x
′′) > Vδ1(x

′) if additionally Vδ2(x
′′) > Vδ2(x

′). Let w′(t)

and w′′(t) be the flow payoff associated respectively with x′ and with x′′. That is, w′(t) = uk(t), for

t ∈ [x′k−1, x
′
k], and w′′(t) = uk(t), for t ∈ [x′′k−1, x

′′
k]. Then

Vδ1(x
′′)− Vδ1(x′) =

∫ ∞
0

[w′′(t)− w′(t)]e−δ2te(δ2−δ1)tdt. (29)

By previous discussion, for each y ≥ 0, we have x′ ∨ y1 ∧ x′′ ∈ [x′, x′′] with Vδ(x
′ ∨ y1 ∧ x′′) =

19I am very grateful of a referee for pointing out this observation to me. His comments motivate me to write this
subsection.

20As comparison, “upwards switching” might not be feasible. That is, if one plans to follow x till some time t and
switch to x′ since then, he might revisit some already quited projects, which, however, is not allowed. For example, if
one follows x till t = 5 and switch to x′ since then. He will use project 1 over [0, 1), project 2 over (1, 4), project 3 over
(4, 5) and project 2 over (5, 6), project 3 over (6, 8) and project 4 over (8,∞). In this plan, the project 2 is quited first
at t = 4, and then revisited at t = 5. Thus this specific upwards switching plan is not feasible.
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∫ y
0
w′′(t)e−δtdt+

∫∞
y
w′(t)e−δtdt. Thus, for each y ≥ 0,

∫ ∞
y

[w′′(t)− w′(t)]e−δ2tdt = Vδ2(x
′′)− Vδ2(x′ ∨ y1 ∧ x′′) ≥ 0. (30)

Given δ1 < δ2, the function e(δ2−δ1)t ≥ 1 is strictly increasing. Thus by Corollary 2, (29) and (30)

implies that Vδ1(x
′′)−Vδ1(x′) ≥

∫∞
0

[w′′(t)−w′(t)]e−δ2tdt = Vδ2(x
′′)−Vδ2(x′). It follows that Vδ1 �I Vδ2 .

Next, X is a sub-lattice of Rn. Besides, each
∫ xk
xk−1

uk(t)e−δtdt as a function of (xk−1, xk) is modular

over {(xk−1, xk) : 0 ≤ xk−1 ≤ xk}. Vδ is a summation of some modular functions, hence modular too.

The desired result follows from the Theorem 2 in Quah and Strulovici [2007]. Q.E.D.

By Proposition 4, one will switch later for all projects when he is more patient. The key step,

i.e., Vδ1 �I Vδ2 , cannot be derived by pairwise comparison using the scalar results in QS, i.e., their

Proposition 2 or 5. To see the difficulty involved, let n = 2 and suppose that (3, 4) is optimal for δ1.

We want to show that (3, 4) is better than (1, 2) for δ2. By the scalar results in QS, (3, 4) is better

than (1, 4) for δ2. Hence we are done if we could further show that (1, 4) is better than (1, 2) for δ2.

But this could fail.

2.3.2 A Sufficient Condition for IDO

The interpretation of freedom of down-wards switching is lost when we go beyond problems like

optimal switching time. However, DI paths still play a crucial role in understanding the monotone

comparative statics for cut-offs.

For each n ≥ 1, let Xn = {x ∈ [0, 1]n : x1 ≤ . . . ≤ xn}. Each x in Xn partitions the interval

[0, 1] into n + 1 (perhaps trivial) cells. To simplify notation, put x0 = 0 and xn+1 = 1. Recall that

in Tian(2015a), a cell function v is defined over X2. A cell function v induces a coarse value for each

finite interval division of [0, 1] by summation, which we denote by V . Formally,

V (x) =
n∑
k=0

v([xk, xk+1])

for each n ≥ 0 and x in Xn.
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Let V1 and V2 be two coarse values respectively with v1 and v2 as their cell functions. I now give

a sufficient conditions for V1 and V2 to be ordered in IDO over each Xn.

Proposition 5. (IDO for Coarse Value). Suppose that for each a ∈ I, both vi(z, a) and vi(a, z) as

functions of z are absolutely continuous with v′2(a, z) ≥ φ(z)v′1(a, z) and v′2(z, a) ≥ φ(z)v′1(z, a) for

some common strictly positive and increasing function φ over [0, 1]. Then we have V2 �I V1 over Xn

for each n ≥ 1.

The proof of Proposition 5 follows from taking path integral along the DI path, which I omit.

Smith, Srensen, and Tian (2012) applied a version of Proposition 5 to get a comparative static result

in belief cut-off rules. Tian (2015a) applied Proposition 5 to derive a general result about how the

meaning of words changes with the prior belief in a model of efficient language, called monotone

pragmatics.
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3 Informational Herding, Optimal Experimentation, and Con-

trarianism

3.1 Introduction

In the informational herding model, an infinite sequence of individual agents must each choose an

action from a common finite menu. Payoffs depend on an uncertain state of the world. Everyone has

identical preferences, and a private signal. Individuals also observe the full history of prior actions.

Bikhchandani et al. [1992] and Banerjee [1992] showed that a herd arises — eventually, all agents

make the same choice, possibly unwise. Smith and Sørensen [2000] noted that a herd on an ex post

suboptimal action can occur if and only if the private signals are of uniformly bounded precision.

In this paper, we undertake a general welfare analysis of this informational herding model, formally

addressing the intuitive and oft-claimed notion that the equilibrium is inefficient. For observational

learning involves an informational externality, since every action partially conveys a hidden private

signal, and individuals do not account for the value of signaling information to successors. Shedding

light on the informational herding externality, this paper completely characterizes the efficient forward-

looking behaviour overseen by a social planner maximizing the discounted sum of expected utilities.

We argue that this planner seeks to influence actions in a contrarian fashion, leaning against the

popular actions, so that their lumpy actions will better reflect their private information.

The essence of the informational herding model is that private information cannot be directly

communicated or shared; only observed actions can signal the private information. So we assume the

planner sees realized actions but not private signals, and can dictate to each agent how to map hidden

private signals into observable actions from the finite menu.

The planner’s dynamic decision problem is a Markovian function of the public belief on the state

of the world, derived from the action history. The Bellman principle aptly captures how the plan-

ner trades off current payoffs against the benefits to later agents of more informative observational

learning. The planner’s desire to signal information to posterity may entail drastic current payoff

sacrifices. An agent might have to take myopically dominated actions, or take actions in a myopically

20This section is joint with Lones Smith and Peter Sorøsen.
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suboptimal order (see §3.5).

In Proposition 6, we first show that the planner’s optimal policy induces each action for an interval

of private signals, or equivalently, of posterior beliefs. Proposition 7 devises a new Vickrey-Clarke-

Groves mechanism to implement the planner’s optimum. This simple mechanism internalizes the

externality caused by him each individual, rewarding him solely on the basis of his and his successor’s

actions. We show how this one-stage look-ahead scheme works because the successor’s action is

informative about the true state. Since we deduce in Lemma 11 that value functions are convex,

Corollary 6 shows that the socially optimal incentive scheme in fact rewards anyone who is mimicked,

and punishes any who are not. This scheme is reminiscent of the way that academia rewards authors

for citations.

In exploring the optimal rule, we first investigate how the discount factor influences social learning.

The touchstone of the herding model is the cascade set, to which public beliefs almost surely converge.

In this limit, actions cease to reflect private information, and social learning stops. When the precision

of private signals is uniformly bounded, at least two non-empty cascade sets have a non-empty interior.

Proposition 8 shows that while extreme cascade sets have a nonempty interior, they strictly shrink

in the discount factor; near perfect patience, the interior cascade sets vanish altogether, while the

extreme sets converge to points. So when myopic agents first herd, the planner wishes that they

would not. But herding eventually occurs with the slightest level of impatience. In other words,

the herding phenomenon does not owe to the selfishness of agents, but instead to the difficulties of

signaling private information through finitely many actions.

We next explore in Proposition 9 how the planner’s optimal interval rule for an agent’s posterior

belief responds to the public belief, for any fixed discount factor. The cutoff posterior belief separating

two actions is constant for myopic agents. But in the planner’s problem, this cutoff rises in the public

belief, discouraging taking the high action when the public beliefs favor it. We call this contrarian

since individuals skew choices away from the publicly more likely actions. Contrarianism thus makes

the continuation belief less responsive to the change of the public beliefs. For a rough intuition

why this is socially optimal, assume a higher public belief. Then posterior beliefs lie above a given

threshold level with greater chance. But since a more likely action conveys a weaker signal about
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private signals, the social planner deters this action by raising the cutoff posterior belief.

Our paper makes generally useful methodological contributions for experimentation and social

learning. We introduce and heavily exploit convex duality as an analytic tool for value functions in

experimentation. It allows us to capture future values using subtangents to the convex value function

— a method which should prove computationally useful too.

Towards a general theory of finite action experimentation, Proposition 6 generalizes Gittins’ indices

to our finite action experimentation setting, where the payoffs of “arms” are not independent: The

planner always chooses the action with the highest welfare index. As an application, note that a

convex value function need not be differentiable. But Corollary 2 proves it is differentiable where it

counts: at optimal continuation public beliefs.

Bayesian updating in the social learning world is somewhat subtle. If the public belief rises, one

might think that after seeing a fixed high action, the posterior public belief should rise too. But this

intuition fails, since willingness to take the high action no longer offers as strong an endorsement

of the high state; however, the proof of our contrarianism result depends on securing the intuitive

monotonicity. For the planner must trade-off an inference from seeing an action against the current

individual’s payoff loss at the marginal belief. By assuming a log-concave density for the unconditional

distribution of the private log-likelihood ratio, we secure in Lemma 3 a monotone relation between

the prior and posterior public belief. In light of Smith and Sørensen [2000], no cascade starts in finite

time in the standard herding model given this robust signal property (Corollary 4).

A final technical contribution is that our proof methodology exploits recent methods in monotone

comparative statics introduced in Quah and Strulovici [2007]. This is important since there are

generally no conditions that ensure differentiable convex value functions.

Related Literature. Banerjee’s proposed remedy for the externality was to exclude early

agents from seeing others’ actions, rendering independent signals of their actions.21 The rationale

for this corrective supposes that the welfare loss of the early agents was dwarfed by the gains to

successors. Our analysis builds on the assumption that the planner attaches a positive weight to each

agent’s utility. In fact, our planner has Banerjee’s policy at his disposal, but it is suboptimal. This

21This idea has been further explored by Sgroi [2002]. Closer to our spirit, Doyle [2002] considers the social planner’s
problem in the endogenous-timing herding model of Chamley and Gale [1994].
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owes to our contrarianism result, as the team does better when the decision rule responds strictly to

changes in the action history.

Vives [1993] explores a social learning model with a fundamentally different sequential structure,

and Gaussian information. There, a continuum of privately informed agents act in every period, and

then observe a noisy market price statistic summarizing the actions. Reminiscent of the informational

herding externality, the more accurate is the historical signal about the state, the less current actions

reveal about private information. Addressing this externality, Vives [1997] studies a team problem in

the market setting. He proves that team members choose to reveal more of their private information.22

Our more elaborate contrarianism comparative statics result here finds that teams shy away more from

the more popular actions.23 Vives also finds that the optimal long-run Gaussian precision growth is

as low as in the selfish model. This may seem analogous to our finding that cascade sets have a non-

empty interior in the team setting, but there is no clear logical connection. Vives’ experimentation

problem, eg., never yields incomplete learning.

The planner’s optimum is a team equilibrium (Radner [1962]), where everyone maximizes the sum

of discounted expected utilities. In an equilibrium among these altruistic agents, successors cannot

fully interpret a deviation by an agent who chooses an unanticipated map of private signals into

actions. They can observe only the action, but not the underlying map. This fact simplifies the

analysis of the planner’s optimum — for she can likewise ignore any previous attempt to change the

optimal map from signals to actions.

In Dow [1991], a consumer first observes a signal realization, but in the next period can only recall

the signal’s partition interval. In the second and final period, another signal realization is seen, and

a choice is made. The consumer’s optimal determination of the first-period coarse partitioning of the

signal is like our planner’s problem. Our planner’s Markovian decision problem can be analysed in a

two-period setting similar to Dow’s.

The incorrect herding outcome is intuitively related to the familiar failure of complete learning in

22In a related setting, Medrano and Vives [2001] describe behaviour that reveals less private information as ‘contrar-
ianism.’ We find it more natural that contrarian behaviour leans against the public belief.

23Vives always employs the normal learning model, ruling out results like ours on the distributional shape’s impor-
tance. On the other hand, that model allows the long-run properties of learning to be characterized by the speed with
which the precision approaches infinity. Our analysis offers no analogy.
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optimal experimentation. Rothschild’s (1974) analysis of the two-armed bandit is a classic example:

An impatient monopolist optimally experiments with two possible prices each period, with fixed

uncertain purchase chances for each price. Rothschild showed that the monopolist (i) eventually

settles down on one price, and (ii) selects the less profitable price with positive probability. This is

analogous to (i) an action herd occurs, and (ii) with positive chance is ex-post incorrect. Yet, Easley

and Kiefer [1988] prove that complete learning generically arises with finite state and action spaces.

This is puzzling, since the herding outcome arises in a model with finite actions and states.

The formulation of our social planner’s problem offers a resolution of this puzzle. Even though

each agent chooses from a finite action set, our social planner has no access to private signals, and so

cannot dictate the choice among any two actions. Rather, for each history, he chooses a continuously

defined rule that maps agents’ private beliefs into actions. In the myopic planner case with a zero

discount factor, we obtain the original herding model. Hence, we can conclude that the herding

outcome is formally equivalent to incomplete learning in an experimentation model with a continuous

choice space.

The paper is organized as follows. We introduce the constrained efficient herding model in §3.2,

and our convex duality formulation in §3.3. Section 3.4 characterizes optimal behavior, thereby

introducing our novel welfare indexes; §3.5 offers some counterintuitive examples of optimal strategies

that we must avoid. We show how cascade sets shrink as patience rises in §3.6, and finally motivate

and explore contrarianism in §3.7. Many proofs are appendicized.

3.2 The Forward-Looking Herding Model

An infinite sequence of decision-makers (agents) n = 1, 2, . . . acts in that exogenous order, and

share a common 50-50 prior belief over two states of the world ω ∈ {L,H}.

The nth agent sees a random private signal σn about ω. The resulting posterior belief in state H is

called his private belief. In state ω, the signals are i.i.d. across agents, with cdf F ω. Assume that FH

and FL are mutually absolutely continuous, with derivative dFH/dFL = σ/(1 − σ) and so common

support supp(F ). Signals therefore never perfectly reveal the state: Accordingly, FH(σ) ≤ FL(σ),

with inequality strictly inside supp(F ).
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Abusing notation, agents choose from a finite action set A ≡ {1, . . . , A}. Action a yields common

payoff u(a, ω) in each state ω ∈ {H,L} for all agents. Action 1 is best in state L, and action A

in state H. No two action payoffs are tied in either state, and payoffs obey increasing differences:

u(1, H)− u(1, L) < u(2, H)− u(2, L) < · · · < u(A,H)− u(A,L). Still, an action might be dominated

for all beliefs over {L,H} if its payoff is low enough.

Before choosing, the n’th agent observes σn and the history of the n− 1 predecessors’ actions. He

can compute the probability distribution over histories, based on correctly conjectured predecessors’

strategies, and arrive at the public belief π ∈ [0, 1] in state H. Conditioning next on the conditional

independent private signal σ gives the posterior belief ρ ∈ [0, 1]:

ρ = r(π, σ) ≡ πσ

πσ + (1− π)(1− σ)
. (31)

The chosen action a maximizes the agent’s expected payoff ū(a, ρ)=(1−ρ)u(a, L)+ρu(a,H). At public

belief π, the private belief σ is distributed F π = πFH + (1− π)FL.

This paper modifies the herding model, and considers the game where everyone instead altru-

istically aims to maximize a measure of welfare. Specifically, we assume that an informationally

constrained social planner observes the action history, but not the private signals. A rule ξ maps

each agent’s private beliefs σ to his action a ∈ A. Let Ξ be the set of all such rules. A strategy sn for

the player in period n is a map that assigns a rule to each action history, and s = (s1, s2, . . .) denotes

a strategy profile. The social planner chooses s to maximize the expected average present value of

utility stream un, obtaining value

vδ(π) = sup
s
E[(1− δ)

∞∑
n=1

δn−1un] (32)

This informational herding model assumes δ=0. We study the altruistic case δ∈(0, 1).

3.3 Dynamic Programming and Convex Duality

Adapting Radner [1962], we call a perfect Bayesian equilibrium of this game a team equilibrium.

Yet still there are many team equilibria, and in this paper we focus on the efficient team equilibrium,
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since a social optimum is a team equilibrium for any discount factor δ < 1. To see why this is so,

suppose that all but one agent uses a sequentially rational optimal strategy s, but that some agent

n has a strictly better reply ξ̃ at a history. Then the planner can improve his value at that history

by fully mimicking this deviation, i.e. by (i) using rule ξ̃ in the first period and (ii) continuing with

s as if sn had been applied at stage n with this history (as the team would not have detected the

deviation). This one-shot deviation principle version contradicts optimality of the policy.

As is well-known, the socially optimal policy can be implemented as a dynamic optimization in a

Markovian fashion, in which the public belief π is the state variable. A Markov policy Υ maps from

public beliefs π ∈ [0, 1] into Ξ, so that Υ(π) is the rule taken at belief π. Given rule ξ, action a is

taken with chance ψ(a, ω, ξ) =
∫
ξ−1(a)

dF ω in state ω, and unconditionally with chance ψ(a, π, ξ) =∫
ξ−1(a)

dF π. After seeing an agent’s action a, the posterior public belief is p(a, π, ξ). If ψ(a, π, ξ) > 0,

then Bayes updating yields p(a, π, ξ) = πψ(a,H, ξ)/ψ(a, π, ξ), and the martingale property of beliefs

implies p(a, π, ξ) =
∫
ξ−1(a)

r(π, σ)dF π. When ψ(a, π, ξ) = 0, Bayes-optimal behaviour does not pin

down the off-path value of p(a, π, ξ). All behaviour that we study in the rest of the paper is supported

by any reasonable off-path belief: For instance, if ψ(a, π, ξ) = 0 then there exists σ ∈ supp(F ) such

that p(a, π, ξ) = r(π, σ).

By dynamic programming, the planner’s value function solves the Bellman equation:

v(π) = sup
ξ∈Ξ

(Tξv)(π), (33)

where the policy operator Tξ in (33) is defined for any continuation value v:

(Tξv)(π) =
A∑
a=1

ψ(a, π, ξ)[(1− δ)ū(a, p(a, π, ξ)) + δv(p(a, π, ξ))]. (34)

Lemma 11 (Convexity and Monotonicity). The value function vδ(π) is a bounded convex and con-

tinuous function of public beliefs, and weakly increases in the discount factor δ. All subtangents to vδ

have slopes bounded between u(1, H)− u(1, L) and u(A,H)− u(A,L).

It follows that the value function v is the upper envelope of its supporting tangent lines, as
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described by the compact tangent space to v, denoted Tv ⊂ R2, where tangents are parameterized by

their slope and intercepts. Since ū and τa are affine functions, and since p(a, π, ξ) =
∫
ξ−1(a)

r(π, σ)dF π,

we can rewrite operator (34) as

(Tξv)(π) = max
(τ1,...,τA)∈T Av

A∑
a=1

ξ−1(a)[(1− δ)ū(a, r(π, σ)) + δτa(r(π, σ))]dF π. (35)

Exchange the order of maximization in (33) to obtain the dual problem:

v(π) = max
(τ1,...,τA)∈T Av

sup
ξ∈Ξ

A∑
a=1

ξ−1(a)[(1− δ)ū(a, r(π, σ)) + δτa(r(π, σ))]dF π. (36)

As an aside, convex duality offers a computational strategy for solving the dynamic programming

problem. In the iterative process, given a value vn, the next value vn+1 is obtained in principle by

searching across all the possible rules. But the convex duality suggests an alternative faster way to

compute vn+1: The required tangent space is simply the set of all the left and right derivative lines

to vn.

In the multi-armed bandit (Bertsekas [1987], §6.5), an experimenter each period chooses one of A

actions, with uncertain independent reward distributions. Gittins [1979] solved for optimal behaviour

via index rules: Attach to each action the value of the problem with just that action and the largest

fixed retirement reward yielding indifference. Then choose the action with the highest index.

We now argue that the policy in a stationary team equilibrium admits an analogous index rule: At

public belief π and posterior ρ, an agent chooses the action a with the largest welfare index w — equal

to the social payoff as privately gauged by the agent. The index expression (37) follows from (36) in

the social optimum, but our proof derives it directly for any stationary team equilibrium.24

Proposition 6 (Optimal Behaviour via Index Rules). Fix a stationary team equilibrium Υ. For every

public belief π, there exist affine functions τa, so that the altruistic agent with private posterior belief

ρ who takes action a has expected average present value

w(a, π, ρ) = (1− δ)ū(a, ρ) + δτa(ρ). (37)

24Since by convex duality, any convex function is the upper envelope of all supporting tangents, we can extend our
theory to almost any convex value function.



42

If Υ is a social optimum, then τa is a subtangent to v at continuation belief p(a, π,Υ(π)).

Proof. Action a results in some state-contingent expected continuation value τa(ω) in state ω, i.e. the

discounted sum of future utilities. The agent’s uncontingent continuation value is given by τa(ρ) ≡

ρτa(H) + (1 − ρ)τa(L). This gives the present value expression (37). In the social optimum, the

continuation value is τa(p(a)) = v(p(a)), where p(a) = p(a, π,Υ(π)). Because the planner can always

use the same subgame strategy starting at an arbitrary public belief p as is optimal at p(a), we have

τa(p) ≤ v(p). So the affine function τa is necessarily subtangent to v at p(a).

This result reduces the infinite horizon optimization to a standard decision problem with a piece-

wise linear payoff function (37). It adds to (36) that the planner chooses τa to be tangent to v at

continuation belief p(a, π, ξ). The function τa(ρ) plays a central role for us, and admits an economic

interpretation — it is the expected value for an agent with private posterior belief ρ of the subgame

starting at public posterior belief p(a, π, ξ).

3.4 Cascade Sets and Implementation

A. Interval Rules and Cascade Sets. Call action a ∈ A active at a public belief if it is taken

with positive chance. The public belief π lies inside the cascade set Ca(δ) for action a when a is

optimal for all private beliefs σ. The certain choice of action a is optimal iff vδ(π) = ū(a, π). The

union C(δ) = ∪a∈ACa(δ) is the cascade set. Obviously, in a cascade on action a ∈ A, that action

is active. Private beliefs are unbounded if supp(F ) contains 0 and 1, and bounded if the support of

private beliefs obeys supp(F ) ⊆ (0, 1) Smith and Sørensen [2000] show that cascade sets are nonempty

iff private beliefs are bounded. This result also obtains here. Part (d) below strengthens Lemma 11:

Lemma 1. (a) The cascade set Ca(δ) for any action a is empty, a point, or a closed interval, with

0∈C1(δ) and 1∈CA(δ) for any δ∈ [0, 1), and C(δ) 6= [0, 1].

(b) With bounded private beliefs, C1(δ)=[0, π(δ)], CA(δ)=[π̄(δ), 1], for 0<π(δ)<π̄(δ)<1.

(c) With unbounded private beliefs, only the cascade sets C1(δ) and CA(δ) are nonempty.

(d) Cascade sets C(δ) weakly shrink in the discount factor δ.
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In the standard herding model, Smith and Sørensen [2000] show that limit beliefs belong to cascade

sets. We verify this still holds here in Appendix §3.11.2-B.

A belief interval rule is described by a partition of supp(F ) into possibly trivial or empty intervals

J (π) = {Ja(π)} of private beliefs for each public belief π, with action a optimal (namely, Υ(π)(a) = 1)

iff σ ∈ Ja(π). An equivalent interval rule partitions [0, 1] into possibly empty intervals of posterior

beliefs I = {Ia}, with action a optimal iff ρ ∈ Ia. The indices coincide at the boundary between

neighboring intervals: w(a, π, ρ) = w(ã, π, ρ) on the boundary ρ between Ia and Iã. These boundaries

are called thresholds.

Corollary 1. For each public belief π, an optimal interval policy I, and thus J (·), exists.

Proof. By Proposition 6, the index value of each action is affine in the posterior belief. Since the

agent chooses actions with the maximal index value, an optimal interval policy I exists for posteriors.

Since the posterior belief ρ = r(π, σ) rises in σ, any interval of posterior beliefs σ maps monotonely

into a private belief interval. So J (·) exists.

By the convex duality logic in (36), an interval rule applies for all convex continuation value

functions whose subtangents have bounded slope.

A convex value function is differentiable a.e. by convexity, but need not be everywhere differen-

tiable; this immeasurably complicates our analysis. But our welfare index formulation implies that

the value function must be smooth at any optimal continuation:

Corollary 2 (Differentiable Continuations). Given a convex private belief support supp(F ), the value

function is differentiable at all active public beliefs p(a, π, ξ), for π 6∈ C(δ).

B. Implementation of the Social Optimum. The team problem assumes that every agent

altruistically cares about posterity. If the agents are really selfish, can the planner implement the

optimal solution using a transfer scheme? Since the planner cannot observe the private signals,

transfers may only depend on the observed action history. Otherwise, in light of (37), the socially

optimal behavior could be decentralized by awarding individuals transfers equal to δτa(ρ)/(1 − δ),

depending on the posterior belief ρ.
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When the planner’s policy prescribes an interval rule that does not swap the myopic interval order,

it suffices to reward the agent on the basis of his own actions. The planner can move the selfish agent’s

threshold between each pair of actions up (or down) by taxing (or subsidizing) the action taken above

the threshold. But transfers based on the agent’s own action can never reverse the myopic ordering

of actions, and thus are not sufficient if the selfish optimal action ordering differs from the socially

optimal action ordering.25

Let M(a, π, ω) be the maximal welfare later individuals can get with the observation of a current

action a, minus the best they can get without it in state ω. A pivot mechanism rewards agents for

their marginal contribution to social welfare, paying them M(a, π, ω).

Proposition 7. The social optimum can be implemented by a mechanism whose transfers only depend

on the public belief, an agent’s action, and his successor’s action. A unique such mechanism in this

class is a pivot mechanism, for non-cascade continuation beliefs.

Proof: Let τ(π, ω) denote the ω-contingent continuation value of the subgame starting at public belief

π. (From Proposition 6, there is a tangent τ to v at π such that τ(π, L) = τ(0) and τ(π,H) = τ(1).)

The additional present value of current action a to later agents equals

M(a, π, ω) = [δ/(1− δ)](τ(p(a, π, ξ), ω)− τ(π, ω)). (38)

For cascade beliefs π ∈ C(δ), no transfer is needed since C(δ) ⊆ C(0).

We thus continue under assumption π 6∈ C(δ). Suppose first that no active action reaches the

cascade set. Consider active action a. The successor takes some action b for the lowest private beliefs,

with chance denoted ψ(b, ω). Give the agent transfer t(a, b) when the successor chooses b, and t(a,¬b)

otherwise. The expected transfer for a is ψ(b, ω)t(a, b) + (1− ψ(b, ω))t(a,¬b). Lower beliefs are more

likely in the low state: ψ(b,H) < ψ(b, L); therefore, there exist a unique pair t(a, b), t(a,¬b) solving

the two equations (for ω = H,L):

ψ(a, b, ω)t(a, b) + (1− ψ(a, b, ω))t(a,¬b) = M(a, π, ω). (39)

25Bru and Vives [2002] consider IC mechanisms that cannot implement the optimum of Vives [1997].
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Simple algebra confirms that ū(a, ρ) + ρM(a, π,H) + (1− ρ)M(a, π, L) is an affine transformation of

the index w(a, π, ρ), where the transformation only depends on π and δ. The transfer thus provides

the right incentive and implements social optimum, and constitutes a pivot mechanism,26 since each

agent is paid the marginal contribution.

We deter agents from taking inactive actions with large negative transfers.

Suppose next that the continuation belief after action a lands in a cascade set. Then ψ(b,H) =

ψ(b, L), so system (39) might not be solvable. But by Claim 4 in §3.11.4, at most one cascade set,

say Ca′(δ), is reached across all actions. We can in this case construct a valid non-pivot mecha-

nism as follows. Let the transfer for all active actions leading to Ca′(δ) be 0. For all other ac-

tive actions a, give the agent n a modified state contingent marginal contribution: M ′(a, π, ω) =

[δ/(1− δ)](τ(p(a, π, ξ), ω)− u(a′, ω)). �

3.5 Communication Via Action Choices

We make two observations about the planner’s actions choices, in the spirit of ?.27

Lesson 1: Dominated actions may be socially valuable. Informational herding describes

learning filtered through a finite mesh action screen. If agents could more precisely convey their private

information with more actions, then welfare intuitively rises. This effect can be so strong that using

myopically dominated actions might be efficient.

For an example, assume bounded beliefs and altruism (δ > 0). Suppose that action A dominates

A − 1, with u(A, ω) = u(A − 1, ω) + ε. We will show that for small enough ε > 0, action A − 1 is

optimally taken with positive chance for some public beliefs.

To see this, suppose that the planner never uses action A− 1. Then the value function v is affine

on the cascade set CA = [π̄, 1], but not on any extension of CA to the left, and so is strictly convex at

π̄. At belief π̄, action A is optimal for all private beliefs. The alternative rule x that maps all private

beliefs below 1/2 into A − 1, and others into A, induces p(A − 1, π̄, ξ) < π̄ < p(A, π̄, ξ). Since the

26While there exist simpler mechanisms, a pivot mechanism is quite intuitive and has an interesting implication we
pursue later. ? focus on flow marginal contribution. But in our case, each agent enters just once.

27We generalize ?’s ? Proposition 2, which assumes perfect patience and a simple second-period value function. His
Example 3 shows that a multiplicity of optimal solutions can arise in these problems.
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value function is strictly convex at π̄, the expected continuation value exceeds v(π̄) by some η > 0.

This policy change produces a myopic loss less than ε, and therefore improves on the optimal policy

when δη > (1− δ)ε.

Lesson 2: Actions might optimally be taken in an “unnatural” order. Specifically,

the natural order requires that if actions a′ > a are both active, then interval Ia′(δ) lies above

Ia(δ). We argue that this holds if the discount factor is low enough — for intuitively, the dynamic

optimization is then well-approximated by the myopic one. Define the payoff slope differences ∆a ≡

(u(a,H) − u(a, L)) − (u(a − 1, H) − u(a − 1, L)), for actions a = 2, . . . , A. By our action ordering,

∆a > 0 for all a. Define the sum ∆ ≡ (u(A,H) − u(A,L)) − (u(1, H) − u(1, L)) and minimum

∆ = min{2,...,A}∆a.

Corollary 3. If δ < ∆
∆+∆

, then for any public belief π not in a cascade set, the optimal interval policy

is consistent with the natural order. With two actions, this holds for δ < 0.5.

Proof: By Proposition 6, it is optimal to choose the action with highest welfare index w(a, π, ρ). Since

w(a, π, ρ) is linear in ρ, it suffices that ∂
∂ρ
w(a, π, ρ) strictly increase in a. Given vδ convex, the slope

of any subtangent line τ of vδ is sandwiched as follows:

u(1, H)− u(1, L) ≤ v′(0+) ≤ ∂τ

∂ρ
≤ v′(1−) ≤ u(A,H)− u(A,L)

This inequality allows us to bound the difference of welfare indices (37) from below:

∂w(a+ 1, π, ρ)

∂ρ
− ∂w(a, π, ρ)

∂ρ
≥ (1− δ)∆a+1 − δ∆

This is strictly positive when δ < ∆a+1/(∆ + ∆a+1). Finally, ∆ = ∆2 for A = 2. �

The premise of Corollary 3 is needed. In an example in the Supplemental Appendix, an unnatural

action order is in fact optimal with a high enough discount factor.
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3.6 Shrinking Cascade sets Via Patience

We prove in §3.11.2 that, as in Smith and Sørensen [2000], beliefs converge almost surely to

the cascade sets. Similarly, learning is incomplete here, and so incorrect herds arise with positive

probability iff private beliefs are bounded. We now argue that, with bounded beliefs, cascades shrink

in the discount factor, vanishing in the patience limit. The chance of incorrect herds falls; in the limit

of a very patient social planner, all herds are correct.

Proposition 8. Assume bounded beliefs.

(a) (Cascades) Non-empty cascade sets strictly shrink when δ < 1 rises: For all actions a, if δ2 > δ1

and Ca(δ1) 6= ∅, then Ca(δ2) ⊂ Ca(δ1). For large enough δ < 1, all cascade sets disappear except for

C1(δ) and CA(δ), while limδ→1C1(δ) = {0} and limδ→1CA(δ) = {1}.

(b) (Herds) A herd almost surely starts, and the chance it is incorrect vanishes as δ ↑ 1.

This result formalizes the gut feeling of many economists on the inefficiency of cascades. The

proof exploits the planner’s indifference about actively experimenting at the edge of a cascade set.

As a result, he strictly prefers to do so if he is slightly more patient, and as a result, the cascade set

shrinks. Intuitively, when the planner is actively experimenting, the planner enjoys a higher value of

information (expected gain in his continuation value) when he is more patient. The proof requires

that we strengthen Lemma 11.

Lemma 2 (Strict Value Monotonicity). The value function increases strictly in δ < 1 outside the

cascade sets: If δ2 > δ1, then vδ2(π) > vδ1(π) for all public beliefs π 6∈ C(δ2).

Since cascade sets change with the discount factor, we can now finish the discussion in §3.2, and

explain why an equilibrium need not be a social optimum. For there exists a suboptimal team equi-

librium when δ > 0 in which everyone acts myopically. For herding on action a is a team equilibrium

for public beliefs π ∈ Ca(0) \Ca(δ). If every successor considers agent n’s action uninformative, since

π is in a cascade set for δ = 0, the best that agent n can do is to maximize his current payoff. Since

π /∈ Ca(δ), this rule is suboptimal.
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Figure 5: Static Payoffs, Bellman Values, and Cascade Sets. By Proposition 8, each cascade
set Cδ(π) shrinks as the discount factor δ rises.

3.7 Contrarianism

3.8 An Illustrative Example: The Professor and his Student

We first consider a fully-solvable two period example that captures the essence of the short-run

optimality of contrarian behavior in a stylized setting. Assume two actions 1 and 2 with payoffs

u(2, H) = u(1, L) = 1, u(1, H) = u(2, L) = −1.

A professor and a student share a common prior π on state H, and observe conditionally iid signals

σ with state-dependent cdf’s FH(σ) = σ2 and FL(σ) = 2σ − σ2. The professor sees the signal, and

takes an action; his student observes his action, but not his signal. Subject to this restriction, the

professor selflessly acts to maximize his student’s expected payoff. So the problem is formally one of

pure information transmission, as in Dow [1991].

If the student starts with a continuation public belief p, then she takes action 2 exactly when her

signal σ ≥ 1− p. Now, σ ≥ 1− p with chance 1− FH(p) = 1− (1− p)2 in state H and with chance

FL(1− p) = p2 in state L. Hence, the student’s value function is

VS(p) = p(1− 2(1− p)2) + (1− p)(1− 2p2) = 1− 2p+ 2p2

The professor clearly employs a private belief threshold rule σ̄ = σ̄(π): He either chooses action 1 for

discouraging signals σ < σ̄, and action 2 if σ ≥ σ̄, or the exact opposite. For recalling the message

of §3.5, the discount factor is one, and either action ordering is possible. We assume the natural



49

ordering for simplicity. He seeks to maximize V (π) = E[VS(P )|π], where P is his student’s realized

public belief, and the expectation is taken ex ante. Since π = E[P |π] by the martingale property of

beliefs, we have

V (π) = E[VS(P )|π] = E(1− 2P + 2P 2|π) = 1− 2π + 2π2 + 2E[(P − π)2|π]

Then the professor’s optimal value V (π) exceeds the student value VS(π) = 1 − 2π + 2π2 by twice

the variance of beliefs. We now compute this term. Given the threshold rule, a different continuation

public belief P = p1 or P = p2 arises after each of the two professorial actions 2 and 1. Bayes rule

reveals the formulas p1(σ̄) = [πσ̄2]/[πσ̄2 + (1− π)(2σ̄− σ̄2)] and p2(σ̄) = [π(1− σ̄2)]/[π(1− σ̄2) + (1−

π)(1− 2σ̄ + σ̄2)]. We can explicitly compute:

E[(P − π)2|π] =
π − p1

p2 − p1

(p2 − π)2 +
p2 − π
p2 − p1

(π − p1)2 = (p2 − π)(π − p1) (40)

Only this term in V (π) depends on σ̄. Maximizing (40) over σ̄ yields private signal threshold σ̄(π) =

(π − 1 +
√
π − π2)/(2π − 1) if π 6= 1/2, with limit σ̄(1/2) = 1/2 by l’Hopital’s rule.

The professor’s Bayesian posterior belief threshold is θ(π) = [π−
√
π − π2]/[2π−1]. Illustrating our

later short-run contrarianism result, θ(π) is increasing in π. So the professor optimally communicates

the state of the world by acting in a “contrarian” fashion. To wit, he leans against the public belief,

so that the professor chooses action 2 less often with more public confidence in state H. It is easy

to verify that the posterior threshold θ(π) exceeds the myopic posterior belief threshold θ(π) = 1− π

exactly when π > 1/2.

3.9 Monotone Posterior Beliefs: Cascades Cannot Start Late

We now provide a robust condition on the private signal distribution yielding posterior mono-

tonicity : holding fixed a rule’s interval policy I, the continuation public belief p(a, π, I) strictly rises

in the current public belief π, for all active actions a.

Given the equi-likely states, the unconditional private belief distribution is described by the

function F = (FH + FL)/2. When the density f = F ′ exists, Bayesian updating implies a sim-
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ple “no introspection condition” [Smith and Sørensen, 2000] for densities: fH(σ) = 2σf(σ) and

fL(σ) = 2(1− σ)f(σ). Associate to private signal σ the log-likelihood ratio ` = Λ(σ)≡ log(σ/(1−σ)),

with inverse S(`) = e`/(1 + e`). In the rest of the paper, we maintain the following (novel) regularity

condition:

(LC): The log-likelihood ratio density φ(`) ≡ f(S(`))S ′(`) exists, and is log-concave.

Assumption (LC) is violated by atomic distributions, but common continuous distributions are

log-concave (see Marshall and Olkin [1979], §18.B.2.d), including that in §3.8.

The posterior ρ in (31) depends on the public π and private signal σ. Observe that Λ(ρ) =

Λ(π) + Λ(σ). We denote the density of the posterior belief by g(ρ|π).

Lemma 3 (Posterior Monotonicity). The posterior belief density g(ρ|π) is strictly log-supermodular,

given (LC). Posterior monotonicity obtains for any active action a.

Proof. Let φω(`) be the density over the private log likelihood ratio ` in state ω. Observe that φ(`) =

(φL(`) + φH(`))/2 = (1 + e`)φL(`)/2, since the no introspection condition implies φH(`) = e`φL(`).

Hence, log φL(`) = log φ(`)− log(1 + e`) + log 2 is strictly concave, since φ is log-concave by condition

(LC). As a result, the unconditional density h(`|π) over the posterior log likelihood ratios ` given

prior belief π is strictly log-supermodular, since:

h(`|π) = (1− π)φL(`− Λ(π)) + πφH(`− Λ(π)) = (1− π)(1 + e`)φL(`− Λ(π))

Then g(ρ|π) is strictly log-supermodular since the map ` 7→ ρ strictly increases. Finally, a is taken

when ρ ∈ Ia. Continuation public belief p(a, π, I) =
∫
Ia
ρg(ρ|π)dρ/

∫
Ia
g(ρ|π)dρ strictly rises in π —

the denominator is positive since a is active.

In general, the optimal interval policy I depends on π, and we do not claim that posterior belief

monotonicity always holds in equilibrium. To see the role played by Assumption (LC) in Lemma 3,

we now offer an example in which (LC) fails and posterior monotonicity fails too. We slightly modify

our signal family example in §3.8, punching a hole in its support. Choose b ∈ (1/2, 1), and define the

density f(σ) = 1/(2 − 2b), for σ ≤ 1 − b and σ ≥ b, and f(σ) = 0 otherwise. Let fH(σ) = 2σf(σ)
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and fL(σ) = 2(1− σ)f(σ). Assume that “Buy” is optimal if the posterior belief exceeds 1/2. Given

a public prior belief π > b, the posterior likelihood ratio after seeing “Buy” is

LR(π) ≡ π

1− π

1+b
2

+
∫ 1−b

1−π
σ

1−bdσ

1−b
2

+
∫ 1−b

1−π
1−σ
1−b dσ

Provided b > (1 + 2
√

2)/7, we see that LR(π) is decreasing on (b, b+ ε) for some ε > 0.

When δ = 0, every action a is taken for posterior beliefs in a fixed interval [θ1, θ2]. In their

“bounded beliefs example”, Smith and Sørensen [2000] found that public beliefs can transition into

a cascade set if and only if the posterior public belief after an action is not monotone in the prior

belief. Hence:

Corollary 4 (No Cascades). Given (LC), for δ = 0, cascades can’t start after period one.

It is instructive to observe that the multinomial signal examples with cascades in the seminal

paper by Bikhchandani et al. [1992] violate assumption (LC).

3.9.1 Contrarian Behavior and its Applications

We now consider short run contrarian behavior, i.e., that individuals increasingly lean against

actions increasingly favored by popular beliefs. We take two non-cascade public belief realizations π <

π′, and generalize the finding from the professor-student example that the posterior belief threshold

separating a pair of actions satisfies θ(π) < θ(π′). The generalization is to more than two actions,

to the infinite-horizon model, and to the possibility of multiple optimal rules. We maintain the

log-concavity assumption.

We have observed that, in general, the optimal action ordering depends on the public belief. But

the threshold comparison θ(π) < θ(π′) is meaningful only when the same action ordering is optimal

at both π and π′, including that the set of active actions is identical.

Fixing one such action order, re-label the A active actions so that higher actions are taken at

higher beliefs. Let θa denote the threshold between posterior beliefs leading to actions a and a + 1,

and define the threshold vector θ = (θ1, . . . , θA−1). The threshold space Θ(π) ⊂ RA−1 is the set of

vectors θ where r(min supp(F ), π) < θ1 < · · · < θA−1 < r(max supp(F ), π), so all A actions are active.
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For an interval rule defined by vector θ, the chance of action a is denoted ψ(a, π, θ), and the posterior

public belief is p(a, π, θ).

Let Θ∗(π) ⊂ Θ(π) be the set of optimal threshold vectors. We formally define that behaviour is

contrarian if, for any pair π < π′ which have this identical optimal action ordering, Θ∗(π′) is higher

than Θ∗(π) in the strong set order.28 This coincides with an intuitive notion of first order stochastic

dominance: at the higher π′, any set of lower actions {1, . . . , a} is taken for a higher set of posterior

beliefs [0, θa]. Behaviour is strictly contrarian if, for all θ ∈ Θ∗(π) and θ′∈Θ∗(π′), we have θ′�θ (all

coordinates are higher).

Proposition 9 (Contrarianism). Assume (LC). Behaviour is contrarian.

Figure ?? depicts the key step of the proof. The interior threshold between actions a and a + 1

satisfies index function indifference, w(a, π, θa) = w(a + 1, π, θa), and that w(a, π, ρ) down-crosses

w(a + 1, π, ρ) at θa. By (37), the public belief affects w through the tangent to the value function.

Tangents move sideways up along the convex value function, and predicts that w(a, π′, θa) > w(a +

1, π′, θa), as illustrated.29 Down-crossing yields the conclusion that θ′a > θa.

Assumption (LC) guarantees updating monotonicity of public beliefs, and so a monotone tangent

difference (44). Figure ?? further illustrates this part of the proof. We show in Appendix 3.11.5 that

contrarianism can fail without monotone public beliefs.

Proposition 9 yields weak contrarian behavior. We can strengthen the proof to strict contrarianism

if the value function is strictly convex (so the tangents strictly change) and the actions are taken in

the natural order.

Corollary 5 (Strictly Contrarian). If signals obey (LC) and all actions are taken in the natural order,

then behavior is strictly contrarian outside the cascade sets.

We need here the value function to be strictly convex at a continuation belief. The value function

is instead affine on [z, z̄] if there exists an optimal strategy which is constant on [z, z̄]; in particular,

28Recall that Y ′ dominates Y in the strong set order if y′ ∈ Y ′, y ∈ Y ⇒ y ∨ y′ ∈ Y ′, y ∧ y′ ∈ Y.
29In fact, the proof works for any convex continuation value function — it needs not arise from our infinite horizon

dynamic optimization. Proposition 9 is valid for the two-period professor-student problem in §3.8, for instance.
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on cascade sets.30 But outside cascade sets, it is not affine:31

Lemma 4 (Strict Value Convexity). If the private belief support supp(F ) is convex and all actions

are taken in the natural order, then the value function v is strictly convex outside the cascade sets.

Lemma 4 yields another intriguing implication. Motivating individuals to behave altruistically as

a function of their private posterior belief, requires a transfer monotonicity which is stronger than the

planner’s subtle contrarian change of the belief threshold. The transfers of the pivot mechanism in

Proposition 7 reward being mimicked by successors.

Corollary 6 (Mimicry). Assume the natural action ordering in the binary action world. The transfers

are ranked t(a, a) > t(a,¬a) whenever both π and p(a, π, ξ) are not in C(δ).

Proof: For the sake of argument, consider a = 1, with p(1, π, ξ) 6∈ C(δ) by assumption. First consider

the case where also p(2, π, ξ) 6∈ C(δ). By equation (39),

t(1, 1)− t(1, 2) =
M(1, π, L)−M(1, π,H)

ψ(1, L)− ψ(1, H)
. (41)

Now, ψ(1, L) > ψ(1, H), as in (39). Thus, the fraction shares the sign of the numerator. From the

definition of M in Proposition 7, τ(π, ρ) is a subtangent line of the value function v at π. Then

M(1, π, L)−M(1, π,H) = ∂τ(π, ρ)/∂ρ−∂τ(p(1, π, ξ), ρ)/∂ρ. By the natural action ordering, we have

p(1, π, ξ) < π and thus ∂τ̂(π, ρ)/∂ρ− ∂τ̂(p(1, π), ρ) > 0, since vδ is strictly convex at π by Lemma 4.

Then t(1, 1)− t(1, 2) > 0.

Finally, when p(2, π, ξ) ∈ C(δ) the logic is the same, substituting M in (41) by M ′. �

3.9.2 The Detailed Proof of Contrarianism with Two Actions

While Proposition 9 is valid for belief pairs π, π′ that can be far apart, our proof relies on a local

argument which we explain in this subsection. By assumption, at both π and π′ there exist optima

with the same fixed action order.

30A strategy, started at π ∈ [z, z̄], yields some state-contingent expected values vH and vL. As in the proof of
Proposition 6, τ(ρ) = (1− ρ)vL + ρvH is tangent to v at π. If v is affine, then v(π) = τ(π), and the strategy is optimal
for all π ∈ [z, z̄]. Conversely, if the strategy is optimal, v(ρ) = τ(ρ) for all ρ ∈ [z, z̄].

31Note that (LC) implies a convex belief support.
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We explore the comparative statics properties of the constrained Bellman equation for any π /∈

C(δ) where the planner can choose only among rules ξ ∈ Ξ which maintain this same action order,

but takes for granted the value function v from the unconstrained problem. So, granted the convex

function v, define the Bellman function as in (34),

B(θ|π) =
2∑

a=1

ψ(a, π, θ)[(1− δ)ū(a, p(a, π, θ)) + δv(p(a, π, θ))]. (42)

Solutions to this constrained problem define the optimizer set Θ∗(π).

To prove Proposition 9, it suffices that Θ∗(π) increase in the strong set order. We wish to apply

Theorem 1 in ?. But they deliver our conclusion under the assumption that B(·|π′) exceeds B(·|π) in

their interval dominance order. Their Proposition 2 yields a sufficient condition — that there exist an

increasing and strictly positive function α(θ) such that, almost everywhere, Bθ(θ|π′) ≥ α(θ)Bθ(θ|π).

So motivated, we derive an expression for Bθ(θ|π).

Lemma 5. The Bellman function B is differentiable almost everywhere with

Bθ(θ|π) = g(θ, π) (w(1, π, θ)− w(2, π, θ)) , (43)

and B is absolutely continuous: B(θ′|π)−B(θ|π) =
∫ θ′
θ
Bθ(θ̃|π) dθ̃ for θ, θ′ ∈ Θ(π).

The next result is a useful fact about tangents to a convex function (refer to Figure ??).32

Lemma 6 (Changing Tangents to a Convex Function). Fix z1 < z2 < z3 and a convex function v. Let

τi be a tangent function to v at zi. Then τ2(z1) ≥ τ3(z1) (and τ1(z3) ≤ τ2(z3)), with strict inequality

unless v is affine on [z2, z3] (and on [z1, z2]).

Returning to our main line of argument, suppose some θ ∈ Θ∗(π) and θ′ ∈ Θ∗(π′) are inversely

ordered θ′ < θ — otherwise, we’re done. Since r(σ, π) is an increasing function of π, the open

interval Θ(π) rises in π. So [θ′, θ] ⊂ Θ(π) ∩Θ(π′). We first argue that the index difference ∆(θ̃, π) ≡

w(1, π, θ̃) − w(2, π, θ̃) in (43) weakly increases in the public belief π when θ̃ ∈ [θ′, θ]. By Lemma 3,

32As in Proposition 6, interpret τi as a tangent to the value function at continuation belief zi. Intuitively, if we
employ a continuation policy at belief z1 that is optimal for a “more inaccurate” belief z3>z2, then the payoff is lower,
τ3(z1) ≤ τ2(z1).
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continuation beliefs rise in public beliefs: p(a, π′, θ̃) > p(a, π, θ̃) for a = 1, 2. The two cases in Lemma 6

yield, as desired,

∆(θ̃, π′)−∆(θ̃, π) = δ
{[
τ ′1(θ̃)− τ1(θ̃)

]
+
[
τ2(θ̃)− τ ′2(θ̃)

]}
≥ 0. (44)

Next, α(θ̃) ≡ g(θ̃|π′)/g(θ̃|π) is a positive and nondecreasing function over [θ′, θ], since g is log-

supermodular by the proof of Lemma 3. Lemma 5 and inequality (44) imply:

Bθ(θ̃|π′) = g(θ̃|π′)∆(θ̃, π′) ≥ g(θ̃|π′)∆(θ̃, π) = α(θ̃)Bθ(θ̃|π), (45)

By Proposition 2 in ?, (45) implies that B obeys their interval dominance order. By their Theorem 1,

Θ(π) rises in the strong set order — contrarianism.

For Corollary 5, we now argue that the optimizer set strictly rises. Suppose that θ ≥ θ′ are

respectively optimal at public beliefs π < π′ — contrary to strict contrarianism. By the already proven

strong set order, θ ∈ Θ∗(π′). By Proposition 6, w(1, π, θ) − w(2, π, θ) = w(1, π′, θ) − w(2, π′, θ) =

w(1, π′, θ′)−w(2, π′, θ′) = 0. The first possibility θ > θ′ contradicts the fact that w(2, π′, ρ)−w(1, π′, ρ)

is a strictly increasing function of ρ. This fact follows from equation (37). For the natural action

order implies that ū(2, ρ) − ū(1, ρ) is strictly increasing, and convexity of v implies that its tangent

difference τ ′2(ρ) − τ ′1(ρ) is weakly increasing. Consider the other possibility θ = θ′. Now π < π′

implies p(a, π, θ) < p(a, π′, θ), and Claim 4 implies that at least one of p(1, π′, θ), p(2, π, θ) is outside

the cascade set. Lemma 6 gives the contradiction w(1, π, θ) − w(2, π, θ) > w(1, π′, θ) − w(2, π′, θ) —

the inequality is strict because Lemma 4 provides strict convexity of v outside the cascade set. �

3.10 Conclusion

We have fully characterized the socially-planned herding model with two states in our model, and

derived a general novel contrarianism prediction. Much of our analysis can be generalized to more

states, but this comparative static exploits specifically scalar analysis. Extending the log-concavity

condition and its monotone posterior implication beyond two states is a challenging open problem,

as is the many state extension of contrarianism.
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3.11 Appendix

3.11.1 Value Function Characterization Proofs

Value Convexity and Monotonicity: Proof of Lemma 11

The Bellman operator T is given by Tv equal to the RHS of (33). Note that for v ≥ v′ we have

Tv ≥ Tv′. As is standard, T is a contraction, and so has a unique fixed point vδ. This fixed point

lies in the space of bounded, continuous, weakly convex functions. We simply show convexity. Since

the operator T is a contraction, it suffices to prove that whenever v is convex, Tv is also convex. Let

πλ = λπ1 + (1 − λ)π2, where λ ∈ (0, 1). Fix an optimal rule ξ mapping private beliefs to actions at

πλ. Using Bayes’ rule, p(a, π, ξ) = πψ(a,H, ξ)/ψ(a, π, ξ), we get:

p(a, πλ, ξ) =
λψ(a, π1, ξ)

ψ(a, πλ, ξ)
p(a, π1, ξ) +

(1− λ)ψ(a, π2, ξ)

ψ(a, πλ, ξ)
p(a, π2, ξ). (46)

The first, myopic term in (34) at πλ is the convex combination of the terms with π1 and π2, since ū

is linear in beliefs. The second, future term obeys:

ψ(a, πλ, ξ)v(p(a, πλ, ξ)) ≤ λψ(a, π1, ξ)v(p(a, π1, ξ)) + (1− λ)ψ(a, π2, ξ)v(p(a, π2, ξ)).

given (46), since v is convex. Summing over actions a = 1, . . . , A yields Tv(πλ) = Tξv(πλ) ≤

λTξv(π1) + (1− λ)Tξv(π2) ≤ λTv(π1) + (1− λ)Tv(π2), as desired.

Let ũ(π) = maxa ū(a, π) denote the payoff frontier. The bound on tangent slopes follows from the

observations that v(0) = u(1, L) and v(1) = u(A,H), that the convex function v exceeds the payoff

frontier ũ, and that ū(1, ρ) and ū(A, ρ) define the most extreme slopes of ũ by supermodularity.

Claim 1. The function sequence {T nũ} is pointwise increasing and converges to vδ. The value vδ

weakly exceeds ũ, and strictly so outside the cascade sets.

Proof. To maximize
∑A

a=1 ψ(a, π, ξ) [(1− δ)ū(a, p(a, π, ξ)) + δũ(p(a, π, ξ))] over Ξ for given π, one rule

ξ̃ almost surely chooses the myopically optimal action. Then p(ξ̃(σ), π, ξ̃) = π a.s., resulting in value

ũ(π). Optimizing over all ξ ∈ Ξ, T ũ(π) ≥ ũ(π) for all π. By induction, T nũ ≥ T n−1ũ, yielding a
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pointwise increasing sequence converging to the fixed point vδ ≥ ũ. Finally, when π is outside the

cascade sets, by definition it is not optimal to almost surely induce one action. So, vδ(π) > ũ(π)

∀δ ∈ [0, 1) and ∀π 6∈ ∪Aa=1Ca(δ).

Claim 2 (Weak Value Monotonicity). When δ2 ≥ δ1, vδ2(π) ≥ vδ1(π) for all π.

Proof. Clearly,
∑A

a=1 ψ(a, π, ξ)ū(a, p(a, π, ξ)) ≤
∑A

a=1 ψ(a, π, ξ)v(p(a, π, ξ)) for any ξ and any function

v ≥ ũ. At higher δ, then Tξũ is pointwise higher, since more weight is placed on the larger component

of the RHS of (34). By (33), T ũ is pointwise higher. Iterating this argument, T nũ is higher. Let

n→∞ and apply Claim 1.

3.11.2 Cascade Sets: Proof of Lemma 1 and More

A. Proof of Lemma 1. The certain choice of a is optimal iff vδ(π) = ū(a, π). As ū(a, π) is affine

in π, and vδ is weakly convex, this equality holds on a closed interval Ca(δ). When δ is greater, vδ is

weakly higher by Claim 2, and hence Ca(δ) is weakly smaller.

Next, action 1 is myopically strictly optimal when π = 0. Since it updates to continuation belief

π = 0 for any rule, it is also dynamically optimal for any discount factor δ ∈ [0, 1). A similar proof

holds for π = 1. Since the private signal is valuable in the selfish problem, ∪Aa=1Ca(0) 6= [0, 1].

We now prove that for bounded beliefs, namely with supp(F ) ⊆ [σ1, σ0] ⊂ (0, 1), the cascade sets

for actions 1 and N are C1(δ) = [0, π(δ)] and CA(δ) = [π̄(δ), 1], where 0 < π(δ)< π̄(δ)< 1. For low

beliefs, it is optimal to let the rule ξ induce 1; the argument for high beliefs is similar. Action 1 is

optimal at belief π = 0, and there is no tie, so 1 is the optimal selfish choice for beliefs π ≤ π′, for

some π′ > 0. In particular, ū(1, π) > ū(a, π) + η for all a 6= 1 for some η > 0, and for all beliefs

π in the interval [0, π′/2]. No action can reveal a stronger private signal than any σ ∈ supp(F ) ⊆

[σ1, σ0] ⊂ (0, 1). So any initial belief π is updated to at most p̄(π) = πσ1/[πσ1 + (1− π)(1− σ1)]. For

π small enough, p̄(π) ∈ [0, π′/2] and p̄(π)−π is arbitrarily small. By continuity of vδ, vδ(p̄(π))−vδ(π)

is less than η(1− δ)/δ for small enough π. By the Bellman equation (33), any action a 6= 1 is strictly

suboptimal for such small beliefs.

Next, assume unbounded beliefs. Smith and Sørensen [2000] prove that Ca(0) = ∅ for all a 6= 0, 1,

and that C1(0) = {0} and CA(0) = {1}. �
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B. Cascade Sets as Limit Beliefs. As in Smith and Sørensen [2000], the martingale convergence

theorem implies that public beliefs converge, and their limit is not fully wrong:

Claim 3. The belief process 〈πn〉 is a martingale unconditional on the state, converging a.s. to some

limiting random variable π∞. The limit π∞ is concentrated on (0, 1] in state H.

Smith and Sørensen [2000] find for δ = 0 that the public belief process converges upon the cascade

set. The result extends to the case δ > 0:

Theorem 5 (Convergence of Beliefs). Consider a solution of the planner’s problem. The limit belief

π∞ has support in the cascade sets C1(δ)∪ · · · ∪CA(δ). In particular, π∞ is concentrated on the truth

for unbounded private beliefs.

Proof: At least two actions occur with positive chance for any belief π not in any cascade set. By

the interval structure of Corollary 1, the highest such action is more likely in state H, and the lowest

in state L. So the next period’s belief differs from π with positive probability. Intuitively, or by the

characterization result for Markov-martingale processes in Appendix B of Smith and Sørensen [2000],

π cannot lie in the support of π∞.

3.11.3 Differentiable Continuations: Proof of Corollary 2

Abbreviate p(a, π) for p(a, π, ξ). For simplicity, at π /∈ C(δ), consider 2 active actions. By (36)

and (37), v(π) = F π(σ)w(1, π, p(1, π)) + (1− F π(σ))w(2, π, p(2, π)), where the optimal private belief

threshold σ satisfies w(1, π, r(π, σ)) = w(2, π, r(π, σ)).

From Proposition 6, w(a, π, ρ) is defined through a tangent τa of v at p(a, π). If v is not differ-

entiable at p(2, π), there exists a different tangent τ̂2 of v at p(2, π). Define the new index function

ŵ(2, π, ρ) = (1− δ)ū(2, ρ) + δτ̂2(ρ) for action 2. At the same threshold σ, we obtain the same value,

v(π) = F π(σ)w(1, π, p(1, π))+(1−F π(σ))ŵ(2, π, p(2, π)). Since both actions are active, σ lies strictly

inside the convex support of F , and r(π, σ) < p(2, π). Thus, w(1, π, r(π, σ)) 6= ŵ(2, π, r(π, σ)). It

follows that this choice of tangents allow for a different threshold obtaining a higher value than v(π),

in contradiction to optimality of σ.
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3.11.4 Implementation by Transfers: Proof of Proposition 7

We start with a general new property of informational herding models with cascades:

Claim 4. Let δ > 0. For any belief π, continuation beliefs lie in at most one cascade set.

Proof : Given unbounded private beliefs, continuation beliefs never lie in a cascade set. Assume

bounded private beliefs. Let σ = min supp(F ) and σ̄ = max supp(F ). Suppose that for some π, two

continuation beliefs π1 < π2 lie in distinct cascade sets, namely, Ca′(δ) below Ca′′(δ). Then π1 ∈ Ca′(0)

and π2 ∈ Ca′′(0) by weak monotonicity of cascade sets in δ (Proposition 8). Let π′ = maxCa′(0) ≤

π′′ = minCa′′(0). Then π1 ≤ π′. There exist x1, x2 in [σ, σ̄] with r(π, x1) = π1 and r(π, x2) = π2.

Since (a) Bayes-updating commutes, (b) r(π, σ̄) ≥ r(π, x2) = π2 and x1 ≥ σ, (c) π2 ≥ π′′, and (d)

π′′ ∈ Ca′′(0) while π′ ∈ Ca′(0):

r(π1, σ̄) = r(r(π, x1), σ̄) = r(r(π, σ̄), x1) ≥ r(π2, σ) ≥ r(π′′, σ) ≥ r(π′, σ̄)

and so π1 ≥ π′. Thus π1 = π′, which contradicts Claim 5. �

Claim 5. The interior endpoints of each cascade set Ca(0) are not in Ca(δ), for any δ > 0, and any

action a ∈ A.

Proof : Let π̌ = minCa(0) where a 6= 1. Denote the minimal private posterior belief by ρ̌ =

r(π̌,min supp(F )). Then ū(a− 1, ρ̌) = ū(a, ρ̌). Define

wa−1(ρ) = (1− δ)ū(a− 1, ρ) + δτ(ρ) and wa(ρ) = (1− δ)ū(a, ρ) + δū(a, ρ) (47)

where τ is a tangent of vδ at ρ̌. Next, since ρ̌ < π̌, we have ρ̌ 6∈ Ca(0). So ρ̌ 6∈ Ca(δ) by Lemma 1-

(d); thus, ū(ρ̌, a) < vδ(ρ̌) = τ(ρ̌). Plugging this inequality into (47) gives wa(ρ̌) < wa−1(ρ̌). If

π̌ ∈ Ca(δ), then wa(ρ̌) is the value to the altruistic agent with posterior belief ρ̌, but our inequality

then contradicts the behaviour of Proposition 6. �
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3.11.5 Contrarianism Proofs

*The Role of Posterior Monotonicity in Contrarianism We show by an example that the posterior

monotonicity property obtained in Lemma 3 is necessary for contrarianism in Proposition 9 when the

convex value function v can be chosen freely (see footnote 29). We use a version of the two-period

professor-student example with δ = 1 in §3.8 to show the principle. The student has three actions

available, while the professor has two actions taken in the natural order. The student gets no private

signal. The professor’s signal is described by the conditional density g(ρ|π). This signal structure

violates posterior monotonicity for an interval, say [θ̂, 1]. Thus,

p′ ≡
∫ 1

θ̂
ρg(ρ|π′)dρ/

∫ 1

θ̂
g(ρ|π′)dρ >

∫ 1

θ̂
ρg(ρ|π′′)dρ/

∫ 1

θ̂
g(ρ|π′′)dρ ≡ p′′.

By this reversal, θ̂ must lie strictly inside the posterior belief supports at π′, π′′, so p′′ > θ̂.

Figure 6 illustrates the convex value function that we construct for the example. First choose an

arbitrary θ23 ∈ (p′′, p′). For any ε > 0, the convex function v̂(p|ε) consists of three linear segments

`1, `2, `3(ε). Segments `1, `2 intersect at θ̂, while `2, `3(ε) intersect at θ23. `2 is steeper than `1, and the

slope of `3 is ε > 0 higher than `2. The intersection of the extended line segments `1, `3(ε) is denoted

θ13(ε).

We will show that when ε > 0 is small enough, θ̂ is the unique optimal threshold at π′′, while only

the strictly higher θ13(ε) and θ23 are candidates for optimal thresholds at the lower π′. In either case,

contrarianism fails.

Observe that the three kink points θ̂, θ12, θ23(ε) describe the only candidates for optimal policies.

By construction, they are the only ones that solve for index indifference — given discount factor

δ = 1, only the tangents to the value function matter. It remains to check suboptimality of a cascade

policy, whereby the posterior is the prior. But the interior threshold θ̂ gives strictly more than v̂(π|0)

at π = π′, π′′, due to the kink at θ̂.

Consider π′. The first order condition fails at θ̂ for any ε > 0, as the tangent at the upper posterior

p′ is `3. So optimal posterior cut-offs are among θ13(ε), θ23.

Consider π′′. First, suppose we use the belief cutoff θ13(ε). As ε ↓ 0, the crossing point θ13
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Figure 6: Necessity Principle. The student’s value function for §3.11.5.

converges to θ̂, and the upper posterior belief converges to p′′. In other words, it is eventually below

θ23, since p′′ < θ23. At that point, the tangents at the continuation posteriors after π′′ are `1 and `2.

These tangents intersect at θ̂, and therefore the first order condition fails at θ13(ε). Second, suppose

we use the belief cutoff θ23. Since θ23 ∈ (p′′, p′), it is strictly inside the posterior belief support. Thus,

the upper posterior lies in (θ23, 1], and the lower one either lies in [0, θ̂) or [θ̂, θ23). If in [0, θ̂), the

tangents at the continuation beliefs are `1 and `3(ε). These cross at θ13(ε), and so the first order

condition fails at θ23. If in [θ̂, θ23), the first order condition holds. But as ε ↓ 0, the continuation value

approaches v̂(π′′|0). But as noted before, θ̂ yields a strictly higher continuation value than v̂(π′′|0).

�

3.11.6 Bellman Derivative Formula: Proof of Lemma 5

From (42), the Bellman function is almost everywhere differentiable in θ. For assumption (LC)

implies that p(a, π, θ) is strictly monotone and differentiable, and the convex function v must be

differentiable almost everywhere. Following the derivation of (36) and using Proposition 6, we can

rewrite the Bellman function as

B(θ|π) =

∫ θ

0

w(1, π, ρ)g(ρ|π)dρ+

∫ 1

θ

w(2, π, ρ)g(ρ|π)dρ. (48)

The result follows. Later on, we need a many action generalization.

Claim 6 (Bellman Derivative). Let θ ∈ Θ(π). Assume θa = · · · = θa+j = x for some a ≥ 1 and j ≥ 0
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with a + j ≤ A − 1, and suppose that θa−1 < x < θa+j+1.33 Then the Bellman function B in (50) is

absolutely continuous with respect to x, and its derivative in x almost everywhere equals:

Bx(θ|π) ≡ g(x|π) (w(a, π, x)− w(a+ j + 1, π, x)) . (49)

Moreover, for all π′′ > π′, there exists a positive and increasing function α(x) such that the Bellman

function B(θ|π) almost everywhere obeys Bx(θ|π′′) ≥ α(x)Bx(θ|π′) when θ ∈ Θ(π′) ∩Θ(π′′).

The omitted proof follows closely on Lemma 5, since we take action a for the posteriors ρ ∈ [θa−1, x],

and action a + j + 1 for posteriors ρ ∈ [x, θa+j+1]. So the derivative of the Bellman function B in x

is similar to (43) which had payoffs and tangents for actions a = 1 and a + j + 1 = 2. Thus, (49)

follows, and the inequality follows similarly from (45). �

3.11.7 Subtangents to a Convex Function: Proof of Lemma 6

When v is affine on [z1, z2], subtangents τ1 and τ2 can coincide, with τ1(z3) = τ2(z3). Otherwise,

the subtangent τ2 is steeper than τ1. Thus, τ2(z3)− τ2(z2) > τ1(z3)− τ1(z2), whence τ2(z3)− τ1(z3) >

τ2(z2)− τ1(z2). Since v is convex, the subtangent τ1 lies below v at z2, so that τ2(z2) = v(z2) ≥ τ1(z2).

We conclude that τ2(z3) > τ1(z3). The analysis at z1 is similar. �

*Contrarianism: Proof of Proposition 9 for Multiple Actions

Claim 7. The threshold space Θ(π) is a lattice, and B is supermodular for θ ∈ Θ(π).

Proof. Assume θ, θ′ ∈ Θ(π). Then θ ∧ θ′ ∈ Θ(π) since (θ ∧ θ′)a = θa ∧ θ′a ≤ θa+1 ∧ θ′a+1 = (θ ∧ θ′)a+1

for every a. Similarly, θ ∨ θ′ ∈ Θ(π). Next, to show that B is supermodular in θ, let θ′a > θa.

If θ−a increases, both continuation beliefs p(a, π, θ) and p(a + 1, π, θ) increase. Since p(a, π, θ) <

θa < p(a + 1, π, θ), Lemma 6 implies that w(a, π, θa) increases while w(a + 1, π, θa) decreases. So

the difference (w(a, π, θa)− w(a+ 1, π, θa)) increases in θ−a. Then by (49), the Bellman difference

B(θ′a, θ−a)−B(θa, θ−a) increases in θ−a. Supermodularity can now be decomposed into a summation

of differences of this form.

33Notation: θ0 = r(min supp(F ), π) and θA = r(max supp(F ), π).
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Fixing the action ordering, the Bellman function (34) for a convex continuation value v is:

B(θ|π) =
A∑
a=1

ψ(a, π, θ)[(1− δ)ū(a, p(a, π, θ)) + δv(p(a, π, θ)). (50)

We now prove Proposition 9 for finitely many actions. Pick beliefs π < π′ and assume that

θ ∈ Θ∗(π) and θ′ ∈ Θ∗(π′). If θ ≤ θ′, we are done. Assume next that they are inversely ordered

θ′ < θ. We verify θ ∈ Θ∗(π′) and θ′ ∈ Θ∗(π). First, both [θ1, θA−1] and [θ′1, θ
′
A−1] are subsets of

Θ(π) ∩ Θ(π′), since [θ1, θA−1] ⊂ Θ(π) and [θ′1, θ
′
A−1] ⊂ Θ(π′) and [θ1, θA−1] lies above [θ′1, θ

′
A−1] in the

strong set order, and yet Θ(π) lies below Θ(π′) in the strong set order. Second, let X be the set of

all cut-off rules with cut-off points in Θ(π) ∩ Θ(π′). By ?, B(θ|π′) dominates B(θ|π) in the interval

dominance order over X, since by Claim 6, the condition in the Proposition 2 in ?, is satisfied.

Finally, suppose that θ and θ′ are not ordered. We now need a stronger proof ingredient —

specifically, we exploit the supermodularity of B (Claim 7). Our result follows if:

B(θ|π)−B(θ ∧ θ′|π) ≥ 0 (> 0) =⇒ B(θ ∨ θ′|π′)−B(θ′|π′) ≥ 0 (> 0). (51)

Let’s see why this suffices. Since θ is optimal at π, the left side is non-negative, and thus θ ∨ θ′ is

optimal at π′ by the weak inequality in (51). Conversely, if θ ∧ θ′ is not optimal at π, then θ′ is not

optimal at π′, by the strict inequality in (51).

We split the proof of (51) into two parts, since the choice domain Θ(·) depends on the public

belief. Let (θa, ..., θA−1) be the components of θ inside Θ(π′), for some a < A. Choose z ∈ Θ(π′)

with z < min{θa, θ′1}. Let θ̂ = (z, ..., z, θa, ..., θA−1), where the first a − 1 components are z. Then

θ̂ ∈ Θ(π) ∩Θ(π′), since θa−1 < z follows from θa−1 /∈ Θ(π′).

By supermodularity of B(·|π′), and because θ̂ ∨ θ′ = θ ∨ θ′, we have:

B(θ̂|π′)−B(θ̂ ∧ θ′|π′) ≥ (> 0) =⇒ B(θ ∨ θ′|π′)−B(θ′|π′) ≥ (> 0). (52)
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Then (51) follows if we also argue:

B(θ|π)−B(θ ∧ θ′|π) ≥ (> 0) =⇒ B(θ̂|π′)−B(θ̂ ∧ θ′|π′) ≥ (> 0). (53)

We now prove (53). First, for all θ′′ ∈ [θ̂ ∧ θ′, θ̂], we have θ̂ = θ ∨ θ′′ and so:

B(θ̂|π)−B(θ′′|π) ≥ B(θ|π)−B(θ ∧ θ′′|π) ≥ 0, (54)

by supermodularity of B(·|π) and optimality of θ at π, respectively. When θ′′ = θ̂ ∧ θ′ in (54), we

have B(θ̂|π) − B(θ̂ ∧ θ′|π) ≥ B(θ|π) − B(θ ∧ θ′|π), since θ ≤ θ̂. Hence, if B(θ|π) − B(θ ∧ θ′|π) > 0,

then B(θ̂|π) − B(θ̂ ∧ θ′|π) > 0. Finally, the interval dominance ordering of B(·|π′) over B(·|π′) lets

us conclude (53). �

3.11.8 Strict Contrarianism: Proof of Corollary 5

Pick π′ > π. Let θ ∈ Θ∗(π) and θ′ ∈Θ∗(π′). By Proposition 9, behavior is contrarian. Suppose

for a contradiction that it is not strictly so, and thus θ′k ≤ θk for some k. By Proposition 9, θ ∨ θ′ is

optimal under π′. Since θ′k ≤ θk, we have (θ ∨ θ′)k = θk. Suppose that aj is the highest active action

below ak, and am the least active action above ak. Then (θ ∨ θ′)j < (θ ∨ θ′)j+1 = · · · = (θ ∨ θ′)k =

· · · = (θ ∨ θ′)m−1 < (θ ∨ θ′)m, since θ and θ′ have the same active actions in natural order. Our proof

for two actions then carries over to this case, by considering a neighboring pair of active actions. �
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Llúıs Bru and Xavier Vives. Informational externalities, herding and incentives. Journal of Institu-

tional and Theoretical Economics, 158:91–105, 2002.

Hector Chade and Lones Smith. Simultaneous search. Econometrica, 74(5), 2006.

Christophe Chamley and Douglas Gale. Information revelation and strategic delay in a model of

investment. Econometrica, 62:1065–1085, 1994.

Gustave Choquet. Theory of capacities. Annales de I’institut Fourier, 5(131-295), 1954.



66

Leon Yang Chu and David E.M. Sappington. Simple cost-sharing contracts. The American Economic

Review, 97(1), 2007.

Vincent P. Crawford and Joel Sobel. Strategic information transmission. Econometrica, 50(1431-

1451), 1982.

James Dow. Search decisions with limited memory. Review of Economics Studies, 58(1), 1991.

Matthew Doyle. Informational externalities, strategic delay, and the search for optimal policy. ISU

Economics Working Paper, 2002.

David Easley and Nicholas Kiefer. Controlling a stochastic process with unknown parameters. Econo-

metrica, 56:1045–1064, 1988.

Bennett Fox. Discrete optimization via marginal analysis. Management Science, 13(3), 1966.

Lars P. Metzger Gerhard Jager and Frank Riedel. Voronoi languages equilibria in cheap-talk games

with high-dimensional types and few signals. Games and Economic Behavior, 73(517-537), 2011.

J.C̃. Gittins. Bandit processes and dynamical allocation indices. Journal of the Royal Statistical

Society, Series B, 41:148–177, 1979.

Robert M. Gray and David L. Neuhoff. Quantization. IEEE Transacctions on Information Theory,

44(6), 1998.

Faruk Gul and Ennio Stacchetti. Walrasian equilibrium with gross substites. Journal of Economic

Theory, 87(95-124), 1999.

Hugo A. Hopenhayn and Edward C. Presscott. Stochastic monotonicity and stationary distribution

for dynamic economics. Econometrica, 60(6), 1992.

E.L. Lehman. Comparing location experiments. The Annals of Statistics, 16(2), 1988.

Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinatorial auctions with decreasing marginal

utilities. Games and Economic Behavior, 55(153), 2006.



67

Ehud Lehrer and Roee Teper. The concave integral over large spaces. Fuzzy Sets and Systems, 159

(2130-2144), 2008.

Barton L. Lipman. Why is language vague? working paper, 2009.

STUART P. Lloyd. Least square quantization in pcm. IEEE Transactions in Information Theory, 28

(127-135), 1982.

L. Lovasz. Submodular functions and convexity. Mathematical Programming: The state of the art,

(235-257), 1982.

Massimo Marinacci and Luigi Montrucchio. Introduction to the mathematics of ambiguity. memo,

2004.

Albert W. Marshall and Ingram Olkin. Inequalities: Theory of Majorization and Its Applications.

Academic Press, San Diego, 1979.

Joel Max. Quantizing for minimum distortion. IEEE Transactions in Information Theory, 6(7-12),

1960.

R. Preston McAfee. Coarse matching. Econometrica, 70(2025-2034), 2002.

Luis A. Medrano and Xavier Vives. Strategic behavior and price discovery. Rand Journal of Eco-

nomics, 32:221–248, 2001.

Paul Milgrom and Ilya Segal. Envelope theorems for arbitrary choice sets. Econometrica, 70(2), 2002.

Paul Milgrom and Chris Shannon. Monotone comparative statics. Econometrica, 62(157-180), 1994.

H. Moulin. Axioms of cooperative decision making. Cambridge University Press, Cambridge, UK,

1988.

B. M. Oliver, J. Pierce, and C. E. Shannon. The philosophy of pcm. Proc. IRE, 36(1324-1331), 1948.

Nicola Persico. Information acquisition in auctions. Econometrica, 68(135-148), 2000.



68

John K.-H. Quah and Bruno Strulovici. Comparative statics with the interval dominance order 2.

mimeo, 2007.

John K.-H. Quah and Bruno Strulovici. Comparative statics, infomativeness, and the interval domi-

nance order. Econometrica, 77(1949-1992), 2009.

Roy Radner. Team decision problems. Annals of Mathematical Statistics, 33:857–881, 1962.

William P. Rogerson. Simple menus of contracts in cost-based procurement and regulation. The

American Economic Review, 93(3), 2003.

Michael Rothschild. A two-armed bandit theory of market pricing. Journal of Economic Theory, 9:

185–202, 1974.

Walter Rudin. Real and complex analysis (third version). McGraw-Hill Companies, 1987.

D. Schmeidler. Subjective probabilities without additivity. Econometrica, 57(571-587), 1989.

Daniel Sgroi. Optimizing information in the herd: Guinea pigs, profits, and welfare. Games and

Economic Behavior, 39:137–166, 2002.

Ran Shao. Generalized coarse matching. working paper, 2011.

Lones Smith and Peter Sørensen. Pathological outcomes of observational learning. Econometrica, 68:

371–398, 2000.

Lones Smith, Peter Sørensen, and Jianrong Tian. Informational herding, optimal experimentation

and contrarianism. Revised and resubmitted for Review of Economic Studies, 2012.

Dezso Szalay. Strategic information transmission and stochastic orders. working paper, University of

Bonn, 2012.

Jianrong Tian. Monotone pragmatics. working paper, UW Madison, 2015.

Donald M. Topkis. Minimizing a submodular function on a lattice. Operations Research, 26(305-321),

1978.



69

Donald M. Topkis. supermodularity and complementarity. Princeton University Press, 1998.

Xavier Vives. How fast do rational agents learn? Review of Economic Studies, 60:329–347, 1993.

Xavier Vives. Learning from others: A welfare analysis. Games and Economic Behavior, 20:177–200,

1997.

Robert Wilson. Efficient and competitive rationing. Econometrica, 57 (1)(1-40), 1989.

Adam Chi Leung Wong. The choice of the number of varieties: Justifying simple mechanisms. Journal

of Mathematical Economics, 54(7-21), 2014.


	Optimal Interval Division
	Introduction
	The Model and Some Examples
	The Model
	Two Important Classes

	Cell Division and Submodularity
	Submodularity
	Sufficient Conditions for Submodularity

	General Properties
	Value
	Cut-offs

	Characterizing Submodular Cell Functions
	Proof of Theorem 4

	Conclusion
	Appendix
	Proof of Lemma 1
	Applications of Theorem 2
	Proof of Proposition 2
	Proof of Theorem 3
	Regular Cell Functions


	Comparative Statics for Cut-offs
	Introduction
	QS's scalar result
	Comparative statics for cut-offs
	Optimal Switching Time
	A Sufficient Condition for IDO


	Informational Herding, Optimal Experimentation, and Contrarianism
	Introduction
	The Forward-Looking Herding Model
	Dynamic Programming and Convex Duality
	Cascade Sets and Implementation
	Communication Via Action Choices
	Shrinking Cascade sets Via Patience
	Contrarianism
	 An Illustrative Example: The Professor and his Student
	 Monotone Posterior Beliefs: Cascades Cannot Start Late
	 Contrarian Behavior and its Applications
	The Detailed Proof of Contrarianism with Two Actions

	Conclusion
	Appendix
	Value Function Characterization Proofs
	Cascade Sets: Proof of Lemma 1 and More
	Differentiable Continuations: Proof of Corollary 2
	Implementation by Transfers: Proof of Proposition 7
	Contrarianism Proofs
	Bellman Derivative Formula: Proof of Lemma 5
	Subtangents to a Convex Function: Proof of Lemma 6
	Strict Contrarianism: Proof of Corollary 5



