
Performance Modelling: Acceleration and Optimisation of Networks at
Different Scale

by

Shruti Yadav Narayana

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Electrical and Computer Engineering)

at the

UNIVERSITY OF WISCONSIN–MADISON

2024

Date of final oral examination: 4/5/2024

The dissertation is approved by the following members of the Final Oral Committee:
Karthikeyan Sankaralingam, Professor, Computer Sciences and Electrical
and Computer Engineering
Parameswaran Ramanathan, Professor, Electrical and Computer Engineer-
ing
Bhuvana Krishnaswamy, Assistant Professor, Electrical and Computer
Engineering
Ming Liu, Assistant Professor, Computer Sciences Engineering



© Copyright by Shruti Yadav Narayana 2024
All Rights Reserved



i

Dedicated to my parents and my sister.



ii

acknowledgments

I express my heartfelt gratitude to my parents, Sarojini (my mother) and
Narayana (my father), who instilled in me the belief that education tran-
scends societal norms. Their unwavering emotional support and under-
standing have been pivotal in my journey to the U.S. and the completion
of my dissertation. I consider myself exceptionally fortunate to be born to
such amazing parents.

My gratitude extends to my extended family – Prabhat Uncle, Abha
Aunty, Rini Akka, and Richie Anna – who, although not connected by
blood, are an integral part of my life. From sponsoring my education
to encouraging me to pursue a Ph.D., I am thankful for their invaluable
advise, help and kindness, especially in a world where being kind and
caring is rare.

I owe a special thanks to my sister, Shubha, who has been my guiding
light. Her unwavering presence, patient listening, and comforting solace
during challenging times have been indispensable. Her support has been
instrumental in my dissertation journey.

I want to thank Sumit K Mandal for his invaluable mentorship and sup-
port during my transition into the new world of academia. His guidance
not only equipped me with the necessary tools to navigate this unfamiliar
terrain but also provided a source of comfort and encouragement during
challenging times. I am particularly grateful for the late-night discus-



iii

sions, assistance with code debugging, and his role as a trusted confidant
throughout the rigors of pursuing a PhD. His unwavering belief in my
abilities, coupled with his words of encouragement, bolstered my confi-
dence when self-doubt crept in. Thank you for being not only a mentor
but also a friend during this journey.

I want to thank Emily Shriver for constantly supporting, helping and
checking up on me. Her guidance as my mentor during my internships has
been indispensable. Her support has been instrumental in my dissertation
journey.

Appreciation is also extended to my friends – Hemalatha, Nishanth,
Anish, and Ganapati – who believed in my capabilities and shared their
own challenges, motivating me to give my best. Hema and Nishanth for
constantly believing in me and inspiring me to do better and to do more.
Especially Hema who has supported me throughout my journey. Anish
and Ganapati for always being there and helping me in case of need.

I am profoundly grateful for my partner, Levi Maxwell, who, though
entering my life later, has been an immense blessing. His unwavering
support, patience, and understanding have been my pillars. Without him,
my journey would have felt lonely, and I credit his constant motivation for
helping me complete my dissertation.

Finally, my sincere thanks to Professor Karu. His timely intervention
and guidance were pivotal in my achievement of obtaining a PhD, a goal
that seemed almost unattainable at one point. His unwavering assistance,



iv

patience, and understanding were essential pillars throughout this process,
and I sincerely acknowledge that I could not have succeeded without
your help. His role as a mentor transcended mere academic guidance;
he exemplified the qualities of compassion and kindness that are rare to
find in today’s world. I am deeply appreciative of his mentorship and the
positive impact it has had on both my academic and personal development.



v

contents

List of Tables vii

List of Figures ix

Abstract xiv

1 Introduction 1

2 Fast Analysis using Finite Queuing Model for multi-layer NoCs 6
2.1 Overview 6
2.2 Related Work 9
2.3 Proposed Multi-NoC Performance Analysis Technique 13
2.4 Experimental Evaluation 26
2.5 Conclusion 34

3 A Lightweight Congestion Control Technique for NoCs with
Deflection Routing 36
3.1 Overview 36
3.2 Related Work 39
3.3 ML-Based Proactive Source Throttling 43
3.4 Experimental Evaluations 50
3.5 Conclusion 58



vi

4 MQL: ML-Assisted Queuing Latency Analysis for Data Center
Networks 60
4.1 Overview 60
4.2 Related Work 63
4.3 MQL: ML-Assisted Queuing Latency Analysis 69
4.4 Experimental Evaluation 81
4.5 Conclusion 92

5 Similarity-Based Fast Analysis of Data Center Networks 94
5.1 Overview 94
5.2 Related Work 97
5.3 Proposed Technique102
5.4 Experimental Evaluation109
5.5 Conclusion118

6 Conclusion of the Dissertation120

A Appendix122
A.1 Appendix122

Bibliography125



vii

list of tables

2.1 Comparison of prior research and our novel contribution. . . . 11
2.2 List of the symbols used in this work. . . . . . . . . . . . . . . . 18
2.3 Summary of results with different probability of burstiness

(pbr), LLC hit rate (ph) and injection rate (λ). . . . . . . . . . 28

3.1 List of features collected at each sink. . . . . . . . . . . . . . . . 46
3.2 Accuracy(%) of decision trees with different depths. Decision

tree of depth 4 is chosen based on the accuracy. . . . . . . . . . 52

4.1 Summary of notations used in this dissertation. . . . . . . . . . 73
4.2 List of the input features constructed in a particular queue for

the regression model. . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3 A summary of the experimental setup used for evaluations in

this dissertation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4 Evaluations with the Anarchy [58] trace. . . . . . . . . . . . . . 87
4.5 Execution time of the MQL models, speedup w.r.t simulations

A2A: all-to-all, IC: incast, BC: broadcast . . . . . . . . . . . . . 88
4.6 A comparison of normalized Wasserstein distances of RTT

(avgRTT(w1)) and 99th percentile RTT (p99RTT(w1)) between
DeepQueueNet [75], MimicNet [76], RouteNet [13] and our
proposed MQL framework for synthetic traffic. . . . . . . . . . 92

5.1 Summary of notations used in this dissertation. . . . . . . . . . 104



viii

5.2 A summary of the experimental setup used for evaluations in
this dissertation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3 Range of absolute runtime between simulation and analytical
model (with and without similarity). . . . . . . . . . . . . . . . 118



ix

list of figures

2.1 (a) Ilustration of multiple NoC layers with interfaces to all the
cores, and last-level caches in the system. (b) Comparison
between cycle-accurate simulation and performance analysis
considering the interactions between different NoCs and treat-
ing them independently [42]. . . . . . . . . . . . . . . . . . . . 7

2.2 A 4x4 mesh with deflection routing . . . . . . . . . . . . . . . . 11
2.3 Canonical System with multiple NoC layers. The downstream

NoC is abstracted as a single queue (Qds). . . . . . . . . . . . . 13
2.4 Steps involved in constructing the analytical model. The thick

black arrow indicates the direction in which the back-pressure
propagates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Comparison of average latency of packets between cycle-accurate
simulation and performance analysis considering the interac-
tions between different NoCs (proposed) and treating them
independently [42], for varied injection rate in a 6×6 NoC in
which the probability of burst is 0 and the hit rate is 1. . . . . 29

2.6 Comparison of average latency of packets between cycle-accurate
simulation and performance analysis considering the interac-
tions between different NoCs (proposed) and treating them
independently [42], for varied injection rate in a 6×6 NoC in
which the probability of burst is 0.1 and the hit rate is 1. . . . 30



x

2.7 Comparison of analytical models without considering deflec-
tion at the sink. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8 Comparison of average latency of packets between cycle-accurate
simulation and performance analysis considering the interac-
tions between different NoCs (proposed) for different real ap-
plications on (a) 6×6 and (b) 8×8 NoC. . . . . . . . . . . . . . 32

3.1 Percentage of miss packets with state-of-the-art congestion con-
trol technique. The traffic is generated with 50% LLC miss rate
(shown in red dashed line). However, the percentage of miss
packets decreases to 7% at the highest injection rate which is
extremely unfair to miss traffic. . . . . . . . . . . . . . . . . . . 37

3.2 A representative 4×4 mesh-NoC with deflection routing. . . . 41
3.3 An illustrative example of our proposed time reversal approach

to label the features. . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4 Comparison of average transaction latency for 70% hit rate.

Lower transaction latency indicates less congestion. . . . . . . 53
3.5 Comparison of percentage of LLC miss for 70% LLC hit rate

(30% LLC miss). Higher percentage of LLC miss indicates that
the congestion control technique is more fair towards the miss
traffic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Comparison of memory read bandwidth for 20% LLC hit rate.
Higher memory read bandwidth indicates less NoC congestion. 55



xi

3.7 Comparison of average bytes received per core for 70% LLC hit
rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.8 Memory read bandwidth comparison with realistic workloads. 57

4.1 Queuing theory representation of 16 node fat-tree . . . . . . . 67
4.2 Overview of the proposed MQL methodology. . . . . . . . . . 71
4.3 Decomposition method: Phase 1 merges multiple flows into

single flow. Phase 2 computes the coefficient of variation of
departure processes. Phase 3 splits the merged flow to derive
the individual departure processes . . . . . . . . . . . . . . . . 75

4.4 Workflow of the ML-assistance component in the MQL frame-
work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 MAPE (%) of the round-trip latency achieved by MQL on
all-to-all, incast and broadcast traffic for (a) Fat-Tree-16, (b) Fat-
Tree-128, (c) Fat-Tree-432 and (d) Fat-Tree-1024 with different
types of packet arrival distributions, packet size distributions,
and data rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6 A comparison of the round-trip latency (RTT) (in milliseconds)
cumulative distribution function (CDF) between simulation
and MQL models for all-to-all traffic in (a) Fat-tree-16 and (b)
Fat-tree-128 respectively. . . . . . . . . . . . . . . . . . . . . . . 85



xii

4.7 A comparison of the cumulative distribution function (CDF) of
the round-trip time (RTT) (or latency) in milliseconds between
simulation and MQL for the real-world trace Anarchy on (a)
fat-tree-16, (b) fat-tree-128, (c) fat-tree-432, and fat-tree-1024
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.8 Speedup of the proposed MQL framework when compared to
ns-3 simulations for different configurations of tree sizes, traffic
type and data rates represented by FT{size}-{traffic type}-{data
rate}. Sizes vary between 16, 128, 432 and 1024. Traffic types
vary between all-to-all (A2A), incast (IC) and broadcast (BC).
Data rates vary between low (L), medium (M), and high (H). 91

5.1 A 3-tier 54 node fat-tree with core, aggregate, edge switches.
The left most 3 nodes and the right most 3 nodes are numbered.100

5.2 Unfolded representation of fat-tree topology with all possible
paths from a source (node1) to destination (node54). . . . . . 101

5.3 Decomposition method: Phase 1 merges multiple flows into
single flow. Phase 2 computes coefficient of variation of depar-
ture processes. Phase 3 splits merged flow to derive individual
departure processes. . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4 Performance analysis speed-up of 3-tier fat-tree with three dif-
ferent similarity thresholds (ST) as compared to ns-3. . . . . . 109



xiii

5.5 Number of times the analytical model is called for different
similarity thresholds (ST) in a 3-tier fat-tree. . . . . . . . . . . 110

5.6 Comparison of baseline model MAPE with the MAPE obtained
through different similarity thresholds (ST) in a 3-tier fat-tree. 110

5.7 Performance analysis speed-up of 2-tier fat-tree with three dif-
ferent similarity thresholds (ST) as compared to ns-3. . . . . . 114

5.8 Number of times the analytical model is called for different
similarity thresholds (ST) in a 2-tier fat-tree. . . . . . . . . . . 114

5.9 Comparison of baseline model MAPE with the MAPE obtained
through different similarity thresholds (ST) in a 2-tier fat-tree. 115



xiv

abstract

As multicore processors continue to scale, Networks-on-Chips (NoCs)
have emerged as the de facto on-chip interconnect solution. However,
industrial NoCs are complex, comprising multiple physical layers with
interdependencies that impact performance. Accurately understanding
and modeling these interactions are paramount for effective design-space
exploration. Pre-silicon design-space exploration and system-level simu-
lations are essential in industrial design cycles to ensure specifications are
met without costly post-tape-out iterations. Yet, cycle-accurate simulations
are notoriously slow, particularly for processors with multi-layer NoCs,
due to their vast design space.

To address these challenges, we introduce a performance analysis tech-
nique that models interactions and estimates destination layer blocking
probability to compute finite queuing delays in the source layer. Experi-
mental evaluations demonstrate our approach is consistently within 10%
of, and five times faster than, cycle-accurate simulations for 6×6 mesh
NoCs under both synthetic and real traffic scenarios.

In NoCs, congestion significantly impacts processor performance, lead-
ing to core stalls and wasted link bandwidth. Traditional approaches throt-
tle cores post-congestion, reducing efficiency. In contrast, our lightweight
machine learning-based technique predicts congestion, leveraging traffic-
related features and a novel time reversal labeling approach. Experimental



xv

evaluations on industrial 6×6 NoCs show up to 114% increase in fairness
and memory read bandwidth compared to existing techniques, with less
than 0.01% overhead.

The demand for low-latency, large-scale distributed systems continues
to grow, necessitating performance-optimal distributed networks. Packet-
level simulators provide accurate modeling but are slow. To address
scalability and accuracy challenges, we propose a novel methodology
combining queuing theory with the maximum entropy principle, aug-
mented by regression tree learning. This ML-assisted technique achieves
less than 3% modeling error on average compared to ns-3 simulations,
with speedups ranging from 100× to 9000× on DCNs with 128 to 1024
nodes.

While analytical techniques offer speed advantages over packet-level
simulators, their scalability may degrade with increasing network size.
To mitigate this, we propose a similarity-based technique that enhances
speed by up to 2000x with minimal accuracy impact, enabling performance
estimates for large-scale DCNs.
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1 introduction

Analytical performance modeling of communication networks offers a
rapid and lightweight approach to pinpoint congestion points, hotspots,
and communication latency issues that impede performance. Regardless
of the network scale, pre-silicon design space exploration and system-level
simulations are crucial in industrial design cycles to meet specifications
without costly iterations. Employing cycle-accurate simulators for overall
performance evaluation is common, but detailed models, while accurate,
can be time-prohibitive. Thus, accurate analytical models serve as promis-
ing alternatives, providing speed advantages. With confidence from analy-
sis and simulation, designers can efficiently advance to circuit and backend
design stages. In this thesis, we present analytical performance modelling
for both small scale Networks-on-Chip (NoCs) and large scale data center
networks (DCNs)

Small Scale Network: In Networks-on-Chip (NoCs), unlike early aca-
demic proposals that use virtual channels [61], industrial NoCs comprise
multiple physical layers for requests, data, acknowledgment (ACK), and
snoop traffic [62]. Multiple physical layers provide significantly higher
interconnect bandwidth, making them better for many high-performance
computing and networking applications [62]. While these NoCs have ded-
icated routers and links, they are still connected to the same endpoints, i.e.,
cores and cache controllers. Consequently, they interact with each other
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by applying backpressure, hence affecting performance. Understanding
and modeling the effects of these interactions is crucial for design-space
exploration, but existing analytical performance modeling techniques fail
to capture this critical interaction since they model a single-layer NoC.

As mentioned, performance modeling of networks (in this case, NoCs)
aids in comprehending issues that impact performance of the system (in
this case, multi-core processor). This is crucial as efficient communica-
tion among the various components on a multi-core chip is essential for
achieving optimal performance. It has been shown that NoCs are affected
more by networking problems such as congestion than by architectural
problems [51]. NoCs (buffered or bufferless) implement backpressure
mechanisms to prevent packet losses. As a result, the throughput (the
number of packets processed per unit time) decreases, and the overall
performance of the SoC deteriorates. Existing reactive source throttling
techniques throttle the source after congestion happens and hence, they
do not maintain the throughput of the NoC under heavy traffic. This em-
phasizes the necessity for a proactive and lightweight congestion control
technique.

Large Scale Network: Data centers house close to 200,000 nodes aiding
to the growing demand of emerging applications. Deploying DCs of such
size requires significant capital and operational expense to architect the
Data Center Network (DCN) that facilitates communication between the
distributed components. Therefore, DCN architects spend substantial
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effort designing the network topology, routing algorithms, and protocols.
Notoriously slow simulation-based design space exploration is not prac-
tical. Therefore, there is need for accurate analytical models that speed
up the analysis of DCNs that employ 1000’s of nodes, while incorporating
routing algorithms and protocols which affect the traffic pattern and the
load respectively.

Because data centers employ close to 200,000 nodes, the number of
queues represented by the analytical model is > 200,000 which includes
the queues in the switches. Although analytical models are fast and
lightweight when compared to packet level simulator, their speed advan-
tage can degrade as the network size increases. Furthermore, the routing
algorithms used in DCNs enable multiple path from a single source to
destination increasing the complexity of the analytical model. This neces-
sitates a technique that speeds up the analytical model of DCNs when
scaled up to 100,000 nodes.

In this dissertation, we tackle the diverse challenges posed by small-
scale Network-on-Chip (NoC) architectures for multi-core processors and
large-scale Data Center Networks (DCNs) by establishing a cohesive set
of principles. These principles should revolve around the adept modeling
of intricate interactions and congestion control mechanisms to ensure op-
timal communication performance in both scenarios. Concurrently, these
principles should extend seamlessly to large-scale DCNs, where analytical
models must accommodate the significant volume of nodes and the intri-
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cacies introduced by routing algorithms that enable multiple paths. The
overarching framework should prioritize scalability, facilitating the analy-
sis of communication networks across various scales, from modest NoCs
to extensive DCNs. Ultimately, these unifying principles should guide the
formulation of analytical models that provide valuable insights into perfor-
mance optimization, congestion mitigation, and efficient communication
within diverse network architectures.

The contributions of each work aiming to tackle the aforementioned
challenges are as follows:

1. Develop an analytical model for multiple Network-on-Chip (NoCs)
considering back-pressure and finite buffers, coupled with a scalable
end-to-end algorithm adaptable to various NoC sizes and buffer
configurations.

2. Introduce a unique time reversal approach and supervised learning
for constructing a decision tree tailored for proactive congestion con-
trol in industrial NoCs in order to optimise memory read bandwidth.

3. Develop an analytical model for large-scale network architectures
with over 1000 nodes with the ability to provide detailed observ-
ability in to the network, complemented by an automated tool for
generating executable performance models in Data Center Networks
(DCNs).
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4. Implement a similarity-based technique that reduces the algorithmic
complexity of analytical model in DCN performance evaluation from
quadratic to linear, with minimal accuracy trade-offs enabling the
feasibility of DCN performance evaluation at scale.

In summary, this dissertation presents a series of works aimed at en-
hancing the modeling accuracy and performance optimization of Network-
on-Chip (NoC) and Data Center Networks (DCNs). The first set of works
achieves NoC models with less than 10% modeling error on average. The
subsequent work focuses on optimizing NoC for memory read bandwidth,
while ensuring favorable average bytes received per cycle and average
transaction latency.

The third work in the dissertation addresses DCN modeling, achieving
less than 3% modeling error on average and a significant speedup of at
least 100× compared to simulation. Finally, the last work concentrates on
optimizing the analytical model for DCNs, specifically targeting speed
when testing on networks with over 1000 nodes. Overall, these contribu-
tions aim to advance the accuracy and efficiency of network modeling in
the context of NoCs and DCNs.

The rest of the dissertation is organized as follows. Chapter 2 – Chap-
ter 5 provide detailed description of the four works.
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2 fast analysis using finite queuing model for

multi-layer nocs

2.1 Overview

NoCs are now the standard on-chip interconnect solution for large many-
core processors [62]. Unlike early academic proposals, industrial NoCs
incorporate multiple physical layers for requests, data, acknowledgment
(ACK), and snoop traffic [62], providing higher interconnect bandwidth
for high-performance computing and networking applications. Despite
dedicated routers and links, these NoCs still connect to the same endpoints
(cores and cache controllers), leading to interactions and backpressure
that impact performance. Existing techniques, designed for single-layer
NoCs, fail to capture these crucial interactions.

In industrial design cycles, pre-silicon design-space exploration and
system-level simulations are vital to meet specifications without costly
post-tape-out iterations. Cycle-accurate simulators, commonly used, are
slow [61], especially for processors with multi-layer NoCs, resulting in a
massive design space that further slows simulations. Accurate analytical
models offer a promising alternative, being lightweight and significantly
faster. However, existing NoC performance analysis techniques assume a
single physical layer with virtual channels, rendering them inadequate for
modern processors with multi-layer NoCs.
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Figure 2.1: (a) Ilustration of multiple NoC layers with interfaces to all the
cores, and last-level caches in the system. (b) Comparison between cycle-
accurate simulation and performance analysis considering the interactions
between different NoCs and treating them independently [42].

Different physical layers in NoCs have dedicated routers and links, but
they connect at the cores and cache controller boundaries, as illustrated in
Figure 2.1(a). Interconnected layers, including request, data, acknowledg-
ment, and snoop, can apply back pressure due to finite buffers, leading
to congestion. For instance, a core’s request packet travels through the
request layer, potentially causing congestion when data and acknowl-
edgment layers apply back pressure. Traditional performance analysis
techniques assuming independent layers or infinite buffers fail to cap-
ture such inter-dependencies, impacting accurate performance estimation.
Figure 2.1(b) illustrates this, comparing the average packet latency of
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an isolated layer from a recent analysis technique (blue triangle marker)
against cycle-accurate simulations. The technique, lacking modeling for
backpressure, inaccurately estimates latency under congestion.

This dissertation introduces a novel performance analysis technique
for multi-layer NoCs, considering finite queuing models, priority-aware
arbitration, and industry-standard deflection routing. Prior to this work,
no attempt has been made to model the interdependence between multiple
physical layers in modern NoCs comprehensively. The complexity of con-
structing such a technique arises from the intricate interactions between
the networks. For instance, back pressure results from factors like source
injection rate, request hit rate, cache controller and memory controller
processing speeds, buffer sizes, and more. We address this complexity by
estimating congestion probability at the response layers’ egress queues
(data and ACK layers). This probability informs the estimation of back-
pressure on the request layer and the consequent deflection probability.
Ultimately, the average packet latency in the NoC is estimated using this
deflection probability.

The significant contributions of this work are as follows:

• Analytical model targeting multiple NoCs considering back-pressure
and finite buffers,

• A scalable end-to-end algorithm that is generalized to NoC size and
buffer sizes,
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• Thorough experimental evaluation showing less than 10% modeling
error on average for industrial NoC executing synthetic traffic as well
as real applications.

2.2 Related Work

Several performance analysis techniques of NoCs using queuing theory
have been proposed in the literature [26, 42, 53, 61]. One of the early
NoC performance analysis techniques is proposed in [53], where authors
assume exponentially distributed interarrival times, infinite buffers in the
network, and finite buffers at the NoC input interfaces. Later, a similar
analytical model developed in this work is used to develop a machine
learning-based technique for NoC performance analysis, assuming a gen-
eral distribution for the incoming traffic [61]. These studies assume round-
robin arbitration for the NoC, while most NoCs used in state-of-the-art
industrial SoCs are priority-aware [62].

Kiasari et al. [26] proposed an analytical performance model for priority-
aware NoCs. However, the priority-aware NoCs used in the industry also
incorporate deflection routing. Analytical performance analysis technique
for industrial priority-aware NoCs with deflection routing is considered
in [42]. The authors use the deflection probability as an input to the analyt-
ical model. Moreover, their technique assumes infinite buffers. In contrast,
industrial NoCs consist of small buffers (4–16) and different layers for
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different transactions.
The authors in [61] propose a new and accurate analytical model that

uses the application communication graph, the NoC architecture, and the
routing algorithm for queuing delay analysis. However, the framework
does not consider deflection routing and small finite buffers. Kouvastos et
al. [31] propose an open queueing network model for wormhole-routed
hypercubes with finite buffers and deterministic routing. The authors
in [5] propose a methodology that can be utilized to analyze different
heterogeneous NoC architectures and traffic scenarios. Nikitin et al. [49]
have modeled the NoC as a constant service time system using M/D/1
queue analysis which is unfeasible. However, none of the work above
considers priority-aware deflection routing, which is generally used in
industrial NoCs. They also do not model the interactions between the
NoCs, which is crucial for accurate performance analysis, as shown in
Figure 2.1.

In contrast to the prior work, this dissertation proposes a performance
analysis technique for multi-layer NoCs with finite buffers used in modern
industrial NoCs. This is challenging due to the nontrivial interactions
between different NoC layers. To the best of our knowledge, this is the first
analytical model for multi-layer NoCs considering finite queuing model.
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Figure 2.2: A 4x4 mesh with deflection routing

Background and Motivation

This work focuses on modeling multi-layer priority-aware NoCs with
deflection routing and finite buffers, which applies to a wide range of
industrial NoCs [3]. In priority-aware deflection routing, packets already
in the network have higher priority than newly injected packets. Deflection
occurs when the sink queue at the destination becomes full and cannot

Table 2.1: Comparison of prior research and our novel contribution.

Research Deflection
Routing

Bursty
Traffic

Discrete
Time

Finite
Buffer

Multiple
NoCs

Ben-Itzhak et al.[5] No No No No No
Nikitin et al.[49] No No No No No
Kouvatsos et al.[31] No Yes No Yes No
Qian et al.[61] No Yes No Yes No
Kiasari et al.[26] No Yes No No No
Mandal et al.[42] Yes Yes Yes No No
This work Yes Yes Yes Yes Yes
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accept more packets, causing the packets injected by the core to deflect
from the sink queue into the network. For example, Figure 2.2 shows
a 4x4 mesh NoC architecture, where Node 14 sends a packet to Node
5 following Y-X routing (highlighted by thick blue arrows). Deflection
happens when the queue at the turning point (Node 6) or final destination
(Node 5) becomes full. The probability of encountering a full queue, hence
deflection, increases with the traffic load and smaller queue sizes (used
to save area). Consequently, regular and deflected traffic can load the
corresponding row and pressure the queue at the turning point (Node 6)
and the sink. This, in turn, can lead to deflection on the column and row
(shown by red arrows), propagating the congestion toward the source
and wasting valuable NoC bandwidth.

Traffic congestion can also propagate from one layer (e.g., the Data
layer) to another (e.g., request layer). For example, a cache controller
injecting packets into the data and acknowledgment layers at a high rate
(e.g., due to high LLC (Last Level Cache) hit rates) can cause a faster
accumulation of packets in its egress queues. As the egress of the data and
acknowledgment layer fills up, the rate at which the cache controller can
serve new requests slows down. As a result, the sink buffers in the cache
controllers fill up, applying backpressure to the request layer and causing
deflection, leading to congestion. Indeed, Figure 2.1b shows that the
average latency of packets in the layer increases significantly in the higher
injection region due to the interdependence between layers. Existing
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analytical models often fail to capture this interdependence, which is
crucial for accurately analyzing NoC performance.

2.3 Proposed Multi-NoC Performance Analysis

Technique

This section describes the proposed technique. First, we develop a model
for each physical layer using a canonical system representing a single
traffic class. Subsequently, we scale this model to accommodate multiple
traffic classes within each layer. The output of one network layer serves
as the input to the destination, capturing their interdependence. After
constructing the models for all layers, we combine them to obtain the
end-to-end latency.

Figure 2.3: Canonical System with multiple NoC layers. The downstream
NoC is abstracted as a single queue (Qds).
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Description of Multi-NoC with Single Traffic Class

Simplified canonical system: The inputs to the canonical system are the
traffic distributions of the new requests from the cores into the egress
queues (QEgress). The traffic is modeled using Generalized Geometric
(GGeo) distribution with two moments (mean injection rate (λin) and
the coefficient of variation of inter-arrival time (CA

in) of packets entering
into QEgress) to capture burstiness, as shown in Figure 2.3.
Upstream Layer: The new requests traverse the request layer (marked as
“Upstream Layer”) to reach the Last Level Cache (LLC) controller. On
reaching the destination, the request is either sunk into the sink queue
(QSink) or deflected back into the request layer if QSink is full, indicated
by pfull the probability that sink queue is full. This deflections require
the request layer to handle both the new requests into QEgress and the
deflected packets from QSink. The deflected packets have higher priority(
shown by 1

)
than the new requests

(
shown by 2

)
, as seen in Figure 2.3.

They keep circulating in the layer till QSink consumes them. The latency
of transaction of packets (the new request and the deflected packets) to
reach the destination is used to model the service time (T̂E), as shown in
Figure 2.3.
Downstream Layer: After QSink processes an incoming request packet
from the upstream layer, the corresponding LLC controller generates a new
packet and injects it into the downstream layer. When the request results in
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an LLC hit, it produces a data and acknowledgement packet injected into
the data layer and acknowledgement layer, respectively. Otherwise, the
request is forwarded to the memory controller. Our approach can handle
all interactions arising from the cache-coherency protocol. However, for
simplicity, we abstract the downstream network as a single queue (Qds)
with an effective service time (Tds), as shown in Figure 2.3. The abstracted
downstream layer is expanded and presented later in Section 2.3.B.
Dependencies between multiple NoCs: The upstream layer injects re-
quest packets into the downstream data and acknowledgement layers. As
the number of injected packets into the downstream layer increases, the
queuing system experiences backpressure due to accumulation of packets
in queue. The accumulation of packets eventually causes QSink in Fig-
ure 2.3 to become full. As a result, incoming requests from the QEgress in
the upstream layer are deflected back into the upstream layer which in
turn increases the waiting time of the packets in QEgress. That is, the back-
pressure from the downstream layer increases the traffic load and latency
in the upstream layer. The rest of this section models this behaviour.

Analytical Modeling of Multi-NoC with Single Traffic

Class

We first find the average waiting time (ŴE) in QEgress using the following
steps:
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1. Understanding the accumulation of packets in the downstream layer.
Therefore, we start by modeling the blocking probability (pb) at the

downstream layer.

2. Understanding the accumulation of packets in QSink caused by the
blocking probability in the downstream layer. Therefore, we continue
by modeling the probability (pfull) of QSink being full.

3. Understanding the impact of back-pressure from the downstream
layer towards the upstream layer. Therefore, we finish by modeling

the waiting time (ŴE) in QEgress in the upstream layer.

Figure 2.4 shows a pictorial representation of the steps for clarity, while
Table 2.2 lists the symbols used in this dissertation. We want to point out
that the maximum entropy (ME) method is employed due to its closed-
form solution, to obtain a fast, lightweight and efficient analytical model.
It provides the probability distribution of the system state (in this case, the
queue occupancy) based on certain mean value constraints. The principle
of maximum entropy states that the most unbiased distribution satisfying
given constraints is the one that maximizes the system’s entropy function.
The maximization of the system’s entropy function is carried out using
Lagrange’s method of undetermined multipliers. However, in a stochastic
system, the implementation of a steady-state maximum entropy solution
requires estimation of Lagrangian coefficients related to output parameters
such as utilization and mean queue length. We make this estimation by
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using a related closed network at equilibrium with infinite queue [29].
The details of the ME technique can be found in Appendix A.1 and [29].
Next, we elaborate each step.

1. Modeling the blocking probability (pb) at the downstream layer

The downstream layer abstracted in Figure 2.3 as Qds, is viewed as another
canonical system containing priority queues (Qhds, Qlds) which is marked
as ‘Step:1’ in Figure 2.4. The probability of blocking at the downstream
layer (pb) is a function of the rate at which each queue is filled with
packets. Hence, understanding the dependencies between each queue’s
operation in the downstream layer is crucial. ‘Step:1’ in the figure shows
the parameters needed to be calculated before finding blocking probability
pb. The variables that blocking probability pb is dependent on: We denote

Figure 2.4: Steps involved in constructing the analytical model. The thick
black arrow indicates the direction in which the back-pressure propagates.
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Table 2.2: List of the symbols used in this work.
λin, λd, λsink Injection rate to QEgress, Qd, Qsink

T̂E, Mean service time of QEgress and Qd

T̂ds, T̂S Mean service time of Qhds and Qlds, Qsink

pfull Probability of Qsink being full
pd Probability of deflection of packet from Qsink

pb Probability of blocking

CA
in, CA

d

Coeff. of variation of inter-arrival
time of QEgress, Qd

Rsink Residual wait time in Qsink

CS Coefficient of variation of service time of Qsink

ŴE, Ŵd, ŴS
Average waiting time of the packets
in QEgress, Qd, Qsink

Ŵhds, Ŵlds Average waiting time of the packets in Qhds, Qlds,
ρds, ρsink Utilisation of the server at Qhds and Qlds, Qsink

< n > Mean queue length of infinite queue
< n >N Mean queue length of finite queue
x,xN,y, g Lagrangian coefficients
N Queue size
pN Prob. dist. of occupancy in a queue of size N

the dependency of computing pb in ‘Step:1’ through the following notation
(as seen in the bottom of Figure 2.4):
Step 1: Blocking probability (pb)→ Low priority queue waiting time

(Ŵlds)→High priority queue waiting time (Ŵhds)→Modified service

time (T̂ds).

The above notation denotes that computation of pb needs Ŵlds; computa-
tion of Ŵlds needs Ŵhds; Ŵhds needs T̂ds. Please note that we will follow
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the same notation for each step for clarity. We begin by finding T̂ds and
compute pb at the end of ‘Step:1’.

a. Obtaining the modified service time (T̂ds) of the downstream

layer

To obtain the mean service time (T̂ds) of the egress queues (Qlds) in the
downstream layer, we first calculate the probability of no packets in Qlds

and in its corresponding server (i.e., pQlds
(0)) using maximum entropy

(ME) method [29] as,

pQlds
(0) = 1 − ρlds − ρhds

n̄lds

n̄lds + ρlds + ρhds

(2.1)

where ρlds denotes the utilization of Qlds and ρhds denotes the utilization
of Qhds shown in the Figure 2.4, which is a queue with higher priority in
the downstream layer. n̄lds is the occupancy of Qlds.

Using the resulting probability distribution of occupancy (pN(n)) from
the ME method, we apply Little’s law to compute the first order moment
of modified service time (T̂ds) as:

T̂ds =
1 − pQlds

(0)
λlds

(2.2)

Using Equation 2.2, we obtain the waiting time of the packet in the
egress queues (Ŵlds) in the downstream layer following the technique in
[42].

b. Obtaining the probability of blocking (pb)
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As discussed earlier, pb depends on the rate of packet accumulation
in the downstream layer which is estimated using the ME method. How-
ever, the ME method is built on prior information of the system which
is obtained either through measurements or through estimating the La-
grangian coefficients using an infinite queue system and extending the
ME method to finite queues. In order to make the model purely analytical
and steer clear of any simulations, we employ the latter technique.

We start the analytical modeling of blocking probability by first assum-
ing infinite queue length to estimate the Lagrangian coefficients in the ME
method [29], which provides the probability distribution of occupancy in
Qds. Using Equation 2.2, we obtain the waiting time of the packet in the
egress queues (Ŵlds) [42] which is used to find the mean infinite queue
length < n >ds as follows:

< n >ds= λdsŴlds + ρds (2.3)

where ρds = λdsT̂ds and λds is the injection rate to the egress queue of the
downstream layer. Then, we compute the blocking probability pb which
equals to pN(N) in Equation A.9, using the technique described in the
Appendix.
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2. Modeling the probability (pfull) that Qsink is full

The probability of blocking (pb) obtained in ‘Step:1’ determines how long
a packet will stay at the head of the Qsink in ‘Step:2’ of Figure 2.4. This
indicates that the TS and CS is a function of pb. ‘Step 2’ in Figure 2.4, shows
the parameters needed to calculate the probability (pfull) that the Qsink

is full. We denote the dependency of computing pfull in ‘Step:2’ through
the following notation:
Step 2: Probability of sink queue being full (pfull)→Waiting time in

the sink queue (ŴS)→ Service time of the sink queue (T̂S)→ Blocking

probability of the downstream network (pb).

Therefore, we start by computing T̂S using pb.
a. Obtain the service time (T̂S) and coefficient of variation of service

time of (CS) of (Qsink) using blocking probability of the downstream

network(pb) To compute CS, we need to obtain the first order (T̂S) and
second order moment (T̂ 2

S) of the service time of Qsink. T̂S is obtained
by finding the average number of cycles a packet will stay at the head of
the Qsink until the packet has been sent to the next layer. This takes into
consideration the effect of backpressure applied by the downstream layers
on the Qsink which causes the packets to stay longer at the head of the
Qsink.

T̂S = 1 − pb + 2pb(1 − pb) + 3p2
b(1 − pb) + · · ·

= 1 − pb +

∞∑
n=2

np
(n−1)
b (1 − pb)

(2.4)
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Therefore, T̂S can be expressed as:

T̂S =
1

1 − pb

(2.5)

Similarly, we obtain T̂ 2
S = 1+pb

(1−pb)2 . Next, using T̂S and T̂ 2
S, we calculate the

coefficient of variation of service time.

C2
S =

T̂ 2
S − T̂S

2

T̂S
2 (2.6)

b. Obtaining the waiting time (ŴS) of sink queue (Qsink)

We begin to calculate the waiting time (ŴS) using the residual time
Rsink, i.e, Equation 2.8. However, to find the residual time we must first
compute ρsink.

ρsink = λsinkT̂S (2.7)

where λsink is the injection rate to the sink queue of the current layer. Next,
using Equation 2.5, 2.6 and 2.7, we compute the residual time, i.e, Equation
2.8. Using the residual time Rsink, we compute the waiting time ŴS, i.e,
Equation 2.9.

Rsink =
ρsink(TS − 1 + TSC

2
S)

2 (2.8)

ŴS =
Rsink

1 − ρSink

(2.9)
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c. Obtaining the probability of sink queue being full (pfull) Similar
to blocking probability, we start constructing the analytical model to find
the probability of sink queue being full (pfull) by first assuming infinite
queue length. Using equation 2.8 and 2.9, we find the mean infinite queue
length < n >sink:

< n >sink= λŴS + ρsink (2.10)

Then, we find the Lagrangian coefficient x by using the mean infinite
queue length < n > from Equation 2.10, in Equation 2.11 [30].

x =
< n >sink −ρsink

< n >sink

(2.11)

Using Equation 2.11 and following the complete derivation given in
Appendix A, we get the probability distribution of queue occupancy as:

pN(n) =


CNp̂(n), for n = 0, 1, . . . ,N− 1

1 −
∑N−1

n=0 pN(n), for n = N

(2.12)

From the resulting probability distribution given by Equation 2.12, we
acquire the probability of the sink queue being full pfull as pN(N), where
N represents the queue size.
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Algorithm 1: Iterative approach to obtain waiting time (WE) of
the packets in the egress queue.
1 Input: Deflection probability (pd), Injection rate to the egress

buffer (λin), Buffer size (N)
2 Output: Waiting time of the packets in the egress queue (WE)
3 Initialization: e = ket,k > 1; λ̂in = λin

4 while e ⩾ et do
5 Obtain the modified service time (T̂E) of the egress queue

using pd and λin following [42].
6 Obtain the probability that the egress queues are full (pE

full)
using λin,N following Equations A.2 - A.10 in Appendix A

7 λtemp ← λ̂in

8 λ̂in ← λ̂in(1 − pE
full)

9 e =
|λtemp−λ̂in|

λ̂in

10 end
11 Obtain WE from λ̂in, T̂E [42].

3. Modeling the waiting time (ŴE) of the packets in (QEgress)

We denote the dependency of computing ŴE in ‘Step:3’ through the fol-
lowing notation:
Step 3: Waiting time of egress queue (ŴE) → High priority queue

Waiting time (Ŵd) → Service time in the upstream network(T̂E) →

Probability of sink queue being full (pfull).

The pfull obtained in the Step:2 is used as probability of deflection (pd)
for the upstream layer. State-of-the-art analytical performance analysis
technique consider layers with deflection routing [42] assuming infinite
queues. In this work, we developed an iterative approach to model layers
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with deflection routing while considering finite queues. Algorithm 1
shows the iterative approach. The algorithm takes deflection probability
(pd), injection rate to the egress buffer (λin) and the egress buffer size
(N) as the input. The output of the algorithm is the waiting time (ŴE)
of the packets in the egress queue. We first obtain the modified service
time of the egress queue using the technique described in [42]. Then,
we compute the probability (pE

full) that the egress queue is full using
the technique described in Appendix A. We modify the injection rate
using pE

full as shown in line 8 of Algorithm 1. Then the relative error (e)
between the modified injection obtained in the previous iteration and the
current iteration is computed. The iteration is stopped when e is less than
a pre-defined threshold (et). Finally, we compute ŴE using the modified
injection rate (λ̂in) and the modified service time (T̂E).

End-to-End Analytical Model

Algorithm 2 describes the technique to obtain end-to-end latency for multi-
layer NoCs. The input to the algorithm is NoC size, injection process of
each traffic class and the microarchitectural details of the NoCs. The mi-
croarchitectural details of the NoCs include the service process of each
queue and size of the queues. The output to the algorithm is the average
packet latency (L̄). In a mesh NoC with r rows and c columns, there are
total Ns = r × c sinks as initialized in line 3 of the algorithm. Next, for
each sink-i we compute the probability of blocking (pi

b) and the proba-
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bility of full (pi
full) following the techniques described in Section 2.3 and

Section 2.3 respectively. After that, we obtain the probability of deflection
at sink-k (pk

d) as shown in line 12 of Algorithm 2. Then, we obtain the
waiting time for each source-j to sink-k (Wjk) using Algorithm 1. We add
the zero-load-latency (zjk) to Wjk. A cumulative latency (L) and cumula-
tive injection rate (Λ) are computed for the latency (Ljk) and the injection
rate (λjk) as depicted in line 15 and line 16 of the algorithm. Finally, L is
divided by Λ to obtain the average packet latency (L̄).

2.4 Experimental Evaluation

Experimental Setup

In this section, we evaluate the accuracy of the proposed analytical model
by comparing it to a cycle-accurate industrial NoC simulator under various
traffic scenarios. The simulator includes various key features of state-of-
the-art industrial processors [15]. For example the simulator supports
cache coherency protocol, multiple layers of NoCs and considers finite
buffers. Specifically, the simulator models request NoC, data NoC and
acknowledgement NoC separately which is representative of widely used
industrial processors [15]. Existing cycle-accurate NoC simulators do not
consist of these features [23]. The experiment scenarios include real appli-
cations and synthetic traffic that allow evaluations with varying injection
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Algorithm 2: End-to-end latency of multiple NoC with finite
buffers
1 Input: NoC size (r× c), Injection process of each class (λ,Ca),

service process (T ,Cs), buffer sizes (N)
2 Output: Average packet latency (L̄)
3 Initialization: Ns = r× c, zjk = zero load latency from source j to

destination k, L = 0,Λ = 0
4 /* Obtain pfull at each sink*/
5 for i = 1 : Ns do
6 Obtain pi

b through the technique described in Section 2.3
7 Obtain pi

full using pi
b through the technique described in

Section 2.3
8 end
9 /* Obtain waiting time in egress queue for each source-destination

pair */
10 for j = 1 : Ns do
11 for k = 1 : Ns do
12 Obtain pk

d using pk
full.

13 Obtain Wjk using pk
d through Algorithm 1.

14 Ljk = Wjk + zjk
15 L = L+ Ljkλjk

16 Λ = Λ+ λjk

17 end
18 end
19 L̄ = L

Λ

rates, hit rates (ph), and probability of burstiness (pbr). The evaluations
are performed on a 6×6 mesh configuration, which is representative of
high-end server CPUs [62]. The traffic sources emulate high-end CPU
cores. All the buffers are finite and the sizes are set based on the industrial
NoC simulator buffer size. The list of requests in the LLC controller holds
40 requests, while the maximum number of outstanding requests is 16. All
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cycle-accurate simulations run for 600K cycles for the experiments with
synthetic traffic, with a warm-up period of 100K, allowing the NoC to
reach the steady state.
Speed-up achieved with respect to cycle accurate simulation: The pro-
posed analysis technique is implemented in C++ to perform a fair com-
parison in execution time with respect to the cycle-accurate simulator.
Our proposed analysis technique achieves four orders of magnitude im-
provement in execution time compared to simulation for 6×6 NoC. Since
multiple NoCs with finite buffers are being analyzed with an iterative ap-
proach in this work, the execution time of the proposed analytical model
is slightly higher (less than 20%) than the state-of-the-art analytical model
[42].

Evaluations under Geometric Traffic

This section evaluates the proposed model using input traffic distribution
as geometric at the egress queue of the request network. The inputs to the
rest of the NoCs are driven by the LLC controllers serving these requests.

Table 2.3: Summary of results with different probability of burstiness
(pbr), LLC hit rate (ph) and injection rate (λ).

.
pbr 0 0.1 0.3
ph 1 0.5 0.25 1 0.5 0.25 1 0.5 0.25
λ L M H L M H L M H L M H L M H L M H L M H L M H L M H
Er- [42](%) 5.0 6.3 74 3.3 10 65 2.8 56 50 4.9 6.4 77 3.6 1.0 66 3.1 56 56.3 4.3 2.9 80 4.0 1.0 71 3.5 58 50.4
Er-ours(%) 2.7 1.9 1.7 3.4 4.9 7.8 2.9 9.6 10 2.7 1.4 8.8 3.6 4.8 8.3 3.2 3.3 7.6 8.1 11 13 4.0 6.7 10 3.6 8.1 11
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Figure 2.5: Comparison of average latency of packets between cycle-
accurate simulation and performance analysis considering the interactions
between different NoCs (proposed) and treating them independently [42],
for varied injection rate in a 6×6 NoC in which the probability of burst is
0 and the hit rate is 1.

Figure 2.5 shows the average latency of packets in the request network
with a 100% LLC hit rate as the request injection rates scale from a light
load until the request NoC saturates. The latency estimated with the pro-
posed technique ( markers) matches well with cycle-accurate simulations
( markers). It achieves less than 10% mean absolute percentage error
(MAPE) compared to simulation, as summarized in Table 2.3. In contrast,
prior work [42], which does not model the dependencies between different
NoCs ( markers), fails to produce accurate latency at high traffic intensi-
ties. Its error under high traffic load explodes, leading to 30% MAPE on
average.

In addition to the representative results in Figure 2.5, Table 2.3 lists
a more comprehensive set of results for geometric traffic (burst proba-
bility pbr = 0) for LLC hits probabilities (ph) of 1, 0.5, and 0.25 with 3
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Figure 2.6: Comparison of average latency of packets between cycle-
accurate simulation and performance analysis considering the interactions
between different NoCs (proposed) and treating them independently [42],
for varied injection rate in a 6×6 NoC in which the probability of burst is
0.1 and the hit rate is 1.

Figure 2.7: Comparison of analytical models without considering deflec-
tion at the sink.

different sets of injection rate. The table compares the error between [42],
which does not model the dependencies between different NoCs and the
proposed approach. The proposed approach which considers the inter-
dependencies between the NoCs out performs the work [42].
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Evaluations under Bursty Traffic

This section evaluates the proposed model under bursty input distribution
at the egress queue of the request network. Figure 2.6 shows the average
latency of packets in the request network under varying injection rates,
with a hit rate of 1 and a burst probability of 0.1, which is representative
of real application traces. Similar to the previous section, it compares our
analytical results ( markers) against cycle-accurate simulations ( markers)
and prior work [42] ( markers) that models each NoC independently, i.e.,
without explicitly modeling their interactions. The proposed performance
analysis technique achieves less than 10% modeling error compared to
cycle-accurate simulations. In contrast, neglecting the interactions between
different NoCs cause the error to explode during heavy load, similar to
the geometric traffic results. As a result, the average MAPE grows to 30%.

Table 2.3 lists a more comprehensive set of results for bursty traffic
(pbr = 0.1 and pbr = 0.3) for LLC hits probabilities (ph) of 1, 0.5, 0.25 and
3 different sets of injection rate. The table compares the error between [42],
which does not model the dependencies between different NoCs and the
proposed approach. The proposed approach which considers the inter-
dependencies between the NoCs consistently outperforms the work [42]
in medium and high injection rates.



32

Figure 2.8: Comparison of average latency of packets between cycle-
accurate simulation and performance analysis considering the interactions
between different NoCs (proposed) for different real applications on (a)
6×6 and (b) 8×8 NoC.

Results with Real Applications

In addition to the synthetic traffic, the proposed analytical model is evalu-
ated with real applications too. Real applications include SPEC CPU@2006 [18],
SPEC CPU@2017 benchmark suites [11], and the SYSmark®2014 applica-
tion [4]. Specifically, the evaluation includes SYSmark14, gcc, bwaves, mcf,
GemsFDTD, OMNeT++, Xalan, and perlbench applications. These appli-
cations include a variety of different injection rate and different probability
of burstiness.
Obtaining pb of the real applications: We run the applications on
gem5 [9] and collect traces with timestamps for each packet injection.
Specifically, the traces consist of time of generation, source and destination
of each packet to be injected in the NoC. Then, we use the traces to compute
the injection rate (λ) and pb. For each source, we feed traffic arrivals with
timestamps over a 100K clock cycle window into a virtual queue with the
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same service rate as the NoC to determine the queue occupancy. At the
end of the window, we compute the average occupancy. Then, we employ
the model described in [31] to find the occupancy and then pb of each
class.

The benchmark applications are executed on 6×6 and 8×8 mesh ar-
chitectures. The 8×8 mesh-NoC experiments consists of 2 memory con-
trollers and 62 co-located agents. The 6×6 mesh-NoC consists of 2 memory
controllers and 34 co-located agents. Each co-located agent consists of a
processing core and a cache similar to state-of-the-art server-scale com-
puters [15]. In our experiments, we assume that each core is executing
one copy of the real application and requesting data to each cache with
uniform probability and 100% LLC hit traffic.

The comparison results are shown in Figure 2.8(a) and Figure 2.8(b).
The state-of-the-art analytical model which does not consider dependen-
cies between multiple layers of NoCs is inaccurate when the applications
exhibit high injection rate and burstiness. The injection rate for Dijkstra
and fft_8 applications are low. Hence, the analytical model considering
independent networks is accurate enough for those applications. In con-
trast, the proposed model follows the simulation results very closely for
all real applications. On average, the proposed analytical model achieves
less than 10% modeling error. Therefore, our proposed analytical model
considering the inter-dependencies between the NoCs are accurate both
for synthetic and real applications.
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Results without Considering Deflection in the Network

We evaluate our proposed analytical model for a 6×6 NoC without consid-
ering deflection at the sink. In this case we set the size of the ingress buffer
to a high value (1000) so that the packets do not get deflected from the
sink. However, we keep the sizes of egress and transgress buffers finite.
Figure 2.7 shows the comparison in average latency between simulation,
analytical model which does not consider finite buffer (and deflection
routing) [41] and our proposed analytical model. At high injection rate,
due to finite size of egress and transgress buffer, the NoC experiences
backpressure. The backpressure increases congestion in the NoC which
in turn increases the latency. We observe that the analytical model which
considers infinite buffers results in more than 90% in latency estimation at
λmax. In contrast our proposed analytical model incurs only 9% error at
the highest injection rate since we consider finite buffers in our proposed
approach.

2.5 Conclusion

Modern processors consist of multiple physical networks which utilise
finite buffers. The accurate performance evaluation of these Network-on-
Chip (NoC) architectures is essential for efficient design space exploration,
rapid system simulations, and optimization of architectural parameters.
However, current state-of-the-art performance analysis models for NoCs
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fails to capture the interactions between the networks. This dissertation
introduces a novel performance analysis technique for multi-layer priority-
aware NoCs with deflection routing with different traffic, hit rate and
probability of burst scenarios. Experimental evaluations using industrial
NoCs reveal that the proposed technique surpasses existing analytical
models in accurately assessing real-world application workloads and syn-
thetic traffic workloads spanning various scenarios.
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3 a lightweight congestion control technique

for nocs with deflection routing

3.1 Overview

Multi-core processors in systems-on-chip (SoCs) utilize networks-on-chip
(NoCs) for efficient communication between processing elements, com-
prising routers, links, and queues. Buffered NoCs, employing wormhole
routing, store flits in intermediate routers, while bufferless NoCs, common
in industrial processors, store packets only at endpoints. Under heavy
traffic, finite-sized queues apply backpressure, triggering backpressure
mechanisms in NoCs to prevent packet losses. Buffered NoCs stall and
propagate backpressure upstream, while bufferless NoCs deflect packets
to available output ports [15].

To address congestion, researchers propose congestion control mech-
anisms for industrial NoCs, monitoring sink queue occupancy [69]. If
it exceeds a threshold, a distress signal halts packet transmission until
receiving a distress-off signal after queue occupancy drops. However,
this reduces throughput under heavier workloads and lacks fairness for
requests experiencing a miss in the shared last-level cache (LLC). Static
techniques use predetermined thresholds, leading to unfairness with vary-
ing workloads. Reactive techniques act post-congestion, failing to maintain
NoC throughput under heavy traffic.
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Figure 3.1: Percentage of miss packets with state-of-the-art congestion
control technique. The traffic is generated with 50% LLC miss rate (shown
in red dashed line). However, the percentage of miss packets decreases to
7% at the highest injection rate which is extremely unfair to miss traffic.

This approach aims to alleviate NoC congestion and enhance fairness,
particularly for requests experiencing a miss in the shared last-level cache
(LLC). For example, Figure 3.1 shows the percentage of traffic with LLC
miss as a function of the traffic injection rate. The percentage of requests
with LLC miss denotes the proportion of the requests fetched from the
memory controller. In this experiment, we generate synthetic traffic that
will result in 50% (the dotted line on the figure) LLC miss rate. At low
traffic loads, the observed percentage of LLC miss rate is 50%, as expected.
However, the percentage of completed transactions with LLC misses drops
as the traffic intensity increases and becomes as low as 7% when the
network becomes heavily congested. Similar unfairness happens also at
other LLC miss rates. Existing congestion control mechanisms reduce
congestion but lower throughput under heavy workloads and exhibit
unfairness towards LLC miss traffic. To address this, our work pursues
two objectives: maximize and sustain memory read/write bandwidth to
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maintain core performance and enhance fairness between LLC hit and
miss traffic.

We propose a proactive congestion control technique, employing super-
vised learning and a lightweight decision tree. The learning framework,
based on a novel design of experiments and time reversal techniques, pre-
dicts congestion at sink nodes before queues are blocked. At runtime, the
decision tree informs traffic source control, preventing new requests to
likely congested sinks until the congestion signal is cleared. Experimental
results with synthetic and realistic traces demonstrate a significant increase
in memory read bandwidth (up to 114%) and a reduction in missed traffic
(up to 3.1×) compared to a state-of-the-art congestion control technique.

The major contributions of the work are as follows:

• A novel time reversal approach and supervised learning to construct
a decision tree for NoC congestion control,

• End-to-end congestion control algorithm for industrial NoCs,

• Thorough experimental evaluations showing up to 114% higher
memory read bandwidth than a state-of-the-art technique with less
than 0.01% of overhead.
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3.2 Related Work

Existing NoC congestion control techniques can be broadly classified as
1) Global and 2) Local. The global congestion control techniques assess
the congestion status of the whole network. Depending on the congestion
status, the packet injection rates of all the sources are regulated [21, 44, 66].
In contrast, local congestion control techniques monitor the congestion
at each node [1, 22, 69, 77]. State-of-the-art industrial NoCs monitor the
ingress queue sizes of each node [22, 69]. If the size exceeds a certain
threshold, then the injection of packets from all the sources is stopped.
The packet injection resumes when the occupancies of all the queues drop
below another predetermined threshold. With this technique, congestion
at any of the ingress queues leads to throttling at all sources, leading to
conservative behavior. Authors in [77] propose a fine-grained source
throttling method for NoCs with mesh topology. In this work, the routers
which are most affected by congestion are identified. Then, these routers
are used to estimate the NoC congestion status. A heterogeneous conges-
tion criterion for 2D mesh-NoC is proposed in [1]. When NoC congestion
occurs in a node, the packets whose trajectory is through the congested
node are stalled in the source. The authors in [52] present an an interval-
based congestion control algorithm. But, the source is throttled after the
congestion is set in the network which wastes useful bandwidth affecting
performance. However, all the congestion control techniques described
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above are reactive i.e., the congestion criteria kicks in only after the con-
gestion physically occurs in the NoC.

Proactive congestion control techniques for NoCs are proposed in [54,
72]. The technique proposed in [54] estimates the availability of the neigh-
boring router through analytical expression. When a traffic source ob-
serves that the input port connected to it does not have availability then
it does not send the packets. Authors in [72] propose an artificial neural
network (ANN)-based global admission controller for NoC. In this work,
the admission controller slows down the injection rate from the sources
by factor determined by the ANN. The aforementioned techniques are
applicable to an NoC where the packets can wait at each router on its
path. However, industrial NoCs are priority aware and incorporates de-
flection routing where the packets already injected in the NoC can never
stop. Therefore, existing proactive congestion controls techniques are not
applicable to industrial NoCs.

In contrast, we propose a proactive congestion control technique to
increase memory read/write bandwidth and to improve the fairness be-
tween LLC hit and miss traffic for industrial NoCs with deflection routing.
To the best of our knowledge, this is the first proactive congestion control
technique proposed for industrial NoCs with deflection routing.
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Figure 3.2: A representative 4×4 mesh-NoC with deflection routing.

System Architecture and Background

NoCs with Deflection Routing

This work targets NoCs used in high-end servers and state-of-the-art many
core architectures [22]. Figure 3.2 shows a 4×4 mesh NoC architecture,
each column of which is also used in client systems, such as Intel i7 proces-
sors [62]. Hence, the proposed congestion control technique is applicable
to a wide range of priority-aware industrial NoCs, where the packets al-
ready in the network have higher priority than the packets waiting in the
egress queues of the sources. Assume that Node 11 in Figure 3.2 sends a
packet to Node 1 following Y-X routing (highlighted by thick blue arrows).
Deflection in priority-aware NoCs happens when the queue at the turning
point (Node 3) or final destination (Node 1) becomes full. This can hap-
pen if the receiving node, such as a cache controller, cannot process the
packets fast enough. The probability of observing a full queue increases
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with smaller queues (needed to save area) and heavy traffic load from the
cores. If the packet is deflected at the destination node, it circulates within
the same row (the red thin arrows), as shown in Figure 3.2. Consequently,
a combination of regular and deflected traffic can load the corresponding
row and pressure the queue at the turning point (Node 3). This, in turn,
can lead to deflection on the column which propagates the congestion
towards the source wasting useful NoC bandwidth.

Background on Cache Coherency Flow

This work assumes a local L1/L2 cache at each node, a distributed LLC,
and non-inclusive MESI-like cache-coherency flow [56]. If a request from
a core is not present in L1 or L2 cache, the request is sent to LLC. If the
request is present in the LLC, then the corresponding data is returned from
LLC to the requesting core. If the request is not present in the LLC then
the request is forwarded to the memory controller. The corresponding
data is fetched from the memory controller and returned to the core. The
proposed congestion control technique is independent of the number of
cores, LLC banks and on-chip memory controllers.
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3.3 ML-Based Proactive Source Throttling

Overview of the Approach

When packets in the NoC are deflected at the sink, they continue to use the
NoC bandwidth and aggravate congestion. Hence, the proposed runtime
technique works as follows:

1. It monitors the congestion indicators, i.e., the features of our machine
learning (ML) model, at each sink queue and determines whether
they are likely to be blocked,

2. If a given queue is likely to be blocked, it sets a congestion signal at
that sink. Otherwise, it clears the congestion signal.

3. The sources check the congestion signal at the destination before
sending a new request. If the congestion signal is set, they throttle
the corresponding request and move on to the next request. The
requests to the sinks with congestion signal are delayed until the
congestion signal is cleared.

We note that checking the congestion signal at the destination does not
incur any additional overhead compared to existing techniques [15, 69],
since they also incorporate similar mechanism. They also have a small (∼
10 cycles in our case) deterministic delay when the distress information is
carried by a simple dedicated time-division-multiplexed channel.
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The fundamental question is to determine when to throttle a source.
Since the network traffic dynamics are fast, time-dependent, and nonlinear,
we need to consider not only the current queue occupancies but also first
and second order factors that can lead to congestion. For example, consider
an ingress queue with depth 32. An occupancy of 16 packets may be safe
if the current input traffic rate is lower than the service rate and the level
of burstiness is low. Since the average occupancy is likely to be decreasing
as time progresses, the sources do not need to be throttled. In contrast,
an occupancy of 16 packets may be dangerous if the average occupancy
is increasing. Therefore, a holistic approach must consider all relevant
features summarized in Section 3.3. Moreover, determining the optimal
criteria is non-trivial even when all the features are available. Hence, the
second component of the proposed approach is to design a decision tree
using an innovative data collection and labelling technique presented in
Section 3.3. Finally, the last step is implementing the lightweight controller
that uses the congestion signals and local criteria to throttle the source
(Section 11).

Features used for Supervised Learning

To construct the machine learning-based model, we first collect the dataset
required for training. The dataset consists of features (F) listed in Table 3.1
with corresponding labels (L). Here F = (f1, f2, ..., fN), where N is the
number of features, fj ∈ R, 1 ⩽ j ⩽ N and L ∈ {0, 1}. The features (F) are
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sampled every time a packet arrives at the ingress queue at the sink. If
the queue is not full, the packet is written to the queue. Otherwise, the
packet bounces. Sampling the features in both conditions (sink or bounce)
enables us to monitor congestion accurately at sink node.

To capture the features accurately, we compute exponentially weighted
moving average (EWMA) of each feature as:

f̄ji = αfji + (1 − α)f̄ji−1, i > 0, 1 ⩽ j ⩽ N (3.1)

In this equation, f̄ji denotes EWMA of the feature fj for ith packet, fji denotes
the original value of the feature fj (e.g. injection rate) andα is the degree of
mixing parameter (0 ⩽ α ⩽ 1). The value of α is tuned to track the average
accurate without a significant delay. The feature values are smoothened
over time by computing EWMA. We implemented EWMA computation in
a cycle-accurate industrial simulator. A five point derivative is computed
for the features involving gradient. We track all the features in Table 3.1,
which are potentially useful for congestion control. Since data collection is
an offline process, the EWMA computation overheads are inconsequential.
After deploying the machine learning model, EWMA of only the selected
features are tracked at runtime.
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Table 3.1: List of features collected at each sink.
Injection rate to the sink queue Total injection rate (sunk + deflected)
Co-eff. of variation of
the total traffic (sunk + deflected)

Co-eff. of variation of inter-arrival
time of the traffic to the sink queue

Rate of deflected packets Mean service time of the sink queue
Co-eff. of variation of
deflected packet inter-arrival time

Co-eff. of variation of
sink queue inter-departure time

Occupancy Probability that the sink queue is full
Gradient of injection rate Gradient of queue occupancy
Gradient of total
(sunk + deflected) injection rate Gradient of probability of sink being full

Training Data Collection and Decision Tree

Labeling the features: The collected features indicate the ingress queue
and NoC congestion state at sampling time. For example, the features
will capture if a sink queue is full and deflects a packet. However, one
must throttle the source before the queue becomes full, i.e., before the
onset of congestion. The main challenge is to know that a packet will
bounce before it is even injected into the network. Having this knowledge
at runtime is impossible, but we mitigate this challenge using a novel

time reversal approach described next. The generation time stamps of
all the deflected packets are recorded while sampling the features. If a
packet is deflected at the sink, we know that the source must have been
throttled at the generation time of this packet. This sense of time in our
comprehensive simulation data enables us to go back to the generation
time of the deflected packet and label the collected features around that
time accordingly.
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Figure 3.3: An illustrative example of our proposed time reversal approach
to label the features.

Figure 3.3 shows an illustrative example of our proposed time reversal
approach for labelling the features. Figure 3.3(a) shows the features sam-
pled for six packets arriving at the ingress queue. Along with the features,
the timestamps when the packets attempted to sink are also sampled (last
column of the table). Apart from sampling the features of the packets
arriving at the ingress queue, we also sample the generation timestamps
of the deflected packets. As shown in the Figure 3.3(b), there are two de-
flected packets – P4 and P5. The generation timestamps (dj in Equation 3.2)
when they were injected from the source are 10 and 11 respectively. Next,
we compute a set of timestamps for each deflected packets (two in this
case) which are within 2 cycles of the injection timestamps. From P4, we
get S4 = {8, 9, 10, 11, 12} and from P5, we get S5 = {9, 10, 11, 12, 13}. If ti is
the timestamp of the packet Pi, where 1 ⩽ i ⩽ 5, then we label Pi as 1 if
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ti ∈ S4 ∪ S5. If dj is the generation timestamp of when the jth deflected
packet and ti is the timestamp of the ith packet arriving at the sink, in
general we label (li) the features of the ith packet arriving at the sink as:

li =


1, if (dj − ∆) ⩽ ti ⩽ (dj + ∆)

0, Otherwise
(3.2)

where ∆ = 2 in this example. A label of 0 denotes that if the source sends
packet to that particular sink, then it will not result in congestion. A label
of 1 denotes that if the source sends packet to that particular sink, then it
will result in congestion. Therefore, all the features with timestamp within
the range of ∆ (∆ > 0) of di are labelled as 1. In other words, features
within a range of ∆ timestamps from the same timestamp as the generation
timestamp of the deflected packets are labelled as 1. The features of the
packets with label of 1 are highlighted in Figure 3.3(c).
Supervised Learning: We can employ any supervised learning algorithm
to create a model which can take congestion control decision. In this work,
we choose binary decision tree since decision tree incurs low hardware
overhead (detailed in Section 3.4). The output of the decision tree is
either 0 or 1. An output of 0 denotes that cores can send packet without
congesting the NoC. An output of 1 denotes that there is a possibility of
congestion in the near future and cores should stop injecting packets in
the NoC. We observe that the decision tree obtained through supervised
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Algorithm 3: End-to-end congestion control algorithm
1 Input: Absolute value of the features, mixing parameter (α), size of the

sink queue (N), target occupancy (NT )
2 Output: To throttle (1) or not to throttle the source (0)
3 L = LC(NT ,N, λ)
4 if L == 1 then
5 return 1
6 end
7 else
8 F̄ ← EWMA of the features using Equation 3.1
9 D = DT(F̄)

10 return D

11 end

learning supports our idea of proactive congestion control. For an example,
the decision tree returns an output of 1 if both the occupancy of the sink
is high and the gradient of injection rate to the sink is positive.

Local Source Control

Each source (e.g., the CPU cores) has controller in the NoC interface.
The controller checks the congestion signal from the decision tree at each
sink. Due to deflection routing, the sources which are located at the
boundary of floorplan (e.g., Node-1, 5, 9, 13 in Figure 3.2) have highest
priority. Therefore, packets sent from these sources do not compete with
the packets waiting at other sources with lower priority. Hence, the sources
with highest priority can inject freely and cause congestion. In addition
to the sink nodes, a local condition at sources with highest priority can
also proactively hint future congestion. Therefore, we also implement
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a local condition for the sources with the highest priority. Let N be the
current occupancy of the destination sink, and NT be the target occupancy.
According to Little’s law, λ× tavg more packet can be written to the queue,
where λ is the injection rate to the ingress and tavg is the average time
between two source throttling decisions [36]. Hence, the traffic source is
throttled if N+ λtavg > NT , i.e., the queue can become full.

Algorithm 3 shows the end-to-end algorithm for congestion control
which combines the decision from decision tree model and the local con-
dition. The input to the algorithm is the absolute value of the features,
mixing parameter (α), occupancy of the sink queue (N), and target oc-
cupancy (NT). First, the controller checks the local condition (LC). LC
always returns false for the sources with lower priority. If the local con-
dition’s output (L) is true, then the algorithm returns true. Otherwise,
EWMA of the features (F̄) are computed following Equation 3.1. Then,
the algorithm returns the output of the decision tree (D).

3.4 Experimental Evaluations

Experimental Setup

We use a cycle-accurate industrial NoC simulator to evaluate our proposed
approach on a 6×6 mesh NoC with two memory controllers. The NoC
architecture is similar to the one used in recent industrial SoCs [15, 69].
Due to classified nature of the simulator and architecture, we present
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normalized values. Each simulation is run for 600k cycles (with a warm-
up period of 100k) to reach steady-state values. The experiments consider
a non-inclusive MESI-like cache-coherency protocol [56] with varying
traffic and last-level cache (LLC) hit rates.

Accuracy of Decision Tree

We perform simulations for LLC hit rate of 0.5 with different injection
rates. The smoothing parameter (α in Equation 3.1) is set as 1

16 and ∆ (in
Equation 3.2) is 5. The entire dataset is divided into 70% training data and
30% validation. Table 3.2 shows the accuracy of predicting label-0 and
label-1 for the validation data with decision trees having different depths.
As a reminder, label-0 denotes that if the sources inject packets, it will not
lead to congestion and vice-versa. Therefore, if the labeled feature is 0
and the predicted label is 1, the decision tree will unnecessarily stop the
cores from injecting packets. This scenario might be okay since it will not
lead to congestion. However, if the labeled feature is 1 and the predicted
label is 0, the core will still inject packets when it should have stopped.
This misprediction will lead to congestion in NoC. Therefore, the accuracy
of predicting label-1 is more important than the accuracy of predicting
label-0. We observe that the decision tree with depth 4 has the highest
accuracy in predicting label-1. The decision tree with a depth lower than
4 has lower prediction accuracy for label-0 and label-1, while a deeper
decision tree has a lower accuracy for label-1 due to overfitting. Therefore,
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Table 3.2: Accuracy(%) of decision trees with different depths. Decision
tree of depth 4 is chosen based on the accuracy.

Decision tree depth
2 3 4 5 6 7 8

Label-0 93.3 93.2 93.7 94.9 96.1 96.2 96.5
Label-1 95.9 97.4 97.6 97.5 96.3 95.6 94.8

we choose the decision tree with depth 4 for evaluation. We note that, the
decision tree for each sink is trained offline (once) and the same decision
tree is used for congestion control with any incoming workload.

Comparison of Average Transaction Latency

The primary goal of our congestion control technique is to reduce the
number of deflected packets so that there is no wastage of NoC bandwidth.
We observe that when no congestion control is enabled, the rate of deflected
packets increases with increasing injection rate. For example, with an
injection rate of 0.27 and LLC hit rate of 0.2, the average rate of deflected
packets is 0.08. In this scenario, our proposed congestion control technique
sees no deflected packets. A reduced number of deflected packets reduces
NoC congestion, so packets experience lower wait time and average latency.

Figure 3.4 shows the comparison of average transaction latency for
varying injection rates with LLC hit rate of 70%. The comparison is be-
tween the congestion control technique used in state-of-the-art industrial
NoC [69] and our proposed approach. The average transaction latency
denotes the round trip latency from the generation of a read/write request
to its completion. In the state-of-the-art congestion control technique, if
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Figure 3.4: Comparison of average transaction latency for 70% hit rate.
Lower transaction latency indicates less congestion.
the occupancy of the sink exceeds a predetermined value, the sources
are throttled. The sources restart injecting packets in the NoC if the sink
occupancy becomes lower than another predetermined value. Therefore,
the state-of-the-art control technique is reactive. In contrast, our proposed
congestion control technique predicts congestion and provides a proactive
decision to throttle the sources. As a result, compared to the reactive state-
of-the-art, our proposed proactive congestion control technique throttles
at the onset of congestion in NoC, without wasting memory read band-
width. From figure 3.4 it is observed that the proposed congestion control
technique reduces the average transaction latency by up to 30% compared
to the state-of-the-art approach. We also observe a similar improvement
in average transaction latency for other LLC hit rates. For example, the
proposed technique improves the average transaction latency by 7% for
an LLC hit rate of 0.2 on average.
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Comparison of Percentage of LLC Miss

This section compares the percentage of requests with LLC miss between
the state-of-the-art congestion control technique and our proposed tech-
nique. The percentage of requests with LLC miss denotes the proportion
of the requests fetched from the memory controller. Since our proposed
technique reduces NoC congestion, more requests with LLC miss are al-
lowed to be fetched from the memory controller. Therefore, our proposed
technique consistently results in a higher percentage of requests with LLC
miss, as shown in Figure 3.5 compared to the state-of-the-art congestion
control technique. In this case, the synthetic traffic is generated with a
70% hit rate, i.e., ideally, 30% of the traffic should be miss traffic. We
observe that at a lower injection rate, both techniques result in 30% of
requests with LLC miss since there is no congestion in the NoC. With the
increasing injection rate, the percentage of requests with LLC miss reduces.
However, our proposed congestion control technique shows up to 3.1×
improvement in the percentage of requests with LLC miss at the higher
injection rate. We also observe similar LLC miss percentage improvement
for other LLC hit rates. For example, the proposed technique improves
the LLC miss percentage by 1.2× for LLC hit rate of 0.2. Therefore, the
proposed technique is fairer towards the requests with LLC miss than the
state-of-the-art technique.
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Figure 3.5: Comparison of percentage of LLC miss for 70% LLC hit rate
(30% LLC miss). Higher percentage of LLC miss indicates that the con-
gestion control technique is more fair towards the miss traffic.
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Figure 3.6: Comparison of memory read bandwidth for 20% LLC hit rate.
Higher memory read bandwidth indicates less NoC congestion.
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Figure 3.7: Comparison of average bytes received per core for 70% LLC
hit rate.
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Comparison of Memory Read Bandwidth

This section compares the memory read bandwidth achieved by the state-
of-the-art approach and our technique. Memory read bandwidth measures
the average number of requests fetched from the memory controller in
case of a cache miss. The percentage of missed packets with our proposed
congestion control technique also significantly increases the memory read
bandwidth. Figure 3.5 shows the 70% LLC hit rate comparison between
state-of-the-art and proposed techniques. Both techniques result in equal
memory read bandwidth at lower injection rates. However, with increasing
injection rate, the memory read bandwidth decreases significantly with a
state-of-the-art congestion control technique. Our proposed congestion
control technique keeps the memory read bandwidth at a certain level,
even at a higher injection rate. The highest improvement seen in memory
read bandwidth is 190%. On average, the proposed technique achieves a
64% improvement in memory read bandwidth compared to state-of-the-art
methods.

Transactions with an LLC miss take significantly longer than those
with an LLC hit due to off-chip memory access. Therefore, the requests
with LLC miss stay longer in the queue, reducing the total volume of
data received per core (Bytes/core). However, our technique reduces
congestion in the NoC and hence total volume of data received per core
does not decrease drastically despite substantial increase in memory read
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Figure 3.8: Memory read bandwidth comparison with realistic workloads.
bandwidth. Figure 3.7 shows that our proposed approach results in slight
(4% on average) reduction in average bytes received per core although it
completes 3.1×more transactions with LLC miss.

Results with varying injection rates: So far, we have shown the results
when the cores inject with a fixed injection rate for the entire duration.
However, real applications may have different phases, and in each phase,
cores may inject at different injection rates. Therefore, we also perform
experiments with synthetic workloads having different injection rates.
Specifically, in each workload, we consider four different injection rates.
Figure 3.8 shows the comparison of memory read bandwidth for ten
such workloads executing with 70% hit rate. Our proposed congestion
control technique achieves up to 114% improvement in memory read
bandwidth compared to the state-of-the-art method. On average, the
proposed congestion control technique shows a 106% improvement in
memory read bandwidth for these realistic workloads.
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Hardware Overhead Analysis

We implemented the RTL for the local condition at all sources and the
feature computation as well as the decision tree at all ingress of the NoC.
Then, we synthesized the RTL using Synopsys Design Compiler with 45
nm technology from TSMC. To have a fair comparison, we scaled the area
and power values to 14 nm technology (using the technique described
in [65]) since the state-of-the-art SkyLake SoC is fabricated with 14nm [69].
We observe that our proposed congestion control technique consumes
only 0.01 mm2 of area and 2.2 mW of power. The total area of SkyLake SoC
is 694 mm2 and it consumes power in the order of 10W [39, 69]. Hence,
our proposed technique incurs negligible overhead (less than 0.01%) both
in area and power. Therefore, the technique results in significant reduction
of NoC congestion with negligible hardware overhead.

3.5 Conclusion

State-of-the-art NoC congestion control techniques are reactive, i.e., can
detect NoC congestion only after it occurs. This dissertation proposes a
supervised learning framework along with a time reversal technique to
construct a lightweight decision tree. This decision tree proactively deter-
mines whether any given sink node will likely experience congestion or
not (before the queue is blocked). Experimental evaluation shows that the
proposed congestion control technique achieves up to 114% improvement
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in memory read bandwidth for realistic workloads while incurring less
than 0.01% of overhead.
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4 mql: ml-assisted queuing latency analysis for

data center networks

4.1 Overview

Data centers play a crucial role in meeting the computational needs of
millions of users worldwide, offering shared access to data, applications,
and compute resources. With increasing demand, data centers scale out
and adopt various topologies like fat-tree. Designing efficient Data Center
Networks (DCN) is critical for low latency and high bandwidth while ad-
hering to cost constraints. Packet-level simulators like ns-3 and OMNet++
are commonly used for performance evaluations, providing flexibility but
at the expense of slow simulation speeds.

Due to the impracticality of simulation-based design space exploration,
analytical approaches have gained traction to estimate network perfor-
mance. Queuing theory is a notable example, offering analytical models
to approximate delay under different input traffic and service time distri-
butions. While effective under matching assumptions, model accuracies
decline with deviations from real-life behavior and complex interactions
between tandem queues. Accurately knowing precise input traffic and
service time distributions remains unrealistic.

Recent works have addressed the limitations of classical queuing theory
by exploring deep learning techniques for Data Center Network (DCN)
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performance analysis [16, 64, 75, 76]. For instance, MimicNet proposes a
hybrid approach combining simulation with deep learning, where a deep
neural network (DNN) is trained offline to model the DCN, abstracting
clusters beyond the simulated one. Similarly, DeepQueueNet models
each device in the network as a DNN, approximating packet delays and
producing outgoing streams.

However, these approaches face challenges such as loss of network-
level observability, substantial training data requirements, overfitting, and
unproven composability of DNNs. In contrast, our proposed approach,
ML-assisted queuing latency (MQL) analysis, leverages queuing theory
rather than relying on black-box deep learning. This novel approach is
built on insights: queuing theory can produce fast, accurate, and scalable
models; existing methodologies provide a dataset to identify analytical
model shortcomings, and lightweight ML techniques like regression anal-
ysis can learn and correct these errors.

Our proposed ML-assisted queuing latency (MQL) methodology lever-
ages the insights mentioned earlier. It begins by developing analytical
latency models based on a queuing network discipline suitable for the
target scenario, utilizing the maximum entropy (ME) model. Mathemati-
cal expressions for each queue in the DCN are derived, and end-to-end
flow latencies are determined based on input flows, topology, and routing
algorithms. The ns-3 simulator serves as the benchmark for accuracy com-
parisons. The MQL methodology goes beyond accuracy measurement,
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identifying regions where analytical models fall short. Systematic errors
arising from network structure, such as tandem queues, are used to extract
features highly correlated with underlying analytical model analysis. The
final step involves modeling these systemic errors and incorporating them
into the analytical estimates. While applicable to any machine learning
(ML) technique, this work employs Regression Trees (RT).

In summary, this dissertation makes the following contributions:

• Demonstrates the first ML-assisted queuing theory-based technique
that can handle a large scale (>1000 nodes) network of queues - for
modern DCN protocols,

• An automated tool that generates an executable performance model
(queuing analysis and RT) for a given DCN,

• The ability to provide detailed observability (e.g., individual queuing
delay, occupancies, and tier-level visibility) without relying on any
communication pattern and topology assumptions,

• Extensive simulation studies with synthetic traffic and network traces
that demonstrate less than 3% error on average, 100× to 9000× speed
up over ns-3, and scalability to 1024-node fat-tree.
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4.2 Related Work

Packet-level simulations, such as ns-3 [50] and OMNet++ [55], provide
high accuracy and fine-grain visibility and are versatile, handling different
topologies, network protocols, queueing disciplines, and routing algo-
rithms. However, they are too slow to scale to a large number of nodes
(1k-10k+ nodes) required for data centers [75, 78]. Therefore, prior work
focuses on speeding up network simulation and creating fast network
performance models.

Part of the challenge in speeding up network simulators is the almost
non-existent opportunities for parallelization [78]. Parsimon [78] observes
that large-scale data centers are provisioned such that congestion events
rarely occur, and when they do occur, they happen at different points along
the path and at different times. Hence, the modeling of the interdepen-
dence between queues is a second-order effect. Breaking this dependency
enabled the authors to speed up simulation by decomposing the problem
into a large number of parallel independent single-link simulations. While
their approach handles cases with limited congestion, design space ex-
ploration also requires identifying solutions that satisfy highly congested
workloads, especially for deep learning workloads.

In addition to simulators, prior work creates fast network performance
models via pure analytical, pure ML, and hybrid techniques. A well-
established performance analysis approach is queuing-theoretic (QT) esti-
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mators. They are fast, but their assumptions, including the Poisson arrival
process, FIFO queueing discipline, and queue independence, can lead to
unacceptable accuracy in some realistic use cases [7, 10, 29, 30, 32], which
we address in this work. QT-based performance analysis appoaches have
also been applied to networks-on-chip (NoC). However, these models
are typically limited to few 100s of nodes, with 16x16 2D mesh being the
largest [26, 40, 53], unlike our approach that scales to over 1000 nodes.

RouteNet-Erlang [16] observes that Graph Neural Networks (GNNs)
capture the underlying graph structure of computer networks. It trains
on two small networks (10s) of nodes with various traffic communication
patterns and queuing disciplines. However, it requires tuning hyperparam-
eters which is empirical. The tunable hyperparameters question scalability
of the approach to larger networks. Finally, they do not present DCN
performance evaluations with network protocols and congestion control
algorithms, which are essential for DCNs.

MimicNet [76] uses deep learning to speed up simulation by combining
deep learning with simulation. They simulate one cluster and use a deep
neural network-trained model to estimate the remaining clusters. The
technique relies on symmetry in both the topology and the traffic (e.g.,
symmetric bisection bandwidth), thereby limiting its applicability to many
real-world traffic patterns and topologies.

DeepQueueNet [75] models each device in the network as a DNN
that adds a delay to each packet in the incoming packet stream and pro-
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duces an outgoing stream of packets. It composes these DNNs in one-to-
one correspondence with the network structure, but there is no formal
guarantee that the DNN can be composed to model the whole network.
DeepQueueNet targets packet-level visibility, enabled by its detailed sim-
ulations.

QT-RouteNet [13] combines queueing theoretic model with a GNN
in two steps. First, it runs a simplistic queueing model (M/M/1/B) and
extracts features, such as predicted latency, to use in training. Then, it com-
bines with path and link features to train the RouteNet GNN model [64].
Using RouteNet/RouteNet-Erlang at its core, it suffers from similar limi-
tations: tuning the hyperparameters, which is empirical, generalizability,
and long traning time. Moreover, it does not present DCN evaluations and
learns non-interpretable black-box models, like other purely ML-based
approaches.

In summary, existing models suffer from long training times, generalis-
ability, and scalability. In contrast, our MQL approach needs no empirical
hyperparameters, making the approach generalizable. Moroever, it lever-
ages the data from simulations that are performed to validate the analytical
performance models (as part of the regular design flows). To the best
of our knowledge, it is the first approach that provides ML assistance to
QT-based performance analysis.
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Background and Motivation

Data centers are evolving rapidly with new paradigms and emerging inno-
vations, such as resource disaggregation and low-diameter topologies, to
meet the unprecedented growth of data center computing and enable new
system-level architectures [70]. Similarly, application disaggregation ap-
proaches disintegrate monolithic applications into small microservices or
functions with communication overheads [67]. CPU tasks are increasingly
offloaded to special-purpose accelerators, often linked over the network,
including FGPA resource pooling [80]. In addition, memory and storage
are being disaggregated, opening up new system-level architectures to
explore [34, 38].

From a DCN perspective, integrated silicon photonics [45] delivers
breakthrough performance, enabling high bandwidth and low latency
interconnection. It has generated renewed interest and innovations in
low-diameter (shorter path-length) topologies [8, 27, 28, 33, 74]. These
benefits enable exploring large-scale topologies (>10K end points) [43]
and numerous permutations. Hence, there is a critical need for fast perfor-
mance models to explore the vast design space of new architectures and
data center topologies enabled by these innovations.

This work develops fast performance models that generalize to any
topology [6]. While exploring new topologies is a crucial use case, we
initially demonstrate the proposed technique on fat-tree topologies. Since
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fat-trees are widely used in DCN and HPC systems [43, 73], they provide
the baseline for new DCNs “to beat.” Figure 4.1 shows an example of
a three-tier fat-tree topology with 16 compute nodes and twenty k-port
switches arranged hierarchically in three layers.

A well-established approach for fast network modeling is queuing
theory [6, 16]. Each compute node and switch in the DCN is represented
by one or more queues, while the interconnection of compute nodes and
switches is modeled as a network of queues (shown in blue), as illustrated
in Figure 4.1. The internal structure of switches is modeled via different
techniques, such as output-queue (OQ), with queues only on the output
ports, and combined input/output-queued (CIOQ) switch with queues
on both the input and output ports [12]. OQ switches have a simple
scheduling policy which is easier to model, but they are impractical due to
the high-speed crossbar. CIOQ switches, on the other hand, are practical to
implement but are harder to model due to their more complex scheduling
policies. For modeling a switch’s performance, [12] shows that the simpler

Figure 4.1: Queuing theory representation of 16 node fat-tree
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OQ switch is equivalent to CIOQ+CCF (critical cell first IO scheduling)
in its input/output timing characteristics. Thus, we use the OQ switch as
the modeling abstraction.

There are different versions of queuing theory-based analytical models.
This work uses the principle of maximum entropy (ME) because it handles
bursty traffic and generalized service distributions quite well by generating
the least biased distribution that matches the constraints. We first find the
mean queue occupancies and then calculate the waiting time using Little’s
law [37]. One must also model the interconnection of different queues and
flows going through the queues following the routing algorithm. We use
the decomposition method to find the inputs to each queue [60], as detailed
in Section 5.3. Finally, the accuracy of analytical models can degrade
when the real traffic diverges from the assumed parameters. Instead of
completely switching to a machine-learning (ML)-based approach, we
harness the power of queuing theory and improve on it using a light-
weight ML based correction technique, as described in Section 14.
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4.3 MQL: ML-Assisted Queuing Latency

Analysis

MQL Overview

We set the following goals while scaling to thousands of nodes and pro-
viding visibility of internal queue utilization:

• High accuracy in estimating end-to-end packet latency and round-
trip delay,

• Fast and lightweight estimation, scaling to DCNs with thousands of
nodes,

• Tier- and queue-level visibility (e.g., observing individual queue
utilizations),

• Generality to support different workloads and protocols.

Offline Phase: The first two components of MQL leverage the current DCN
performance evaluation practice, as illustrated in Figure 4.2. It develops
analytical performance models for the topologies, workloads, and network
protocols of interest. Then, the accuracy of these models is compared
against simulations. The common practice does not offer any systematic
technique to learn the accuracy mismatches and use them for correction.
MQL elaborates on this step by systematically analyzing the modeling
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error as a function of the simulation and analytical parameters. For exam-
ple, the error may be a function of the queue within a particular switch,
data rate, or any input used by analytical models. Therefore, the final
component, which provides ML assistance, extracts the most prominent
features. Then, it trains a regression model that estimates the error as a
function of these features.
Online Use: MQL first runs the analytical performance model to determine
the end-to-end latencies. Then, it adds the error estimate to its results as a
correction factor.

The proposed MQL methodology can be implemented with any per-
formance analysis and ML technique. The following section describes the
specific methods used in this dissertation.

Modeling Assumptions and Target Illustrative DCN

The proposed MQL methodology can be applied to arbitrary DCN topolo-
gies and routing algorithms. This work demonstrates MQL on the three-
level fat-tree topology (shown in Figure 4.1) with up to 1024 nodes (16
pods) due to its popularity. It is validated with fixed and equal-cost multi-
path routing (ECMP) [19] due to its wide usage and complexity.

Since real-world traffic can be bursty, we model the arrival process at
each queue based on the Generalized Exponential (GE) distribution [30,
32] which can also handle other distributions like Poisson. The queues
accept packets one at a time. Hence, multiple flows (a stream of packets
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Figure 4.2: Overview of the proposed MQL methodology.
per source-destination pair) can merge and decompose while entering
and leaving queues. This general behavior suggests that even if the indi-
vidual flows follow a specific distribution at the input, the output stream
of packets can follow an unknown distribution. Similarly, we do not make
any assumptions about the packet size distributions and thus select the
Generalized distribution to model the service time. The channel (link)
between switches and nodes in Figure 4.1 is modeled as a server for the out-
put queue on the corresponding port. Therefore, we start with a GE/G/1
model and extend it to GE/G/1/N, where N is the finite queue length.

Analytical Queuing Models

This work uses ME-based queuing models to illustrate the proposed MQL
methodology due to its accuracy and scalability. Since we focus on the
network latency, we use the traffic from each node entering the DCN as
the primary input. The ME-based models with generalized exponential
traffic employ the first two moments: the average arrival rate (λi) and
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squared coefficient of variation (C2
Ai

) of each input flow, as summarized
in Table 5.1. These inputs are propagated to the switches in the fat-tree
using a decomposition method [60]. Then, the ME models are used to
compute the delay in each queue in the target DCN, as described next.

Decomposition method

The flows entering the DCN from the node queues go through multiple
merges and separations as they travel to their destination. Since we used a
generalized exponential model, the sum of arrival rates alone is insufficient,
unlike the Poisson distribution assumption. Figure 5.3 illustrates two flows
entering the same queue. The packets from these flows are stored in their
arrival order, which is arbitrary. Hence, we need to estimate the first and
second order of the models, i.e., the arrival rate and squared coefficient of
variation. Following the derivation in the decomposition model given in
[60], we find the squared coefficient of variation of inter-arrival times of
merged flow as the weighted average of the incoming squared coefficient
of variations, as shown in Figure 5.3. Similarly, the squared coefficient
of variation of inter-departure times (C2

D) of the merged flows is found
using the decomposition approach illustrated in Figure 5.3. The output
flows are split to enter downstream queues. Therefore, we calculate the
C2

D of the split flow and the probability of splitting based on the number
of downstream queues using the equation in Phase 3 of Figure 5.3. These
split C2

Di
will be the C2

Ai
to the downstream queues. Furthermore, the
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Table 4.1: Summary of notations used in this dissertation.
λi Injection rate of flow-i
ρi Link utilization of flow-i
pi Probability of flow-i split when leaving the queue
C2

Ai
Squared coefficient of variation of inter-arrival time for flow-i

C2
Di

Squared coefficient of variation of inter-departure time for flow-i
C2

Si
Squared coefficient of variation of service time for flow-i

λ Injection rate for merged flow
ρ Link utilization for merged flow
C2

A Squared coefficient of variation of inter-arrival time for merged flow
C2

D Squared coefficient of variation of inter-departure time for merged flow
C2

S Squared coefficient of variation of service time for merged flow
⟨ni⟩ Mean queue length of flow-i in an infinite-sized queue
⟨ni⟩N Mean queue length of flow-i in a finite-sized(N) queue
Wi Average waiting time of flow-i
decomposition method is computed in one pass making our approach
scalable.

GE/G/1 Maximum Entropy model

The Maximum Entropy(ME) method approximates the networks when
queues achieve equilibrium [10, 32]. For fat-tree topology, with the first-
come-first-serve (FCFS) queuing discipline and a single server, we adopt
the GE/G/1 ME model (generalized exponential arrival process, and gen-
eralized service process) proposed in [30, 32]. The proposed approach
traverses the network from source to destination for each flow in the work-
load following the routing algorithm. During this process, it uses the
decomposition process to find the mean arrival rate (λi), utilization (ρi),
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squared coefficient of variation (C2
Ai

), and the coefficient of variation of
the service time (C2

Si
) at each queue. Then, it uses the GE/G/1 ME model

to find the mean queue length of each flow i (⟨ni⟩) in an infinite-sized
queue as:

⟨ni⟩ =
ρi

2 (C2
Ai

− 1) +

N∑
k=1

λi

λk

ρ2
k(C

2
Ak

+ C2
Sk
)

1 − ρ
(4.1)

Finally, the waiting time (queuing delay) of flow-i becomes:

Wi =
⟨ni⟩− ρi

λi

(4.2)

GE/G/1/N Maximum Entropy model

For finite-sized queue model, we adopt the treatment of queue occupancy
(and delay) presented in [29]. We list the key steps here for completeness.
Derivations can be found in [29]. We start constructing the analytical
model for the finite-sized queue by first assuming infinite queues. With
this assumption, we first find the mean queue length of each flow i (⟨ni⟩) in
an infinite-sized queue using Equation 5.1. Then, we find the Lagrangian
coefficient x by using the mean infinite queue length ⟨ni⟩ from Equation 5.1
[29].

x =
⟨ni⟩− ρi

⟨ni⟩
(4.3)
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Figure 4.3: Decomposition method: Phase 1 merges multiple flows into
single flow. Phase 2 computes the coefficient of variation of departure pro-
cesses. Phase 3 splits the merged flow to derive the individual departure
processes

.
The Lagrangian coefficient x is then used to find the the mean finite queue
length given by Equation A.3, where N is the finite size of the queue:

⟨ni⟩N =
ρi

1 − ρ2
ix

N−1

{
1 − xN

1 − x
−Nρix

N−1
}

(4.4)

Finally, it computes the finite mean occupancy (⟨ni⟩N) and the waiting
time (queuing delay) of flow-i as:

Wi =
⟨ni⟩N − ρi

λi

(4.5)

End-to-End and Round-Trip Latency Modeling

Using the λi, ρi, C2
Ai

of the flows entering a queue, we find the queuing
delay of that queue. Then, the squared coefficient of variation of inter-
departure time (C2

Di
) is calculated by the decomposition model, which

uses the squared coefficient of variation of inter-arrival time (C2
Ai

) of the
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Algorithm 4: End-to-end latency computation
1 Input: Fat-tree size, link bandwidth, flow metadata (flow ID, source,

destination), characteristics for each flow (λi, C2
Di

, C2
Si

, mean packet size,
queuing delay of host queues)

2 Output: Average end-to-end latency for each flow
3 foreach queue ready to be processed do
4 I = number of flows in the queue
5 for i = 1:I do
6 Compute Wi using GE/G/1 and GE/G/1/N ME model
7 Compute C2

Di
using decomposition model

8 Populate flow characteristics of the upstream queues
9 end

10 end
11 foreach flow in the traffic do
12 Traverse all the queues throughout flow’s path
13 Aggregate queuing delay and link delay
14 end

upstream queues. Therefore, the algorithm iterates over every queue that
has its inputs ready and computes the corresponding delay.

The next step is finding the end-to-end latency of each flow by sum-
ming up the queuing delays and the service times. The proposed approach
achieves this objective using the fat-tree size, routing algorithm, and the
characteristics of each flow(λi, ρi, C2

Di
, C2

Si
, mean packet size, queuing de-

lay of host queues). The output is the average end-to-end latency for each
flow, as shown in the pseudo-code in Algorithm 5. Finally, we compute
the average round-trip time (RTT) by adding the end-to-end latency of
data and their corresponding acknowledgement packets.
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ML-Based Correction Technique

While the ME model applies to any network that decomposes into a net-
work of queues, it may fail to generalize to all scenarios. Therefore, MQL
augments the ME model with a correction factor obtained by ML models.
We first provide two examples when ME models perform poorly and then
present the proposed ML-based correction technique.

Sample scenarios in which ME models fail to generalize

The packets pass through a sequence of queues as the packets traverse
the DCN. For example, packets from the first node (far left) to the last
node (far right) in Figure 4.1 pass through queues in the edge, aggregate,
and core switches. This tandem arrangement of queues shapes the packet
inter-arrival times as a function of their link service times. When packets
with different sizes pass through the same link, the tandem nature causes
the smaller packets to experience higher queuing latency than their larger
counterparts. The ME models fail to capture this effect, resulting in poor
latency estimations.

Similar to the packet size distribution, the communication protocol
plays a crucial role in the manner the packets are transported through
the network. For instance, the User Datagram Protocol (UDP) sends
packets into the network irrespective of the size, while the Transmission
Control Protocol (TCP) divides the packets into segments based on a
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Figure 4.4: Workflow of the ML-assistance component in the MQL frame-
work.
preset threshold size [59]. Similarly, the TCP sends an acknowledgement
packet, which are typically significantly smaller than the data packets.
The resulting bimodal packet size distribution combined with the tandem
effect degrades the accuracy.

Proposed ML-based Assistance to Queuing Models

The ML-assistance component of the proposed MQL framework is pre-
sented in Figure 4.4. First, we run simulations with representative config-
urations (network sizes) and input traffic (packet arrival and size distri-
butions, data rates and traffic types). Simulations with multiple random
seed values help in eliminating randomness effects. Then, MQL obtains
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the correction factors by comparing the expected latencies from simulation
and the ME models. Since each queue type (e.g., edge-up, core-down,
aggregate-up) in the fat-tree observes a different traffic pattern, we use a
regression model for each queue type. The input features (described in
Section 14) and the correction factors are aggregated to obtain a merged
training dataset. Since the systematic errors are continuous quantities, any
regression-based ML model can be used in this stage. We use regression
trees (RT) due to their accuracy and explainable structure. To avoid over-
fitting and minimize inference latency, we empirically set the maximum
depth of RTs to 12. The RT uses 11 input features (shown in Table 4.2) and
predicts one real-valued output. MQL employs one RT model for each
type of queue (e.g., edge, aggregate, core) in the network regardless of the
number of nodes, thereby providing excellent scalability across network
sizes. Finally, we utilize the scikit-learn library to train RTs. Building a
consolidated set of training samples allows MQL to generalize to different
traffic patterns. Then, MQL trains generalizable regression models, which
concludes the one-time offline process. Finally, the runtime step uses the
pre-trained regression models to accurately estimate the latency.

Features for the ML-based Regression Model

End-to-end latencies are functions of DCN topology, the traffic arrival
distribution, packet size distribution, data rates, and routing patterns.
Since our goal is to estimate these delays accurately, we systematically
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Table 4.2: List of the input features constructed in a particular queue for
the regression model.

Input Feature Mathematical Representation
Data rate of flow i λi

Link utilization of flow i ρi

Total utilization of a link leaving switch s ρtotal,s

Co-efficient of inter-arrival time of flow i C2
A,i

Co-efficient of service time for flow i C2
S,i

Packet size of flow i Pi

Link occupancy indicator of flow i 1 / (1 − ρi)

Link occupancy indicator of switch s 1 / (1 − ρtotal,s)

Data rate/link occup. indicator of flow i λi / (1 − ρi)

Data rate/link occupancy indicator
of switch s for flow i

λi

1−ρtotal,s

Queue occupancy indicator of flow i (C2
A,i+C2

S,i)/(1−ρtotal,s)

construct its input features with the following attributes:

1. They must demonstrate a strong correlation with the target quantity
to be estimated,

2. They cannot depend on any parameter or quantity we cannot obtain
at runtime (e.g., information from simulation),

3. The overheads to compute them must be minimal.

To satisfy these requirements, we methodically architect the 11 input
features to the regression model as shown in Table 4.2 for each queue type.
The queuing models described in Section 5.3 use data rate (λ), link utiliza-
tion (ρ, and ρtotal), and second-order moments of inter-arrival (C2

A) and
service times (C2

S) in latency estimation. The proposed MQL framework
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exploits the information to include these parameters as input features. In
addition, we include input features, such as link occupancy and queue
occupancy indicators, since they typically appear in analytical models
(e.g., Equation 5.1). These features satisfy Attribute 1 both intuitively (as
described here) and empirically (demonstrated in Section 4.4). Basing the
input features on quantities computed by the ME model is highly desirable
since we reuse the information already computed, thereby simultaneously
catering to Attribute 2 and Attribute 3.

4.4 Experimental Evaluation

This section first describes the experimental setup. Section 4.4 and Sec-
tion 4.4 evaluate the proposed MQL approach with synthetic traffic and
real-world traces, respectively. Section 4.4 presents the execution time
of the MQL models, its speedup w.r.t simulation and comparisons with
approaches from literature. Finally, Section 4.4 compares the round-trip
latency of MQL with state-of-the-art approaches.

Experimental Setup and Methodology

DCN Topology: While the MQL methodology is applicable to other topolo-
gies, this work focuses on the widely used fat-tree topology. Fat-tree
topologies are represented by the number of layers and a parameter K,
which determines the number of pods [2]. The number of nodes for a
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K-ary fat-tree is (K3/4). In this work, we use three-layer fat-trees with
K ∈ {4, 8, 12, 16}, leading to sizes listed in Table 5.2.
Workloads used for Evaluation: We utilize both synthetic and real-world
traces to evaluate MQL. Synthetic traffic includes three different traffic
types: all-to-all (each node in the DCN sends packets to every other node),
broadcast (only one node (source) sends packets to all other nodes), and
incast (all nodes send packets to one node (destination)), as summarized
in Table 5.2 along with other parameters. The real-world trace is Anar-
chy [58].
Simulation Environment and Other Parameters: We performed simula-
tions with ns-3, a discrete-event network simulator [50]. Ns-3 provides
packet-level visibility. It also allows users to configure various parameters
such as the number of source nodes and destination nodes in the DCN,
routing patterns, mean flow sizes, simulation time, network protocol, and
FIFO and queue sizes. We perform 30-second simulations with a warmup
of an additional 10 seconds to ensure the inputs to the simulation are rep-
resentative of the steady state. The queue sizes are set to 128 to represent
the finite buffer scenario.

The simulations and analytical models are executed on an Intel® Xeon® Gold
6336Y CPU at 2.40GHz with 36 MB cache (OS: SUSE Linux Enterprise
Server 12 SP5, compiler version: g++/gcc 11.1.0).
ML-based Assistance: The ML-based regression models must generalize
to unseen scenarios for the application of the proposed framework at the
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Figure 4.5: MAPE (%) of the round-trip latency achieved by MQL on
all-to-all, incast and broadcast traffic for (a) Fat-Tree-16, (b) Fat-Tree-128,
(c) Fat-Tree-432 and (d) Fat-Tree-1024 with different types of packet arrival
distributions, packet size distributions, and data rates.
larger scale. Thus, we randomly pick 60% of the data to train the regression
models, and then evaluate all configurations. In this particular work, we
use the regression tree model with a maximum depth of 12 [57].
Comparison Metrics: We use the normalized Wasserstein distance [71]
and mean absolute percentage error (MAPE) for accuracy evaluations.
The Wasserstein distance compares probability distributions based on
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Table 4.3: A summary of the experimental setup used for evaluations in
this dissertation.

Parameter Values Evaluated in this dissertation
3-Layer Fat-Tree Topology Number of nodes: 16, 128, 432, 1024

Workloads Synthetic and Real Traces
Synthetic Traffic Patterns All-to-all, broadcast, incast

Traffic Arrival Distributions Poisson and Generalized Exponential (GE)
Synthetic Packet Size Dist. 500 B; uniform (500B with 1% variation)

Synthetic Workload
Data Rates

Low (link utilization of 25%)
Medium (link utilization of 50%)
High (link utilization of 75%)

Real Trace Anarchy
Link Bandwidth 100 Mbps

Protocol TCP, UDP
Queue FIFO, 128 Packets Capacity

the theory of optimal mass transport, and is a measure of the distance
between two distributions. MAPE is a measure of the average absolute
error observed between simulation and MQL estimates.
State-of-the-Art Approaches Chosen for Comparison: We identify a
combination of ML- and queuing theory-based approaches, namely Deep-
QueueNet [75], MimicNet [76], and RouteNet [13] for comparisons. Sec-
tion 5.2 discusses the significance of these approaches. Comparisons with
the state-of-the-art approaches are presented in Section 4.4.
Protocols: We evaluated the proposed MQL methodology using both UDP
and TCP. UDP is a connectionless protocol with no congestion control
mechanism. Thus, the flow distribution with UDP is less complicated than
TCP. Since we obtain high accuracy (overall less than 10% MAPE) with
MQL, the rest of this dissertation focuses on the TCP results.
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Evaluations with Synthetic Traffic

This section presents extensive evaluations to compare the proposed MQL
framework to ns-3 simulations using synthetic traffic. Figure 4.5(a), (b),
(c), and (d) present the MAPE results for fat-tree-16, fat-tree-128, fat-
tree-432, and fat-tree-1024, respectively. We sweep three data rates (low,
medium, and high) with uniform distribution of packet size (fixed and
uniform as defined in Table 5.2) in all cases. The entire all-to-all traffic
simulations for fat-tree-432 and fat-tree-1024 take prohibitively long simu-
lation times (over 5–9 days for one random seed only) since they simulate
373K flows and 2M flows, respectively. As a result, we reduced the number
of flows by using a density parameter that uniformly selects a subset of
active hosts participating in the all-to-all communication [25]. Consider-
ing the simulation time, we set the density parameters for fat-tree-432 and
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Figure 4.6: A comparison of the round-trip latency (RTT) (in millisec-
onds) cumulative distribution function (CDF) between simulation and
MQL models for all-to-all traffic in (a) Fat-tree-16 and (b) Fat-tree-128
respectively.
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fat-tree-1024 as 10% and 6%, respectively.
The broadcast traffic is the simplest pattern since packet injection is

only from one source. Furthermore, the packets entering the network
are serialized. Our MQL framework models this scenario very accurately,
with average MAPE always less than 1%, as shown in Figure 4.5. Hence,
in the following discussion we only cover all-to-all and incast patterns.
Fat-tree-16 Results: MQL achieves an MAPE of less than 1% for Poisson
all-to-all traffic. Unlike Poisson, GE traffic can produce bursty traffic which
is more complex to model. The maximum error with GE packet arrivals,
even in the medium and high data rates, remains less than 2%, with an
average MAPE of 0.9%. The incast traffic pattern is highly complex to
model since several flows merge into one queue. A combination of the ME
and ML models in the MQL framework effectively captures this behavior
and achieves an average MAPE of 0.9%, with the highest being under 2%.
Fat-tree-128 Results: Similar to the analysis for Fat-tree-16, MQL achieves
an average MAPE of 1% for all-to-all Poisson packet arrivals and < 2%
MAPE for GE arrivals. MQL models incast for Fat-tree-128 accurately,
with an average error less than 0.9%.
Fat-tree-432 Results: The number of flows and complexity of latency esti-
mation grow with increasing fat-tree size. Besides scaling to these large
sizes, the combination of the ME and ML models in the MQL framework
perform well with an average error of less than 3% MAPE for the incast
traffic and less than 8% MAPE for the all-to-all (10% density) traffic.
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Table 4.4: Evaluations with the Anarchy [58] trace.
Size MAPE(%) avgRTT(w1) p99RTT(w1)

Fat-tree-16 0.23 0.007 0.009
Fat-tree-128 0.46 0.029 0.034
Fat-tree-432 7.86 0.052 0.058
Fat-tree-1024 0.37 0.040 0.047

Fat-tree-1024 Results: The large number of flows in a 1024 node fat-tree,
especially merging into a single queue in incast traffic, severely complicates
the modeling. The proposed MQL models result in higher error compared
to lower network sizes, with an average MAPE of 8% for incast patterns.
However, we note that MQL still enables rapid design space exploration
when compared to ns-3 which takes over a week to simulate a reasonable
workload duration.
Cumulative Distribution Function of Round-Trip Latency: We must ensure that
the RTT throughput distribution is close to the ground truth, as opposed to
an averaged value such as the normalized Wasserstein distance or MAPE.
Figure 4.6 presents the cumulative distribution function (CDF) of the
RTT for all-to-all traffic in fat-tree-16 and fat-tree-128. We observe that
MQL achieves high fidelity with the simulation ground truth in the RTT
spectrum for both fat-tree-16 and fat-tree-128.
Error Reduction: As anticipated, the MQL demonstrates a significant im-
provement in error reduction compared to the ME model alone. Upon
evaluating all of the synthetic workloads, we calculated the difference of
MAPE between the ME model and MQL. The results indicate that the
average error reduction is 7.1%, with a variance of 1.2%.
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Results of 2-tier fat-tree: In addition to the 3-tier fat-tree, we also evaluated
MQL on a proprietary 2-tier fat-tree. The 2-tier version offers a signifi-
cantly larger level of parallelism by using additional pairs of parallel links
between the same edge-core switch pairs. Hence, it is structurally different
than the conventional 3-tier fat-tree. Our results indicate that we achieved
a comparable accuracy (overall less than 9%) on a 128-node fat-tree when
simulating all-to-all, incast, and broadcast synthetic traffic under UDP.

Evaluations with Real-World Traces

Synthetic traffic may often over-constrain the system with traffic that does
not represent realistic scenarios. Therefore, we also evaluate a real-world
public trace, Anarchy [58]. This trace provides time stamps of the packets
injected into the DCN from 16 hosts, including the packet sizes and desti-
nations. We mapped the source and destinations to a 16-node fat-tree (i.e.,
four pods). The round-trip times match almost perfectly with ns-3 simula-
tions with 0.09% MAPE even without any ML assistance, as shown in the
Table 4.5: Execution time of the MQL models, speedup w.r.t simulations
A2A: all-to-all, IC: incast, BC: broadcast

Size Traffic Exec.
Time

Speedup
w.r.t Sim Size Traffic Exec.

Time
Speedup
w.r.t Sim

16 BC 0.002s 22092 432 BC 2.420s 471
16 IC 0.002s 19198 432 IC 2.440s 532
16 A2A 0.028s 29111 432 A2A 13m17s 400
16 Anarchy 0.008s 6375 432 Anarchy 1.046s 9730

128 BC 0.083s 2246 1024 BC 9.159s 220
128 IC 0.090s 2429 1024 IC 36.71s 89
128 A2A 47.14s 1367 1024 A2A 1h49m 115
128 Anarchy 0.634s 456 1024 Anarchy 8.293s 5317
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first row of Table 4.4. Consequently, the RT adds a negligible correction
factor, maintaining the accuracy.

To analyze scalability, we also extended this trace into 128 nodes (i.e.,
eight pods) by replicating each flow and randomly reassigning its source
and destination to different nodes. We repeat this flow replication and
reassigning process until all 128 nodes are assigned a source or destina-
tion. Similarly, we expanded the original trace to 432- and 1024-node
fat-trees. Table 4.4 shows the MAPE and RTT normalized Wasserstein
distances in fat-tree-128, fat-tree-432, and fat-tree-1024. All of them achieve
less than 8% MAPE and very small Wasserstein distances. Furthermore,
Figure 4.7 displays the CDF of RTT for real-world traces on fat-tree-16,
fat-tree-128, fat-tree-432, and fat-tree-1024. These plots demonstrates that
MQL achieves good traffic generality and accurate results.

Scalability and MQL Execution Time Analysis

This section compares the execution time speedup of the proposed MQL
analytical models to corresponding ns-3 simulations (40-second simula-
tion including a 10-second warmup).

Since the fat-tree-1024 all-to-all simulations take extremely long time to
complete, we compare the runtime based on a 10-second long simulation,
whose results are not used for accuracy analysis due to small number
of packets. The speedup is highest for fat-tree-16 at over four orders
of magnitude in the best case and over three on average, as shown in



90

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

 S i m u l a t i o n   M Q L
CD

F

R o u n d  T r i p  L a t e n c y  ( m s )( a ) ( b )

F a t - t r e e - 4 3 2 F a t - t r e e - 1 0 2 4

CD
F

R o u n d  T r i p  L a t e n c y  ( m s )

CD
F

R o u n d  T r i p  L a t e n c y  ( m s )

F a t - t r e e - 1 6

CD
F

R o u n d  T r i p  L a t e n c y  ( m s )( c ) ( d )

F a t - t r e e - 1 2 8

Figure 4.7: A comparison of the cumulative distribution function (CDF) of
the round-trip time (RTT) (or latency) in milliseconds between simulation
and MQL for the real-world trace Anarchy on (a) fat-tree-16, (b) fat-tree-
128, (c) fat-tree-432, and fat-tree-1024 respectively.
Figure 4.8. Since the number of flows increases with the increase in the tree,
the ME model component of MQL takes longer, while the ML component
takes a constant amount of time. We emphasize that MQL uses the same
regression models across sizes and configurations and achieves similar
execution times across workloads. Even for fat-tree-1024, MQL achieves a
speedup of 89× or higher. The benefits during rapid DCN design space
exploration multiply since simulations need to be repeated for multiple
random seeds.
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Figure 4.8: Speedup of the proposed MQL framework when compared to
ns-3 simulations for different configurations of tree sizes, traffic type and
data rates represented by FT{size}-{traffic type}-{data rate}. Sizes vary
between 16, 128, 432 and 1024. Traffic types vary between all-to-all (A2A),
incast (IC) and broadcast (BC). Data rates vary between low (L), medium
(M), and high (H).

Comparison with State-of-the-Art Approaches

This section compares the proposed MQL approach to three state-of-the-
art approaches: DeepQueueNet [75], RouteNet [64], and MimicNet [76].
Table 4.6 lists the normalized Wasserstein distances [71] (lower is better)
between the RTT of these approaches and simulations for synthetic traffic
in fat-tree-16 and fat-tree-128. We compare the w1 distance of average
RTT indicated by avgRTT(w1), and the 99th percentile RTT w1 distances
indicated by p99RTT(w1).

For fat-tree-16 using synthetic traffic with Poisson distribution arrivals,
MQL achieves an avgRTT(w1) better than competitive approaches. The
proposed MQL approach also achieves lower 99th percentile w1 distance
(i.e., higher accuracy) for all configurations. Similarly, MQL outperforms
the state-of-the-art approaches in terms of the avgRTT(w1) and p99RT(w1)
for fat-tree-128, providing the best-in-class performance estimation mod-
els. We could not include comparison with larger fat-trees since the other
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Table 4.6: A comparison of normalized Wasserstein distances of RTT
(avgRTT(w1)) and 99th percentile RTT (p99RTT(w1)) between Deep-
QueueNet [75], MimicNet [76], RouteNet [13] and our proposed MQL
framework for synthetic traffic.

avgRTT (w1)
Size DeepQueueNet RouteNet MimicNet MQL (Ours)

Fat-tree-16 0.0086 0.6737 0.0090 0.0025
Fat-tree-128 0.0133 0.9824 0.0172 0.0077

p99RTT (w1)
Size DeepQueueNet RouteNet MimicNet MQL (Ours)

Fat-tree-16 0.0145 0.9723 0.0135 0.0021
Fat-tree-128 0.0532 0.6397 0.0194 0.0109

approaches limit their evaluations to networks with 128 nodes. In contrast,
we report evaluations with substantially larger network sizes, demonstrat-
ing the proposed MQL approach’s scalability.

4.5 Conclusion

Data centers provide shared access to computing, storage, and memory
resources for large organizations that serve millions of users. Efficient, ac-
curate, and scalable performance analysis techniques are critical for rapid
design exploration efforts enabling architectural optimizations. To address
these challenges, we proposed MQL, a novel and scalable performance
analysis methodology that combines a queuing theory-based maximum
entropy principle and an ML-based assistance technique to correct system-
atic errors. MQL achieves a minimum of ∼ 80× and up to four orders of
magnitude speedup compared to simulations using the discrete-event ns-3
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framework. With the evaluations used in this dissertation, MQL estimates
the latencies with less than 3% error on average for DCNs with 16 to 1024
nodes. Future directions include demonstrating the approach on topolo-
gies other than fat-tree and validating MQL’s modeling accuracy to ensure
it is scalable when the queue buffer resources are highly constrained.
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5 similarity-based fast analysis of data center

networks

5.1 Overview

Data Centers (DCs) are essential for numerous cloud computing and big
data applications, with emerging demands necessitating larger distributed
computing systems. Designing and deploying a Data Center Network
(DCN) involves significant costs, leading to the use of low-cost network
elements like commodity switches [2]. Modeling DCNs is crucial for vari-
ous design aspects, including protocol design, performance evaluation,
and network planning. While simulators provide detailed observations,
they are slow compared to analytical approaches, and recent works have
explored leveraging deep learning techniques for DCN performance anal-
ysis.

MimicNet and DeepQueueNet are examples of deep learning-based
approaches that combine simulation with deep neural networks (DNNs)
to model DCNs. Analytical techniques, such as queueing theory, offer
speed and scalability without requiring extensive training data, provid-
ing models based on first principles. However, the speed advantage of
analytical techniques can degrade as the network size increases. DCNs
use topology structures and routing schemes to maintain low latency
and high bandwidth, presenting challenges for analytical approaches in
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representing multiple paths through the network efficiently.
Inspired by MimicNet’s assumptions and high accuracy, we hypoth-

esize that the high amount of symmetry and load balancing in DCN
architecture results in paths with similar performance characteristics. We
propose an approach to identify these similar performance characteristics
and thus reduce the "redundant" analytical calculations. We make the
following observations to be the sources of redundancy:
Key observation 1: DCN topologies and routing algorithms have a high
degree of symmetry. We observe this symmetry at each level of the fat-tree
topology. This results in similar queueing-theoretic model parameters
and similar communication latency for a set of possible paths.
Key observation 2: In highly congested networks, congestion control
algorithms will throttle the injection rate of flows, regularizing the data
rates across flows, that cause an increased likelihood of similarity in each
path.
Key observation 3: Many distributed applications have distributed and
regular communication across the nodes, including Machine Learning
(ML) / Artificial Intelligence (AI) and High Performance Computing
(HPC) applications. For example, workloads that leverage neural net-
works must update their weights, which requires communicating those
weights to all participating nodes. Our technique can significantly de-
crease the time to evaluate DCN performance with minimal impact on
accuracy.
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Using these observations, we propose a novel methodology that uses
similarity analysis to cluster paths based on observing traffic statistics.
First, we choose a single representative path from the cluster. Then, all the
queueing-theory performance metrics (delay, occupancy) are calculated
and reused for the remaining flow-splits in the cluster. This approach
minimizes the calculations by one over cluster size with minimal impact
on accuracy.

In summary, this dissertation makes the following contributions:

• Demonstrates a similarity-based technique that significantly reduces
algorithmic complexity from quadratic to linear with a minimal
reduction in accuracy for a commonly used family of DC topologies
and routing algorithms, enabling the feasibility of DCN performance
evaluation at scale.

• Provides a high degree of visibility (e.g., individual queueing delay
per flow and queue occupancies), hence explainable results. Fur-
thermore, a user-tunable similarity threshold enables users to make
informed speed versus accuracy trade-offs, potentially increasing
the scope of design exploration.

• Presents extensive simulation studies with synthetic traffic that show
a similarity threshold as low as 5% yields up to a 2000x speed-up
over the current state of the art and 400-40000x over ns-3 [50] with



97

a minimal 1% degradation in accuracy and scalability to a 2000 node
fat-tree.

5.2 Related Work

Simulators such as ns-3 and OMNet++ enable high visibility for analysis
and include various network features. However, their execution time
for large-scale networks increases drastically because of the fine-grained
packet-level simulations. Several methods have been proposed to speed-
up the performance analysis of large-scale networks, like parallelism in
simulations, integrating ML to model the network, and modularizing ML
models instead of creating a monolithic model for the entire network.

Szymanski et al. [68] propose a method that partitions the network into
domains and simulation time into intervals and simulates them indepen-
dently. Domains iterate until convergence and then move on to simulate
the next interval. However, this method achieves only a maximum speed-
up of 20× in a 256-node network with non-feedback-based protocols and
3× in feedback-based protocols. Navaridas et al. [48] propose a flow-level
simulation framework called INRFlow for modeling large-scale networks
and computing systems. However, it does not consider the temporal and
causal relationships between flows, that represent a more realistic simula-
tion.

Increase in simulation speed is limited by dependencies of the network
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flows and the protocol. Therefore, several studies introduce ML for net-
work performance analysis. Parsimon [79] suggests congestion events
in large-scale DCs are rare and occur at different points and times along
the path, enabling parallelism of simulation. The authors in [35] propose
modularized learning by dynamically combining "learning assignment"
into an inference graph, allowing for on-the-fly modeling. However, this
methodology provides only a 1.57× speed-up. The authors in [14] devel-
oped a Network Traffic Transformer (NTT), a transformer model designed
to learn network dynamics from packet traces. Hagos et al. [17] propose
a deep learning model to predict the Round Trip Time (RTT) of the Trans-
mission Control Protocol (TCP) protocol using Recurrent Neural Network
(RNN). Similarly, the authors in [20] model the TCP behavior using Gated
Graph Neural Networks (GGNN). However, neural networks are complex
models that are hard to explain, and all ML requires training.

Several analytical models have been proposed for network performance
modeling [24, 46]. The authors in [46] present a new direction in Markov
chain analysis of TCP by examining the cumulative distribution function
of transfer time under various models. However, they tested their exper-
iments for a maximum transfer of 1024 packets which is unrealistic, as
shown by the authors in [63]. Another notable challenge is the computa-
tional complexity that increases with the network size. This complexity
explodes due to the Equal-Cost-Multiple-Path (ECMP) routing, where
each packet within a connection can navigate multiple routes to reach its



99

destination. This method leads to a significant increase in the number of
available paths.

In summary, simulations take exorbitant time to run as the network
scales, while ML models require training and often lack explainability.
Closed-form analytical models provide runtime improvements; however,
as the network size increases, the model’s runtime significantly suffers.
To address, we propose a novel similarity-based performance analysis
technique, a tunable knob that allows users to trade-off accuracy versus
speed-up. The runtime improvements of this technique show zero to
negligible impact on accuracy, even with skewed traffic.

Background and Motivation

DCs are vital for executing computationally intensive distributed appli-
cations like MapReduce. As the DC compute capacity grows to meet
applications demands, so does the size and cost of the network intercon-
nect - this greatly affects design decisions.

Al-Fares et al. [2] propose a scalable architecture that leverages low-
cost commodity ethernet switches to deliver full bandwidth from any
node to another. The bandwidth comes from multiple paths enabled by a
recursive “multi-rooted” tree (e.g., multiple core switches) that employs
various routing schemes to leverage these paths.

Noting that DCs can be designed with any topology or routing scheme,
we motivate our methodology using the 3-tier fat-tree with ECMP routing
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as proposed by [2]. Figure 5.1 demonstrates a 54 node fat-tree with 3-tiers,
each with corresponding switches: 1) the core tier, 2) the aggregation tier,
and 3) the edge tier. The count of nodes, switches, and pods in topology
can all be described as a function of the number of ports at each switch k

and the number of levels l in the tree. Each successive tier from edge to core
constitutes an additional fan out of possible paths from the source node
to the core switch; k/2 from each edge switch, k/2 from each aggregate
switch, and k paths from each core switch [2].

Routing schemes like ECMP evenly divide the traffic flowing from a
source to destination pair (a flow) into each possible path (flow-splits).
This typically results in highly symmetric and similar traffic at parallel
network locations. Multiple paths impact the execution time of simulation
and analytical models differently. In the simulation, only the time to access
the routing table grows. In the analytical model, each flow-split requires
calculating the queue occupancy (and latency), a more expensive set of
operations (e.g., multiplications) than a routing table access.

Analytical models’ algorithmic complexity can scale disfavorably con-

Figure 5.1: A 3-tier 54 node fat-tree with core, aggregate, edge switches.
The left most 3 nodes and the right most 3 nodes are numbered.
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Figure 5.2: Unfolded representation of fat-tree topology with all possible
paths from a source (node1) to destination (node54).
cerning simulation. Each packet, flow, and queue must incur a simulation
penalty in simulation. Not considering packets, we see that this results in
complexity O(f× q), where f is the number of flows, and q is the number
of queues in the flow. Analytical models extend this by adding possi-
ble routes to the complexity analysis resulting in O(f× q× s). We use s

to denote network size, which dictates possible routes at each flow-split
boundary, growing at a rate of (k/2)2, a significant increase. For example,
Figure 5.2 depicts one flow from a single source node (1) to a destination
node (54). As shown in Figure 5.1, the switch radix is k = 6, making the
number of flow-splits entering the final node 9, ((6/2)2).

This work leverages the Maximum Entropy (ME) technique of queue-
ing theoretic analytical modeling as it is robust to bursty traffic and gener-
alized service distribution [47]. As we show in Section 5.4, when there is
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a negligible difference in input parameters to the ME model, the resulting
occupancies and latencies are close in value. To mitigate the additional
computational complexity, we use a lightweight clustering approach to
group the flow-splits into clusters based on similar model parameters.
At each point, we choose one representative flow-split from each cluster,
perform the analytical calculation, and substitute those values for all other
flow-splits in the cluster. Thus reducing the additional complexity in the
best case from multiple paths (quadratic) to a constant (1).

5.3 Proposed Technique

Overview

This section presents the proposed similarity-based technique in detail.
The methodology uses a caching technique that works by clustering flows
with similar characteristics to reduce the algorithmic complexity of the
analytical model. To set the proper context of where and how similarity
plays a crucial role in speeding up performance analysis, we describe
how DCN is modeled using queuing theory. First, we describe how a set
of queues represent each switch and node in DCN. Next, we elaborate
on the constructed analytical model, which consists of the Decomposi-
tion method and the ME method. The decomposition method enables
modeling the interconnection of queues. Consequently, it models the
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input characteristics listed in Table 5.1 (e.g., the arrival rate (λi) and the
squared coefficient of variation (C2

Ai
)) for each input flow entering the

queues. Given the input characteristics, we use the ME method to find
the communication latency of the network. We then explain where the
algorithmic complexity lies and the reason behind it. Finally, we describe
the proposed novel technique to reduce the algorithmic complexity of the
model, providing a speed-up of 2000x while maintaining a Mean Absolute
Percentage Error (MAPE) of less than 1%.

While our approach generalizes to any topology and routing scheme,
we initially demonstrate the proposed approach using ECMP routing on a
3-tier and a modified 2-tier fat-tree topology that increases the switch radix
to improve throughput and latency via increasing the network parallelism.

Model Assumptions

We begin the analytical model by using Output Queues (OQ) as modeling
abstraction since they are easier to model [47]. Next, we adopt General-
ized Exponential (GE) distribution as the arrival process to model bursty
real-world traffic. This distribution is capable of handling various other
distributions, including Poisson. Since the queues accept packets individ-
ually, multiple flow-splits belonging to a class (a stream of packets per
source-destination pair) can merge and decompose while entering and
leaving the queues. As a result, the output stream of packets may follow an
unknown distribution, even if the individual flow-split adheres to a specific
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Table 5.1: Summary of notations used in this dissertation.
λi Injection rate of flow-i
ρi Link utilization of flow-i
pi Probability of flow-i split when leaving the queue
C2

Ai
Squared coefficient of variation of inter-arrival time for flow-i

C2
Di

Squared coefficient of variation of inter-departure time for flow-i
C2

Si
Squared coefficient of variation of service time for flow-i

λ Injection rate for merged flow
ρ Link utilization for merged flow
C2

A Squared coefficient of variation of inter-arrival time for merged flow
C2

D Squared coefficient of variation of inter-departure time for merged flow
C2

S Squared coefficient of variation of service time for merged flow
⟨ni⟩ Mean queue length of flow-i in an infinite-sized queue
⟨ni⟩N Mean queue length of flow-i in a finite-sized (N) queue
Wi Average waiting time of flow-i
distribution at the input. Additionally, we do not make any assumptions
regarding packet size distributions and choose Generalized distribution
to model service time. In Figure ??, the link between switches and nodes
is considered a server for the output queue on the corresponding port.
Thus, we begin with a GE/G/1 model and expand it to GE/G/1/N, where
N represents the finite queue length.

Analytical Queuing Models

The proposed methodology utilizes ME-based queuing models due to
their accuracy and scalability. As such, traffic originating from each node
entering DCN serves as the primary input to the model. The ME-based
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Figure 5.3: Decomposition method: Phase 1 merges multiple flows into sin-
gle flow. Phase 2 computes coefficient of variation of departure processes.
Phase 3 splits merged flow to derive individual departure processes.

.
models, employing generalized exponential traffic, consider average ar-
rival rate (λi) and squared coefficient of variation (C2

Ai
) as the first two

moments for each input flow, as Table 5.1 summarizes.

Decomposition Method

As the flows traverse DCN, they undergo merging and separation pro-
cesses. Figure 5.3 illustrates merging four flows into the same queue,
where packets are stored in arbitrary arrival order. Estimating the arrival
rate and squared coefficient of variation becomes crucial in this scenario.
Based on the decomposition model presented in [60], we calculate squared
coefficient of variation of merged flow’s inter-arrival times as the weighted
average of the squared coefficient of variations of incoming flows (Fig-
ure 5.3). Similarly, we use the same decomposition approach to determine
the squared coefficient of inter-departure times (C2

D) variation for the
merged flows (Figure 5.3). The output flows are split and enter their
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desired downstream queues. To handle splitting, we compute C2
D and

the probability of splitting for each flow-split based on the number of
downstream queues, as defined in Phase 3 of Figure 5.3. These split C2

Di

values are used as C2
Ai

values for the downstream queues. Importantly,
our decomposition method can be computed in a single pass, ensuring
the scalability of our approach.

GE/G/1 Maximum Entropy Model

The ME method approximates networks when queues achieve equilib-
rium [29]. Following the routing algorithm, the proposed approach tra-
verses the network from source to destination for each flow in the workload.
During this process, it uses decomposition process to find the mean ar-
rival rate (λi), utilization (ρi), squared coefficient of variation (C2

Ai
), and

coefficient of variation of service time (C2
Si

) at each queue. Then, it uses
the GE/G/1 ME model to find the mean queue length of each flow i (⟨ni⟩)
in an infinite-sized queue as:

⟨ni⟩ =
ρi

2 (C2
Ai

− 1) +

N∑
k=1

λi

λk

ρ2
k(C

2
Ak

+ C2
Sk
)

1 − ρ
(5.1)

Finally, the waiting time (queuing delay) of flow-i becomes:

Wi =
⟨ni⟩− ρi

λi

(5.2)
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Algorithm 5: Similarity-based end-to-end latency calculation.
1 Input: Fat-tree size, link bandwidth, flow metadata (flow ID, source,

destination), characteristics for each flow (λi, C2
Di

, C2
Si

, mean packet size,
queuing delay of host queues)

2 Output: Average end-to-end latency for each flow
3 foreach queue ready to be processed do
4 Initial empty vector, cacheFlows
5 I = number of flows in queue
6 for i = 1:I do
7 if flow characteristics of i is similar to flow characteristics of an existing flow in

cacheFlows then
8 Wi = WmatchedFlow

9 C2
Di

= C2
DmatchedFlows

10 end
11 else
12 Compute Wi using GE/G/1 and GE/G/1/N ME model
13 Compute C2

Di
using decomposition model

14 Populate flow characteristics of upstream queues
15 Add flow i in to vector cacheFlows
16 end
17 end
18 clear vector, cacheFlows
19 end
20 foreach flow in traffic do
21 Traverse all queues throughout flow’s path
22 Aggregate queuing delay and link delay
23 end

For the finite-sized queue model (e.g., GE/G/1/N), we adopt the ap-
proach taken in [29]. The finite-size queue model performs additional
compute-intensive operations that the citation expounds upon.

Similarity-Based Technique to Reduce the Algorithmic

Complexity

For clustering, we represent each flow-split, fi, as a tuple of the parameters
in the ME-model. We use Absolute Percent Error (APE) as the distance
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Table 5.2: A summary of the experimental setup used for evaluations in
this dissertation.

Parameter Values Evaluated in this dissertation
3-tier Fat-Tree Topology Number of nodes: 16, 128, 432, 1024, 2000
2-tier Fat-Tree Topology Number of nodes: 16, 128

Similarity threshold 5%, 15%
Workloads Synthetic Traces

Synthetic Traffic Patterns All-to-all, Broadcast, Incast, Asymmetric
Traffic Arrival Distributions Poisson and Generalized Exponential (GE)
Synthetic Packet Size Dist. 500 B; uniform (500B with 1% variation)

Synthetic Workload
Data Rates

Low (link utilization of 25%)
Medium (link utilization of 50%)
High (link utilization of 75%)

Link Bandwidth 100 Mbps
Protocol TCP, UDP
Queue FIFO, 128 Packets Capacity

metric between two corresponding flow-split parameters (fip and fjp) for
each parameter p in P (λ2, C2

A2 , ρ2, ⟨n2⟩, ⟨n2⟩N, W2). If the APE for any
parameter is greater than the similarity threshold, then the two flow-splits
are not similar. This technique is lighter weight (fewer computations in the
distance calculation) than traditional distance measures (e.g. Euclidian
or Manhattan). We reduce the algorithmic complexity of the analytical
model by only evaluating the analytical model once per cluster. Algorithm
5 details using similarity when estimating end-to-end latency.
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5.4 Experimental Evaluation

We evaluated the approach on a rich set of workloads and topologies. Sec-
tion 5.4 details the experimental setup. Section 5.4 evaluates the proposed
technique using synthetic traffic on a 3-tier and a customized 2-tier fat-tree.
For different similarity thresholds, we present the speed-up, the number
of calls to the analytical model, the impact on MAPE, and the absolute
runtimes of the proposed technique.

Experimental Setup and Methodology

DCN Topologies: While similarity-based technique applies to many topolo-
gies, our experiments focus on popular fat-tree topology with two varia-
tions: 3-tier and 2-tier fat-tree. The main distinction between 3-tier and
2-tier fat-tree is the number of layers and ports per switch. The 3-tier
fat-tree follows a classical fat-tree with three layers where the parameter k
determines the number of pods [2]. The 2-tier uses two layers of switches

Figure 5.4: Performance analysis speed-up of 3-tier fat-tree with three
different similarity thresholds (ST) as compared to ns-3.
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Figure 5.5: Number of times the analytical model is called for different
similarity thresholds (ST) in a 3-tier fat-tree.

Figure 5.6: Comparison of baseline model MAPE with the MAPE obtained
through different similarity thresholds (ST) in a 3-tier fat-tree.
customized to have more ports than a classical 2-tier fat-tree. This cus-
tomization of ports increases the number of paths between a source and
destination by using larger switch radixes (8 and 64 ports for 16-nodes
and 128-nodes, respectively) to add duplicate parallel links, p, between
every pair of edge and core switches (2 and 16 parallel links for 16-nodes
and 128-nodes, respectively). The parallel links add a factor of p2 to the
algorithmic complexity of customized 2-tier. In this work, we use 3-tier
fat-trees with k ∈ {4, 8, 12, 16, 20}, leading to node sizes 16-2000 as listed
in Table 5.2, whereas in the customized 2-tier fat-tree we perform the
technique on 16 and 128 node sized network.
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Workloads Used for Evaluation:

We evaluate the technique using synthetic traces, which include four

different communication types: all-to-all (each node in DCN sends packets
to every other node), broadcast (only one node (source) sends packets to
all other nodes), incast (all nodes send packets to one node (destination)),
and asymmetric as summarized in Table 5.2 along with other parameters.
The asymmetric (ASYM) traffic pattern is a combination of all-to-all (A2A),
broadcast (BC), and incast (IC), generated by dividing the entire network
into three sets of nodes. For example, in Figure 5.1, we divide the network
into 3 sets of 18 nodes. The first set of 18 nodes sends an incast traffic to
node 1, and the third set of 18 nodes receives broadcast traffic from node
1. For the all-to-all traffic, two random set of 18 nodes are chosen. We
run the traces for three different data rates, which correspond to a link
utilization of 25% (Low), 50% (Medium), and 75% (High). However,
since ns-3 simulation time increases drastically with network size, number
of flows, and data rate, we limit the flows and data rate in networks with
> 250 nodes. To reduce the number of flows we use a density parameter
(6%) which only injects 6% of the possible set of flow-splits supported
by the topology and uses only one injection rate (medium). The flows
are uniformly selected from a subset of active hosts participating in all-
to-all communication. Furthermore, each simulation configuration was
first run with each flow-split having the same data rate, and the same
configuration was repeated with each flow-split having a different data
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rate. The different data rate was selected uniformly between 0 and 75%
(High) link utilization.
Similarity Thresholds: To determine threshold values, we first run all the
configurations (network sizes up to 128 nodes) with no similarity (NS) as
the baseline, then repeat the runs with two different similarity thresholds
(5%, 15%). Analysis of simulation results showed a median difference
between flow-split characteristics of around 5% among all the parameters
indicated in Table 5.2. Therefore, we selected a threshold of 5% and added
15% for comparison.
Simulation Environment and Other Parameters: We performed simula-
tions with ns-3, a discrete-event network simulator [50]. Ns-3 provides
packet-level visibility and allows users to configure various parameters
such as the number of source and destination nodes, routing patterns,
mean flow sizes, simulation time, network protocol, and queue sizes. We
perform 30-second simulations with a warm-up of an additional 10 sec-
onds to ensure inputs to the simulation are representative of a steady
state. The queue sizes are set to 128 to represent a finite buffer scenario.
The runtime grows prohibitively high (weeks or more) as the number of
nodes increases. Therefore, for network sizes greater than 250 nodes, we
constricted the simulation length to 11 seconds with 1 second of warm-up.
Protocols: We evaluated the proposed similarity-based technique using
both User Datagram Protocol (UDP) and TCP because of their popularity.
Comparison Metrics: We use speed-up, MAPE, number of calls to the
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analytical model, and absolute runtime to demonstrate how similarity
decreases performance estimation time using the analytical model. We
first show speed-up of the technique with respect to simulation for each
configuration. Then we show the significant reduction in calls to the
analytical model using three different similarity thresholds (ST = 0%, 5%,
15%) versus no similarity. Similarity threshold of 0% means that each
flow-split is compared and clustered only if they match exactly whereas
no similarity indicates no comparisons or clustering of flow-splits. Finally,
we show the impact on MAPE of applying similarity (ST = 0%, 5%, 15%)
vs no similarity.
Total Number of Simulations: Table 5.2 summarizes the parameters used
for evaluation. We ran 1992 different simulations for 3-tier fat-tree, 1733
for 2-tier, for a total of 3725 evaluated simulations.

Evaluations on a 2-Tier and 3-Tier Fat-tree

This section extensively evaluates the proposed similarity-based technique
using synthetic traffic on 3-tier and 2-tier fat-tree topologies.

Number of Calls to Analytical Model:

Figures 5.5 and 5.8 (3-tier and 2-tier respectively) show the number of calls
to the analytical model with no similarity and with similarity thresholds
(ST = 0%, ST = 5%, 15%). For no similarity, we expect two trends in the
number of calls to the analytical model. Firstly, for a given communication
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Figure 5.7: Performance analysis speed-up of 2-tier fat-tree with three
different similarity thresholds (ST) as compared to ns-3.

Figure 5.8: Number of times the analytical model is called for different
similarity thresholds (ST) in a 2-tier fat-tree.
pattern, we expect the number of calls to grow with network size. As
seen in Figure 5.5 the trend holds for all communication patterns up to
fat-tree 128 (FT128). However, as described in 5.4, to obtain practical ns-3
simulation runtimes, we apply a density factor to reduce the number of
flows. For the fat-tree-432 all-to-all (FT432-A2A) workload, a 6% density
results in approximately 11k flows, which is slightly lower than the number
of flows in the smaller FT128-A2A with 100% density.

Secondly, for a given network size, we expect the all-to-all commu-
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Figure 5.9: Comparison of baseline model MAPE with the MAPE obtained
through different similarity thresholds (ST) in a 2-tier fat-tree.
nication pattern to have the largest number of calls, as it has the most
flow-splits (proportional to N nodes communicating to all other N − 1
nodes). This trend holds for the 3-tier fat-tree. However, for 2-tier, the
all-to-all workload at 128 nodes (FT128-A2A) has fewer calls than the
asymmetric communication pattern. This time we apply a density factor
(6%) to achieve tenable runtimes for the analytical model. As mentioned
in Section 5.4, the 2-tier FT128 has a significantly higher degree of paral-
lelism, p = 16, which increases the algorithmic complexity of the analytical
model, and similarly the number of calls, by a factor of p2, resulting in the
untenable runtimes.

As the number of calls directly impacts speed-up, we leave further
observations regarding the number of calls to the next section.

Speed-up of the Analytical Model versus ns-3:

The proposed similarity technique is implemented in C++ to fairly com-
pare the execution time with ns-3 simulator. Figure 5.4 shows the speed-up
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of each configuration in 3-tier fat-tree with different similarity thresholds,
and Figure 5.7 shows the results for the customized 16-node and 128-node
2-tier fat-tree.

As mentioned in the previous section, for no similarity, as the net-
work size grows, the number of flow-splits (i.e., calls to analytical model)
increases exponentially. Consequently, the speed-up compared to packet-
level simulation degrades proportionally to network size. This impacts
the 2-tier to a greater degree than 3-tier, with a slowdown for some configu-
rations starting at a small network size of 128 nodes. Hence, the similarity
method is critical to enabling performance analysis at scale.

The speed-up improvements for fat-tree-16 with similarity (ST = 0%,
5%, 15%) compared to no similarity are small because the number of
flow-splits in the network is small in both cases. For larger network sizes,
however, Figures 5.5 and 5.8 show that both similarity thresholds (ST =
5%, 15%) drastically decrease the number of calls to the model and show
a corresponding increase in speed-up (Figures 5.4 and 5.7). Specifically,
at the highest similarity threshold (ST = 15%), the proposed technique
applied to the 3-tier and 2-tier achieve an average speed-up in execution
time compared to ns-3 of 13000× and 12000× respectively. While the
analytical model with no similarity achieves an average speed-up of only
3000× for both 3-tier and 2-tier, but 2-tier is limited to a maximum node
count of 128.

As such, Figures 5.4 and 5.5 corroborate our hypothesis of flow-splits
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having similar performance characteristics due to the high amount of
symmetry and load balancing in DCNs.

MAPE of the Analytical Model:

The similarity analysis methodology is more approximate than the baseline
queueing theoretic approach, because of using a cluster to approximate
other similar flow-splits. This approximation impacts MAPE. The simi-
larity threshold is configurable, allowing the user to trade off speedup
for MAPE impact. We evaluate the approach at 3 increasingly stringent
thresholds and demonstrate that the MAPE difference for 3-tier and 2-tier
fat-tree, even at a threshold of 15% yields < 2% MAPE difference vs the
baseline approach (as shown in Figure 5.6 and 5.9). Furthermore, in both
the fat-tree topologies, the increase in the error is due to the exorbitantly
high number of flow-splits coupled with a higher similarity threshold (ST

= 15%), which results in a higher approximation error compared to the
similarity threshold (ST = 5%).

Absolute Run Time Analysis

This section presents the absolute runtimes of the analytical model with
no similarity and with similarity. Table 5.3 provides the range (Maximum
- Minimum) of the runtimes among all 1992 simulations for 3-tier fat-tree
and 1733 runs for 2-tier fat-tree. The maximum run time taken by ns-3
simulation is 49 hours and 5 hours for 3-tier and 2-tier fat-tree respectively
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whereas the analytical model with no similarity takes a maximum of 3
hours and 12 hours. Our proposed technique brings down the runtime of
3-tier and 2-tier fat-tree from a maximum of 49 hours and 5 hours to 72
seconds and 12 seconds respectively. The speed-up seen in a 3-tier and
2 tier fat-tree is around 2500× and 3500× respectively. These speed-ups
are expected as the number of calls to the analytical model in a 3-tier
and 2 tier fat-tree is lesser by around 2000× and 3000× compared to ns-3,
respectively. Additionally, due to the p2 parallelism seen in a 2-tier fat-tree
the total number of calls with no similarity is significantly higher than
3-tier fat-tree.

5.5 Conclusion

Data centers are essential in providing computing, storage, and memory
resources to large organizations serving many users. Fast and accurate
Table 5.3: Range of absolute runtime between simulation and analytical
model (with and without similarity).

Topology
(Max -Min

Nodes)

Absolute Run Time (Max-Min)
Simulation

(ns-3)
Analytical

(NS)
Analytical
(ST = 0%)

Analytical
(ST = 5%)

Analytical
(ST = 15%)

3-tier
(2000 -16)

49hrs - 56sec 3hrs - 4ms 9min - 2ms 72sec - 2ms 72sec - 2ms

2-tier
(128 -16)

5hrs - 5sec 12hrs - 1ms 3hrs - 1ms 23sec - 1ms 12sec - 1ms
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performance analysis techniques are vital for rapidly exploring design op-
tions and optimizing architectural configurations, especially in datacenter
networks with thousands of nodes. To tackle this challenge, we propose a
novel similarity-based method that leverages the high degree of similarity
available in the network. We implement a technique that clusters flows
with similar characteristics based on a user-defined threshold. This tech-
nique significantly accelerates performance analysis, achieving speed-ups
of around 3000x compared to the analytical model without similarity. In
our evaluations, this technique achieves around 3000× speed-up while
maintaining less than 1% degradation in MAPE accuracy. We evaluated
the technique for 2-tier and 3-tier fat-tree topologies with sizes ranging
from 16 to 2000 nodes.



120

6 conclusion of the dissertation

In conclusion, this dissertation makes significant contributions to the field
of modern processor analysis, with a primary focus on Network-on-Chip
(NoC) architectures and data center networks (DCNs). The key findings
and advancements can be summarized as follows:

NoC Performance Analysis: Introduces an analytical model address-
ing the limitations of current NoC performance analysis models. Proposes
a technique for multi-layer priority-aware NoCs with deflection routing,
showcasing superior accuracy in assessing various traffic scenarios.

Proactive Congestion Control in NoCs: Presents a proactive conges-
tion control technique for NoCs using a supervised learning framework
and time reversal technique. Achieves substantial improvement (up to
114%) in memory read bandwidth for realistic workloads with minimal
overhead (less than 0.01%).

Scalable Performance Analysis for DCNs: Introduces MQL, a scal-
able methodology for performance analysis in DCNs, combining queuing
theory and machine learning. Achieves an impressive speedup (up to
four orders of magnitude) compared to traditional simulations, estimating
latencies with less than 3% average error.

Similarity-Based Method for DCN Performance Analysis: Proposes a
novel similarity-based method to accelerate performance analysis in DCNs
by clustering flows with similar characteristics. Demonstrates a remarkable
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3000x speed-up compared to analytical models without similarity, with
less than 1% degradation in MAPE accuracy.

Future Work: The dissertation opens avenues for future research to
further enhance and extend its contributions: Explore the application of
the proposed techniques on diverse network topologies beyond fat-tree in
data center networks. Validate and optimize the proposed methodologies
in scenarios with highly constrained queue buffer resources to ensure scal-
ability. Develop analytical performance analysis techniques for modeling
TCP with congestion control in data center networks, considering varied
DCN requirements.

These future directions aim to refine and broaden the applicability
of the proposed models and methodologies, paving the way for contin-
ued advancements in the design, analysis, and optimization of modern
processors and data center networks.
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a appendix

A.1 Appendix

Implementation of a steady-state maximum entropy solution in a stochastic
system requires estimation of Lagrangian coefficients g, x, and y related
to output parameters such as utilization and mean queue length. We
make this estimation by using a related closed network at equilibrium
with infinite queue [29] Therefore, we find the Lagrangian coefficient x
by using the mean infinite queue length < n > from Equation A.1, in
Equation A.2 [30].

< n >= λŴ + ρ (A.1)

x =
< n > −ρ

< n >
(A.2)

The Lagrangian coefficient x is then used to find the the mean finite queue
length < n >N given by the Equation A.3.

< n >N=
ρ

1 − ρ2xN−1

{
1 − xN

1 − x
−NρxN−1

}
(A.3)

Using the mean finite queue length < n >N from Equation A.3, we
find the Lagrangian coefficient xN, y, and g as shown in Equation A.4, A.5
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and A.6 respectively.

xN =
< n >N −ρ

< n >N

(A.4)

y =
1 − ρ

1 − xN
(A.5)

g =
ρ(1 − xN)

xN(1 − ρ)
(A.6)

These coefficients then help us in finding the queue occupancy distribution
given by the Equation A.7.

pN(n) =


CNp̂(n), for n = 0, 1, . . . ,N− 1

1 −
∑N−1

n=0 pN(n), for n = N

(A.7)

where N is the queue length and the intermediate variables CN and p̂(n)

are found as follows:
CN =

pN(0)
1 − ρ

(A.8)

p̂(n) = (1 − ρ)gh(n)xnNds (A.9)

Here, h(n) is the unit step function as shown in Equation A.10.

h(n) =


0, for n = 0

1, for n > 0
(A.10)

From the resulting probability distribution given by Equation A.7,
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we acquire the probability of the queue being full as pN(N), where N

represents the queue size.
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