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Abstract

Advances in Digital Breast Tomosynthesis: Image Reconstruction, Artifact Correction,
and Dose Reduction
John W. Garrett

Breast cancer is the second most prevalent cancer, globally, with millions of new cases identified
each year. Since the introduction of widespread screening for breast cancer, there has been a steady
decline in breast cancer mortality. In order to reliably detect breast cancers, breast screening
methods need to offer high spatial resolution, low dose, high patient throughput, and excellent low
contrast detectability. Mammography has been the gold standard in breast cancer screening since it
was introduced, however many new technologies have emerged recently that offer many additional
benefits when compared with mammography. One such method, digital breast tomosynthesis
(DBT) builds on existing equipment and techniques used in mammography by incorporating three
dimensional (3D) information. Clinically available in the United States since 2011, the addition of
DBT has been shown to improve both sensitivity and specificity for breast screening when compared
with two dimensional (2D) mammography alone. However, due to the unique requirements of
breast imaging, image reconstruction, processing, and analysis for DBT is quite challenging. In this
dissertation, several research areas are explored with the overarching goal of improving DBT imaging
in a clinical setting. First, a novel image reconstruction algorithm and implementation strategy
are introduced for DBT. Second, a technique to assess and understand the anatomical noise in the
breast with respect to these new reconstruction methods is described. Finally, a platform-agnostic
post-processing technique to reduce image noise and potentially reduce dose for DBT exams is
presented. The tools presented in this work have been found to improve through-plane spatial
resolution, reduce anatomical clutter, and potentially enable significant dose reduction for DBT.
These are all very important steps in providing effective and safe breast cancer screening in the
future.
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1 Introduction

Breast cancer is the second most prevalent type of cancer, globally, with nearly 1.7 million new cases

identified in 2012 alone (almost 12% of all cancers)1. In 2013 in the United States alone, around

230,000 diagnoses of breast cancer were made with over 40,000 women dying of breast cancer. In

fact, nearly 1 in eight women (and 1 in 1000 men) will develop invasive breast cancer over her

(or his) life, which is a staggering figure. Fortunately, there is some good news: since widespread

screening for breast cancer began in the 1990s, there has been a steady decline in breast cancer

mortality of approximately 2% per year from 2001-2010 according to the Centers for Disease Control

and Prevention (CDC)2. More recently, a massive study of 400,000 women showed a reduction of

greater than 30% in the incidence of stage II+ cancers in women who underwent screening3. This

decline is attributable to a few factors: improved screening and diagnosis, advances in treatment,

and increased awareness.

Due to the prevalence of the disease, contemporary breast cancer research covers a wide range

of topics including genomics, diagnosis, treatment, cellular composition, detection, and many more.

The majority of breast cancer research currently falls into the following categories: understanding

the mechanisms causing breast cancer, determining how to best treat patients presenting with breast

cancer, and finding new ways to detect breast cancer in the first place. In this dissertation, the

focus is on one of the aforementioned active research areas: the earlier detection of breast cancer by

developing improved imaging for breast cancer detection.

The most common imaging modality for breast screening today is x-ray mammography, a

modality which provides morphological and anatomical information about breast tissue non-invasively.

Mammography is a fast and relatively low-dose x-ray exam that can be performed at very low cost
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(average Medicare reimbursement rate for bilateral screening exam ≈ $1704). Mammography has

been shown to reduce breast cancer mortality by as much as 30% in women5 and is the current

clinical standard in breast cancer imaging. However, the use of mammography is not without

controversy. In Table 1.1, we can see the wide variety of screening guidelines currently provided in

the United States. The disparities in these expert recommendations indicate there is still no expert

consensus regarding the efficacy of mammographic screening; practically, this means there is no

consensus as to the age groups to whom breast cancer screening should be recommended5–14.

One major reason for this variability in expert consensus is that despite the benefits of mam-

mography, its sensitivity and specificity are inherently limited, especially in radiologically dense

breasts. As a result, its use is more challenging and less reliable in patients with dense breasts,

breast implants, or following breast surgery15. The successful diagnosis of breast cancers at early

stages is the goal of breast screening. However, the psychological distress associated with a call

back from a screening exam, the potential overdiagnosis of some potentially non-fatal cancers (the

labeling of true positive cancer diagnoses as “overdiagnosis” remains another highly contentious

point)16, and the immense cost of follow-up care for women with false positive screening are major

Table 1.1: Expert recommendations for screening mammography from different sources.

Organization Issued
(Year)

Screening ages Frequency

American College of Obstetricians
and Gynecologists8

2003 1. 40-49 years;
2. ≥ 50 years

1. Every 1-2 years; 2. Annually

American College of Physicians8 2007 1. 50-74 years; 1. Every 1-2 years;
2. 40-49 years 2. Individual decision (every 1-2

years, if performed)
National Cancer Institute8 2010 ≥ 40 years Every 1-2 years
National Comprehensive Cancer
Network8

2011 ≥ 40 years Annually

National Health Service, UK8 2011 47-73 years Every 3 years
American College of Radiology6 2015 ≥ 40 years Annually
American Cancer Society7 2015 1. 45-54 years;

2. ≥ 55 years;
3. 40-44 years

1. Annual; 2. Biennial with oppor-
tunity for annual; 3. Opportunity to
begin annual screening

U.S. Preventive Services Task
Force14

2016 1. 50-74 years;
2. 40-49 years;
3. ≥ 75 years

1. Biennial; 2. Individual decision
(every 2 years, if performed); 3. Not
sufficient evidence to provide recom-
mendation
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issues. In fact, much of the controversy surrounding screening mammography focuses not only

on the limited sensitivity of the modality (leading to missed cancers), but rather on the negative

impact of false-positive screening results (caused by limited specificity). Thus, improving both the

sensitivity and specificity of screening exams is necessary to limit these issues in the future. One

measure taken to help alleviate some of these issues is that nearly half of the states in the US have

passed legislature requiring that women with mammographically dense breasts be notified that

mammograms are less sensitive in this group and that supplemental techniques for screening may

be beneficial for patients with elevated risk17.

In addition to mammography, many additional breast imaging techniques have been developed

over the years. One alternative, ultrasound, is commonly used in breast cancer detection and has a

specificity and sensitivity comparable to mammography18. The advantages of ultrasound include the

absence of ionizing radiation and uncomfortable compression, as well as a relatively low cost (average

Medicare reimbursement rate for unilateral breast exam including axilla ≈ $1104). However, ultra-

sound is highly dependent on operator experience, and the studies performed thus far suggest that

operator expertise may not be reproducible19,20. A second modality, breast MRI, was recommended

by the American Cancer Society in 2007 for breast cancer screening in high-risk women21–27. Studies

have consistently demonstrated that although expensive (average Medicare reimbursement rate for

a contrast-enhanced breast MRI exam is >$600 on average4), contrast-enhanced MRI may detect

breast cancers that are mammographically and sonographically occult. Despite its high sensitivity

however, MRI has a high rate of false positive diagnoses22,27–42. Additionally, neither MRI nor

ultrasound is well suited to the detection of fine micro-calcifications, hindering the early detection

of breast cancer. Other attempts to improve sensitivity and specificity of breast cancer diagnosis

via functional and molecular imaging techniques using PET and scintimammography21,28,43 are

also under investigation. The various pros and cons of these systems are the major motivation in

pursuing additional imaging modalities; a system that is practical for screening applications, but

can help improve sensitivity and specificity, simplify breast screening and diagnostic imaging, and

eliminate the need to have each patient undergo multiple imaging procedures.

It should be emphasized that mammography is already achieving many of the goals of screening.

It is eminently practical, fast, and cheap while still providing high quality radiographic images of
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(b)(a)

Figure 1.1: An example of the limitations of 2D mammography (a) compared with DBT (b). In
the mammogram, the overlapping tissues make it difficult to identify any pathology in the breast
parenchyma. In the corresponding slice from the DBT acquisition the overlapping tissues are largely
removed, exposing an area of architectural distortion indicated in the dashed circle.

the breast. However, we should point out that standard mammography has two major limitations:

1) It is a 2D imaging modality, and 2) It depends entirely on contrast generated by x-ray absorption.

The 2D nature of mammography results in the inevitable superposition of normal breast structures,

hindering the detection of lesions and other features of interest44. In projection imaging, breast

tissues form a low-frequency anatomical noise background, which often dominates other noise sources,

such as quantum or electronic noise, and confounds the detection and classification of breast lesions
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Table 1.2: Sensitivity and specificity for different breast cancer screening modalities.

Modality Sensitivity (%) Specificity (%)
Mammography80,81 87 58

DBT+Mammography80,81 89 69
DBT+Synthesized Mammography80,81 88 71

MRI42 61.7-98.4 72.0-79.1
Mammography+US42 76 84

Mammography+MRI42 84-94 86-95

and microcalcifications44–46. Absorption contrast is also problematic in breast imaging as dense

glandular tissue in the breast and tumor tissue have very similar linear attenuation coefficients in

the diagnostic x-ray regime47. As a result, even with artifact-free and low-noise images, the inherent

contrast of tumor masses in the breast is limited. To overcome this, radiologists utilize morphology,

asymmetry, and longitudinal changes to diagnose malignancies in many cases, although as we have

just argued, the anatomical clutter can limit diagnoses based on morphology.

In an attempt to alleviate tissue superposition, recent developments in volumetric x-ray breast

imaging methods include digital breast tomosynthesis (DBT)48–57 (see Figure 1.1) and dedicated

breast cone-beam computed tomography (CBCT)58–66. Dedicated breast CBCT remains a promising

and active area of research, although DBT has already found a home in the clinic and is being used

globally. Since DBT is performed using a patient setup and equipment similar to mammography,

it is also relatively low cost (average Medicare reimbursement rate for bilateral DBT screening

exam is ≈ $2304). DBT is currently still used in conjunction with two-dimensional mammograms,

however synthesized mammography (generating a single two-dimensional image of the breast from a

tomosynthesis acquisition) is an alternative way to provide a 2D overview of the breast67,68.

There is also a great deal of active research currently attempting to improve contrast for breast

cancers with x-ray imaging. This work includes the introduction of exogenous contrast agents69–73 as

well as the introduction of interferometer based x-ray phase contrast imaging74–79. These methods

have the potential to improve cancer detection with x-ray imaging by boosting contrast, however

each comes with its own challenges and limitations that need to be addressed for future clinical

translation. A summary of the specificities and sensitivities of the various breast cancer imaging

modalities is provided in Table 1.2.
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In this dissertation, several research areas will be explored with the overarching goal of improving

DBT imaging in a clinical setting. First, several image reconstruction methods and artifact correction

schemes will be explored for DBT. Second, a technique to assess the anatomical noise in the breast

will be introduced and used to understand how new methods might improve detection performance

in digital breast tomosynthesis. Finally, a platform agnostic post-processing technique to reduce

image noise and potentially reduce dose for DBT exams will be introduced.



7

2 Background

X-ray breast imaging is a huge part of modern medicine, with nearly 40 million mammograms

performed annually in the United States alone82. The goal of x-ray breast imaging is to detect and

diagnose pathologies of the breast, most commonly breast cancers. Breast imaging technology is

highly specialized and uniquely regulated compared with other diagnostic imaging equipment. In the

1980s, the American College of Radiology (ACR) introduced a mammography accreditation program

which had a major impact on the practice of mammography by recommending new minimal standards

for both quality control and practice47. This program led to the development of specialized phantoms,

new imaging equipment, and eventually the emergence of the federally mandated Mammography

Quality Standards Act (MQSA) in 199247. Part of the MQSA requirements is that a specific

phantom (see Figure 2.1) be imaged weekly, and certain features in that phantom must be visible.

This phantom features small and low contrast objects similar to those found clinically, and in

addition to routine quality assurance (QA), serves as a useful test object for breast imaging studies.

These programs have changed and evolved over the years to keep up with new recommendations

from expert panels as well as continuously changing technology.

2.1 Breast anatomy

In a normal breast, there are several anatomical components. Cooper’s ligaments form a network of

fibrous structures which support adipose background tissue. Suspended in the fatty tissue are a

variety of glandular elements. These elements include lactiferous ducts (leading from the nipple),

excretory ducts, interlobular ducts, and terminal ducts. The terminal ducts lead into structures

known as acini, where milk is produced. The ducts of the breast form a divergent structure branching
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Top view

Side view

(a) (b)

Figure 2.1: The ACR mammography accreditation phantom in our lab (CIRS Model 3254318, CIRS,
Norfolk, VA). Both photos (a) and a mammogram (b) of the phantom show the composition of the
phantom. The calcifications, masses, and fibers are visible in the mammogram.

outward towards the chest wall from the nipple. This distribution is typically composed of about

15-20 lobes, each of which drains a lactiferous duct. The majority of the dense breast tissue is in

the upper outer quadrant of the breast (region nearest to the axilla). Anterior to the pectoralis

muscle posterior to the bulk of the glandular tissue is a layer of retroglandular fat. In general, this

region should not contain any glandular tissue83.

The proportion of fatty tissue to glandular tissue in the breast varies, even in normal breasts.

In addition to making radiographic imaging more challenging, large proportions of dense breast

tissue are also a significant risk factor (5.0 relative risk factor)8. Since it is important to assess and

classify breast density, the ACR provides a classification scheme to describe the composition of the

breast which includes four categories84:

(a) The breasts are almost entirely fatty

(b) There are scattered areas of fibroglandular density
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(c) The breasts are heterogeneously dense, which may obscure small masses

(d) The breasts are extremely dense, which lowers the sensitivity of mammography

These categories provide a standardized method to categorize breast density. This is especially

important when it comes to recommending additional imaging and determining additional breast

cancer risk factors for screening patients.

2.2 Mammographic imaging

A standard screening examination consists of four mammograms or DBT acquisitions of the breast83.

Typically, each breast is imaged in two views, cranio-caudal (CC) and mediolateral oblique (MLO)83.

On the CC projection, the breast can undergo substantial compression, however the breast tissue

adjacent to the chest wall is not always visible. In the MLO view, the compression is typically

slightly less, however this view allows for tissue adjacent to the chest wall and in the axilla to

be imaged. Normal lymph nodes are commonly seen in the axilla and overlying the pectoralis

muscle. One additional advantage of utilizing two approximately orthogonal views is localization. A

suspicious feature seen in both views can be stereotactically localized reasonably well, allowing for

follow-up imaging with ultrasound or biopsy.

The most common features used to identify breast cancers on mammograms are pleomorphic

calcifications and spiculated margins of masses (see Figure 2.2)83. Other common features include

asymmetry between breasts or longitudinal changes in the breast. Screening images are typically

reviewed in such a way that at some point an overview is provided with all four views from the

current exam (RCC, RMLO, LCC, and LMLO) as well as all four views from a prior study are

visible at once. This allows the radiologist to more easily detect either asymmetry between breasts

or changes in the breast since the previous exam. To maximize image contrast, the x-ray beam

energy used for breast imaging is very low compared to other radiographic modalities. In addition,

digital detectors used for full-field digital mammography (FFDM) have very high spatial resolution,

with very good detective quantum efficiency (DQE).
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(a) (b)

(c) (d)

Figure 2.2: Examples of typical features of interest taken from clinical mammograms. The top row
provides two examples of mass-like features: a spiculated mass (a) and a well circumscribed lymph
node with a fatty hilum (b). The bottom row provides two examples of calcifications: a group of
small punctate calcifications (c) and a group of poorly defined pleomorphic calcifications (d).
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2.3 Digital breast tomosynthesis

Digital breast tomosynthesis (DBT) is an emerging breast imaging modality that builds on existing

equipment and techniques used in mammography by incorporating three dimensional (3D) infor-

mation51. Tomosynthesis is another name for limited view angle tomography, where the gantry is

rotated about a limited angular span (typically < 50◦). The total angular span is referred to as the

tomo angle (θtomo) in this worki. Because of the limited angular span required, tomosynthesis can

be performed using more conventional radiographic imaging equipment compared with computed

tomography (CT). In tomosynthesis, the limited angular span of the acquisition results in limited

resolution along the slice direction, but typically offers superior spatial resolution to CT in the plane

of the reconstructed slices. In addition, tomosynthesis is very easily performed in conjunction with

conventional radiography since the equipment used to perform tomosynthesis is typically standard

radiographic equipment with minor modifications85.

Tomosynthesis was first described in the 1930s by Ziedses Des Plantes86, however digital

detectors had not yet been developed, so a practical implementation of tomosynthesis was not

possible when the idea was first conceived. The term “tomosynthesis” was first used in an early

paper describing a simple reconstruction method for tomosynthesis by Grant87 in 1972. Various

early forms of tomosynthesis have been developed over the years, such as ectomography88, which

aimed to reconstruct a single slice from many projections with an arbitrary thickness, and flashing

tomosynthesis89, a rapid tomosynthesis technique which was developed to reduce the contrast dose

level needed to perform coronary angiography. Tomosynthesis has been applied to many different

clinical applications: chest imaging (pulmonary nodule detection)85,90,91, cardiac imaging (including

real-time catheter tracking and anatomical mapping)92–96, dental applications97, and, of course,

breast imaging.

2.3.1 DBT: State-of-the-art

DBT has been clinically available in the United States since 20118, and offers spatial resolution

comparable to that of mammography while simultaneously alleviating two major problems inherent
iIn the literature the tomo angle is sometimes also defined as half the complete angular span.
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Table 2.1: System parameters for FDA approved DBT systems in the US.

System Hologic Selenia
Dimensions GE SenoClaire

Siemens
Mammomat
Inspiration

Fujifilm ASPIRE
Cristalle (HR∗)

Date of FDA
Approval 02/11/2011 08/26/2014 04/21/2015 01/10/2017

Tomo. angle 15◦ 25◦ 50◦ 15◦ (40◦)
Projection
number 15 9 25 15 (15)

X-ray tube
motion Continuous Step-and-shoot Continuous Continuous

Detector motion ±2.1◦ rotation Static Static Static
Acquisition time 3.7 s <10 s 21 s 4 s (9 s)
X-ray tube anode

material W Mo/Rh W W

X-ray filter
material Al Mo/Rh Rh Al

Detector type† a-Se DC CsI(Tl) coupled
to a-Si IC a-Se DC a-Se DC‡

Native detector
element size 70 µm 100 µm 85 µm 50 µm

Actual detector
pixel size

140 µm w/ 2× 2
binning 100 µm 85 µm

150 µm w/ 3× 3
binning (100 µm
w/ 2× 2 binning)

Recon. method FBP Iterative
(ASiR-DBT) FBP FBP

∗ The Fujifilm system may be operated in an additional high-resolution (HR) mode. Values used for this mode
are shown in parentheses.

† For the detector type, DC indicates a direct conversion detector and IC indicates an indirect conversion detector.
Additionally, the prefix, a- indicates an amorphous (ie. non-crystalline or lacking long range order) structure for
the scintillator/semi-conductor.

‡ The Fujifilm detector uses a hexagonal pixel pattern known as hexagonal close pattern (HCP)100 rather than
a square pixel grid.

to two-dimensional (2D) imaging modalities: overlaying structures obscuring important pathology

(false negatives leading to decreased sensitivity) and simulating pathology when none is present

(false positives leading to decreased specificity)49,90,98,99. DBT with clinical equipment was first

proposed by Niklason et al.49 in 1997. Since its clinical introduction, DBT has changed the field

of clinical breast imaging dramatically. In addition to its impact in the clinic, DBT remains a

very active area of research: a recent PubMed search for articles with the phrase “Digital breast

tomosynthesis” published since 1997 reveals over 425 publications.
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Figure 2.3: Example geometries for DBT systems. The Grossman geometry is shown in (a), while
(b) and (c) demonstrate clinically implemented geometries with stationary (b) and semi-mobile (c)
detectors.

A summary of current clinical DBT systems with US Food and Drug Administration (FDA)

approvalii is provided in Table 2.1101–103. The major differences between clinical systems are the

angular span of the acquisition (from 15◦ up to 50◦), projection number, continuous vs. step-and-

shoot gantry motion, acquisition time (from 3.7 s up to 21 s), detector type, material, and pixel

size, reconstruction method, and pre- and post-processing techniques. There are several possible

schemes available in clinical systems to perform DBT90. If the detector and tube move together,

the geometry is known as the Grossman geometry90. An illustration of several possible ways to

achieve DBT is shown in Figure 2.3.

Unless otherwise specified, all the data used in this work were acquired using a research dedicated

Hologic Selenia Dimensions DBT system (Hologic Inc., Bedford, MA) located in 1242 WIMR. This

system is shown in Figures 2.4, 2.5, and 2.6. In addition to the information provided in Table 2.1,

more details for this system are provided in Table 3.1.

iiOne other system, the GE Senographe Pristina recently received FDA approval (03/03/2017), however only the
2D component of the system has been approved for use in the United States at this point so we won’t consider it here.
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Figure 2.4: The Hologic Selenia Dimensions digital breast tomosynthesis unit in 1242 WIMR.
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Figure 2.5: The acquisition workstation located in 1242 WIMR used to acquired data using the
Hologic Selenia Dimensions DBT unit shown in Fig. 2.4. The display is showing a reconstruction of
an anthropomorphic breast phantom positioned on the system.

Figure 2.6: The SecurView® workstation located in 1242 WIMR used for image review and analysis.
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2.3.2 DBT: Research Systems

In addition to the systems already in clinical practice, a great deal of work is currently being

done in research environments. One unique system being developed currently at the University of

North Carolina in conjunction with Hologic utilizes an array of carbon nanotube solid-state x-ray

sources104–106. In this system, no tube motion is required at all. Instead,the x-ray sources (located

in a line above the detector) are activated sequentially to achieve different x-ray source positions.

This has the major benefit of being able to acquire images very quickly and with no blurring due to

motion of the x-ray source during the acquisition. Currently, the nanotube sources are limited in

output power, however this is a promising area of research. Another system being developed at

the University of Pennsylvania allows for unique x-ray trajectories107. In this system, the x-ray

tube motion isn’t limited to an arc parallel to the chest wall, but is also capable of motion in the

anterior-posterior direction. The goal of this system is to eliminate some blurring artifacts and allow

for higher resolution reconstructions.

Another unique system is being developed at Philips (Philips Mammography Solutions, Kista,

Sweden) using a slit scanning technique and a photon counting detector108. The so called, MicroDose

SI system has been approved by the FDA for use as a 2D mammography unit103, however it is

also capable of performing tomosynthesis. The photon-counting silicon slit detector has 21 rows, so

as the slit is scanned across the object each point in the breast is seen from a variety of relative

source/detector positions, so DBT is possible with a tomo angle of ≈ 11◦. As far as DBT is concerned,

this system is still a prototype, however the unique geometry (slit scanning) and photon-counting

detector offer non-trivial benefits of scatter rejection, reduced noise (photon-counting detector can

reject electronic noise), and multiple energy levels for single-shot multi-energy imaging.
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2.4 Tomographic reconstruction

2.4.1 X-ray data acquisition

X-ray photons are attenuated as they pass through matter, undergoing both scattering and absorption

events. Before discussing image reconstruction, a model of x-ray attenuation and detection is needed.

We can first define an image object as an energy (ε) dependent function with compact spatial

support: µ(r; ε) : r 7→ R where ε ≥ 0 and the object’s spatial support is r ⊂ R3. The attenuation

of x-ray photons along a path ` ⊂ R3 through an object can be described using the Beer-Lambert

law47:

Ī = Ī0

∫ εmax

0
dεΩ(ε)e−

∫
`∩r µ(r;ε)ds, (2.1)

where I is the x-ray fluence exiting the object, I0 is in incident x-ray fluence, and Ω(ε) is the

normalized x-ray spectrum. If we assume monochromatic photons of energy ε, this can be written

in the following form:

Ī = Ī0e
−
∫
`∩x µ(r)ds. (2.2)

If we divide both sides by the incident x-ray fluence, I0, and take a logarithm this expression can be

written as follows:

− log Ī
Ī0

=
∫
`∩r

µ(r)ds. (2.3)

Equation 2.3 is the fundamental imaging equation for tomographic x-ray imaging, as it tells us the

path integrals of the linear attenuation coefficients can be related to the measured x-ray fluence

(intensity) at the detector, provided a flat-field (no object present) image is available (̄I0). In practice,

we acquire many measurements over many line integrals,
{
`j ⊂ R3 : j ∈ [1, Np]

}
, where Np is the

total number of measurements. Each measurement follows Equation 2.3, and may be written as

follows:

ȳj = − log Īj
Ī0,j

=
∫
`j∩r

µ(r)ds. (2.4)
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2.4.2 Analytical image reconstruction

If Equation 2.4 is left in its integral form, an analytical solution is possible provided several conditions

are met, most notably the so-called Tuy data-sufficiency condition109. This analytical solution is

known as filtered backprojection or FBP and for many years has been the standard reconstruction

method in computed tomography (CT). In FBP, the measured projection data are weighted, filtered,

and backprojected. During backprojection, the data are distributed along the x-ray paths calculated

using the system geometry.

This analytical process offers several nice features. First, this process can be performed very

quickly. A graphics processing unit (GPU) implementation of FBP can reconstruct a single slice CT

image (512×512) in less than a tenth of a secondiii Second, because FBP is a linear procedure, many

aspects of the output images can be reliably predicted using linear cascaded systems analysis110–113.

Thirdly, by modifying the filter used for FBP reconstruction different image characteristics may be

achieved.

Unlike traditional CT, tomosynthesis is inherently an under-determined problem. In CT, the

Tuy data sufficiency condition requires that at least a short scan is completed (with parallel beam

geometry this is 180◦ or with fan beam geometry 180◦+ fan angle)109. If this condition is satisfied,

the Fourier Slice theorem114 tells us that Fourier space is filled approximately isotropically, in a

radial fashion with denser sampling at lower frequencies and sparser sampling as the radial frequency

increases (see Figure 2.7). As a result, approximately isotropic voxels can be reconstructed, resulting

in true 3D reconstructions. In tomosynthesis on the other hand, the Fourier domain is incompletely

sampled (see Figure 2.7). As a result, the reconstructed voxels are highly anisotropic. To counteract

this incomplete sampling, the reconstruction method used should be modified for tomosynthesis, as

the assumptions made in conventional FBP reconstructions are no longer valid.

iiiThis timing reflects my own implementation of the FBP algorithm, performed on my local workstation rather
than timing for a clinical system.
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Figure 2.7: An illustration of the Fourier domain sampling of tomographic imaging as described
using the Fourier Slice Theorem.
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2.4.3 Algebraic or iterative image reconstruction

In practice, medical images are always discrete. With this in mind, we can consider solving Equation

2.4 by rewriting the integral in a digitized/discrete fashion. In order to achieve this, the distribution

of attenuation coefficients can be discretized using basis functions, Bi : R3 7→ R. These basis

functions can be used to describe an M ×N × P voxelized image, x ∈ RMNP . Each image voxel

may be approximated as follows:

µ(r) ≈
MNP∑
i=1

xiBi(x), (2.5)

where [x]i = xi. We can now write an approximation (indicated by the tilde) of each of the Np

projection measurements from Equation 2.4 as follows:

ỹj =
∫
`j∩r

MNP∑
i=1

xiBi(x)ds

=
MNP∑
i=1

xi

∫
`j∩r

Bi(x)ds

=
MNP∑
i=1

xiAj,i, (2.6)

where Aj,i indicates the approximate intersection length of path j with voxel i. It is important to

emphasize here that in this notation Aj,i has nothing to do with the image object at all. Rather,

Aj,i describes a discrete representation of the imaging system for a given set of basis functions. As

a result, A (where [A]j,i = Aj,i) is known as the system matrix.

If we combine all Np of the projection measurements into a vector, we can write the following

expression to describe our problem:



ỹ1

ỹ2
...

ỹj


=



∑
iA1,ixi∑
iA2,ixi

...∑
iAj,ixi


. (2.7)

We can define the vector of measurements on the left-hand side as ỹ and the right size of this
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expression can be expanded as follows:

ỹ =



A1,1x1 A1,2x2 . . . A1,ixi

A2,1x1 A2,2x2 . . . A2,ixi
...

... . . . ...

Aj,1x1 Aj,2x2 . . . Aj,ixi



=



A1,1 A1,2 . . . A1,i

A2,1 A2,2 . . . A2,i
...

... . . . ...

Aj,1 Aj,2 . . . Aj,i





x1

x2
...

xi


. (2.8)

We can define the matrix on the right-hand side as A ∈ RNp×MNP and the vector on the right-hand

side as x. With this notation, we can model our image acquisition in the following discrete fashion

as a system of linear equations:

Ax = ỹ. (2.9)

Using this digital representation/model allows us to perform a so-called model-based recon-

struction since the solution will be based on a model of the imaging system. This system of linear

equations can be solved in one of two ways: algebraically or iteratively. In either method, the

measured projection data, y, are substituted for ỹ in order to solve for the image x. In the algebraic

solution, this system is inverted:

x = A−1y, (2.10)

where the superscript, −1, indicates the matrix inverse. This inversion can be achieved provided

A is not singular (viz. detA 6= 0), although even for singular matrices a pseudoinverse may be

calculated using a singular value decomposition (SVD) procedureiv. However, determining x using

an inverse or pseudoinverse is typically a poorly posed problem in practice. For one thing, the
ivThe pseudoinverse is defined for an m × n matrix A as A† = V Σ†U∗, where U , V , and Σ are defined such that

A = UΣV ∗. The superscript ∗ indicates the conjugate transpose in the most general case. U is a unitary m × m
matrix and V is a unitary n × n matrix. In addition, Σ is a diagonal m × n matrix with non-negative values along its
diagonal (zeros are permitted). The pseudoinverse of Σ (viz. Σ† ) is obtained by replacing each non-zero diagonal
element with its reciprocal and taking a transpose of the result.
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problem is likely to be either over- or under-determined, and in either case an inverse approach may

be unstable. A second concern is that the physics governing photon interactions and detection, the

polychromatic spectra, finite acquisition time, patient motion, and safety-limited dose means the

measured data will be be noisy and may potentially be inconsistent from view to view. Thus, even

for a well determined problem, the algebraic solution to the problem may not be a diagnostic quality

image. Finally, due to computational limitations, inverse based approaches may not be achievable.

A practical solution to deal with this is to pose the problem instead as an optimization problem

which can be solved iteratively with the following cost function:

x̃ = arg min
x

||Ax− y||pp , (2.11)

where ||x||pp = (
∑
i x

p
i )

1
p indicates the p-norm. The most common solution to this problem is a

least-squares solution (p = 2), however there are many different ways to find an optimal. In practice,

this problem is often subjected to additional constraints which constrain or regularize the solution.

The cost function for a regularized reconstruction can be described as follows:

x∗ = arg min
x

||Ax− y||22 +
N∑
i=1

λiRi(x), (2.12)

where there are N regularization terms, each with a corresponding weight, λ. A common example

of a regularizer for image reconstruction is a constraint enforcing smoothness to reduce image noise,

but a plethora of regularization methods have been implemented for various applications.

Given the additional complexity (computational as well as theoretical) of iterative reconstruction

methods, one might ask, why isn’t FBP good enough? This is a fair question, however there are many

motivating factors for introducing iterative reconstruction methods. FBP solves a mathematical

problem for image reconstruction, however it isn’t able to take into account physical properties

of the system. This can result in images which have inaccurate values, limited spatial resolution,

and potentially severe artifacts. On the other hand, so called model-based iterative reconstruction

methods are able to model various aspects of the system to alleviate these issues. Examples of this

include the introduction of statistical models for measurements, accounting for the finite size of

x-ray sources, detector elements, and reconstructed voxels, the x-ray spectrum, detector physics,
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and more115. In addition to eliminating artifacts caused by imperfections (compared with the

mathematical model) in a physical system, iterative reconstruction methods can also enable image

reconstruction when the measured data would otherwise be insufficient for FBP reconstructions.

This includes undersampled data, data acquired from less than a short-scan acquisition (required for

FBP reconstruction), as well as extremely noisy data. Iterative reconstruction methods have been

introduced clinically in diagnostic CT, however they also potentially have a tremendous amount to

offer DBT, which is inherently both undersampled and acquired over an angular span much shorter

than the required short scan for CT.

2.5 Image quality assessment

It is important with any imaging modality to understand the diagnostic strengths and limitations

of that modality. Many traditional image quality metrics, such as contrast-to-noise ratio (CNR),

are based on the simple Rose model for detection. This model assumes that object size and contrast

along with background noise determine detection performance116–119. Unfortunately, this model is

an oversimplification of the actual task typically performed in imaging. As Barrett et al. point out,

“The task in imaging is always to draw inferences about the object that produced an image”120.

As a result, understanding the practical performance of an imaging system requires a much more

comprehensive understanding of the system than is provided by the Rose model. One solution to

understanding how an imaging system works is to use human reader studies. Reader studies offer

a true measurement of practical performance for a system, and account for many features of the

imaging system that are difficult to measure independently: the reader and his/her environment, the

imaging task, and technical aspects of the system. Since reader studies provide such a comprehensive

picture of imaging systems, they remain the gold standard in defining performance and bringing

novel imaging technologies to clinical settings.

Unfortunately, reader studies require a large time commitment from experienced readers and it

is difficult to direct the design and optimization of a system using reader studies. To help alleviate

some of these problems, task-based objective image quality metrics are increasingly being utilized

and explored in medical imaging120–126. The benefits of task-based assessment are many, but some
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of the major ones include: the ability to include observer performance, the ability to incorporate

a specific imaging task, the ability to explore a variety of system parameters prospectively, and,

perhaps most importantly, the ability to include all of these aspects of the imaging system and

more without requiring the recruitment of trained observers for each and every study. For obvious

reasons, in order to be trusted these metrics need to be validated and calibrated against true human

observer performance for a given imaging modality, but once a validated model is in place further

system optimization and performance evaluations can be quickly performed for a wide variety of

system parameters and imaging tasks.

In order to implement most task-based image quality metrics, a rigorous measurement of the

system’s noise power spectrum (NPS) is needed. For 3D digital images, the 3D NPS may be

calculated as follows127:

S (fx, fy, fz) = ∆x∆y∆z

NxNyNz

〈
|DFT {Vi (x, y, z)− 〈Vi (x, y, z)〉}|2

〉
, (2.13)

where ∆i is the pixel pitch in the i direction, Ni is the number of pixels in the region used to

estimate the NPS in the i direction, Vi is a noise instance, 〈·〉 is the average operation, and DFT is

the 3D discrete Fourier transform.

Although the 3D NPS provides a comprehensive understanding of the stochastic noise of the

system, in practice the image volume is not read as a whole, but rather a slice by slice assessment

is performed by radiologist reviewers. Thus, assessing the in-plane 2D NPS is a more accurate

measure of the noise performance as the images are read. As a result, it is desirable to reduce the

3D NPS to the 2D (central slice)127. The 2D NPS is given by the following expression:

S2D (fi, fj) =
∫

S (fi, fj , fk) dfk. (2.14)

The 3D NPS can be further reduced to a 1D case with an additional integration as follows:

S1D (fi) =
∫ ∫

S (fi, fj , fk) dfkdfj . (2.15)

The 1D NPS is useful for exploring the peak frequency of the NPS and quantitatively comparing
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spectra from different imaging methods.

In addition to the NPS, the system modulation transfer function (MTF) is needed to fully

characterize an imaging system. The MTF is a normalized description of the signal transfer

properties at different spatial scales, and is typically presented as a plot showing MTF as a function

of spatial frequency; alternatively, the frequency value at a certain percent of the peak value of the

MTF may also be presented47.

2.5.1 Anatomical noise in breast imaging

The anatomical background noise plays a significant role in breast imaging. According to the Rose

model for signal detection, smaller objects should be less easy to detect when the CNR for those

objects is fixed. However, Burgess et al. showed that for mammography, the anatomical background

leads to the opposite44. They found using human observers that the anatomical background of

the breast in mammography meant larger masses (diameters ranging from 1-10 mm) needed to

be relatively higher contrast to be detectable. The impact of the anatomical background noise on

detection performance has been quantified using several techniques44,45,128–130, including a spatial

frequency dependent power spectrum, viz., the anatomical background noise power spectrum44,45,130.

In this framework, the overall detectability for a specific imaging task is jointly impacted by a

generalized NPS that consists of two major components: quantum and anatomical background

noise44,45,130. The quantum noise depends on the imaging system itself (such as the quantum

detection efficiency of the detector), the image acquisition parameters (such as the overall radiation

exposure level and tube potential), and the breast itself (such as breast density and compressed

thickness). Conversely, the anatomical background noise is primarily dependent on the breast

parenchymal structure, imaging conditions, and imaging geometry (CC vs. MLO planar view),

although the impact of acquisition parameters on image contrast may lead to some minor variation

in the measured anatomical noise background131. It has been shown that the power spectrum of

anatomical background noise in the breast may be empirically modeled as44 :

NPSa(f) ≈ αf−β (2.16)
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where f is the spatial frequency, and α and β are two parameters determined by fitting the measured

and radially averaged NPSa(f) to the model given in Eq. (2.16). In reality, the parameters α

and β may change from one imaging method to another and from patient to patient, but these

deviations should fall within a range of typical values for a given modality. Typical values for β in

absorption x-ray mammography imaged using a cranio-caudal geometry with compression have been

reported to be around βmammo ≈ 3.244,45,130. Recently, β has also been measured for digital breast

tomosynthesis (DBT)132 and breast cone-beam CT (BCT)131,133, yielding values of βtomo ≈ 3.1,

and βBCT ≈ 2.0 respectively. Not only does β depend on the imaging modality, but it also varies

with the x-ray beam energy131, the breast density46, and even the imaging plane (CC vs. MLO for

mammography and DBT)133. Despite its many dependencies on specific imaging conditions, it is well

documented that β is strongly correlated with lesion detection performance44,46,133–135. Therefore,

quantitative assessment and prediction of diagnostic performance for mammography should take into

consideration not only imaging system/acquisition parameters, but also this beta-power law of the

anatomical background. As an example, the concept of a generalized NPS including the anatomical

noise background has been developed and incorporated into the model observer framework121,136.

For a given imaging method, β can be estimated from local anatomical background power spectra

for different regions of interest (ROIs) in a given breast, followed by an ensemble average over many

local regions in many breast imaging datasets44,137. The resulting power spectrum is then radially

averaged and fitted to the model given in Eq. (2.16). From this fit, the value for β may be extracted.

The steps of this process implemented experimentally may be found in Garrett et al.137 as well as

Chapter 5 of this dissertation. We should note that extremely low and extremely high frequencies

do not correspond to the spatial scales of anatomical structures, and as a result the linear regression

is most appropriately performed over a limited range of frequencies. In our experience, this range

was typically determined to be ≈ [0.4, 3] mm−1. In practice, this range should be chosen to provide

the maximum r2 value (coefficient of determination) for the least square fitting (the most linear

range of the data).
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2.6 Dose reduction

Understanding the noise and spatial resolution characteristics of a system along with the impact of

anatomical noise is critical in understanding how an imaging system will perform. However, in any

medical system utilizing ionizing radiation, another question arises. How does the system perform

with respect to radiation dose? Good practice guidelines are to follow the As Low As Reasonably

Achievable (ALARA) principle138. As a result, it is always desirable to reduce the required radiation

exposure for an imaging procedure to the lowest possible level without sacrificing diagnostic quality.

In any x-ray based imaging technique, the patient exposure can be reduced via several different

techniques115.

For tomographic imaging techniques, such as computed tomography (CT) or DBT, the number

of view angles can be reduced while keeping other imaging parameters fixed. Although this reduces

dose, it can result in image artifacts due to aliasing and angular under-sampling. Our current clinical

DBT system (Hologic Selenia Dimensions) only acquires 15 projections with a limited angular range

of ≈ [−7.5◦, 7.5◦]. Further reducing the number of views or decreasing the angular range has a

negative impact on the reconstructed images’ spatial resolution and localization accuracy48,139,140.

Another common technique is to reduce the x-ray tube current (and thus x-ray photon output)

for the acquisition. This reduces the x-ray tube output fluence and results in a more or less linear

reduction in patient exposure47. There is still a compromise, however, since reduced x-ray fluence

provides fewer quanta, and thus noisier images. Increased image noise results in reduced detectability

of masses and fine structures. There are many post-processing techniques for decreasing image

noise, however most conventional de-noising techniques remove noise while introducing spatial

blur. In breast imaging, spatial resolution is very important; identification of small clusters of

microcalcifications or spiculated margins of lesions can lead to the discovery of early stage breast

cancers8,47. Thus, any technique to reduce image noise in DBT must not sacrifice diagnostic value

by reducing the spatial resolution of the system.

One image de-noising technique that has been recently introduced to reduce image noise while

retaining spatial resolution is the Dose Reduction with Prior Image Constrained Compressed Sensing

algorithm (DR-PICCS)141–145. This technique has found several applications within diagnostic
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CT143–147, but shows promise in other imaging applications as well148. With an emphasis on

retaining spatial resolution and noise texture while reducing the overall image noise level, DR-PICCS

is a good candidate for reducing dose in breast imaging applications. The Prior Image Constrained

Compressed Sensing (PICCS) algorithm was developed initially as a reconstruction technique for

highly under-sampled projection data sets in computed tomography (CT)141,142,145,147. PICCS can

be performed by iteratively solving the following unconstrained minimization problem:

x̃ = arg min
x

[
λ

2 (Ax− y)T Q (Ax− y) + αΨ |x|`1 + (1− α) Ψ |(x− xp)|`1

]
(2.17)

where x is the image solution, xp is a prior image, y is a projection dataset, Q is a statistical

weighting matrix, A is the system matrix that defines the geometry used to generate y, Ψ is a

sparsifying transform, α is a weighting term, and the `1-norm is defined as: |x|`1 =
∑N
n=0 |xn|.

Commonly, the total variation (TV) is chosen as a sparsifying transform (we can recall the TV is

defined as the `1-norm of an image bidimensional spatial gradient `2-norm), defined as follows for a

discrete image of dimension M ×N :

TV (x) =
∑
i

√
(xi+1 − xi)2 + (xi+M − xi)2, (2.18)

where i and j denote the pixel location in the discrete image, x.

The PICCS framework was originally intended to reconstruct CT datasets, however it has

been shown that the adaptation of PICCS to dose reduction (DR-PICCS) can operate directly

in the image domain to reduce noise while retaining important imaging features143,145. In this

framework, a noisy image of interest is forward projected to generate a synthesized projection

dataset, Y , and a prior image can be generated by using a conventional image denoising technique.

One preferred method to generate the prior image is an automated 3D anisotropic diffusion filter

using a slice-by-slice noise estimate149,150.
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2.6.1 Anisotropic Diffusion in Image Denoising

Anisotropic diffusion has been used in image denoising for over 25 years149. Diffusion denoising is

derived from the following partial differential equation:

∂u

∂t
= div (c (|∇u|)∇u) (2.19)

where u is the image volume (function of x, y, z, t) , div is the divergence operator, and ∇ is the

gradient operator. The function, c(|∇u|), controls the strength of diffusion and is known as the

diffusion coefficient. Two common choices for c(|∇u|) that solve this equation are:

c(|∇u|) = e−
( |∇u|

κ

)2

(2.20)

and

c(|∇u|) = 1

1 +
(
|∇u|
κ

)2 , (2.21)

where κ is a parameter that can be tuned for different applications. The goal of κ is to normalize the

update strength; as such, κ should be chosen to be as close as possible to the image noise standard

deviation. If κ is selected appropriately, regions of the image with gradient magnitudes on the order

of noise (|∇u| ≤ κ) will be smoothed, but edges (|∇u| > κ) will be preserved.

In practice, diffusion is implemented by performing the following updates:

ut+1 = ut + ∂u

∂t
(2.22)

= ut + div (c (|∇u|)∇u) (2.23)

= ut +
Nk∑
k=1

c(|∇kut|)∇kut, (2.24)

where ut is the image at a given “time”v, t, and the subscript k indicates each possible direction out

of Nk directions. In the 2D case, Nk = 8 (8 adjacent pixels) and in 3D Nk = 26 (26 adjacent voxel

elements).
vTime is used to describe the iterative procedure for diffusion since in physical systems diffusion proceeds with

time.
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We claimed before that it is desirable to establish a κ value on the order of the image noise.

However, a single fixed value is inappropriate for many iterations as we expect the image noise

to decrease as the process proceeds. Ideally, κ will be updated at each iteration to reflect the

local image noise. One method to estimate image noise is achieved by taking an image gradient,

calculating a histogram of the gradient, and identifying a certain percentile value of that gradient,

commonly around the 90th percentile150.
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3 Image reconstruction for digital

breast tomosynthesis

3.1 Introduction

Due to the limited angular range and specific requirements of breast imaging, reconstruction for digital

breast tomosynthesis (DBT) is a challenging and unique problem. Unlike conventional computed

tomography (CT) which offers isotropic 3D spatial resolution, due to the significantly reduced

angular range used to acquire tomosynthesis data (as little as 15◦ in clinical systems), tomosynthesis

can only offer highly anisotropic 3D spatial resolution in which the in-plane spatial resolution is

comparable to that of 2D mammography while through-plane spatial resolution is significantly

poorer than that of the in-plane resolution, albeit much better than that of 2D mammography. In a

clinical DBT reconstruction, the typical voxel size is approximately 0.1× 0.1× 1 mm3, providing

good resolution in-plane, and much more limited through-plane resolution along the slice direction.

In practice, although the reconstructed slice thickness is about 1 mm, the actual slice thickness can

be much larger. It is worth emphasizing here that performing a reconstruction to an image grid with

smaller voxels in the through-plane direction does not indicate a true improvement in through-plane

resolution. The true physical through-plane resolution is jointly defined by the data acquisition

hardware and image reconstruction method, not the reconstructed voxel size. This increased slice

thickness manifests itself as through-plane blurring or signal leakage in the reconstructed volumes

as demonstrated in Figure 3.1.

Many different methods to perform reconstruction for DBT exist151, and a great deal of work
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Figure 3.1: FBP reconstructed slices spaced 5 mm apart of a pig bone imaged on a benchtop system
for several acquisition methods. CT and tomosynthesis acquisitions were performed with a full scan
and tomo angles of 15◦, 30◦, and 45◦, respectively. Through-plane blurring is evident in all of the
tomosynthesis reconstructions and is more pronounced with smaller tomo angles.

has been done to identify optimal reconstructions for DBT. Analytical reconstruction methods,

such as shift-and-add backprojection (SAA) and filtered backprojection (FBP), are common choices

to perform image reconstruction for tomosynthesis in many applications. SAA can be performed

very quickly and results in relatively low noise images152, however the images produced with SAA

reconstruction have significant image blurring and through-plane blurring artifacts. When the data

are filtered prior to back projection (FBP) the image sharpness is dramatically improved153, however

image noise is significantly amplified and through-plane blurring artifacts remain. These through-

plane blurring artifacts are very damaging in the images because they make object localization
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more difficult and can obscure low contrast objects above or below higher contrast objects. DBT

specific filters have been developed to try and balance image contrast/noise characteristics and

through-plane blurring artifacts153, however regardless of filter choice, some compromise is made.

On the other hand, iterative reconstructions have been shown to offer many benefits in DBT

imaging. Iterative methods are able to simultaneously provide both good contrast-to-noise ratio

(CNR) and spatial resolution characteristics in images152,154–156. Iterative reconstruction methods

are flexible and able to incorporate a variety of system and object models to improve image quality.

In DBT, some of these features include: breast boundaries156, task specific regularization such as

anisotropic diffusion139, a statistical noise model157, as well as spectral information158. They can

also provide reduced through-plane blurring artifacts.152,157 Together, these benefits offer improved

image quality for a given image acquisition, and some have argued this may permit dose reduction

with iterative reconstruction method159. Recent work has demonstrated that the reconstruction

method (FBP vs iterative) and parameters can have a significant influence on human observer

performance160.

3.2 Data acquisition

All datasets used in this work (unless otherwise indicated) were acquired using a Hologic Selenia

Dimensions (Hologic, Inc. Bedford, MA) DBT imaging system (see Figures 2.4, 2.5, and 2.6).

The coordinate system used in this work is depicted in Figure 3.2. The system parameters used

for image acquisitions are shown in Table 3.1. A few comments on the system should be made:

1) For tomosynthesis the detector is operated in a 2 × 2 binned mode; the native pixel pitch is

70 × 70 µm2. 2) Although the only beam filter available for tomosynthesis is aluminum, both

rhodium (0.05 mm) and silver (0.05 mm) filters are available for mammographic acquisitions. 3) For

tomosynthesis acquisitions, only the large focal spot (0.3 mm) for the system is available, however

for mammographic acquisitions an additional small (0.1 mm nominal) focal spot size is available.

The reconstructed volumes were reconstructed to a projective pixel grid (see Figure 3.3), in which

the pixel size at each slice location is the magnified pixel pitch at the detector. In this method, pixels

further from the detector (closer to the focal spot) are smaller than those closer to the detector.
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Table 3.1: Parameters for tomosynthesis acquisitions with Hologic Selenia Dimensions system.

Parameter Value
Number of views 15

Tomo. angle 15◦
Tube motion continuous

Acquisition time 3.7 s (≈ 4.1 degrees/s)
Detector type direct conversion

Conversion material amorphous selenium (A-Se)
Detector pixel pitch 140× 140 µm2

Detector dimensions 23.3× 28.5 cm2

Detector bit depth 14 bits
Source-detector distance 700 mm
Source-isocenter distance 633 mm

Anode material W
Focal spot size 0.3 mm (nominal)

Filter 0.7 mm Al

+�𝒛𝒛

+�𝒚𝒚

+�𝒙𝒙

−�𝒙𝒙

Figure 3.2: The coordinate system used in this work.
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Figure 3.3: An illustration of the projective pixel grid used in this work.

3.2.1 Test objects

Using this system, a variety of test objects were imaged for this work. These test objects included:

the ACR mammography accreditation phantom (CIRS Model 3254318, CIRS, Norfolk, VA, see

Figure 2.1), a custom anthropomorphic phantom (see Figure 3.4), as well as several clinical breasts

shown in Figure 3.20.

3.3 Forward- and back-projection

All reconstructions (iterative or analytical) performed for the Hologic Selenia Dimensions system

in this work were implemented using projection matrices161 (commonly just called P-matrices) to

perform both forward and back-projection operations. The details of how those projection matrices
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(a) (b) (c)

Figure 3.4: The anthropomorphic phantom used in this work. A photograph of the outside of the
phantom (a), a photo of the interior of the phantom including a close up of the calcification cluster
used for measurements (b), and a mammogram (28 kV, Rh filter, 81 mAs, anti-scatter grid present)
of the phantom (c) are shown. Note: the lighter brown material at the top corner visible in (b) is
epoxy used to repair the corner of the phantom.

were used are described in Appendix A.1. The calibration for these P-matrices is embedded in

the DICOM header exported from any Hologic Selenia Dimensions DBT system and a script was

written to extract the relevant parameters from that header automatically during reconstruction.

In this implementation, projection matrices were used to perform both forward- and back-

projection161. Projection matrices provide a calibrated mapping from the image domain to the

projection domain. In other words, for a given view angle, i, there is a one-to-one correspondence



37

between a location on the detector (u, v) and a pixel location (x, y, z):


u× s

v × s

s

 = Mi,BP



x

y

z

1


(3.1)

where u and v are coordinates on the detector, x, y, and z are image volume coordinates, s is a

scalar, and Mi,BP is a 3× 4 matrix where the subscript i indicates the current projection number

and BP indicates the matrix corresponds to the backprojection operation. Although Mi,BP itself is

not square, if we choose a fixed location, z, we can invert the matrix algebraically (see Appendix

A.1) and use a similar formulation to perform the forward projection as follows:


x× s′

y × s′

s′

 = Mi,FP(z)


u

v

1

 (3.2)

where s′ is a scalar and Mi,FP(z) is a 3 × 3 z-dependent matrix where the subscript i indicates

the current projection number and FP indicates the matrix corresponds to the forward projection

operation.

The use of projection matrices for this system is advantageous for several reasons. First, the

system has an unusual geometry (recall the detector is almost stationary during the gantry rotation)

which makes modeling the system geometry somewhat more challenging that a conventional CT

system. Second, the use of projection matrices provides a very robust means of accounting for

slight changes in system geometry or instability. Since the projection matrices are calibrated using

the system itself (rather than a schematic or model of the system), they can achieve good quality

reconstructions even for systems that may change over time. Third, the implementation of forward-

and back-projection using projection matrices can be very fast. Finally, the projection matrices

themselves are quite small. As a result, they can be embedded directly in the DICOM header

information of the images and shared with the image data. Thus, datasets can be shared and
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reconstructed anywhere with the relevant calibration information.

3.4 FBP Reconstruction

Images reconstructed using filtered backprojection (FBP) were used in this work to seed the iterative

reconstructions and as a prior image in some implementations. In order to achieve rapid convergence,

a good seed image is important. Ideally, that image should not have any major artifacts and should

have a manageable noise level. There are many possible options, but FBP is a common method in

most clinical systems, and as a linear process is a good reference which is well understood.

3.4.1 FBP Filter Design

The FBP images were reconstructed using tomosynthesis-specific filters153,162. The filter design

is essentially a ramp filter with spectral windowing to account for the limited angular sampling

and high noise introduced by the ramp filter (through-plane and in-plane, respectively). The x̂,

ŷ, and ẑ directions are indicated in Figure 3.2, with corresponding frequency coordinates: ωx,

ωy, and ωz, respectively. In this case, all filtering is performed along detector rows (x-direction).

Before defining our filters, we can consider the following coordinate transformations in the frequency

domain (illustrated in Figure 3.5):

ωr =
√
ω2
x + ω2

z (3.3)

θ = tan−1
(
ωz
ωx

)
(3.4)

ωx = ωr cos θ (3.5)

ωz = ωr sin θ (3.6)

In a parallel beam approximation, ωr corresponds to the row direction of the detector directly, u

(see Figure 3.5). Thus, in the Fourier domain (for a parallel beam geometry), the overall filter is

defined as the product of three filters as follows:

HF (ωr, θ) = Hramp(ωr)HIP(ωr, θ, A)HTP(ωr, θ, B) (3.7)
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Figure 3.5: An illustration of the Fourier slice theorem. The parallel beam measurement in the left
of the panel results in a 1D vector measurement at the detector. The 1D Fourier transform of that
vector corresponds to the region of Fourier space occupied by the dashed arrow in the right hand
side of the diagram.

where

Hramp(ωr) = 2
(
θtomo

2

)
|ωr| (3.8)

HIP(ωr, θ, A) =

 0.5
(
1 + cos

(πωs
A

))
ωy < A

0 else

=

 0.5
(
1 + cos

(
πωr cos θ

A

))
ωr cos θ < A

0 else
(3.9)

HTP(ωr, θ, B) =

 0.5
(
1 + cos

(
πωz
B

))
ωz < B

0 else

=

 0.5
(
1 + cos

(
πωr sin θ

B

))
ωr sin θ < B

0 else
(3.10)

The subscripts, IP and TP, indicate an in-plane and through-plane apodization, respectively, and

the parameters A and B are scalars used to determine the strength of the filter in the in-plane and
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through-plane cases, respectively. Both A and B are chosen as a percent of the Nyquist frequency

for the projection data (ωN 1
2δu).

In practice, the filtration is performed in the spatial, rather than Fourier, domain, and can

achieved by convolving the projection data by each component subsequently. Recall, the following

property of the Fourier transform: A(x)∗B(x) = IFT
(
Ã(f)× B̃(f)

)
, where ∗ denotes a convolution

operation, IFT indicates the inverse Fourier transform operation, and Ã(f) is the Fourier transform

of A(x). By using this property, we can equivalently perform the filtration of the projection data,

P (u), in the following two ways:

P ′(u) = IFT
(
Hramp(ωr)HIP(ωr, θ, A)HTP(ωr, θ, B)P̃ (ωr)

)
or

P ′(u) = Hramp(ωr) ∗HIP(ωr, θ, A) ∗HTP(ωr, θ, B) ∗ P (u).

(3.11)

3.4.2 FBP Filter Parameter Selection

To determine the optimal values for A and B, FBP reconstructions were performed for an an-

thropomorphic phantom with calcifications (see Figure 3.4) using a range of A (A/ωn ∈ [0.5, 1.5])

(increment 0.05) and B (B/ωn ∈ [0.02, 0.2]) (increment 0.02) values (see Figure 3.6 for several

representative cases). To quantify through-plane blurring, the artifact spread function (ASF) may

be used. The ASF is defined as follows:

ASF(z) = IMax(z)− Ībkg(z)
IMax(z0)− Ībkg(z0)

, (3.12)

where Imax denotes the maximum intensity value in the region containing the feature of interest,

Ībkg denotes the background value near the object, z denotes the slice index, and z0 denotes the

slice index of the object of interest. The ASF width for the calcifications, calcification CNR, and the

width of one calcification in the cluster were all measured at each set of reconstruction parameters.

Contour plots of these three measurements are shown in Figure 3.7. We can see that reducing either

parameter too dramatically will boost the CNR, but at the cost of dramatically reduced image
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Figure 3.6: The cluster of calcifications in the phantom reconstructed using direct backprojection
(a) as well as FBP (b) with several representative parameters. The W/L for all FBP images is the
same.

sharpness both in- and through-plane. Based on this study, approaching the upper left corner of

the plot maximizes CNR while allowing for a reasonable ASF width and calcification width as long

as B ≥≈ 0.05ωn. Although these results can help describe the overall quality of the reconstructed

images, it is not easy to identify a single optimal point from them. In order to identify an optimal

parameter set we can introduce another metric to assess image quality, the so called quality factor

(QF) introduced by Mertelmeier et al.163. The QF is defined as follows:

QF = CNR
ASF20

, (3.13)



42

Figure 3.7: The measured ASF width, calcification CNR, and calcification width for the FBP
reconstructions as a function of the apodization parameters, A, and B.

Figure 3.8: The measured quality factor (QF) for the FBP reconstructions as a function of the
apodization parameters, A, and B.

where CNR indicates the in plane CNR for an image feature and the ASF20 is the width of the

ASF curve at 20% of its maximum (in other words the full width 20% max). The QF was measured

for the calcifications in the anthropomorphic phantom as well, and the results are shown in Figure

3.8. In this plot, an optimal value can be identified in the region where A ≈ 1.3ωn and b ≈ 0.06ωn.

These values are consistent with optimal values found by Mertelmeier et al. for a prototype clinical

system153, and will be used for the remainder of this study.

3.5 Model-Based Iterative Reconstruction

Although many modern iterative reconstruction algorithms can offer improved image quality

and physical/statistical system modeling, these algorithms typically come with a major cost:
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computational expense157. In this work, the denoised ordered-subset statistically penalized algebraic

reconstruction technique (DOS-SPART) algorithm is adapted for use in digital breast tomosynthesis

imaging164. DOS-SPART is able to incorporate the desirable aspects of many different published

iterative reconstruction methods, and due to its unique implementation strategy (which is discussed

in the subsequent section), can be a very efficient iterative reconstruction method. Thus, iterative

reconstruction of large volumes such as those common in digital breast tomosynthesis (≈1996x2457x60

voxels) may be feasible in a clinical setting. Previous work has demonstrated the feasibility of

implementing DOS-SPART for DBT165, and in this chapter the details of the implementation,

convergence, and quantitative image quality assessment are provided.

3.5.1 DOS-SPART Algorithm

Given a system matrix A to model the forward projection of an image volume and a diagonal matrix

Q to model the statistical counts of the measured projection data, the log-processed projection data

vector, y, can be used to reconstruct a vectorized image vector, x, by solving the following convex

optimization problem:

x̃ = arg min
x

[1
2 ||Ax− y||2Q + λR(x)

]
, (3.14)

where λ is the parameter to control the regularization strength.

The first-order optimality condition of the problem yields:

0 ∈ ATQ(Ax− y) + λ∂R(x), (3.15)

where ∂R(x) is the subdifferential of the regularizer. By multiplying each side by an arbitrary

positive semi-definte matrix, P, in the above equation and by adding and subtracting the minimizer

x̃, one has the following equation for the minimizer x = x̃:

[
x̃−PATQ(Ax̃− y)

]
− x̃ ∈ λP∂R(x̃). (3.16)

Using the definition of the proximity operator, proxλPR(x), the above equation can be written as
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the following fixed point equation for the minimizer x̃:

x̃ = proxλPR
[
x̃−PATQ(Ax̃− y)

]
. (3.17)

The fixed point, x̃, can be determined iteratively using the following sequences:

uk+1 = xk − sPATQ (Axk − y) , (3.18)

xk+1 = proxλPR(uk+1), (3.19)

= arg min
x

[1
2 ||x− uk+1||2P−1 + λR(x)

]
.

Eq. (3.18) represents a generalized gradient descent update with a statistical penalty to the measured

projection data and a positive semidefinite matrix, P, to provide variable update step size for each

individual image voxeli. Eq. (3.19) represents a generalized denoising problem using a P−1-norm

distance between x and uk+1. The ordered-subset method can be readily introduced in Eq. (3.18)

in numerical implementation, and thus this algorithm has been referred to as Denoised Order-Subset

Statistically Penalized Algebraic Reconstruction Technique (DOS-SPART) by Li et al.166.

3.5.1.1 Regularization

The formalism presented in Equations. 3.18 and 3.19 is so far completely generic with respect to

the actual regularizer used. In practice, a specific regularizer should be chosen, and the goal of that

regularizer will determine its form. As previously discussed, a common goal of regularization is to

reduce/limit image noise. Thus, a regularizer that promotes smoothness such as total variation

(TV) is commonly used. We can recall, in a two-dimensional (2D) M ×M vectorized image, the

total variation is defined as follows:

TV (x) =
∑
i

√
(xi+1 − xi)2 + (xi+M − xi)2. (3.20)

iA matrix, A, is said to be positive semidefinite iff for every non-zero column vector, z, it is true that z∗Az ≥ 0,
where ∗ indicates a complex conjugate. If it is true that z∗Az > 0 for all non-zero column vectors, z, that matrix is
said to be positive definite.
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This straightforward regularizer inherently promotes image smoothness while preserving edges.

TV regularization is very common in tomographic reconstruction methods167–174. An alternative

regularization scheme which can be used in this framework is the so called prior image constrained

compressed sensing (PICCS) regularization142,175–177. The PICCS framework has been used exten-

sively in CT applications for diagnostic multi-detector CT (MDCT)175–177, interventional c-arm

CT178,179, as well as CT image-guided radiation therapy142,180. The regularization in the PICCS

framework is given generally by the following:

R(x) =
[
(1− α) ||Ψ(x)||2p + α ||Ψ(x− xP )||2p

]
, (3.21)

where α is a parameter determining the relative weight of the two terms (α ∈ [0, 1]), xP is a prior

image, and Ψ indicates a sparsifying transformation. A common choice for Ψ is the TV as described

in Eq. 3.20 (an `1-norm), allowing this to be rewritten as:

R(x) =
[
(1− α)TV (x)2 + αTV (x− xP )2

]
(3.22)

We can see that this PICCS-TV regularizer is actually a generalization of the standard TV regularizer,

and reduces to Eq. 3.20 when α = 0.

3.5.1.2 Statistical penalization

As described in Eq. 3.14, the matrix Q is a diagonal matrix which models the statistical counts of

the measured projection data and is used to penalize rays during the reconstruction according to

their noise. In other words, a noisy ray with very few photons arriving at the detector (very noisy)

is given a smaller weight than a ray where the photon number arriving at the detector is high (low

noise).

In practice, a weighting scheme is used to achieve an approximately linear weight for the

meaningful rays in the projection data. That is achieved by finding the minimum and maximum

values of rays passing through the breast object (as opposed to rays passing through air alone)

and using a piecewise linear model. In this model, the weights should be linear within the breast

down to a lower threshold (fixed at 0.2). The lowest weights should be greater than zero so that no
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rays are completely discarded. The maximum weight allowed is 1, so rays outside the breast (high

photon numbers) are updated with a weight of 1.

This weighting scheme works reasonably well for many cases, however in the event that there is

metal present in the images the scheme causes problems (see Figure 3.9). Since metal is much more

highly attenuating than breast tissue, metal in the projection images will cause some rays to have

very few or even no photons arriving at the detector. This lowers the floor for the weighting scheme

dramatically and thus squeezes the linear range of the weighting scheme. The result is that normal

breast tissues are all pushed to the top or bottom of the linear range.

To avoid this scaling, an additional step was added in the weight map generation in the event

that metal is present. First, a simple step was taken to determine if metal is present in the projection

data. This was accomplished by calculating the approximate maximum linear attenuation coefficient

in the projection data as follows:

µmax ≥ max
(
µ`

Zt

)
= max

(− log(I/I0)
Zt

)
(3.23)

where µmax indicates the maximum linear attenuation coefficient in the projection data, Zt is the

compressed thickness of the breast, µ` is the measured projection datum calculated by taking the

negative log transformation of the quotient of the raw projection and the flat field image (− log[I/I0]).

The max operation was taken over all measured rays in the projection dataset to determine a single

µmax value per projection dataset. The measured µmax value was then compared to a threshold.

If µmax ≥ µthresh that dataset is treated as containing metal; if µmax < µthresh the statistical

weights were generated using the method described above. Using a cohort of clinical breast cases

(two examples shown in Figure 3.9), a threshold of 0.04 mm−1 was empirically determined to be a

suitable value for differentiating projections containing metal from those without (see Figure 3.10).

If metal was identified in the projection data, a piecewise linear weighting scheme was still used,

however the endpoints of the linear segment were determined using the values bounding the central

90% of the non-air image values. This was accomplished by generating a histogram of all the non-air

values, and determining the photon numbers corresponding to the 5th and 95th percentiles. Those

intensities were then used to determine the lower and upper limits to the linear segment of the
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No metal
𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0246 mm−1

Metal
𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0499 mm−1

Metal marker

Figure 3.9: Two example projection images to demonstrate the presence and absence of metal. The
corresponding µmax values are shown for each.
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Figure 3.10: A box-plot of the measured µmax values from a clinical breast cohort including cases
both with and without metal present. The dashed line indicates µmax = 0.04mm−1, the empirically
chosen threshold.

weighting scheme, respectively.

3.5.1.3 Breast masking

A common problem with iterative reconstruction methods in DBT imaging is severe shading at

the breast boundary (see Figure 3.11). One way to both deal with these artifacts and speed

up computation is to introduce a 3D breast mask to constrain the reconstruction156,181. By

preventing updates outside the image object, the reconstruction time is reduced substantially. This

improvement is inversely proportional to the fraction of the detector area covered by the breast and

in our experience typically reduces the reconstruction time by almost a factor of two. In addition,

since voxels outside the object are not being updated, the entire line integral measured through

the breast is correctly attributed to the breast voxels, restoring contrast at the edges as shown in

Figure 3.11.

In this work, we developed a method to calculate the breast mask. In this method, the mask

was generated by identifying the breast boundaries in the projection domain, backprojecting the

borders, and filling in to the chest wall. The calculated breast mask was used as the image domain

weight, P, in the OS-SPART framework in Equation 3.16. We can recall that we required that P
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(a) No breast masking (a) With breast masking

Figure 3.11: An example of a breast reconstructed with DOS-SPART reconstructed without (a) and
with (b) the breast mask used to constrain the reconstruction. Both images are reconstructed with
the same reconstruction parameters out to 250 iterations to ensure convergence. Both images are
shown with the same W/L.

be positive semi-definite. In our definition here of P as a binary breast mask, we meet those criteria

since P is diagonal with diagonal elements of either 0 or 1. A schematic illustrating this workflow is

shown in Figure 3.12 and described in detail in Algorithm 1.
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Filtered projection data (�𝒚𝒚) Projection data gradient (𝛻𝛻�𝒚𝒚)

Backprojected gradient of 
projection data (AT𝛻𝛻�𝒚𝒚)

Row-wise maxima of 
backprojected gradient (AT𝛻𝛻�𝒚𝒚) 

Mask generated filling from 
maxima to chest wall

Gradient 
operation

Back-projection 
operation

Row-wise 
maximum 
operation

Filling 
operation

Figure 3.12: The workflow used to calculate the 3D breast mask volume.
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Algorithm 1 Breast mask generation
1: procedure Initialize Breast Mask(y, A, threshproj , threshim)
2: Blur and threshold projection data:
3: ỹ = Rect2D ∗ y . Convolve projection data with box-car filter
4: for Each projection datum, i do
5: if ỹi < threshproj then
6: ỹi = 0
7: Backproject gradient of smoothed projection data:
8: IBorder = AT∇ỹ . ∇ indicates the local 2D gradient
9: Find and smooth row-wise maximum of gradient volume:

10: for iterator slice = 0; slice < Ns; slice+ + do . Ns = number of slices in the image volume
11: for iterator row = 0; row < Nr; row + + do . Nr= number of rows in each image slice
12: if max [IBorder(x, row, slice)] ≥ threshim then
13: imax(row, slice) = arg maxx IBorder(x, row, slice)
14: else
15: imax(row, slice) = rowmax . If maximum value below threshold, assign max.

index to edge of detector (assume that row has no object present)
16: ĩmax = Rect1D ∗ imax
17: Fill from breast edge to detector edge:
18: for Each voxel, i, row, slice do
19: if i > ĩmax(row, slice) then
20: Pi,row,slice = 1
21: else
22: Pi,row,slice = 0
23: Smooth breast mask:
24: for iterator slice = 0; slice < Ns; slice+ + do
25: P̃slice = Rect2D ∗Pslice

26: P← P̃
27: return P
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3.5.1.4 Convergence analysis

In order to determine the appropriate number of iterations needed to achieve convergence, an

appropriate convergence criterion needs to be determined. In this work, we use the normalized and

averaged variation in the objective function as our criterion182. We can recall our objective function

from Eq. 3.14 is given as

Φ(x) = 1
2 ||Ax− y||2Q + λR(x). (3.24)

This can be written explicitly for the two regularizers used in this work as follows:

TV : Φ(xk) = 1
2 ||Axk − y||2Q + λTV (xk) (3.25)

and

PICCS : Φ(xk) = 1
2 ||Axk − y||2Q + λ [(1− α)TV (xk) + αTV (xk − xP )] (3.26)

This can be used to calculate the convergence criterion at iteration k as follows:

ε(xk) = 1
2

[|Φ (xk−1)− Φ (xk)|] + [|Φ (xk)− Φ (xk+1)|]
ε(xk=1) , (3.27)

where xk is the image at iteration k (k ∈ N). The convergence was investigated initially to determine

the required number of iterations needed to achieve empirical convergence, defined here as ε ≤ 10−3.

Convergence was measured in 5 repeated acquisitions of the ACR mammography accreditation

phantom acquired at the standard clinical dose where the iteration number was allowed to run out

to 250 iterations. The resulting curves were averaged to determine the approximate number of

iterations required to achieve empirical convergence.

3.5.1.5 Parameters

The proposed algorithm has many parameters that must be tuned in order to maximize performance.

However, in practice it isn’t practical to try and optimize the image reconstruction with respect to

every possible parameter. Instead, the majority of parameters are fixed in a stable range, and the

remaining free parameters are tuned to optimize image quality. The reconstruction parameters used
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Table 3.2: Reconstruction parameters.

Parameter Value
Number of iterations >50
Number of regularization steps per iteration 10
Number of ordered subsets (views per subset) 5 (3)
Step size (s) 0.75
λ 25
µ 1.25
α (for PICCS regularization) 0.5
Breast mask calculation thresholds Projection domain: 0.02; Image domain: 0.05
Extrapolation width for truncation correction 400 pixels on each edge of the detector

in this work are summarized in Table 3.2.

3.5.1.6 Implementation

The algorithm described in Section 3.5.1 can be implemented according to the following pseudo-code

shown in Algorithm 2 and Algorithm 3 for the TV and PICCS regularizers, respectively. The

pseudo-code for the OS-SPART implementation used to perform the data fidelity updates can be

found in Algorithm 4. In the implementations described here, a variable-splitting technique along

with a soft-shrinkage thresholding operation as described by Li et al.164 is used. The soft-shrinkage

operator, Sµ(x), is defined as follows:

Sµ(x) = x

(
1− µ

|x|

)
+

=

 x
(
1− µ

|x|

)
µ
|x| ∈ (0, 1]

0 else
, (3.28)

where µ is a threshold value selected for a given application. A visual representation of the use of

the shrinkage operator is shown in Figure 3.13.

The algorithm was coded in Visual C (Microsoft, Inc., Redmond, WA) and CUDA (NVIDIA

Corporation, Santa Clara, CA) and executed on a local workstation. With the current implementa-

tion, a single GPU (GTX 1070, NVIDIA, Santa Clara, CA) is used and the total reconstruction

time for a standard sized breast (≈ 6 cm) is approximately 70 s to achieve empirical convergence

(defined in Section 3.5.1.4).
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Figure 3.13: An example of the use of the soft-shrinkage operator described in Eq. 3.28. This
example illustrates how the shrinkage operator “shrinks” values down as the threshold increases.



55

Algorithm 2 DOS-SPART: TV Regularizer
1: P← Breast Mask
2: Q← Projection counts
3: xk=0 ← FBP(y) . Image can be initialized to zeros, FBP image, etc.
4: procedure DOS-SPART(xk,y,Q,P, A, λ, µ)
5: k ← 0
6: while ε(xk) > εThresh do
7: Perform data fidelity update:
8: uk+1 ← OS− SPART(xk,y,Q,P, A)
9: Number of regularization steps: NADMM (NADMM chosen empirically)

10: Initialize intermediate matrices:
11: for Each voxel, i do
12: Dn=0 =

[
uk+1
i+1 − uk+1, uk+1

i+Mu
k+1
i

]
13: Bn=0 = [0, 0]
14: Perform regularization:
15: x̃n=0 = uk+1 .˜indicates the regularized image
16: for iterator n = 0;n < NADMM ;n+ + do
17: for Each voxel, i do
18: x̄ni = 1/4

(
x̃ni+1 + x̃ni+1 + x̃ni+M + x̃ni−M

)
19: hni = 1/4

[(
Dn
x,i−1 −Dn

x,i

)
+
(
Dn
y,i−M −Dn

y,i

)
+
(
Bn
x,i−1 −Bn

x,i

)
+
(
Bn
y,i−M −Bn

y,i

)]
20: x̃ni =

λµ
Pi

λµ
Pi

+4
uk+1
i + 4

λµ
Pi

+4
(x̄ni + hni )

21: En
i =

[(
x̃ni+1 − x̃ni

)
−Bn

x,i,
(
x̃ni+M − x̃ni

)
−Bn

y,i

]
22: ||En

i ||2 =
√(

En
x,i

)2
+
(
En
y,i

)2

23: Dn
i =

[(
Sµ
(∣∣∣Enx,i∣∣∣) Enx,i

||Eni ||2

)
,

(
Sµ
(∣∣∣Eny,i∣∣∣) Eny,i

||Eni ||2

)]
24: Bn

i = Dn
i −En

i

25: k + +
26: xk = x̃n
27: return xk
28: Notes:
29: 1. Anywhere the “Each pixel” notation is used, the implementation is pixel parallel and well

suited to GPU implementation.
30: 2. We assume row-wise ordering for image matrices and that each image row contains M

elements; thus, the index i+M corresponds to the location one row down from the location i.
31: 3. We assume the matrices B, D, and E each have two elements at each pixel location, x,

and y such that: Dn = [Dn
x , D

n
y ].
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Algorithm 3 DOS-SPART: PICCS Regularizer
1: P← Breast Mask
2: Q← Projection counts
3: xk=0 ← FBP(y) . Image can be initialized to zeros, FBP image, etc.
4: xp ← xk . Here we use the FBP image as a prior
5: procedure DOS-SPART(xk,xp,y,Q,P, A, λ, µ, α)
6: k ← 0
7: while ε(xk) > εThresh do
8: Perform data fidelity update:
9: uk+1 ← OS− SPART(xk,y,Q,P, A)

10: Number of regularization steps: NADMM (NADMM chosen empirically)
11: Initialize intermediate matrices:
12: for Each voxel, i do
13: Dn=0 =

[
uk+1
i+1 − uk+1, uk+1

i+Mu
k+1
i

]
14: Dn=0

p =
[(
uk+1
i+1 − uk+1

)
− (xp,i+1 − xp,i) ,

(
uk+1
i+M − u

k+1
i

)
− (xp,i+M − xp,i)

]
15: Bn=0 = [0, 0]; Bn=0

p = [0, 0]
16: Perform regularization:
17: x̃n=0 = uk+1

18: for iterator n = 0;n < NADMM ;n+ + do
19: for Each voxel, i do
20: x̄ni = 1/4

(
x̃ni+1 + x̃ni+1 + x̃ni+M + x̃ni−M

)
21: x̄np,i = 1/4 (xp,i+1 + xp,i+1 + xp,i+M + xp,i−M )
22: hni = 1/4

[(
Dn
x,i−1 −Dn

x,i

)
+
(
Dn
y,i−M −Dn

y,i

)
+
(
Bn
x,i−1 −Bn

x,i

)
+
(
Bn
y,i−M −Bn

y,i

)]
23: hnp,i = 1/4

[(
Dn
p,x,i−1 −Dn

p,x,i

)
+
(
Dn
p,y,i−M −Dn

p,y,i

)
24: +

(
Bn
p,y,i−1 −Bn

p,x,i

)
+
(
Bn
p,y,i−M −Bn

p,y,i

)]
25: x̃ni =

λµ
Pi

λµ
Pi

+8
uk+1
i + 4

λµ
Pi

+8

(
2x̄ni + xp,i − x̄np,i + hni + hnp,i

)
26: En

i =
[(

x̃ni+1 − x̃ni
)
−Bn

x,i,
(
x̃ni+M − x̃ni

)
−Bn

y,i

]
27: En

p,i =
[(

x̃ni+1 − x̃ni
)
−Bn

p,x,i − (xp,i+1 − xp,i) ,
(
x̃ni+M − x̃ni

)
−Bn

p,y,i − (xp,i+M − xp,i)
]

28: ||En
i ||2 =

√(
En
x,i

)2
+
(
En
y,i

)2

29: Dn
i =

[(
S(1−α)µ

(∣∣∣Enx,i∣∣∣) Enx,i

||Eni ||2

)
,

(
S(1−α)µ

(∣∣∣Eny,i∣∣∣) Eny,i

||Eni ||2

)]
30:

∣∣∣∣∣∣En
p,i

∣∣∣∣∣∣
2

=
√(

En
p,x,i

)2
+
(
En
p,y,i

)2

31: Dn
p,i =

[(
Sαµ

(∣∣∣Enp,x,i∣∣∣) Enp,x,i

||Enp,i||2

)
,

(
Sαµ

(∣∣∣Enp,y,i∣∣∣) Enp,y,i

||Enp,i||2

)]
32: Bn

i = Dn
i −En

i ; Bn
p,i = Dn

p,i −En
p,i

33: k + +
34: xk = x̃n
35: return xk
36: Notes:
37: 1. The PICCS parameter, α, is only seen in the the soft shrinkage operations performed in

lines 29 and 31.
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Algorithm 4 OS-SPART
1: procedure OS-SPART(xk,y,Q,P, A)
2: k ← 0
3: x′ ← xk . ′ notation here indicates a temporary variable, not a differential
4: For 15 view DBT:
5: Number of subsets : NSS = 5
6: Number of views per subset : NVSS = 3
7: for iterator nS = 0;nS < NSS ;nS + + do
8: for iterator nV iew = 0;nV iew < NV SS ;nV iew + + do
9: Calculate current view number, i: i = nS + nV iew × (NSS)

10: Forward projection: y′i = Aix’
11: Calculate and weight difference projection: yi

′′ = Qi (y− yi
′)

12: Backproject difference onto image volume: x′ = x′ + PATi y′′

13: uk+1 ← x′
14: return uk+1

3.5.2 Image quality assessment

3.5.2.1 Through-plane blurring

Through-plane blurring in the reconstructed images was assessed using the ASF defined in Equation

3.12. In this work, both the 540 and 400 µm microcalcifications in the ACR mammography

accreditation phantom were used to measure the ASF. The ASF was measured for all 6 of the

calcifications of each size in 5 separate acquisitions. The measured full width half maximum

(FWHM), full width quarter maximum (FWQM), and full width tenth maximum (FWTM) were

measured to perform a quantitative comparison.

A two-sample t-test was used to compare the means of the measured values for each metric

and determine statistical significance. In all cases, the null hypothesis was that the means were

the same, H0 : µ1 = µ2, and thus the alternative hypothesis was a difference in the mean measured

value, H1 : µ1 > µ2.

3.5.2.2 Spatial resolution characteristics

In addition, the spatial resolution was measured using a line profile through the high contrast

540 µm and 400 µm calcifications in the ACR mammography phantom, corresponding to the two

largest clusters of calcifications seen in Figure 2.1. The spatial resolution was measured using a
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radial average line profile through the high contrast 540 µm and 400 µm calcifications in the ACR

mammography phantom. To calculate this profile, the center of mass of the calcification was found

and a radial profile about that center was computed. Each profile was then normalized such that the

peak had a value of 1 and the tail a value of 0. This was performed for each of the six calcifications of

each size in all five repeated scans, so the final curves are the average of 30 total curves at each dose

level. To quantify the width of the curve, the half width half maximum (HWHM) in each case was

measured. A two-sample t-test was used to compare the mean widths for each DOS-SPART method

with the commercial method and determine statistical significance. In all cases, the null hypothesis

was that the mean widths were the same, H0 : µ1 = µ2, and thus the alternative hypothesis was a

difference in the mean measured value, H1 : µ1 > µ2.

3.6 Results

3.6.1 Convergence

Using the convergence criteria defined in Eq. 3.27, it was found that the stopping criterion of

10−3 was achieved in approximately 30-50 iterations for both regularizers. Nevertheless, each

method approaches convergence as defined by small variation in the objective function value for

large iteration numbers. The PICCS regularized reconstructions more rapidly achieved the desired

threshold of 10−3, however both achieve that threshold by around 50 iterations. For the remainder

of the work presented here, 50 iterations were used to ensure empirical convergence was achieved.

3.6.2 Image quality assessment

3.6.2.1 Through-plane blurring

The larger (540 µm) calcification cluster from the ACR phantom is shown in focus and in planes

5 and 10 mm above and below the focal plane using each of the three reconstruction methods in

Figure 3.15. The residual signal artifacts in the commercial reconstruction method are still quite

strong at ±10 mm, whereas in the DOS-SPART reconstructions (TV or PICCS regularization)

the signal leakage is almost negligible already at ±5 mm. The measured ASF curves for the 540
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(a) TV Regularization (𝛼𝛼 = 0) (b) PICCS Regularization (𝛼𝛼 = 0.5)

Figure 3.14: Plots of the objective function (top) and normalized convergence criteria (bottom)
from Eq. 3.27 is shown for the TV (a) and PICCS (b) regularized implementations. Error bars
denote the measured standard deviation between measured curves. The dashed line in the plots in
the bottom row indicates 10−3.
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Figure 3.15: The calcification objects in the ACR phantom used for the ASF measurements. The
objects are shown in focus as well as ±5 and ±10 mm away. The images shown are from the same
acquisition and all images are shown with the same W/L.

µm and 400 µm calcification objects are shown in Figure 3.16, while the corresponding FWHM,

FWQM, and FWTM measurements are shown in Figure 3.17. The statistical significance of the

differences in ASF width measurements is shown in Table 3.3. We can see from the ASF curves

and box plots that DOS-SPART (regardless of regularizer) improved the tails of the ASF compared

with the commercial reconstruction method. This improvement over the commercial reconstruction

was statistically significant in all cases for the FWTM value, the greatest extent of the artifacts.

The difference in ASF width between the two regularizers was much less dramatic, and wasn’t

statistically significant in all cases, however the measured width parameters were slightly smaller

using the PICCS regularizer rather than the TV only regularizer in each case except the FWHM for

the smaller calcifications.
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(a) (b)

Figure 3.16: The mean measured ASF in the reconstructed images using each reconstruction method.
Error bars denote the standard deviation of the measurement.
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Figure 3.17: Distribution of the measured widths of the ASF curves for the three reconstruction
methods.
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Table 3.3: The statistical significance of the differences in measured ASF widths for the different
reconstruction methods. Cases where the null hypothesis could not be rejected (95% confidence)
are indicated in bold.

540µm Calcifications
Measurement Commercial> Commercial> DOS-SPART(PICCS)6=

DOS-SPART (TV) DOS-SPART (PICCS) DOS-SPART (TV)
FWHM p<0.001 p<0.001 p > 0.05

FWQHM p<0.001 p<0.001 p > 0.05
FWTM p<0.001 p<0.001 p<0.04

400µm Calcifications
Measurement Commercial> Commercial> DOS-SPART(PICCS)6=

DOS-SPART (TV) DOS-SPART (PICCS) DOS-SPART (TV)
FWHM p > 0.05 p > 0.05 p > 0.05

FWQHM p > 0.05 p<0.02 p<0.04
FWTM p<0.02 p<0.001 p > 0.05

Table 3.4: The measured HWHM of the average radial profile through the 540 µm calcification at
each dose level. A smaller HWHW indicates improved spatial resolution. An asterisk indicates the
measurement is significantly different from the commercial value (p<0.01).

HWHM (mm)
Relative dose 100% 80% 60% 40% 20%

Commercial recon. 0.12± 0.01 0.12± 0.01 0.13± 0.01 0.13± 0.02 0.13± 0.03
DOS-SPART (TV) 0.12± 0.02 0.12± 0.02 0.13± 0.01 0.13± 0.02 0.13± 0.02

DOS-SPART (PICCS) 0.11± 0.01∗ 0.11± 0.02∗ 0.11± 0.02∗ 0.11± 0.02∗ 0.11± 0.03∗

3.6.2.2 Spatial resolution characteristics

The measured profiles through the calcifications are shown in Figures 3.18 and 3.19. The corre-

sponding width measurements are shown in Table 3.4 and Table 3.5. The measurements show that

regardless of regularizer, DOS-SPART was able to at least maintain spatial resolution for small

high contrast objects compared with the commercial reconstruction. In addition, for all dose levels

and calcification sizes considered here, the spatial resolution using the PICCS regularization was

actually improved (statistically significant in all cases with p<0.01) compared with the commercial

reconstruction.

3.6.2.3 Clinical image results

Four clinical examples are presented in Figure 3.20. In the first case (Figure 3.21), a cluster of

calcifications in a heterogeneously dense breast (BIRADS density: (c); R CC view) from a 40-year-old
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100% Dose 80% Dose 60% Dose

40% Dose 20% Dose

Figure 3.18: The average radial profiles through the 540 µm calcifications in the ACR accreditation
phantom at each dose level. Error bars denote the standard deviation.

Table 3.5: The measured HWHM of the average radial profile through the 400 µm calcification at
each dose level. A smaller HWHW indicates improved spatial resolution. An asterisk indicates the
measurement is significantly different from the commercial value (p<0.01).

HWHM (mm)
Relative dose 100% 80% 60% 40% 20%

Commercial recon. 0.09± 0.01 0.09± 0.01 0.09± 0.01 0.09± 0.02 0.09± 0.02
DOS-SPART (TV) 0.10± 0.01 0.10± 0.01 0.09± 0.01 0.10± 0.02 0.10± 0.02

DOS-SPART (PICCS) 0.08± 0.01∗ 0.08± 0.01∗ 0.07± 0.01∗ 0.08± 0.01∗ 0.07± 0.02∗

woman is shown. This cluster of calcifications is well focused and conspicuous in the focal plane in

all of the reconstructions, however in the commercial reconstruction the residual signal from the

cluster is clearly visible and distracting in the reconstructed slices 10 mm above and below the

cluster.

In the second case (Figure 3.22), a highly calcified dense mass in a fatty breast (BIRADS density:

(a); R CC view) of a 69-year-old woman is shown. Subjectively, this is a very interesting pathology

with many different high contrast features present. However, the superposition of the high contrast

features in the commercial reconstruction leads to substantial signal leakage and reduced sharpness.
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100% Dose 80% Dose 60% Dose

40% Dose 20% Dose

Figure 3.19: The average radial profiles through the 400 µm calcifications in the ACR accreditation
phantom at each dose level. Error bars denote the standard deviation.

The margins of the mass as well as the calcified structures are difficult to distinguish, and the

different layers of the mass are not well separated. In the DOS-SPART reconstructions, the signal

leakage is substantially reduced, and the individual layers of the mass may be clearly seen.

In the third case (Figure 3.23), a spiculated mass with calcifications in a breast with scattered

fibroglandular tissue (BIRADS density: (b); R CC view) of a 67-year-old woman is shown. In this

case, as with the previous, the high density tissue and calcifications result in substantial through

plane blurring in the commercial reconstruction. The result is sharper in-focus high contrast objects

in the DOS-SPART reconstructions.

In the fourth case (Figure 3.24), a spiculated mass with calcifications in a breast with scattered

fibroglandular tissue (BIRADS density: (c); R CC view) of a 67-year-old woman is shown. This

case demonstrates some of the issues with FBP at the boundaries of the breast, where the skin line

is incorrectly visualized, and through plane blurring obscure the subcutaneous fat.
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(a) (b) (c) (c)

Figure 3.20: Projection images of the four clinical breast examples. The gold square indicates the
region depicted in Figures 3.21, 3.22, 3.23, and 3.24.

3.7 Discussion and conclusions

We have demonstrated that the DOS-SPART algorithm may be applied to DBT acquisitions with a

clinical system. The resulting images feature significantly reduced through plane blurring and can

be achieved in a clinically relevant time of a minute or two for a clinical case. The major benefit

DOS-SPART offers is that it (and potentially other model based iterative reconstruction techniques)

can be used to reduce the effective slice thickness in DBT acquisitions for DBT systems with smaller

angular spans used to acquire data. To alleviate the through-plane signal leakage problem in other

clinical systems, both hardware and software solutions have been investigated in the past several

years. For example, some commercial systems have increased the angular span of the acquisition

since larger tomo-angles lead to better through-plane spatial resolution. However, this method does

have some other concerns. First, increasing the angular span requires a prolonged data acquisition

time, thus increasing inadvertent motion artifacts. For patient safety, in clinical systems the gantry’s

speed is limited. Thus, increasing the tomographic angle requires a longer scan as seen in Table 2.1.
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Figure 3.21: A cluster of calcifications in a clinical DBT exam reconstructed with the commercial
reconstruction engine (top), DOS-SPART (TV Regularizer) (middle), and DOS-SPART (PICCS
Regularizer) (bottom) is shown in focus and at locations above and below the focal plane in the z
direction. All image shown with the same W/L.

Second, the view angle sampling rate is often reduced at the cost of increasing view angle span. This

reduction in view angle sampling rate exacerbates view angle aliasing artifacts in the reconstructed

images. Third, if the view angle sampling rate remains unchanged, then the radiation exposure level

at each view angle must be reduced due to the overall dose constraint of the total DBT acquisition.

The reduced exposure level at each view angle leads to more severe photon starvation artifacts,

especially at more oblique view angles which have longer path lengths for a compressed breast.

Fourth, the increased view angle span may also lead to a reduced effective detector pixel size for

a rocking acquisition geometry152. Due to these potential challenges, a smaller angular span in

clinical DBT systems is highly desirable, provided the through-plane artifacts level can be reduced,

improving its through-plane resolution.

An interesting comparison which can be made as well is between the two regularizers used in

this work. The most significant through plane artifacts were mitigated, regardless of regularizer
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Figure 3.22: A highly calcified dense mass in a clinical DBT exam reconstructed with the commercial
reconstruction engine (top), DOS-SPART (TV Regularizer) (middle), and DOS-SPART (PICCS
Regularizer) (bottom) is shown at different z locations. All image shown with the same W/L.

used, however the PICCS regularization not only improved spatial resolution compared the the TV

only regularization, it actually was able to further reduce the through plane blurring as well. In

addition, it showed a more rapid convergence, with the PICCS regularized images approaching the

empirical convergence criteria on average in around 35-40 iterations rather than 50.

Interestingly, if we recall the convergence plots shown in Figure 3.14, we may have noticed there

is some odd behavior in the curves once they hit a small enough value (≈ 10−5 − 10−6). We see

the curve drops rapidly before a small “bounce”. This shouldn’t happen for a convex optimization

problem, and merits further investigation, however one reason this could occur is that when the

image approaches convergence the relative update size approaches numerical precision. The objective

function is evaluated for the entire image volume (1890× 2457× 62 voxels). We can thus elect to

modify our definition of the convergence criteria from Equation 3.27, by normalizing by the number

of voxels rather than the value at the first iterations (providing an approximation of the update
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Figure 3.23: A dense, spiculated mass in a clinical DBT exam reconstructed with the commercial
reconstruction engine (top), DOS-SPART (TV Regularizer) (middle), and DOS-SPART (PICCS
Regularizer) (bottom) is shown at different z locations. All image shown with the same W/L.

magnitude in each voxel), as follows:

εmod(xk) = 1
2

[|Φ (xk−1)− Φ (xk)|] + [|Φ (xk)− Φ (xk+1)|]
Nvoxels

. (3.29)

The convergence values using this new metric are shown in Figure 3.25. We can see here that the

update size per voxel is approaching ≈ 10−8 − 10−9. Per the current IEEE standard183 (used in

Visual C and CUDA) for 32-bit precision floating point numbers, the mantissa (significand field) of

the number is stored using 23 bits plus one implicit bias or offset digit (inherent to compiler) for a

total of 24 bits of precision. The remaining bits are used to indicate the sign (1 bit) and exponent (8

bits) for a total of 32 bits. Given the 24 bit precision for the mantissa, the maximum value number

of decimal digits is approximately 7.2 (log10
(
224) ≈ 7.2). This limitation means that performing

updates on the order of 10−8 fall below machine precision and could result in increasing imprecision

over subsequent iterations as seen in Figure 3.25.
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Figure 3.24: A boundary region in a clinical DBT exam reconstructed with the commercial
reconstruction engine (top), DOS-SPART (TV Regularizer) (middle), and DOS-SPART (PICCS
Regularizer) (bottom) is shown at different z locations. All image shown with the same W/L.

(a) TV Regularization (𝛼𝛼 = 0) (b) PICCS Regularization (𝛼𝛼 = 0.5)

Figure 3.25: Plots of the modified normalized convergence criteria (bottom) from Eq. 3.29 is
shown for the TV (a) and PICCS (b) regularized implementations. Error bars denote the measured
standard deviation between measured curves. The dashed line in the plots indicates 10−7.2.
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Plenty of future work remains to improve the clinical implementation of the DOS-SPART

reconstructions. So far, two regularizers, TV and PICCS, have been introduced, however the

DOS-SPART framework is conducive to many possible regularization schemes. The introduction of a

more advanced regularization scheme could permit more aggressive image denoising (and thus lower

dose reconstructions) without sacrificing fine details such as calcifications or tumor margins. The

addition of diffusion regularization is being explored currently. A derivation of the implementation

of anisotropic diffusion as a regularizer is provided in Appendix A.2. In addition, an important step

in the clinical processing currently is the introduction of an iterative contrast enhancement scheme.

As a result, the contrast in the commercial images currently is typically higher than in pure FBP

reconstructions. In the future, the introduction of such a tool would be helpful to clinicians who are

accustomed to relatively high contrast images.

The unique features of DBT required several major modifications to the DOS-SPART algorithm

for it to be applicable. First, a tomosynthesis FBP reconstruction was needed to generate a seed

image for the DOS-SPART reconstructions that can also serve as a prior image for the PICCS

regularized implementation. Second, a metal detection and compensation scheme was needed to

provide reliable statistical weighting matrices for the reconstructions. Third, a 3D breast mask

calculation method was introduced. This breast mask was used to constrain the reconstruction,

providing substantially improved reconstruction speed and reduced artifacts at the object boundaries.

Fourth, a projection matrix formalism was introduced to perform the forward and backprojection

operations for the iterative procedure. With all of these modifications in place, the implementation

was outlined and reconstructed images using the commercial reconstruction method were compared

with the DOS-SPART reconstructions.
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4 Truncation Artifacts in Digital

Breast Tomosynthesis

4.1 Introduction

In this chapter, truncation artifacts for digital breast tomosynthesis are explored. Truncation

artifacts are common in DBT images. In fact, in the MLO view, truncation artifacts are almost

always unavoidable (see Figure 4.1). For DBT, filtered backprojection (FBP) is the standard

reconstruction technique. In this method, projection data acquired at each angular position are

first filtered by a kernel (typically the ramp kernel) before being backprojected to the tomographic

image domain. Since the filtering operation introduces spatial correlations, spatial inconsistencies

in the data due to the abrupt cutoff of the object at the edge of the field of view (FOV) of the

system (viz. truncation) may produce strong artifacts in the reconstructed images, such as those

seen in Figure 4.2. Specifically, two major types of artifacts due to truncation manifest themselves

in tomosynthesis reconstructions: artifacts due to the discontinuity at the edge of the detector and

artifacts due to an underestimation of the attenuation through the object by ignoring objects which

intersect the beam, but lie outside the FOV184.

Many established methods to correct for data truncation in CT using FBP reconstruction

methods are based upon data extrapolation 185–192. Several correction techniques for digital

breast tomosynthesis (DBT) have been proposed for both analytical and iterative reconstruction

methods181,184,193, however an optimal method with physical grounding is still needed. The purpose

of this work was to propose techniques with physical grounding to correct for data truncation
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(b) Reconstructed slice
(z = 75 mm above detector)

(a) Projection image

Figure 4.1: An example of a clinical breast exam in the MLO projection. The truncation in the
superior aspect of the breast is indicated with the golden arrow in the projection image (a) and the
resulting artifacts in the FBP reconstruction are indicated in the reconstructed slice (b).

artifacts in breast tomosynthesis and determine which technique is best suited to alleviate truncation

artifacts in DBT.

4.2 Methods

4.2.1 Acquisition parameters and equipment

Several image objects, including an American College of Radiology (ACR) mammography accredi-

tation phantom (Fluke Biomedical, Everett, WA), two bovine udders, and several cadaver breast
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(a) Tomosynthesis Slice (b) Axial Slicei

j

5 mm

Figure 4.2: The manifestation of truncation artifacts in tomosynthetic reconstructions. The example
here is a cadaver breast specimen imaged using our bench-top multi-contrast imaging system. A
tomosynthesis slice (a) and the central axial slice (b) reconstructed through the object (ie. CT slice)
are shown.

specimens were imaged for this work. For all objects, 15 projections with a 15◦ tomo angle were

acquired using a bench-top imaging system (see Figure 4.3) with a rotary object stage. In order to

investigate the impact of truncation on reconstruction artifacts with different tomo angles, two tomo

angles (15◦ and 45◦) with 15 and 45 views respectively were used to acquire cone beam projection

data for the ACR accreditation phantom. The bench-top acquisition system used in this work

includes a diagnostic x-ray tube (Varian G1582, Palo Alto, CA) operated at 40 kVp and 20 mA, and

a CMOS flat panel detector with 48 µm isotropic pixel size (Rad-icon Shad-o-Box 2048, Sunnyvale,

CA). The x-ray exposure time was 5 seconds per projection. For this work, we used a tube potential

of 40 kVp, providing a mean energy of approximately 28 keV.

Tomosynthesis volumes were reconstructed through the image object using a 50×50 µm2 in-plane

pixel pitch and 0.5 mm nominal slice thickness. Each slice was 700× 700 pixels and 140 slices were

reconstructed along the z axis, resulting in a 3.5× 3.5× 7.5 cm3 (i× j × z) image volume. An FDK

cone-beam CT reconstruction algorithm194 implemented in Visual C++ (Microsoft Corporation,

Redmond, WA) and CUDA (NVIDIA Corporation, Santa Clara, CA) was used to perform the
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(a)

(b) (c)

Detector

Object rotary stage

X-ray tube

X-ray shutter

Figure 4.3: The bench-top system used to acquire all of the image data in this study (a). Close up
images of the detector and object stage (b) and the x-ray tube (c) are shown below.

reconstructions with a ramp kernel.

Each reconstruction took about 10 seconds using a workstation equipped with a 6 core processor

(Intel Xeon E5645, Intel Corporation, Santa Clara, CA) and an NVIDIA GTX Titan X GPU

(NVIDIA Corporation, Santa Clara, CA).

4.2.2 Extrapolation Techniques

In order to mitigate data truncation, the projection data were extrapolated in the scanning direction

(parallel to the surface of the table in Figure 4.3). Data extrapolation methods were used to mitigate
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Figure 4.4: Imaging geometry used for these acquisitions. Extrapolations were performed along the
i direction.
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truncation artifacts in the x-ray CT reconstructions. To provide an intuitive argument to justify the

use of the method, one fact is foundational: a real imaged object has compact support. That is to

say, the object has some finite size and the entire object is enclosed by the x-ray source trajectory.

By assuming this finite support, the measured data will eventually drop down to zero when the

x-ray beam reaches the edge and ceases to pass through the finite image object. By assuming a

smooth change of measurements from interior of image object to edge of the image object for a

typical cone-beam data acquisition geometry, absorption projection data of the image object should

smoothly drop to zero before reaching the edge of the image object and thus justify the use of the

data extrapolation.

In the case of tomosynthesis, this justification no longer holds. Unlike CT, very large objects

may be imaged with tomosynthesis, as the use of a limited angular span permits the gantry to

rotate without colliding with the object. However, it doesn’t make physical sense to assume the

object has finite support in this case. Most clinical applications for tomosynthesis involve imaging

large planar objects: the chest, extremities (planar along the limb), and the compressed breast. In

all of these cases, the object extends more or less uniformly beyond the field of view rather than

being bounded. As a result, we propose two different categories of extrapolation techniques for

this work: “Tomo-like” (assuming uniform thickness and a uniform linear attenuation, µ, for the

extrapolated data) and “CT-like” (assuming finite support).

Our hypothesis in this work was that the object should extend uniformly (in terms of thickness

and linear attenuation or µ) beyond the field of view in tomosynthesis imaging to provide the best

reconstruction results with mitigated data truncation artifacts.

For both Tomo-like extrapolation and CT-like extrapolation methods, we proposed two different

specific data extrapolation schemes: 1) a true row-by-row extrapolation and 2) a low-pass filtered

extrapolation for the entire truncated edge of the data. The proposed row-by-row extrapolation

method can eliminate discontinuities at the boundary for each detector row while the variations

across detector rows can be maintained in the reconstruction. Since the ramp filter is very sensitive

to these discontinuities, it was thus expected that this method would be better for absorption

tomosynthesis reconstruction. The performance for these proposed extrapolation methods were

evaluated against the brute force method without any correction. Thus, there were a total of five
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methods to be evaluated and these methods are described as follows (see Figure 4.4 for definition

of i and j). An illustration of these methods with an example projection image is provided in

Figure 4.5. Note that extrapolation was performed to double the field of view in this work with an

extension of 50% of the detector width symmetrically on each side along the scanning direction.

Brute force method: No correction

1 In the first method, any values outside the active area of the detector were set to zero. Essentially,

this is equivalent to performing no correction at all for data truncation. Mathematically this

may be described as follows:

pi,j =

 0 : 0 < i < ileft or imax > i > iright

pi,j : otherwise
, (4.1)

where pi,j is the pixel value in the ith row and jth column of the detector readout (see Figure

4.4 for definition of i and j). The index, imax, is the largest index in the extrapolated projection

data.

Tomo-Like Extrapolation Methods

2 In the second method, the values at the edges of the active area of the detector were extended

to fill the truncated areas on a row-by-row basis. This will be called a nearest neighbor

extrapolation, since beyond the border of the object, the projection value is replaced by

the value corresponding to the nearest true projection value. Mathematically, this may be

described as follows:

pi,j =


pileft,j : 0 < i < ileft

piright,j : imax > i > iright

pi,j : otherwise

, (4.2)

where pi,j is the pixel value in the ith row and jth column of the detector readout and

pileft/right,j denotes the nearest neighbor value on the left or right edge respectively.

3 In the third method, the mean value along the edge of the active area of the detector was

calculated, and that value was used to fill out the truncated areas. In this case, rather than
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Figure 4.5: Example line profiles through a projection image of a cadaver breast specimen using the
5 extrapolation techniques.

extending values on a row-by-row basis, the same value was used to fill the truncated areas

beyond each edge. Mathematically, this may be described as follows:

pi,j =


p̄ileft : 0 < i < ileft

p̄iright : imax > i > iright

pi,j : otherwise

, (4.3)

where pi,j is the pixel value in the ith row and jth column of the detector readout, and

p̄ileft/right is the mean value along the left or right edge of the detector, defined as follows for

pn rows: p̄ileft/right = 1
n

∑n
j=1 pileft,j . This method is a low-pass filtered approximation of the

second method.

CT-Like Extrapolation Methods

4 In the fourth method, the values at the edges of the active area of the detector were extended

to fill the truncated areas on a row-by-row basis by following an elliptical curve such that

the extrapolated value drops to zero at the edge of known boundary of the image support.
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Mathematically, this may be described as follows:

pi,j =



pileft,j

√
1−

[
(ileft−i)
ileft

]2
: 0 < i < ileft

piright,j

√
1−

[
(i−iright)
imax−iright

]2
: imax > i > iright

pi,j : otherwise

, (4.4)

where pi,j is the pixel value in the ith row and jth column of the detector readout.

5 In the fifth and final method, the mean value along the edge of the detector’s active area was

calculated and then used to extrapolate the truncated areas along an elliptical curve as well

such that the value along the edge of the detector is the mean edge value and at the edge

of the extrapolated projection data the value drops to zero. Mathematically this may be

described as follows:

pi,j =



p̄ileft,j

√
1−

[
(ileft−i)
ileft

]2
: 0 < i < ileft

p̄iright,j

√
1−

[
(i−iright)
imax−iright

]2
: imax > i > iright

pi,j : otherwise

, (4.5)

where pi,j is the pixel value in the ith row and jth column of the detector readout, and

p̄ileft/right is the mean value along the left or right edge of the detector. This method is a

low-pass filtered approximation to the fourth method.

4.2.3 Quantitative evaluation methods

To quantitatively evaluate the performance of each technique, the signal difference to noise ratio

(SDNR), relative root mean square error (rRMSE), and the universal quality index (UQI)195 were

used. The SDNR was defined as follows:

SDNR = s̄obj − s̄bkg
σ̄

, (4.6)
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ROI

(a) (b)

5 mm

Figure 4.6: Example image reconstructions acquired with 45 projections over 45◦ (using method 2)
the segmented ground truth mask (b) and the ROI for the measurement of rRMSE f

where s̄obj is the mean signal in the object, s̄bkg is the mean signal of the background, and σ̄ is the

mean of the noise standard deviation in the object and that in the background: σ̄ = (σobj + σbkg) /2.

In this work, the SDNR was measured for the same feature of the ACR phantom shown in Figure

4.6 (using 45◦ tomo angle) as well as for a low contrast vessel in a cadaver breast (Figure 4.7). The

low contrast vessel was chosen due to its proximity to the border of the reconstruction volume (and

the edge of the FOV), its low contrast, and the fact that it was clearly visible in both contrast

mechanisms. The rRMSE is defined as follows:

rRMSE =

√∑
i

(
Ii − Itruth

i

)2∑
i

∣∣Itruth
i

∣∣ × 100%, (4.7)

where I is the image under evaluation, Itruth is the ground truth comparison image, and the subscript,

i, denotes the pixel location i. This was measured for an ROI containing a high contrast object

at the boundary of the object (see Figure 4.6). The ground truth was defined by segmenting the

object out using a two-component segmentation method. A two-component segmentation method
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5 mm

Figure 4.7: Tomosynthetic slices through a human cadaver breast volume reconstructed using FBP
and method 2. The low-contrast portion of the vessel in the lower right of the image was the feature
chosen for SDNR measurements as it is close to the boundary, low contrast, and visible in both
image contrasts.

was chosen as the object of interest was uniform and in the region of interest the background was

also uniform. Thus, a two-component model should be sufficient to model the object.

In addition, the UQI was measured for the same ROIs using the same segmented image as a

reference. This provides a more general assessment of image quality, and is defined as follows195:

UQI = 4σxyx̄ȳ(
σ2
x + σ2

y

)
[(x̄)2 + (ȳ)2]

, (4.8)

where the subscripts x and y denote the input image (called I in Eq. 4.7) and the ground truth

image for comparison (called Itruth in Eq. 4.7), respectively, σ2
x/y denotes the variance of x or y, x̄

and ȳ denote the mean values of x and y, respectively, and σxy denotes the covariance of x and y,

defined as follows: σxy = 1
N−1

∑N
i=1(xi − x̄)(yi − ȳ). The UQI has a dynamic range of [−1, 1] and is
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Table 4.1: Measured SDNR values for ACR phantom. The highest (best) values are shown in bold.

Tomo-like Methods CT-like Methods
Modality Tomo-angle 1 2 3 4 5

Absorption 45◦ 0.10 0.96 0.63 1.09 0.73

Table 4.2: Measured SDNR values for cadaver vessel. The highest (best) values are shown in bold.

Tomo-like Methods CT-like Methods
Modality Tomo-angle 1 2 3 4 5

Absorption 15◦ 0.36 1.00 0.35 1.09 0.52

unitless.

4.3 Results

The proposed methods were used to correct truncation artifacts for tomosynthesis data acquisitions

from both a bovine udder and cadaver breasts using our in-house bench-top data acquisition system.

Figures 4.8 and 4.9 show tomosynthesis images of the ACR phantom acquired with 15 views over

15 degrees and 45 views over 45 degrees, respectively. With no correction (method 1), the bright

bands at the edges of the absorption reconstruction volume can be clearly seen. With method 2,

the image seems to be free of truncation artifacts. With method 3, the image has some residual

vertical lines visible in the disk feature. In methods 4 and 5, similar results to method 2 and 3 are

seen for the ACR phantom. The image results for the bovine udder and cadaver breast case are

shown in Figures 4.10 and 4.11, respectively. These results are consistent with the phantom results,

with even more pronounced artifacts in some cases (Methods 4 and 5 in Figure 4.10). The results of

the SDNR measurements are shown for the ACR phantom and the cadaver vessel in tables 4.1 and

4.2, respectively, and the results from the rRMSE measurements are shown in table 4.3. As one

can qualitatively observe in all figures, the row-by-row data extrapolation methods work well for

tomosynthesis images.
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Table 4.3: Measured rRMSE values (all in percent, %). The lowest (best) values are shown in bold.

Tomo-like Methods CT-like Methods
Modality Tomo-angle 1 2 3 4 5

15◦ 1.0× 100 1.5× 10−1 1.5× 10−1 1.5× 10−1 1.6× 10−1

Absorption 45◦ 4.7× 10−1 6.6× 10−2 6.6× 10−2 8.0× 10−2 8.0× 10−2

Table 4.4: Measured UQI values (unitless, ranging from [−1, 1]). The highest (best) values are
shown in bold.

Tomo-like Methods CT-like Methods
Modality Tomo-angle 1 2 3 4 5

15◦ 4.8× 10−3 1.2× 10−1 1.3× 10−1 1.2× 10−1 1.4× 10−1

Absorption 45◦ −2.2× 10−3 3.7× 10−1 3.7× 10−1 3.6× 10−1 3.6× 10−1

Figure 4.8: Example images of the ACR mammography phantom reconstructed using the 5 different
extrapolation techniques to cope with data truncation. A 15◦ tomo angle (15 views) was used to
acquire these images. All images are displayed with the same W/L.

Figure 4.9: Example images of the ACR mammography phantom reconstructed using the 5 different
extrapolation techniques to cope with data truncation. A 45◦ tomo angle (45 views) was used to
acquire these images. All images are displayed with the same W/L.
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Figure 4.10: Example images of a bovine udder reconstructed using the 5 different methods. The
same slice position was used for each contrast mechanism, and all images are displayed with the
same W/L.

Figure 4.11: Example images of a cadaver breast reconstructed using the 5 different methods. The
same slice position was used for each contrast mechanism, and all images with the same W/L.

4.4 Discussion and conclusions

The quantitative evaluations performed mostly agreed with subjective assessments of image quality.

One exception, however, was that the “CT-Like” methods improved the CNR for imaging features

at the cost of residual artifacts; this is a nice example of the limitations of a metric such as the CNR.

On the other hand, the rRMSE metric accounted for both noise characteristics and image artifacts

since the ground truth comparison was a noise-free image. Thus, the rRMSE measurements agree

with the subjective image quality assessment. Similarly, the UQI also agreed nicely with subjective

image quality assessment. It was found that the “tomo-like” methods gave the best overall results,

and that the row-by-row method (method 2) worked best in all cases.

The tomo angle used for acquisition plays an important role as well. One can see in figures 4.8

and 4.9 that the extent of the artifacts depends heavily on the tomo angle, with the artifacts present

in a much larger portion of the image acquired with a 45◦ tomo angle than those acquired with a
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15◦ tomo angle in the case with no correction (method 1). It is worth pointing out that although

the extent of the artifacts may be greater for a larger tomo angle, with proper correction we can

expect better results with more view angles and a greater angular range.

In summary, we found that the method that provided the best image quality for truncated

tomosynthesis images was a method which assumed a “tomo-like” (slab) image object and a row-by-

row extrapolation (method 2). Using the appropriate method enables a reduction of artifacts in the

reconstruction of tomosynthesis volumes in cases where data truncation is present.
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5 Anatomical Noise

5.1 Introduction

In breast imaging, and in breast cancer screening in particular, the primary objective is to determine

whether or not a malignancy is present. However, the anatomical background in images may

significantly confound this imaging task. The impact of the anatomical background noise on detection

performance has been quantified using several techniques44,45,128–130 including a spatial frequency

dependent power spectrum, viz., the anatomical background noise power spectrum44,45,130. In the

presence of structure anatomical noise, the overall detectability for a specific imaging task is jointly

impacted by a generalized noise power spectrum that consists of two major components: quantum

and anatomical background noise44,45,130. The quantum noise depends on the imaging system itself

(such as the quantum detection efficiency of the detector), the image acquisition parameters (such

as the overall radiation exposure level and tube potential), and the breast itself (such as density,

thickness, etc.). By comparison, the anatomical background noise is primarily dependent on the

breast parenchymal structure, imaging conditions, and imaging geometry (compression, CC vs.

MLO planar view, etc.), although the impact of acquisition parameters on image contrast may lead

to some minor variation in the measured anatomical noise background131. It has been shown that

the power spectrum of anatomical background noise may be empirically modeled as44:

NPSa(f) ≈ αf−β (5.1)

where f is the spatial frequency, and α and β are two parameters determined by fitting the measured

and radially averaged NPSa(f) to the model given in Eq. (5.1). In reality, the parameters α
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and β may change from one imaging method to another and from patient to patient, but these

deviations should fall within a range of typical values. Typical values for β in absorption x-ray

mammography imaged using a cranio-caudal geometry with compression have been reported to be

around βmammo ≈ 3.2. Recently, β has also been measured for digital breast tomosynthesis (DBT)132

and breast cone-beam CT (BCT)131,133, yielding values of βtomo ≈ 3.1, and βBCT ≈ 2.0. Not only

does β depend on the imaging modality, but it also varies with the x-ray beam energy131, the breast

density46, and even the imaging plane (e.g., CC vs. MLO for mammography and DBT)133.

Despite its many dependencies on specific imaging conditions, it is well documented that β is

strongly correlated with lesion detection performance44,46,133–135. Therefore, quantitative assessment

and prediction of diagnostic performance for mammography should take into consideration not only

imaging system/acquisition parameters, but also this beta-power law. As an example, the concept of

a generalized NPS including the anatomical noise background has been developed and incorporated

into the model observer framework121. With this framework, the knowledge of the typical range of

β values for a given imaging method may help predict the lesion detection performance for that

method. Understanding the anatomical noise background can be critically important for image

task-orientated optimizations of determining system hardware and data acquisition parameters.

The purpose of this work was to explore the dependence of anatomical noise on reconstruction

method (full model based iterative methods vs. FBP) as well as to propose and develop a method

to simulate anatomical noise backgrounds realistically for model observer studies.

5.2 Method to determine the anatomical background noise

power spectrum

As described in the literature44,46,133,135,137, β can be estimated from local anatomical background

power spectra for different regions of interest (ROIs) in a given breast, followed by an ensemble

average over many local regions in many breast imaging datasets. The resulting power spectrum is

then radially averaged and fitted to the model given in Eq. (5.1). From this fit, the value for β may

be extracted. The steps of this process implemented experimentally here are presented as follows:

1. For a given breast image, square ROIs with the same size (128× 128 pixels) were randomly
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selected. The central coordinates of each ROI were randomized with the constraint that they

must fall within the breast parenchyma without being too close to either the chest wall, nipple,

or skin line. To ensure the ROIs were at an appropriate location, the center of mass of image

intensity values of each breast was computed first and then each randomly-selected ROI was

constrained to be within a certain distance (in pixels) from the center of mass of the breast.

2. A radial Hanning window was applied to each ROI to avoid discontinuities at the boundaries

before the Fourier transform was performed for anatomical noise power analysis. This window

was defined as:

W (r) =

 0.5 + 0.5 cos
(
πr
R

)
: r ≤ R

0 : r > R
, (5.2)

where r is the pixel location in the ROI (r =
√
x2 + y2, assuming the center of the ROI is

x = y = 0) and R is half the width of the ROI in pixels (R = 64 here).

3. The Fourier transform of each ROI was then calculated using the fast Fourier transform (FFT);

the square modulus of each of these Fourier transforms yielded a single realization of the

power spectrum.

4. These individual power spectra were then averaged across ROIs, averaged radially, and fit to

the function,

NPSa(fr) = αf−βr . (5.3)

5. Finally the parameters, α and β, were extracted using a least squares fitting procedure.

Extremely low and extremely high frequencies do not correspond to the spatial scales of

anatomical structures, and as a result the linear regression is performed over a limited range of

frequencies. In this study, this range was typically determined to be ≈ [0.4, 3] mm−1 to provide the

maximum r2 value (coefficient of determination) for the least square fitting.

5.2.1 Validation of workflow

The workflow described in Section 5.2 is independent of imaging method, and thus can be used on

breast images from any imaging modality. Our implementation of this workflow was used to estimate



89

Figure 5.1: The imaging geometry (a) and the measured radial anatomical noise for clinical
mammography used for validation (b).

β in clinical mammography with an IRB-approved patient cohort consisting of 56 anonymized

mammograms. A clinical mammography system (Hologic Selenia Dimensions, Hologic Inc., Bedford,

MA) was used and our measured values (β = 3.3, r2 = 0.99) (Figure 5.1) were comparable to those

values presented in the literature46,133,135.

5.3 Anatomical noise and image reconstruction method

Previous work showed that moving from mammography to DBT resulted in a minimal reduction

in anatomical noise132. This can be understood in large part as limited by anatomical noise from

adjacent slices contaminating DBT reconstructions. In other words, even though DBT can provide

focal planes at different heights above the detector, each of those focal planes is contaminated

still with content from adjacent slices and the result is significant anatomical clutter. We saw in

Chapter 3 that the introduction of a model-based iterative reconstruction method (DOS-SPART)

was able to reduce the effective slice thickness for DBT acquisitions. Thus, we hypothesized that

the introduction of DOS-SPART in addition to reducing the through plane blurring artifacts for

objects of interest (thus improving object localization) may also reduce anatomical clutter in the

reconstructed images.
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5.3.1 Measurement

To test this hypothesis, the anatomical noise power spectra were measured in a large cohort of clinical

breast exams (N = 105) using the method described previously in Section 5.2. The measurements

were performed in volumes reconstructed using three methods: the commercial reconstruction

(FBP+standard post-processing), DOS-SPART (TV regularization), and DOS-SPART (PICCS

regularization). The parameters for the DOS-SPART reconstructions are provided in Table 3.2. The

anatomical noise parameter, β, was measured in the central 25 slices of each reconstructed volume

for a total of 2,625 measurements. At each slice position, the scaled pixel pitch (per the projective

pixel grid in Figure 3.3) was used to determine the frequency sampling in the Fourier domain. As

previously performed, the fitting of the NPS was performed over the frequency range that maximized

the coefficient of correlation, r2. This range was found by trying all possible frequency ranges and

choosing the β value from the best fit. The measured β values were compared across methods,

as well as between slices. A two-sample t-test was used to compare the means of the measured β

values for each reconstruction method and determine statistical significance. In all cases, the null

hypothesis was that the means were the same, H0 : µ1 = µ2, and thus the alternative hypothesis

was a difference in the mean measured value, H1 : µ1 > µ2.

5.3.2 Results

The measured anatomical NPS for the three image reconstruction methods are shown in Figure

5.2. Previously, we found the range of frequencies which maximized the coefficient of correlation in

mammographic images to be ≈ [0.4, 1]mm−1. For this large cohort of DBT slices, the frequency

ranges used for the three reconstruction methods are shown in Figure 5.3 and summarized in Table

5.1. In all cases, the frequency range was consistent with published recommendations for fitting

ranges. The corresponding r2 values are shown in Figure 5.4; the linear fit was quite good in all

cases (mean r2 > 0.99 in each modality; r2 > 0.90 for all measurements).

Figure 5.5 compares the measured β values using the DOS-SPART method with the measured

values from the commercial reconstruction. A least squares linear fit was also performed and the fit

is provided in the legend of each figure. In each case, the slope of the fit was close to one (0.96 and
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Figure 5.2: The measured anatomical noise power spectra for each reconstruction. The linear least
squares fits are shown as well.

Table 5.1: The limits of the frequency range used to calculate β for the DBT reconstructions and
the corresponding standard deviations for the different reconstruction methods.

Commercial DOS-SPART (TV) DOS-SPART (PICCS)
fmin ± σf (mm−1) 0.25±0.06 0.24±0.08 0.24±0.08
fmax ± σf (mm−1) 1.24±0.25 1.25±0.24 1.17±0.22
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Figure 5.3: The frequency limits used for the fittings used to calculate β. The upper and lower
limits were chosen such that the coefficients of correlation (Figure 5.4) were maximized.

0.99 for TV and PICCS regularizations, respectively), with a negative and non-zero offset. Figure 5.6

shows the measured β values for the three reconstruction methods. In addition, the mean measured

values are compared in Table 5.2 with the statistical significance of the differences presented in

Table 5.3. From the box and whisker plots we can see that both DOS-SPART implementations (TV

regularized and PICCS regularized) have significantly reduced anatomical clutter compared with

the commercial reconstruction. Figure 5.7 shows the average β for slices about the center. These

curves are relatively flat, indicating that irrespective of reconstruction method the anatomical noise

in the central slices about the center of the compressed breast is approximately the same.

In a clinical example shown in Figure 5.8, we can see the impact of reduced anatomical clutter

on margin detection for a spiculated mass. The high-contrast calcification is clearly visible in all the

reconstructions; however, the margins are much sharper and more well defined in different slices

with the DOS-SPART reconstructions.
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Figure 5.4: The measured coefficients of correlation for the fittings used to calculate β.

Table 5.2: The measured mean values of β, the corresponding standard deviations for the different
reconstruction methods.

Commercial DOS-SPART (TV) DOS-SPART (PICCS)
βmean ± σβ 3.27±0.40 2.30±0.55 2.23±0.50

Table 5.3: The statistical significance of the differences in measured β values for the different
reconstruction methods. The subscripts Comm., DS(TV), and DS(PICCS) indicate the commercial
reconstruction method, DOS-SPART (TV regularizer), and DOS-SPART (PICCS regularizer),
respectively. (

βComm. > βDS(TV)
) (

βComm. > βDS(PICCS)
) (

βDS(TV) > βDS(PICCS)
)

p<<0.001 p<<0.001 p > 0.05
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(a) (b)

Figure 5.5: The measured β values for the DOS-SPART DBT reconstructions plotted against the
commercial reconstruction. The linear least squares fit is shown in the legend.

Figure 5.6: The measured β values for the DBT reconstructions.
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Figure 5.7: The average measured β value as a function of slice position for the two reconstruction
methods.

5.4 Anatomical Noise Simulations

Understanding the anatomical background in new breast imaging techniques is a step towards

understanding imaging performance, but we need to go further to understand its actual clinical

impact. Traditional metrics, such as the CNR, are easy to calculate, but cannot account for

aspects of an imaging system such as the anatomical noise. To rigorously quantify clinical imaging

performance, we need a task-based metric that accounts for many different aspects of the imaging

system. Such a metric can be used to predict system performance under a variety of conditions

for a variety of imaging tasks. Using a model observer, a metric which meets our criteria, system

parameters such as MTF, NPS, tube potential, dose, etc., may be incorporated along with actual

observer performance (trained radiologist vs. physicist readers) and a specific imaging task to

compare performance.
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Figure 5.8: A clinical DBT exam reconstructed with the commercial reconstruction engine (top),
DOS-SPART (TV Regularizer) (middle), and DOS-SPART (PICCS Regularizer) (bottom). A
spiculated mass with a large calcification shown in focus and at locations above and below the focal
plane. All image shown with the same W/L.

5.4.1 Methods

In order to use model observers, it may also be desirable to be able to simulate and recreate

anatomical noise. To this end, we used our measured noise power spectrum to test such a framework.

In this study we accounted for anatomical noise, both quantum and electronic noise, finite (100

µm) detector elements, as well as different mass objects sizes. Each noise instance was generated by

adding the quantum NPS to a simulated NPSa (including both α and β parameters). By scaling

the quantum component, different dose levels could be simulated. The β parameter was varied to

simulate different noise power shapes as well. An example simulated NPS is shown in Figure 5.9.

Once a 1D NPS was simulated, it was used to generate a 2D NPS. Multiplicative random Gaussian

noise with a mean of 1 was then introduced to generate a specific noise instance. One method that

can be used to understand how anatomical noise impacts detection performance is a generalized

ideal model observer. This model observer can account for anatomical noise and quantum noise in
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(a) (b)

Figure 5.9: Example of a 1D (a) and 2D (b) simulated noise power spectrum for β = 3.3 (to simulate
mammography).

assessing image quality44. This model observer is defined as follows:

(
d′
)2 =

∫ ∫ |T (fx, fy)|2 · [MTF (fx, fy)]
NPSa (fx, fy) + NPSq (fx, fy)

dfxdfy, (5.4)

where T is the Fourier domain image task function, the MTF is the system modulation transfer

function, NPSa is the background anatomical noise power spectrum, and NPSq is the quantum

noise power spectrum. As it turns out, the model observer in Eq. 5.4 is a very simplified model,

expected to provide an upper bound to observer performance. There are many other model

observers, including: prewhitening observers with the eye filter and internal noise (PWEi)196–198,

nonprewhitening observers (NPW)199,200, nonprewhitening observers with eye filter and internal

noise (NPWEi)201–203, and channelized Hotelling observers (CHO)204–210. With the exception of

the CHOs, these are all frequency-domain analyses which modify the ideal observer laid out in Eq.

5.4 incorporating an observer’s ability to prewhiten noise, including the frequency response of the

eye, and internal observer noise.

While implementing these different observers can provide different performance estimates, on

their own there is no way of knowing which of these estimates is the best indicator of actual observer
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performance. A commonly used method to calibrate the model observers and identify the model

observer which best represents human performance is to implement each of these families of observers

and perform a two-alternative forced choice (2AFC) human reader study to tune the parameters of

each model observer to best match human performance126. The proportion of correct responses

from the 2AFC, P , is theoretically related to the model observer detectability as follows211:

P = 1
2

[
1 + erf

(
d′

2

)]
, (5.5)

where erf denotes the error function which is defined as erf(x) = (2/
√
π)
∫ x

0 e
−y2dy. Using this

framework, P , obtained from human observer studies can be converted to d′ values and compared

to the model observer results. This can help us determine which model observer is the best choice

to use for system optimization moving forward.

While it is beneficial to consider a model such as that provided in Eq. 5.4 in order to understand

which aspects of the imaging system contribute to detectability, in practice the CHO models are

very helpful for simulation studies. Since the framework proposed here to simulate anatomical noise

backgrounds produces noise instances, the ability to work directly in the image domain is valuable.

In addition, a CHO model utilizing Gabor channels has been validated and calibrated with human

observers previously for breast mass detection tasks126. To that end, a preliminary study utilizing

the simulated anatomical noise backgrounds and Gaussian masses with varying diameters (diameter

was defined as 2
√

2 log 2σ, the FWHM of the Gaussian distribution; see Figure 5.10) was performed.

The goal of this study was to see subjectively how mass detectability changed as a function of

lesion diameter and β. The CNR for the mass lesion was the same. We can see in Figure 5.11

several examples of these simulated noise backgrounds with a 10 mm Gaussian mass embedded. A

CHO model was implemented using 50 Gabor channels, similar to those described and previously

validated in Li et al.126. This model was then used to evaluate the detectability of the Gaussian

lesions embedded in the simulated anatomical noise backgrounds.
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Figure 5.10: Simulated Gaussian mass lesions of different sizes.

5.4.2 Results

A contour plot of the measured (d‘) values for β ∈ [0, 4] and objects with diameters ranging from 1

mm to 12 mm is shown in Figure 5.12. Detectability plots for a variety of β values (representing

mammography, commercial DBT, DOS-SPART reconstructions, breast CT, and white noise) from

the contour plot are shown in greater detail in Figure 5.13.

5.5 Discussion

The measured β values for the DOS-SPART images are important results, because they indicate

that by modifying the reconstruction method, DBT images can achieve an anatomical background

more similar to dedicated breast CT than mammography. In addition, this has been achieved using

a clinical system with the smallest tomo angle of any clinical system. If human reader studies
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Figure 5.11: Examples of simulated noise instances for different β values with a 10 mm embedded
Gaussian mass.
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(a) (b)

Figure 5.12: The measured CHO detectability for Gaussian lesions in simulated anatomical back-
grounds. The full range (β ∈ [0, 4]) is shown in (a) with a reduced range (β ∈ [2, 4] shown in (b) to
emphasize the characteristics for real imaging modalities.

confirm the reduced anatomical clutter provides improved mass detection as predicted by observer

theory, the introduction of DOS-SPART has the potential to make a significant impact in breast

cancer detection.

In addition to the measured β values, the simulation results are very interesting for a few reasons

as well. First and foremost, the β values corresponding to mammography reflect the human observer

performance seen for similar mass lesions in work by Burgess et al.44. They found that the required

contrast needed to detect mass lesions was reduced for smaller objects in anatomical backgrounds

from mammography. An increasing detectability for smaller mass lesions found in our simulations

conveys the same message: smaller objects are more conspicuous than large ones in mammographic

backgrounds.

Second, there is an inflection point around β = 2.8 in the detectability maps shown in Figure 5.12

(clearly visible in (b)). At this point, the trend switches the conventional Rose model predictions

(monotonically increasing detectability with increasing mass size) to the results discovered by Burgess

et al.44 (monotonically decreasing detectability with increasing mass size). Thus, for breast imaging

modalities with β below this threshold we would expect reader results to follow a Rose modeltrend.
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(a) (b)

Figure 5.13: The measured CHO detectability for Gaussian lesions in simulated anatomical back-
grounds for the modalities and reconstruction methods explored in this work.

However, for modalities where β > 2.8, we expect results consistent with clinical experience in

mammography.

Third, the curve for breast CT (where anatomical noise is largely alleviated) and the curve for

white noise (no anatomical contribution) shows a trend which matches our expectations from the

Rose model quite well: increasing object size leads to increased detectability. Due to the finite size

of the ROI used for simulation, there are diminishing returns as the objects get very large, as the

largest objects occupy a substantial portion of the ROI, so the curves level off os the object diameter

gets above ≈ 10 mm.

Fourth, the curve for commercial DBT reconstructions is inferior to mammography for both

very small and larger masses and equivalent for masses between about 3 and 5 mm in diameter.

This is somewhat surprising, however a major published advantage of DBT is its improvement in

specificity (reducing false positive results) rather than sensitivity (mass detection)212. Thus, we

might not expect a big boost in detection performance for DBT vs. mammography.

Finally, we can see the curve for DBT using DOS-SPART is similar to that of the commercial

reconstructions for small objects, however it improves much more rapidly for larger masses, offering

substantial improvement over mammography for masses larger than ≈ 5 mm in diameter. This may

indicate the potential utility of DOS-SPART reconstruction in a clinical setting.
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5.6 Conclusions

Understanding of the anatomical background noise spectrum in breast imaging can provide powerful

insight into the ability of a given imaging technique to detect suspicious lesions or features. The

NPS of this is often characterized by a power law, αf−β, where β characterizes the appearance

and strength of anatomical noise. In this work we measured the anatomical noise in DBT recon-

structions using both a commercial FBP-based reconstruction method and an in-house model-based

iterative reconstruction method, DOS-SPART. We found the reduced slice thickness in the iterative

reconstructions led to significantly reduced anatomic clutter in the reconstructed images. This

has the potential to dramatically improve mass detection in DBT reconstructions. In addition, a

framework to simulate anatomical backgrounds was proposed and utilized with a model observer to

predict mass detection performance as a function of the anatomical noise parameter, β, and mass

size. The data corresponding to β ≈ 3 (close to traditional mammography and DBT with FBP)

match previously published human studies, while the curves corresponding to the DOS-SPART

reconstructions showed improved mass detection performance for masses larger than about 4 mm in

diameter.

One interesting point to consider in this work is the following: with traditional mammography,

it has been shown that anatomical noise is dominant, and that the dependence of the images on

dose is minimal. However, in images with reduced anatomical noise, the quantum noise can again

be a major contributor. As a result, exploring dose reduction potential is a very interesting topic, as

current dose levels are determined using standard mammography or FBP images in current clinical

practice.
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6 Dose Reduction in Digital Breast

Tomosynthesis with Prior Image

Constrained Compressed Sensing

(DR-PICCS)

As previously discussed, digital breast tomosynthesis (DBT) is an emerging breast imaging modality

that builds on existing equipment and techniques used in mammography by incorporating three

dimensional (3D) information51. DBT has been clinically available in the United States since 20118,

and offers spatial resolution comparable to that of mammography while simultaneously alleviating

two major problems inherent to two-dimensional (2D) imaging modalities: overlaying structures

obscuring important pathology (false negatives leading to decreased sensitivity) and simulating

pathology when none is present (false positives leading to decreased specificity)49,90,98,99. Although

DBT is becoming more common in clinical practice, one major limitation is the concern of radiation

exposure.

Ionizing radiation is used to generate endogenous image contrast in DBT, and as a result a

balance between radiation exposure to the patient and image quality must be achieved. For many

breasts, a DBT acquisition requires a radiation exposure similar to that of a mammogram on the

same unit, however in some cases (such as thick or dense breasts) the exposure can be significantly

higher213. In addition, current FDA-approved practice for some systems uses a “combo scan”, in

which both 2D mammographic and tomosynthesis acquisition are obtained and reviewed, requiring
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two separate exposures and an increased dose for the exam214. This may be mitigated somewhat

with the introduction of 2D synthesized mammograms generated from a tomosynthesis acquisition68.

These synthesized mammograms use the acquired tomosynthesis data to generate a single 2D image

similar to a mammogram. Since mammography and DBT are powerful tools that are used to screen

a patient population consisting of healthy patients as well as cancer patients8,215–217, maintaining a

low radiation dose is especially important.

In x-ray based imaging techniques, the patient exposure can be reduced via several different

techniques.115 For tomographic imaging techniques, such as computed tomography (CT) or DBT,

the number of view angles can be reduced while keeping other imaging parameters fixed. Although

this reduces dose, it can result in image artifacts due to aliasing caused by angular under-sampling.

In current DBT systems such as the one used in our studies, the number of projections is limited to

fifteen. With so few projection views over a small angular range (≈ [−7.5, 7.5]), further reducing the

number of views or decreasing the angular range will have a negative impact on the image quality

and localization accuracy of the reconstructed images48,139,140.

Another common technique is to reduce the x-ray tube current (and thus x-ray photon output)

for the acquisition. This strategy reduces the x-ray fluence and results in a linear reduction in

patient exposure47. However, a reduced x-ray fluence results in noisier images. Increased image

noise results in potential degradation in diagnostic performance due to reduced detectability of

masses, calcifications, and fine architectural detail. To reduce image noise, many post-processing

techniques have been documented, however most conventional de-noising techniques inevitably blur

the image (degrade spatial resolution) while removing noise from images. In breast imaging, spatial

resolution is paramount to the identification of small clusters of microcalcifications or spiculated

margins of lesions, key to the discovery of early stage breast cancers8,47. Therefore, any technique

to reduce image noise in DBT must avoid the degradation of spatial resolution as much as possible

to maintain the diagnostic performance of the DBT imaging system.

In this work, an image de-noising technique that was introduced to reduce image noise while

retaining spatial resolution, viz., Dose Reduction with Prior Image Constrained Compressed Sensing

algorithm (DR-PICCS)142–145,175, was evaluated for its potential in radiation dose reduction in DBT

imaging. The DR-PICCS technique has found several applications within diagnostic CT143–146,177
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and cone beam CT 148 to demonstrate its potential in noise reduction while preserving spatial

resolution. However, for DBT applications, the potential to retain spatial resolution and noise texture

while reducing the overall image noise level must be carefully evaluated in phantom and human

observer studies. Quantitative measurements of signal difference-to-noise ratio (SDNR), modulation

transfer function (MTF), and noise power spectrum (NPS) have been performed to characterize the

performance of DR-PICCS. Reader studies by experienced breast imaging radiologists have been

performed in ex vivo breast cadaver and in vivo retrospective human subject studies to quantify

the potential dose reduction in DBT using DR-PICCS.

The chapter is organized as follows: Section 6.1 describes the image acquisition techniques, the

quantitative metrics to characterize the images, and the method of radiologist reader studies. Section

6.1 provides a description of all of the parameters used for image acquisition, a thorough description

of the DR-PICCS method, as well as the parameters used to perform DR-PICCS reconstructions. A

description of how the measurements were performed on the images is provided as well. Section 6.2

provides a summary of the results from quantitative measurements and the reader studies. Section

6.3 aims to interpret the results, provide a summary of the work completed, and provide the outlook

of this work.

6.1 Materials and Methods

6.1.1 Data acquisition system and parameters

All data were acquired with a Selenia Dimensions DBT system (Hologic, Inc. Bedford, MA). The

system geometry used in this work was a Cartesian coordinate system with the z-axis pointing

vertically up from the detector surface (positive z towards the x-ray tube), the y-axis pointing away

from the chest wall along the detector, and the x-axis pointing laterally along the detector edge (see

Figure 3.2). All human subject data were acquired under the approval of an institutional review

board (IRB).
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6.1.2 Dose Reduction with Prior Image Constrained Compressed Sensing

(DR-PICCS) Algorithm and Numerical Implementations

The Prior Image Constrained Compressed Sensing (PICCS) algorithm was developed initially as a

reconstruction technique for highly under-sampled projection data sets in computed tomography

(CT)141, but it has been shown to have a variety of interesting clinical applications that do not have

to be associated with the under-sampled reconstruction problems142–146,178,179. In the unconstrained

framework used in this work, PICCS is performed by iteratively solving the following unconstrained

minimization problem:

x̃ = arg min
x

[
λ

2
(Ax− y)TQ(Ax− y)

||Axp||2
+ fPICCS(x)

TV (xp)

]
, (6.1)

fPICCS(X) = αTV(x) + (1− α) TV(x− xp), (6.2)

where x ∈ RMN×1 is the vectorized representation a two-dimensional M ×N image; xp is a low

noise prior image generated by a low-pass filter or other conventional denoising method. The vector,

y, is a synthetic projection dataset which will be described in detail below. Q is a diagonal matrix

to introduce a pseudo-statistical weight to each synthetic datum. In non-CT applications, such as

that proposed in this work, the matrix, Q, should be the identity matrix since highly structured

noise streaks are typically not present. A is the system matrix that defines the geometry used to

generate synthetic projection data y. The parameters α and λ are unitless scalars that determine

the relative contribution of different terms in the optimization problem. Specifically, λ defines

the relative weight of the PICCS and data-consistency terms and α defines the relative impact of

the prior image in the PICCS term. The denominators in Eq. (6.1) the expression normalize the

optimization problem such that selection of λ is nearly independent of application147. The total

variation of the image matrix X which is defined as follows:

TV(x) =
∑

1<i<M(N−1)

√
(xi+1 − xi)2 + (xi+M − xi)2. (6.3)

In this work, to solve the unconstrained optimization problem in Eq. (6.1) the non-linear conjugate



108

Figure 6.1: The DR-PICCS workflow shown with a clinical CT slice from a human abdomen.

gradient optimization method with Fletcher-Reeves updates and a backtracking line search subject

to the Wolfe conditions for sufficient decrease was used218.

The PICCS framework was originally intended to reconstruct CT datasets, however it has

been shown that the adaptation of PICCS to dose reduction (DR-PICCS) can operate directly

in the image domain to reduce noise while retaining important imaging features.143,145 In this

framework (see Figure 6.1) a noisy image of interest is forward projected to generate a synthesized

projection dataset, y, and a prior image can be generated by using a conventional image denoising

technique over the noisy image. The purpose of applying DR-PICCS, rather than a direct use of the

conventional denoising technique, is to iteratively restore the loss of spatial resolution in conventional

denoising techniques.

6.1.2.1 Prior image generation

In this work, the prior image is generated using a 3D anisotropic diffusion filter and an automated

slice-by-slice noise estimate.149,150 This method uses a solution to a partial differential equation

(PDE) modeling the physical diffusion process. This process is performed iteratively and each
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iteration models the temporal evolution of a diffusive system. This process may be described as

follows:149

It+1 = It + λ
∑
k

Ck∇kIt, (6.4)

where It is the system (image) at the time point t, λ is a normalization factor, k denotes a spatial

direction, Ck is the conduction coefficient in the direction, k, and ∇kIt is the directional gradient

along the direction, k. Although there are many possible models, in this work, Ck, was defined as a

function of the magnitude of ∇kIt as follows150:

Ck = φ (||∇kIt||) = 1

1 +
(
||∇kIt||

κ

)2 , (6.5)

where κ is determined by a local noise estimate calculated using the histogram threshold method

described by Canny.150 Due to the automation used to generate the prior image, the only free

parameters available to the user were the total desired noise reduction and the noise estimation

threshold value defined as 0.99 + τ. It should be noted that the value of τ depends on the number of

histogram bins used in the estimation; in this work 2048 histogram values were used. These values

were chosen subjectively. An example of prior images using a range of these values are shown in

Fig. 6.2. A 75% noise reduction was used with τ = 5× 10−3 and provided sufficient noise reduction

without severe distortion of small calcifications.

Finally, a brief summary of the working principles in DR-PICCS may be beneficial. The

algorithm depends on two components: First, the prior image used in the PICCS reconstruction

has excellent signal-to-noise ratio (SNR) characteristics, but limited spatial resolution. Second,

the projection data have the desired high spatial resolution encoded, but also have the high image

noise in the originally-reconstructed images that limits its utility. The goal of the algorithm is

to produce an image with the desired characteristics from both the prior image and the original

image. To accomplish this, a forward projection operation is used to encode the spatial resolution

of the original noisy image in a synthetic projection dataset. The iterative reconstruction procedure

of the PICCS implementation is then used to clone the high SNR nature of the prior image into

the reconstructed image. The spatial resolution lost in the prior image is iteratively corrected
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Figure 6.2: The two largest calcification clusters and the largest mass lesion from the ACR phantom
are shown here in prior images generated using a range of parameters.

by matching the synthetic forward projection data with the high spatial resolution information

encoded.143 During the PICCS reconstruction, the local contrast is determined by the prior image

and the “data consistency” updates are only used to update the spatial resolution, since with

accurate local mean values the only inconsistencies in the projection data should be at boundaries.

Since the prior image is generated using the 3D dataset, no inconsistency from slice to slice is

introduced by this algorithm.

6.1.3 Reconstruction methods

In this work, three reconstruction methods were considered: (i) the commercial reconstruction

method including filtered backprojection (FBP) and post-processing offered by the Hologic Selenia

system; (ii) conventionally denoised reconstructions; and (iii) DR-PICCS reconstructions. For the

DR-PICCS and conventionally denoised reconstructions, image volumes were first generated using

FBP with no additional post-processing. These noisy volumes were then denoised either with the

DR-PICCS algorithm (using α = 0.5 and λ = 104 which consistently gave the best results) or via

convolution with a 3× 3 Gaussian kernel (σ = 2 pixels). These methods were compared using a

variety of metrics as outlined below.
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6.1.4 Performance evaluation of DR-PICCS: Measurement of the Impact of

Radiation Dose on Signal Difference-to-Noise Ratio (SDNR)

A prospective dose reduction study using an American College of Radiology (ACR) mammography

accreditation phantom (Fluke Biomedical, Cleveland, OH) was performed. In this study, the signal

difference-to-noise ratio (SDNR) was measured for each reconstruction method for several different

imaging features at different exposure levels (100%, 88%, 76%, 64%, 59%, 47%, 34%, and 22%;

see Table 6.1 for acquisition parameters). A tube potential of 29 kVp was used for all phantom

acquisitions. The SDNR of the largest three fibers, the largest three calcification groups, and the

largest four lesions were measured (see Figure 6.3) for each of eight dose levels. For the calcifications,

the SDNR of each calcification in the group was measured and an average SDNR for each group

was calculated. The SDNR was defined as follows:

SDNR ≡ µo − µB
σ̄

with σ̄ = σo + σB
2 (6.6)

where µ is the measured mean value in the given region of interest (ROI), σ̄ is the mean standard

deviation, σi is the measured standard deviation in the ROI, and the subscripts, O and B, represent

the object and the background respectively. The SDNR was plotted as a function of dose and linear

regressions were performed in each case to predict SDNR performance and to assess the correlation

between SDNR and dose.

Table 6.1: ACR phantom image acquisition parameters

Parameter Percent Dose (%)
100 88 76 64 59 47 34 22

mAs 51.5 45.3 39.9 33.2 30.2 24.2 17.7 11.3
Organ dose 1.3 1.2 1.0 0.9 0.8 0.6 0.5 0.4(mGy)

6.1.5 Performance evaluation of DR-PICCS: Noise Power Spectrum

Measurements

The noise power spectrum (NPS) was calculated for each reconstruction method of a 4.1 cm thick

anthropomorphic solid water phantom (see Figure 6.4). The data for this calculation were acquired
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Figure 6.3: The imaging features of the ACR phantom used for SDNR measurements are shown
circled here in the full dose commercial reconstruction of the phantom.

at 29 kVp and 30 mAs, providing a mean glandular dose of 0.8 mGy. The 3D NPS was measured as

follows127:

S (fx, fy, fz) = ∆x∆y∆z

NxNyNz

〈
|DFT {Vi (x, y, z)}|2

〉
, (6.7)

where ∆i is the pixel pitch in the i direction, Ni is the number of pixels in the volume of interest

(VOI) used to estimate the NPS in the i direction, Vi is a noise instance, 〈·〉 is the averaging

operation, and DFT is the 3D discrete Fourier transform.

Three independent image volumes were acquired and used to generate three distinct noise-only

images by subtracting the reconstructed volumes from one another and scaling by a factor of 1/
√

2

to preserve the noise amplitude. In each of these noise instances, approximately 1500 overlapping

128 × 128 × 16 volumes of interest (VOI) were extracted from the phantom image (see Figure

6.4) to simulate a large ensemble average. Each VOI had its mean subtracted and was used as a

noise instance (Vi) to estimate the NPS using Eq. 6.7. The pixel size used for this estimate was

∆x = ∆y = 0.110 mm and ∆z was 1 mm, resulting in ∆fx = ∆fy = 0.04mm−1 and ∆fz = 0.03mm−1.

While the 3D NPS provides a comprehensive understanding of the system, the 1D NPS provides

an opportunity to compare the NPS in the same plot. The 1D NPS is given by the following

expression:
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Figure 6.4: The image object used in the NPS measurements is shown in (a). On the left is the
solid water plate and on the right is an anthropomorphic phantom where the measurements were
made (region denoted with the gold square). (b), (c), and (d) show an example of a noise instance
reconstructed using the commercial reconstruction, conventional denoising, and with DR-PICCS,
respectively.

S1D (fi) =
∫ ∫

S (fi, fj , fk) dfjdfk, (6.8)

where the indices i, j, k can take x, y, z as their components in a non-repeated manner. The 3D

NPS were normalized for comparison by dividing the NPS by the sum of all elements of the NPS:

Snorm = S (fx, fy, fz)∑
fx

∑
fy

∑
fz

S (fx, fy, fz)
. (6.9)

6.1.6 Performance evaluation of DR-PICCS: Spatial Resolution Measurements

The spatial resolution was characterized via modulation transfer function (MTF) measurements.

Since DBT does not necessarily provide uniform spatial resolution at different heights above the

detector57, the MTF was measured in the plane of the detector as well as at 2 cm intervals above the

detector up to 8 cm (see Table 6.2 for acquisition parameters). These measurements were performed

for the DR-PICCS reconstructions, filtered backprojection (FBP with no additional denoising),

and the conventionally denoised reconstruction. The MTF was measured using an edge phantom

(0.025 mm Pb) consisting of a square cutout (providing 4 edges per acquisition) and the method

proposed by Fujita et al.219. Since an edge was measured rather than a slit or a wire, the measured

edge profile was differentiated to generate a line profile. In order to generate an up-sampled line
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Figure 6.5: A workflow demonstrating how the presampled LSF was measured in this work. In (a)
an image of an angled edge is shown as the starting point for the workflow.

spread function (LSF) and reduce aliasing in the MTF measurement, an angular registration and

re-sampling was performed to generate an average line profile for each measured edge.

For each of these line profiles one tail corresponds to air and the other to lead. The tail

corresponding to lead was much noisier than the air tail and typically didn’t drop all the way to zero,

but rather retained some small offset. In order to mitigate noise and ensure both tails fall to zero,

the generated line profile was segmented at about 10% of the peak value on the lead tail side. This

tail was then extrapolated to match the air side and both tails were then smoothed to remove the

low-frequency-drop that characterizes noisy MTF measurements. The smooth line profiles acquired

for each edge were averaged and re-normalized to generate an up-sampled LSF. The magnitude of

the 1D discrete Fourier transform of the LSF was then taken to generate an MTF and at least two

edges were measured in each plane. This procedure is summarized in Figures 6.5 and 6.6.
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Figure 6.6: A workflow demonstrating how the MTF workflow from a presampled measured LSF
shown in (a). The F symbol indicates a 1D discrete Fourier transform.

Table 6.2: MTF measurement image acquisition parameters

Parameter MTF Phantom
Edge height (cm) 2 4 6 8

Object thickness (cm) 2.2 4.3 6.4 8.4
kVp 26 29 33 38
mAs 30.3 48.2 66.6 84.5

Organ dose (mGy) 0.7 1.2 2.1 3.7

6.1.7 Performance evaluation of DR-PICCS: Human Observer Study

DBT data sets of the ACR breast accreditation phantom and two cadaver breasts were obtained at

varying radiation exposure levels (see Table 6.3 for acquisition parameters). The cadaver breasts

used were post-mastectomy breasts sealed in fiberglass containers. Five breast radiologists (4

with 20+ years experience, 1 with 5 years experience) performed a two alternative forced choice

(2AFC) study on diagnostic mammography/DBT review stations with calibrated 5 MP monitors

(Hewlett-Packard, Palo Alto, CA and Hologic, Inc., Bedford, MA) mammography review stations.
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In each case, one image was a slice from a cadaver reconstruction acquired at full dose using

the commercial reconstruction engine, while the other image was a DR-PICCS reconstruction of

the same slice at 60% dose. The side of the screen displaying the DR-PICCS reconstruction was

randomized for each slice shown. The radiologists were assigned the following task: when shown

two similar images of the same slice of the same cadaver breast specimen, choose one of the two

displayed images as diagnostically superior. The radiologists were not provided an opportunity to

adjust the window/level for the images.

The radiologist reviewers’ results were pooled into a single dataset for statistical analysis. If the

full dose commercial reconstruction was chosen, that result was scored zero; if the reduced dose

DR-PICCS reconstruction was chosen, that result was scored as 1. Two 1-tailed t-tests were used to

determine a 95% confidence interval for the mean score. A mean score of one indicated the reduced

dose DR-PICCS reconstruction was chosen all of the time, a mean score of zero indicated the

full-dose commercial reconstruction was chosen all of the time. A mean score of 0.5 was considered

to mean the two techniques were equivalent.

Table 6.3: Cadaver breast image acquisition parameters

Parameter
Cadaver 1 Cadaver 2

Percent Dose (%) Percent Dose (%)
100 60 100 60

Object Thickness (cm) —– 6.2 —– —– 6.3 —–
kVp —– 33 —– —– 33 —–
mAs 67.0 39.4 69.7 42.4

Organ dose (mGy) 2.3 1.3 2.3 1.4

6.2 Results

6.2.1 Qualitative Comparison of Images from Two Image Reconstructions at

Two Exposure Levels

A high-density mass with irregular margins is shown in Figure 6.7 at full dose using the commercial

reconstruction technique as well with DR-PICCS denoising. This lesion appears in an 8.8 cm thick

compressed breast, and was imaged at 40 kVp and 76.3 mAs resulting in a mean glandular dose of

3.9 mGy. In this case, important imaging features such as calcifications and margins have been well
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Figure 6.7: An example of a lesion with calcifications reconstructed (at the same dose level) using
the commercial reconstruction (a) and the DR-PICCS reconstruction (b).

retained despite reduced noise. The background noise measured in the lesion was decreased by 20%

(with the measured intensity standard deviation 26 with the commercial reconstruction and 20 with

the DR-PICCS reconstruction).

A close up of the ACR accreditation phantom, including the fiber inserts, calcifications, and low

contrast lesions, is shown in Figure 6.8 with the commercial reconstruction at 100% dose and the

DR-PICCS reconstruction at 60% dose. All of the imaging features required to pass quality control

procedures are visible in each case, namely the four largest fibers and 3 largest speck groups and

masses should be visible in the acquired images.220

In addition to the phantom images, two examples of the cadaver breast images are shown in

Figure 6.9. A cluster of microcalcifications and an area of architectural distortion are compared

using the commercial reconstruction at 100% dose and the DR-PICCS reconstruction at 60% dose.

6.2.2 Experimental results of SDNR vs radiation exposure levels

The SDNR of the DR-PICCS reconstructions was higher for all of the ROIs using the commercial

reconstruction at the same dose level (see Figures 6.10 and 6.11). In addition, using linear regression
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Figure 6.8: A close up of the ACR accreditation phantom reconstructed at 100% dose using the
commercial engine (a) and at 60% dose using DR-PICCS (b).

of the SDNR vs. dose data for each of the measured regions it was found that the average SDNR

for all measured features for DR-PICCS was predicted to match that of the full dose commercial

reconstruction at 68±8% of the full dose. The correlation between the SDNR and dose was high with

all three reconstruction methods, with an average correlation coefficient given by: R2 = 0.96± 0.04,

R2 = 0.94 ± 0.04, and R2 = 0.95 ± 0.04 for the commercial reconstructions, the conventionally

denoised reconstructions, and the DR-PICCS reconstructions, respectively. Although a linear

regression does not match the physical model for these data, over the range of doses examined, this

approximation seems to be sufficient.

6.2.3 Noise Power Spectrum

Five sample slices of the measured 32 slice 3D noise power spectrum are provided to compare

the NPS of the commercial reconstruction, the conventionally denoised reconstruction, and the

DR-PICCS reconstruction (see Figure 6.12). All three NPS are normalized and shown with the

same window and level (W/L). Compared with the conventionally denoised reconstruction, the

DR-PICCS reconstruction contains relatively more high frequency noise, and the overall shape of
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Figure 6.9: A close up of calcifications in one cadaver breast reconstructed at 100% dose using the
commercial engine (a) and at 60% dose using DR-PICCS (b) and a close up of a heterogeneous
density in one cadaver breast reconstructed at 100% dose using the commercial engine (c) and at
60% dose using DR-PICCS (d).

its 3D NPS is quite similar to that of the commercial reconstruction.

The 1D NPS is shown in the x- and y-directions in Figure 6.13. From these NPS we can compare

the overall noise level of each method with the others. In addition, a significant low-frequency shift

of the conventionally denoised NPS can be seen in Fig. 6.13(a) (x-direction), although we don’t see
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Figure 6.10: The measured SDNR for the fibers (a-c) and calcification clusters (d-f) in the ACR
accreditation phantom at various dose levels. Shown are the measured values as well as linear fits
to the data.

Figure 6.11: The measured SDNR for the lesions in the ACR accreditation phantom at various dose
levels. Shown are the measured values as well as linear fits to the data.

the same shift in the y-direction.

The measured noise power spectra (NPS) show that the DR-PICCS reconstruction technique

retains the shape of the NPS better than that of the conventional denoising method. Maintaining

this frequency dependence results in images with which radiologists have grown more comfortable

through review.

6.2.4 Modulation Transfer Function

A comparison of the MTF measurements for the commercial reconstruction, the conventionally-

denoised reconstruction, and the DR-PICCS reconstruction at different depths are shown in Figures
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Figure 6.12: The measured 3D NPS using the commercial reconstruction (a), a conventional
denoising technique (b), and DR-PICCS (c). all images shown with same window/level.

6.15 and 6.16. In these plots, the degradation in the MTF using the conventional denoising technique

is clearly visible. These plots demonstrate the behavior of the MTF along the z-axis; separate plots

for the x- and y-directions are shown as the performance (especially moving away from the detector)

is not isotropic.

In Figure 6.14 an interesting trend is shown using the measured MTF at different heights

above the detector with all three reconstruction methods (commercial, conventional denoising, and

DR-PICCS). The further from the detector the reconstructed plane is, the more dramatic the blur

in the x-direction. This is the direction of the x-ray tube’s rocking, and the direction in which

out-of-plane blurring artifacts occur. In the y-direction however, the MTF is highest at 4 and 8 cm

above the detector. In Figures 6.15 and 6.16, it is clear that the DR-PICCS images have maintained
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Figure 6.13: The measured 1D NPS in the x and y-directions ((a) and (b) respectively).

the MTF of the commercial (FBP) reconstruction, while the conventionally denoised images have

dramatically reduced MTFs.

6.2.5 Results from the Radiologist Review

In the low dose cadaver breast study, radiologists chose the DR-PICCS reconstruction as superior to

the full dose commercial reconstruction for 57% of the cases while choosing the full dose commercial

reconstruction 43% of the time. The 95% confidence interval for the mean score was [0.49, 0.66].

Since 0.5 is included in our confidence interval, the two reconstructions can be considered equivalent

(p < 0.05).

6.3 Discussion and conclusions

The SDNR measurements in Figures 6.10 and 6.11 show that using either DR-PICCS or a conventional

denoising technique, the overall noise level in the images may be decreased, and the SDNR may

be increased. In fact, in our results shown here, the conventional denoising method was able to
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Figure 6.14: The measured MTF with the commercial reconstruction, conventionally denoised
reconstruction, and DR-PICCS reconstructions (left to right) in the x and y planes (top row and
bottom row respectively) at 0, 2, 4, 6, and 8 cm above the detector.

Figure 6.15: The measured MTF in the x-direction with FBP reconstruction, the conventionally
denoised reconstruction, and the DR-PICCS reconstruction at 2 cm (a), 4 cm (b), 6 cm (c), and 8
cm (d) above the detector.

dramatically reduce image noise and increase the SDNR for all features. However, when we consider

the more sophisticated metrics of the measured NPS and MTF, we see that this comes with a cost:

the NPS demonstrate that the use of conventional Gaussian convolution kernel to low-pass filter

the image volumes dramatically changes the frequency dependence of the noise and introduces

highly correlated noise. In addition, we can see in the MTF measurements that spatial resolution

is also degraded. In contrast, the peak of the NPS from DR-PICCS reconstruction and that of

the commercial reconstruction are similar. This matched peak spatial frequencies for commercial

reconstruction and DR-PICCS reconstruction explains why the noise texture in the DR-PICCS
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Figure 6.16: The measured MTF in the y-direction with FBP reconstruction, the conventionally
denoised reconstruction, and the DR-PICCS reconstruction at 2 cm (a), 4 cm (b), 6 cm (c), and 8
cm (d) above the detector.

reconstructions is similar to that of the commercial reconstruction. Matching this peak is important

because images reconstructed with the commercial technique are familiar to radiologists. Significant

alteration in the shape of the NPS will produce images that appear “plastic” or artificial to trained

eyes.

Although the SDNR measurements suggest a ≈30% dose reduction with DR-PICCS reconstruc-

tion, the visual evaluation of the reconstructed images suggests a more significant dose reduction

with DR-PICCS is possible. This claim is supported by comparing the images of the ACR phantom

and the cadavers as seen in Figures 6.8 and 6.9. When comparing the full-dose acquisitions with

commercial reconstruction with the 60% dose acquisitions with the DR-PICCS reconstruction, all

relevant imaging features are present at an acceptable noise level in both datasets. It may be the

case that, despite a slightly lower SDNR at 60% dose, the minor edge enhancement inherent to the

diffusion filter used to generate the prior image in the PICCS reconstruction boosts conspicuity221.

Standard image quality metrics, such as the MTF, the NPS, and the SDNR, were used in this

study to provide a quantitative comparison between different reconstruction methods and different

dose levels, however there are several inherent limitations to this study. First, the use of SDNR

is always questionable since SDNR doesn’t account for noise correlation. It has been shown that

noise correlation has a significant impact on detectability200, and as a result the SDNR alone is

not adequate to assess system performance. This motivated us to investigate the potential noise

correlation by measuring NPS and introducing human observer studies to partially overcome this

limitation. Second, although the authors have also measured and provided the NPS in an effort to

alleviate any concern regarding the impact of possibly correlated noise, estimating the NPS in a
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nonlinear imaging system (due to the nonlinearity of the PICCS reconstruction algorithm) poses

some new challenges that must be carefully overcome. In this chapter, an anthropomorphic phantom

was used to ensure the measured NPS and mimic the non-linear DR-PICCS algorithm’s performance

in clinical imaging scenarios. The same challenges stand for the MTF measurements. Despite

these limitations, however, we found positive response from radiologist reviewers who confirmed

the reconstructed clinical images had reduced noise (a visual appearance confirmed by quantitative

measurements) and a clinically acceptable appearance.

The DR-PICCS algorithm was applied to digital breast tomosynthesis volume datasets acquired

at a reduced dose (dose reduced by limiting tube current) to reduce image noise and enable reduced

dose imaging. The SDNR, NPS, and MTF were all measured and used to assess image noise and

spatial resolution quantitatively, and results were reviewed by radiologists to subjectively evaluate

image quality.

Depending on the metric chosen, it was found that dose can be reduced by 30-40% in DBT

with the use of DR-PICCS while producing satisfactory image quality. In the future, a prospective

clinical study with ROC observer analysis could provide further insight into the clinical value of

this method.
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7 Summary and future research

directions

In this dissertation, several different approaches to improve digital breast tomosynthesis were

explored. Digital breast tomosynthesis is a young modality, but has already shown tremendous

promise in breast imaging. That said, the technology is in many ways still immature. The overarching

goal of this project was to improve image quality for DBT volumes and improve our ability to assess

clinical breast images. This was accomplished by applying a variety of tools from CT research and

image analysis, as well as developing new tools specifically for DBT reconstruction, processing, and

assessment.

The first part of the project discussed several ways to reconstruct DBT volumes and mitigate

artifacts. The focus of this section was largely on the introduction of a computationally-tractable

iterative reconstruction method to alleviate some of the issues inherent to FBP reconstructed

DBT images. The DOS-SPART algorithm was introduced with two different regularizers: TV and

PICCS. In addition to introducing an iterative reconstruction method, a tomosynthesis-specific FBP

method was presented along with a correction scheme for one of the most common artifacts in DBT

images: truncation. The iterative reconstruction method introduced was able to maintain spatial

resolution in DBT reconstructions while significantly reducing the through-plane resolution. Of the

two regularizers, PICCS offered better spatial resolution and greater reduction of through-plane

blurring compared with TV.

The second major section of the project focused on anatomical noise in the breast. In this

section, a framework to measure anatomical noise in the breast was implemented and validated
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using a cohort of clinical mammograms. This framework was then used to measure anatomical

noise in DBT reconstructions generated using both the commercial reconstruction method as well

as the iterative reconstruction methods introduced in the first section. The reduced through-plane

blurring in the DOS-SPART image resulted in significantly reduced anatomical clutter, pushing

the measured anatomical noise exponent, β, closer to the value found in CT than mammography.

Finally, the measured anatomical NPS were introduced into a model observer framework and used

to predict mass detection performance for the new reconstruction method using task-based model

observers.

The third and final piece of the dissertation focused on exploring a method to reduce dose in

DBT images. Previous human observer studies have shown the anatomical noise is dominant in

mass detection in mammography, so reducing quantum noise is a problem with diminishing returns.

Conventionally-reconstructed DBT images have been shown to have an anatomical noise background

similar to mammography, so in DBT reducing quantum noise in an attempt to reduce dose has also

offered diminishing returns. However, the introduction of a reconstruction method that significantly

reduces the anatomical clutter means quantum noise is a relevant contributor. Thus, any attempts

to further reduce dose need to account for the corresponding increase in quantum noise. The major

advantages of the DR-PICCS method introduced here are that it can be applied to reconstructed

images from any vendor with no prior knowledge of the system needed and it can preserve image

spatial resolution and texture better than conventional denoising techniques.

Although several important areas have been explored in this work, there remains plenty of

opportunity for future research. For starters, human reader studies are needed to validate the

model observer studies and understand the true impact of the improved through-plane spatial

resolution offered by DOS-SPART. In addition, current clinical reconstructions include significant

post-processing to improve image contrast. Using these tools to further enhance the DOS-SPART

reconstructions might offer further improvements in image quality. All of the work presented here

(with the exception of the truncation studies) was performed using clinical equipment from a single

vendor. Validating the reconstruction algorithms on other platforms from other vendors or utilizing

the anatomical noise measurement framework on other platforms would offer valuable insight into

their robustness and portability. Finally, one of the benefits of DOS-SPART discussed in this work
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is its flexibility in incorporating a variety of different regularizers. In addition to the two introduced

in this work, it would be very interesting to explore other more advanced regularization schemes,

such as anisotropic diffusion, in the future. A derivation demonstrating the feasibility of introducing

the anisotropic diffusion regularization into the framework is shown in Appendix A.2.

Overall, the work presented in this dissertation aims to solve a variety of problems in DBT

image, with a strong emphasis on image reconstruction, post-processing, and assessment. Although

DBT is a young modality, the future for it is bright.
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A Appendices

A.1 Projection matrix implementation for Hologic Selenia

Dimensions System

The purpose of this section is to derive the projection matrix (P-matrix) convention used for the

Hologic Selenia Dimensions Tomosynthesis system. In addition, a derivation of the inverse P-Matrix

convention needed to perform a forward projection of the image volumes generated using the

P-Matrix backprojection is performed. This is crucial for any iterative reconstruction algorithm that

we might choose to use as both a forward and back-projector are required in iterative reconstruction.

A.1.1 Notation

We will use the following conventions for this derivation:

1. The symbols u/v will refer to the x/y coordinates of the detector.

2. The symbols xpix, ypix, and zpix will refer to voxels in the reconstructed volume in the x, y,

and z planes respectively.

3. For each view angle, a 3x4 p-matrix is provided denoted here Mi. That matrix is given

explicitly by

Mi,BP =
(
M0 M1 M2 M3
M4 M5 M6 M7
M8 M9 M10 M11

)
, (A.1)

where i indicates the view index, and BP indicates the transformation is a backprojection.
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4. We can define another vector to describe the location in the image:

(
xpix
ypix
zpix

1

)
. (A.2)

5. We can also define a vector to describe the detector elements:

(
u×s
v×s
s

)
, (A.3)

where s is a scalar.

A.1.2 Backprojection

Backprojection is performed simply by multiplying Equations A.1 and A.2 to solve for Equation

A.3. That is:

(
u×s
v×s
s

)
= Mi,BP

(
xpix
ypix
zpix

1

)

=
(
M0 M1 M2 M3
M4 M5 M6 M7
M8 M9 M10 M11

)( xpix
ypix
zpix

1

)

=
(

xpixM0+ypixM1+zpixM2+M3
xpixM4+ypixM5+zpixM6+M7
xpixM8+ypixM9+zpixM10+M11

)
. (A.4)

Now that u× s, v × s, and s are known, we can solve for u and v:

u
u× s
s

= xpixM0 + ypixM1 + zpixM2 +M3
xpixM8 + ypixM9 + zpixM10 +M11

(A.5)

and

v = v × s
s

= xpixM4 + ypixM5 + zpixM6 +M7
xpixM8 + ypixM9 + zpixM10 +M11

. (A.6)

These two equations allow backprojection on a voxel-by-voxel basis by identifying for each projection

which detector element contains information regarding a specific voxel. In practice, the coordinates

(u, v) often fall between true detector elements and a bilinear interpolation is used to estimate the

correct value.
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A.1.3 Forward-projection

Thus far, we have a framework for the backprojection of measured projection data. However, to

perform iterative reconstruction methods we also need to be able to perform a forward projection

operation. To accomplish this, we must solve Equations A.5 and A.6 for xpix and ypix as a function

of the slice (zpix) and detector elements (u and v). To simplify this process, we first make a few

intermediate definitions:

a ≡ zpixM2 +M3

b ≡ zpixM6 +M7

c ≡ zpixM10 +M11

Using this notation, we can rewrite Equations A.5 and A.6 to get:

u = xpixM0 + ypixM1 + a

xpixM8 + ypixM9 + c
(A.7)

and

v = xpixM4 + ypixM5 + b

xpixM8 + ypixM9 + c
. (A.8)

We can rearrange these to find:

(xpixM8 + ypixM9 + c)u = xpixM0 + ypixM1 + a (A.9)

and

(xpixM8 + ypixM9 + c)v = xpixM4 + ypixM5 + b (A.10)

or alternatively:

(M8u)xpix + (M9u)ypix + cu = xpixM0 + ypixM1 + a (A.11)

and

(M8v)xpix + (M9v)ypix + cv = xpixM4 + ypixM5 + b. (A.12)
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These can be further simplified to find:

(M8u−M0)xpix + (M9u−M1)ypix = (a− cu) (A.13)

and

(M8v −M4)xpix + (M9v −M5)ypix = (b− cv). (A.14)

We now have two linear equations and two unknowns. To simplify the algebra here, we can make

the following substitutions:

C1 ≡ (M8u−M0)

C2 ≡ (M9u−M1)

C3 ≡ (a− cu)

C4 ≡ (M8v −M4)

C5 ≡ (M9v −M5)

C6 ≡ (b− cv)

With this notation we find:

C1xpix + C2ypix = C3 (A.15)

and

C4xpix + C5ypix = C6. (A.16)

We can multiply Equation A.15 by −C5
C2

and add it to Equation A.16 to find:

C4xpix + C5ypix −
C5
C2

(C1xpix + C2ypix) = C6 −
C5
C2
C3

C4xpix −
C5C1
C2

xpix + C5ypix − C5ypix = C6C2
C2

− C5C3
C2(

C4C2 − C5C1
C2

)
xpix = C6C2 − C5C3

C2

→ xpix = C6C2 − C5C3
C4C2 − C5C1

. (A.17)
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This can be used to solve for ypix by inverting Equation A.15:

ypix = C6 − C4xpix
C5

= C6
C5
− C4
C5

(
C6C2 − C5C3
C4C2 − C5C1

)
= C6(C4C2 − C5C1)− C4(C6C2 − C5C3)

C5(C4C2 − C5C1)

= C6C4C2 − C6C5C1 − C4C6C2 + C4C5C3
C5C4C2 − C2

5C1

→ ypix = C4C3 − C6C1
C4C2 − C5C1

. (A.18)

We can begin to substitute back into these equations to find xpix and ypix in terms of the detector

elements and the given slice. First we can consider the shared denominator (here denoted s′):

s′ = C4C2 − C5C1 = (M8v −M4)(M9u−M1)− (M9v −M5)(M8u−M0)

= M8M9uv −M4M9u−M1M8v +M1M4 −M8M9uv +M5M8u+M0M9v −M0M5

= (M5M8 −M4M9)u+ (M0M9 −M1M8)v + (M1M4 −M0M5). (A.19)

We can also substitute into the numerator for xpix to find:

C6C2 − C5C3 = (b− cv)(M9u−M1)− (M9v −M5)(a− cu)

= [zpixM6 +M7− (zpixM10 +M11)v](M9u−M1)− (M9v−M5)[zpixM2 +M3− (zpixM10 +M11)u]

= (zpixM6 +M7−M10vzpix−M11v)(M9u−M1)− (M9v−M5)(zpixM2 +M3−M10uzpix−M11u)

= M6M9uzpix+M7M9u−M9M10uvzpix−M9M11uv−M1M6zpix−M1M7 +M1M10vzpix+M1M11v

−M2M9vzpix−M3M9v+M9M10uvzpix+M9M11uv+M2M5zpix+M3M5−M5M10uzpix−M5M11u

= (M7M9 −M5M11)u+ (M1M11 −M3M9)v + (M6M9 −M5M10)uzpix + (M1M10 −M2M9)vzpix

+ (M2M5 −M1M6)zpix + (M3M5 −M1M7).
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This can be further simplified as follows:

C6C2 − C5C3 = [(M7M9 −M5M11) + (M6M9 −M5M10)zpix]u

+ [(M1M11 −M3M9) + (M1M10 −M2M9)zpix] v + (M2M5 −M1M6)zpix + (M3M5 −M1M7)

(A.20)

Similar simplification can be done with ypix:

C4C3 − C6C1 = (M8v −M4)(a− cu)− (b− cv)(M8u−M0)

= (M8v−M4)[zpixM2 +M3− (zpixM10 +M11)u]− [zpixM6 +M7− (zpixM10 +M11)v](M8u−M0)

= (M8v−M4)(zpixM2 +M3−M10uzpix−M11u)− (zpixM6 +M7−M10vzpix−M11v)(M8u−M0)

= M2M8vzpix+M3M8v−M8M10uvzpix−M8M11uv−M2M4zpix−M3M4 +M4M10uzpix+M4M11u

−M6M8uzpix−M7M8u+M8M10uvzpix+M8M11uv+M0M6zpix+M0M7−M0M10vzpix−M0M11v

= (M4M11 −M7M8)u+ (M3M8 −M0M11)v + (M4M10 −M6M8)uzpix + (M2M8 −M0M10)vzpix

+ (M0M6 −M2M4)zpix + (M0M7 −M3M4).

This can be further simplified as follows:

C4C3 − C6C1 = [(M4M11 −M7M8) + (M4M10 −M6M8)zpix]u

+ [(M3M8 −M0M11 + (M2M8 −M0M10)zpix)] v + (M0M6 −M2M4)zpix + (M0M7 −M3M4)

(A.21)

This allows us to write expressions for xpix and ypix:

xpix =
(
s′
)−1 ([(M7M9 −M5M11) + (M6M9 −M5M10)zpix]u

+ [(M1M11 −M3M9) + (M1M10 −M2M9)zpix] v + (M3M5 −M1M7) + (M2M5 −M1M6)zpix)

(A.22)
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and

ypix =
(
s′
)−1 ([(M4M11 −M7M8) + (M4M10 −M6M8)zpix]u

+ [(M3M8 −M0M11) + (M2M8 −M0M10)zpix)] v + (M0M7 −M3M4) + (M0M6 −M2M4)zpix)

(A.23)

Although they are messy, these expressions provide a means of directly implementing P-matrix

forward projection for a given view angle that is straightforward to code. Both xpix and ypix share

a denominator, which we can label s′ as indicated earlier. The choice of this notation is to match in

backprojection P-matrix notation. This can be re-written in matrix form if desired; we’ll call Mi,FP

our forward projection P-matrix as shown here:

(
xpix∗s′
ypix∗s′
s′

)
= Mi,BP

( u
v
1

)
=
(
M0,F M1,F M2,F
M3,F M4,F M5,F
M6,F M7,F M8,F

)( u
v
1

)
(A.24)

=
(
uM0,F+vM1,F+M2,F
uM3,F+vM4,F+M5,F
uM6,F+vM7,F+M8,F

)
,
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with

M0,F = (M7M9 −M5M11) + (M6M9 −M5M10)zpix

M1,F = (M1M11 −M3M9) + (M1M10 −M2M9)zpix

M2,F = (M3M5 −M1M7) + (M2M5 −M1M6)zpix

M3,F = (M4M11 −M7M8) + (M4M10 −M6M8)zpix

M4,F = (M3M8 −M0M11) + (M2M8 −M0M10)zpix

M5,F = (M0M7 −M3M4) +( M0M6 −M2M4)zpix

M6,F = (M5M8 −M4M9)

M7,F = (M0M9 −M1M8)

M8,F = (M1M4 −M0M5)

(A.25)
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A.2 Anisotropic diffusion regularization

While anisotropic diffusion has been used extensively for image denoising, in many applications (such

as regularization in iterative reconstruction) it is also desirable to show that anisotropic diffusion

denoising can be posed as a classical denoising problem, such that:

xk+1 = arg min
x

[
λ

2
(
x− uk+1

)T
P−1

(
x− uk+1

)
+R(Ψx)

]
, (A.26)

where xk+1 is the denoised image, uk+1 is an image we want to stay close to (typically a data

consistency updated image in image reconstruction), R(Ψx) is the a sparsifying regularizer that can

take a variety of forms (most common is total variation), λ is a parameter describing the relative

weight of the regularization term and the consistency term, and P is a weighting matrix matching

the dimension of the image volume. While it has previously been shown that TV fits this form

(R(Ψx) = TV (x)), we want to show in this section that anisotropic diffusion also meets these criteria

and is a suitable regularizer.

What we will show here (following a similar derivation in222) is that anisotropic diffusion

denoising is equivalent to minimizing an energy functional, E(x), of the image using a steepest

descent technique as follows:

xdiff = arg min
x

E(x) (A.27)

solved iteratively as:

xk+1
diff = xkdiff −∇E(x), (A.28)

where xkdiff is the anisotropic diffusion denoised image at iteration, k, ∇E(x) is the gradient of the

energy functional, and α is a step size parameter.
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A.2.1 Energy minimization

The crucial first step in our proof here is to borrow a method from physics. We want to describe an

energy functional (stationary integral) over the space of all possible smooth images, Ω:

E(x) =
∫

Ω
f(|∇x|)dΩ, (A.29)

where we claim E(x) is the energy functional, f is a function of |∇x|, and Ω is the space of smooth

images. To be explicit here, we claim smooth images are all possible images for which |∇x| is finite.

We can add a few additional constraints to our function, namely:

f(|∇x|) ≥ 0

f ′(|∇x|) > 0

(A.30)

These constrains tell us our function (f) is positive and increasing. Now in physics we would

commonly attempt to minimize this functional using the Euler equation (differential equation),

however we can also consider a minimization by identifying the Gâteaux variation (directional

derivative or dE(u, h) = 〈∇E(u), h〉) for a direction, h:

dE(x, h) = lim
λ→0

E(x+ λh)− E(x)
λ

, (A.31)

and identifying critical points where dE = 0. If we recall, Ω is the space of smooth images; in

addition we can identify a subspace, Ω0, where it is not only true that |∇x| is finite, but more

strictly:

Ω0 = {ω : |∇x(ω)| = 0, ω ∈ Ω} , (A.32)
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in other words, Ω0 is the set of images for which |∇x| = 0. With this definition, we can substitute

Equuation A.29 into Equation A.31 to find the following expression for the Gâteaux variation:

dE(u, h) = lim
λ→0

E(x+ λh)− E(x)
λ

= lim
λ→0

(∫
Ω0
f(|∇(x+ λh)|)dΩ +

∫
Ω−Ω0

f(|∇(x+ λh)|)dΩ
)
−
(∫

Ω0
f(|∇x|)dΩ−

∫
Ω+Ω0

f(|∇x|)dΩ
)

λ

= lim
λ→0

1
λ

[∫
Ω0
f(|∇(x+ λh)|)dΩ−

∫
Ω0
f(|∇x|)dΩ +

∫
Ω−Ω0

f(|∇(x+ λh)|)dΩ−
∫

Ω−Ω0
f(|∇x|)dΩ

]
.

Since f(|∇x|) ≥ 0 we can rearrange the integrals as follows:

dE(u, h) =
∫

Ω0
lim
λ→0

f(|∇(x+ λh)| − f(|∇x|)
λ

dΩ +
∫

Ω−Ω0
lim
λ→0

f(|∇(x+ λh)| − f(|∇x|)
λ

dΩ.

If we recall |∇x| = 0 for Ω0 the first term can be simplified yielding:

dE(u, h) =
∫

Ω0
lim
λ→0

f(λ|∇h|)− f(0)
λ

dΩ +
∫

Ω−Ω0
lim
λ→0

f(|∇x+ λ∇h| − f(|∇x|)
λ

dΩ. (A.33)

Let’s define two new variables: λ′ = λ|∇h| and λ′′ = λ∇h, yielding:

dE(u, h) =
∫

Ω0
lim
λ′→0

f(0 + λ′)− f(0)
λ′

|∇h|dΩ +
∫

Ω−Ω0
lim
λ′′→0

f(|∇x+ λ′′|)− f(|∇x|)
λ′′

∇hdΩ. (A.34)

Here we recognize two derivatives and can rewrite these two terms:

dE(u, h) = f ′(0)
∫

Ω0
|∇h|dΩ +

∫
Ω−Ω0

f ′(|∇x|) ∇x
|∇x|

∇hdΩ. (A.35)

If we consider the set of directions, h, for which the following holds: |∇h| 6= 0 in Ω0 and |∇h| = 0

otherwise, finding dE(u, h) = 0 yields:

dE(u, h) = f ′(0)
∫

Ω0
|∇h|dΩ = 0, (A.36)

and thus, we require f ′(0) = 0 for this to be true. The final constraint, f ′(0) = 0, gives us a

stationary point at |∇x| = 0. Thus, E(x) ≥ 0, and a smooth image (|∇x| = 0) must minimize E(x).
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As a result, we can rewrite Equation A.35 as follows:

dE(u, h) =
∫

Ω
f ′(|∇x|) ∇x

|∇x|
∇hdΩ. (A.37)

Let’s take a moment to recall Green’s theorem, which we can write as follows:

∮
∂Ω
u∇v · d∂Ω =

∫
Ω
u∇2vdΩ +

∫
Ω
∇u · ∇vdΩ. (A.38)

If we use the following definitions: ∇u = ∇h and ∇v = f ′(|∇u|) ∇u|∇u| , we can rearrange Green’s

theorem to give:

dE(x, h) = −
∫

Ω
∇ ·

[
f ′(|∇x|) ∇x

|∇x|

]
hdΩ +

∮
∂Ω
f ′(|∇x|) ∇x

|∇x|
· n̂hd∂Ω, (A.39)

where n̂ is the vector normal to the boundary, ∂Ω. We are going to assume spherical boundary

conditions, such that ∇x(ω) · n̂ = 0 for ω ∈ ∂Ω. Under these conditions, the second term actually

vanishes, leaving us with

dE(x, h) = −
∫

Ω
∇ ·

[
f ′(|∇x|) ∇x

|∇x|

]
hdΩ, (A.40)

which is an inner product:

dE(x, h) =
〈
−div

[
f ′(|∇x|) ∇x

|∇x|

]
, h

〉
, (A.41)

and since

dE(x, h) = 〈∇E(x), h〉 , (A.42)

we’re left with:

∇E(x) = −div
[
f ′(|∇x|) ∇x

|∇x|

]
. (A.43)
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Thus, as if we choose diffusion coefficients, c(|∇x|) = f ′(|∇x|)
∇x we find the following updated diffusion

equation:
∂u

∂t
= div

[
f ′(|∇x|) ∇x

|∇x|

]
= −∇E(u), (A.44)

telling us we are performing a steepest descent energy minimization during the anisotropic diffusion

denoising procedure.

A.2.2 Classical image denoising

Since we have shown anisotropic diffusion can be posed as the following minimization problem:

xdiff = arg min
x

E(x), (A.45)

solved using a steepest descent method, we still need to pose a classical image denoising problem

using this. In other words, can we explicitly define a procedure to solve the following:

xk+1 = arg min
x

[
λ

2
(
x− uk+1

)T
P−1

(
x− uk+1

)
+ E(x)

]
(A.46)

in an iterative way? Since we know anisotropic diffusion attempts to minimize energy using a

steepest descent, can we pose this entire classical denoising problem as a steepest descent problem?

In this case, our cost function is:

f(x) =
[
λ

2
(
x− uk+1

)T
P−1

(
x− uk+1

)
+ E(x)

]
(A.47)
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with a gradient defined as (recall P−1 is symmetric → (P−1)T = P−1):

∇f(x) = ∇
[
λ

2
(
x− uk+1

)T
P−1

(
x− uk+1

)
+ E(x)

]
= ∇

[
λ

2
(
x− uk+1

)T
P−1

(
x− uk+1

)]
+∇E(x)

= λ

2∇
[
xTP−1x− (uk+1)TP−1x− xTP−1uk+1 + (uk+1)TP−1uk+1

]
+∇E(x)

= λ

2∇
[
xTP−1x− 2(uk+1)TP−1x+ (uk+1)TP−1uk+1

]
+∇E(x)

= λ

2
[
2P−1x−∇2(uk+1)TP−1x

]
+∇E(x)

= λ

2
[
2P−1x− 2∇(P−1uk+1)Tx

]
+∇E(x)

= λ

2
[
2P−1x− 2P−1uk+1

]
+∇E(x)

∇f(x) = λP−1
[
x− uk+1

]
+∇E(x) (A.48)

Thus we can pose anisotropic diffusion as a classical image denoising problem which may be solved

iteratively using a steepest descent method:

xk+1 = xk − α∇f(xk)

xk+1 = xk − α
(
λP−1

[
xk − uk+1

]
+∇E(xk)

)
, (A.49)

where the first term of the gradient enforces consistency with the data and the second term is simply

a single update of the anisotropic diffusion denoising procedure. The step-size (α) must be chosen

carefully (per Wolfe conditions218) to ensure stability, and must be constrained s.t. α ∈ (0, 1]. We

should also note that xk=0 = uk+1 at the beginning of the denoising procedure, so the first step of

this procedure is always identical to a single anisotropic diffusion denoising iteration.
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