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Abstract

In this thesis, we cover several topics from interacting quantum systems in the setting of

quantum information algorithms and devices. The thesis is divided into two parts. In the

first part, we study interacting spin-1/2 systems in the presence of uniform or disordered

field. In the second part, we study novel multiterminal Josephson junctions.

We first analyze how a disordered spin system responds to a local drive. The response

behavior of the system depends on the disorder strength. We show that one can obtain

the phase of the system using the statistical measures of the response. We perform fidelity

susceptibility and experimentally accessible spin variance calculations to identify whether

the system is in the many-body localized or ergodic regime. We show that the results of

these two approaches are correlated to each other and both can be used to find the phase

of the system.

We further propose a steering method for the random spin systems to speed up the

quantum adiabatic algorithm (QAA). We utilize counterdiabatic driving techniques to form

1-spin and cluster steering terms. We compare the efficiency of our steered QAA to the

efficiencies of conventional QAA and classical optimization. We obtain a large parameter

range in which steering provides speed-up.

Next, we study fluxonium qubit systems. Their strong anharmonicity, long coherence

time and strong coupling ability makes them a good fit for spin-1/2 system simulations. We

study quantum phase diagram of fluxonium qubit chains. We identify the phase transition

boundary using the fidelity susceptibility techniques. We discuss some Ising spin chain

simulations that can be performed using the fluxonium qubit chains.

Finally, we investigate multiterminal Josephson junctions. These devices work in high

dimensional phase spaces due to phase contributions from extra terminals. Tuning the

parameters of junctions with special geometries by gate voltage and magnetic field leads to

multiterminal Josephson effect. The transition characteristics is measured by the shape and

area of the multidimensional critical current contour. We explore the mechanisms behind

this transition by using the scattering theory and microscopic computation of the wave
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functions.



iii

Acknowledgements

Everything that has a beginning has probably an end. My journey after the Mad City

will continue with increased level of madness. One can consider the social arena as a

strongly interacting system. I would like to thank everyone with whom I have interacted

and benefited from. I am now very different in a positive manner, both academically

and personally. I have learned a lot about myself during grad school. Some part of this

thesis have been written under the extraordinary circumstances of COVID-19. These are

challenging times with full of uncertainty but the process of finding myself has gained an

acceleration.

First and foremost, I would like to thank my adviser Prof. Maxim Vavilov for his

support and creating many opportunities for me to improve myself. Even though I only

studied half of my grad school years under his supervision, the discussions with him have

effectively helped me find my own way and the questions I have worked on, not all of them

are addressed in this thesis, will continue shaping my future. He will stay as a valuable

mentor for me.

I would also like to thank Prof. Bob Joynt for our discussions on how to steer random

systems and for not so random other meaningful interactions. One very important scientific

method trick I learned from him is the easy to say but difficult to do what I would summarize

as “divide into simple steps and conquer”. strategy1 I will bring him more Turkish delights,

especially for the Halloween.

My understanding of fluxonium qubit systems and multiterminal Josephson junctions

have been built up thanks to many fruitful discussion with Prof. Vlad Manucharyan’s group.

I thank Hanho and Natalia for explaining the details of their multiterminal experimental

setup and suggesting ways to improve my junction simulations.

I met with Dr. Jianxin Zhu at the CNLS 2019 conference in May, 2019. I would like to

thank for his invitation to Los Alamos National Lab. (LANL) in Fall 2019 to collaborate

on topological multiterminal junctions. It was great to explore new opportunities at LANL.

1I should divide this sentence :)



iv

I enjoyed the interactions I had during and after the Herb Seminars here at the physics

department. Some of the Herb presenters with whom I benefited from our discussions

include Mark Dykman, Peter Love, Aashish Clerk, Maxim Khodas, Ivar Martin, John King

Gamble, Vlad Pribiag, Caglar Girit, written not in a particular order.

I sincerely appreciate the help provided by my thesis committee members including

Profs. Robert McDermott, Alex Levchenko, Jennifer Choy, Shimon Kolkowitz and Maxim.

The help of the physics staff including Renee, Michelle Holland, Jim Reardon have been

crucial to create a nice atmosphere at the department.

I thank my friends for being with me and sharing memories during this journey. Thanks

to the Garcia Family, Jenna, Mitch, Kostya, Ivan, Yinqi, Jonah, David, Vijesh and many

more... It was fun to play tennis with David, Mike, Vijesh... Thanks to Jenna, David,

Jonah and others for giving feedback about my piano improvisations. Also, many thanks

to Kostya for his help during the times I was trying to find his nearest neighbor (Maxim)

:-) Moreover, the MFIS and BRIDGE friends have made my Madison journey more fun.

Last but not least, I would like to express my gratitude to my family. They make me

feel like I have been with them even though they live thousands of miles away.



v

I dedicate this thesis to Munise, my |ket〉.



vi

Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Contents vi

List of Figures ix

List of Tables xix

1 Introduction 1

1.1 Introduction to Quantum Computing . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Interacting quantum systems . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Spin systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Superconducting qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Multiterminal Josephson junctions . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Computational workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Publication List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

I Quantum Spin Models 22

2 Response of a quantum disordered spin system to a local periodic drive 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



vii

2.2 Fidelity susceptibility at weak drive . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Time evolution of the total spin . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Phase Transitions and Edge States in Fluxonium Qubit Systems 38

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Mapping fluxonium chain onto transverse Ising chain in a longitudinal field 39

3.3 Phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Edge states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Propagating Excitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Steering random spin systems to speed up the quantum adiabatic algo-

rithm 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Small Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Comparison to Other Methods . . . . . . . . . . . . . . . . . . . . . . . . . 54

Distribution over Low-lying States . . . . . . . . . . . . . . . . . . . . . . . 58

Regime of Superiority of Steered QAA over Other Methods . . . . . . . . . 59

Cluster Steering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

II Multiterminal Josephson Junctions 63

5 Studies of multiterminal junctions via scattering theory 64

5.1 3-terminal Josephson junctions with rectangular scattering region . . . . . . 64

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Derivation of Andreev energy levels and supercurrent . . . . . . . . . . . . . 71



viii

Fraunhofer oscillations in multiterminal junctions . . . . . . . . . . . . . . . 74

5.2 Multiterminal Josephson junctions with more than three terminals . . . . . 85

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Studies of finite multiterminal junctions 91

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2 Finite System Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

III Concluding Remarks and Bibliography 106

7 Conclusions and Outlook 107

Bibliography 111



ix

List of Figures

1.1 Spin-1/2 chain system with quenched disorder {hl} in z-direction. {hl} is defined

by the uniform distribution within the interval |hl| ≤ W . W is the disorder

strength and the interaction strength between the nearest neighbors are given

by the unitless parameters Jx, Jy, Jz. In Ising model, Jx = Jy = 0. In Heisenberg

model, Jx = Jy = Jz = J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 The complete graph K4 has four vertices and six edges. Similar diagrams can be

used to represent optimization problems. The weight Jij is the cost of moving

from i to j. Each site has onsite cost hi. Here, i and j are from 1 to number of

vertices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 J = Jx = Jy hopping parameter, J ′ = Jz interaction parameter. High en-

ergy barriers make the particle localized. When the disorder is weak, it is more

probable for a particle to discover different sites. In many-body localization, in-

teraction and hopping terms cannot hybridize the wave functions of the particles

in different sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 The same initial product state is evolving under two Heisenberg Hamiltonians

H with different disorder strengths. If the disorder strength is large, the evolved

state will be closer to its initial state even after long time. The measure of this

closeness can be given by the fidelity. In the thermalized phase, the memory is

lost quickly and the new state can be quite different than the initial state. . . 10



x

1.5 Fluxonium circuit consisting of capacitor, Josephson junction and superinductor.

The phase difference across the superinductor is φ and the external flux in the

loop formed by the Josephson junction and superinductor is Φext. . . . . . . . 12

1.6 Andreev bound states formed by the electron-hole superpositions create Cooper

pairs in superconductors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7 Memory requirement for exact diagonalization of spin system Hamiltonians.

HTC stands for high-throughput computing. Column with the title “Without

HTC” represents the estimated amount of time that would be spent in personal

computers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 (Color online) Heisenberg spin-1/2 chain system with quenched disorder {hl} in

the z-direction. {hl} is defined by the uniform distribution within the interval

|hl| ≤ W . W is the disorder strength and the interaction strength between the

nearest neighbors is given by the unitless parameter J = 1. There is a local ac

drive with strength f on the spin labeled by i = 1 in the x-y plane rotating with

drive frequency ω in the anticlockwise direction. . . . . . . . . . . . . . . . . . 25

2.2 (Color online) (a) Distribution of quantum displacement ε over N = 104 real-

izations of the random magnetic field hl for a system with L = 12 spins. The

top panel shows the distribution of the displacement itself for W/J = 0.3 (blue

long-dashed line), W/J = 3 (green short-dashed line), and W/J = 30 (red solid

line). Distributions for strong disorder have exponentially large tails. Rare

events appear for the strong disorder. (b) Logarithm of the distribution of ε for

the same three values of disorder as in (a). The dash-dotted line represents the

slope ∼ 10−1/2(lg(ε)) = 1
√
ε. The drive amplitude f = J/

√
10 and ω = J . lg

shows log10 throughout the text. We scaled the distribution curves for W/J = 3

by factor two and for W/J = 30 by factor six. . . . . . . . . . . . . . . . . . . . 28



xi

2.3 (Color online) Average of the logarithm of quantum displacement, lg(ε), as a

function of disorder strength W for a spin system of size L = 8 (circles), L = 10

(squares) and L = 12 (diamonds). The average is evaluated over N = 103

disorder samples for L = 8, 10, 12. The drive amplitude f = J/
√

10 and ω = J .

〈〈〉〉 shows the disorder average throughout the chapter. . . . . . . . . . . . . . 29

2.4 (Color online) (a) Average δS2
z (t) as a function of time for a spin system of size

L = 14 (diamonds), L = 16 (squares) and L = 18 (circles). Curves for W = 1.25

have filled and for W = 5 have unfilled markers. The averages are performed

over 103 realizations of disorder for all system sizes and 103 product states for

L = 14, 150 product states for L = 16 and 60 product states for L = 18. The

overbar shows the product state average throughout the chapter. (b) Average

δS2
z (t) as a function of time for a spin system of size L = 14 and W = 1.25 or 5.

Results are compared for the initial product state with Sz = ±1 and 0 at t = 0.

For all cases, 100 product states and 103 disorder averages are considered. . . 31

2.5 (Color online) Average δS2
z (τ) as a function of lg(W/J) for a spin system of

size L = 8 (circles), L = 10 (squares) and L = 12 (diamonds). Time = 1

period. f = J/
√

10 and ω = J . The averages are performed over 104 disorder

realizations for L = 8, 103 disorder realizations for L = 10, L = 12. All product

states are considered for all system sizes for product state averaging. . . . . . 32

2.6 (Color online) Distribution of lg(δS2
z ) over N = 103 disorder realizations of the

random magnetic field hl for a system with L = 12 spins for W/J = 0.3 (blue

long-dashed line) and W/J = 3 (green short-dashed line), 30 (red solid line).

We scaled the distribution curve for W/J = 30 by factor six. The averages are

performed over all product states of the system. . . . . . . . . . . . . . . . . . 34



xii

2.7 (Color online) (a) Parameter plot of 〈〈lg(ε)〉〉 and 〈〈lg(δS2
z )〉〉 for a spin system of

size L = 8 (circles), L = 10 (diamonds) and L = 12 (squares). Data points from

Figs. 2.3 and 2.5 are used. Time = 1 period. The drive amplitude f = J/
√

10

and ω = J . There is almost a linear dependence between the two quantities. (b,

c, d) Scatter plots of the data for the three of the results for L = 12 from (a).

W = 1 (red diamond), 3.16 (blue square) and 10 (green circle). Each scatter

plot includes 103 unfilled markers each of which corresponds to a single disorder

realization. Each average value in plots of (b, c, d) is in a big black square and

is shown by a filled marker of same type as the scattered data. . . . . . . . . . 35

3.1 (a) Fluxonium circuit. (b) Energy level diagram of a fluxonium qubit at the

sweet spot, φext = π. V (φ) is a double-well potential. Energy eigenstates are

also provided with numbers. They are in the order of increasing energy from

bottom to top. 0 corresponds to the ground state. +, − signs represent the even

and odd functions, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Chain of two fluxonium atoms. Ising interaction is formed by the inductive

coupling between two superinductors. . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Open chain of 8 fluxonium atoms. Each fluxonium atom is numbered. . . . . . 42

3.4 Phase diagram for the antiferromagnetic open chain given in Fig. 3.3. Energy

gap between the first excited state and the ground state is plotted. Colorbar

unit is arbitrary. J = 500MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Phase diagram boundary estimated using fidelity susceptibility. . . . . . . . . 44

3.6 (a) Fidelity susceptibility χ(hx = 0.56J) as a function of hz for clean and disor-

dered fluxonium chain. 100 instances of disordered χ(hx = 0.56J) are plotted,

the distribution with more realizations are shown in (b). x-field consists of uni-

form and disordered terms. J = 500MHz. (b) Distribution of hz maximizing

χ(hx = 0.56J) for a sample of 104 disordered x-field. . . . . . . . . . . . . . . 45



xiii

3.7 Magnetization as a function of site for a gapless point in Fig. 3.4. hx = hz =

0.56J . x-field has disorder. Results for clean (blue) and disordered (red) chains

are provided. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.8 Magnetization as a function of time for (a) clean, (b) disordered systems. i is

the qubit number. First qubit with i = 1 is flipped initially. Both timing and

amplitudes could be used to quantify the differences between qubit responses.

Time unit is 1/J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 (Color online) Average ground-state probability as a function of the annealing

time ta. The hk are chosen uniformly from the interval [−W,W ], where W = 1.

All energy variables are measured in units of W , and time variables are measured

in units of ~/W throughout the chapter. (a) L = 1. In the inset, the red

magnetic field vector rotates from x to z direction in the standard quantum

annealing process. The steering field applied in the −y direction suppresses

transitions to the excited states. (b) L = 3, J = 0.1. The green diamond curve

is the result of the application of Eq. (4.2), the exact Berry formula. The inset

shows the sketch of the open chain of 3 spins considered here. . . . . . . . . . . 54

4.2 (Color online) (a) Average ground-state probability as a function of the annealing

time ta. L = 8 (square), L = 10 (circle), L = 12 (diamond) compared for J

= 0.1. (b) Average ground-state probability as a function of the interaction

parameter J for a short annealing time ta = 1. The red (upper), blue (middle)

and green (lower) dashed lines show the naive algorithm results for L = 8, 10, 12,

respectively. (c) Average ground-state probability as a function of the interaction

parameter J for a longer annealing time ta = 100. . . . . . . . . . . . . . . . . 56



xiv

4.3 (Color online) Same markers are used in this figure as in Figs. 4.2(a) and (b)

for the standard QAA and the steered QAA. For the naive algorithm, red (up-

per), blue (middle) and green (lower) “x” markers are used in the insets for

L = 8, 10, 12, respectively. In the insets, the naive algorithm is compared with

the steered QAA. ta = 1, J = 0.3. Several system sizes are shown. (a) The

probability distribution over all final eigenstates |n(ta)〉 as a function of the

level index n, computed by comparing the results of the QAA to an exact calcu-

lation. Pn = |〈ψ(ta)|n(ta)〉|2. The effect of steering is to squeeze the width of the

probability distribution by two orders of magnitude and in the direction of the

ground state. (b) Cumulative probability distribution. SN =
N∑
n=1

Pn. With the

steered algorithm, the chance to find one of the low-lying states is significantly

enhanced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 (Color online) Average infidelity as a function of 1/J and ta. L = 12. Plots for

(a) the naive algorithm, (b) the standard QAA, and (c) the steered QAA. In the

region covered by the white dashed lines, the steered QAA gives higher fidelity

than the other two algorithms. (d) The colorbar shows the infidelity values. . . 58

4.5 (Color online) Average ground-state probability as a function of the interaction

parameter J for the QAA without steering, with 1-spin steering, and with cluster

steering. Cluster steering improves the results for J ≤ 0.2 ta = 128, L = 12. . . 61



xv

5.1 System sketch of a tight-binding lattice which has scattering region of 21-by-

21 sites. Scattering sites are colored with blue and they are in between three

superconducting leads, which are semi-infinitely long and colored with red. The

superconducting leads are at the left, right and bottom of the scattering region.

Lattice constant a = 2nm throughout the chapter, L,W = 20a for this sketch.

L is the (horizontal) length and W is the (vertical) width of the junction. b is the

width of the bottom lead and b = 0 limit is the two-terminal junction. b is varied

from 0 (two-terminal limit) to L. Magnetic field
−→
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Chapter 1

Introduction

1.1 Introduction to Quantum Computing

Methods of computation have been discussed since ancient ages and have attracted atten-

tion of scholars from many fields [1, 2, 3]. The early examples of digital classical simulators

are designed and built in the 19th and the first half of the 20th century. Charles Babbage

designed the mechanical purpose-specific Difference Engine and general-purpose Analytical

Engine [4].1 After the invention of the vacuum tube, more practical and faster electronic

computers have been invented. The scientific developments related to defense during WWII

fired up the curiosity towards building computers that can solve numerical problems effi-

ciently [5]. ENIAC became the first electronic universal classical computer [6]. The usage of

transistors in integrated circuits made computers become denser and more powerful. This

trend is summarized by Moore’s Law as the fact that number of transistor counts per inte-

grated circuit doubles up every two years [7]. Due to the increased ability of manipulation

of atoms to build miniature devices, Feynman foresaw that “There is plenty of room at the

bottom” [8]. Feynman would predict in two decades later that the room at the bottom

could also be used for quantum computing, for which behavior of sub-atomic particles are

exploited.

Quantum computing is relatively new in the history of computing. The first proposals

1An engine duplicate is demonstrated at the Computer History Museum in Mountain View, CA.
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about it started to appear in 1980s. Yuri Manin laid the mathematical foundation of

quantum computing [9]. Shortly after, Richard Feynman proposed the idea of usage of

quantum systems for simulating quantum physics in a famous speech of his [10]. Deutsch

developed the idea of universal quantum computer which uses quantum gates in opposed

to binary logic used in classical computers [11]. Quantum computers use the quantum

analog of classical bits, called qubits. Qubits are two level systems that can be written

as linear combinations of |0〉 and |1〉. Superposition and entanglement are the main two

characteristics that makes quantum systems more powerful than their classical counterparts.

After these early developments in quantum computing, several quantum algorithms were

discovered in a decade. Deutsch-Jozsa [12] and Simon’s [13] algorithms are two of the first

quantum algorithms that provide exponentially faster solutions than any available classical

algorithms. Peter Shor achieved polynomial time factorization with the algorithm known

with his name [14]. Lov Grover’s quantum database search algorithm provided quadratic

speed-up [15]. These achievements created excitement about the applications of quantum

computing.

Quantum versions of already-existing classical heuristics and algorithms have also been

discovered. A successful example is quantum annealing [16], which uses quantum tunneling

instead of thermal jumps that are used in simulated annealing [17]. Quantum annealing

is an approximate way to find global minimum and exploits dissipation and decoherence.

It is shown to be more efficient than simulated annealing [18]. Applications of quantum

computing was started to be commercialized before the start of 21st century.2 Shortly after

these developments, adiabatic quantum computing (AQC) was introduced [19, 20]. AQC

is based on encoding an optimization problem in a physical system. The initial state is the

ground state of an initial Hamiltonian. System evolves from the initial Hamiltonian to a

final problem Hamiltonian. AQC is analog equivalence of the digital gate-based universal

quantum computer. AQC with nonstoquastic Hamiltonians is equivalent to the gate-based

universal quantum computing [21]. Due to its dissipative characteristics, quantum annealing

2A Canadian company established in 1999, D-Wave, commercialized the quantum annealing approach
and became the first quantum computing company.
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is a bridge between classical optimization and AQC in terms of its efficiency [22]. Quantum

annealing has been explored as an approachable way towards the ultimate goal of building

universal quantum computers.

There have been recent exciting developments in the gate-based, analog and topologi-

cal3 quantum computing [23, 24, 25]. We are now in the era of Noisy Intermediate-Scale

Quantum (NISQ) computers [26]. It is predicted that NISQ processors with 50-100 qubits

can perform certain tasks faster than the fastest available classical processors. First foot-

prints of quantum supremacy has been reported [27]. The ultimate goal is to build practical

quantum computers with error corrections, which will need millions of qubits. The more

reachable goal is to build midsize noisy quantum computers with 50-100 qubits and build

hybrid algorithms which has classical and quantum counterparts such as QAOA and VQE

[28, 29].

Qubits can be produced in various forms. Each system has its own advantages and

disadvantages. The common property is the difficulty of building a quantum computer

using any of the available qubits. Qubit quality has to be high in order to achieve a

fully functional quantum computer.4 There is a steady increase in the power of quantum

computers. This trend has been cited as the quantum version of the Moore’s Law [30].

Number of qubits in D-Wave style analog quantum processors doubles up every two years,

whereas doubles up every year in gate-based quantum processors.

1.2 Interacting quantum systems

Both closed and open interacting quantum systems are widely studied in condensed matter

physics [31, 32] and they are useful tools in quantum computing [33]. Information can be

encoded in the quantum systems. For example, cost function in optimization problems can

be encoded as Ising Hamiltonian. Quantum systems are hard to tackle using classical com-

puters. NISQ devices made from quantum hardware such as optical lattices [34] , trapped

3Braiding is performed as the equivalence of gates.
4The measure of the qubit quality is given by the threshold theorem [1]
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ions [35], Rydberg atoms [36], ultracold atoms [37], gmon system [38] and superconducting

circuits [39] made simulating interacting quantum systems accessible.

This thesis covers theory and simulations of closed interacting quantum systems, namely

disordered spin-1/2 systems and multiterminal Josephson junctions.5 For disordered spin-

1/2 systems, Ising and Heisenberg models are considered. For multiterminal junctions, we

simulate quantum transport using tight-binding models as approximations to continuum

models. We will also discuss simulating transverse field Ising model by fluxonium qubit

systems, a type of superconducting qubit hardware.

Spin systems

Hamiltonian for interacting spin-1/2 systems with nearest neighbor interaction and onsite

random field can be written as:

H =
L∑
l=1

[
Jx σ

(l)
x σ

(l+1)
x + Jy σ

(l)
y σ

(l+1)
y + Jz σ

(l)
z σ

(l+1)
z + hlσ

(l)
z

]
. (1.1)

Here, σ
(l)
x , σ

(l)
y and σ

(l)
z are Pauli matrices for spins at site l. We assume that chain satisfies

the periodic boundary condition σ(L+1) = σ(1), where σ(l) is the vector of Pauli matrices

for spin at site l. The onsite fields hl are independent random fields, uniformly distributed

in the range [−W,W ], where W is the disorder strength of the system. The isotropic case

Jx = Jy = Jz = J is the Heisenberg model and can be written using vector of Pauli

matrices:

HH =
L∑
l=1

[
Jσ(l)σ(l+1) + hlσ

(l)
z

]
. (1.2)

The random field Ising model (RFIM) Hamiltonian can be considered as the special

form of Eq.(1.1) with Jx = Jy = 0:

HI =
L∑
l=1

[
Jσ(l)

z σ
(l+1)
z + hlσ

(l)
z

]
. (1.3)

RFIM Hamiltonian HI can be mapped onto its classical version. Addition of transverse

field gives the quantum version of RFIM, which is the transverse field Ising model in a

5The latter also includes spin-1/2 particles such as electrons.
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Figure 1.1: Spin-1/2 chain system with quenched disorder {hl} in z-direction. {hl} is de-
fined by the uniform distribution within the interval |hl| ≤ W . W is the disorder strength
and the interaction strength between the nearest neighbors are given by the unitless pa-
rameters Jx, Jy, Jz. In Ising model, Jx = Jy = 0. In Heisenberg model, Jx = Jy = Jz = J .

longitudinal field. Its Hamiltonian is another special form of the general interacting spin

equation (Eq.(1.1)) with Jy = Jz = 0 and longitudinal field hxl at each site l:

HT = J
L−1∑
l=1

σ(l)
x σ

(l+1)
x +

L∑
l=1

hxl σ
(l)
x +

L∑
l=1

hzl σ
(l)
z . (1.4)

It is a common model for quantum phase transition studies [40]. We will show in Chapter

3 that fluxonium qubit systems can be mapped onto transverse field Ising model in a

longitudinal field. Moreover, the standard QAA Hamiltonian is also written in terms of

transverse field Ising model Hamiltonian. We will discuss speed-up mechanisms by adding

steering terms in directions other than x-direction and also consider additional interaction

terms.

Quantum adiabatic algorithm

Difficult optimization problems can be formulated as Ising Hamiltonian [41]. Optimization

problems can be represented diagrammatically using vertices and edges as in Fig. 1.2. The
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cost function of optimization problems can be defined as:

HC =
∑
ij

Jij x
(i)x(j) +

∑
i

hi x
(i), (1.5)

where x(i) is a Boolean variable and x(i) ∈ {0, 1}, Jij is the weight of the edges connecting

site i to j, hi is the onsite cost at the vertex i. The aim of the optimization problems

is to minimize the cost functions to find the minimal cost and the corresponding optimal

configuration of string of Boolean variables. Optimization problems can be mapped onto

physical systems to be able to run the algorithms in physical simulators. One can switch

from Boolean variables to spins using the transformation σ
(i)
z = 1 − 2x(i). Then σ

(i)
z ∈

{−1, 1}. After this transformation, the cost function in Eq.(1.5) can be written as classical

Ising Hamiltonian:

H =
∑
ij

Jij σ
(i)
z σ(j)

z +
∑
i

hi σ
(i)
z , (1.6)

where Jij is the strength of the coupling between the spins at sites i and j and hi is the

onsite energy of site i. Ground state and ground state energy of Eq.(1.6) correspond the

optimal configuration and minimal cost, respectively.

One of the leading candidates to solve difficult optimization problems is quantum adi-

abatic algorithm (QAA) [19, 20]. Optimization problems can be encoded as Hamiltonians

of interacting systems. The ground state is the solution to the problem. AQC exploits the

adiabatic theorem [42]. If the time evolution is slow and there is a gap between the ground

state and rest of the Hamiltonian, the final state of the system gives the ground state (so-

lution) of the final Hamiltonian. During the course of the computation, the ground state

of an initial Hamiltonian is driven slowly to be able to find the ground state of a problem

Hamiltonian.

In standard QAA approach, the ground state of the random field Ising Hamiltonian

can be found starting from an initial state which is the ground state of an easy-to-prepare

Hamiltonian. Such a Hamiltonian can be selected as the spin system under x magnetic

field:

Hx = hx

L∑
l=1

σ(l)
x (1.7)
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Figure 1.2: The complete graph K4 has four vertices and six edges. Similar diagrams can
be used to represent optimization problems. The weight Jij is the cost of moving from i to
j. Each site has onsite cost hi. Here, i and j are from 1 to number of vertices.

The total Hamiltonian fI(t)HI+fx(t)Hx with time schedules fI(t) and fx(t) becomes trans-

verse field Ising Hamiltonian. Hx and HI does not commute and makes the optimization

problem Hamiltonian quantum. Hx keeps the gap open and allows to search for different

spin configurations. The ground state of the Hx is nondegenerate, which is another reason

to start with Hx.

We search for algorithms that can provide more speed-up than QAA. An obstacle to a

faster algorithm is the exponentially small gaps in the spectrum. The nature of the gaps

can be understood via avoided level crossings in Landau-Zener problem. In addition to the

avoided level crossings, the small gaps can also arise at the quantum phase transition points

[43]. In this thesis, we show that the small gaps due to avoided crossings created by single-

particles can be eliminated by adding a steering term to the standard QAA Hamiltonian.

Our inspiration comes from counterdiabatic driving, a shortcuts to adiabaticity [44]

method. General time-dependent systems can be driven fast and without transitions if
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a steering term is added [45], which will also be explained in Chapter 4. We propose

the steered QAA to find the ground states of Ising spin systems with random field in a

faster way. We explain how QAA can be improved by using local and cluster steering

methods. Slowdown mechanisms were mitigated using extra terms added to the standard

AQC Hamiltonian.

The steering term exploits directions other than the transverse field Ising Hamiltonian

given by Eq.(1.4). It makes the total Hamiltonian a part of special class, called nonsto-

quastic Hamiltonians. Nonstoquastic Hamiltonians have positive or complex off diagonal

elements in the computational basis. As we mentioned earlier, nonstoquastic Hamiltonians

can provide the means for universal quantum computing [21]. There have been many recent

studies about the effectiveness of nonstoquastic terms [46, 47, 48, 49, 50, 51, 52, 53]. With

the advance of nonstoquastic simulators [54], AQC will gain a new look [55].

In the NISQ era, analog simulators are useful especially due to their less need for er-

ror correction. However, analog simulators are hard to control and gate-based quantum

computers are expected to take analog computer’s place completely in the future [26]. Cur-

rently, the number of qubits for error correction in gate-based computers are small, so analog

quantum simulators will continue to be used and developed for near term applications.

Many-body localization

The spin model with Jx = Jy and Jz = 0 given in Eq.(1.1) can be mapped onto noninter-

acting spinless fermions via Jordan-Wigner transformation [56]:

HF = −
∑
l

hlc
†
l cl − t

∑
kl

(c†l ck + c†kcl), (1.8)

where t = −Jx/2 is the hopping parameter, cl and c†l are the annihilation and creation

operators at site l. Anderson showed that the wave function ψ(x) ∼ exp(−x/ξ) can be

localized in disordered systems [57, 58].6 Many-body localization (MBL) is the generaliza-

tion of single-particle localization with the interaction turned on, i.e. Jz 6= 0. Random-field

6ξ is the localization length.
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Heisenberg model given in Eq.(1.2) is the standard model for MBL in one-dimensional sys-

tems. Rigorous proof for the existence of MBL in one-dimensional quantum spin chains is

given in Ref. [59].7

A sketch for the localization of spinless fermions is given in Fig. 1.3. Wave function of a

particle is extended if the disorder barriers are low. The likelihood for a particle to discover

different sites are higher than a localized particle which is stuck in a local energy well.

𝐽"

𝐽
𝐽"

hl ✏ [�W, W ]

hl

Figure 1.3: J = Jx = Jy hopping parameter, J ′ = Jz interaction parameter. High energy
barriers make the particle localized. When the disorder is weak, it is more probable for
a particle to discover different sites. In many-body localization, interaction and hopping
terms cannot hybridize the wave functions of the particles in different sites.

The disorder strength defines the phase of the system: Ergodic or MBL. To distinguish

between these two phases, one can start evolving two same initial states written as product

states of spin up and down. When disorder is low, the overlap between the final state and

the initial state will be small. However, larger disorder preserves the memory of the system.

In that case, the overlap between the final state and the initial state will be higher. This

process is visualized in Fig. 1.4.

It is important to understand localization properties of interacting systems for quantum

computing purposes. A related example appears in QAA. Localization can cause the wave

function to be stuck in a local minimum and prevent it from evolving into the ground state

7For larger dimensions, mathematical proof has not been available yet but computational results support
its existence.
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Thermalization Localizationvs

e-iHt e-iHt

Figure 1.4: The same initial product state is evolving under two Heisenberg Hamiltonians
H with different disorder strengths. If the disorder strength is large, the evolved state will
be closer to its initial state even after long time. The measure of this closeness can be given
by the fidelity. In the thermalized phase, the memory is lost quickly and the new state can
be quite different than the initial state.

of the final Hamiltonian. Therefore, MBL is seen as a challenge against AQC [43]. On the

other hand, MBL systems are valuable resources for information storage due to their high

memory storage capacity [60, 61].

In Chapter 2, we explain how a disordered spin system with Heisenberg interaction

responds to a local periodic drive. A weak local drive perturbs the systems in different

amounts as a function of disorder strength. We consider a drive affecting one of the spins

in Fig. 1.1. We calculate how much the final wave function is displaced with respect to

the initial state wave function. The quantum displacement is proportional to fidelity sus-

ceptibility, a measure of how likely a wave function changes under a perturbation [62]. In

MBL regime, the displacement is small and the distribution of it is narrow. As an another

experimentally available approach, we calculate the spin accumulation as a function of time.

The total spin in z-direction given by

Sz =
1

2

∑
l

σ(l)
z (1.9)

is conserved under the evolution of the static Hamiltonian Eq.(1.2). The local drive breaks
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this conservation. We choose the initial state as the product state whose total spin in z-

direction is zero. The spin accumulation will increase in different rates depending on the

regime of the system. As shown in the sketch in Fig. 1.4, the total spin is close to its initial

value when the system is in the MBL regime. We demonstrate that there is a positive

linear correlation between diffusion coefficient and quantum displacement, and therefore

spin accumulation measurements also give another way to distinguish between thermalized

and MBL regimes.

Superconducting qubits

Superconducting qubit systems have been used for quantum simulations and are common

tools for both gate-based and analog quantum computing [33, 39, 55]. Superconducting

qubits are artifical atoms built using Josephson junctions and other electrical elements such

as inductors and capacitors which shunt the superconducting electrodes. In the quantum

harmonic oscillator formed by inductor and capacitor, energy levels are equally separated.

Josephson junction creates anharmonicity and separates the ground state and first excited

state from the rest of the spectrum. If the anharmonicity is high, then the ground and first

excited states can be accurately used to build computational states |0〉 and |1〉. Another

crucial factor that defines the quality of superconducting qubits is coherence time. The

qubit keeps its quantumness during coherence time. Qubits with higher coherence times

can be used longer in quantum computations.

As showed in Fig. 1.5, a fluxonium circuit has a capacitor, Josephson junction and

a superinductor. The superinductor has a high inductance and is a series of more than

100 Josephson junctions. The high inductance creates large anharmonicity. It has been

shown that the coherence time of fluxonium can be higher than 100 µs at its sweet spot

[63]. Large anharmonicity and long coherence time make fluxonium a strong alternative

to other available superconducting qubits [64]. Transmon has long coherence time but low

anharmonicity. The Cooper pair box has high anharmonicity but short coherence time.

Fluxonium has the desired sides of these two types of qubits.
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Figure 1.5: Fluxonium circuit consisting of capacitor, Josephson junction and superinduc-
tor. The phase difference across the superinductor is φ and the external flux in the loop
formed by the Josephson junction and superinductor is Φext.

In this thesis, we will discuss transverse field Ising model simulations that can be per-

formed using fluxonium qubit systems. This type of simulation obeys analog quantum sim-

ulation, as summarized in the following. The quantum system to be simulated is mapped

onto the fluxonium qubit systems. Initial state is prepared at t = 0 and the system evolves

under time. After a certain time t = τ , the state of the system is measured. Fluxonium

provides advantages in simulating transverse field Ising Hamiltonian because high anhar-

monicity keeps the computational states |0〉 and |1〉 distant from the rest of the spectrum.

Moreover, inductive connection provides XX coupling. Even if there is detuning away from

the sweet spot, the decrease in coherence time is not drastic and the qubit can still be used

to simulate spin-1/2 systems accurately. It has been shown in Ref. [63] that the qubits

with 5 µs coherence time can form a linear chain of 10 qubits.

Fluxonium can also be used in the search of Majorana fermions. As mentioned above

for MBL, fidelity susceptibility is a useful tool to detect phase crossovers. We use fidelity
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susceptibility to study quantum phase transition of fluxonium qubit systems. Ground en-

ergy level of the Ising Hamiltonian given in Eq.(1.3) is degenerate and a transverse field

increases the energy gap between the ground state and the first excited state. The energy

gap vanishes in the topological regime. This property of the transverse field Ising model

mimicks the Majorana nanowires [65]. Engineering Majorana nanowires using proximity

effects are difficult to realize and so far there is no success of Majorana fermion observation

even in simple systems based on s-wave superconductors [66]. Fluxonium qubit systems

are more accessible and effective tools to discover Majorana physics in Ising-type Hamil-

tonians. It has been shown that even short Ising chains are useful to discover Majorana

physics [67, 68, 65]. The already available fluxonium qubits can simulate such short Ising

chains accurately thanks to its superior properties [63].

Multiterminal Josephson junctions

Multiterminal Josephson junctions are another solid state systems showing quantum be-

havior. As stated in the previous subsection, Josephson junctions are important ingre-

dients of superconducting circuits. There are many other usages of Josephson junctions

[69, 70, 71, 72]. In this thesis, we will focus on the novel phenomena observed in multiter-

minal Junctions [73, 74, 75, 76]. Here, we give an introduction to multiterminal Josephson

junctions and Andreev reflection. In Chapter 5, we will discuss junctions with more than

two terminals.

Andreev bound states (ABS) create supercurrents in Josephson junctions as shown in

Fig. 1.6. Particles in normal regions which are squeezed between superconducting terminals

are confined within superconducting potential barriers. Electron (hole) incoming from

normal region to superconducting boundary with energy smaller than the superconducting

pair potential bounces back as hole (electron) to the normal region with the same energy

and approximately same momentum [77]. This process keeps happening after the particle

reaches to the another NS boundary.8 Cooper pair flow in the superconducting region

8S and N stand for superconducting and normal regions, respectively
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creates supercurrent.
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Figure 1.6: Andreev bound states formed by the electron-hole superpositions create Cooper
pairs in superconductors.

We consider the scattering region as a ballistic normal metal with the Hamiltonian:

H =
(p− eA)2

2m
− µ, (1.10)

where p is the momentum, e is the electron charge, m is the effective quasiparticle mass,

A is the vector potential, µ is the chemical potential. This continuum Hamiltonian can be

written in the form of Eq.(1.8):

∑
<i,j>

tijc
†
icj − µ

∑
i

c†ici (1.11)

with tij = t0e
iφij , t0 = ~2/(8ma2), and φij ∝ B is the magnetic factor given by the Peierls

substitution [78].

In our junction simulations, we follow two approaches. In the first one, we assume

that the junction leads are semi-infinite and translationally invariant, which makes the lead

wave functions superposition of plane waves. These plane waves are the eigenstates of the

translation operator with eigenvalues given by λ = eik, where k is the momentum of the

lead considered. λ can be identified by solving the Bloch equation H(k)φ = Eφ, where
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Bloch Hamiltonian is given by

H(k) = H + V e−ik + V †eik. (1.12)

H is the onsite potential and V is the hopping parameter. After identifying the propagating

in, out and evanescense modes, we solve the Schrodinger equation through the scattering

region and obtain S-matrix.

In the second approach, we assume that the system is closed with finite leads. The

problem turns into an eigenvalue problem. We calculate subgap energies by diagonalizing

the system Hamiltonian. The first approach is especially suitable for junctions with scat-

tering regions having the same lattice type as the leads. We use the second approach for

the junctions having scattering regions with arbitrary geometries. S-matrix calculations

are faster than diagonalizing large matrices, so we also make approximations to junctions

of arbitrary geometries by attaching more semi-infinite leads comparing to the real system

geometry. We compare the results of the two approaches.

For the first approach, to find the ABS energies and study the spectra in short junc-

tions (junctions with semi-infinite leads), we follow the scattering theory method and solve

Beenakker’s determinant equation [79]:

|I − γX| = 0, (1.13)

where

X = RS†R†S (1.14)

Here R represents the reflection matrix from the SN boundary and S represents the scat-

tering matrix (S-matrix). We will give details of the calculations of Andreev energy levels

and supercurrents in Chapter 5.

To find the scattering matrix S-matrix, one can use random matrix theory and generate

random matrices within certain Altland-Zirnbauer symmetry classes [80]. In this thesis, we

instead calculate S-matrix following the microscopic approach of Kwant package [81], as we

explained above. By this way, we have more control over the system parameters. In the

second approach, we calculate minimum energy levels of the system Hamiltonian and take



16

the ones which are smaller than the gap. These are Andreev bound states whose energies

change as a function of phase. After identifying ground state energy Eg of the junction,

supercurrent in the leads can be calculated using the following equation [82]:

Ij =
2e

~
∂Eg
∂φj

, (1.15)

where φj is the superconducting phase of the lead j.

1.3 Computational workflow

I did my simulations in this thesis dedicated to quantum systems using classical computer

clusters of the Center for High Throughput Computing (CHTC) Center and Open Science

Grid [83, 84]. Classical computers are not very powerful to simulate quantum dynamics.9

There is a system size threshold to effectively simulate a quantum system by a classical

computer. Number of quantum states grow exponentially with number of qubits.10 How-

ever, by dividing jobs into small parts, it is possible to get an immense speed-up comparing

to simulations on personal computers. In Fig. 1.7, an example speed-up for exact diagonal-

ization is provided. The task is performed for thousands of different parameter sets in our

paper [50].

When I started doing high-throughput computing simulations in 2017 summer, I learned

how to do large-scale simulations myself. I gave a talk about my computational approach

during HTCondor Week 2018. I later learned many more details about large-scale comput-

ing during Open Science Grid School 2018. I am planning to increase system sizes of my

simulations by incorporating techniques of high-performance computing into my research.

Simulations of larger systems will help me test more ideas.

I built up an efficient scheme of high-throughput computing. I performed exact diag-

onalization and simulated time dynamics of systems of sizes up to eighteen spins. The

statistics were taken over thousands of random disorder realizations, product states and

9This point was stated nicely by Feynman as: “... nature isn’t classical, dammit, and if you want to
make a simulation of nature, you’d better make it quantum mechanical.” [10].

10Number of states of 300 qubits is more than the number of particles in the universe.
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L (system size) Memory
Time

Without HTC With HTC

1 Up to 256MB a few days a few hours

3 Up to 256MB ~ week half day

8 Up to 256MB ~ a few weeks less than a day

10 Around 1000MB ~ months ~ a day

12 More than 1000MB ~ half PhD! a few days

Figure 1.7: Memory requirement for exact diagonalization of spin system Hamiltonians.
HTC stands for high-throughput computing. Column with the title “Without HTC” rep-
resents the estimated amount of time that would be spent in personal computers.

long evolutions. I divided the computation into smaller parts so that thousands of jobs

with many input parameters and large output data can run in the computer clusters at the

same time.11

I divide big computational tasks into small parts by identifying the parts in the code

which can run in parallel. Quantum toolboxes have been highly beneficial for data pro-

cessing. In my spin system simulations, I use QuTiP [85, 86]. For Josephson junction

simulations, I use quantum transport package Kwant [81]. The computational require-

ments for these packages may not be available in clusters. In order to have full control over

the environment jobs running in, I use Docker images, which can be considered as virtual

machines carrying the necessary toolboxes for the computation within themselves. For data

analysis, I use Python libraries. I also use Veusz, which is a useful tool for scientific visu-

alizations due to its simple GUI application. To share the Jupyter notebook results with

my colleagues, I use nbviewer. In the near future, I will take part in developing and using

QuaC (Quantum in C) [87] for high-performance computing simulations.

11A single file for an output data set could be larger than ∼1GB.
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1.4 Outline of the thesis

The outline of the thesis is given in this section. There are two main parts. First part covers

theory and simulations of quantum spin systems. The second part covers multiterminal

Josephson junction simulations.

In Chapter 2, we study fidelity susceptibility and time evolution of the total spin of

disordered Heisenberg spin chains under local periodic drive. We evaluate the fidelity

susceptibility, a measure of how a given state changes under a small perturbation, of states

to a weak periodic drive. Fidelity susceptibility can be used to distinguish ergodic and

many-body localized regimes. We also calculate spin accumulation of the systems with

different disorder strengths. We show that the diffusion coefficient is correlated with the

fidelity susceptibility and can also be used to distinguish the two phases.

In Chapter 3, we study quantum phase transitions of fluxonium qubit systems. A chain

of fluxonium qubits provides the means for simulating quantum many-body phenomena

in spin-1/2 magnets. The available controls allow us to map a qubit chain onto an Ising

chain in a transverse magnetic field with variable parameters. The role of the transverse

field is played by the tunnel-induced splitting between the lowest energy states at the half-

flux sweet spot [88]. The interaction comes from the inductive qubit coupling between

fluxoniums’ superinductors and can exceed the level splitting [89, 63]. The magnetic flux

detuning from the sweet spot plays the role of the longitudinal field for an Ising spin. We

first introduce the transverse field Ising model, which is a common model for quantum phase

transitions as mentioned above. We then discuss the phase diagram of the fluxonium chain.

We demonstrate the quantum phase transition with the varying level splitting. We show

that by using magnetization, one can study characteristics of edge states and propagating

excitations.

In Chapter 4, we discuss the steered quantum adiabatic algorithm. A general time-

dependent quantum system can be driven fast from its initial ground state to its final

ground state without generating transitions by adding a steering term to the Hamiltonian.

We show how this technique can be modified to improve on the standard quantum adiabatic
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algorithm by making a single-particle and cluster approximation to the steering term. The

method is applied to a one-dimensional Ising model in a random field. For the limit of

strong disorder, the correction terms significantly enhance the probability for the whole

system to remain in the ground state for the proposed non-stoquastic annealing protocol.

We demonstrate that even when transitions occur for stronger interaction between qubits,

the most probable quantum state is one of the lower-energy states of the final Hamiltonian.

Since the method can be applied to any model, and more sophisticated approximations

to the steering term are possible, the alternative technique opens up an avenue for the

improvement of the quantum adiabatic algorithm.

The second part of this thesis is dedicated to multiterminal Josephson junctions. Junc-

tions with three or more superconducting terminals gained broad interest as they provide

means to study physics and topology in higher dimensions and to braid Majorana fermions

for fault-tolerant quantum computation. We study effect of perpendicular magnetic field on

Andreev energy levels and critical currents in a 3-terminal Josephson junction with conven-

tional s-wave superconducting leads and a normal 2DEG scattering region. In a 3-terminal

junction, currents through two terminals determine the DC Josephson effect which occurs

when the two currents are limited by the boundary of the Critical Current Contour (CCC).

We study the Fraunhofer diffraction patterns that manifest itself as oscillations in the di-

ameter and area of the CCC. We show that the oscillations remain in 3-terminal devices

but the additional terminal reduces the amplitude of the oscillations. We also show that

magnetic field mixes with the superconducting phases in the leads and deforms the ground

state energy landscape. We argue that a peculiar modulation of CCC with magnetic flux

is the signature of coherent Josephson effect in multi-terminal Josephson junctions.

In addition to 3-terminal junctions with rectangular geometry, we also explore multiter-

minal junctions with arbitrary geometries. 4-terminal X model junction has been studied

experimentally by the Manucharyan Group at the University of Maryland [75]. We simu-

late finite X model with leads longer than coherence length and other infinite systems as

approximations to this X model and compare the results.
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The work in this thesis is presented in six chapters. The contents of Chapters 2 and 4 have

appeared in two separate published works. The material of Chapters 3, 5 (Ref. [90]) and 6
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Chapter 2 is based on Ref.[92], titled Response of a quantum disordered spin system

to a local periodic drive, and published in January 2020. This work was completed with

Canran Xu and Maxim G. Vavilov. We thank D. Basko, M. Dykman, D. Huse, L. Ioffe,

I. Martin, R. Nandkishore and V. Oganesyan for fruitful discussions. This work was sup-

ported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences,

under Award Number DE-SC0019449. The simulations were performed using the comput-

ing resources of the UW-Madison Center For High Throughput Computing (CHTC) and

resources provided by the Open Science Grid [83, 84], which is supported by the National

Science Foundation award 1148698 and the U.S. Department of Energy’s Office of Science.

Numerical simulations were performed using QuTiP [86].

Chapter 3, titled Phase Transitions and Edge States in Fluxonium Qubit Systems, is

based on the work being prepared for submission. This work has been done together with

Vladimir Manucharyan, Mark Dykman and Maxim G. Vavilov. Support for this work was

provided by ARO (Grant No. W911NF-18-1-0146).

Chapter 4 is based on Ref.[50], titled Steering random spin systems to speed up the

quantum adiabatic algorithm, and published in December 2018. This work was completed

with Robert J. Joynt and Maxim G. Vavilov. We are thankful to Sergey Knysh and Vadim

Smelyanskiy for fruitful discussions. The simulations were performed using the comput-

ing resources and assistance of the UW-Madison Center For High Throughput Computing

(CHTC). The work was supported by NSF EAGER Grant No. DMR-1743986.

Chapters 5 and 6 are titled as Studies of multiterminal junctions via scattering theory

and Studies of finite multiterminal junctions, respectively. They are based on the work

being prepared for submission as separate theory and experimental papers [90, 91] together

with Maxim G. Vavilov, Vladimir Manucharyan and his group including Hanho Lee, Natalia



21

Pankratova and Roman Kuzmin. Fruitful discussions with Caglar Girit and Vlad Pribiag
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Chapter 2

Response of a quantum disordered

spin system to a local periodic

drive

2.1 Introduction

Focus of MBL studies was to understand interacting many-body spin systems with random

field. Interacting electrons and spin-1/2 chains are closely related models. The spinless

electron system can be mapped onto XXZ chain via Jordan-Wigner transformation [93].

The onsite energy in the fermionic system corresponds to random z-field in the spin chain

model.

Both fermionic systems and spin chains with disorder have been shown to exhibit MBL

transition in Refs [94, 95, 96, 97, 98, 99, 100, 101]. This transition between localized and

ergodic regimes can be characterized via entropy growth [102, 103], localization length

[103], energy spectrum [104, 105], local integrals of motion [106, 107, 108, 109, 110] and

entanglement [103, 102, 111, 112].

We present our results for the short time scales when the system may not have reached

its saturation value yet. We consider a one-dimensional Heisenberg spin chain system with
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quenched disorder driven by a local ac field. The static Heisenberg Hamiltonian with the

periodic boundary condition ~σ(L+1) = ~σ(1) is given by

H0 =
L∑
l=1

[
Jσ(l)σ(l+1) + hlσ

(l)
z

]
. (2.1)

Here, σ(l) is the vector of Pauli matrices for spin at site l. The onsite fields hl are indepen-

dent random fields, uniformly distributed in the range [−W,W ], where W is the disorder

strength of the system. We use J as a fundamental unit and set J = 1 throughout the rest

of this chapter.

The system with Hamiltonian (2.1) conserves the total z-component of spin

Sz =
1

2

∑
l

σ(l)
z , (2.2)

A transverse ac drive is applied to a single spin

V (t) = f [cos(ωt)σ(1)
x + sin(ωt)σ(1)

y ], (2.3)

which breaks the conservation of Sz. Here, f denotes the strength of the drive, ω is the

drive frequency and τ = 2π/ω is the period of the drive. We investigate the time evolution

of the system described by the time-dependent full Hamiltonian

H(t) = H0 + V (t). (2.4)

We perform analysis of fidelity susceptibility [62] and change in system dynamics of total

spin as the strength of disorder changes from weak to strong.

Fidelity susceptibility was previously used to study phase transition [113, 114, 115, 116,

117]. In this chapter, we study fidelity susceptibility as a measure of overlap between the

two quantum states |〈ψf=0|ψf 6=0〉|2 that evolve with or without drive from the same initial

state |ψi〉, where (...) stands for the average over initial states |ψi〉. For weak drive, the

quantum displacement is proportional to the fidelity susceptibility. Evolution of an initial

state may follow different paths in the Hilbert space depending on the phase of many-body

systems. An important factor that defines the quantum displacement between the two final
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Figure 2.1: (Color online) Heisenberg spin-1/2 chain system with quenched disorder {hl}
in the z-direction. {hl} is defined by the uniform distribution within the interval |hl| ≤W .
W is the disorder strength and the interaction strength between the nearest neighbors is
given by the unitless parameter J = 1. There is a local ac drive with strength f on the
spin labeled by i = 1 in the x-y plane rotating with drive frequency ω in the anticlockwise
direction.

states is disorder. When the disorder is weak, the distance between the two final states is

large. However, for strong disorder, localization occurs and the distance vanishes.

The local drive (2.3) breaks the Sz-conservation law. We show that spin accumulation

in response to the drive could be a viable experimental method to distinguish between

localized and ergodic regimes. The variance of operator Sz with respect to an arbitrary

quantum state |ψ(t)〉 of the system at time t is

δS2
z (t) = 〈S2

z (t)〉 − 〈Sz(t)〉2, (2.5)

where, 〈A(t)〉 is defined as 〈A(t)〉 ≡ 〈ψ(t)|A|ψ(t)〉. We perform an analysis of the statistical

properties of the spin accumulation δS2
z (t) over disorder realizations. We study the average

of δS2
z (t) as a function of time t = nτ , where n is the number of periods. The statistics

of spin accumulation is significantly different for the ergodic and MBL regimes and the

difference between the spin accumulation over time can be used to distinguish between

the two regimes. The change in δS2
z (t) after one period can be identified as the total spin
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diffusion coefficient. We compare the quantum displacement at one period with the diffusion

coefficient δS2
z (τ) and show that they have similar behavior. We analyze the distribution

of the diffusion coefficient for different disorder strengths. The distributions are different

for the MBL and ergodic regimes. The diffusion coefficient is large and the distribution is

narrow for weak disorder, whereas the diffusion coefficient is small and the distribution is

wide and has a long tail for the strong disorder.

2.2 Fidelity susceptibility at weak drive

The analysis of quantum displacement has been performed in Canran Xu’s PhD thesis

[118].1 In this section, we provide improved figures for the quantum displacement for larger

systems with more disorder realizations (Figs. 2.2 and 2.3) and relate quantum displacement

to fidelity susceptibility. We further relate fidelity susceptibility to spin variance in the

following sections and will study the correlation between the two.

System Hamiltonian given in Eq.(2.4) can be transformed into time-independent Hamil-

tonian under a unitary basis transformation:

H̃ = H̃0 + fσ(1)
x , H̃0 = H0 − ω Sz. (2.6)

For a given initial state ψi, we consider evolution of it under the driven and undriven

Hamiltonians. The Fubini-Study distance between the states after time τ is given by:

Fψi
= |〈ψ0(τ)|ψf (τ)〉|2 = |〈ψi|U|ψi〉|2 , (2.7)

where ψ0(τ) is the state evolved under the Hamiltonian without drive and ψf (τ) is the

state evolved under the driven Hamiltonian. Here, U is the operator giving the mismatch

between these two states:

U = U †0Uf , (2.8)

where Uf = (−1)L exp(−iH̃τ)) and U0 = Uf→0 = exp(−iH0τ). L is the number of spins.

1“Dimensionless power”, which is proportional to infidelity, was studied in Canran Xu’s thesis. We use
the phrase “quantum displacement” here and define it below.
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Fubini-Study metric is known as quantum geometric tensor in the adiabatic limit. The

imaginary part of the quantum geometric tensor gives the Berry curvature. Both real and

imaginary parts of the quantum geometric tensor can be used as susceptibility to measure

phase transitions [119]. Here, to identify phases, we use fidelity susceptibility for the weak

drive, which is defined in the next section.

The average fidelity over all initial states is given by [120] (as cited in [118]):

F =
M + |tr(U)|2
M(M + 1)

. (2.9)

We define quantum displacement between the two final states after one period as in the

following:

ε ≡ 1− F. (2.10)

The distribution of the quantum displacement is given in Fig. 2.2. The quantum displace-

ment depends on the disorder strength as shown in Fig. 2.3. These figures are improved

versions of the ones available in [118] with more disorder realizations and for larger systems.

In the weak drive limit, quantum displacement is proportional to the fidelity suscepti-

bility. Here, we explain the relation between the two. Two initial same states are evolved

under unperturbed and perturbed Hamiltonians for a period. We calculate the quantum

displacement ε given by Eq.(2.10) between the two final states after a period, which is in-

dependent of the given initial state and depends only on the mismatch between the energy

eigenstates of the unperturbed Hamiltonian and Floquet basis. When the drive strength f

is small, we can write the Maclaurin series expansion for the fidelity in Eq. (2.7) around

f = 0:

F = 1− f2

2
χF + ..., (2.11)

and we neglect the higher order terms. Here χF is defined as the fidelity susceptibility and

it is the second derivative of the fidelity with respect to the drive amplitude f [62]. In the

small f limit, χF can be written in terms of fidelity F :

χF = 2 (1− F )/f2 = 2 ε/f2. (2.12)

Note that χF is proportional to the quantum displacement ε given by Eq. (2.10).
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Figure 2.2: (Color online) (a) Distribution of quantum displacement ε over N = 104

realizations of the random magnetic field hl for a system with L = 12 spins. The top panel
shows the distribution of the displacement itself for W/J = 0.3 (blue long-dashed line),
W/J = 3 (green short-dashed line), and W/J = 30 (red solid line). Distributions for strong
disorder have exponentially large tails. Rare events appear for the strong disorder. (b)
Logarithm of the distribution of ε for the same three values of disorder as in (a). The dash-
dotted line represents the slope ∼ 10−1/2(lg(ε)) = 1

√
ε. The drive amplitude f = J/

√
10 and

ω = J . lg shows log10 throughout the text. We scaled the distribution curves for W/J = 3
by factor two and for W/J = 30 by factor six.
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Figure 2.3: (Color online) Average of the logarithm of quantum displacement, lg(ε), as a
function of disorder strength W for a spin system of size L = 8 (circles), L = 10 (squares)
and L = 12 (diamonds). The average is evaluated over N = 103 disorder samples for
L = 8, 10, 12. The drive amplitude f = J/

√
10 and ω = J . 〈〈〉〉 shows the disorder average

throughout the chapter.

2.3 Time evolution of the total spin

In this section, we describe a technique to distinguish between ergodic and MBL phases

using the total spin projection in the z-direction Sz, given by Eq.(2.2). It has been shown

that magnetization can be a probe to distinguish between ergodic and MBL phases [121].

Here, we study the variance of total spin in the z-direction that gives the measure of

localization for a given state [122]. The total spin projection in the z-direction is a conserved

quantum number of H0, Eq. (2.1). When there is a local periodic drive perpendicular to

the z-direction, Sz is not conserved anymore. The value of Sz with respect to time depends

on the strength of the random field W . For the variance of Sz given by Eq. (2.5), δS2
z (t),
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we observe different statistics for the ergodic and MBL phases.

We choose the initial state as a product state with Sz = 0. Such product states can

be shown as |ψ〉 = |{σi}〉 with σi = ±1,
∑

i σi = 0, where +1 represents spin up and -1

represents spin down for even system size L. There are L!/((L/2)!)2 product states with

Sz = 0. For systems of size up to L = 12, it is computationally feasible to take the average

δS2
z (t) (product state average is shown by an overbar) over all product states along with

disorder average. For the sizes beyond L = 12, we took the average over some group of

randomly selected product states. Even a small group of samples can be useful to identify

the phase of the system. By analyzing statistical dynamics of product states, we can study

the ergodic and MBL phases. By using time dynamics, one can simulate larger systems

compared to the spectral analysis because exact diagonalization is computationally more

intensive.

Short time growth of δS2
z (t) can identify the phase of the system.2 Fig. 2.4 shows how

the average variance 〈〈δS2
z (nτ)〉〉 changes with respect to the number of periods, n.3 The

average is taken over product states (shown by the overbar) and disorder (shown by double

angle brackets). In the ergodic regime, the variance changes quickly for the initial periods

and reaches a saturation point for longer times. For L = 14, the saturation point is reached

in less than one hundred cycles of drive. For larger systems, it takes more time to reach the

saturation point. One can estimate based on the decreasing rate of change of the variance

with time that it does not take exponentially long time to reach the saturation for systems

with L = 16 and 18 in the ergodic regime. However, in the MBL regime, the variance

increases slowly and based on the monotonous increase rate one can estimate that it takes

much more time to reach a saturation point compared to the ergodic case. In addition,

the variance change in the MBL regime is less sensitive to the system size than in ergodic

regime. In Fig. 2.4(b), we demonstrated for different initial conditions and product states

2Short time change of correlation functions have also been found useful to identify localization properties
of the quantum many-body systems as discussed in [123].

3We also compared the spin accumulation for W = 0 (zero disorder) with the ergodic (W = 1.25) and
MBL (W = 5) cases. We observed that when there is no disorder, the behavior of variance is quite different
than the evolution in the ergodic regime, so W = 0 case cannot simply be studied by choosing W −→ 0 and
deserves a separate analysis.
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Figure 2.4: (Color online) (a) Average δS2
z (t) as a function of time for a spin system of size

L = 14 (diamonds), L = 16 (squares) and L = 18 (circles). Curves for W = 1.25 have filled
and for W = 5 have unfilled markers. The averages are performed over 103 realizations
of disorder for all system sizes and 103 product states for L = 14, 150 product states for
L = 16 and 60 product states for L = 18. The overbar shows the product state average
throughout the chapter. (b) Average δS2

z (t) as a function of time for a spin system of size
L = 14 and W = 1.25 or 5. Results are compared for the initial product state with Sz = ±1
and 0 at t = 0. For all cases, 100 product states and 103 disorder averages are considered.
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(Sz = 0 vs. ± 1) that one can still distinguish between ergodic and MBL regimes regardless

of the initial Sz choices. In MBL regime (W = 5), the spin accumulation takes almost the

same values and the curves are aligned with each other. In ergodic regime (W = 1.25), the

spin accumulation for the three different initial Sz values slightly differ. The reason for this

slight difference between Sz = ± 1 is the sine term in Eq.(2.3), which is an odd function

and breaks the symmetry with respect to the local field rotation direction.
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Figure 2.5: (Color online) Average δS2
z (τ) as a function of lg(W/J) for a spin system of size

L = 8 (circles), L = 10 (squares) and L = 12 (diamonds). Time = 1 period. f = J/
√

10 and
ω = J . The averages are performed over 104 disorder realizations for L = 8, 103 disorder
realizations for L = 10, L = 12. All product states are considered for all system sizes for
product state averaging.

In Fig. 2.5, we show how the average of logarithm of the variance, 〈〈lg(δS2
z (τ))〉〉, changes

with respect to the disorder strength W . Time is fixed at one period, τ . The variance curves

in Fig. 2.5 shows similar properties as the quantum displacement curves in Fig. 2.3. δS2
z (t)

changes weakly with disorder strength at weak disorder (W . 3J), whereas it decreases
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linearly with lg(W/J) at stronger disorder (W & 3J). Similar to the quantum displacement,

δS2
z (t) also does not strongly depend on the system size L.

In Fig. 2.6, we show the probability distribution of lg(δS2
z (τ)). The distributions are

narrow and the typical value of δS2
z (τ) is large at weak disorder, whereas the distributions

broaden and the typical value of δS2
z (τ) is small at strong disorder. For the quantum

displacement, we showed in the previous section that the distribution of lg(ε) is a Pareto

distribution. lg(δS2
z (τ)) distributions for strong disorder have longer tails but not as long

as the distributions of quantum displacement ε. However, it is still possible to distinguish

between localized and ergodic phases based on lg(δS2
z (τ)) distributions for different disorder

strengths even though rare events do not appear and distribution is spread out in a smaller

range in the strong disorder.

We compare the typical values of the displacement ε with the spin diffusion coefficient

δS2
z (τ). We demonstrate the correlation between 〈〈lg(ε)〉〉 and 〈〈lg(δS2

z (τ))〉〉 by the pa-

rameter plot provided in Fig. 2.7(a). This behavior of 〈〈lg(ε)〉〉 and 〈〈lg(δS2
z (τ))〉〉 supports

our claim that the total spin measurement can also be used to identify the localization

properties of the system. We also provide scatter plots in Figs. 2.7(b, c, d) for three of

the disorder-unaveraged values from Fig. 2.7(a) with W = 1 (ergodic regime), 3.16 (critical

regime) and 10 (MBL regime). The distributions for both lg(ε) and lg(δS2
z ) are wide in the

localized phase with large disorder strength and the typical values of ε and δS2
z are small.

For smaller W , the distributions get narrower and the typical values are bigger. We deduce

from the shape of the clouds in the scatter plots in Figs. 2.7(b, c, d) that the correlation

between lg(ε) and lg(δS2
z ) are small.4 However, as we pointed out, the average values of

them are correlated as shown in the parameter plot in Fig. 2.7(a).

2.4 Discussion and Conclusions

We analyzed the overlap between the states started from the initial states |ψi〉 and evolved

under the Heisenberg Hamiltonian with and without drive. We also studied the variance

4We used cross-correlation to calculate the correlation between lg(ε) and lg(δS2
z )
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Figure 2.6: (Color online) Distribution of lg(δS2
z ) over N = 103 disorder realizations of the

random magnetic field hl for a system with L = 12 spins for W/J = 0.3 (blue long-dashed
line) and W/J = 3 (green short-dashed line), 30 (red solid line). We scaled the distribution
curve for W/J = 30 by factor six. The averages are performed over all product states of
the system.

of the operator for total spin in z-direction δS2
z (t), given by Eq.(2.5), for an initial state

prepared as a product spin state with total spin projection equal to zero. Thus, δS2
z (t) is

a measure of spin accumulation due to the drive and can be used to measure the speed of

the thermalization in the ergodic and MBL regimes. Both initialization of this system as a

product state of individual spins in z-direction and measurement of their net spin projection

are basic requirements for quantum hardware and experimental studies of crossover from the

ergodic to localized regimes through the spin polarization dynamics is feasible in available

systems similar to those described in Refs. [34, 35, 37, 36, 38, 63].
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Figure 2.7: (Color online) (a) Parameter plot of 〈〈lg(ε)〉〉 and 〈〈lg(δS2
z )〉〉 for a spin system

of size L = 8 (circles), L = 10 (diamonds) and L = 12 (squares). Data points from Figs. 2.3
and 2.5 are used. Time = 1 period. The drive amplitude f = J/

√
10 and ω = J . There

is almost a linear dependence between the two quantities. (b, c, d) Scatter plots of the
data for the three of the results for L = 12 from (a). W = 1 (red diamond), 3.16 (blue
square) and 10 (green circle). Each scatter plot includes 103 unfilled markers each of which
corresponds to a single disorder realization. Each average value in plots of (b, c, d) is in a
big black square and is shown by a filled marker of same type as the scattered data.
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We calculated the spin accumulation in response to the drive over time t, the results

are shown in Fig. 2.4. In the ergodic regime, the spin accumulation speed is large in the

initial periods and total spin gets saturated rapidly. However, in the MBL regime, the spin

accumulation is slower in the initial periods and the spins are still drifting in response to the

drive in the longer time limit. The spin accumulation after one period gives the spin diffusion

coefficient δS2
z (τ). The behavior of the diffusion coefficient is very similar to the behavior

of quantum displacement ε. As illustrated in Fig. 2.5, at weak disorder, diffusion coefficient

is large and changes weakly with the disorder strength. However, at strong disorder, the

diffusion coefficient decreases linearly with the logarithm of the disorder strength, lg(W/J),

and eventually diffusion is broken. The system may show subdiffusive dynamics as recently

pointed out in [124]. Furthermore, diffusion coefficient does not depend on the system size

strongly similar to quantum displacement.

Probability distributions for the diffusion coefficient show different characteristics de-

pending on the disorder strength as can be seen in Fig. 2.6. At weak disorder, the distribu-

tion is narrow and the typical value of the diffusion coefficient is large. At strong disorder,

the distribution is wide and have long tail but unlike the distributions for the quantum

displacement, the distribution for the diffusion coefficient does not have exponentially long

tail and does not exhibit rare events. However, it is still possible to identify the phase of

the system based on the diffusion coefficient distributions. The broad distribution of δS2
z (τ)

at strong disorder shows that this parameter cannot be seen as a one-fit-all parameter. In

other words, there is a different dynamics at strong disorder.

In Fig. 2.7, we demonstrated that there is a positive correlation between the quantum

displacement and spin accumulation. However, we note that flips of a spin have different

effects on the quantum displacement and the spin accumulation. If a single spin flips,

the original and new states, |ψ〉 and |ψ′〉 respectively, are orthogonal. That makes the

displacement 1 − |〈ψ|ψ′〉|2 between the states equal to 1. However, in the large system

size (L � 1) limit, one spin flip produces a small effect for the total spin ∼ L in the z-

direction and therefore also for the spin accumulation δS2
z (t). Even though spin flips have
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smaller effects on the spin accumulation, there is a clear difference between the speed of

the thermalization for the two phases as explained above.

Our study was focused on a local harmonic drive with moderate drive frequency (ω ' J).

For this frequency, we observed that thermalization occurs regardless of whether the sys-

tem is in the localized or ergodic regimes, which supports the results of [125, 126, 37],

and the speed of thermalization is different for the two cases. On the other hand, one

could also consider the cases where ω is much smaller or larger than J . In the limit of

ω << J , the time-independent Hamiltonian in the rotated frame will be similar (with dif-

ference of ω Sz) to the Hamiltonian with DC perturbation considered in [105]. If the drive

frequency is larger than the depth of the local energy minima, different regimes such as

prethermal states occur [127, 128]. Most closed many-body systems tend to heat up when

they are driven. The situation is different for driven localized systems when many local

deep minima appear in the energy spectrum and prevent thermalization. The system is

prevented from heating up, which can be understood via quantum mechanics of energy

levels. If the drive frequency is large, the system cannot absorb all the energy provided by

the drive. Instead, the energy absorption requires many-body excitations and slows heating

down exponentially [129, 130]. Under certain nonequilibrium conditions of prethermaliza-

tion, the systems can exhibit topological phases protected by time-translation symmetry

[131, 132, 133, 134] and time crystals where time-translation symmetry is spontaneously bro-

ken [135, 136, 137, 127, 138, 139, 140, 128, 141]. Exploring statistics of the system responses

at high frequency periodic drive was not addressed here and is the topic of a separate study.
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Chapter 3

Phase Transitions and Edge States

in Fluxonium Qubit Systems

3.1 Introduction

A chain of inductively coupled fluxonium atoms tuned at or around their sweet spots can

be used to simulate strongly interacting spin-1/2 chains thanks to their high coherence

and anharmonicity. In Chapter 2, we used fidelity susceptibility to study phase crossover

of disordered spin chains. In this chapter, we will study quantum phase transitions of

fluxonium qubit systems using fidelity susceptibility. We first show how a fluxonium atom

system can be mapped onto spin-1/2 Ising chain.1 Then we will study phase diagram of

antiferromagnetic transverse Ising chain in a longitudinal field in the parameter range of

fluxonium atoms. The phase diagram shows the energy gap between the ground and first

excited states, which determines the phase of the system. Since the coupling strength of

a fluxonium atom can exceed the level splitting, we can explore topological regimes using

fluxonium qubits. We use the mapping between transverse Ising model and Majorana

nanowires to discuss edge states using the magnetization at each site. We will also discuss

effects of disorder. Identifying whether the phase boundary is robust against disorder

1For this chapter, we use transverse Ising model with XX interaction in a longitudinal field.
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or not and discussions on Majorana nanowires are part of our ongoing studies. Using

magnetization for another experimentally accessible purpose, we propose that the response

of qubits to a spin flip can be studied using fluxonium chains.

3.2 Mapping fluxonium chain onto transverse Ising chain in

a longitudinal field

𝜙 𝜋-𝜋

Φ%&'

𝐸)𝐸*𝐸+

𝜙(a) (b)

Figure 3.1: (a) Fluxonium circuit. (b) Energy level diagram of a fluxonium qubit at the
sweet spot, φext = π. V (φ) is a double-well potential. Energy eigenstates are also provided
with numbers. They are in the order of increasing energy from bottom to top. 0 corresponds
to the ground state. +, − signs represent the even and odd functions, respectively.

The fluxonium circuit and its energy level diagram are given in Fig. 3.1. The capacitor,

Josephson junction and the superinductor have energies shown by EC = e2/2C, EJ and

EL = (~/2e)2/L, respectively. Fluxonium works in the parameter regime where EJ >> EL

and 1 . EJ/EC . 10. There is no need for large capacitance but a large inductance is

needed. Large inductance is provided by the superinductor, which is a chain of around a

hundred Josephson junctions [63].

The Hamiltonian for the fluxonium atom is given by [142, 143]

H = 4EC n
2 + V (φ), (3.1)

where n and φ are the charge and flux operators, respectively. φ is the flux across from the

inductor. There is external magnetic flux Φext through the loop formed by the Josephson
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junction and the superinductor. The operators n and φ satisfy the commutation relation

[φ, n] = i. The potential energy is given by

V (φ) =
1

2
EL φ

2 − EJ cos(φ− φext), (3.2)

where φext is the reduced magnetic flux and it is the unitless form of the external flux

Φext = (~/2e)φext.

Fluxonium systems operated at or around the half-flux sweet spot φext = π have high

coherence and anharmonicity and resilience against flux noise [64]. V (φ) is a double-well

potential at the sweet spot as shown in Fig. 3.1(b). Energy levels and wave functions

are also provided together with V (φ). We obtain the transverse field (in z-direction) via

tunnel-induced splitting. One can write the Hamiltonian of the fluxonium atom in energy

eigenstate basis as

HEnergy = ε0|0〉〈0|+ ε1|1〉〈1|+ ..., (3.3)

where ε0 and ε1 are ground and first excited state energies, respectively. Since second

excited level shown in Fig. 3.1(b) is much higher than the ground and first excited levels,

we can truncate HEnergy into ground and first excited states

HTruncated = α1 + hzσz, (3.4)

where 1 is the identity matrix, α = ε1+ε0
2 and hz = ε1−ε0

2 is the energy splitting between

ground and first excited levels (less than 1GHz as shown in Fig. 3.1(b)). hz has been shown

to be proportional to exp(−8
√
EJ/EC) [144, 145]. For a high barrier between the two

wells, ground and first excited states are localized in the two minima. To induce tunneling,

EJ should not be too large.

The longitudinal field (in x-direction) can be obtained via the flux detuning away from

the sweet spot [88, 63] . The potential energy change due to detuning (varying φ) is given

by

δV = sin(φ) δφext. (3.5)

Sine is an odd operator. As can be seen in Fig. 3.1(b)), |0〉 and |1〉 are even and odd

functions, respectively. Therefore, 00 and 11 matrix elements are integrals of odd function
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(sine preserve its character) from minus infinity to plus infinity, so we get the matrix

elements for the diagonal terms as

〈0| sin(φ)|0〉 = 〈1| sin(φ)|1〉 = 0. (3.6)

Due to a similar argument, 01 and 10 matrix elements are integrals of even functions.

Therefore, the nondiagonal terms are nonzero:

〈0| sin(φ)|1〉 = 〈1| sin(φ)|0〉 6= 0. (3.7)

One can conclude that the operator sin(φ) has the same structure as the Pauli x matrix in

the computational basis.

𝜙"

Φ" Φ$

𝜙$

Figure 3.2: Chain of two fluxonium atoms. Ising interaction is formed by the inductive
coupling between two superinductors.

Ising XX interaction can be obtained via the inductive coupling between superinductors

as shown in Fig. 3.2, the “fluxonium molecule” [89]. The term ∝ EL φ1 φ2 is the interaction

term in the fluxonium molecule Hamiltonian. The fluxes φ1 and φ2 are odd functions similar

to sine. They also have the Pauli x matrix character in the computational basis. Therefore,

φ1 φ2 interaction term can be mapped onto σ
(1)
x σ

(2)
x . EL corresponds to the interaction

parameter J in Ising Hamiltonian. The interaction can be stronger than the qubit energy.

By inductively coupling fluxonium atoms similarly, one can obtain the Ising interaction

term J
∑L−1

l=1 σ
(l)
x σ

(l+1)
x .
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Figure 3.3: Open chain of 8 fluxonium atoms. Each fluxonium atom is numbered.

Using these mappings, we can build a chain of fluxonium qubits similar to the one

provided in Fig. 3.3 giving the transverse Ising Hamiltonian in a longitudinal field:

HT = J
L−1∑
l=1

σ(l)
x σ

(l+1)
x −

L∑
l=1

hxl σ
(l)
x −

L∑
l=1

hzl σ
(l)
z . (3.8)

3.3 Phase diagram

In this section, we will study the phase diagram of this system in the range of fluxonium

parameters. We choose J = 500MHz and study the phase diagram within the range of

hx, hz <1GHz, which is about the energy splitting between the first excited and ground

states of a fluxonium atom. So, we are studying both the interaction parameter J is

stronger or weaker than hx, hz.

The energy gap between the first excited and the ground states is given in Fig. 3.4.

When hx and hz are small, the gap is small and the system is in the antiferromagnetic

phase. When hx and/or hz get larger, the gap increases and there is a phase transition

between the antiferromagnetic and paramagnetic phases. To estimate the phase transition

boundary, we use the fidelity susceptibility approach that we used in Chapter 2. At the

phase boundary, the fidelity susceptibility has its maximum. It means that there is a sharp

qualitative change in the ground state.

To calculate the fidelity susceptibility, we use the following method described in [62, 113].

For a given magnetic field h (hx or hz), we find the overlap2 between the ground state at

that field and ground state of the perturbed Hamiltonian (new field is hx + δ or hz + δ

2In Chapter 2, we use the overlap squared to calculate the fidelity susceptibility. Both can be used,
fidelity susceptibility differs only by a factor of 2 due to binomial expansion.
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Figure 3.4: Phase diagram for the antiferromagnetic open chain given in Fig. 3.3. En-
ergy gap between the first excited state and the ground state is plotted. Colorbar unit is
arbitrary. J = 500MHz.

depending on the initial choice of direction)3:

F (h, δ) = |〈ψ(h)|ψ(h+ δ)〉|. (3.9)

Then, fidelity susceptibility for the given magnetic field is

χ(h) = 2(1− F (h, δ))/δ2. (3.10)

For the given value of hx, we calculate χ(hx) for many hz. z-field which makes χ(hx)

maximum corresponds to the z-component of the phase transition point (hx, hz). The

fidelity susceptibility for hx/J = 0.56 as a function of hz is given in Fig. 3.6. For the clean

3Different than the the fidelity susceptibility analysis in Chapter 2, we consider the ground state here
because we are interested in the quantum phase transition.
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Figure 3.5: Phase diagram boundary estimated using fidelity susceptibility.

system, the phase transition point for hx = 0.56J is at hz ∼ 0.6J . Following this approach

and varying both hx and hz , we get the phase boundary in Fig. 3.7.

In Fig. 3.6(a), we also provide three instances of disorder together with the clean system

results. The disorder is on x-field only. For a given x-field on site l, hxl = hx + dl, where the

disorder dl is selected from random uniform distribution in [-0.1J , 0.1J ]. We calculate hz

for each χ(hxl ). The distribution of hz for 104 instances of disorder is provided in Fig. 3.6(b).

The narrowness of the width is a sign that the phase diagram is robust against disorder.4

4This point is under investigation.
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Figure 3.6: (a) Fidelity susceptibility χ(hx = 0.56J) as a function of hz for clean and
disordered fluxonium chain. 100 instances of disordered χ(hx = 0.56J) are plotted, the dis-
tribution with more realizations are shown in (b). x-field consists of uniform and disordered
terms. J = 500MHz. (b) Distribution of hz maximizing χ(hx = 0.56J) for a sample of 104

disordered x-field.

3.4 Edge states

We briefly discuss a step towards what can be done to identify edge states in the topological

regime of the transverse field model in longitudinal field. Transverse field Ising model can

be mapped onto the Kitaev model (1-d p-wave superconductor) [146]. Topology is not

protected in the former but Ising simulations can be used to understand Majorana physics

[65]. As explained above, short Ising chain simulations are already in the realm of fluxonium

qubit systems.

The transverse field in the transverse Ising Hamiltonian corresponds to the site energy

in the Kitaev Hamiltonian. If the magnetization is larger at a site it means that the particle

is more probable to be in that site.5 The magnetization is defined as:

〈σiz〉 = 〈ψ|σiz|ψ〉, (3.11)

where i is the site number from 0 to 7 (there are 8 spins in the chain) and ψ is a given energy

eigenstate. In Fig. 3.7, we plot magnetization as a function of site for the three lowest-lying

states for a system in the gapless antiferromagnetic phase (hx = hz = 0.56J). By “Ground

5In Chapter 2, we studied the total spin of the system in z direction. Here, we study the magnetization
as a function of site.
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State 1, 2”, we emphasize that the ground state is degenerate when hx = hz = 0. When

the fields are switched on, the ground state is not degenerate anymore and there is a gap

between the two lowest-lying states but the phase transition occurs when the fields reach

high enough values. We can see that for this system in the gapless phase, magnetization is

largest at the edges. An edge state is a state localized at one of the edges only, not localized

at both edges. Magnetization is useful to check where a given state is likely to belong to

but it is inconclusive to find exactly where the wave function is localized. We also study

correlation functions to identify the localization properties of the states.

Ground state 1 1st excited state Ground state 2

Site, iSite, i Site, i

⟨𝜎
#$ ⟩

Figure 3.7: Magnetization as a function of site for a gapless point in Fig. 3.4. hx =
hz = 0.56J . x-field has disorder. Results for clean (blue) and disordered (red) chains are
provided.

3.5 Propagating Excitations

We finally discuss another experimentally accessible idea using magnetization to quantify

the difference between responses of qubits to a spin flip. We consider the open fluxonium

chain of 8 qubits as in Fig. 3.3 with ferromagnetic transverse field Ising Hamiltonian:

H = −J
L−1∑
l=1

σ(l)
x σ

(l+1)
x +

L∑
l=1

hzl σ
(l)
z . (3.12)

When {hz} = 0, the ground state of this Hamiltonian is the equal superposition of | ↑↑↑↑ ...〉

and | ↓↓↓↓ ...〉: |ψgs〉± = (|↑↑↑↑...〉±|↓↓↓↓...〉)√
2

, where | ↑〉 = |0〉 and | ↓〉 = |1〉. We consider an

initial state | ↓↑↑↑ ...〉 close to one of the terms which ground state is written in superposition

of. The first spin is flipped from | ↑〉 to | ↓〉. The aim of the experiment is to study the
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relaxation properties of the first spin and identify the responses of other qubits to this spin

flip. One can use antennas for each qubit to measure the magnetization as a function of

time.

⟨𝜎
#$ ⟩

Time Time

(a) (b)

Figure 3.8: Magnetization as a function of time for (a) clean, (b) disordered systems. i is
the qubit number. First qubit with i = 1 is flipped initially. Both timing and amplitudes
could be used to quantify the differences between qubit responses. Time unit is 1/J .

In Fig. 3.8, we plot z-field magnetization given in Eq.(3.11) as a function of time for

clean and disordered systems. For the disordered system, z-field hz has disorder and satisfies

hzl = hz + dl, where the uniform field hz/J = 2.5 and the disorder d is selected from the

random uniform distribution [-J , J ]. For the clean system, dl = 0.

Response of each qubit differs in timing of the revivals and oscillation amplitudes. We

give the results up to Time = 100 but it is possible to identify the differences even within

short time (such as between Time = 0 and 20). For the clean system, the qubits close to

the first qubit has stronger dispersion and larger oscillation amplitudes in the initial stage

of the drive. After Time = 20, the first qubit and the ones in the other edge of the chain

has larger amplitudes than the others due to wave scattering from the edge. When the

disorder is turned on, the first qubit relaxes quickly and has short periods for the remaining

oscillations after the initial oscillation. The wave does not propagate through the whole

system. Only closer qubits have large oscillations but the magnetizations of distant qubits

change only slightly up to a degree for which they are distinguishable. The disorder in this

setup can be used to dampen the oscillations and to help us clearly distinguish between

qubit behaviors.
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3.6 Conclusions

We discussed the Ising simulations that can be performed using fluxonium qubits. With

its long coherence time at and away from sweet spot, strong coupling exceeding the qubit

transition energy and anharmonicity, fluxonium qubits are promising quantum information

systems to study strongly interacting clean and disordered systems. Using fidelity suscep-

tibility, we studied the phase transitions in transverse Ising chain in a longitudinal field in

the parameter regime of fluxonium qubits. It is possible to explore different regimes by

properly tuning the fluxonium chain. We showed that by magnetization measurements one

can take a step towards identifying the edge states and one can identify characteristics of

propagating excitations.
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Chapter 4

Steering random spin systems to

speed up the quantum adiabatic

algorithm

4.1 Introduction

There is a furious race underway to construct the first practical quantum computer. To

complement this, there is a large research effort to broaden the class of problems that can

be attacked by these machines. A very promising direction is optimization problems. One

of the leading candidate methods for solving such problems on a quantum computer is the

quantum adiabatic algorithm (QAA) [20], in which the ground state of a simple quantum

system is slowly transformed into the solution of the optimization problem. There have been

extensive studies of the QAA on classical computers [22] and open-system quantum anneal-

ing devices intended to solve similar problems have been constructed [147, 148, 149]. The

QAA exploits the adiabatic theorem and uses the fact that the ground state of appropriate

quantum Hamiltonians correspond to difficult classical optimization problems, for which

the standard classical search algorithms are inefficient due to the complicated landscape

for the cost function [150, 41]. The difficulty in demonstrating the QAA is the presence



50

of small energy gaps that can lead to generalized Landau-Zener-Stueckelberg-Majorana

(LZSM) tunneling [151, 152, 153, 154]. Once the tunneling occurs, the system leaves the

instantaneous ground state, probably for good, and the algorithm breaks down.

In spin models, we may look more closely at the degrees of freedom that produce the

dangerous avoided crossings. The classic LZSM problem can be thought of as a single spin-

1/2 particle in a time-dependent magnetic field that reverses the spin direction. This is

the local single-particle case. In the other limit, we may imagine a crossing of two levels

whose energies are very close, but whose spatial configurations differ by the rearrangement

of many spins, perhaps well-separated in space. This is the non-local case. Both contribute

to unwanted tunneling.

In this chapter, we propose a modification of the QAA that largely eliminates local

LZSM tunneling. This modification requires accurate control of individual qubits that was

demonstrated recently in various systems, including trapped ions [155], Rydberg atoms

[156] and superconducting qubits [157]. In the conventional annealing protocol, the system

is prepared in a strong field along the x−direction without interaction, then the field is

slowly changed to the final field and the interaction is turned on. During this process,

a time-dependent gauge term causes transitions between the instantaneous eigenstates of

the Hamiltonian. This term is proportional to the Berry curvature [158, 159, 160, 161,

162] and its effect was recently investigated in superconducting devices with a single qubit

[163] and interacting qubits [164]. We demonstrate that with the proper compensation of

this topological term, qubits acquire protection against excitation processes, increasing the

probability for the system to remain in the ground state even for short annealing times. This

approach may also point the way toward more general improvements of quantum adiabatic

algorithms.
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4.2 Method

The Hamiltonian in our approach is defined on the time interval 0 ≤ t ≤ ta, where ta is the

annealing time and it has the form:

Hqaa(t/ta) = fi(t/ta)Hi + ff (t/ta)Hf +Hs(t). (4.1)

Here Hi and Hf are time-independent Hamiltonians that represent a simple problem and

a difficult optimization problem, respectively. The scalar functions fi and ff satisfy the

boundary conditions: fi(0) = ff (1) = 1 and fi(1) = ff (0) = 0. However, we adjust

these functions rather than choosing the customary linear-in-time forms. Hs is the steering

term and key to our approach. The idea of adding an additional term to the Hamiltonian

is not new and has been used to convert a stoquastic Hamiltonian to a non-stoquastic

Hamiltonian [48, 165], while modifications to the annealing schedule have been used to add

quantum fluctuations [18]. It has also been used in the method of shortcuts to adiabaticity

and quantum critical points [166, 167, 168, 169, 170, 171, 172, 173, 174]. Our method

is to make a local approximation to the exact formula for the counterdiabatic driving

Hamiltonian, defined in the following paragraph.

We construct Hs using a result from adiabatic population transfer theory and counter-

diabatic driving [175, 45]. If a time-dependent Hamiltonian H0 has instantaneous eigen-

states |n(t)〉 such that H0(t)|n(t)〉 = En(t)|n(t)〉, then we can define the steering Hamilto-

nian as

H1(t) = i~
2L∑
m=2

|m〉〈m|∂tH0|1〉〈1|
E1 − Em

+ (h.c.). (4.2)

The modified Hamiltonian H(t) = H0(t) +H1(t) drives the ground state |1〉 of H0 without

any transitions. If the initial state at t = 0 is the ground state of H0, then the solution

of the time-dependent Schrödinger equation at ta is the ground state of H0. We could

take H0 = fi(t/ta)Hi + ff (t/ta)Hf and Hs = H1, and this would yield the solution of

the optimization problem with certainty, but unfortunately the computation of H1 is not

efficient. Instead, we propose a local approximation to H1. We note that for single spin-1/2
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particle at site k with Hamiltonian H
(k)
0 (t) = B(k)(t) · σ(k)/2 the steering term is

H
(k)
0,s (t) =

1

2B(k)(t))2

[
B(k)(t)× ∂tB(k)(t)

]
· σ(k) (4.3)

and we may correct for an arbitrary random magnetic field on an array of spins by summing

over k.

To illustrate our method we choose the one-dimensional random-field Ising model (RFIM)

on a ring of L spins:

Hf =
L∑
k=1

hkσ
(k)
z + J

L∑
k=1

σ(k)
z σ(k+1)

z (4.4)

with periodic boundary conditions understood. The hk are chosen uniformly from the

interval [−1, 1]. The width of the disorder distribution sets the energy scale. The initial

Hamiltonian is chosen as usual to be a uniform transverse magnetic field

Hi = h0

L∑
k=1

σ(k)
x . (4.5)

In the calculations below we take h0 = 10.

The RFIM at J = 0 has the simple solution 〈σkz 〉 = −hk/|hk|, while the J → ∞ limit

is an antiferromagnet. At small J , J << hav (hav, average random field, ∼ 1/2 in this

chapter), the ground state has just a few spins that deviate from the J = 0 solution at sites

k where |hk| happens to be small. The spin at site k feels a time-dependent effective field

with a z-component given by the sum of hk and J [〈σ(k−1)
z (t)〉+〈σ(k+1)

z (t)〉], where 〈σ(k±1)
z (t)〉

are the time-dependent expectation values of the z-components of the neighboring spins.

When the magnitude of the total effective field (including the x-component) becomes small,

the gap becomes small and the QAA can fail. This is the type of failure that our local

approximation for H1 should be able to fix. At larger J values, (J of order 1) there will

be larger clusters of spins that deviate from the J = 0 solution. This will create situations

where there are small energy gaps separating states that differ by many spin flips. Our

single-spin approximation for the steering term is then not expected to work, and more

sophisticated approximations are required. We will later present a cluster method that is a

step in this direction.
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It is clear that the steering method is applicable in principle to any model that includes a

random field. Our choice of the RFIM is motivated by the facts that it has a relatively small

number of parameters, is simple to simulate numerically, and the statistical properties of

the final Hamiltonian of Eq. (4.4) have been well studied. By the standards of the field, the

one-dimensional RFIM is fairly simple but it has nevertheless served as a common testbed

for the QAA.

Notice that Hi and Hf are both stoquastic [176] but the introduction of Hs makes the

Hamiltonian non-stoquastic. This is somewhat similar to a previous study, [48], but our

motivation for introducing the additional term is quite different.

We choose fi(t) = cos2(πτ/2) and ff (t) = sin2(πτ/2), where τ ≡ t/ta. The initial

behavior of ff and the final behavior of fi are quadratic; this is chosen so that Hs(t = 0) =

Hs(t = ta) = 0 and the derivatives provide slow start and stop. These choices, together

with Eq. (4.3), give

Hs(τ) =
L∑
k=1

−h0hkπ sin(π τ)

4 ta[h2
0 cos4(π τ/2) + h2

k sin4(π τ/2)]
σ(k)
y . (4.6)

Since ta can be small, the size of the steering term can be large. Of course an arbitrarily

large Hs is unphysical. Ultimately, the interesting parameter range for the QAA is when

ta is large. In this case the steering term is typically small compared to the other terms in

the Hamiltonian.

4.3 Results

With these definitions we solve the time dependent Schrödinger equation for Hqaa numer-

ically [85, 177]. For comparison purposes it is useful to solve the same instance of the

problem with the above definition of Hs (“with steering”) and setting Hs = 0 (“without

steering”). We also define the success probability, i.e., the probability to be in the ground

state at the end of the evolution, as P1 = |〈1|ψ(t = ta)〉|2.
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Figure 4.1: (Color online) Average ground-state probability as a function of the annealing
time ta. The hk are chosen uniformly from the interval [−W,W ], where W = 1. All energy
variables are measured in units of W , and time variables are measured in units of ~/W
throughout the chapter. (a) L = 1. In the inset, the red magnetic field vector rotates from
x to z direction in the standard quantum annealing process. The steering field applied in
the −y direction suppresses transitions to the excited states. (b) L = 3, J = 0.1. The green
diamond curve is the result of the application of Eq. (4.2), the exact Berry formula. The
inset shows the sketch of the open chain of 3 spins considered here.

Small Systems

In Fig. 4.1 we report results for the systems with L = 1 and L = 3 using Eq. (4.2). In

Fig. 4.1(a), we show the fundamental effect of steering. The system finds the ground state

independent of the annealing time to within our numerical accuracy for this case, which is

to say 1 part in 109. Fig. 4.1(b), we compare the 1-spin steering with the case of no steering

applied and with the “full steering”. Full steering is the exact application of Eq. (4.2). It

is the basis of the cluster approach that we present in the later part of the chapter.

Comparison to Other Methods

Small systems are only of interest for illustration purposes. Practical applications require

larger systems. Because of the need to average over disorder realizations, we are limited to

L ≤ 12. A sketch of the system we consider is shown in the inset of Fig. 4.2(a) for L = 10.

In Fig. 4.2(a), we present how the average ground-state probability changes as a function

of the annealing time for a weak interaction (J = 0.1). Especially for short annealing

times, the probability of achieving the ground state and thereby successfully solving the
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optimization problem is quite small without steering. It is greatly enhanced by steering for

short and long annealing times. In Fig. 4.2(a) we also show as dashed lines the result of a

“naive” classical algorithm in which we choose the solution of the non-interacting system:

〈σkz 〉 = −hk/|hk|. This solution is obtained by choosing J = 0 in the problem Hamiltonian

Hf , Eq. (4.2), and applying the steering, Eq. (4.6). The steered QAA outperforms this

algorithm in the range ta > 102 for J = 0.1.

When the interaction becomes stronger, the low-lying states have a more entangled

character; they cannot be written, even approximately, as product states. Thus the local

steering algorithm becomes ineffective. This is shown for a short annealing time ta = 1 in

Fig. 4.2(b), where the average ground-state probability is plotted as a function of J . We

see a crossover at J ∼ 1 from a regime in which steering is effective to a regime where it

is not. It is interesting that the addition of Hs does not improve the QAA for J ≥ 2, and

can even degrade the performance. We attribute this to the fact that the system, for part

of its evolution, is trying to find the ground state of a Hamiltonian Hi + Hf + Hs that is

somewhat further from the problem Hamiltonian compared to Hi +Hf . The “recovery” of

the steered Hamiltonian at larger J is presumably due to the ground state being a locally

perturbed antiferromagnetic state, close once more to a product state. For such a short

annealing time, of course both the steered QAA and the standard QAA perform relatively

poorly. This can be seen by plotting the results for the naive algorithm, shown by the

dashed lines. Obviously, the results of this algorithm are independent of ta. Its success is

similar to that of the steered QAA for J < 1. For larger values of J , the naive algorithm

performs poorly, as expected from the fact that it ignores interactions.

In Fig. 4.2(c) the annealing time is longer: ta = 100. We see similar trends overall -

steering becomes ineffective at larger J . This plot does show clearly that there are definite

differences between the standard QAA and the steered QAA at intermediate annealing

times.
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Figure 4.2: (Color online) (a) Average ground-state probability as a function of the an-
nealing time ta. L = 8 (square), L = 10 (circle), L = 12 (diamond) compared for J =
0.1. (b) Average ground-state probability as a function of the interaction parameter J for
a short annealing time ta = 1. The red (upper), blue (middle) and green (lower) dashed
lines show the naive algorithm results for L = 8, 10, 12, respectively. (c) Average ground-
state probability as a function of the interaction parameter J for a longer annealing time
ta = 100.
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(a)

(b)

Figure 4.3: (Color online) Same markers are used in this figure as in Figs. 4.2(a) and (b)
for the standard QAA and the steered QAA. For the naive algorithm, red (upper), blue
(middle) and green (lower) “x” markers are used in the insets for L = 8, 10, 12, respectively.
In the insets, the naive algorithm is compared with the steered QAA. ta = 1, J = 0.3.
Several system sizes are shown. (a) The probability distribution over all final eigenstates
|n(ta)〉 as a function of the level index n, computed by comparing the results of the QAA to
an exact calculation. Pn = |〈ψ(ta)|n(ta)〉|2. The effect of steering is to squeeze the width of
the probability distribution by two orders of magnitude and in the direction of the ground

state. (b) Cumulative probability distribution. SN =
N∑
n=1

Pn. With the steered algorithm,

the chance to find one of the low-lying states is significantly enhanced.
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Figure 4.4: (Color online) Average infidelity as a function of 1/J and ta. L = 12. Plots
for (a) the naive algorithm, (b) the standard QAA, and (c) the steered QAA. In the region
covered by the white dashed lines, the steered QAA gives higher fidelity than the other two
algorithms. (d) The colorbar shows the infidelity values.

Distribution over Low-lying States

Next, we consider how the introduction of a moderate interaction (J = 0.3) modifies the

final distribution of the probability over all states both with and without steering, using a

short annealing time ta = 1. Recall that L is the number of spins and the total number

of levels is 2L, which is the size of the classical problem. In Fig. 4.3 we plot probabilities

Pn of all states, defined as Pn = |〈ψ(ta)|n(ta)〉|2, and the cumulative probability, defined as

SN =
N∑
n=1

Pn. The states |n(ta)〉 are eigenstates of Hf and they are arranged in order of

increasing energy. |ψ(ta)〉 is the final state computed in the QAA. This is done for several

system sizes. Of course to obtain these data we must also solve the problem exactly for

|n(ta)〉, so this limits the size of systems we can treat. Again we average over 104 realizations

of the disorder for each curve shown.

The effect of steering on the QAA is very dramatic. Roughly speaking, for all system

sizes the width of the probability distribution is squeezed down towards the ground state

by two orders of magnitude by steering the QAA. The chance of making a serious error and

ending in a state with high index is greatly reduced. If we think of the system as diffusing

from one instantaneous eigenstate to another during the course of a computation, it seems

that the effect of steering is to reduce the diffusion rate regardless of whether the system is

close to the ground state or not.

Certain final states or groups of final states appear to be favored, and the groups are
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somewhat different for the steered and unsteered cases. We can speculate that these states

represent local energy minima. The unsteered algorithm may in fact be superior in escaping

local minima that come from extended eigenstates while the steered algorithm is more

effective at avoiding local minima that come from more localized eigenstates.

On the other hand, for these values of ta and J , the advantage of the steered QAA over

the naive algorithm is marginal — the data points nearly overlap. In the next subsection

we investigate when the results for these two algorithms separate.

Regime of Superiority of Steered QAA over Other Methods

Figs. 1, 2 and 3 demonstrate that steering can improve the QAA substantially for J ≤ 0.3

and tA ≤ 10. However, our results so far leave open the possibility that a combination of

the standard QAA and the naive algorithm could give a roughly comparable performance

to the steered QAA. We now show that this is not the case. In Fig. 4.4 we present contour

plots of the infidelity for the naive algorithm, the unsteered QAA and the steered QAA as

a function of the two key parameters ta and J . This allows us to locate the range in which

the performance of the steered QAA is superior. This is the interior of the dashed white

region in Fig. 4.4(c). Since this is a log-log plot, the range of parameters inside the region

is quite large.

The key point is that steering is in fact effective when the spin interacts with its neigh-

bors. It becomes entangled with neighboring spins and its state can no longer be represented

by a pure state on the surface of the Bloch sphere, but one may still define an effective field.

When the magnitude of the total effective field is small, a small gap in the excitation spec-

trum is likely. This is obviously the dangerous case. Our results show that steering is also

effective in this situation. The steered QAA is superior to the unsteered QAA in all cases.

The improvement is particularly dramatic when ta is small, but even at moderate values

the improvement is substantial.
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Cluster Steering

One of the advantages of the steering method is that it is susceptible to systematic im-

provement. The results presented so far are only those that follow from a single-particle

approximation to the steering Hamiltonian. In this subsection, we present our results for a

more sophisticated approximation that we call cluster steering. This is defined as follows.

The spin which has minimum random field (whose direction is therefore likely to be deter-

mined by the interaction) is identified. This spin and its two neighbors are considered as

a cluster. The cluster steering term is found from Eq. (4.2). In this approach, while the

cluster steering is being applied to the spin trio, 1-spin steering is applied to each spin in

the rest of the chain. There are 12 spins in the chain and 104 realizations are performed.

In Fig. 4.5, the two types of the steering are compared to the case of no steering. At

small J , the curves with steering coincide and, at stronger J , all curves go up. The latter

happens because in this regime the spectrum becomes more regular with level repulsion.

However, the steering of weak clusters helps to maintain the system in the ground state

even for intermediate strengths of interaction. With the cluster approach, the ground-state

probability does not drop to smaller values sharply. When J is small, the ground-state

probability curve is more flat compared to the curve of 1-spin steering.

4.4 Conclusion

We demonstrate significant improvements in the QAA for random-field spin systems with

relatively weak interactions. This is done by adding a term to the Hamiltonian that sup-

presses transitions representing local spin re-orientations. When the interactions become

stronger, the low-energy eigenstates become more extended and the technique in the approx-

imation used here becomes ineffective. In other words, the method is good for insulating

phases and not for metallic phases of disordered systems. However, the steering concept

itself, as represented by the correction term in Eq. (4.3), is not at all limited to local modi-

fications of the problem. We made a cluster expansion to construct a less local form of the



61

3-cluster steering
1-spin 
steering

without steering

Figure 4.5: (Color online) Average ground-state probability as a function of the interaction
parameter J for the QAA without steering, with 1-spin steering, and with cluster steering.
Cluster steering improves the results for J ≤ 0.2 ta = 128, L = 12.

operator in Eq. (4.6). It should also be possible to work out ways of improving the steering

so that it is effective in metallic phases as well.

We have not yet investigated systematically the crucial question of how the improve-

ments in the algorithm scale with system size. The local nature of the improvements of the

steering would suggest at least a constant speedup comparing to the standard annealing

procedure. Of course in practical calculations even a constant speedup is very desirable, as

long as the constant is big. For certain problems, we show that two orders of magnitude

can be achieved.

The protocol is applied to a particular configuration of the final Hamiltonian, where both

local fields and couplings between the spins are exactly determined by the corresponding

classical optimization problem. To evaluate the performance of the algorithm for different

problems with similar structure, we assume that the optimization problems represent an
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ensemble of random Hamiltonians. The success is determined both by the quantum fidelity

of the final state and by the fraction of successful solutions out of the ensemble. For ta

fixed at 1, we have the following comparisons for the standard and steered QAAs. Out of

exponentially large system size 2L with L = 12, we find with probability above 99% that

the system is in one of 21 low energy states when J = 0.1. For J = 0.3 and the same L, we

find one of the 398 low energy states with probability above 99% for the QAA with 1-spin

steering. For the unsteered algorithm, the corresponding values are too large — 3949 and

3929, respectively. For the QAA with 1-spin steering, the probability to find one of the

lowest 1% of 2L (with L = 12) energy states is 99.7% when J = 0.1. When J = 0.3, the

probability becomes 81%. For the unsteered algorithm, the corresponding probabilities are

only 3% and 4%, respectively. Thus, by controlling 3L local fields, we are guaranteed to

find one of the low energy states out of 2L states.

We also compare the steered QAA to a naive classical algorithm that works only for

weak interactions. Combining all our results shows that there is a substantial range of

parameters for which the steered QAA outperforms both the standard QAA and the naive

algorithm.
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Chapter 5

Studies of multiterminal junctions

via scattering theory

5.1 3-terminal Josephson junctions with rectangular

scattering region

We have seen in Chapter 3 that Josephson junctions can be used as nonlinear inductance

in superconducting circuits. Now, we will turn our attention to novel platforms where the

concept of conventional two-terminal junctions is generalized into general multiterminal

junctions. We study quantum transport and superconducting properties of multiterminal

JJ. New topological effects have been predicted theoretically [73, 178, 179, 180] and shown

experimentally using multiterminal Josephson junctions (JJ) with epitaxial heterostructures

[74, 75, 76]. These devices can access the physics and topology of higher dimensional phase

space due to the extra parameters introduced by each added terminal. In N -terminal JJ,

one current from a terminal can be eliminated due to current conservation, therefore phase-

space is (N−1)-dimensional. In two-terminal junctions, the phase-space is only constituted

by the phase difference between the terminals, therefore it is one-dimensional. Adding more

terminals means adding more dimensions to the phase-space.

In this chapter, we study the effects of gate voltage and magnetic field on multi-terminal



65

Josephson junctions. The gate voltage can control interference effects via manipulating

Fermi wavelength. We assume that chemical potential is uniform throughout the system.1

In the following chapter, we will study junctions with nonuniform chemical potential by

assuming the gate is applied only on the scattering region, which is a more realistic setup

for hybridization [181]. In two-terminal junctions, one can introduce parameters other

than phase difference to tune the junction to a certain regime. Magnetic field is one such

parameter.

Three-terminal junctions with flux can carry the essence of multiterminal junctions

which have more than two independent parameters. We study the effects of flux on the

three-terminal junctions. Such a device can be used to understand the general quantum

transport properties of multiterminal JJ. Flux, as well as each added terminals, can alter

the trajectories of the particles and can create extra interference effects. Therefore, flux

can also be considered as another independent parameter in addition to the independent

phases of terminals. Energy levels and supercurrents of the device can be represented in

two-dimensional phase-space and the critical current is the boundary of the two-dimensional

critical current contour (CCC) formed by the currents from the two terminals whose phases

are not fixed.

Magnetic field breaks time-reversal symmetry of the junctions. In two-terminal junc-

tions, this effect is weak. In junctions with more than two terminals, it has been shown

that the time-reversal symmetry can be broken even without magnetic field [182]. In this

reference, the scattering region is made of material with strong spin-orbit coupling. In our

study, we will not consider the spin-orbit coupling because it does not change the results

qualitatively.2 However, even without spin-orbit coupling but with magnetic field, it is

possible to see pronounced time-reversal breaking effects of the magnetic field in junctions

with more than two terminals.

We choose the scattering region as rectangular to make the lead attachments and scat-

tering theory calculations easier. By this way, we also aim to to compare the results for the

1We assume that gate is applied over all junction including leads.
2Symmetry class of the scattering matrices do not change.



66

junctions with the extra lead to the results of the conventional rectangular two-terminal

junctions. We will study the junctions with arbitrary geometries in the following section.

Different geometries of JJs can be designed to study the effects of magnetic field on

supercurrents. For two-terminal long wide SNS junctions, edge effects alter zeros of the

critical currents [183].3 Hourglass-shaped junction is another example for junctions ex-

hibiting geometric effects [184]. Supercurrents form vortices and vanish at large magnetic

fields due to the narrow opening of a hourglass-shaped junction.

In two-terminal junctions, critical current oscillates as the absolute value of sinc function

of normalized flux [185]. For multiterminal JJs, two trajectories starting from two of the

leads and ending up in the third lead can interfere destructively, which results in suppression

of the critical currents. Similar to the observations of Ref. [183] for two-terminal long

junctions, we observe that critical current zeros are lifted in three-terminal junctions. The

third junction can act as an another source of diffraction by providing extra edge effects.

We investigate how the third lead alters the critical current oscillations. In junctions

with more than two terminals, it is appropriate to define the critical current as the max-

imal values of the contour of independent currents. In this chapter, the contour is two-

dimensional for three-terminal junctions because they have two independent currents.

For junctions with more than three (N) terminals, we take the two-dimensional projec-

tions of the (N − 1)-dimensional data by choosing appropriate current biases. We study

the effects of gating both in the few-channel limit and in the junctions with many channels.

Effective chemical potential of the junction can be varied by applying top voltage, which

changes the Fermi wavelength of the junction. The junction can be considered as a network

of pair of junctions. The extended/nonextended character of the Andreev bound state wave

function determines the coupling between each two terminals in the junction. Depending

on the coupling strength, CCCs have a certain shape and there can be transition from one

shape to another by varying the chemical potential of the system. In the second section of

this chapter, we study the effects of gating on the regime of the junction with more than

3Both length and width of the junctions are taken larger than the coherence length by the authors.
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three terminals. We consider several geometries and compare the results.
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Figure 5.1: System sketch of a tight-binding lattice which has scattering region of 21-by-21
sites. Scattering sites are colored with blue and they are in between three superconducting
leads, which are semi-infinitely long and colored with red. The superconducting leads are
at the left, right and bottom of the scattering region. Lattice constant a = 2nm throughout
the chapter, L,W = 20a for this sketch. L is the (horizontal) length and W is the (vertical)
width of the junction. b is the width of the bottom lead and b = 0 limit is the two-terminal

junction. b is varied from 0 (two-terminal limit) to L. Magnetic field
−→
B = Bẑ with flux

Φ = B.W.L is applied to the scattering region and it is perpendicular to the junction (x−y)
plane. Each terminal has a superconducting phase: θL = 0, θR and θB. Currents from each
terminal entering the scattering region is represented by IL, IR and IB. L, R and B stand
for left, right and bottom respectively. The lattices in this thesis are produced via Kwant.
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Model

The junctions we consider have superconducting (s-wave) leads and normal metal scat-

tering region. Normal metal is a two-dimensional electron gas (2DEG). Single-electron

Hamiltonian H of the 2DEG is given by:

H =
(p− eA)2

2m
− µ+ V (r), (5.1)

where p is the momentum, e is the electron charge, m is the effective quasiparticle mass

(we take m = 0.03me, where me is the electron mass), A is the vector potential, µ is

the chemical potential. A perpendicular magnetic field (in ±ẑ direction) is applied to the

scattering region with vector potential given in the Landau gauge A = (−Byx̂, 0).

Top gate voltage V controls the carrier density. Chemical potential is given by µ =
√

2kne, where the electron density ne = 1.5 × 1012 cm−2. The parameters for 2DEG are

based on quantum transport measurements in [186, 75].

Electron and hole excitations are described by the Bogoliubov-De Gennes equation: H ∆(r)

∆∗(r) −H


u
v

 = E

u
v

 , (5.2)

where u and v are the wave functions of the electron and hole respectively, E is the energy

of the excitations relative to the chemical potential µ. ∆(r) is the superconducting pair

potential and it is zero in the normal region. Since we consider s-wave superconductors in

the terminals, ∆(r) is position-independent and its magnitude is constant. It has a finite

value given by ∆(r) = ∆eiθ in the superconductors, where θ is the phase angle of the given

terminal and ∆ = 0.18meV is the induced gap measured in multiterminal JJ experiments

of Ref. [75]. This ∆ value is close to the gap of Al film [187]. The phase of the left terminal

θL is fixed at zero and the phases of the other two terminals are varied (see Fig. 5.1).

Our simulations are based on the tight-binding approximation of the continuum model

given by Eq. (5.1). We introduced the following lattice Hamiltonian as in the Introduction

chapter: ∑
<i,j>

tijc
†
icj − µ

∑
i

c†ici. (5.3)
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To remind, tij is the hopping parameter and is inversely proportional to mass and the square

of the lattice constant (horizontal or vertical distance between two consecutive sites). The

hopping parameter is modified under magnetic field, as explained below. We will explain

under what conditions the continuum model can be mapped onto the lattice model. A

sketch of the tight-binding system is depicted in Fig. 5.1. We vary length and width of

the terminals to study how the size of the three-terminal system affects supercurrents. In

addition, chemical potential of the whole junction is varied around Fermi energy EF and a

perpendicular magnetic field is applied to the scattering region. The three superconducting

phases for the leads are given by θL, θR and θB, where the subscripts L, R and B stand

for left, right and bottom, respectively. Due to current conservation, one can choose one of

the phases constant. We set θL as constant. By this way IL is chosen as dependent current

which can be found with the knowledge of IR and IB: IL = −IR − IB. θR and θB are

calculated with respect to θL, so θL can be chosen as zero. The phase-space of the three-

terminal junction is two-dimensional and constituted by θR and θB. Length and width of

the device are given by L and W , respectively. The width of the bottom terminal is shown

by b. b→ 0 limit gives the two-terminal junction. We vary b up to L to study the effects of

the third terminal width on the Andreev energies, critical currents and phase accumulation.

The source code written using Kwant [81] provided by [184] calculates current for the two-

terminal hourglass-shaped junction. We benefit from the code to study quantum transport

properties of the multiterminal Josephson junctions.

We justify the parameter choices of the junction in Fig. 5.2. The hopping parameter t

is given by

t =
~2

2ma2
. (5.4)

t is inversely proportional to a2, so small choice of a makes t large. Tight-binding approx-

imation gives accurate results for states that have energies less than t [188]. We choose

the lattice constant a = 2nm and effective mass m = 0.03 me, so the hopping parameter

becomes t = 318meV. Therefore, our tight-binding calculations are valid for energies less

than 318meV. We vary the carrier concentration around ne = 1.5 × 1012cm−2, so Fermi
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energy is around EF = (~2 2ne π)/(2m) = 120meV. We keep it below t.

To compare the continuum model with the tight-binding model, the space-dependent

term of the continuum Hamiltonian is given by4

~2(k2
x + k2

y)

2m
, (5.5)

and the same term for the tight-binding model is given by [78]:

2t(2− cos(kxa)− cos(kya)). (5.6)

Here, kx = ky = 2π
λF

. The lattice constant a = 2nm should satisfy a << λF so that the

tight-binding approximation gives close results to the continuum model.5

The continuum Hamiltonian (5.1) also includes a magnetic field term, given by the

vector potential A. In tight-binding model, t is modified and becomes different in x and y

directions. It is transformed into its new forms tx and ty by the Peierls substitution [78, 81]:

tx,y = t e−ie/~
∫
A·dl . (5.7)

Since A is chosen in Landau gauge A = (−Byx̂, 0), ty = t and

tx = t e−ieΦ/~, (5.8)

where Φ is the flux through the scattering region. The sinusoidal dependence of tx to the

flux is one reason of Fraunhofer patterns which we will study below.

To be able to make short junction approximation, one needs to make sure that the

coherence length ξ is much bigger than system sizes L,W, b. ξ = ~vF /∆. We take ∆ =

0.18meV due to reason we specified above and vF = ~k
m (k =

√
2πne), so ξ =4.3 µm.

Maximum choice of L,W, b in this chapter is 600nm, which is below ξ.6 Other than being

in short junction regime, our system is also in ballistic (mean free path >> system sizes)

4Single-particle Hamiltonian also depends on µ as in Eq.(5.1) but the difference between continuum
model and tight-binding model does not depend on µ, which would be cancelled out.

5This is true as we will show below.
6Note that even though it is safe to say that the system is in short junction regime, there are some

deviations from the short junction results (as we will point out below for Fraunhofer oscillations) since
600nm/ 4.3 µm is not negligible.
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and clean regimes (mean free path > ξ). Mean free path is inversely proportional to the

square of the disorder strength [189]. Here we consider zero disorder, so mean free path can

be taken as infinite.
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Figure 5.2: Energy as a function of momentum in the Brillouin zone. Tight-binding
approximation and continuum results are compared. Tight-binding approximation gives
very close results comparing to the continuum model when energy levels of the system are
smaller than t = ~2

2ma2
(hopping parameter), where m is the effective mass and a is the

lattice constant. We choose a = 2nm, m = 0.03me and therefore t = 318meV. We vary
chemical potential, µ, around EF = 120meV and below t.

Derivation of Andreev energy levels and supercurrent

As mentioned in the Introduction chapter, the supercurrent is produced via Andreev reflec-

tion. Incoming electron from a superconducting lead with energy less than superconducting

pair potential ∆ entering the scattering region reflects back as a hole after Andreev reflec-

tion from the opposite side of the scattering region (a boundary between the scattering

region and another lead) and a Cooper pair of electrons is created in the superconducting

lead. The reflected hole travels back in the same trajectory and reaches to the boundary
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where it first enters the scattering region. This time it reflects back as electron. The super-

position of electron and hole forms purely evanescent Andreev bound state, which does not

have any propagating modes outside the scattering region.7 In multiterminal junctions, the

total acquired phase is a mixture of phases from different terminals. We use the scattering

theory to find ABS energies and supercurrents in multiterminal Josephson junctions.

We follow Ref. [182] to write down the eigenvalue problem for the scattering matrix

using the bound state condition. The eigenvalues correspond to Andreev energy levels. We

calculate the supercurrent from the Andreev energy levels as explained in [184].

We give the sketch which summarizes the ABS condition in Fig. 5.3. Ψin = (Ψe
in,Ψ

h
in) is

the incoming electron-hole wave written in the basis of the incoming superconducting lead

modes. Ψe
in and Ψh

in describe the incident electron and hole wave functions, respectively.

After the wave scatters through the normal region, its wave function becomes sN Ψin, where

sN is the scattering matrix for the normal scattering region:

sN (E) =

s(E) 0

0 s∗(−E).

 (5.9)

sN is a unitary matrix because its blocks are unitary due to current conservation. s (S-

matrix) can be written as its reflection and transmission coefficients. The size of s gives the

total number of channels in the junction. If the junction is short, s is energy-independent

s(E) ≈ s(−E) ≈ s(0) ≡ s.

After normal scattering, the reflected wave from the NS boundary bounces back as

sA sN Ψin. sA represents Andreev reflection matrix and it is given as

sA(E) = α(E)

 0 r∗A

rA 0

 , (5.10)

where α =
√

1− E2/∆2 + iE/∆ is found from boundary conditions for the waves at NS

7Energy of electron and hole tracing the closed trajectory inside the scattering region does not change
during the Andreev or specular reflection [190].



73

boundary. For n-terminal junction, rA is given as:

rA =



i1n0 0 0 0 0

0 ie−i φ11n1 0 0 0

0 0 ie−i φ21n2 0 0

0 0 . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 ie−i φn1nn


, (5.11)

where ni are the number of channels and φi are phases for each terminal. One of the phases

can be fixed as φ0 = 0. Total number of channels
∑

i ni equals to the size of s.

After normal region scattering and Andreev reflection, the wave function becomes

Ψout = sA(E) sN (E) Ψin. Andreev bound state condition is given Ψout = Ψin [79]. Ψout

is now the incoming electron-hole wave for another normal scattering and Andreev reflec-

tion. This cycle continues on and meanwhile supercurrent is produced after each Andreev

reflection. We reach the following equation:

sA(E) sN (E) Ψin = Ψin. (5.12)

This condition holds true assuming that magnetic field does not penetrate into the super-

conducting leads.

S N S
Ψ"# 𝑠%	𝛹"#

𝑠(	𝑠%	𝛹"#
Figure 5.3: ABS condition: Ψin = Ψout = sA(E) sN (E) Ψin.

Using (5.12), the following eigenproblem for α is formed:s† 0

0 sT


 0 r∗A

rA 0

Ψin = αΨin. (5.13)
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The eigenvalues with positive and real α correspond to the physical solutions. These are

the levels with energies below the gap ∆. After finding α, one can map the solution to the

Andreev levels E [182]. Due to electron-hole symmetry, energy levels are degenerate. E

has the same positive and negative solutions. Positive ones give the Andreev levels we are

looking for.

Supercurrents can be calculated by squaring Eq. 5.13 [184]:

A†AΨe
in =

E2

∆2
Ψe
in, (5.14)

where A ≡ 1
2(rA s − sT rA). To calculate the supercurrent in the lead with phase φ, one

needs to take derivative of the energies with respect to φ:

dE

dφ
=

∆2

2

1

E

〈
Ψe
in

∣∣∣∣d(A†A)

dφ

∣∣∣∣Ψe
in

〉
(5.15)

Then, we get the supercurrent for zero temperature

I = −2e

~
∑ dE

dφ
, (5.16)

where E is the positive energies found from Eq. 5.13.

Fraunhofer oscillations in multiterminal junctions

When flux = 0, shape of the CCC does not change with the chemical potential µ but

the CCC area changes. Chemical potential controls the number of channels in the system.

Number of channels and therefore supercurrent in a terminal can be estimated by calculating

how many Fermi wavelength λF can fit into the normal-superconductor boundary. Critical

current and number of channels are proportional to 1/λF . Chemical potential is given by:

µ =
~2k2

F

2m
, (5.17)

where kF is the Fermi wavevector. kF = 2π/λF , so critical current is proportional to
√
µ

(Fig. 5.4). Area of the CCC is proportional to the multiplication of critical currents IR

and IB, which is ∝ µ. The result displayed in Fig. 5.5 verifies this statement. Fig. 5.4 and

Fig. 5.5 can be considered as sanity checks of our code.
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Figure 5.4: (Color online) Critical currents at the right lead (IR) and the bottom lead (IB)
as a function of chemical potential (µ). Flux = 0. L = W = b = 600nm. Currents have
to be multiplied by 1/2 due to electron-hole symmetry. The factor is not considered in Eq.
5.14 while calculating energies. The factor has to be present for the other unnormalized
ground state energies and currents of this chapter.

In a two-terminal junction with transmission T , Andreev bound state (ABS) energy of

a single electron-hole trajectory is given by [77]:

E = ∆

√
1− T sin2(θ/2), (5.18)

where θ is the superconducting phase difference between junctions when flux is zero in the

scattering region.8 When the flux is nonzero, there is extra path-dependent magnetic phase

ξ and the phase difference is modified as θ′ = θ − ξ, where ξ given by:

ξ =
2e

~

S2∫
S1

A · dl. (5.19)

Each ABS trajectory acquires a phase depending on the geometry of the path and the

superconducting phase difference between terminals.

To find the current, ABS energy (5.18) can be varied with respect to phase. We assume

that the junction transmission is perfect, therefore T can be taken as 1. Using the fun-

damental relation δI = (−2e/~)dE/dφ between bound state energy and supercurrent, one

8T corresponds to the transmission eigenvalue of S-matrix.
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Figure 5.5: (Color online) (a) Area of CCC as a function of chemical potential (µ). Flux
= 0. L = W = b = 600nm. (b) Current scatter plots for µ = 30, 60, 120meV.
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Figure 5.6: Critical current contour (CCC) scatter plots. Flux = 0, 0.5, 1 Φ0, where Φ0 is
the flux quantum. µ = 120meV, W = 600nm, L = b = 300nm.
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can find the supercurrent due to a single trajectory as a function of phases:

δI =
e∆

~
sin(δ(θ)− ξ/2). (5.20)

To find the total supercurrent, one needs to consider all positive energies Ep below the su-

perconducting gap ∆: I =
∑
Ep

(−2e/~)dEp/dφ.9 In the presence of magnetic field, quantum

interference between trajectories of two junctions creates Fraunhofer oscillations. The criti-

cal current is modulated according to the following formula when a perpendicular magnetic

field is applied on the scattering region [185]:

I(Φ) = I(0)| sin(πΦ/Φ0)/(πΦ/Φ0)|, (5.21)

where Φ is the magnetic flux in the scattering region and Φ0 is the magnetic quantum flux.

Φ = A.B, where A = W.L is the area of the scattering region and B is the strength of

perpendicular magnetic field applied to the scattering region. Eq. (5.21) is analogous to

the single-slit diffraction in optics and is a result of sinusoidal current-phase relation given

by Eq. (5.20) [191]. I(Φ) = 0 when Φ is equal to the integer multiples of Φ0.

When the magnetic field is turned on, magnetic phase given by Eq.(5.19) mixes with

the superconducting phases in the leads and deforms the ground state energy landscape

given in Figs.5.8(d, e, f) for several flux values. As a result, amplitude of the ground state

energy decreases (Fig. 5.7), additional maxima and minima develop, the minimum shifts

from the origin (0,0) and the inversion symmetry (θR, θB) → (−θR,−θB) is absent in the

energy landscape. These changes in energy landscape alters the behavior of the supercurrent

under flux.

Each supercurrent IR and IB can be calculated as a function of superconducting phases

θR and θB, which are varied between −π and π. We make scatter plots of (IR, IB). The

two supercurrents are limited by the boundary of the scatter plots, which we call critical

current contour (CCC) following the nomenclature of [75]. Fig. 5.6 shows the CCC for

different flux values. For zero flux, the CCC is similar to a parallelogram, which means

9In two-terminal junctions with perfect transmission, the DC Josephson effect creates sinusoidal current-
phase relation.
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Figure 5.7: ∆Egs = max(Egs) - min(Egs) as a function of flux. Unit of flux is Φ0.

that the interactions between the terminals are not significant. The CCC area decreases

and the shape of the CCC becomes peculiar with the increasing flux. This is a signature of

a transition from an uncoupled network of JJ to a multiterminal JJ, where the terminals

are coupled and strongly interacting. Moreover, time-reversal symmetry is broken due to

magnetic field. If we chose our junction symmetric, then we would see that the CCC at zero

flux would be symmetric with respect to the axes in addition to being inversion symmetric

with respect to the origin. We will study symmetric four-terminal junctions in the next

chapter. Here, the CCC is formed by the right and bottom currents. The right and bottom

leads are not symmetric. We can understand this fact by simply switching right and bottom

leads: There is another lead (left) across from the right lead but there is no lead across

from bottom lead. This asymmetry of the system makes the parallelogram tilted.

To study the effect of magnetic field on critical points, we compare the CCC, ground

state energy landscape and Hessian contours in Fig.5.8. The system parameters are W =

L = b = 60nm and µ = 20meV. These paramaters make the computational cost lower
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Figure 5.8: (a, b, c) CCC for flux 0, 1.2 Φ0 and 1.5 Φ0, respectively. (d, e, f) GS energy
contours for the flux values in the same order. Phases corresponding to the CCCs are given
as differently colored clusters. Same colors and letters are used for CCCs. (g, h, i) Hessian
of the energy as a function of phases. Boundary points satisfying Hessian close to zero are
critical points which include CCC points. CCC is the maximal envelope to the boundary
Hessian points. W = L = b = 60nm, µ = 20meV.

because number of channels are not high. Large number of channels create many phase

clusters and current-current scatter plots have to be dense in order to identify the boundary

appropriately.

The determinant of the Hessian matrix is used to identify the critical points of mul-

tivariate function. Our aim is to find the critical currents. We can identify the critical

current by investigating the energy landscape using Hessian. Hessian matrix of the ground

state energy is given as:

H =

 ∂2Egs/∂θ
2
R ∂2Egs/∂θR∂θB

∂2Egs/∂θB∂θR ∂2Egs/∂θ
2
B

 , (5.22)
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Given that I = 2e/~∂θiEgs for a lead with phase θi, we can write the Hessian matrix as a

function of first derivatives of the supercurrents:

H = (~/(2e))2

∂IR/∂θR ∂IR/∂θB

∂IB/∂θR ∂IB/∂θB

 , (5.23)

Critical currents satisfy ∂IR/∂θR = ∂IR/∂θB = ∂IB/∂θR = ∂IB/∂θB = 0. This means

that the determinant of the Hessian is zero for critical points. Therefore, CCC is the

maximal envelope to the critical points. We use the word “critical” from the calculus

definition. A critical point has derivative zero in all directions by definition. So, boundaries

of scatter plots are actually critical points, which was considered in the experiment we get

our motivation from [75]. Points for det(Hessian) = 0 is a larger set which includes the

critical points. We directly calculate the critical points using the boundary of scatter points.

In the near future, we will identify the stable regions inside the current-current scatter plots

by stable point analysis for free energy, which will be useful to understand the nature of

sharp points even more.

In Fig.5.8 (a, b, c), we plot CCCs.10 CCCs are the boundaries of the current-current

scatter plots. By coloring clusters differently, we can check how the given shape in CCC

manifests itself on energy landscapes given in Fig.5.8 (d, e, f). On energy landscapes, we

provide the phases which correspond to the CCC points. When flux = 0 (a, d, e), the

energy landscape is a single cluster without sharp corners. For flux = 1.2Φ0 (b, e, h), sharp

corners appear and they form separate clusters on energy landscape. We provide letters to

be able to easily match which cluster is detached from where. For flux = 1.2Φ0, there are

several detached clusters on energy landscape but the big shape which is mostly formed

by blue, black and red clusters around the minimum energy is still preserved. The reason

is that the sharp little clusters are small for this flux value. When flux is increased and

becomes 1.5Φ0 (c, f, i), each sharp cluster gets larger and the shape formed by the phases

on energy landscape has distinct clusters mostly away from the zero energy.11 By forming

10To get the scatter plots, I used homogeneous sampling and also benefited from the Adaptive Python
package [192] that uses machine learning sampling techniques. I also used alpha-shape techniques (such as
Ref.[193] and MATLAB function boundary [194]) to get the boundaries of scatter plots (i.e. CCCs).

11Normally, ground state energy is negative but here we set the minimum energy to zero.
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sharp clusters with increasing flux, the area of CCC shrinks.

In Figs.5.8(g, h, i), we provide the Hessian contours. Green represents positive and blue

represents negative values for the determinant of the Hessian. Comparing Hessian contours

with the phase-energy contours in Figs.5.8(d, e, f), we can see that the CCC phases lie

at the Hessian boundaries, where the determinant of the Hessian is zero. As we explained

above, Hessian boundaries include the critical points.

If we plot all Hessian boundaries on the current-current scatter plots on Figs.5.8(a, b,

c), we will see that the CCC is the maximal envelope of them. The sharp corners in CCC

correspond to the different Hessian boundaries which are located in a separate region of the

phase plane. To illustrate, let us consider the blue cluster shown by letters A-B in Figs.5.8(c)

and (f). This part is detached from left side of the zero energy between magenta and black

clusters and it is the boundary of a Hessian cluster as can be identified in Fig.5.8(i).
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Figure 5.9: Normalized critical current as a function of flux for two-terminal junction (b
= 0). µ = 120meV W = 600nm, L = 60nm.

Critical current has Fraunhofer-like oscillatory behavior in two-terminal JJs as given by

Eq. (5.21). We provide critical current of a two terminal junction as a function of flux in
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Fig. 5.9. The junction is short and wide (has aspect ratio W/L = 10) with W = 600nm

and L = 60nm. The first minimum appears near Flux = Φ0. The minima are not zeroes

as predicted by Eq. (5.21) because W/ξ (ξ is coherence length as calculated above) ratio

is not negligible. Due to the same reason, the minima at larger flux values do not appear

near integer multiples of Φ0 and are lifted towards larger values.

For multiterminal JJs, separate critical currents (only IR or only IB for the three-

terminal junction here) are not enough to understand the behavior of overall supercurrent

flow in the junction. To understand the current correlations between terminals and their

behavior under flux, one has to know the area (two-dimensional info for three-terminal

junction) of CCC along with the critical currents, which are only the elliptical radii (one-

dimensional info) of the CCC. We show that the CCC area of three-terminal junctions

also exhibits oscillatory behavior similar to the critical current in two-terminal JJs. The

oscillation amplitudes depend on the geometry of the junction, in particular the width of

the third terminal.
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Figure 5.10: Normalized CCC area as a function of flux for fixed narrow scattering region
(W = 600nm, L = 60nm) and various width b of the bottom lead. µ = 120meV . The
arrow shows the color order of amplitude height.
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Figure 5.11: Normalized CCC area as a function of flux for fixed L/b = 5. W = 600nm,
L = 60nm (red), 120nm (blue), 300nm (green). µ = 120meV . The arrow shows the color
order of amplitude height.

In Fig. 5.10, we plot the CCC area of junctions with narrow scattering region (L = 60nm

and W = 600nm) as a function of flux. The width of the third terminal (bottom lead) b is

changed from 12nm to full width b = L = 60nm. Oscillations in short wires are still present

in three-terminal junctions with nonzero minima at positive integer multiple of magnetic

flux. However, the oscillations are suppressed as the width of the bottom lead increases

(b → L). The amplitudes of the oscillations for b = 12nm are the largest. In Fig. 5.11,

we compare this particular case (b = 12nm, L = 60nm) to the results of junctions with

larger L, where L/b is fixed at 5. The oscillatory behavior almost completely disappears

for L = 300nm when flux gets larger than 3Φ0.



85

5.2 Multiterminal Josephson junctions with more than

three terminals

We studied short three-terminal junctions using the Beenakker approach in the tight-binding

model in the previous section. The approach does not have geometry, terminal or number

of channel restrictions as long as the short junction assumptions are valid. We now turn our

attention to short junctions with more than three terminals. Our main aim is to understand

the effects of gating and magnetic field on the multiterminal behavior of the 4-terminal X

junction given in Fig. 5.15(a), which is motivated by the Manucharyan Group experiments

[75].12 We vary the chemical potential through the junction and the magnetic field on the

scattering region to study the effects of gate voltage and magnetic field on the coupling

between terminals. The locality/nonlocality of the couplings determines the shape of the

CCC, which reveals the regime of the junction.

In addition to the gate voltage and magnetic field, the junction geometry is an impor-

tant factor that determines the regime. By adjusting the geometry one can control the

coupling between the terminals. Junctions having the same number of terminals but differ-

ent geometries can show completely different behaviors. In Fig. 5.12, 4-terminal junction

with rectangular scattering region is given. The scattering region is rectangular, similar to

the three-terminal junction we studied in the previous section (Cf. Fig. 5.1). We attach the

fourth terminal to the top of the scattering region. We choose the width W and L equal,

so the scattering region is actually a square. This junction has three independent phases.

In junctions with three independent phases, the supercurrent scatter plots are three-

dimensional. To simplify the data analysis, we consider the two-dimensional slice cuts to

the three-dimensional data as in Fig. 5.13. Opposite terminals can be paired up [75]: The

incoming current from one terminal can be made equal to the outgoing current from the

opposite terminal. This means that the currents satisfy the plane equations IT + IB = 0

and IL + IR = 0. So, we first calculate the three-dimensional current and then take the

12The junction sizes in the experiments can be closer to the coherence length. To eliminate the errors
due to breaking short junction approximation, one should follow the finite junction methods we use in the
following chapter.
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Figure 5.12: System sketch of 4-terminal Josephson junction with rectangular scattering
region. The parameters are similar to the ones in Fig. 5.1. Here, the terminal widths have
full widths. The top (“T”) terminal has phase θT and the supercurrent coming from it is
IT .

points close to the planes.

In the absence of magnetic field, the data collection and analysis can get even simpler.

The junction has time-reversal symmetry and the phases of opposite terminals can be chosen

as negative of each other in symmetric junctions: θT + θB = 0 and θL + θR = 0. So, the

three-dimensional data collection for four-terminal junctions becomes a two-dimensional

endeavor and gets even easier when the flux is zero.

Turning back to the system in Fig. 5.12, the CCC for W = L = 500nm for several

chemical potential values is given in Fig. 5.14. CCC is rounded square for all µ because

the geometry makes each pair of any two terminals have equal coupling. Therefore, the

4-terminal square model can be considered as a combination of six (4 choose 2) separate
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Figure 5.13: The region with pale blue is the three-dimensional supercurrent points for the
leads with independent phases (T, R, B). Opposite terminals are paired up: IT + IB = 0
and IL + IR = 0. The boundary of the region formed by the intersection between the
three-dimensional supercurrents and the plane IT + IB = 0 is the two-dimensional CCC.

Figure 5.14: Scatter plots for the system in Fig. 5.12. µ unit is meV. L = W = 500nm.
Supercurrent unit is arbitrary.



88

Josephson junctions closely located to each other [195]. The area of the CCCs linearly

increases with µ due to the reason described in Fig. 5.5.
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Figure 5.15: (a) X junction with arm length L and width W . (b) Approximate 8-terminal
model for X junction.

If we change the geometry and create anisotropic coupling between terminals, we can

observe different effects of gating. In Fig. 5.15(a), there is the target X junction we aim

to simulate. Different than the leads attached to the rectangular scattering regions we

used above, one has to use the rotated lattice for the leads to be attached to the X-shaped

scattering region. In order to avoid such lattice type change, which generally does not occur

naturally, we use the 8-terminal model in Fig. 5.15(b) as an approximate model to simulate

the X junction.13 In the 8-terminal model, each lead consists of pair of 2 terminals with

the same phase. Terminals are horizontally and vertically attached to the scattering region

boundary. In the next chapter, we will study finite X geometries for which the same lattice

type can be used both in the scattering region and the leads.

We show the CCCs for the 8-terminal X junction in Fig. 5.16. When µ gets small

so that there are only few channels in the junction, there is a transition from rhombus

to circle.14 When only adjoint terminals are coupled, the CCC is rhombus. Decreasing

13We thank Prof. Anton Akhmerov for his suggestions about Kwant usage [196].
14We will study junctions with nonuniform chemical potential in the next chapter. By fixing the chemical
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Figure 5.16: Scatter plots for the system in Fig. 5.15(b). W = 2nm, L = 18nm, lattice con-
stant a = 1nm. Chemical potential is uniform in the junction. µ unit is meV. Supercurrent
unit is arbitrary.

chemical potential increases the Fermi wavelength and the ABS wave functions become

more extended in the scattering region, which makes the scattering process in the middle

part of the scattering region having more dominance when the number of channels is small.

The middle part connects opposite terminals and creates coupling less than the adjoint

coupling. If coupling would be the same, then we would get rounded square as in 4-terminal

square junction, Cf. Fig. 5.16.

5.3 Conclusions

We have presented the effects of top gate voltage and perpendicular magnetic field on

multiterminal junctions. Ground state energy landscape is deformed in the presence of the

magnetic field. The CCC clusters are identified on the energy-phase plane. With increasing

magnetic flux, the sharp clusters appear and get detached from the central global minimum.

Fraunhofer patterns persist in three-terminal Josephson junctions but they are suppressed.

We have also presented results about junctions having more than three terminals. De-

pending on the geometry of the junction, chemical potential modulation creates transition

potential in the leads and applying gate on the scattering region, one can fix the number of channels and can
still control the Fermi wavelength in the scattering region. Shape transition gets more robust when number
of channels is large and one can observe the effects of magnetic field more effectively.
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in the shape of CCCs due to the coupling change between the terminals. CCC shapes of the

four-terminal square junction do not depend on the chemical potential because the square

scattering region couples each pair of terminals equally. However, in the X junction, the

region of localization of ABS wave functions can alter the coupling between terminals. The

wave functions localized in the middle makes the coupling between opposite sites stronger

and the corresponding CCC becomes a circle. In the next chapter, we will continue studying

the peculiar modulation of CCC with magnetic flux and gate voltage in finite junctions.

We will study the X junction using more realistic finite models.
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Chapter 6

Studies of finite multiterminal

junctions

6.1 Introduction

In the previous chapter, we studied quantum transport in short junctions with semi-infinite

leads using the scattering theory. The eigenstates of the Bloch Hamiltonian are the modes

of the leads. The eigenvalues of the Bloch Hamiltonian categorizes the modes into incoming,

outgoing and evanescent modes using the translational symmetry of the leads. The linear

superposition of these modes give the wave function in the leads, the solution of which

equals to the solution of the infinite1 tail of the tight-binding system Hamiltonian. The

other parts of the system Hamiltonian include the terms connecting the sites in the leads

to the scattering region and the onsite and hopping terms of the scattering region. The

unknowns are the wave function inside the scattering region and the S-matrix. By finding

the wave function in the leads, one can truncate the system Hamiltonian into the scattering

region and the sites in the leads which are directly connected to the scattering region. The

unknowns can be calculated by solving the time-independent Schrodinger equation in the

scattering region and using the boundary condition connecting the scattering region to the

1The tail is infinite because the leads are semi-infinite. In this context, “semi-infinite” is used to signify
that the leads have an end point, which is the scattering region boundary.
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leads.

Figure 6.1: ABS wave function localization in the scattering region. (a) Extended ABS
wave functions can be localized with equal probability in the arms and middle region if
the system geometry is finely tuned. The coupling between the opposite junctions create
rounded CCCs. (b) When the Fermi wavelength is small, the arms are more dominant
because the area of the arms are larger than the middle region (because L > W ). So, CCC
becomes a rhombus due to lack of connection of opposite junctions. The figure in (b) is
given for a system where the middle region localizations are neglected.

Kwant uses this approach as explained in Ref. [81] and its tools are especially useful for

systems with translationally invariant semi-infinite leads. Bound state problem in infinite

and mostly-translationally invariant systems have been studied in [197, 198]. On the other

end, one can also be interested in studying systems which do not have geometries allowing

simple attachments of semi-infinite leads. Such systems can produce intriguing new phe-

nomena which may not be understood via approximate models. In the last chapter, we

compared the CCCs for the junctions with the square and X-shaped scattering regions. We

used the infinite 8-terminal model as an approximation to the X junction. We take the

chemical potential small in order to make the number of channels small. In this limit, the

scattering process occurs mostly in the middle of the leads. This model is not very useful

anymore when the number of channels is large. Even though the pair of leads have the same

phases, there is no direct connection between the separate leads – they are only connected
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to the scattering region. The edge of the disconnected leads produce protrusions in CCCs

when the number of channels is large, so the effects of the disconnection on the scattering

process cannot be ignored.
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Figure 6.2: (a) Scattering region, (b) X finite system.

Another source of error is the size of the junctions. Short junction approach provides

efficient methods of quantum transport calculations. One can separate the process of solving

wave functions of the leads and the scattering region. Finding the coefficients of the S-

matrix and the scattering region wave function can be achieved by just solving the system

Hamiltonian truncated into the subblocks directly related to the scattering region – no need

to take the leads into account after calculating the lead modes. Short junction method,

albeit being efficient, is not useful in general. Scattering regions in experimental setups

[75, 76, 91] are generally not as small as theoretical models.

To be able to study more realistic theoretical models and eliminate the problems that

can arise due to the length of the junctions and system geometry approximations, we form

finite systems with leads longer than the coherence length. We divide the finite system into

superconducting and normal regions and assign phases to each lead. The scattering region

and the system plot for the finite X junction are given in Fig. 6.2. The scattering region in

Fig. 6.2(a) is the same as the one in previous section but with different L,W definitions.2

2The difference here is simply because of the definitions of the lines (see Fig. 6.2(a)) used to define the
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6.2 Finite System Simulations

The tight-binding Hamiltonian of the finite system is given as:

H =



HL VL

V †L
. . .

. . .

HL VL

V †L HL VLS

V †LS HS


, (6.1)

where HS is the scattering region Hamiltonian, HL is the onsite Hamiltonian, VL is the

hopping term that connects leads to each other and VLS is the hopping term that connects

leads to the scattering region. Eq.(6.1) is the truncated version of the Hamiltonian in Eq.

(4) of Ref. [81]. Truncation is legitimate because we take the leads much longer than the

coherence length, typically between 1.2 to 20 times longer. If the chemical potential is very

small, the coherence length becomes very small. So, we need to choose large lead lengths

(comparing to the coherence length) for junctions with small chemical potential in order to

make the leads not shorter than the scattering region length. On the other hand, junctions

with large chemical potentials have large number of channels and large system Hamiltonian

matrix. The coherence length is generally larger than the scattering region sizes. The

burden then is to diagonalize the large system Hamiltonian. Therefore, for such junctions,

we choose the lead length around a few times longer than the scattering region sizes. A rule

of thumb for the good choice of legitimate lead length is to test whether number of channels

(number of positive subgap energies) change with the lead length or not. We choose the

lead lengths accordingly and check the change in number of channels while varying the lead

length.

The choice for the length of the leads is crucial because if it is too short, then lead modes

will not be approximated as plane waves and there will be unwanted interference effects on

separation between the superconducting and normal regions. Since the leads are not rectangular anymore
and they have a triangular part attached to the scattering region, it is more convenient to define the
boundaries using the line equations provided in the figure.
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our results. A way to check whether lead lenghts are selected long enough is to compare

the results obtained from a two-terminal finite system results to the Ambegaokar-Baratoff

relation. This is a well-known result for 2-terminal junctions and can provide an easy test.

It can be summarized as the following. Critical current IC is proportional to ∆ in short

junctions when temperature goes to zero [199]. If for a short junction, long (much longer

than coherence length) finite leads are attached, then IC ∝ ∆.

The Ambegaokar-Baratoff test provides a sanity check for our code in the limit of short

junctions. However, the finite junction method is not limited to short junctions. A good side

of the finite system method over the short junction method is that we can also work with

long junctions with small chemical potential and coherence length using the former. Such

systems have smaller Hamiltonian matrix and can still show the local/nonlocal transition

we are searching for. Short junction method is in general practical but one has to work

with large chemical potential in order to obtain long coherence length comparing to the

system sizes. This produces large S-matrix and can cause long computation times for large

systems. Here, we don’t abide ourselves to the binding criteria of short junctions but we

also study systems with large matrices of µ up to 40meV.3

In Fig. 6.3 we provide the two-terminal finite system (a), current (b) and critical current

(c) as a function of phase plots for the SNS junction. We choose the chemical potential

µ = 0.05meV and vary ∆ between 0.04 and 0.2meV. Since ∆ is varied, coherence length

is also varied between 80 and 400 µm. The normal region length L is shorter than the

coherence length but width W is longer than the maximum coherence length we consider.

Long W and short coherence length with increasing ∆ are the reasons why the junction

slightly deviates from IC ∝ ∆. We could select µ larger and make sure that W,L are much

smaller than the coherence length and LLead is much larger than the coherence length but

we wanted to provide an approximate quick test here.

If µ is too small, then the coherence length is small and Fermi wavelength is large.

Sizes of the system should be small so that they are smaller than coherence length for short

3I have results for µ ∼ 40meV, whose Hamiltonian is huge and has many number of channels. We will
provide those results in our paper. It is currently in preparation.
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Figure 6.3: (a) 2-terminal finite system. Long wide junction with width W = 500nm, L =
40nm. LLead is chosen much longer than the coherence length. (b) Current I as a function
of phase φ (between 0 and 2π). (c) Critical current as a function of ∆. Critical current is
defined as the maximum positive or negative current. Supercurrent units are arbitrary in
this chapter (Coefficient 2e

~ should be multiplied by the currents).

junction limit. However, number of channels then can be zero because W would be too large

to fit Fermi wavelengths in it. That’s why we choose a relatively large W for the example

in Fig. 6.3. While varying chemical potential, coherence length changes. In our studies

with junctions with more than two terminals, we take precaution against such parameter

changes. We fixed this problem by selecting lead length as a multiple of coherence length

(LLead is not fixed) whenever it is necessary.

The continuum Hamiltonian for the junction is given by:

H =

[
~2

2m
(k2
x + k2

y − eA)− µ+ V

]
σz + ∆ cos(θ)σx + ∆ sin(θ)σy, (6.2)

where the gate voltage V can be uniform or nonuniform throughout the junction. In the

nomenclature of this thesis, we sometimes call the effective chemical potential as µ − V .

∆ = 0 in the normal region and nonzero (in the form of s-wave superconductivity) in the

leads. A is the vector potential chosen in Landau gauge and it can be switched on in the

scattering region, similar to the previous chapter. Superconducting phases are different at
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the left (θL), right (θR), top (θT ), bottom (θB) of the scattering region.

Eq.(6.2) is similar to the Hamiltonian of the previous section. However, the former is

represented by 2-by-2 Pauli matrices because it depends on ∆. The latter does not have

∆ dependence because leads are normal. ∆ is taken into account by the structure of the

Beenakker formula [79]. To find the ABS energies below the gap, the leads were assumed to

be normal in the previous section. If we assumed that the leads had ∆-dependence in the

previous chapter, we would get the spectrum of quasiparticle excitations that propagate in

the leads above the gap.

To find the ABS energies, we calculate the eigenvalues of the system Hamiltonian,

Eq.(6.1), and take the positive energies below the gap ∆. We study bound states in finite

systems following similar approaches described in the codes of the Refs. [182, 200]. We

summarize the process as follows4:

1) Make the system. Write Hamiltonian in terms of momenta and position opera-

tors. Operators are multiplied with coefficients which are variable depending on the region:

Leads depend on superconducting gap, the normal scattering region does not. Each region

Hamiltonian includes terms specific to that region, such as chemical potential, gate voltage,

superconducting phase and gap.

2) Discretize the Hamiltonians for each region. Position and momentum operators are

discretized. Tight-binding Hamiltonian is obtained in the form of Eq.(6.1).

3) Utilize the sparsity of the Hamiltonian and use Multifrontal Massively Parallel Sparse

Direct Solver [201] to find eigenvalues of Eq.(6.1). Calculate N minimum positive eigen-

values. If the max calculated eigenvalue is still minimum than the gap, N is increased in a

while loop.

4) Take the sum of the subgap energies, calculate ground state energy Egs. Derivatives

with respect to phases (I = 2e
~ ∂θiEgs, where θi is the phase of a lead) give the current of

each lead.

To emphasize again, one can consider µ - gate as the effective chemical potential. We

4The code will be available in my GitHub account: https://github.com/relugzosiraba.
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Figure 6.4: CCCs for W = 60nm. (a) L = 720nm (b) 400nm, (c) 300nm. Flux is zero.
Chemical potential is the same over all junction. Top gate voltage is zero. µ unit is meV
throughout the chapter. Supercurrent unit is arbitrary throughout the chapter.

use the phrase “nonuniform µ” interchangeably even when µ is fixed and only gate is varied.

The gate makes the scattering region’s effective chemical potential smaller than the leads,

which can produce nonlocal/local CCC shape transition.

Models with nonuniform µ is more realistic. Top gate hardly affects Al layer (leads),

so µ should be fixed and gate is applied only on the scattering region. Even more realistic

models include nonuniform gate on the scattering region and include several elements caus-

ing nonuniformness such as the following. The band bending due to ohmic contact between

Al (of the leads) and InAs in the epitaxial heterostructure (see Fig.1 of Ref. [75] for the
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Figure 6.5: For W = 60nm and L = 300nm at zero flux, CCCs are rhombus and circle
for µ = 0.4meV and µ = 0.09meV, respectively (see Fig. 6.4). (a) When flux is varied,
rhombus preserves its shape and current inversion symmetry, (b) whereas the circle shape
transforms into a shape with broken current inversion symmetry. CCCs for zero flux are
given in the left column for comparison.

system layers) should be taken into account [202]. What is more, electrostatic potential

lines are banded in the edges of Al. One should also consider disorder due to impurities.

The supercurrent vortices formed by magnetic flux are effected by impurity scattering.

As we started exploring in the previous section, in addition to the chemical potential,

geometry is also crucial for the local/nonlocal CCC transition. For the right chemical

potential and gate combination, by fine tuning of the aspect ratio (arm length)/(middle

region width) = (L−W )/(2W ), one can obtain the CCC transition. The extended/localized

nature of the ABS wave function determines which part of the junction is more dominant,

which is summarized in Fig. 6.1. Such dominance happens in the systems with proper

choice of aspect ratio and the Fermi wavelength. The Fermi wavelength can be controlled

using the chemical potential and gate voltage. When negative gate is applied while µ is

being fixed or when gate is zero and µ is decreased throughout the junction, the Fermi

wavelength gets large. When the gate is small or when it is zero and µ is large, the Fermi

wavelength gets small.
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Figure 6.6: CCCs for L = 720nm. (a) W = 140nm, (b) W = 220nm. Flux is zero.
Chemical potential is the same over all junction. Top gate voltage is zero.

For the local regime depicted in Fig. 6.1(b), there is no ABS wave function localized in

the center. Indeed, such a system is experimentally obtainable thanks to impurity scatter-

ing. Even if there is no impurity, if both arms and the middle region are occupied at the

same time by ABS with short wavelengths, arms would still be more dominant due to its

larger area.

In Fig. 6.4, W = 60nm (width of the junction) fixed. L = 300, 400 or 720nm. We

show results for µ up to 0.4meV, for which junctions have small number of channels.5

The CCC is rhombus for this chemical potential range when L is large (720nm). For the

5Note that when µ is extremely small, there are no channels or scattering anymore. We are away from
that limit (which was considered in the previous chapter.)
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Figure 6.7: Flux is varied for the rhombus CCCs of W = 220nm, L = 720nm. Rhombic
shape is preserved.

smaller L = 400nm, the CCC gets circular when the chemical potential is decreased. There

needs to be fine tuning to obtain the proper rhombus-circle transition. This happens when

L = 300nm. Note that we skipped the intermediate figures for which the system is in a

transition mode from rhombus to circle. When µ is decreased to a value even less than

µ = 0.09meV, the area shrinks (as expected) and the CCC keeps its shape (circle), which

is expected for a robust shape transition. For the approximate 8-terminal X infinite system

we studied in the previous chapter, we obtained some transitions which do not follow the

regular pattern. Circle could become rhombus again for µ which is smaller than the chemical

potential for which the initial transition occurs.6 Note that the scales are not necessarily

the same for CCC figures in this chapter. We note that CCC area increases (decreases) with

increasing (decreasing) µ. In Fig. 6.5, we give how the flux on the scattering region modifies

the CCC for given rhombus and circles of L = 300nm. Area shrinks for both. Inversion

symmetry with respect to the origin is preserved for the rhombus but it is broken for the

circle, where the currents of opposite terminals are correlated via the middle region. So,

the magnetic field effects occurring at the middle region breaks the inversion symmetry in

6Such figures are not presented in this thesis because their CCCs do not represent the regular patterns.
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nonlocal junction (circle) but it does not break the one where the arms are more dominant

(i.e. local junction with rhombus CCC).

Now, for the case when L =720nm, we increase W and get the results as in Fig. 6.6. For

W =140nm, the CCC is rhombus for all µ. If W is increased enough, then the transition

may occur again. We see that this happens at W =220nm. The result for magnetic flux

variation of the rhombus at µ = 1.3meV is given in Fig. 6.7. The shape is preserved and

its area shrinks. The circular CCC flux variation is work-in-progress. We could observe the

current inversion symmetry breaking only for some of the circular CCCs when magnetic

field is switched on. With a more realistic modeling of the junction with more proper choices

of nonuniform chemical potential and disorder, more shape transitions can be obtained as

expected.

Finally, let’s switch on the gate voltage. We present the results in Fig. 6.8. We fix

W = 140nm. L, µ and gate is varied. As opposed to the case when gate = 0, transition

occurs for larger µ when the negative gate is switched on. The negative gate increases

the ABS wavelength inside the scattering region. If the number of channels is larger, the

shape transition follows strict patterns and the CCC transition can be investigated properly

without sudden reverse transitions. When there is no gate, the transition occurs while µ

is being decreased, which is the number of channels → 0 limit. In such junctions, the

common pattern of transition is weakly followed and reverse transitions may occur because

number of channels is small and therefore the system is prone to sudden fluctuations due

to geometry change or change of other parameters. If the number of channels is large, the

collective interference creates meaningful patterns. Note that we can observe the transition

for µ being as small as 3meV. For the same L = 720nm, W = 140nm, chemical potential

defines whether there will be transition or not (Cf. (a) and (c)). CCCs in Fig. 6.8(a) stay

as rhombus for small µ. For µ =3meV, when L = 600nm, we observe rhombus to circle

transition.
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Figure 6.8: CCCs for W = 140nm. L is varied. Top gate voltage is varied. (a) W = 140nm,
L = 720nm for µ = 0.09meV. CCC shape is preserved for small µ (= small number of
channels). (b, c, d) Fix W = 140nm, and µ = 3meV. Vary L. (b) L = 840nm, (c)
L = 720nm, (d) L = 600nm. For larger L, the arms of the scattering region are more
dominant. Therefore, CCCs are rhombus. As can be seen in (d), the shape gets circular
when the gate voltage is increased for the right choice of L because the coupling between the
opposite terminals gets stronger due to extended ABS wave functions inside the scattering
region.
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6.3 Conclusions and Outlook

Junctions with special geometries can exhibit effects which are not exhibited by the simple

geometries. To simulate junctions with special geometries, finite junction methods are

useful. The scattering region and the leads attached to it can be of the same type of lattice.

The leads become finite but much longer than the coherence length. Eigenvalues of the

system Hamiltonian are found exploiting the sparsity of it. We used finite junctions methods

to simulate X model. Comparing to the 8-terminal approximate X model considered in the

last section, we built a system with four terminals and exact geometry as desired. For

wide junction with long arms, the local effect is dominant and CCC is rhombus and does

not transform into other shapes. We observed robust local to nonlocal (rhombus to circle)

transitions for certain aspect ratios of the junction while tuning chemical potential, gate

voltage and magnetic field.

X junction is a special junction and a platform exhibiting many symmetries (such as

(a)symmetric coupling system geometry, time-reversal, current inversion symmetries) at

once. Magnetic field on the scattering region breaks the time-reversal symmetry and CCC

may lose the inversion symmetry with respect to the origin depending on the regime (lo-

cal or nonlocal) of the junction. If there is a nonlocal (due to coupling via the center of

the scattering region) Josephson effect, magnetic field breaks current inversion symmetry.

Magnetic field does not break current inversion symmetry if the arms are dominant. This

difference allows us to distinguish between local and nonlocal regimes using the X junction.

For the local regime, the arms are dominant and the inversion symmetry breaking effects are

cancelled out due to the X junction geometric symmetry. This cancelling may not happen

in geometrically asymmetric junctions, which will be checked in our future studies. Under-

standing further flux effects under disorder and different choices of nonuniform chemical

potential is also a work-in-progress.

Fine tuning of parameters to obtain the shape transition can be burden especially for

finite systems, where exact diagonalization computationally costs a lot for large systems

(large µ and/or system). To overcome that, I will incorporate machine learning techniques
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to identify CCC shapes with less human interference. An algorithm which focuses on finding

the boundary (CCCs) of the scatter plots without spending much time in the interior is

well-desired.
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Chapter 7

Conclusions and Outlook

We covered various topics in interacting quantum systems that are complementary to each

other. Our studies include theoretical modeling and numerical simulations of disordered

quantum spin chains, multiterminal Josephson junctions and superconducting circuits. My

past experiences shape my future goals. Not all questions I have been studying during my

PhD years are answered here. I will provide answers to those questions in the near future.

My experience and background will help me extend the depth of my knowledge.

We studied the response of disordered systems to weak local periodic drive in Chapter

2. We considered a spin chain in which one of the spins is driven. We study the effects of

the drive on the crossover between the many-body localization (MBL) and ergodic regime

after one period. We characterized the response as the overlap between the states started

from the initial states and evolved under the Heisenberg Hamiltonian with and without

drive. The statistics of the response show different behaviors depending on the strength

of the disorder. We further studied time dynamics of the system. The variance of the

total spin in z-direction gives the measure of localization for a given state. The variance

after one period can be considered as the diffusion coefficient and it is correlated to the

fidelity susceptibility. We measured the speed of thermalization using spin accumulation

for a given number of periods. The speed of thermalization is significantly different for the

ergodic and MBL phases. In this study, we considered local harmonic drive with moderate
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drive frequency. In the future, I will explore the prethermal regimes that occur for large

drive frequencies. Prethermal systems can exhibit topological phases and time crystals.

In Chapter 2, we studied the collective response of the spin chain to the local drive by

calculating the overlap of the driven and undriven states and variance of the total spin. I

will also study how individual spins respond to the local drive in an open chain. Each spin

responds to the local drive differently depending on the distance to the driven spin. We

collaborate with experimental groups to check how our ideas can be realized, one of the

collaboration topic is on fluxonium qubit systems. Fluxonium qubits are more preferable

comparing to other superconducting qubits because they can have strong anharmonicity,

long coherence time and they exhibit strong coupling properties. Due to these properties,

these systems can simulate spin-1/2 chains effectively. We studied the phase diagram of the

fluxonium chain by calculating the energy gap between the ground and first excited levels.

We estimated the boundary between the antiferromagnetic and paramagnetic regimes by

using fidelity susceptibility. As experimentally accessible methods, we tried using magneti-

zation to probe edge states and studied response of qubits to a local spin flip.

1-d Ising chain can be mapped onto Kitaev chain (which can exhibit Majorana fermions)

via Jordan-Wigner transformation. Using this mapping, we demonstrated that edge states

can be probed using magnetization but this method is not enough to come to a conclusion

about the exact site where the edge state is localized. We will study the localization

properties of edge states as a test to identify whether they show similar properties to

Majorana states.

In Chapter 4, we proposed the steered quantum adiabatic algorithm. The spin chain

we considered is a common testbed for quantum computing: 1-d transverse Ising spin-

1/2 chain with nearest neighbor interactions. The initial state is chosen as the ground

state of the initial Hamiltonian, which is easy to prepare. Quantum adiabatic algorithm

is used to find the ground state of an Ising spin-1/2 chain, which can be encoded as an

optimization problem. Our aim was to keep the state as close as possible to the ground

state during the course of the computation so that the final state is close to the ground
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state of the final Hamiltonian. To do that, we proposed an intermediate steering term that

eliminates avoided level crossings which cause leakage from ground state to the excited

states via Landau-Zener transitions. We applied local steering terms (applied to each spin

separately) and also combined these local terms with cluster terms, which are applied to

clusters of spins.

The steering method is model-independent. It is also useful to efficiently solve ground

states of systems with long-range interactions and spin glasses with all-to-all coupling. We

started applying the steering method for spin-1 chain to exploit the Haldane gap, which

increases the energy separation between ground state and excited states [203]. The Haldane

gap appears in chains with integer spins but not for the spin-1/2 chain, such as the one we

considered in Chapter 4. So, using spin-1 chains can be useful to tackle difficult optimization

problems.

In Chapters 5 and 6, we study multiterminal Josephson junctions in tight-binding infinite

and finite models. For infinite short junction; after lead modes are obtained, the system

Hamiltonian can be truncated into an effective Hamiltonian which have sizes of scattering

region and the closest lead degrees of freedom. For finite systems, one can truncate the

infinite system (into a still large matrix) if long enough leads are chosen. The system

Hamiltonian is diagonalized and one can then obtain subgap energies. Both approaches

have its own benefits. Infinite junctions can generally provide quick solutions if the short

junction assumptions are satisfied. On the other hand, finite junction method is not limited

to short junctions and special geometries can be explored.

We define the critical current contour (CCC) for multiterminal junctions as the gen-

eralized notion of the critical current in two-terminal junctions. We demonstrated that

the magnetic field deforms the energy-phase space and sharp corners appear in CCCs as a

result. We concluded that additional terminals modify Fraunhofer patterns and suppress

the oscillations.

We investigated the transition from conventional to multiterminal regime in the scope

of the symmetry considerations of the geometrically symmetric X junction. By gate tuning,
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the junction regime can be determined. The regime of the junction can be understood

via the shape of CCCs. In the conventional regime where only neighboring terminals are

coupled, the CCC is rhombic. On the other hand, if there is coupling between opposite

terminals, the CCC gets rounded.

We discussed effects of time-reversal symmetry breaking on the inversion symmetry

breaking of CCCs. In the conventional regime where arms are dominant, the inversion

symmetry is not broken in the presence of magnetic field. However, the magnetic field

breaks the inversion symmetry of the junction in multiterminal regime where the center

of the scattering region couples opposite terminals. Therefore, whether the junction is in

the local or nonlocal regime can be identified by applying magnetic field. Note that we

consider small magnetic flux regime here, where the effect of the flux manifests itself as

the Fraunhofer patterns. If the flux is large, the supercurrents dies away and inversion

symmetry is surely broken regardless of whether the junction is in the conventional or

multiterminal regime.

In Fall 2019 at Los Alamos National Lab., I studied topological versions of multiterminal

JJ which are based on Dirac materials with superconducting (S) leads and ferromagnetic

(F) scattering region. 2-terminal SFS junctions can exhibit topological states [204]. I will

finish my analysis of how adding more terminals change the topological behaviors.

I used the Python quantum transport package Kwant for my time-independent calcu-

lations of multiterminal JJ. I am planning to explore time-dependent quantum transport

through multiterminal JJ. It is possible to study thermoelectric and other dissipative dy-

namics with the time-dependent version of Kwant, named t-Kwant, which is currently under

development [205, 206].
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[5] J. Holt, When Einstein walked with Gödel: excursions to the edge of thought. Farrar,
Straus and Giroux, 2018.

[6] H. H. Goldstine and A. Goldstine, “The electronic numerical integrator and computer
(eniac),” IEEE Annals of the History of Computing, vol. 18, no. 1, pp. 10–16, 1996.

[7] M. Guarnieri, “The Unreasonable Accuracy of Moore’s Law [Historical],” IEEE In-
dustrial Electronics Magazine, vol. 10, no. 1, pp. 40–43, 2016.

[8] R. P. Feynman, “There’s plenty of room at the bottom,” California Institute of Tech-
nology, Engineering and Science magazine, 1960.

[9] Y. Manin, “Computable and uncomputable,” Sovetskoye Radio, Moscow, vol. 128,
1980.

[10] R. P. Feynman, “Simulating physics with computers,” International Journal of The-
oretical Physics, vol. 21, pp. 467–488, May 1982.

[11] D. Deutsch, “Quantum Theory, the Church-Turing Principle and the Universal Quan-
tum Computer,” Proceedings of the Royal Society of London A: Mathematical, Phys-
ical and Engineering Sciences, vol. 400, pp. 97–117, July 1985.



112

[12] D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,”
Proceedings of the Royal Society of London. Series A: Mathematical and Physical
Sciences, vol. 439, no. 1907, pp. 553–558, 1992.

[13] D. R. Simon, “On the power of quantum computation,” SIAM journal on computing,
vol. 26, no. 5, pp. 1474–1483, 1997.

[14] P. W. Shor, “Polynomial-Time Algorithms for Prime Factorization and Discrete Log-
arithms on a Quantum Computer,” SIAM J. Comput., vol. 26, pp. 1484–1509, Oct.
1997.

[15] L. K. Grover, “A Fast Quantum Mechanical Algorithm for Database Search,” in
Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing,
STOC ’96, pp. 212–219, ACM, May 1996.

[16] B. Apolloni, C. Carvalho, and D. De Falco, “Quantum stochastic optimization,”
Stochastic Processes and their Applications, vol. 33, no. 2, pp. 233–244, 1989.

[17] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated anneal-
ing,” science, vol. 220, no. 4598, pp. 671–680, 1983.

[18] T. Kadowaki and H. Nishimori, “Quantum annealing in the transverse Ising model,”
Physical Review E, vol. 58, no. 5, p. 5355, 1998.

[19] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, “Quantum Computation by
Adiabatic Evolution,” p. 24, 2000.

[20] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda, “A quan-
tum adiabatic evolution algorithm applied to random instances of an NP-complete
problem,” Science, vol. 292, no. 5516, pp. 472–475, 2001.

[21] D. Aharonov, W. Van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev, “Adia-
batic quantum computation is equivalent to standard quantum computation,” SIAM
review, vol. 50, no. 4, pp. 755–787, 2008.

[22] C. C. McGeoch, “Adiabatic quantum computation and quantum annealing: Theory
and practice,” Synthesis Lectures on Quantum Computing, vol. 5, no. 2, pp. 1–93,
2014.

[23] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. D. Sarma, “Non-abelian
anyons and topological quantum computation,” Reviews of Modern Physics, vol. 80,
no. 3, p. 1083, 2008.



113

[24] T. Albash and D. A. Lidar, “Adiabatic quantum computation,” Reviews of Modern
Physics, vol. 90, no. 1, p. 015002, 2018.

[25] S. Resch and U. R. Karpuzcu, “Quantum computing: an overview across the system
stack,” arXiv preprint arXiv:1905.07240, 2019.

[26] J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum, vol. 2, p. 79,
2018.

[27] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas,
S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro,
R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gid-
ney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hart-
mann, A. Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey,
Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov,
F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà, J. R. Mc-
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[108] P. Ponte, Z. Papić, F. Huveneers, and D. A. Abanin, “Many-body localization in
periodically driven systems,” Physical review letters, vol. 114, no. 14, p. 140401, 2015.

[109] A. Chandran, I. H. Kim, G. Vidal, and D. A. Abanin, “Constructing local integrals
of motion in the many-body localized phase,” Phys. Rev. B, vol. 91, p. 085425, Feb
2015.

[110] V. Ros, M. Mueller, and A. Scardicchio, “Integrals of motion in the many-body lo-
calized phase,” Nuclear Physics B, vol. 891, no. 0, pp. 420 – 465, 2015.

[111] A. Nanduri, H. Kim, and D. A. Huse, “Entanglement spreading in a many-body
localized system,” Phys. Rev. B, vol. 90, p. 064201, Aug 2014.

[112] M. Serbyn, A. A. Michailidis, D. A. Abanin, and Z. Papić, “Power-law entanglement
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