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ABSTRACT

Towards Integrating Topology Optimization
and Additive Manufacturing

by

Amir M. Mirzendehdel

Advisor: Dr. Krishnan Suresh

Topology optimization (TO) is an automated design tool that integrates mathematical

modeling with numerical analysis to automatically reduce weight and material usage

while ensuring certain prescribed constraints on performance of the design are satis-

fied. The high-performance light-weight designs created through topology optimization

are often free-form and organic, manufacturing of which through traditional casting,

forming, or subtractive technologies can become quite challenging. Additive manufac-

turing (AM) is a class of more modern technologies that seem to alleviate this issue by

fabricating complex parts layer by layer. On the other hand, the cost of additively man-

ufactured parts increase significantly with material usage. Therefore, optimizing de-

signs can reduce material usage, build time, and post-process time to make AM worth-

while. Thus, TO and AM complement each other to fabricate ever more complex high-

performance and customized yet affordable products. However, for these technologies

to be integrated, there are certain issues, such as extraneous support structures or ma-

terial anisotropy, that need to be considered within the optimization.

Focus of this thesis is mainly on:



xi

1. Addressing challenges on reducing amount of support structure and considering

process-induced anisotropy throughout the optimization process.

2. Exploiting the capabilities of AM in free-form fabrication to improve performance

by generating more complex multi-material designs.

In other words, the present thesis attempts to make advances on integrating the two

modern and promising fields, topology optimization and additive manufacturing by de-

veloping optimization algorithms that generate optimized designs while tracing Pareto

frontiers. Perhaps the most important benefit of this class of methods is the fact that

intermediate topologies remain structurally valid, thus iterative solvers can converge

much faster. Further, these intermediate designs are local optimum solutions. These

traits make these methods well-suited for rapidly exploring the design space to find free-

form designs while ensuring their structural integrity.
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CHAPTER I

Introduction

Topology optimization (TO) represents a class of computational methods for design-

ing light-weight, high-performance structure [7; 8; 9]. After several years of intensive re-

search, it has emerged as a powerful design tool, and is deployed in optimization of air-

craft components [10; 11], spacecraft modules [12], automobiles components [13], cast

components [14], compliant mechanisms [15], etc. Additive manufacturing (AM) refers

to a class of manufacturing processes through which parts are fabricated by material

addition [16]. The growing interest in AM stems from its ability to fabricate highly com-

plex parts, a feat that was not possible through traditional subtractive techniques. Fur-

thermore, AM is well-suited for small-batch production and on-spot fabrication where

transporting built parts is expensive or even impossible.

AM and TO complement each other in that organic and complex designs generated

through TO can be manufactured through AM technologies. On the other hand, the cost

of AM parts increase significantly with material usage. Thus optimizing designs can be

crucial in saving material usage, build time, and post-fabrication time [17]. However,

there are certain challenges in TO for AM which need to be addressed before the two

fields can be seamlessly integrated. Addressing some of these issues through efficient

algorithms for 3D structures is the focus of this thesis. Figure 1.1 illustrates the synergy

between TO and AM.
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Figure 1.1: Synergy between TO and AM.

In this section, topology optimization (TO) methods (1.1) and additive manufactur-

ing (AM) technologies (1.2) are briefly discussed and their synergy is explained. The

contributions and outline of this thesis are summarized in sections (1.3) and (1.4).

1.1 Topology optimization

A typical TO problem can be posed as the following Single-Objective Problem (SOP):

given an initial design domain D , we want to find an optimal topology that minimizes

an objective while satisfying N (usually inequality) constraints,

mi ni mi ze
Ω⊂D

f (Ω,u)

gn(Ω,u) ≤ 0 n = 1, ..., N

subject to

Ku = f

(1.1)
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where:

f : Objective function, such as compliance, etc.

Ω : Topology to be computed

D : Domain within which the topology must lie

u : Finite element displacement field

K : Finite element stiffness matrix

f : External force vector

gn : Constraints

(1.2)

1.1.1 Topology Optimization Approaches

Numerous approaches have been developed for topology optimization which are

mainly categorized into 1) density-based [18; 19; 20; 8]) level-set [21; 22], and 3) evolu-

tionary [23; 24; 25]. These methods are briefly discussed here; more detailed reviews are

available in [7; 9; 26].

Density-Based Methods. Density-based approaches, also known as Solid Isotropic Ma-

terial with Penalization (SIMP), are the most popular TO methods which have benefited

from extensive research. The key concept in SIMP is to describe the material distribu-

tion by a pseudo-density variable 0 ≤ ρ ≤ 1 that interpolates the underlying material

properties [18]; for example, the Young’s modulus is typically interpolated per element

via Ee = ρe
p E0. The penalization factor p depends on the physics and dimension of the

problem; it is typically assigned a value of ’3’ for 3D linear elasticity. The pseudo-density

variables are then optimized to reach the desired objective. Density-based methods are

mathematically sound, however they usually result in gray elements with intermediate

densities (neither 0 nor 1), which would require further post-processing.

Evolutionary Methods. Another family of topology optimization methods are the evo-

lutionary based methods, where no gradient of the objective functional is computed

and elements are removed or added simply based on field values. Xie and Steven [27],

first developed evolutionary structural optimization (ESO) in 1993, to solve optimiza-
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tion problems by gradually removing elements with lowest value of von-Mises stress

until the desired volume fraction is reached . In 1996, stiffness-constrained optimiza-

tion problems were solved using ESO [28], where the sensitivity value of each element

was calculated using strain energy. There also exist different versions of evolutionary

methods such as BESO[24], AESO[29], GESO[25], etc.

Level-set Methods. Yet another popular TO approach is based on level-sets, where ma-

terial distribution is determined through implicit boundaries or iso-contours. Unlike

SIMP, level-set methods create crisp interfaces between material phases and there are no

ambiguities in existence of material at a given region. In level-set methods, the design

is optimized through updating the materials interfaces by solving the Hamilton-Jacobi

equation. Early versions of level-set methods were limited to shape optimization, where

no new holes could be introduced in the domain. This limitation was alleviated by the

development of a rigorous mathematical formulation for topological sensitivity [30; 31].

1.1.2 Topological Sensitivity

In the present thesis, we mainly focus on level-set methods. A general technique to

solve the TO problem of Equation 1.1 is by solving the following unconstrained problem

using Augmented Lagrangian method [28]:

mi ni mi ze
Ω⊂D

L = f (Ω,u)+ ∑
n=1,...,N

λn gn

subject to

Ku = f

(1.3)

where L is called Lagrangian and λ ∈RN are non-negative Lagrange multipliers.

To solve the TO problem of Equation 1.3 one must compute the first-order change in

the Lagrangian of Equation 1.3 due to small perturbations in design. In other words,



5

topological sensitivity must be computed where:

TL =T f +
∑

n=1,...,N
λnTgn (1.4)

For any quantity of interest ϕ, topological sensitivity Tϕ at every point computes the

change in ϕ due to introduction of a hypothetical infinitesimal hole in that point. In

other words, topological sensitivity at a point p for any quantity of interest p is defined

as [32]:

Tϕ(p) ≡ lim
r→0

ϕ(r ; p)−ϕ0

4

3
πr 3

(1.5)

The most common objective in TO is maximizing the stiffness of the design or equiva-

lently minimizing strain energy or compliance functional:

J = ∫
Ω

Ci j klεεεi jεεεkl = fT u (1.6)

where C is the fourth-order stiffness tensor of material and εεε is the strain tensor. The

related constrained problem can be formally stated as:

mi ni mi ze
Ω⊂D

J

|Ω| ≤V f |D|
subject to

Ku = f

(1.7)

where |Ω| is design volume, V f is the target volume fraction, and |D| is the volume of the

prescribed design domain. The Lagrangian of Equation 1.7 can be written as:

L =TJ +λV (|Ω|−V f |D|) (1.8)
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where λV is the Lagrange multiplier associated with the volume constraint.

To solve the TO problem of Equation 1.7 one must compute the first-order change in

the Lagrangian of Equation 1.8 due to small perturbations in design. In other words,

topological sensitivity must be computed where:

TL =TJ +λV TV (1.9)

where TL , TJ ,and TV are topological sensitivities of Lagrangian, compliance, and vol-

ume.

Compliance Sensitivity. Closed-form expressions for the topological sensitivity of the

compliance in homogeneous isotropic materials exist in 2D [30]:

TJ (p) ≡ 4

1+νσσσ : εεε− 1−3ν

1−ν tr (σσσ)tr (εεε) (1.10)

And in 3D [31]:

TJ (p) ≡−20µσσσ : εεε− (3λ−2µ)tr (σσσ)tr (εεε) (1.11)

where λ and µ are the Lame’ parameters.

Thus the topological sensitivity can be computed as follows: (1) FEA is carried over

the domain, (2) stresses and strains are computed, and (3) then the topological sensi-

tivity field is computed through Equation 1.11; the resulting field is illustrated in Fig-

ure 1.2c.The interpretation is that regions of low sensitivity correspond to regions with

relatively lower impact on performance (and can be removed). Similar topological sen-

sitivity fields can be computed for various performance metrics, both in 2D and 3D [33].
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Figure 1.2: (a) A structural problem, (b) topological change, and (c) topological sensitiv-
ity field.

Volume Sensitivity. Considering the definition of Equation 1.5, the topological sen-

sitivity of the design volume |Ω| in 3D is simply as follows,

TV ≡ lim
r→0

|Ω− 4

3
πr 3|− |Ω|

4

3
πr 3

=−1 (1.12)

Observe that topological sensitivity of volume is constant everywhere in the domain.

Consequently, the term λV TV in Equation 1.9 only shifts the sensitivity field by a con-

stant value and can be neglected. Hence, Equation 1.9 reduces to:

TL =TV (1.13)

1.1.3 Element Sensitivity

For many quantities of interest other than compliance such as anisotropic strength

or inhomogeneous material distributions, no closed-form expressions exist. We will

therefore also consider an alternate discrete element sensitivity, defined as the change

in any quantity of interest when a single element e is deleted from the mesh:

Dϕ(e) ≡ ϕ(Ω−e)−ϕ(Ω)

|e| (1.14)
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Where |e| is volume of a single finite element and is negligible with respect to volume of

topology (|e|¿ |Ω|).

Compliance Sensitivity. One can show that the discrete sensitivity is given by:

DJ = uT
e Keue (1.15)

Figure 1.3 compares discrete sensitivity against the topological sensitivity for compli-

ance for the 2D L-bracket. Observe that the two fields are quite similar since they essen-

tially capture the first order change in compliance when material is removed.

Figure 1.3: (a) L-bracket geometry, (b) topological sensitivity and (c) discrete element
sensitivity.

Volume Sensitivity. Similar to Equation 1.12, element sensitivity of design volume

is:

DV ≡ lim
r→0

(|Ω|− |e|)−|Ω|
|e| = −1 (1.16)
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1.1.4 Multi-Objective Topology Optimization

Alternatively, we can generalize SOP of Equation 1.1 to consider multiple objectives.

The resulting Multi-Objective Problem (MOP) can be formulated as:

mi ni mi ze
Ω⊂D

{ fm(Ω,u)} m = 1, ...M

gn(Ω,u) ≤ 0 n = 1, ..., N

subject to

Ku = f

(1.17)

The solutions of 1.17 are the so-called Pareto-optimal solutions, which give the best

compromise between all objective and constraint functionals.

The concept of Pareto optimality, named after the Italian economist and engineer Vil-

fredo Pareto (1884-1923), is extensively used in multi-objective optimization in a wide

range of applications from Economics and Ecology to Computer sciences and Engineer-

ing. It is a measure of efficiency; a solution is considered Pareto-optimal when fur-

ther improvement of one criteria worsens at least one other. In other words, Pareto-

optimality gives the best trade-off between multiple quantities of interest. A set of Pareto-

optimal solutions are referred to as Pareto frontier, which can be particularly useful in

engineering applications where a designer can explore multiple optimal designs and

choose the one with the most suitable trade-off. Figure 1.4 illustrates the Pareto front

for a generic bi-objective optimization problem.

To formally define Pareto optimality, we relate objective and constraint functions through

the feasible criterion vector which is denoted as:

z(Ω) = {z1(Ω), ..., zM+N (Ω)}T

≡ { f1(Ω), ..., fM (Ω), g1(Ω), ..., gN (Ω)}T ∈RM+N
(1.18)
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Consequently, the following sets can be defined:

Z = {z ∈RM+N : z = z(Ω),Ω⊂ D}

P = {z ∈ Z : Øz̃ ∈ Z s.t . z̃(Ω) ≤ z(Ω)}

F = {Ω⊂ D : z(Ω) ∈ P }

(1.19)

where Z is the set of all feasible criterion vectors and is bounded and closed in RM+N . P

is the set of all Pareto-optimal criterion vectors. F is the frontier or the set of all Pareto-

optimal designs.

Figure 1.4: Pareto frontier for a generic bi-objective optimization problem.

Equation 1.17 is most commonly solved by the weighted-sums approach [32]. Let
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the non-negative weighting vectors ofΛ be defined as:

Λ= {λ ∈RM+N :λ≥ 0,
M+N∑

i=1
λi = 1} (1.20)

Considering definition of 1.18 andλ ∈Λ, 1.17 can be rewritten as the following weighted-

sums problem:

mi ni mi ze
Ω⊂D

M∑
m=1

λm fm +
M+N∑

n=M+1
λn gn

subject to

Ku = f

(1.21)

1.1.5 Compliance minimization via Pareto Optimality

Alternatively, to find Pareto-optimal designs the TO problem of Equation 1.7 can be

stated as the following multi-objective problem:

mi ni mi ze
Ω⊂D

(|Ω|, J )

subject to

Ku = f

(1.22)

writing the Lagrangian we have:

L =λV |Ω|+λJ J (1.23)

For the topological sensitivity we have:

TL =λV TV +λJTJ (1.24)

Since TV =−1 everywhere, Equation 1.24 reduces down to:

TL =TJ (1.25)
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In general, SOP of Equation 1.7 is used in traditional density-based approached, while

the Pareto method solves the MOP of Equation 1.22. Figure 1.5 illustrates the difference

between the two approaches. The Pareto-based method uses the topological sensitivity

as a level-set to trace the Pareto curve for decreasing volume fraction. As the topology

evolves, the topological sensitivity is recomputed at each iteration.

Figure 1.5: Difference between density-based (SOP) and Pareto (MOP) for optimizing
L-bracket to 0.5 volume fraction.

Observe that intermediate designs produced in density-based methods are sub-optimal

and might even become disjoint and invalid. Further, the gray regions with low pseudo-

density result in an ill-conditioned stiffness matrix; subsequently, iterative solvers such
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as conjugate gradient require large number of iterations to converge. On the other hand,

intermediate designs generated through Pareto remain valid and (by definition) local

optimal solutions; alleviating convergence issues caused by disjointedness.

1.2 Additive Manufacturing

There is a variety of AM processes which differ in material and the process through

which layers of material are deposited. Generally, they can be classified as:

1. Material Extrusion

2. Powder Bed Fusion

3. Direct Energy Deposition

4. Vat Photo Polymerization

5. Material Jetting

6. Binder Jetting

7. Sheet Lamination

This thesis mainly focuses on material extrusion type technologies with an eye towards

powder bed fusion processes, however more detailed reviews of AM technologies can

be found in [16]. Material extrusion or Fused-Deposition Modeling (FDM) is an AM

process through which molten filaments are extruded from a nozzle and deposited on

a substrate to build the part layer by layer. FDM is fairly robust with respect to build

scale and material [34]. This, along with other advantages such as ease of use, portabil-

ity, affordability, and safety make FDM very promising in producing functional parts in

applications such as:

a. Large-scale printing (cars and houses)[34; 35]

b. Biomedical customized parts [36]
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c. Electronics-embedded designs [1]

d. Printing in hostile places, e.g. space missions [37]

Figure 1.6: FDM printed functional quadcopter. Printed via Voxel8 with embedded elec-
tronics and endures structural loading [1].

Most common materials in FDM are thermoplastics such as ABS or PLA, however other

materials such as concrete or filaments with metal infills are also used. Powder Bed Fu-

sion (PBF) is another class of AM technologies, in which a laser beam selectively scans

regions of the powder bed to build the part through particle fusion. Based on the level

of fusion, there are essentially two types of PBF processing, 1) sintering, where the parti-

cles are partially fused together and 2) melting, where the heat source is strong enough

to melt the powder and create a melt pool as it scans the surface of the bed. For instance,

Direct Metal Laser Sintering (DMLS) is specific to metal alloys, while for polymer-based

materials Selective Laser Sintering (SLS) is used. Additionally, Selective Laser Melting

(SLM or LM) is used to fabricated strong and dense metallic or ceramic parts, however

compared to DMLS there are less metals available for this process. Electron Beam Melt-

ing (EBM) is another PBF process for metals which compared to SLM builds the part

faster while at the price of reducing surface quality.

Directed Energy Deposition (DED) process is an another AM technology that uses metal

powders to fabricate 3D parts. Unlike PBF, in DED the metal powder is melted as it is

being deposited. Laser Engineered Net Shaping machine (LENST M ) is also a closely re-

lated variation of DED.
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Vat photo polymerization or StereoLithogrophy Apparatus(SLA) is the oldest AM process

where a laser beam scans a vat of liquid photopolymer to create the part through layer

by layer polymerization. In Material Jetting (MJ), droplets of wax-like material are se-

lectively deposited. Binder Jetting (BJ) can be used for a wide range of materials, where

liquid adhesive material is selectively deposited to bond powders. Figure 1.7 summa-

rizes AM technologies.

Figure 1.7: Overview of AM technologies [2]

1.3 Contributions

The contributions of this thesis are primarily on integrating TO and AM (mostly

FDM) through 1) consideration of manufacturing constraints imposed by AM processes

and 2) exploiting the capabilities of AM in free-form fabrication to explore more com-

plex designs and improve performance. To this end, a survey study was conducted in

collaboration with UW-Madison’s school of Business to identify which of the five open
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areas of research directly related to topology optimization are most important to engi-

neers in academia and industry. The results of the study are summarized in Figure 1.8.

Figure 1.8: Open areas of research in TO.

According to Figure 1.8, generating a feature-based CAD model of the optimized de-

sign is the most popular choice; however, this is a post-optimization task and is beyond

the scope of this work. Considering material anisotropy and multiple materials during

TO are the most popular open research topics which lie within the scope of this thesis.

The third related issue is considering manufacturing cost, which is a vast topic and heav-

ily depends on the specific process, printer, material, and many other factors. However,

an important consideration in design for FDM and SLM processes is the need for sup-

port structures, which has negative impact on cost by increasing material usage, build

time, and post-fabrication time. Contributions of the present thesis can be summarized

as follows:

1. Introducing topological sensitivity for support structures and an efficient Pareto

tracing algorithm to reduce support structure volume while optimizing perfor-

mance of the design.
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2. Presenting a new sensitivity analysis for anisotropic materials based on Tsai-Wu

criterion. The numerical results are verified through experiments.

3. Developing an efficient method for large-scale multi-material topology optimiza-

tion based on tracing Pareto frontiers.

1.4 Outline

In chapter 2, a TO framework is devised to simultaneously control support structure

volume while monitoring performance of design. First, an unconstrained TO problem is

solved through Pareto tracing. Since the intermediate designs are all valid and local op-

timum, we can track how support structure volume changes throughout optimization.

Thence, we can impose a realistic constraint on support structure. Next, a topological

sensitivity for support structure is introduced and numerical validations are provided.

In chapter 3, anisotropic strength is considered as an objective functional. The strength

criterion is based on the well-known Tsai-Wu criterion. A sensitivity analysis is con-

ducted on p-norm of strength and a Pareto-based algorithm is proposed. For validation,

the anisotropy induced by FDM process is considered and numerical examples are ver-

ified through experiments.

In chapter 4, a Pareto approach to multi-material topology optimization in 3D is pro-

posed, where we are minimizing a cost criterion such as weight or price while maxi-

mizing a performance criterion such as stiffness or strength. Every optimization step is

composed of two successive sub-steps, where the first one reduces cost and the second

increases performance. Numerous numerical examples are provided to demonstrate ef-

fectiveness and efficiency of the proposed algorithm.

Chapter 5 summarizes the contributions of this thesis and discusses possible future re-

search topics.
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CHAPTER II

Support Structure Constraint

2.1 Introduction

Before we discuss how support structure constraints can be imposed, we will briefly

review how support structures are algorithmically generated. This will provide key in-

sights into developing appropriate constraints.

Support structure generation in AM is based on the overhang concept which states that

if the angle between the boundary normal and the build direction exceeds a certain thresh-

old, then support structures are needed at that point [17]. For instance, for the design and

the build-direction illustrated in Figure 2.1a, the subtended angle α is illustrated in Fig-

ure 2.1b. Given a threshold α̂ (typically around 135◦), boundary points with α > α̂ are

considered overhanging, and require support as illustrated in Figure 2.1c; For simplicity,

vertical support structures are assumed in this chapter; support structures may termi-

nate at the platform or at any opposing non-overhanging point. The union of all such

support structures results in a support volume as illustrated in Figure 2.1d. The fill-ratio,

i.e., material density, of support structures is typically less than that of the primary de-

sign.
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Figure 2.1: (a) Build-direction. (b) Subtended angle. (c) Support length. (d) Support
volume.

There are a number of AM processes that may require support structures yet for dif-

ferent reasons. In FDM, support structures as the plastic part is built, each layer must be

properly supported by previous layers due to weight. For overhang surfaces, this sup-

port is not provided by design itself, therefore extra support structures must be printed

so that the molten material would not droop. Figure 2.2 demonstrates Failure of FDM

parts due to lack of support.

Figure 2.2: Failed FDM prints in absence of support structure [3].

Unlike FDM, in Powder Bed Fusion (PBF) processes, the weight of part is sustained

by the bed of powder, however some metal PBF technologies, such as Selective Laser

Melting (SLM), Direct Metal Laser Sintering (DMLS), or Electron Beam Melting (EBM)

may require support structures to diffuse the accumulated heat in overhang surfaces. In

other words, Support structures in metal additive manufacturing work as a heat sinks to

dissipate excessive heat into the surrounding powder. Figure 2.3 shows an optimized GE

engine bracket printed by Arcam (EBAM) metal 3D printer.
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Figure 2.3: Optimized GE engine bracket printed by Arcam (EBAM) metal 3D printer.

If proper support is not provided, the temperature difference can result in dramatic

distortions, warpage, curling, or burning; thus failure of the print job. Figure 2.4 (left)

shows the warpage occurred during EBAM process in the absence of support structures.

Figure 2.4 (right) demonstrates the effectiveness of extraneous support, as the warpage

is clearly mitigated.

Figure 2.4: warpage in EBAM printed part in the absence of support structures (left) and
mitigation of support in presence of support (right) contact[4].

Printing support structures directly adds to the build-time and material cost. Ma-

terial costs can be substantial in AM; for example, the largest percentage cost for metal

AM, besides the machine cost that is amortized, is material cost (18%) [43]. Further,

support structures can be hard to remove (and sometimes even inaccessible), leading
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to the post-fabrication (clean-up) cost. Post-fabrication costs make-up for about 8% of

AM product cost [43]. Thus, reducing the amount of support structure is of particular

interest and can be significantly beneficial. There have been many attempts towards

this addressing this issue, which are reviewed in the next section.

2.2 Related work

Support structure minimization is of significant interest within the AM community,

and several methods have been proposed to reduce its amount. These are classified into

the following categories.

Strategy 1: Finding an optimal build direction

AM build-direction can have a significant impact on support structures. Therefore, a

popular strategy is to find a build-direction that minimizes support structure volume

(and optionally optimizes other AM metrics). For instance, Jibin [38] developed a multi-

objective function to find an optimal build direction to minimize volumetric error, sup-

port structure, and build time. Along similar lines, Pandey et al. [39] proposed a multi-

criteria genetic algorithm to minimize support structure and build time, while improv-

ing surface quality. In both instances, weighted averaging was used to solve multi-

objective problems. Nezhad et al. [40] proposed tracing the Pareto front to find the

optimal part orientation; the Pareto front involved two objective functions, namely sup-

port structure and build time. Paul and Anand [41] used a voxel representation (rather

than the STL representation) to minimize support structure while satisfying constraints

on cylindricity and flatness errors. More recently, Das et al. [42] identified optimal build

orientation with respect to tolerance errors and support structure volume by extracting

product manufacturing information. Alternate approaches for selecting build-direction

include optimizing post-build quality and perception [43], and increased (cross-sectional)

mechanical strength [44].

Strategy 2: Generating efficient support structures
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While the above methods assume vertical support columns, more efficient support struc-

tures have been proposed for a given build-direction. For example, the commercial

software MeshmixerT M generates tree-like support structures. While this potentially

reduces the support volume, manual modifications are required to ensure printability.

Vanek et al. [45] overcame this deficiency by presenting an efficient method for auto-

matically creating tree-like support structures that are printable. Specialized methods

have also been proposed for specific AM processes. For instance, Barnett and Gosselin

[46] developed shell and film techniques to create support structures for processes with

weak support materials, such as three dimensional foam printers. Dumas et al. [47] ex-

ploited scaffolding structures to generate efficient supports for Fused Deposition Mod-

eling (FDM). Considering the stability of the object throughout the build process, the

method first identifies support points and then creates horizontal bars between vertical

pillars to reduce the support volume. A contour-based support generation scheme was

proposed in [48] based on layer-wise analysis. The method first analyzes all of the lay-

ers and then generates support anchors using offset and Boolean operations to ensure

printability of the part.

Strategy 3: Following design rules for AM

A third strategy is to include support volume constraints during the manual design pro-

cess [49; 50; 51; 52; 53]. This is often based on design rules such as [50]: (1) avoid surfaces

with large overhang angle, (2) avoid large-size holes (say, larger than 5 mm) [47] perpen-

dicular to the build-direction, (3) avoid trapped surfaces where support structures are

hard to remove, and (4) use explicit fillets and chamfers to avoid support structures.

Since these rules are feature-based, they are hard to include during TO.

Strategy 4: Optimizing the topology for AM

The final strategy is to include AM constraints within TO. As stated earlier, the advantage

of this strategy lies in the (potential) integration of these two technologies.

Imposing manufacturing constraints in TO has been addressed before; a particularly
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relevant constraint is that of draw-direction constraint for casting [54; 55], where the

TO algorithm was modified so as to avoid inserts. While this is analogous to the sup-

port structure constraint, there are two fundamental differences: (1) support structures

are governed by a threshold angle, while the threshold angle for draw-direction is es-

sentially zero, and (2) the draw-direction constraint is bidirectional, while the build-

direction in AM is unidirectional. Thus, the draw-direction methodology does not apply

to AM; novel methods are needed.

Bracket et. al. [17] made several recommendations on integrating TO and AM,. For ex-

ample, to minimize support structures, they suggested a penalization scheme on over-

hanging surfaces, and an edge analysis was carried out on a benchmark 2D example.

The overhang constraint was suggested but not demonstrated. Wang et. al. [56], pro-

posed a novel strategy to reduce the material cost by first extracting the frame structure

of the design. The frame is in fact the solution of a multi-objective optimization prob-

lem that minimizes the number of struts while considering stability and printability.

Leary [57] introduced the idea of self-supporting designs, where the TO optimized de-

sign was altered to include features similar to support structures. In other words, sup-

port structures were introduced as design features a posteriori. Since this is carried out

after TO, the structural load path is altered, and may violate stress and other perfor-

mance constraints.

Based on the suggestions proposed by Bracket et. al [17], Gaynor and Guest [58], em-

ployed a smooth Heaviside approximation to penalize overhanging surfaces within a

SIMP based TO. They demonstrated that, for 2D compliance minimization, this scheme

changes the topology to be AM friendly. Specifically, they demonstrated that it is pos-

sible to eliminate support structures by suitably changing the TO process. The results

are encouraging, but they noted convergence issues when the overhanging penalization

was imposed. Recently, Hu et. al [59] proposed a shape optimization technique to alter

the model to a more self-supported one. To this end, once a volumetric tetrahedral mesh
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is generated, the overhang tetrahedra are mapped onto the Gauss sphere and minimally

rotated to a self-supported state; the method was also proven to be effective in finding

optimal build direction.

2.3 Limitations of the Overhang Constraint

Further, the definition suggests that if one could eliminate all overhanging surfaces,

then support structures can also be eliminated. But, this may not an effective optimiza-

tion strategy for the following reasons:

1. Eliminating all overhanging surfaces may not be possible. Researchers [58] have demon-

strated that one can eliminate overhang surfaces in certain 2D problems. However

this is unlikely to be successful in general, especially in 3D (as the numerical ex-

amples in Section 4 demonstrate). As was also suggested in [17], "...there will prob-

ably be instances where it is not necessary for all support structure to be eliminated

and so the user should be able to have some control over the strength of the penalty

function.".

2. The overhang constraint does not penalize support volume. Two overhanging sur-

faces with equal subtended angle will be penalized equally, although the support

volume associated with one may be much larger than the other. To avoid such

contradictions, a direct constraint on the support volume is desirable.

3. Penalizing just the overhanging surfaces is insufficient. Support volume may be en-

closed between an overhanging surface and an opposing surface, as illustrated in

Figure 2.5. To reduce support volume, both surfaces must be penalized, for ex-

ample, by moving them closer to each other as illustrated. By penalizing the over-

hanging surface, only half the problem is addressed.
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Figure 2.5: Moving either the overhanging or its opposing surface changes the support
volume.

We propose here a formulation that relies on (1) dynamically estimating the support

volume as the topology evolves, and (2) imposing constraints on the support volume

through topological sensitivity methods. Consider the first step of dynamically estimat-

ing the support volume. In this framework, we assume that support structures are verti-

cal. Therefore, the support volume is simply the integral of the support length over the

boundary, multiplied by a suitable fill-ratio, (see Figure 2.1d), i.e.

S = γ ∫
α≥α̂

lp dΓ (2.1)

where:

S : Support strucuture volume

α : Subtended angle

lp : Lenght of support structure at boundary point p

γ : Fill ratio (relative material density) of support structures)

(2.2)

In Equation 2.1, the exact value of the fill ratio is not critical; it can be assumed to be 0.5,

without a loss in generality.

Further, for short overhangs, it is well known that support structures are not needed. For
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example, for FDM, the allowable overhang [17] can be approximated via:

h(mm) =


5+40(1− α

π
)

3π

4
<α≤π

∞ 0 ≤α≤ 3π

4

(2.3)

Thus, at any point on the boundary, if the subtended angle is α , support structures are

not needed if the overhang distance is less than h given by Equation 2.3. In implemen-

tation, we search for self-supporting boundary within a distance given by Equation 2.3;

see Figure 2.6.

Figure 2.6: Searching for self-supporting boundary.

2.4 Options for imposing support constraint

Consider the three-hole bracket of Figure 2.7 where the two left side holes are fixed

and the right-hand side hole is subject to a downward unit load. The underlying material

is assumed to be isotropic ABS plastic with Young’s modulus of E = 2GPa and Poisson

ratio of ν= 0.39.
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Figure 2.7: Three-hole bracket geometry and boundary condition.

Next, we want to reduce volume of the initial design by 50% while retaining its stiff-

ness by solving the following compliance minimization problems:

mi ni mi ze
Ω⊂D

{|Ω|, J }

subject to

Ku = f

(2.4)

Figure 2.8 illustrates the progression of the optimization process in Pareto up to a vol-

ume fraction of 0.5. Observe that optimization begins with a volume fraction of 1.0, and

generates multiple topologies that lie on the Pareto front. This will play an important

role in the proposed method for constraining the support structure volume. Further, we

do not rely on a velocity field concept to move the boundary; instead, we use fixed-point

iteration, proposed by [60], to converge to Pareto-optimal designs; the implementation

is described in [61; 33; 62].
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Figure 2.8: Pareto curve for three-hole bracket optimization.

Next consider the challenge of imposing support volume constraint. Perhaps the

simplest strategy is to impose an absolute constraint as in:

S ≤ Smax (2.5)

However, this places an unreasonable burden on the designer to arrive at an absolute

value for the upper limit a priori. Instead, we consider relative upper bound constraints.

Specifically, recall that in the Pareto method, one generates multiple topologies for vari-

ous volume fractions, i.e., one can solve the unconstrained problem, and store reference

support volumes ηSunc.(v) at intermediate volume fractions. For example, Figure 2.9

illustrates the support volume ηSunc.(v) for the unconstrained problem. The support

volume curve is, in general, non-smooth, unlike the compliance curve in Figure 2.8.



29

Figure 2.9: Relative support structure volume at different volume fractions for uncon-
strained problem.

Next we impose a relative constraint with respect to ηSunc.(v) , via a user-defined

parameter η(0 < η≥ 1):

S(v) ≤ ηSunc.(v) (2.6)

In other words, Equation 2.6 states that the desired support volume should be less than

the unconstrained support volume by a factor of η, at each volume fraction (through

interpolation, if necessary). Alternately, one can impose a constraint at the final vol-

ume fraction, but imposing a constraint at each volume fraction leads to a smoother

optimization process. Further, in this formulation, we treat Equation 2.6 as a soft con-

straint, i.e., the constraint is used to prioritize the solutions within the feasible space (see

section 2.5.2), rather than limiting this space [63]. In summary, we propose the follow-

ing support-structure constrained TO problem, where the parameter η is used to strike a
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balance between performance and AM costs (see numerical experiments in section 2.8):

mi ni mi ze
Ω⊂D

{|Ω|, J }

S(v) ≤ ηSunc.(v) (so f t )

subject to

Ku = f

(2.7)

In section 2.5, we consider a gradient based TO framework for solving the above prob-

lem. The framework will rely on topological sensitivity for performance [31; 30], and the

proposed topological sensitivity for support structure volume.

2.5 Sensitivity analysis

To compute the sensitivity, we begin with the Lagrangian of Equation 2.8:

L =λV |Ω|+λJ J +λS(S(v)−ηSunc.(v)) (2.8)

Thus for topological derivative we have:

TL =λJTJ +λSTS (2.9)

For example, for an intermediate topology in Figure 2.10a, (1) FEA is carried over the

new topology, (2) the stresses and strains are computed, and (3) the topological sensi-

tivity field is computed through Equation 1.11; the resulting topological sensitivity field

is illustrated in Figure 2.10b and Figure 2.10c.
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Figure 2.10: (a) Instance of topology, (b) compliance topological sensitivity (2D) (c) 3D
view of (b).

2.5.1 Sensitivity of Support Volume based on Surface Angle

Analogous to the topological sensitivity for performance, we propose here topolog-

ical sensitivity of support structure volume, i.e., the rate of change in support structure

volume with respect to volumetric measure of the hole. Towards this end, consider the

two scenarios illustrated in Figures 2.11 and 2.12, where the design is infinitesimally

perturbed either in the interior, or on the boundary.

Interior Hole (Figure 2.11): If a hole of radius ε is inserted in the interior of the domain,

one can compute the topological-shape sensitivity as follows. Employing the shape sen-

sitivity method proposed in [30], the topological derivative is computed via:

TS(p ∈Ω) ≡ lim
ε→0
δ→0

S(Ωε+δ)−S(Ωε)

V (Bε+δ)−V (Bε)
(2.10)

In Equation 2.10, S(Ωε) and V (Bε) are support volume and hole volume, for a hole of

radius ε. Using the above definition, one can show that the support volume sensitivity is

given by (see Figure 2.11a and Appendix B):

TS(p ∈Ω) =
3(π− α̂− sin(α̂)cos(α̂))(sin(α̂)− sin3(α̂)

3
)

π
(2.11)
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Where
π

2
≤ α̂≤π is the threshold angle. For example, if the threshold angle α̂= π

2
, then

TS(p) = 1, i.e., the entire hole will need to be filled with support structures; a typical

value is TS(p ∈Ω) ≈ 0.72 when α̂= 3π

4
.

Figure 2.11: Sensitivity of support volume in the interior.

Boundary Hole (Figure 2.12): Unlike the interior, the support volume on the bound-

ary depends both on the local neighborhood (curvature) and the length and direction of

support. In order to capture both, we define a scalar function F S(xp )at each boundary

point as follows:

F S(xp ) = 1

2
lp (1−cos(αp )) (2.12)

In Equation 2.12, αp is the angle between surface normal and build direction at bound-

ary point p. We compute the sensitivity for the worst-case scenario, where boundary is

perturbed along support at each point Ŝp . One can then show that the sensitivity at the

boundary is given by Equation 2.13:

TS(p ∈ ∂Ω) = 1

2
(1−cos(αp )) (2.13)
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Further, for each overhang point, the same sensitivity value is assigned to its corre-

sponding opposite point (see Figure 2.12).

Figure 2.12: Sensitivity of support volume on boundary.

Given the above definitions, one can compute the support volume sensitivity at all

points; this is illustrated in Figure 2.13a and Figure 2.13b.

Figure 2.13: (a) Sensitivity of support volume (2D). (b) 3D view of (a).

2.5.2 Sensitivity Weighting

Once the performance and support volume sensitivities are computed and normal-

ized, we exploit the well-established augmented Lagrangian method [64] to impose sup-

port structure constraint. Specifically, the support-constrained in Equation 2.7 is first
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expressed in the standard form:

g =


S(v)

ηSunc.(v)
−1 ≤ 0 ηSunc.(v) 6= 0

S(v) = 0 ηSunc.(v) = 0

(2.14)

A popular method for imposing such constraints the augmented Lagrangian method

[64], where the constraint and objective are combined to a single field:

L = J +Lg (2.15)

where:

Lg =


λg + 1

2
γ(g )2 λ+γg > 0

1

2

λ2

γ
λ+γg ≤ 0

(2.16)

Where λ is the Lagrangian multiplier and γ is the penalty parameter (that are updated

during the optimization process [64]). By taking the topological derivative of Equa-

tion 2.15, we arrive at Equation 2.17 for the effective sensitivity [65]:

T =TJ +wSTS (2.17)

where

ws =


µ+γg µ+γg > 0

0 µ+γg ≤ 0

(2.18)

Observe that the weight on the support structure sensitivity is zero if g < −λ
γ

, else it takes

a positive value.
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Figure 2.14: (a) Equally weighted sum of the two sensitivity fields (2D) (b) 3D view of the
sensitivity field.

To illustrate Equation 2.17, suppose the two topological sensitivity fields are nor-

malized to unity, and suppose ws = 1.0, the resulting field is illustrated in Figure 2.14a

and Figure 2.14b. Observe that the resulting field is a combination of the two fields in

Figure 2.10 and Figure 2.13. As the optimization progresses, the weight is determined

dynamically from Equation 2.18, while the parameters µand γ are updated during each

iteration as described in [65].

2.6 Algorithm

Piecing these concepts together, the proposed algorithm proceeds as follows (see

Figure 2.15):

1. It is assumed that the unconstrained optimization problem has been solved, and

Sunc.(v) has been computed.

2. Carry out FEA on Ω; compute the normalized sensitivity fields TJ , TS and the

weighted field T as described above; smoothen the TJ field [33]. Observe that,

every time the topology changes, FEA must be executed and the topological sen-

sitivities recomputed.

3. Treating TJ as a level-set function, extract a new topologyΩ using fixed-point iter-

ation [33], and the iso-surface is extracted [66]. If the topology has not converged,

repeat steps 2 and 3.
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4. Decrement the volume fraction and return to step 2 until the desired volume is

reached.

Figure 2.15: Support Structure constrained Pareto algorithm.

2.7 Limitations

Since the topological sensitivity depends on the rate of change in support struc-

ture volume, to ensure convergence of the optimization process it must necessarily be

smooth and differentiable. However this is not the case in practice and in some cases

a slight change in surface angle might introduce or eliminate a large volume of support
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structure. Topological sensitivity on boundary points proposed in Equation 2.13 is a suf-

ficiently smooth approximation to what is expected in practice. Hence this assumption

on differentiability prevents the current algorithm to make decisions that require abrupt

change in support volume. This becomes highlighted in special cases where it is possi-

ble to remove all support structure through introducing certain shapes such as isosceles.

This will be demonstrated in Numerical experiments.

2.8 Numerical Experiments

In this section, we demonstrate the proposed method through several examples. In

section 2.8.1, we study the impact of the proposed method on the optimized design and

support volume for a simple 2D example. In section 2.8.2, the impact of user controlled

parameter η is examined for the three-hole bracket. In section 2.8.3, a more complex

3D design is optimized and the designs are printed to demonstrate the effectiveness of

the proposed method. In section 2.8.4, the effect of build direction on support volume

and performance are studied on a large-scale optimization problem. In all of the ex-

periments, the material is assumed to be isotropic ABS plastic with Young’s modulus of

E = 2GPa and Poisson ratio of ν = 0.39. The threshold angle α̂ is assumed to be
3π

4
,

unless otherwise noted.

2.8.1 2D MBB

Consider the 2D MBB design (implicit thickness of 1 cm) in Figure 2.16 whose sup-

port structure reduction was studied in [58]. The initial design requires no support and

the objective is to find stiffest design at 0.65 volume fraction.



38

Figure 2.16: 2D MBB example with boundary conditions and build direction.

Recall that we first solve the unconstrained problem, and a series of topologies that

lie on the Pareto curve are generated; see Figure 2.17. Figure 2.18 illustrates the corre-

sponding support volume in cm3.

Figure 2.17: Compliance Pareto curve for the MBB beam.



39

Figure 2.18: Support volume for the unconstrained MBB beam problem.

The unconstrained support volume from Figure 2.18 is then used as a reference to

impose a support structure constraint. In particular, we study the impact of the relative

constraint η (see Equation 2.7) on the final topology at a volume fraction of 0.65. Ta-

ble 2.1 summarizes the results; observe that with increased support structure constraint,

the proposed method reduces the number of internal holes. This is, by no means, the

unique solution to the problem; it happens to be a solution that meets the desired con-

straints. As was discussed in section 2.7, in this particular example changing shape of

the holes to isosceles would be more desirable, but that would require abrupt change in

sensitivity analysis and current framework avoids such designs.
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Table 2.1: 2D MBB. Effect of support constraint on optimized design.

Final Topology

Support Volume

Constraint

Support Volume

Achieved

Relative

Compliance

- - 1.29

80% 62% 1.34

60% 59% 1.42

40% 42% 1.56

0% 0% 1.75

2.8.2 Three-Hole Bracket

In this example, we study the impact of the support structure constraint over the en-

tire Pareto curve. Considering the three-hole bracket illustrated earlier in Figure 2.7 and

recalling the compliance Pareto curve for the unconstrained problem in Figure 2.8, and

the corresponding support structure curve in Figure 2.9; Figure 2.19 illustrates compli-

ance Pareto curves for the unconstrained and the constrained case. As expected, impos-

ing the support constraint increases compliance.
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Figure 2.19: Unconstrained and constrained Pareto curves for three-hole bracket opti-
mization.

Figure 2.20 illustrates the evolution of support structure volume for the two scenar-

ios. Observe that as expected, removing more material can either increase or decrease

the support volume due to its nonlinearity, nonetheless imposing a stringent constraint

on support structure consistently reduces the support volume w.r.t the corresponding

unconstrained design.
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Figure 2.20: Evolution of support volume for three-hole bracket.

The support volume prior to optimization is S0 = 0.79(cm3). The objective is to find

stiffest design at 0.5 volume fraction. Figure 2.21 illustrates the optimized design for (a)

unconstrained, (b) constrained with η= 0.5. Relative compliance values for these cases

are respectively 1.24 and 1.58.

Figure 2.21: Optimized three-hole bracket. (a) Unconstrained (b) Constrained with η=
0.50.
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2.8.3 Mount Bracket

Consider the mount bracket of Figure 2.22 subject to structural constraints and load-

ing as illustrated. The threshold angle α̂ is assumed to be 3π/4. The build direction

illustrated in Figure 2.22 is chosen such that it gives the best surface quality on the

larger cylindrical face; for this design, prior to optimization the support volume is S0 =
1.12(cm3). The objective is to find stiffest design at 0.7 volume fraction.

Figure 2.22: Mount bracket with boundary conditions and build direction.

Figure 2.23 illustrates the optimized designs of (a) unconstrained and (b) constrained

withη= 0.80. The final support structure volume for the unconstrained design is 9.24(cm3)

while for the constrained design it has reduced by about 17% to 7.70(cm3).
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Figure 2.23: Optimized mount bracket at 0.7 volume fraction. (a) Unconstrained (b)
constrained with 0.8 support fraction.

Figure 2.24 illustrates the evolution of support volume throughout the optimization

process. Observe that up to 0.9 volume fraction the unconstrained and constrained re-

sults are very similar. However for lower volume fractions the constrained support vol-

ume is consistently about 20% smaller than that of unconstrained design.

Figure 2.24: Evolution of support volume for the mount bracket.

Figure 2.25 illustrates the evolution of relative compliance values as more material
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is removed from the design. For the unconstrained design the final C /C0 is about 1.05,

while by imposing support constraint this value increases to about 2.52. Figure 2.25

highlights the trade-off between support volume and compliance when the support

constraint is imposed. It is essentially up to the designer to choose the intensity of sup-

port constraint.

Figure 2.25: Evolution of compliance for the mount bracket.
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Figure 2.26: Printed mount bracket and the required support structures at 0.7 volume
fraction.

To verify the validity of these simulated results, each of these topologies were printed

on an XYZ Da Vinci 2.0 fused deposition printer. Note that the support structures were

not generated by our algorithm, they were introduced by the XYZ software, based on de-

fault settings. Figure 2.26 illustrates the actual parts after clean-up. Observe that both of

the optimized designs have the same weight (as prescribed by the optimization), while

the amount of support structure is substantially reduced in the constrained design. This

example illustrates the effectiveness of the proposed algorithm in handling support con-

straints.

2.8.4 Different Build Directions

In this section, we demonstrate the robustness of the proposed method with respect

to the build directions. Consider the problem posed in Figure 2.27 where the geome-

try is described via numerous curved surfaces and two cylindrical holes in two different

directions; this makes picking the optimal build orientation challenging. Further to cap-

ture the complexity of the design, a hexahedral mesh with about 1.7 million degrees of

freedom was used.
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Figure 2.27: Rocker arm of Honda Supra-X 100 cc (grabcad.com): (a) Iso view, (b) Top
view.

A plausible choice for the build direction is -Z, as shown in Figure 2.28. In this di-

rection, the larger cylinder has better surface quality and the initial support is minimal.

First, we optimize the design for minimum compliance at 0.7 volume fraction without

imposing any constraints on support structure(Figure 2.28a).

In this particular orientation, Sunc.(0.7) is smaller than S0, which means that during op-

timization, some of the overhanging surfaces are removed to reduce the overall support

volume. Next, in order to further reduce support structure, we set η = 0.90 and solved

the optimization problem of Equation 2.7 to arrive at the design in Figure 2.28b. Observe

that by imposing the support constraint, no additional overhangs are created, however

since the initial design is dominant, support volume is reduced by only about 3%, while

the compliance has increased by about 15%.

Figure 2.28: Rocker arm. Building in -Z direction a) unconstrained b) constrained.

Next, the build direction was set to +Y since it gives better surface quality for the

smaller cylindrical hole. Solving the same optimization problem as before results in

the unconstrained design in Figure 2.29a and constrained design in Figure 2.29b with

η = 0.90. The support volume was reduced by 20%, while the compliance increased by

32%.
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Figure 2.29: Build direction along +Y direction: (a) unconstrained, and (b) constrained.

Finally, the build direction was set to +X; a justification for this direction can be bet-

ter fusion between layers, since the print area is smaller than previous directions. The

results are summarized in Figure 2.30: the support volume was reduced by 4%, while the

compliance increased by 10%.

Figure 2.30: Rocker arm. Building in +X direction, unconstrained(left) and constrained
(right)

2.8.5 Computational Cost

In this section, we study the convergence and performance of the proposed algo-

rithm. All experiments are conducted on a Windows 7 64 bit machine with an 8-core

Intel Core i7 CPU running at 3.00 GHz, and 16 GB of memory. Table 2.2 summarizes the

CPU times of the unconstrained and constrained examples presented in sections 2.8.1

to 2.8.4. Observe that as the size of the problem and the support volume increases, the

constrained problem requires more computational effort to compute support sensitivity
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field, yet for all of the presented experiments CPU time remains comparable.

Table 2.2: Computational cost, with and without support structure constraints.

Example

Finite element

degrees of freedom

CPU time

Unconstrained

CPU time

Support Constrained

MBB 27,400 5.25 sec. 5.5 sec.

Three-hole bracket 45,000 10 sec.
(η= 0.75)11 sec.

(η= 0.50)13.7 sec.

Rocker Arm (-Z) ≈ 1.7 million 28 min 30 sec. 30 min 59 sec.

Rocker Arm (+Y) ≈ 1.7 million 28 min 30 sec. 32 min 6 sec.

Rocker Arm (+X) ≈ 1.7 million 28 min 30 sec. 30 min 14 sec.
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CHAPTER III

Anisotropic Strength

3.1 Introduction

Material anisotropy and weakness along build direction, especially in FDM, is an

important issue which becomes more critical when the part is functional and must sat-

isfy strength-related constraint. There are mainly two types of anisotropy, namely 1)

intrinsic e.g. composites and 2) process induced. Intrinsic anisotropy is often favor-

able since it can provide more freedom through intentionally creating directional pref-

erence in behavior. On the other hand, process-induced anisotropy is the result of pro-

cess limitations and is often unfavorable. In this chapter, we focus on addressing ma-

terial anisotropy induced throughout FDM process due to lack of interlayer fusion as

illustrated Figure 3.1. Note that anisotropy in FDM could manifest itself in two ways: 1)

anisotropic constitutive properties relating stress and strain, and 2) directional strengths.

However, current experimental results suggest that in some cases (see section 3.6), printed

parts exhibit isotropic constitutive properties [67]. The focus of this chapter is on strength

anisotropy.
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Figure 3.1: Micro fractographs of 3D printed samples using FDM. Different raster orien-
tations plays and important role in mechanical behavior of parts [5].

In section 3.2, we will review literature on stress-constrained TO for both isotropic

(3.2.1) and anisotropic (3.2.2) materials. In section 3.3 we will describe the proposed

method and define the strength-based TO problem, perform sensitivity analysis (3.4)

and present the Pareto algorithm (3.5). Finally, in section 3.6 we demonstrate the effec-

tiveness of the proposed method through numerical and experimental results.

3.2 Strength-Based Optimization

3.2.1 Strength Optimization for Isotropic Materials

There are numerous failure criteria that have been developed for isotropic materials

over the years; the most common ones are based on maximum principal stress by Rank-

ine, maximum principal strain by St. Venant, total strain energy by Beltrami, maximum

shear stress by Tresca, and octahedral shear stress by von Mises. Among these, Rank-

ine is best suited for brittle materials and vonMises agrees best with ductile materials

[68]. Earlier attempts towards producing strength-based optimum structural designs

were mainly focused on shape optimization [69] and topology optimization of trusses

[70]. It was believed by many [71; 72; 73] that the optimal design might be an isolated

or singular point in the design space. For instance for truss optimization, as was shown

by Kirsch [73], a singularity phenomenon occurs as the cross-section of a bar reaches

its lower bound of zero. This, as explained later by Cheng and Jiang [74], was due to
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discontinuity of the stress function and the fact that the constraint function of the op-

timization problem becomes undefined. Cheng and Guo [75] proposed an ε-relaxation

method as a solution to this issue, where the singular optimum design was eliminated

from the design space; consequently, sizing and topology optimization could be unified

in a single framework (also see [76; 77]).

Density based approaches. Since the development of homogenization method by Bend-

søe and Kikuchi [78] and Solid Isotropic Material with Penalization (SIMP) method by

Bendsøe [79], many different strategies have been proposed for stress-based TO. For in-

stance, Xie and Steven [27] proposed an evolutionary method, in which elements with

lower von-Mises stress are gradually rejected. This approach could lead to sub-optimal

designs, due to locality nature of stress [80].

Yang and Chen [81] used a global stress measure such as Kreisselmeier-Steinhauser or

Park-Kikuchi as the objective function. In particular, their objective was a weighted av-

erage of compliance and the p-norm of a stress measure.

It is well-known that as ρ approaches 0, the stress values can become singular, which

results in the same type of singularity phenomenon discussed above. In order to over-

come this problem, Duysinx and Bendsøe [76], proposed an ε-relaxation scheme for

SIMP. Bruggi and Venini [82] and Bruggi [83] proposed an alternative qp-approach to

remedy the singularity problem, which required less computational effort. Le et al. [84]

proposed a formulation based on normalized stress p-norm and a density filter to con-

trol length scale. Paris et al. [85], proposed a TO method considering local and global

stress constraints. They later extended their work in [86] by developing block aggre-

gated approach, where one stress constraint was assigned to a group of elements. As

was shown in [76], TO with a global stress constraint can be too coarse and might yield

results similar to those of stiffness optimization. The clustered approach can avoid stress

concentrations and give better designs while not being too expensive. Along these lines,

in [87], the number of stress constraints are reduced by clustering several stress evalua-
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tion points into groups.

Level set approaches. In [88], Miegroet and Duysinx proposed a LS method to minimize

the stress concentration of 2D fillets. The approach uses X-FEM, which enriches classi-

cal finite element method (FEM) with several discontinuous shape functions. Svanberg

and Werme [89], presented two sequential integer programming methods, where a se-

quence of linear or quadratic sub-problems with decreasing mesh sizes are solved and

on the fine level. A LS method was proposed in [90] to minimize stress of designs in 2D

and 3D, where the Hamilton-Jacobi transport equation governs the evolution of the LS.

Amstutz and Novotny [91] developed the topological derivatives for a stress-based ob-

jective function consisted of compliance, volume, and the p-norm of von Mises stress.

Xia et al. [92] introduced a global measure of stress based on von Mises stress and

Heaviside function. The sensitivity analysis was then carried out by solving an adjoint

problem [93]. Finally, the optimization problem was solved using LS method. Suresh

and Takalloozadeh[32] proposed a LS-based Pareto-front tracing algorithm. The pro-

posed LS method used p-norm of von-Mises stress as the global measure to solve the

optimization problem. Cai et al. [94] integrated LS function and B-spline finite cell

method to improve the accuracy of stress and sensitivity evaluation. A combination

of LS and augmented Lagrangian was introduced in [95], where stress constraints were

assigned to a neighborhood of nodes to capture local effects while remaining continu-

ous. Cai and Zhang [96] recently proposed an LS method for free-form design domains

using Boolean operations. The method also exploits a dynamic aggregation technique

to reduce the number of local stress constraints. Although the topological sensitivity is

a well-established concept, it is mainly used when underlying material properties are

isotropic, i.e. when closed-form gradients can be efficiently evaluated. Although there

have been valuable theoretical contributions towards computing anisotropic topologi-

cal sensitivities, they have not yet been employed in an optimization algorithm success-

fully. Schneider and Andrä [97] proposed a closed-form solution for topological sensitiv-
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ity for materials with anisotropic constitutive properties, which involves considering el-

lipsoidal inclusions and computing Eshelby’s tensor. Delgado and Bonnet [98] also pro-

posed an asymptotic topological sensitivity for anisotropic stress functionals. In both

cases the mathematical derivations are extremely complex and are yet to be exploited in

an efficient optimization framework.

3.2.2 Strength Optimization for Anisotropic Materials

A generalization of von Mises criterion was introduced by Hill [99] for orthotropic

materials. Later, Azzi and Tsai [100] presented another failure criterion, generally known

as Tsai-Hill criterion that simplified Hill’s criterion for unidirectional composites. How-

ever, Hill and Tsai-Hill criteria did not take into consideration the behavioral differences

between tension and compression. This limitation was overcome by Hoffman [101] by

including additional linear terms. Encompassing these ideas, Tsai and Wu [102] pro-

posed a general criterion for anisotropic materials in the following tensor form,

F =
6∑

j=1

6∑
i=1

Ci jσiσ j +
6∑

i=1
Ciσi ≤ 1 (3.1)

where:

σ1 =σ11 σ2 =σ22 σ3 =σ33

σ4 =σ23 σ5 =σ31 σ6 =σ12

(3.2)

Often the coupling between shear terms can be neglected [103]; Equation 3.1 can then

be reduced to that of Equation 3.3,

F =A +B ≤ 1 (3.3)
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where:

A = 2C12σ1σ2 +2C13σ1σ3 +2C23σ2σ3+
C11σ

2
1 +C22σ

2
2 +C33σ

2
3 +C44σ

2
23 +C55σ

2
31 +C66σ

2
12

B =C1σ1 +C2σ2 +C3σ3

(3.4)

The coefficients are given by:

C1 = 1

X t
− 1

Xc
C2 = 1

Yt
− 1

Yc
C3 = 1

Zt
− 1

Zc

C12 = −1

2
p

X t Xc Yt Yc
C13 = −1

2
p

X t Xc Zt Zc
C23 = −1

2
p

Yt Yc Yt Yc

C11 = 1

X t Xc
C22 = 1

Yt Yc
C33 = 1

Zt Zc

C44 = 1

S2
23

C55 = 1

S2
31

C66 = 1

S2
12

(3.5)

where X t ,Yt , Zt are tensile strengths, Xc ,Yc , Zc are compressive strengths, and S23,S31,S12

are shear strengths. Tsai-Wu criterion is widely used due to its 1) invariance with respect

to basis, 2) symmetry, and 3) generality. It has also been used in the context of optimiza-

tion. In order to optimize fiber orientations in composite laminates, Groenwold and

Haftka [104] proposed a sensitivity analysis based on the Tsai-Wu criterion. However,

it was shown in [104] that using a non-homogeneous failure index such as Tsai-Wu as

the objective function would be load-dependent (sensitive to load intensity) and may

result in counter-intuitive designs. To overcome these limitations, they proposed using

the safety factor or strength-ratio discussed in the next section.

3.3 Optimization Problem

Consider the failure index in Equation 3.3:

A +B−1 ≤ 0 (3.6)
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Observe that this applies at each point within the domain, i.e., in practice, at each ele-

ment within the mesh. For reasons, discussed above, it was proposed in [104] that one

should consider the safety factor (also referred to as strength ratio), defined as the posi-

tive solution to the quadratic Equation 3.7,

A s2
e +Bse +1 = 0 (3.7)

i.e.,

se = −B+
p

B2 +4A

2A
(3.8)

The goal therefore will be to maximize the safety factor at each element. Alternately, the

goal is to minimize the failure index at each element, defined as:

γe = 1

se
(3.9)

One can aggregate these failure indices via the p-norm ([32; 92; 105]) into a single global

failure index:

γ= ‖γe‖p =
(∑

e
(γe )p

) 1
p

(3.10)

In this chapter we will devise a TO framework based on the objective in Equation 3.10.

Based on the discussion in the previous section, the TO problem considered in this here

is:

mi ni mi ze
Ω⊂D

{|Ω|,γ}

J ≤ J̄

subject to

Ku = f

(3.11)

where J̄ is the (user defined) allowable compliance at the target volume fraction. Ob-

serve that (1) a compliance constraint is essential to avoid pathological conditions [106],

(2) the failure criteria of Equation 3.3 is not explicitly imposed since it is absorbed into
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the objective; however, this can be easily imposed as an additional check.

3.4 Sensitivity Analysis

To solve the TO problem of Equation 3.11 one must first compute the sensitivity of

the objective and compliance constraint. To this end, let us consider the corresponding

Lagrangian [64]:

L (Ω,u) =λV |Ω|+λγγ+λJ (J − J̄ ) (3.12)

where λV , λγ, and λJ are the Lagrange multiplier associated with the volume, failure

index, and compliance constraint, respectively. For solving the optimization problem,

one must take the derivative of Lagrangian:

TL =λV (−1)+λγTγ+λJTJ (3.13)

which reduces to:

TL =λγTγ+λJTJ (3.14)

While closed-form expressions for the topological sensitivity of the compliance exist

[31], a closed-form expression for the failure index does not exist. We will therefore

consider an alternate discrete element sensitivity. Similar to Equation 3.13, the discrete

sensitivity can be applied to the Lagrangian resulting in:

DL =λγDγ+λJDJ (3.15)

To compute Dγ we use the strategy proposed in [32]. Specifically, using the chain rule

we have:

Dγ =
(∇uγ

)T
D(u) (3.16)
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where D(u) is the change in displacement field due to the deletion of an element. One

can show that this is given by:

D(u) = (
K−1∆Ke

)
u (3.17)

where∆Ke is the corresponding element stiffness matrix (mapped to the global indices).

Substituting Equation 3.17 in Equation 3.16 leads to:

Dγ =
(∇uγ

)T (
K−1∆Ke

)
u (3.18)

Further, define the vector

g ≡∇uγ (3.19)

In the Appendix C, it is shown that a computable expression can be derived for g, i.e., g

can be computed as a post-processing step. Thus, we have:

Dγ = gT K−1 (∆Ke )u (3.20)

Now define and solve the adjoint problem:

Kµµµ= gT (3.21)

Thus:

Dγ =µµµT (∆Ke )u (3.22)

This can be simplified to an element-wise construction,

Dγ =µµµT
e Ke ue (3.23)

Thus, the element-wise discrete sensitivity of the Lagrangian is given by Equation 3.15.
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3.5 Algorithm

Once the discrete sensitivity fields are computed, we can use the algorithm discussed

in this section to solve the TO problem of Equation 3.11. The weights of Equation 3.15

can be dynamically computed through either the augmented Lagrangian method de-

scribed, for example in [64] or equivalent as was proposed in [32] where the weights are

updated as follows:

DL = wDγ+ (1−w)DJ

0 ≤ w ≤ 1
(3.24)

To begin with, the weight w is set to 1, i.e., the topology is entirely driven by the objective

(to minimize anisotropic failure). The resulting sensitivity field is directly interpreted as

a level-set, leading to the Pareto algorithms discussed in [61; 33; 32; 62; 65]. Using fixed-

point iteration, the a small-step (that is dynamically modified) is taken along the Pareto

curve. If the compliance constraint is violated the weight is reduced by a factor η (similar

to the augmented Lagrangian method). The overall algorithm is illustrated in Figure 3.2

and the details are as follows:
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Figure 3.2: The proposed algorithm.

0. Initialization: we start with an initial design space D where current volume frac-

tion v is set to 1.0, and at every TO step v is reduced by ∆v (typically 0.025). The

weighting factor η in Equation 3.24 is initialized to 1.0.

1. Solve the finite element problem on the current topology Ω. Compute discrete

element sensitivity DL via Equations 3.15 and 3.23.

2. Compute level-set cutoff isovalue τ using fixed-point iteration.

3. Update topology.

4. Check if current τ has converged,

5. If not, reduce weight w by a factor 0 ≤ η≤ 1 (typically η= 0.9 ) and go to step 1.

6. Check if desired volume has been reached or any of the constraints are violated.
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7. If not, reduce volume by ∆v and repeat from step 1.

8. If yes, generate isosurface of the final design.

3.6 Experiments and Validations

In this section, we demonstrate the effectiveness of proposed method through nu-

merical and experimental examples. Due to complexity of FDM-induced anisotropy, the

experiments are conducted under the following assumptions.

Constitutive Properties. The (stress-strain) constitutive properties of FDM-printed parts

are affected by numerous parameters. Here, we use the constitutive properties of ABS re-

cently reported by Riddick et al. [67] considering ±45◦ raster orientation. It was reported

in [67] that the primary constitutive properties namely, the Young’s modulus and Pois-

son ratio were the same along both the raster orientation (S1) and build direction (V1),

specifically, E = 2.76GPa and ν= 0.38. Thus, it exhibits isotropic constitutive properties

(but not isotropic strength).

Anisotropic Strengths. For the Tsai-Wu failure criteria, 9 strength components (3 ten-

sile, 3 compressive, and 3 shear) must be evaluated. We will use strength values reported

in relevant literature (see Table 3.1. The three compressive strengths and three shear

strengths are approximated according to the results reported in Ahn et al. [107] and Ahn

et al.[108]. The three tensile strengths are assumed to be consistent with values reported

in [67] considering ±45◦ raster orientation (S1 and V1). Note that these simplifications

are merely a convenience; the topology optimization framework proposed in the chap-

ter can handle alternate models.
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Table 3.1: Material strengths.

Material

Xc

(MPa)

Yc

(MPa)

Zc

(MPa)

Xt

(MPa)

Yt

(MPa)

Zt

(MPa)

Sy z

(MPa)

Szx

(MPa)

Sx y

(MPa)

ABS

(FDM)
38 38 35 29.62 29.62 19.80 10 10 10

Interaction Coefficients. The three in-plane interaction terms C12, C13, and C23 are

expressed in terms of bi-axial strengths and are often not readily available, especially in

3D. The approximate values for these coefficients are consistent with [104] (see Equa-

tion 3.5). More careful examinations on the effects of geometry and print parameters

on these parameters and subsequently Tsai-Wu criterion is required. For computing p-

norm p = 6. All numerical experiments are performed on an off-the-shelf desktop with

an Intel Core i7 @3.00GHz CPU and 16 GB memory.

3.6.1 Stiffness Versus Strength

In this example, we demonstrate why maximizing strength might yield a more suit-

able design than maximizing stiffness. To this end, let us consider the simple tensile

test illustrated in Figure 3.3 where the geometry is a cube with dimensions of 5cm ×
5cm ×5cm. A unit force is applied at the center of top surface while four bottom cor-

ners are fixed. Bottom surface is retained for experimental purposes. The goal is to find

the strongest design while 80% of material is removed. The domain is discretized into

50,000 hexahedral elements.
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Figure 3.3: Tensile stool. Geometry and loading.

In order to compare the optimized design with respect to stiffness and strength, we

first solve Equation 1.22 where the objective functional f is compliance. The optimized

topology at 0.2 weight fraction is shown in Figure 3.4a. Next, we solve the proposed

optimization problem of Equation 3.11, where weakness in tension along build direction

is considered in the formulation. The optimized design is shown in Figure 3.4b.

Figure 3.4: Tensile stool. Optimized design with respect to (a) Stiffness (b) Strength and
weak in Z.
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Figure 3.5: Tensile stool. Optimization process.

Figure 3.5 illustrates the change inγ throughout the optimization process for the sec-

ond experiment. Observe that since the objective function is not self-adjoint, the Pareto

front is also not convex.

Experimental Validation. To validate the numerical results, the designs of Figure 3.4

were printed and tested. An XYZ Da Vinci Duo was used to print four samples for each

example. Samples were printed at 90% infill density (maximum allowable percentage by

the software) with 2 shell layers. It is important to note that the build direction for all

samples is the vertical direction and raster orientation is ±45◦. The same generic brand

of ABS was used to print the specimens. Tests were conducted using an MTS Criterion

Model 43 system with 5 kN load cell. Built-in LVDTs measured the displacement be-

tween the grips. Displacement control tests were run at 5 mm/min with data collection

rate of 100 Hz. Load and displacement were recorded for further analysis. Figure 3.6

illustrates the tensile test setup on an MTS criterion model 43 tensile actuator.
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Figure 3.6: Tensile stool.tensile test setup for optimized stool designs.

Figure 3.7 illustrates the failed parts, observe that failure plane is perpendicular to

the build direction.

Figure 3.7: Tensile stool: tensile test, considering (left) anisotropic strengths and (right)
stiffness.

Figure 3.8 summarizes the tensile test results. Four samples were tested per design.

The design optimized for stiffness on average endured force of about 491 N, while this
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was improved to 801 N for the optimized design considering strength and anisotropic

behavior along build direction.

Figure 3.8: Tensile stool. Tensile test results.

Figure 3.9 illustrates the force-displacement graph of both tensile tests. Observe that

the design optimized for strength has higher load capacity. Further, it is worth noting

that both tests indicate brittle fracture, which in future needs to be incorporated opti-

mization process.

Figure 3.9: Tensile stool. Typical force-displacement graph.
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3.6.2 Tension Versus Compression

In this experiment, we demonstrate that the proposed method captures the differ-

ence between tension and compression loading. Consider the C-bracket of Figure 3.10,

where the bottom left surface is fixed. The domain is discretized into 20,000 hexahe-

dral elements. In examples of Figure 3.10a and Figure 3.10b a downward and an upward

force is acting at the right tip, causing the fillet to be under compression and tension,

respectively. The objective is to find the strongest design while removing 50% of the

material.

Figure 3.10: C-Bracket. Geometry and loading for (a) Compression at fillet and (b) Ten-
sion at fillet.

To compare the results, we first find the strongest design based on vonMises crite-

rion [32], for which the result is shown in Figure 3.11a. Note that since vonMises does

not capture directional preference, for both load cases the optimized design is the same.

Observe that in the case of downward load, vonMises criterion fails to identify the actual

failure region verified through experiment.

Next, the Tsai-Wu criterion was used to find the optimal topologies. Figure 3.11b illus-

trates the optimized design when the fillet is under compression. The optimized design

is similar to that of Figure 3.11a with isotropic strengths. However, Tsai-Wu criterion

successfully identifies the actual region of failure.

Figure 3.11c illustrates the optimized design when the fillet is under tension. Observe

that in order to reduce stress concentration, the proposed optimizer increases the fillet

radius. Moreover, Tsai-Wu criterion successfully identifies the actual failure point.
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Figure 3.11: C-Bracket. Optimized designs with underlying stress field. a) Isotropic
strength with vonMises field b) Weak Z compression at fillet with Tsai-Wu field and c)
Weak Z tension at fillet with Tsai-Wu field.

Experimental Validation. To compare the performance of optimized designs un-

der loadings of Figure 3.10a and Figure 3.10b, each design was printed using the same

printer with the same printing parameters as mentioned before. The sample size is four

for each design. A custom test fixture was designed to accommodate both tests in ten-

sion and compression. Testing parameters were also kept the same for the C-Bracket in

both set of tests.

Figure 3.12 shows the test setup for exerting downward force and causing compression

at fillet. Figure 3.13 shows the bending test results for C-bracket under compression.

Results show a statistically equal strength for both designs. This conclusion agrees with

von Mises and Tsai-Wu criteria predictions.
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Figure 3.12: C-Bracket Fillet under compression, test setup.

Figure 3.13: C-Bracket: fillet under compression, results.

On the other hand, results for bending test when C-bracket is under tension (Fig-

ure 3.14) favors heavily towards the design from Tsai-Wu criterion with an average max-

imum force of 116.1 N compared with maximum average force of 69.3 N (Figure 3.15).
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Figure 3.14: C-Bracket Fillet under Tension, test setup.

Figure 3.15: C-Bracket Fillet under Tension, results

It is also worth noting that the design of Figure 3.11a, which is optimized via von-

Mises criterion, is about 4.7 times stronger under compressive load than tensile load.

Since the failure plane is perpendicular to build direction, this is in agreement with the

notion that FDM printed designs are much weaker in tension than compression along

build direction.
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3.7 Summary

In this chapter, we have proposed a method to compute strength sensitivity based

on generalized failure criteria such as Tsai-Wu for anisotropic parts. For numerical ex-

periments, we have focused on anisotropic strengths of additively manufactured parts

where tensile strength along build direction is lower than other directions. Table 3.2

summarizes the results for the numerical examples.

Table 3.2: Summary of Experiments (VM: vonMises, TW: Tsai-Wu)

Example #DOF

Time (sec.)

VM/TW

Rel. J

VM/TW

Rel. Objective

VM/TW

Tensile stool 164,600 235/260 2.28/2.57 0.99/1.60

C-bracket

(compression)
68,600 41/42 1.62/1.56 1.17/1.22

C-bracket

(tension)
68,600 41/42 1.76/1.56 1.12/1.22

The proposed framework can be extended to also include constitutive anisotropy,

which requires accurate tensile and shear measurements. Also, the fact that the mate-

rials is brittle must be taken into consideration through a more comprehensive fracture

model and sensitivity analysis. Moreover, the current printing processes introduce un-

certainty in the material behavior, considering robustness can also be beneficial. Fur-

thermore, the sensitivity can be extended to strength-based multi-material topology op-

timization. For multiple materials, since each material has its own strength, vonMises

criterion is inadequate and more generalized failure indices are suitable. However, local

de-bonding effects must also be considered.
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CHAPTER IV

Multiple Materials

4.1 Introduction

As additive manufacturing expands into using multiple materials, there is a demand

for efficient multi-material topology optimization (MMTO), where one must simultane-

ously optimize the topology and the distribution of various materials within the topol-

ogy. While MMTO has been addressed by many researchers, the objective of this chapter

is to pursue a MMTO method that is computationally efficient and can be generalized

to variety of objectives. In section 4.2, recent advances in MMTO are summarized. In

4.3, we formulate the MMTO problem, and carry-out the sensitivity analysis. In 4.4, we

generalize the single-material Pareto-tracing method. In section 4.5, the validity of this

method is confirmed through benchmark case-studies.
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4.2 Related Work

For multi-material topology optimization (MMTO), the traditional single objective

problem posed in Equation 1.1 is generalized to:

mi ni mi ze
Ωk=1,...,M⊂D

f (Ω,u) = fT u

Ωi ∩Ωi 6= j =; i , j = 1, .., M

gn(Ω,u) ≤ 0 n = 1, ..., N

subject to

Ku = f

(4.1)

Where M is the number of materials andΩk is the topology for k th material to be com-

puted.

Thus, the objective is to find the optimal distribution of M non-overlapping materials,

within a given design space, that minimizes a specific objective and satisfies certain de-

sign constraints. The MMTO problem posed in Equation 4.1 assumes that every point

within the design space has a distinct material associated with it (or is void). This differs

from functionally graded material optimization [33], where a mixture of base materials

is allowed.

Density-based MMTO. For multiple materials, the density approach was first extended

to multiple materials in 1992 [109]. However, the challenges associated with assigning

different interpolations for different materials and material properties were discussed in

[20], where Sigmund proposed a two-material interpolation scheme for designing ther-

mally and electro-thermally driven micro actuators. An alternate material interpolation

strategy was developed in [110] by introducing a peak function and exploiting optimal-

ity criteria method.

A new density method was presented in [111] for optimizing multiple homogeneous

materials, which interpolates the stiffness matrix instead of interpolating the Young’s
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modulus. The validity of this method was demonstrated through 2D examples involv-

ing two materials. In [112], Chavez et al. implemented SIMP to solve a special problem

of minimizing the compliance of concrete slabs reinforced with carbon fibers. Their

approach relies on concrete failure criteria, and the fact that the slabs are simple sym-

metric geometries in 2D. In 2007, De Kruijf et al. employed SIMP to minimize both com-

pliance and resistance to heat dissipation of composites. The method is in 2D and at-

tains only the upper limits of Hashin-Shtrikman [113]. If the materials are composites,

it is well-known that SIMP interpolations can violate Hashin-Shtrikman bounds [114].

Blasques and Stolpe proposed a density-based framework for minimizing compliance

of laminated composite beam cross sections [115]. The method allows multi-material

laminates in 2D, where the formulation is carried out by writing equilibrium between

laminate layers, under the limiting assumptions that the beam is slender and has invari-

ant cross sections.

A new multi-resolution scheme for MMTO was developed in [116] where different lev-

els of discretization were employed for representing displacement, design variables, and

density. The method uses the alternating active phase algorithm, in which the original

problem is decomposed into a number of sub-problems, where only two of the materi-

als are active, and the problem is solved using the density approach.

Level-Set MMTO. In 2003, Wang and Wang introduced a novel level-set approach for

MMTO [117]. The method requires M level-sets to represent 2M distinct materials, and

it was used to solve benchmark problems in 2D, where different colored level-sets repre-

sented distinct materials.

Later, the idea was expanded towards compliant mechanism design [118] and microstruc-

tures [119]. Unfortunately, as demonstrated in [120], these shape derivatives were ap-

proximations under certain assumptions. Allaire et al. developed the correct mathemat-

ical shape derivatives in [120] where the interface zone thickness is also kept constant.

In order to remove discontinuity caused by sharp interfaces, authors of [121] suggested



75

using multiple intermediate interfaces to attain continuity. The most challenging issues

in MMTO via level-set are: (1) field discontinuity, and (2) thickness diffusion. The for-

mer is due to discontinuity in phase properties, which leads to discontinuous normal

strain and tangential stress. The latter is caused by numerical diffusion in level-set pro-

cess [120].

More recently, as an improvement over the idea proposed in [117], a new multi-material

level-set method was proposed in [122] for both shape and topology optimization. While

exact sensitivity expression were provided, the implementation was restricted to 2D.

Evolutionary methods for MMTO. Yet another family of topology optimization methods

are the evolutionary-based methods. Xie and Steven [27], first developed evolutionary

structural optimization (ESO) in 1992, to solve optimization problems by gradually re-

moving elements with lowest value of von-Mises stress until the desired volume fraction

is reached. In 1996, stiffness-constrained optimization problems were solved using ESO,

where the sensitivity number of each element was calculated using strain energy[28].

Querin et al. expanded the hard-killing ESO to BESO, which allowed the discarded ele-

ments to be re-added under certain circumstances [24]. An AESO approach was intro-

duced in [29], which instead of discarding elements from a larger-than-optimum design,

added elements to a minimum base design. In AESO, unlike ESO one could use maxi-

mum criterion directly in evolution process. Liu et al. developed a GESO algorithm,

wherein a chromosome array was assigned to each element, and an element was re-

moved only if all values of genes were zero [25]. The salient features of the ESO family

are that they do not introduce intermediate elements and do not compute gradients.

Thus, most of these methods fall into the category of non-gradient topology optimiza-

tion (NGTO) methods, whose deficiencies are discussed in [123].

Element Sensitivity methods for MMTO. In 2010, Ramani developed an algorithm for

compliance minimization for multiple materials [124]. The algorithm starts with com-

puting and ranking element sensitivities, where for each element, there are generally
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two values defined as sensitivity to change from current state to an immediate step, both

better and worse performance. Then material distribution undergoes a repeated cycle

between feasible and infeasible solutions until it converges. Ramani extended his work

in 2011 to stress-constrained multi-material topology optimization [125].

The present work once again uses the concept of element sensitivity, as in [124]. Further,

the element sensitivity is generalized to arbitrary quantities of interest.

In [124], the intermediate designs may be structurally disconnected. Therefore, as the

author states, it is critical that void elements be assigned a low value of Young’s modu-

lus. In the present work, by construction, every intermediate design is connected, and

void elements can be suppressed without resulting in singularity. This leads to better

condition number, and faster convergence.

Displacement constraint are handled in [124] by switching between infeasible and fea-

sible designs. In this framework, all intermediate designs satisfy the displacement con-

straint. Thus, the designer has the option of choosing from a multitude of Pareto-optimal

designs, as the numerical experiment later illustrates. The material changes in [124] are

restricted; this may lead to sub-optimal designs; this is illustrated later through numer-

ical experiments.

4.3 Formulation

4.3.1 Volume vs. Mass

In this section, we will compare two common formulations used in MMTO, namely

volume-based and mass-based. The two objective give identical results in SMTO, since

the density is constant over the entire domain. However these objectives are not neces-

sarily equivalent in a non-homogeneous topology optimization, an important fact that

is often neglected.

For simplicity, consider the following volume-constrained formulation to find the stiffest
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design at some volume fraction [119]:

mi ni mi ze
Ωk=1,...,M⊂D

J (Ω,u) = fT u

|Ω| ≤V ∗

|Ωk | ≤V ∗
k

Ωi ∩Ωi 6= j =; i , j = 1, .., M

gn(Ω,u) ≤ 0 n = 1, ..., N

subject to

Ku = f

(4.2)

where J is compliance, |Ω| is the total volume, |Ωk | is volume of k th material. Basically

we are seeking the stiffest design while some volume constraints on each material phase

as well as total volume are satisfied. Also, there are no overlaps between two different

phases. Immediately we can see that in order to start the optimization process with the

above formulation, we must have a very good approximation for the optimum volume of

each material. However, this is clearly not a simple task for complex designs and loading

conditions. Further, as mentioned by Gao and Zhang [6] , imposing these additional

linear constraints will reduce the feasible design space to only a subset of the actual

design space.

Now let us consider the following mass-constrained formulation:

mi ni mi ze
Ωk=1,...,M⊂D

J (Ω,u) = fT u∑
k=1,...,M

ρkVk ≤ M̄

Ωi ∩Ωi 6= j =; i , j = 1, .., M

gn(Ω,u) ≤ 0 n = 1, ..., N

subject to

Ku = f

(4.3)
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In other words, we are looking for the stiffest design while total mass of our design is

less than some upper bound M̄ . Observe that with Equation 4.3, we need not know the

amount of each material prior to optimization. Further, in the absence of additional

linear constraints, we are more likely to converge to the minimum compliance of all

possible combinations of multiple material distributions. This is illustrated in Figure 4.1

borrowed from [6].

Figure 4.1: (a) Design Space and Boundary Condition (b) Comparison between results
under mass and volume constraints with the equal mass [6].

Hence, we will present a formulation based on mass and later consider a more gen-

eral objective function. Next, we will propose a multi-objective form of Equation 4.3 and

discuss its advantages.

4.3.2 Multi-Objective Formulation

Most of the previous work on MMTO consider a single objective such as compliance

and impose a constraint on mass. Alternatively, we can pose the problem in the follow-
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ing multi-objective form:

mi ni mi ze
Ωk=1,...,M⊂D

{J ,M }∑
k=1,...,M

ρkVk =M

Ωi ∩Ωi 6= j =; i , j = 1, .., M

subject to

Ku = f

(4.4)

Now we can solve this modified MMTO problem using the so-called Pareto frontier. This

will be discussed in more details in section 2.3, but first, let us complete this section by

generalizing Equation 4.4.

Generally, we consider any two conflicting quantities, namely cost (C) and performance.

Typical quantities that represent cost include weight and price (in dollars) that must

be minimized, while performance metrics include stiffness, strength, etc. that must be

maximized. However, to be consistent with classic multi-objective optimization, where

all quantities are minimized, we define inefficiency (I ) as the inverse of performance.

Consequently, the multi-material problem will be posed as:

mi ni mi ze
Ωk=1,...,M⊂D

{I ,C }

Ωi ∩Ωi 6= j =; i , j = 1, .., M

subject to

Ku = f

(4.5)

For example, for compliance (J ) as Inefficiency and mass (M ) as Cost, we get the Equa-

tion 4.4.

Assuming that the underlying design has been discretized using finite elements, and

each element can be associated with a material of choice. Suppose we have a finite ele-

ment with material k within the design. We will now consider a hypothetical swapping
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of the underlying material k to material m. Observe that the change in compliance (I

is used here to denote inefficacy) is given by the first-order element sensitivity (see Ap-

pendix A):

∆I k→m
e = uT

e Kk
e ue −uT

e Km
e ue (4.6)

As a special case, if the element is deleted, i.e., replaced with void, we have:

∆I k→;
e = uT

e Kk
e ue (4.7)

Similarly, as a special case of Equation 4.6, if a new element is inserted (in place of a

void):

∆I;→m
e =−uT

e Km
e ue (4.8)

Note that the above equation is consistent with the sensitivity expressions used in SIMP

for compliance [9]. The element sensitivity in Equation 4.6 can obviously be generalized

to other quantities of interest. Specifically, for any quantity of interest Q, the first-order

sensitivity is given by (see Appendix A):

∆I k→m
e =−λλλT

e Kk
e ue +λλλT

e Km
e ue (4.9)

Where λλλ is the adjoint field associated with the quantity of interest. Thus, there is no

fundamental restriction of the proposed method to compliance problems. The specific

expression for the adjoint depends on the quantity of interest; for example, for the p-

norm stress, an expression for the adjoint is derived in [32].

Correspondingly, the change in cost can also be computed; for example, if the cost is the

mass function:

∆C k→m
e = ρmVe −ρkVe (4.10)

where ρ denotes (real) material density and Ve denotes volume of an element.
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4.4 Algorithm

Our objective is to trace the Pareto curve involving these two quantities with cost

(C ) on the x axis and inefficiency (I ) on the y axis. For simplicity, let us for now assume

that the initial optimum design is known; for instance the most expensive material also

performs best and there are no materials with the same cost. We shall discuss finding

the initial Pareto design in case of ambiguities in section 4.4.6. The proposed algorithm

will start with a topology with the highest cost and optimized material distribution and

trace Pareto front through a series of fixed-point iterations.

Figure 4.2: Tracing Pareto curve, and the two sub-steps.

To ensure that each optimization step results in a Pareto-optimal design, each step

consists of two sub-steps, where (1) the cost function will be reduced by a small decre-

ment (sub-algorithm 1), followed by (2) a reduction in inefficiency (sub-algorithm 2);

these two steps are illustrated in Figure 55. By repeating these two steps, we show that

the Pareto curve can be generated, and associated topologies computed, in an efficient

and unambiguous manner.
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4.4.1 Reducing Cost

Now consider the cost-inefficacy plot of Figure 4.3. In this sub-step, our objective

is to reduce cost, i.e., we swap materials only if ∆C k→m
e < 0. The change in inefficacy

can be either positive or negative Therefore, only quadrants 2 and 3 in Figure 4.3 are

acceptable; quadrant 3 is preferable, since both cost and inefficacy are reduced. Thus

the angle θ must be maximized, i.e.,

maxi mi ze
m

θk→m
e ≡ ∆I k→m

e

∆C k→m
e

subject to

∆C k→m
e < 0

(4.11)

or equivalently:

mi ni mi ze
m

−θk→m
e ≡ −∆I k→m

e

∆C k→m
e

subject to

∆C k→m
e < 0

(4.12)

Hence, in the first sub-step, for each element, we find the material m that gives the low-

est value of −θk→m
e .

Figure 4.3: Reducing Cost.



83

4.4.2 Reducing Inefficiency

Now consider the cost-inefficacy plot of Figure 4.4. In this sub-step, our objective

is to reduce cost, i.e., we swap materials only if ∆I k→m
e < 0. The change in cost can be

either positive or negative Therefore, only quadrants 3 and 4 in Figure 4.4 are acceptable;

considering proper normalization, we try to stay as close as possible to θk→m
e = 3π

2
.

mi ni mi ze
m

|θk→m
e − 3π

2
| ≡ si g n(∆C k→m

e )
∆I k→m

e

∆C k→m
e

subject to

∆I k→m
e < 0

(4.13)

Figure 4.4: Reducing Inefficiency.

4.4.3 Main algorithm

The main algorithm is illustrated in Figure 4.5 and each of the steps is described

below.

1. Start with an initial design with Ω = D and maximum cost (example, maximum

weight).
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2. The cost C is reduced by ∆C , either by removing material or replacing the most

costlier material one with the less expensive one (see sub-step 1 for details).

3. Inefficiency I is reduced while maximum of N number of elements can be modi-

fied. The cost can increase or decrease. (see sub-step 2 for details)

4. Check if the converged design is acceptable:

5. If Step-3 fails, reduce ∆C and repeat

6. If the design has converged to the desired cost C , optimization is terminated

7. (Else) ∆C is reinitialized, and algorithm returns to step 1.

Figure 4.5: Main algorithm.
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4.4.4 Sub-step 1: Reduce Cost C

The sub-algorithm 1 is illustrated in Figure 4.6, and each of the steps is described

below.

1. We first perform a finite element analysis and compute the inefficiency for each

element.

2. Next, for each element we find the ranking parameter r (e).

3. In the next step, we sort the array r in an increasing order while keeping track of

corresponding material and element.

4. Initialize counter i and the current reduction in C in this step (δC ) to zero.

5. Replace elements with a new material or void, accordingly.

6. Update values of δC and i .

7. Check if we have reached the allowed ∆C .

8. (Yes) Update C and go to sub-step 2

9. (No) return to 1.5
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Figure 4.6: Sub-algorithm 1, reducing C.

4.4.5 Sub-step 2: Reduce Inefficiency at Constant C

Figure 4.7 shows the sub-algorithm 2, and each of its steps is explained herein.

1. We first perform a finite element analysis and compute the inefficiency for each

element

2. Next, for each element we find the ranking parameter r (e).

3. In the next step, we sort the array r in an increasing order while keeping track of

corresponding material and element.
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4. Initialize counter i and the current reduction in C in this step (δC ) to zero.

5. Replace elements with a new material or bring back void elements, accordingly.

6. Update values of (δC ) and i .

7. Check if we have reached the allowed number of element changes N.

8. (Yes) Update C and go to sub-step 2

9. (No) return to 2.5

Figure 4.7: Sub-algorithm 2, reducing inefficiency.

4.4.6 Initial Material Distribution

In the last section, it was assumed that the initial material distribution is uniquely

known as a priori. However, this may not be the case when materials have the sim-

ilar costs or directional dependence, e.g. composites. Finding initial optimal design is
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addressed in this section, where the material distribution (and possibly geometry) is op-

timized while the cost is remained a constant. The algorithm is essentially a special case

of the main algorithm of Figure 4.5, where we begin with some sub-optimal distribution

of material and successively apply sub-algorithms 1 and 2 with similar∆C , until we find

a local optimum which lies on the Pareto frontier.

Figure 4.8: Optimizing design at the same cost.

4.5 Numerical Validations

In this section, we demonstrate the validity of the proposed method through sev-

eral 3D examples. In Section 4.5.1, the single-material compliance minimization of the

classic L-bracket is compared against a two-material compliance minimization. This

experiment illustrates that, for a given weight fraction, the two-material design is less

compliant (i.e., stiffer) than the single material design. In addition, the condition num-

bers of the underlying stiffness matrices for single and multiple materials are compared.
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In Section 4.5.2, the effectiveness of the filtering method is illustrated through a mesh

independency study on the classic MBB structure. In Section 4.5.3, three materials are

considered for a benchmark problem. As expected, for a given weight-fraction, adding a

material choice improves the performance. In Section 4.5.4, we consider a 3D case study

for mount bracket using 2 available metal-infill filaments. Finally, in Section 4.5.5, the

computational costs (running time and memory required) for all the above experiments

are summarized. In all numerical experiments, the decrement in the cost function for

Pareto tracing is initialized to 0.025. All dimension are in meters, unless otherwise noted.

In all tables, E , ν, and ρ denote Young’s modulus, Poisson ratio, and density, respectively.

For all experiments, we rely on the assembly-free deflated conjugate gradient (CG) dis-

cussed in [126], with a tolerance set to 10−8.

4.5.1 L-Bracket: Single and Two-Material Design

First, we consider the L-bracket illustrated in Figure 4.9a and compare the optimized

results for: (1) a single material A, and (2) two materials A and B, whose properties are

summarized in Table 4.1. The mass serves as the cost function while compliance is the

measure of inefficiency; 20,000 elements are used for both experiments.

Table 4.1: Material Properties of A and B.

Material E(GPa)E(GPa)E(GPa) ννν ρ(K g /m3)ρ(K g /m3)ρ(K g /m3)

A 170 0.3 7100

B 70 0.33 2700
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Figure 4.9: (a)L-bracket geometry and loading condition, (b) design at 30% cost using
only material A and (c) design at 30% cost using materials A and B.

The Pareto curve is generated for up to 70% reduction in mass. As stated earlier in

the algorithm, we start with the heaviest design (all A) and optimize the topology and

material distribution. After the optimization process is complete, we obtain the two

Pareto curves illustrated in Figure 4.10. As expected, for a given weight fraction, the two-

material design is less compliant (stiffer) than the corresponding single material design.
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Figure 4.10: The Pareto curves and topologies for single material (A) and two materials
(A and B).

Figure 4.11: CG iterations for the L-Bracket with (a) single material A, (b) two materials
A and B.

Figure 4.11 illustrates the number of deflated CG iterations for each of the 32 FEAs
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during optimization. Figure 64a corresponds to single-material, while Figure 64b cor-

responds to multi-material. As one can observe, the iterations increase moderately in

both scenarios; this can be attributed to the presence of thin/slender structures in the

topology. Both experiments required 32 finite element operations to complete. Thus, for

this example, the cost of multi-material design is almost exactly the same as the single-

material design.

4.5.2 MBB Structure: Mesh Independency

In this example, we study the impact of mesh size using the classic MBB structure

illustrated in Figure 4.12. The structure is loaded with 30 units at the center, and 15

units on either side of the center; the material properties are given in Table 4.1.

Figure 4.12: MBB structure.

Figure 4.13 illustrates the Pareto curves with 10,000 and 40,000 elements; as one can

observe, the two curves are almost identical, suggesting that the method is insensitive

to mesh discretization.

The final topologies are illustrated in Figure 4.14. Note that as the mesh size increases,

the design details are a bit refined as expected. Yet the distribution of the material within

the two designs are quite similar.
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Figure 4.13: Pareto curves for 10,000 and 40,000 elements.

Figure 4.14: MBB structure with 10,000 and 40,000 elements at weight fraction of 0.2.
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4.5.3 Cantilevered Beam: Three-Material Pareto Curve

In this experiment, we consider three materials. The geometry and boundary condi-

tions are illustrated in Figure 4.15. The design is discretized using 30,000 elements, i.e.

101,400 degrees of freedom.

Figure 4.15: Cantilevered beam.

The material properties are summarized in Table 4.2. We solve the MMTO problem

for 3 different scenarios: (1) pure A (single material), (2) A and B (two materials) and (3)

A, B, and C (three materials).

Table 4.2: Material Properties of A, B and C.

Material E(GPa)E(GPa)E(GPa) ννν ρ(K g /m3)ρ(K g /m3)ρ(K g /m3)

A 380 0.2 19250

B 210 0.3 7800

B 110 0.25 4390

Beginning with all A initial design, the objective is to reduce mass by 70% while keep-

ing the design as stiff as possible. Figure 4.16a shows the optimized design using only

material A , Figure 4.16b is optimized design with materials A and B. Figure 4.16c illus-

trates optimized designs using A and C. Finally, Figure 4.16d illustrates the optimized
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design at 0.3 mass fraction using all three materials.

Figure 4.17 illustrates the 4 Pareto curves, and the topologies for the third scenario. As

one can observe, moving from one material to two-materials results in a significant im-

provement of 27% for both cases of A-B and A-C, and adding the third-material further

improves the design by 29%. It is also interesting that up to 50% mass reduction, A-B

results are identical to those of A-B-C and only in lower mass fractions does the third

material improve the result.

Figure 4.16: Optimized cantilever beam at 0.3 mass fraction, (a) only A ,(b) A and B, (c)
A,C, and (d) A, B, and C.
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Figure 4.17: Effect of number of materials on Pareto Curve.

4.5.4 Mount-Bracket: a case study

This example focuses on demonstrating robustness and efficiency of the proposed

method via a more complex and large scale design. Consider the mount bracket of Fig-

ure 4.18 and its corresponding boundary conditions. The domain is discretized into

40,000 hexahedral elements with 163,929 dof.
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Figure 4.18: Mount bracket, geometry and boundary conditions.

There are many metallic filaments available for FDM. For this example, let us con-

sider Copper-PLA and Aluminum-PLA filaments. Neglecting anisotropic behavior due

to lack of data, the effective isotropic material properties for these materials can be

found via applying the rule of mixture and are according to Table 4.3. Obviously, copper

filament is both stiffer and heavier.

Table 4.3: Material Properties of Copper-PLA and Aluminum-PLA.

Material E(GPa)E(GPa)E(GPa) ννν ρ(K g /m3)ρ(K g /m3)ρ(K g /m3)

Copper-PLA

(40%-60%)
45.2 0.33 4340

Aluminum-PLA

(40%-60%)
28.8 0.33 1836

Given these material choices and beginning with the stiffest and heaviest initial de-

sign, the objective is to reduce mass by 60%. Figure 4.20 illustrates cross-sectional views

of the design of Figure 4.19b. Using both materials reduces compliance of final design

by about 13%.
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Figure 4.19: Mount bracket, optimized design at mass fraction of 0.4 using (a) only A and
(b) A and B.

Figure 4.20: Mount bracket cross-sectional views.

Figure 4.21 illustrates the Pareto fronts for single-material TO with Copper-PLA and

bi-material TO with both materials in Table 4.3.
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Figure 4.21: Mount bracket Pareto frontiers for copper-PLA and Aluminum-PLA fila-
ments.

Further, as stated in section 4.4.6, tracing the Pareto curve need not begin at the

heaviest design. For the two materials of Table 4.3 we can generate a random material

distribution, which results in a sub-optimal design at 0.7 mass fraction. Thus, we first

need to find optimal material distribution at 0.7 mass fraction through algorithm of Fig-

ure 4.8. Once this Pareto-optimal design is found, subsequent optimal designs can be

generated via the algorithm of Figure 4.5. The process is demonstrated and compared

against original Pareto tracing in Figure 4.22.

Observe that for this particular example, optimal design at mass fraction of 0.7 is similar

for both methods. However, it is well-known that for complex geometries and loading

conditions, there exist multiple (locally) optimal solutions with similar performance. It

might be possible to rapidly explore the design space through efficiently combining al-

gorithms of Figure 4.5 and Figure 4.8.
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Figure 4.22: Mount bracket with random initial material distribution.

4.5.5 Run times and Memory Requirements

For all the experiments presented in this section, Table 4.4 summarizes the degrees

of freedom, the target weight (or cost), total run-time, and required memory. All experi-

ments were conducted on an Intel Core i7 CPU running at 3.4 GHz with 8GB of memory.

Observe that all of the optimizations are completed in about a minute, and use the lim-

ited memory (in the order of a tens of Mega-Bytes).

Table 4.4: Summary of computational costs.

Example #DOF Target weight Time Memory (MB)

L-bracket 41,700 30% 2 min. 40

MBB 36,300 20% 2 min 30

Beam 34,000 20% 2 min 30

Mount Bracket 163,929 40% 3 min 60
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CHAPTER V

Summary and Future Work

In this thesis, topology optimization based on Pareto-optimality is extended to con-

sider support structure and material anisotropy in design for additive manufacturing.

Furthermore, to take advantage of capabilities of AM in free-form fabrication, a multi-

material topology optimization methodology is proposed to generate more complex op-

timal designs with improved performance.

In chapter 2, a topology optimization framework is proposed that leads to designs with

reduced support structures. Specifically, we introduced a novel topological sensitivity

approach for constraining support structure volume during design optimization. The

effectiveness of the proposed scheme was illustrated through several numerical exam-

ples, and demonstrated using FDM technology. Support structures were assumed to be

vertical for simplicity, but we believe that the methodology can be extended to handle

non-vertical support structures. Additionally, the weighting proposed in this paper is

simple and effective, but, in the future, we expect to adopt the method of Lagrange Mul-

tipliers. Finally, the proposed method must be coupled with methods for finding the

optimum build direction to further reduce support volume.

In chapter 3, we have proposed a method to compute strength sensitivity based on

generalized failure criteria such as Tsai-Wu for anisotropic parts. For numerical ex-

periments, we have focused on anisotropic strengths of additively manufactured parts
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where tensile strength along build direction is lower than other directions. The proposed

framework can be extended to also include constitutive anisotropy, which requires ac-

curate tensile and shear measurements. Also, the fact that the materials is brittle must

be taken into consideration through a more comprehensive fracture model and sensi-

tivity analysis. Moreover, the current printing processes introduce uncertainty in the

material behavior, considering robustness can also be beneficial. Furthermore, the sen-

sitivity can be extended to strength-based multi-material topology optimization. For

multiple materials, since each material has its own strength, vonMises criterion is in-

adequate and more generalized failure indices are suitable. However, local de-bonding

effects must also be considered. In chapter 4, a multi-material topology optimization

scheme is presented. The method traces Pareto curve involving two conflicting objec-

tives such as stiffness and weight (or stiffness and price). The element sensitivity is used

to drive the optimization process. While the element sensitivity field can be treated as

a multi-colored level set, for computational efficiency, we propose and justify a sim-

ple heuristic for discrete element-swapping. The effectiveness and robustness of this

method is demonstrated via a number of 3D examples.

Future work can focus on other performance metrics, considering multiple load cases

and multiple constraints. Further, before this method can be deployed in AM, poten-

tial de-bonding, stress residuals, feature size, and other AM-related issues must be ac-

counted for.

Finally, the work presented in this thesis have mainly focused on elasticity effects, while

there are many issues due to thermal effects that also need to be considered. Future

research is required to integrate AM and TO through thermo-elastic formulations.
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APPENDIX A

Element Sensitivity

The derivation of Equation 1.15 is included here for completeness. Consider the

problem:

Ku0 = f (A.1)

Suppose an element is deleted from the mesh, this will lead to a change in K, resulting

in:

(K−∆Ke ) (u0 +∆u) = f (A.2)

Formally:

(u0 +∆u) = (K−∆Ke )−1 f (A.3)

As a formal Neumann series:

(u0 +∆u) =
[

u0 +
(
K−1∆Ke

)
u0 +

(
K−1∆Ke

)2
u0 + ...

]
(A.4)

Neglecting higher order terms

∆u = (
K−1∆Ke

)
u0 (A.5)

Now consider a quantity of interest:

Q(u) (A.6)
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The first order change in the quantity of interest is defined via its gradient with respect

to the displacement:

∆Q ≈ (∇uQ)T ∆u (A.7)

Substituting Equation A.5 into above, and taking the transpose:

∆Q ≈ (
K−1∇uQ

)T
(∆Ke )∆u0 (A.8)

Defining the adjoint as:

λλλ0 =−K−1∇uQ (A.9)

We have:

∆Q ≈−λλλT
0 ∆Ke u0 (A.10)

The above equation captures the first order change in any quantity of interest when an

element is deleted. When an element is inserted, the sign changes:

∆Q ≈λλλT
0 ∆Ke u0 (A.11)

As a special case when the quantity of interest is the compliance, we have:

Q(u) = fT u (A.12)

Therefore:

∇uQ = f (A.13)

And the adjoint is given by:

λλλ0 =−K−1f =−u (A.14)

By substituting Equation A.14 in Equation A.10, we obtain Equation 1.15.
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APPENDIX B

Support Structure Sensitivity

In this Appendix, we elaborate on the derivation of Equation 2.11. Consider the hole

inserted in the interior of the design, we need to find support volume A = a (A1 + A2) as

illustrated in Figure B.1.

Figure B.1: Support area in a 2D interior hole.

Since θ = α̂− π
2 we have:

A1 = 1
2 (r cos(θ))(r sin(θ)) = 1

2 r 2 sin(θ)cos(θ) = −1
2 r 2 sin(α̂)cos(α̂) (B.1)
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A2 =
( π

2 −θ
2π

)
πr 2 = (π−α̂)r 2

2
(B.2)

A = 2r 2(π− α̂− sin(α̂cos(α̂) (B.3)

Next to find the support volume in a spherical ball with radius r we extend Equation B.3

as follows:

S =
r cos(θ)∫

−r cos(θ)
2(r 2 −x2)(π− α̂− sin(α̂)cos(α̂))d x

= 4r 3(π− α̂− sin(α̂)cos(α̂)
(
sin(α̂)− sin3(α̂)

3

) (B.4)

Finally based on Equation 2.10 the topological sensitivity is computed via Equation B.5:

TS(p ∈Ω) = lim
ε→0
δ→0

4r 3(π− α̂− sin(α̂)cos(α̂))(sin(α̂)− sin3(α̂)
3 )

(
(ε+δ)3 −ε3

)
4
3π

(
(ε+δ)3 −ε3

) (B.5)

i.e.

TS(p ∈Ω) = 3(π− α̂− sin(α̂)cos(α̂))(sin(α̂)− sin3(α̂)
3 )

π
(B.6)
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APPENDIX C

Anisotropic Strength Sensitivity

Consider the definition in Equation 3.19. Exploiting the p-norm definition in Equa-

tion 3.10, we have:

g = 1

p

[∑
e
γ

p−1
e

∂γe

∂u

]
(C.1)

must solve the following adjoint problem [31],

Kµµµ= gT (C.2)

where µµµ is the adjoint solution and gT is the adjoint force. We are assuming hexahedral

elements (with 8 nodes). Recalling Equations 3.3 and 3.8, the inverse of the strength ratio

at each element γe depends on individual stress components at that element, which are

evaluated as follows:

{σ}(6,1) = [D](6,6) [B ](6,24) {u}(24,1) (C.3)

Where [D] is material tensor, [B ] is the gradient matrix, and

{σ}(6,1) = {σ11 σ22 σ33 σ23 σ31 σ12}T

{u}(24,1) = {u1 v1 w1 ... u8 v8 w8}T
(C.4)
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Hence, in order to evaluate Equation 3.19 we must evaluate Equation C.5:

∂γe

∂u
=

2
dA

du
−B+

p
B2 +4A

−

2A

−dB

du
+

2B
dB

du
+4

dA

dup
B2 +4A


(−B+

p
B2 +4A )2

(C.5)

where A and B are defined in Equation 3.3 and their derivatives are the generalization

of the equations in [29],

dA

du
= 2


C12

(
F1,:σ22 +F2,:σ11

)+C13
(
F1,:σ33 +F3,:σ11

)+C23
(
F2,:σ33 +F3,:σ22

)+
C11

(
F1,:σ11

)+C22
(
F2,:σ22

)+C33
(
F3,:σ33

)+
C44

(
F4,:σ23

)+C55
(
F5,:σ31

)+C66
(
F6,:σ12

)


(C.6)

dB

du
=C1F1,: +C2F2,: +C3F3,: (C.7)

and

[F ]6,24 = [D](6,6)[B ](6,24) (C.8)

It is worth noting that in Equation C.2, material anisotropy affects both stiffness matrix K

through material tensor D and adjoint force gT (through Tsai-Wu coefficients Ci j i , j =
1, ...,6 ).


