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Abstract

Categorical data analysis is common in such disciplines as landscape ecology and

environmental history. A motivating example is a study conducted to assess the

influence of social, economic, and historical factors on forest covers. In this thesis, I

consider the statistical analysis of this type of problem in a spatial binary setting

and a multinomial regression setting, and develop new methodology and theory for

this purpose.

Autologistic regression models are proposed for relating spatial binary responses

to spatial ownership characteristics. For big ecological data, a penalized estimation

method is developed under pseudolikelihood and an approximation is derived for

assessing the variation of pseudolikelihood estimates. A simulation study is conducted

to evaluate the performance of the proposed method and algorithm, followed by a

data example in a study of land cover in relation to land ownership characteristics.

Under the multinomial regression setting, I propose a group Lasso type of regu-

larization method for multinomial regression models that can shrink some or all of

the regression coefficients to zero simultaneously. Since the existing theorems cannot

be directly applied to group Lasso for multinomial regression models, we establish a



ii

framework for selection consistency under suitable regularity conditions. Further, we

devise an efficient algorithm to compute the group Lasso estimates. A simulation

study shows that our method outperforms the traditional Lasso in terms of sum of

the squared bias, Kullback-Leibler divergence, specificity, and correct model selection

frequency. For illustration, our method is applied to evaluate the influence of past

land ownership characteristics on land cover structure in northern Wisconsin, USA.
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Chapter 1

Introduction

Categorical data analysis is common in such disciplines as landscape ecology and

environmental history. A motivating example is a study conducted to assess the

influence of social, economic, and historical factors on forest covers. Researchers are

particularly interested in quantifying relationships between land cover types and land

ownership characteristics and identifying key factors. However, statistical methods for

analyzing such data are limited. The purpose of this thesis is to fill some of this void

by bringing together several strands of recent research in spatial statistics, developing

new variable selection methods, and making these methodologies applicable for the

analysis of spatial categorical data in practice. Although the specific application

here concerns land cover types in relationship to land ownership characteristics in

an intersecting area of landscape ecology and environmental history, the statistical

methodologies developed can be adapted to analyze categorical data in general.

In Chapter 2, I focus on the spatial binary data on a lattice. Autologistic
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regression models are suitable for relating spatial binary responses in ecology to

covariates such as environmental factors. For big ecological data, pseudolikelihood

estimation is appealing due to its ease of computation, but at least two challenges

remain. Although an important issue, it is unclear how model selection may be carried

out under pseudolikelihood. In addition, for assessing the variation of pseudolikelihood

estimates, parametric bootstrap using Monte Carlo simulation is often used but may

be infeasible for very large data sizes. Here both these issues are addressed by

developing a penalized pseudolikelihood estimation method and an approximation of

the variance of the parameter estimates. Also, I develop a LARS-type algorithm for

fast computation. A simulation study is conducted to evaluate the performance of the

proposed method and algorithm, followed by a data example in a study of land cover

in relation to land ownership characteristics. Extension of these models and methods

to spatial-temporal binary data is further discussed. This chapter is published in

Journal of Agricultural, Biological, and Ecological Statistics, and technical details for

Chapter 2 is given in Appendix A.

In Chapter 3, I consider the problem in a multinomial regression setting and

develop a group Lasso type of regularization method for multinomial regression

models that can shrink some or all of the regression coefficients to zero simultaneously.

Since the existing theorems cannot be directly applied to group Lasso for multinomial

regression models, we establish a framework for selection consistency under suitable

regularity conditions. Further, we devise an efficient algorithm to compute the

group Lasso estimates. A simulation study shows that our method outperforms the

traditional Lasso in terms of sum of the squared bias, Kullback-Leibler divergence,
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specificity, and correct model selection frequency. For illustration, our method is

applied to evaluate the influence of past land ownership characteristics on land cover

structure in northern Wisconsin, USA. In addition, alternative penalization methods

and auto-multinomial Regression models are further discussed. And technical details

and proof of theorem are given in Appendix B.
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Chapter 2

On Estimation and Selection of

Autologistic Regression Models via

Penalized Pseudolikelihood

2.1 Introduction

Autologistic regression is suitable for modeling the relationship between a spatial

binary response and covariates in environmental and ecological studies (see, e.g.,

Gumpertz et al. (1977); Huffer and Wu (1998); He et al. (2003)). For big ecological

data, however, there are several challenging issues in terms of computation and

methodology for statistical inference. This chapter aims to address some of these

issues and in particular, we develop a new, computationally efficient method for

selection of covariates and estimation of model parameters.
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OTH
APB

Figure 2.1: Map of the response variable in a study area of northern Wisconsin: Each
of the 1,429 quarter sections is classified to be aspen-paper birch (APB) or other
(OTH).

We will illustrate the method by a study in the intersection of landscape ecology

and environmental history. An overarching goal of this study is to assess the influence

of social, economic, and historical factors on landscape structure. The researchers

are particularly interested in identifying and quantifying relationships between land

cover types and land ownership characteristics. The study site is located in northern

Wisconsin and is partitioned into 1,429 quarter sections (160 acre (65 ha) cells)

(Figure 2.1). The spatial binary response is whether the dominant land cover type of
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a quarter section is aspen-paper birch or not, and the covariates are various measures

of land ownership. As the study region expands in the future to the state or regional

level, data could be composed of tens of thousands of quarter sections and thus

require analytical tools that are computationally feasible.

Autologistic regression is such a data analytical tool. For an autologistic model

(without regression), maximum pseudolikelihood (MPL) estimation is straightforward

to implement and fast to compute (Besag, 1972, 1974). Maximum likelihood estimation

is more challenging because of a normalizing constant that is analytically intractable

in the likelihood function. The idea of Monte Carlo maximum likelihood (MCML)

can be adopted to deal with the normalizing constant problem (Geyer, 1994). Various

researchers have considered Bayesian estimation using innovations such as auxiliary

variables (Moller et al., 2006), Monte Carlo approximations (Sun and Clayton, 2008),

and other approximation methods (Friel et al., 2009). These methods tend to focus

on autoregression but not as much on regression. For an autologistic model with

regression, the idea of MPL can be applied (Gumpertz et al., 1977) as well as MCML

(Huffer and Wu, 1998). More recently, Caragea and Kaiser (2009) suggested to center

the autocovariates in the model, which allows more meaningful interpretation of the

coefficients in the autologistic model. Here we will consider the centering suggested

by Caragea and Kaiser (2009) and focus on MPL.

Compared with MCML, MPL is much faster to compute, which can be a great

advantage for the analysis of big data (Hughes et al., 2011; Wang and Zheng, 2012; Y.

and J., 2008). There are, however, at least two issues that appear to be unresolved.

First, there appear to be no existing methods for the selection of covariates using
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MPL. For autologistic regression, Zhu et al. (2008) applied MCML for regression and

used an approximate information criterion for model comparison. When the number

of candidate models is large, however, the usefulness of information criteria can be

fairly limited due to a high computational cost. Second, the estimates of the variance

of the MPL estimates are largely based on parametric bootstrap where the resamples

are simulated using Markov chain Monte Carlo (MCMC) algorithms and can be time

consuming as well (Gumpertz et al., 1977; Zhu et al., 2005). There clearly is a need

to improve these aspects of the MPL method to make it more suitable for analyzing

big ecological data.

Different approaches can be taken for variable selection in a standard linear

regression assuming independent response variables. Regularization (or, penalized)

methods for standard linear regression are becoming popular using, for example,

least absolute shrinkage and selection operator (Lasso) (Tibshirani, 1996), adaptive

Lasso (Zou, 2006), and least angle regression (LARS) algorithm (Efron et al., 2004).

Penalized methods have also been developed for spatial data with continuous response

variables (see, e.g., Huang et al. (2010), Zhu and Liu (2009), Zhu et al. (2010)) but

not as much with discrete responses. An exception is Xue et al. (2012) who developed

a penalized method for estimation of the Ising model, although the focus was on the

spatial interactions not regression. In this chapter, we utilize the idea of adaptive

Lasso and develop a penalized pseudolikelihood estimation method for selection of

covariates. In addition, unlike the existing approach to estimate the variance of

the parameter estimates by bootstrapping, we propose an analytical form based on

asymptotic results.
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In the remainder of this chapter, we will present the autologistic regression models

in Section 3.2 and describe our method in Section 2.3. A simulation study is conducted

in Section 3.6 to evaluate the performance of the proposed method, followed by a

data example regarding land cover type in relation to land ownership characteristics

in Section 3.7. Conclusion and discussion are given in Section 3.9.

2.2 Autologistic Regression Models

Autologistic Regression

For i = 1, . . . , n, let Zi denote the response variable at the ith site on a spatial lattice,

such that Zi = 0 or 1. Let Z = (Z1, . . . , Zn)′ denote the binary response variables at

all n sites on this lattice and Z−i = (Z1, . . . , Zi−1, Zi, . . . , Zn)′ denote the vector that

has all the response variables of Z except for Zi. Further, consider a pre-specified

spatial neighborhood structure. For example, the first-order neighborhood consists of

up to four nearest neighbors on a regular square grid. Let Ni denote the set of indices

of the neighbors of site i, and let i′ ∈ Ni denote that site i′ is a neighbor of site i.

To model the response variables Z, we assume that the probability of the ith

response, Zi, conditional on Z−i depends on only the responses in the neighborhood,

Zi′ , where i′ ∈ Ni (Gaetan and Guyon, 2010); that is,

p(Zi|Z−i) = p(Zi|Zi′ : i′ ∈ Ni). (2.1)

Further, we assume that the conditional distribution p(Zi|Zi′ : i′ ∈ Ni) is Bernoulli
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with success probability πi such that

πi = p(Zi = 1|Zi′ : i′ ∈ Ni) (2.2)

where πi depends on Zi′ for i′ ∈ Ni via a logit link function

logit(πi) = log
πi

1− πi
= x′iβ +

∑
i′∈Ni

ηii′Zi′ . (2.3)

In (2.3), xi denotes a (p+ 1)-dimensional vector of intercept 1 and p covariates at site

i, and β denotes the corresponding vector of the regression coefficients. Also, ηii′ for

i′ ∈ Ni denotes the autoregression coefficient between sites i and i′ and the term Zi′

can be thought of as an autocovariate. In the special case that all the autoregression

coefficients are zero (ηii′ = 0), the model (2.1)–(2.3) reduces to a traditional logistic

regression with independent responses.

We will restrict our attention to a constant autoregression coefficient ηii′ = η for

all i′ ∈ Ni and the logit link becomes

logit(πi) = log
πi

1− πi
= x′iβ + η

∑
i′∈Ni

Zi′ . (2.4)

However, this assumption may be relaxed to include different orders of neighborhood.

Centered Model

Caragea and Kaiser (2009) proposed to center the autocovariate around its expected

value to achieve more meaningful interpretations for regression purposes. Here we
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consider this centered autologistic regression model by modifying (2.4) to

logit(πi) = log
πi

1− πi
= x′iβ + η

∑
i′∈Ni

(Zi′ − µi′), (2.5)

where µi′ is the expectation of Zi′ assuming independence (i.e., η = 0) and thus

µi′ =
exp(x′i′β)

1 + exp(x′i′β)
.

The terms {µi}ni=1 may be interpreted as the large-scale structure of the random

field Z and with regression, they relate the response variables to covariates. The

difference Zi − µi represents the small-scale structure after adjusting for the large-

scale structure. The effects of covariates are therefore captured in the regression

coefficients β and the local spatial dependence in the autoregression coefficient η. In

contrast, the uncentered autologistic regression model (2.3) does not permit such a

clear interpretation (Caragea and Kaiser, 2009).

Alternative Coding

Although it is common to use 0 or 1 to code failure or success in the Bernoulli trial, in

the uncentered model, the positive-valued autocovariates would artificially inflate the

chance of success (Hughes et al., 2011). Here we consider an alternative coding is −1

for failure and +1 for success (Gaetan and Guyon, 2010), which can help address this

issue with 0-1 coding. When η > 0, the conditional probability of a “presence” would

increase when there are more +1 neighbors than −1 neighbors and would decrease

when there are more −1 neighbors than +1 neighbors and vice versa for η < 0.
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Here, we let Z̃i = 2Zi − 1 denote the binary response variable at site i under

this alternative coding. Define Z̃ and Z̃−i as the counterparts of Z and Z−i. Let

π̃i = P (Z̃i = +1|Z̃i′ : i′ ∈ Ni) denote the success probability. The logit link function

in the uncentered model is

logit(π̃i) = log
π̃i

1− π̃i
= x′iβ̃ + η̃

∑
i′∈Ni

Z̃i′ , (2.6)

but in the centered model is

logit(π̃i) = log
π̃i

1− π̃i
= x′iβ̃ + η̃

∑
i′∈Ni

(Z̃i′ − µ̃i′), (2.7)

where it can be shown that the expectation of Z̃i assuming independence is

µ̃i′ =
exp(2x′i′β̃)− 1

exp(2x′i′β̃) + 1
.

In fact, there is a one-to-one correspondence between the coefficients under the two

different codings. For uncentered models, we have η̃ = η/4 and x′iβ̃ = x′iβ/2+|Ni|η/4,

where |Ni| denotes the cardinality of Ni (i.e., the number of neighbors of the ith

site). A similar connection can be made for centered models. See Appendix A in the

supplementary materials for more details.
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2.3 Estimation and Selection of Autologistic

Regression Models

Maximum Pseudolikelihood

Let θ = (β′, η)′ denote the vector of all the parameters for either centered or

uncentered models using the 0-1 coding of the response variable. Let θ̃ = (β̃′, η̃)′ be

analogous to θ but for the models using ±1 coding. We use maximum pseudolikelihood

here for estimating the model parameters such that the pseudolikelihood function is

the product of the full conditional probabilities at all sites (Cressie, 1993).

In an uncentered model, the full conditional distribution of Zi is

p(Zi = 1|Z−i;θ) = p(Zi = 1|Zi′ : i′ ∈ Ni;θ) =
exp(x′iβ + η

∑
i′∈Ni

Zi′)

1 + exp(x′iβ + η
∑

i′∈Ni
Zi′)

(2.8)

and p(Zi = 0|Z−i;θ) = 1/{1+exp(x′iβ+η
∑

i′∈Ni
Zi′)}. Thus, the log-pseudolikelihood

function for the uncentered model is

`up(θ|Z) =
n∑
i=1

log
exp{Zi(x′iβ + η

∑
i′∈Ni

Zi′)}
1 + exp(x′iβ + η

∑
i′∈Ni

Zi′)
. (2.9)

Similarly, in a centered model, the full conditional distribution of Zi is

p(Zi = 1|Z−i;θ) =
exp {x′iβ + η

∑
i′∈Ni

(Zi′ − µi′)}
1 + exp{x′iβ + η

∑
i′∈Ni

(Zi′ − µi′)}
(2.10)
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and thus, the log-pseudolikelihood function is

`cp(θ|Z) =
n∑
i=1

log
exp[Zi{x′iβ + η

∑
i′∈Ni

(Zi′ − µi′)}]
1 + exp{x′iβ + η

∑
i′∈Ni

(Zi′ − µi′)}
. (2.11)

Maximizing the log-pseudolikelihood function gives the maximum pseudolikelihood

estimate (MPLE) of θ and we denote them as θ̂p = argmax{`p(θ|Z)} for either

`up(θ|Z) in (2.9) or `cp(θ|Z) in (2.11).

Under the alternative ±1 coding of responses, the full conditional distribution of

Z̃i in an uncentered model is

p(Z̃i = 1|Z̃−i; θ̃) =
exp(x′iβ̃ + η̃

∑
i′∈Ni

Z̃i′)

2 cosh(x′iβ̃ + η̃
∑

i′∈Ni
Z̃i′)

and in a centered model is

p(Z̃i = 1|Z̃−i; θ̃) =
exp{x′iβ̃ + η̃

∑
i′∈Ni

(Z̃i′ − µ̃i′)}
2 cosh{x′iβ̃ + η̃

∑
i′∈Ni

(Z̃i′ − µ̃i′)}
.

The log-pseudolikelihood function for the uncentered model is

`up(θ̃) =
n∑
i=1

log
exp{Z̃i(x′iβ̃ + η̃

∑
i′∈Ni

Z̃i′)}
2 cosh(x′iβ̃ + η̃

∑
i′∈Ni

Z̃i′)
(2.12)

and for the centered model is

`cp(θ̃) =
n∑
i=1

log
exp[Z̃i{x′iβ̃ + η̃

∑
i′∈Ni

(Z̃i′ − µ̃i′)}]
2 cosh{x′iβ̃ + η̃

∑
i′∈Ni

(Z̃i′ − µ̃i′)}
. (2.13)

We denote the MPLE of θ̃ by ̂̃θp = argmax{`p(θ̃|Z̃)} for either `up(θ̃|Z̃) in (2.12) or
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`cp(θ̃|Z̃) in (2.13).

The log-pseudolikelihood functions for the uncentered models `up(θ|Z) in (2.9)

and `up(θ̃) in (2.12) are concave, and thus a global maximum is achievable. Because

of the additional complexity introduced by the centering term, a global maximum is

not guaranteed for the centered models, and thus extra care will be needed in the

optimization. We will discuss this further in the numerical examples in Sections 3.6

and 3.7.

Variable Selection

For an uncentered or centered model using the 0-1 coding of the response, we propose

a penalized log-pseudolikelihood function

`pp(θ) = `p(θ)− n
p∑
j=1

λj|βj| (2.14)

where in the second term of (2.14), the regression coefficients are subject to an L1-

penalty function and λj is a regularization parameter for the jth regression coefficient

βj, where j = 1, . . . , p. That is, no penalty is applied to the intercept β0 nor the

autoregression coefficient η. Maximizing (2.14) would enable variable selection and

parameter estimation simultaneously, because the regression coefficients of the “less

important” covariates will be shrunk to zero under the L1-penalty and nonzero

estimates of the other parameters will be given. Because the regularization parameter

λj varies by j, the penalization is in the spirit of adaptive Lasso (Zou, 2006).

To maximize (2.14), we propose a one-step approximation. We first set the MPLE
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of θ to be the initial value. That is, θ̂(0) = θ̂p ≡ (β̂(0)′ , η̂)′. We approximate the

penalized log-pseudolikelihood function (2.14) up to a constant by

`pp(β) = (β − β̂(0))′
∂`p(θ̂(0))

∂β
− (1/2)(β − β̂(0))′I(β̂(0))(β − β̂(0))

−n
p∑
j=1

λj|βj|

where I(β) = −∂2`p(θ)

∂β∂β′ is the negative of the second-order derivative of `p(θ) with

respect to β. We update β̂(0) to be β̂(1) = arg max
β
{`pp(β)}. It can be shown that

this solution can be attained equivalently by

β̂(1) = arg min
β

{
(1/2)(y∗ −X∗β∗)′(y∗ −X∗β∗) + n

p∑
j=1

|β∗j |

}
(2.15)

where

y∗ = (B−1)′

{
∂`p(θ̂(0))

∂β
+ I(β̂(0))β̂(0)

}
,X∗ = Bdiag{λ−1j }

p
j=1,

β∗ = diag{λj}pj=1β, I(β̂(0)) = B′B.

The minimization in (2.15) can be solved by a LARS algorithm and the computation

is generally fast. We approximate the maximum penalized pseudolikelihood estimate

(MPPLE), or β̂pp, by β̂(1) and let θ̂pp = (β̂′pp, η̂)′. In particular, some of the entries

of β̂pp are zero (or nonzero), indicating that the corresponding covariates are selected

out of (or kept in) the final model.

In addition, for estimating the regularization parameters {λj}pj=1, we let λj =
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λ log(n)/(n|β̂j|) and compute a Bayesian information criterion (BIC) type criterion

for determining λ. In particular, define

BICp(λ) = −2`p(θ̂pp;λ) + e(λ) log(n)

where e(λ) denotes the number of nonzero estimates in β̂pp. We estimate λ by

λ̂ = argminλ{BICp(λ)}. Even though BICp(λ) is not the actual BIC under maximum

likelihood, it is in the same spirit, and our empirical study via simulation will

demonstrate that the method works fairly well as a variable selection technique.

For models using ±1 as the response variables, the MPPLE of θ̃ can be obtained

analogously by considering `p(θ̃) and applying the same penalty as in (2.14). The re-

sulting maximum penalized pseudolikelihood estimates are denoted as ̂̃θpp = (̂̃β′pp, ̂̃η)′.

Variance Estimation

Let J (θ) =
∑n

i=1

∑
i′∈Ni,i′=i

∂`pi(θ)

∂θ
{∂`pi′ (θ)

∂θ
}′, where `pi is the log-pseudolikelihood of

site i. By arguments similar to Comets and Janžura (1998), the following central

limit theorem holds for the MPLE θ̂p:

{J (θ̂p)}−1/2I(θ̂p){θ̂p − θ} →d Np(0, Ip+2).

Therefore, an estimate of the variance of θ̂p is

V̂ ar(θ̂p) ≈ I(θ̂p)−1J (θ̂p)I(θ̂p)−1. (2.16)
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With the alternative ±1 coding, the variance estimation can be obtained in analogy

to the case of 0-1 coding:

V̂ ar(̂̃θp) ≈ I(̂̃θp)−1J (̂̃θp)I(̂̃θp)−1. (2.17)

For the MPPLE, we replace the MPLE θ̂p (or ̂̃θp) in the variance formula (2.16)

(or(2.17)) with the vector of non-zero entries of the MPPLE θ̂pp (or ̂̃θpp). Thus, the

operations involved in the variance estimation are of dimension up to (p+ 2)× (p+ 2)

and generally manageable. More technical details can be found in Appendix B in the

supplementary materials.

2.4 Simulation Study

Simulation Set-up

We conducted a simulation study to examine the finite-sample properties of the

method developed in Sections 3.2–2.3. Consider an m × m square lattice, where

m = 15 or 30, corresponding to sample sizes n = 225 or 900. For spatial dependence,

the neighborhood structure is of the first order, and the autoregression coefficient η

is either 0.3 or 0.7, corresponding to weaker or stronger spatial dependence.

Let uj = (uj1, . . . , ujn)′ denote the jth covariate vector such that {uji : i =

1, . . . , n} is a Gaussian random field with mean 0 and an exponential covariance
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function

Cov(uji, uji′) = σ2 exp(−|i− i′|/τ),

where we let the variance parameter be σ2 = 1 and the range parameter be τ = 0.1.

To obtain cross-covariate correlation, let ui = (u1i, . . . , upi)
′ and xi = Aui for site i,

where AA′ = [ρ|j−j
′|]pj,j′=1 and ρ = 0.4.

Let p = 10 be the number of covariates. The regression coefficients are set to be

β = (1, β1, 1, 1,0
′
7)
′, that is, 3 out of 10 coefficients are non-zero, and the remaining 7

coefficients are zero. For the 0-1 coding, we adopt the notion of an average large-scale

structure as the average of µi over all sites and covariates (Caragea and Kaiser, 2009).

Let

µ̄ =
1

n

n∑
i=1

µi =
1

n

n∑
i=1

exp(x′iβ)

1 + exp(x′iβ)

The large-scale structure is considered to be weak when µ̄ is around 0.5 and strong

otherwise. For the ±1 coding, we define the average large-scale structure analogously

as

¯̃µ =
1

n

n∑
i=1

µ̃i =
1

n

n∑
i=1

exp(2x′iβ̃)− 1

exp(2x′iβ̃) + 1

In this case, the large-scale structure is considered to be weak if ¯̃µ is close to 0 but

strong otherwise. Here, we let β1 = 1 or 5, which corresponds to a stronger or weaker

large-scale structure, respectively.
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For each combination of m,β1, and η, S = 100 samples were generated from the

uncentered and centered model. In particular, the data were simulated by a Gibbs

sampler using the full conditional probabilities in (2.8) and (2.10) (Wasserman, 2003).

Since the initial value for the one-step approximation algorithm may not be in a

strictly concave area of the likelihood function, the matrix I(·) is not always positive

definite. This occurred occasionally to only the centered model, in which case we

modified the I(·) matrix by adding a positive diagonal matrix (Nocedal and Wright,

2000). In addition, for comparison, we consider a nonconvex penalty function, the

smoothly clipped absolute deviation (SCAD), and apply a one-step sparse estimation

method (Zou and Li, 2008).

Simulation Results

Table 2.1: Average number of correctly identified non-zero and zero regression
coefficients by adaptive Lasso (AL) or smoothly clipped absolute deviation (SCAD)
when β1 = 5 (weak large-scale structure) for uncentered and centered model, sample
size n = 225 or 900, and antoregression coefficient η = 0.3 or 0.7.

{βj} Number of non-zero estimates Number of zero estimates

Model n η = 0.3 η = 0.7 η = 0.3 η = 0.7
AL SCAD AL SCAD AL SCAD AL SCAD

Uncentered 225 2.77 2.89 2.69 2.90 6.12 5.98 6.14 5.74
900 3.00 3.00 3.00 3.00 6.81 5.95 6.88 6.19

Centered 225 2.75 2.85 2.67 2.87 6.21 4.87 6.17 4.74
900 3.00 3.00 3.00 3.00 6.87 5.74 6.82 5.59

Tables 2.1–2.2 provide the results of variable selection for sample size n = 225

and 900 in terms of the average numbers of correctly identified zero and non-zero

regression coefficients. The true number of non-zero and zero regression coefficients
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Table 2.2: Average number of correctly identified non-zero and zero regression
coefficients by adaptive Lasso (AL) or smoothly clipped absolute deviation (SCAD)
when β1 = 1 (strong large-scale structure) for uncentered and centered model, sample
size n = 225 or 900, and antoregression coefficient η = 0.3 or 0.7.

{βj} Number of non-zero estimates Number of zero estimates

Model n η = 0.3 η = 0.7 η = 0.3 η = 0.7
AL SCAD AL SCAD AL SCAD AL SCAD

Uncentered 225 2.94 3.00 2.52 2.99 6.09 5.61 6.12 5.55
900 3.00 3.00 3.00 3.00 6.88 5.69 6.95 6.43

Centered 225 2.92 3.00 2.90 2.99 6.31 5.03 6.16 4.95
900 3.00 3.00 3.00 3.00 6.87 5.30 6.92 5.18

are 3 and 7, respectively. When the sample size n is larger, the number of correctly

identified zero (or the non-zero) coefficients is closer to the truth. The number of

correctly identified non-zero coefficients is closer to the truth compared with zero

coefficients. When the sample size is smaller (n = 225), the average number of

correctly identified zero (and non-zero) regression coefficients is largely closer to the

truth when η is smaller corresponding to weaker spatial dependence. For the larger

sample (n = 900), the effect of η is not as obvious. For either sample size, there is no

apparent effect of β1 (i.e., large-scale structure) on the average number of correctly

identified zero or non-zero regression coefficients. Compared to the SCAD penalty, the

adaptive Lasso identified the non-zero regression coefficients somewhat less frequently

and the zero regression coefficients more frequently. Overall, selection by adaptive

Lasso appears to perform somewhat better.

Figures 2.2–2.3 provide the results of parameter estimation for the regression

coefficients and the autoregression coefficient for sample sizes n = 225 and 900.

In general, for both uncentered and centered models, the bias and variance of the
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Figure 2.2: Box plot of the MPPLE β̂0 (row 1), β̂1 (row 2), β̂2 (row 3), and η̂ (row 4)
from the 100 simulations with sample size n = 225. Column (a): uncentered model
with β1 = 5 (weak large-scale structure); (b): uncentered model with β1 = 1 (strong
large-scale structure); (c): centered model with β1 = 5 (weak large-scale structure);
(d): centered model with β1 = 1 (strong large-scale structure). The true values are

β0 = 1, β1 = 1 or 5, β2 = 1, β3 = 1, and η = 0.3 or 0.7. The box plot of β̂3 is similar
to β̂2 and omitted to save space.
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Figure 2.3: Box plot of the MPPLE β̂0 (row 1), β̂1 (row 2), β̂2 (row 3), and η̂ (row 4)
from the 100 simulations with sample size n = 900. Column (a): uncentered model
with β1 = 5 (weak large-scale structure); (b): uncentered model with β1 = 1 (strong
large-scale structure); (c): centered model with β1 = 5 (weak large-scale structure);
(d): centered model with β1 = 1 (strong large-scale structure). The true values are

β0 = 1, β1 = 1 or 5, β2 = 1, β3 = 1, and η = 0.3 or 0.7. The box plot of β̂3 is similar
to β̂2 and omitted to save space.
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MPPLE of {βj} and η are smaller as the sample size increases from 225 to 900, but

are larger when the autoregression coefficient η is larger. Also, the bias and variance

are larger when the large-scale structure is weaker. This is plausible, because when

the large-scale structure is weaker, the small-scale structure induced by the spatial

dependence is relatively stronger.

For each simulated data set, we also computed the standard error of the MPPLE

of the nonzero coefficients {βj : j = 0, . . . , 3} by taking the square root of the diagonal

elements of the estimated variance matrix (2.16). Figures 2.4–2.5 give the box plots

of these standard errors in each of the S = 100 simulated datasets, along with the

nominal standard error of the MPPLE from these 100 simulations. The bias and

variance of standard errors of all the MPPLEs are smaller when the sample size is

larger but are larger when η is larger. In particular, the bias and variance of the

standard error of the MPPLE of β1 are larger when β1 is larger corresponding to a

weaker large-scale structure.

The selection and estimation results above are for the 0-1 coding of response

variables, and those for the ±1 coding are similar and thus omitted to save space.

2.5 Data Example

In this section, we illustrate our method by a real data example in landscape ecology

and environmental history. The study is aimed at assessing the influence of past

land ownership characteristics on land cover structure in northern Wisconsin, USA.

Landscape ecologists are interested in land ownership because associated variables can
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Figure 2.4: Box plot of the standard error of β̂0 (row 1), β̂1 (row 2), β̂2 (row 3),
and η̂ (row 4) from the 100 simulations with sample size n = 225. Column (a):
uncentered model with β1 = 5 (weak large-scale structure); (b): uncentered model
with β1 = 1 (strong large-scale structure); (c): centered model with β1 = 5 (weak
large-scale structure); (d): centered model with β1 = 1 (strong large-scale structure).
The nominal standard error of the MPPLE from the 100 simulations are given along
the y-axis on the left. The box plot of the standard error of β̂3 is similar to the
standard error of β̂2 and omitted to save space.
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Figure 2.5: Box plot of the standard error of β̂0 (row 1), β̂1 (row 2), β̂2 (row 3),
and η̂ (row 4) from the 100 simulations with sample size n = 900. Column (a):
uncentered model with β1 = 5 (weak large-scale structure); (b): uncentered model
with β1 = 1 (strong large-scale structure); (c): centered model with β1 = 5 (weak
large-scale structure); (d): centered model with β1 = 1 (strong large-scale structure).
The nominal standard error of the MPPLE from the 100 simulations are given along
the y-axis on the left. The box plot of the standard error of β̂3 is similar to the
standard error of β̂2 and omitted to save space.
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function as a proxy for underlying important, yet spatially imprecise social influences

on landscape structure (Turner et al., 1996).

Data were derived from historical plat maps and the Wisconsin Land Economic

Inventory, a land survey. The spatial unit of analysis is a quarter section (or, 1/36

township, 160 acres ≈ 65 ha) and there are 1429 units in the study area. The original

data have multiple categories of land cover (Steen-Adams et al., 2011; Jin et al., 2013).

Here, for illustration, we focus on a binary response variable indicating whether the

land cover in a quarter section is aspen (Populus spp.)-paper birch (Betula papryfera)

(APB), an early successional forest class, or not (Figure 2.1).

Forest composition can be associated with several land ownership characteristics,

including ownership class, parcel size, and ownership size (Crow et al., 1999; Stanfield

et al., 2002). The specific covariates of interest are reservation, number of parcels,

average size of parcels within a quarter section, proportion of the largest parcel, total

area, and average size of all parcels in (but not necessarily all contained within) a

quarter section. More specifically, reservation (Reserv) indicates whether the quarter

section is on an Indian reservation or not. The number of parcels (PolyNm) in a

given quarter section is a measure of parcel density. Average size (PolyPr) is the

average size of parcel polygons of a quarter section. Proportion of the largest parcel

(MxPolyPr) reports the largest parcel polygon as a proportion of quarter section.

Total area (TotOwn) shows the total property area (measured in acres) in this study

area associated with owner of the largest parcel polygon in a given quarter section.

Because the values of this covariate are right-skewed, we used a log transformation.

Average size of all parcels (AvParcel) is the average size of all parcels that lay in
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whole or in part within a given quarter section (measured in acres). All the covariates

except reservation were standardized to have mean 0 and variance 1 before being

used in the regression procedure. Moreover, all pairwise interactions were included to

investigate the potential for interaction between land ownership characteristics.

We considered the four combinations of uncentered or centered models and the

0-1 or ±1 coding of APB. For autologistic regression, a first-order neighborhood

structure was assumed as in section 4. The MPPLE of the regression coefficients

are given in Table 2.3, as well as the standard errors for those MPPLE that are

non-zero. For the centered models, multiple initial values were tested to facilitate

convergence of the computational algorithm. For the two centered models, the same

sets of covariates were chosen, and for the two uncentered models, nearly the same

sets were chosen. Thus, the coding of the response variable seems to have little effect

on selection. However, the sets of covariates selected were very different depending

on whether the model was centered or not. Reserv was selected in all four cases,

whereas TotOwn and AvParcel were selected only in the uncentered models. For

the uncentered models, several interactions were selected, whereas for the centered

models, only one interaction was selected. Furthermore, the autoregression coefficient

η was consistently estimated to be positive, indicating a positive spatial dependence.

The magnitude of the estimates is about four times as large for the 0-1 coding than

the ±1 coding. This is perhaps expected, as given in Appendix A, the analytical

relation is η̃ = η/4.

We focus our attention on the covariates selected in all four cases. We see

that reservation (Reserv) is positively associated with APB. That is, whether a
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Table 2.3: Maximum penalized pseudolikelihood estimates (MPPLE) of the regression
coefficients and the autoregression coefficient η for uncentered or centered models
and 0-1 or ±1 coding of the response variable. The standard errors of MPPLE of the
regression coefficients and the autoregression coefficient are given in the parentheses.

0-1 coding ±1 coding
Covariates Uncentered Centered Uncentered Centered

Reserv 2.90 (1.528) 1.53 (0.283) 1.67(0.383) 0.78 ( 0.061)
PolyNm – – – –
PolyPr – – – –
MxPolyPr – – – –
log( TotOwn) 0.68 (0.374) – 0.35 (0.065) –
AvParcl −0.44 (0.356) – −0.23 (0.126) –
Reserv×PolyNm −0.38 (0.522) – −0.40 (0.087) –
Reserv×PolyPr −0.67 (0.319) – – –
Reserv×MxPolyPr – – – –
Reserv×log(TotOwn) – – – –
Reserv×AvParcl – – – –
PolyNm×PolyPr 0.04 (0.067) – – –
PolyNm×MxPolyPr – – – –
PolyNm×log(TotOwn) 0.03 (0.220) – – –
PolyNm×AvParcl 0.35 (0.264) – 0.10 (0.057) –
PolyPr×MxPolyPr 0.83 (0.271) 0.51 (0.117) 0.40 (0.086) 0.27 (0.028)
PolyPr×log(TotOwn) −0.65 (0.588) – −0.39 (0.144) –
PolyPr×AvParcl – – – –
MxPolyPr×log(TotOwn) – – – –
MxPolyPr×AvParcl – – −0.10 (0.091) –
log(TotOwn)×AvParcl – – – –
η 1.22 (0.089) 1.39 (0.160) 0.33 (0.001) 0.35 (0.002)

site lies on the Indian reservation or not influences the likelihood that APB is the

dominant land cover. This is plausible because sites on the reservation lay within a

single administrative unit (the Indian Agency, later the Bureau of Indian Affairs),

which historically has had authority over forest management decisions, regardless

of ownership type. Indian Agency authority was especially pervasive in the early

20th century (for historical political reasons), which corresponds with the time period

represented by the land cover data.
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The interaction variable, PolyPr × MxPolyPr, was selected in all four cases,

indicating a positive association with APB. This is again plausible. In this particular

ecoregion, the land cover class of interest, APB, is strongly associated with a specific

forest management practice, i.e., short-rotation, even-aged management. Large

landowners are most likely to implement this practice: forest stands on some parcels

could be harvested, while those on other parcels could be held for harvest. By

distributing harvest rotations across a large land area, forest products could be

continuously harvested. This management logic typically assumes large real estate

holding, and functions less optimally on smaller ownerships.

The sets of covariates selected in the uncentered cases are complex. For example,

the interaction between Reserv and PolyNm or PolyPr indicates that increasing

parcel density lessens the effect of reservation on APB. However, interpretation of

the regression coefficients may not be intuitive, given that the model is not centered.

2.6 Conclusion and Discussion

In this chapter, we have proposed maximum penalized pseudolikelihood estimation

for simultaneous selection of covariates and estimation of parameters. Our simulation

study has shown desirable large-sample properties in the sense that the performance

of variable selection and parameter estimation improves as the sample size increases.

In addition, a variance estimation based on the limiting distribution of the parameter

estimates appears to work reasonably well. We have illustrated our method by a data

example in the intersection of landscape ecology and environmental history.
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Further, we simulated data on larger lattices and with larger numbers of covariates

(p) to assess the feasibility of our method. For example, the computation times for

maximum penalized pseudolikelihood estimation for p = 100 covariates when the

lattice size was 60 × 60 (i.e., n = 3,600) were 22 seconds and 2.3 minutes for the

uncentered and centered models, respectively, using R (Team, 2011) on a 64 bit Linux

operating system with 8 cores and 48-64 GB of RAM. When we increased the lattice

size to 120× 120 (i.e., n = 14,400), the computing times were about 5.7 minutes and

49.7 minutes for the uncentered and centered models, respectively. The most time

consuming part of the computation is the initial step that computes the MPLE and

can be further improved using another programming language like C++.

For future research, it would be interesting to use some of the alternatives for

estimation and computation such as Monte Carlo maximum likelihood. It would

also be of interest to investigate the selection of the autocovariates and establish

asymptotic properties of the model selection such as consistency of our BIC type

criterion. A possible approach is to adopt the generalized information criterion

framework in Zhang et al. (2010).

Other approaches are possible for modeling spatial binary response in relation

to covariates. One possibility is spatial generalized linear mixed models, where the

response variable is binary and linked to a regression on covariates and a spatial

random effect as two additive components in a link function. Bayesian hierarchical

modeling provides a general framework for drawing statistical inference about the

regression coefficients and the spatial random effects, while maximum likelihood

estimation is also possible (Banerjee et al., 2004; Diggle and Ribeiro, 2007; Rue et al.,
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2009). To the best of our knowledge, however, the issue of model selection has not

always been addressed and is worth further investigation.

Spatial confounding occurs when a spatial covariate competes with residual

spatial structure to account for variation in a response variable (Paciorek, 2010).

We conducted a small simulation to investigate the effects of spatial confounding.

The setup was similar to our simulation study in Section 3.6, but we included an

unobserved confounding variable. The confounding variable was allowed to have

spatial dependence ranges that were shorter, the same as, or longer than the observed

covariates, and we considered two cases where the confounding variable was either

more correlated with the covariates with zero coefficients (noise covariates) or more

correlated with the covariates with nonzero coefficients (true covariates).

Some of the findings are summarized as follows. First, when the confounding

variable was more correlated with a noise covariate, our method tended to detect

spurious relationship with that noise covariate more frequently. Second, when the

confounding variable was more correlated with a true covariate, the estimates of the

coefficients of the true covariates tended to be biased, which is typical in regression

studies when covariates related to the response are not included in the fit of a model.

Third, as the dependence range of the confounding variable increased, the standard

deviations of the coefficient estimates tended to increase for both true and noise

covariates. An advantage of our method is that a large number of covariates can be

considered and selected simultaneously, which should help to reduce the chance of

confounding. However, if confounding is still an issue, further research will be needed

to develop ways of alleviating confounding (see, e.g., Paciorek (2010), Hughes and
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Haran (2013)).

Finally, we may consider spatial-temporal autologistic models as an extension of

the spatial-only model above. For site i = 1, . . . , n and time t = 1, . . . , T , let Zi,t = 0

or 1 denote the response variable and define the set of indices of spatial-temporal

neighbors as

Ni,t = {(i′, t′) : i′ ∈ Ni,max{1, t− L} ≤ t′ ≤ min{T, t+ L}}

∪ {(i′, t′) : i′ = i, t′ 6= t,max{1, t− L} ≤ t′ ≤ min{T, t+ L}}

where Ni is a pre-specified spatial neighborhood and L denotes the maximum time lag

in the temporal neighborhood. That is, the spatial-temporal neighborhood contains

the spatial neighbors of site i at time t and up to L time lags in the past and future

and site i itself up to L time lags in the past and future. For a given time point t, let

Zt = (Z1,t, . . . , Zn,t)
′ denote the binary response variables at all n sites.

To model the response variables {Zi,t : i = 1, . . . , n, t = 1, . . . , T}, we assume a

random field such that

p(Zi,t|Zi′,t′ : (i′, t′) 6= (i, t)) = p(Zi,t|Zi′,t′ : (i′, t′) ∈ Ni,t).

The conditional distribution p(Zi,t|Zi′,t′ : (i′, t′) ∈ Ni,t) is Bernoulli with success

probability πi,t = p(Zi,t = 1|Zi′,t′ : (i′, t′) ∈ Ni,t).

The logit function of the success probability can be defined analogously to the
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spatial-only autologistic regression model. For an uncentered model, let

logit(πi,t) = log
πi,t

1− πi,t
= x′i,tβ +

∑
(i′,t′)∈Ni,t

ηi,i′,t,t′Zi′,t′

and for a centered model, let

logit(πi,t) = log
πi,t

1− πi,t
= x′i,tβ +

∑
(i′,t′)∈Ni,t

ηi,i′,t,t′(Zi′,t′ − µi′,t′)

where xi,t denotes the covariate vector at site i and time t and µi,t = exp(x′i,tβ)/{1 +

exp(x′i,tβ)} is the expectation of Zi,t assuming independence.

Let θ = (β′, ηi,i′,t,t′)
′ denote the vector of the regression coefficients β and autore-

gression coefficients {ηi,i′,t,t′}. The log-pseudolikelihood function for the uncentered

model is

`up(st)(θ|Z) =
T∑
t=1

n∑
i=1

log
exp{Zi,t(x′i,tβ +

∑
(i′,t′)∈Ni,t

ηi,i′,t,t′Zi′,t′)}
1 + exp(x′i,tβ +

∑
(i′,t′)∈Ni,t

ηi,i′,t,t′)

and for the centered model is

`cp(st)(θ|Z) =
T∑
t=1

n∑
i=1

log
exp[Zi,t{x′i,tβ +

∑
(i′,t′)∈Ni,t

ηi,i′,t,t′(Zi′,t′ − µi′,t′)}]
1 + exp{x′i,tβ +

∑
(i′,t′)∈Ni,t

ηi,i′,t,t′(Zi′,t′ − µi′,t′)}

For simultaneous variable selection and parameter estimation, a penalized log-

pseudolikelihood function similar to (2.14) can be defined:

`pp(st)(θ) = `p(st)(θ)−N
p∑
j=1

λj|βj| (2.18)
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where N = nT . Maximization of (2.18) can be attained following the computation

algorithm in Section 2.3 and similarly, the variance estimation of the MPPLE can

be derived. In both cases, fast computation is attainable given the computational

efficiency of adaptive Lasso and relatively low dimension of the variance matrix.
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Chapter 3

Regularized Multinomial

Regression with Application to

Historical Ecology

3.1 Introduction

Categorical data analysis is common in such disciplines as landscape ecology and

environmental history. A motivating example is a study conducted to assess the

influence of social, economic, and historical factors on forest covers (Steen-Adams et al.,

2011). Researchers are particularly interested in quantifying relationships between

land cover types and land ownership characteristics and identifying key factors. In

the past, Fu et al. (2013) collapsed the multiple categories in the response variable to

be binary and developed a regularized method for variable selection in autologistic
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regression models, whereas Jin et al. (2013) developed Bayesian hierarchical modeling

for multinomial response variable, but did not consider variable selection. Here, we

consider the identification of key covariates in a multinomial regression setting and

develop new methodology and theory for this purpose.

For linear models and univariate generalized linear models (GLMs), a variety of

methods have been proposed to select covariates and estimate coefficients simultane-

ously under the assumption of sparse models. An earlier, highly prominent method is

least absolute shrinkage and selection operator (Lasso) proposed by Tibshirani (1996).

However, Lasso is not always consistent in terms of variable selection (Zou, 2006).

Zhao and Yu (2004) derived a necessary and sufficient condition for the consistency of

the Lasso. Fan and Li (2001) developed nonconcave penalized likelihood for variable

selection and established its oracle properties. Such properties and selection consis-

tency continue to hold in high dimension settings (Fan and Lv, 2011). Alternative

regularized methods for variable selection include the adaptive Lasso (Zou, 2006),

fused Lasso (Tibshirani et al., 2005), and elastic net (Zou and Hastie, 2005).

For multinomial regression models, the relation between the response and a given

covariate is represented by several coefficients for different response categories, and

thus, variable selection should generally select or remove all the coefficients within

a group. However, the commonly used methods shrink the regression coefficients

with Lasso-type penalties, and ignore the natural grouping of coefficients associated

with individual covariates (Friedman et al., 2010). Thus, the existing approaches for

common univariate GLMs are not directly applicable. In addition, when a covariate

is a categorial variable, the Lasso-type methods are not quite satisfactory, as the



37

selection depends on how the dummy variables are encoded and only individual

dummy variables can be selected instead of the entire categorical covariate.

Here we consider group Lasso, as it overcomes the difficulties of Lasso by using

an extension of the L1 penalty which shrinks the coefficients toward zero with

pre-specified groups (Yuan and Lin, 2006). Although regularized methods with group-

wise penalties have been widely studied (Zou and Yuan, 2008; Zhao et al., 2009),

there remain several challenges with the group Lasso for multinomial regression.

First, the existing theorems for selection consistency cannot be directly applied

to GLMs with multi-category responses (Zhao and Yu, 2004; Fan and Lv, 2011).

Here we study a weak oracle property in multinomial regression models, such that

our method can remove unimportant covariates and consistently estimate the effect

of important covariates with large probability under suitable regularity conditions.

Second, parameter estimation methods for group Lasso are only available for linear

regression and logistic models (Yuan and Lin, 2006; Meier et al., 2008). Here, for

multinomial regression, we develop a new, efficient algorithm to compute group Lasso

estimates.

In the remainder of this chapter, we present the multinomial regression models

in Section 3.2 and develop a group Lasso method in Section 3.3. In Section 3.4, we

develop a computational algorithm for parameter estimation and variable selection.

The weak oracle property is established in Section 3.5. A simulation study is conducted

in Section 3.6 to evaluate the performance of the proposed method, followed by the

land cover data example in Section 3.7. An alternative penalization procedure is

discussed in Section 3.8. A conclusion and further discussion are given in Section 3.9.
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The technical details are given in Appendixes as Web-based Supplementary materials.

3.2 Multinomial Regression Model

For i = 1, . . . , n, let yi denote a nominal categorical response with K (≥ 2) categories

for the ith observation. Consider G (≥ 1) pre-specified groups of covariates, each of

which contains sg covariates, for g = 1, . . . , G. In the data example, each continuous

covariate is a group of its own, but for a categorical covariate with H + 1 levels, cor-

responding H dummy variables are considered as a group. Let xgj = [xgj1, . . . , xgjn]T

denote an n-dimensional vector of the jth covariate in the gth group, for j = 1, . . . , sg

and g = 1, . . . , G. Let βk0 denote the intercept for the kth category of the response

and let βkgj denote the regression coefficient of the jth covariate in the gth group for

the kth category of the response, for k = 1, . . . , K. We model the nominal categorical

response yi by a multinomial distribution

pik = Pr(yi = k) = exp(θik)

{
K∑
l=1

exp(θil)

}−1
, (3.1)

where θik = βk0 +
∑G

g=1

∑sg
j=1 xgjiβkgj, for i = 1, . . . , n and k = 1, . . . , K.

The parametrization in (3.1) is not identifiable, because for any constants {c0, cgj :

j = 1, . . . , sg, g = 1, . . . , G}, {βk0 + c0, βkgj + cgj : k = 1, . . . , K, j = 1, . . . , sg, g =

1, . . . , G} would give identical probabilities in (3.1). To ensure model identifiability, a

commonly used approach is to choose one of the response categories as a baseline

category. Suppose the Kth category is chosen as the reference. Then, βK0 = 0 and
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βKgj = 0, for j = 1, . . . , sg and g = 1, . . . , G. Model (3.1) becomes

pik = exp(θik)

{
1 +

K−1∑
l=1

exp(θil)

}−1
,

where i = 1, . . . , n and k = 1, . . . , K. An alternative approach is a sum-zero constraint

such that,

K∑
k=1

βk0 = 0,
K∑
k=1

βkgj = 0, for j = 1, . . . , sg and g = 1, . . . , G. (3.2)

With the sum-zero constraint, the geometric mean of the logits, (
∏K

l=1 pil)
1/K , can

be viewed as the reference category, since log{pik(
∏K

l=1 pil)
−1/K} = θik. Here, the

sum-zero constraint is preferred for ease of the methodology development in Section

3.3, although analogous results can be derived for the baseline category approach.

Let β = (βk0, βkgj, k = 1, . . . , K, j = 1, . . . , sg, g = 1, . . . , G)T denote all of the

regression coefficients and y = (y1, . . . , yn)T denote the vector of all the observed

responses. The log-likelihood function for β is

`n(β;y) =
K∑
k=1

{
1(y = k1)T

(
βk01 +

G∑
g=1

sg∑
j=1

xgjβkgj

)}

−
n∑
i=1

log

{
K∑
k=1

exp(θik)

}
(3.3)

where 1(·) denotes the indicator function and 1 = (1, . . . , 1)T is an n-dimensional

vector of ones.
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3.3 Group Lasso Method

For variable selection in multinomial regression, the effect of a continuous covariate is

represented by K regression coefficients. To include or exclude any given continuous

covariate, we regularize the K coefficients associated with the K response categories

by a group-wise penalty. However for a categorical covariate with H + 1 levels

represented by H binary (dummy) variables, there are a total of HK coefficients,

which form a group of coefficients and are subject to a group-wise penalty.

Generally, the penalized log-likelihood function for group Lasso with G pre-

specified groups is

Qn(β) = n−1`n(β)− λn
G∑
g=1

(
sg

sg∑
j=1

K∑
k=1

β2
kgj

)1/2

(3.4)

where `n(β) ≡ `n(β;y) is the log-likelihood function given in (3.3), the second term

is a group-wise penalty, and λn is a non-negative regularization parameter. Here,

the intercept βk0 is not penalized and s
1/2
g is used to ensure that the penalty term

is of the order of the number of covariates for each group (Yuan and Lin, 2006).

With a proper choice of the regularization parameter λn, maximizing the penalized

log-likelihood function (3.4) can provide model parameter estimation and variable

selection simultaneously. We denote the penalized maximum likelihood estimate

(PMLE) of β as β̂ = arg max
β
{Qn(β)}. It can be easily shown that β̂ automatically

satisfies the sum-zero constrain (3.2) except the intercept. An outline of the proof

is given in Appendix B. An advantage of using the sum-zero constraint is that the

PMLE β̂ does not require choosing a baseline category. The group-wise penalty
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enables the coefficients from the same group to shrink to zero altogether. In addition,

the selection of the dummy variables that represent a categorical covariate does not

depend on how the dummy variable are encoded, as they are included or excluded as

a group.

3.4 Computational Algorithm

We now develop an iterative algorithm to maximize (3.4), as a special case of the block

coordinate descent algorithm (Nocedal and Wright, 2000). Let β0 = [β10, . . . , βK0]
T

denote the vector of intercepts, let βg = [β1g1, . . . , β1gsg , . . . , βKg1, . . . , βKgsg ]T denote

the vector of coefficients for the gth group, and let β−g denote all of the parameters

except the ones associated with the gth group. Within each iteration, we first fix

{βg, g = 1, . . . , G} and maximize (3.4) with respect to β0. Next, we maximize (3.4)

with respect to each βg for g = 1, . . . , G, while holding the other coefficients β−g

constant.

Define the log-likelihood function of βg evaluated at β̂−g as

`gn(βg | β̂−g) =
K∑
k=1

{
1(y = k1)T (β̂k01 +

sg∑
j=1

xgjβkgj +
∑
h6=g

sh∑
j=1

xhjβ̂khj)

}

−
N∑
i=1

log

{
K∑
k=1

exp(β̂k0 +

sg∑
j=1

xgjiβkgj +
∑
h6=g

sh∑
j=1

xhjiβ̂khj)

}
.

Let ∇f(θ) denote the first-order derivative of a function f with respect to a vector θ

and ‖ · ‖2 denote the Euclidean distance.
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Lemma 3.1. If ‖∇`gn(βg | β̂−g)|βg=0‖2 ≤ nsg
1/2λn, then arg max

βg

{n−1`gn(βg | β̂−g)−

λns
1/2
g ‖βg‖2} = 0.

Since (3.4) is not differentiable at βg = 0, Newton-Raphson type algorithms are

not guaranteed to converge if the maximizer is at βg = 0. However, Lemma 1 provide

us with a condition to check if the maximizer with respect to βg is 0 prior to the

maximization. If the condition in Lemma 1 does not hold, then we can proceed with

a Newton-Raphson type algorithm, since the target function is differentiable around

the maximizer. The proof of Lemma 1 is given in Appendix B, and the algorithm to

maximize (3.4) is summarized as follow:

Algorithm 1:

1. For a given λn, let β̂[0] = (β̂
[0]
k0 , β̂

[0]
kgj, k = 1, . . . , K, j = 1, . . . , sg, g = 1, . . . , G)T

denote the initial values of all of the coefficients.

2. Let β̂[t−1] = (β̂
[t−1]
k0 , β̂

[t−1]
kgj , k = 1, . . . , K, j = 1, . . . , sg, g = 1, . . . , G)T denote

the values at the (t− 1)th iteration, and β̂
[t−1]
−0 denote the parameters of β̂[t−1]

except the intercepts. At the tth iteration, for

`0n(β0 | β̂[t−1]
−0 ) =

K∑
k=1

{
1(y = k1)T (βk01 +

G∑
g=1

sg∑
j=1

xgjβ̂
[t−1]
kgj )

}

−
N∑
i=1

log

{
K∑
k=1

exp(βk0 +
G∑
g=1

sg∑
j=1

xgjiβ̂
[t−1]
kgj )

}
,

estimate β0 by β̂
[t]
0 = arg maxβ0 `

0
n(β0 | β̂[t−1]

−0 ) and then update β̂
[t]
k0 to β̂

[t]
k0 −

K−1
∑K

k=1 β̂
[t]
k0, for k = 1, . . . , K.
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3. At the tth iteration, repeat for g = 1, . . . , G:

If ‖∇`gn(βg | β̂[t]
1 , . . . , β̂

[t]
g−1, β̂

[t−1]
g+1 , . . . , β̂

[t−1]
G )|βg=0‖2 ≤ nsg

1/2λn, then β̂
[t]
g = 0.

Otherwise β̂
[t]
g = arg max

βg

{
n−1`gn(βg | β̂[t]

1 , . . . , β̂
[t]
g−1, β̂

[t−1]
g+1 , . . . , β̂

[t−1]
G )−λns1/2g ‖βg‖2

}
.

4. Repeat steps 2 and 3 until a convergence criterion is met.

To further improve variable selection and parameter estimation, we use a penalized

estimator for selection, followed by a refit of the model with the set of non-zero

coefficients and without penalty (see, e.g., Efron et al. (2004)), and this refitting

step is only applied in the simulation. In addition, for estimating the regularization

parameter λn, we compute a type of Bayesian information criterion (BIC),

BIC(λn) = −2`n(β̂;λn) + e(λn) log(n), (3.5)

where e(λn) =
∑G

g=1{1(β̂Tg β̂g > 0) + (β̂Tg β̂g)(β̃
T
g β̃g)

−1(sgK − 1)} approximates the

degree of freedom and β̃g is the least square estimates of βg for g = 1, . . . , G (Yuan

and Lin, 2006). The first part of BIC(λn) in (3.5) evaluates the goodness of fit of

model using the penalized estimates, and the second part penalizes the estimates

with a large degree of freedom. We estimate λn by λ̂n = arg min
λn

{BIC(λn)}.

3.5 Selection Consistency

In this section, we study the nonasymptotic weak oracle property of the PMLE β̂.

That is, with large probability, β̂ identifies the sparse structure of the true parameter

vector, and the non-zero component of β̂ are consistent at some rate.
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For ease of presentation, we assume β0 = 0 and drop β0 from (3.3)-(3.4). Under

the sum-zero constraint, βKgj = −
∑K−1

k=1 βkgj for j = 1, . . . , sg, g = 1, . . . , G. Drop the

coefficients for the Kth category from β and βg, then β = (βkgj, k = 1, . . . , K−1, j =

1, . . . , sg, g = 1, . . . , G)T , and βg = (βkgj, k = 1, . . . , K − 1, j = 1, . . . , sg)
T for

g = 1, . . . , G. Plug the sum-zero constraint (3.2) into the penalized log-likelihood

function (3.4):

Qn(β) = n−1
K−1∑
k=1

[
{1(y = k1)− 1(y = K1)}T

G∑
g=1

sg∑
j=1

xgjβkgj

]

−n−1
n∑
i=1

log

{
K−1∑
k=1

exp(θik) + exp(−
K−1∑
k=1

θik)

}

−λn
G∑
g=1

sg sg∑
j=1


K−1∑
k=1

β2
kgj +

(
K−1∑
k=1

βkgj

)2

1/2

(3.6)

where θik =
∑G

g=1

∑sg
j=1 xgjiβkgj, i = 1, . . . , n, k = 1, . . . , K − 1.

Define θ = (θik, i = 1, . . . , n, k = 1, . . . , K − 1)T , and for k = 1, . . . , K − 1,

µk(θ) ={exp(θik)− exp(−
K−1∑
k=1

θik)

}{
K−1∑
k=1

exp(θik) + exp(−
K−1∑
k=1

θik)

}−1
, i = 1, . . . , n

T

and ∇`kgjn (β̂) = xTgj{1(y = k1)− 1(y = K1)− µk(θ̂)}, j = 1, . . . , sg, g = 1, . . . , G.

Proposition 3.2. A necessary and sufficient condition for β̂ to be a global maximizer
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of (3.6) is

∇`kgjn (β̂) = nsg
1/2λn

{
β̂kgj +

(
K−1∑
k=1

β̂kgj

)} sg∑
j=1


K−1∑
l=1

β̂2
lgj +

(
K−1∑
k=1

β̂kgj

)2

−1/2

for g such that β̂g 6= 0, j = 1, . . . , sg, k = 1, . . . , K − 1. (3.7)

sg∑
j=1

K−1∑
k=1

{
∇`kgjn (β̂)

}2

+

{
K−1∑
k=1

∇`kgjn (β̂)

}2
 ≤ n2sgλ

2
n,

for g such that β̂g = 0. (3.8)

Proposition 3.2 is an extension of the Proposition 1 in Yuan and Lin (2006), which

provides the Krush-Kuhn-Tucker (KKT) optimality condition for maximizing (3.6),

and we use the sufficiency to prove the Theorem 3.3. The proof of Proposition 3.2 is

given in Appendix B.

Next we consider the nonasymptotic weak oracle property of the PMLE β̂ in

(3.4). Let β∗ = (β∗kgj, k = 1, . . . , K − 1, j = 1, . . . , sg, g = 1, . . . , G)T denote the

true value of coefficients. Without loss of generality, we assume that the first M

groups are non-zero groups (i.e., β∗g 6= 0 for g = 1, . . . ,M) and the remainder

groups have zero coefficients (i.e., β∗g = 0 for g = M + 1, . . . , G). Accordingly, let

XI = [x11, . . . ,x1s1 , . . . ,xM1, . . . ,xMsM ] be the design matrix of the covariates from

the non-zero groups and XII = [x(M+1)1, . . . ,xM+1sM+1
, . . . ,xG1, . . . ,xGsG ] be the

design matrix of the covariates from the zero groups, where xgj is standardized so

that ‖xgj‖2 = n1/2 for j = 1, . . . , sg and g = 1, . . . , G. Further, define N0 = {δ ∈

R(K−1)
∑M

g=1 sg : ‖δ − β∗I‖∞ ≤ d,β∗I = [β∗T1 , . . . ,β∗TM ]T}, where d = (1/2) min{|β∗kgj| :
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β∗kgj 6= 0, k = 1 . . . , K − 1, j = 1, . . . , sg, g = 1 . . . ,M} is half of the minimum

non-zero coefficient.

Finally, define

A =


XT

I Σ11(θ
∗)XI . . . XT

I Σ1(K−1)(θ
∗)XI

...
. . .

...

XT
I Σ(K−1)1(θ

∗)XI . . . XT
I Σ(K−1)(K−1)(θ

∗)XI

 ,

B =


XT

IIΣ11(θ
∗)XI . . . XT

IIΣ1(K−1)(θ
∗)XI

...
. . .

...

XT
IIΣ(K−1)1(θ

∗)XI . . . XT
IIΣ(K−1)(K−1)(θ

∗)XI

 ,

and Clgj(δ) =
[
ckh = XT

I diag{|∂{∂µl(θ)/∂θk1}/∂θh|θ=Θ(δ)|}XI

]K−1
k,h=1

, where θk =

(θ1k, . . . , θnk)
T for k = 1, . . . , K − 1, Θ(δ) = (

∑M
g=1

∑sg
j=1 xgjiδkgj, i = 1, . . . , n, k =

1, . . . , K − 1)T , and Σkh(θ) = ∂µk(θ)/∂θh. Here, the derivative of a vector function

with respect to a vector is the Jacobian matrix, and ‖ · ‖∞ is the L∞-norm of a matrix.

We consider the following regularity conditions:

• (C1) ‖A−1‖∞ = O(n−1).

• (C2) ‖BA−1‖∞ ≤ 2−1 maxMg=1(sg)
−1/2{K(K − 1)}−1/2.

• (C3) maxδ∈N0 maxg,j,l λmax [Clgj(δ)] = O(n).

(C1) essentially requires that A is non-singular and there is a lower bound for its

sup-norm. For a classical Gaussian linear regression model, Wainwright (2009) showed

that ‖[XT
I XI ]

−1‖∞ = Op(n
−1) if the rows of XI are i.i.d. Gaussian vectors with
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‖[EXT
I XI ]

−1‖∞ = Op(n
−1). (C2) is related to the strong irrepresentable condition

of Lasso estimates. Zhao and Yu (2004) showed that the irrepresentable condition is

sufficient and almost necessary for the Lasso to achieve model selection consistency.

Here, (C2) essentially requires the correlation between the covariates from non-zero

groups and zero groups cannot be too large. (C3) is a technical condition used in

the proof, which holds automatically in classical Gaussian linear model (Fan and Lv,

2011).

Theorem 3.3. Under condition (C1)-(C3), for fixed K and sg for g = 1, . . . , G, if

we choose λn satisfying λn = o(n−1/2 log n) and λ−1n n−1/2(log n)1/2 → 0 as n → ∞,

then there exists an estimator [β̂TI , β̂
T
II ]

T for (3.6) that satisfies for sufficiently large

n, with probability at least 1− 2(K − 1)(
∑G

g=1 sg)n
−1,

β̂II = 0, (3.9)

‖β̂I − β∗I‖∞ = O(n−1/2 log n), (3.10)

sgn(β̂I) = sgn(β∗I ) for only non-zero component of β∗I , (3.11)

where β̂I = [β̂T1 , . . . , β̂
T
M ]T , β̂II = [β̂TM+1, . . . , β̂

T
G]T , and sgn(β̂kgj) = 1 if β̂kgj > 0,

sgn(β̂kgj) = −1 if β̂kgj < 0, sgn(β̂kgj) = 0 if β̂kgj = 0.

By (3.9) our proposed estimator identifies the zero groups with a large probability.

The estimates of the covariates in the non-zero groups are consistent with a rate

slower than n1/2 by (3.10) and the sign of the non-zero coefficients are consistent by

(3.11) with the large probability.
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3.6 Simulation Study

Simulation Set-up

We conducted a simulation study to examine the finite-sample properties of the

method developed in Section 3.3-3.4. We let (n,G,K) = (900, 20, 4) be the sample

size, number of groups, and number of response categories. Each covariate is a

group of its own, and thus, sg = 1 for g = 1, . . . , G. The first 4 groups are the

non-zero groups, with β∗g = [1, 1,−1,−1]T , g = 1, 2, for the large-value groups and

β∗g = [0.3, 0.3,−0.3,−0.3]T , g = 3, 4, for the small-value groups. The remainder 16

groups are the zero groups. The intercepts are β0 = (0.1, 0.1,−0.1,−0.1)T . The

covariates xgj are i.i.d. from standard normal distribution. To obtain cross-covariate

correlations, we let the correlation between the non-zero groups (or zero groups) ρ1

be 0.2. Then, we let the correlation between the non-zero groups and zero groups be

ρ2, where ρ2 is {0, 0.1, 0.2, or 0.3}. For each ρ2, 500 data sets were generated from

the multinomial regression model (3.1).

For each simulated data set, the group Lasso method (GLasso) and group Lasso

with a final refitting step (GLasso-r) were applied, as described in Section 3.3-3.4.

For comparison, we performed the maximum likelihood estimation (MLE) with the

model containing only the non-zero groups. Additionally,the standard Lasso method

was used and the computation was carried out in the glmnet library in R (Team,

2011; Friedman et al., 2010). The regularization parameter was decided by the BIC

criterion for GLasso, Glasso-r and Lasso.
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Simulation Results

We evaluate the performance of the variable selection by three criteria. The first

criterion is sensitivity, which is the proportion of correctly identified non-zero groups.

The sensitivity to identify the first two non-zero groups are all equal to 1, and the

sensitivity for the second two non-zero groups is given in Figure 3.1(a). The second

criterion is specificity, which is the proportion of correctly identified zero groups

(Figure 3.1(b)). The third criterion is correct model selection frequency (i.e., both of

the non-zero and zero groups are correctly identified) among these 500 simulations

(Figure 3.1(c)). When the magnitude of the coefficients is larger (group 1 and 2),

all of the methods can identify them correctly. When the coefficients are smaller

(group 3 and 4), the sensitivity for GLasso and Lasso are close 1, while GLasso-r is

20% smaller. The specificity for GLasso-r is close to 1, reduced from 0.9 to 0.8 for

GLasso, and reduced from 0.7 to 0.2 for Lasso. As ρ2 increases, the correct model

selection frequency decreases from 0.5 to 0.4 for GLasso-r, decreases from 0.3 to 0 for

GLasso, and is close to 0 for Lasso which suggests that Lasso cannot identify both

the non-zero and zero groups simultaneously among these 500 simulations.

The group Lasso estimates are subject to the sum-zero constraint (3.2), while

the Lasso estimates are subject to a median-zero constraint (Friedman et al., 2010).

For a fair comparison in estimation accuracy among these methods, we converted all

estimates under the sum-zero constraint (3.2). Figure 3.1(d) provides these scaled sum

of the square of bias (SSB),
∑K

k=1{(β̂k0− ĉ0−β∗k0)2 +
∑G

g=1

∑sg
j=1(β̂kgj − ĉgj −β∗kgj)2},

where ĉ0 =
∑K

k=1 β̂k0/K, ĉgj =
∑K

k=1 β̂kgj/K, j = 1, . . . , sg, g = 1 . . . , G. The MLE

method has the smallest SSB, and the SSB for GLasso is quite close to the MLE.
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Figure 3.1: (a) provides the sensitivity for the second 2 important covariates. (b)
provides the specificity. (c) provides the correct model selection frequency among 500
simulations. (d) provides sum of the square of bias (SSB). (e) provides the classification
accuracy on the test data set. (f) provides the Kullback - Leibler divergence (KLD)
on the test data set. Group Lasso (GLasso), group Lasso with refitting (GLasso-r),
maximum likelihood (MLE) method only for the important covariates and Lasso are
performed, and all of the reported values are the corresponding averaged values of
500 simulation results.
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The SSB of GLasso and Lasso is 10 times more, and the SSB for Glasso is slightly

smaller than Lasso.

Furthermore, based on a test data set with a sample size of 5000 for each simulation,

we apply two criteria to compare the prediction performance. One is the classification

accuracy on the test data set given in Figure 3.1(e) and the other is the Kullback-

Leibler divergence (KLD), defined as:
∑5000

i=1

∑K
k=1{p∗ik log(p∗ik/p̂ik)} given in Figure

3.1(f). The KLD is a measure of the difference between the actual probability p∗ik

and the predicted probability p̂ik for i = 1, . . . , n, k = 1, . . . , K. While the values of

classification accuracy for each method are quite similar, the KLD values are quite

different with the general pattern of MLE < GLasso-r < GLasso < Lasso. These

results suggest that GLasso-r gives the best prediction of the distribution among all

the methods, even though the distributions have similar modes in most of the cases.

In addition, as the value of ρ2 increases, the performance of GLasso in terms

of parameter estimation and variable selection worsens. The poor performance is

possibly because the weak oracle property in Theorem 2 is violated when ρ2 increases.

Finally, we increased the number of covariates p from 20 to 40 and increased the

percent of nonzero groups from 20% to 40%. The results under these scenarios are

comparable with the description above and thus omitted. All of the reported values

in Figure 3.1(a)-(f) are the corresponding averaged values of 500 simulation results.

The standard error of these corresponding values are given in Table 3.1.
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Table 3.1: Mean and standard error (se) of sensitivity (SEN), specificity (SPE), sum
of the square of bias (SSB), classification accuracy (CLA) and Kullback - Leibler
divergence (KLD) of the 500 simulations and the correct model selection frequency
(COR) among the 500 simulations, by group Lasso (GLasso), group Lasso with
refitting (GLasso-r), maximum likelihood (MLE) method only for the important
covariates and Lasso, when ρ1=0.2, and ρ2 is from {0, 0.1, 0.2, 0.3}.

ρ2 = 0.00 ρ2 = 0.10
GLasso GLasso-r Lasso MLE GLasso GLasso-r Lasso MLE

SEN1 mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SEN1 se 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SEN2 mean 1.000 0.746 1.000 1.000 0.999 0.743 0.999 1.000
SEN2 se 0.000 0.013 0.000 0.000 0.001 0.013 0.001 0.000
SPE mean 0.922 1.000 0.708 1.000 0.917 1.000 0.632 1.000
SPE se 0.003 0.000 0.007 0.000 0.003 0.000 0.007 0.000
COR mean 0.288 0.530 0.032 1.000 0.254 0.524 0.012 1.000
COR se 0.020 0.022 0.008 0.000 0.019 0.022 0.005 0.000
SSB mean 1.509 0.330 1.702 0.162 1.536 0.339 1.608 0.167
SSB se 0.014 0.010 0.019 0.004 0.014 0.010 0.018 0.004
CLA mean 0.425 0.424 0.425 0.426 0.426 0.424 0.425 0.426
CLA se 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
KLD mean 184.422 81.216 223.516 43.416 185.378 83.956 208.483 44.762
KLD se 1.663 2.132 2.479 0.714 1.766 2.138 2.461 0.724

ρ2 = 0.20 ρ2 = 0.30
GLasso GLasso-r Lasso MLE GLasso GLasso-r Lasso MLE

SEN1 mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SEN1 se 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SEN2 mean 0.998 0.692 0.997 1.000 0.990 0.645 0.992 1.000
SEN2 se 0.001 0.013 0.002 0.000 0.003 0.016 0.003 0.000
SPE mean 0.892 1.000 0.504 1.000 0.783 0.998 0.231 1.000
SPE se 0.004 0.000 0.008 0.000 0.005 0.001 0.007 0.000
COR mean 0.198 0.430 0.000 1.000 0.026 0.408 0.000 1.000
COR se 0.018 0.022 0.000 0.000 0.007 0.022 0.000 0.000
SSB mean 1.699 0.372 1.772 0.166 2.167 0.413 2.395 0.169
SSB se 0.015 0.009 0.021 0.004 0.017 0.011 0.028 0.004
CLA mean 0.426 0.425 0.425 0.428 0.426 0.425 0.425 0.428
CLA se 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
KLD mean 213.545 89.995 231.087 43.555 258.021 99.845 267.572 44.673
KLD se 2.090 2.114 3.084 0.757 2.646 2.584 4.243 0.745
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3.7 Data Example

We now return to the land cover data example. The study was aimed at assessing the

influence of past land ownership characteristics on land cover structure in northern

Wisconsin, USA. Landscape ecologists were interested in the effect of land ownership

because it offers a spatially specific, quantifiable approach to assess the effect of

important, yet often geographically amorphous social, economic, and historical factors

on landscape structure (Turner et al., 1996).

Data were derived from historical plat maps and the Wisconsin Land Economic

Inventory, a land survey. The spatial unit of analysis is a quarter section (or, 1/36

township, 160 acres ≈ 65 ha) and there are 1429 units in the study area (Figure

3.2). The original response variable is the land cover type with 7 categories, they

are ag-grassland (AG), aspen (Populus spp.)-paper birch (Betula papryfera) (APB),

lowland forest (LF), marsh-bog (MB), northern hardwood (NH), Others and Pine

Species (PS) (Figure 3.2). Since the total observations for categories LF, MB, Others

and PS is only about 3.2% of the whole data set, we combined these categories into

one category, which results in a total of four categories: AG, APB, NH, Others. Both

the original 7-category responses and the 4-category responses were used in the data

analysis.

Forest composition can be associated with land ownership characteristics, such as

ownership class, parcel size, and ownership size (Crow et al., 1999; Stanfield et al.,

2002). The specific covariates of interest are: ownership, reservation, number of

parcels, average size of parcels within a quarter section, proportion of the largest

parcel, total area, and average size of all parcels in (but not necessarily all contained
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Response

AG
APB
LF
MB
NH
OTH
PS

Ownership

IND
LBR
Other
RE
RR

Reservation

Not indian
Indian

Total area

<78
78−82
82−635
>635

Average size of parcel

<53
53−177
177−199
>199

Proportion of largest parcel

<0.49
0.49−0.62
0.62−0.98
>0.98

Figure 3.2: Map of the response variable, ownership, reservation, total area, average
size of parcels and proportion of the largest parcel in a study area of northern Wisconsin
which has 1,429 quarter sections has 7 categories. Response has 7 categories: ag-
grassland (AG), aspen (Populus spp.)-paper birch (Betula papryfera) (APB), lowland
forest (LF), marsh-bog (MB), northern hardwood (NH), Others and Pine Species
(PS). Ownership has 5 levels: individual (IND), lumber company (LBR), real estate
company (RE), Railroad (RR) and Others. Reservation has 2 levels: it’s an Indian
reservation or not. Total area, average size of parcels and proportion of the largest
parcel are continuous covariates.
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within) a quarter section. In particular, ownership ( Own) is a categorical variable

with 5 levels: individual (IND), lumber company (LBR), real estate company (RE),

railroad (RR) and others. Four dummy variables are used to indicate the occurrence

of IND (or IBR, RE, RR) against others. Further, reservation ( Reserv) indicates

whether the quarter section is on an Indian reservation or not. The number of parcels

( PolyNm) in a given quarter section is a measure of parcel density. Average size

( PolyPr) is the average size of parcel polygon, which is a measure of parcel size.

Proportion of the largest parcel ( MxPolyPr) reports the largest parcel polygon as

a proportion of quarter section. Total area ( TotOwn) shows the total property

area (measured in acres) in this study area associated with owner of the largest

parcel polygon in a given quarter section. Because the values of this covariate are

skewed to the right, a log transformation was applied. Average size of all parcels

( AvParcel) is the average size of all parcels that lay in whole or in part within a

given quarter section (measured in acres). All the covariates except reservation and

dummy variables are standardized to have mean 0 and variance 1. We applied the

group Lasso estimation, where the grouping structure is such that reservation or each

continuous covariate is a group of its own, and all of the dummy variables for Own

are a group. Lasso was also applied for comparison.

The results are given in Table 3.2 and 3.3. Both the Glasso and Glasso-r methods

selected Reserv, TotOwn and AvParcel. Glasso selected one more covariate PolyNm

for the 7-category and 4-category cases, while Glasso selected Own in the 7-category

case. In contrast, Lasso selected almost all of the covariates, possibly because Lasso

have a poor performance in specificity compared to GLasso-r and Glasso as was
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Table 3.2: Estimates by group Lasso (GLasso), group Lasso with refitting (GLasso-r)
and Lasso for 7-category response: AG, APB, LF, MB, NH, Other and PS, the
grouping structure for group Lasso is: each continuous covariate or Reserv is a group
of its own, and all of the dummy variables are a group.

GLasso
Covariates AG APB LF MB NH Other PS

Intercept 3.077 1.923 -2.456 -0.395 1.283 -1.630 -1.802
Reserv -3.113 0.704 0.834 0.386 0.208 -0.051 1.032
PolyNm 0.242 0.081 0.160 -0.079 -0.084 -0.178 -0.141
PolyPr – – – – – – –
MxPolyPr – – – – – – –

log( TotOwn) -0.244 0.093 -0.031 0.040 0.032 0.267 -0.157
AvParcl -0.001 0.001 0.003 – – -0.002 -0.001
IND 0.534 0.112 0.015 -0.937 0.126 0.090 0.061
LBR -0.373 0.363 -0.171 0.096 0.186 -0.089 -0.012
RE -0.007 -0.085 0.305 0.218 -0.271 -0.143 -0.018
RR -0.220 0.038 -0.086 -0.222 0.531 -0.031 -0.010

GLasso-r
Covariates AG APB LF MB NH Other PS

Intercept 5.169 2.425 -2.382 -2.595 1.474 -1.934 -2.157
Reserv -3.750 0.218 0.808 0.087 -0.397 -0.662 3.696
PolyNm – – – – – – –
PolyPr – – – – – – –
MxPolyPr – – – – – – –

log( TotOwn) -0.317 0.174 0.097 0.369 0.093 0.374 -0.791
AvParcl -0.002 – 0.002 -0.001 -0.001 -0.002 0.003
IND – – – – – – –
LBR – – – – – – –
RE – – – – – – –
RR – – – – – – –

Lasso
Covariates AG APB LF MB NH Other PS

Intercept 4.212 2.419 -1.739 -1.429 0.879 -1.304 -3.038
Reserv -2.774 0.366 – – – – –
PolyNm – – – – – – –
PolyPr -0.135 – – – – – –
MxPolyPr -0.603 – – – – – –

log( TotOwn) -0.330 – – – – – –
AvParcl – – – – – – –
IND 0.277 – – – – – –
LBR – 0.211 – – – – –
RE – – – – – – –
RR – – – – 0.172 – –
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Table 3.3: Estimates by group Lasso (GLasso), group Lasso with refitting (GLasso-r)
and Lasso for 4-category response: AG, APB, NH and other, the grouping structure
for group Lasso is:each continuous covariate or Reserv is a group of its own, and all
of the dummy variables are a group.

GLasso
Covariates APB AG NH Other

Intercept 0.342 2.347 -0.262 -2.427
Reserv 1.126 -2.401 0.538 0.736
PolyNm 0.025 0.134 -0.096 -0.063
PolyPr – – – –
MxPolyPr – – – –

log( TotOwn) 0.110 -0.298 0.028 0.160
AvParcl 0.001 -0.001 – –
IND – – – –
LBR – – – –
RE – – – –
RR – – – –

GLasso-r
Covariates APB AG NH Other

Intercept 0.427 3.153 -0.508 -3.073
Reserv 1.180 -2.787 0.561 1.046
PolyNm – – – –
PolyPr – – – –
MxPolyPr – – – –

log( TotOwn) 0.113 -0.375 0.028 0.235
AvParcl 0.001 -0.001 – –
IND – – – –
LBR – – – –
RE – – – –
RR – – – –

Lasso
Covariates APB AG NH Other

Intercept 0.617 2.414 -0.922 -2.109
Reserv 0.369 -2.772 – –
PolyNm – – – –
PolyPr – -0.136 – –
MxPolyPr – -0.605 – –

log( TotOwn) – -0.331 – –
AvParcl – – – –
IND – 0.276 – –
LBR 0.211 – – –
RE – – – –
RR – – 0.172 –
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observed in the simulation study. Moreover, nearly the same sets of covariates were

chosen using the 7-category response and the 4-category response. The selected

covariates are comparable to the results in Fu et al. (2013). However, the results

here are more informative, as we can compare the effect of a selected covariate across

different response categories. For example, for Reserv using 4-category response, the

difference between the coefficient for APB (K = 1) and AG (K = 2) is positive, and

with all the other parameters held constant, log(pi1/pi2) is a monotonically increasing

function with respect to the difference. That is, a positive difference is associated

with probability for the ith site to be APB, with a higher probability for a greater

difference.

3.8 Alternative Penalization

Instead of using the log-likelihood function (3.3) with the sum-zero constraint (3.2),

we can have a non-constraint log-likelihood function by plug in (3.2) to (3.3). For

example, replacing βK0 = −
∑K−1

k=1 βk0 and βKgj = −
∑K−1

k=1 βkgj for j = 1, . . . , sg and

g = 1, . . . , G, then (3.3) becomes

`an(β;y) =
K−1∑
k=1

[
{1(y = k1)− 1(y = K1)}T (βk01 +

G∑
g=1

sg∑
j=1

xgjβkgj)

]
−

n∑
i=1

log

{
K−1∑
k=1

exp(θik) + exp(−
K−1∑
k=1

θik)

}

Since the coefficients for the Kth response category are replaced, the effect of

each covariate is represented by K − 1 coefficients for K response categories. And
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the alternative penalized log-likelihood function is

Qa
n(β) = n−1`an(β)− λn

G∑
g=1

(
sg

sg∑
j=1

K−1∑
k=1

β2
kgj

)1/2

(3.12)

With a proper choice of the regularization parameter λn, maximizing the penalized

log-likelihood function (3.12) can also provide model parameter estimation and

variable selection simultaneously. We denote the alternative penalized maximum

likelihood estimate (APMLE) of β as β̂ = arg max
β
{Qa

n(β)}. In this example, since

the coefficients for the Kth response category are replaced, only the coefficients for the

1th to (K − 1)th response categories are penalized by the group-wise penalty. Thus,

it’s obviously to find if the coefficients for another response category are replaced,

i.e. βhgj = −
∑

k 6=h βkgj for h 6= K, j = 1, . . . , sg, g = 1, . . . , G, then the penalized

log-likelihood function (3.12) will be different, as the group-wise penalty penalized

different set of coefficients. Thus the alternative penalization procedure is depend

on which response category is replaced, and we preferred the penalization procedure

described in Section 3.3.

For the alternative penalization procedure, we have the similar theoretical results

and algorithm as in Section 3.4 to 3.5.
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Lemma 3.4. Let `agn (βg | β̂−g) be the log-likelihood function of βg evaluated at β̂−g,

`agn (βg | β̂−g)

=
K−1∑
k=1

[
{1(y = k1)− 1(y = K1)}T (β̂k01 +

sg∑
j=1

xgjβkgj +
∑
h6=g

sh∑
j=1

xhjβ̂khj)

]

−
N∑
i=1

log

[
exp

{
−

K−1∑
k=1

(β̂k0 +

sg∑
j=1

xgjiβkgj +
∑
h6=g

sh∑
j=1

xhjiβ̂khj)

}

+
K−1∑
k=1

exp(β̂k0 +

sg∑
j=1

xgjiβkgj +
∑
h6=g

sh∑
j=1

xhjiβ̂khj)

]
.

If ‖∇`agn (βg | β̂−g)|βg=0‖2 ≤ nsg
1/2λn, then arg max

βg

{n−1`agn (βg | β̂−g)−λns1/2g ‖βg‖2} =

0.

Algorithm 2:

1. For a given λn, let β̂[0] = (β̂
[0]
k0 , β̂

[0]
kgj, k = 1, . . . , K − 1, j = 1, . . . , sg, g =

1, . . . , G)T denote initial values of all of the coefficients.

2. Let β̂[t−1] = (β̂
[t−1]
k0 , β̂

[t−1]
kgj , k = 1, . . . , K − 1, j = 1, . . . , sg, g = 1, . . . , G)T denote

the values at the (t− 1)th iteration, and β̂
[t−1]
−0 denote the parameters of β̂[t−1]

except the intercepts. At the tth iteration, for

`0n(β0 | β̂[t−1]
−0 ) =

K∑
k=1

{
{1(y = k1)− 1(y = K1)}T (βk01 +

G∑
g=1

sg∑
j=1

xgjβ̂
[t−1]
kgj )

}

−
N∑
i=1

log

[
exp

{
−

K−1∑
k=1

(βk0 +
G∑
g=1

sg∑
j=1

xgjiβ̂
[t−1]
kgj )

}

+
K−1∑
k=1

exp(βk0 +
G∑
g=1

sg∑
j=1

xgjiβ̂
[t−1]
kgj )

]
,
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estimate β0 by β̂
[t]
0 = arg maxβ0 `

0
n(β0 | β̂[t−1]

−0 ).

3. At the tth iteration, repeat for g = 1, . . . , G:

If ‖∇`gn(βg | β̂[t]
1 , . . . , β̂

[t]
g−1, β̂

[t−1]
g+1 , . . . , β̂

[t−1]
G )|βg=0‖2 ≤ nsg

1/2λn, then β̂
[t]
g = 0.

Otherwise β̂
[t]
g = arg max

βg

{
n−1`gn(βg | β̂[t]

1 , . . . , β̂
[t]
g−1, β̂

[t−1]
g+1 , . . . , β̂

[t−1]
G )−λns1/2g ‖βg‖2

}
.

4. Repeat steps 2 and 3 until a convergence criterion is met.

Proposition 3.5. The necessary and sufficient condition for β̂ to be a global maxi-

mizer of (3.12) is

xTgj{1(y = k1)− 1(y = K1)− µk(θ̂)} = nsg
1/2λnβ̂kgj

{
sg∑
j=1

K−1∑
k=1

β̂2
kgj

}−1/2
for g such that β̂g 6= 0, j = 1, . . . , sg, k = 1, . . . , K − 1. (3.13)www∇`gn(βg | β̂)|βg=β̂g

www
2
≤ nsg

1/2λn for g such that β̂g = 0. (3.14)

We consider an alternative regularity conditions: (C4) ‖BA−1‖∞ < maxMg=1{sg(K−

1)}−1/2. This condition is also related to the irrepresentable condition (C2), but

it’s weaker than (C2), since the coefficients for the Kth response category are not

penalized in (3.12).

Theorem 3.6. Under condition (C1),(C3),(C4), for fixed K and sg for g = 1, . . . , G,

if we choose λn satisfying λn = o(n−1/2 log n) and λ−1n n−1/2(log n)1/2 → 0, then there

exists an estimator [β̂TI , β̂
T
II ]

T for (3.12), that satisfies for sufficiently large n, with
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probability at least 1− 2(K − 1)(
∑G

g=1 sg)n
−1,

β̂II = 0, (3.15)

‖β̂I − β∗I‖∞ = O(n−1/2 log n), (3.16)

sgn(β̂I) = sgn(β∗I ) for only non-zero component of β∗I . (3.17)

where β̂I = [β̂T1 , . . . , β̂
T
M ]T , β̂II = [β̂TM+1, . . . , β̂

T
G]T , and sgn(β̂kgj) = 1 if β̂kgj > 0,

sgn(β̂kgj) = −1 if β̂kgj < 0, sgn(β̂kgj) = 0 if β̂kgj = 0.

For simulation, with the same setting in Section 3.6, we have the following results.

Under the alternative penalization procedure, the group Lasso method is denoted

by AGLasso and group Lasso with a final refitting step is denoted by AGLasso-r.

And from Table 3.4, the performance for penalization procedure described in Section

3.3 is slightly better than the alternative penalization procedure in terms of variable

selection and parameter estimation. Moreover, the result for data analysis with the

alternative penalization procedure is given in Table 3.5 and 3.6, and the results are

comparable with result in Section 3.7.
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Table 3.4: Mean and standard error (se) of sensitivity (SEN), specificity (SPE), sum
of the square of bias (SSB), classification accuracy (CLA) and Kullback - Leibler
divergence (KLD) of the 500 simulations and the correct model selection frequency
(COR) among the 500 simulations, by group Lasso (GLasso), group Lasso with
refitting (GLasso-r), alternative group Lasso (AGLasso), alternative group Lasso with
refitting (AGLasso-r), when ρ1=0.2, and ρ2 is from {0, 0.1, 0.2, 0.3}.

ρ2 = 0.00 ρ2 = 0.10
GLasso GLasso-r AGLasso AGLasso-r GLasso GLasso-r AGLasso AGLasso-r

SEN1 mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SEN1 se 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SEN2 mean 1.000 0.746 1.000 0.914 0.999 0.743 1.000 0.913
SEN2 se 0.000 0.013 0.000 0.009 0.001 0.013 0.000 0.009
SPE mean 0.922 1.000 0.814 1.000 0.917 1.000 0.794 0.999
SPE se 0.003 0.000 0.005 0.000 0.003 0.000 0.005 0.000
COR mean 0.288 0.530 0.068 0.828 0.254 0.524 0.060 0.820
COR se 0.020 0.022 0.011 0.017 0.019 0.022 0.011 0.017
SSB mean 1.509 0.330 1.498 0.217 1.536 0.339 1.481 0.224
SSB se 0.014 0.010 0.015 0.007 0.014 0.010 0.017 0.007
CLA mean 0.425 0.424 0.425 0.425 0.426 0.424 0.426 0.426
CLA se 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
KLD mean 184.422 81.216 192.172 55.681 185.378 83.956 188.197 58.240
KLD se 1.663 2.132 1.893 1.494 1.766 2.138 2.094 1.552

ρ2 = 0.20 ρ2 = 0.30
GLasso GLasso-r AGLasso AGLasso-r GLasso GLasso-r AGLasso AGLasso-r

SEN1 mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SEN1 se 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SEN2 mean 0.998 0.692 0.999 0.841 0.990 0.645 0.998 0.712
SEN2 se 0.001 0.013 0.001 0.011 0.003 0.016 0.001 0.015
SPE mean 0.892 1.000 0.774 0.998 0.783 0.998 0.643 0.985
SPE se 0.004 0.000 0.006 0.001 0.005 0.001 0.006 0.001
COR mean 0.198 0.430 0.038 0.672 0.026 0.408 0.004 0.358
COR se 0.018 0.022 0.009 0.021 0.007 0.022 0.003 0.021
SSB mean 1.699 0.372 1.658 0.273 2.167 0.413 2.049 0.384
SSB se 0.015 0.009 0.017 0.009 0.017 0.011 0.016 0.011
CLA mean 0.426 0.425 0.426 0.426 0.426 0.425 0.426 0.425
CLA se 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
KLD mean 213.545 89.995 215.481 68.061 258.021 99.845 241.264 93.387
KLD se 2.090 2.114 2.421 1.875 2.646 2.584 2.531 2.340
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Table 3.5: Estimates by group Lasso (AGLasso), group Lasso with refitting (AGLasso-
r) under the alternative penalization method for 7-category response: AG, APB, LF,
MB, NH, Other and PS, the grouping structure for group Lasso is: each continuous
covariate or Reserv is a group of its own, and all of the dummy variables are a group.

AGLasso
Covariates AG APB LF MB NH Other PS

Intercept 3.885 1.964 -2.005 -1.896 1.298 -1.568 -1.679
Reserv -2.665 0.783 0.331 0.115 0.206 -0.171 1.401
PolyNm 0.155 0.045 0.067 -0.004 0.071 -0.027 -0.173
PolyPr – – – – – – –
MxPolyPr – – – – – – –

log( TotOwn) -0.275 0.116 0.013 0.146 0.044 0.174 -0.219
AvParcl -0.001 0.001 0.002 – – -0.001 -0.001
IND – – – – – – –
LBR – – – – – – –
RE – – – – – – –
RR – – – – – – –

AGLasso-r
Covariates AG APB LF MB NH Other PS

Intercept 5.175 2.425 -2.404 -2.597 1.475 -1.933 -2.141
Reserv -3.754 0.215 0.808 0.080 -0.401 -0.669 3.722
PolyNm – – – – – – –
PolyPr – – – – – – –
MxPolyPr – – – – – – –

log( TotOwn) -0.317 0.176 0.103 0.372 0.094 0.376 -0.804
AvParcl -0.002 – 0.002 -0.001 -0.001 -0.002 0.004
IND – – – – – – –
LBR – – – – – – –
RE – – – – – – –
RR – – – – – – –
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Table 3.6: Estimates by group Lasso (AGLasso), group Lasso with refitting (AGLasso-
r) under the alternative penalization method for 4-category response: AG, APB, NH
and other, the grouping structure for group Lasso is:each continuous covariate or
Reserv is a group of its own, and all of the dummy variables are a group.

AGLasso
Covariates APB AG NH Other

Intercept 0.376 2.331 -0.240 -2.467
Reserv 1.052 -2.364 0.427 0.886
PolyNm 0.043 0.139 -0.058 -0.125
PolyPr – – – –
MxPolyPr – – – –

log( TotOwn) 0.096 -0.294 0.008 0.189
AvParcl 0.001 -0.001 – –
IND – – – –
LBR – – – –
RE – – – –
RR – – – –

AGLasso-r
Covariates APB AG NH Other

Intercept 0.452 3.109 -0.484 -3.078
Reserv 1.176 -2.783 0.557 1.050
PolyNm – – – –
PolyPr – – – –
MxPolyPr – – – –

log( TotOwn) 0.108 -0.365 0.023 0.235
AvParcl 0.001 -0.001 – –
IND – – – –
LBR – – – –
RE – – – –
RR – – – –
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3.9 Discussion

In summary, we have developed a group Lasso type of regularization method for

simultaneous selection of covariates and estimation of parameters for a multinomial

regression model. By pre-specifying groups, our method not only selects the coefficients

associated with individual covariates as a group, but also selects the coefficients of

dummy variables associated a categorical covariates as a group. Selection consistency

and weak oracle property are established under suitable regularity conditions and

an efficient computational algorithm is developed for multinomial regression models.

Our simulation study has shown that our methods have desirable advantages over

the standard Lasso methods in both variable selection and parameter estimation

under different scenarios. We have also illustrated our method by a data example in

the intersection of landscape ecology and environmental history. For future research,

it would be interesting to adopt some of the innovations in computation such as a

closed-form solution for a block update as in Meier et al. (2008).

Auto-multinomial Regression

We may further consider spatial automultinomial models as an extension of the multi-

nomial model with spatial correlation. Similar to Section 3.2, let y = (y1, . . . , yn)T

denote the categorical response variables at all n sites on this lattice and y−i =

(y1, . . . , yi−1, yi, . . . , yn)T denote the vector that has all the response variables of y

except for yi. Further, consider a pre-specified spatial neighborhood structure. For

example, the first-order neighborhood consists of the four nearest neighbors on a
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regular grid. Let Ni denote the set of indices of the neighbors of site i and let

i′ ∈ Ni denote that site i′ is a neighbor of site i. In addition, let ηk be the constant

autoregression coefficient for the kth category of response and η = (η1, . . . , ηK)T .

To model the response variables y, we assume the probability of the ith response,

yi, conditional on y−i depends on only the responses in the neighborhood, yi′ , where

i′ ∈ Ni. That is,

Pr(yi | y−i) = Pr(yi | yi′ : i′ ∈ Ni).

Further, we assume that the conditional distribution pr(yi | yi′ : i′ ∈ Ni) is multinomial

distributed with probability πik for the kth category at the ith site,

πik = Pr(yi = k | yi′ : i′ ∈ Ni)

πik =
exp(θik + ηk

∑
i′∈Ni

1{yi′ = k})∑K
l=1 exp(θil + ηl

∑
i′∈Ni

1{yi′ = l})
(3.18)

Similarly, we model the conditional probability with a sum-zero constraint:

K∑
k=1

βk0 = 0,
K∑
k=1

βkgj = 0, j = 1, . . . , sg, g = 1, . . . , G,
K∑
k=1

ηk = 0.

Caragea and Kaiser (2009) proposed to center the autocovariate around its

expected value to achieve more meaningful interpretations for regression purposes.
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Here we consider this centered multinomial model by modifying (3.18) to

πik =
exp(θik + ηk

∑
i′∈Ni

[1{yi′ = k} − µi′k])∑K
l=1 exp(θil + ηl

∑
i′∈Ni

[1{yi′ = l} − µi′l])

µi′k =
exp(θi′k)∑K
l=1 exp(θi′l)

Maximum pseudolikelihood method can be used for estimating the model pa-

rameters, where the pseudolikelihood function is the product of the full conditional

probabilities at all sites (Cressie, 1993).

Fused Lasso

A multi-stage procedure was proposed for variable selection which utilizes group

Lasso and fused Lasso. Group Lasso is considered for selecting categorical covariates

and covariates for different response categories as described in Section 3.3, while

fused Lasso (Tibshirani et al., 2005) is for identifying homogeneity of covariates by

penalizing the pairwise differences of the corresponding coefficients. Such a multi-stage

procedure ideally will produce sparse and interpretable models.

For example, we can fuse the coefficients for different response categories within

each group. The fused type Lasso penalized function is:

Qf
n(β;y) = n−1`n(β)− λn

G∑
g=1

[
sg∑
j=1

∑
k 6=h

(βkgj − βhgj)2
]1/2

Maximizing the penalized log-likelihood function Qf
n gives the maximum penalized

estimates by fused type Lasso. The second term in Qf
n is the fused-type penalty, it
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enables the L2 difference of the estimates for different response categories shrink to

zero, which helps to identify the homogeneity of the coefficients for different response

categories.
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Appendix A

Technical detials in Chapter 2

A.1 The relationship between 0-1 coding with ±1

coding

For an uncentered model, we have

p(Zi|Zi′ : i′ ∼ i) =
exp{Zi(x′iβ + η

∑
i′∼i Zi′)}

1 + exp(x′iβ + η
∑

i′∼i Zi′)

=
exp[{(Z̃i + 1)/2}{x′iβ + η

∑
i′∼i(Z̃i′ + 1)/2}]

1 + exp{x′iβ + η
∑

i′∼i(Z̃i′ + 1)/2}

=
exp[Z̃i{(x′

iβ/2 + |Ni|η/4) + (η/4)
∑

i′∼i Z̃i′}]
2 cosh{(x′

iβ/2 + |Ni|η/4) + (η/4)
∑

i′∼i Z̃i′}

Thus, η̃ = η/4 and x′iβ̃ = x′iβ/2 + |Ni|η/4.
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Now, for a centered model, we have

p(Zi|Zi′ : i′ ∼ i)

=
exp[Zi{x′iβ + η

∑
i′∼i(Zi′ − µi′)}]

1 + exp{x′iβ + η
∑

i′∼i(Zi′ − µi′)}

=
exp[{(Z̃i + 1)/2}{x′iβ + η

∑
i′∼i(Z̃i′/2 + 1/2− µi′)}]

1 + exp{x′iβ + η
∑

i′∼i(Z̃i′/2 + 1/2− µi′)}

=
exp[Z̃i{x′

iβ/2 + |Ni|η/4− η
∑

i′∼i µi′/2 + η
∑

i′∼i µ̃i′/4 + (η/4)
∑

i′∼i(Z̃i′ − µ̃i′)}]
2 cosh{x′

iβ/2 + |Ni|η/4− η
∑

i′∼i µi′/2 + η
∑

i′∼i µ̃i′/4 + (η/4)
∑

i′∼i(Z̃i′ − µ̃i′)}

Thus, η̃ = η/4 and x′iβ̃ = x′
iβ/2 + |Ni|η/4− η

∑
i′∼i µi′/2 + η

∑
i′∼i µ̃i′/4

A.2 Formulas for V̂ ar(̂̃θp)

0-1 Coding

For the uncentered model and the 0-1 coding, the J (θ) and I(θ) are

J (θ) =
n∑
i=1

∑
i′∼i,i′=i

 xi

{
Zi − exp(x′

iβ+η
∑

i′∼i Zi′ )

1+exp(x′
iβ+η

∑
i′∼i Zi′ )

}
(
∑

i′∼i Zi′)
{
Zi − exp(x′

iβ+η
∑

i′∼i Zi′ )

1+exp(x′
iβ+η

∑
i′∼i Zi′ )

}


 xi′
{
Zi′ −

exp(x′
i′β+η

∑
i′′∼i′ Zi′′ )

1+exp(x′
i′β+η

∑
i′′∼i′ Zi′′ )

}
(
∑

i′′∼i′ Zi′′)
{
Zi′ −

exp(x′
i′β+η

∑
i′′∼i′ Zi′′ )

1+exp(x′
i′β+η

∑
i′′∼i′ Zi′′ )

}

′

.
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and

I(θ) =

 I(β) −∂2`p(θ)

∂β∂η

−∂2`p(θ)

∂η∂β′ −∂2`p(θ)

∂η2


where

I(β) =
n∑
i=1

xix
′
i

exp(x′iβ + η
∑

i′∼i Zi′)

{1 + exp(x′iβ + η
∑

i′∼i Zi′)}2

−∂
2`p(θ)

∂η2
=

n∑
i=1

(
∑

i′∼i Zi′)
2 exp(x′iβ + η

∑
i′∼i Zi′)

{1 + exp(x′iβ + η
∑

i′∼i Zi′)}2

−∂
2`p(θ)

∂β∂η
=

n∑
i=1

xi
(
∑

i′∼i Zi′) exp(x′iβ + η
∑

i′∼i Zi′)

{1 + exp(x′iβ + η
∑

i′∼i Zi′)}2

For the centered model,

J (β) =
n∑
i=1

∑
i′∼i,i′=i


{
xi − η

∑
i′∼i

exp(x′
i′β)

(1+exp(x′
i′β))

2xi′
}{

Zi − exp(x′
iβ+η

∑
i′∼i(Zi′−µi′ ))

1+exp(x′
iβ+η

∑
i′∼i(Zi′−µi′ ))

}
{
∑

i′∼i(Zi′ − µi′)}
{
Zi − exp(x′

iβ+η
∑

i′∼i(Zi′−µi′ ))
1+exp(x′

iβ+η
∑

i′∼i(Zi′−µi′ ))

}



{
xi′ − η

∑
i′′∼i′

exp(x′
i′′β)

(1+exp(x′
i′′β))

2xi′′
}{

Zi′ −
exp(x′

i′β+η
∑

i′′∼i′ (Zi′′−µi′′ ))
1+exp(x′

i′β+η
∑

i′′∼i′ (Zi′′−µi′′ ))

}
{
∑

i′′∼i′(Zi′′ − µi′′)}
{
Zi′ −

exp(x′
i′β+η

∑
i′′∼i′ (Zi′′−µi′′ ))

1+exp(x′
i′β+η

∑
i′′∼i′ (Zi′′−µi′′ ))

}

′

.

and

I(θ) =

 I(β) −∂2`p(θ)

∂β∂η

−∂2`p(θ)

∂η∂β′ −∂2`p(θ)

∂η2


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where

I(β) =
n∑
i=1

[
xi − η

∑
i′∼i

exp(x′i′β)

{1 + exp(x′i′β)}2
xi′

][
xi − η

∑
i′∼i

exp(x′i′β)

{1 + exp(x′i′β)}2
xi′

]′
exp(x′iβ + η

∑
i′∼i(Zi′ − µi′))

{1 + exp(x′iβ + η
∑

i′∼i(Zi′ − µi′))}2

+
n∑
i=1

∑
i′∼i

η

{
Zi −

exp(x′iβ + η
∑

i′′∼i(Zi′′ − µi′′))
1 + exp(x′iβ + η

∑
i′′∼i(Zi′′ − µi′′))

}
exp(x′i′β)− {exp(x′i′β)}2

{1 + exp(x′i′β)}3
xi′x

′
i′

−∂
2`p(θ)

∂η2
=

(
∑

i′∼i(Zi′ − µi′))2 exp(x′iβ + η
∑

i′∼i(Zi′ − µi′))
{1 + exp(x′iβ + η

∑
i′∼i(Zi′ − µi′))}2

−∂
2`p(θ)

∂β∂η

=
n∑
i=1

[
xi − η

∑
i′∼i

exp(x′i′β)

{1 + exp(x′i′β)}2
xi′

]
(
∑

i′∼i(Zi′ − µi′)) exp(x′iβ + η
∑

i′∼i(Zi′ − µi′))
{1 + exp(x′iβ + η

∑
i′∼i(Zi′ − µi′))}2

+
n∑
i=1

∑
i′∼i

{
Zi −

exp(x′iβ + η
∑

i′′∼i(Zi′′ − µi′′))
1 + exp(x′iβ + η

∑
i′′∼i(Zi′′ − µi′′))

}
exp(x′i′β)

{1 + exp(x′i′β)}2
xi′

±1 Coding

For the uncentered model and the ±1 coding, we have



74

J (θ̃) =
n∑
i=1

∑
i′∼i,i′=i

 xi

{
Z̃i − sinh(x′

iβ̃+η̃
∑

i′∼i Z̃i′ )

cosh(x′
iβ̃+η̃

∑
i′∼i Z̃i′ )

}
(
∑

i′∼i Z̃i′)
{
Z̃i − sinh(x′

iβ̃+η̃
∑

i′∼i Z̃i′ )

cosh(x′
iβ̃+η̃

∑
i′∼i Z̃i′ )

}


 xi′
{
Z̃i′ −

sinh(x′
i′ β̃+η̃

∑
i′′∼i′ Z̃i′′ )

cosh(x′
i′ β̃+η̃

∑
i′′∼i′ Z̃i′′ )

}
(
∑

i′′∼i′ Z̃i′′)
{
Z̃i′ −

sinh(x′
i′ β̃+η̃

∑
i′′∼i′ Z̃i′′ )

cosh(x′
i′ β̃+η̃

∑
i′′∼i′ Z̃i′′ )

}

′

.

and

I(θ̃) =

 I(β̃) −∂2`p(θ̃)

∂β̃∂η̃

−∂2`p(θ̃)

∂η̃∂β̃′ −∂2`p(θ̃)

∂η̃2


where

I(β̃) =
n∑
i=1

xix
′
i

1−

{
sinh(x′iβ̃ + η̃

∑
i′∼i Z̃i′)

cosh(x′iβ̃ + η̃
∑

i′∼i Z̃i′)

}2


−∂
2`p(θ̃)

∂η̃2
=

n∑
i=1

{ ∑
i′∼i Z̃i′

cosh(x′iβ̃ + η̃
∑

i′∼i Z̃i′)

}2

−∂
2`p(θ̃)

∂β̃∂η̃
=

n∑
i=1

xi
∑

i′∼i Z̃i′

{cosh(x′iβ̃ + η̃
∑

i′∼i Z̃i′)}2

For the centered model,
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J (β̃)

=
n∑
i=1

∑
i′∼i,i′=i


{
xi − η̃

∑
i′∼i(cosh(x′i′β̃))−2xi′

}{
Z̃i − sinh(x′

iβ̃+η̃
∑

i′∼i(Z̃i′−µ̃i′ ))
cosh(x′

iβ̃+η̃
∑

i′∼i(Z̃i′−µ̃i′ ))

}
{∑

i′∼i(Z̃i′ − µ̃i′)
}{

Z̃i − sinh(x′
iβ̃+η̃

∑
i′∼i(Z̃i′−µ̃i′ ))

cosh(x′
iβ̃+η̃

∑
i′∼i(Z̃i′−µ̃i′ ))

}



{
xi′ − η̃

∑
i′′∼i′(cosh(x′i′′β̃))−2xi′′

}{
Z̃i′ −

sinh(x′
i′ β̃+η̃

∑
i′′∼i′ (Z̃i′′−µ̃i′′ ))

cosh(x′
i′ β̃+η̃

∑
i′′∼i′ (Z̃i′′−µ̃i′′ ))

}
{∑

i′′∼i′(Z̃i′′ − µ̃i′′)
}{

Z̃i′ −
sinh(x′

i′ β̃+η̃
∑

i′′∼i′ (Z̃i′′−µ̃i′′ ))
cosh(x′

i′ β̃+η̃
∑

i′′∼i′ (Z̃i′′−µ̃i′′ ))

}

′

.

and

I(θ̃) =

 I(β̃) −∂2`p(θ̃)

∂β̃∂η̃

−∂2`p(θ̃)

∂η̃∂β̃′ −∂2`p(θ̃)

∂η̃2


where

I(β̃) =
n∑
i=1

[
xi − η̃

∑
i′∼i

1

{cosh(x′i′β̃)}2
xi′

][
xi − η̃

∑
i′∼i

1

{cosh(x′i′β̃)}2
xi′

]′
cosh[x′iβ̃ + η̃

∑
i′∼i

(Z̃i′ − µ̃i′)]−2

−
n∑
i=1

∑
i′∼i

2η̃

{
Z̃i −

sinh(x′iβ̃ + η̃
∑

i′′∼i(Z̃i′′ − µ̃i′′))
cosh(x′iβ̃ + η̃

∑
i′′∼i(Z̃i′′ − µ̃i′′))

}
sinh(x′i′β̃)

{cosh(x′i′β̃}3
xi′x

′
i′

−∂
2`p(θ̃)

∂η̃2
=

n∑
i=1

{
∑

i′∼i(Z̃i′ − µ̃i′)}2

cosh(x′iβ̃ + η̃
∑

i′∼i(Z̃i′ − µ̃i′))
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−∂
2`p(θ̃)

∂β̃∂η̃

=
n∑
i=1

{∑
i′∼i

(cosh(x′i′β̃))−2xi′

}{
Z̃i −

sinh(x′iβ̃ + η̃
∑

i′∼i(Z̃i′ − µ̃i′))
cosh(x′iβ̃ + η̃

∑
i′∼i(Z̃i′ − µ̃i′))

}

+
n∑
i=1

{∑
i′∼i

(Z̃i′ − µ̃i′)

}
xi − η̃

∑
i′∼i(cosh(x′i′β̃))−2xi′

{cosh(x′iβ̃ + η̃
∑

i′∼i(Z̃i′ − µ̃i′))}2
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Appendix B

Proof for Chapter 3

B.1 The group Lasso estimates satisfied the

sum-zero constrain

Proof. Suppose β̂ = {β̂0k, β̂kgj, k = 1, . . . , K, j = 1, . . . , sg, g = 1, . . . , G} is the

maximizer of (3.4) but not satisfied the constraint (3.2). Let ĉ0 =
∑K

k=1 β̂k0/K,

ĉgj =
∑K

k=1 β̂kgj/K, j = 1, . . . , sg, g = 1, . . . , G. Then let β̂c = {β̂k0 − ĉ0, β̂kgj −

ĉgj, j = 1, . . . , sg, g = 1, . . . , G, k = 1, . . . , K}. `(β̂) = `(β̂c). However
∑K

k=1 β̂
2
kgj >∑K

k=1(β̂kgj − ĉgj)2 for j = 1 . . . , sg, g = 1, . . . , G, then β̂ cannot be the maximizer of

(3.4).
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B.2 Lemma 3.1 Proof

Proof.

`gn(βg | β̂−g) =
K∑
k=1

{
1(y = k1)T (β̂k01 +

sg∑
j=1

xgjβkgj +
∑
h6=g

sh∑
j=1

xhjβ̂khj)

}

−
N∑
i=1

log{
K∑
k=1

exp(β̂k0 +

sg∑
j=1

xgjiβkgj +
∑
h6=g

sh∑
j=1

xhjiβ̂khj)}.

By the standard argument on the Taylor expansion of the likelihood function `gn(βg | β̂)

at 0, we have

`gn(βg | β̂−g) = `gn(0 | β̂−g) +∇`gn(0 | β̂−g)βg + 2−1βg∇2`gn(0 | β̂−g)βg(1 + o(1))

If ‖∇`gn(βg | β̂−g)|βg=0‖2 ≤ nsg
1/2λn, then ∇`gn(0 | β̂−g)βg−nλns1/2g ‖βg‖2 ≤ 0. Since

the log-likelihood function is concave (Davidson and G.J., 2003), then βg∇2`gn(0 |

β̂−g)βg ≤ 0, and clearly, βg = 0 is the maximizer.

B.3 Proposition 3.2 Proof

Proof. For ease of presentation, assume sg = 1 for g = 1, . . . , G. When sg > 1, the

proof still holds with a similar procedure. Here, β = (βkgj, k = 1, . . . , K − 1, j =
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1, g = 1, . . . , G)T , and

`n(β;y) =
K−1∑
k=1

[
{1(y = k1)− 1(y = K1)}T (

G∑
g=1

sg∑
j=1

xgjβkgj)

]
−

n∑
i=1

log

{
K−1∑
k=1

exp(θik) + exp(−
K−1∑
k=1

θik)

}

We rewrite the maximization of (3.4) in the form

min
β,v∈RG

−n−1`n(β) + λn

G∑
g=1

s1/2g vg,

s.t. ‖Mβg‖2 ≤ vg, g = 1, . . . , G. (B.1)

where βg = (β1g1, . . . , β(K−1)g1)
T and

M =



1

. . .

1

−1 . . . −1


K×(K−1)

.

Then we consider the Lagrangian with dual variable {ζg, γg} ∈ Rsg(K−1) × R

(Boyd and Vandenberghe, 2003):

L(β,v, ζ,γ) = −n−1`n(β) + λn

G∑
g=1

s1/2g vg −
G∑
g=1

((Mβg)
TMζg + vgγg),

s.t. ‖Mζg‖2 ≤ γg, g = 1, . . . , G.
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For k = 1, . . . , K − 1 , define

µk(θ) =

({
exp(θik)− exp(−

∑K−1
k=1 θik)

}{∑K−1
k=1 exp(θik) + exp(−

∑K−1
k=1 θik)

}−1
, i = 1, . . . , n

)T
. The KKT conditions are: for g = 1, . . . , G,


−n−1xTg1{1(y = 1)− 1(y = K)− µ1(θ)}

...

−n−1xTg1{1(y = K − 1)1(y = K)− µK−1(θ)}

 = MTMζg, (B.2)

λns
1/2
g = γg, (B.3)

‖Mβg‖2 ≤ vg, (B.4)

‖Mζg‖2 ≤ γg, (B.5)

(Mβg)
TMζg + vgγg = 0. (B.6)

where (B.2) and (B.3) are for stationarity, (B.4) is for primary feasibility, (B.5) is for

dual feasibility and (B.6) is for complimentary slackness. If βg = 0, then we just need

‖Mζg‖2 ≤ λns
1/2
g . Denote the left hand side of (B.2) is ∇`gn, then (MTM)−1∇`gn = ζg.

‖Mζg‖2 = (ζTg M
TMζg)

1/2 = {(∇`gn)TMTM∇`gn}1/2 = ‖M∇`gn‖2

Then it reduce to and (3.8). If βg 6= 0, we can have Mζg = −Mβgλns1/2g (‖Mβg‖2)−1,
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plug into (B.2) then


−n−1xTg1{1(y = 1)− 1(y = K)− µ1(θ)}

...

−n−1xTg1{1(y = K − 1)1(y = K)− µK−1(θ)}

 = −MTMβgλns
1/2
g (‖Mβg‖2)−1.

Note that MTM is a K − 1 ×K − 1 matrix with diagonal element 2, off-diagonal

element 1, this can reduce to (3.7). Since the dual and primal problems are strictly

feasible and the `n(β) is concave, the KKT condition is a sufficient and necessary

condition for primary and dual optimal (Boyd and Vandenberghe, 2003). When

sg > 1, the KKT condition can be easily proved by updating M to M ′, where M ′

would be a block diagonal matrix, where there are sg diagonal blocks and each block

is M .

B.4 Theorem 3.3 Proof

First, we need to show the existence of such λn. It’s easy to prove by providing a

special example is λn = n−1/2(log n)3/5. Second, we prove the Proposition B.1 which

is used to prove Theorem 3.3.

Proposition B.1. For any ε ∈ (0,∞), a ∈ Rn and k = 1, . . . , K − 1, we have

Pr(|aT1(y = k)− 1(y = K)− aTµk(θ∗)| > ε) ≤ 2 exp

[
− 2ε2

||a||22

]
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Proof. since E(1(y = k)− 1(y = K)) = µk(θ
∗), and yis’ are independent, then by

Hoeffding inequality, it follows.

Then, we follow the technique in the proof of Theorem 2 in Fan and Lv (2011).

Proof. First, let

ξIk = XT
I {1(y = k)− 1(y = K)} −XT

I µk(θ
∗)

ξIIk = XT
II{1(y = k)− 1(y = K)} −XT

IIµk(θ
∗)

ξI = [ξTI1, . . . , ξ
T
IK−1]

T , ξII = [ξTII1, . . . , ξ
T
IIK−1]

T .

then define:

E1 = {‖ξI‖∞ ≤ 2−1/2(n log n)1/2}, E2 = {‖ξII‖∞ ≤ 2−1/2(n log n)1/2}.

then by general Bonferroni’s inequality and Proposition B.1:

Pr(E1 ∩ E2) ≥ 1−
K−1∑
k=1

G∑
g=1

sg∑
j=1

Pr(|ξkgj| > 2−1/2(n log n)1/2)

≥ 1− 2(K − 1)(
G∑
g=1

sg)n
−1.

where ξkgj = xTgj{1(y = k)− 1(y = K)− µk(θ∗)}.

Under E1 ∩E2, we will show that there exists β̂ satisfying the (3.7) and (3.8). We

break the prove into two steps.

Step 1: Existence of a solution to (3.7):
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Let δk = [δk11, . . . , δk1s1 , . . . , δkM1, . . . , δkMsM ]T , δ = [δT1 , . . . , δ
T
K−1]

T , and βIk =

[βk11, . . . , βk1s1 , . . . , βkM1, . . . , βkMsM ]T , βI = [βTI1, . . . ,β
T
I(K−1)]

T . we prove for suffi-

ciently large n, (3.7) have solutions inside the hypercube:

N = {δ : ‖δ − β∗I‖∞ = n−1/2 log n}.

For δ ∈ N , since d ≥ n−1/2 log n for sufficient large n, we have

min |δkgj| ≥ min |β∗kgj| − d = d for β∗kgj 6= 0,

sgn(δkgj) = sgn(β∗kgj) for β∗kgj 6= 0.

where g ∈ {1, . . . ,M}, k ∈ {1, . . . , K − 1}, j ∈ {1, . . . , sg}.

Let ηkgj = nλnsg
1/2(δkgj +

∑K−1
k=1 δkgj)[

∑sg
j=1{

∑K−1
k=1 δ

2
kgj + (

∑K−1
k=1 δkgj)

2}]−1/2,

ηk = [ηk11, . . . , ηk1s1 . . . , ηkM1, . . . , ηkMsM ]T , and η = [ηT1 , . . . ,η
T
K−1]

T . Then ‖η‖∞ ≤

2nλn
√
s∗,
√
s∗ = maxMg=1

√
sg, which along with the definition of E1 entails: ‖ξI −

η‖∞ ≤ 2−1/2
√
n log n+ 2nλn

√
s∗.

Define vector-valued functions:

γI(δ) =


γI1(δ)

...

γI(K−1)(δ)

 ,

where γIk(δ) = XT
I ({exp(θik)−exp(−

∑K−1
l=1 θil)}{exp(

∑K−1
l=1 θil)+

∑K−1
k=1 exp(θik)}−1, i =

1, . . . , n)T , where θik =
∑M

g=1

∑sg
j=1 xgjiδkgj for k = 1, . . . , K − 1.
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Then define:

Ψ(δ) = γI(δ)− γI(β∗I )− (ξI − η).

Note that (3.7) is equivalent to Ψ(δ) = 0. We need to show the latter has a solution

inside N . We represent γI(δ) by using a second order Taylor expansion for around

β∗I :

γI(δ) = γI(β
∗
I ) +A(δ − β∗I ) + r,

r = [rT1 , . . . , r
T
K−1]

T

rk = [rk11, . . . , rk1s1 , . . . , rkM1, . . . , rkMsM ]T

rkgj =
1

2
(δ − β∗I )T∇2γkgj(δ̆)(δ − β∗I )

where δ̆k is a vector lying on the line segment joining δk and β∗Ik, and

A =


XT

I Σ11(θ
∗)XI . . . XT

I Σ1(K−1)(θ
∗)XI

...
. . .

...

XT
I Σ(K−1)1(θ

∗)XI . . . XT
I Σ(K−1)(K−1)(θ

∗)XI

 ,
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Σkk(θ) = ∂µk(θ)/∂θk

= diag

{
{exp(θik) + exp(−

K−1∑
k=1

θik)}{
K−1∑
k=1

exp(θik) + exp(−
K−1∑
k=1

θik)}

−{exp(θih)− exp(−
K−1∑
k=1

θik)}2{
K−1∑
k=1

exp(θik) + exp(−
K−1∑
k=1

θik)}−2, i = 1, . . . , n

}
,

Σkh(θ) = ∂µk(θ)/∂θh =

diag

{
− {exp(θik)− exp(−

K−1∑
k=1

θik)}{exp(θih)− exp(−
K−1∑
k=1

θik)}

{
K−1∑
k=1

exp(θik) + exp(−
K−1∑
k=1

θik)}−2, i = 1, . . . , n

}
, for , k 6= h ∈ {1, . . . , K − 1}.

and XI = [x11 . . . ,x1s1 , . . . ,xM1 . . . ,xMsM ],

XII = [x(M+1)1 . . . ,x(M+1)sM+1
, . . . ,xG1 . . . ,xGsG ], θk = [θ1k, . . . , θnk]

T . And here,

the derivative of a vector function with respect to a vector is known as the Jacobian

matrix. By condition (C3),

‖r‖∞ ≤ max
δ0∈N

max
l,g=1,...,M,j

1

2
λmax[Clgj(δ0)]‖(δ − β∗I )‖22

= O[(K − 1)
M∑
g=1

sg(log n)2] (B.7)

where

Clgj(δ0) =
[
ckh = XT

I diag{|∂{∂µl(θ)/∂θk1}/∂θh|θ=Θ(δ)xgj|}XI

]K−1
k,h=1

,

and Θ(δ) = (
∑M

g=1

∑sg
j xgjiδkgj : i = 1, . . . , n, k = 1, . . . , K − 1)T , θ = {θik, i =

1, . . . , n, k = 1, . . . , K − 1},θk = [θ1k, . . . , θnk]
T , and the L∞ norm of a matrix is the
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maximum of the L1 norm of each row. Let

Ψ̄(δ) = A−1Ψ(δ) = δ − β∗I − u

u = −A−1(ξI − η − r)

then by condition (C1), we have:

‖u‖∞ ≤ ‖A−1‖∞(‖ξI − η‖∞ + ‖r‖∞)

= O[n−1(2−1/2
√
n log n+ 2

√
s∗nλn + (K − 1)

M∑
g=1

sg(log n)2)]

= O(2−1/2n−1/2
√

log n+ 2
√
s∗λn + n−1(K − 1)

M∑
g=1

sg(log n)2) = o(n−1/2 log n)

For sufficiently large n, if the jth component of δ−β∗I , (δ−β∗I )(j) = n−1/2 log n, then

we have

Ψ̄(j)(δ) ≥ n−1/2 log n− ‖u‖∞ ≥ 0

and if (δ − β∗I )(j) = −n−1/2 log n

Ψ̄(j)(δ) ≤ −n−1/2 log n+ ‖u‖∞ ≤ 0

where Ψ̄(j)(δ) is the jth component of Ψ̄(δ). Then by Miranda’s existence theorem,

Ψ̄(δ) = 0 has a solution in N , so does Ψ(δ) = 0.

Step 2: (Verification of (3.8)): Let β̂ be the estimates with β̂I is the solution from
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the first step, and β̂II = 0. And we can find a necessary condition for

sg∑
j=1

K−1∑
k=1

{
∇`kgjn (β̂)

}2

+

{
K−1∑
k=1

∇`kgjn (β̂)

}2
 ≤ n2sgλ

2
n

is wwwwwwwwww


XT

II{1(y = 1)− 1(y = K)− µ1(β̂)}
...

XT
II{1(y = K − 1)− 1(y = K)− µ1(β̂)}


wwwwwwwwww
∞

≤ nλn/
√
K(K − 1)

Then let:

γII(δ) =


γII1(δ)

...

γII(K−1)(δ)

 ,γIIk(δ) = XT
IIµk(δ).

Then define:

z = (nλn)−1{ξII − [γII(β̂I)− γII(β∗I )]}

By the rate of λn, ‖(nλn)−1ξII‖∞ = O(2−1/2n−1/2λ−1n
√

log n) = o(1).
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We represent γII(β̂I) by using a second order Taylor expansion around β∗I :

γII(β̂I) = γII(β
∗
I ) +B(β̂I − β∗I ) +w

w = [wT
1 , . . . ,w

T
K ]T

wk = [wk(M+1)1, . . . , wk(M+1)s(M+1), . . . , wkG1, . . . , wkGsG ]T

wkgj =
1

2
(β̂I − β∗I )T∇2γkgj(δ̆)(β̂I − β∗I )

where

B =


b11 . . . b1(K−1)
...

. . .
...

b(K−1)1 . . . b(K−1)(K−1)

 , bkh = XT
IIΣkh(θ

∗)XI .

w can be bounded by similar argument in(B.7), and from the first step of the proof,

we already have β̂I − β∗I = A−1(ξI − η − r), by condition (C2) we have:

‖z‖∞ ≤ o(1) + (nλn)−1‖γII(β̂I)− γII(β∗I )‖∞

≤ o(1) + (nλn)−1‖BA−1‖∞(‖ξI − η‖∞ + ‖r‖∞) + (nλn)−1‖w‖∞

≤ o(1) + 1/
√
K(K − 1) + (nλn)−1O(

√
n log n+ s(log n)2)

= o(1) + 1/
√
K(K − 1) +O(λ−1n n−1/2

√
log n+ λ−1n n−1(log n)2)

= 1/
√
K(K − 1) + o(1)

Therefore, by Proposition 3.2, we have shown that there is a β̂ with (3.9), (3.10),

(3.11) under event E1 ∩ E2. This completes the proof.
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B.5 Lemma 3.4 Proof

Proof.

`gn(βg | β̂−g) =
K∑
k=1

{
1(y = k1)T (β̂k01 +

sg∑
j=1

xgjβkgj +
∑
h6=g

sh∑
j=1

xhjβ̂khj)

}

−
N∑
i=1

log{
K∑
k=1

exp(β̂k0 +

sg∑
j=1

xgjiβkgj +
∑
h6=g

sh∑
j=1

xhjiβ̂khj)}.

By the standard argument on the Taylor expansion of the likelihood function `gn(βg | β̂)

at 0, we have

`gn(βg | β̂−g) = `gn(0 | β̂−g) +∇`gn(0 | β̂−g)βg + 2−1βg∇2`gn(0 | β̂−g)βg(1 + o(1))

If ‖∇`gn(βg | β̂−g)|βg=0‖2 ≤ nsg
1/2λn, then ∇`gn(0 | β̂−g)βg − nλns

1/2
g ‖βg‖2 ≤ 0.

Since the log-likelihood function is concave, then βg∇2`gn(0 | β̂−g)βg ≤ 0, and clearly,

βg = 0 is the maximizer.

B.6 Proposition 3.5 Proof

Proof.

`n(β;y) =
K−1∑
k=1

[
{1(y = k1)− 1(y = K1)}T (

G∑
g=1

sg∑
j=1

xgjβkgj)

]
−

n∑
i=1

log

{
K−1∑
k=1

exp(θik) + exp(−
K−1∑
k=1

θik)

}
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We rewrite the maximization of (3.4) in the form

min
β,v∈RG

−n−1`n(β) + λn

G∑
g=1

s1/2g vg,

s.t. ‖βg‖2 ≤ vg, g = 1, . . . , G.

Then we consider the Lagrangian with dual variable {ζg, γg} ∈ Rsg(K−1) ×R (Boyd

and Vandenberghe, 2003):

L(β,v, ζ,γ) = −n−1`n(β) + λn

G∑
g=1

s1/2g vg −
G∑
g=1

(βTg ζg + vgγg),

s.t. ‖ζg‖2 ≤ γg, g = 1, . . . , G.

The KKT conditions are: for g = 1, . . . , G.

−n−1xTgj{1(y = k1)− µk(θ)} = ζgj, k = 1, . . . , K − 1, j = 1, . . . , sg, (B.8)

λns
1/2
g = γg, (B.9)

‖βg‖2 ≤ vg, (B.10)

‖ζg‖2 ≤ γg, (B.11)

βTg ζg + vgγg = 0. (B.12)

where (B.8) and (B.9) are for stationarity, (B.10) is for primary feasibility, (B.11)

is for dual feasibility and (B.12) is for complimentary slackness. If βg = 0, then

we just need ‖ζg‖2 ≤ λns
1/2
g . If βg 6= 0, we can have ζgj = −βgjλns1/2g (‖βg‖2)−1.

These KKT conditions reduce to (3.13) and (3.14) by plug in (B.8). Since the dual
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and primal problems are strictly feasible, and the `n(β) is concave. Then KKT

condition is a sufficient and necessary condition for primary and dual optimal (Boyd

and Vandenberghe, 2003).

B.7 Theorem 3.6 Proof

We follow the technique in the proof of Theorem 3.3.

Proof. First, let

ξIk = XT
I 1(y = k1)−XT

I µk(θ
∗)

ξIIk = XT
II1(y = k1)−XT

IIµk(θ
∗)

ξI = [ξTI1, . . . , ξ
T
I(K−1)]

T , ξII = [ξTII1, . . . , ξ
T
II(K−1)]

T .

then define:

E1 = {‖ξI‖∞ ≤ 2−1/2(n log n)1/2}, E2 = {‖ξII‖∞ ≤ 2−1/2(n log n)1/2}.

then by general Bonferroni’s inequality and Proposition B.1:

Pr(E1 ∩ E2) ≥ 1−
K−1∑
k=1

G∑
g=1

sg∑
j=1

Pr(|ξkgj| > 2−1/2(n log n)1/2

≥ = 1− 2(K − 1)(
G∑
g=1

sg)n
−1.

where ξkgj = xTgj{1(y = k1)− µk(θ∗)}.
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Under E1 ∩ E2, we will show that there exists β̂ satisfying the (3.13) and (3.14).

We break the prove into two steps.

Step 1: Existence of a solution to (3.13):

Let δk = [δk11, . . . , δk1s1 , . . . , δkM1, . . . , δkMsM ]T , δ = [δT1 , . . . , δ
T
K−1]

T , and βIk =

[βk11, . . . , βk1s1 , . . . , βkM1, . . . , βkMsM ]T , βI = [βTI1, . . . ,β
T
IK−1]

T . we prove for suffi-

ciently large n, (3.13) have solutions inside the hypercube:

N = {δ : ‖δ − β∗I‖∞ = n−1/2 log n}.

For δ ∈ N , since d ≥ n−1/2 log n for sufficient large n, we have

min |δkgj| ≥ min |β∗kgj| − d = d for β∗kgj 6= 0,

sgn(δkgj) = sgn(β∗kgj) for β∗kgj 6= 0.

where g ∈ {1, . . . ,M}, k ∈ {1, . . . , K − 1}, j ∈ {1, . . . , sg}.

Let ηkgj = nλnsg
1/2δkgj(

∑K−1
k=1

∑sg
j=1 δ

2
kgj)

−1/2, ηk = [ηk11, . . . , ηk1s1 . . . , ηkM1, . . . , ηkMsM ]T ,

and η = [ηT1 , . . . ,η
T
K−1]

T . Then ‖η‖∞ ≤ nλn
√
s∗,
√
s∗ = maxSg=1

√
sg, which along

with the definition of E1 entails: ‖ξI − η‖∞ ≤ 2−1/2
√
n log n+ nλn

√
s∗.

Define vector-valued functions:

γI(δ) =


γI1(δ)

...

γI(K−1)(δ)

 ,

where γIk(δ) = XT
I ({exp(θik)−exp(−

∑K−1
l=1 θil)}{exp(

∑K−1
l=1 θil)+

∑K−1
k=1 exp(θik)}−1, i =
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1, . . . , n)T , where θik =
∑M

g=1

∑sg
j=1 xgjiδkgj for k = 1, . . . , K − 1.

Then define:

Ψ(δ) = γI(δ)− γI(β∗I )− (ξI − η).

Note that (3.13) is equivalent to Ψ(δ) = 0. We need to show the latter has a solution

inside N . We represent γI(δ) by using a second order Taylor expansion for around

β∗I :

γI(δ) = γI(β
∗
I ) +A(δ − β∗I ) + r,

r = [rT1 , . . . , r
T
K−1]

T

rk = [rk11, . . . , rk1s1 , . . . , rkM1, . . . , rkMsM ]T

rkgj =
1

2
(δ − β∗I )T∇2γkgj(δ̆)(δ − β∗I )

where δ̆k is a vector lying on the line segment joining δk and β∗Ik, and

A =


XT

I Σ11(θ
∗)XI . . . XT

I Σ1(K−1)(θ
∗)XI

...
. . .

...

XT
I Σ(K−1)1(θ

∗)XI . . . XT
I Σ(K−1)(K−1)(θ

∗)XI



Σkk(θ) = ∂µk(θ)/∂θk, for k = 1, . . . , K − 1,

Σkh(θ) = ∂µk(θ)/∂θh, for k 6= h, k, h = 1, . . . , K − 1.
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and XI = [x11 . . . ,x1s1 , . . . ,xM1 . . . ,xMsM ],

XII = [x(M+1)1 . . . ,x(M+1)sM+1
, . . . ,xG1 . . . ,xGsG ], θk = [θ1k, . . . , θnk]

T . And here,

the derivative of a vector function with respect to a vector is known as the Jacobian

matrix. By condition (C3),

‖r‖∞ ≤ max
δ0∈N

max
l,g=1,...,M,j

1

2
λmax[Clgj(δ0)]‖(δ − β∗I )‖22

= O[(K − 1)
M∑
g=1

sg(log n)2] (B.13)

where

Clgj(δ0) =
[
ckh = XT

I diag{|∂{∂µl(θ)/∂θk1}/∂θh|θ=Θ(δ)xgj|}XI

]K−1
k,h=1

,

and Θ(δ) = (
∑M

g=1

∑sg
j xgjiδkgj : i = 1, . . . , n, k = 1, . . . , K − 1)T , θ = {θik, i =

1, . . . , n, k = 1, . . . , K − 1},θk = [θ1k, . . . , θnk]
T , and the L∞ norm of a matrix is the

maximum of the L1 norm of each row. Let

Ψ̄(δ) = A−1Ψ(δ) = δ − β∗I − u

u = −A−1(ξI − η − r)
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then by condition (C1), we have:

‖u‖∞ ≤ ‖A−1‖∞(‖ξI − η‖∞ + ‖r‖∞)

= O[n−1(2−1/2
√
n log n+

√
s∗nλn + (K − 1)

M∑
g=1

sg(log n)2)]

= O(2−1/2n−1/2
√

log n+
√
s∗λn + n−1(K − 1)

M∑
g=1

sg(log n)2) = o(n−1/2 log n)

For sufficiently large n, if the jth component of δ−β∗I , (δ−β∗I )(j) = n−1/2 log n, then

we have

Ψ̄(j)(δ) ≥ n−1/2 log n− ‖u‖∞ ≥ 0

and if (δ − β∗I )(j) = −n−1/2 log n

Ψ̄(j)(δ) ≤ −n−1/2 log n+ ‖u‖∞ ≤ 0

where Ψ̄(j)(δ) is the jth component of Ψ̄(δ). Then by Miranda’s existence theorem,

Ψ̄(δ) = 0 has a solution in N , so does Ψ(δ) = 0.

Step 2: (Verification of (3.8)): Let β̂ be the estimates with β̂I is the solution from

the first step, and β̂II = 0. And we can find a necessary condition for

wwwwwwwwww


XT

g 1(y = 11)

...

XT
g 1(y = K − 11)

−


XT
g µ1(β̂)

...

XT
g µK−1(β̂)


wwwwwwwwww

2

< nsg
1/2λn
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is wwwwwwwwww


XT

II1(y = 11)

...

XT
II1(y = (K − 1)1)

−


XT
IIµ1(β̂)

...

XT
IIµK−1(β̂)


wwwwwwwwww
∞

< nλn/
√
K − 1

Then let:

γII(δ) =


γII1(δ)

...

γII(K−1)(δ)

 ,γIIk(δ) = XT
IIµk(δ).

Then define:

z = (nλn)−1{ξII − [γII(β̂I)− γII(β∗I )]}

By the rate of λn, ‖(nλn)−1ξII‖∞ = O(2−1/2n−1/2λ−1n
√

log n) = o(1).

We represent γII(β̂I) by using a second order Taylor expansion around β∗I :

γII(β̂I) = γII(β
∗
I ) +B(β̂I − β∗I ) +w

w = [wT
1 , . . . ,w

T
K−1]

T

wk = [wk(M+1)1, . . . , wk(M+1)s(M+1), . . . , wkG1, . . . , wkGsG ]T

wkgj =
1

2
(β̂I − β∗I )T∇2γkgj(δ̆)(β̂I − β∗I )
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where

B =


b11 . . . b1(K−1)
...

. . .
...

b(K−1)1 . . . b(K−1)(K−1)

 , bkh = XT
IIΣkh(θ

∗)XI .

w can be bounded by similar argument in(B.13), and from the first step of the proof,

we already have β̂I − β∗I = A−1(ξI − η − r), by condition (C4) we have:

‖z‖∞ ≤ o(1) + (nλn)−1‖γII(β̂I)− γII(β∗I )‖∞

≤ o(1) + (nλn)−1‖BA−1‖∞(‖ξI − η‖∞ + ‖r‖∞) + (nλn)−1‖w‖∞

< o(1) + 1/
√
K − 1 + (nλn)−1O(

√
n log n+ s(log n)2)

= o(1) + 1/
√
K − 1 +O(λ−1n n−1/2

√
log n+ λ−1n n−1(log n)2)

= 1/
√
K − 1 + o(1)

Therefore, by Proposition 3.5, we have shown that there is a β̂ with (3.15), (3.16),

(3.17) under event E1 ∩ E2. This completes the proof.
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