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| INTRODUCTION 

i Weathering is the destructive process or group of processes causing the 

i physical disintegration and chemical decomposition of bedrock. The agent of | 

) destruction is circulating descending groundwater, commonly containing | 

i atmospheric oxygen. | | 

; At the Crandon deposit, the weathering effects observed have been taking 

i _ place for millions of years, perhaps since Precambrian time, when the entire 

f area was uplifted into a high muntain range. Continuing weathering since that . 

| ' time has slowly destroyed the mountains grain by grain, ‘until they were leveled 

i | to a relatively flat area, as we see today. About 20,000 years ago, the area ; 

; was overridden by a continental glacier sheet, which scraped much of the , | 

i - softer weathered rock away. It is likely that the glacier stripped about 50 

i feet of soft, weathered rock off the deposit before it encountered weathered 

| - rock which was hard enough to not be eroded by glacial action. The in situ 

f weathered rock which we observe today is almost exactly what it was like when 

| i _. the glaciers retreated. Since weathering is a slow process, it is likely tw a 

have penetrated only an inch or two deeper since the glaciers retreated 

| ; approximately 10,000 years ago. | 

| i - WEATHERING PROCESSES | | 

i In describing the weathered rocks at Crandon, the drill core was evaluated | 

with respect to the destructive processes of oxidation, leaching, argillization - 

i (pervasive clay development) and fracture intensity. The extent to which each 

1 destructive process has affected the drill core was measured in relative 

: intensity. | . 

| -]- | 

: |



J Destructive Processes : | | . 

a -- Oxidation Total: Total oxidation of all sulfides. | | 

i Partial: “Partial oxidation of all sulfides. © , 

| I a Trace: Traces or small quantities of transported and/or | 

/ indigenous limonite on fractures or bedding . 

t | | planes. | , : 

: Leaching Strong: >5 volume percent secondary porosity. 

| i : | Moderate: 2-5 volume percent secondary porosity. 

| | a | Weak: Trace-l volume percent secondary pososity. | . 

| . Argillization Strong: Pervasive strong development of clay. | ; | 

y Rock soft and breaks easily. | | 

a | (Rock easily gouges with nail.) - - 

| [ a | | Weak: Weak or partial clay development, but _ | : | 

i | : rock doesn't break easily. | : 

| Fracturing Strong: >20 fractures/foot. _ 

| i Moderate: 5-20 fractures/foot. | | 

f . Weak: 1-4 fractures /foot. | | : | 

. After each of the destructive processes are evaluated and rated for a | 

j ; specified interval of core, an overall rating of weathering intensity is given 

| which reflects the severity of all the destructive processes combined: | 

i Weathering Intensity Rating | | 

a | Strong: Strong development of two or mre of the destructive | | 

i processes. Rocks will have very low compressive strengths 

| and workings would have to be supported at all times (that 

i : is, assuming they can be entered at all). | 7 

i oe



i | Moderate: Strong development of one of the destructive processes (or 

| i | moderate development of two) and weak to mderate | 

| . development of at least one mre. Rocks may or may mt be 

i | strong enough to hold a back, depending upon which | 

| destructive processes have been active. Strong development 

} i | of argillization or fracturing would make the rock very 

i weak or unstable, whereas strong development of oxidation 

. - . or leaching may not seriously affect its ability to hold a — 

~ i back. 
- 

E . Low: Moderate leaching with only minor other effects. The 

i compressive strength of the rock is not seriously reduced. 

i | Weak: Weak development of leaching and/or oxidation. Rock | 

i | strengths are not affected. 

2 oO , GENERALIZED ILLUSTRATIVE CROSS SECTION | 

Figure 1A is a generalized cross section illustrating a typical 

: i ~  morth-south weathering profile of Crandon deposit rocks. From this profile, 

i basic weathering characteristics which apply throughout the deposit can be 

illustrated and discussed from figures 1B-1F. | 

i The weathering profile and active destructive processes vary considerably es 

; between footwall, Crandon formation and hanging wall. This is in response to 

i the primary chemistry of the rocks, and the physical-chemical conditions acting 

a upon those rocks. | / | - 

i 

1 a 
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5 In discussing the generalized cross sections, it must be kept in mind that — 

_ they represent basic weathering characteristics and principles applicable at 

| this deposit. The fact is that the supergene weathering system is very complex 

[ and has many irregularities and variations from the generalized norm. While | 

: : the base of the weathering zones are shown relatively smoth on the | | 

7 generalized section for illustrative purposes, in reality they are shaped much / 

like the base of a milar tooth, with many root-like projections. 

i | Two types of ore are present at the Crandon deposit. Massive ore is a | 

; i zinc-rich syngenetic ore type which is contained strictly within the Crandon . 

| | Unit. Stringer ore is a copper-rich epigenetic ore type which is contained . 

i within the footwall. It is important to remember that only portions of the ~ 

I Crandon Unit and footwall are of sufficient width and grade to be of commercial 

. value. | | : 

. i - Footwall | | | | 

The footwall rocks follow a relatively uniform weathering pattern compared a 

f to the Crandon formation (Figure 1A). The lower boundaries of the various | 

2 weathering intensities are relatively horizontal, but contain many root-like | 

. zones which penetrate deeper. The footwall weathering follows a relatively 

j | uniform pattern because the rocks are relatively uniform in composition, being : 

| siliceous in nature. The primary destructive process is leaching. | 

i In the strongly weathered zone, strong leaching has reduced the competency 

. of the rocks to the point where crushing and collapse has played an important | 

| _ ‘role in physically breaking up the rock. The acidification of groundwater due : 

il to the breakdown of sulfide minerals has further caused the breakdown of 

i silicate minerals, putting some into solution and altering others to clay 

~ products. | | : | 7 

i | 
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i In the mderately weathered zone, leaching has mt progressed to a point 

— where rock is beginning to weaken or crumble, or clays are beginning to develop 

i from silicates. Because there has been little chemical attack on the 

| { silicates, the rock still maintains its high original compressive strengths 

| (generally +15,000 psi). The local root-like zones of stronger weathering, 

7 however, will be structurally weak. | | 

- i Porosity-Permeability and Argillization (Figures 1B, 1C): A similar | 

= degree of porosity-permeability exists throughout the entire range | 

f (low-mo derate-strong) of weathered rocks. Porosity~permeability does decrease 

- | slightly with depth, but overall, it all falls withing the “moderate” range. 

i : Leaching was much stronger near the surface, but as illustrated in figure lc, | 

: i weak argillization has also taken place. This weak development of clays | 

| | | clogged up some of the porosity created by leaching, reducing both porosity and 

i permeability. | | | | 

: Oxidation (Figure 1D): There is very little oxidation associated with the 

i footwall rocks. When it is present, it is usually associated with narrow 

| j .- fracture zones- Because of its paucity, there is no significant overall effect _ 

a on the rocks. 3 | a 

i | Hypo gene Mineralization (Figure 1C): All of the primary copper and zinc 

| has been leached out of the strongly weathered zone. The quantity leached from 

t the mderately weathered zone is highly variable, however. Generally, the 

5 upper portion is moderately leached of primary metals while the lower portions | 

are weakly leached. | | 

i Supergene Mineralization (Figure 1F): Supergene mineralization generally 

i is present in the upper portion of the moderately weathered zone. The — 

thickness, distribution and grade are highly variable. | . 

i |



i Chalcocite [Cu 5S] is ‘the mst common secondary mineral, and occurs | 

| coating pyrite or chalcopyrite. Lesser amounts of covellite [CuS], bornite | | 

i [CusFeS,), digenite [CugS5], enargite [CuzAsS,], and native copper 

| are also present. Traces of the above minerals may be found throughout the | 

i moderate and low weathering zones. | | | 

| 7 Secondary copper minerals can locally be of such grade as to be economic Oo 

a in themselves. A bigger problem lies in the fact that, locally, the secondary 

. i copper may only occur as thin films on chalcopyrite, thus causing primary | 

S sulfide to act like secondary sulfide in the flotation circuits. | 

f | “Crandon Unit | | a | | 

I | The Crandon formation weathers considerably different than either the | 

oe footwall or hanging wall for several reasons: - . | 

i : 1) Because of the high total sulfide content ( 75 volume percent), . 

f abundant acid can be generated by sulfide leaching. | | | 

2) Contains interbedded tuffaceous and muddy units which are very weak a 

4 | compared to other footwall, Crandon Unit and hanging wall rocks. - . 

8, ; | Movement resulting in fracturing and shearing occurs in these units. 

i ' ‘This creates porous-permeable routes for migrating solutions. | 

{ 3) Contains interbedded strongly chloritic beds which veather readily to 

| . "© Clay in response to strong acid eeneration from leaching sulfides. 

| { 4) The dip of the orebody causes solutions to migrate readily down the 

J | hanging wall contact. | | | 

} As a result of the above factors, the Crandon formation ‘is wre deeply | - —_ 

i | weathered than the footwall (Figure 1A). The most prominent feature is a 

7 weathering “spike” along the hanging wall side of the Crandon formation, which 

a locally may penetrate below the proposed 230 m mine level. | . | 

i | 

i — -6- : |



| i Porosity—Permeability and Argiliization (Figures 1B, 1C): The rocks may 

= be broken down into two major groups: 

i a) Massive sulfide with tuffaceous or chloritic gangue or pyritic tuffs; 

oe volumetrically makes up 60 percent of the Crandon formation. | | 

- i b) Massive sulfide with highly siliceous gangue; volumetrically makes up 

i 40 percent of the Crandon formation. | 

Each type reacts differently to weathering. The rocks of the first group tend 

i to contain abundant in situ and transported clay near the surface. In situ | 

= clay develops from the breakdown of chlorite, sericite and feldspar during . 

q . chemical weathering. Very close to the surface, some of this clay appears to | | 

{ _ be transported short distances, filling in available porosity. This tends to | 

7 ° nake the upper several meters less permeable than one might expect. With So 

i depth, however, less clay is produced. Since less clay is available to piug up 

i leach porosity, the rocks are, overall, more porous and permeable. 7 | 

a The gossan which results from the oxidation of the chloritic massive | | 

f sulfide dominantly consists of fine-grained, hydrous iron oxides of hematite, 

_ | goethite and jarosite. It has a tendency to be relatively non-porous because a 

J | of a lack of siliceous framework, the fine-grained texture, and interstitial . 

j clay resulting from the breakdown of minerals (feldspars, micas, chlorites, 

| | etc.). | | . | 

i Rocks within the second group, commonly referred to as siliceous massive 

, sulfide, respond somewhat differently to weathering than the first group. | 

i Since the rocks consist almst entirely of sulfide and quartz, very Mttle clay an 

I is produced by the weathering process. Leaching is the dominant destructive 

7 agent. First, sphalerite leaches out, followed by quartz going into solution. 

i The resulting rock is highly porous and >ermeable. Near the surface, the . 

i sulfide is commonly oxidized, producing a highly siliceous, cellular iron oxide



i boxwork, which is very porous and permeable. Within a few meters of the - | | 

oe subcrop, this gossan appears to contain some clay. Much of this is probably 

i transported clay from adjacent clay-rich horizons. Whatever the ‘source, it | 

5 does have a tendency to reduce the porosity-permeability somewhat, but not 

. nearly to the level of the gossan. developed from massive sulfide with a 

{ tuffaceous or chloritic gangue. Where this siliceous gossan is in contact vith | 

t the glacial material, ome might expect this to be receptive to any water which 

. will be coming through the glacial material. 

| i Below the proposed 140 m mine level, the stronger weathering takes the | 

- form of a “spike” in cross-sectional view, or a “slot” in three-dimensional oe 

i . view. It commonly penetrates to the 185 m level and locally penetrates below 

tI the 230 m level. Margins are generally sharp, going from strongly weathered 7 

: rock to fresh rock in relatively short distances. | . . 

a | Leaching is the most common destructive agent in the spike. Usually, the | 

; spike follows a tuff or chlorite-rich massive sulfide. Usually, there is some - 

- t . evidence of minor shearing, which opened up cracks for the acidic circulating | 

5 groundwaters to do their destructive work. The acidic solutions not only | 

: | developed clays, but the clays have commonly gone into solution, resulting in a 

| | highly porous and permeable zone. When this zone is tapped by underground 

workings, large volume water flows may be expected until the storage 

| i coefficient has been depleted. | 

ie Oxidation (Figure 1D): Oxidation in the massive sulfide is either | 

7 | non-existent or total. Totally oxidized massive sulfide produces a classic | 

| i "gossan.” Gossan is defined as a ferruginous deposit consisting principally of 

a hydrated oxide of iron, and has resulted from oxidation and removal of the 

- sulfur as well as the zinc and copper. The basal contact of the gossan is | | 

i hairline sharp. Because of lack of drill hole information, the extent of the



| J | go ssan is unknown. It is known, however, to be present in some places and - | | 

. absent in others. a | 

i Hypo gene Mineralization (Figure 1E): The reduction in primary sulfides 

_ near the surface is due solely to oxidation and leaching. Sphalerite is one of 

i the first minerals to gp into solution as a result of leaching by groundwaters. 

f The strongly weathered rocks are nearly totally leached of sphalerite while -the - 

| | lesser weathered rocks show progressively less leaching of sphalerite. 

i Supergene Mineralization (Figure 1F): The gossan has been enriched in | 

a gold and silver. They probably occur dominantly as native elements, having : 

{ been concentrated as the sulfides oxidize. Beneath the gossan, within the zone | 

i | of moderate-strong leached sulfides, traces of elemental silver or silver | 

° sulfosalts may be present. | , 

; a In the western half of the deposit, significant chalcocite [Cu9S] | 

: enrichment has occurred in the strongly leached massive sulfide beneath the. 

_ gossan. Chalcocite occurs primarily as replacement of pyrite grains. These 

i enriched zones are very irregular in shape and distribution and may or may not 

| | be of mineable grade. | , 

i - In the eastern half of the deposit, only traces to local weak zones of . 

i chalcocite are present in the leached sulfides beneath the gossan. The main 

ss reason is the absence of a near source of copper-rich stringer sulfides, from 

| which copper could be leached and redeposited at depth as chalcocite. Also in 

- the eastern half, local small to mdest quantities of secondary zinc minerals 

i such as hemimorphite [Zn,(Si707)(0H)5 °H20] and smithsonite [ZnC03] | se 

| are present. The secondary zinc minerals do not exist in such quantities as to 

” - be economic by themselves. 
J | - | | | 

i a oe



i Hanging Wall | | 7 : | 

- The hanging wall rocks react much differently to the weathering pro cesses 

i than either the Crandon Unit or the footwall, primarily for the following two 

7 reasons: | | | 

f 1) The rocks are a relatively homgeneous, non-siliceous, fine-grained | . 

: | _ chloritic tuff. | - = | 

2) There are only very small amunts (<1 percent) of sulfides present. | 

i | Because of pervasive argillization in a cone-shaped zone above the 140 m 

| level (Figure 1C), the rocks are very weak compared to Crandon Unit and | . 

| i footwall rocks. Compressive strengths in weakly argillized rock are generally - 

| fi in the 2,000-5,000 psi range. In the strongly argillized rock, the strengths | 

- : are considerably less than 2,000 psi. Measurements are difficult in this - 

i _ Tange, both because it may be hard to find a piece big enough m test, and our | | 

i equipment is not sensitive in the <1,000 psi range. : 7 

. | It would be difficult and expensive to drive drifts in the mderately | 

f argillized hanging wall. If at all feasible, it would be best to get into - 

| ; 7 non-argillized hanging wall, or go into the footwall, where rock strengths at , 

a the same mining level may be 5-10 times as strong. | | 

j Porosity-Permeability and Argillization (Figures 1B-1C): Because the rock 

on is a-non-siliceous chloritic tuff, the primary weathering agent has been | 

I pervasive argillization. Since there are no pyrite or base metal sulfides, 

| there is no porosity created by their leaching. The chlorite, sericite and : 

fi feldspar in the chloritic tuff will alter to various clays in response to - ee 

i chemical weathering. The deepening of the strong and moderate weathering base 

toward the Crandon formation is a chemical weathering response to the acidic 

i groundwater solutions generated by the leaching of sulfides from the Crandon - 7 . 

5 formation. | | 

i oe -10-



f The weak porosity-permeability which exists is caused almst entirely by 

so leaching of the fillings of mictoveinlets. As the microveinlets begin to open | 

i up from leaching, they are called fractures. As should be expected, fracture 

i intensity is a function of proximity to the surface. Below the weak weathering 

zones, fractures average perhaps one per 10-50 feet. In the weak weathering 

' zone, fractures average one per 5-10 feet. In the moderate weathering zone, 

— fractures average one per 1-5 feet. In the strongly weathered zone, fracturing 

i is highly variable, ranging from 10 per foot to one per two feet. : } 

| Oxidation (Figure 1D): Oxidation is very extensive in the hanging wall, . 

' primarily because. there is very little sulfide (<l percent ) to oxidize. The 

i | quantity of oxygen in circulating groundwater is sufficient to oxidize isolated | 

a. . grains of pyrite. This is strictly a precise chemical reaction, taking X 7 | 

i | pounds of oxygen to oxidize X pounds of pyrite. This is dramatically . . 

7 illustrated in figure LD by the presence of a few local lens of 2-5 percent 

| pyrite which exist in the hanging wall. Even within a totally oxidized | 

I environment, the pyrite in these lens is not touched by oxidation. The weakly 

i oxygenated groundwaters were rapidly depleted in oxygen when they attacked the | 

lens of 2-5 percent pyrite, whereas they were able to oxidize the trace amounts 

fi of pyrite in the rocks surrounding those lens. 

i - PLANS AND CROSS SECTIONS __ 

i Actual plans and cross sections drawn to scale are included as part of | 

this report for several reasons: 

I 1) To discuss the construction and interpretative accuracy of the cross 

i sectional profiles. | 

] 2) To illustrate our current level of understanding of the size, shape : 

i and distribution of the actual weathering conditions which exist at | 

| | | the Crandon deposit. | 

i a -i- | | |



. 3) To discuss some of the known existing conditions which will require ) 

| more than routine attention during mining. - 

J 4) To discuss the nature of the contact between the glacial overburden | 

f a and the subcrop- | | | 

Construction and Interpretation | | 

' Cross sectional profiles of weathering are constructed from drill wWle - © / 

: Gata. Generally, from one to three drill holes exist on 4&4 cross section 

| i between the subcrop and the 230 m level. Because of the paucity of detailed 

f arill data, it is important to consider drill hole information on adjacent ~ | 

: | cross sections (40 meters away) when drawing the weathering profiles. It is | . 

| i | also important to have a good knowledge of the ceneral behavior of the various | 

as destructive processes in the particular rock type under consideration. This is i 

i why the weathering characteristics and patterns discussed earlier in the : | 

| - generalized cross sections are crucial knowledge to good interpretation. As 

this knowledge has increased with time, the accuracy of the iuterpretations on a 

| i the cross sections has improved. This remains a dynamic rather than a static | 

i condition. Interpretations in the future will continue to be a little better | 

oo than they are today, as our knowledge of weathering characteristics and - 

i | behavior continues to improve. ; 

| Size, Shape and Distribution of Weathering | | 

| i The shape and distribution of the various weathering conditions can be 

‘ 7 best understood by viewing both plans and cross sections (Figures 2-10). The | 

: plans were constructed from 50 cross sections, by measuring the position of the a 

I weathering profile contacts on a particular mining level. | 

| The greatest level of detail we know about weathering at the present time 

i is represented on the cross sections and plans. The confinement of the 7 

i moderate and strong weathering cones to the Crandon Unit and hanging wall 

i : -12- | |



i contact is well illustrated in Figures 2 and 3... The trench, a slot-like zone 

| of moderate and strong weathering, has irregular margins and is pod-like in 

i areal distribution. Smooth rolling margins reflect the paucity of detailed 

_ drill hole information, which could make some margins quite irregular in shape. 

| i Figures 5 and 6 were constructed in an area of high aril hole density, 

J and therefore, reflect actual conditions and profile shapes with a much higher 

- . degree of assurance than other cross sections. The holes were drilled 

& specifically for the purpose of determining detailed weathering characteristics 

A and profile shapes. Five verticai and two angle holes were used in the 7 

: . construction of Figure >. It is remarkable how consistent the profile is with 

: I the hypothetical mdel of Figure 1A. Four vertical and one angle holes were : 

; "used in constructing Figure 6. The irregular profile contacts and root-like 

i - projections illustrated in this section can certainly be expected to exist on | 

a | other sections where the current level of information only allows for straight 

| line Or smooth projections at this time. 

i From our current level of understanding, it is unlikely that any ma jor 

| | significant weathered zone creater than the drill hole spacing (100-200 feet) 

i has been missed. Small pockets of stronger weathering and irregularities in - 

J the currently defined zones do exist, however, but will never be defined until 

| underground development begins. There mist be enough flexibility in any 

i predevelopment mining pian to account for such irregularities. 

[ | To further illustrate the nature and character of the weathering, several | 

color photographs are included at the back of this report. The majority of the Ot 

i photographs show 30 feet of core per picture, and the general character of a 

| particular weathering zone can be observed. A few close-up shots help | 

5 illustrate some of the detailed aspects of a particular weathered zone. - 

i 
i | — -13- :



f a 
i Weathering Conditions Related to Mine Planning | . | 

| | Only general conditdons will be discussed which pertain to either the a 

i footwall or Crandon Unit, and relate to several stopes. Minute details unique 

i to one particular stope will not be discussed. | | 

. Footwall: In the footwall, the most obvious problem above the 95 m level 

i | is the pervasive mderate leaching. The porous and permeable rocks could act / 

: as a channel for the lateral migration of groundwater if a sink is developed. 

i Mining in this environment will be wet, either until the storage capacity is 

{ depleted or until recharge is reduced or cut off. . 

/ . Crandon Unit: Perhaps the area of most concerm is the hanging wall | ; | 

i _ contact of the ore zone. It is along this contact that often the strongest _ 

es weathering is concentrated, and the most strongly bedded and foliated rocks © - 

| 5 exist (Figures 2-10). Such a condition creates potential for excessive _ | OO 

gy dilution, if left unchecked during mining. Such an environment is not : 

pervasive, however, and local conditions mst be evaluated on a stope by stope _ 

. i | basis. | | | 

| af A second area of concern is a deep, root-like projection of mderate and | 

a strong weathering which penetrates below the 230 mining level between east-west 

i | coordinates 94 320 and 94 520. This zone is of concern because it is within 

| several of the initial mining stopes. Special attention must be given to any 

i potential dilution and water inflow which may exist. Figure 3 best illustrates 

f : this zone, as well as two others in the western half of the Crandon Unit at | 

| | approximately 93 760 and 93 600. Volumetrically, these zones represent less a 

i than 5 percent of the ore beneath the 230 level. | 

i A third area of concern is the mderate to strong leaching of much of the 

weathered rock. Until the storage capacity of the porous area is drained, 7 

5 working conditions will be wet during development of the porous areas. Weak 

i : ~14- . | | |



f ; me 
: compressive. strengths are also associated with the mre heavily leached zones. 

This type of environment is. confined primarily within the moderate and strong | 

j weathering outlined in Figures 2 and 3. 

: Hanging Wall: The most obvious problem in the hanging wall is low 

| compressive strengths associated with mderately and strongly weathered, 

i pervasively argillized rock (Figures 1A, B). As a general rule, compressive 

7 strengths above the 95 m level would need continuous support, as well as some 

f areas between the 95 m and 140 m levels. As more point load data are acquired, 

there will be mre areas within which reasonably accurate compressive strengths | 

f _ may be determined. —_ | | 

| - Subcrop Contact Zone : : | | 

so The immediate contact of the subcrop with the glacial debris is of . 

{ importance because it is more resistive to the flow of water than either the 

i - glacial debris above, or the weathered rock below. This is true because 

chemical weathering at the contact is strongest, and there is generally an 

f abundance of iron—magnesium and feldspathic silicates from which clays have | 

| developed. | | . 

i - Details of the character of the upper weathered zones have been discussed 

i under the generalized illustrative cross section portion of this report. To 

summarize: | 

§ Footwall: _ | : | 

- Has a tendency to be a little leaky because the rock is siliceous, 

i moderately leached, with only modest clay development. In the eastern mot 

i one-half of the area, it is not siliceous and weathers to an impermeable 

clay-rich cap. | | | 

a Crandon Unit (west half): | ” 

i Massive sulfide with chloritic gangue and interbedded tuffs result in a 

| . very impermeable clay-rich weathered cap. 

i | —  -15- a



i Crandon Unit (east half): | | sO | | 

Sixty percent siliceous massive sulfide which weathers to a porous 

| cellular boxwork gossan with minor clay. Forty percent chloritic 

oe oe massive sulfide, tuffs and argillite, which weathers to an impermeable | 

i 7 clay-rich cap. | | 

| Hanging Wall: | | . Lo 

Weathers to a strong pervasive clay to considerable depths. 

i | Permeability is very low. | 

t : 

i . 
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