
A Lagrangian-Lagrangian Framework for the Simulation of Fluid-Solid Interaction

Problems with Rigid and Flexible Components

By

Arman Pazouki

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Mechanical Engineering)

at the

UNIVERSITY OF WISCONSIN–MADISON

2014

Date of final oral examination: 04/30/2014

The dissertation is approved by the following members of the Final Oral Committee:

Dan Negrut, Associate Professor, Mechanical Engineering

Daniel J. Klingenberg, Professor, Chemical and Biological Engineering

William J. Likos, Associate Professor, Civil and Environmental Engineering

Krishnan Suresh, Associate Professor, Mechanical Engineering

Mario F. Trujillo, Assistant Professor, Mechanical Engineering



c© Copyright by Arman Pazouki 2014

All Rights Reserved



i

This thesis is dedicated to my parents, Masoumeh and Aliasghar Pazouki, my first and best

teachers. Thank you for your endless love, support, and encouragement.



ii

ACKNOWLEDGMENTS

I would like to thank my advisor, Professor Dan Negrut, for his guidance and support. I would

also like to thank the committee members for sharing their expertise and for their time. I very

much enjoyed and benefited from many insightful conversations that I have had with my colleagues

and friends in the Simulation-Based Engineering Laboratory, particularly with Dr. Radu Serban,

Hammad Mazhar, and Andrew Seidl. Finally, I am so grateful to my family, whose unconditional

love and support means so much to me.



DISCARD THIS PAGE



iii

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Smoothed Particle Hydrodynamics (SPH) . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1 SPH for fluid dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 General rigid body dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Absolute Nodal Coordinate Formulation (ANCF) of flexible objects . . . . . . . . 10

3 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.1 Fluid free-surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Periodic BC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.3 Inflow and outflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.4 Wall boundary condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Fluid-solid interaction using Boundary Condition Enforcing (BCE) markers . . . . 19
3.3 Solid-solid short range interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Dry friction model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.2 Lubrication force model . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Time integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.1 Dual-rate integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



iv

Page

4 Advanced computing aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 GPU hardware and programming model . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Proximity calculation and neighbor search . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Proximity computation-Approach 1: Optimized memory . . . . . . . . . . 30
4.2.2 Proximity computation-Approach 2: Optimized process . . . . . . . . . . 30
4.2.3 Proximity computation-concluding remarks . . . . . . . . . . . . . . . . . 32

5 Validation studies and further numerical experiments . . . . . . . . . . . . . . . . . 34

5.1 Particle suspension: A validation study . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1.1 Transient Poiseuille flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1.2 Particle migration in 2D Poiseuille flow . . . . . . . . . . . . . . . . . . . 36
5.1.3 Particle migration in pipe flow . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1.4 Radial distribution of particles in suspension . . . . . . . . . . . . . . . . 37
5.1.5 Effect of Reynolds number . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Particle suspension: Further numerical experiments . . . . . . . . . . . . . . . . . 41
5.2.1 Effect of particle rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.2 Effect of particle concentration . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2.3 Effect of inter-particle distance . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.4 Effect of particle asymmetry . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.5 Effect of particle size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Investigation of fluid-flexible beams interaction . . . . . . . . . . . . . . . . . . . 46
5.3.1 Floating beam in Poiseuille flow . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.2 Flexible cantilever immersed in fluid: Effect of viscosity . . . . . . . . . . 50
5.3.3 Impulsively started motion of cantilevers in channel flow: Effect of elasticity 50

6 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Demonstration of technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.1 Flow cytometry using microfluidic techniques . . . . . . . . . . . . . . . . . . . . 61
7.2 Dense particle suspension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.3 Microscale numerical simulation of flow in porous media . . . . . . . . . . . . . . 64
7.4 Immersed deformable objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.5 Interacting rigid and flexible objects in channel flow . . . . . . . . . . . . . . . . . 67

8 Directions of the future work and preliminary results . . . . . . . . . . . . . . . . . 73

8.1 New numerical methods: Implicit integration for SPH . . . . . . . . . . . . . . . . 73



v

Page

8.1.1 Incompressible fluid flow on a grid . . . . . . . . . . . . . . . . . . . . . 73
8.1.2 Incompressible SPH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
8.1.3 Implicit method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.1.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.1.5 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.2 Using SPH to investigate challenging applications . . . . . . . . . . . . . . . . . . 90
8.2.1 Effect of particle shape on the behavior of particle suspension and sedi-

mentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.2.2 Ice-structure interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.3 Using MPI-enabled high performance computing for faster solution of larger prob-
lems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

APPENDIX Partial derivatives on staggered grid . . . . . . . . . . . . . . . . . . . 108



DISCARD THIS PAGE



vi

LIST OF TABLES

Table Page

5.1 Flow parameters used for the validation of transient Poiseuille flow . . . . . . . . . . 36

6.1 Time required for advancing the rigid body dynamics simulation by one time step as
function of problem size (number of rigid bodies, Nr) . . . . . . . . . . . . . . . . . 55

6.2 Time required for advancing the flexible body dynamics simulation by one time step
as function of problem size (number of flxible bodies, Nf ) . . . . . . . . . . . . . . . 56

6.3 Time required for advancing a fluid dynamics simulation by one time step as function
of problem size (number of SPH markers, Nm) . . . . . . . . . . . . . . . . . . . . . 56

6.4 Time required for advancing the dynamics of FSI problems by one time step. The
simulation times are provided for FSI problems with fixed number of SPH markers
and increasing number of rigid bodies . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.5 Time required for advancing the dynamics of FSI problems by one time step. The
simulation times are provided for FSI problems with fixed number of SPH markers
and increasing number of flexible bodies, for two different values of the multi-rate
integration factor τm = ∆tSPH/∆tANCF . . . . . . . . . . . . . . . . . . . . . . . . 59

6.6 Time required for advancing the dynamics of combined FSI problems by one time
step. The simulation times are provided for FSI problems of increasing size . . . . . . 59



DISCARD THIS PAGE



vii

LIST OF FIGURES

Figure Page

2.1 Illustration of the kernel W and its support domain S. SPH markers are shown as
black dots. For 2D problems the support domain is a circle, while for 3D problems
it is a sphere. The radius of the support domain is defined as a multiple, κ, of the
kernel’s characteristic length, h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Fluid free-surface modelled with SPH. The set of missing exterior, boundary, and
interior markers are denoted as E, B, and I respectively. . . . . . . . . . . . . . . . . 16

3.2 Periodic boundary condition in SPH. . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Schematic of the inflow boundary condition [66]. The inflow zone includes a set of
ghost markers. The periodic boundary condition is applied to the ghost domain in the
flow direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Fluid-solid interaction using BCE markers attached to a body: (a) a rigid body with
the velocity, V, and angular velocity, ω, shown at its center of gravity, C.G.. The
markers velocities are represented by {va,vb, ...,vg}; (b) a flexible beam. BCE and
fluid markers are represented by black and white circles, respectively. The BCE mark-
ers positioned in the interior of the body should be placed on and below the surface
up to a depth no larger than the size of the compact support of the kernel W . . . . . . 20

3.5 A typical contact in DEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Illustration of the spatial subdivision method used for proximity computation in 2D.
The circles represent the domain of influence of each marker; i.e., the support domain.
For clarity, a coarse distribution of markers is shown. In reality, the concentration of
markers per bin is much larger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Velocity profile of transient Poiseuille flow obtained from simulation (dots) and series
solution (continuous lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



viii

Figure Page

5.2 Simulation of plane Poiseuille flow: lateral position as a function of dimensionless
time of neutrally buoyant circular cylinders released from different initial positions.
Results are within 1% relative error of those reported in [54, 98]. . . . . . . . . . . . . 38

5.3 Migration of rotating and non-rotating neutrally buoyant spheres in pipe flow. . . . . . 39

5.4 Particle radial distribution as a function of non-dimensional distance L, compared to
the experiment [116] at: (a) L = 0, (b) L = 0.08, (c) L = 0.16, (d) L = 0.32, (e)
L = 0.69. Note that rigid bodies cannot be initialized in the region close to the wall;
i.e., 0.9 ≤ r/R ≤ 1, due to their finite size. . . . . . . . . . . . . . . . . . . . . . . . 40

5.5 Effect of Re on the tubular pinch effect for Re ∈ [1, 1400] and two particle size ratios,
λ = 0.11 and λ = 0.15. The results are compared to data provided by Matas et
al. [74], Yang et al. [131], and Shao et al. [120]. . . . . . . . . . . . . . . . . . . . . 42

5.6 Particle radial distribution at L = 0.69, normalized by initial concentration, plotted
for six different initial concentrations in the range of 4 through 128 particles/cm3

equivalent to φ ∈ [0.109, 3.488] %. Results are compared to a reference experimental
distribution obtained in [116] for concentration of 1 particles/cm3. . . . . . . . . . . 44

5.7 Particle arrangement at L = 0.32 for particle concentrations of (a) 32 particles/cm3

and (b) 64 particles/cm3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.8 Blunting of the velocity at φ = 6.01% compared to velocity profile at φ = 0%. . . . . 45

5.9 Schematic of simulation setup used to investigate the effect of inter-particle distance
on radial migration where the fluid flow and periodic boundary are in the x-direction
(top). Effect of inter-particle distance (spacing) on radial stable position (bottom). . . . 46

5.10 Particle trajectories as a function of a non-dimensional travel distance along the pipe
axis x/R, plotted for several inter-particle distances increasing monotonically from
d1 to d13. The results demonstrate smaller, yet faster, radial migration for larger
inter-particle distances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.11 Effect of particle skewness on the radial stable position. . . . . . . . . . . . . . . . . 47

5.12 Effect of sphere size on the radial stable position. . . . . . . . . . . . . . . . . . . . . 48

5.13 Time snapshots of a flexible cantilever moving in vacuum under the action of gravity.
The darker colors denote earlier stages of the motion. . . . . . . . . . . . . . . . . . . 49



ix

Figure Page

5.14 Convergence test of a soft cantilever beam falling under gravity. Trajectory of the
beam tip is shown for different discretization resolution. . . . . . . . . . . . . . . . . 49

5.15 Comparison of the dynamics of a rigid cylinder and of a corresponding stiff de-
formable beam under accelerating channel flow: (a) beam orientation; (b) center ve-
locity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.16 Motion of a cantilever beam in fluid of different viscosities: (a) tip displacement in x
direction; (b) tip displacement in z direction. . . . . . . . . . . . . . . . . . . . . . . 52

5.17 Arrays of flexible cantilever beams in laminar channel flow. The beams, laid out in an
uniform grid, are anchored at an angle of 30◦ in the direction of the flow. . . . . . . . 53

5.18 Motion of a cantilever beam of different elasticity modulus in laminar channel flow:
(a) tip displacement in x direction; (b) tip displacement in z direction. . . . . . . . . . 54

6.1 Scaling analysis of Chrono::Fluid for rigid body dynamics, flexible body dynamics,
and fluid dynamics as function of problem size (Nr, Nf , and Nm, respectively). The
coefficients of determination, R2, are specified to each linear regression. Virtually
exact linear trends are indicated since R2 ≈ 1. . . . . . . . . . . . . . . . . . . . . . . 57

6.2 Scaling analysis of Chrono::Fluid for FSI problems: simulation time as function of
combined problem size. In this experiment, the volume of the simulation domain is
increased, up to 32 times the volume of the initial domain, leading to proportional
increases in the number of SPH markers and of solid objects (both rigid and flexi-
ble bodies) as shown in the bottom plot (see also Table 6.6). As illustrated by the
top graph, the simulation time for an one-step dynamics update varies linearly with
problem size. The coefficients R2 are specified for each linear regression. . . . . . . . 60

7.1 Numerical investigation of flow cytometry using asymmetric channel: (a) experiment
setup showing the channel and the particle feeding valve; (b) snapshot of the numerical
simulation; (c) channel profile used in experiment and simulation. All dimensions are
in mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.2 Direct numerical simulation of a dense suspension of ellipsoids in 3D square channel
flow. Only the mid-section of the flow, which shows the rigid ellipsoids suspended in
the fluid, is shown. The coloring scheme represents fluid velocity: from zero (blue) to
maximum (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



x

Figure Page

7.3 Direct numerical simulation of a dense suspension of ellipsoids in 3D square channel
flow. The fluid was removed to show a perspective view of the rectangular channel
and the ellipsoids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.4 Example simulation of flow in porous media. The entire domain is shown in (a). For
a clear visualization, the fluid and porous matrix are partially removed in (b) and (c),
respectively. The color represents fluid velocity: from zero (blue) to maximum (red).
The maximum flow velocity is approximately 6 mm/s, i.e. Re ≈ 6. . . . . . . . . . . 69

7.5 Example simulation of flow over a dense array of interacting beams. . . . . . . . . . . 70

7.6 Example simulation of flow of rigid bodies within an array of deformable beams. For
a clear visualization, only parts of the domain are shown in each picture: (a) beams;
(b) beams and rigid bodies; (c) beams, rigid bodies and fluid flow, cut at different
sections. The color represents the velocity: from zero (blue) to maximum (red), with
V fluid
max = 0.045 m/s, V rigid

max = 0.041 m/s, and V beam
max = 0.005 m/s. . . . . . . . . . . . 71

7.7 Flow of a suspension of rigid and deformable objects. Parts of the rigid and fluid
phase are removed for a clearer illustration. . . . . . . . . . . . . . . . . . . . . . . . 72

8.1 A typical staggered grid cell: (a) positions of velocities and pressure; (b) indexing
convention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.2 Schematic of the domain indexing in staggered grid taxonomy. . . . . . . . . . . . . . 75

8.3 Cavity flow solution using staggered grid at Re = 100. The contours show: (a)
velocity in x direction; (b) velocity in y direction; (c) magnitude of velocity; (d)
pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.4 Velocity profile of transient Poiseuille flow obtained from implicit SPH simulation
(dots) and series solution (continuous lines). . . . . . . . . . . . . . . . . . . . . . . . 89

8.5 Offshore wind turbine designs for shallow and deep water. . . . . . . . . . . . . . . . 91

8.6 Offshore structure design to reduce the ice loading: (a) breaking ice cones installed
at offshore substructures (Barker et al. [9]); (b) crushing failure mechanism of ice
against a vertical face; (c) flexural failure mechanism of ice against an ice cone. . . . . 92

8.7 Comparison of ice pressure to ice strength ratio versus substructure diameter to ice
thickness ratio as recommended by DNV [130] to that obtained from field measure-
ments (field data from Timco et al. [127], Kärnä et al. [58], Brown & Määttänen [12]. 93
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ABSTRACT

This work is concerned with formulating and validating a Lagrangian-Lagrangian (LL) approach

for the simulation of fully resolved Fluid Solid/Structure Interaction (FSI) problems. In the pro-

posed approach, the method of Smoothed Particle Hydrodynamics (SPH) is used to simulate the

fluid dynamics in a Lagrangian framework. The solid phase is a general multibody dynamics sys-

tem composed of a collection of interacting rigid and deformable objects. While the motion of

arbitrarily shaped rigid objects is approached in a classical 3D rigid body dynamics framework,

the Absolute Nodal Coordinate Formulation (ANCF) is used to model the deformable components,

thus enabling the investigation of compliant elements that experience large deformations with en-

tangling and self-contact. The dynamics of the two phases, fluid and solid, are coupled with the

help of Lagrangian markers, referred to as Boundary Condition Enforcing (BCE) markers used to

impose no-slip and impenetrability conditions. The BCE markers, which are associated both with

the solid suspended bodies and with any confining boundary walls, are distributed in a narrow layer

on and below the surface of solid objects. The solid-solid interaction is known to have a crucial

effect on the small-scale behavior of fluid-solid mixtures. The dry encounter of solid surfaces is

resolved herein through a penalty based approach. However, using this model for the short range

interaction of solid surfaces in fluid media does not follow the real physics of wet interaction. To

accommodate this, a lubrication force model consistent with SPH is adopted herein to capture the

short range interaction of arbitrary shapes in fluid. The ensuing fluid-solid interaction forces are

mapped into generalized forces on the rigid and flexible bodies and subsequently used to update

the dynamics of the solid objects according to the rigid or flexible body motion.

The software implementation of the proposed LL approach is used to investigate the two- and

three-dimensional (2D, 3D) pipe flow of dilute suspensions of macroscopic neutrally buoyant rigid



xix

bodies at flow regimes with Reynolds numbers (Re) between 0.1 and 1400. Several validation

studies demonstrated good predictive attributes of the proposed LL approach. The simulation

results obtained indicate that (1) rigid body rotation affects the behavior of a particle laden flow;

(2) an increase in neutrally buoyant particle size decreases radial migration; (3) a decrease in inter-

particle distance slows down the migration and shifts the stable position further away from the

channel axis; (4) rigid body shape influences the stable radial distribution of particles; (5) particle

migration is influenced, both quantitatively and qualitatively, by the Reynolds number; and (6) the

stable radial particle concentration distribution is affected by the initial concentration.

The software implementation of the approach, called Chrono::Fluid, is available as an open-source

software package. In the multi-threaded, multi-scale High Performance Computing (HPC) imple-

mentation the collective system states are integrated in time using an explicit, multi-rate scheme.

To alleviate the heavy computational load, the overall algorithm leverages parallel computing on

Graphics Processing Unit (GPU) cards. Performance and scaling analysis are provided for simula-

tions scenarios involving one or multiple phases with up to tens of thousands of solid objects.

The parallel LL simulation framework developed herein does not impose restrictions on the shape

or size of the rigid bodies and was used in the numerical investigation of several problems. This

included the real scale analysis of flow cytometry using microfluidic channel, dense and colloidal

particle suspension, microscale simulation of flow in porous media, deformation and vibration

study of immersed deformable objects, and interacting rigid and flexible objects in channel flow.
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Chapter 1

Introduction

Engineers commonly rely on prototypes and physical testing when performing design and anal-

ysis tasks. Unfortunately, such undertakings can be expensive and time consuming. Because com-

putational hardware continues to advance in terms of both processing speed and memory size, a

trend is growing in which computer simulation is used to augment and, in some cases, replace

large amounts of experimental work. With increasing computational power, engineers are able to

perform faster, larger, and more accurate simulations. Computer simulation has several advantages

over physical experiments. Through simulation, engineers may study a range of parameter values

that would prove costly or impractical to study experimentally. Moreover, computer simulation can

produce representative data that experimental measurements could never achieve. Experimental in-

sights are limited by the position, fidelity, and number of sensors, whereas a simulation inherently

tracks the state of every component of the system. For example, simulation can generate, in a

non-intrusive fashion, the set of forces acting between all the individual bodies in a suspension

flow.

Current simulation capabilities are sometimes inadequate to capture phenomena of interest.

This problem is manifest when simulating the dynamics of Fluid-Solid Interaction (FSI) systems,

which may contain tens of thousands of rigid and deformable bodies that interact directly or

through the fluid media. Solving such large problems will require significant improvements in

terms of both algorithms and implementation.

To alleviate computational limitations, numerical simulation approaches devised for the gen-

eral category of FSI problems usually suppress some physics depending on the specific applica-

tion. For instance, several approaches have been proposed to study characteristics of the flow of
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particle suspensions. These include Eulerian-Eulerian (EE) approaches, where the solid phase is

considered as a continuum [30, 35, 133]; Lagrangian particle tracking, also known as Lagrangian

Numerical Simulation (LNS), approaches which either consider a one-way coupling of fluid and

solid phase, or else introduce a collective momentum exchange term to the fluid equation [2, 77];

Eulerian-Lagrangian (EL) approaches, where the Lagrangian solid phase moves with/within the

Eulerian grid used for fluid simulation [36, 50, 64]; and Lagrangian-Lagrangian (LL) approaches,

where both phases are modeled within a Lagrangian framework [89, 104, 105]. As in EE method-

ologies, LNS approaches rely on empirical forms of hydrodynamic fluid-solid forces, determined

mostly for dilute conditions where the particle-particle interaction is neglected.

Similar approaches are also applied to the fluid-structure interaction. In this document, the fo-

cus is primarily on the LL approaches, particularly those geared towards large deformation favored

by the multibody dynamics community. Results of studies on problems involving small structural

deformation using a Lagrangian representation of fluid flow are provided in [1, 4, 67].

The body of work on FSI problems using a Lagrangian fluid representation and large structural

deformation is very limited. Schörgenhumer et al. [114] presented a co-simulation approach for

FSI problems. In their approach, they used a heuristic force field to couple the dynamics of the

fluid and flexible objects. The suggested force field, which involves some heuristic parameters to

enforce the fluid-solid coupling, cannot approximate the FSI interaction at a resolution finer than

that of the fluid discretization. In this sense, it is equivalent to all other approaches proposed for

the implementation of wall boundary condition with the caveats that: (1) the procedure of find-

ing the minimum distance between fluid markers and solid surfaces can be prohibitively tedious,

particularly for complex shapes; and (2) the wrong choice of heuristic parameters at a certain flow

condition can result in either an inexact coupling or a stiff force model which can lead to numerical

instability. Additionally, little, if any, is said about the performance of the co-simulation approach.

Similarly, Hu et al. [52] adopted the method of moving boundary to approach the simulation of

FSI problem involving flexible components.

This body of work collects all of the previous contributions described mainly in Pazouki and

Negrut [104,105] and Pazouki et al. [103,106,107], into a unified framework for the simulation of
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FSI problems using advanced computing. The proposed approach is more general than alternative

FSI simulation frameworks [52, 114] in that it introduces a solid-solid interaction model required

for many-body FSI problems. In fact, the main focus of [52] is on the motion of the non-immersed

flexible component in a problem involving a cavity as a single rigid body. In the present work,

support for many-body FSI problems, such as those encountered in suspension and polymer flow, is

provided by incorporating a lubrication force model and scalable rigid and flexible body dynamics.

In addition, validation and investigation studies are provided for the suspension of interacting

rigid and flexible components. Finally, a high performance implementation that leverages parallel

computing on Graphical Processing Unit (GPU) cards is provided. Complete scaling and time

analyses performed herein demonstrate roughly a typical ten-fold speedup compared to the results

provided in [52] for problems of comparable size.

This document is organized as follows. The modeling components for the simulation of fluid

as well as rigid and flexible body dynamics are explained in Chapter 2. The discussion of key nu-

merical algorithms, including the choice of boundary conditions, integration algorithm, fluid-solid

coupling, and solid-solid short range interaction makes up Chapter 3. The HPC-based computa-

tional methodology is explained in Chapter 4. Physics based validations and investigations studies

are presented in Chapter 5. Chapter 6 discusses the performance and scalability analysis of the

framework. Chapter 7 describes the application of the proposed framework in the study of several

problems including flow in porous media, flow cytometry using microfluidic channel, and dense

suspension of rigid and flexible objects. Chapter 8 outlines: (a) several problems that can be ap-

proached via the simulation framework; and (b) several research projects that are at different stages

of completion. A set of conclusions is provided in Chapter 9.
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Chapter 2

Modeling

The proposed FSI simulation framework leverages the method of Smoothed Particle Hydro-

dynamics (SPH) for the simulation of the fluid flow, a Newton-Euler formulation for rigid body

dynamics, and an Absolute Nodal Coordinate Formulation (ANCF) for flexible body dynamics.

These algorithmic components are described in more detail in the following subsections.

2.1 Smoothed Particle Hydrodynamics (SPH)

The term smoothed in SPH refers to the approximation of point properties via a smoothing

kernel function W , defined over a finite support domain S. This approximation reproduces func-

tions with up to 2nd order of accuracy, provided the kernel function: (1) approaches the Dirac delta

function, δ, as the size of the support domain tends to zero, that is lim
h→0

W (r, h) = δ(r), where

r is the spatial distance and h is a characteristic length that defines the kernel smoothness; (2) is

symmetric, i.e., W (r, h) = W (−r, h); and (3) is normal, i.e.,
∫
S
W (r, h)dV = 1, where S is the

domain of function W and dV denote the differential volume. A typical spatial function f(x) is

then approximated by 〈f(x)〉 as

f(x) =

∫
S

f(x′)δ(x− x′)dV

=

∫
S

f(x′)W (x− x′, h)dV +O(h2)

= 〈f(x)〉+O(h2) .

(2.1)
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To simplify notation, in the remainder of this document f(x) is used to represent 〈f(x)〉. Using

Eq. (2.1) and the divergence theorem, the spatial derivatives of a function can be mapped to the

derivatives of the kernel function. For instance, the gradient of a function can be written as

∇f(x) =

∫
∂S

f(x′)W (x− x′, h)·ndA

−
∫
S

f(x′)∇W (x− x′, h)dV ,

(2.2)

where ∂S is the boundary of S and dA is the differential area. By imposing an additional property

for the kernel function, namely that (4) it approaches zero as r increases, i.e., lim
r→∞

W (r, h) = 0,

the first term on the right hand side of Eq. (2.2) vanishes. Note that some additional considerations,

which will be addressed later, are required for the SPH approximation near boundaries.

The term particle in SPH terminology indicates the discretization of the domain by a set of

Lagrangian particles. To remove the ambiguity caused by the use of the term rigid particles in the

context of FSI problems, the term marker will be used herein to refer to the SPH discretization unit.

Each marker has mass m associated to the representative volume dV and carries all of the essential

field properties. As a result, any field property at a certain location is shared and represented by

the markers in the vicinity of that location. Accordingly, the value of a certain function at a given

location is calculated as a weighted sum of the function values at the location of all nearby markers.

The summation weights depend on the distance of the respective markers from the location of

interest and the expression of the kernel function W . This leads for the second approximation

embedded in SPH, which can be expressed as

f(x) =

∫
S

f(x′)

ρ(x′)
W (x− x′, h)ρ(x′)dV

'
∑
b

mb

ρb
f(xb)W (x− xb, h) ,

(2.3)

where b is the marker index and ρb is the fluid density, smoothed at the marker location xb. The

summation in Eq. (2.3) is over all markers whose support domain overlaps the location x. Sev-

eral other properties of the kernel functions are provided in [71]. For instance, the kernel function

should be a positive and monotonically decreasing function of r, which implies that the influence of
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distant markers on field properties at a given location is less than that of nearby markers. Moreover,

for acceptable computational performance and to avoid a quadratic computational complexity, ker-

nel functions have a compact domain of influence with a radius Rs defined as some finite multiple

κ of the characteristic length h, as shown in Figure 2.1. The methodology adopted herein relies on

a cubic spline,

W (q, h) =
1

4πh3
×


(2− q)3 − 4(1− q)3, 0 ≤ q < 1

(2− q)3, 1 ≤ q < 2

0, q ≥ 2

, (2.4)

where q ≡ |r| /h. This kernel function has a support domain with radius 2h, i.e. κ = 2.

Figure 2.1: Illustration of the kernelW and its support domain S. SPH markers are shown as black

dots. For 2D problems the support domain is a circle, while for 3D problems it is a sphere. The

radius of the support domain is defined as a multiple, κ, of the kernel’s characteristic length, h.

2.1.1 SPH for fluid dynamics

The momentum, i.e. Navier-Stokes, and continuity equations describing the fluid dynamics are

given as
dρ

dt
= −ρ∇·v (2.5)

and
dv

dt
= −1

ρ
∇p+

µ

ρ
∇2v + f , (2.6)



7

where µ is the fluid viscosity, f is the body force, and v and p are the flow velocity and pressure,

respectively. In order to obtain the SPH discretization of Eqs. (2.5) and (2.6), an equivalent and

more general set of identities for spatial derivatives will be used herein:

∇p
ρ

=
p

ρσ
∇
(

1

ρ1−σ

)
+ ρσ−2∇

(
p

ρσ−1

)
, (2.7)

ρ∇·v =
∇· (ρσ−1v)− v·∇ρσ−1

ρσ−2
. (2.8)

Two frequently-used SPH discretizations are associated with σ = 1 and σ = 2. While σ = 2 is

used mostly for the simulation of single phase flow, σ = 1 is favored for multi-phase flow since

it results in equal and opposite inter-phase forces. The coherency condition of the discretization

requires the same value of σ in Eqs. (2.7) and (2.8). However, as Oger et al. suggested [94], this

condition can be suppressed. Herein, the values of σ = 1 and σ = 2 are used in Eqs. (2.7) and

(2.8), respectively. This model has been widely used for the single phase flow simulation, see for

instance [84]. As a result, Eqs. (2.5) and (2.6) are discretized at an arbitrary location x = xa within

the fluid domain as

ρ̇a =
dρa
dt

= ρa
∑
b

mb

ρb
(va − vb) ·∇aWab , (2.9)

and

v̇a =
dva
dt

= −
∑
b

mb

[(
pa
ρa2

+
pb
ρb2

)
∇aWab + Πab

]
+ fa . (2.10)

In the above equations, quantities with subscripts a and b are associated with markers a and b (see

Figure 2.1), respectively. It is important to note that these quantities are different from the corre-

sponding physical quantities at locations xa and xb. For instance, ρa, i.e. the density associated to

marker a, is not essentially the same as density at location xa, the latter being computed through

as indicated in Eq. 2.3.

The viscosity term Πab is defined as

Πab = −(µa + µb)xab·∇aWab

ρ̄2ab(x
2
ab + εh̄2ab)

vab , (2.11)

where xab = xa − xb, Wab = W (xab, h), ∇a is the gradient with respect to xa, i.e., ∂/∂xa, and

ε is a regularization coefficient. Quantities with an over-bar are averages of the corresponding

quantities for markers a and b. For instance, ρ̄ab = (ρa + ρb) /2.
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Alternative viscosity discretizations include:

1. The model suggested in [20]:

Π∗ab = − µaµbxab·vab
(µa + µb)ρaρb(x2ab + εh̄2ab)

∇aWab, (2.12)

2. Direct discretization of ∇2 operator [82, 84],

3. The class of artificial viscosity models introduced in [73, 79, 83].

However, using Eq. 2.11 is preferred since it has the following properties: (i) it ensures that the

viscous force is along the shear direction, vab, instead of the particles center line, xab; (ii) it is less

sensitive to local velocities by avoiding the numerical calculation of second derivatives; (iii) it al-

lows for better computational efficiency by removing the nested loop required for the computation

of the∇2 operator; and (iv) it is stated in terms of physical properties, rather than model parameters

like those in artificial viscosity, which are introduced primarily for numerical stabilization through

damping. In the simulation of transient Poiseuille flow discussed in Chapter 5, although virtually

exact results were obtained using Eq. 2.11 [105], the error caused by implementing either Π∗ab or

artificial viscosity were non-negligible.

In the weakly compressible SPH model, the pressure p is evaluated using an equation of

state [82]

p =
cs

2ρ0
γ

{(
ρ

ρ0

)γ
− 1

}
, (2.13)

where ρ0 is the reference density of the fluid, γ tunes the stiffness of the pressure-density relation-

ship, and cs is the speed of sound. To reduce the stiffness caused by using Eq. (2.13) and yet keep

the compressibility below a threshold value, cs is adjusted depending on the maximum speed of

the flow, Vmax. For instance, the values of γ = 7 and cs = 10Vmax, were used throughout this work

to allow a maximum of 1% flow compressibility [82].

The fluid flow equations (2.9) and (2.10) are solved together with

ẋa =
dxa
dt

= va (2.14)

to update the position of the SPH markers.
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The original SPH summation formula calculates the density according to

ρa =
∑
b

mbWab. (2.15)

Equation (2.9), which evaluates the time derivative of the density, was preferred to the above

since it produces a smooth density field, works well for markers close to the boundaries (the free

surface, solid, and wall), and does not exhibit the large variations in the density field introduced

when using Eq. (2.15) close to the boundaries. However, Eq. (2.9) does not guarantee consistency

between a marker’s density and the associated mass and volume [11,81,84]. The so-called density

re-initialization technique [21] attempts to address this issue by using Eq. (2.9) at each time step

and periodically; i.e., every n time steps, using Eq. (2.15) to correct the mass-density inconsistency.

The results reported herein were obtained with n = 10. The Moving Least Squares method or a

normalized version of Eq. (2.15) could alternatively be used to address the aforementioned issues,

see [21, 27].

Finally, the methodology proposed employs the extended SPH approach (XSPH), which pre-

vents extensive overlap of the markers’ support domain and enhances flow incompressibility [80].

This correction takes into account the velocity of neighboring markers through a mean velocity

evaluated within the support of a nominal marker a as

v̂a = va + ∆va, (2.16)

where

∆va = ζ
∑
b

mb

ρ̄ab
(vb − va)Wab, (2.17)

and 0 ≤ ζ ≤ 1 adjusts the contribution of the neighbors’ velocities. All the results reported herein

were obtained with ζ = 0.5. The modified velocity calculated from Eq. (2.16) replaces the original

velocity in the density and position update equations, but not in the momentum equation [21].

2.2 General rigid body dynamics

Given all external forces and torques including impact, contact, and intra-phase interactions,

the dynamics of the rigid bodies is fully characterized by the Newton-Euler equations of motion
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(EOM), see for instance [42]:
dVi

dt
=

Fi

Mi

, (2.18)

dXi

dt
= Vi , (2.19)

dω′i
dt

= J′i
−1
(
T′i − ω̃′iJ′iω′i

)
, (2.20)

dqi
dt

=
1

2
GT
i ω
′
i , (2.21)

and

qTi qi − 1 = 0, (2.22)

where Fi, T′i, Xi, Vi, ω′i ∈ <3 denote the force, torque, position, velocity, and angular velocity

associated to body i, i = 1, 2, . . . , nb, respectively. The quantity qi denotes the rotation quaternion,

whileMi and J′i are the constant mass and moment of inertia, respectively. Quantities with a prime

symbol are represented in the rigid body local reference frame. Given a = [ax, ay, az]
T ∈ <3 and

a quaternion for body i, qi =
[
qix, q

i
y, q

i
z, q

i
w

]T ∈ <4, the auxiliary matrices ã and Gi are defined

as [42]

ã =


0 −az ay

az 0 −ax
−ay ax 0

 and Gi =


−qiy qix qiw −qiz
−qiz −qiw qix qiy

−qiw qiz −qiy qix

 . (2.23)

2.3 Absolute Nodal Coordinate Formulation (ANCF) of flexible objects

The ANCF formulation [119], which allows for large deformations and large body rotations, is

adopted herein for the simulation of flexible bodies suspended in the fluid. While extension to other

elastic elements is straightforward, the current implementation only supports gradient deficient

ANCF beam elements, which are used to model slender flexible bodies composed of ne adjacent

ANCF beam elements. The flexible bodies are modeled using a number nn = ne + 1 of equally-

spaced node beam elements, each represented by 6 coordinates, ej = [rTj , rTj,x]
T , j = 0, 1, . . . , ne;

i.e., the three components of the global position vector of the node, rj , and the three components

of its slope, rj,x = drj/dx, where x is the parametric distance on the beam. This is therefore
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equivalent to a model using ne ANCF beam elements with 6 × nn continuity constraints, but is

more efficient in that it uses a minimal set of coordinates. It is worth noting that formulations

using gradient deficient ANCF beam elements display no shear locking problems [34, 115, 118]

and, due to the reduced number of nodal coordinates, are more efficient than fully parametrized

ANCF elements. However, gradient deficient ANCF beam elements cannot describe a rotation

about its axis and therefore cannot model torsional effects.

Consider first a single ANCF beam element of length `. The global position vector of an

arbitrary point on the beam center line, specified through its element spatial coordinate 0 ≤ x ≤ `,

is then obtained as

r(x, e) = S(x)e , (2.24)

where e = [eTl , eTr ]T ∈ <12 is the vector of element nodal coordinates. With I being the 3 × 3

identity matrix, the shape function matrix S = [S1I S2I S3I S4I] ∈ <3×12 is defined using the

shape functions [119]

S1 = 1− 3ξ2 + 2ξ3

S2 = ` (ξ − 2ξ2 + ξ3)

S3 = 3ξ2 − 2ξ3

S4 = ` (−ξ2 + ξ3) ,

(2.25)

where ξ = x/` ∈ [0, 1]. The element EOM are then written as

Më + Qe = Qa , (2.26)

where Qe and Qa are the generalized element elastic and applied forces, respectively, and M ∈

<12×12 is the constant symmetric consistent element mass matrix defined as

M =

∫
`

ρsASTSdx . (2.27)

The generalized element elastic forces are obtained from the strain energy expression [119] as

Qe =

∫
`

EAε11

(
∂ε11
∂e

)T
dx+

∫
`

EIκ

(
∂κ

∂e

)T
dx , (2.28)

where ε11 =
(
rTx rx − 1

)
/2 is the axial strain and κ = ‖rx × rxx‖/‖rx‖3 is the magnitude of the

curvature vector. The required derivatives of the position vector r can be easily obtained from
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Eq. (2.24) in terms of the derivatives of the shape functions as rx(x, e) = Sx(x)e and rxx(x, e) =

Sxx(x)e.

External applied forces, in particular the forces due to the interaction with the fluid (see Sect. 3.2),

are included as concentrated forces at a BCE marker. The corresponding generalized forces are

obtained from the expression of the virtual work as

Qa = ST (xa)F , (2.29)

where F is the external point force and the shape function matrix is evaluated at the projection onto

the element’s center line of the force application point. The generalized gravitational force can be

computed as

Qg =

∫
`

ρsASTgdx . (2.30)

In the above expressions, ρs represents the element mass density, A is the cross section area, E is

the modulus of elasticity, and I is the second moment of area.

The EOM for a slender flexible body composed of ne ANCF beam elements are obtained by

assembling the elemental EOMs of Eq. (2.26) and taking into consideration that adjacent beam

elements share 6 nodal coordinates. Let ê = [eT0 , eT1 , . . . eTne
]T be the set of independent nodal

coordinates; then the nodal coordinates for the j-th element can be written using the mappingel

er


j

= Bj ê , with Bj =

0 0 . . . I3 0 . . .0

0 0 . . .0 I3 . . .0

 (2.31)

and the assembled EOMs are obtained, from the principle of virtual work, as follows. Denoting by

Mj the element mass matrix of Eq. (2.27) for the j-th ANCF beam element,

Mj =

Mj,ll Mj,lr

Mj,rl Mj,rr

 , (2.32)

where Mj,lr = MT
j,rl and all sub-blocks have dimension 6 × 6. Here, l denotes the left end of the

beam element, i.e., the node characterized by the nodal coordinates ej−1, while r corresponds to

the node with coordinates ej . With a similar decomposition of a generalized element force into

Qj =

Qj,l

Qj,r

 (2.33)
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one obtains

M̂¨̂e = Q̂a − Q̂e (2.34)

where

M̂ =



M1,ll M1,lr

M1,rl M1,rr + M2,ll M2,lr

M2,rl M2,rr + M3,ll

. . .

Mne,rr


(2.35)

Q̂a − Q̂e =



∑
Qa

1,l∑
Qa

1,r +
∑

Qa
2,l∑

Qa
2,r +

∑
Qa

3,l

...∑
Qa
ne,r


−



Qe
1,l

Qe
1,r + Qe

2,l

Qe
2,r + Qe

3,l

...

Qe
ne,r


. (2.36)

Inclusion of additional kinematic constraints, e.g., anchoring the beam at one end to obtain

a flexible cantilever or fixing its position to obtain a flexible pendulum, can be done either by

formulating the EOM as differential-algebraic equations or by deriving an underlying ODE after

explicitly eliminating the corresponding constrained nodal coordinates. The latter approach was

used in all simulations involving flexible beams anchored at one end, pivoted at one end, and

pivoted at both ends as further discussed in Chapters 5 and 6.
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Chapter 3

Numerical solution

The modeling components outlined in Chapter 2 describe frameworks for the simulation of

fluid, rigid-, and flexible-body dynamics, independently. Several details are left to be addressed

regarding the boundary condition treatment, self and intra-phase interactions, and time integration

algorithms, which are all addressed in this chapter.

3.1 Boundary conditions

Boundary conditions have significant effect on the solution of the Navier-Stokes equations. The

most prevalent boundary conditions, namely free-surface, periodic, inflow and outflow, and rigid

wall boundary conditions are discussed herein in conjunction with the weakly compressible, time

explicit, SPH model. Alternative boundary conditions, consistent with the implicit, constrained,

SPH formalism are discussed in Chapter 8.

3.1.1 Fluid free-surface

Imposing the free-surface boundary condition in SPH is more straightforward than in Eule-

rian approaches in that there is no need for surface tracking or mesh consideration. Generally, no

special treatment is required for free-surface as long as Eq. (2.5) is used exclusively for density up-

date. The fluid surface can be approximated by markers whose partition of unity,
∑
b

(mb/ρb)Wab,

is close to a cut-off threshold. However, some consideration is required if Eq. (2.15) is used to

calculate density exclusively or in combination with Eq. (2.5), i.e. the density re-initialization
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technique. This is due to the lack of markers close to the surface, which results in incomplete-

ness of the partition of unity (see Figure 3.1). This problem can be easily modified by density

normalization as suggested in [109].

Shown in Figure 3.1 is a free-surface boundary, with I and B denoting the set of interior and

boundary fluid markers, respectively. To obtain the density of a boundary marker, for instance a,

a set of virtual missing markers is assumed outside the boundary. The density of marker a can be

obtained accordingly as

ρa =
∑
b∈I

mbWab +
∑
b∈B

mbWab +
∑
b∈E

mbWab. (3.1)

Similarly, the partition of unity at the location of marker a results in

1 =
∑
b∈I

mbWab

ρb
+
∑
b∈B

mbWab

ρb
+
∑
b∈E

mbWab

ρb
. (3.2)

The last terms in the right hand sides of Eqs. (3.1) and (3.2) are zero due to the lack of markers.

Therefore, by assuming a constant density, ρ = ρa, for the set of boundary markers, multiplying

Eq. (3.2) by ρa and subtracting it from Eq. (3.1), ρa is obtained as

ρa =

∑
b

mbWab∑
b

mb

ρb
Wab

. (3.3)

Equation (3.3) replaces Eq. (2.15) for the free-surface boundary markers, i.e. markers whose

partition of unity is smaller than a threshold value, say 95%.

Addressing the free-surface at small scale, e.g. at the scale of droplets and bubbles, requires the

inclusion of surface tension. While Morris [85] approached this problem by using a color function

to determine the surface curvature, Tartakovsky et al. [126] used an inter-marker short-range force

to account for the surface tension. These problems are out of the scope of the current work and

will not be considered herein.

3.1.2 Periodic BC

The periodic BC follows the simple rule of transferring markers and objects from one side of

the domain to the other side as they leave the domain’s boundary. The problem arises when markers
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Figure 3.1: Fluid free-surface modelled with SPH. The set of missing exterior, boundary, and

interior markers are denoted as E, B, and I respectively.

are close enough to the boundaries such that their domain of influence extends to the outside of

the boundary. Therefore, these markers should start influencing the markers of the other side even

before they are transferred, see Figure 3.2.

Figure 3.2: Periodic boundary condition in SPH.

One solution to this problem is to include a stripe of ghost markers next to the periodic bound-

ary by copying markers from the alternative side of the domain. This technique is the only feasible

solution if the proximity computation of Sect. 4.2.2 is used. The simpler alternative approach can

be used in conjunction with the memory-optimized proximity calculation described in Sect. 4.2.1.
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Therein, the search for potential interactions is localized to the cubic cells around each markers,

i.e. bins. For the markers next to the periodic boundary, bins from the other side of the domain can

be accessed by looping around the domain length. For instance, if a periodic boundary condition

is applied in the x direction, the index of the neighbor bin, i, may fall out of bound since there is

not any bin out of the domain boundary. Therefore the x components of the markers distance, dx,

and bin index, i, are replaced by dx modulo lx and i modulo nx, respectively, where lx and nx are

the x direction measures of the domain length and the number of bins, respectively. This leads to

an access to the opposite side of the domain whenever a neighbor search invocation tries to reach

beyond the domain.

Application of periodic BC to rigid bodies requires an extra step since each rigid body is a

set of two entities; i.e., BCE markers and rigid body properties. Therefore, the periodic boundary

condition should affect both entities. BCE markers follow the same treatment as the other markers.

For a rigid object, the object is moved to the other side of the domain as soon as its center is out

of bound. Similar treatments are also applied to a flexible object’s BCE and nodes, with the only

difference being that the beam is moved to the other side of the domain whenever all of its nodes

are out of bound.

3.1.3 Inflow and outflow

The procedure of applying inflow and outflow boundary conditions in SPH is more tedious than

in Eulerian approaches since these boundaries have an Eulerian, i.e. fixed, nature. The flow char-

acteristics at the boundary are a collective property of SPH markers and need to be distributed to

the markers so that they produce similar Eulerian conditions. This is achieved herein by including

ghost regions at inflow and outflow. The appropriate pressure and velocity boundary conditions are

applied to the markers within the ghost regions. Markers are constantly being added and removed

from the physical and ghost regions to account for the fluid flow. The length of the ghost region

in the flow direction should be at least equal to the radius of the markers support domain. The rate

at which the markers are added or removed from the ghost region needs to be consistent with the

physical flow rate across each boundary. Figure 3.3 depicts an inflow boundary condition using
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ghost markers. As shown therein, whenever a marker leaves the inflow ghost region, it is added to

the physical domain. At the same time, a marker is included to the ghost region according to the

periodic boundary condition strategy.

Figure 3.3: Schematic of the inflow boundary condition [66]. The inflow zone includes a set

of ghost markers. The periodic boundary condition is applied to the ghost domain in the flow

direction.

By coupling fluid and energy equations, Lastiwka et al. [66] noted, based on the method of

characteristics, that for subsonic flow, two variables must be determined at inflow or outflow while

the third variable is determined from the domain interior. Intuitively, velocity and temperature

(internal energy) can be determined at inflow, leaving the density or pressure to be determined

by the information propagating upstream from the domain interior. Within the SPH framework,

temperature and velocity of ghost markers at inflow are determined from the boundary value,

while their pressure is assigned through an extrapolation from the domain interior. Since pressure

extrapolation can cause poor results, the reproducing kernel particle method [72] can be used to get

a first-order consistency in the boundary extrapolation. Setting up the outflow condition is simpler

since no new markers need to be created. Specifically, one variable is prescribed to determine the

boundary condition. If, for instance, velocity and temperature are determined at inlet, pressure is
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determined at outlet. Extrapolation of the other variables is merely the result of the downstream

migration of markers.

It is worth mentioning that since the energy equation is not considered in this work, only two

variables need to be determined. For instance, velocity and pressure may be determined at inlet

and outlet, respectively.

3.1.4 Wall boundary condition

The wall boundary condition emerges in most of the fluid flow applications as a fixed or moving

boundary. This is a simplified form of a general fluid-solid coupling, where the two-way dynamic

coupling is replaced with a one-way or kinematics interaction. Therefore, further discussion of this

type of boundary can be found in Sect. 3.2.

3.2 Fluid-solid interaction using Boundary Condition Enforcing (BCE) mark-
ers

The two-way fluid-solid coupling was implemented based on a methodology described in [104].

The state update of any SPH marker relies on the properties of its neighbors and resolves shear as

well as normal inter-marker forces. For the SPH markers close to solid surfaces, the SPH summa-

tions presented in Eqs. (2.9), (2.10), (2.15), and (2.17) capture the contribution of fluid markers.

The contribution of solid objects is calculated using BCE markers placed on and close to the solid

surface as shown in Figure 3.4. In the case of flexible beams, the BCE markers are placed on ”rigid

disks” that are uniformly-spaced along the beam’s axis and whose normals always coincide with

the local tangent to the beam’s axis. In all cases, the BCE marker locations are initialized so that

the distance between two neighboring BCE markers is approximately equal to the initial distance

between two SPH markers; in particular, this is also the distance between two adjacent disks of

BCE markers in Figure 3.4b. This way, the partition of unity stays correct close to the interface,

thus preventing any spurious force at the interface.

The velocity of a BCE marker is obtained from the rigid/deformable body motion of the solid

and as such ensures the no-slip condition on the solid surface. Including the BCE markers in the
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(a) (b)

Figure 3.4: Fluid-solid interaction using BCE markers attached to a body: (a) a rigid body with the

velocity, V, and angular velocity, ω, shown at its center of gravity, C.G.. The markers velocities

are represented by {va,vb, ...,vg}; (b) a flexible beam. BCE and fluid markers are represented

by black and white circles, respectively. The BCE markers positioned in the interior of the body

should be placed on and below the surface up to a depth no larger than the size of the compact

support of the kernel W .

SPH summation equations (2.9) and (2.10) thus enforces the solid-to-fluid coupling. Conversely,

the fluid-to-solid coupling is realized by applying the quantity in the right-hand side of Eq. (2.10),

evaluated at each BCE marker, as an external force on the corresponding rigid or deformable solid

body using Eqs. (2.18) and (2.29), respectively.

3.3 Solid-solid short range interaction

Dry friction models, typically used to characterize the dynamics of granular materials [3, 62,

63], do not capture accurately the impact of solid surfaces in hydrodynamics media. In practice, it

is infeasible to fully resolve the short-range, high-intensity impact forces arising in wet media due

to computational limits on space resolution and time step. Classical lubrication theory predicts no

direct contact between solid surfaces in hydrodynamic media. Nevertheless, as many researchers

suggested, see for instance [24, 46], the direct impact of solid surfaces is quite possible due to the
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surface imperfections. Therefore, a sophisticated lubrication model should take into account both

dry and wet interactions. One approach to this problem is a unified model which allows for direct

impact of surfaces [6]. The second approach, used herein, is to capture the short range interaction

via a lubrication force model, and the compliance encounters via a penalty approach.

3.3.1 Dry friction model

The dry frictional contact between two solid surfaces is handled using a penalty approach rely-

ing on the Discrete Element Method (DEM) [23]. In this model, the normal contact force between

two rigid bodies is a function of the inter-penetration of the bodies and its time derivative. Many

DEM approaches have been proposed in literature, see for instance [62,110,121]. In this study, lin-

ear and non-linear viscoelastic models are considered for the normal and tangential contact forces,

respectively [62, 63].

Figure (3.5) shows a typical collision configuration between two rigid bodies, in this case

spheres, in which ri and rj are the positions of the centers of bodies i and j, respectively, and

Fn and Ft denote the normal and tangential contact forces. The magnitude of the normal force is

computed as [62]

Fnij
= knδijnij − γnvnij

, (3.4)

where kn and γn are user-selected normal stiffness and damping coefficients, respectively; δij and

vnij
are relative inter-penetration distance and velocity, respectively; and nij is the unit normal

vector at the contact location defined from body j to body i.

Figure 3.5: A typical contact in DEM.



22

The magnitude of the tangential force is approximated as [63]

Ftij = −kt
√
δijut, (3.5)

where

ut =

tf∫
ti

vt(τ)dτ . (3.6)

Here kt is the coefficient of tangential stiffness, vt is the tangential velocity at the contact point,

ut is the tangential displacement, and ti and tf denote the start and end of the inter-penetration

time, respectively. Equations (3.4) and (3.5) are usually applied in conjunction with the Coulomb

friction model, which constrains the magnitude of the tangential force to satisfy ‖Ftij‖ ≤ µ‖Fnij
‖.

Handling the frictional contact of rigid bodies with complex, potentially non-convex bound-

aries is performed using spherical decomposition [60,76], which takes advantage of BCE markers

shown in Figure 3.4.

3.3.2 Lubrication force model

Ladd [65] proposed a normal lubrication force between two spheres that increases rapidly as

the distance between spheres approaches zero thus preventing the actual touching of the spheres:

Flub
ij = min

{
−6πµ

(
aiaj
ai + aj

)2(
1

s
− 1

∆c

)
, 0

}
· vnij

, (3.7)

where, ai and aj are the sphere radii, vnij
is the normal component of the relative velocity, s is

the distance between surfaces, and ∆c is a cut-off value that controls the extent of short range

interaction: for s > ∆c, Flub
ij = 0, and the spheres are subject only to hydrodynamic forces.

Equation (3.7) provides a basic model for the estimation of the lubrication force in normal

direction. The generalization of this model to non-spherical objects requires the calculation of

the minimum distance and the curvature of the two contact surfaces. The calculation of the par-

tial lubrication force between non-spherical surfaces follows the approach proposed in [28] for

a lattice Boltzmann method yet it is amended to fit the Lagrangian formulation adopted herein.
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Accordingly, the force model provided in Eq. (3.7) is modified as

Flub
ij =

∑
k

fkij, (3.8a)

with fkij = −3

2
πµh2v∗nij

×



(
1

∆i

− 1

∆c

)
, 0 ≤ s∗ < ∆i(

1

s∗
− 1

∆c

)
, ∆i ≤ s∗ < ∆c

0, s∗ ≥ ∆c

(3.8b)

where s∗ and v∗nij
denote the markers’ relative distance and velocity, respectively, and the summa-

tion is over all interacting markers of the two solid objects. The parameter ∆i is a small cut-off

value (∆i � ∆c) introduced to avoid having infinite force at zero distance which is computation-

ally advantageous since it reduces the stiffness of the force model suggested in Eq. (3.7). An extra

outcome of this modification is the possibility of the direct impact of solid surfaces, which is in

agreement with [24,46]. Therefore, this model is completed by the force model given in Eqs. (3.4)

and (3.5).

3.4 Time integration

The simulation framework, referred to herein as Chrono::Fluid, uses a second order explicit

mid-point Runge-Kutta (RK2) scheme [8] for the time integration of the fluid and solid phases, the

latter in its rigid or flexible representation.

Algorithm 1 summarizes the steps required for the calculation of the force on the SPH markers,

rigid bodies, and deformable beams at time step k. The variables Nm, Nr, and Nf denote the

number of markers, rigid bodies, and flexible beams, respectively. The arrays ρ, x, v, and v̂ store

the density, position, velocity, and modified velocity for all markers, respectively; for example,

ρ = {ρa|a = 0, 1, 2, ..., Nm − 1}.

The external forces on the rigid and flexible bodies include the FSI forces captured via BCE

markers at distributed locations on the solid surfaces. The distributed forces need to be accumu-

lated into a single force and torque at the center of each rigid body, or point forces at node locations

of each flexible body. The summation of the forces and torques is handled by parallel reduction
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operations available through the Thrust library [45], which exposes a scan algorithm that scales

linearly.

The RK2 integration scheme requires the calculation of the force at the beginning as well as

middle of the time step. Algorithm 2 lists the steps required for the time integration of a typical

FSI problem.

To improve the code vectorization and use of fast memory; i.e., L1/L2 cache, shared mem-

ory, and registers, each computation task was implemented as a sequence of light GPU kernels.

For instance, different computation kernels are implemented to update the attributes of the solid

bodies, including force, moment, rotation, translation, linear and angular velocity, and locations

of the associated BCE markers. A similar coding philosophy was maintained for the density re-

initialization, boundary condition implementation, and mapping of the marker data on an Eulerian

grid for post processing.

3.4.1 Dual-rate integration

Stable integration of the SPH fluid equations requires step-sizes which are also appropriate

for propagating the dynamics of any rigid solids in the FSI system. However, integration of the

dynamics of deformable bodies, especially as their stiffness increases, calls for very small time

steps. To alleviate the associated computational cost, a dual-rate integration scheme is employed

where intermediate steps for the integration of the flexible dynamics EOMs is performed at a

typical rate of ∆tSPH/∆tANCF = 10, although stiffer problems may require ratios of up to 50.

This aspect is noteworthy given that typical FSI models involve a number of SPH markers orders

of magnitude larger than the number of ANCF nodal coordinates required for the flexible bodies.

Without a dual-rate implementation, the numerical solution would visit the fluid phase at each

integration step, an approach that led to very large solution times. This aspect is further discussed

in Sect. 6.
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Algorithm 1 Force Calculation
. Calculate modified XSPH velocities

1: for a := 0 to (Nm − 1) do

2: v̂ka ≡ v̂a
(
ρk,xk,vk

)
3: end for

. SPH forces

4: for a := 0 to (Nm − 1) do

5: ρ̇ka ≡ ρ̇a
(
ρk,xk, v̂k

)
6: ẋka = v̂ka

7: v̇ka ≡ v̇a
(
ρk,xk,vk

)
8: end for

. Rigid body forces

9: for i := 0 to (Nr − 1) do

10: V̇k
i ≡ V̇i

(
v̇k
)

11: Ẋk
i = V̇k

i

12: ω̇ki ≡ ω̇i
(
v̇k,ωki

)
13: q̇ki ≡ q̇i

(
ωki ,q

k
i

)
14: end for

. ANCF forces

15: for j := 0 to (Nf − 1) do

16: Q̂k
j = Q̂a

j

(
v̇k
)
− Q̂e

j

(
êk
)

+ Q̂g
j

(
êk
)

17: ˙̂ek1 = êk2

18: ˙̂ek2 = M̂−1Q̂k
j

19: end for
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Algorithm 2 RK2 Time Integration
. Force calculation at beginning of step (Algorithm 1)

1: Calculate {v̂k, ρ̇k, ẋk, v̇k, V̇k, Ẋk, ω̇k, q̇k, Q̂k}

. Half-step updates for fluid, rigid body, and flexible body states

2: for a ∈ {a|a is a fluid marker} do

3: ψ
k+1/2
a = ψka + ψ̇ka ×∆t/2, where ψa ∈ {ρa,xa,va}

4: end for

5: for i := 0 to (Nr − 1) do

6: Ψ
k+1/2
i = Ψk

i + Ψ̇k
i ×∆t/2, where Ψi ∈ {Vi,Xi,ωi,qi}

7: end for

8: for j := 0 to (Nf − 1) do

9: ê
k+1/2
1 = êk1 + ˙̂ek1 ×∆t/2

10: ê
k+1/2
2 = êk2 + ˙̂ek2 ×∆t/2

11: end for

. Half-step update for BCE marker positions and velocities

12: for a ∈ {a|a is a BCE marker} do

13: Obtain x
k+1/2
a and v

k+1/2
a according to associated rigid, flexible, or immersed boundary

motion.

14: end for

. Force calculation at half-step (Algorithm 1)

15: Calculate {v̂k+1/2, ρ̇k+1/2, ẋk+1/2, v̇k+1/2, V̇k+1/2, Ẋk+1/2, ω̇k+1/2, q̇k+1/2, Q̂k+1/2}

. Full-step updates for fluid, rigid body, and flexible body states

16: for a ∈ {a|a is a fluid marker} do

17: ψk+1
a = ψka + ψ̇

k+1/2
a ×∆t

18: end for

Continued on the next page ...
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RK2 Time Integration, continued from the previous page

19: for i := 0 to (Nr − 1) do

20: Ψk+1
i = Ψk

i + Ψ̇
k+1/2
i ×∆t

21: end for

22: for j := 0 to (Nf − 1) do

23: êk+1
1 = êk1 + ˙̂e

k+1/2
1 ×∆t

24: êk+1
2 = êk2 + ˙̂e

k+1/2
2 ×∆t

25: end for

. Full-step update for BCE marker positions and velocities

26: for a ∈ {a|a is a BCE marker} do

27: Obtain xk+1
a and vk+1

a .

28: end for
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Chapter 4

Advanced computing aspects

This chapter discusses a high performance computing framework built around the proposed

methodology. The software implementation of the proposed Lagrangian-Lagrangian approach to

FSI problems is open-source, available under a BSD3 license, and can be downloaded from [17].

Before explaining the computational aspects of the methodology, a brief overview of the GPU

hardware and programming model adopted is provided first. This is followed by a detailed discus-

sion of the key kernels that implement the proposed modeling and solution approach.

4.1 GPU hardware and programming model

To a very large extent, the performance of today’s simulation engines is dictated by the memory

bandwidth of the hardware solution adopted. Recent numerical experiments conducted in the

Simulation Based Engineering Laboratory (SBEL) revealed that only about 5 to 10% of the peak

flop rate is reached by the cores present on today’s multi-core architectures since these cores most

of the time idle waiting for data from global memory or RAM. It is this observation that motivated

the selection of the GPU as the target hardware for implementing Chrono::Fluid. At roughly 300

GB/s, the GPU memory bandwidth stands four to five times higher than what one could expect on

a fast CPU.

To describe the hardware organization of the GPU, NVIDIA GeForce GTX 680 [78, 93] is

considered herein. This GPU is based on the first generation of Kepler architecture, code name

GK104, which is also implemented in Tesla K10. The Kepler architecture relies on a Graphics

Processing Cluster (GPC) as the defining high-level hardware block. There are a total of 4 GPCs
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on the GK104. Each GPC includes two Stream Multiprocessors (SM), each of which has 192

Scalar Processors (SP), for a total of 1536 SPs, and 3.1 TFlops rate of processing single precision.

In addition to the processing cores, the second important aspect of the GPU hardware is that of

the memory hierarchy. The memory on the GPU is divided into several types, each with different

access patterns, latencies, and bandwidths. In what follows, a summary of the memory hierarchy

on Kepler GPU is provided. Further information can be obtained from [78, 88, 93].

Registers (read/write per thread): 65536, 32-bit memory units per SM. Very low latency, high

bandwidth (' 10 TB/s cumulative) memory used to hold thread-local data.

Shared memory/L1 cache (read/write per block): 64 KB per SM. Low latency, high bandwidth

(' 1.5-2 TB/s cumulative) memory divided between shared memory and L1 cache.

Global memory (read/write per grid): 2 GB. Used to hold input and output data. Accessible by all

threads, with a bandwidth of 192 GB/s and a higher latency (' 400-800 cycles) than shared

memory and registers. All accesses to global memory pass through the L2 cache. The latter

is 512 KB large and has a bandwidth of 512 B/clock cycle.

Constant memory (read only per grid): 48 KB per Kepler SM. Used to hold constants, serviced

at the latency and bandwidth of the L1 cache upon a cache hit, or those of the global memory

upon a cache miss.

The parallel execution paradigm best supported on GPUs is “single instruction multiple data”

(SIMD). In this model, if for instance two arrays of length one million are to be added, one mil-

lion threads are launched with each executing the same instruction; i.e., adding two numbers, but

on different data - each thread adding two different numbers. Fortunately, SIMD computing is

prevalent in the solution methodology proposed, where each SPH marker is handled by a thread

in the same way in which hundreds of thousands of other threads handle their markers using dif-

ferent data. While strongly leveraging the SIMD model owing to the fine grain parallelism that

it exposes, the methodology adopted is prone to lead to memory access patterns that do not dis-

play high spatial and/or temporal locality. This is because the SPH markers move in time leading
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to less structured memory accesses that adversely impact the effective bandwidth reached by the

code. This issue will be discussed further in Sect. 4.2 when comparing two algorithms that expose

different memory access patterns.

4.2 Proximity calculation and neighbor search

The loop iterations in Algorithms 1 and 2 have no overlap and can be executed in parallel. The

computational bottleneck thus becomes the determination of the neighbor lists through proximity

calculation, a step that takes about 70% of the entire computational budget and thus critically

impacts the overall performance of the simulation. Given the list of neighbors, the calculation of

v̂ka ≡ v̂a
(
ρk,xk,vk

)
, ρ̇ka ≡ ρ̇a

(
ρk,xk, v̂k

)
, and v̇ka ≡ v̇a

(
ρk,xk,vk

)
is straightforward.

Two different approaches, both relying on spatial subdivision, were implemented and compared

in this work. The main difference between the two approaches goes back to a trade off between the

memory footprint vs. the computation speed: compared to the second approach, the first approach

minimizes the required memory at the cost of increasing the amount of required process by roughly

a factor of 2.

4.2.1 Proximity computation-Approach 1: Optimized memory

In the first approach, summarized in Algorithm 3, the computation domain is divided into a

collection of bins whose side lengths are equal to the maximum influence distance of a marker,

i.e. κh. This localizes the search for the possible interacting markers to the bin and all of its 26

immediate 3D neighbors. Figure 4.1 shows the binning approach in 2D. The neighbor lists are not

saved in memory; instead, neighbors are evaluated whenever required.

4.2.2 Proximity computation-Approach 2: Optimized process

Similar to the first approach, a spatial binning algorithm is implemented in the second approach,

which is summarized in Algorithm 4 [103]. Nevertheless, the side length associated to the bins is

arbitrary. Algorithm 4 takes advantage of the correlation between the influence of marker a on b and

that of b on a; therefore, it reduces the total process by doing the necessary calculations once per
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Algorithm 3 Inner loop: accessing neighbor markers (optimized memory)

1: Divide the solution space into nb bins of (∆x,∆y,∆z) dimensions, where nb = nx × ny × nz,

and (nx, ny, nz) is the number of grid cells along (x, y, z) axis.

2: Construct the hash array: s = {sa|a = 0, 1, 2, ..., Nm − 1} according to sa = i × ny × nz +

j × nz + k, where (i, j, k) is the location of the bin containing the marker a.

3: Sort s into ssorted and obtain corresponding ρsorted, xsorted, vsorted, and v̂sorted.

4: Construct c1 = {c1e|e = 0, 1, 2, ..., nb − 1} and c2 = {c2e|e = 0, 1, 2, ..., nb − 1}, where c1e and

c2e denote the two indices in ssorted that bound the sequence of hash values sa = e.

5: Access markers data in bin (i, j, k) by loading [c1e, c
2
e] portions of the sorted arrays ρsorted,

xsorted, vsorted, and v̂sorted, as needed.

inter-penetration event. This results in an almost 2x computation speedup. Another advantage of

Algorithm 4 with respect to Algorithm 3 is the capability of processing the proximity of arbitrary

Figure 4.1: Illustration of the spatial subdivision method used for proximity computation in 2D.

The circles represent the domain of influence of each marker; i.e., the support domain. For clarity,

a coarse distribution of markers is shown. In reality, the concentration of markers per bin is much

larger.
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shapes. This advantage is irrelevant in the context of SPH, since the domain of influence of all

markers are spheres of the same sizes.

4.2.3 Proximity computation-concluding remarks

The data sorting required frequently in Algorithms 3 and 4 is performed using radix sort avail-

able in the Thrust library [45]. Since this algorithm scales linearly, it does not affect the overall

linear scaling of Algorithms 1 and 2. Working with the sorted arrays for the bulk of the compu-

tation has the additional advantage of increasing the memory spatial locality: SPH markers that

share a neighborhood in the physical space, do so in memory as well.

Both of the proximity computations described in Sect. 4.2.1 and 4.2.2 were evaluated herein.

Although the second algorithm reduced the amount of work by re-using the acceleration terms,

it could not be applied efficiently to the SPH method due to the massive amount of memory re-

quired to store the data associated with all inter-penetration events. An efficient use of memory

in Algorithm 3 allows simulation of domains composed of millions of markers. Switching to Al-

gorithm 4 would drastically reduce the maximum domain size achievable on the same GPU to

about 1.0× 105. The second advantage of Algorithm 3 is the coalesced memory access achieved

by sorting and accessing the data based on the markers location, which translates eventually into a

faster computation. The aforementioned two advantages resulted in the choice of Algorithm 3 for

the proximity computation performed in Chrono::Fluid.
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Algorithm 4 Inner loop: accessing neighbor markers (optimized process)

1: Divide the solution space into nb bins of (∆x,∆y,∆z) dimensions, where nb = nx × ny × nz,

and (nx, ny, nz) is the number of grid cells along (x, y, z) axis.

2: Construct an Axis Aligned Bounding Box (AABB) for each marker to determine all bin-

marker intersections. Save the number of intersections per marker in an array t1 of the size

Nm.

3: Perform an inclusive scan on t1 to determine the total number of bin-marker intersections, t2.

4: Similar to step 2. However, bin-marker intersections are saved in the key-value array t2 of size

t2. Key and value are bin and marker indices, respectively.

5: Sort t2 based on the key.

6: Allocate the key-value array t3 of size nb. Each component of t3 denotes a bin: the index of

the first appearance of bin e (e = i× ny × nz + j × nz + k), in t2/key is stored as key and e is

stored as value. The keys associated to the bins with no appearance in t2/key, i.e. inactive bins,

are set to infinity (e.g. 0 × ffffffff).

7: Determine the number of active bins, t4 by sorting t3 based on key and determining the first

infinity.

8: Determine the number of inter-penetration events per active bin and store them in array t4 of

size t4.

9: Perform an inclusive scan on t4 to determine the total number of inter-penetration events t5.

10: Allocate arrays of the size t5 for each interaction component (e.g. dv/dt, dρ/dt, v̂, etc.).

11: Similar to step 9. However, the interaction components of each inter-penetration event is

calculated and saved for the marker with the smaller index of the two into the arrays of step 10.

The interactions components can be easily retrieved for the marker with the larger index.
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Chapter 5

Validation studies and further numerical experiments

The purpose of this section is to validate the predictive attributes of the SPH-enabled Lagrangian-

Lagrangian framework and the correctness of its software implementation. To the best of our

knowledge, except for the transient Poiseuille flow in subsection 5.1.1, the validation tests dis-

cussed next have not been considered in the context of a Lagrangian-Lagrangian formulation via

SPH.

5.1 Particle suspension: A validation study

The topic of particle migration has been of great interest since Segre and Silberberg experi-

mentally investigated the pipe flow of a dilute suspension of spherical particles and demonstrated

that, at a pipe Reynolds number (Re) between 2 and 700, the particles settle on an annulus with

an approximate relative radius of 0.6 with respect to the pipe radius [116,117]. Subsequent exper-

iments conducted by Oliver [95], Jeffrey and Pearson [55], and Karnis et al. [59] confirmed and

further investigated the particle radial migration. For dilute suspensions, Matas et al. [74] showed

experimentally that the radius of stable annulus increases directly with Re. Nevertheless, at a high

Reynolds number, Re>650, they observed the formation of an inner annulus of smaller radius that

had not been predicted analytically or observed through simulation. Moreover, they showed that

the probability of a particle settling on this annulus of smaller radius increases with the Reynolds

number. From an analytical perspective, perturbation methods have been widely employed to in-

vestigate the lift force responsible for particle migration, see for instance Saffman [111], Ho and

Leal [44], Vasseur and Cox [129], Schonberg and Hinch [113], Hogg [47], Asmolov et al. [7], and
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Matas et al. [75]. Particle migration has also been investigated in a number of numerical simu-

lation studies. Feng et al. [31] employed a Finite Element Method (FEM) to study the migration

of a single circular cylinder in plane Poiseuille flow. Inamuro et al. [54] investigated a similar

problem using a Lattice Boltzmann Method (LBM). Chun and Ladd employed LBM to investigate

the migration of spheres in a square duct at Re<1000 [18]. They showed that the stable lateral

position of a single particle moves closer to the duct wall as the Reynolds number increases. For

flows containing several particles, a first stable particle configuration forms at Re<300; a sec-

ondary stable region nearer to the center of the duct is observed at Re>700. Pan and Glowinski

developed the method of Distributed Lagrange Multiplier/Fictitious Domain Method (DLM/FDM)

in conjunction with a finite difference approach to investigate the shear induced migration of a cir-

cular cylinder [36] and a collection of spheres [100]. Shao et al. [120] investigated the motion of

spheres in steady Poiseuille flow at moderately high Re using DLM/FDM. Their work confirmed

the development of an inner stable annulus at high Re; i.e., Re ≥ 640 for specific size and channel

length ratio. Yu et al. investigated the sphere sedimentation as well as the migration of a sphere

in Poiseuille flow at Re<400 via the DLM method. Hu [51] and Hu et al. [50] employed the

Arbitrary Lagrangian-Eulerian (ALE) method on a body-fitted unstructured finite element grid to

simulate fluid-solid systems. Their work influenced that of Patankar et al. [101,102] and Choi and

Josef [16] in their study of the lift-off of cylinders in plane Poiseuille flow. Similar techniques have

been considered to study the behavior of a non-spherical particle, usually an ellipsoid in fluid flow.

Swaminathan et al. [125] used ALE based FEM to simulate the sedimentation of an ellipsoid.

Pan et al. [97] investigated the motion of ellipsoid in Poiseuille flow using DLM/FDM. In sev-

eral other studies the investigation of flows containing a collection of cylinders (2D) [15, 32, 122]

and spheres (3D) [18, 50] was carried out via direct numerical simulation with the LBM [18, 32],

Lagrange multiplier based fictitious domain method [15, 99, 122], and ALE-based FEM [50].

All these numerical studies of particle suspension and migration draw on an Eulerian-Lagrangian

representation of the fluid-solid system. Nevertheless, the proposed Lagrangian-Lagrangian ap-

proach is employed herein to study the particle migration over a wide range of Reynolds numbers.
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Table 5.1: Flow parameters used for the validation of transient Poiseuille flow

density 1000 kg/m3

viscosity 0.001 N s/m2

volumetric force, x-direction 0.005 N/m3

channel width 0.002 m

5.1.1 Transient Poiseuille flow

SPH was used in [84] to numerically simulate transient Poiseuille flow at low Reynolds num-

bers for which an analytical solution is readily available. Although essentially a 2D problem, for

validation purposes, the transient Poiseuille flow is simulated herein using a 3D setup: the 2D flow

was generated using periodic boundary conditions on the channel side walls; i.e., in the direction

perpendicular to x and y, see Figure 5.1. For the set of parameters provided in Table 5.1, results

show a virtually exact match between the velocity profiles obtained from the numerical simulation

and the analytical solution given in Eq. (5.1):

vx(y, t) =
fx
2µ
y(y − w) +

∞∑
n=0

4fxw
2

µπ3(2n+ 1)3
sin(

(2n+ 1)πy

w
) exp(−(2n+ 1)2π2µ

w2
t) . (5.1)

In this equation, vx is the flow velocity in the x direction, i.e. channel axis, y is the distance from

the channel wall, w is the channel width, fx is the body force in x direction, µ is the fluid viscosity,

and t denotes time.

5.1.2 Particle migration in 2D Poiseuille flow

Although Segre and Silberberg considered particle migration in pipe flow [116, 117], a similar

phenomenon occurs in plane Poiseuille flow. Maintaining the setup of the previous subsection,

infinitely long cylinders were added into the flow. The same stable lateral positions of the immersed

bodies as those reported in [54, 98], with a maximum 1% relative drift with respect to the channel

half width, was obtained for a cylinder size a/w = 0.125 and Rec ≈ 12.73, where a, w, and

Rec are the cylinder radius, channel width, and channel Reynolds number, respectively. Figure
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Figure 5.1: Velocity profile of transient Poiseuille flow obtained from simulation (dots) and series

solution (continuous lines).

5.2 shows the trajectories of cylinders released from different initial lateral positions, y, versus

non-dimensional time, t∗ = t× V/L, where V denotes the average flow velocity.

5.1.3 Particle migration in pipe flow

The experiment conducted by Segre and Silberberg on the motion of a sphere in pipe flow

demonstrated a final particle stable radial position of r/R ≈ 0.6, where r andR denote the particle

offset from the pipe axis and the pipe radius, respectively [116,117]. The same results are obtained

through simulation at Re ≈ 60 and particle relative size a/R = 0.1 (Figure 5.3). The effects of

the Reynolds number and particle size are investigated independently and reported in sub-sections

5.1.5 and 5.2.5, respectively.

5.1.4 Radial distribution of particles in suspension

This test validates the transient behavior of a suspension of several spheres in pipe flow.

The simulation parameters are those in Segre and Silberberg’s experiment [116, 117], where the
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Figure 5.2: Simulation of plane Poiseuille flow: lateral position as a function of dimensionless

time of neutrally buoyant circular cylinders released from different initial positions. Results are

within 1% relative error of those reported in [54, 98].

sphere’s radius, a, and pipe’s radius, R, are 0.4 mm and 5.6 mm respectively, and the fluid den-

sity, ρ, and viscosity, µ, are 1.18 g/cm3 and 50 cp, respectively. Figure 5.4 shows a comparison

of the particle radial distribution at Re ≈ 60 with experimental results reported in [116]. Here,

L = (a/R)(avρ/µ)(l/R) is the non-dimensional distance from the pipe inlet and v = (a/R)2V

is defined based on mean flow velocity V . The experimental setup considered by Segre and Sil-

berberg [116]; i.e., including particle distribution in the range of 1 through 4 particles/cm3 or

volumetric concentration of φ ∈ [0.027, 0.109] %, is very dilute. As such, generating smooth dis-

tribution curves requires a very long channel to include a sufficiently large number of rigid bodies.

Reproducing this experiment through simulation requires the flow field to be resolved at a scale

fine enough to capture the dynamics of the small rigid bodies suspended in the flow. This translates
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Figure 5.3: Migration of rotating and non-rotating neutrally buoyant spheres in pipe flow.

into a large number of SPH markers. Consequently, the amount of time required to complete a sim-

ulation, even when leveraging high performance parallel computing, was prohibitively large. This

issue was addressed by performing an ensemble average over a set of smaller channels instead of

one single, long channel. Each small channel was subjected to periodic boundary conditions along

the channel axis and included between 1 and 16 rigid particles, initialized randomly and tracked

independently. In a Monte Carlo framework, a large number of simulations were considered to

produce a converged statistical distribution. Yet, this was not an issue since batches of up to 56

simultaneous simulations (one simulation per GPU card) were carried out on the computer cluster

available for this study [112]. The distributions reported in Figure 5.4 are the result of a statis-

tical investigation based on 192 ten-hour-long simulations that captured 14 seconds of real time.

The simulation results accurately reproduce (1) the stable radial position, and (2) the longitudinal

transition distance observed in experimental tests [116].
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To generate the distribution curves, the data was sampled at sections located at predefined

distances from the pipe entrance. A very fine radial grid was considered to record the particles’

radial positions, which resulted in a noisy output. Subsequently, statistical bootstrapping was used

to find the confidence zone and distribution curve [29]. The error bars reported with the distribution

curves are associated with the 95% confidence interval.

Figure 5.4: Particle radial distribution as a function of non-dimensional distance L, compared to

the experiment [116] at: (a) L = 0, (b) L = 0.08, (c) L = 0.16, (d) L = 0.32, (e) L = 0.69. Note

that rigid bodies cannot be initialized in the region close to the wall; i.e., 0.9 ≤ r/R ≤ 1, due to

their finite size.
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5.1.5 Effect of Reynolds number

Matas et al. [74] extended the Segre-Silberberg experiment up to Re ≈ 2400 and demonstrated

that the radial stable positions migrate towards the wall as Re increases. However, a second stable

region, i.e. an inner annulus which does not comply with the aforementioned trend, forms at high

Re, e.g. Re > 650, for λ = a/R ∈ [0.06, 0.11]. Moreover, the radial distribution of the particles

shifts toward the inner annulus as Re increases. Shao et al. [120] numerically confirmed the for-

mation of an inner annulus at highRe via the direct-forcing fictitious domain method [132]. Figure

5.5 reports over a wide range of Reynolds numbers results obtained with the proposed approach,

experimental results presented in [74], and numerical results from [120, 131]. Our numerical re-

sults confirm the emergence at higher Reynolds numbers; i.e., Re ≈ 772, of a secondary stable

annulus in agreement with [74, 120]. The results also show small differences at Re > 1200 from

those reported in [120]. However, as Matas et al. pointed out in their experimental work, particles

tend to appear between the two stable annuli effectively everywhere yet with a higher probability

around the interior annulus.

5.2 Particle suspension: Further numerical experiments

Unlike the previous section, which focused on validating the proposed approach and its soft-

ware implementation, this section presents results of several simulations carried out to characterize

through direct numerical simulation the effect of particle properties on the radial distribution of

suspensions in pipe flow.

5.2.1 Effect of particle rotation

To identify the root cause of particle migration and gauge the influence of the Magnus effect,

Oliver [95] carried out experiments with inertia asymmetric spheres in which the center of mass

was shifted from the sphere’s geometric center. He showed that as the particle rotation was reduced,

the stable final position of these particles moved toward the pipe’s axis. Similar investigations for

the motion of a cylinder in Poiseuille flow were performed numerically by Patankar et al. [101] and
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Figure 5.5: Effect of Re on the tubular pinch effect for Re ∈ [1, 1400] and two particle size ratios,

λ = 0.11 and λ = 0.15. The results are compared to data provided by Matas et al. [74], Yang et

al. [131], and Shao et al. [120].

Joseph and Ocando [57] to demonstrate the influence of the cylinder rotation on the steady state

configuration in 2D flows. Herein, the effect of 3D rotation on sphere migration was investigated

by eliminating the rotation via imposing extremely large moments of inertia for the immersed

spheres. As shown in Figure 5.3, the rigid body migration is noticeably altered when body rotation

is artificially removed. Specifically, the stable radial position of non-rotating spheres is closer to

the pipe’s axis. The conclusion is that the behavior of particles in 3D flow of suspension may

exhibit large deviation from the actual dynamics if the body rotation is ignored.

5.2.2 Effect of particle concentration

The experimental results in [116], used herein for validation purposes, only included par-

ticle concentrations in the range 1 through 4 particles/cm3, i.e. volumetric concentration of
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φ ∈ [0.027, 0.109] %. The dynamics of monodisperse particles has been numerically investigated

herein for concentrations of up to φ = 3.488%. Normalized concentrations, defined as the ratio

of the particle local concentration to the initial concentration, are plotted for different regimes in

Figure 5.6. The results obtained demonstrate a tubular pinch effect even for denser regimes, which

suggests low probability of spheres hovering close to the pipe’s axis. The particle distribution

is, however, more spread in denser flows as the interaction between rigid bodies through draft-

ing, kissing, and tumbling prevents the particles from coalescing into a narrow annulus. Figure

5.7 provides snapshots of particle distribution and resulting annulus formation down the pipe, for

concentrations of 32 and 64 particles/cm3.

Figure 5.8 shows the velocity profile at the flow mid-section and illustrates the blunting of the

parabolic profile, which is in agreement with a 2D numerical study [98] and experimental results

reported in the literature [40, 41, 61, 123].

5.2.3 Effect of inter-particle distance

The effect of a particle’s wake on the radial migration of trailing particles is investigated using

periodic boundary conditions along the channel axis for spheres of radius a, with a/R = 0.25,

at Re ≈ 60. The particle initial position is close to the pipe axis and inter-particle spacing is

adjusted by changing the value d, see Figure 5.9. The results suggest that (1) the stable radial

position moves closer to the wall as the inter-particle distance decreases; and (2) for very large

inter-particle distance; i.e., d/a � 1, radial migration is independent of inter-particle distance.

Finally, Figure 5.10 indicates that decreasing the inter-particle distance slows down the radial

migration; i.e., a particle’s wake alters the local flow profile around trailing particles. Specifically,

while the particles settle further away from the pipe axis, the settling occurs significantly further

down the pipe. The result of this test is particularly relevant in the simulation of pipe flow using

periodic boundary condition since it suggests a safe value of d/a > 9 to avoid the effect caused by

the imposition of boundary conditions.
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Figure 5.6: Particle radial distribution at L = 0.69, normalized by initial concentration, plotted

for six different initial concentrations in the range of 4 through 128 particles/cm3 equivalent to

φ ∈ [0.109, 3.488] %. Results are compared to a reference experimental distribution obtained

in [116] for concentration of 1 particles/cm3.

5.2.4 Effect of particle asymmetry

In most of the experiments and numerical simulations of particle migration, the rigid bodies

were spherical and the effect of asymmetry was not discussed. A series of numerical simulations

were carried out at Re ≈ 60 by replacing spheres with ellipsoids of radii (a1, a2, a3), with a1 =
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Figure 5.7: Particle arrangement at L = 0.32 for particle concentrations of (a) 32 particles/cm3

and (b) 64 particles/cm3.

Figure 5.8: Blunting of the velocity at φ = 6.01% compared to velocity profile at φ = 0%.

a2 = 0.07R and 0.07R < a3 < 0.43R. The obtained results suggest that, with an increase in

skewness, the stable radial particle position moves toward the pipe axis (Figure 5.11).
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Figure 5.9: Schematic of simulation setup used to investigate the effect of inter-particle distance

on radial migration where the fluid flow and periodic boundary are in the x-direction (top). Effect

of inter-particle distance (spacing) on radial stable position (bottom).

5.2.5 Effect of particle size

By changing the radius of the neutrally buoyant sphere in the range of 0.07R < a < 0.36R

at Re ≈ 60, it is observed that particle radial migration decreases almost linearly as the radius

increases (Figure 5.12).

5.3 Investigation of fluid-flexible beams interaction

The simulations presented in this section involve relatively soft beams with a modulus of elas-

ticity E ≤ 20 MPa that are either unconstrained or else anchored at one end. Since computational

efficiency of the FSI code is directly related to the number of nodal coordinates used to model the
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Figure 5.10: Particle trajectories as a function of a non-dimensional travel distance along the pipe

axis x/R, plotted for several inter-particle distances increasing monotonically from d1 to d13. The

results demonstrate smaller, yet faster, radial migration for larger inter-particle distances.

Figure 5.11: Effect of particle skewness on the radial stable position.
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Figure 5.12: Effect of sphere size on the radial stable position.

flexible beams, a parametric study was conducted first to identify the minimum number of ANCF

beam elements required to accurately capture the dynamics of interest in the subsequent experi-

ments. In this set of experiments, a cantilever of length L = 1 m and diameter D = 0.04 m with

density ρs = 7200 kg/m3 and modulus of elasticity E = 20 MPa was considered to move under

gravity (g = −9.81 m/s2) in vacuum or immersed in fluid of various viscosities (see Sect.5.3.2).

Figure 5.13 shows a few time snapshots from a dynamic simulation of a cantilever modeled with

ne = 4. As shown in Figure 5.14, the tip trajectory of a cantilever moving in a vacuum has an

acceptable convergence at all discretizations and virtually identical results for ne ≥ 4, the value

which was selected for all subsequent simulations.

5.3.1 Floating beam in Poiseuille flow

The validation test was performed using a straight beam with L = 0.2 m, ρs = 7200 kg/m3,

E = 20 MPa, d = 0.04 m, modeled as an ANCF beam with a total of 30 Degrees Of Freedom

(DOF), and a rigid cylinder with the same density and geometry, modeled as a 3D rigid body,

i.e. 6 DOF. The beam and rigid cylinder were subjected to an accelerating channel flow aligned
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Figure 5.13: Time snapshots of a flexible cantilever moving in vacuum under the action of gravity.

The darker colors denote earlier stages of the motion.

Figure 5.14: Convergence test of a soft cantilever beam falling under gravity. Trajectory of the

beam tip is shown for different discretization resolution.

with the global x axis with final steady state Reynolds number Rec = ρV w/µ = 100, where

ρ = 1000 kg/m3, µ = 1 N s/m2, average velocity V = 0.1 m/s, and channel width w = 1 m. The

beam and cylinder were initially perpendicular to the flow and rotated in the yz plane. Under this
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flow condition, the deformation of the unconstrained deformable beam is negligible. Therefore the

rigid body mode of the ANCF beam is expected to be similar to the rigid cylinder.

Comparisons of the resulting beam orientation angles, relative to the global x, y, and z axes, and

of the time evolution of the velocity in the x direction of the beam center velocity are presented in

Figure 5.15. The results show good agreement with differences due to the inability of the gradient

deficient ANCF beam element model to capture rotation about the beam’s axis.

5.3.2 Flexible cantilever immersed in fluid: Effect of viscosity

The effect of viscosity on the motion of the beam’s tip was investigated using a cantilever

moving under the action of gravity in viscous fluid. As shown in Figure 5.16, the beam motion

switches from oscillatory to critically damped motion as the viscosity increases. For the beam

parameters used in this study, namely L = 1 m, d = 0.04 m, ρs = 7200 kg/m3, and E = 20 MPa,

the switch between the two behaviors is observed to occur around µ ' 10 N s/m2. It was also

noticed that viscosity has little effect on the trajectory of the beam tip (plots are not provided).

Nevertheless, compared to the case of a cantilever moving in vacuum, when immersed in fluid, the

tip moves on a much shorter path. This deviation, i.e. having the same trajectory regardless of the

fluid viscosity, which is different from that of a cantilever in vacuum, is most probably due to the

pressure drag which is added to the viscous drag considered herein.

5.3.3 Impulsively started motion of cantilevers in channel flow: Effect of elas-
ticity

The vibration behavior of flexible beams in a viscous fluid was studied by considering an array

of cantilevers in channel flow. Unlike the test described in Sect. 5.3.2, here the flexible cantilevers

are initially at rest when they are hit by a laminar channel flow. This model can be used to study

the effect of horizontal waves on beams submerged in a fluid.

The array of flexible cantilevers is laid out in the xy plane, with (∆x,∆y) = (1.2, 0.4) m,

as shown in Figure 5.17, thus allowing interaction of the beams through the flow. Each beam is

anchored in the xz plane with an angle of 30◦ with respect to the y axis. The fluid, with density
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(a)

(b)

Figure 5.15: Comparison of the dynamics of a rigid cylinder and of a corresponding stiff de-

formable beam under accelerating channel flow: (a) beam orientation; (b) center velocity.

ρ = 1000 kg/m3 and viscosity µ = 1 N s/m2, flows in the x direction between two planes spaced

by H = 1 m vertically.
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(a)

(b)

Figure 5.16: Motion of a cantilever beam in fluid of different viscosities: (a) tip displacement in x

direction; (b) tip displacement in z direction.

Figure 5.18 shows the tip deformation of one cantilever beam for different modulus of elasticity

in the range E ∈ (0.25, 20) MPa. All other beam parameters were kept fixed at L = 0.7 m,

d = 0.04 m, and ρs = 7200 kg/m3.



53

Figure 5.17: Arrays of flexible cantilever beams in laminar channel flow. The beams, laid out in

an uniform grid, are anchored at an angle of 30◦ in the direction of the flow.
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(a)

(b)

Figure 5.18: Motion of a cantilever beam of different elasticity modulus in laminar channel flow:

(a) tip displacement in x direction; (b) tip displacement in z direction.
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Chapter 6

Performance Analysis

The simulation approach described in Sect. 4.2 was implemented to execute in parallel on GPU

cards using the CUDA programming environment [92]. All simulations reported in this section

were run on an NVIDIA GeForce GTX 680 GPU card described in Sect. 4.1. In all simulations, if

present, the flexible beams were modeled using ne = 4 ANCF beam elements, while the integrals

appearing in the elastic forces Qe in Eq. (2.28) were evaluated using 5 and 3 Gauss quadrature

points for the axial and bending elastic forces, respectively.

The investigations begin by analyzing the efficiency and scaling attributes of the solution for

systems composed exclusively of rigid bodies, flexible bodies, or a fluid phase. In each of these

three scenarios, the simulation times for one-step dynamics update is provided for problems of

increasing size. Data provided in Tables 6.1, 6.2, and 6.3 and illustrated in Figure 6.1 indicate that

updates of the dynamics of each phase scale linearly with problem size; i.e., with the number of

rigid bodies, flexible bodies, and SPH markers, respectively.

While the previous results show linear scaling for rigid and flexible body dynamics, in actual

FSI problems in which rigid and/or flexible bodies interact with the fluid, the simulation time

Table 6.1: Time required for advancing the rigid body dynamics simulation by one time step as

function of problem size (number of rigid bodies, Nr)

Nm = 0, Nf = 0

Nr (×103) 0.49 2.87 16.59 56.77 118.23

t (ms) 5 8 16 44 78
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Table 6.2: Time required for advancing the flexible body dynamics simulation by one time step as

function of problem size (number of flxible bodies, Nf )

Nm = 0, Nr = 0

Nf (×103) 0.78 3.51 17.55 56.94 115.05

t (ms) 8 14 48 122 238

Table 6.3: Time required for advancing a fluid dynamics simulation by one time step as function

of problem size (number of SPH markers, Nm)

Nr = 0, Nf = 0

Nm (×106) 0.06 0.32 0.93 1.79 4.13

t (ms) 27 121 331 538 1150
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Figure 6.1: Scaling analysis of Chrono::Fluid for rigid body dynamics, flexible body dynamics,

and fluid dynamics as function of problem size (Nr, Nf , andNm, respectively). The coefficients of

determination,R2, are specified to each linear regression. Virtually exact linear trends are indicated

since R2 ≈ 1.

is virtually independent of the number of solid objects. The results presented in Tables 6.4 and

6.5 were obtained on a system consisting of approximately 3 million SPH markers by varying the
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Table 6.4: Time required for advancing the dynamics of FSI problems by one time step. The

simulation times are provided for FSI problems with fixed number of SPH markers and increasing

number of rigid bodies

Nm ' 3.0× 106, Nf = 0

Nr 0 36 120 480 1800 8400 33 600

t (ms) 906 919 923 925 926 926 921

number of rigid bodies and flexible bodies. The small sensitivity of the simulation time with respect

to the number of solid objects is due to the fact that the number of BCE markers associated with

solid bodies represents only a very small fraction of the number of SPH discretization markers, the

latter overwhelmingly dictating the required computation time. Nevertheless, as the concentration

of solid objects increases, smaller time steps are required since the probability of short-range,

high-frequency interactions increases.

The two sets of results provided in Table 6.5 for different values of τm = ∆tSPH/∆tANCF ,

yet the same ∆tSPH , show a small increase in the simulation time when choosing a very small

integration step size for flexible body dynamics. This illustrates the efficiency of the multi-rate

integration scheme in improving the time integration stability at a small increase in computational

cost. The small changes in the simulation times provided in Tables 6.4 and 6.5 are mainly due to

the deviations in the magnitude of Nm as the number of solid objects changes. Linear scaling in

Chrono::Fluid is also demonstrated in an experiment where a combined FSI problem, i.e. involving

rigid and flexible bodies and including a lubrication force model and two-way coupling with fluid,

is solved on domains of increasing size (see Figure 6.2). As the simulation domain volume is

increased by factors from 2 up to 32, the number of SPH markers varies from about 76, 000 to

more than 2.5 million. Simultaneously, the number of rigid and flexible bodies grow from 168

to more than 24, 000 and from 160 to almost 10, 000, respectively (see Table 6.6). As shown in

Figure 6.2, Chrono::Fluid achieves linear scaling over the entire range of problem sizes.
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Table 6.5: Time required for advancing the dynamics of FSI problems by one time step. The

simulation times are provided for FSI problems with fixed number of SPH markers and in-

creasing number of flexible bodies, for two different values of the multi-rate integration factor

τm = ∆tSPH/∆tANCF

Nm ' 3.0× 106, Nr = 0

Nf 0 45 140 440 1152 2100 4704

τm = 10 t (ms) 906 923 928 916 960 950 921

τm = 50 t (ms) 906 973 978 965 1066 1060 1060

Table 6.6: Time required for advancing the dynamics of combined FSI problems by one time step.

The simulation times are provided for FSI problems of increasing size

Nm (×106) 0.08 0.16 0.29 0.63 0.95 1.54 2.50

Nr (×103) 0.17 0.52 1.12 4.48 7.84 14.56 24.64

Nf (×103) 0.16 0.42 0.84 2.10 3.36 5.88 9.66

t (ms) 45 74 120 230 343 522 820
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Figure 6.2: Scaling analysis of Chrono::Fluid for FSI problems: simulation time as function of

combined problem size. In this experiment, the volume of the simulation domain is increased, up

to 32 times the volume of the initial domain, leading to proportional increases in the number of SPH

markers and of solid objects (both rigid and flexible bodies) as shown in the bottom plot (see also

Table 6.6). As illustrated by the top graph, the simulation time for an one-step dynamics update

varies linearly with problem size. The coefficients R2 are specified for each linear regression.
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Chapter 7

Demonstration of technology

The purpose of this chapter is to further demonstrate the capabilities of the proposed framework

for the simulation of FSI problems. The problems provided herein are meant to illustrate the type

and size of the real-world engineering applications that can be approached via the developed FSI

framework for investigation and parametric study purposes.

7.1 Flow cytometry using microfluidic techniques

New flow-cytometry technologies are being developed to rapidly and accurately analyze the

composition and function of large particles (a ≈ 25–500 µm) without affecting cell viability [14].

Purification of cell aggregates or 3D engineered tissues would be beneficial for many basic biomed-

ical and clinical applications. Single cells have been efficiently purified using fluidic approaches

for several decades. However, purification of 3D microtissues (i.e. large particles with a > 50 µm)

and cell aggregates has been difficult. In this context, purification or sorting of large particles and

cell aggregates at different conditions continues to demand for an accessible platform.

One of the most common approaches for particle sorting is fluorescence activated cell sorting

(FACS), which is accomplished by applying an electromagnetic charge to a droplet containing a

single particle, e.g. cell. The particle is deflected accordingly by applying an electric field. This

technique has inherent limitations. As the particle size increases, local disturbances can affect the

predictability of particle behavior. Additionally, the increased particle inertia due to a size increase

can significantly affect its mobility under the electromagnetic field.
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One of the few, if not the only, commercially available, large particle FACS systems is the

COPAS Bio Sorter [128]. The apparatus is capable of measuring different particle parameters

including size, extinction coefficient (optical density), and fluorescence parameters, for particle

sizes ranging from 5 to 750 µm. The sorting mechanism is pneumatic and includes a solenoid valve

that is actuated/opened in response to defined optical parameters. Therefore, unwanted particles

are directed to a waste container. The system is sophisticated in sorting large particles, but is

limited in characterizing particles in aggregates.

Microfluidic platforms have been utilized to increase the efficiency and accessibility of sys-

tems designed to purify small particles [48, 53, 56, 91] and more recently large particles based on

particle size [5]. Particularly, a capillary sorting mechanics was developed using diode laser bars

to optically trap or deflect particles up to 100 µm in radius [5, 70]. Theoretically, different size

particles are sorted by size based on the supplied laser power. However, the practical application

of this approach is limited to particles smaller than 200 µm due to the constraint on the size of

the laser bar. Moreover, the impact of the laser power on the function and viability of biologic

particles is unknown. Alternatively, physical separation schemes can be leveraged to sort large

particles without affecting their viability [13, 70].

A microfluidic design for sorting small particles is proposed in [26]. Therein, particles move

with the flow through an asymmetric channel, which intensifies the flow inertial effect and uses

hydrodynamic forces to order and separate particles. The design reduces the setup complexity and

the reagent consumption while allowing for higher throughput. A similar approach was leveraged

in the design of an asymmetric channel for sorting large particles, as shown in Figure 7.1a [13].

In this setup, the line of particles passes the optical interrogation point and upon the detection of

a desired event, sorting is triggered. The main and sorting branches, bifurcated at the channel

outlet, are controlled by micro-valves to direct the particles to a desired direction. A single phase

flow analysis of the setup was provided in [13]. This model will not suffice for the analysis of

the drafting, kissing, and tumbling (DKT) of the particles, which has a dominant role in particle

sorting via the microfluidic device. Moreover, the sorting efficiency is Reynolds number dependent
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and requires a parametric study that accounts for particle size and flow rate. These requirements

raised the need for numerical simulation performed herein on a similar setup.

The simulation setup, shown in Figures 7.1b and 7.1c, consists of an asymmetric channel sim-

ilar to the experimental one. Figure 7.1c shows the channel profile in x–y plane. The height of the

channel, i.e. z component, is 1 mm and gravity is applied in the z direction. This geometry was im-

posed by using BCE markers described in Sect. 3.2. A particle speed between 1.5 and 2 mm/s was

obtained by adjusting a flow rate range between 400–1000 µl/min. This flow rate and the channel

profile shown in Figure 7.1c accommodate particles in the rage of a = 70–250 µm [25]. The

channel height is the only limiting factor on maximum particle size, therefore it can be modified to

accommodate larger particles.

7.2 Dense particle suspension

The model considered in this section is that of a dense suspension composed of about 2.3 ×

104 neutrally buoyant rigid bodies in fluid flow. The fluid domain is modeled via approximately

2.0× 106 markers. Considering all of the intermediate data required for RK2 integration scheme,

approximately 1.0× 108 state variables are required to capture the evolution of the system state.

The rigid particles involved in this simulation are ellipsoids with radii of (1.5, 1.5, 2) cm, flow-

ing with liquid inside a channel of dimensions of (1.1, 1, 1) m, at Re = 66. While wall boundary

conditions are applied at the bottom and top of the channel in z-direction, periodic boundary condi-

tions are considered in the y-direction to generate a 2D flow. This setup models a dense suspension

with volumetric fraction of φ ≈ 40%. The choice of other shapes for rigid bodies is just a matter

of initialization as the solution algorithm does not use any assumption in this regards.

Figures 7.2 and 7.3 show snapshots of this simulation. The mid-section of the flow is shown in

Figure 7.2 where the color illustrates the velocity profile. Figure 7.3 shows only the rigid particles.

The snapshots are taken at about t∗ = 4, where the non-dimensional time, t∗, is defined based on

real time, t, average flow velocity, V , and the channel width, w, as t∗ = t× V/w.

The concentration distribution curves obtained for this investigation are noisier than those ob-

tained experimentally by Han et. al [41]. Long simulation times (≈ 100 GPU hour per test)
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(a) (b)

(c)

Figure 7.1: Numerical investigation of flow cytometry using asymmetric channel: (a) experiment

setup showing the channel and the particle feeding valve; (b) snapshot of the numerical simulation;

(c) channel profile used in experiment and simulation. All dimensions are in mm.

prevented us from running a sufficiently large number of simulations required for statistical aver-

aging and bootstrapping. An effort is underway to reduce the simulation times to enable the study

of suspensions with moderate to high concentrations.

7.3 Microscale numerical simulation of flow in porous media

There is a class of applications characterized partly by flow within porous media. Examples of

such systems include, but are not limited to: (1) oil recovery from deep wells; and (2) biological
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Figure 7.2: Direct numerical simulation of a dense suspension of ellipsoids in 3D square channel

flow. Only the mid-section of the flow, which shows the rigid ellipsoids suspended in the fluid, is

shown. The coloring scheme represents fluid velocity: from zero (blue) to maximum (red).

applications such as diffusion of nutrients and other macromolecules, e.g. drugs, across and within

biological tissues, transport in brain tissues, MRI applications, liquid chromatography, transport

of macromolecules in aortic media, and blood flow through muscles. These problems can be

approached via the proposed framework, where the porous media is modeled with BCE markers

and the rigid/flexible motion is suppressed.

An example simulation of flow within porous media is shown in Figure 7.4. The porous matrix

was generated by including overlapping randomly-generated fixed rigid objects. The porosity of

the matrix can be adjusted by changing the number or size of rigid objects. Note that a point

cloud representing the porous matrix can be generated directly using data from a scanning electron

micrograph.
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Figure 7.3: Direct numerical simulation of a dense suspension of ellipsoids in 3D square chan-

nel flow. The fluid was removed to show a perspective view of the rectangular channel and the

ellipsoids.

7.4 Immersed deformable objects

This simulation involves a channel flow passing over an array of beams that are fixed at one

end and free to move at the other. The flexible cantilevers can be replaced by flexible pendulums

or flexible beams pivoted at both ends via minor modifications performed during the initialization

phase.

The simulation involves a similar channel described in Sect. 7.2, with the difference that the

fluid flows in both x and y directions, i.e. parallel to the wall, with some induced random behavior.
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The beams have L = 0.8 m, ρs = 1000 kg/m3, E = 0.2 MPa, and d = 0.04 m. The simulation

was performed atRe ≤ 20 using an array of 630 beams and approximately 1.25×106 markers. An

snapshot of the simulation is shown in Figure 7.5. The simulation animation can be accessed from

[112]. This simulation scenario can be modified to tackle specific applications such as structural

stresses at geological scales.

7.5 Interacting rigid and flexible objects in channel flow

Two simulations involving fluid flow, rigid bodies, and flexible beams were conducted herein.

The solid objects involved in these simulations interact with fluid via a two-way coupling model.

Additionally, a solid-solid interaction model is employed to capture rigid-rigid, rigid-beam, and

beam-beam interactions.

In the first simulation, an immersed array of cantilever beams is subjected to a flow of a sus-

pension of rigid objects. The rigid phase is composed of approximately 2000 neutrally buoyant

ellipsoids of radii (a1, a2, a3) = (2.25, 2.25, 3) cm. The flexible bodies are 64 cm long beams with

radius a = 1.5 cm, modulus of elasticity E = 0.2 MPa, and density ρs = 1000 kg/m3. The fluid,

which has the density and viscosity equal to ρ = 1000 kg/m3 and µ = 1 Pa · s, respectively, flows

within a channel with dimensions equal to (lx, ly, lz) = (1.4, 1, 1) m. Periodic boundary conditions

are applied to both the x and y directions of the flow. The flow and particle Reynolds numbers for

this simulation are Re = 45 and Rep = 2, respectively, where Rep is calculated based on the

average particle diameter, i.e. D = 2a = 2(a1a2a3)
1/3.

Several snapshots of this simulation are provided in Figure 7.6. Therein, the colors show the

velocity, from zero (blue) to maximum (red). Animations showing the transient behavior of this

simulation and similar simulations composed of softer and stiffer beams are available online [112].

Problems involving the flow of flexible objects, e.g. polymer, with fluid are usually considered

within the framework of non-Newtonian fluid dynamics. Such problems can also be approached

via direct numerical simulation, which in turn provides the opportunity of investigating details such

as stress distribution in the components. This problem is approached herein using the geometry

and material properties similar to those used in the previous problem. The beams, however, are
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not constrained and move with the fluid. A snapshot of this simulation is shown in Figure 7.7.

Several similar simulations were performed considering extremely soft beams with E = 0.2 KPa

to moderately soft beams with E = 0.2 MPa. Although only straight beam components were

studied herein, other micro-structures can be considered by connecting beams to one another. In

the current simulation engine, this is possible by reducing the set of independent coordinates as

described in Sect. 2.3.
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(a) (b)

(c)
Figure 7.4: Example simulation of flow in porous media. The entire domain is shown in (a). For

a clear visualization, the fluid and porous matrix are partially removed in (b) and (c), respectively.

The color represents fluid velocity: from zero (blue) to maximum (red). The maximum flow

velocity is approximately 6 mm/s, i.e. Re ≈ 6.
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Figure 7.5: Example simulation of flow over a dense array of interacting beams.
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(a) (b)

(c)
Figure 7.6: Example simulation of flow of rigid bodies within an array of deformable beams. For

a clear visualization, only parts of the domain are shown in each picture: (a) beams; (b) beams and

rigid bodies; (c) beams, rigid bodies and fluid flow, cut at different sections. The color represents

the velocity: from zero (blue) to maximum (red), with V fluid
max = 0.045 m/s, V rigid

max = 0.041 m/s,

and V beam
max = 0.005 m/s.
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Figure 7.7: Flow of a suspension of rigid and deformable objects. Parts of the rigid and fluid phase

are removed for a clearer illustration.
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Chapter 8

Directions of the future work and preliminary results

8.1 New numerical methods: Implicit integration for SPH

This section describes ongoing work aimed at producing an implicit integration method for

resolving the dynamics of the fluid phase in an SPH framework. In this approach, the Navier-

Stokes equations, i.e. Eq.(2.6), are solved by considering the incompressibility condition as a

constraint obtained from Eq. (2.5) by setting dρ/dt = 0:

∇ · v = 0. (8.1)

Equations (2.6) and (8.1) combine to form a so-called Hessenberg Index-2 DAE, which can be

expressed as

Ψ(v, p) = 0, (8.2)

and is to be solved for v and p. The incompressibility is an outcome of the solution strategy,

since this condition was applied as a constraint. This approach is different from the projection

method [22] since the pressure is obtained by considering the constraint on the current instead of

the predicted velocities. The proposed approach has first been tested on a 2D problem using an

Eulerian approach described in Sect. 8.1.1.

8.1.1 Incompressible fluid flow on a grid

In 2D, the Navier-Stokes and incompressibility equations are written as
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∂u

∂t
+
∂(uu)

∂x
+
∂(uv)

∂y
= −1

ρ

∂p

∂x
+
µ

ρ

(
∂2u

∂x2
+
∂2u

∂y2

)
+ fx (8.3a)

∂v

∂t
+
∂(uv)

∂x
+
∂(vv)

∂y
= −1

ρ

∂p

∂y
+
µ

ρ

(
∂2v

∂x2
+
∂2v

∂y2

)
+ fy (8.3b)

∂u

∂x
+
∂v

∂y
= 0. (8.3c)

Herein, u and v denote the x and y components of the fluid velocity, respectively. A finite difference

approach on an staggered grid was adopted to numerically solve the set of equations provided in

Eq. (8.3).

A staggered grid is one in which velocities and pressure are located at different positions. A

typical staggered grid cell is shown in Figure 8.1a. Therein, the horizontal arrows, vertical arrows,

and center dot show the locations of u, v, and p, respectively. A common indexing approach for

staggered grid taxonomy is shown in Figure 8.1b. The indices of the left and bottom velocities are

associated with the cell index i, j. The result of this indexing convention on the whole domain is

shown in Figure 8.2. It is worth noting that the bounds on the i and j indices of each variable, e.g.

u, v, and p, is different than the other variables.

With a staggered grid, there is some ambiguity about indexing convention since indices like

i+1/2 and j+1/2 may be addressed differently when denoting the momentum equations in x and

y directions. To address such ambiguities, Appendix A provides the discretization of the continuity

and momentum equations.

(a) (b)

Figure 8.1: A typical staggered grid cell: (a) positions of velocities and pressure; (b) indexing

convention.
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Figure 8.2: Schematic of the domain indexing in staggered grid taxonomy.

A Newmark algorithm [90] was implemented to determine the steady state solution to the

system of equations obtained through the discretization of Eq. (8.3). An extra constraint was

added to the system by setting the pressure of one node to zero. This is necessary due to the fact

that the solution for p0 is exact up to a constant; i.e. if p is a solution, then any constant offset of

p is a solution too. Herein p denotes the array of pressure values at all nodes.

As a case study, a lid driven cavity flow was considered herein. Figure 8.3 shows the results

obtained at Re = 100 where contours of velocities and pressure are provided.
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(a) (b)

(c) (d)

Figure 8.3: Cavity flow solution using staggered grid atRe = 100. The contours show: (a) velocity

in x direction; (b) velocity in y direction; (c) magnitude of velocity; (d) pressure.

8.1.2 Incompressible SPH

Similar to Sect. 8.1.1, the solution to the incompressible flow is approached herein via a Hes-

senberg Index-2 DAE formulation where a SPH discretization is implemented instead of a stag-

gered grid. This formulation requires the derivation of sensitivity matrix in conjunction with SPH

methodology, which is described in details in this section.
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The continuity and Navier-Stokes equations given in Eqs. (2.5) and (2.6) can be described at

each Lagrangian point as,

v̇a + ξa − ζa = ka (8.4a)

χa = 0 (8.4b)

where a is marker’s identifier; and ξa, ζa, and ka are pressure, viscosity and body force contri-

butions, respectively. The divergence of the velocity field, χa, is enforced to be zero through the

constraint equation, Eq. (8.4b). We have used SPH to discretize Eq. (8.4) as,

ξa =
∑
b

mb

(
pa
ρ2a

+
pb
ρ2b

)
∇T
aW ∈ <3 (8.5a)

ζa =
∑
b

mb
2µ̄

ρ̄2
1

rT r + η2
(
rT∇T

aW
)
ṙ ∈ <3 (8.5b)

χa =
∑
b

mb

ρb
ṙT∇T

aW =
∑
b

mb

ρb
(∇aW ) ṙ ∈ <, (8.5c)

where ṙ = dr/dt = va − vb ∈ <3, µ̄ = µa + µb, ρ̄ = ρaρb and η = εh̄2ab.

8.1.3 Implicit method

8.1.3.1 Setup

Given a function q : <3 → <, q = q(r), define its gradient and Jacobian as:

qr ≡ ∇q ∈ <1×3 (8.6a)

qrr ≡ ∂r
[
qTr
]
∈ <3×3. (8.6b)

Consider a kernel function W : < → <, W = W (q) of sufficient smoothness, whose first and

second derivatives with respect to q are scalars denoted as W ′ and W ′′. The kernel function W can

be seen as an implicit function of r through q(r), i.e.

W : <3 → < , W (r) ≡ W (q(r)). (8.7)

The gradient of W with respect to r is therefore

∇W = W ′qr ∈ <1×3 (8.8)
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and, for notational convenience, let

∇TW ≡ (∇W )T ∈ <3. (8.9)

Now let rab = xa − xb. For brevity, the “ab” superscript will be dropped from r. Then ∂xa [r] = I3

and ∂xb
[r] = −I3. Reliance of W on q and r, can be observed as

W : <3 ×<3 → < , W (xa,xb) ≡ W (q(xa − xb)). (8.10)

Using the notation

∇aW ≡ ∂xa [W (xa,xb)] ∈ <1×3 ; ∇bW ≡ ∂xb
[W (xa,xb)] ∈ <1×3 (8.11a)

∇T
aW ≡ (∇aW )T ∈ <3 ; ∇T

bW ≡ (∇bW )T ∈ <3, (8.11b)

results in

∇T
aW = W ′qTr ; ∇T

bW = −W ′qTr . (8.12)

Note that, when clear from the context, arguments are omitted from W and/or its derivatives. For

example, whenver W ′ or W ′′ is present, it is assumed that W is seen as a function of q. Similarly,

the notation∇W implies W a function of r.

The derivation of the necessary Jacobian matrices for the SPH discretized equations relies on

the second-order derivatives of W (xa,xb) with respect to xa and xb. Define

JW ≡ ∂r
[
∇T
aW

]
∈ <3×3. (8.13)

Using the chain rule, Eq. 8.13 is expanded as

JW = ∂r
[
W ′qTr

]
= W ′

(
∂qTr
∂r

)
+ qTr

(
W ′′∂q

∂r

)
= W ′qrr +W ′′qTr qr, (8.14)

which implies that

∂xa

[
∇T
aW

]
= JW ∈ <3×3 (8.15a)

∂xb

[
∇T
aW

]
= −JW ∈ <3×3. (8.15b)
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The last necessary ingredient is evaluating the derivatives with respect to xa and xb of an ex-

pression of the form
(
rT∇T

aW
)
ṙ, where ṙ ∈ <3. This term appears in the momentum equation in

conjunction with the viscosity term. To this end, consider first the problem of finding the Jacobian

yx, where y =
(
aTb

)
c, for a, b ∈ <N , c ∈ <M , and x ∈ <K . The M ×K desired Jacobian is

obtained as:

yx =
∂(aTb)c

∂x
= c

∂(aTb)

∂x
+ (aTb)cx = c

(
aTbx + bTax

)
+ (aTb)cx. (8.16)

With this, the partial derivative of the viscosity term with respect to r can be obtained as

∂r
[(

rT∇T
aW

)
ṙ
]

= ṙ

(
rT
∂∇T

aW

∂r
+ (∇aW )

∂r

∂r

)
+
(
rT∇T

aW
) ∂ṙ

∂r

= ṙ
(
rTJW +∇aW

)
, (8.17)

which implies

∂xa

[(
rT∇T

aW
)
ṙ
]

= ṙ
(
rTJW +∇aW

)
∈ <3×3 (8.18a)

∂xb

[(
rT∇T

aW
)
ṙ
]

= −ṙ
(
rTJW +∇aW

)
∈ <3×3 (8.18b)

8.1.3.2 Example kernel

Consider the particular case

q(r) =
‖r‖
h

(8.19)

where h defines the kernel’s support. Then,

h2q2 = rT r⇒ 2h2qqr = 2rT ⇒ qr =
1

h2q
rT (8.20a)

qqTr =
1

h2
r⇒ qTr qr + qqrr =

1

h2
I3 ⇒ qrr =

1

q

(
1

h2
I3 −

1

h4q2
rrT
)

(8.20b)

∇W = W ′qr =
W ′

h2q
rT (8.21)
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Therefore, the JW is obtained as

JW = W ′qrr +W ′′qTr qr

=
W ′

q

[
1

h2
I3 −

1

h4q2
rrT
]

+W ′′
(

1

h2q
r

)(
1

h2q
rT
)

=
W ′

h2q
I3 +

(
W ′′ − W ′

q

)
rrT

h4q2
(8.22)

A similar kernel function as that of the explicit approach defined in Eq. 2.4 was used herein. The

radius of the kernel function, κh, is proportional to the characteristic length, where κ = 2 for the

kernel function defined by Eq. (2.4).

8.1.3.3 SPH Derivatives

The Jacobian information for implicit integration of the discretized SPH equations can be ob-

tained and assembled by blocks, using the identities derived previously, as follows:

∂xa [ξa] =
∑
b

mb

(
pa
ρ2a

+
pb
ρ2b

)
JW (8.23a)

∂xb
[ξa] = −mb

(
pa
ρ2a

+
pb
ρ2b

)
JW (8.23b)

∂va [ξa] = 0 (8.23c)

∂vb
[ξa] = 0 (8.23d)

∂pa [ξa] =
∑
b

mb
1

ρ2a
∇T
aW (8.23e)

∂pb [ξa] = mb
1

ρ2b
∇T
aW (8.23f)
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∂xa [ζa] =
∑
b

mb
2µ̄

ρ̄2
1

rT r + η2

[
ṙrT

(
JW −

2
(
rT∇T

aW
)

rT r + η2
I3

)
+ ṙ∇aW

]
(8.24a)

∂xb
[ζa] = −mb

2µ̄

ρ̄2
1

rT r + η2

[
ṙrT

(
JW −

2
(
rT∇T

aW
)

rT r + η2
I3

)
+ ṙ∇aW

]
(8.24b)

∂va [ζa] =

[∑
b

mb
2µ̄

ρ̄2
1

rT r + η2
(
rT∇T

aW
)]

I3 (8.24c)

∂vb
[ζa] = −mb

2µ̄

ρ̄2
1

rT r + η2
(
rT∇T

aW
)
I3 (8.24d)

∂pa [ζa] = 0 (8.24e)

∂pb [ζa] = 0 (8.24f)

∂xa [χa] =
∑
b

mb

ρb
ṙTJW (8.25a)

∂xb
[χa] = −mb

ρb
ṙTJW (8.25b)

∂va [χa] =
∑
b

mb

ρb
∇aW (8.25c)

∂vb
[χa] = −mb

ρb
∇aW (8.25d)

∂pa [χa] = 0 (8.25e)

∂pb [χa] = 0 (8.25f)
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The above blocks have the following dimensions:

∂xa [ξa] , ∂xb
[ξa] , ∂va [ξa] , ∂vb

[ξa] ∈ <3×3

∂pa [ξa] , ∂pb [ξa] ∈ <3

∂xa [ζa] , ∂xb
[ζa] , ∂va [ζa] , ∂vb

[ζa] ∈ <3×3

∂pa [ζa] , ∂pb [ζa] ∈ <3

∂xa [χa] , ∂xb
[χa] , ∂va [χa] , ∂vb

[χa] ∈ <1×3

∂pa [χa] , ∂pb [χa] ∈ <

8.1.3.4 Implicit integration using BDF

Consider an initial value problem (IVP), denote by tn and yn = y(tn) the discrete values of the

independent variable t and solution y(t) at nτ , where τ = tn−tn−1 be the (constant) step-size. The

Backward Differentiation Formulas (BDF) [33] method of order k is obtained by differentiating

the solution y using past values as

yn =
k∑

m=1

αmyn−m + τβ0ẏ
n , (8.26)

where the coefficients αi and β0 depend on the method order k. In particular, the simplest BDF

method (BDF1) is Backward Euler

yn = yn−1 + τ ẏn , (8.27)

while BDF2 is

yn =
4

3
yn−1 − 1

3
yn−2 +

2

3
τ ẏn . (8.28)

For an ODE in implicit form or a DAE; i.e. Ψ(t,y, ẏ) = 0, the BDF method gives yn as the

solution of

Ψ

(
tn,yn,

yn −
∑k

m=1 αmyn−m

τβ0

)
= 0 , (8.29)
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which, to simplify notation, is rewritten as:

Ψ

(
tn,yn,

1

τβ0
yn + b

)
= 0 . (8.30)

Here b incorporates past values of the solution and remains constant during the solution of the

nonlinear system. A Newton iteration at time step n, given as

yn,i+1 = yn,i −G−1Ψ

(
tn,yn,i,

1

τβ0
yn,i + b

)
, (8.31)

is used herein, where yn,0 = yn−1 and G is the iteration matrix

G =
∂Ψ

∂y
+

1

τβ0

∂Ψ

∂ẏ
, (8.32)

where all terms are evaluated at tn.

In general, the condition number of the iteration matrix for a system with DAE index ν is

O(τ−ν). However, it is often possible to reduce the condition number through appropriate scaling

of the DAE system. Herein, the interest is in the systems of the form

ẋ = f(x, z) (8.33a)

0 = g(x) . (8.33b)

Assuming that the product of Jacobians gxfz is nonsingular for all t, (8.33) represents a so-called

Hessenberg Index-2 DAE. For such systems, the iteration matrix is written as

τG =

 1
β0

I− τ fx −τ fz
τgx 0

 . (8.34)

Solving the unscaled linear system given in Eq. 8.31 introduces roundoff errors proportional to

ε/τ and ε/τ 2 in x and z, respectively, where ε is the unit roundoff, which can be confirmed by

inspecting the orders of the bottom row blocks of (τG)−1. Scaling by 1/τ the bottom rows of τG,

i.e. those corresponding to the algebraic equations (8.33b), the roundoff errors introduced in x and

z are reduced to O(ε) and O(ε/τ), respectively.

The SPH discretized momentum equation and incompressibility conditions in Eq. (8.4), to-

gether with

ẋa = va , a = 1, 2, 3, . . . , N (8.35)
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can be written as the Hessenberg index-2 DAE

ẋ = v (8.36a)

v̇ = f(x,v,p) (8.36b)

0 = g(x,v) , (8.36c)

where in the rest of this section as well as Sect. 8.1.3.5, x, v, and p denote the arrays of positions,

velocities, and pressures for all particles, respectively; for example, x = [x1,x2,x3, ...,xNm ]T .

After rearranging terms, this leads to the following BDF discretization (which includes scaling of

the algebraic incompressibility constraints):

xn − τβ0vn −
k∑
i=1

αix
n−m = 0 (8.37a)

vn − τβ0f(xn,vn,pn)−
k∑
i=1

αiv
n−m = 0 (8.37b)

g(xn,vn) = 0 (8.37c)

with a Newton iteration matrix obtained as:

G =


I −τβ0I 0

−τβ0fx I− τβ0fv −τβ0fp
gx gv 0

 , (8.38)

where all terms are evaluated at tn. Note that the size of the resulting linear systems can be

reduced by eliminating xn using the first equation in (8.37), which is equivalent to the following

Schur complement decomposition:

G =


I 0 0

−τβ0fx I 0

gx 0 I

 ·


I −τβ0I 0

0 I− (τβ0)
2fx − τβ0fv −τβ0fp

0 τβ0gx + gv 0

 . (8.39)

Alternatively, taking into account that the SPH formulation of the Navier-Stokes equations results

in a Hessenberg index-2 DAE, a different elimination sequence can be used by solving a nonlinear
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system for the accelerations v̇n and pressures pn. Indeed, using

vn = τβ0v̇
n +

k∑
i=1

αiv
n−m (8.40a)

xn = (τβ0)
2v̇n + τβ0

k∑
i=1

αiv
n−m +

k∑
i=0

αix
n−m , (8.40b)

the following nonlinear system is obtained upon scaling by τβ0:

v̇n − f̄(v̇n,pn) = 0 (8.41a)

1

τβ0
ḡ(v̇n) = 0 , (8.41b)

where f̄(v̇,p) ≡ f(x(v̇),v(v̇),p) and ḡ(v̇) ≡ g(x(v̇),v(v̇)). In this case, the Newton iteration

matrix is:

Ḡ =

I− (τβ0)
2fx − τβ0fv −τβ0fp

τβ0gx + gv 0

 , (8.42)

which is the same as the Schur complement block in (8.39).

8.1.3.5 Simulation algorithm based on Newmark method

By choosing Newmark method and assuming v̇ and p as the set of unknowns, markers’ position

and velocities are obtained as,

vn = kn−1v − τβ0v̇n (8.43a)

xn = kn−1x − (τβ0)
2v̇n, (8.43b)

where

kn−1v = vn−1 − β0(1− τ)v̇n−1 (8.44a)

kn−1x = xn−1 − β0vn + β2
0τ(1− τ)v̇n−1. (8.44b)

Therefore, Eq. (8.31) can be used for the iterative solution of

Ψ = 04Nm×1, (8.45)
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where

Ψ ≡ Ψ(v̇, p) =

 v̇ − f(r,v,p)

1
τβ0

g(x, v)

 . (8.46)

Note that f = [f1, f2, f3, ..., fNm ]T and g = [χ1, χ2, χ3, ..., χNm ]T are defined based on Eq. (8.4),

where fa = −ξa + ζa + ka, and Eqs. (8.23) to (8.25) are used to calculate fx, fv, fp, gx, and gv.

8.1.3.6 Parallel implementation

At each iteration, a neighbor list is assembled to indicate the set of markers that fall within

the kernel support of a marker. If Nm markers are used in the simulation, Nm lists are generated.

The summations appearing on the right hand side of Eqs. (8.5) and (8.23)-(8.25) are subsequently

computed based on these neighbors lists. The CUDA library [92] along with several functions

provided by Thrust [45] are used for a parallel implementation that scales linearly.

8.1.4 Boundary conditions

The wall boundary condition imposes constraints on velocity and pressure as essential and

natural boundary conditions, respectively. These conditions need to be resolved on the boundaries

of the solution domain.

8.1.4.1 Velocity boundary conditions

The no-slip boundary condition, i.e. v = 0, imposes essential boundary conditions on ve-

locity. The implementation of essential boundary conditions in SPH needs to resolve the particle

deficiency issue near the boundaries, which can be addressed in several ways, e.g. using mir-

ror particles [22, 69], dummy particles with zero [68] or rigid body velocity [104], linear [84] or

quadratic [10] extrapolation of the velocity to the dummy particles, and normalization procedure

to account for the particle deficiency [109].
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8.1.4.2 Pressure boundary conditions

The pressure constraint imposes a natural boundary condition. Since pressure is a scalar, a

single condition on each boundary is required for its solution. Claeyssen et al. [19] used the

momentum equation,
∂v

∂t
+ (∇v) v + (∇p)T = ν∇2v, (8.47)

to derive the pressure boundary condition. For instance, the Neumann boundary condition can be

obtained as

nT (∇p)T ≡ ∂p

∂n
= νnT∇2v −

(
nT

∂v

∂t
+ nT (∇v) v

)
, (8.48)

where n and n are the coordinate and unit vector normal to the boundary, respectively. By com-

bining the no-slip boundary condition with Eq. (8.48), the natural boundary condition on the rigid

walls simplifies to
∂p

∂n
= νnT∇2v. (8.49)

In the case of Dirichlet boundary condition, the values of pressure on the boundary can be used to

define the essential boundary condition as

%T (∇p)T ≡ ∂p

∂%
= ν%T∇2v −

(
%T
∂v

∂t
+ %T (∇v) v

)
, (8.50)

where % is a vector tangent to the boundary.

Despite the straightforward derivation of pressure boundary condition, Strikwerda [124], Hen-

shaw [43], and Petersson [108] pointed out that Eqs. (8.48) and (8.50) do not add extra information

to the system since momentum equation is already satisfied within the entire domain “including the

boundaries”, a claim that was disputed due to the fact that momentum equation is not employed

for Dirichlet boundary [38]. Nevertheless, the consensus is to implement the incompressibility

condition while deriving the required boundary condition. One solution is to directly apply the

incompressibility condition,

∇·v = 0, (8.51)

along with Eq. (8.49) on the boundaries. Petersson [108] pointed out that using Eq. (8.51) in an

implicit solution requires a much smaller time step than what is imposed by Eq. (8.49). Therefore
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he suggested to use Eq. (8.49) by taking into account the fact that Eq. (8.51) should be satisfied

normal to the boundary. As a results, Eq. (8.49) transforms into

∂p

∂n
= −νnT (∇×∇× v) . (8.52)

Different approaches were suggested in [22] and [49] to implement the pressure boundary

condition in the SPH framework. In [22], the pressure boundary condition is applied in the weak

form of the pressure equation. Equation (8.49) has been implemented using the SPH discritization

in [49].

As mentioned earlier, particle deficiency is not an issue for essential boundary conditions since

dummy particles can be generated according to boundary values in several different ways [10,

22, 68, 69, 84, 104, 109]. However, properties of the dummy particles should comply with the

Neumann boundary condition. Different algorithms were suggested to propagate the pressure field

to dummy particles representing the boundary to satisfy the Neumann boundary condition [22,

49, 68]. Cummins et al. [22] set the pressure of the mirror particle to be the same as that of the

original particle, i.e. pm = p, where m denote the mirror particle. This enforces ∂p/∂n = 0

which is not essentially correct. Lee et al. [68] suggested copying the value of the particle to the

dummy particles in the normal direction. If there is overlap along two different normal directions,

for instance convex edges, the values obtained from different directions are averaged. A similar

approach is used in [49] to propagate the so-called modified pressure, a property which is also

subjected to a natural boundary condition.

8.1.4.3 SPH implementation of boundary conditions

Since an incompressibility constraint is applied in the solution procedure, there is no need for

extra effort in terms of applying boundary conditions. However, the SPH implementation of the

algorithm needs to resolve the particle deficiency issue close to the boundary. Herein, the coupling

method using BCE markers described in Sect. 3.2 [104] is consistently used in both implicit and

explicit models. In contrast to the explicit method, the pressure of the BCE markers needs to be
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defined as well. To this end, the method described in [68] was used, where the pressure of each

BCE marker is set equal to the pressure of the closest fluid marker.

8.1.5 Preliminary results

The developed implicit integration algorithm was investigated through the simulation of tran-

sient Poiseuille flow at Re ' 1. The velocity profile obtained from implicit SPH method using 100

markers is in good agreement with the exact solution, as illustrated in Figure 8.4. The result was

obtained using a time step about an order of magnitude larger than the one required by the explicit

integration algorithm explained in Sect. 3.4. An average of five iterations is required for conver-

gence of the solution at each time step. A preconditioner, which is currently being developed, is

anticipated to further improve the efficiency of the approach.

Figure 8.4: Velocity profile of transient Poiseuille flow obtained from implicit SPH simulation

(dots) and series solution (continuous lines).
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8.2 Using SPH to investigate challenging applications

8.2.1 Effect of particle shape on the behavior of particle suspension and sedi-
mentation

As indicated in Sects. 5.1 and 5.2, experiments and direct numerical investigations have been

mostly targeting suspension of spherical particles. The results reported for the migration of single

particle in pipe flow demonstrate a close correlation with the distribution of suspension concen-

tration, as suggested by Figures 5.3 and 5.4. Future work can approach the suspension of non-

spherical particles to further investigate the migration of single particle of an arbitrary shape as

well as suspension distribution, velocity profile, sedimentation, and transient behavior of dense

suspensions.

8.2.2 Ice-structure interaction

Offshore wind turbines are being used by several countries to harness the energy of strong,

consistent winds that are found over the oceans. In the United States, 53% of the nations popu-

lation lives in coastal areas, where energy costs and demands are high and land-based renewable

energy resources are often limited. Abundant offshore wind resources have the potential to supply

immense quantities of renewable energy to major U.S. coastal cities, such as New York City and

Boston.

The structural design of offshore wind turbines depends on the conditions imposed locally and

can vary according to water depth, as shown in Figure 8.5. In the relatively small wave environment

present in most of the Great Lakes, freshwater ice loads have the potential to be the critical design

loading case for offshore wind turbines. While offshore wind turbines have been constructed in

the North, Baltic and Irish Seas for over 20 years, uncertainty in freshwater ice loads as compared

to the saltwater conditions existing for previous developments make the transition of European

experience to the Great Lakes uncertain and costly. A project can aim to reduce the uncertainty in

costs, as well as realized costs, related to development of offshore wind turbines in the US.
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Figure 8.5: Offshore wind turbine designs for shallow and deep water.

Within the Great Lakes, approximately 25% of offshore wind potential occurs for water depths

shallower than 30 m, and 60% of offshore wind potential occurs for water depths greater than

60 m [87]. As substructure cost tends to increase with water depth, initial offshore wind turbine

developments in the Great Lakes will likely begin in the shallow portions of Lake Erie and western

coasts of Lake Michigan, Lake Ontario, and Lake Huron.

Design of ice load-resistant offshore structures is highly uncertain due to rate controlled strength

and stiffness, fracture-controlled anisotropic strength, and the wide range of type and internal struc-

tures of ice. Successful substructure concepts have been designed for offshore wind turbines to

resist ice loads, which often results in fabrication of ice cones in severe environments (e.g., Fig-

ure 8.6a). Ice cones are intended to shift the failure mechanisms from that of crushing against a

straight shaft (Figure 8.6b) to a flexural failure (Figure 8.6c). Anisotropic ice strength tends to

result in lower loads on the turbine tower for the case of flexural failures.

Current design practice in assessing horizontal forces, F , on offshore wind turbines due to

impact from moving ice has been applied primarily in the North and Baltic Seas, as outlined in Det

Norske Veritas standard DNV-OS-J101 [130]. In this model, an empirical relationship between
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(a)

(b)

(c)

Figure 8.6: Offshore structure design to reduce the ice loading: (a) breaking ice cones installed at

offshore substructures (Barker et al. [9]); (b) crushing failure mechanism of ice against a vertical

face; (c) flexural failure mechanism of ice against an ice cone.

local pressure exerted on a substructure element by ice, rlocal,C , and ice strength, ru,C , defined

as α = ru,local/ru,C , is a function of the ratio of structure diameter, D, to ice thickness, tc, i.e.

β = D/tc. The recommended value of α is given by

α =
F/(D.tc)

ru,C
=

√
1 + 5

t2c
Alocal

=

√
1 + 5

t2c
tc.(tc.D/tc)

=

√
1 +

5

β
(8.53)

Equation (8.53) implies that the ratio of local ice pressure to ice strength (α) cannot be less

than unity, which is not in agreement with field data for bridge piers and other marine structures,

as shown in Figure 8.7. Some of the differences result from ice failing in flexure rather than

compression due to the presence of ice cones. However, the major issues highlighted by Figure 8.7

are that (i) most observed α values are less than unity, while the design code specifies values must
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be greater than unity; (ii) design ice loads may be overestimated by factors of 2 to 20 for typical

tower diameter to ice thickness ratios expected for offshore wind turbines in the Great Lakes; and

(iii) there are high levels of uncertainty in design correlations.

Figure 8.7: Comparison of ice pressure to ice strength ratio versus substructure diameter to ice

thickness ratio as recommended by DNV [130] to that obtained from field measurements (field

data from Timco et al. [127], Kärnä et al. [58], Brown & Määttänen [12].

To reduce uncertainty in ice loads for offshore wind turbine (monopile) substructures, studies

have been performed in test tanks with model ice [9, 37]. Data from Barker et. al [9] indicate

that the ratio of ice pressure to ice strength tended to (i) increase with ice velocity; (ii) be lower

for flexural failures on ice cones as compared to crushing failures on straight shafts; and (iii) have

relatively high levels of uncertainty (Coefficient of Variation, COV 40% to 60%) when using

simple design correlations such as that outlined by Eq. (8.53). It is interesting to note that the ratio

α is approximately a factor of 2 to 3 lower for flexural failures on ice cones as compared to crushing

failures on straight shafts. The ratio of compressive strength to flexural strength for the model

ice used in these tests was also a factor of 2 to 3.5, indicating that local ice pressure is roughly

proportional to ice strength for the mode of failure (i.e., crushing or flexure). However, there are

still high levels of uncertainties in this empirical relationship (with α varying from 0.05 to 1 in

Figures 8.6 and 8.7). A better fundamental understanding of the failure mechanisms controlling

ice loads on offshore structures can aid in reducing uncertainty and the high cost of conservatism
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illustrated in Figure 8.7. The process of ice impacting the substructure-tower-turbine-foundation

system can be better investigated through a dynamic (compared to static) modeling of the entire

multi-physics system, which can be approached via fluid-solid interaction scheme.

8.3 Using MPI-enabled high performance computing for faster solution of
larger problems

With thousands of scalar processors and giga bytes (GB) of memory, a GPU card provides a

very affordable solution to the simulation of complex problems on a personal computer. However,

the amount of memory available on a GPU limits the size of the problems that can be tackled by one

card. The Message Passing Interface (MPI) provides a scalable solution by relying on a distributed

memory architecture in which a collection of nodes are connected, each having its independent

processors and memory.

MPI is an agreed-upon syntax and protocol for inter-process communication on parallel com-

puters [39]. An implementation of the MPI standard defines a collection of routines in a library that

is used to write message passing parallel programs. Several implementations of the MPI standard

exist, including MPICH [86] and OpenMPI [96].

MPI promotes the Single Program, Multiple Data (SPMD) programming paradigm in which the

same program is launched independently on numerous cores that execute, as processes, multiple

instances of the program. Each process is given a rank, or an identifier, which can be used to

differentiate one process from another. The program can be written to do different things depending

on the rank of the process.

The most important concept in MPI programming is that of message passing between ranks.

The defining attributes of a message are the rank, memory location, data type, and data size for

each rank participating in message passing. The simplest type of message passing is called point-

to-point communication, when one rank sends a message to a different rank. The send and receive

command can be blocking or non-blocking.

The second type of message passing is called collective communication. This type of commu-

nication involves a group of ranks, all of which must make the same collective call. For instance,
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one data element is broadcast to all ranks, a distributed array is collected in a serial array of a single

rank, or one rank performs a reduction operation on distributed data.

MPI will be used to: (1) increase the problem size that can be approached by the FSI simula-

tion engine; (2) accelerate the simulation via leveraging more processing cores. In the MPI-based

approach, the simulation domain will be divided into a number of sub-domains. To a great extent,

the existing execution model for each sub-domain will stay intact. To accommodate for distributed

memory, each sub-domain will be simulated by a separate MPI process, with appropriate commu-

nication and synchronization.

Implementing a distributed-memory model using MPI will increase the problem size, restricted

currently by GPU hard constraints on the memory size. Nevertheless, GPU programming, i.e. the

current parallel execution model, can be leveraged for the computations in each sub-domain, in a

so-called heterogeneous computing template. It is worth mentioning that heterogeneous computing

is a state-of-the-art computational model; therefore the extent to which the efficiency gain will be

compromised by host-GPU data transfer remains to be determined.
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Chapter 9

Conclusion

A Lagrangian-Lagrangian (LL) approach for the direct numerical simulation of fluid-solid in-

teraction problems was proposed herein. The simulation framework consists of components to

model fluid flow, 3D rigid bodies, and flexible components, where the phases can interact mutually

in a fully coupled fashion. While the coupling of the fluid and solid objects is maintained through

Lagrangian markers attached to the solid phase, the solid-solid interaction is captured by either a

lubrication force model developed for SPH, or a penalty approach.

The LL formalism was employed to study, through direct numerical simulation, the 3D pipe

flow of suspensions of macroscopic neutrally buoyant rigid bodies of arbitrary geometry as well as

suspended cantilever and free flexible beams. Simulation results obtained for transient Poiseuille

flow, migration of cylinders in plane Poiseuille flow, migration of spherical bodies in pipe flow, sus-

pension distribution, blunting of the velocity profile in flow of suspension, and effect of Reynolds

number on radial migration are in agreement with previously published experimental and numer-

ical data. Several tests were performed to study different attributes of suspension flows for which

results are not available in the literature. Moreover, simulation results provided for free-floating

flexible beams in Poiseuille flow, channel flow over a grid of flexible cantilevers, and parametric

studies of the effect of fluid viscosity and material elasticity suggest that the adopted approach has

good predictive capabilities and is able to capture the dynamics of the systems under consideration.

An HPC approach to the simulation methodology was described and shown to scale linearly in

the dynamics of each phase independently as well as in the overall FSI solution implementation.

It was shown that the dynamics of the fluid phase, i.e. the time propagation of the SPH markers,
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controls the overall simulation time, and neither cross-phase communications nor solid phase sim-

ulation have a notable effect on the simulation time. This represents one advantage of the unified

FSI methodology over co-simulation and asynchronous approaches. The GPU-based implementa-

tion of the approach, called Chrono::Fluid, is available as an open-source software at [17].

Further capabilities of the simulation framework were demonstrated through applications in-

cluding flow cytometry, dense particle suspension, array of flexible objects immersed in fluid, and

a mixture or rigid and flexible objects in fluid flow. Additional examples of Chrono::Fluid simula-

tions can be found at [112].

To enhance the simulation efficiency, an implicit-constrained SPH algorithm was proposed and

formulated herein. Further implementation of the approach, validation, and performance analy-

sis will be pursued in the future. Other directions of future work include (a) revisiting the SPH

marker numbering scheme in order to improve the spatial and temporal memory access patterns,

thus increasing the effective bandwidth of Chrono::Fluid; (b) augmenting the current implementa-

tion for use on cluster supercomputers that adopt a distributed memory access model and rely on

the Message Passing Interface standard; (c) investigating the rheology and concentration of sus-

pensions of flexible as was non-spherical objects; (d) approaching problems at macroscale such

as ice-structure interaction of offshore structures; and (d) gauge the potential of Chrono::Fluid in

biomechanics applications such as blood flow in deformable arteries or heart, channel occlusion in

stroke, etc.
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APPENDIX
Partial derivatives on staggered grid

Using the staggered grid notation described in Sect. 8.1.1, the discrete continuity equation at

location i, j is written as (see Figure 8.1b)

un+1
i+1,j − un+1

i,j

dx
+
vn+1
i+1,j − vn+1

i,j

dy
= 0, (A.1)

where dx and dy are discretization lengths in x and y directions, respectively. Similarly, the com-

ponents of the momentum equations in x direction are written as

∂p

∂x
=
pi,j − pi−1,j

dx
(A.2a)

∂2u

∂x2
=

∂u

∂x

∣∣∣∣
i+1/2,j

− ∂u

∂x

∣∣∣∣
i−1/2,j

dx

=
ui+1,j − 2ui,j + ui−1,j

dx2
(A.2b)

∂2u

∂y2
=

∂u

∂y

∣∣∣∣
i,j+1/2

− ∂u

∂y

∣∣∣∣
i,j−1/2

dy

=
ui,j+1 − 2ui,j + ui,j−1

dy2
(A.2c)

∂uu

∂x
=
u2i+1/2,j − u2i−1/2,j

dx
(A.2d)

∂uv

∂y
=
ui,j+1/2vi,j+1/2 − ui,j−1/2vi,j−1/2

dy
, (A.2e)
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where the missing terms are obtained from averaging over the closest nodes, see Figure A.1; i.e.

ui+1/2,j = (ui,j + ui+1,j) /2 (A.3a)

ui−1/2,j = (ui,j + ui−1,j) /2 (A.3b)

ui,j+1/2 = (ui,j + ui,j+1) /2 (A.3c)

ui,j−1/2 = (ui,j + ui,j−1) /2 (A.3d)

vi,j+1/2 = (vi−1,j+1 + vi,j+1) /2 (A.3e)

vi,j−1/2 = (vi−1,j + vi,j) /2. (A.3f)

Similarly, the following terms are obtained in the y direction,

∂p

∂y
=
pi,j − pi,j−1

dy
(A.4a)

∂2v

∂x2
=
vi+1,j − 2vi,j + vi−1,j

dx2
(A.4b)

∂2v

∂y2
=
vi,j+1 − 2vi,j + vi,j−1

dy2
(A.4c)

∂uv

∂x
=
ui+1/2,jvi+1/2,j − ui−1/2,jvi−1/2,j

dx
(A.4d)

∂vv

∂y
=
v2i,j+1/2 − v2i,j−1/2

dy
. (A.4e)

with the following averaging rules applied to Eq. (A.4)

vi,j+1/2 = (vi,j + vi,j+1) /2 (A.5a)

vi,j−1/2 = (vi,j + vi,j−1) /2 (A.5b)

vi+1/2,j = (vi,j + vi+1,j) /2 (A.5c)

vi−1/2,j = (vi,j + vi−1,j) /2 (A.5d)

ui+1/2,j = (ui+1,j−1 + vi+1,j) /2 (A.5e)

ui−1/2,j = (ui,j + vi,j−1) /2. (A.5f)

It is worth mentioning that although some terms are indexed similarly in Eqs. (A.2) and (A.4)

(for instance ui+1/2,j , ui−1/2,j , vi,j+1/2, and vi,j−1/2), they are calculated differently, as illustrated

in Eqs. (A.3) and (A.5) as well as Figure A.1.



110

(a) (b)

Figure A.1: Illustration of half indices used for interpolation of velocities in: (a) momentum in x

direction; (b) momentum in y direction.


