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ABSTRACT 

Aquatic ecosystems are increasingly facing ecosystem-scale disturbances that affect 

water quality and ecosystem services. Food webs have substantial influences on how 

disturbances are propagated through ecosystems and the structure of trophic interactions shapes 

nutrient cycling and energy flow. In my dissertation, I used food webs to improve the 

understanding of dynamics in disturbed ecosystems, and develop our understanding of how food 

webs mediate, and respond to, increasingly frequent and intense disturbances. Chapter 1 used 

lower food web dynamics to assess consumer nutrient cycling within a hypereutrophic reservoir, 

demonstrating that the lower food web has a substantial influence on early summer phosphorus 

availability and phytoplankton size structure. Chapter 2 quantified zooplankton and 

macroinvertebrate size structure as a tool to assess food web response to an incentivized harvest 

of common carp (Cyprinus carpio) and bigmouth buffalo (Ictiobus cyprinellus). This analysis 

showed that the biomanipulation did not significantly affect food web structure potentially 

explaining the lack of water quality response. Expanding to the whole food web, chapter 3 

tested whether food web structure mediates ecosystem responses to discrete disturbance—storm-

driven nutrient loading—finding greater benthic-pelagic coupling increased the resistance and 

resilience of algal biomass response to pulsed nutrient loading events. Chapter 4 used a 

bioenergetics approach to explore changes in energy flux and food web stability over 19 years in 

the Trout Lake pelagic food web, including an invasion by a mid-trophic level invader, 

Bythotrephes longimanus. This analysis highlighted how a mid-trophic level invader alters the 

trajectory of an ecosystem by decreasing energy flux and temporarily altering food web stability. 

In summary, this research has advanced our understanding of how food webs drive ecosystem 

function and mediate ecosystem-scale responses within aquatic ecosystems. 
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INTRODUCTION 

As the pace of climate change accelerates, the disturbances ecosystems face are 

increasing in frequency and intensity resulting in a greater likelihood of changes to ecosystem 

function (Turner et al. 2020; Seneviratne et al. 2021). For aquatic ecosystems, extreme 

precipitation events in agricultural watersheds are accelerating eutrophication that may lead to 

toxin-producing algal blooms (Ho and Michalak 2020), while expansions in the distribution and 

ranges of species and globalization have generated more pathways for biological invasions 

(Rahel and Olden 2008; Hulme 2017). Understanding ecosystem responses to such disturbances, 

and the internal mechanisms that shape that response, are of interest to managers as changing and 

interacting drivers of ecosystem function may generate novel dynamics (Zscheischler et al. 

2018). Thus, there is a pressing need to better understand the drivers and dynamics of aquatic 

ecosystems subjected to presses and pulses of disturbance.  

Food webs have long been recognized as a mediating mechanism of ecosystem function, 

shaping ecosystem response to disturbances (Lindeman 1942; Odum 1968; McMeans et al. 2016; 

Pelletier et al. 2020). Changes in food web structure can be strongly related to changes in 

ecosystem dynamics through time (Pimm et al. 1991; Kortsch et al. 2021). Lower food web 

interactions (i.e., zooplankton, phytoplankton, macroinvertebrates) can substantially alter 

nutrient cycling dynamics (Elser et al. 2000; Vanni 2021) and changes in lower food web size 

structure have been suggested as a metric responsive to ecosystem-scale disturbance (Sprules and 

Barth 2016; Evans et al. 2022). However, it is unclear whether lower food web dynamics can 

affect ecosystem function within extremely nutrient rich ecosystems, and whether size structure 

can be used to effectively assess food-web changes. It is theorized that food web structures that 

couple benthic and pelagic food chains can better mediate ecosystem disturbances 
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(Vadeboncoeur et al. 2005; Rooney and McCann 2012; Marklund et al. 2019). Yet, there is 

limited empirical evidence demonstrating mechanistically, and to what degree, benthic-pelagic 

coupling may mediate ecosystem responses. Food web structure is also highly dynamic which 

can drive changes in energy flux and food web stability through time (De Ruiter et al. 1995; 

Kortsch et al. 2021), especially following species invasion (Flood et al. 2020). It is unclear how 

strongly, and how long, an invasion would affect the magnitude and distribution of energy flux, 

and food web stability dynamics, over time. These knowledge gaps guided my dissertation 

research toward the goal of expanding our understanding of ecosystem-scale response to 

disturbances in aquatic ecosystems, mediated by food web structure.  

In chapter 1, I used lower food web dynamics to assess the significance of consumer 

nutrient cycling on phosphorus (P) and nitrogen (N) availability in a hypereutrophic reservoir. 

Both phytoplankton and zooplankton composition can influence the stoichiometry of nutrients 

recycled through consumers (Balseiro et al. 1997; Hessen et al. 2013), though much of our 

understanding comes from oligotrophic and eutrophic ecosystems (Moegenburg and Vanni 1991; 

Elser et al. 2000). A previous analysis of mesozooplankton community and seston stoichiometry 

demonstrated that zooplankton N:P ratios in hypereutrophic ecosystems shifted towards N-rich 

species, suggesting zooplankton may contribute to higher phosphorus availability in 

hypereutrophic lakes (Moody and Wilkinson 2019). However, this analysis did not consider 

seasonal variability in zooplankton biomass, phytoplankton biomass, and nutrient concentrations 

(Sommer et al. 2012). I quantified zooplankton and phytoplankton community composition and 

biomass dynamics over the course of a growing season in a hypereutrophic reservoir (total P = 

239 ± 154 µg L-1, mean ± standard deviation), using allometric equations to estimate 

zooplankton excretion (Hébert et al. 2016), and individual measurements of zooplankton and 
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phytoplankton size to assess size structure dynamics. Through this analysis I estimated the 

contribution of zooplankton excretion to phosphorus availability and the influence of grazing on 

phytoplankton size structure.  

For Chapter 2, I used interannual changes in lower food web size structure as a tool to 

assess whether incentivized harvest of common carp (Cyprinus carpio) and bigmouth buffalo 

(Ictiobus cyprinellus) significantly altered food web structure in a set of shallow, eutrophic lakes. 

Biomanipulation is a common management tool designed to shift pathways of energy and 

nutrient flow to improve ecosystem services (Shapiro et al. 1975; Jeppesen et al. 2012). 

However, when biomanipulations fail to improve water quality, it is difficult to disentangle 

whether the management intervention failed to alter food web structure or other drivers of water 

quality were more influential (Meijer et al. 1990, 1999). Assessing food web changes can be 

expensive and time intensive. The relationship between abundance and body size, or size 

spectrum, has been found to be a fundamental ecosystem property (Sprules and Barth 2016; 

Mehner et al. 2018), and changes in easily measured zooplankton and benthic macroinvertebrate 

size spectra may be an indicator of changes in food web structure (Barth et al. 2019; Evans et al. 

2022). Thus, size spectra analysis may be a relatively simple yet useful tool to assess whether 

food web structure changes occurred following biomanipulation or not. I used size spectra 

analysis of zooplankton and benthic macroinvertebrates to quantify changes in food web 

structure in harvested (n=4) and non-harvested (n=3) shallow lakes and evaluate if this was a 

sensitive tool for monitoring restoration outcomes. This analysis indicated that the lack of water 

quality improvements following incentivized harvest were due to insufficient shifts in food web 

structure.  
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In Chapter 3, I quantified the resistance and resilience of primary production in ponds 

with varying food web structure to discrete disturbances (i.e., pulse additions of nutrients). High 

connectivity between benthic and pelagic food chains is theorized to generate greater top-down 

control and increase ecosystem resistance and resilience of primary production to nutrient 

loading (Vadeboncoeur et al. 2005; Blanchard et al. 2011; Rooney and McCann 2012), though 

there is limited empirical evidence. I designed an ecosystem experiment to quantify the response 

to two simulated storm-induced pulse disturbances in six paired (i.e., disturbed and reference) 

experimental ponds. The three food web structures varied between low, intermediate, and high 

degrees of benthic-pelagic coupling. This experiment provided empirical evidence that a greater 

degree of benthic-pelagic coupling conferred greater resistance and resilience to repeated 

perturbations.  

In Chapter 4, I quantified the dynamics and distribution of energy fluxes and food web 

stability over 19 years in the pelagic food web of a north-temperate lake. Changes in food web 

structure through time can result in substantial changes to the magnitude and pathways of energy 

flow as trophic interactions shift (Barnes et al. 2018; Bartley et al. 2019). I leveraged a long-term 

dataset of biomass dynamics in Trout Lake, WI which underwent distinct changes in food web 

structure, including an invasion by the mid-trophic level macroinvertebrate, Bythotrephes 

longimanus (Martin et al. 2022). Using a bioenergetic approach (Gauzens et al. 2019; Jochum et 

al. 2021), I showed the influence of food web structure changes to ecosystem function and 

provide an ecological context to long-term changes in food web stability. This chapter 

demonstrated the ecosystem-level impacts of a mid-trophic level invader and the ability of a food 

web to absorb the shock of a species invasion, evidenced by long-term food web stability 

dynamics.  
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CHAPTER 1  

CONTRIBUTION OF ZOOPLANKTON NUTRIENT RECYCLING AND EFFECTS ON 

PHYTOPLANKTON SIZE STRUCTURE IN A HYPEREUTROPHIC RESERVOIR 

Published in the Journal of Plankton Research:  

Butts, T.J., E.K. Moody, G.M. Wilkinson. 2022. Contribution of zooplankton nutrient recycling 

and effects on phytoplankton size structure in a hypereutrophic reservoir. Journal of 

Plankton Research 44(6) 861-865. https://doi.org/10.1093/plankt/fbac045. 

Author contributions: Butts designed the study; performed all field and laboratory work  

cleaned, analyzed, and visualized the data; and wrote the manuscript. Moody and Wilkinson  

contributed to study design and data analysis in addition to providing feedback on writing.  

  

ABSTRACT  

Consumer nutrient recycling influences aquatic ecosystem functioning by altering the 

movement and transformation of nutrients. In hypereutrophic reservoirs, zooplankton nutrient 

recycling has been considered negligible due to high concentrations of available nutrients. A 

comparative analysis (Moody and Wilkinson, 2019) found that zooplankton communities in 

hypereutrophic lakes are dominated by nitrogen (N)-rich species, which the authors hypothesized 

would increase phosphorus (P) availability through excretion. However, zooplankton nutrient 

recycling likely varies over the course of a growing season due to changes in biomass, 

community composition, and grazing pressure on phytoplankton. We quantified zooplankton, 

phytoplankton, and nutrient concentration dynamics during the summer of 2019 in a temperate, 

hypereutrophic reservoir. We found that the estimated contribution of zooplankton excretion to 

the dissolved nutrient pool on a given day was equivalent to a substantial proportion (21-39%) of 



9 

 

 

the dissolved inorganic P standing stock in early summer when P concentrations were low and 

limiting phytoplankton growth. Further, we found evidence that zooplankton affected 

phytoplankton size distributions through selective grazing of smaller phytoplankton cells likely 

affecting nutrient uptake and storage by phytoplankton. Overall, our results demonstrate 

zooplankton excretion in hypereutrophic reservoirs likely helped drive springtime phytoplankton 

dynamics through nutrient recycling while grazing influenced phytoplankton size distributions. 

 

INTRODUCTION  

Animal consumers contribute to nutrient cycling in aquatic ecosystems by controlling the 

movement and transformation of nutrients over time and across space (Atkinson et al., 2017). 

Aquatic consumers, like zooplankton, ingest phytoplankton then excrete and egest metabolized 

and unassimilated materials as waste, recycling nutrients back into the ecosystem (Vanni, 2002). 

Bioavailable nutrients are then taken up by phytoplankton to produce new biomass controlled by 

rates of nutrient uptake, cell size, and elemental stoichiometry (Finkel et al., 2010; Sarnelle and 

Knapp, 2005). Imbalances between consumer demand for and assimilation efficiency of 

nutrients, as well as the elemental composition of phytoplankton, drives the stoichiometry of 

nutrients recycled back into the ecosystem (Elser and Hassett, 1994; Sterner, 1990). Consumer-

resource imbalances lead to greater nutrient recycling of a particular element that may result in 

changes to ecosystem nutrient limitation and alter trophic interactions between consumers and 

their resource (Elser et al., 2000; Dobberfuhl and Elser, 2000). 

The community composition of both phytoplankton and zooplankton can influence the 

stoichiometry of recycled nutrients and generate strong differences in nitrogen (N) and 

phosphorus (P) recycling (Balseiro et al., 1997). For example, copepods and small cladocerans 
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generally retain more N whereas Daphnia generally retain more P (Elser and Urabe, 1999). 

Differences in N and P retention between zooplankton taxa can result in copepod and small 

cladoceran-dominated communities retaining more N and recycling more P, potentially driving 

phytoplankton to N-limitation (Elser et al., 2000, 1988). Further, differences in zooplankton 

preferred food size influence the species and morphology of phytoplankton subjected to grazing. 

For example, Bosmina spp. are moderately selective filter feeders, many copepods are highly 

selective raptorial feeders, and Daphnia are highly general filter feeders (Barnett et al., 2007; but 

see, Hood and Sterner, 2010). Selection for phytoplankton based on zooplankton community 

grazing preferences and selectivity may then alter the phytoplankton community cell sizes and 

elemental composition ultimately influencing nutrient recycling (Finkel et al., 2010). 

Phytoplankton community composition varies with trophic state, grazing pressure, and nutrient 

availability as different genera preferentially assimilate different forms of nitrogen (Andersen et 

al., 2020). Cyanobacteria-dominated phytoplankton communities, which often arise in nutrient 

enriched ecosystems, are particularly resistant to zooplankton grazing due to the ability of many 

genera to form colonies or filaments, their poor nutritional quality, and toxin production 

(Moustaka-gouni and Sommer, 2020). During periods of cyanobacterial dominance, the majority 

of the zooplankton community can shift to grazing on smaller, unicellular phytoplankton that 

have different elemental stoichiometry and nutrient uptake rates (Beardall et al., 2009). In 

combination, zooplankton-phytoplankton interactions affect nutrient recycling in aquatic 

ecosystems; however, the effects may vary depending on the severity of nutrient enrichment.  

Much of our understanding regarding zooplankton nutrient recycling comes from 

oligotrophic and eutrophic ecosystems (Elser et al., 2000; Moegenburg and Vanni, 1991), though  

many temperate lakes and reservoirs are increasingly becoming hypereutrophic due to continued 
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land use conversion and climate change (Stoddard et al., 2016). The extremely high nutrient 

concentrations in hypereutrophic reservoirs can produce unique conditions compared to less 

enriched waterbodies such as large seasonal variability in nutrient limitation of phytoplankton 

growth (Andersen et al., 2020), substantial internal P loading under oxic and anoxic conditions 

(Albright and Wilkinson, 2022; Song and Burgin, 2017), and a more complex mix of top-down 

and bottom-up forces affecting phytoplankton communities (Matsuzaki et al., 2018). However, 

the contribution of zooplankton nutrient recycling in hypereutrophic ecosystems is often 

considered less important than other consumers like fish which can reach higher biomass in 

nutrient-rich ecosystems  (Spooner et al., 2013; Wilson and Xenopoulos, 2011; Vanni et al., 

2006). Despite this, zooplankton may still influence nutrient availability in hypereutrophic 

reservoirs as nutrient limitation and zooplankton biomass shift throughout the growing season. 

Additionally, selective feeding on small phytoplankton by small-bodied zooplankton can 

increase the dominance of large phytoplankton species, including filamentous and colonial 

cyanobacteria (Erdoǧan et al., 2021). This shift may influence nutrient availability as 

cyanobacteria have the capacity for luxury nutrient uptake, subsequent storage of excess 

nutrients, and the ability of some to fix atmospheric N (Cottingham et al., 2015). As 

hypereutrophic lakes and reservoirs are often dominated by smaller-bodied zooplankton 

including microzooplankton and ciliates, selective grazing pressure on the phytoplankton 

community may indirectly influence nutrient availability.   

 A recent analysis of mesozooplankton (i.e., copepods, cladocerans, and rotifers; hereafter 

zooplankton) stoichiometric traits found that community N:P ratios shifted towards N-rich 

species with increasing eutrophication (Moody and Wilkinson, 2019). As such, in hypereutrophic 

ecosystems, zooplankton may contribute to P availability through recycling. This hypothesis was 
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supported by the fact that the seston N:P ratio was lower in hypereutrophic lakes and reservoirs 

compared to less-enriched ecosystems. This analysis suggested that the unique functioning of 

hypereutrophic lakes and reservoirs, even compared to eutrophic ecosystems, was due in part to 

the consumers inhabiting them. However, this was a comparative study among many lakes and 

reservoirs based on a single sampling point in the late summer. It is well established that 

zooplankton and phytoplankton communities are dynamic and undergo a seasonal succession 

during the summer driven by both top-down and bottom-up processes, which can vary depending 

on trophic state and other variables (Sommer et al., 2012). Furthermore, the balance of top-down 

and bottom-up forces in lakes and reservoirs varies with nutrient ratios and concentrations across 

a season (Rogers et al., 2020). In the scope of this comparative study (Moody and Wilkinson, 

2019), the seasonal variability within zooplankton, phytoplankton, and nutrient dynamics was 

not captured. As such, it remains unclear how nutrient availability and phytoplankton 

communities are influenced by nutrient recycling and top-down grazing throughout the summer 

in hypereutrophic ecosystems.   

 We investigated the role of zooplankton nutrient recycling and top-down grazing on 

nutrient availability, phytoplankton biomass, and community composition in a hypereutrophic 

reservoir across a summer growing season. Specifically, our objectives were to (1) evaluate the 

temporal dynamics and magnitude of the contribution of zooplankton body nutrient storage and 

excretion to nutrient availability and (2) assess the effect of zooplankton grazing on 

phytoplankton biomass, community composition, and size structure over the growing season. To 

estimate the storage and flux of nutrients driven by zooplankton consumers we used effect traits 

that link individual body size and elemental composition to ecosystem processes (Hébert et al., 

2017; Hébert et al., 2016b). We hypothesized that zooplankton excretion would contribute most 
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substantially to P availability early in the growing season due to higher zooplankton biomass in 

the spring (Sommer et al. 2012), low zooplankton community P storage, and lower rates of 

internal loading during this period. Conversely, we expected the contribution of zooplankton to 

N availability would be low at this time with high external loading of N from the watershed in 

the spring. We also hypothesized that zooplankton grazing, varying with community composition 

over the summer, would affect phytoplankton size structure due to selective grazing on smaller 

phytoplankton as well as drive changes in phytoplankton community composition. As such, 

smaller zooplankton body size would be associated with larger individual phytoplankton cell, 

colony, or filament sizes. 

 

METHODS  

Study Lake  

Green Valley Lake (41°05’54” N, 94°23’02” W) is a hypereutrophic reservoir built in 

1952 as an impoundment of the Platte River in southwestern Iowa (USA). The maximum depth 

is 7.3 m, with an average depth of 3.2 m and a surface area of 156 ha. Crappie (Pomoxis spp.), 

bluegill (Lepomis macrochirus), and largemouth bass (Micropterus salmoides) dominate the fish 

community. Additionally, there is a small population of common carp (Cyprinus carpio) and 

channel catfish (Ictalurus punctatus) (IDNR, 2022). The watershed is dominated by row crop 

agriculture (68.4% corn/soybean rotation). Consequently, Green Valley Lake is enriched with 

nutrients and beset by annual phytoplankton blooms dominated by cyanobacteria 

(Supplementary Figure S1). To characterize zooplankton nutrient recycling in Green Valley 

Lake, we sampled zooplankton, phytoplankton, and nutrient concentrations weekly at the deepest 

point in the reservoir from early May (day of year; DOY 143) to early September (DOY 251) of 
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2019. We sampled again on DOY 273, but only collected zooplankton and nutrient samples at 

that time. Additionally, we deployed a YSI EXO3 sonde (Yellow Springs Instruments, Yellow 

Springs, Ohio, USA) at 0.5 m at the deepest point in the reservoir and collected temperature and 

pH measurements every 15 minutes. We used daily averages for the dates sampled of each 

variable in our analyses. 

 

Nutrient Measurements  

The concentration and form of nutrients in Green Valley Lake were measured throughout 

the growing season to compare to the magnitude and temporal dynamics of zooplankton 

excretion (objective 1) and to assess the drivers of phytoplankton biomass and community 

composition (objective 2). We collected surface water samples at a depth of 0.25 m at the deep 

point. We filtered a subset of the water sample through Whatman glass fiber filters (pore size = 

0.45 µm) in the field, preserved with concentrated sulfuric acid to a pH of 2, and stored at 4 ºC 

until later analysis for soluble reactive phosphorus (SRP) and nitrate + nitrite (NOx). Ammonium 

is rarely detectable in Green Valley Lake during the summer (see Supplementary Material) and 

was therefore not measured for our study. We preserved unfiltered sample water with 

concentrated sulfuric acid to a pH of 2 and stored at 4 ºC until later analysis for total phosphorus 

(TP) and total nitrogen (TN). We used the ascorbic acid method to quantify P concentrations with 

filtered water for SRP and unfiltered water that had undergone persulfate digestion for TP. We 

used second-derivative ultraviolet spectroscopy to quantify NOx concentrations in filtered 

samples and TN concentrations following persulfate digestion. The N species were analyzed 

using an Agilent Cary 8454 UV-VIS spectrophotometer (Agilent Technologies Inc, Santa Clara, 

CA, USA) and analyzed P species using a Seal Analytical AQ2 Discrete Analyzer (Seal 



15 

 

 

Analytical Inc. Mequon, WI, USA). For data analysis, nutrient concentrations below the limit of 

detection were replaced with the instrument-specific long-term method detection limit.  

The nutrient concentrations were used to calculate total and dissolved inorganic molar 

N:P ratios. Nutrient limitation of phytoplankton growth was estimated based on the molar TN:TP 

ratio with N:P > 20 indicating P limitation (Guildford and Hecky, 2000).  

 

Plankton Measurements 

 For each sampling event, zooplankton biomass and community composition were 

quantified to estimate the magnitude of nutrient excretion as well as the stoichiometry of nutrient 

storage (objective 1). In addition, phytoplankton biomass and community composition were 

quantified to compare with zooplankton dynamics across the summer growing season. 

Phytoplankton size structure and community composition were quantified to assess the temporal 

dynamics of zooplankton grazing (objective 2). Zooplankton were sampled via a vertical tow of 

a Wisconsin net (63 µm mesh) from 6 m depth. The samples were preserved with a 

formaldehyde solution (5% concentration after sample addition) in the field and later transferred 

to 70% ethanol. Phytoplankton samples were a composite sample over depth. We collected water 

in a 4 L Van Dorn sampler from 0.25, 1, 2, 3, and 4 m depths (the top of the thermocline), then 

mixed it in a 20 L carboy in the field. We then took a 1 L sample from the carboy following 

thorough mixing and preserved with Lugol’s solution in the field.  

We identified and enumerated zooplankton samples with a Leica MZ8 stereomicroscope 

connected to Motic Images software. For each sample, a 1 mL subsample was taken and a 

minimum of 60 individual zooplankton were identified to genus for cladocerans and rotifers, 

order for copepods, and class for ostracods. Copepod nauplii could not be identified to order and 
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were simply identified as nauplii. If less than 60 organisms were in the subsample, we counted a 

second 1 mL subsample. We measured zooplankton lengths for up to 25 individuals per taxon per 

sample to calculate dry mass per liter using length-mass regressions (McCauley, 1984; Dumont 

et al., 1975). For visual display of the zooplankton data, they were separated into ten taxonomic 

groups: Daphnia, Simocephalus, Ceriodaphnia, Bosmina, Chydorus, rotifers, calanoids, 

cyclopoids, nauplii, and ostracods (Supplementary Table S1). Simocephalus contributed only 7% 

of total community biomass at its peak and so were grouped with Daphnia for further statistical 

analyses.  

We transferred the 1 L phytoplankton samples to a graduated cylinder and allowed 

phytoplankton to settle in a dark environment for 8 days before removing the supernatant with a 

vacuum pump, leaving 50 mL of concentrated sample. We then removed a subsample from the 

concentrated sample and identified and enumerated individuals using a modified Palmer-

Maloney chamber. We identified phytoplankton to genus and measured them using a calibrated 

ocular reticle on a Leitz DM IL inverted microscope at 400x magnification. For each sample, we 

measured a minimum of 300 natural units across 8 fields. We calculated biovolume per liter 

based on phytoplankton shape and then converted to wet biomass per liter assuming a 1:1 ratio 

between wet mass and biovolume (Hillebrand et al., 1999; Sournia, 1978). We also measured the 

greatest axial linear dimension (GALD) of phytoplankton as the greatest distance across an 

individual cell, colony, or filament (i.e., natural unit), such as would be encountered by a 

zooplankton grazer. Like zooplankton, we separated phytoplankton genera into six groups for 

visual display: bacillariophytes, chlorophytes, chryso- and cryptophytes, Aphanothece, 

Microcystis, and other cyanophytes (Supplementary Table S2). Both Aphanothece and 
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Microcystis were the dominant genera of cyanobacteria, contributing the majority of 

phytoplankton biomass (88 ± 18%; s.d.) and therefore were visualized separately.  

 

Zooplankton Stoichiometry and Excretion Analysis 

To assess the contribution of zooplankton excretion to nutrient availability (objective 1) 

we calculated zooplankton community elemental composition, nutrient storage, and excretion 

rate. We estimated elemental composition and total nutrient storage by zooplankton (L-1 d-1) 

following methods described previously (Moody and Wilkinson, 2019). Briefly, we used taxa-

specific %N and %P information collected from the literature (Hamre, 2016; Hébert et al., 

2016a; Hessen et al., 2007) to estimate total nutrient storage by multiplying %N and %P by the 

biomass of each taxa and summing across the community on each sampling date. Although we 

are using trait data from largely oligotrophic lakes, zooplankton have fairly strong stoichiometric 

homeostasis (Persson et al., 2010) as well as low intraspecific stoichiometric variation between 

aquatic ecosystems (Prater et al., 2017) and variable food quality (Teurlincx et al., 2017). Thus, 

it is unlikely that intraspecific variation in %N and %P have a large influence on our 

calculations.  

We estimated excretion rates of N and P by zooplankton using published allometric 

equations (Supplementary Material). The equations relate zooplankton body size to N (ammonia) 

and P (phosphate) derived from a compiled dataset of marine and freshwater zooplankton species 

(Hébert et al., 2016b, 2016a). Temperature is an important control on an organism’s metabolism, 

however, the excretion rates used to calculate the allometric equations accounted for differences 

in temperature by applying a standardized temperature correction (Hébert et al., 2016a; 

Hernández-León and Ikeda, 2005). Therefore, the temperature dependence of metabolism and 
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excretion is not being incorporated into the seasonal aspect of our study. Additionally, the 

allometric equations were not derived using data from rotifers, but rather for copepods and 

cladocerans. As such, we removed rotifers from our excretion analyses.  For each sampling 

event, we used the average dry mass of each zooplankton taxon present to calculate individual N 

and P excretion rates (µM N or P individual-1 hour-1) using the allometric equations. We then 

converted the hourly excretion rate to a daily rate (day-1) and multiplied the daily rate by the 

density of each taxon (individuals L-1) to calculate the taxon-specific daily excretion rates. 

Finally, we summed the daily excretion rates across all taxa on a sampling date to calculate the 

total zooplankton community excretion rate (µM N or P day-1). Uncertainty in the excretion 

estimates was calculated by propagating the variation in the slope and intercept from the 

allometric equations presented in Hébert et al., (2016b) through our calculations of the 

community excretion rates. Given that these calculations are an estimate, we also calculated 

zooplankton excretion using other published allometric equations from Wen and Peters (1994) 

derived from different underlying datasets. The overall pattern of zooplankton excretion did not 

differ between the two methods; however, excretion estimates derived from the Wen and Peters 

(1994) allometric equations were slightly higher (Supplementary Table S3). We chose to use the 

more conservative estimate of zooplankton excretion rates based on Hébert et al. (2016) in our 

analysis as the available information also allowed us to estimate uncertainty.  

To assess the magnitude of zooplankton N and P excretion in Green Valley Lake we 

compared the estimated concentration of excreted N and P over the course of a day to the 

measured surface water concentrations of dissolved inorganic N and P for each sampling event, 

assuming diel nutrient concentrations remain relatively stable over 24 hours (Shirokova et al., 
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2020; Nimick et al., 2011). We expressed this value as a percent of the dissolved inorganic 

nutrient pool:  

 
(

𝜇𝑀 𝑁 𝑜𝑟 𝑃 𝑒𝑥𝑐𝑟𝑒𝑡𝑒𝑑 𝑏𝑦 𝑧𝑜𝑜𝑝𝑙𝑎𝑛𝑘𝑡𝑜𝑛 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 𝑖𝑛 𝑎 𝑑𝑎𝑦

𝜇𝑀 𝑜𝑓 𝑖𝑛𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑁 𝑜𝑟 𝑃 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑤𝑎𝑡𝑒𝑟𝑠
) ∗ 100 (1) 

  

 To assess how zooplankton excretion would affect nutrient cycling over the course of the 

growing season we calculated the zooplankton nutrient turnover time of the dissolved inorganic 

P pool (Conroy et al., 2005). Zooplankton nutrient turnover time relates to nutrient cycling by 

estimating the number of days it would take for zooplankton excretion to replenish the mass of P 

(the standing stock) measured in the reservoir on a given day independent of nutrient uptake. The 

turnover time varies depending on the rate of zooplankton excretion and concentration of 

inorganic dissolved P in the surface waters. Short turnover times indicate zooplankton are 

contributing substantially to the dissolved inorganic P pool in Green Valley Lake. Long turnover 

times indicate factors other than zooplankton excretion are driving nutrient availability.  

 

Zooplankton Grazing and Phytoplankton Size Structure Analysis 

 To assess the effect of zooplankton grazing on phytoplankton size structure and 

community composition (objective 2) we estimated the relative strength of top-down v. bottom 

up-control, compared zooplankton and phytoplankton size distributions, estimated zooplankton 

feeding range, and assessed the drivers of phytoplankton community composition across the 

growing season in Green Valley Lake. We determined the relative importance of top-down v. 

bottom-up control in lakes by calculating the ratio (expressed as a percentage of zooplankton 

biomass relative to phytoplankton biomass (Filstrup et al., 2014; Heathcote et al., 2016). A high 

zooplankton to phytoplankton biomass percentage (~40-50%) indicates strong top-down control, 
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whereas a low percentage (~10%) indicates weak top-down control (Leroux and Loreau, 2015; 

Havens and Beaver, 2013). Additionally, we compared the size distributions of zooplankton and 

phytoplankton communities over time using our measurements of zooplankton length and 

phytoplankton GALD. Phytoplankton sizes span orders of magnitudes and are selected for by 

diverse pressures, thus the distribution of phytoplankton GALD can be used to infer nutrient 

uptake and grazing pressure (Litchman et al., 2010).  We compared distributions of zooplankton 

length and body mass to the distribution of phytoplankton GALD for each sampling date to 

investigate the size distribution dynamics over time. Additionally, we performed a Pearson 

correlation of mean phytoplankton GALD versus mean zooplankton size to assess whether 

phytoplankton GALD was dictated by zooplankton body size.  

 In addition to zooplankton body size, functional feeding groups can affect how 

zooplankton interact with phytoplankton, either through selective raptorial feeding or non-

discriminate grazing (Barnett et al., 2007). We collected data from the literature on food size 

range, the smallest and largest reported particles consumed by a taxa, based on constituents of 

the zooplankton community on each sample date. We then incorporated the zooplankton 

community food size range into our comparison of zooplankton and phytoplankton size 

distributions (Supplementary Material). Briefly, we compiled the minimum and maximum 

reported food size range for groups of taxa we observed within our study (Supplementary Table 

S4). We then calculated a daily mean minimum and maximum food size range for the 

zooplankton community weighted by taxon biomass. The effective food size range was then 

compared to the distributions of zooplankton length and phytoplankton GALD.  To assess the 

drivers of phytoplankton community composition across the growing season we performed a 

distance based-redundancy analysis (db-RDA). We included potentially important environmental 
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variables such as dissolved inorganic nutrient concentrations (Filstrup and Downing, 2017), 

temperature (Striebel et al., 2016),  and pH (Rönicke et al., 2010), as well as zooplankton 

biomass, excretion N:P, and body stoichiometry (Table 1). We used a Hellinger transformation 

for the phytoplankton genera biomass data and removed genera that only occurred once in the 

full dataset and contributed <1% of total biomass to decrease the weight of rare species. 

Environmental variables were z-transformed in order to correct for differences in scale and 

magnitude (Legendre and Legendre, 1998). We performed the db-RDA using a Bray-Curtis 

distance matrix taking the square root of dissimilarities to avoid negative eigenvalues (Legendre 

and Anderson, 1999). We removed missing or lost samples from the final analysis. Forward and 

backward stepwise regression was used to select the best model. We determined model 

significance using a Monte Carlo permutation test (999 permutations, p-value < 0.05). We then 

confirmed the variables used in the final model did not contain any multicollinearity by ensuring 

the square root of each variable’s variance inflation factor was less than two.  

All analyses were performed using the statistical software R version 4.0.4 (R Core Team, 

2021) with the, magrittr, and vegan packages (Bach and Wickham, 2020; Oksanen et al., 2020).  

 

RESULTS 

Seasonal Dynamics 

Nutrient concentrations and inferred limitation of phytoplankton growth were dynamic 

throughout the summer (Figure 1). Dissolved inorganic N concentrations were highest in the 

spring and decreased by 80% from the peak after DOY 178 (Figure 1A). At the same time, there 

was a rapid increase in dissolved inorganic P by 394% from DOY 172 to 178 and a 937% 

increase from DOY 178 to DOY 206 (Figure 1B). Molar TN:TP declined rapidly in mid-July 
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(DOY 192), transitioning the ecosystem from P- to intermittent N-limitation. There was also a 

shift in dissolved inorganic N:P to N-limitation in mid-July that was persistent for the remainder 

of the summer (Figure 1C). Zooplankton elemental body composition was dominated by N 

storage in both the early and late summer. Zooplankton P storage remained relatively low, but 

nearly equaled dissolved inorganic P concentrations in the water column early in the summer 

(Figure 1B).  Zooplankton community body N:P was quite variable with the highest N:P ratios in 

early to mid-summer and relatively low values near the end of summer (Figure 1D). However, 

the increases in dissolved inorganic P observed in the water column were not concurrent with 

increases in zooplankton community body N:P and instead were likely driven by other processes 

in the lake.    

Zooplankton and phytoplankton biomass and community composition varied 

substantially over the summer growing season. Zooplankton biomass peaked at 249 µg L-1 in late 

May and early June (DOY 150-164), rapidly decreased (~2 µg L-1) in mid-July to late August 

(DOY 192 – DOY 234), before increasing in early autumn (Figure 2A). The early summer 

zooplankton community was dominated by Daphnia and calanoid copepods which transitioned 

in early July (DOY 199) to Chydorus and cyclopoid copepods, before transitioning back to 

Daphnia in late August (Figure 2A). Similarly, phytoplankton biomass was initially high in the 

spring, mainly composed of bacillariophytes, before rapidly decreasing during the clear-water 

period between DOY 150 – 164 (Figure 2B). Following DOY 172, the phytoplankton 

community was overwhelmingly composed of cyanophytes, mainly Microcystis, with 

phytoplankton reaching peak biomass on DOY 213 (~329 mg L-1). Daphnia biomass decreased 

rapidly following increasing Microcystis biomass coinciding with an overall decrease in 
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zooplankton biomass (Figure 2). The other abundant cyanophyte was the diazotroph 

Aphanothece, which was present from DOY 192 – 228.  

 

Zooplankton Excretion 

 The daily estimated concentration of P excreted by zooplankton was equivalent to a 

substantial portion of the dissolved inorganic P pool. However, this contribution was only 

particularly large from late May to late June (DOY 143-172). The concentration of daily 

excretion during this early summer period was between 21-39% of the dissolved inorganic P 

standing stock (Figure 3A). This proportionally high contribution from zooplankton P excretion 

coincided with a period of higher zooplankton body N:P (Figure 1D) and higher zooplankton 

body N storage. Following DOY 172, the concentration of P excreted by zooplankton dropped 

below 1% of the dissolved inorganic P pool for the remainder of the sampling period.  

Zooplankton excretion contributed to a rapid turnover of the dissolved inorganic P pool in early 

summer with turnover times ranging between 3 – 5 days but increased beyond 200 days as 

dissolved inorganic P concentrations increased in late June (Supplementary Table S5). Estimated 

zooplankton N excretion was never equivalent to more than 3.3% of the dissolved inorganic N 

pool (Figure 3B).  The N:P ratio of zooplankton excretion was relatively stable over the course of 

the growing season (Supplementary Figure S2).   

 

Plankton Size Structure 

The ratio of zooplankton: phytoplankton biomass was less than 7% throughout the 

summer, indicating minimal top-down control on phytoplankton biomass (Supplementary Figure 

S3). However, based on the plankton size distributions, zooplankton likely influenced 
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phytoplankton GALD in mid- to late summer. Small zooplankton dominated from late June to 

early August (DOY 178 – 213) concurrent with a period in which larger phytoplankton 

dominated the GALD distribution (Figure 4A). Phytoplankton average GALD was greatest in 

July (mean = 32.5 ± 19.6 µm; s.d.) when zooplankton average length was at its lowest (mean = 

171 ± 102 µm; s.d.). During this period (DOY 192 – 199) the zooplankton community food size 

range included 0 - 3% of individual phytoplankton GALD measurements, which were the lowest 

percentages of the entire growing season (Supplementary Figure S4). We also found evidence 

that smaller zooplankton body size was associated with larger phytoplankton GALD supporting 

our prediction. In late July through August, the difference in zooplankton length and 

phytoplankton GALD steadily increased, surpassing the mean differences observed in early 

summer (Figure 4B). A similar pattern was observed between phytoplankton GALD and 

zooplankton dry mass (Supplementary Figure S5). Additionally, there was a weak negative 

correlation between GALD and zooplankton length (p=0.0119, r(12)=-0.65; Supplementary 

Figure S6A), and zooplankton body mass (p=0.0306, r(12)=-0.58; Supplementary Figure S6B).  

Contrary to our hypothesis, the db-RDA analysis showed that variation in phytoplankton 

community composition was not significantly influenced by zooplankton (Figure 5, Table 2). 

Following variable selection and removal of multicollinear variables only dissolved inorganic N 

(p=0.043) and temperature (p=0.003) were significantly correlated with variation in 

phytoplankton community composition explaining 21.9% of total variation. Additionally, only 

the first axis was significant which separated the phytoplankton community between pre- and 

post-dominance of cyanobacteria (F=3.62, p=0.004).  Phytoplankton community composition 

was correlated with dissolved inorganic N in early summer prior to the cyanobacteria bloom. 
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Beginning on DOY 172 phytoplankton community composition became more correlated with 

temperature.  

 

DISCUSSION  

We sought to better understand zooplankton nutrient cycling in hypereutrophic 

ecosystems by observing zooplankton-phytoplankton dynamics and nutrient concentrations 

across a summer growing season. We used size and stoichiometric traits to infer excretion and 

body stoichiometry to assess the degree to which zooplankton influenced the transformation and 

flux of nutrients within the water column despite the high variability observed in these pools 

over time. We found that zooplankton excretion contributed substantially to P availability during 

the early summer, potentially having a bottom-up effect on phytoplankton biomass (objective 1). 

In late summer, we found zooplankton size structure likely influenced phytoplankton community 

size structure with smaller-bodied zooplankton having a top-down effect, resulting in increased 

phytoplankton GALD (objective 2). However, contrary to our hypothesis, we found that 

zooplankton did not influence phytoplankton community composition.  

 

Nutrient and Plankton Seasonal Dynamics  

 The seasonal transition between P and N-limitation or co-limitation we observed in Green 

Valley Lake has also been reported in other eutrophic and hypereutrophic ecosystems (Andersen 

et al., 2020; Wang et al., 2019). In Green Valley, the large increase in dissolved inorganic P 

beginning on DOY 178 resulted in the transition from strong P-limitation to co-limitation or N-

limitation. This increase in dissolved P in the surface waters was driven by both oxic and anoxic 

internal P loading (Albright and Wilkinson, 2022). Zooplankton and phytoplankton biomass and 
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community composition were quite variable, though they both roughly followed expected 

patterns of seasonal succession (Sommer et al. 2012). 

 

Effect of zooplankton excretion on nutrient availability 

Supporting our first hypothesis, we found that zooplankton excretion of P was equivalent 

to a large portion (21 – 39%) of the dissolved inorganic P pool in Green Valley Lake, but only 

during early summer (objective 1). It was during this period that dissolved inorganic P was at 

relatively low concentrations in the water column (0.13 – 0.19 µM) and phytoplankton growth 

was likely P-limited, indicating that zooplankton-mediated recycling contributed to meeting 

nutrient demand by phytoplankton during this time. This early-season P availability, facilitated 

by zooplankton recycling, may have helped initialize the cyanotoxin-producing cyanobacteria 

bloom that flourished later in the season and persisted until late summer (Isles and Pomati, 

2021). The contribution of zooplankton excretion to dissolved inorganic P availability is 

consistent with the hypothesis from Moody and Wilkinson (2019) that N-rich zooplankton 

communities can contribute to increased P availability within nutrient-rich ecosystems. However, 

we found that zooplankton community N:P and zooplankton excretion dynamics were context- 

and time-dependent over the course of the growing season. As such, zooplankton-mediated flux 

of P was mainly confined to the early part of the growing season when zooplankton biomass was 

high, zooplankton community N-storage was relatively high, and dissolved inorganic P 

concentrations were relatively low. Furthermore, our estimates of P turnover by zooplankton 

indicated rapid turnover of dissolved inorganic P during early summer, but turnover drastically 

slowed once P concentrations rose. These results support our conclusions that zooplankton 
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nutrient recycling was an important P flux during the early summer growing season, but not an 

important flux once internal loading increased P availability.  

Overall, the contribution of zooplankton nutrient-recycling to the dissolved inorganic N 

pool in Green Valley Lake was negligible. However, the uptake of ammonium from zooplankton 

excretion by phytoplankton may have been too fast to result in a measurable concentration, 

masking the contribution of zooplankton excretion to N availability. Alternatively, we may be 

underestimating N excretion given that our estimates of zooplankton excretion were not taxon-

specific, but instead based on a consolidated dataset of both cladocerans and copepods. This is 

particularly true when daphniids dominate in the early and late-summer periods, which could 

increase community N excretion as Daphnia retain more P than N due largely to their body 

stoichiometry (Elser et al., 1988). Overall, our estimates of zooplankton excretion were low 

relative to the concentrations of dissolved inorganic nutrients in the ecosystem across the 

summer; however, they were comparable with other studies using similar allometric equations 

(Conroy et al., 2005) or direct measurement (den Oude and Gulati, 1988) in eutrophic 

ecosystems. The low variability in zooplankton excretion N:P was likely an artifact of the 

allometric equations we used to estimate excretion. The excretion estimates used to build the 

allometric equations were derived from a combination of copepod and cladoceran species in both 

freshwater and marine environments. This collation of multiple species likely masked any 

variation in excretion N:P we would expect to observe from differences in food quality and 

species elemental composition.  

In addition to zooplankton, other consumers can play a key role in nutrient recycling in 

eutrophic lakes and reservoirs, particularly detritivores and planktivores such as gizzard shad 

(Sharitt et al., 2021; Vanni et al., 2006) and mussels (Arnott and Vanni, 1996). However, neither 
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gizzard shad nor zebra mussels have been reported in Green Valley Lake. While we did not 

quantify the contribution of nutrient recycling by other consumers to availability in Green Valley 

Lake, these organisms certainly contributed. There is a common carp (Cyprinus carpio) 

population in Green Valley Lake which can influence nutrient cycling through bioturbation and 

excretion (Weber and Brown, 2009); however, the population is small. We hypothesize that the 

contributions of fish and other organisms would have a similar seasonality given the large 

contribution of internal P in the latter half of the season. 

 

Role of zooplankton excretion and grazing on phytoplankton community structure  

In support of our second hypothesis, we found evidence that zooplankton community size 

structure may have influenced the size structure of the phytoplankton community (objective 2). 

This is despite the fact that we observed weak top-down control on phytoplankton biomass, 

consistent with other studies in hypereutrophic lakes (Rogers et al., 2020; Matsuzaki et al., 

2018). The negative correlation between zooplankton length and phytoplankton GALD is 

consistent with other studies in hypereutrophic ecosystems indicating that small-bodied 

zooplankton preferentially graze on smaller phytoplankton, increasing the dominance of large 

filamentous and colonial phytoplankton (Bairagi et al., 2019; Onandia et al., 2015). By grazing 

on smaller sized phytoplankton cells or colonies, zooplankton can reduce the abundance of 

smaller phytoplankton leaving a greater proportion of individuals with large GALD to dominate 

the overall size distribution. This was evidenced by the phytoplankton community size structure 

shifting towards higher GALD, likely driven by an increase in Microcystis colonies observed in 

July through early August. It is likely that smaller-bodied zooplankton were contributing, in part, 

to the dominance of Microcystis colonies and higher phytoplankton GALD by removing smaller 
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phytoplankton cells. The low percentage of phytoplankton GALD measurements that fell within 

the zooplankton community food size range midsummer suggests that zooplankton were grazing 

on smaller phytoplankton cells, increasing the average GALD of the phytoplankton community. 

Effectively, the phytoplankton left behind following zooplankton grazing were mostly large 

colonial Microcystis.   

However, it is unlikely zooplankton were the sole cause of increased phytoplankton 

GALD. The drawdown of dissolved inorganic N we observed midsummer coincided with the 

bloom of Microcystis beginning on DOY 172, suggesting efficient N uptake by Microcystis. 

Availability of dissolved inorganic N promotes Microcystis growth and was likely influencing 

the proliferation of Microcystis colonies (Chen et al., 2019). However, nutrients and grazing can 

interact to affect phytoplankton GALD, where grazing by zooplankton, along with increased 

nutrients, promotes greater phytoplankton community GALD (Cottingham, 1999). While 

Microcystis toxicity can dampen zooplankton grazing, zooplankton community grazing on toxic 

Microcystis has been documented previously (Davis et al. 2012). Furthermore, over the summer 

growing season, the increased incidence of toxin-producing Cyanobacteria can even induce shifts 

towards toxin-resistant phenotypes in zooplankton populations (Schaffner et al., 2019). Thus, it 

is likely that zooplankton grazing on toxic cyanobacteria occurred in Green Valley Lake, 

influencing phytoplankton size structure. The size structure of communities is closely tied to 

food web structure and energy flow (Brose et al., 2017), thus the influence of the zooplankton 

community on phytoplankton size structure we observed was likely influential on the transfer, 

uptake, and recycling of nutrients by phytoplankton.  

It is also likely that microzooplankton and ciliates played an important role grazing on 

small phytoplankton species; however, we did not quantify these communities in this study. 
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Furthermore, our phytoplankton counting methods were unable to facilitate the identification of 

nano- or picophytoplankton species in the water column. Microzooplankton, nano- and 

picophytoplankton are increasingly recognized as key components of the plankton food web and 

contribute a significant percentage of grazing pressure on phytoplankton in highly productive 

ecosystems (Agasild et al., 2007; Zingel et al., 2007). Future studies should examine their 

seasonal dynamics and potential contribution to ecosystem processes more thoroughly as they 

can be key components of zooplankton-phytoplankton interactions in nutrient-rich reservoirs.  

The redundancy analysis (db-RDA) suggested that neither zooplankton top-down control 

nor nutrient recycling significantly affected variation in phytoplankton community composition. 

The db-RDA was able to discriminate the phytoplankton community between pre- and post-

cyanobacterial dominance likely driven by the overwhelming dominance of Microcystis 

beginning on DOY 172. The early summer phytoplankton community was significantly related 

to the concentration of dissolved inorganic N which corresponds with the seasonal dynamic of 

nutrient limitation we observed as both chlorophytes and bacillariophytes perform well under P-

limitation (Berg et al., 2003). Furthermore, the dissolved inorganic N pool was highest in early 

summer and predominantly composed of nitrate which can be taken up and used by 

bacillariophytes (Andersen et al., 2020). The mid- to late-summer phytoplankton community was 

significantly related to temperature, consistent with other studies describing increasing 

temperature as a key driver of cyanobacteria dominance (Hayes et al., 2020). Other unobserved 

environmental factors were likely influencing the phytoplankton community as the db-RDA 

described only 21.88% of variation in the phytoplankton community composition. Phytoplankton 

community turnover is a complex phenomenon driven by a multitude of environmental factors 

(Wentzky et al., 2020; Sommer et al., 2012), including nutrient and light availability, the latter of 
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which we did not measure. Given the high biomass of phytoplankton, light limitation through 

self-shading likely played a significant role in phytoplankton dynamics.  

 

CONCLUSIONS  

While the importance of consumer-driven nutrient recycling has been demonstrated in 

less eutrophic waterbodies, the role that zooplankton consumers have on nutrient availability and 

phytoplankton dynamics in hypereutrophic reservoirs is understudied. Our results support a 

previous comparative study indicating that zooplankton community composition may influence 

nutrient availability in hypereutrophic ecosystems, as well as extend our understanding of the 

temporal dynamics of zooplankton and phytoplankton interactions. We found evidence of the 

importance of zooplankton nutrient cycling in a hypereutrophic reservoir with zooplankton 

excretion providing a large portion of the available P early in the summer, prior to the onset of 

the cyanobacteria-dominated bloom later in the season. If we had only assessed the late summer 

period or only a few time points across the summer, we would have likely missed the important 

dynamics in nutrient availability and zooplankton nutrient cycling we observed. In addition to 

the bottom-up influences of zooplankton, we found that zooplankton affected phytoplankton size 

structure contributing to increased phytoplankton community GALD. While we did not observe 

total top-down control of the phytoplankton community, the influence of zooplankton on 

phytoplankton size structure has important implications to nutrient recycling as size is a key trait 

regulating biogeochemical cycling in phytoplankton. As demonstrated here, the role of 

zooplankton nutrient recycling in hypereutrophic reservoirs is an important component of 

phytoplankton dynamics and ecosystem function that should be considered in greater detail. 

Unlike previous assumptions that zooplankton do not contribute substantially to nutrient cycling 

and phytoplankton dynamics in hypereutrophic ecosystems, our results suggest that zooplankton 



32 

 

 

do in fact contribute to those dynamics, predominantly for a short period early in the summer. 

Future work should investigate the dynamics of zooplankton nutrient recycling across different 

climate contexts and over longer time periods, including dynamics through winter and autumn. 
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TABLES  

Table 1. List of initial explanatory variables input to the distance based-Redundancy Analysis of 

phytoplankton community composition.  

Explanatory Variable Mean Range 

Zooplankton Biomass (µg L-1) 87.88 1.78 - 248.55 

Zooplankton N:P Excretion 3.05 2.56 - 3.52 

Zooplankton Community N:P 18.29 13.62 - 23.59 

Dissolved Inorganic N (µM) 33.44 2.86 - 103.50 

Temperature (°C) 87.88 1.78 - 248.55 

pH 18.29 13.62 - 23.59 

 

Table 2. Statistics for the distance based-Redundancy Analysis of phytoplankton community 

composition in Green Valley Lake from May to September 2019. 

Permutation test variable  

Sums of 

Squares  

pseudo-

F p-value 

Full model 1.27 2.68 0.001 

First axis  0.86 3.62 0.004 

Second axis  0.41 1.74 0.073 

Inorganic N  0.47 2.00 0.043 

Temperature (°C) 0.80 3.36 0.003 

Residual  2.37     
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FIGURES  

 

Figure 1. (A) Surface water nitrogen and (B) phosphorus concentrations split between total, 

dissolved inorganic, and zooplankton body storage over the course of the growing season. (C) 

surface water molar nitrogen: phosphorus (N:P) ratios split between total and inorganic pools 

with the dashed line denoting inferred nutrient limitation (Guildford and Hecky, 2000). (D) 

molar N:P ratios of the zooplankton community.  
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Figure 2. (A) Zooplankton biomass and community composition and (B) phytoplankton biomass 

and community composition over the course of the growing season in Green Valley Lake, IA. 
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Figure 3. The estimated concentration of total zooplankton community excretion produced over 

a day compared with the surface water dissolved (A) nitrogen and (B) phosphorus concentrations 

measured the same day as a percentage. Estimates of zooplankton excretion were derived from 

published allometric equations of zooplankton body size and excretion rate (Hébert, et al., 2016). 

The dark lines represent the estimated excretion of either phosphorus or nitrogen, and the shaded 

area represents the error associated with the estimate for each sampling day.  
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Figure 4. (A) Density ridgeline plots of phytoplankton greatest axial linear dimension (GALD, 

µm) and zooplankton body size (µm) over the course of the growing season in Green Valley 

Lake, IA. The black vertical line within each distribution represents the mean. (B) Mean 

difference between zooplankton length and phytoplankton GALD. DOYs that are missing either 

phytoplankton GALD or zooplankton length are the result of sample loss or no available data. 



44 

 

 

 
Figure 5. Distance based-Redundancy Analysis (db-RDA) of the phytoplankton community in 

Green Valley Lake from May to September 2019. Dots represent sampling points, and the 

numbers 1-14 are DOY 143, 150, 164, 172, 178, 192, 199, 206, 211, 213, 220, 227, 245, 251, 

respectively. DOY 245 (13) was omitted from the diagram as there were no available data for 

inorganic N and P thus the data were omitted from the analysis. The significant explanatory 

variables are represented by black arrows. 
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SUPPLEMENTARY INFORMATION FOR CHAPTER 1  

SUPPLEMENTARY METHODS  

Nutrient concentrations and speciation  

The following equations describe how we defined the major fractions of nitrogen (N) and 

phosphorus (P) in Green Valley Lake. Total N in freshwater is composed organic and inorganic 

fractions:  

 𝑇𝑁 = 𝑜𝑟𝑔𝑁 + 𝐷𝐼𝑁 

 

(1) 

where TN is total N, orgN is organic N in both the particulate (organisms and detritus) and 

dissolved (urea) form, and DIN is dissolved inorganic N composed of NOx and NHx representing 

nitrate + nitrite and ammonium + ammonia, respectively. Previous data from the last decade in 

Green Valley Lake indicated NHx were extremely low or undetectable in the surface waters 

during the summer months. If we assume that NHx is undetectable (1) simplifies to:  

 𝑇𝑁 = 𝑜𝑟𝑔𝑁 + 𝑁𝑂𝑥 

 

(2) 

allowing calculation of orgN by rearranging (2):  

 𝑜𝑟𝑔𝑁 = 𝑇𝑁 −  𝑁𝑂𝑥 

 

(3) 

Thus, we could characterize N pools as total (TN) representing dissolved and particulate forms of 

N, organic (orgN) representing dissolved organic N (urea) and seston, and inorganic N (NOx) 

representing DIN in the surface waters. For our analyses we focused on the TN and DIN pools.  

Similarly, P is composed of organic and inorganic fractions in reservoir surface waters:  

 𝑇𝑃 = 𝑃𝑂𝑃 +  𝑃𝐼𝑃 +  𝐷𝐼𝑃 +  𝐷𝑂𝑃 

 

(4) 

where TP is total P, POP is particulate organic P, PIP is particulate inorganic P, DIP is dissolved 

inorganic P, and DOP is dissolved organic P. DIP and PIP were both present within the water 

column, but our focus for this study was on DIP which is far more bioavailable to phytoplankton 
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than PIP (Zhou et al., 2005) and thus more influential to nutrient cycling via zooplankton-

phytoplankton interactions. Previous data from the last decade in Green Valley Lake indicated 

PIP was extremely low or undetectable in the surface waters during the summer months. Thus, 

(4) can be simplified by combining DOP and POP to one organic pool (orgP) and using SRP as a 

measure of DIP over the course of the growing season:  

 𝑇𝑃 = 𝑜𝑟𝑔𝑃 + 𝑆𝑅𝑃 

 

(5) 

Therefore, we could characterize P pools as total (TP) representing dissolved and particulate 

forms of P, organic (orgP) representing dissolved organic P and seston, and inorganic (SRP) 

representing DIP in the surface waters. For our analyses we focused on the TP and SRP pools.  

Ammonium + ammonia (NHx) (EPA method 103-A v6) and inorganic suspended solids were 

measured at the same location in the lake three times during the summer by the Iowa Ambient 

Lakes Monitoring program (IDNR 2021). Ammonium was analyzed through the alkaline phenate 

method on a Seal Analytical AQ2 Discrete Analyzer and inorganic particulates were determined 

via difference between total and volatile suspended solids (USGS method I-3765-85).  

 

Zooplankton excretion equations  

Individual zooplankton excretion of P was determined using the following equation from Hébert 

et al., (2016):  

 𝑙𝑛(𝑃𝑒𝑥𝑐,ℎ) =  0.56 + (0.70𝑙𝑛(𝑍𝐵𝑆)) 

 

(6) 

where Pexc,h is excreted P (nM of P individual-1 hour-1) and ZBS is the dry mass of an individual 

zooplankter (mg). Zooplankton excretion of N was determined in a similar manner:  

 𝑙𝑛(𝑁𝑒𝑥𝑐,ℎ) =  2.50 + (0.84𝑙𝑛(𝑍𝐵𝑆)) 

 

(7) 

where Nexc,h is excreted N (nM of N individual-1 hour-1).  
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Data were then converted to µM of N or P per day using the following conversions:  

  𝑛𝑚𝑜𝑙 𝑁 𝑜𝑟 𝑃 

𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 ∙ ℎ𝑜𝑢𝑟
∙

24 ℎ𝑜𝑢𝑟𝑠

1 𝑑𝑎𝑦
∙

 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠

𝐿
∙  

1 𝜇𝑚𝑜𝑙

1000 𝑛𝑚𝑜𝑙
=

 𝜇𝑀 𝑁 𝑜𝑟 𝑃

 𝑑𝑎𝑦
 

 

 

(8) 

The allometric equations were derived from a combined dataset of marine and freshwater 

zooplankton. Using only the freshwater data did not significantly change the slope, nor was the 

relationship between excretion and body size significant due to the much smaller sample size. 

Thus, we only present the combined freshwater and marine model as presented in Hébert et al. 

(2016). Additionally, we used zooplankton excretion equations from Wen and Peters (1994). 

Specifically, we used their multivariate regression equations for crustacean zooplankton which 

corrected for temperature (K) and experimental duration (h) in their estimates of excretion. As 

our data did not have an experimental duration, we dropped the experimental duration correction 

resulting in the following equations: 

 𝐿𝑜𝑔10(𝑃𝑒𝑥𝑐,𝑤𝑝) =  −5.28 + (0.61 ∗ 𝑙𝑜𝑔10(𝑍𝐵𝑆)) + (0.01 ∗ 𝑇) 

 

(9) 

Where Pexc,wp is excreted P (µg d-1), ZBS is the body size of an individual zooplankter (µg), and T 

is water temperature (K).Similarly, for N excretion: 

 𝐿𝑜𝑔10(𝑁𝑒𝑥𝑐,𝑤𝑝) =  −3.47 + (0.74 ∗ 𝑙𝑜𝑔10(𝑍𝐵𝑆)) + (0.00002 ∗ 𝑇2) 

 

(10) 

Where Nexc,wp is excreted N (µg d-1), ZBS is the body size of an individual zooplankter (µg), and T 

is water temperature (K). The pattern of zooplankton excretion was consistent between the two 

methods; however, the magnitude of excretion was different (Supplementary Table S3).  

 

Zooplankton Food Size Range   

 We collected data on the reported food size range of Bosmina, Ceriodaphnia, Chydorus, 

Daphnia, Diaphanosoma, Cyclopoida, Calanoida, Rotifera, and nauplii from the literature 
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(Sweeney et al., 2022; Helenius and Saiz, 2017; Barnett et al., 2007). If a species primarily fed 

on zooplankton rather than phytoplankton, they were not included within our trait data. We did 

not find appropriate food size range data for Ostracods and thus they were removed from our 

analysis. If there were multiple size ranges reported for different species within a larger 

taxonomic group (e.g., Daphnia) we calculated the mean of the minimum food size range and 

maximum food size range (Supplementary Table S4).  
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SUPPLEMENTAL TABLES  

Supplementary Table S1. Zooplankton genera, order, or class identified over the course of the 

growing season in Green Valley Lake.  

Taxonomic Group Taxa identified in Green Valley Lake included in grouping 

Large Cladocera Daphnia 

Simocephalus 

Ceriodaphnia 

Small Cladocera Bosmina 

Chydorus 

Ostracod Ostracoda 

Calanoids Calanoida 

Cyclopoids Cyclopoida 

Nauplii Copepod nauplii 

Rotifers Asplanchna 

Keratella cochlearis 

Keratella quadrata  

Pompholyx 

Trichocerca 

Filinia 
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Supplementary Table S2. Phytoplankton genera identified over the course of the growing 

season in Green Valley Lake.  

Taxonomic Group Taxa identified in Green Valley Lake included in grouping 

Bacillariophyta Asterionella 

Fragilaria  

Stephanodiscus 

Unknown pennate bacillariophyte 

Unknown centric bacillariophyte 

Chlorophyta Chalmydomonas 

Coelastrum 

Cosmarium 

Desmodesmus 

Elakatothrix 

Eudorina 

Monoraphidium 

Oocystis 

Pediastrum 

Schroederia 

Staurastrum 

Unknown chlorophyte 

Chyrso - & 

Cryptophytes 

Mallomonas 

Cryptomonas 

Komma  

Aphanothece 

(Cyanophyte)  

Aphanothece 

Microcystis 

(Cyanophyte)  

Microcystis  

Microcystis (Single-celled)  

Other Cyanophytes Aphanizomenon 

Aphanocapsa 

Merismopedia 

Planktolyngbya 

Pseudanabaena 

Snowella 

Woronichinia 

Dolichospermum 
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Supplementary Table S3. Estimated zooplankton excretion of N and P (µM d-1) using different 

published allometric equations from Hébert et al. (2016) and Wen and Peters (1994). Uncertainty 

estimates derived from the allometric equation parameters in Hébert et al. (2016) are presented 

in parentheses.  

 Zooplankton Excretion (µM N or P day-1) 

 Nitrogen Excretion Phosphorus Excretion 

DOY Hébert Wen & Peters Hébert Wen & Peters 

143 0.159 (0.143- 0.242) 0.073 0.062 (0.040-0.100) 0.080 

150 0.177 (0.116-0.270) 0.082 0.056 (0.036-0.088) 0.072 

164 0.167 (0.110-0.255) 0.083 0.058 (0.037-0.091) 0.081 

171 0.087 (0.057-0.133) 0.039 0.029 (0.018-0.045) 0.036 

178 0.034 (0.022-0.051) 0.014 0.010 (0.007-0.016) 0.012 

192 0.003 (0.002-0.004) 0.002 0.001 (0.001-0.002) 0.002 

199 0.022 (0.014-0.033) 0.012 0.008 (0.005-0.012) 0.011 

206 0.015 (0.010-0.022) 0.007 0.005 (0.003-0.007) 0.006 

211 0.068 (0.045-0.104) 0.035 0.023 (0.014-0.035) 0.032 

213 0.004 (0.002-0.005) 0.002 0.001 (0.001-0.007) 0.001 

220 0.001 (0.001-0.002) 0.001 0.000 (0.000-0.002) 0.001 

227 0.005 (0.003-0.007) 0.002 0.002 (0.001-0.003) 0.002 

234 0.018 (0.012-0.027) 0.008 0.005 (0.003-0.008) 0.007 

245 0.109 (0.072-0.167) 0.046 0.031 (0.020-0.049) 0.037 

251 0.095 (0.062-0.145) 0.042 0.029 (0.019-0.046) 0.036 

273 0.120 (0.079-0.183) 0.051 0.039 (0.025-0.061) 0.046 
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Supplementary Table S4. Zooplankton taxa food size range data collected from the literature. 

Minimum food size range (Min FSR (µm)) and maximum food size range (Max FSR (µm)) 

represent either a single species or an average of multiple species. When an average was taken, 

the standard deviation is presented.  

Taxa Min FSR 

(µm) 

Standard 

Deviation 

Max FSR 

(µm) 

Standard 

Deviation 

Source 

Bosmina 1.4 NA 5 NA Barnett et al. 2007 

Ceriodaphnia 0.4 NA 7 NA Barnett et al. 2007 

Chydorus 0.4 NA 2 NA Barnett et al. 2007 

Daphnia 1.1 0.5 30 10 Barnett et al. 2007 

Diaphanosoma 0.25 NA 5 NA Barnett et al. 2007 

Cyclopoida 6.9 6.1 54.2 43.5 Barnett et al. 2007 

Calanoida 9.4 11.6 64 23 Barnett et al. 2007 

Nauplii 4.5 NA 19.8 NA Helenius & Saiz 2017 

Rotifera 0 NA 75 NA Sweeney et al. 2022 

 

Supplementary Table S5. Potential zooplankton nutrient turnover of soluble reactive 

phosphorus in Green Valley Lake. Values represent the number of days it would take 

zooplankton excretion alone to replenish the water column concentration of dissolved inorganic 

phosphorus on a given sampling day. Missing values were the result of sample loss or the lack of 

available data and are denoted by NA. 

Nutrient Pool 

DOY 

143 

DOY 

150 

DOY 

164 

DOY 

172 

DOY 

178 

DOY 

192 - 273 

Soluble Phosphorus 5 d 3 d 3 d 5 d 57 d >200 d 
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SUPPLEMENTAL FIGURES  

 

Supplementary Figure S1. Historical water quality and plankton data for Green Valley Lake. 

The different colors represent before or after the clear-water period which we determined was 

around DOY 170 using a breakpoint analysis for the period 2011 – 2019. Dark color and square 

shape denote data before DOY 170, and light color and circle shape denote data post DOY 170. 

From left to right, top to bottom the variables represented are total nitrogen, nitrate, ammonium, 

total phosphorus, soluble reactive phosphorus, inorganic particulates, zooplankton biomass, non-

Cyanophyta biomass, and Cyanophyta biomass. Data were collated from the Ambient Lakes 

Monitoring program in the state of Iowa (IDNR, 2021).  
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Supplementary Figure S2. The estimated zooplankton excretion nitrogen: phosphorus ratio 

derived from published allometric equations of zooplankton body size and excretion rate (Hébert 

et al., 2016).  
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Supplementary Figure S3. The ratio of zooplankton: phytoplankton biomass across the summer 

growing season in Green Valley Lake. The dashed lines represent the threshold for either weak 

(~10%) or strong (~40-50%) top-down control on phytoplankton biomass (Leroux and Loreau, 

2015; Havens and Beaver, 2013).  
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Supplementary Figure S4. The percentage of individual phytoplankton GALD measurements 

per sampling date that fell within the zooplankton community food size range calculated for the 

same sampling date. Dark bars represent the percentage of phytoplankton GALD measurements 

that fell within the zooplankton food size range and light bars represent the percentage that fell 

outside of that range.  
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Supplementary Figure S5. Density ridgeline plots of phytoplankton greatest axial linear 

dimension (GALD, µm) and zooplankton body mass (µg) over the course of the growing season 

in Green Valley Lake, IA. The black vertical line within each distribution represents the mean. 

DOYs that are missing either phytoplankton GALD or zooplankton length are the result of 

sample loss or no available data. 
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Supplementary Figure S6. Pearson correlations of (A) zooplankton body length (µm) and (B) 

zooplankton body mass (µg) by phytoplankton greatest axial linear dimension (GALD, µm). 
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CHAPTER 2  

INVESTIGATING CHANGES TO FOOD WEB STRUCTURE IN SHALLOW LAKES 

FOLLOWING REMOVAL OF COMMON CARP (CYPRINUS CARPIO) AND 

BIGMOUTH BUFFALO (ICTIOBUS CYPRINELLUS)  

In preparation for submission with coauthors M. Simonson, M.J. Weber, and G.M. Wilkinson to 

Ecological Indicators  

Author Contributions: Butts designed the study; performed the necessary field and laboratory 

work, performed the data cleaning, analysis, and visualization; and drafted the manuscript. 

Simonson, Weber, and Wilkinson contributed to study design, data collection, and data analysis.  

 

ABSTRACT 

Biomanipulation is a common management intervention to address eutrophication. But, 

when there is no improvement in water quality as intended, it is difficult to disentangle whether 

the biomanipulation failed to substantially alter food web structure or was unable to overcome 

external drivers of poor water quality. Traditional food web model analyses to monitor 

management interventions can be prohibitively time and data intensive. Size spectra—the 

relationship between species abundance and body size--could be used to detect changes in food 

web structure following major disturbances. As such, size spectra may be a powerful tool to 

investigate the effects of food web interventions such as biomanipulation, particularly when 

coupled with complex harvest structures such as incentivized commercial harvest. We fit size 

spectra in seven shallow, nutrient rich lakes in northwest Iowa from 2018 – 2020, four of which 

underwent incentivized harvest of common carp (Cyprinus carpio) and bigmouth buffalo 

(Ictiobus cyprinellus) during this period, with three lakes serving as reference ecosystems. There 
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were no improvements in water quality in any of the lakes. Based on the size spectra slopes, 

there were also no significant changes in species size structure due to incentivized harvest (p = 

0.072) or harvest intensity of common carp (p = 0.191) or bigmouth buffalo (p = 0.069). 

Ecosystem productivity, based on the size spectra height (predicted number of organisms at the 

midpoint) decreased across all years (p = 0.002) in all lakes, likely reflecting broadscale regional 

influences. We demonstrated that incentivized harvest was unable to significantly shift size 

spectra slopes as intended, providing evidence that the lack of improvements in water quality 

may be due to a failure to induce strong top-down effects despite substantial removals of 

bigmouth buffalo and common carp. Size spectra analyses can be a powerful tool to understand 

and guide food web-focused management interventions.  

 

INTRODUCTION  

 Manipulating food web structure (i.e., biomanipulation) can be a powerful management 

tool to shift pathways of energy and nutrient flow within an ecosystem to enhance ecosystem 

services (Hansson et al., 1998; Fraser et al., 2015; Vander Zanden, Olden & Gratton, 2016). In 

eutrophic waterbodies, biomanipulation is used to reduce phytoplankton standing stocks through 

both top-down and bottom-up controls. Common biomanipulations in eutrophic lakes to improve 

water clarity include removal of planktivorous fish biomass to increase zooplankton biomass and 

grazing pressure and removing benthivorous fishes to reduce sediment disturbance and internal 

nutrient loading (Shapiro et al., 1975; Søndergaard et al., 2017; Weber and Brown, 2009). While 

the purpose of these manipulations is to improve water quality by altering food web structure, the 

effectiveness of biomanipulations is often assessed by changes in water clarity, algal biomass, 

nutrient concentrations, and native fish biomass, all of which are also subject to non-food web 
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drivers of change (Jeppesen et al., 2012; Meijer et al., 1999, 1990). Indirect, outcome-based 

metrics of biomanipulation success are often used because quantitatively assessing changes in 

food web structure can be costly and difficult (Pringle and Hutchinson, 2020; Ripple et al., 

2016). Thus, methods leveraging data collection in existing monitoring programs are necessary 

to quantify food web responses to biomanipulation to better evaluate their success or failure 

(Hansson et al., 1998).  

A wealth of ecological theory and analyses have demonstrated that the relationship 

between abundance and body size of species, or size spectrum, is fundamental property of size-

structured food webs (Sheldon and Parsons, 1967; Sprules, 2008; Sprules and Barth, 2016). This 

simple relationship is based upon a log-log negative linear relationship between body size and 

abundance where large individuals have lower densities than small individuals within an 

ecosystem (Sprules and Barth, 2016). The slope of this relationship generally tends to be -1.0 

reflecting a steady state condition where biomass is distributed between logarithmically equal 

size bins and reflects size-dependent metabolic and predation rates (Rossberg, 2012). Shifts away 

from the theoretical slope of -1.0 can be used to assess changes in food web structure away from 

its steady state condition. The slope reflects the relative abundance of small and large organisms 

(i.e., species size structure) and thus a shallower slope than the theoretical estimate of -1.0 would 

indicate more energy is available for higher trophic levels in addition to stronger top-down 

control (Mehner et al., 2018; Barth et al., 2019). Changes in the size spectra height, or the 

abundance of organisms at the mid-point of the size spectrum, can be used to infer ecosystem 

productivity and facilitate cross-ecosystem comparisons (Guiet et al., 2016). Slopes and 

intercepts are often correlated, and thus size spectrum height can be used as an independent 

metric, in addition to comparing size spectrum slope (Evans et al., 2022). Analyzing changes in 



62 

 

 

size spectrum slope and height can be a useful tool to assess changes in food web structure 

following a disturbance (Sprules and Barth, 2016; Barth et al., 2019). Collecting size and 

abundance data requires far less effort than the intensive sampling and biomass estimates needed 

for more rigorous food web modeling (Colvin et al., 2015; Delmas et al., 2019). As such, this 

tool could be useful for assessing changes in food web structure in lakes following 

biomanipulation using relatively easily collected size and abundance data, especially when water 

quality metrics fail to improve.  

Zooplankton and benthic macroinvertebrates represent taxa commonly collected within 

sampling programs that can also reflect changes in overall food web structure and energy 

availability within ecosystems (Barth et al., 2019; Evans et al. 2022). Zooplankton taxa are 

sensitive to disturbances due to their intermediate trophic position and fast generation times, 

making their body size distribution a sentinel of change for ecosystem trophy and food web 

dynamics (Barth et al., 2019; Chiba et al., 2018; Jeppesen et al., 2011). Benthic 

macroinvertebrates are also a critical link to higher trophic levels, particularly within benthic 

food chains providing key energy and nutrient subsidies to consumers, particularly in shallow 

lakes (Vander Zanden and Vadeboncoeur 2020, Evans et al. 2022). Size spectra analyses of 

zooplankton and benthic macroinvertebrates may be useful for disentangling responses to 

management strategies that target food web structure like biomanipulation. This may be 

particularly helpful when natural resource agencies contract with commercial fishers (e.g., 

through incentivized harvest) to reduce fish populations (Bahls, 1992; Bouska et al., 2020; Fritz, 

1987; Weber et al., 2016) and harvest is heterogeneous across lakes due to fluctuations in market 

forces and fisher behavior (Branch et al., 2006; Fulton et al., 2011; Smith and McKelvey, 1986). 

Given the complex socio-economic realities of incentivized harvest biomanipulations, and the 
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inconsistent responses of water quality response variables (Hansson et al., 1998), size spectra 

analyses may be useful for assessing whether the intended food web changes occurred but were 

masked by other drivers, or if the food web remained unaltered despite intervention.  

 In 2018, the Iowa Department of Natural Resources (IDNR) began a feasibility study to 

assess whether an incentivized harvest management program of common carp (Cyprinus carpio) 

and bigmouth buffalo (Ictiobus cyprinellus) removal could improve water quality and sport 

fisheries in shallow, eutrophic lakes. Incentivized harvest for biomanipulation had been 

successfully implemented in the past in this region in individual lakes (Colvin et al., 2012; 

Meerbeek and Hawkins, 2021); but it was unclear whether this management mechanism could be 

applied at a broader scale and replicated successfully (Simonson et al., 2022). Common carp are 

widespread, non-native, benthivorous feeders that negatively affect water quality, endemic fish 

populations, and benthic macroinvertebrates (Weber and Brown, 2011, 2009). Alternatively, 

bigmouth buffalo are native to the region and can reach high biomass densities in shallow lakes 

generating strong top-down control on zooplankton communities (Wilkinson et al., 2022). The 

value of bigmouth buffalo is approximately three times common carp, so selection of this species 

for biomanipulation was also an additional financial incentive (Simonson et al., 2022). Despite 

substantial removals of common carp and bigmouth buffalo over three years, no improvements 

in water quality were observed (Figures S1 – S2).  

Our objectives for this study were to (1) assess the interannual variability in species size 

structure (i.e., size spectra slope) and productivity (i.e., size spectra height) in harvested (n=4) 

and non-harvested (n=3) reference lakes; (2) determine whether the incentivized harvest program 

had a measurable and directional effect on species size structure and productivity; (3) quantify 

whether changes in size spectra through time scaled with harvest intensity; and (4), assess 
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interannual changes in zooplankton and macroinvertebrate community composition across all 

seven study lakes. We expected size spectra slopes to become shallower than the theoretical 

slope of -1.0 following harvest reflecting a greater abundance of large benthic 

macroinvertebrates and zooplankton due to a combination of less top-down control on 

zooplankton from bigmouth buffalo (Wilkinson et al., 2022) and reduced direct and indirect 

negative effects on benthic macroinvertebrates from common carp (Weber and Brown, 2009). 

Including both taxa within the size spectra analysis provides a stronger signal of food web 

change (Evans et al, 2022), that may be masked by assessing only zooplankton or benthic 

macroinvertebrates. We also expected size spectra height (i.e., inference of ecosystem 

productivity) to decrease in lakes following harvest of common carp and bigmouth buffalo due to 

a shift in zooplankton and macroinvertebrate abundances (i.e., a more even distribution of small 

and large individuals). We also expected that the magnitude of the shift in size spectra slope, and 

height, would increase with harvest intensity of common carp and bigmouth buffalo. Finally, we 

expected that a greater change in zooplankton and macroinvertebrate size spectra would align 

with substantial changes in the species composition and biomass of zooplankton and 

macroinvertebrates.   

 

METHODS  

Study Sites  

The seven lakes included in this study were six eutrophic, shallow, glacial lakes located 

in northwestern Iowa, USA with one eutrophic oxbow lake (Blue Lake) located in western Iowa, 

USA (Table 1). The glacial lakes are near the western edge of the Des Moines Lobe with Blue 

Lake located within the Missouri Alluvial Plain. All lakes are shallow, polymictic, and heavily 
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influenced by nutrient loading from row crop agriculture in the watershed (Table 1; Arbuckle & 

Downing, 2001). This has led to persistent water quality issues including impairments related to 

algal biomass (Table 1; Carlson, 1977). All the glacial lakes had large common carp and 

bigmouth buffalo populations. However, Blue Lake likely had a smaller bigmouth buffalo 

population than the glacial lakes as evidenced by only one individual bigmouth buffalo being 

captured within Blue Lake over the three-year study period (Simonson et al. 2022).  

 

Incentivized Harvest  

During the study period, the Iowa Department of Natural Resources (IDNR) entered 

short-term contracts with commercial fishing operations for the removal of common carp and 

bigmouth buffalo from four of the lakes (Figure 1). Each contract provided exclusive commercial 

fishing rights for one calendar year. Harvest was prohibited between May and early September 

and removals via seining were required at least twice per contract period. Common carp and 

bigmouth buffalo were required to be removed when caught no matter their physical condition or 

size with biomass removed reported to IDNR biologists. Exploitation estimates were generated 

by dividing the total biomass of common carp or bigmouth buffalo harvested by population 

biomass estimates produced from capture-mark-recapture analysis using a modified Schnabel 

estimator for multiple recaptures (Ricker, 1975; Simonson et al., 2022). However, population 

estimates had wide 95 % confidence intervals exploitation estimates were sometimes over 100% 

for bigmouth buffalo and common carp (Table S1). Thus, we use the biomass density (kg ha-1) of 

fish removed in our subsequent analyses.  
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Food Web Quantification  

We sampled zooplankton three to ten times during the ice-free period (median = 7) from 

May to September via a vertical tow of a Wisconsin net (63 µm mesh) from 0.5 m above the 

sediments to the surface at the lake’s deepest point (APHA, 1998). Samples were preserved in 

the field with a 5% formaldehyde solution and later transferred to 70% ethanol for storage. 

Zooplankton taxa were identified and enumerated from a 1 mL subsample using a Leica MZ8 

stereomicroscope connected to Motic Images software. Individuals were identified to genus for 

cladocerans and rotifers and order for copepods. Copepod nauplii could not be identified to order 

and were recorded simply as nauplii. If less than 60 organisms were present within a subsample, 

an additional 1 mL subsample was processed. Taxa were also measured to the nearest 0.1 µm for 

up to 25 individuals per taxon per sample, used to calculate biomass using standard length-dry 

mass regressions (Dumont et al., 1975; McCauley, 1984). We calculated abundance (zooplankton 

m-2) by multiplying the volumetric density (zooplankton m-3) by the depth of water column (m) 

sampled for each sampling event.  

 Benthic macroinvertebrates were collected at ten sites at a range of depths including the 

littoral and profundal zones of each lake (Table S2), as well as the historical deep point using an 

Ekman dredge (0.023 m2) in 2018 and a Ponar dredge (0.052 m2) in 2019 – 2020. Samples were 

collected once per lake and year between mid-July to early-August as densities and taxon 

richness are typically at their maximum (Bowman and Bailey, 1997). Sediment samples for each 

site were placed in a five-gallon bucket with lids and transported back to the lab where they were 

sieved through a 500-µm mesh (APHA, 2005; Baldwin et al., 2018) and preserved in 500 mL 

amber bottles with 90% ethanol and 0.1% Rose Bengal Dye solution. In the lab, invertebrates 
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were removed from the sediment and identified to the lowest possible order or family while 

annelids were identified to subclass. We calculated abundance (macroinvertebrates m-2) by 

dividing the number of individuals identified in a sample by the surface area of sample collected 

by the Ekman or Ponar sampler. Individuals were also measured for length to the nearest 0.1 mm 

on a Leica MZ8 stereomicroscope and used in length-dry mass regressions to calculate biomass 

(Table S3). We used the mean areal biomass of a taxa across all ten sampling sites for our 

analyses such that there was one biomass value per taxon per lake for each year.  

 

Size spectra analysis  

 To address our first objective of assessing variability in species size structure and 

productivity in each study lake we calculated the slope and height of size spectra using all 

available zooplankton and macroinvertebrate data combined (sensu Evans et al., 2022) for each 

lake and year. Zooplankton and macroinvertebrates were allocated into log2-size bins based on 

individual dry mass (g) where size bins were generated by logarithmically doubling (i.e., log2) 

the smallest recorded size until all individual sizes were represented within a given size bin 

(Table 2). We then calculated the average abundance (individuals m-2) within each size bin. To 

calculate the slope of the size spectra we used ordinary least-squares regression between the 

average abundance within each size bin and the dry weight at the center of each size bin. To 

remove high leverage data points, we removed points from the regression if they had a Cook’s 

distance greater than one (Bollen and Jackman, 1990). In our data, high leverage points were 

usually taxa with small body size and low abundance (e.g., a single Keratella cochlearis rotifer 

identified within a sample) or a taxon with a large body size but low abundance (i.e., a small 

number of mollusks) which were most likely artifacts of sampling efficiency.  
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Fitting size spectra using maximum likelihood methods may provide more robust 

estimates of confidence intervals for slopes (Edwards et al., 2020, 2017). However, our size data 

were collected using subsets of sampled populations and expanded to density measures rather 

than through individual measurement of every organism which is where maximum likelihood 

methods would be most appropriately applied (Edwards et al., 2020). Additionally, we wanted to 

compare our results to other size spectra analyses that use zooplankton and macroinvertebrates 

where ordinary least squares regression has been the standard (Barth et al., 2019; Evans et al., 

2022). 

 To address our second objective of quantifying interannual and inter-lake variability in 

species size structure in relation to the harvest of common carp and bigmouth buffalo we tested 

for differences in size spectrum slope using a multivariable regression model. The full model 

included dummy variables to assess variation in slope with no harvest (Dref), one year of harvest 

(Dharvest1) and two years of harvest (Dharvest2). Thus, the full model (log2[Abundance] ~ 

log2[middle of the dry weight bin] * lake * year * Dref * Dharvest1 * Dharvest2) was used with all 

possible combinations of covariates. Here, abundance represents the average density of 

organisms within a specific size bin and the middle of the dry weight bin represents the midpoint 

within a particular log2-size bin. To determine the most parsimonious model we used Akaike 

information criterion (AIC) with forward and backward stepwise model selection (Akaike, 

1973).  Only models with a difference in AIC less than two were considered in our analyses 

following Burnham & Anderson (2004). If a covariate or interaction effect was significant, we 

performed pairwise comparisons using Tukey’s post hoc test. To assess differences in ecosystem 

productivity we analyzed differences in size spectra height using a weighted regression model. 

Each lake and year varied in the range of dry weight bins (Table 2); thus, we weighted heights by 
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1/SE2 where SE was the standard error of the intercept for each size spectra. The middle size bin 

was, on average, 2-18 ± 0.91 standard deviations (containing mostly Chydorus, large cladocerans, 

and copepods). Our calculation of height was independent of slope which was confirmed by a 

Pearson correlation analysis (R2 = 0.081, p = 0.73, Figure S3). The weighted regression 

quantified variation in height across lakes and years (height ~ year*lake) where year was a 

numeric variable and lake was a factor variable.  

 To address our third objective, we used simple linear regression to quantify whether 

changes in species size structure or productivity scaled with common carp and bigmouth buffalo 

harvest intensity. We calculated the change in slope or height from one year to the next in 

relation to the cumulative harvest (kg ha-1) of either common carp or bigmouth buffalo from a 

lake over the entire study period. Specifically, cumulative harvest was calculated by adding the 

cumulative biomass of a fish taxa removed in each successive year. For example, if 30 kg ha-1 of 

common carp were removed in 2018 and 50 kg ha-1 were removed in 2019, then the cumulative 

harvest of common carp would be 80 kg ha-1 in 2019 and 30 kg ha-1 in 2018. The change in slope 

or height was calculated by subtracting the value from the previous year so that a more negative 

change in slope would mean the slope was becoming steeper with harvest. In addition, we also 

quantified the change in slope or height in relation to the cumulative harvest of both common 

carp and bigmouth buffalo.  

 To address our fourth objective, we used permutational multivariate analysis of variance 

(PERMANOVA, Anderson, 2017) to assess changes in community composition between years 

using taxa biomass. Zooplankton were grouped by season to reflect expected changes in 

community composition between spring to early summer and mid-summer to early fall (Sommer 

et al., 1986). The spring period was set as May and June and summer was set between July and 
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October following Evans et al., (2022). However, most sampling dates for zooplankton fell 

between late-May and early September. Zooplankton data were Hellinger-transformed to reduce 

the weight of rare taxa and PERMANOVAs were calculated using Bray-Curtis dissimilarity 

matrices (999 permutations) with year acting as a fixed categorical variable (Legendre and 

Legendre, 1998). Pairwise comparisons across years were only computed if the full 

PERMANOVA model was significant (p < 0.05) and the p-value was adjusted for multiple 

comparisons using a Bonferroni correction (Dunn, 1961). Seasonal analysis was not possible for 

macroinvertebrates as community composition data was only available for one sampling point 

for each lake and year. For visual display of zooplankton community composition, we separated 

taxa into eight taxonomic groups: Rotifera, nauplii, Calanoida, Cyclopoida, Chydorids, Bosmina, 

miscellaneous Cladocera, and Daphnia (Table S4). Similarly, we separated macroinvertebrates 

into ten taxonomic groups: Gammaridae, Megaloptera, Trichoptera, Ephemeroptera, 

Dreissendiae, Bivalvia, Gastropoda, worms, miscellaneous Diptera, and Chironomidae (Table 

S5). All analyses were conducted using the statistical software R (R Core Team, 2022) using the 

tidyverse (Wickham et al., 2019), vegan (Oksanen et al., 2022), MASS (Venables and Ripley, 

2002), EcolUtils (Salazar, 2023), emmeans (Lenth, 2023) and sizeSpectra (Edwards, 2022) 

packages.  
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RESULTS 

Size spectrum slope 

The zooplankton-macroinvertebrate size spectra consisted of 27 size bins (6.985 x 10-10 

to 0.094 g) although there was variation in which size bins were used depending on the lake and 

year (Table 2). For our statistical analysis of differences in size spectrum slope to assess 

interannual and inter-lake variability in species size structure, the most parsimonious model was 

as follows: log2[abundance] ~ log2[middle of dry weight bin] + lake + year + Dharvest2 + 

log2[middle of dry weight bin] * lake, where Dharvest2 was a dummy variable grouping lakes that 

had received 2 years of harvest or not (Table S6). The second most parsimonious model included 

an additional interaction term (log2[middle of dry weight bin] * year), and remaining models had 

a ΔAIC greater than two (Table S6). Given that two models had substantial evidence of being the 

most parsimonious, we chose to focus on the simplest model which also had the lowest AIC. The 

reduced model (Table 3) explained 63.44 % of variation in slope and indicated that there is a 

non-zero slope to the relationship between abundance and biomass (p < 0.001), significant 

variation in slope between lakes (F6,394 = 2.50, p = 0.022) along with a change in the 

relationships of abundance and biomass across lakes (F6,394 = 4.01, p = 0.001). However, there 

were not significant changes in slope between years (F2,394 = 2.15, p = 0.118) nor between lakes 

where harvest occurred for two years (F1,394 = 3.25, p = 0.072). A Tukey honest significant 

difference post-hoc test, holding the middle of the dry weight bin at the average across all lakes 

to account for the significant interaction (middle of dry weight bin = 2-19.7, mostly Chydorus and 

copepods), indicated there was only a significant difference in slope between Blue Lake and both 

Storm Lake (difference = -0.31 units, p = 0.001) and Center Lake (difference = -0.34 units, p = 

0.001) (Figure S4, Table S7).   
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Size spectra varied among years in the slope and intercept across all lakes, although there 

was less interannual variability in lakes where no harvest occurred (Figure 2). However, slopes 

for all lakes were shallower (i.e., closer to zero) than the theoretical value of -1.0 (Figure 3). 

Reference lakes had minimal interannual variability in slope though slopes in Storm Lake and 

South Twin Lake became slightly shallower over time (Figure 3A – C). Lakes that were 

harvested in 2018 and 2019 (prior to sampling that summer) had slopes closer to the theoretical 

value of -1.0 after 2019 (Figure 3D – E), whereas there was not a consistent pattern for lakes that 

underwent harvest prior to sampling in 2019 and 2020 (Figure 3F – G). Slopes for North Twin 

Lake became shallower following the first harvest event then steeper, towards -1.0, following the 

second harvest event (Figure 3F). Slopes for Silver Lake followed the opposite pattern becoming 

steeper following the first harvest events, and shallower following the second harvest events 

(Figure 3G). 

 

Size spectra height  

 Interannual and inter-lake variability in ecosystem productivity was not a significant 

interaction between lakes and years (F6,7 = 0.437, p = 0.834), thus we removed the interaction 

term from the full model. The reduced model (height ~ year + lake) was significant (F7,13 = 

10.81, p < 0.001) and explained 77.44% of variation in height across all study lakes and years 

(Table S8). Height significantly decreased over time across all lakes (-0.52 ± 0.13, change in 

height ± standard error, p = 0.002) and heights were significantly lower in Silver Lake (-1.1 ± 

0.46, difference in height ± standard error, p = 0.038) and significantly higher in South Twin 

Lake (1.3 ± 0.49, difference in height ± standard error, p = 0.017). There were different temporal 

patterns in lakes as well. Heights decreased from 2018 – 2020 in most study lakes apart from 



73 

 

 

North Twin Lake and South Twin Lake which had roughly similar height over the entire study 

period (Figure 4). Both lakes that underwent harvest prior to sampling in 2018 and 2019 (i.e., 

Center Lake, Five Island Lake) had decreased height in 2020, a year after the last harvest event 

occurred in these lakes (Figure 4D – E). Silver Lake, which underwent harvest prior to sampling 

in 2019 and 2020 followed the same pattern as Center Lake and Five Island Lake by decreasing 

in height in 2020 (Figure 4G).  

 

Changes in size spectra in relation to harvest intensity  

 Our analysis assessing whether changes in size spectra slope or height scaled with the 

intensity of common carp or bigmouth buffalo harvest revealed no significant relationship 

(Figure 5). The cumulative harvest of common carp did not significantly explain interannual 

changes in slope (F1,19 = 1.84, p = 0.191) nor height (F1,19 = 0.13, p = 0.723). The models 

explained only 19.13% of the variation in interannual slope change and only 0.45% of the 

variation in interannual height change. Similarly, the cumulative harvest of bigmouth buffalo did 

not significantly explain interannual changes in slope (F1,19 = 3.73, p =0.069) nor height (F1,19 = 

1.48, p = 0.239). The models for bigmouth buffalo cumulative harvest explained less variation in 

the interannual change in slope (6.86%) and slightly more in the interannual change in height 

(2.33%) compared to common carp cumulative harvest. However, in both models relating 

interannual changes in height to cumulative harvest, the intercept was significantly different than 

zero. Thus, with no cumulative harvest of common carp height decreased on average by -0.55 ± 

0.26 (mean ± standard error, p = 0.047). Similarly, with no cumulative harvest of bigmouth 

buffalo height decreased by -0.81 ± 0.25 (mean ± standard error, p = 0.004). Combining 

common carp and bigmouth buffalo harvest yielded similar results where the interannual change 
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in slope (F1,19 = 4.00, p = 0.060) and height (F1,19 = 1.20, p = 0.288) was not significantly 

explained by the cumulative harvest of both common carp and bigmouth buffalo together (Figure 

S5, Table S9). Again, the intercept of the model quantifying interannual change in height was 

significantly different from zero where the height decreased on average by -0.80 ± 0.25 (mean ± 

standard error, p = 0.005) with no harvest. The combined cumulative harvest model explained 

more of the variation in interannual change in slope (13.04%) and height (28.76%), but again, 

they were not significant relationships (Figure S5).  

 

Zooplankton and macroinvertebrate community composition 

 The spring (May – June) zooplankton community composition was significantly different 

among years in Storm Lake, South Twin Lake, and North Twin Lake (Table S10). The 

percentage of Daphnia and Ceriodaphnia biomass increased substantially between 2018 and 

2020, whereas the percentage of copepods and nauplii biomass decreased in Storm Lake (Figure 

S6). However, zooplankton biomass in Storm Lake was lower in 2020 in comparison to 2018 

(Figure 6). The percent composition of taxa in South Twin Lake varied substantially year to year 

(Figure S6, South Twin Lake), which corresponded to a drop in biomass and absence of 

Cladocera taxa in 2019 (Figure 6, Figure S6). Furthermore, there was a substantial increase in the 

percent biomass of Daphnia and Chydorus in North Twin Lake driven by a large increase in 

Cladocera taxa (Figure 6, Figure S6). Pairwise comparisons among years only found a 

significant difference between 2018 and 2020 in Storm Lake (F1,9 = 4.51, p = 0.042, Table S11).  

 Summer (July – October) zooplankton community composition was significantly 

different between years in almost all lakes apart from Storm Lake and Center Lake (Table S10). 

The percent biomass of copepods and nauplii increased over time in both Blue and South Twin 
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Lake (Figure S7), though dynamics in biomass diverged. Zooplankton biomass in Blue Lake 

decreased then increased from 2018 – 2020 whereas biomass in South Twin Lake steadily 

decreased over time (Figure 7). The percent biomass of cyclopoids and copepods in Five Island 

Lake substantially increased in 2019, driven by an increase in copepod biomass, before returning 

to resemble the zooplankton community composition of 2018 (Figure 7, Figure S7). North Twin 

Lake and Silver Lake had divergent changes in zooplankton community composition where the 

percent biomass of Daphnia, Bosmina, and Chydorus increased in North Twin Lake over time 

with the opposite occurring in Silver Lake where the percent biomass of calanoids substantially 

increased (Figure S7). Additionally, interannual variability of zooplankton biomass was low in 

Silver Lake, yet zooplankton biomass in North Twin Lake quadrupled (4.4x) from 2018 to 2020 

driven by an increase in cladocerans such as Bosmina, Chydorus, and Daphnia (Figure 7). 

However, pairwise comparisons between years only found a significant difference between 2018 

and 2019 for North Twin Lake (F1,7 = 7.82, p = 0.048, Table S11).  

 The percent biomass composition for macroinvertebrate communities did not vary much 

across lakes with all lakes largely dominated by Oligochaeta and Hirudinea taxa followed by 

Chironomidae and Gastropoda (Figure S8). There are some exceptions including increased 

percent composition of Ephemeroptera, Trichoptera, and Megaloptera in Five Island, North 

Twin, and Silver Lake (Figure S8). Notably, in Storm Lake 2020, the macroinvertebrate 

community was overwhelmingly dominated by Dreissenidae which drove a substantial increase 

in biomass (Figure 8). Macroinvertebrate biomass generally decreased over the course of the 

study period, apart from Storm Lake. However, the magnitude of biomass varied substantially 

between lakes as the maximum biomass, excluding Storm Lake 2020, ranged between 260.52 – 

5534.69 mg m-2 (Figure 8).  
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DISCUSSION  

An incentivized harvest program of common carp (Cyprinus carpio) and bigmouth 

buffalo (Ictiobus cyprinellus) removal over three years (2018 – 2020) in a set of shallow, 

eutrophic-hypereutrophic lakes did not result in clear and substantial improvement to water 

quality (Simonson et al., 2022). Therefore, we sought to assess whether the incentivized harvest 

biomanipulation successfully changed food web structure as intended. Using size spectra 

analysis, we did not find strong evidence that the incentivized harvest led to significant changes 

in food web structure, potentially explaining the lack of water quality response to the 

biomanipulation. However, the interannual variability in slope was low in the reference lakes 

compared to the harvested lakes, indicating that the analysis method was sensitive to changes 

other than year-to-year variability.  

 Shifting size spectra slopes are associated with changes in species size structure, with 

shallower slopes representing a greater abundance of larger individuals and stronger top-down 

control (Barth et al., 2019; Mehner et al., 2018). If the incentivized harvest successfully shifted 

species size structure to larger zooplankton and benthic macroinvertebrates, slopes would have 

become ‘shallower’ over time and less negative than the theoretical slope of -1 (Mehner et al., 

2018; Sprules and Barth, 2016). A shallower slope would be driven by larger size classes 

becoming more abundant within the lower food web reflecting less top-down control on 

zooplankton and macroinvertebrates and stronger top-down control on phytoplankton (Ye et al., 

2013). Contrary to this expectation, size spectra slopes became steeper, not shallower (i.e., closer 

to zero), with increasing harvest pressure (Figure 3), but the relationship was not significant 

among lakes. In the reference lakes, the slopes were relatively invariant whereas the harvested 

lakes were substantially more dynamic among years indicating the size spectra were sensitive to 
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the management intervention. Additionally, all size spectra slopes were relatively shallow 

compared to the theoretical estimate of -1.0 which aligns with other studies that found size 

spectra become shallower with greater nutrient enrichment (Ahrens and Peters, 1991; Sprules 

and Munawar, 1986) and the inclusion of benthic taxa (Evans et al., 2022).  

 

Influence of incentivized harvest on species size structure and productivity 

  In the two lakes that were harvested before summer sampling in 2018 and 2019, Center 

and Five Island Lakes, size spectra slopes were shallow in the two seasons immediately 

following harvest (i.e., 2018, 2019), but became steeper the following year (i.e., 2020). 

Bigmouth buffalo harvest in Center Lake was high in 2018 (222 kg ha-1) and in Five Island Lake 

in 2019 (185 kg ha-1), potentially causing flatter slopes with less predation pressure on large-

bodied zooplankton (Wilkinson et al., 2022). However, both lake’s size spectra slopes became 

steeper only a year after incentivized harvest ceased suggesting that any positive change in 

species size structure (e.g., shallower slopes) may have been ephemeral, as has been documented 

in other lakes (Barth et al. 2019). Fish compensatory responses (e.g., higher recruitment, faster 

growth rates) spurred by the harvest may have driven the steeper slopes observed in 2020. 

Common carp exploitation ranged from 7 – 26 % in Center and Five Island Lake, which is within 

range of other lakes where compensatory responses to harvest has been previously documented 

(Weber et al. 2016). Further, commercial harvest was largely targeting large, adult fish reducing 

the ability of harvest to control populations (Simonson et al., 2022), particularly for common 

carp which require intensive harvest to be controlled (Colvin et al., 2012). Compensatory 

responses in fish populations may result in stable, or even increased, population density despite 

active or recent harvest (De Roos et al., 2007; Zipkin et al., 2009). A strong recruitment class of 
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common carp and bigmouth buffalo, or other compensatory dynamics in 2020, may have 

generated steeper slopes due to increased top-down control on zooplankton from juvenile fish or 

higher consumption from fast-growing adults (Weber et al. 2016). Evidence of compensatory 

dynamics in the harvested lakes is supported by the decrease in macroinvertebrate biomass over 

time in Center and Five Island Lake (Figure S8), as macroinvertebrates are prey items for 

juvenile common carp (Rahman et al., 2009). However, changes in relative abundance of 

common carp and bigmouth buffalo did not show clear evidence of compensatory dynamics in 

our study lakes (Simonson et al., 2022).  

 The interannual pattern in spectra slope was not consistent between the two lakes that 

were harvested before sampling in 2019 and 2020, North Twin and Silver Lakes. In North Twin 

Lake, the size spectra became shallower in 2019 and steeper in 2020 following two years of 

substantial bigmouth buffalo exploitation. During this time, zooplankton biomass steadily 

increased (Figure S7) and the community significantly shifted to dominance by Cladocera. 

Macroinvertebrate abundance and size declined dramatically in 2020 while the abundance of 

small-bodied Cladocera increased, leading to the steeper slope. Exploitation estimates for carp 

were relatively high in North Twin Lake (39% in 2018, 112% in 2020), suggesting compensatory 

dynamics could have strongly affected macroinvertebrate biomass leading to a steeper slope. 

This implies incentivized harvest shifted species size structure to a greater abundance of smaller 

individuals despite a second year of high bigmouth buffalo harvest in 2020 (276 kg ha-1). 

However, the 95 % confidence intervals for slope in North Twin Lake were quite wide in 2020, 

so it is difficult to say whether the slope became steeper, or if the change was more reflective of 

poorer confidence in the estimate of the size spectrum slope.   
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In Silver Lake, the slope became steeper following the first harvest events in 2019 and 

remained steep in 2020, in comparison to pre-harvest conditions in 2018. This may have been 

driven by a decrease in macroinvertebrate biomass, akin to North Twin Lake, and a greater 

proportion of gastropods, olichochaetes, and hirudinea in Silver Lake in 2019 and 2020. The 

largest removal of carp biomass came from Silver Lake in 2020 with exploitation estimates 

ranging between 8 – 108 % (Simonson et al. 2022a). Despite the uncertainty in the exploitation 

estimate, there may have been compensatory responses to harvest from common carp that 

resulted in a steady decrease in macroinvertebrate biomass from 2018 – 2020 as juvenile carp 

feed on benthic macroinvertebrates and affect their community composition (Miller and Crow, 

2006; Miller and Provenza, 2007; Zambrano and Hinojosa, 1999). Although changes in size 

spectra slopes were neither significantly different across years nor between lakes, it is difficult to 

assess longer-term oscillatory dynamics over only three years of data (Wilkinson et al., 2020), 

particularly with limited pre- and post-incentivized harvest data. Still, incentivized harvest was 

likely having some short-term effect on species size structure as evidenced by the greater 

interannual changes in slope in lakes that underwent incentivized harvest in comparison to our 

reference ecosystems. 

The multivariable regression analysis revealed a significant interaction between the 

middle of the dry weight size bin and lake identity, specifically between Blue Lake and both 

Center and Storm Lake. This was likely driven by larger zooplankton and smaller 

macroinvertebrate body sizes in Blue Lake relative to the other lakes. Blue Lake is an oxbow 

with an extremely low bigmouth buffalo population (Simonson et al. 2022) which may have 

contributed to a larger-bodied zooplankton community. Additionally, differences in hydrologic 

connectivity in oxbow lakes compared to glacial kettle lakes can affect macroinvertebrate 
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community structure and biomass potentially resulting in the higher macroinvertebrate body 

sizes observed (Gallardo et al. 2008, Obolewski et al. 2009, 2015) despite community 

composition being similar to the other lakes.  In Storm Lake, invasive zebra mussel (Dreissena 

polymorpha) populations boomed in 2020 which could have significantly altered zooplankton 

community structure (Strayer, 2009). Zebra mussels were first noted in 2018, which could 

account for the slight decrease in both slope and height in this reference lake over the course of 

the study (Mellina and Rasmussen 1994). 

 Like the spectra slope results, we did not observe an effect of incentivized harvest on 

ecosystem productivity estimated from size spectra height. Ecosystem productivity (i.e., height) 

decreased over time in all the study lakes, including our reference ecosystems. The pattern in 

height likely reflected broader regional drivers in lake productivity such as interannual climate 

differences and not the incentivized harvest (Guiet et al., 2016; Rossberg, Gaedke & Kratina, 

2019). Among lakes, the patterns in size spectra height as a proxy for productivity align with 

chlorophyll concentrations, a proxy for algal biomass. The greatest height values were in South 

Twin Lake which had consistently high chlorophyll-a concentrations, and the smallest height 

values in Silver Lake which had comparatively lower chlorophyll-a concentrations (Albright et 

al., 2022; Figure S1). Chlorophyll-a concentrations are correlated with phosphorus enrichment 

(Quinlan et al., 2021), which in turn influences zooplankton size and abundance (Hessen et al., 

2006; Moody et al., 2022; Moody and Wilkinson, 2019).  

 Harvest intensity, defined as the cumulative biomass of fish removed from a lake among 

years, similarly, did not have a significant effect on species size structure or productivity based 

on the change in size spectra slope and height over time. Our linear regression analysis indicated 

that greater bigmouth buffalo harvest may result in steeper slopes, but the trend was non-
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significant and explained less than 20% of the variation in interannual change in slope. There are 

some limitations that may have reduced our ability to detect changes in size spectra slope and 

height over the course of the study. Including both spring and summer zooplankton data in our 

size spectra analyses was done to align with our single estimate of macroinvertebrate community 

composition and biomass, though we may have obscured important seasonal patterns. Size 

spectra slopes using zooplankton data in the spring tend to be steeper than summer zooplankton 

data, and thus our estimates of slope may have been steeper (Barth et al., 2019). However, 

removing spring zooplankton data did not qualitatively change our interpretation of the size 

spectra (Figure S9). Further, greater temporal resolution before and after incentivized harvest 

likely would have allowed us to detect short-term trends in species size structure and 

productivity following the incentivized harvest. (Barth et al. 2019). We observed changes in size 

spectra only a year after incentivized harvest concluded, suggesting we were able to capture 

short-term interannual dynamics but did not capture changes on a shorter timescale. 

 

Are size spectra a useful tool for assessing biomanipulations in lakes?  

 While there were differences in the temporal pattern of size spectra slope in harvested 

lakes not observed in the reference lakes, there were not significant differences between lakes 

nor across years. This potentially explains the lack of water quality response despite substantial 

removals of common carp and bigmouth buffalo biomass in some lakes and years (Simonson et 

al., 2022). Using size spectra analysis, we demonstrated that the incentivized harvest program 

likely did not substantially affect food web structure enough to overcome external drivers of 

water quality. Size spectra analyses have been used to assess changes in fishing pressure 

(Robinson et al., 2017; Shin and Cury, 2004) as well as detect changes from species invasion 
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(Barth et al., 2019; Evans et al., 2022); here we provide evidence it may be used as a tool to 

assess food web biomanipulation. Though we did not detect significant changes in size spectra 

slope or height in response to management interventions, the size spectra slopes appeared 

sensitive to incentivized harvest as they had far greater interannual variability in comparison to 

the relatively invariant reference size spectra slopes. Further, our study provided additional 

reference for the slope and height of size spectra in shallow, productive aquatic ecosystems. Size 

spectra slopes were shallower than those reported in temperate, oligotrophic lakes (Barth et al., 

2019) as well as shallower than other lakes where benthic macroinvertebrate data were included 

in size spectra analyses (Evans et al., 2022). This diversity of spectra demonstrates the 

importance of applying size spectra analyses in a wide range of ecosystem types and trophic 

levels to develop baselines for monitoring food web perturbations. This is particularly important 

as size spectra have not been applied as often in shallow, productive ecosystems, and the 

inclusion of benthic data in size spectra analyses is rare for both freshwater and marine 

ecosystems (Boudreau and Dickie, 1992; Evans et al., 2022; Mehner et al., 2018). 

 In summary, the inconsistent responses of size spectra to incentivized harvest suggests 

that biomanipulation may require sustained and intense harvest pressure to appreciably alter food 

web structure. The inconsistency of harvest pressure across lakes and years in our study likely 

hindered significant, lasting changes to food web structure. Nonetheless, biomanipulation is a 

common management strategy to address eutrophication in productive ecosystems even with its 

varying success (Jeppesen et al., 2012; Søndergaard et al., 2017). In our study, the inclusion of 

bigmouth buffalo in commercial contracts was done for economic (Simonson et al., 2022) and 

ecological reasons (Wilkinson et al., 2022). Though often categorized with the negative label 

‘rough fish’, buffalo are endemic to the region (Johnson, 1963) and have cultural and economic 



83 

 

 

ties to anglers and commercial fisheries (Lackmann et al., 2019). Despite this, bigmouth buffalo 

harvest is largely unregulated which has contributed to overharvest and population declines in 

North America potentially exacerbated by infrequent spawning (Bennett and Kozak, 2016; 

Lackmann et al., 2023, 2021). In our study, substantial removal of bigmouth buffalo was not 

enough to improve water quality nor significantly affect food web structure. Thus, including 

bigmouth buffalo in further harvest programs will likely be unsuccessful and potentially 

contribute to the decline of a native and culturally important taxa (Lackmann et al., 2019). 

Ultimately, we found that size spectra analyses were able to provide complementary evidence 

that biomanipulation in our study lakes was not successful in overcoming external drivers and 

significantly affecting food web structure. Thus, management interventions should focus on 

improving watershed practices and reducing internal drivers of high nutrient concentrations 

(Albright et al., 2022; Albright and Wilkinson, 2022). 
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TABLES  

Table 1. Lake name, coordinates, mean depth (Zmean), max depth (Zmax), trophic state (calculated 

from 19-year mean of chlorophyll-a during ice-off period (2000 – 2018). Trophic state is 

classified as either hypereutrophic (H) or eutrophic (E) as no study lakes were classified as 

mesotrophic or oligotrophic.  

Lake  Blue Storm South 

Twin 

Center Five 

Island 

North 

Twin 

Silver 

Latitude 42.0334 42.6198 42.4585 43.4126 43.1545 42.4756 43.4415 

Longitude -96.1610 -95.1857 -94.6536 -95.1357 -94.648 -94.6405 -95.3353 

Zmax (m) 3.5 6.2 1.6 5.5 8 3.7 3 

Zmean (m)  1.7 2.6 1.1 3.7 1.7 2.7 2 

Trophic state H E H E E E E 

 

Table 2. Minimum and maximum of the log2(dry mass) size bin (g) for each lake and year.  

 Minimum dry weight bin Maximum dry weight bin 

Lake 2018 2019 2020 2018 2019 2020 

Blue 2-29 2-29 2-28 2-6 2-7 2-7 

Storm 2-29 2-30 2-29 2-5 2-6 2-3 

South Twin 2-29 2-29 2-27 2-9 2-9 2-9 

Center 2-30 2-29 2-29 2-6 2-6 2-8 

Five Island 2-29 2-29 2-28 2-6 2-11 2-6 

North Twin 2-30 2-29 2-29 2-8 2-7 2-10 

Silver 2-29 2-23 2-28 2-6 2-5 2-5 

 

Table 3. Summary statistics of the most parsimonious multivariable regression model where 

Log2[MBdw] is the midpoint of a log2[dry mass] size bin in grams (g).  

Variable df SS MSE F value p-value 

Log2[MBdw] 1 4643 4643 680.81 <0.001 

Lake 6 102 17 2.50 0.022 

Year 2 29 15 2.15 0.118 

Dharvest2 1 22 22 3.25 0.072 

Log2[MBdw]*Lake 6 164 27 4.01 0.001 

Residuals 394 2687 7   
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Table 4. Model information slope and height v. cumulative harvest of common carp and 

bigmouth buffalo  

Model Coefficients Estimate Standard Error T-value p-value 

Slope ~ Carp Harvest 

Intercept -0.019 0.044 -0.438 0.666 

Harvest -0.002 0.001 -1.355 0.191 

F1, 19 = 1.836, Adjusted R2 = 19.13 % 

Slope ~ Buffalo Harvest 

Intercept -0.008 0.041 -0.185 0.855 

Harvest -0.000 0.000 -1.930 0.069 

F1, 19 = 3.726, Adjusted R2 = 6.86 % 

Height ~ Carp Harvest 

Intercept -0.551 0.259 -2.128 0.047 

Harvest -0.003 0.008 -0.360 0.723 

F1, 19 = 0.130, Adjusted R2 = 0.45% 

Height ~ Buffalo Harvest 

Intercept -0.805 0.245 -3.288 0.004 

Harvest 0.001 0.001 1.215 0.239 

F1, 19 = 1.477, Adjusted R2 = 2.33% 
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FIGURES  

 

Figure 1. Removal, in kilograms per hectare (kg/ha), of common carp (Cyprinus carpio) and 

bigmouth buffalo (Ictiobus cyprinellus) in seven lakes in northwestern Iowa, USA. Circles 

represent fish biomass removed during commercial harvest, and gray bars represent when 

sampling took place the following summer. 
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Figure 2. Zooplankton and benthic macroinvertebrate size spectra plots with slope. Color denotes the pattern of incentivized harvest 

with purple indicating no harvest occurred, green that harvest occurred in 2018 and 2019, and blue that harvest occurred in 2019 and 

2020. Open circles denote data that was dropped due to high leverage within the ordinary least squares regression analysis.  
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Figure 3. Slopes of each fit for the zooplankton and benthic macroinvertebrate size spectra (error 

bars 95% confidence intervals). Vertical lines denote when fish were harvested prior to the 

summer sampling season. Color denotes the pattern of incentivized harvest with purple 

indicating no harvest occurred (A – C), green that harvest occurred in 2018 and 2019 before 

sampling (D – E), and blue that harvest occurred in 2019 and 2020 before sampling (F – G). 
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Figure 4. Height of each fit for the zooplankton and benthic macroinvertebrate size spectra (error 

bars 95% confidence intervals). Vertical lines denote when fish were harvested prior to the 

summer sampling season. Color denotes the pattern of incentivized harvest with purple 

indicating no harvest occurred (A – C), green that harvest occurred in 2018 and 2019 before 

sampling (D – E), and blue that harvest occurred in 2019 and 2020 before sampling (F – G). 
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Figure 5. Simple linear regressions of the interannual change in zooplankton and benthic 

macroinvertebrate size spectrum slope (A – B) and height (C – D) by cumulative harvest of 

common carp (left column) and bigmouth buffalo (right column). Cumulative harvest represents 

the sum of fish harvest that occurred within a lake over the three-year study period.  
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Figure 6. Spring (May – June) zooplankton community biomass (ug L-1) 
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Figure 7. Summer (July – October) zooplankton community biomass (ug L-1) 

  



100 

 

 

 

 

Figure 8. Macroinvertebrate (MIV) community biomass (mg m-2) (note the different y-axes)  
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SUPPLEMENTARY INFORMATION FOR CHAPTER 2  

SUPPLEMENTAL METHODS  

Macroinvertebrate measurements  

Oligochaeta were measured from their prostomium to their pygidium, Insecta were 

measured from the anterior part of their head capsule to the posterior part of their last abdominal 

segment, Bivalvia were measured as the longest lateral distance across their shell, and 

Gastropoda were measured as the lateral distance across the aperture from anterior to posterior.  
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SUPPLEMENTAL TABLES  

Table S1. Exploitation estimates for Carp and Buffalo. Percent exploitation of the Schnabel 

estimate of biomass (95% Confidence Interval). If a value is above 100% it means the biomass 

estimate was lower than the actual population present within a lake. If no harvest occurred, it is 

denoted as --.  

 Common Carp (Cyprinus carpio) Bigmouth Buffalo (Ictiobus cyprinellus) 

Lake 2018 2019 2020 2018 2019 2020 

Center 
13 % 

(8–190) 

26 % 

(13–1733) 
-- 

273 % 

(174–3544) 

90 % 

(25 – 12336) 
-- 

Five 

Island 

7 % 

(5–67) 

15 % 

(10–247) 
-- 

84 % 

(43–8849) 

1906 % 

(277–333969) 
-- 

North 

Twin 
-- 

39 % 

(25–713) 

112 % 

(16–14562) 
-- 

77 % 

(39–23180) 

861 % 

(240–125057) 

Silver -- 
8 % 

(5–196) 

108 % 

(81–2106) 
-- 

206 %  

(30–66276) 

549 %  

(315–21592) 

 

Table S2. Range of depths for macroinvertebrate samples for each study lake. All depth values 

are in meters.  

Site Depth Range Littoral Sites Profundal Sites 

Blue Lake 1.5 – 3.5 5 5 

Storm Lake 2.3 – 4.6 7 3 

South Twin 0.7 – 1.6 2 8 

Center Lake 2.8 – 4.5 3 7 

Five Island Lake 1.1 – 6.3 3 7 

Silver Lake 1.7 – 2.5 4 6 

North Twin 1.8 – 3.5 1 9 
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Table S3. Length-dry mass regressions used to calculate macroinvertebrate biomass.  

Group Taxon Citation 

Bivalvia   

 Corbiculidae Benke et al., 1999 

 Bivalvia Benke et al., 1999 

 Sphaeriidae Benke et al., 1999 

 Unionidae Benke et al., 1999 

Chironomidae   

 Chironomidae Benke et al., 1999 

Dreissenidae   

 Dreissenidae Baumgärtner & Rothhaupt, 2003 

Ephemeroptera   

 Ephemeroptera Benke et al., 1999 

 Ephemeridae Benke et al., 1999 

Gammaridae   

 Gammaridae Benke et al., 1999 

Gastropoda   

 Physidae Cummins et al., 2022 

 Planorbidae Méthot et al., 2012 

Megaloptera   

 Sialidae Benke et al., 1999 

Miscellaneous Diptera   

 Diptera Benke et al., 1999 

 Ceratopogonidae Benke et al., 1999 

 Simuliidae Benke et al., 1999 

 Ephydridae Benke et al., 1999 

Trichoptera   

 Trichoptera Benke et al., 1999 

 Molannidae Benke et al., 1999 

 Hydropsychidae Benke et al., 1999 

Worms   

 Hirudinea Edwards et al., 2009 

 Oligochaeta Stoffels, Karbe & Paterson, 2003 
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Table S4. Zooplankton genera, order, or class identified within at least one of the seven study 

lakes from May – October (2018 - 2020).  

Taxonomic Group Taxa identified in study lakes 

included in group 

Rotifera Asplanchna 

 Keratella cochlearis 

 Keratella quadrata 

 Polyarthra 

 Anuraeopsis 

 Ascomorpha 

 Asplanchnopus 

 Brachionus 

 Conochilus 

 Filinia 

 Gastroopus 

 Kellicottia 

 Lecane 

 Notholca 

 Pompholyx 

 Synchaeta 

 Trichocerca 

Nauplii Nauplii 

Calanoid Calanoida 

Cyclopoid Cyclopoida 

Chydorids Chydorus 

 Alona 

 Alonella 

Bosmina Bosmina 

Miscellaneous cladocerans  Diaphanasoma 

 Leptodora 

 Simocephalus 

Daphnia Daphnia  

 Ceriodaphnia 

 

  



105 

 

 

 

Table S5. Macroinvertebrate family, order, or class identified within at least one of the seven 

study lakes (2018 – 2020).  

Taxonomic Group 
Taxa identified in study lakes 

included in group 

Bivalvia Corbiculidae 

 Bivalvia 

 Sphaeriidae 

 Unionidae 

Chironomidae Chironomidae 

Dreissenidae Dreissenidae 

Ephemeroptera Ephemeroptera 

 Ephemeridae 

Gammaridae Gammaridae 

Gastropoda Physidae 

 Planorbidae 

Megaloptera Sialidae 

Miscellaneous Diptera Diptera 

 Ceratopogonidae 

 Simuliidae 

 Ephydridae 

Trichoptera Trichoptera 

 Molannidae 

 Hydropsychidae 

Worms Hirudinea 

 Oligochaeta 

  

 

Table S6. AIC; forward and backward stepwise; A = abundance; MBdw = Middle bin of dry 

weight bin (g); BASE = log2[A]~log2[MBdw]; Dref; = no harvest occurred.  

Model AIC ΔAIC 

BASE + lake + year + Dharvest2 + log2[MBdw]*lake 805.74 -- 

BASE + lake + year + Dharvest2 + log2[MBdw]*lake + 

log2[MBdw]*year 
806.08 0.34 

BASE + lake + year + log2[MBdw]*lake + log2[MBdw]*year 807.78 2.04 

BASE + lake + year + log2[MBdw]*lake + log2[MBdw]*year + 

lake*year  
822.62 16.88 

BASE + lake + year + log2[MBdw]*lake + log2[MBdw]*year + 

lake*year + log2[MBdw]*lake*year 
831.17 25.43 
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Table S7. Tukey post-hoc comparisons of log2[MBdw] x lake interaction sorted by p-value (bold 

if significant. 

Middle of dry 

weight bin  
2-19.7      

Log2[MBdw] trend 

& Lake 1 

Log2[MBdw] trend 

& Lake 2 
Estimate SE df T-ratio p-value 

Log2[MBdw]*Blue Log2[MBdw]*Center -0.34 0.08 394 -4.21 <0.001 

Log2[MBdw]*Blue Log2[MBdw]*Storm -0.31 0.07 394 -4.19 <0.001 

Log2[MBdw]*Blue 
Log2[MBdw]* 

Five Island -0.22 0.08 394 -2.78 0.082 

Log2[MBdw]*Blue Log2[MBdw]*Silver -0.20 0.08 394 -2.51 0.159 

Log2[MBdw]*Blue 
Log2[MBdw]* 

North Twin -0.21 0.08 394 -2.44 0.183 

Log2[MBdw]*Center 
Log2[MBdw]* 

South Twin 0.20 0.09 394 2.13 0.335 

Log2[MBdw]* 

South Twin 
Log2[MBdw]*Storm 

-0.16 0.09 394 -1.92 0.469 

Log2[MBdw]*Center Log2[MBdw]*Silver 0.14 0.08 394 1.83 0.528 

Log2[MBdw]*Center 
Log2[MBdw]* 

Five Island 0.13 0.08 394 1.64 0.654 

Log2[MBdw]*Center 
Log2[MBdw]* 

North Twin 0.14 0.08 394 1.62 0.670 

Log2[MBdw]*Silver Log2[MBdw]*Storm -0.11 0.07 394 -1.58 0.696 

Log2[MBdw]*Blue 
Log2[MBdw]* 

South Twin -0.15 0.09 394 -1.57 0.703 

Log2[MBdw]* 

Five Island 
Log2[MBdw]*Storm 

-0.09 0.07 394 -1.37 0.819 

Log2[MBdw]* 

North Twin 
Log2[MBdw]*Storm 

-0.10 0.08 394 -1.35 0.827 

Log2[MBdw]* 

Five Island 

Log2[MBdw]* 

South Twin 0.07 0.09 394 0.79 0.986 

Log2[MBdw]* 

North Twin 

Log2[MBdw]* 

South Twin 0.06 0.09 394 0.64 0.995 

Log2[MBdw]*Silver 
Log2[MBdw]* 

South Twin 0.05 0.09 394 0.59 0.997 

Log2[MBdw]*Center Log2[MBdw]*Storm 0.03 0.07 394 0.44 0.999 

Log2[MBdw]* 

Five Island 
Log2[MBdw]*Silver 

0.02 0.07 394 0.23 1.000 

Log2[MBdw]* 

Five Island 

Log2[MBdw]* 

North Twin 0.01 0.08 394 0.12 1.000 

Log2[MBdw]* 

North Twin 
Log2[MBdw]*Silver 

0.01 0.08 394 0.10 1.000 
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Table S8. Model information for weighted regression of height by lake and year  

 

 

 

 

 

 

 

 

 

 

 

Table S9. Model information for slope and height v. total cumulative harvest  

Model Coefficients Estimate Standard Error T-value p-value 

Slope ~ Total Harvest  

Intercept -0.002 0.042 -0.060 0.953 

Harvest -0.000 0.000 -2.000 0.060 

F1, 19 = 3.998, Adjusted R2 = 13.04 % 

Height ~ Total Harvest 

Intercept -0.799 0.254 -3.150 0.005 

Harvest -0.001 0.001 -1.094 0.288 

F1, 19 = 1.197, Adjusted R2 = 28.76 % 

 

 

  

Coefficients Estimate SE t-value p-value 

Intercept 1067.74 271.07 3.94 0.002 

Year -0.52 0.13 -3.89 0.002 

Center Lake 0.28 0.48 0.59 0.563 

Five Island Lake -0.23 0.45 -0.52 0.613 

North Twin Lake 0.92 0.52 1.78 0.098 

Silver Lake -1.06 0.46 -2.31 0.038 

South Twin Lake 1.32 0.49 2.72 0.017 

Storm Lake -0.81 0.42 -1.94 0.075 
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Table S10. Summary statistics for the permutational analysis of variance of spring (May – June) 

and summer (July – October) zooplankton communities with 999 permutations.  

Lake Factor df SS R2 Pseudo F p-value 

Spring Community       

Storm Year 2 0.29 0.35 2.91 0.013 

 Residual 11 0.54 0.65   

 Total 13 0.82 1   

South Twin Year 2 0.53 0.66 4.76 0.011 

 Residual 5 0.28 0.34   

 Total 7 0.81 1   

Center Year 2 0.07 0.09 0.40 0.909 

 Residual 8 0.69 0.91   

 Total 10 0.76 1   

Five Island Year 2 0.20 0.20 0.98 0.471 

 Residual 8 0.81 0.80   

 Total 10 1.00 1   

North Twin Year 2 0.84 0.61 6.93 0.004 

 Residual 9 0.54 0.39   

 Total 11 1.38 1   

Silver Year 2 0.06 0.15 0.70 0.688 

 Residual 8 0.35 0.85   

 Total 10 0.42 1   

Summer Community      

Blue Year 2 0.19 0.46 2.11 0.021 

 Residual 5 0.22 0.54   

 Total 7 0.41 1   

Storm Year 2 0.16 0.18 0.87 0.564 

 Residual 8 0.73 0.82   

 Total 10 0.89 1   

South Twin Year 2 0.49 0.70 4.78 0.018 

 Residual 4 0.20 0.30   

 Total 6 0.69 1   

Center Year 2 0.18 0.24 1.42 0.229 

 Residual 9 0.58 0.76   

 Total 11 0.76 1   

Five Island Year 2 0.20 0.31 2.43 0.027 

 Residual 11 0.45 0.69   

 Total 13 0.64 1   

North Twin Year 2 1.01 0.65 6.50 0.001 

 Residual 7 0.54 0.35   

 Total 9 1.55 1   

Silver Year 2 0.30 0.35 2.98 0.045 

 Residual 11 0.55 0.65   

 Total 13 0.84 1   
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SUPPLEMENTAL FIGURES  

 

Figure S1. Chlorophyll-a concentration in micrograms per liter (µg L-1) for each study lake from 

published data in Albright et al. (2022). Vertical lines denote when fish were harvested prior to 

the summer sampling season.   
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Figure S2. Secchi depth in meters (m) for each study lake derived from published data in 

Albright et al. (2022). Vertical lines denote when fish were harvested prior to the summer 

sampling season. 
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Figure S3. Height and slope independent measures.   
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Figure S4. Difference in slope by lake visualizing the significant interaction between lake and 

the log2[middle of dry weight bin]. Center and Storm Lake slopes (blue) are significantly 

different from Blue lake (black). All other lakes did not have significant interactions (gray).   
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Figure S5. Change in slope (A) and height (B) for each lake and year in relation to the 

cumulative harvest of both common carp and bigmouth buffalo.  

  



114 

 

 

 

 

Figure S6. Zooplankton (ZP) biomass in micrograms per liter (µg L-1) expressed as a percentage 

(%) of the total community biomass for all lakes and years for sampling dates between July and 

October 2018 - 2020. Samples were not collected prior to July in Blue Lake in 2020 due to 

COVID-19 pandemic sampling restrictions; thus, there are no data available for that lake year.  
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Figure S7. Zooplankton (ZP) biomass in micrograms per liter (µg L-1) expressed as a percentage 

(%) of the total community biomass for all lakes and years for sampling dates between May and 

June.  
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Figure S8. Macroinvertebrate (MIV) biomass in milligrams per square meter (mg m-2) expressed 

as a percentage (%) of the total community biomass for all lakes and years.  
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Figure S9. Abundance size spectra plots with slope with spring zooplankton data removed. Color denotes the pattern of incentivized 

harvest with purple indicating no harvest occurred, green that harvest occurred in 2018 and 2019, and blue that harvest occurred in 

2019 and 2020. Open circles denote data that was dropped due to high leverage within the ordinary least squares regression analysis. 
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CHAPTER 3 

 

BENTHIC-PELAGIC COUPLING IN AQUATIC FOOD WEBS AFFECTS THE 

RESISTANCE AND RESILIENCE OF EXPERIMENTAL POND ECOSYSTEMS TO 

NUTRIENT PULSE DISTURBANCES  

 

In preparation for submission with coauthors R.A. Johnson, M.J. Weber, and G.M. Wilkinson to 

Ecology   

Author Contributions: Butts designed the study; performed all field and laboratory work; 

cleaned, analyzed, and visualized the data; and wrote the manuscript. Johnson and Wilkinson 

contributed to study design, data analysis, and data collection. Weber contributed to study design 

and data collection; and Johnson, Weber, and Wilkinson provided writing feedback.  

 

ABSTRACT  

The frequency and intensity of ecosystem disturbances is increasing due to climate 

change. However, the structure of trophic interactions within food webs may mediate the 

resistance and resilience of ecosystems to disturbance events. In aquatic ecosystems, high 

connectivity between benthic and pelagic food chains (i.e., benthic-pelagic coupling) is theorized 

to generate more pathways for nutrients and energy to flow as well as strengthen top-down 

control. As such, we predicted that greater benthic-pelagic coupling would increase the resistance 

(longer response time) and resilience (shorter recovery time) of aquatic primary production to 

pulse disturbances and reduce the chance of a critical transition. To test this prediction, we 

simulated two storm-induced pulse disturbances by adding N and P (~3% and ~5% increase in 

ambient concentrations) to three experimental ponds with food webs containing low, 

intermediate, and high benthic-pelagic coupling. Another set of ponds with matching food web 

structures served as reference ecosystems. We evaluated the primary production response time 
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(resistance) and recovery time (resilience) following each nutrient pulse using a response 

detection algorithm and quantified the occurrence of a critical transition in algal biomass. The 

high coupling pond never exceeded the response threshold. Following our prediction, 

chlorophyll concentrations exceeded the response threshold after 23 and 18 days in the 

intermediate and low coupling ponds, respectively. There was also evidence of a critical 

transition in the low coupling pond following the first pulse. After the second nutrient pulse, 

chlorophyll exceeded the response threshold again in both low and intermediate ponds, but the 

response was much faster in the low coupling pond (8 days). Recovery time increased 

substantially after the second pulse. In the low coupling pond recovery following the second 

pulse increased from 8 to 22 days and did not occur following the second pulse in the 

intermediate pond. Together, these results support our prediction that greater benthic-pelagic 

coupling confers greater resistance and resilience to repeated pulses of nutrient loading, 

demonstrating that the degree of connectivity can mediate the response to disturbance.  

 

INTRODUCTION  

The frequency, scale, and intensity of ecosystem disturbances are increasing as 

accelerating climate change drives more frequent and intense temperature extremes and 

precipitation events (Seneviratne et al. 2021). Changes to disturbance regimes driven by climate 

change are also increasing the likelihood of abrupt changes, or rapid shifts in ecosystem state 

relative to typical rates of change within the ecosystem (Ratajczak et al. 2018, Turner et al. 

2020). For example, extreme heat waves have been linked to mass bleaching events in coral reefs 

(Hughes et al. 2018) and extreme precipitation, along with agricultural land use, has been tied to 

increased eutrophication and higher abundances of toxin-producing phytoplankton in aquatic 
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ecosystems (Ho and Michalak 2020). Abrupt changes can also become critical transitions, a 

transition from one equilibrium state to another, which may prevent ecosystem recovery to the 

prior state and increased vulnerability to further disturbances (Scheffer and Carpenter 2003, 

Taranu et al. 2018). Understanding the mechanisms mediating effects of disturbance on 

ecosystem function is imperative for effective ecosystem management in the face of rapid 

change.   

Pulse disturbances, sudden and temporally constrained disturbances that alter biomass or 

composition of ecological communities, are ubiquitous in aquatic ecosystems and expected to 

increase (Prein et al. 2017, Jentsch and White 2019). For example, large precipitation events, 

which are increasing in frequency and magnitude in some regions (Seneviratne et al. 2021), 

deliver pulses of nitrogen (N) and phosphorus (P) to surface waters (Joosse and Baker 2011). In 

many lakes, annual nutrient loading is disproportionately dominated by a few loading events 

during large storms (Carpenter et al. 2015, 2018). In agricultural watersheds, inputs of P from 

fertilizer and manure to the landscape exceed crop uptake by 50% in some areas, generating 

surplus P that is readily mobilized into aquatic ecosystems (Kelly et al. 2019, Sabo et al. 2021). 

Excess nutrients fuel eutrophication resulting in increasing turbidity, depleting dissolved oxygen, 

and favoring toxin-producing phytoplankton that adversely affect human health (Thornton et al. 

2013, Carmichael and Boyer 2016, le Moal et al. 2019). However, not all lakes will respond to 

nutrient pulses in the same way as antecedent conditions, ecosystem properties, and watershed 

characteristics affect whether nutrient pulses linked to storm events will alter ecosystem function 

or trigger an abrupt change (Stockwell et al. 2020). Thus, there is a pressing need to better 

understand the mechanisms that mediate aquatic ecosystem responses to pulse nutrient 

disturbances.  
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The strength of interactions between species and overall food web architecture plays a 

critical role in determining how ecological communities will react to increasing and interacting 

disturbances (McCann et al. 1998, Kuiper et al. 2015, Polazzo et al. 2022). Food web structure 

can produce differences in the resistance (defined here as the response time and response 

magnitude to the nutrient pulse) and resilience (defined here as the rate at which the system 

recovered from the nutrient pulse) of aquatic ecosystems to nutrient additions (Cottingham and 

Schindler 2000). For example, during a whole-ecosystem nutrient pulse experiment in two small 

lakes in northern Wisconsin, increasing the number of trophic levels from two to three through 

the addition of a planktivore led to decreased ecosystem resistance to nutrient pulses 

(Cottingham and Schindler 2000). Other components of food web structure (e.g., connectivity, 

structural asymmetry, functional diversity) may also alter the ability of aquatic ecosystems to 

mitigate the effects of disturbances (Calizza et al. 2019, Kovalenko 2019, Wojcik et al. 2021). 

For example, the coupling of the algae-based food chain to the detritus/periphyton-based food 

chain by generalist consumers (Vadeboncoeur et al. 2002; Vander Zanden & Vadeboncoeur 2002; 

McCann et al. 2005) is a common food web architecture in lakes. Generalist consumers 

incorporate a diversity of prey items across different habitats increasing connectivity between 

benthic and pelagic food chains (hereafter benthic-pelagic coupling).  

Benthic-pelagic coupling is theorized to improve ecosystem resilience to complex and 

interacting disturbances by increasing connectivity and modularity within food webs which 

provides stability in the face of changing resource availability (Thompson et al. 2012, McMeans 

et al. 2016).  There is a mix of empirical and theoretical evidence that benthic-pelagic coupling 

can strengthen aquatic trophic cascades by providing resource subsidies and higher growth 

potential for top consumers in the food chain (Vadeboncoeur et al. 2005, Vander Zanden et al. 
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2005, Marklund et al. 2019). Furthermore, benthic-pelagic coupling may influence ecosystem 

stability, resilience, and nutrient cycling (Blanchard et al. 2011, Rooney and McCann 2012, 

Baustian et al. 2014). Such mechanisms may reduce the occurrence of abrupt changes or even 

critical transitions within aquatic ecosystems. While benthic-pelagic coupling in food webs is 

theorized to significantly influence ecosystem responses to disturbances, there is limited 

empirical evidence demonstrating how, and to what degree, benthic-pelagic coupling affects 

resistance and resilience to nutrient pulses.  

We performed a set of whole-ecosystem manipulations to empirically evaluate how the 

degree of benthic-pelagic coupling affects ecosystem responses to pulse nutrient loading events 

using paired experimental ponds. Specifically, we asked (1) does the degree of benthic-pelagic 

coupling affect the response and recovery time of primary production to nutrient pulses? and (2) 

does the degree of benthic-pelagic coupling influence whether a critical transition occurs in 

response to a pulse nutrient loading event? We predicted that greater benthic-pelagic coupling 

would result in slower response times of primary production to nutrient pulses (i.e., greater 

resistance), faster return times (i.e., greater resilience), and a reduced chance of a critical 

transition occurring due to stronger top-down control and the presence of more pathways by 

which energy and nutrients could flow within the food web. To address these questions, we 

performed a series of paired ecosystem experiments in ponds with food web structures that 

varied in benthic-pelagic coupling subjecting one pond in each pair to two nutrient pulse 

disturbances.  
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METHODS 

Study Site 

The ecosystem experiment occurred in summer 2020 at the Iowa State Horticultural 

Research Station (42.110005, -93.580454) in a set of six experimental ponds. The ponds have a 

wetted surface area of roughly 400 m2 and a mean depth of 0.8 m (maximum: 2 m) consistent 

with the functional definition of pond ecosystems (Richardson et al. 2022). The ponds’ 

watersheds were limited to a few meters on each side and the bottom was sealed with bentonite 

clay to restrict groundwater flow. The only hydrologic input during the experiment was direct 

precipitation. In April 2020, the ponds were filled with water from the on-site irrigation reservoir 

seeding each pond with a similar, natural assemblage of phytoplankton and zooplankton. 

Communities of emergent longleaf pondweed (Potamogeton nodosus) and submerged leafy 

pondweed (Potamogeton foliosus) were naturally established in each pond. 

 

Experimental Design  

Across the six ponds, three fish assemblages were established to create food web 

structures with low, intermediate, and high connectivity between benthic and pelagic food chains 

(Figure 1). Each fish assemblage was randomly assigned to two ponds that were paired in the 

experiment with one receiving the pulse nutrient additions (see description below) and one 

serving as an unmanipulated reference. The low benthic-pelagic coupling ponds’ assemblage 

consisted of largely planktivorous bluegill (Lepomis macrochirus, (Werner and Hall 1988), 

zooplankton, and phytoplankton in the pelagic pathway and largely zoobenthivorous yellow 

perch (Perca flavescens, (Tyson and Knight 2001), macroinvertebrates, periphyton, and detritus 

in the benthic pathway. The intermediate benthic-pelagic coupling ponds had the same 
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assemblage as the low coupling ponds with an added generalist consumer, largemouth bass 

which preys in both benthic and pelagic food chains (Micropterus salmoides, (Hodgson and 

Hodgson 2000). The assemblage in the high benthic-pelagic coupling ponds was the same as the 

intermediate coupling ponds with an additional generalist consumer, fathead minnows, to further 

increase the trophic connections between benthic and pelagic food chains (Pimephales promelas, 

Duffy 1998). These fishes represent common species in lakes throughout much of North America 

and were added at biomass densities consistent with natural waterbodies and other pond 

experiments (Carlander 1977, Carey and Wahl 2010). Fish biomass for each species was kept 

consistent across ponds. For example, the biomass of bluegill added to one pond was the same 

biomass added to all the other ponds. When a pond had an additional species, such as the 

intermediate and high coupling ponds, we kept the biomass of species consistent across ponds, 

but total fish biomass increased (i.e., an additive design; Carey and Wahl 2010, Collins et al. 

2017). The total fish biomass for all ponds fell within the range of natural values (Carlander 

1977).  

All fish used to establish the food webs were collected via electrofishing from Brushy 

Creek Lake (42.39194, -93.98917) except for bluegill which were harvested from both Brushy 

Creek Lake and Five Island Lake (43.15806, -94.64667). Fathead minnows were purchased from 

Beemer Fisheries in Bedford, IA. Yellow perch were stocked in all ponds on day of year (DOY) 

98 and 99 with additional perch added on DOY 127 to replace individuals that died from stress 

or natural mortality. Bluegill were added to all ponds on DOY 127 and 128 from Brushy Creek 

Lake and from Five Island Lake on DOY 133. On DOY 141, largemouth bass were added to both 

the intermediate and high benthic-pelagic coupling ponds, along with fathead minnows to the 

high benthic-pelagic coupling ponds.   
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 We performed two discrete additions of nutrients (i.e., pulses) to three of the ponds on 

DOY 176 and DOY 211 (Figure 1). We designed the nutrient pulses to simulate the magnitude 

and stoichiometry of a storm-driven nutrient loading event in an agricultural watershed (Vanni et 

al. 2001, Lürling et al. 2018). The pond volume (~450 m3) and ambient nutrient concentrations 

measured the week prior to the planned nutrient pulse additions were used to determine the mass 

of nitrogen (N) and phosphorus (P) to add (Table S1) such that the first and second pulses 

resulted in a 3% and 5% increase in P concentration, respectively. We added ammonium nitrate 

(NH4NO3) and sodium phosphate monobasic dihydrate (NaH2PO4•H2O) at a 24N:1P ratio. The 

nutrients were delivered to the ponds slowly, pouring the N and P mixture dissolved in pond 

water from a 4 L carboy over the side of a kayak while paddling around the pond for 30 minutes. 

  

Data Collection  

 Daily data collection began on DOY 142, 34 days prior to the first addition of nutrients. 

To assess the response of primary production to the nutrient pulses among the different food web 

treatments, we measured chlorophyll-a concentration, a proxy for phytoplankton biomass, and 

ecosystem metabolism over the duration of the experiment (DOY 142 – 241). Chlorophyll-a was 

measured in situ daily using a Total Algae PC Sensor on a YSI Handheld sonde (Yellow Springs 

Instruments, Yellow Springs, Ohio, USA). The sensor was slowly lowered at a rate of 1 m per 15 

s through the water column each day, continuously logging chlorophyll-a concentrations. The 

mean chlorophyll-a value from 0.1-0.3 m depth was used in the statistical analyses (see below). 

As phytoplankton were not the only primary producers in the ponds, we measured ecosystem 

metabolism to quantify the response of all primary production by phytoplankton, macrophytes, 

and periphyton. Ecosystem metabolism was estimated using the free-water oxygen method 
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(Staehr et al. 2012). Dissolved oxygen was recorded every 30 minutes using PME miniDOT 

loggers (Precision Measurement Engineering, Vista, California, USA) deployed at 0.25 m depth 

over the deepest point in each pond. An on-site weather station (Onset HOBO U30 USB) 

provided measurements of photosynthetic active radiation and wind speed (Winslow et al. 2016). 

We calculated rates of gross primary production (GPP), ecosystem respiration (R), and net 

ecosystem production (NEP) using a Kalman filter described within the LakeMetabolizer R 

package (Winslow et al. 2016). Raw DO data were cleaned prior to calculating metabolism to 

remove anomalous measurements. Briefly, all times when DO concentration decreased by more 

than 2.0 mg L-1 from the previous measurement were identified. These points, along with the 

subsequent five DO measurements, were removed (three hours total) and backfilled via linear 

interpolation. Of the 576 pond days of dissolved oxygen measurements, removal and 

interpolation was not necessary for 61% of pond days, only one measurement for 25% of pond 

days, two measurements for 12.2% of pond days, and three or more measurements per day for 

2.8% of pond days. Metabolic rates calculated from free-water oxygen measurements can result 

in erroneous estimates (i.e., negative GPP, positive R), for example, when physical processes 

have a stronger effect on daily dissolved oxygen dynamics than biological processes (Rose et al. 

2014, Winslow et al. 2016). For each pond, all days that contained an erroneous estimate of 

metabolism were removed prior to statistical analyses. This step removed between 12 – 19% of 

days for the two low-coupling ponds and the pulsed high-coupling pond and between 4 – 7% of 

days were removed for the remaining three ponds.  

 In addition to measuring chlorophyll and ecosystem metabolism daily, we also measured 

periphyton areal biomass and macrophyte biomass less frequently over the course of the 

experiment. For periphyton, a modified Hester-Dendy sampler (173.28 cm2) was deployed for 
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two-week periods in each pond and areal chlorophyll was measured based on analysis of the 

biomass that grew on the artificial substrate during the deployment (see supplement for 

measurement details). We collected samples of macrophyte dry biomass in all ponds twice over 

the course of the experiment, one week prior to the two nutrient pulse additions (see supplement 

for measurement details). Water samples from 0.25 m depth were collected three times per week 

to measure concentrations of total and dissolved nutrients. For dissolved nutrients, samples were 

filtered in the field through Whatman glass fiber filters (0.45 µm), while samples for total 

nutrients were not filtered. All samples were kept on ice in a cooler before being transported 

back to the lab, preserved with 100 µL of concentrated sulfuric acid, and stored for later analysis 

(see supplement for details). 

We also monitored other components of the food webs including zooplankton biomass, 

macroinvertebrate areal density, and fish gut content over the course of the experiment. 

Zooplankton were sampled twice per week via a 1 m vertical tow of a Wisconsin net (63 µm 

mesh). We preserved samples with 10% formalin in the field then later transferred them to 70% 

ethanol. Zooplankton crustaceans and rotifers were identified to genus, excluding copepods 

which were identified to order. Standard length-mass regressions were used to calculate biomass 

(see supplement for measurement details). Macroinvertebrates were sampled biweekly in the 

littoral region of each pond using a modified stovepipe sampler (0.3 m diameter, (Jackson et al. 

2019). This sampling frequency is consistent with other pond studies that collected data on 

macroinvertebrates (Carey and Wahl 2010, 2011). Macroinvertebrates were preserved in 70% 

ethanol and identified in the lab using a stereomicroscope to family (mollusks and insects) or 

class (leeches and oligochaetes) (see supplement for measurement details). At the end of the 

experiment, the remaining fish were collected and subjected to gastric lavage to retrieve stomach 
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contents.  Stomach content samples were preserved with 70% ethanol and organisms were 

viewed under a Leica MZ8 stereomicroscope and identified to the lowest possible taxonomic 

order.   

 

Data Analysis  

 We used the recently developed response detection algorithm (Walter et al. 2022) to 

quantify the response and recovery of chlorophyll and ecosystem metabolism to nutrient pulses 

in each food web treatment. The algorithm calculates empirical cumulative distribution functions 

from a rolling window of the disturbed time-series (i.e., the ecosystem which received the 

nutrient pulse) and compares it to the entirety of the reference time-series (i.e., the ecosystem 

which did not receive a nutrient pulse). Briefly, the algorithm takes a high-frequency state 

variable and calculates an empirical cumulative distribution function within a specified moving 

window. This empirical cumulative distribution function is then compared to the empirical 

cumulative distribution function of the reference time series in its entirety to quantify the 

magnitude of difference between the disturbed and reference time series of the state variable. We 

elected to use the entire reference time-series rather than an adaptive window as there was no 

strong seasonality over the duration of our experiment for these variables, and it allows us to 

compare the response of the disturbed ecosystem to the total variability expected without any 

nutrient pulse disturbances. We chose a rolling window of seven days for the disturbed time-

series to capture rapid changes in primary production following each nutrient pulse. We also 

performed sensitivity analyses using five- and ten-day rolling windows to evaluate the sensitivity 

of our conclusions to window length and found minimal differences using shorter or longer 

window length (see supplemental information; Table S4). 
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 To determine response and recovery from a disturbance, the algorithm calculates the 

integral of the absolute difference between the disturbed rolling window and the reference time-

series. The magnitude of difference between the disturbed moving window and reference time 

series is then calculated by comparing the reference sample mean and standard deviation creating 

a time-series of Z-scores. A response occurs when the time-series of Z-scores exceeds a user-

defined disturbance threshold and recovers when the Z-scores fall below a user-defined recovery 

threshold. As recommended by Walter et al (2022), we chose a disturbance threshold of 2.0 

representing a significant and rare event that signals a substantial departure from reference 

conditions, and a recovery threshold of 0.5 which represents a substantial return to reference 

conditions. Using this algorithm, we can calculate the response time of primary production to the 

nutrient pulses (here defined as resistance) defined as the number of days after the pulse until the 

z-score exceeds 2.0. In addition, we can calculate the return time from nutrient pulses (here 

defined as resilience) defined as the number of days after the z-scores return to below 0.5 after 

already exceeding the threshold of 2.0.  

To identify if, and when, a critical transition occurred within a pond related to the nutrient 

pulse we used online dynamic linear modeling on the time series of chlorophyll-a concentration 

(Taranu et al. 2018, Wilkinson et al. 2018). The method requires a complete daily time series and 

therefore could not be applied to the metabolism estimates due to the removal of days with 

erroneous estimates. Briefly, this method calculates the eigenvalues of a time series by fitting 

autoregressive models (AR) with time-varying coefficients (c.f. Ives and Dakos, 2012). Evidence 

that a critical transition occurred is determined by the eigenvalues crossing above one from 

below. However, if eigenvalues do not cross above one from below, that suggests no critical 

transition occurred. We fit time-varying AR (p) models to time series of chlorophyll-a for each 
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pond with an optimal order of one or two (i.e., lag-1 or lag-2) determined by Akaike’s 

Information Criteria (AICc) model selection (Hurvich and Tsai 1993). If the change in AICc was 

less than two, both models were considered for evidence of a critical transition (Burnham and 

Anderson 2004; Table S2). All analyses were performed in R version 4.2.1 (R Core Team 2022) 

using the disturbhf (Walter and Buelo 2022), LakeMetabolizer (Winslow et al. 2016), lubridate 

(Garrett and Wickham 2011), and tidyverse (Wickham et al. 2019) packages.  

 

RESULTS 

The different food web structures established within the experimental ponds successfully 

increased benthic-pelagic coupling based on the biomass and dynamics of benthic primary 

producers as well as zooplankton biomass and macroinvertebrate density (Figure 2). Over the 

course of the experiment, zooplankton biomass was generally lowest in the low coupling ponds 

(Figure 2A), greatest in the intermediate coupling ponds (Figure 2B), but only slightly greater 

within the high coupling ponds (Figure 2C). Similarly, macroinvertebrate density was lowest in 

the low coupling ponds and greatest in the high coupling ponds (Figure 2D – F). However, there 

was substantial variation in macroinvertebrate density between the pulsed and reference 

intermediate coupling ponds (Figure 2E). Zooplankton biomass and macroinvertebrate density 

remained elevated further into the experiment in the intermediate and high coupling ponds, 

whereas zooplankton and macroinvertebrates steadily decreased in the low coupling ponds 

(Figure S1A – F). Finally, there was greater variability in periphyton biomass in the intermediate 

and high coupling ponds in comparison to the low coupling ponds (Figure 2G-I). Periphyton 

areal biomass steadily increased in the pulsed low coupling pond and all reference ponds, 

however, the intermediate and high coupling ponds fluctuated between high and low areal 
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biomass over the course of the study period (Figure S1G – I). In the low coupling ponds, 

periphyton biomass increased as macroinvertebrate density decreased whereas in the 

intermediate and high coupling ponds periphyton-macroinvertebrate dynamics were lagged with 

high macroinvertebrate density preceding periphyton decrease, though to a lesser degree in the 

intermediate coupling ponds (Figure S1D – I).  Fish diets roughly corresponded to our 

expectations of trophic interactions with bluegill preying on more zooplankton and yellow perch 

largely consuming macroinvertebrates and little to no zooplankton (Table S3). Largemouth bass 

preyed on a diversity of organisms, but mostly fish and macroinvertebrates (Table S3). Mean 

nutrient concentrations and macrophyte dry biomass were similar across all ponds though total 

phosphorus was slightly elevated in the reference ponds (Table 1). We did observe a clear 

increase in nutrient concentrations in the pulsed ponds following each nutrient pulse in 

comparison to their concentrations prior to nutrient addition (Figure S2).  

 In support of our prediction that benthic-pelagic coupling would affect the response of 

primary production to nutrient pulses, greater benthic-pelagic coupling resulted in reduced 

responses of primary production to benthic-pelagic coupling (Figure 3). Chlorophyll-a 

concentration increased following the first nutrient pulse and peaked at roughly the same time in 

both the low (DOY 198) and intermediate (DOY 194) coupling ponds (Figure 3A – B). In 

comparison, there was no apparent response in chlorophyll-a in the high benthic-pelagic 

coupling pulsed pond (Figure 3C). Following the second nutrient pulse, chlorophyll-a 

concentration increased in all three pulsed ponds with the low coupling pond peaking first on 

DOY 224, the intermediate coupling pond following on DOY 232, and finally the high coupling 

pond peaking on DOY 236. Gross primary production (GPP), which encompasses production 

from all primary producers was similar to the chlorophyll-a dynamics after both nutrient pulses 



132 

 

 

 

in the intermediate and high coupling ponds but did not follow chlorophyll-a dynamics in the 

low coupling pulsed pond (Figure 3D – F). Respiration (R) steadily increased for all pulsed 

ponds over the duration of the experiment and followed the reference pond dynamics closely 

(Figure 3G – I). Net ecosystem production (NEP) initially decreased then remained largely 

heterotrophic for all ponds following the first nutrient pulse (Figure 3J – L). There was an 

increase in NEP following the first nutrient pulse in the intermediate coupling pulsed pond akin 

to the dynamics observed in gross primary production and chlorophyll-a (Figure 3H). However, 

the reference intermediate coupling pond had similar dynamics. The low and intermediate 

coupling ponds became heterotrophic prior to the first nutrient pulse (between DOY 151 – 172) 

and remained heterotrophic for the rest of the summer until the end of the experiment (Figure 3J 

– K). Both the pulsed and reference high coupling ponds remained autotrophic further into the 

summer than the other two food web structures only becoming heterotrophic on DOY 192 

(Figure 3L).  

 We found support for our prediction that the resistance (response time) and resilience 

(return time) of primary production to the nutrient pulses would be greatest in the high benthic-

pelagic coupling pond (Figure 4). Following the first nutrient pulse, the z-scores of chlorophyll-a 

for the low and intermediate coupling ponds surpassed the threshold of 2, indicating a significant 

response, whereas there was no significant response detected in the high coupling ponds (Figure 

4A – B). There was also a significant recovery (z-score of chlorophyll decreased below 0.5) prior 

to the second nutrient pulse in the low coupling pond, but there was not a significant recovery in 

the intermediate coupling pond until a few days after the second nutrient pulse. The response 

time of chlorophyll a in both the low and intermediate coupling ponds to the first nutrient pulse 

were similar, though the intermediate coupling pond had a longer return time to baseline 
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conditions (Table 2). Following the second nutrient pulse, chlorophyll-a concentration again 

significantly responded in the low and intermediate coupling ponds again, exceeding the z-score 

threshold of 2 (Figure 4A – C). However, the low coupling pond responded 15 days faster to the 

second nutrient pulse and took 16 days longer to recover whereas the intermediate coupling pond 

had a similar response time to the first nutrient pulse and did not recover before the experiment 

was terminated (although the z-score was trending towards recovery) (Table 2).  

For GPP, there was only a significant response (z-score of GPP >2) in the intermediate 

coupling pond with a seven-day rolling window after both nutrient pulses (Figure 4D – F). GPP 

in the intermediate coupling pond responded 11 days after the first nutrient pulse and 21 days 

after the second nutrient pulse. Additionally, GPP in the intermediate coupling pond recovered 

(z-score of GPP<0.5) from the first and second pulses in eleven and five days, respectively 

(Table 2). There was a significant GPP response detected in the low coupling pond with a shorter 

rolling window (5-day) on DOY 185 with recovery on DOY 190 (Figure S3; Table S4). There 

was no significant response of R or NEP following either nutrient pulse in most of the ponds 

(Figure 4G – L) except for the intermediate coupling pond where the z-score of R exceeded the 

threshold 21 days after the second nutrient pulse, recovering 4 days later (Figure 4H). There was 

a significant response of R in the high coupling pond early in the time-series, but it was before 

the first nutrient pulse (Figure 4L). With a longer rolling window (10-day) there was a significant 

response of R in the pulsed high coupling pond 21 days after the second nutrient pulse with no 

recovery observed as the experiment ended shortly thereafter (Figure S4; Table S4). 

We found some support for our prediction that greater benthic-pelagic coupling would reduce 

the chance of a critical transition occurring following a nutrient pulse. We used a lag-1 

autocorrelation in the dynamic online linear model based on AICc for all experimental ponds 
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(Table S2). At lag-1, there was no clear evidence of a critical transition in either the pulsed or 

reference ponds for each food web treatment after either nutrient pulse (Figure 5A – F). The 

bootstrapped standard error crossed above one from below in some ponds indicating the potential 

for a critical transition, but there was no evidence that once occurred within the time series 

(Figure 5). We also considered the lag-2 autocorrelation for low coupling ponds and the high 

coupling reference pond as the ΔAICc showed the lag-2 models were not significantly different 

for those ponds (Table S2). At lag-2, the low coupling pulsed pond eigenvalues did move above 

one from below on DOY 192 and dropped below one on DOY 194 which was evidence of a 

critical transition (Figure S5A). The moment of critical transition for chlorophyll-a eigenvalues 

was about ten days prior to the peak in chlorophyll-a concentration observed in the time series 

data (Figure 3) and six days prior to the reported significant response from the response detection 

algorithm (Figure 4). In addition, the low coupling reference pond eigenvalues moved above one 

from below briefly weeks after the second nutrient pulse on DOY 231.  

 

DISCUSSION  

With this experiment, we established three food web structures that varied in their degree 

of benthic-pelagic coupling. While food web complexity, the number of trophic guilds, and 

overall fish biomass increased across the three food web structures, the different dynamics of 

zooplankton, periphyton, and macroinvertebrates, particularly between the intermediate and high 

coupling ponds, suggests we increased benthic-pelagic coupling between the three established 

food web structure. There was stronger top-down control on planktivores in the intermediate and 

high coupling ponds evidenced by higher zooplankton biomass and greater persistence of 

zooplankton biomass across the summer sampling season, especially within the high coupling 
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pond.  In addition, macroinvertebrate and periphyton biomass dynamics were akin to standard 

predator-prey cycles (Blasius et al. 2020) in the high coupling pond, but only partially in the 

intermediate and low coupling ponds. This indicates a greater importance of the benthic food 

chain in the intermediate and high coupling ponds, with the greatest effect occurring in the high 

coupling ponds, based on the larger shifts in periphyton and macroinvertebrate biomass and 

consistently higher zooplankton biomass in both the reference and pulsed ponds. Thus, we 

demonstrated empirically that a greater degree of benthic-pelagic coupling within aquatic food 

webs led to reduced ecosystem response times (higher resistance) and lower benthic-pelagic 

coupling led to slower recovery (lower resilience) from nutrient pulses. 

 In support of our prediction, there was no response (and therefore, no recovery) of 

primary production in the high benthic-pelagic coupling pond to nutrient pulses, whereas there 

was a response in chlorophyll-a in the low and intermediate coupling ponds. This suggests that 

the added nutrients did not result in increased primary production (based on the ecosystem 

metabolism response) or increased phytoplankton biomass (based on the chlorophyll a response) 

in the high coupling pond. While there was a relatively fast recovery in chlorophyll-a from the 

first nutrient pulse in the low coupling pond, this is consistent with other nutrient pulse 

disturbance experiments where faster recovery was observed in food webs with higher 

zooplanktivory (Cottingham and Schindler 2000). Conversely, following the second nutrient 

pulse, we observed a faster response and slower recovery in the low coupling pond suggesting a 

potential decrease in resistance and resilience to the repeated nutrient pulse disturbances. There 

was a similar response time after each nutrient pulse within the intermediate coupling pond 

suggesting that there was no such change in resistance. Additionally, the intermediate coupling 

pond was on track for a faster recovery time in chlorophyll-a after the second nutrient pulse 
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compared to the first; however, the experiment was terminated before the threshold for recovery 

was reached.  

Benthic-pelagic coupling can be a stabilizing force for species within food webs 

(Wolkovich et al. 2014, Mougi 2020) which is supported by the lower trophic level dynamics in 

this experiment. The differences in response and recovery times between the intermediate and 

high coupling ponds also support our prediction that differences in response were due to stronger 

top-down control and greater food web connectivity rather than simply a difference in the 

number of trophic levels (Carpenter et al. 2001, Ward and McCann 2017). In ponds with a 

greater degree of benthic-pelagic coupling, there was higher zooplankton biomass, 

macroinvertebrate density, and periphyton biomass consistent with other studies of benthic-

pelagic coupling, likely due to stronger top-down control (Vadeboncoeur et al. 2005, Vander 

Zanden et al. 2005, Marklund et al. 2019). However, there may have been an additional refuge 

effect in the high coupling ponds where the presence of predators led to altered behavior and 

reduced feeding rates for bluegill, yellow perch, and fathead minnows (Zanette and Clinchy 

2019). We only observed a steady decrease in zooplankton biomass and macroinvertebrate 

density in the low coupling ponds indicating that greater benthic-pelagic coupling facilitated 

more stable zooplankton biomass dynamics. Macroinvertebrate density in the pulsed 

intermediate coupling pond was consistently lower than the reference intermediate coupling 

pond throughout the experimental period (Figure S1E). This may explain the lower 

macroinvertebrate abundance in diet samples collected from fishes in the pulsed intermediate 

coupling pond at the end of the experiment. Although, within the intermediate and high coupling 

ponds, the cyclical recovery and decline of both macroinvertebrate density and periphyton areal 

biomass may suggest that fishes were switching to benthivory when macroinvertebrate density 
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was high allowing periphyton to recover and take up more nutrients. Prey availability can be 

influential on diet preference and consumption dynamics, particularly for largemouth bass 

(Sammons and Maceina 2006, Butts et al. 2020) which were present in both the intermediate and 

high coupling ponds  

The dynamics of ecosystem metabolism supported our prediction that greater benthic-

pelagic production would reduce the response of primary production to nutrient inputs, though 

the patterns were far noisier than our chlorophyll-a data. There was only a significant response 

(z-scores exceeded threshold of 2) in GPP following both nutrient pulses in the intermediate 

ponds which aligned with the peak in chlorophyll-a biomass observed following the first nutrient 

pulse. Using a smaller rolling window (5 days), GPP significantly responded in the low coupling 

pond following the first nutrient pulse coinciding with observed chlorophyll-a response at the 

same time. This follows the trophic dynamics we observed within the ponds, indicating 

phytoplankton production was stimulated under lower top-down control (Cottingham and 

Schindler 2000, Jeppesen et al. 2003). Periphyton was higher in the intermediate coupling ponds 

in comparison to the low coupling ponds. Thus, the GPP response for the intermediate coupling 

pond also likely included periphyton (Vadeboncoeur et al. 2001). It is not surprising there were 

no significant responses for net ecosystem production (NEP) given that it’s a balance of GPP and 

respiration (R) (Ask et al. 2012); indeed, it had the most stable z-scores across ponds among all 

response variables. The complex nature of stratification dynamics, floating leaf macrophytes, and 

dissolved oxygen changes in the bottom waters of the ponds (Albright et al. 2022), made it 

difficult to estimate ecosystem metabolism in these ecosystems. Nevertheless, the GPP patterns 

do support the chlorophyll-a dynamics we observed.  
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There was some support for our prediction that the degree of benthic-pelagic coupling 

would reduce the chance of a critical transition. We found evidence of a critical transition only 

within the low coupling food web structure after the first nutrient pulse using a lag-2 

autoregressive model (though with both optimal orders, the bootstrapped standard error moved 

above one from below) with no evidence of a critical transition in the paired reference pond. 

Evidence for a critical transition in only the pulsed low coupling pond, and in none of the 

reference ponds following either nutrient pulse, indicates that the response was due to the first 

nutrient pulse rather than stochastic environmental dynamics. There was additional evidence of a 

critical transition in the low-coupling reference pond following an extreme storm event 

(derecho), though given the minimal watershed for these ponds, the dynamics were not driven by 

external nutrient loading with the storm. A decrease in ecosystem resilience is often used as an 

early-warning sign of a critical transition (Scheffer et al. 2015, Ortiz et al. 2020). The faster 

response and slower recovery times in the low coupling pond following the second nutrient pulse 

suggests there was a decrease in ecosystem resilience to these nutrient pulses (van de Leemput et 

al. 2018).  

Within the experimental ponds, there were several factors that produced uncertainty we 

were unable to control. In particular, there was enhanced zooplanktivory due to the unknown 

presence of remnant bigmouth buffalo (Ictiobus cyprinellus) in the pulsed low coupling pond 

(n=10) and reference high coupling pond (n=2) from an ecosystem experiment the previous year 

(Wilkinson et al. 2022). Bigmouth buffalo are endemic planktivores and may have caused the 

lower zooplankton biomass in the pulsed low coupling pond compared to the reference. It is also 

possible bigmouth buffalo contributed to the chlorophyll-a response in the low coupling pond as 

well as the evidence of a critical transition. However, bigmouth buffalo rely on zooplankton for 
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food, mainly copepods and large-bodied cladocerans; thus, it is unlikely that their presence 

affected the degree of benthic-pelagic coupling as they are not generalist consumers (Starostka 

and Applegate 1970, Adámek et al. 2003). All ponds, however, were subject to increased 

zooplanktivory from larval bluegill and largemouth bass spawned during the study period. This 

may explain the consistent drop in zooplankton biomass across all six ponds over the course of 

the experiment.  

The experimental ponds were subjected to two unanticipated extreme weather events that 

may have influenced ecosystem dynamics in addition to our nutrient pulse additions. First, there 

was a five-day period of elevated surface water temperatures that occurred nine days after the 

first nutrient pulse on DOY 185 – 190 (Figure S6). The combination of nutrients and elevated 

temperatures may have helped stimulate phytoplankton production following the first nutrient 

pulse (Albright et al. 2022). This also led to the senescence of macrophytes in the deeper 

portions of the pond in the pulsed treatments, but the floating macrophytes which ringed the 

pond were unaffected. Elevated temperatures and macrophyte senescence driving alterations in 

stratification dynamics likely affected metabolism estimates (Cole et al. 2000, Hornbach et al. 

2020), perhaps explaining why we did not observe stronger responses. The derecho on DOY 223 

fully and violently mixed the water columns of all the ponds (Albright et al. 2022), but the 

duration of effects was short. Following the derecho, if any nutrient or organic matter were 

released by the alteration of stratification via mixing (Lehman 2014, Salmaso et al. 2018), that 

may have stimulated primary production, especially within the pulsed ponds. This process may 

have resulted in the small increase in phytoplankton, GPP, and R in the high coupling pond we 

observed, but the increase was not a significant response. Overall, the derecho did not have a 

stronger effect than the nutrient additions.  
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Benthic-pelagic coupling is increasingly recognized as an important component of food 

web structure within aquatic ecosystems (McMeans et al. 2016, Gutgesell et al. 2022, Borrelli 

and Relyea 2022). Here, we demonstrate empirically that, even in highly spatially constrained 

ecosystems, coupling between benthic and pelagic energy pathways produced increased 

resistance and resilience of the ecosystems to nutrient pulses. While other studies have 

demonstrated the importance of benthic-pelagic coupling, our study provides empirical and 

mechanistic evidence that greater benthic-pelagic coupling could be a key target for lake 

management programs to increase ecosystem resistance and resilience to increasingly frequent 

and severe disturbances. Preserving or enhancing benthic-pelagic coupling is vital for aquatic 

ecosystems, especially as coupling and energy flow can be adversely affected by increasing 

eutrophication (Wang et al. 2020). However, how benthic-pelagic coupling may interact with 

fishes that substantially affect nutrient cycling, both native (e.g., gizzard shad; Schaus et al. 

1997) and non-native (e.g., common carp; (Weber and Brown 2011), should be explored further. 

Nonetheless, our research also provides further empirical support that biodiversity and the 

architecture of species interactions within a food web, is a key ecosystem property that makes 

ecosystems more resistant and resilient to environmental change and must be preserved.   

 

ACKNOWLEDGEMENTS 

We would like to thank Michael Tarnow, Elena Sandry, Quin Shingai, Ellen Albright, 

Adriana Le Compte, Emily Grausgruber, Psalm Amos, Brittany Howes, Katie Cope, Kylee Gehl, 

Rachel Fleck, Eric Moody, and James Thompson for assistance with sample collection and 

analysis, and Martin Simonson and the whole Weber Lab for collecting fish species for the 

experiment. Additionally, we thank Michael Tarnow, Sofia Ferrer, and Kayleigh Winston for 



141 

 

 

 

assisting with macroinvertebrate and zooplankton identification and enumeration. Finally, we 

thank Cal Buelo and Jonathan Walter for their assistance with data analysis. This research was 

supported by the Iowa Water Center’s Graduate Student Supplemental Research Competition. 

Butts was additionally supported by the National Science Foundation Graduate Research 

Fellowship Program (DGE-1747503). Any opinions, findings, and conclusions or 

recommendations expressed in this material are those of the authors and do not necessarily 

reflect the views of the National Science Foundation. 

 

DATA AVAILABILITY  

The data for this study will be archived using the Environmental Data Initiative 

repository and given a unique digital object identifier. Metadata will follow the ecological 

metadata language and be published under a creative commons license. The data files and 

analysis scripts are available through GitHub (https://github.com/tjbutts/hort-benthic-pelagic) 

and will be archived on Zenodo following acceptance.  

 

REFERENCES  

Adámek, Z., I. Sukop, P. M. Rendón, and J. Kouřil. 2003. Food competition between 2+ tench 

(Tinca tinca L.), common carp (Cyprinus carpio L.) and bigmouth buffalo (Ictiobus 

cyprinellus Val.) in pond polyculture. Journal of Applied Ichthyology 19:165–169. 

Albright, E. A., R. Ladwig, and G. M. Wilkinson. 2022. Macrophyte-hydrodynamic interactions 

mediate stratification and dissolved oxygen dynamics in ponds. EarthArXiv. 

https://doi.org/10.31223/X51M19.  

Ask, J., J. Karlsson, and M. Jansson. 2012. Net ecosystem production in clear-water and brown-

water lakes. Global Biogeochemical Cycles 26. 

Baustian, M. M., G. J. a. Hansen, A. de Kluijver, K. Robinson, E. N. Henry, L. B. Knoll, K. C. 

Rose, and C. C. Carey. 2014. Linking the bottom to the top in aquatic ecosystems: 

mechanisms and stressors of benthic-pelagic coupling. Pages 25–47 Eco-DAS X 

Symposium Proceedings. 



142 

 

 

 

Blanchard, J. L., R. Law, M. D. Castle, and S. Jennings. 2011. Coupled energy pathways and the 

resilience of size-structured food webs. Theoretical Ecology 4:289–300. 

Blasius, B., Rudolf, L., Welthoff, G., Gaedke, U. and Fussmann, G.F. 2020. Long-term cyclic 

persistence in an experimental predator-prey system. Nature 577: 226–230  

Borrelli, J. J., and R. A. Relyea. 2022. A review of spatial structure of freshwater food webs: 

Issues and opportunities modeling within-lake meta-ecosystems. Limnology and 

Oceanography 67: 1746–1759. 

Burnham, K. P., and D. R. Anderson. 2004. Multimodel inference: Understanding AIC and BIC 

in model selection. Sociological Methods and Research 33: 261 – 304.  

Butts, T. J., J. Y. S. Hodgson, M. Guidone, and J. R. Hodgson. 2020. Episodic zooplanktivory by 

largemouth bass (Micropterus salmoides) on Daphnia: a 25-year natural history record from 

a small northern temperate lake. Journal of Freshwater Ecology 35:469–490. 

Calizza, E., L. Rossi, G. Careddu, S. S. Caputi, and M. L. Costantini. 2019. Species richness and 

vulnerability to disturbance propagation in real food webs. Scientific Reports 9:19331. 

Carey, M. P., and D. H. Wahl. 2010. Interactions of multiple predators with different foraging 

modes in an aquatic food web. Oecologia 162:443–452. 

Carey, M. P., and D. H. Wahl. 2011. Fish diversity as a determinant of ecosystem properties 

across multiple trophic levels. Oikos 120:84–94. 

Carlander, K. 1977. Biomass, Production, and Yields of Walleye (Stizostedion vitreum vitreum) 

and Yellow Perch (Perca flavescens) in North American Lakes. Journal of Fisheries 

Research Board of Canada 34:1602–1612. 

Carmichael, W. W., and G. L. Boyer. 2016. Health impacts from cyanobacteria harmful algae 

blooms: Implications for the North American Great Lakes. 54: 194–212. 

Carpenter, S. R., E. G. Booth, and C. J. Kucharik. 2018. Extreme precipitation and phosphorus 

loads from two agricultural watersheds. Limnology and Oceanography 63:1221–1233. 

Carpenter, S. R., E. G. Booth, C. J. Kucharik, and R. C. Lathrop. 2015. Extreme daily loads: role 

in annual phosphorus input to a north temperate lake. Aquatic Sciences 77:71–79. 

Carpenter, S. R., J. J. Cole, J. R. Hodgson, J. F. Kitchell, M. L. Pace, D. Bade, K. L. Cottingham, 

T. E. Essington, J. N. Houser, and D. E. Schindler. 2001. Trophic cascades, nutrients, and 

lake productivity: whole lake experiments. Ecological Monographs 71:163–186. 

Cole, J. J., M. L. Pace, S. R. Carpenter, and J. F. Kitchell. 2000. Persistence of net heterotrophy 

in lakes during nutrient addition and food web manipulations. Limnology and 

Oceanography 45:1718–1730. 

Collins, S. F., K. A. Nelson, C. S. DeBoom, and D. H. Wahl. 2017. The facilitation of the native 

bluegill sunfish by the invasive bighead carp. Freshwater Biology 62:1645–1654. 

Cottingham, K., and D. Schindler. 2000. Effects of grazers community structure on 

phytoplankton response to nutrient pulses. Ecology 81:183–200. 

Duffy, W. G. 1998. Population dynamics, production, and prey consumption of fathead minnows 

(Pimephales promelas) in prairie wetlands: a bioenergetics approach. Canadian Journal of 

Fisheries and Aquatic Sciences 54:15–27. 

Gutgesell, M. K., K. S. McCann, G. Gellner, K. Cazelles, C. J. Greyson-Gaito, C. Bieg, M. M. 

Guzzo, C. P. K. Warne, C. A. Ward, R. F. O’connor, A. M. Scott, B. C. Graham, E. J. 



143 

 

 

 

Champagne, and B. C. McMeans. 2022. On the Dynamic Nature of Omnivory in a 

Changing World. BioScience 72: 416–430. 

Ho, J. C., and A. M. Michalak. 2020. Exploring temperature and precipitation impacts on 

harmful algal blooms across continental U.S. lakes. Limnology and Oceanography 65:992–

1009. 

Hodgson, J. Y., and J. R. Hodgson. 2000. Exploring optimal foraging by largemouth bass 

(Micropterus salmoides) from three experimental lakes. Verhandlungen des Internationalen 

Verein Limnologie 27:1–6. 

Hornbach, D. J., E. G. Schilling, and H. Kundel. 2020. Ecosystem metabolism in small ponds: 

The eects of floating-leaved macrophytes. Water (Switzerland) 12:1–25. 

Hughes, T. P., J. T. Kerry, A. H. Baird, S. R. Connolly, A. Dietzel, C. M. Eakin, S. F. Heron, A. S. 

Hoey, M. O. Hoogenboom, G. Liu, M. J. McWilliam, R. J. Pears, M. S. Pratchett, W. J. 

Skirving, J. S. Stella, and G. Torda. 2018. Global warming transforms coral reef 

assemblages. Nature 556:492–496. 

Hurvich, C. M., and C. ‐L Tsai. 1993. A Corrected Akaike Information Criterion for Vector 

Autoregressive Model Selection. Journal of Time Series Analysis 14:271–279. 

Ives, A. R., and V. Dakos. 2012. Detecting dynamical changes in nonlinear time series using 

locally linear state-space models. Ecosphere 3: art58 

Jackson, J., V. Resh, D. Batzer, R. Merritt, and K. Cummins. 2019. Sampling Aquatic Insects: 

Collection Devices, Statistical Considerations, and Rearing Procedures. Pages 17–42 in R. 

Merritt, K. Cummins, and M. Berg, editors. An Introduction to the Aquatic Insects of North 

America. Fifth edition. Kendall Hunt Publishing Company, Dubuque, IA. 

Jentsch, A., and P. White. 2019. A theory of pulse dynamics and disturbance in ecology. Ecology 

100.e02734. 

Jeppesen, E., J. Jensen, C. Jensen, B. Faafeng, D. Hessen, M. Søndergaard, T. Lauridsen, P. 

Brettum, and K. Christoffersen. 2003. The Impact of Nutrient State and Lake Depth on Top-

Down Control in the Pelagic Zone of Lakes: A Study of 466 Lakes from the Temperate 

Zone to the Arctic. Ecosystems 6:313–325. 

Joosse, P. J., and D. B. Baker. 2011. Context for re-evaluating agricultural source phosphorus 

loadings to the great lakes. Canadian Journal of Soil Science 91:317–327. 

Kelly, P. T., W. H. Renwick, L. Knoll, and M. J. Vanni. 2019. Stream Nitrogen and Phosphorus 

Loads Are Differentially Affected by Storm Events and the Difference May Be Exacerbated 

by Conservation Tillage. Environmental Science and Technology 53:5613–5621. 

Kovalenko, K. E. 2019. Interactions among anthropogenic effects on aquatic food webs. 

Hydrobiologia 841:1–11. 

Kuiper, J. J., C. Van Altena, P. C. De Ruiter, L. P. A. Van Gerven, J. H. Janse, and W. M. Mooij. 

2015. Food-web stability signals critical transitions in temperate shallow lakes. Nature 

Communications 6:1–7. 

van de Leemput, I. A., V. Dakos, M. Scheffer, and E. H. van Nes. 2018. Slow Recovery from 

Local Disturbances as an Indicator for Loss of Ecosystem Resilience. Ecosystems 21:141–

152. 

Lehman, J. T. 2014. Understanding the role of induced mixing for management of nuisance algal 

blooms in an urbanized reservoir. Lake and Reservoir Management 30:63–71. 



144 

 

 

 

Lürling, M., M. M. Mello, F. van Oosterhout, L. de S. Domis, and M. M. Marinho. 2018. 

Response of natural cyanobacteria and algae assemblages to a nutrient pulse and elevated 

temperature. Frontiers in Microbiology 9:1–14. 

Marklund, M. H. K., R. Svanbäck, and P. Eklöv. 2019. Habitat coupling mediates trophic 

cascades in an aquatic community. Ecosphere 10. 

McCann, K., A. Hastings, and G. Huxel. 1998. Weak trophic interactions and the balance of 

nature. Nature 395:794–798. 

McCann, K. S., J. B. Rasmussen, and J. Umbanhowar. 2005. The dynamics of spatially coupled 

food webs. Ecology Letters 8:513–523. 

McMeans, B. C., K. S. McCann, T. D. Tunney, A. T. Fisk, A. M. Muir, N. Lester, B. Shuter, and 

N. Rooney. 2016. The adaptive capacity of lake food webs: From individuals to ecosystems. 

Ecological Monographs 86:4–19. 

le Moal, M., C. Gascuel-Odoux, A. Ménesguen, Y. Souchon, C. Étrillard, A. Levain, F. Moatar, 

A. Pannard, P. Souchu, A. Lefebvre, and G. Pinay. 2019. Eutrophication: A new wine in an 

old bottle? Science of the Total Environment 651:1–11. 

Mougi, A. 2020. Coupling of green and brown food webs and ecosystem stability. Ecology and 

Evolution 10: 9192–9199. 

Ortiz, D., J. Palmer, and G. Wilkinson. 2020. Detecting statistical early warning indicators of 

algal blooms in shallow eutrophic lakes. Ecosphere. 

Polazzo, F., T. I. Marina, M. Crettaz-Minaglia, and A. Rico. 2022. Food web rewiring drives 

long-term compositional differences and late-disturbance interactions at the community 

level. Proceedings of the National Academy of Sciences 119: e2117364119. 

Prein, A. F., C. Liu, K. Ikeda, S. B. Trier, R. M. Rasmussen, G. J. Holland, and M. P. Clark. 

2017. Increased rainfall volume from future convective storms in the US. Nature Climate 

Change 7:880–884. 

R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. 

Ratajczak, Z., S. R. Carpenter, A. R. Ives, C. J. Kucharik, T. Ramiadantsoa, M. A. Stegner, J. W. 

Williams, J. Zhang, and M. G. Turner. 2018. Abrupt Change in Ecological Systems: 

Inference and Diagnosis. Trends in Ecology and Evolution 33: 513–526 

Richardson, D. C., M. A. Holgerson, M. J. Farragher, K. K. Hoffman, K. B. S. King, M. B. 

Alfonso, M. R. Andersen, K. S. Cheruveil, K. A. Coleman, M. J. Farruggia, R. L. 

Fernandez, K. L. Hondula, G. A. López Moreira Mazacotte, K. Paul, B. L. Peierls, J. S. 

Rabaey, S. Sadro, M. L. Sánchez, R. L. Smyth, and J. N. Sweetman. 2022. A functional 

definition to distinguish ponds from lakes and wetlands. Scientific Reports 12. 

Rooney, N., and K. S. McCann. 2012. Integrating food web diversity, structure and stability. 

Trends in Ecology and Evolution 27:40–46. 

Rose, K. C., L. A. Winslow, J. S. Read, E. K. Read, C. T. Solomon, R. Adrian, and P. C. Hanson. 

2014. Improving the precision of lake ecosystem metabolism estimates by identifying 

predictors of model uncertainty. Limnology and Oceanography: Methods 12:303–312. 

Sabo, R. D., C. M. Clark, D. A. Gibbs, G. S. Metson, M. J. Todd, S. D. LeDuc, D. Greiner, M. 

M. Fry, R. Polinsky, Q. Yang, H. Tian, and J. E. Compton. 2021. Phosphorus Inventory for 



145 

 

 

 

the Conterminous United States (2002–2012). Journal of Geophysical Research: 

Biogeosciences 126. 

Salmaso, N., A. Boscaini, C. Capelli, and L. Cerasino. 2018. Ongoing ecological shifts in a large 

lake are driven by climate change and eutrophication: evidences from a three-decade study 

in Lake Garda. Hydrobiologia 824:177–195. 

Sammons, S. M., and M. J. Maceina. 2006. Changes in diet and food consumption of largemouth 

bass following large-scale hydrilla reduction in Lake Seminole, Georgia. Hydrobiologia 

560:109–120. 

Schaus, M. H., M. J. Vanni, M. T. Wissing, M. T. Brmigan, J. E. Garvey, and R. A. Stein. 1997. 

Nitrogen and Phosphorus Excretion by Detritivorous Gizzard Shad in a Reservoir 

Ecosystem. Limnology and Oceanography:1386–1397. 

Scheffer, M., and Carpenter. 2003. Catastrophic regime shifts in ecosystems: linking theory to 

observation. Trends in Ecology and Evolution 18:648–656. 

Scheffer, M., S. R. Carpenter, V. Dakos, and E. H. van Nes. 2015. Generic Indicators of 

Ecological Resilience: Inferring the Chance of a Critical Transition. Annual Review of 

Ecology, Evolution, and Systematics 46:145–167. 

Seneviratne, S., X. Zhang, M. Adnan, W. Badi, C. Dereczynski, A. Di Luca, S. Ghosh, I. 

Iskandar, J. Kossin, S. Lewis, F. Otto, I. Pinto, M. Satoh, S. M. Vicente-Serrano, M. 

Wehner, and B. Zhou. 2021. Weather and Climate Extreme Events in a Changing Climate. 

Pages 1513–1766 in V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. 

Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. 

B. R. Matthews, T. K. Maycock, T. Waterfield, ,O. Yelekçi, R. Yu, and B. Zhou, editors. 

Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the 

Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge 

University Press, Cambridge, United Kingdom and New York, NY, USA. 

Starostka, V. J., and R. L. Applegate. 1970. Food Selectivity of Bigmouth Buffalo , Ictiobus 

cyprinellus , in Lake Poinsett , South Dakota. Transactions of the American Fisheries 

Society 99:571–576. 

Stockwell, J. D., J. P. Doubek, R. Adrian, O. Anneville, C. C. Carey, L. Carvalho, L. N. de 

Senerpont Domis, G. Dur, M. A. Frassl, H.-P. Grossart, B. W. Ibelings, M. J. Lajeunesse, A. 

M. Lewandowska, M. E. Llames, S.-I. S. Matsuzaki, E. R. Nodine, P. Nõges, V. P. Patil, F. 

Pomati, K. Rinke, L. G. Rudstam, J. A. Rusak, N. Salmaso, C. T. Seltmann, D. Straile, S. J. 

Thackeray, W. Thiery, P. Urrutia-Cordero, P. Venail, P. Verburg, R. I. Woolway, T. Zohary, 

M. R. Andersen, R. Bhattacharya, J. Hejzlar, N. Janatian, A. T. N. K. Kpodonu, T. J. 

Williamson, and H. L. Wilson. 2020. Storm impacts on phytoplankton community dynamics 

in lakes. Global Change Biology:1–27. 

Taranu, Z. E., S. R. Carpenter, V. Frossard, J. P. Jenny, Z. Thomas, J. C. Vermaire, and M. E. 

Perga. 2018. Can we detect ecosystem critical transitions and signals of changing resilience 

from paleo-ecological records? Ecosphere 9: e02438. 

Thompson, R. M., U. Brose, J. A. Dunne, R. O. Hall, S. Hladyz, R. L. Kitching, N. D. Martinez, 

H. Rantala, T. N. Romanuk, D. B. Stouffer, and J. M. Tylianakis. 2012. Food webs: 

Reconciling the structure and function of biodiversity. Trends in Ecology and Evolution 

27:689–697. 



146 

 

 

 

Thornton, J. A., W. R. Harding, M. Dent, R. C. Hart, H. Lin, C. L. Rast, W. Rast, S. O. Ryding, 

and T. M. Slawski. 2013. Eutrophication as a “wicked” problem. Lakes and Reservoirs: 

Research and Management 18:298–316. 

Turner, M. G., W. J. Calder, G. S. Cumming, T. P. Hughes, A. Jentsch, S. L. LaDeau, T. M. 

Lenton, B. N. Shuman, M. R. Turetsky, Z. Ratajczak, J. W. Williams, A. P. Williams, and S. 

R. Carpenter. 2020. Climate change, ecosystems and abrupt change: Science priorities. 

Philosophical Transactions of the Royal Society B: Biological Sciences 375. 

Tyson, J. T., and R. L. Knight. 2001. Response of Yellow Perch to Changes in the Benthic 

Invertebrate Community of Western Lake Erie. Transactions of the American Fisheries 

Society 130: 766–782. 

Vadeboncoeur, Y., D. Lodge, and S. Carpenter. 2001. WHOLE-LAKE FERTILIZATION 

EFFECTS ON DISTRIBUTION OF PRIMARY PRODUCTION BETWEEN BENTHIC 

AND PELAGIC HABITATS. Ecology 82:1065–1077. 

Vadeboncoeur, Y., K. S. McCann, M. J. Vander Zanden, and J. B. Rasmussen. 2005. Effects of 

multi-chain omnivory on the strength of trophic control in lakes. Ecosystems 8:682–693. 

Vadeboncoeur, Y., M. J. Vander Zanden, and D. M. Lodge. 2002. Putting the Lake Back 

Together : Reintegrating Benthic Pathways into Lake Food Web Models BioScience 44: 44–

52. 

Vanni, M. J., W. H. Renwick, J. L. Headworth, J. D. Auch, and M. H. Schaus. 2001. Dissolved 

and particulate nutrient flux from three adjacent agricultural watersheds: A five-year study. 

Biogeochemistry 54:85–114. 

Walter, J. A., C. D. Buelo, A. F. Besterman, S. J. Tassone, J. W. Atkins, and M. L. Pace. 2022. An 

algorithm for detecting and quantifying disturbance and recovery in high-frequency time 

series. Limnology and Oceanography: Methods 20:338–349. 

Walter, J., and C. Buelo. 2022. jonathan-walter/disturbhf: lno-methods paper version (v1.0.0). 

Zenodo. 10.5281/zenodo.6472554 

Wang, S. C., X. Liu, Y. Liu, and H. Wang. 2020. Benthic-pelagic coupling in lake energetic food 

webs. Ecological Modelling 417:108928. 

Ward, C. L., and K. S. McCann. 2017. A mechanistic theory for aquatic food chain length. 

Nature communications 8:2028. 

Weber, M. J., and M. L. Brown. 2011. Relationships among invasive common carp, native fishes 

and physicochemical characteristics in upper Midwest (USA) lakes. Ecology of Freshwater 

Fish 20:270–278. 

Werner, E. E., and D. J. Hall. 1988. Ontogenetic habitat shifts in bluegill: the foraging rate-

predation risk trade-off. Ecology 69:1352–1366. 

Wilkinson, G., T. Butts, E. Sandry, M. Simonson, and M. Weber. 2022. Experimental evaluation 

of the effects of bigmouth buffalo (Ictiobus cyprinellus) density on shallow lake 

ecosystems. Earth Arxiv. 

Wilkinson, G. M., S. R. Carpenter, J. J. Cole, M. L. Pace, R. D. Batt, C. D. Buelo, and J. T. 

Kurtzweil. 2018. Early warning signals precede cyanobacterial blooms in multiple whole-

lake experiments. Ecological Monographs 88:188–203. 

Winslow, L. A., J. A. Zwart, R. D. Batt, H. A. Dugan, R. I. Woolway, J. R. Corman, P. C. 

Hanson, and J. S. Read. 2016. LakeMetabolizer: an R package for estimating lake 



147 

 

 

 

metabolism from free-water oxygen using diverse statistical models. Inland Waters 6:622–

636. 

Wojcik, L. A., R. Ceulemans, and U. Gaedke. 2021. Functional diversity buffers the effects of a 

pulse perturbation on the dynamics of tritrophic food webs. Ecology and Evolution 

11:15639–15663. 

Wolkovich, E., S. Allesina, K. Cottingham, K. Moore, S. Sandin, and C. de Mazancourt. 2014. 

Linking the green and brown worlds : the prevalence and effect of multichannel feeding in 

food webs. Ecology 95:3376–3386. 

Vander Zanden, M. J., T. E. Essington, and Y. Vadeboncoeur. 2005. Is pelagic top-down control 

in lakes augmented by benthic energy pathways? Canadian Journal of Fisheries and Aquatic 

Sciences 62:1422–1431. 

vander Zanden, M. J., and Y. Vadeboncoeur. 2002. Fishes as integrators of benthic and pelagic 

food webs in lakes. Ecology 83:2152–2161. 

Zanette, L. Y., and M. Clinchy. 2019. Ecology of fear. Current Biology 29: 309–313  

 



 

 

 

 

1
4
8
 

TABLES  

Table 1. Mean (s.d.) of water quality metrics (n=46 – 47) and macrophyte dry biomass (n = 2) along with the added fish biomass for 

each food web (n.p. = not present). Pulsed refers to ponds that received the two nutrient additions and reference are ponds that did not.  

 Low Coupling Intermediate High Coupling 

Variable Pulsed Reference Pulsed Reference Pulsed Reference 

Total P (µg L-1) 39 (11) 47 (22) 70 (47) 51 (36) 35 (12) 46 (12) 

Total N (mg L-1) 0.39 (0.15) 0.41 (0.15) 0.41 (0.2) 0.42 (0.18) 0.39 (0.16) 0.36 (0.15) 

Soluble P (µg L-1) 0.16 (0.32) 2.1 (2.2) 0.86 (1.4) 3.5 (3.8) 0.19 (0.31) 5.5 (6.5) 

Nitrate – N (mg L-1) 0.13 (0.07) 0.12 (0.07) 0.14 (0.08) 0.14 (0.08)  0.14 (0.07) 0.13 (0.08) 

Ammonium – N (mg L-1) 0.03 (0.03) 0.04 (0.04) 0.04 (0.04) 0.03 (0.04) 0.02 (0.03) 0.02 (0.03) 

Macrophytes (g m-2) 76 (3.4) 80 (15) 79 (55) 190 (96) 100 (40) 100 (12) 

Bluegill (kg ha-1) 21.0 20.4 20.5 20.5 20.3 20.5 

Yellow Perch (kg ha-1) 19.8 19.8 19.9 19 19.4 19.7 

Largemouth Bass (kg ha-1) n.p. n.p. 23.9 25.7 22.9 30.4 

Fathead Minnow (kg ha-1) n.p. n.p. n.p. n.p. 9 9 
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Table 2. Response and recovery times of experimental ponds based on a response threshold of 

2.0 and recovery threshold of 0.5. If a response did not occur, it was listed as not detected (n.d.), 

and therefore a recovery could not be recorded. The days to response is the difference between 

the day when a response was triggered and the addition of a nutrient pulse. The days to recover is 

the difference between the day a response was detected and the day the pond recovered.  

 

 
 Chlorophyll-a  

Gross Primary 

Production Respiration 

 Nutrient 

Pulse 

Days to 

Respond 

Days to 

Recover 

Days to 

Respond 

Days to 

Recover 

Days to 

Respond 

Days to 

Recover 

Low 

Coupling 

Pulse 1 23 6 n.d. -- n.d. -- 

Pulse 2 8 22 n.d.  -- n.d. -- 

Intermediate 

Coupling 

Pulse 1 18 24 11 11 n.d. -- 

Pulse 2 20 n.d. 21 5 21 4 

High 

Coupling 

Pulse 1 n.d. -- n.d. -- n.d. -- 

Pulse 2 n.d. -- n.d. -- n.d. -- 
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FIGURES  

 
Figure 1. Conceptual diagram of the experimental design of the six pond ecosystems. Dark 

arrows indicate benthic food web pathways and light arrows indicate pelagic food web pathways. 

Text labels denote common names of organisms. This diagram does not represent the actual 

layout of the reference and pulsed ponds which were randomized.   
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Figure 2. Food web context for experimental ponds over the course of the experiment for 

zooplankton biomass (A – C), macroinvertebrate density (D – F), and periphyton areal biomass 

(G – I).   
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Figure 3. Dynamics of chlorophyll-a concentration, gross primary production (GPP), respiration 

(absolute value, |R|), and net ecosystem production (NEP). Data were fitted with LOESS 

regression analysis (10% span) for visualization purposes, standard error is defined by the shaded 

region. The dark colored line indicates the disturbed time series, and the dark gray line indicates 

the reference time series. In all figures, the dashed vertical line denotes the nutrient pulses on day 

of year 176 and 211 and the horizontal line at zero (panels J-L) shows whether the ecosystem 

was autotrophic (NEP > 0) or heterotrophic (NEP < 0).  
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Figure 4. Time series of modified Z-scores of chlorophyll-a concentrations (A – C), gross 

primary production (D – F), respiration (G – I), and net ecosystem production (J – L) generated 

by the response detection algorithm (Walter et al. 2022). In all figures, the thick horizontal line 

denotes the response threshold, and the thin horizontal line denotes the recovery threshold. The 

recovery threshold cannot be documented until a disturbance has occurred. The dashed vertical 

lines indicate when the nutrient pulses were delivered to each pond.  
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Figure 5. The eigenvalues (dark lines) and their bootstrapped standard error (shaded polygons) 

of chlorophyll-a time series from ponds that received nutrient pulses (A-C) and reference ponds 

(D-F) at optimal order 1. In all figures, the dashed vertical line denotes the nutrient pulses and 

the horizontal dashed line at 1 is the threshold by which eigenvalues must cross above from 

below to be considered a critical transition. 
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SUPPLEMENTAL INFORMATION FOR CHAPTER 3  

SUPPLEMENTAL METHODS  

Periphyton 

Periphyton was brushed, scraped, and rinsed off the substrate (0.017 m2) with deionized 

water and diluted to a known volume in amber bottles before analysis (Jacoby et al. 1991, Carey 

and Wahl 2011). Samples from each pond were homogenized to loosen algal ‘clumps’ and 

filtered onto Whatman glass fiber filters (0.45 µm). Areal chlorophyll-a (µg/m2) was measured 

via acetone extraction using sonication (Bidigare et al. 2005) and analyzed using fluorometry 

(EPA Method 445.0) on a Turner Designs Trilogy Fluorometer (Arar and Collins 1997, Childress 

et al. 1999, Turner Designs 2001). 

 

Nutrients  

Phosphorus was measured via the phosphomolybdenum blue method (EPA method 365.1 

v2) and nitrogen was measured via second-derivative ultraviolet spectroscopy (Crumpton et al. 

1992, Childress et al. 1999) using an HP 8435 Spectrophotometer. Total phosphorus and nitrogen 

samples underwent a persulfate digestion before analysis to transform all P- or N- containing 

compounds into dissolved forms.  

 

Macrophytes  

 To assess macrophyte biomass, we established a transect parallel to the natural shoreline 

of the pond and biomass samples were collected at six points along the transect with a two-sided 

rake (0.4 m2; Mikulyuk et al., 2011). Macrophyte stems and leaves were then dried for 48 hours 

at 60 ºC and weighed to quantify dry-weight biomass.  
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Zooplankton  

 Zooplankton were identified using a Leica MZ8 stereomicroscope connected to Motic 

Images software in a 1 mL subsample. If less than 60 organisms were identified within the 1 mL 

subsample, another subsample was counted. Up to 25 individuals per taxon were measured per 

sample to calculate dry mass per liter using standard length-mass regressions (Dumont et al. 

1975; McCauley 1984).  

 

Macroinvertebrates  

 We added 0.1% Rose Bengal Dye to preserved macroinvertebrate samples in order to 

assist with later sorting. In the lab, macroinvertebrates were further sieved on a 500-µm pan 

sieve and individuals were removed and identified to the lowest possible order or family. A 

stereomicroscope was used to identify mollusks and insects to family. Leeches and oligochaetes 

were identified to class. This level of taxonomic resolution is sufficient to reflect community 

patterns (Bowman and Bailey 1997). Sorted individuals were then used to calculate taxon 

richness and density (number of individuals/m2).  

 

Dissolved Oxygen Data Cleaning 

 Dissolved oxygen (DO) concentration was measured every 30 minutes in the surface 

waters of each pond over the course of the 96-day experiment. Prior to calculating daily rates of 

ecosystem metabolism, DO data were inspected and cleaned to account for times when a change 

in DO concentration was likely a result of physical processes (e.g., vertical mixing) rather than 

biological production or respiration. We used a conservative threshold of a change of 2.0 mg DO 

L-1 to identify these times. All times when DO concentration decreased by 2.0 mg L-1 or more 
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from the previous measurement (i.e., a 2.0 mg L-1 drop in 30 minutes) were flagged and removed 

along with the subsequent five measurements (three hours total). These three-hour periods were 

then backfilled via linear interpolation. The majority of days did not require any cleaning and 

backfilling of DO data. Out of 576 total days (96 per pond), 345 days did not have any flagged 

DO measurements, 144 days had one flagged measurement, 71 days had two flagged 

measurements, and only 16 days had three or more flagged measurements.  

 As described in the manuscript text, calculating daily rates of metabolism using the free-

oxygen method can result in erroneous estimates (i.e., negative GPP, positive R), and any days 

for which calculations returned an erroneous estimate were removed prior to further analyses. 

This resulted in the removal of 62 days due to erroneous metabolism estimates (range 4 – 18 

days across all ponds), 40 of which were from days that did not have any flagged and cleaned 

DO measurements.   
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SUPPLEMENTAL TABLES  

 

Table S1. Mass, in grams, of nitrogen and phosphorus added to the experimental research ponds 

for each nutrient pulse along with the percent increase in ambient phosphorus concentrations.  

 NH4NO3 NaH2PO4(H2O)2 Ambient increase 

Nutrient Pulse 1 21.36 3.33 3 % 

Nutrient Pulse 2 45.01 7.02 5 % 

 

Table S2. Akaike Information Criterion corrected for small sample size (AICc) of online 

dynamic linear autoregressive models of chlorophyll-a concentration for each experimental pond 

at optimal order (p) of 1 or 2 . Bold indicates a model was significantly different than the other 

optimal order (ΔAICc > 2; Burnham & Anderson, 2004).  

 p = 1 p = 2 ΔAICc 

Low Coupling – pulsed  318.06 319.64 1.58 

Low Coupling – reference  357.32 357.29 0.03 

Intermediate – pulsed 530.03 559.52 29.49 

Intermediate – reference  319.05 325.18 6.13 

High Coupling – pulsed  239.41 267.05 27.64 

High Coupling – reference  382.26 383.24 0.98 
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Table S3. The number of individuals identified in the stomach contents of fish at the end of the 

experiment collected via gastric lavage grouped by taxonomic identity. Macrophytes included 

plant pieces and stems, miscellaneous eggs were mostly frog eggs but some fish eggs as well, 

and frog refers to adults. If individuals of a certain taxa were not identified, they were marked as 

not detected (n.d.).  

  Bluegill Yellow Perch Largemouth Bass 

Low Coupling 

Zooplankton 32 6 -- 

Macroinvertebrate 115 45 -- 

Misc. Eggs  3 n.d. -- 

Macrophytes 16 8 -- 

Larval fish n.d. 11 -- 

Frog n.d. n.d. -- 

Intermediate  

Zooplankton 11 n.d. n.d. 

Macroinvertebrate 55 25 22 

Misc. Eggs  10 n.d. n.d. 

Macrophytes 16 1 1 

Larval fish n.d. 7 4 

Frog n.d. n.d. n.d. 

High Coupling 

Zooplankton 11 2 n.d. 

Macroinvertebrate 72 35 6 

Misc. Eggs  1 -- n.d. 

Macrophytes 15 2 1 

Minnow n.d. 2 1 

Larval fish n.d. n.d. n.d. 

Frog n.d. n.d. 1 
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Table S4. Response detection algorithm results for chlorophyll-a, gross primary production, 

respiration, and net ecosystem production with three rolling window lengths: five days, seven 

days, and ten days. The days to respond quantifies the number of days following the first or 

second nutrient pulse that it took Z-scores to move above the response threshold (Z = 2.0). Days 

to recover quantifies the number of days, once the Z-scores passed the response threshold, to 

move below the recovery threshold (Z = 0.5).   

 

   Chlorophyll-a 
Gross Primary 

Production 
Respiration 

 Window Nutrient 

Pulse 

Days to 

Respond 

Days to 

Recover 

Days to 

Respond 

Days to 

Recover 

Days to 

Respond 

Days to 

Recover 

Low 

Coupling 

7 days Pulse 1 23 6 n.d. -- n.d. -- 

7 days Pulse 2 8 22 n.d.  -- n.d. -- 

Intermediate 

Coupling 

7 days Pulse 1 18 24 11 11 n.d. -- 

7 days Pulse 2 20 n.d. 21 5 21 4 

High 

Coupling 

7 days Pulse 1 n.d. -- n.d. -- n.d. -- 

7 days Pulse 2 n.d. -- n.d. -- n.d. -- 

Low 

Coupling 

5 days Pulse 1 24 4 9 5 n.d. -- 

5 days Pulse 2 7 15 n.d. -- n.d. -- 

Intermediate 

Coupling 

5 days Pulse 1 18 25 18 22 n.d. -- 

5 days Pulse 2 19 9 19 9 21 4 

High 

Coupling 

5 days Pulse 1 n.d. -- n.d. -- n.d. -- 

5 days Pulse 2 n.d. -- n.d. -- n.d. -- 

Low 

Coupling 

10 days Pulse 1 25 6 n.d. -- n.d. -- 

10 days Pulse 2 7 20 n.d. -- n.d. -- 

Intermediate 

Coupling 

10 days Pulse 1 5 38 4 17 n.d. -- 

10 days Pulse 2 19 n.d. 22 4 n.d. -- 

High 

Coupling 

10 days Pulse 1 n.d. -- n.d. -- n.d. -- 

10 days Pulse 2 n.d. -- n.d. -- 21 -- 
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SUPPLEMENTAL FIGURES  

 

Figure S1. Time series of zooplankton biomass (top row, A - C), macroinvertebrate density 

(middle row, D - F), and periphyton areal biomass (bottom row, G - I). The dark colored line 

indicates the disturbed time series, and the gray line indicates the reference time series. 

  



162 

 

 

 

 
Figure S2. Time series of total nitrogen (mg L-1) and phosphorus (µg L-1). Data were fitted with 

LOESS regression analysis (20% span) for visualization purposes, error is defined by the shaded 

region. The dark colored line indicates the disturbed time series, and the gray line indicates the 

reference time series. In all figures, the dashed vertical line denotes the nutrient pulses on day of 

year 176 and 211.  
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Figure S3. Time series of modified Z-scores of chlorophyll-a concentrations (A – C) and gross 

primary production (D – F) generated by the response detection algorithm (Walter et al. 2022) 

with a 5-day window. In all figures the thick horizontal line denotes the response threshold, and 

the thin horizontal line denotes the recovery threshold. The recovery threshold can’t be 

documented until a disturbance has occurred. The dashed vertical lines indicate when the nutrient 

pulses were delivered to each pond on day of year 176 and 211.  
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Figure S4. Time series of modified Z-scores of chlorophyll-a concentrations (A – C) and gross 

primary production (D – F) generated by the response detection algorithm (Walter et al. 2022) 

with a 10-day window. In all figures the thick horizontal line denotes the response threshold, and 

the thin horizontal line denotes the recovery threshold. The recovery threshold can’t be 

documented until a disturbance has occurred. The dashed vertical lines indicate when the nutrient 

pulses were delivered to each pond on day of year 176 and 211.  
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Figure S5. The eigenvalues (dark lines) and their bootstrapped standard error (shaded polygons) 

of chlorophyll-a time series at optimal order 2 which was not significantly different than the 

optimal order 1 plots. In all figures, the dashed vertical line denotes the nutrient pulses on day of 

year 176 and 211. The horizontal dashed line at 1 is the threshold by which eigenvalues must 

cross above from below to be considered a critical transition.  
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Figure S6. Dynamics of chlorophyll-a, gross primary production (GPP), respiration (absolute 

value, |R|), and net ecosystem production (NEP). Data were fitted with LOESS regression 

analysis for visualization purposes, error is defined by the shaded region. The dark colored line 
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indicates the disturbed time series, and the gray line indicates the reference time series. In all 

figures, the dashed vertical line denotes the nutrient pulses on day of year 176 and 211 and the 

horizontal line at zero (J – L) shows whether the ecosystem was autotrophic (NEP > 0) or 

heterotrophic (NEP < 0). The five-day period of elevated surface water temperature is a red 

polygon, and the thick dashed vertical line indicates when the 2020 Iowa derecho occurred on 

DOY 223.  
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CHAPTER 4 

CHANGES IN ENERGY FLOW AND FOOD WEB STABILITY IN A NORTH 

TEMPERATE LAKE PRIOR TO AND FOLLOWING INVASION OF SPINY WATER 

FLEA (BYTHOTREPHES LONGIMANUS)  

 

In preparation for submission with coauthors B. Martin, J. Mrnak, G. Sass, M. J. Vander Zanden, 

C. Warden, G. M. Wilkinson.  

Author contributions: Butts designed the study; performed all laboratory work; cleaned, 

analyzed, and visualized the data; and wrote the manuscript. Martin, Mrnak, Sass, Vander 

Zanden, and Warden contributed to study design and data analysis. Wilkinson contributed to 

study design, data analysis, and provided feedback on writing.  

 

ABSTRACT  

Food web structure is highly dynamic with major consequences for ecosystem function 

and services. Species invasions can ‘rewire’ food webs, altering the flow of energy through the 

network, and food web stability. However, our understanding of how species invasion affects the 

distribution and magnitude of energy flux, in addition to food web stability dynamics, is limited. 

Thus, it is unclear how long and how intensely species invasion alters energy flux and food web 

stability. We used a 19-year, multi-trophic dataset of pelagic food web dynamics in Trout Lake, 

WI, USA with three distinct periods: (1) dominance by the zooplanktivore, cisco (Coregonus 

artedi); (2) increase in apex predators, lake trout (Salvelinus namaycush) and walleye (Sander 

vitreus); and (3) establishment of a mid-trophic level invader, spiny water flea (Bythotrephes 

longimanus). We employed a bioenergetics approach to quantify the dynamics and magnitude of 



169 

 

 

 

energy flux between species in the food web, in addition to quantifying food web stability 

through derivation of a Jacobian matrix using energy flux as a proxy for interaction strength. 

Energy flux dynamics were relatively steady across the first two periods with consistent 

distribution of energy flux within the food web. The introduction of Bythotrephes resulted in an 

overall decrease in total energy flux, in addition to affecting the flux of energy among lower and 

higher trophic levels. Food web stability was steady from 2001 – 2014, before sharply decreasing 

once Bythotrephes appeared in 2015. The following year, food web stability swiftly returned to 

pre-invasion levels, indicating that the Trout Lake food web was able to absorb the shock of 

species invasion. This analysis provided evidence that mid-trophic level invaders decrease total 

ecosystem energy flux, and thus overall ecosystem function, and shifted the magnitude of flux 

between lower and higher trophic levels. Despite the substantial decline in food web stability 

immediately following invasion, the change was transient, indicating that the network was able 

to recover quickly. Improving our understanding of how food web dynamics change over time is 

crucial to better predict how ecosystems may be affected by species invasion, or other 

disturbances, in the future.  

 

INTRODUCTION  

Food webs are a tangled web of species interactions, yet the patterning of those 

interactions (i.e., food web structure) can have a profound influence on population dynamics, 

ecosystem functions, and ecosystem services (Pimm, Lawton & Cohen, 1991; Barnes et al., 

2018; Moore et al., 2018). This is due to the substantial influence of food web structure on the 

flow of energy through ecosystems (Lindeman, 1942; Odum, 1968; Barnes et al., 2018). 

However, food web structure is not static, rather, it is highly dynamic with changes occurring 
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over a span of weeks (Sommer et al., 2012; Boit & Gaedke, 2014) to decades (Olivier et al., 

2019). Changes in food web structure through time can result in the ‘rewiring’ of trophic links 

where species interactions may be generated, dissolved, or altered affecting the magnitude and 

pathways of energy flow within an ecosystem (Bartley et al., 2019; Olivier et al., 2019; Kortsch 

et al., 2021). A major threat facing ecosystems are species invasions which are predicted to 

expand as globalization increases and global change opens new avenues for species invasion 

(Rahel & Olden, 2008; Hulme, 2017). Biological invasions can substantially affect food web 

structure and ecosystem functions, and in turn, ecosystem services like tourism, recreation, and 

recreational fisheries (Pejchar & Mooney, 2009; David et al., 2017; Flood et al., 2020).  

Biological invasions in lakes directly alter food web structure through direct predation of 

native species, increasing exploitative and interference competition, shifting species niche 

breadth, lowering the trophic level of consumers, and increasing interaction strengths by 

reinforcing existing trophic pathways (Vander Zanden, Casselman & Rasmussen, 1999; 

Bobeldyk & Lamberti, 2008; Crowder & Snyder, 2010; Galiana et al., 2014; Tran et al., 2015). 

Biological invasion can be an even stronger driver of energy flow in food webs than 

eutrophication or the addition or removal of planktivores (Wang et al., 2021). The effects of 

invasive species at higher trophic levels (Simon & Townsend, 2003; Bradley et al., 2019) along 

with primary consumers and producers (Strayer, 2009; Wahl et al., 2011; Karatayev, Burlakova 

& Padilla, 2015) are well known. However, for mid-trophic level invaders, our understanding of 

the potential multi-directional (e.g., top-down, bottom-up, horizontal) effects on food web 

structure, stability, and ecosystem function through time is less predictable though potentially 

substantial (Kimbro et al., 2009; Ellis et al., 2011). Opportunities to document changes in 

network stability and energy flux among species from before invasion, immediately following, 
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and longer-term effects are rare, but can greatly improve our understanding of the ecosystem-

scale effects of biological invasion (Barnes et al., 2018; Flood et al., 2020). 

Quantifying the distribution of energy flux within food webs, or the transfer of energy 

through trophic interactions, can aid in understanding how whole food webs respond to mid-

trophic level invaders. For example, changes in total energy flux or flux among trophic levels can 

quantify food web properties that are difficult to assess such as top-down versus bottom-up 

forcing (Barnes et al., 2020), or be used to quantify food web responses to perturbations 

(Schwarz et al., 2017). In addition, energy flux can be used as a proxy for overall ecosystem 

function as it comprises the sum of several individual trophic functions (Wagg et al., 2014; 

Barnes et al., 2018). Furthermore, the strength and distribution of energy flux between species in 

a food web are strongly related to local food web stability (de Ruiter, Neutel & Moore, 1995; 

McCann, Hastings & Huxel, 1998; Neutel et al., 2007; Moore & de Ruiter, 2012). Food web 

stability is a theoretical concept, defined as the ability of a food web to return to a stable 

equilibrium following a perturbation (May, 1972; McCann, 2000; Neutel & Thorne, 2014). 

Understanding how much and how long food web stability is altered by biological invasions can 

provide key insights into how vulnerable a food web may be to other disturbances following 

invasion. It remains unclear, however, how strongly a mid-trophic level invader would affect the 

distribution of energy flux within a food web and, ultimately, food web stability over time. 

Furthermore, it is uncertain what the consequences of lost stability are for real ecosystems, nor is 

it clear how long stability and energy flux may be changed in response to a species invasion. 

This is largely due to a paucity of long-term food web data and lack of clarity assessing the 

effects of invaders within ecosystems (Jeschke et al., 2014). Improving the mechanistic basis of 
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food web structure response to biological invasion is crucial to effectively manage ecosystems 

confronting local to global change.  

We estimated changes in energy flux and food web stability prior to, during, and 

following the invasion of spiny water flea (Bythotrephes longimanus) over 19 years (2001 – 

2019) in Trout Lake, Wisconsin (USA) using multi-trophic, temporally resolved species biomass 

data collected by the North Temperate Lakes – Long Term Ecological Research (NTL – LTER) 

program. Specifically, we expand on previous work in the pelagic food web of Trout Lake, WI 

which documented two major changes in food web structure (Martin, Walsh & Vander Zanden, 

2022). In 2007, a native apex predator, lake trout (Salvelinus namaycush), became more 

abundant following decades of dominance by zooplanktivorous cisco (Coregonus artedi). Then, 

in 2014, spiny water flea (Bythotrephes longimanus) appeared in the lake, a mid-trophic level 

invader that affects multiple trophic levels by feeding on zooplankton (Straile & Hälbich, 2000; 

Yan et al., 2011; Brown, Branstrator & Shannon, 2012), competing with other mid-trophic level 

consumers (e.g., Leptodora, Chaoborus, Mysis), and becoming a prey item for planktivorous 

fishes large enough to overcome its barbed caudal spine (Compton & Kerfoot, 2004; Foster & 

Sprules, 2010; Martin, Mrnak & Vander Zanden, 2023).  

Our objectives were to (1) quantify the dynamics and distribution of biomass and energy 

flux within the Trout Lake pelagic food web across 19 years, (2) quantify how the invasion of 

spiny water flea affected the flux of energy between trophic levels over time, and (3) quantify the 

dynamics of food web stability following documented changes in food web structure. We 

expected that the increase in lake trout abundance would shift the dominant energy flux 

pathways from zooplanktivory to piscivory, and the invasion of spiny water flea would 

substantially change the distribution and magnitude of energy flux within the food web by 



173 

 

 

 

altering interaction strength and species biomass. In addition, we anticipated that following the 

introduction of spiny water flea, food web stability would be lower in comparison to previous 

years due to higher energy flux from zooplankton to spiny water flea, increasing the number of 

strong interactions within the food web, thus decreasing food web stability (McCann, 2000; Zhao 

et al., 2019).  

 

METHODS 

Study system  

Trout Lake is an oligotrophic, north-temperate, large (1564 ha drainage, 35.7 m max 

depth), lake located in Vilas County, Wisconsin, USA. Trout Lake has been a part of the 

Northern Temperate Lakes – Long Term Ecological Research (NTL-LTER) program since 1981 

which has generated a long-term ecological record that has documented several significant shifts 

within the pelagic (spiny water flea, Bythotrephes longimanus invasion) (Martin et al., 2022) and 

littoral (rusty crayfish, Faxonius rusticus) (Wilson et al., 2004) food web. Long-term studies of 

fish populations from hydroacoustic surveys and gill netting have documented that 

zooplanktivorous cisco (Coregonus artedi) numerically dominates the pelagic food web of Trout 

Lake (Ahrenstorff et al., 2013). The relative abundance of cisco predators, lake trout (Salvelinus 

namaycush) and walleye (Sander vitreus) have increased in the pelagic zone of Trout Lake since 

2007 (Magnuson, Carpenter & Stanley, 2023b), with lake trout having a significant influence on 

cisco population dynamics (Parks & Rypel, 2018). Cisco can also be an important prey item for 

larger walleye, comprising up to 20 % of the pelagic component of walleye diet (Kaufman, 

Morgan & Gunn, 2009; Herwig, Zimmer & Staples, 2022). In addition to fishes, long-term data 

on the mesozooplankton and rotifer community and biomass, predatory pelagic 

macroinvertebrates (i.e., Chaoborus, Mysis, Leptodora) and the invasive Bythotrephes have been 
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collected annually. Here, we focus on the major interactions within the pelagic food web of Trout 

Lake including lake trout, walleye, cisco, pelagic macroinvertebrates, and zooplankton over 19 

years (2001 – 2019).  

 

Food web data collection and processing  

 We quantified biomass density (g ha-1) for each major component of the Trout Lake 

pelagic food web in late-July to early-August from 2001-2019 using data from the NTL-LTER 

program. Sampling design and methodological details are available in greater detail through the 

NTL-LTER program (Magnuson, Carpenter & Stanley, 2023a), but we describe specific methods 

in brief here.  

Pelagic fish abundance was estimated using NTL-LTER standardized methods (Lawson 

et al., 2015; Mrnak et al., 2021) consisting of hydroacoustic and vertical gillnet surveys between 

late-July and early-August (Magnuson et al., 2023b). Data include both fish density (fish ha-1 ± 

standard error) and species composition, though species at lower abundances may be absent from 

the hydroacoustic output yet still be present within the system (e.g., lake trout, walleye). To 

calibrate species composition estimates, standard hydroacoustic processing recommends three 

individuals per species must be collected on a vertical gillnet to assign density estimates to 

species within hydroacoustic models (Parker-Stetter et al., 2009; DuFour et al., 2021; Mrnak et 

al., 2021), which can lead to species known to be in the lake not appearing in each year’s 

estimates. Greater detail on the standard NTL-LTER calibration of species-specific density 

estimates can be found in Mrnak et al. (2021). The average size of each fish species, each year, 

was quantified by applying a dorsal aspect equation converting species’ average target strength in 

decibels to fish total length in millimeters (Love, 1971; Lawson et al., 2015; Parks & Rypel, 
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2018). Trout Lake-specific length-weight regressions were then calculated for each target fish 

species (i.e., lake trout, cisco, walleye) from length and weight data collected via vertical gill 

nets at multiple depths, fyke nets, seining, and electrofishing since 1981 (Supplementary Table 

S1;Magnuson, Carpenter & Stanley, 2022a). Annual species average length derived from the 

hydroacoustic surveys was then applied to the Trout Lake-specific length-weight regression to 

get an average weight (g) per fish species per year. The average weight was then applied to each 

species’ density estimate (fish ha-1) to calculate fish species’ biomass density (g ha-1). Lake 

whitefish (Coregonus clupeaformis) were also reported in the hydroacoustic surveys for Trout 

Lake (Magnuson et al., 2023b); however, whitefish are ecologically benthivores (Rennie, Gary 

Sprules & Johnson, 2009), and thus did not have a substantial effect on the pelagic food web of 

Trout Lake considered here. To account for pelagic-littoral walleye feeding behavior (Vander 

Zanden & Vadeboncoeur, 2002) we reduced walleye biomass to 20% of their observed biomass 

density. We chose 20% as cisco accounted for roughly 20% of walleye diet in another north 

temperate lake in Minnesota with a similar food web determined via stable isotope analyses 

(Herwig et al., 2022). 

Pelagic macroinvertebrates, including Bythotrephes (2014), were collected via annual 

nighttime tows (1 mm mesh, 1 mm diameter) between late-July to early-August to calculate 

density (pelagic macroinvertebrates m-2 ± standard error) (Magnuson, Carpenter & Stanley, 

2022b). The pelagic macroinvertebrate community consisted of Chaoborus, Leptodora, Mysis, 

and following 2014, Bythotrephes. Data were converted to pelagic macroinvertebrates ha-1 to 

match the density estimates for other species. Nighttime tows occurred at five sampling stations 

throughout Trout Lake, though we restricted depths to three sampling stations ranging between 

20 – 32 m. Night sampling was performed to provide the best estimate of macroinvertebrates that 
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perform diel vertical migration (Nero & Davies, 1982; Voss & Mumm, 1999; Doubek, Goldfarb 

& Stockwell, 2020). Density was averaged among sampling stations, and the standard error was 

propagated between depths. Bythotrephes appeared in Trout Lake in 2014; however, the pelagic 

macroinvertebrate samples were collected prior to Bythotrephes invasion thus they only appear 

in the time series beginning in 2015. Biomass density was estimated using length measurements 

to the nearest 0.1 mm using a Leica MZ8 stereomicroscope and applied to taxa-specific length-

mass regressions and density estimates to calculate biomass density (g ha-1) for each taxon 

(Dumont, Van de Velde & Dumont, 1975; Dumont & Balvay, 1979; Sell, 1982; Branstrator, 

2005) (supplemental information).  

Zooplankton were sampled fortnightly during the ice-free season at Trout Lake’s maximum 

depth (35.7 m) (Magnuson, Carpenter & Stanley, 2022c), though we only used samples taken 

between July and August to match the sampling time of pelagic macroinvertebrates and fish 

biomass. Zooplankton were sampled via a single tow 1-m above the bottom using a Wisconsin 

net (80 µm) in addition to a 2-m long Schindler trap (53 µm) sampled at multiple depths. Data 

were hypsometrically pooled over the entire water column and counted for copepods, 

cladocerans, and rotifers which were summed over sex and stage to attain a lake wide density 

estimate (zooplankton L-1). Multiple samples within a given year were averaged (± standard 

error) to obtain a single estimate of zooplankton biomass per year based on density estimates and 

length-mass regressions from the literature and NTL-LTER lakes (Kratz, Montz & Frost, 2022). 

Finally, we converted zooplankton biomass to cubic meters and multiplied the value by the depth 

of the water column (35. 7 m) to get a biomass density estimate akin to our estimates for fish and 

pelagic macroinvertebrates biomass (g ha-1). We grouped zooplankton species into three groups 

for later analyses: Cladocera, Copepoda, and Rotifera.  
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Food Web Interaction Matrices  

We generated two interaction matrices to specify trophic links between species in the 

Trout Lake pelagic food web (Figure 1). First, we created a binary interaction matrix (Figure 1, 

Table S2) that stated whether two species are likely to interact within a food web with the 

assumption that predators will feed the most on prey that is the most readily available in terms of 

biomass density (Gauzens et al., 2019). A binary interaction matrix may under- or over-estimate 

the energetic flux between taxa as species prey preference is influential in determining food web 

dynamics (Post, Conners & Goldberg, 2000). Thus, we also created a preference matrix (Figure 

1, Table S3) where interactions were weighted by estimated contributions to a predators diet. 

Preferences were based on stable isotope studies and diet data from similar north-temperate lakes 

in addition to recommendations from managers and fisheries scientists working in Trout Lake. 

Greater detail on the decisions made for trophic links and prey preferences are provided in the 

supplement.  

 

Energy Flux and Food Web Stability 

 To assess the distribution and magnitude of energy flux over time we used a bioenergetics 

approach to quantify the flux of energy between species (Barnes et al., 2018; Gauzens et al., 

2019; Jochum et al., 2021). In addition to biomass density, average body mass, and trophic 

interactions, it is also necessary to quantify metabolic demand, losses to predators via 

consumption, and assimilation efficiency (Moore & de Ruiter, 2012). To do so, we used the R 

package, fluxweb, that relies on the metabolic theory of ecology to quantify energy flux between 

species (Brown, 2004; Gauzens et al., 2019). Calculation of energy flux, and calculation of 

inputs for metabolic losses (Brown, 2004), assimilation efficiencies (Lang et al., 2017), and 

average body mass per year are available in the supplementary information (Supplementary 
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Information). Briefly, the model quantifies energy flux from the top-down where a species loss to 

predation and metabolism are balanced by the energy gained from its prey which are then 

multiplied by a prey’s assimilation efficiency (Lang et al., 2017; Jochum et al., 2021). Thus, 

energy flux is quantified by calculating the sum of ingoing fluxes for each species to account for 

all losses, either by consumption or physiological loss, then individual fluxes for pair-wise 

predatory-prey interactions are calculated based on predator preferences and resource availability 

(Gauzens et al., 2019). For Trout Lake, lake trout and walleye are the apex predators and 

zooplankton were the lowest trophic level considered. Average body mass and areal biomass 

density estimates of phytoplankton are not available for Trout Lake, however, given the model 

takes a top-down approach, this does not distort the energy flux estimates within the food web. 

Thus, we calculated energy flux for five major energy fluxes in the Trout Lake pelagic food web: 

(1) cisco → lake trout/walleye flux, (2) pelagic macroinvertebrates → lake trout/cisco flux, (3) 

zooplankton → cisco/pelagic macroinvertebrates flux, (4) zooplankton → cisco/pelagic 

macroinvertebrates/Bythotrephes flux, and (5) Bythotrephes → cisco flux which has been 

recently reported as a potentially significant interaction (Martin et al., 2023). 

 To quantify the dynamics of food web stability over time we again used a bioenergetics 

approach using the R package, fluxweb, to calculate food web stability under a steady state 

assumption following the framework presented in Moore & De Ruiter (2012). Briefly, the model 

takes the estimates of energy flux from each food web and generates Jacobian matrices (Jij) 

where Jij relates the effect that species j has on species i. The model also requires growth rates for 

the lowest trophic level considered in the food web, in this instance, zooplankton. Growth rates 

were estimated using a standard allometric equation (Brown, 2004) based on species’ body mass 

as recommended by Gauzens et al. (2019). The model then considers a food web stable only 
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when the real parts of eigenvalues from the Jacobian matrix are all negative (Neutel, Heesterbeek 

& de Ruiter, 2002; Neutel et al., 2007). In this case, the stability metric (s) is the absolute value 

of the real part of the largest eigenvalue with a smaller value of s indicating that a food web is 

more stable, and negative values representing the food web is within a stable state (Moore & de 

Ruiter, 2012). Stability, here, is an inference of the likelihood of food web interactions to persist 

over time and in the face of external and internal perturbations. It is important to note, however, 

that this definition of stability simply implies that a food web with a low value of s is more stable 

than higher values of s (Neutel et al., 2002; Sauve et al., 2016), and decreased stability infers 

there is a higher chance that the food web is more vulnerable to change over time. Detailed 

equations and a description of how model estimates were selected or calculated to estimate food 

web stability are discussed in the supplement (Supplementary Information).   

 We assessed temporal dynamics in comparison to the framework presented by Martin et 

al., (2022) where Trout Lake had three periods of distinct food web structures. First, from 2001 – 

2006 the food web was dominated by cisco biomass, then, in 2007, lake trout and walleye 

increased in relative abundance within the pelagic food web, and finally, Bythotrephes appeared 

in 2014. We also performed sensitivity analyses as described in Gauzens et al. (2019) to assess 

whether uncertainty in the parameter estimates (e.g., assimilation efficiency, metabolic losses, 

species’ prey preferences) led to large deviations in the estimation of energy flux and food web 

stability. Parameter values were increased in steps of 0.01 from 0 to 0.12 for 50 replicates each to 

quantify the mean standard deviation of an estimate’s departure from its original value (e.g., 

coefficient of variation, cv). If a parameter’s cv increases swiftly as the parameter moves further 

away from its original value, then the energy flux estimate is significantly affected by the input 

parameters and may not be robust to measurement uncertainty. Whereas, if a parameter’s cv 
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increases slowly, or not at all, then the estimates of energy flux or food web stability are robust. 

All analyses were conducting using the statistical software R (R Core Team, 2022) using the 

tidyverse (Wickham et al., 2019), lubridate (Grolemund & Wickham, 2011), and fluxweb 

(Gauzens et al., 2019) packages.  

 

RESULTS  

Trout Lake pelagic food web biomass dynamics  

 The dynamics and distribution of species biomass varied between the three periods (2001 

– 2006; 2007 – 2014, after an increase in lake trout abundance from 2015 – 2019, following 

Bythotrephes invasion) in Trout Lake. From 2001 – 2006, cisco biomass (kilograms per hectare, 

kg ha-1) was relatively steady (81.98 ± 18.71, mean ± standard deviation (s.d.)), with a peak in 

2004 (Figure 2A). Mysis biomass (milligrams per square meters, mg m-2) dominated the pelagic 

macroinvertebrate community across all three food web periods, whereas Chaoborus and 

Leptodora biomass (mg m-2) diverged in 2005 and 2006 (Figure 2B). The zooplankton 

community followed a cyclical pattern increasing then decreasing year-to-year, roughly opposite 

of the cisco biomass dynamics (Figure 2). Zooplankton community biomass (mg m-2) was 

dominated by Copepoda and Cladocera, with Rotifera biomass an order of magnitude lower but 

following similar annual dynamics (Figure 2C).  

From 2007 – 2014, lake trout and walleye were detected by hydroacoustic surveys for the 

first time, altering fish community dynamics with lake trout dominating initially before gradually 

decreasing across the period (Figure 1A). The pelagic-adjusted estimate of walleye biomass (kg 

ha-1) was lower than cisco and lake trout biomass (kg ha-1) throughout the period were relatively 

steady (2.70 ± 1.54, mean ± s.d.). The only exception was 2011 when both apex predators 

increased (walleye by 152% and lake trout by 30%), co-occurring with a 72 % decrease in cisco 
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biomass. Mysis, Chaoborus, and Leptodora biomass remained relatively steady from 2007 – 

2012 (Figure 2B). However, Chaoborus decreased by 92% from 2012 - 2014 concurrent with a 

169% increase in Leptodora biomass over the same period. Like 2001 – 2006, zooplankton 

biomass dynamics were largely steady with major changes corresponding to cisco biomass 

dynamics. For example, a 66 ± 3% (mean ± s.d.) decrease in total zooplankton biomass was 

concurrent with a 201% increase in cisco biomass in 2012 from the previous year. In addition, 

zooplankton community biomass corresponded to the increase of Leptodora biomass in 2013 and 

2014 (Figure 2C). Cladocera biomass decreased by 74% in 2014 and Rotifera biomass increased 

by 647% in 2013 and remained elevated. Meanwhile, Copepoda biomass remained relatively 

steady.   

From 2015 – 2019, when Bythotrophes established within the lake, there was a slight 

decrease in cisco biomass (32%) and a substantial decrease in the pelagic-adjusted estimate of 

walleye biomass from 2013 to 2015 (87%). Although walleye biomass did return to previously 

estimated biomass densities (2007 – 2014) in 2017 and 2018, cisco continued to gradually 

decline. Lake trout also continued to gradually decline and were only detected by hydroacoustic 

surveys every other year starting in 2015 (Figure 1A). Bythotrephes biomass gradually increased 

following 2015, peaking in 2017 (14 ± 2 mg m-2, estimate ± standard error), then gradually 

decreasing until the end of the record. Bythotrephes introduction also coincided with an overall 

drop in Chaoborus and Leptodora biomass from 2015 – 2019 in comparison to previous periods. 

We observed the greatest decrease in Leptodora biomass which dropped by 100% in 2015. Both 

Chaoborus and Leptodora increased following 2014, though both species’ biomass remained 

lower in comparison to previous periods. Zooplankton biomass did not vary as much as other 

trophic levels. Rotifera remained elevated, continuing the trend that began in 2013, and 
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Copepoda biomass remained relatively steady. Cladocera biomass dynamics continued their 

decreasing trend began in 2013 and remained lower than Copepoda biomass before once again 

closely following Copepoda biomass dynamics (Figure 2C)  

 

Distribution and dynamics of energy flux  

Total energy flux ranged between 26,090,066 – 147,721,122 (binary interaction matrix) 

or 25,969,561– 141,745,640 kilojoules per hectare per day (preference interaction matrix) across 

the three periods (Figure 3). Across the first two periods (2001 – 2014), total energy flux 

followed a relatively consistent pattern: decreasing for two – three years before increasing again. 

Within these cycles, total energy flux peaked in 2001, 2004, 2007, 2010, 2014, and 2016, with 

the highest total energy flux estimated in 2004. Apart from 2004, total energy flux dynamics 

remained relatively steady across all three periods. However, the two estimates of energy flux in 

2018 and 2019 were the lowest recorded for the entire time-series following the peak in 

Bythotrephes biomass reported above. Energy flux estimates derived from the binary interaction 

matrix were similar to estimates derived from the preference interaction matrix; however, the 

binary interaction matrix tended to produce slightly higher estimates of total energy flux.     

The distribution of energy fluxes within the Trout Lake food web substantially varied 

along with their dynamics across the three periods (Figure 4). Qualitative dynamics of energy 

flux were largely consistent between estimates derived from either the binary interaction matrix 

(Figure 4A) or preference interaction matrix (Figure 4B). However, for the estimates derived 

from the preference interaction matrix, the flux from pelagic macroinvertebrates → lake 

trout/cisco was 93 ± 1% (mean ± s.d.) lower than the binary matrix estimates. Regardless of 

interaction matrix, the largest energy flux was, by far, the flux from zooplankton → cisco/pelagic 

macroinvertebrates which remained relatively invariant over the first two time periods (2001 – 
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2015). This trend continued for the third food web period with the flux from zooplankton → 

cisco/pelagic macroinvertebrates/Bythotrephes remaining the highest flux, although the flux 

gradually decreased from 2016 – 2019. The flux from cisco → lake trout/walleye was relatively 

steady, however, following Bythotrephes introduction the flux decreased by 33% (binary matrix) 

or 32% (preference matrix), and remained lower than previous periods. As noted above, the flux 

from pelagic macroinvertebrates → lake trout/cisco was lower for estimates derived from the 

preference interaction matrix, but the temporal dynamics were consistent. The flux was cyclical 

from 2001 – 2007, increasing over three years, then decreasing over three years. Beginning in the 

second food web period, the flux from pelagic macroinvertebrates → lake trout/cisco increased 

slightly and remained relatively invariant before gradually decreasing following the introduction 

of Bythotrephes in the third food web period (2015 – 2019). The flux from Bythotrephes → cisco 

was also lower for estimates derived from the preference matrix, though estimates derived from 

both interaction matrices showed the flux gradually increase, peaking in 2017, and decreasing 

thereafter.  

 

Food web stability dynamics 

The inferred stability metric, s, showed the Trout Lake food web was in an unstable state 

across all three food web periods, though s varied little year-to-year for the first two periods. 

Stability sharply decreased (higher s indicating lower stability) when Bythotrephes appeared in 

2015 during the third food web period (Figure 5). In 2015, s increased by 7757% using the 

binary interaction matrix (Figure 5A) and by 1970% using the preference interaction matrix 

(Figure 5B). Temporal dynamics in s varied depending on the choice of interaction matrix. The 

temporal dynamics of s were steadier using the preference interaction matrix with subtle 
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increases and decreases year-to-year, in contrast to estimates using the binary interaction matrix. 

Using the binary interaction matrix, the stability metric, s, increased over three years, dropped, 

then increased again over three years in the first food web period from 2001 – 2006. Temporal 

dynamics of s were then largely steady using either interaction matrix with s decreasing (i.e., 

higher stability) in 2014 by 89% (binary) or 63% (preference) the year before Bythotrephes 

appeared and stability decreased sharply. Following 2015, s gradually increased (i.e., lower 

stability) from 2016 – 2019 using the binary interaction matrix but remained consistent over the 

same period using the preference interaction matrix.  

All sensitivity analyses demonstrated our model estimates, and the qualitative temporal 

dynamics, were robust to variation in input parameters. Increasing variability in our model inputs 

for energy flux produced minimal departures from our original estimates (cv < 5%) (Figure S1 – 

S4). Similarly, our estimates of metabolic loss and assimilation efficiency used to estimate 

stability were similarly robust to variation (Supplementary Information). However, increasing 

the variability for our input of growth rate generated greater departures from our original 

estimates, but only for some years, and only when using the binary interaction matrix 

(Supplementary Information; Figure S5 – 6).      

 

DISCUSSION  

We sought to analyze how energy flux and food web stability were altered over three 

periods in a long-term record following known changes in the fish community and the invasion 

by a mid-trophic level consumer, spiny water flea (Bythotrephes longimanus). The three periods 

followed a previously defined framework (Martin et al., 2022): dominance by cisco from 2001 – 

2006, increased abundance of apex fish predators from 2007 – 2014, and the aftermath of 
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Bythotrephes invasion from 2015 – 2019. While the increased abundance of top fish predators, 

lake trout (Salvelinus namaycush) and walleye (Sander vitreus), slightly altered certain pathways 

of energy flux within the food web, the invasion by Bythotrephes affected all energy fluxes 

within the pelagic food web and substantially decreased food web stability, regardless of which 

interaction matrix was used. However, we found that food web stability swiftly returned to pre-

invasion levels within a year, though total energy flux remained suppressed following the peak in 

Bythotrephes biomass suggesting reduced ecosystem function (Wagg et al., 2014; Barnes et al., 

2018).  

 

Energy flux dynamics  

 Assessing the distribution and dynamics of energy flux within food webs facilitates a 

greater understanding of how ecosystem function may be altered by major disturbances like 

species invasion (Odum, 1968; Barnes et al., 2018; Jochum et al., 2021). Changes in energy flux 

may reflect changes in ecosystem multifunctionality, the support of multiple trophic functions by 

the food web (Wagg et al., 2014; Barnes et al., 2018). Prior to the Bythotrephes invasion, energy 

flux within Trout Lake was dominated by cisco-zooplankton dynamics (Parks & Rypel, 2018), 

with the largest energy flux from zooplankton into the planktivores cisco and pelagic 

macroinvertebrates. The dominance of cisco zooplanktivory is illustrated by the spike in cisco 

biomass in 2004 corresponding to both the highest estimated total energy flux among years and 

energy flux into cisco over 19 years. Cisco control over zooplankton community composition 

and biomass is well-documented in lakes (Rudstam, Lathrop & Carpenter, 1993; Vivian & 

Frazer, 2021). Though lower in relative biomass, pelagic macroinvertebrates also exert top-down 

control on zooplankton, particularly Chaoborus and Leptodora (Moore, Yan & Pawson, 1994; 

Mcnaught, Kiesling & Ghadouani, 2004). In 2012, there was a substantial drop in Chaoborus 



186 

 

 

 

biomass corresponding with an increase in Leptodora biomass, likely due to a reduction in 

competitive interactions (Campbell & Knoechel, 1990). This shift likely drove the large increase 

in Rotifera biomass which are less preferred diet items for zooplankton predators (Browman, 

Kruse & John O’brien, 1989; Ahrenstorff et al., 2013). Even so, energy flux dynamics remained 

relatively steady during this period among trophic levels. While mysids can be significant 

pelagic planktivores in some (Ellis et al., 2011) but not all lakes (Griffin, O’Malley & Stockwell, 

2020), there was no evidence of a strong influence of Mysis on zooplankton in Trout Lake.  

 The increase of lake trout and walleye in the pelagic food web beginning in 2007 resulted 

in top-down control on cisco biomass (Parks & Rypel, 2018), steadying the energy flux from 

zooplankton and pelagic macroinvertebrates → cisco, and from cisco → lake trout compared to 

the first period. This shift coincided with a period of greater water clarity and lower algal 

biomass (Martin et al., 2022), similar to other trophic cascades (Carpenter, Kitchell & Hodgson, 

1985; Carpenter et al., 2001; Pace et al., 1999). The increase in lake trout abundance was 

potentially related to stocking events which increased a few years prior to 2007 (Martin et al., 

2022). The greater abundance of walleye in the pelagic zone during this period may have been 

influenced by changes in littoral habitat and littoral prey availability due to the peak in rusty 

crayfish (Faxonius rusticus) abundance, a littoral invasive species also present in the lake 

(Wilson et al., 2004; Willis & Magnuson, 2006; Roth et al., 2007). While walleye were most 

likely preying on cisco in the pelagic (Herwig et al., 2022), it is unlikely they drove cisco 

dynamics given the presence of lake trout (Parks & Rypel, 2018). However, in 2011, walleye 

biomass substantially increased in comparison to the previous year along with a slight increase in 

trout biomass, corresponding to a substantial drop in cisco biomass. (Bronte et al., 1998; Nicolle 

et al., 2011). Our estimates of fish biomass were based on the average size of a species derived 
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from target strength data which may have masked important differences in diet and predation 

pressure driven by ontogenetic changes in fish species (Galarowicz, Adams & Wahl, 2006; 

Zimmerman et al., 2009). Further, fish diets are not static and can vary seasonally (Liao, Pierce 

& Larscheid, 2002), and our focus on general preferences may over- or underestimate the weight 

of prey preference for fishes. However, we still observed clear shifts in prey biomass dynamics 

in response to fish biomass dynamics suggesting we were able to capture general predator-prey 

interactions within the food web (Perkins et al., 2022). In addition, our sensitivity analyses 

indicated our estimates were robust to variation in our inputs for prey preference across all years.  

 With the introduction of Bythotrephes in Trout Lake, there were substantial changes in 

the distribution and magnitude of energy flux of the whole food web from 2015-2019. The two 

lowest years of total energy flux estimates occurred in the two years following peak Bythotrephes 

biomass suggesting overall ecosystem function was lowered (Barnes et al., 2018; Manning et al., 

2018). Leptodora biomass substantially dropped following the invasion, consistent with other 

records of Bythotrephes invasions (Branstrator, 1995, 2005; Weisz & Yan, 2011). There was also 

lower overall Chaoborus and Mysis biomass during the third food web period, which is 

consistent with previous Bythotrephes invasion (Foster & Sprules, 2010). The presence of 

pelagic macroinvertebrates and cisco can cause a behavioral response in Bythotrephes restricting 

their habitat to the epilimnion and reducing their ability to target preferred prey items such as 

Daphnia (Young & Yan, 2008; Jokela, Arnott & Beisner, 2011). This may explain why 

Chaoborus biomass increased following Bythotrephes invasion as their diet breadth is less 

narrow than Bythotrephes (Boudreau & Yan, 2003; Strecker et al., 2006), and they may have 

taken advantage of the greater availability of Rotifera biomass (Pastorok, 1980; Moore et al., 
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1994). Despite this, Chaoborus biomass was still reduced in comparison to the previous two food 

web periods (2001 – 2014).  

Bythotrephes invasion also potentially influenced fish biomass dynamics within Trout 

Lake through competitive interactions with cisco (Walsh, Lathrop & Vander Zanden, 2017). 

While the initial increase in cisco biomass in 2016 was likely related to the decline in lake trout 

and walleye biomass (Parks & Rypel, 2018; Herwig et al., 2022), cisco biomass declined for the 

remainder of the third period (Walsh et al., 2017) which drove the decline in energy flux from 

zooplankton → cisco, and in turn, total energy flux. The flux from cisco to lake trout and walleye 

also decreased, particularly in 2018, though both lake trout and walleye were sporadically 

detected by hydroacoustic surveys and had been on a declining trend since they first appeared in 

2007. While all energy fluxes among trophic levels shifted in their temporal dynamics following 

the introduction of Bythotrephes, the major changes in biomass dynamics lasted only until 2017 

when Bythotrephes began to decline which may be attributable to cisco predation (Martin et al., 

2022, 2023). Recent work in Trout Lake demonstrated that in the early invasion period 

Bythotrephes biomass production outpaced cisco consumption, but that flipped in 2017 such that 

cisco consumption was greater than Bythotrephes biomass production indicating cisco were 

controlling Bythotrephes populations (Martin et al., 2023). This finding is also supported by the 

biomass dynamics of pelagic macroinvertebrates and zooplankton which either began to return to 

pre-invasion levels or completely recovered as in the case of Cladocera. While Bythotrephes had 

a substantial effect on energy flux dynamics as Bythotrephes biomass increased, as Bythotrephes 

influenced species biomass and interaction strength both above and below the middle trophic 

levels (Flood et al., 2020), there was no clear evidence of substantial or permanent shifts in food 

web structure. Our analysis provided a broad overview of the Trout Lake food web based on 
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average species biomass per year and inferred interactions. Future investigations would be 

improved by using refined estimates of fish size and age structure (Galarowicz et al., 2006; 

Zimmerman et al., 2009), empirical estimates of predator-prey interactions based on interaction 

probability and system-specific diet data (Poisot, Stouffer & Gravel, 2015; Pomeranz et al., 

2018), and estimates of metabolic loss and assimilation efficiency derived from species- and 

system-specific measurements (Gauzens et al., 2019). 

 

Food web stability dynamics   

The inferred stability metric, s, indicated that the Trout Lake food web was in an unstable 

state across all three periods. This implies the food web was less likely to persist through time 

and recover slowly from perturbations (Morin & Lawler, 1995; Neutel et al., 2002). However, 

the system may be stabilized by processes that we did not measure here. Indeed, stability 

analyses using Jacobian matrices, however, often find real food webs to be unstable (Moore & de 

Ruiter, 2012). This is due to ecosystem properties not well captured in steady state analyses of 

network stability which can drive the persistence of ‘unstable’ food webs (McCann, 2000). For 

example, incorporating the oscillation of interactions through time (McCann et al., 1998; 

McCann, 2000; Neutel et al., 2002), allometric scaling (Quévreux & Brose, 2019), and adaptive 

foraging (Kondoh, 2003) improve estimates of food web stability. Though Trout Lake was within 

an unstable state, we still a sharp decline in stability once Bythotrephes invaded, suggesting the 

invasion of a mid-trophic level consumer can affect food web stability. Food web stability was 

mostly invariant to whether only cisco were dominant within the food web (2001 – 2006) or 

when lake trout and walleye became more abundant (2007 – 2014) suggesting changes in native 
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predator-prey population cycles did not affect food web stability (Vandermeer, 2006; Kadoya, 

Gellner & McCann, 2018).  

When Bythotrephes appeared in 2015, there was an extreme decrease in food web 

stability (i.e., higher s) which was likely driven by decreases in zooplankton and zooplankton 

predator (e.g., cisco, pelagic macroinvertebrate) biomass in 2015, and the introduction of an 

additional strong interaction within the food web. Invasive species can have profound effects on 

energy flow within food webs through competitive exclusion and strengthening consumer-

resource interactions through predation on novel prey (Vander Zanden et al., 1999; McCann, 

2000), both of which decrease network stability (McCann, 2000; Wootton & Stouffer, 2015; 

Gellner & McCann, 2016). The substantial decrease in food web stability concurrent with 

Bythotrephes introduction, and decreasing trend in energy flux, suggest these dynamics likely 

drove the decreased food web stability of Trout Lake in 2015. However, food web stability 

swiftly returned to pre-invasion levels, potentially indicating that the Trout Lake food web was 

able to rapidly ‘absorb’ the shock of Bythotrephes interactions within the network. 

Food web stability dynamics may be a useful indicator of the effects of species invasion 

on food webs, particularly for mid-trophic level invaders which have less consistent ecosystem 

effects compared to higher trophic level invaders (Flood et al., 2020; Bradley et al., 2023). Food 

web stability returned to pre-invasion levels within one year, suggesting investigating food web 

stability dynamics may be beneficial even with only a few years of data. In Trout Lake, the swift 

return to pre-invasion food web stability, before the observed recovery of species negatively 

affected by Bythotrephes, was likely driven by cisco regulation of Bythotrephes biomass (Martin 

et al., 2023). Successful Bythotrephes biomass control by native consumers has been 

documented in other ecosystems as well (Branstrator, 2005; Keeler et al., 2015), though long-
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term effects are unclear. Boom-bust dynamics in invasive species are common (Strayer et al., 

2019; Szydlowski et al., 2023), and inferring long-term trajectories is difficult (Strayer et al., 

2017). The Bythotrephes invasion is relatively recent in Trout Lake (<10 years; Strayer et al., 

2017), thus whether food web stability will remain relatively steady, remains uncertain.  

 

Conclusions  

 Flux-based approaches are a powerful tool to assess subtle changes in food web structure 

over time and provide a way to understand the effects of invasive species in that focuses on 

ecosystem function (David et al., 2017; Flood et al., 2020). The long-term, multi-trophic food 

web record of Trout Lake provided a rare opportunity to assess the dynamics of energy flux and 

food web stability over 19 years. Here, we demonstrate how changes in food web structure 

related to changes in ecosystem function using a flux-based approach (Gauzens et al., 2019; 

Jochum et al., 2021). Further, we showed that mid-trophic level consumers can decrease the 

overall magnitude of energy flux within aquatic food webs and alter energy flux dynamics in 

both higher and lower trophic levels, while also being influenced by native consumers (i.e., 

cisco). In addition, we provide an ecological context to long-term changes in food web stability, 

showing that stability following an invasion may decrease substantially and then quickly rebound 

as the network absorbs the shock of a species invasion. To our knowledge this is one of the first 

analyses to assess food web stability through time pre- and post-species invasion using a long-

term food web record. While it remains uncertain what the longer-term effects of Bythotrephes 

invasion will be in Trout Lake, continued use of energy flux-based approaches will be useful for 

understanding and potentially predicting the changing trajectory of ecosystem structure and 

function in the face of continuing global change. 
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FIGURES  

 

Figure 1. Conceptual of Trout Lake pelagic food web with species interactions described as 

binary (top) or preferred (bottom). Binary interactions describe only whether a predator does, or 

does not, feed on a prey item whereas preferred interactions quantify the preference of a predator 

to feed on one prey species versus another. Specific diet preference values are detailed in the 

supplement. Dashed lines denote three different periods within the Trout Lake food web 

following the framework of Martin et al., 2022. Before the first dashed line denotes cisco 

dominance, between the dashed line denotes an increase in lake trout and walleye biomass in the 

food web, and following the second dashed line denotes the invasion of spiny water flea. 
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Figure 2. Time-series of species log-transformed biomass within the Trout Lake food web 

representing (A) fish species’ biomass in kilograms per hectare (ha-1), (B) pelagic 

macroinvertebrates (MIV) biomass in milligrams per square meter (m-2), and (C) zooplankton 

group biomass in milligrams per square meter (m-2). Note differences in y-axis and units between 
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each grouping of species. Dashed lines denote three different periods within the Trout Lake food 

web following the framework of Martin et al., 2022. Before the first dashed line denotes cisco 

dominance, between the dashed line denotes an increase in lake trout and walleye biomass in the 

food web, and following the second dashed line denotes the invasion of spiny water flea.  
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Figure 3. Total energy flux in kilojoules per hectare per day (kJ ha-1 d-1). Dashed lines denote 

three different periods within the Trout Lake food web following the framework of Martin et al., 

2022. Before the first dashed line denotes cisco dominance, between the dashed line denotes an 

increase in lake trout and walleye biomass in the food web, and following the second dashed line 

denotes the invasion of spiny water flea. 
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Figure 4. Energy flux for five trophic pathways in Trout Lake using the (A) binary interaction 

matrix and (B) preference interaction matrix in kilojoules per hectare per day (kJ ha-1 d-1). LT are 

lake trout, WAE is walleye, MIV is pelagic macroinvertebrates, and ZP is zooplankton. Dashed 

lines denote three different periods within the Trout Lake food web following the framework of 

Martin et al., 2022. Before the first dashed line denotes cisco dominance, between the dashed 

line denotes an increase in lake trout and walleye biomass in the food web, and following the 

second dashed line denotes the invasion of spiny water flea. 
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Figure 5. Estimated stability metric, s, for the Trout Lake food web using the (A) binary 

interaction matrix and (B) preference interaction matrix. Lower values of s represent food webs 

that are more stable compared to higher values of s, with negative values indicating a food web is 

within a stable state. Before the first dashed line denotes cisco dominance, between the dashed 

line denotes an increase in lake trout and walleye biomass in the food web, and following the 

second dashed line denotes the invasion of spiny water flea. 
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SUPPLEMENTARY INFORMATION FOR CHAPTER 4  

SUPPLEMENTAL METHODS  

Fish length-weight regressions  

 Fish lengths and weights were from data collected via the North Temperate Lakes – 

Long-Term Ecological Research program. Greater detail about collection methods is described in 

Magnuson, Carpenter & Stanley (2022). Briefly, sampling was conducted at six littoral sites with 

seine and fyke nets, electrofishing over four littoral transects, and vertically hung gill nets to 

obtain two pelagic samplers per lake from the deepest point from 1981 - 2020. Species were 

identified, measured to length in millimeters (mm), and a subset were weighed to grams (g). To 

calculate Trout Lake specific length-mass regressions for the main pelagic fish species in Trout 

Lake, we used simple linear regression to quantify the relationship between length (mm) and 

weight (g). Lake trout (Salvelinus namaycush), walleye (Sander vitreus), and cisco (Coregonus 

artedi) length-mass regressions were developed (Table S1).  

 

Pelagic macroinvertebrate length measurements  

 To calculate the mass (g) of Chaoborus spp., Leptodora kindtii, Mysis spp., and 

Bythotrephes longimanus we measured each taxa according to specifications described in 

species-specific length-mass regressions from the literature. Chaoborus, Leptodora, and Mysis 

were measured from the anterior part of their head capsule to the posterior part of their last 

abdominal segment. Bythotrephes were measured over their core body length ending at the base 

of the caudal spine as described in Branstrator (2005). The number of taxa measured per species 

was determined by the number of individuals required to reduce the coefficient of variation in 

length to less than 20% per year (McCauley, 1984). The number of individuals required to 

represent average length per year were 20 for Chaoborus, 25 for Leptodora, 25 for Bythotrephes, 

and 10 for Mysis. Individual Chaoborus mass was estimated based on dry mass estimates of 
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Chaoborus flavicans (Dumont & Balvay, 1979), which have been reported in northern Wisconsin 

lakes previously (Dodson et al., 2009). Individual Mysis mass was estimated based on dry mass 

estimates of Mysis relicta (Sell, 1982), which are present in Trout Lake (Juday & Birge, 1927). 

Leptodora kindtii and Bythotrephes longimanus dry mass was estimated from species-specific 

length-mass regressions (Dumont, Van de Velde & Dumont, 1975; Branstrator, 2005). Individual 

length measurements were applied to length-mass regressions, and we took the average of the 

mass estimate to attain the average dry mass of an individual within a given year. If too few 

individuals were present, or samples were missing for a given year, we included length estimates 

from the two years before and after to calculate the average dry mass.  

 

Binary and preference interaction matrices  

 Values for interactions between species were determined from the literature as noted in 

the footnotes of the interaction matrices (Pastorok, 1980; Bowers & Vanderploeg, 1982; 

Browman, Kruse & O’Brien, 1989; Vander Zanden & Rasmussen, 1996; Vander Zanden, Cabana 

& Rasmussen, 1997; Hovius, Beisner & McCann, 2006; Herwig, Zimmer & Staples, 2022; 

Martin, Mrnak & Vander Zanden, 2023; Table S2 – S3).Within the fluxweb model, preferences 

determine how predators quantify their foraging choices following equation (1):   

 𝑊𝑖𝑗 =  
𝑤𝑖𝑗𝐵𝑖

∑ 𝑤𝑘𝑗𝐵𝑘𝑘
 (1) 

where Wij represents preference, Bi sets the biomass of species i and w is the preference value 

determined in the matrix (i.e., the value of the ith line and jth column is non-zero if a predator j 

feeds on prey i (Gauzens et al., 2019). Here, when using the binary interaction matrix, energy 

flux from prey to predators is determined only by the relative availability of prey (determined by 
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biomass), whereas when using the preference interaction matrix, energy flux is determined via 

both the relative availability of prey and weighted by preference.  

Energy Flux and food web stability estimation  

 To calculate metabolic losses per food web node, mass-specific metabolic rates (i.e., per 

unit biomass) were derived from body mass metabolic relationships using allometric equations 

(Brown, 2004) provided in Gauzens et al. (2019). Species metabolic rates to define energetic 

losses related to physiology were calculated with equation (2):  

 𝑋𝑖 =  𝑥0𝑀𝑖
𝑏 (2) 

Where Xi represents a parameter related to the physiology of species i, x0 and b are constants 

associated with Xi and Mi is body mass (g). Parameter values were determined by metabolic type 

from Brown et al. (2004) and listed in Gauzen et al. (2019); 17.17 for invertebrates and 18.18 for 

fish. Assimilation efficiencies were defined as the proportion of eaten biomass used for biomass 

production plus metabolism (Lang et al., 2017); for the Trout Lake food web, all prey were 

considered animal prey with an assimilation efficiency of 0.906 (Gauzens et al., 2019). A 

biomass per taxon was input as grams per hectare (see methods), energy flux was calculated as 

joules per hectare per second. We then transformed fluxes into kilojoules per hectare per day by 

multiplying the energy flux value by 86.4 (3).  

 𝐽𝑜𝑢𝑙𝑒𝑠

ℎ𝑒𝑐𝑡𝑎𝑟𝑒 ∗ 𝑠𝑒𝑐𝑜𝑛𝑑
∗

1 𝑘𝑖𝑙𝑜𝑗𝑜𝑢𝑙𝑒

1000 𝐽𝑜𝑢𝑙𝑒𝑠
∗

86400 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

1 𝑑𝑎𝑦
=  

𝐾𝑖𝑙𝑜𝑗𝑜𝑢𝑙𝑒𝑠

ℎ𝑒𝑐𝑡𝑎𝑟𝑒 ∗ 𝑑𝑎𝑦
 

(3) 

 

Greater details that describe the application and calculation of energy flux are provided in 

Gauzens et al. (2019).  

 Network stability was estimated by interpreting biomass fluxes as link weights to assess 

the patterning of interaction strength within the food web (Neutel, Heesterbeek & de Ruiter, 

2002; Gauzens et al., 2019). The stability.value function can then quantify food web stability 
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through derivation of a Jacobian matrix, with greater details provided in Gauzens et al. (2019). 

The stability.value function requires the same information as the function that quantifies energy 

flux, however instead of a matrix of interactions it requires a matrix of energy flux estimates in 

addition to estimated growth rates of the lowest trophic level considered in the food web. Growth 

rates were calculated by applying equation (4) to average body mass estimates for Cladocera, 

Copepoda, and Rotifera as suggested in Gauzens et al. (2019).  

 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 =  0.71 ∗ 𝑏𝑜𝑑𝑦𝑚𝑎𝑠𝑠−0.25 (4) 

 

Sensitivity analyses  

 The fluxweb R package (Gauzens et al., 2019) includes a sensitivity function to estimate 

the uncertainty (i.e., lack of precision) within parameter estimation in order to assess whether 

reduced precision leads to large errors in the estimation of energy flux and food web stability. 

Greater detail on sensitivity analyses is provided in Gauzens et al. (2019). Briefly, the sensitivity 

function applies a random variation to a selected input parameter (e.g., metabolic losses, 

assimilation efficiencies, prey preferences, etc.). This returns a matrix containing the average 

coefficient of variation (cv):  

 
𝑐𝑣 =  

𝐹′′[𝑖, 𝑗] −  𝐹[𝑖, 𝑗]

𝐹[𝑖, 𝑗]
 

(5) 

where F[i, j] is the flux from species i to species j when no variation is applied to parameters and 

F’’[i, j] is the equivalent with random variation applied.  

We considered the sensitivity of input parameters for our estimation of energy flux for the 

binary interaction matrix (Figure S1) and preference interaction matrix (Figure S2). For all years, 

parameter estimates for metabolic losses, assimilation efficiency, and prey preference (only for 

the preference interaction matrix) indicated our results were robust to parameter uncertainty. In 

addition, we manually manipulated biomass inputs to assess whether uncertainty in our biomass 
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estimates changed energy flux qualitatively. We doubled fish biomass and halved zooplankton 

and pelagic macroinvertebrate biomass (Figure S3), then input the reverse (Figure S4). Both 

figures demonstrate the qualitative patterns in energy flux are robust for the Trout Lake food 

web. For the sensitivity analysis of food web stability, we took a similar approach. Food web 

stability estimation required an additional parameter, growth rate of the species within the lowest 

trophic level considered. For the binary interaction matrix, uncertainty in the estimate for growth 

rate led to relatively high cv’s in 2001 and 2014 and produced large errors in 2004 (Figure S5). 

However, for the preference interaction matrix, the cv stayed below the identity line for all years 

indicating uncertainty in the estimate for growth rate did not produce large errors in our estimate 

of food web stability (cv < 20%). Thus, given that the qualitative dynamics of food web stability 

were roughly similar when quantified with either the binary or preference interaction matrix, it is 

likely our estimate of food web stability is robust. However, interpretation should be weighted 

more strongly towards estimates produced by the preference interaction matrix which were the 

most robust to uncertainty for all years.  
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SUPPLEMENTAL TABLES  

Table S1. Trout Lake specific length-mass regressions (Log10(W) = a*Log10(L) + b, where W is 

weight (g), L is total body length (mm), and a and b are constants) for lake trout (Salvelinus 

namaycush), walleye (Sander vitreus), and cisco (Coregonus artedi) using simple linear 

regression. n = the number of individuals used to develop each equation, SE is standard error, 

and Adj.R2 is the adjusted coefficient of determination.  

Species n a ± 1 SE b ± 1 SE Adj.R2 Length range (mm) 

Lake trout 200 3.097 ± 0.068 -5.382 ± 0.187 0.91 353 – 882 

Walleye 1232 3.085 ± 0.007 -5.293 ± 0.018 0.99 50 – 730  

Cisco 14029 3.120 ± 0.003 -5.389 ± 0.006 0.99 62 – 530 
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Table S2. Trout Lake binary predator-prey interaction matrix. Predators are column names and prey are row names. A value of 1 denotes a 

predator-prey interaction exists, and a value of zero denotes it does not.  

Year range: 2001 – 2014  

 Ciscoa,b Lake trouta Walleyec,d Bythotrephese Chaoborusf Leptodorag Mysish Cladocera Copepoda Rotifera 

Cisco 0 1 1 -- 0 0 0 0 0 0 

Lake Trout 0 0 0 -- 0 0 0 0 0 0 

Walleye 0 0 0 -- 0 0 0 0 0 0 

Bythotrephes -- -- -- -- -- -- -- -- -- -- 

Chaoborus 1 1 0 -- 0 0 0 0 0 0 

Leptodora 1 1 0 -- 0 0 0 0 0 0 

Mysis 1 1 0 -- 0 0 0 0 0 0 

Cladocera 1 0 0 -- 1 1 1 0 0 0 

Copepoda 1 0 0 -- 1 0 1 0 0 0 

Rotifera 1 0 0 -- 0 1 1 0 0 0 

Year range: 2015 – 2019 

Cisco 0 1 1 0 0 0 0 0 0 0 

Lake Trout 0 0 0 0 0 0 0 0 0 0 

Walleye 0 0 0 0 0 0 0 0 0 0 

Bythotrephes 1 0 0 0 0 0 0 0 0 0 

Chaoborus 1 1 0 0 0 0 0 0 0 0 

Leptodora 1 1 0 0 0 0 0 0 0 0 

Mysis 1 1 0 0 0 0 0 0 0 0 

Cladocera 1 0 0 1 1 1 1 0 0 0 

Copepoda 1 0 0 1 1 0 1 0 0 0 

Rotifera 1 0 0 0 0 1 1 0 0 0 
aVander Zanden & Rasmussen, 1996 
bMartin, Mrnak & Vander Zanden, 2023 
cVander Zanden, Cabana & Rasmussen, 1997 
dHerwig, Zimmer & Staples, 2022 

eHovius, Beisner & McCann, 2006 
fPastorok, 1980 
gBrowman, Kruse & O’Brien, 1989 
hBowers & Vanderploeg, 1982 
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Table S3. Trout Lake preference predator-prey interaction matrix. Predators are column names and prey are row names. Values represent 

percentages of predator diet with higher percentages reflecting greater weight to prey choice for predators. 

Year range: 2001 – 2014  

 Ciscoa,b Lake trouta Walleyec,d Bythotrephese Chaoborusf Leptodorag Mysish Cladocera Copepoda Rotifera 

Cisco 0 0.9 1 -- 0 0 0 0 0 0 

Lake Trout 0 0 0 -- 0 0 0 0 0 0 

Walleye 0 0 0 -- 0 0 0 0 0 0 

Bythotrephes -- -- -- -- -- -- -- -- -- -- 

Chaoborus 0.03 0.06 0 -- 0 0 0 0 0 0 

Leptodora 0.04 0.01 0 -- 0 0 0 0 0 0 

Mysis 0.03 0.03 0 -- 0 0 0 0 0 0 

Cladocera 0.4 0 0 -- 0.5 0.5 0.4 0 0 0 

Copepoda 0.4 0 0 -- 0.5 0 0.3 0 0 0 

Rotifera 0.1 0 0 -- 0 0.5 0.3 0 0 0 

Year range: 2015 – 2019 

Cisco 0 0.9 1 0 0 0 0 0 0 0 

Lake Trout 0 0 0 0 0 0 0 0 0 0 

Walleye 0 0 0 0 0 0 0 0 0 0 

Bythotrephes 0.1 0 0 0 0 0 0 0 0 0 

Chaoborus 0.02 0.06 0 0 0 0 0 0 0 0 

Leptodora 0.03 0.01 0 0 0 0 0 0 0 0 

Mysis 0.02 0.03 0 0 0 0 0 0 0 0 

Cladocera 0.4 0 0 0.5 0.5 0.5 0.4 0 0 0 

Copepoda 0.4 0 0 0.5 0.5 0 0.3 0 0 0 

Rotifera 0.03 0 0 0 0 0.5 0.3 0 0 0 
aVander Zanden & Rasmussen, 1996 
bMartin, Mrnak & Vander Zanden, 2023 
cVander Zanden, Cabana & Rasmussen, 1997 
dHerwig, Zimmer & Staples, 2022 

eHovius, Beisner & McCann, 2006 
fPastorok, 1980 
gBrowman, Kruse & O’Brien, 1989 
hBowers & Vanderploeg, 1982 
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SUPPLEMENTAL FIGURES  

 

Figure S1. Sensitivity analysis of the input parameters (i.e., efficiency, metabolic losses) used to 

estimate energy flux from the fluxing function in fluxweb based on the binary interaction matrix 

(Gauzens et al. 2019). The y-axis represents the mean standard deviation of the departure of 

energy flux to the original value and the x-axis represents the simulated uncertainty applied to 

the parameter estimate. The dashed line represents the identity. Years where the estimates moved 

substantially above the identity line as variation in the parameter increased indicate uncertainty 

in the parameters would have a substantial effect on the estimation of energy flux. 
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Figure S2. Sensitivity analysis of the input parameters (i.e., efficiency, metabolic losses, and 

prey preferences) used to estimate energy flux from the fluxing function in fluxweb based on the 

preference interaction matrix (Gauzens et al. 2019). The y-axis represents the mean standard 

deviation of the departure of energy flux to the original value and the x-axis represents the 

simulated uncertainty applied to the parameter estimate. The dashed line represents the identity. 

Years where the estimates moved substantially above the identity line as variation in the 

parameter increased indicate uncertainty in the parameters would have a substantial effect on the 

estimation of energy flux. 
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Figure S3. Energy flux for five trophic pathways in Trout Lake using the (A) binary interaction 

matrix and (B) preference interaction in kilojoules per hectare per day (kJ ha-1 d-1), with biomass 

input manipulated to assess sensitivity. Fish species biomass were doubled, and zooplankton and 

pelagic macroinvertebrate biomass were halved before estimating energy flux. LT are lake trout, 

WAE is walleye, MIV is pelagic macroinvertebrates, and ZP is zooplankton. Dashed lines denote 

three different periods within the Trout Lake food web following the framework of Martin et al., 

2022. Before the first dashed line denotes cisco dominance, between the dashed line denotes an 

increase in lake trout and walleye biomass in the food web, and following the second dashed line 

denotes the invasion of spiny water flea. 
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Figure S4. Energy flux for five trophic pathways in Trout Lake using the (A) binary interaction 

matrix and (B) preference interaction in kilojoules per hectare per day (kJ ha-1 d-1), with biomass 

input manipulated to assess sensitivity. Fish species biomass were halved, and zooplankton and 

pelagic macroinvertebrate biomass were doubled before estimating energy flux. LT are lake 

trout, WAE is walleye, MIV is pelagic macroinvertebrates, and ZP is zooplankton. Dashed lines 

denote three different periods within the Trout Lake food web following the framework of 

Martin et al., 2022. Before the first dashed line denotes cisco dominance, between the dashed 

line denotes an increase in lake trout and walleye biomass in the food web, and following the 

second dashed line denotes the invasion of spiny water flea. 
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Figure S5. Sensitivity analysis of the input parameter, growth rate, used to estimate the inferred 

stability metric, s, from the stability.value function in fluxweb using the binary interaction matrix 

(Gauzens et al. 2019). The y-axis represents the mean standard deviation of the departure of s to 

the original value and the x-axis represents the simulated uncertainty applied to the parameter 

estimate. The dashed line represents the identity. Red labels represent years where the estimate 

for s moved substantially above the identity line as variation in the parameter increased, 

indicating uncertainty in the parameters would have a substantial effect on the estimation of 

stability. Not the different y-axis scale for our model estimates in 2004 which was expanded to 

show all data points.   
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Figure S6. Sensitivity analysis of the input parameter, growth rate, used to estimate the inferred 

stability metric, s, from the stability.value function in fluxweb using the preference interaction 

matrix (Gauzens et al. 2019). The y-axis represents the mean standard deviation of the departure 

of s to the original value and the x-axis represents the simulated uncertainty applied to the 

parameter estimate. The dashed line represents the identity. Years where the estimate for s moved 

substantially above the identity line as variation in the parameter increased indicate uncertainty 

in the parameters would have a substantial effect on the estimation of stability. 
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CONCLUSIONS  

 Understanding changes in ecosystem function and dynamics in response to increasingly 

frequent and intense disturbances is a pressing management need. In this dissertation, I 

strengthen our understanding of the connections between food web structure and ecosystem 

response to press and pulse disturbances, management interventions, and species invasion. In 

chapter 1 and 2, I used lower food web dynamics to improve our understanding of ecosystem 

function in disturbed ecosystems and assess changes to food web structure following a 

management intervention. In chapter 1, I quantified the seasonal dynamics of zooplankton, 

phytoplankton, and nutrient concentrations across the summer growing season in a 

hypereutrophic reservoir. I showed that zooplankton community composition had a relatively 

substantial influence on early summer phosphorus availability and extended our understanding of 

the temporal dynamics of zooplankton and phytoplankton within hypereutrophic ecosystems. I 

also demonstrated that zooplankton grazing plays a potentially significant role in affecting 

phytoplankton community size structure, even in a community dominated by cyanobacteria. 

Despite the extreme nutrient concentrations within hypereutrophic reservoirs, zooplankton still 

contributed substantially to phosphorus availability and phytoplankton size structure, though 

only within a short window in early summer. In chapter 2, I showed that inconsistent responses 

of zooplankton and benthic macroinvertebrate size spectra to incentivized harvest provided 

evidence that the incentivized harvest of common carp (Cyprinus carpio) and bigmouth buffalo 

(Ictiobus cyprinellus) did not significantly alter food web structure. The analysis expanded our 

understanding of size spectra analyses within shallow, nutrient-rich lakes which were previously 

not well characterized and provided insights into why a management intervention was 
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unsuccessful across multiple shallow lakes. Using size spectra as a tool to assess food web 

structure changes may be more feasible than more data intensive food web modeling approaches.   

In chapter 3 and 4, I used investigations of whole food webs to understand how food web 

structure mediates ecosystem responses to disturbances, and how food web structure and 

ecosystem function can vary through time. In chapter 3, I used ecosystem experiments to 

produce empirical evidence that a greater degree of coupling between benthic and pelagic energy 

pathways within food webs increased ecosystem resistance and resilience to a simulated storm-

driven pulse nutrient additions. As such, I provide evidence that preserving or enhancing benthic-

pelagic coupling within food webs may be a powerful management target to reduce the 

vulnerability of aquatic ecosystems to increasingly frequent and intense precipitation events. In 

chapter 4, I used a bioenergetics method to quantify the distribution and magnitude of energy 

flux, in addition to food web stability, within a pelagic food web over 19 years. I demonstrated 

how changes in food web structure over time corresponded to shifts in total energy flux and the 

distribution of energy flux between species. I also show that the introduction of a mid-trophic 

level macroinvertebrate invader decreased total energy flux and, using food web stability 

dynamics, provide evidence that the Trout Lake food web as able to absorb the shock of species 

invasion without sustained changes in energy flux This analysis improved our understanding of 

the long-term dynamics of food web structure and ecosystem function, particularly in response to 

mid-trophic level invaders. 

 Overall, in this dissertation I used food web theory combined with ecosystem 

experiments, observational studies, and long-term data to attain greater understanding of the 

dynamics of ecosystem function and responses to disturbances and management interventions 

through time.  


