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Abstract

This thesis describes work concerning the performance of semiconductor-based devices in-

tended for quantum computation. We begin by focusing on the materials used to fabricate

semiconductor-based qubit devices. Specifically, we study the strain induced on the semi-

conductor domain of a simulated device due to the cooling of Al electrodes in the vicinity

of the studied domain. We introduce the theory behind stress and strain, as well as how

these quantities can a↵ect the electronic properties of a semiconductor. We then present

the results of a simulation modeling the expected strain in a simulated device, and find the

corresponding shift in the conduction band of the region intended to contain the quantum

dots.

We next consider the design of semiconductor-based qubit devices. We introduce a pro-

tocol, which we call the Compressed Optimization of Device Architectures (CODA). This

protocol both e�ciently identifies sparse sets of voltage changes that control quantum sys-

tems, and introduces a metric which can be used to compare device designs. As an example

of the former, we apply this method to simulated devices with up to 100 quantum dots and

show that CODA automatically tunes devices more e�ciently than other common nonlinear

optimizers. To demonstrate the latter, we determine the optimal lateral scale for a triple

quantum dot, yielding a simulated device that can be tuned with small voltage changes on

a limited number of electrodes.

Finally, we study the operation of semiconductor-based qubit devices. We examine this

subject in two ways. First, we consider a system comprised of two capacitively-coupled
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quantum dot hybrid qubits, and develop a simple electronic pulse sequence that achieves

a high-fidelity two-qubit gate under realistic levels of quasistatic charge noise. Then, we

consider the performance of a quantum algorithm for PageRank which takes as input a

graph of the World Wide Web. We show that the run-time of this algorithm depends on

features of the graphs other than the degree distribution, and can be altered su�ciently to

rule out a general exponential speedup.

I would like to acknowledge support from the Vannevar Bush Faculty Fellowship program

sponsored by the Basic Research O�ce of the Assistant Secretary of Defense for Research

and Engineering and funded by the O�ce of Naval Research through Grant No. N00014-15-

1-0029.
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Chapter 1

Introduction

Forget cryptocurrency. Quantum energy is the future. It’s

the next gold rush.

— Sonny Burch (Walton Goggins), Ant-Man and the Wasp

The field of quantum mechanics has captured the imagination of the public for nearly a

century. Since its inception in the early 1900s, philosophers, artists, and even politicians have

pondered the implications of quantum superposition and entanglement. Quantum mechanics

has found its place in popular culture as well. In comedies, a character may be hit in the

head and suddenly understand the intricacies of quantum entanglement; in science fiction

stories, quantum technologies are often used to explain how the hero can save the day at the

last minute.

It is therefore perhaps unsurprising that the prospect of a “quantum computer” should

engender excitement in the public. A machine that leverages the perhaps mysterious e↵ects

of quantum mechanics to solve hard problems sounds like a plot contrivance from a bad sci-
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fi film. In reality, a quantum computer cannot transport its user across time and space; it

cannot create a bridge into a parallel universe, nor is it a source of unlimited energy. While

the true advantages of quantum computing may not be cinematic, they are nonetheless

incredibly exciting.

1.1 Why quantum computing?

It is believed that certain computational problems can be solved more e�ciently with a

quantum computer than a classical computer. One such problem is determining the prime

factors p and q given only their product N = p · q. While this problem may sound esoteric,

it is the foundation of the widely-used RSA public-key cryptoscheme [1]. In Ref. [2], Peter

Shor proposes a quantum algorithm whose runtime scales polynomially with the number of

digits of N : a super-polynomial speed-up over the best-known classical algorithm.

While any problem solved by a quantum computer can in principle also be solved using a

classical computer, the time and energy required to do so may be prohibitive. It is estimated

that it would take a modern classical computer centuries to find the prime factors of a 1000-

bit number N [3]. In contrast to this, a quantum computer with a clock rate of more than

1 MHz is expected to be able to solve this problem in less than a day. Even if advances in

classical computing technology were to yield a computer that could factor a 1000-bit number

in a day, it would take this machine tens of thousands of years to factor a 2000-bit number;

the comparable quantum computer could factor a 2000-bit number in less than a month [3].
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The prospect of a quantum speedup motivates the interest in quantum computers. In

this section, I introduce the fundamental building blocks of quantum computers: qubits.

Then I introduce two potential quantum computing architectures, circuit-based and adiabatic

quantum computation, and compare the two approaches. Good introductions of this material

with further details are given in Refs. [4, 5, 6].

1.1.1 Qubits

In the same way that a classical computer is comprised of bits, variables that can either take

on the value 0 or 1, a quantum computer is comprised of quantum bits, or qubits. A qubit is

a two-level quantum system which can exist in the |0i or |1i state. In contrast to a classical

bit, a qubit can also exist in a quantum superposition between the |0i and |1i states. In

general, the state of a single qubit | i can be represented as

| i = ↵ |0i + � |1i , (1.1)

where ↵ and � are complex numbers such that |↵|2 + |�|2 = 1. | i is typically represented

using the Bloch sphere, shown in Fig. 1.1.

While a qubit can exist anywhere on the surface of the Bloch sphere, its exact state

cannot be measured directly. A measurement of a qubit is performed along an axis of the

Bloch sphere, and can yield one of two possible outcomes. For instance, a qubit measured

along the z-axis has the possible measurement outcomes “0” and “1.” In this case, a qubit
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Figure 1.1: Diagram of Bloch sphere. A coherent qubit state | i is represented as a point on the
surface of the Bloch sphere; the |0i and |1i states are represented as the “north” and “south poles”
of the sphere respectively. An arbitrary coherent state | i can be fully parameterized via the polar
angle ✓ and azimuthal angle �: | i = cos (✓/2) |0i + ei� sin (✓/2) |1i.

with the state  from Eq. (1.1) has a probability |↵|2 of yielding a “0” measurement and a

probability |�|2 of yielding “1.” After this measurement, the state of the qubit collapses : if a

“0” is measured, the qubit’s state becomes | i = |0i; if a “1” is measured, the qubit’s state

becomes | i = |1i. The concept of measurements a↵ecting the qubit state is an important

distinction between classical and quantum computing.

Another crucial di↵erence between qubits and classical bits is that qubits can be entangled

with one another. For instance, a two-qubit system can be placed into the state | i =

1/
p
2 (|00i + |11i). In this state, a measurement performed on one of the qubits has an

equal probability of yielding a “0” or a “1.” However, once one of the qubits has been

measured, the state of the second qubit collapses; the result of measuring the second qubit

will always be the same as the first. Quantum entanglement is at the core of many quantum
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algorithms and is a crucial part of quantum computation [7, 8].

1.1.2 Circuit-based quantum computing

While every proposed quantum computer is comprised of qubits, there are multiple di↵erent

proposals for the architecture of the computer. The most widely-studied proposed architec-

ture is circuit-based quantum computing. The circuit-based quantum computing architecture

draws inspiration from classical computers, in which logical gates act on classical bits. Sim-

ilarly, algorithms performed on circuit-based quantum computers are represented in terms

of logical gates acting on qubits.

While in principle one could conceive of quantum gates that act on any number of qubits,

any algorithm in a circuit-based quantum computer can be implemented using a combination

of single- and two-qubit gates [9]. A single-qubit gate can be visualized as the rotation of

a state around the Bloch sphere. For instance, a Pauli-X gate (sometimes referred to as

a bit-flip gate) maps |0i to |1i and vice-versa; this is a rotation of ⇡ radians around the

x-axis of the Bloch sphere [5]. While the Pauli-X gate is a clear analogue to the NOT gate

in classical computing, in general a single-qubit gate can be any rotation around the Bloch

sphere, many of which do not have an obvious counterpart in classical computing. Two-qubit

gates are required to construct entangled states such as the previously-mentioned Bell state

| i = 1/
p
2 (|00i + |11i). A commonly considered two-qubit gate is the controlled-Z (CZ)
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gate, which in the {|00i , |01i , |10i , |11i} basis is represented as the unitary

CZ =

0

BBBBBBBBBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �1

1

CCCCCCCCCCA

. (1.2)

The CZ gate can be understood as an operation in which a “target” qubit undergoes a Z-gate

if the “control” qubit is in the |1i state (otherwise the “target” qubit undergoes an identity

operation). While there are other common two-qubit gates (SWAP gate, CNOT gate, etc.),

all of these are equivalent to the CZ gate up to single-qubit operations [5].

Just as with classical computers, gates performed on quantum computers are not always

perfect. The success rate of a quantum gate is quantified in terms of the gate fidelity, which

ranges from 1 (a perfectly successful gate) to 0. The error rate of a quantum computer can

be suppressed by encoding several physical qubits into one logical qubit. There is a veritable

zoo [10, 11, 12, 13] of proposed quantum error correction techniques that leverage this idea

into making a fault-tolerant quantum computer. All quantum error correction schemes have

an associated error threshold : a maximum gate infidelity required for the scheme to be able

to reduce error [14, 15]. Typical error thresholds for modern correction schemes are around

1% [13], making this an important benchmark in assessing the accuracy of a quantum gate.

In Chapter 4, I propose a method to improve the fidelity of a two-qubit gate performed in a

particular physical system.
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1.1.3 Adiabatic quantum computing

A separate method for achieving quantum computation is adiabatic quantum computing. In

quantum mechanics, an adiabatic process is one which happens slowly enough such that the

system remains in its instantaneous eigenstate [16]. For instance, if a system begins in the

ground state of an initial Hamiltonian, at the end of an adiabatic process the system will

be in the ground state of the final Hamiltonian. This process can be leveraged for quantum

computation: one can slowly perturb a system from a simple initial Hamiltonian into a final

Hamiltonian for which the ground state is the solution to the problem of interest [17]. The

e�ciency of this adiabatic quantum algorithm is determined by the speed at which one can

adiabatically perturb the system, which is limited by the minimum energy gap between the

ground state and the first excited states [18]. In Chapter 5, I analyze the e�ciency of an

adiabatic quantum algorithm by considering the scaling of this energy gap with the problem

size.

While both circuit-based and adiabatic quantum computing are composed of qubits,

there are many di↵erences between these approaches. Crucially, while there are several

proposals [10, 11, 12, 13] for methods to construct a fault-tolerant circuit-based quantum

computer, true fault-tolerance for adiabatic quantum computers remains elusive [19, 20]. For

this reason, the majority of experimental quantum computing research is currently focused

on circuit-based implementations. While adiabatic quantum computing is not the focus of

many experimental e↵orts, it is worth noting that it has been shown that adiabatic quantum

algorithms have been shown [21] to be polynomially equivalent to circuit-based quantum
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algorithms. In other words, the existence of an adiabatic quantum algorithm which presents

an exponential speedup over the best known classical algorithm does implies the existence

of a similarly e�cient circuit-based quantum algorithm, and vice-versa.

1.2 Why semiconductors?

In the previous section, I introduced the fundamental building blocks of quantum computing,

qubits, and gave a brief overview of how one can leverage these qubits into performing

quantum computation. In that description, I did not address how qubits are physically

implemented. There are multiple parallel research e↵orts that are working towards building

a large-scale quantum computer, such as superconducting circuits [22], trapped ions [23], and

Majorana-based approaches [24]. Here, I focus on electrically-gated semiconductor-based

qubits [25].

Semiconductor-based qubits are especially attractive due to their potential for scalabil-

ity. The devices used to realize these qubits (the details of which will be introduced in

this section) bear a striking resemblance to transistors used in classical computation. This

similarity implies that the knowledge gained over several decades of fabricating large-scale

semiconductor devices may be leveraged to help build large-scale quantum computers. While

the systems currently achieved by researchers still consist of a small number of qubits, the

promise of scalability makes this approach competitive with approaches that have achieved

systems with tens of qubits [26, 27].
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Figure 1.2: Electronic band structure in Si. a, The Brillouin zone for Si. The high-symmetry
points L, �, X, and K are labeled according to convention. b, Schematic of Si band structure. The
two domains of allowed energies shown are referred to as the conduction band (shaded green) and
the valence band (shaded blue). The white region in between is referred to as the band gap. The
minimum of the conduction band (indicated with green arrow) is located between the � point and
the X point.

All semiconductor-based qubits rely on confining and manipulating a small number of

charge carriers in a semiconductor; here, I focus on qubits constructed from conduction-band

electrons in Si. In this section, I first review the properties of conduction-band electrons in

Si, then I explain how these electrons are confined and manipulated to form qubits.

1.2.1 Conduction-band electrons in Si

The properties of conduction-band electrons in semiconductor lattices are best understood

in the context of the periodic structure of the lattice. In an ideal semiconductor lattice,

an electron’s wavefunction must be periodic in momentum-space as well as real-space. The

primitive cell in momentum-space is called the Brillouin zone. The Brillouin zone for “dia-

mond cubic” lattices (the lattice structure for Si) is shown in Fig. 1.2a. For each value of k
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in the first Brillouin zone, there are multiple allowed electron energies, as shown in Fig. 1.2b.

A corollary to this is that an electron in a lattice has ranges of allowed energies; these energy

ranges are referred to as bands. In semiconductors, the Fermi level is located in between two

bands, in what is called a band gap. The energy band directly below the Fermi level (i.e.,

the highest energy band populated at zero temperature) is called the valence band, and the

band directly above this is called the conduction band. In Fig. 1.2b, the conduction band is

shaded green, the valence band is shaded blue, and the band gap is white. The bands of a

material can be shifted by applying an external electrical potential, a process referred to as

band bending. In semiconductors, the band gap between the valence and conduction bands

is on the order of an eV; this means that it is practical to apply a potential which shifts the

bottom of the conduction band below the Fermi level. In this situation, the semiconductor

becomes conductive, with the charge carriers located in momentum-space at the conduction

band minimum, indicated with green arrow in Fig. 1.2b.

Many electronic properties of semiconductors are determined by the conduction band

minimum. For instance, the e↵ective mass of conduction-band electrons is determined by

the curvature of the conduction band around its minimum. The location of the minimum in

momentum space can also impact the properties of the charge carriers in a semiconductor.

For instance, in Si the conduction band minimum occurs 85% of the way in between the

� point and the X point, as shown in Fig. 1.2b. Due to the symmetry of the Brillouin

zone, this means that there are six degenerate conduction band minima (denoted as ±x, ±y,

and ±z), referred to as valleys. This degeneracy can be broken by strain, as discussed in
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Chapter 2. Both the e↵ective mass and the valley degeneracy must be taken into account

when performing device simulations of semiconductor-based quantum devices, as in Chapter

3.

1.2.2 Creating and controlling quantum dots

In order to manipulate a small number of conduction-band electrons, these electrons must be

confined to a small volume within the device. While some semiconductor-based qubits use

electrons confined to donor atoms within the lattice [28], here I focus on electrons confined

electrostatically in quantum dots (QDs).

While electrons in QDs are confined in all three dimensions, the confinement mechanism

in these directions are di↵erent: the confinement in the z direction is provided by the het-

erostructure, while the confinement in the x and y directions is provided via voltages on

metallic electrodes. There are several heterostructures used for semiconductor-based qubit

devices – a common heterostructure, and the focus of this work, is a Si/SiGe heterostruc-

ture. This arrangement consists of a thin (⇠10 nm) layer of strained Si in between two

layers of relaxed SiGe, where “SiGe” is an alloy consisting of ⇠70% Si and ⇠30% Ge. The

conduction band minima of the strained Si are lower than the conduction band minima of

the relaxed SiGe, which leads to the confinement of low-energy electrons along the z direc-

tion, in the thin Si layer. Nanoscale metallic electrodes are fabricated above the electrons.

Voltages above (below) the conduction band minima leads to the accumulation (depletion)

of electrons underneath the electrode via band bending. Band bending also contributes to



12

the confinement of the electrons in the z direction, particularly in MOS devices [29]. By

manipulating the voltages on the electrodes, individual electrons can be confined in the x

and y directions, leading to a QD.

The voltages on the metallic electrodes in the device can be manipulated to confine an

electron to a QD; they can also be used to control the encoded qubit. There are many types

of qubits that can be formed by using a small number of electrons in a small number of QDs

[25, 30, 31, 32, 33, 34, 35]. The state of these qubits depends on the physical properties of

the constituent QDs, such as the inter-dot energy di↵erence (referred to as the detuning)

and tunneling rates, as well as the intra-dot orbital energy splittings. In Chapter 3, I go

into detail as to how the voltages on the metallic electrodes can be used to manipulate these

quantities. In Chapter 4, I introduce the quantum dot hybrid qubit (QDHQ), and show how

pulses on the detunings and tunnel couplings can be used to improve the performance of a

two-QDHQ system.

1.3 Thesis outline

As indicated by this introduction, leveraging quantum mechanics to answer computational

questions e�ciently is a complex problem. Researchers in this field often make use of ab-

straction, allowing one to focus on a particular problem without worrying about the details

of the system being studied. This thesis is organized by the level of abstraction of the prob-

lem being considered. Chapter 2 focuses on the physics of the materials used in a device.
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Next, Chapter 3 considers how to optimize the design of a device comprised of these materi-

als. Then, Chapter 4 addresses how such a device could be operated to produce qubits and

high-fidelity gates. Finally, Chapter 5 studies the performance of an algorithm running on

many such qubits.

In Chapter 2, I focus on the materials used to fabricate semiconductor-based qubit de-

vices. Specifically, I study the strain induced on the semiconductor domain of a simulated

device by aluminum electrodes that are cooled in the vicinity of the studied domain. I in-

troduce the theory behind stress and strain, as well as how these quantities can a↵ect the

electronic properties of a semiconductor. I then model the expected strain in a simulated

device, and find the corresponding shift of the conduction band in the region intended to

contain quantum dots.

Moving from materials properties to device design optimization, in Chapter 3 I introduce

a protocol, which I call the Compressed Optimization of Device Architectures (CODA).

This protocol both e�ciently identifies sparse sets of voltage changes that control quantum

systems, and introduces a metric which can be used to compare device designs. As an

example of the former, I apply this method to simulated devices with up to 100 quantum

dots and show that CODA automatically tunes devices more e�ciently than other common

nonlinear optimizers. To demonstrate the latter, I determine the optimal lateral scale for a

triple quantum dot, yielding a simulated device that can be tuned with small voltage changes

on a limited number of electrodes.

Abstracting away from device-specific physics, in Chapter 4 I propose a method to entan-
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gle two capacitively-coupled quantum dot hybrid qubits using pulses on the qubits’ detunings

and tunnel couplings. I show that by pulsing only the qubits’ detunings, CZ gates can be

optimized to have fidelities of ⇠99% for a typical level of quasistatic charge noise. I then

identify a pulse sequence involving both the detunings and tunnel couplings that achieves a

CZ gate with a fidelity of ⇠99.8% under the same level of charge noise.

In Chapter 5, I transition from studying a system with a small number of qubits to

considering the operation of a large-scale adiabatic quantum computer. I consider the per-

formance of a quantum algorithm for PageRank first proposed in Ref. [36]. This algorithm

takes as input a graph of the World Wide Web. I show that the run-time of this algorithm

depends on features of the graphs other than the degree distribution, and can be altered

su�ciently to rule out a general exponential speedup. According to these simulations, for

a sample of graphs with degree distributions that are scale-free, with parameters thought

to closely resemble the Web, the proposed algorithm for eigenvector preparation does not

appear to run exponentially faster than the classical case.

1.4 Publications

Several of the chapters in this thesis are based on either published or submitted work; each

is the product of the work of many individuals. Here, I document my contribution to each

work, as well as the contributions of others.

Chapter 2 is based on preliminary, unpublished work. The simulation was performed by
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myself, with assistance from Dr. Evan MacQuarrie, Prof. Mark Eriksson, Dr. Mark Friesen,

and Prof. Susan Coppersmith. The electrode layout was designed by Mr. Sam Neyens.

Mr. Neyens additionally provided the details of the heterostructure used in this simulation.

Chapter 3 is based on Ref. [37], titled Compressed Optimization of Device Architec-

tures for Semiconductor Quantum Devices, which I completed with Dr. John King Gamble,

Dr. Daniel R. Ward, Dr. Robin Blume-Kohout, Prof. Mark Eriksson, Dr. Mark Friesen, and

Prof. Susan Coppersmith. I principally carried out the numerical calculations, assisted by

Dr. Gamble, Prof. Eriksson, Dr. Friesen and Prof. Coppersmith. All authors provided input

to the final manuscript.

Chapter 4 is based on Ref. [38], titled Adiabatic two-qubit gates in capacitively coupled

quantum dot hybrid qubits, which I completed with Dr. Sebastian Mehl, Dr. John King

Gamble, Dr. Mark Friesen, and Prof. Susan Coppersmith. All authors contributed to the

idea of using adiabatic gate sequences to entangle capacitively-coupled quantum dot hybrid

qubits. I performed the analytic work. Dr. Gamble and I performed the numerical simulation,

and analyzed the data with Dr. Friesen and Prof. Coppersmith. Dr. Gamble, Dr. Friesen,

Prof. Coppersmith and I wrote the manuscript and prepared the figures, with input from all

the authors.

Chapter 5 is based on Ref. [39], titled Power-law scaling for the adiabatic algorithm

for search-engine ranking, which I completed with Dr. John King Gamble, Dr. Kenneth

Rudinger, Prof. Eric Bach, Dr. Mark Friesen, Prof. Robert Joynt, and Prof. Susan Copper-

smith. I performed the numerical calculations under the guidance and direction of Dr. Gam-
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ble and Dr. Rudinger, with assistance from all authors.
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Chapter 2

Strain in semiconductor quantum

devices

It is well-known that di↵erent materials can contract di↵erent amounts as their temperature

decreases; in particular, aluminum contracts far more than many semiconductors. Thus,

semiconductor-based devices containing aluminum components will become strained when

cooled, which can a↵ect the electronic band structure of the semiconductor. As some of

the quantum dot devices used for qubit experiments contain aluminum and are cooled to

cryogenic temperatures, the energy of electrons in the semiconductor domains of these devices

will be a↵ected by strain. Here, we introduce the concepts of stress and strain, and describe

how these quantities can a↵ect the energies of conduction band electrons in semiconductors.

We then describe a calculation of the expected energy shift for conduction-band electrons in

a semiconductor device used for quantum computation.
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2.1 Stress

The force per unit area that a material undergoes is defined by the stress. This quantity can

be represented in multiple ways, the most common of which is in terms of the Cauchy stress

tensor �. Considering the stresses applied to a cube, the nine components of this tensor �ij

can be interpreted as the force per unit area in the i direction on a face whose normal is

in the j direction. It is assumed that the cube undergoes no net torque, meaning that � is

symmetric, �ij = �ji. The objects we consider here are in equilibrium, and therefore the net

force acting on them must be zero. From this, it follows that

r · � + f = 0 (2.1)

where f is the external force per unit volume that is applied to the object.

2.2 Strain

The amount by which an object deforms is defined by the strain. As an intuitive example,

if a bar of length L0 is elongated by �L, then the strain of the object is �L/L0. As with

stress, strain can be represented in multiple ways. Here, we will introduce what is often

referred to as as the “infinitesimal strain” tensor ". This tensor is defined as

" =
1

2

⇣
(ru)T +ru

⌘
, (2.2)
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where u is the displacement vector of the material. " is symmetric by construction – the cor-

responding antisymmetric tensor 1
2

⇣
(ru)T � ru

⌘
describes the rotation of the object [40].

In the situation considered here, the strain can be divided into two categories: mechanical

strain and thermal strain.

2.2.1 Mechanical strain

The mechanical strain of an object depends on the stress applied. There are many stress-

strain relationships observed in nature; here, we model the materials in our devices as linear

elastic materials, in which the mechanical strain depends linearly on the stress. For these

materials, one can relate the stress and mechanical strain via the compliance tensor S:

"mij =
X

Sijkl�kl, (2.3)

where "m is the mechanical strain. The mapping from mechanical strain to stress is given

by the inverse, the sti↵ness tensor C.

It is more convenient to represent "m and � as vectors, and S as a rank-two tensor.

Assuming the material is orthotropic (i.e., it has three orthogonal planes of symmetry),
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where Ei is the Young’s modulus along axis i, ⌫ij is the Poisson’s ratio corresponding with

a contraction in direction j and an extension in direction i, and Gij is the shear modulus in

direction j on the plane which is normal to direction i. The compliance tensor is symmetric

even for anisotropic materials - this means that ⌫xy need not equal ⌫yx, but ⌫xy/Ex = ⌫yx/Ey.

In the case of materials with cubic symmetry (such as Si and SiGe), there is a single value

for E, a single value for ⌫, and a single value for G. In fully isotropic materials, the shear

modulus is given by G = E
2(1+⌫) .

2.2.2 Thermal strain

When an object is heated or cooled, the change in the kinetic energy of the molecules in the

material cause the object to expand or contract, respectively. The resulting strain is given

by

"thii = ↵(Tfinal � Tinitial), (2.5)
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where "th is the thermal strain, i = x, y, z; ↵ is the coe�cient of thermal expansion (CTE),

and Tfinal and Tinitial are the final and initial temperatures, respectively.

While this source of strain may at first look like a trivial volume dilation, the resulting

strain can in fact be quite complex due to CTE mismatch: the CTE is a material-based

quantity, meaning that di↵erent components of a device will undergo di↵erent amounts of

volume dilation. In particular, semiconductor devices with aluminum electrodes are thought

to be a↵ected by CTE mismatch [41], as the coe�cient associated with aluminum is roughly

an order of magnitude larger than that of most semiconductors.

2.3 E↵ect of strain on band structure

The electronic band structure of a semiconductor material depends on the details of the

lattice. It is therefore unsurprising that deforming the lattice will a↵ect the band structure.

In particular, there are three ways in which strain can a↵ect the band structure of semicon-

ductors. In this section, we first explain the origin of these three di↵erent types of strain,

and then detail each e↵ect separately.

A key feature of semiconductors is the symmetry of the lattice. In particular, the lattices

of diamond-type semiconductors (such as Si) have a tetrahedral symmetry. This means that

the lattice remain invariant under a group of transformations Td, including for instance re-

flections about the (110) plane. In contrast to this, the strain tensor " does not necessarily

have tetrahedral symmetry; the only symmetry imposed is "ij = "ji. Therefore, it is instruc-
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tive to take linear combinations of the di↵erent components of the strain tensor, forming

groups which behave the same under the symmetry transformations. In other words, the

strain tensor " can be decomposed into the irreducible representations of the tetrahedral

symmetry group Td.

The result is that the strain tensor can be rewritten as the sum of three matrices, " =

"(�1) + "(�3) + "(�4), where

"(�1) =
1

3

0

BBBBBB@

"xx + "yy + "zz 0 0

0 "xx + "yy + "zz 0

0 0 "xx + "yy + "zz

1

CCCCCCA
, (2.6)

"(�3) =
1

3

0

BBBBBB@

2"xx � ("yy + "zz) 0 0

0 2"yy � ("xx + "zz) 0

0 0 2"zz � ("xx + "yy)

1

CCCCCCA
, (2.7)

and

"(�4) =

0

BBBBBB@

0 "xy "xz

"xy 0 "yz

"xz "yz 0

1

CCCCCCA
. (2.8)

�1, �3, and �4 (sometimes referred to as A1, E, and T1, respectively) refer to the irreducible

representation with which the matrices are associated. As expected, each of these matrices

exhibits di↵erent symmetries. For instance, "(�1) is invariant under any of the transforma-

tions in Td, whereas "(�3) is only invariant under rotations of 180� about the [100], [010], or
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[001] axes. Similarly, "(�4) is only invariant under rotations of 90� about the [100], [010], or

[001] axes.

These three types of strains have di↵erent physical interpretations as well. "(�1) is the

strain associated with volume dilation, whereas the volume does not change under "(�3) or

"(�4); these are what are known as shear strains. In particular, "(�3) and "(�4) are shear

strains emerging from uniaxial stress in the [100] and [111] direction, respectively.

As the symmetry of these strains di↵er, it is not surprising that each of these strains lead

to di↵erent e↵ects on the band structure. In the rest of this section, we describe the e↵ect

of each of these strains separately.

2.3.1 �1 strain

The simplest component of strain is the volume dilation, given in Eq. (2.6). The matrix

"(�1) contains only one degree of freedom: tr("(�1)) = tr("). Due to the symmetry of this

component, this strain can a↵ect the energy of any wavefunction in the reciprocal space of

the lattice.

Because the strain is assumed to be small, it follows that the energy of an electron in the

semiconductor changes linearly with the strain. In general, we define

�En,k = an,k tr(") (2.9)

where �En,k is the change in energy of an electron in band n with wavevector k, and an,k is the
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associated deformation potential. Deformation potentials are notoriously di�cult to measure

[40], with a wide variety of values reported for a given band extremum [42]. However, this

is the best-known method for calculating the change in an electron’s energy due to lattice

strain, and is used frequently in the community (see Ref. [43] for examples). Typically

these values are in the 1-10 eV range [42]. To match the conventions of other works, the

deformation potential of an electron at the conduction band minimum of Si is referred to as

⌅d + 1/3⌅u [44], for reasons that will be explained in the next subsection.

2.3.2 �3 strain

We next consider the “diagonal” component of shear strain, given in Eq. (2.7). As with the

"(�1) component of the strain, this strain induces a linear shift the band energies. However,

unlike "(�1), "(�3) is not invariant under every symmetry transformation of the lattice. For

instance, at the � point the electronic wavefunction is symmetric in ways that "(�3) is not;

this means that, to linear order, this component of strain cannot have an e↵ect on the

energies at this high symmetry point.

This component of strain can have an e↵ect on energy extrema that are not at the �

point. Si has a six-fold degenerate conduction band minimum, located at 85% of the way

along the � direction from the � point to the X point (see Fig. 1.2); the symmetry of the

wavefunctions at these conduction band minima do not preclude an e↵ect from "(�3). In

general, the conduction band energy shifts due to this component of strain can be written
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as

�E�3
k = ⌅u(k̂ · "(�3) · k̂), (2.10)

where k is the wavevector and ⌅u is a deformation potential. Considering the case of Si, we

can combine this energy shift with the shift due to the "(�1) strain, yielding

�Ei = ⌅d("xx + "yy + "zz) + ⌅u"ii, (2.11)

where i denotes the valley.

Eq. (2.11) demonstrates that strain of type �3 can break the six-fold valley degeneracy

in Si. This phenomena occurs in many situations, including the case of Si wells embedded in

SiGe. For a small (⇠10 nm) well, the Si is lattice-matched to the surrounding SiGe, causing

a biaxial stress in the xy (assuming that z is the growth direction). This stress leads to

a shear strain of type �3, in which the "zz component of the strain tensor is smaller than

"xx = "yy. This causes the ±x,±y valleys to increase more in energy, leaving the ±z valleys

as the doubly-degenerate ground state. In a typical strained Si well, the ±z valleys are about

200 meV below the ±x,±y valleys [45].

2.3.3 �4 strain

Finally, we consider the “o↵-diagonal” components of the strain tensor, given in Eq. (2.8).

As with the "(�3) component of strain, this strain does not cause a shift in the band energies

at the � point to linear order, due to symmetry. Additionally, the symmetry of the �4 strain
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prevents it from a↵ecting band energies along the � direction, meaning that in Si there is

no shift in the conduction band minima due to this type of strain. This strain does shift

energies along the [110] direction, and has an associated deformation potential ⌅p, which has

been measured to be 5.7 eV [46].

It has been noted [47, 48] that �4 strain may play a role in the valley physics of Si,

despite it not shifting the energies. In particular, the introduction of �4 strain breaks the

degeneracy between the �1 and �20 bands at the X point in Si [47]. It has been proposed

[48] this could split the degeneracy between the (+) and (�) valleys in bulk Si, although it is

not yet understood what e↵ect if any this would have in Si-based devices used for quantum

computing.

2.4 Finite-element modeling of stress and strain

We simulate a device with an “overlapping gate” design to calculate the expected strain and

conduction-band energy shift due to CTE mismatch. We find that the strain induces local

maxima of the conduction band underneath the electrodes intended to accumulate quantum

dots, consistent with the findings in Ref. [41].

The simulated device features the electrode layout shown in Fig. 2.1a. The electrodes

are extruded in the z direction by di↵erent lengths depending on the order in which they

would be fabricated: the orange, blue and pink electrodes are extruded 33 nm, 44 nm, and

55 nm, respectively. In this simulation, we have neglected the physical requirement that the
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Figure 2.1: Coe�cient of thermal expansion mismatch expected to induce local maxima
of conduction band underneath accumulation gates. a, Electrode layout for simulated
device. Electrodes are intended to accumulate (blue), deplete (pink), or screen (orange) the 2DEG
in the Si layer below. b, Vertical slice of simulated device along white dashed line in a. c,d, Strain
(c) and conduction band shift (d) in one-dimensional cut through quantum well (white dashed line
in b). The strain is induced as the device is cooled from 293.15 K to 1 K due to the di↵erence in
coe�cient of thermal expansion in the materials within the device. All three components of the
strain are relatively constant over the considered region, with variations on the order of 0.01%.
The conduction band of the z valley �Ez is expected to shift to lower energy, with local maxima
underneath the accumulation gates, as indicated by the gray arrows. The local variations are on
the order of 1 meV, the same order of magnitude as the quantum dot orbital splitting.
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electrodes must extend out to the edges of the device, as we expect the biggest e↵ects to

come from the components of the device most proximal to the quantum dots. It would be

of interest to determine in future work if imposing this restriction would a↵ect the results of

this study.

The heterostructure of the simulated device is shown in Fig. 2.1b. The device consists of

(from bottom to top) a 100 nm SiGe bu↵er, a 9 nm Si well, a 40 nm SiGe spacer, and a 66.5

nm Al2O3 layer. The Al electrodes are located within the Al2O3 layer, starting 5 nm above

the top of the SiGe spacer.

Material Color E (GPa) ⌫ G (GPa) ↵ (10�6 K�1) ⌅d (eV) ⌅u (eV)
Al blue/pink 70 0.33 26.32 23 - -

Al2O3 gray 300 0.22 123 5.4 - -
SiGe black 124.6 0.276 77.08 2.6 - -
Si green 130 [49] 0.28 [49] 79.6 [49] 2.6 1.1 10.5

Table 2.1: Materials parameters used in strain simulations. The “Color” column refers to the color
of the material as shown in Fig. 2.1b.

To calculate the strain in this device due to CTE mismatch, we first find the thermal

strain "th in the devices using Eq. (2.5). We assume Tinitial = 293.15 K, Tfinal = 1 K, and

we use the material parameters given in Table 2.1. We next solve the di↵erential equation

in Eq. 2.1 over the domains of the devices using the finite-element method as implemented

in the COMSOL multiphysics package [50]. We assume that the device does not experience

any external force, which leads to a Neumann boundary condition. We additionally impose

Dirichlet boundary conditions on three corners in the geometry to ensure that the device

does not translate or rotate.

The strain in the vicinity of the quantum dots is shown in Fig. 2.1c. The x and y
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components of strain "xx and "yy are both larger in magnitude than the z component of

strain "zz. All three components of strain are relatively constant over this domain, with

variations on the order of 0.01%.

Once the strain tensor is calculated, we use Eq. (2.11) to find the expected shift in

the conduction-band minima, shown in Fig. 2.1d. We use the deformation potentials given

in Table 2.1. The local variations in the "zz strain field generate local variations in the

conduction band, yielding local maxima underneath the electrodes intended for quantum

dot accumulation. These variations in the conduction band a↵ect the properties of the

quantum dots formed in this device.

While the strain-induced conduction-band variations lead to a decrease in the magnitude

of the quantum dots’ orbital splittings, a rough estimate of the expected change in energy

implies that the e↵ect is small. We divide the one-dimensional cut shown in Fig. 2.1c,d into

four 100 nm segments, each centered around a gray arrow in Fig. 2.1c,d. In each of these

segments, we assume that the unperturbed electrostatic potential can be approximated as a

simple harmonic oscillator with an orbital splitting of ~! ⇡ 2 meV [51]. The unperturbed

potential in each segment is then Ez = 1
2m

⇤!2(x � x0)2 ⇡
�
5 ⇥ 10�3 meV/nm2� (x � x0)2,

where m⇤ is the transverse e↵ective mass in Si and x0 is the center of the segment. We then

perform a least-squares quadratic fit of the predicted energy shift �Ez in each segment. In

each case, we find the energy shifts to be approximately �Ez ⇡ �
�
5 ⇥ 10�4 meV/nm2� (x�

x0)2, an order of magnitude smaller than the unperturbed potential. The orbital splitting

of the combined potential E 0
z = Ez + �Ez in each segment is within 10% of 2 meV, implying
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that CTE mismatch does not lead to large changes in quantum dot orbital energy splittings.
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Chapter 3

Compressed Optimization of Device

Architectures for Semiconductor

Quantum Devices

Recent advances in nanotechnology have enabled researchers to manipulate small collections

of quantum mechanical objects with unprecedented accuracy. In semiconductor quantum dot

qubits, this manipulation requires controlling the dot orbital energies, tunnel couplings, and

the electron occupations. These properties all depend on the voltages placed on the metallic

electrodes that define the device, whose positions are fixed once the device is fabricated.

While there has been much success with small numbers of dots, as the number of dots grows,

it will be increasingly useful to control these systems with as few electrode voltage changes

as possible. Here, we introduce a protocol, which we call the Compressed Optimization
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of Device Architectures (CODA), in order to both e�ciently identify sparse sets of voltage

changes that control quantum systems, and to introduce a metric which can be used to

compare device designs. As an example of the former, we apply this method to simulated

devices with up to 100 quantum dots and show that CODA automatically tunes devices

more e�ciently than other common nonlinear optimizers. To demonstrate the latter, we

determine the optimal lateral scale for a triple quantum dot, yielding a simulated device

that can be tuned with small voltage changes on a limited number of electrodes.

3.1 Introduction

Nanoscale systems are challenging to control in part because their size makes them sus-

ceptible to even the smallest materials defects. Quantum devices present special challenges

because their energy spectra and tunnel couplings each require precise control [52, 53]. Here,

we focus on quantum bits (qubits) formed in electrostatically-gated quantum dots [25]. In

these systems, voltages are simultaneously tuned on many electrodes to precisely shape the

electrostatic potential landscape within a device. Working with a small number of qubits,

researchers have already demonstrated excellent qubit coherence and performance in devices

based in GaAs [54, 55, 56, 57] and silicon [58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68], in-

cluding the successful implementation of two-qubit gates [69, 70, 71] and algorithms [72].

Additionally, there has been rapid progress in systems with electrons bound to donors

[73, 74, 75, 76, 77, 78, 79, 80, 81, 82], which share many of the same design challenges as
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quantum dot qubits. Tuning schemes for these devices are typically determined empirically;

however, there has been recent progress towards automatic tuning of quantum dots both

experimentally [83, 84] and in simulated systems [85]. One challenge in controlling quantum

dot devices is ensuring that the voltage changes on the electrodes remain small during tun-

ing, a property that we refer to as voltage moderation. Imposing voltage moderation reduces

the power required during dynamic operation and lowers the risk of instability. Another

challenge is ensuring that a small number of electrodes can be used to tune quantum dots,

preferably with those electrodes proximal to the relevant dots. We refer to this property

as voltage sparsity, which eases the demands on control electronics and will be increasingly

important as devices are scaled to very large numbers of quantum dots. In order to achieve

these goals, it is critical to use simulations both to identify moderate and sparse tunings,

and to design these features into devices before they are fabricated.

Here, we introduce the Compressed Optimization of Device Architectures (CODA) pro-

tocol, which both determines optimized ways to change the voltages in a given system to

achieve a desired outcome, and provides a metric to characterize the ease with which the

device can be tuned. We show that by minimizing the L1 norm of the applied voltage

changes, we can simultaneously achieve voltage moderation and voltage sparsity. We min-

imize this norm by implementing the CODA protocol, which relies on results and methods

used for compressed sensing [86, 87] in the signal processing literature. Using a simulated

eight-dot device, we demonstrate that CODA yields solutions that are simultaneously sparse

and moderate. Moreover, we show that by imposing voltage sparsity and moderation, we
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obtain solutions that only involve gates that are proximal to the dot being manipulated –

an extremely desirable property for extensibility. To further demonstrate the extensibility

of the CODA protocol, we use a simple model to measure the number of device simulations

required to tune devices with up to 100 quantum dots. We find that CODA requires nearly

an order of magnitude fewer simulations than other commonly-used nonlinear optimization

techniques. Additionally, formulating control as an optimization problem allows us to di-

rectly compare the e↵ectiveness of di↵erent device architectures, enabling improvement of

the electrode designs themselves. To demonstrate this, we use CODA to optimize the overall

lateral scale of a triple quantum dot, which leads to a device that is optimally “tunable.”

3.2 Automatic tuning of simulated devices

For qubit applications, the main properties we wish to control are the quantum dot occupa-

tions, the orbital energy splittings, and the tunnel rates between the dots. Such properties

are referred to as quantities of interest, which we represent as a vector q in a vector space Q.

These values are controlled by the voltages applied to the electrodes. A given set of voltages

is represented as a vector v in a vector space V . A physical system, or a simulation thereof,

acts as a function that maps the voltages to the quantities of interest: Ŝ : V ! Q, as shown

in Fig. 3.1(a).

Because generically there are more electrodes than quantities of interest, many di↵erent

v can yield target values for the quantities of interest qtarget. The solutions are not all
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Figure 3.1: Example implementations of the CODA protocol, including comparisons of using
the L1 norm (the sum of absolute values) and the L2 norm (the Euclidian length) of the voltage
changes needed to achieve the desired values of the quantities of interest (dot occupations, tunnel
couplings, etc.). (a) A simulated quantum dot device maps electrode voltages to quantities of
interest. Generically, there are more electrodes in a device than quantities of interest. (b) There
are many combinations of electrode voltages that result in a target system state (grey dashed line).
By choosing the solution associated with the minimum L1 norm of voltage changes, described in
Eq. (3.1) (purple), we simultaneously ensure that voltages are changed by small amounts on a
small number of electrodes. Minimizing the L2 norm (orange) does not ensure that voltage changes
will be applied to a small number of electrodes. (c)-(f) Depiction of CODA algorithm tuning
voltages to obtain qtarget = 1 in a simple system. The voltages which yield the target quantity of
interest are indicated with the circular segment in panels (c) and (e). Starting at �v1 = �v2 = 0
mV (green circle), we calculate the Jacobian J and find all of the solutions to the linear equation
qtarget � qcurrent = J · �v, shown as a green dashed line. We then find the voltage changes on this
line which minimize the L1 and L2 norm, blue circle in panel (c) and (e), respectively. Using the
derivatives at this new point, we again estimate the voltage changes required to hit the target (blue
dashed line), and again find the solution which minimizes the appropriate norm (black circle). The
solution found here has converged on qtarget. Additionally, we have obtained the voltage changes
associated with the minimum of the appropriate norm, indicated by the purple color scale in panel
(c), and the orange color scale in panel (e). (g)-(i) CODA tuning of an 8-dot device. (g) Schematic
of a simulated 8-dot device, with metal electrodes colored yellow/orange (lower level) and green
(upper level). Here, the objective is to increase the occupation of the right-most quantum dot
(underneath the orange electrode) by one electron, keeping all other dot occupations and tunnel
couplings unchanged. (h),(i) Visualization of the voltage changes obtained by the optimization
protocol, plotted on a logarithmic color scale (electrodes with voltage changes less than 0.5 µV
are colored white), minimizing the (h) L1 and (i) L2 norms of the voltage changes. As expected,
minimizing the L1 norm ensures that a limited number of electrode voltages are changed, whereas
minimizing the L2 norm does not.
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equivalently useful – it is our goal to select changes in voltages that are simultaneously

moderate and sparse. In Fig. 3.1(b), we highlight the advantage of choosing the solution

that satisfies the equation

f�v = argmin
�v

||�v||1 , subject to Ŝ(vinit + �v) = qtarget, (3.1)

where vinit is the voltage vector at the starting point, qtarget is the vector of target quantities

of interest, �v is the voltage change from the starting point, and || · ||1 is the L1 norm, which

is the sum of the absolute value of each element in the vector.

Minimizing the L1 norm of the voltage change vector ensures both the magnitude of

the individual voltage changes remain small (i.e., voltage moderation) and that the volt-

age change vector is sparse. The sparsity achieved by L1 norm minimization is a property

used extensively in the field of compressed sensing [86, 87]. In contrast, L2 norm mini-

mization (minimizing the Euclidian length of �v) does not guarantee voltage sparsity, and

L0 pseudonorm minimization (minimizing the number of nonzero elements of �v) does not

guarantee voltage moderation. In principle, one could achieve both moderation and sparsity

by minimizing some combination of these two quantities, but this would involve making an

arbitrary choice for the relative weight given to the L0 and L2 norms. Additionally, finding

the solution that minimizes the L0 pseudonorm is known to be an NP-hard problem [88],

whereas convex programming methods can be used to minimize the L1 norm e�ciently [89].

Therefore, by selecting the changes in voltages described in Eq. (3.1), the CODA procedure
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yields a device tuning in which a small number of voltages are changed by modest amounts.

To demonstrate the CODA protocol, we first perform automatic tuning of a simple toy

example shown in Fig. 3.1(c)-(f). This system comprises two electrode voltages �v1 and �v2

and one quantity of interest q(�v1, �v2) = (�v1/(1 mV)�3/2)2+(�v2/(1 mV)�3/4)2. During

the protocol, we treat this as a black box function, as in more complicated device models

we do not have access to an analytical form of the mapping from voltages to quantities

of interest. Starting with �v1 = �v2 = 0 mV, we wish to find the voltage changes with

minimal L1 norm that are necessary to change the quantity of interest from qcurrent = 2.8125

to qtarget = 1. To achieve this, we apply an iterative algorithm to minimize the distance

between the simulated quantities of interest and the target quantities of interest. At the

starting point, we calculate the Jacobian J = ( @q
@�v1

, @q
@�v2

) and find all of the solutions to

the linear equation qtarget � qcurrent = J · �v, shown as a red dashed line in Fig. 3.1(c). In

this example, it is easy to minimize the L1 norm along this line; however, for more general

and complicated problems, we employ a matrix-free conic optimization algorithm [89] to

determine the particular �v that minimizes the L1 norm while satisfying this equation. This

vector defines a search direction in voltage space; CODA moves along this direction in voltage

space, stopping at the point that brings the simulation closest to the target quantities of

interest. This process then repeats until the quantity of interest converges on qtarget. In

general, convergence is declared when kq�qtargetk2 falls below some threshold. We typically

choose an error threshold of ⇠ 10�2; in this example, we choose a threshold of 5⇥ 10�2. We

achieve convergence after two iterations, at which point q ⇡ 1.041, as shown in Fig. 3.1(d).
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In this example, we achieved the target quantity of interest by changing only one electrode

voltage.

It is instructive to contrast this solution to one obtained using an analogous procedure in

which the L2 norm is minimized, rather than the L1 norm, as demonstrated in Fig. 3.1(e),(f).

Here, we again declare convergence after two iterations, with q ⇡ 1.012. However the final

solution involves changing the voltage on both electrodes to achieve the target quantity of

interest, and is therefore less sparse than the solution obtained using the L1 norm. For more

details on the CODA algorithm, see Appendix A.1.

In a more realistic demonstration of CODA’s capabilities, we can use it to perform au-

tomatic tuning of the accumulation-mode eight-dot device shown in Fig 3.1(g). The device

contains four capacitively-coupled double quantum dot qubits in a Si/SiGe heterostructure.

In principle, the CODA protocol can use any underlying physical model. Here, we model the

device using the semiclassical Thomas-Fermi approximation [90] to compute electron densi-

ties and potentials, and the WKB approximation [16] to calculate tunnel rates, as described

in Appendices A.2-A.3. The quantities of interest are chosen to be the eight dot occupations

and the four intra-qubit tunnel rates. While this semiclassical approach is appropriate for

these quantities of interest, one may need a more sophisticated model to correctly capture

the physics of di↵erent quantities of interest, e.g. valley splitting within a dot [91]. Our

starting point is chosen to give dot occupations of 1 electron, and transmission coe�cients

between the dots of 0.01, corresponding to tunnel rates of approximately 400 MHz (see Ap-

pendices A.2–A.3 for details about the simulation parameters and methods). Our goal is to
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find the optimal changes in voltages that can be applied to the device electrodes to add one

electron to the right-most dot, leaving all other dot occupations and transmission coe�cients

unchanged.

In Fig. 3.1(h), we show the voltage changes needed to achieve convergence of the CODA

procedure applied to the eight-dot device. Note that although voltages are allowed to vary on

all the electrodes, CODA chooses to vary only four electrode voltages, and those electrodes

are proximal to the target of interest. For comparison, we also performed an alternative

optimization protocol based on L2-minimization, with results shown in Fig. 3.1(i). Note

that although the latter protocol achieves the same target quantities of interest, the solution

involves voltage changes on almost all of the electrodes, indicating that this solution is neither

sparse nor proximal. In both tuning protocols, the magnitudes of the voltage changes applied

to the electrodes are all under 5 mV. Because minimizing the L2 norm explicitly ensures

voltage moderation, the similarity in the magnitude of voltage changes applied in both cases

confirms that the solution found via L1 norm minimization exhibits voltage moderation as

well. Hence, we confirm that CODA is a practical tool for tuning a device, because it selects

voltages that are both sparse and moderate while achieving the specified target quantities

of interest.

3.3 Extensibility

In the previous section, we applied the CODA protocol to simulated devices with up
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to eight quantum dots, showing that the method can find sparse voltage tunings which are

moderate and sparse for these devices. These solutions were obtained after two iterative

steps, suggesting that this procedure is e�cient even for large systems. Here, we show that

the CODA protocol scales e�ciently with device size, and can be used to find sparse tunings

for devices with 100 quantum dots.

We consider the device shown in Fig. 3.2(a), which consists of m quantum dots, m � 1

tunnel rates, and 4m � 1 electrodes. The electrode separating the quantum dots (thin blue

rectangle in Fig. 3.2(a)) is 35 nm from the center of the neighboring electrodes (red and blue

squares in Fig. 3.2(a)). The centers of the square-shaped electrodes are separated by 50 nm.

The quantum dots are located 20 nm below the electrodes.

There are many methods one could employ to model this device, including taking the

semiclassical approach described in Appendices A.2–A.3, or self-consistently solving the

Schrödinger and Poisson equations, which more accurately take into account quantum ef-

fects. Here, we use a simple model that can be regarded as phenomenological, although

it is physically motivated, describing a non-linear system in which an electrode’s proximity

to a quantum dot or tunnel barrier determines that electrode’s e↵ect on the corresponding

quantity of interest. Specifically, we define the occupation ni of dot i to be

ni =
X

j

�
Vj/(1 mV) + 1

10sgn(Vj)Vj
2/(1 mV2)

�
�
k�!rVj � �!rnik2

�3
/(1 nm3)

, (3.2)
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Figure 3.2: Demonstrating the extensibility of the CODA protocol using a simple model involving
up to 100 quantum dots. (a) Diagram of simulated device. The quantities of interest in this device
are the occupations ni of the quantum dots (dashed circles) and tunnel rate ⌧i between the dots
(dashed double arrows). Each quantum dot has three electrodes in close proximity: one located
directly above the quantum dot (blue square) and two located above and to either side of the
quantum dot (red squares). Additionally, there is an electrode separating each pair of dots (thin
blue rectangle). The dependence of ni and ⌧i on the electrode voltages is defined phenomenologically
in Eqs. (3.2) and (3.3), respectively. (b)-(d) Given a device with m quantum dots, we use a variety
of nonlinear optimizers (including CODA) to find the changes in electrode voltages which add one
electron to the left-most quantum dot, keeping all other occupations and tunnel rates constant.
We consider devices with m ranging from 2 to 100. The results corresponding to CODA are shown
in green, and the results corresponding with the other nonlinear optimizers are shown in hues
of purple. In panel (b) we show the maximum voltage change applied to any of the electrodes,
averaged across all of the considered devices. The standard deviation is smaller than the points
used in this plot. The uniformity of the results here indicates that all of the optimizers find
solutions with similar voltage moderation. In panel (c) we show the number of electrodes used in
each solution. The CODA procedure consistently requires fewer electrodes than any of the other
nonlinear optimizers considered. In panel (d) we show the number of function calls used by each
optimizer. CODA requires roughly an order of magnitude fewer function calls than any of the other
nonlinear optimizers considered.
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and the tunnel rate ⌧i between the ith and (i+ 1)th quantum dot is given by

⌧i =
1

100

X

j

�
Vj/(1 mV) + 1

2sgn(Vj)Vj
2/(1 mV2)

�
�
k�!rVj � �!rnik2

�3
/(1 nm3)

. (3.3)

In these equations, Vj is the voltage applied to electrode j, sgn(x) is the sign function of x,

�!rVj is the center of electrode j,
�!rni is the center of dot i, and

�!r⌧i is directly between dots i and

(i + 1). The r�3 scaling of these quantities is the expected dependence due to screening in

a 2DEG [92], while the voltage dependence was chosen assuming that these quantities scale

approximately linearly with voltage, with an additional, explicitly non-linear contribution.

To study the extensibility of our approach, we employ a variety of nonlinear optimiz-

ers, including CODA, to tune the voltages in devices with m = 2 to 100 dots. In each

case, we begin with voltages -100 mV applied to each of the electrodes indicated with red

in Fig. 3.2(a), and with positive voltages applied to the electrodes indicated with blue in

Fig. 3.2(a). The latter voltages are set such that ni = 1 and ⌧i = 0.01 for every i. We then

find a combination of voltage changes that adds one electron to dot i = 1, keeping all other

ni and ⌧i fixed. We specifically consider the CODA protocol, the conjugate gradient (CG)

algorithm, the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) algorithm, the Newton

conjugate gradient (Newton-CG) algorithm, the limited memory BFGS algorithm L-BFGS-

B, and the Sequential Least SQuares Programming (SLSQP) algorithm, as implemented in

the SciPy package [93]. In all of these algorithms we minimize kq � qtargetk2, where k · k2 is

the L2 norm, q is the vector consisting of every quantity of interest ni and ⌧i, and qtarget is
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the vector consisting of the target values for the quantities of interest. We define the system

to be converged on the target when kq � qtargetk2 < 10�5.

We assess the voltage moderation and sparsity of each of the solutions found by the

nonlinear optimizers. The maximum voltage change Vmax applied to a given device is shown

in Fig. 3.2(b). The number of nonzero voltage changes found by each optimizer as a function

of m is shown in Fig. 3.2(c). While all of the nonlinear solvers apply voltage changes of

comparable magnitudes, CODA consistently finds solutions which require changing fewer

electrode voltages than any of the other optimizers we consider. Moreover, the number of

electrodes used by CODA does not change for devices with m � 26. In contrast, all of

the other nonlinear optimizers show high variability in the number of electrodes used as a

function of device size.

We find that the CODA protocol requires fewer function calls than any of the other non-

linear optimizers considered. In Fig. 3.2(d), we show the number of function calls made in

each optimization. The average number of function calls made by a given nonlinear optimizer

scales linearly with the number of quantum dots in the system, regardless of the optimizer

used. Although the scaling is the same for each of these optimizers, the CODA protocol

achieves convergence using approximately an order of magnitude fewer function calls com-

pared with the next-most e�cient optimizer, the L-BFGS-B algorithm. Since the device

simulations dominate the computation time, the CODA protocol can therefore automati-

cally tune simulated devices significantly faster than any of the other nonlinear optimizers

considered. We conclude that CODA can e�ciently find sparse and moderate solutions in
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Figure 3.3: Protocol used to compare the “tunability” of device designs. Given multiple simulated
devices, we use the CODA protocol to find the minimum L1 norm of voltage variations needed
to induce a common change in each device (e.g., change the dot occupations in device #1, device
#2, etc.). The device with the minimum norm can simultaneously provide voltage moderation and
sparsity, and should therefore be regarded as the most “tunable” device.

large devices.

3.4 Device design optimization

In addition to automatically tuning quantum dot devices, the CODA protocol can be used to

characterize the voltage sparsity and moderation of typical gate operations, thus providing

a key metric for evaluating and comparing di↵erent device designs. Here, we consider a

series of triple-dot devices, shown in Fig 3.3. Each device has the same electrode layout,

save for the overall lateral scale – we parameterize this scale via the width of the paddle

electrode, as shown in Fig 3.4(a). All devices have an identical Si/SiGe heterostructure

with a silicon quantum well a distance 30 nm below the electrodes. Optimizing device size

is important, because a device with electrodes too small will lead to instability and larger
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Figure 3.4: Using CODA to optimize the triple quantum dot designs shown in Fig. 3.3. (a) Every
device in the series has an identical electrode layout, save for the lateral scale of the device, which
we characterize in terms of the width of the paddle electrode. The Si/SiGe heterostructures for all
devices considered are identical. (b) For each device in the series, we use the CODA protocol to
lower all three dots from an occupation of thirty electrons to one electron, keeping the transmission
coe�cients fixed at 0.01. Additionally, the single-electron dots are required to have orbital excita-
tion energies greater than 1 meV. (c)-(e) Visualization of the optimized voltage variations required
to tune each device. Voltage changes are shown in red and blue, and the resulting electron density
distributions are shown in black. For smaller devices (e.g., (c)), fewer electrodes are required to
tune the device. However larger voltage changes must be applied to those electrodes, resulting in
a high voltage L1 norm. For larger devices (e.g., (e)), quantum dots no longer form underneath
the paddle electrodes (e.g., right-most dot, indicated with purple arrows), so that many electrodes
are required to tune the device. Balancing these e↵ects leads to a local minimum in the voltage L1

norm, corresponding to device (d).



46

power requirements for switching, and a device with electrodes too big will not have su�cient

control over the potential landscape at the required length-scales. In particular, it has been

observed in experiments [69, 72, 94] that in larger devices it is often necessary to form the

quantum dots away from their intended locations. We now show that CODA can be used

to determine an optimal device scale.

We again use the semiclassical Thomas-Fermi approximation [90] and the WKB approxi-

mation [16] to model the devices. Since it is relatively di�cult to determine the gate voltages

needed to achieve single-electron occupancies in each dot, we choose a starting point for our

simulations with 30 electrons in all three dots, and tunnel couplings that yield transmission

coe�cients of 0.01 between the left and middle dots and the middle and right dots. In

each device, we then use the CODA protocol to automatically tune gate voltages to achieve

single-electron occupation of each dot, while keeping the transmission coe�cients constant,

exploiting CODA’s ability to automatically tune voltages. Additionally, we require the or-

bital energy splitting of each dot to be 1 meV or more, as consistent with recent experiments.

Orbital energy splittings are calculated using a 2D finite-di↵erence Schrödinger solver; see

Appendix A.2 for details.

The minimized voltage L1 norms required for the auto-tuning process in each device are

plotted in Fig 3.4(b). Comparing these results, we see that the voltage L1 norm is minimized

for the device labeled (d), with a paddle width of approximately 80 nm, suggesting that this

device is optimal from a control standpoint.

The voltage changes for the auto-tuning protocol and the resulting electron charge density
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distributions are shown in Figs. 3.4(c)-3.4(e). For the optimal device, shown in Fig. 3.4(d),

the number of gates with voltage changes is relatively small, indicating good voltage sparsity.

For devices smaller than the optimal device, voltage sparsity is still maintained, as a benefit

of small device size. However, voltage moderation is not, with large voltage changes required

on multiple electrodes, as shown in Fig. 3.4(c). For devices larger than optimal, voltage

moderation is maintained, but the solution is no longer sparse, as shown in Fig. 3.4(e). The

constraints on dot occupation, dot energy and transmission coe�cients lead to constraints

on the size and relative position of the dots. In smaller devices, such as those shown in

Fig. 3.4(c),(d), the dots can be formed underneath the paddle electrodes and still meet these

requirements. In larger devices, such as the device in Fig. 3.4(e), to achieve the required

quantities of interest, the dots can no longer form under the paddle gate electrodes, with the

right-most dot forming under the nominal right tunnel-barrier electrode as indicated by the

arrows. This misalignment between electrodes and dots, which has also been observed in

experimental devices [69, 72, 94], leads to solutions that are less sparse than in the smaller

devices.

3.5 Conclusion

We have introduced a protocol for the Compressed Optimization of Device Architectures,

which determines the optimal voltage changes for a given device operation by minimizing

their L1 norm. We have demonstrated the e↵ectiveness of this scheme by considering its
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application to semiconductor nanoelectronic quantum dot systems. As devices continue to

grow in complexity, such automated control schemes will be essential for design and opera-

tion. Our protocol is computationally e�cient to implement, and it provides a systematic

approach for achieving local and sparse control. Through realistic semiclassical simulations

of multi-dot devices, we have illustrated how the CODA scheme can be used for quantitative

benchmarking and device development. While the current work focuses on quantum dot ge-

ometries, we note that the CODA protocol could also be applied to other device geometries,

including donor-bound qubits, using simulation tools appropriate for those systems. This

method provides a path toward the rational design and operation of extensible quantum

nanodevices.
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Chapter 4

Adiabatic two-qubit gates in

capacitively coupled quantum dot

hybrid qubits

The ability to tune qubits to flat points in their energy dispersions (“sweet spots”) is an

important tool for mitigating the e↵ects of charge noise and dephasing in solid-state devices.

However, the number of derivatives that must be simultaneously set to zero grows expo-

nentially with the number of coupled qubits, making the task untenable for as few as two

qubits. This is a particular problem for adiabatic gates, due to their slower speeds. Here, we

propose an adiabatic two-qubit gate for quantum dot hybrid qubits, based on the tunable,

electrostatic coupling between distinct charge configurations. We confirm the absence of a

conventional sweet spot, but show that controlled-Z (CZ) gates can nonetheless be optimized
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to have fidelities of ⇠99% for a typical level of quasistatic charge noise (�"'1 µeV). We then

develop the concept of a dynamical sweet spot (DSS), for which the time-averaged energy

derivatives are set to zero, and identify a simple pulse sequence that achieves an approxi-

mate DSS for a CZ gate, with a 5⇥ improvement in the fidelity. We observe that the results

depend on the number of tunable parameters in the pulse sequence, and speculate that a

more elaborate sequence could potentially attain a true DSS.

4.1 Introduction

Since their original proposal [25], semiconductor quantum dot qubits have progressed greatly,

demonstrating excellent qubit coherence and performance through the use of sweet spots [54,

55, 56, 57, 58, 59, 60, 62, 63, 65, 66] and control of the spin degree of freedom [61, 64, 67, 68].

There has also been remarkable progress in systems with small numbers of donor-bound

electrons [73, 74, 75, 77, 78, 79, 80, 81, 82]. Recently, two-qubit gates [69, 71] and algorithms

[72] have been realized using exchange-coupled single-spin qubits. Capacitive coupling has

also been employed to entangle and perform two-qubit operations between singlet-triplet

qubits [70, 95], and has been proposed as the basis for two-qubit gates between resonant-

exchange qubits [96] and flip-flop qubits [80]. In these experiments and proposals, the two-

qubit gate times are typically measured in microseconds or hundreds of nanoseconds, which

is much longer than typical single-qubit gate times. In contrast, the predicted two-qubit gate

times for capacitively-coupled quantum dot hybrid qubits [97, 98] (QDHQs) are comparable
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to single-qubit gates, which are of order 10 ns [63, 99]. However, the methods proposed in

refs [97] and [98] rely on applying quickly varying electrical pulses, which can cause leakage

from the qubit subspace [99].

In this paper we study an adiabatic entangling protocol based on capacitive couplings be-

tween QDHQs. The gate is inspired by an early proposal for entangling singlet-triplet qubits

[100]. Although the necessary voltage changes are slow relative to the qubit frequencies, we

show that high-fidelity adiabatic gates can be achieved in under 50 ns, which is significantly

faster than those in recent singlet-triplet experiments [70, 95]. While the pulse sequences

used in adiabatic protocols are more resilient against pulse errors than non-adiabatic pulses

and are less susceptible to leakage errors, a potential concern is that they could be more

susceptible to charge noise due to slower speeds. It is therefore crucial to study the e↵ect of

charge noise on the gate fidelities.

We begin by considering the system of two capacitively coupled QDHQs, deriving the

e↵ective couplings between the two qubits, and describing how a slowly-varying electrical

pulse on the qubits can yield an entangling gate. Next, we optimize the pulse sequence for

a two-qubit system to maximize the process fidelity of the resulting gate. We find that gate

fidelities > 99% are feasible, assuming quasistatic charge noise with a standard deviation of

�" = 1 µeV, and that the infidelity scales roughly as �2
" . Finally, we show that gate fidelities

can be further improved to ⇠99.9% by modifying pulse sequences to impose a “dynamical

sweet spot,” a technique similar to dynamical decoupling [101].
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4.2 Results

The QDHQ consists of three electrons shared between two quantum dots. The minimal

Hilbert space of the qubit can be defined as the spin states |·Si = |#i |Si, |·T i =
q

1
3 |#i |T0i�

q
2
3 |"i |T�i, and |S·i = |Si |#i [33, 102], where |·Si and |·T i correspond to (1,2) charge

configurations (one electron in the left dot, two electrons in the right), |S·i corresponds to a

(2,1) charge configuration, and the singlet state, |Si = 1/
p
2 (|#"i � |"#i), and triplet states,

|T0i = 1/
p
2 (|#"i + |"#i) and |T�i = |##i, refer to the dot with two electrons. In this basis,

the single-qubit Hamiltonian is

H1q =

0

BBBBBB@

�"/2 0 �1

0 �"/2 + EST ��2

�1 ��2 "/2

1

CCCCCCA
, (4.1)

where the detuning parameter, ", corresponds to the energy separation between the quantum

dots,�1 is the tunnel coupling between states |·Si and |S·i,�2 is the tunnel coupling between

states |·T i and |S·i, and EST is the energy splitting between the singlet-like and triplet-like

basis states, |·Si and |·T i. A typical energy spectrum for H1q is plotted as a function of

detuning in Fig. 4.1a. Here, the two lowest-energy eigenstates |0i and |1i form the qubit,

while the remaining state |Li is regarded as a leakage state.

The qubit states and charge configurations hybridize as a function of the detuning. The

large detuning regime (right-most dashed line in Fig. 4.1a) is characterized by the asymptotic
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Figure 4.1: Implementing a CZ gate between capacitively coupled QDHQs. a, Energy dis-
persion of a single QDHQ as a function of detuning, as defined in Eq. (4.1), for typical experimental
values given by �1 = 18.1 µeV, �2 = 46.7 µeV, and EST = 51.7 µeV [63]. On the right-hand side
of the plot, the logical states |0i and |1i converge to the basis states |·Si (indicated in blue) and
|·T i (red), as defined in the main text, while the leakage state |Li converges to |S·i (yellow). b,c,
Charge distributions of a third electron added to an underlying (1,1) charge configuration at two
di↵erent values of ". b, In the large-" regime (right-most dashed line in a), the qubit states have
very similar charge distributions (same color coding as a). c, For " near the charge transition
(left-most dashed line in a), some charge moves from the right dot to the left dot, especially for
state |1i, setting up a dipole moment between states |0i and |1i. d,e, E↵ective two-qubit coupling
versus " = "(1) = "(2), plotted on linear-linear (d) and log-log (e) scales. When " is large, the
coupling is negligible and decreases as "�4 (see Eq. (B.13)). When " is simultaneously lowered on
both qubits, their dipole moments grow, and the e↵ective coupling increases. f, Detuning pulse
sequences for qubits 1 and 2 (dashed and solid lines, respectively; see Appendix B.3 for details).
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Figure 4.2: Optimized infidelities of sub-50 ns adiabatic CZ gates. a, Process infidelities
obtained in the presence of quasistatic charge noise, with a standard deviation of �"=1 µeV; other
Hamiltonian parameters are given in the main text. Following the optimization procedure described
in Methods, we obtain variable gate times, as indicated by the contours; however, we discard total
gate times with ⌧total=2⌧ramp+⌧wait> 50 ns (cross-hatched region) to ensure that the two-qubit gate
is comparable in length to single-qubit gates. The highest fidelity pulse sequence is obtained at

("(1)wait, "
(2)
wait)=(80,100) µeV. b, Minimum CZ gate infidelities (black squares and dashed black line)

plotted as a function of the standard deviation of the charge noise, �". The infidelity roughly falls
o↵ as �2" (solid black line).

behavior |0i ' |·Si and |1i ' |·T i, for which both states have the same charge configuration,

as depicted in Fig. 4.1b. Here, the information is stored entirely in the spin degree of freedom

and the qubit is well protected from charge noise [63]; however the single-qubit gate speeds

can be slow [103, 104]. (Below, we show the same is true for two-qubit gates.) To perform

e�cient gates, we must therefore lower the detuning, bringing it near the anticrossing region

(left-most dashed line in Fig. 4.1a). In this regime, |·Si and |·T i begin to hybridize with |S·i,

which has a (2,1) charge configuration, as depicted in Fig. 4.1c. Since the admixture of (2,1)

is di↵erent for |0i and |1i, the qubit states acquire distinct dipole moments that can be used

to mediate two-qubit dipole-dipole interactions, but which also couple to environemental

charge noise. The goal of this work is to optimize the control parameters, to achieve high-

fidelity two-qubit gates.
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We can formalize the concept of a dipole moment by defining the operator

x̂ = diag{d/2, d/2,�d/2}, (4.2)

describing the position of the third electron electron in the double dot, as depicted in

Fig. 4.1b,c. Here for simplicity, we assume that states |·Si and |·T i have identical charge

configurations. The dimensionless dipole operator is therefore given by P = �x̂/d =

diag{�1/2,�1/2, 1/2}, which is related to Eq. (4.1) through P = @H1q/@", where " plays

the role of an electric field along the axis between the dots. The two-qubit Coulomb inter-

action can be expressed in terms of the dipole moments P (1) and P (2) of qubits 1 and 2. We

first note that the Coulomb interaction is classical, and therefore diagonal, when expressed

in a charge-state basis. In analogy with charge qubits, the interaction can then be fully

specified by b(0)I(1) ⌦I(2)+ b(1)P (1) ⌦I(2)+ b(2)I(1) ⌦P(2)+ b(3)P (1) ⌦P(2). The first term in

this expression is a uniform energy shift, which can be ignored. The second and third terms

can be absorbed into the detuning parameters through the transformation "(i) ! "(i) + b(i)

(i = 1, 2). Finally, defining g as the change in Coulomb energy when one of the qubits flips

its charge configuration, the two-qubit Hamiltonian becomes

H2q = H(1)
1q ⌦ I(2) + I(1) ⌦ H(2)

1q + gP (1) ⌦ P (2). (4.3)

This form is generic and does not depend on qubit geometry. However, the value of g depends

on the geometry, and has been found to be of order 75 µeV for a linear dot array [94]. The
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full 9D basis set for Eq. (4.3) is given by {|·Si , |·T i , |S·i}(1) ⌦ {|·Si , |·T i , |S·i}(2), and the

corresponding matrix representation for H2q is given in Appendix B.1.

We first discuss qubit initialization and the implementation of single-qubit gates. In

the large-detuning regime, the qubit logical states are energetically well separated from

the leakage states, as shown in Fig. B.1, allowing leakage-free qubit initialization. To gain

insight into gate operations, we perform a canonical transformation to decouple the logical

states from the leakage states in the large-detuning limit. Additionally, we evaluate this

Hamiltonian in the adiabatic basis (the basis that diagonalizes H2q), yielding the e↵ective

Hamiltonian

H2q,e↵ ' �~!z1

2
�(1)
z ⌦ I(2) +

�~!z2

2
I(1) ⌦ �(2)

z +
~!zz

2
�(1)
z ⌦ �(2)

z , (4.4)

where the leading-order contributions to the single-qubit prefactors are of order ~!zi = E(i)
ST+

O[�(i)
z

2
/"(i)], and the e↵ective two-qubit coupling ~!zz is discussed below. (See Appendix B.1

for details of the calculation.) Here, the sub- (or super)-script i identifies the qubit, �(i)
z

2
is a

quadratic function of the tunnel couplings, and the identity and Pauli matrices, I(i) and �(i)
z ,

act on the logical subspace. Although the detuning parameters provide some control over the

qubit resonant frequencies, !z1 and !z2, EST typically varies significantly from dot to dot,

resulting in well separated resonances. Single-qubit gates thus proceed by lowering one of

the detunings (say, "(1)) from its high value to a regime where fast ac gates can be performed

(e.g., the first dashed line in Fig. 4.1a). At this point, the dipole on qubit 1 is non-negligible;
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however, we can operate it near a single-qubit sweet spot to minimize dephasing, as described

in Appendix B.2. Since "(2) remains at a large value, there is no danger of implementing

either a single-qubit gate on qubit 2, or a two-qubit gate. Superimposing an ac drive on "(1)

at the resonant frequency of qubit 1 yields an additional term in Eq. (4.4) proportional to

cos(!z1t) �
(1)
x ⌦ I(2), which induces Rabi oscillations about the x̂ axis of the qubit; additional

modulation of the phase in cos(!z1t+ �) enables rotations about an arbitrary axis in the x-y

plane. To suppress the coupling of the dipole moment to external charge noise, we return

"(1) to its large value when the gate is finished.

Next, we consider two-qubit gate operations, which are performed adiabatically, and do

not involve ac driving. The canonical transformation leading to Eq. (4.4) yields the leading

order result at high detuning, ~!zz = O[g�4/"(1)
2
"(2)

2
], where �4 is a quartic function of the

tunnel couplings in both qubits. As anticipated, the adiabatic gate speed |!zz|/2⇡ depends

linearly on g, and requires "(1) and "(2) to be simultaneously reduced from their high values to

initiate a two-qubit gate. The canonical transformation breaks down when "(1) and "(2) take

their low values; however under adiabatic operation, the projection onto the logical subspace,

Eq. (4.4), is still meaningful. We can compute ~!zz at arbitrary detuning values by evaluating

H2q in its adiabatic basis and projecting it onto the 4D logical subspace, H2q ! H4D. We

then identify ~!zz = 1
2Tr[(�

(1)
z ⌦ �(2)

z )H4D] =
1
2(E00 � E01 � E10 + E11), where Eij is the

energy eigenvalue corresponding to the two-qubit logical state |iji. In Fig. 4.1d,e, we plot

numerical results for ~!zz assuming typical qubit parameters and " ⌘ "(1) = "(2). Here we

observe the predicted asymptotic behavior ~!zz / "�4. We also note that ~!zz changes sign
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when " is of order g, in the low-detuning regime where the canonical transformation breaks

down.

A simple protocol for implementing adiabatic two-qubit gates is shown in Fig. 4.1f, and

can be summarized as follows. We begin with the detuning parameters "(1) and "(2) set to

‘high’ values of 500 µeV, and smoothly lower them to the ‘low’ values "(1)wait and "
(2)
wait over a

ramp time ⌧ramp. The detunings are held constant at these values for a waiting period ⌧wait,

and then smoothly returned to "(1) = "(2) = 500 µeV over the same ramp time ⌧ramp. The

parameters defining the pulse sequence are chosen to approximately yield a controlled-Z (CZ)

gate operation. This protocol also produces incidental single-qubit Z(1) and Z(2) rotations,

which can be eliminated, if necessary, by applying additional Z(1) and Z(2) gates. Explicit

functional forms for "(1)(t) and "(2)(t) are given in Appendix B.3.

We now compute the two-qubit gate fidelity for this sequence including both leakage

and charge noise. While we do not explicitly consider the e↵ects of relaxation error, in

Appendix B.9 we provide a rough estimate of the expected T1 times, finding them larger

than the gate time. Leakage corresponds to the filling of quantum levels outside the logical

subspace, and is primarily caused by non-adiabatic gate pulses. It is taken into account in

our simulations by retaining the full 9D Hilbert space, comprising both logical and leakage

states. In Section 4.4 we describe a method for computing the process fidelity of a CZ gate

in the presence of charge noise. This procedure allows us to identify optimal values of ⌧ramp

and ⌧wait, consistent with fast pulse sequences, low leakage, and high fidelity. Figure 4.2

shows the results of such fidelity calculations, for a range of "(1)wait and "
(2)
wait values, assuming
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the typical quantum dot parameters E(1)
ST = 52 µeV, E(2)

ST = 47 µeV, g = 75 µeV, and

�" = 1 µeV. Here, we choose �(i)
1 = 0.64E(i)

ST and �(i)
2 = 0.58E(i)

ST, which suppresses the

single-qubit dephasing, as discussed in Appendix B.2. We also omit pulse sequences with

total gate times ⌧total = 2⌧ramp+⌧wait > 50 ns (the cross-hatched regions in the plot), to ensure

that entangling gates are performed on a timescale comparable to the QDHQ single-qubit

gates [99]. The fastest pulse sequence in the viable regime corresponds to "(1)wait = 90 µeV,

"(2)wait = 110 µeV, ⌧ramp = 2.4 ns, and ⌧wait = 2.8 ns (⌧total = 7.6 ns), and exhibits an average

process infidelity of 9.9⇥ 10�3. The highest-fidelity sequence corresponds to "(1)wait = 80 µeV,

"(2)wait = 100 µeV, ⌧ramp = 4.0 ns, and ⌧wait = 8.0 ns (⌧total = 16.0 ns), with an average process

infidelity of 9.2 ⇥ 10�3. This optimized value depends on the standard deviation of the

charge noise, �". In Fig. 4.2b, we plot the minimized CZ gate infidelity I as a function of

�", revealing the scaling behavior I / �2
" .

The strong dependence of infidelity on �" indicates that dephasing, rather than leakage,

is the main source of gate errors. In Appendix B.7, we explain the observed behavior by

assuming that charge noise is quasistatic, obtaining

Icn ⇡ 1

4
�2
"

X

i=1,2

X

j=z1,z2,zz

✓Z
@!j

@"(i)
dt

◆2

, (4.5)

as expected in the absence of a sweet spot [56]. To confirm the absence of a sweet spot, we

perform an exhaustive search over the detuning (✏(i)), tunnel coupling (�(i)
j ), and Coulomb

(g) parameters in Eq. (4.3), finding that it is impossible to simultaneously set @!j/@"(i) = 0,
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for all i and j, in the parameter range of interest. However, it is clear that this conventional,

time-independent definition of a sweet spot is overly restrictive for ensuring that Icn ⇡ 0 in

Eq. (4.5).

We now introduce the concept of a dynamical sweet spot (DSS) in which the time-averaged

derivatives in Eq. (4.5) are made to vanish, as sketched in Fig. 4.3a. Through an exhaustive

search (Fig. 4.2a), we have already demonstrated that no DSS exists for the simple pulse

sequence of Fig. 4.1f. Moreover, because of the monotonic dependence of !j on "(i) (for

example, see Fig. B.1), it appears unlikely that a more elaborate detuning pulse sequence

could provide significant improvements in the fidelity. We therefore augment the detuning

sequence with a tunnel-coupling sequence, �(i)
j (t) (i, j = 1, 2). Our initial investigations

suggest that a relatively large number of pulse parameters are needed to achieve significant

improvements in the fidelity. We therefore consider the more elaborate pulse shape, shown

in Fig. 4.3b, which incorporates seven parameters for each of four tunnel couplings.

Because of the large number of parameters in the combined detuning-tunnel-coupling

sequence, we do not attempt an exhaustive search in this case. Instead, we maximize the

CZ gate fidelity by performing a hundred separate Broyden-Fletcher-Goldfarb-Shanno [105,

106, 107, 108] (BFGS) searches using the method of ref. [93], and adopting a basin-hopping

protocol with randomized initial values to help escape any local minima [109]. To simplify the

calculation, we adopt the following hybrid infidelity functional: Itotal = Icn+Inf+Ina, which

treats the charge noise (cn), noise-free (nf), and non-adiabatic (na) infidelity contributions

separately. Calculating Itotal is computationally e�cient because all three contributions,
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Figure 4.3: Dynamical sweet spot (DSS) and a tunnel-coupling pulse sequence. a, Two-
qubit energy levels plotted schematically as a function of a single detuning variable. At any given
time, it is di�cult to arrange for all the energy dispersions to be parallel, as indicated on the
left, leaving the qubits susceptible to dephasing. However, it may be possible to construct a pulse
sequence for which the levels vary in time (shaded regions), such that their time-averaged dispersions
are parallel, yielding a DSS that is more resilient to quasistatic fluctuations of the detuning. Here,
we explore a DSS construction in which the detuning pulse sequence of Fig. 4.1f is augmented with
the tunnel coupling pulse sequence defined in b and Appendix B.3. The latter is simple enough
that it can be optimized using the method described in the main text, but complex enough that
it provides a significant improvement in the CZ gate fidelity. c, Infidelities calculated for three
di↵erent pulse sequences as a function of the standard deviation of the quasistatic charge noise
�". The markers correspond to full gate simulations averaged over a charge noise distribution,
as described in Methods. The dashed lines correspond to the much simpler infidelity estimate of
Eq. (4.5). For the blue line and triangles, the tunnel couplings are held constant, as in Fig. 4.1.

For the green line and squares, the tunnel couplings are pulsed as in c with the ratios �(i)
1 /�(i)

2
held constant. For the orange line and circles, the tunnel coupling sequence is optimized with no
constraints.
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including the charge noise term defined in Eq. (4.5), do not require taking an average over

charge noise. The noise-free term describes the CZ gate infidelity in the absence of charge

noise, as described in Methods. We find that minimizing just the Icn and Inf terms (without

Ina) yields extremely short and fast pulse sequences that first populate then depopulate the

leakage state. Since Icn was derived assuming an adiabatic pulse, these short and fast pulses

are not guaranteed to have low process infidelity. Hence we also introduce the Ina term, as

defined in Methods, to explicitly penalize non-adiabatic evolution.

We now obtain two di↵erent sets of solutions for the detuning-tunnel-coupling pulse

sequence. In the first, all the tunnel coupling parameters in Fig. 4.3b, as well as ⌧ramp and

⌧wait, are varied independently, under the constraint that the detuning and tunnel coupling

sequences have the same length; this sequence contains 26 free parameters. The second

case is similar, except that the ratio between the tunnel couplings in each double dot is

assumed to be fixed throughout the sequence, with �(i)
1 (t)/�(i)

2 (t) = 1.1034, as consistent

with Appendix B.2; this sequence contains 14 free parameters. In both cases, we set the

detuning parameters to the values giving the fastest detuning-only pulse sequence in Fig. 4.2

("(1)wait = 90 µeV and "(2)wait = 110 µeV), and we use ⌧ramp = 2.4 ns and ⌧wait = 2.8 ns as

the starting points for our optimization procedure; initial values of the other parameters are

chosen randomly, according to the basin-hopping protocol. The results of this procedure

are presented in Table B.1. Using these results, we recompute the infidelity as described in

Methods, performing and average over the charge noise.

Infidelity results using the tunnel coupling pulse sequence are plotted in Fig. 4.3c as a
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function of charge noise, �". Here we observe clear improvements compared to the detuning-

only sequence, with the best results obtained for the sequence with the largest number of

pulse parameters. Appendix B.8 suggests that this result can largely be attributed to the

suppression of the time-averaged derivatives @!j/@"(i), as consistent with a DSS. For a true

sweet spot, we would expect a power-law exponent in I / �↵
" , with ↵ > 2. Although the

large-�" data in Fig. 4.3c hint at such behavior, Fig. B.6 indicates that a full suppression of

the time-averaged derivatives has not yet been achieved in the current pulse sequences.

4.3 Discussion

We have proposed a scheme for entangling capacitively coupled quantum-dot hybrid qubits

by applying adiabatic pulse sequences to detuning parameters. We have optimized the

sequences in the presence of quasistatic charge noise and computed the resulting process

fidelities for a controlled-Z gate, obtaining fidelities approaching 99% for typical noise levels.

Further improvements are obtained by simultaneously applying pulse sequences to the tunnel

couplings. These results are explained by invoking the concept of a dynamical sweet spot

(DSS), for which the splittings between the two-qubit energy levels are insensitive to fluctua-

tions of the detuning parameters when averaged over the whole pulse sequence. Our analysis

shows that a true DSS cannot be achieved using simple pulse sequences. However, fidelities

>99% are achieved when the pulse sequences include a large number of tunable parameters.

As indicated by ref [110], these fidelities can be further improved by exploring a wider range
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of pulse shapes. Using the GRAPE algorithm [111], we have identified high-frequency pulses

that significantly improve the expected performance under quasistatic charge noise. Despite

the potential improvement in fidelity, the experimental bandwidth limitations make imple-

menting some of these pulses impractical. We speculate that a bandwidth-limited version

[112, 113] of the GRAPE algorithm [111] could be used to explore a much larger parameter

space of adiabatic pulse sequences, possibly allowing us to identify a true DSS. The GRAPE

algorithm also provides a means for exploring non-adiabatic pulse sequences. However the

simplicity and relatively high fidelity achieved with the sequences studied here, and the ro-

bustness of adiabatic gating methods, make the current proposal attractive for two-qubit

gates.

4.4 Methods

To study the time evolution resulting from the pulse sequences applied to capacitively coupled

qubits, we numerically integrate the Hamiltonian in Eq. (4.3), for which the time-dependent

control parameters "̃(1)(t), "̃(2)(t), and ~�(t) depend on the particular pulse sequence. Here,

~�(t) refers to the set of four intra-qubit tunnel couplings, and we define "̃(i)(t) = "(i)(t)+�"(i),

where "(i)(t) is the ideal, noise-free detuning sequence for qubit i, and the (quasi-static) noise

term �"(i) is assumed to remain constant for the duration of the sequence. The resulting
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unitary operator is given by

U2q(t) = exp


�i/~

Z t

0

H2q

⇣
"(1)(t0), "(2)(t0), ~�(t0)

⌘
dt0
�
. (4.6)

In most cases, we take t to be the final time in the pulse sequence, with one exception,

described below.

We employ the following procedure to determine the detuning pulse parameters used in

Fig. 4.2. (For additional details, see Appendix B.4.) We first choose the fastest ramp time

⌧ramp consistent with leakage errors <0.1% in the absence of charge noise. We then compute

U2q as a function of ⌧wait for a fixed level of quasi-static charge noise. (High-frequency noise

can also a↵ect the fidelity of slow QDHQ gates [114]; however we do not consider such

processes here.) The process fidelity F is computed, comparing U2q to a perfect CZ gate,

modulo single-qubit rotations, using the Choi-Jamiolkowski formalism [115], as described in

Appendix B.5. We then average F over charge noise, using the method described below,

and choose the value of ⌧wait that maximizes hFi.

To optimize the detuning-tunnel-coupling pulse sequence used in Fig. 4.3, we choose pulse

parameters that minimize the total infidelity function Itotal = Icn + Inf + Ina, as discussed

in the main text. Here, the noise-free term Inf describes the CZ gate infidelity, computed

using the Choi-Jamiolkowski formalism, as described above, in the absence of charge noise.

In this work, we also introduce a penalty term to suppress non-adiabatic evolution, defined

as Ina = maxt
⇥
1 � 1

4

P
|hij(t)|U2q(t) |ij(0)i|2

⇤
, where the sum is taken over the logical basis
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states (i, j) = (0, 1), and the function maxt picks out the maximal occupation of leakage

states, at any point in the pulse sequence. Note that the state |ij(0)i is an eigenstate of

H2q(t) at time t = 0, while |ij(t)i is the corresponding eigenstate at time t. Under perfect

adiabatic operation, the mapping U2q(t) |ij(0)i ! |ij(t)i is exact, yielding Ina = 0; however

for non-adiabatic operation, we obtain Ina > 0. In practice, we find that the exact form of

Ina does not significantly a↵ect our results.

To average the fidelity over charge noise, we assume that the noise terms �"(1) and �"(2)

are uncorrelated and sample them independently at 17 values in the range between -25 and

+25 µeV, corresponding to 1089 unique pairs. We then linearly interpolate F over the results

and calculate its average value, assuming a gaussian probability distribution with standard

deviation �":

p(�"(1), �"(2)) =
1

2⇡�2
"

exp

 
��"

(1)2 + �"(2)
2

2�2
"

!
. (4.7)
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Chapter 5

Power law scaling for the adiabatic

algorithm for search engine ranking

An important method for search engine result ranking works by finding the principal eigen-

vector of the “Google matrix.” Recently, a quantum algorithm for generating this eigenvector

as a quantum state was presented, with evidence of an exponential speedup of this process

for some scale-free networks. Here, we show that the run-time depends on features of the

graphs other than the degree distribution, and can be altered su�ciently to rule out a general

exponential speedup, consistent with the findings of Garnerone, Zanardi, and Lidar. Accord-

ing to our simulations, for a sample of graphs with degree distributions that are scale-free,

with parameters thought to closely resemble the Web, the proposed algorithm for eigenvector

preparation does not appear to run exponentially faster than the classical case.
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5.1 Introduction

Quantum algorithms, which run on quantum computers, are known to be able to outper-

form classical algorithms for certain computational problems [2, 116]. Thus, finding a new

algorithm that exhibits a quantum speedup, in particular an exponential speedup, is of great

interest [117]. An extremely important problem in computer science is calculating ranking

for search engine results. PageRank, first proposed by Brin and Page [118] underlies the

success of the Google search engine [119]. In this algorithm, websites are represented as

nodes on a network graph, connected by directed edges that represent links. The matrix

of network connections is constructed, and the PageRank vector is its principal eigenvector.

Currently, computing the PageRank vector requires a time O(n), where n is the number of

websites in the network considered (e.g. the World Wide Web) [36]. Obtaining a quantum

algorithm for PageRank that runs exponentially faster than the classical algorithm would be

of great interest.

Recently, Garnerone, Zanardi, and Lidar (GZL) proposed an adiabatic quantum algo-

rithm [17] to prepare the PageRank vector for a given network [36]. Remarkably, GZL

present evidence that this algorithm can prepare the PageRank vector in time O [polylog(n)],

exponentially faster than classical algorithms for certain networks. It is important to note

that the algorithm only o↵ers an exponential speedup in the preparation of the PageRank

vector; the information must then be extracted from the quantum state, which ultimately

yields a polynomial quantum speedup. This polylogarithmic runtime is due to the appar-

ent logarithmic scaling of the gap between the two smallest eigenvalues of the Hamiltonian
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used in the algorithm (the energy gap). This scaling emerged on graphs constructed using

adapted versions of two established methods of network construction: the preferential at-

tachment model [120] and the copying model [121]. Both of these models yield graphs that

are similar to the connectivity of the World Wide Web in that they are sparse (the total

number of edges scales at most proportionally to the number of nodes) and scale-free (the

probability of finding a node with a specified in- or out-degree scales as a power law in those

degrees). These features lead to networks that exhibit large-scale structure similar to that

of the internet, such as being small-world [122] and loosely hierarchical [123]. GZL studied

sets of networks that exhibited both logarithmic scaling and polynomial scaling of the gap

in the system size. However, they did not demonstrate that the networks with the favorable

logarithmic gap scaling are scale-free over the region studied numerically.

Here, we study the scaling of the GZL algorithm for graphs with degree distributions

consistent with the internet. A realistic network model of the World Wide Web must be

scale-free in both the in- and the out-degree [124, 125]. We consider a broad variety of

scale-free networks constructed by di↵erent methods. Choosing three well-known models

for constructing random, scale-free networks, we control for both the mean degree and the

exponent of the power-law governing the degree distribution. We find that graphs with the

same degree distribution can have di↵erent energy gap and run-time behaviors. Finally, we

focus on degree distributions described by power laws consistent with those measured for the

Web, both for the in-degree and the out-degree. We find that the relevant energy gap scales

as a power of the system size, rather than logarithmically. These results demonstrate that for
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scale-free graphs with parameters thought to resemble the Web, the GZL adiabatic algorithm

does not appear to yield an exponential quantum speedup for preparing the PageRank vector

compared to current classical algorithms.

5.2 Network growth models

We generate samples of graphs with prescribed degree distributions using three di↵erent

network growth models. GZL [36] use modified versions of two network construction algo-

rithms: the preferential attachment model [120] and the copying model [121]. In addition to

these two models, here we include also the more complex ↵-preferential attachment model

described by Bollobás et al. [124, 126]. All three models grow random networks using

probabilistic rules at discrete construction steps, which are detailed in Fig. 5.1.

All three of these models produce sparse, scale-free directed networks, in which the

probability of the in-degree (the number of incoming edges) and out-degree (the number

of outgoing edges) of node i being equal to k are each proportional to a power law:

P (din(i) = k) ⇠ k��in (5.1)

P (dout(i) = k) ⇠ k��out , (5.2)

where din(i) and dout(i) are the in- and out-degrees of node i, respectively, and the exponents

�in and �out are typically between 2 and 4 [120]. The GZL versions [36] of the preferential

attachment and copying models [120, 127] produce networks that are scale-free in the limit
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Figure 5.1: Illustrations of the three network generation models used. (a): GZL [36] preferential
attachment, (b): GZL copying, and (c): ↵-preferential attachment [124, 126]. In all three models,
a network is constructed by adding vertices and edges sequentially. (a): At each time step a new
vertex i is added with m outgoing edges. The probability that one of these edges connects to a node
j is proportional to the total degree of j. (b): At each time step there are two possible actions.
With probability (1 � p), the new vertex points to all of the same vertices as the “star vertex,”
which is a pre-existing vertex chosen uniformly at random at each time step. With probability p, m
outgoing edges are added to the new vertex, each pointing to vertices chosen uniformly at random.
(c): There are three possible actions at each time step. With probability p1, a new vertex is added
with a single outgoing edge, pointing to a node j with probability proportional to the in-degree
of j plus a parameter ↵. With probability p2, a new vertex is added with a single incoming edge,
pointing from a node j with probability proportional to the out-degree of j plus ↵. With probability
(1 � p1 � p2), no vertex, only an edge, is added. Its ending and starting points are determined as
in cases 1 and 2, respectively. In all panels, the newly-added edges are indicated by dashed lines.
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of large graph size. However, due to the addition procedure described below, the networks

are not necessarily scale-free for the sizes of graphs studied numerically here and in Ref.

[36]. To achieve networks that are scale-free in the out-degree, GZL suggest to construct two

networks, X and Y , independently. X and Y are each generated as in Fig. 5.1, except that

for Y the direction of the edges added is reversed. The networks can then be added together,

and the weights and loops discarded [36, 128]. The resulting composite network is scale-free

in both in-degree and out-degree, provided X and Y have the same number of edges per

node. (See Appendix C.1 for details.) In contrast to Ref. [36], the graphs studied here are

all constrained in this way. However, the graphs exhibiting logarithmic scaling in [36] are

not so constrained [128], and so they do not exhibit truly scale-free degree distributions over

the numerically studied region. On the other hand, the ↵-preferential attachment model

(considered here but not in [36]) constructs a network which is scale-free in both in- and

out-degrees without requiring an additional combination step. As with the GZL preferential

attachment model, all weights and loops are removed from the final ↵-preferential attachment

network.

The exponents �in (Eq. 5.1) and �out (Eq. 5.2) of the degree distribution are model-

dependent. In the GZL preferential attachment model the number of edges added at each

construction step controls the sparsity, and it is always the case that �in = �out = 3 [120].

Both the GZL copying model and ↵-preferential attachment allow for independently tunable

exponents and mean degree. (See Appendix C.1 for details.) This flexibility enables us to

create three ensembles of model networks that have nearly identical degree distributions for
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�in = �out = 3. Further, the last two models can be set with the exponents estimated for the

World Wide Web [121, 124], namely �in = 2.1 and �out = 2.72 [125].

5.3 Algorithm description

The Google matrix is constructed by taking as input an unweighted, simple network with n

nodes [118], and representing it as an adjacency matrix A, where A(i, j) = 1 if a directed

edge points from node i to node j, and 0 otherwise. From this, one defines the matrix P :

P (i, j) =

8
>>>><

>>>>:

1/dout(i) if A(i, j) = 1 (5.3a)

1/n if 8j, A(i, j) = 0 (5.3b)

0 otherwise (5.3c)

The matrix P is stochastic because
P

j P (i, j) = 1 for all i. P can be thought of as a

random walk (i.e. a web-surfer), where the walker follows the network with equal likelihood

of traversing all allowed links. If the walker ever reaches a dangling node (a node with

dout = 0), Eq. 5.3b implies that it can randomly hop to any vertex with equal probability.

To prevent the walker from becoming trapped in an isolated portion of the network (a sink),

the probability (1� ↵g) of moving to a node uniformly at random (including the possibility

of staying still) is included, where 0 < ↵g < 1; Google uses ↵g = 0.85, which we also use here

[36]. The Google matrix G is defined as the transpose of this resulting transition matrix:

G = ↵gP
T + (1 � ↵g)J, (5.4)
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where J is the matrix of all ones. The PageRank vector ~p is the unique eigenvector associated

with the largest eigenvalue of G, which is 1. The runtime of the best classical algorithm,

which calculates the PageRank vector via power iteration, is O(n) [36, 118].

To formulate an adiabatic quantum algorithm, GZL construct the Hamiltonian h(G):

h(G) = (I � G)† (I � G) , (5.5)

which is Hermitian, even though G is not. The ground state of this Hamiltonian is the

normalized PageRank vector. The adiabatic algorithm is completely defined by the inter-

polation Hamiltonian H(s) = sh(G) + (1 � s)h(Gc), where s 2 [0, 1], and Gc is the Google

matrix for the complete network (including loops), whose ground state is a uniform superpo-

sition. The adiabatic theorem guarantees that if we initialize our system in the ground state

of h(Gc) and change s from 0 to 1 su�ciently slowly, the system remains in the ground state

[17]. Since the PageRank vector is the ground state of H(1) = h(G), the PageRank vector

is obtained when s = 1. The required slowness is also determined by the adiabatic theorem:

as long as s(t) is a smooth function of the time t with 0  t  T , the runtime T ⇠ ��b,

where b is O(1) and � is the energy gap between the ground and first excited state of H(s),

minimized over s [17]. Thus, an exponential speedup over the classical case is possible if ��1

is O[log(n)], since then T is O [polylog(n)].
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Figure 5.2: Comparison of the scaling of the inverse energy gap ��1 for the GZL [36] preferential
attachment model (triangles, horizontal hatching), GZL copying model (diamonds, upward-sloping
hatching), and ↵-preferential attachment model [124] (circles, downward-sloping hatching), shown
on (a): Semilog and (b): Log-Log scales, demonstrating that ��1 is not proportional to log (n) for
these models. Results are averaged over 1000 random instances for n < 8192, and over 500 random
instances at n = 8192. The fitting lines showed in (a) are 72.2 · ln(n) � 363 for the copying model
and 10.1 · ln(n) � 48.8 for the ↵-preferential attachment model. In (b), the fits shown are 8.0 · n0.4

for the copying model and 1.7 · n0.4 for the ↵-preferential attachment model. If we fit the data
instead to a power of a logarithm (not shown), we obtain 0.56 · ln2.9(n) for the copying model and
0.18 · ln2.5(n) for the ↵-preferential attachment model. (c): Histogram of the inverse energy gaps for
the data shown in panels (a)-(b) at n = 8192. (d): Histogram showing the distribution of number
of vertices with in-degree din = 8 for n = 8192. (e)-(f): Degree-distributions of the three models,
demonstrating scale-free behavior and indicating that �in = �out = 3. Adaptive binning was used,
as described in Appendix C.3. In all cases, both the mean in- and out-degree of each graph are
2 edges per node. These results demonstrate that ��1 di↵ers significantly for the di↵erent graph
construction methods, while the degree distributions are very similar.
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Figure 5.3: Inverse energy gap scaling for GZL [36] copying model (diamonds), and ↵-preferential
attachment model [124] (circles) of WWW-like networks, shown on (a): Semilog and (b): Log-
Log scales. Results are averaged over 1000 random instances for n < 8192, and over 500 random
instances at n = 8192. In (a), the line fit shown is 730 · ln(n) � 5300, while in (b) the line fit is
0.2 ·n0.97. If we fit the data to a power of a logarithm (not shown), for the copying model we obtain
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the two models, histogrammed using adaptive binning (see Appendix C.3), indicating that �in = 2.1
and �out = 2.72, corresponding to the estimates for the degree distribution of the World Wide Web
[125]. In all cases, the mean in- and out-degree of each network were each 2 edges per node.
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5.4 Numerical results

To study the scaling of the minimum energy gap � with the network size n, we compute � for

the GZL Hamiltonian H(s), averaging the results over many network realizations (typically

1000). Specifically, we calculate the minimum value of � over s 2 [0, 1] using the Nelder-Mead

method [129], where each objective function call calculates directly the eigenvalue spectrum

of H(s). We find that for most, but not all, network choices the minimum gap occurs when

s = 1. Since H(s) is a dense matrix, this process is computationally intensive. We use the

University of Wisconsin-Madison Center for High Throughput Computing and Open Science

Grid to perform the simulations.

To assess whether the inverse energy gap ��1 scales logarithmically or as a power-law in n,

we plot in Fig. 5.2 ��1 versus the network size on both log-linear and log-log scales, with data

for the GZL preferential attachment, GZL copying, and ↵-preferential attachment models.

The model parameters are tuned (see Appendix C.1) so that all three have �in = �out = 3

and have an average of 2 in- and 2 out-edges per node. Despite having nearly identical degree

distributions (shown in Figs. 5.2(e) and 5.2(f)), the scaling of ��1 depends significantly on

the method used to construct the graphs when viewed in Fig. 5.2(a). In Fig. 5.2(c), we show

the distribution corresponding to the final data points in Fig. 5.2(a), where we see that the

distributions are well-separated and hence the construction models give di↵erent values of

��1. By contrast, the degree distributions are di�cult to distinguish, as shown in Fig. 5.2(d).

Finally, we conclude that for all three models, the data are more consistent with ��1 scaling

as a power law or a high-order polylogarithm, rather than a logarithm, as consistent with
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the data presented by GZL in the supplemental information of Ref. [36].

We next perform a similar analysis for degree distributions more closely related to the

network of primary interest, the World Wide Web, for which a realistic set of degree pa-

rameters is given by �in = 2.1 and �out = 2.72 [125]. As mentioned above, the preferential

attachment model cannot be tuned to obtain degree parameters other than 3. However, the

other two network models can be adjusted to match these values [121, 124]. More details

on this are discussed in Appendix C.1. As before, we set the mean degree to be 2 in- and 2

out-edges per node.

Fig. 5.3 presents the results of these simulations, clearly indicating that ��1 scales at least

as a power of n. In particular, we note that the prefactor of the logarithmic fit is over 700 and

the power of the logarithm in the polylogarithmic fit is 8, while the power law fit exponent

is close to one. The results do not change substantially when the mean degree is varied

and the degree distributions exponents are fixed. These data indicate that for graphs with

degree distributions similar to those measured for the World Wide Web, the GZL adiabatic

algorithm for PageRank vector preparation is unlikely to provide an exponential speedup

over the classical case.

5.5 Discussion

We have investigated the recently proposed adiabatic quantum algorithm for preparing the

PageRank vector using an adiabatic quantum algorithm [36]. We find that the eigenvalue
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gap that determines the algorithm runtime depends on the method of construction of the

network, even when the feature believed to be critical for large-scale network structure, the

degree distribution, is held fixed. The exponent governing the variation of the gap with

graph size does not vary significantly with the method of construction only if power-law

scaling of the gap with size is assumed. For networks that are scale-free in their in- and

out-degree distributions, and particularly when the degree distributions similar to those

measured for the World Wide Web, our numerical results indicate strongly that the GZL

adiabatic algorithm for PageRank vector preparation does not o↵er an exponential speedup

over current classical algorithms.

Consistent with the findings of GZL, we observe that altering the degree distribution

changes the scaling properties for preparation of the PageRank state. As our research shows

that the degree distribution and the average number of edges per node do not fully determine

the algorithm’s performance; it is not currently known if additional network features con-

tribute to the polylogarithmic gap scaling observed by GZL. Answering this question would

be an interesting topic for future work.
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Chapter 6

Conclusion

In this thesis, we have described work concerning the performance of semiconductor-based

devices intended for quantum computation. We began by focusing on the materials used to

fabricate semiconductor-based qubit devices. We studied the strain induced on the semicon-

ductor domain of a simulated device due to the cooling of Al electrodes in the vicinity of the

studied domain. Specifically, we presented the results of a simulation modeling the expected

strain in a simulated device, and found the corresponding shift in the conduction band of

the region intended to contain the quantum dots.

We next considered the design of semiconductor-based qubit devices, introducing a pro-

tocol, which we call the Compressed Optimization of Device Architectures (CODA). This

protocol both e�ciently identifies sparse sets of voltage changes that control quantum sys-

tems, and introduces a metric which can be used to compare device designs. As an example

of the former, we applied this method to simulated devices with up to 100 quantum dots
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and showed that CODA automatically tunes devices more e�ciently than other common

nonlinear optimizers. To demonstrate the latter, we determined the optimal lateral scale

for a triple quantum dot, yielding a simulated device that can be tuned with small voltage

changes on a limited number of electrodes.

Finally, we studied the operation of semiconductor-based qubit devices. We considered a

system comprised of two capacitively-coupled quantum dot hybrid qubits, and developed a

simple electronic pulse sequence that achieves a high-fidelity two-qubit gate under realistic

levels of quasistatic charge noise. We also considered the performance of a quantum algorithm

for PageRank which takes as input a graph of the World Wide Web. We showed that the run-

time of this algorithm depends on features of the graphs other than the degree distribution,

and can be altered su�ciently to rule out a general exponential speedup.
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Appendix A

Supplemental information for Ch. 3

A.1 CODA protocol

Here, we provide further details about the CODA protocol described in the main text. The

simulated device is considered to be a nonlinear function Ŝ : V ! Q, where V is the space

of electrode voltages and Q is the space of quantities of interest (e.g., dot occupations, dot

energies, transmission coe�cients). Suppose that we have n quantites of interest and m

electrode voltages, and that m > n, so the system is underconstrained. We first identify

a starting point of experimental interest (v0
op,q

0
op) such that Ŝ(v0

op) = q0
op, and a target

quantity of interest qtarget. It is our goal to find the vector �vtot with the minimum L1 norm

which satisfies Ŝ(v0
op + �vtot) = qtarget.

The following are the steps taken at the (i+ 1)th iteration of CODA.

1. Given a working point (vi
op,q

i
op), consider a set of linearly independent, small voltage
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variations {✏1, ✏2, ..., ✏m} (✏j 2 V) about the current working point. In the simulations

described in the main text, we assumed took ✏j to correspond to a voltage change of 0.1

mV on the jth electrode. Perform m simulations Ŝ(vi
op + ✏j) to obtain the resulting m

qi
op+ �qj. From the collection of {✏1, ✏2, ..., ✏m} and the associated {�q1, �q2, ..., �qm},

construct the Jacobian matrix Ji using the method of least squares. For small �v,

Ŝ(vi
op + �v) ⇡ qi

op + Ji · �v.

2. Using a convex program (such as the matrix-free conic optimization implemented in

the CVXPY package [89]), find the �vi that minimizes
����vi

op � v0
op + �vi

����
1
subject to

the constraint qtarget = qi
op + Ji · �v1. The vector vi

op � v0
op + �vi is the total change

in voltage from the initial working point (v0
op).

3. The voltage change vector �vi defines a search direction, similar to the gradient used

in nonlinear gradient descent. Evaluate Ŝ(vi
op + �vi); if the quantities of interest move

closer to the target, i.e.,
���
���Ŝ(vi

op + �vi) � qtarget

���
���
2
<
����qi

op � qtarget

����
2
, then define

vi+1
op = vi

op + �vi. If not, then replace �vi with �vi/2, and repeat this step. Continue

until the quantities of interest move closer to the target.

We repeat this process until
����qi

op � qtarget

����
2
is below a specified threshold value. For the

simulations described in the main text, we assumed a threshold value of 0.01. For a detailed

explanation of the units of this vector, see the following section.

To decrease the total number of device simulations in CODA, one can replace step 1 in

the protocol described above by Broyden’s method [130]. This method finds an approximate
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Jacobian matrix Ji+1 by combining the Jacobian obtained in the previous iteration Ji and the

nonlinear error from the previous step: Ŝ(vi
op+�v)�(qi

op+Ji ·�v). Although this eliminates

the need for explicit Jacobian formation, using Broyden’s method often does increase the

number of iterations required for convergence. In many cases, using this method leads to an

overall speedup. However, in cases where sparse control cannot be achieved, we find that

the number of iterations required for convergence increases dramatically, which negates any

potential speed-up.

As with all “hill-climbing” nonlinear optimization algorithms, there is no guarantee that

the local optimum found by the CODA protocol is a global optimum. However, because

CODA is a regularized optimization protocol, the solution with the globally minimal L1

norm is by definition “close” in control space to the starting point, and therefore it is likely

that the solution found by CODA is the global minimum. While it is certainly possible to

devise systems in which the CODA protocol does not find the global minimum, all indications

are that the solutions found in the main text are indeed global minima. In principle, one

could better ensure global optimization for these systems by implementing a version of CODA

which uses a basin-hopping protocol to sample across several local minima.

A.2 Simulation details

We perform semi-classical Thomas-Fermi calculations [90] using the COMSOL Multiphysics

software package to solve a nonlinear Poisson equation in three dimensions. We use zero-field
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boundary conditions on all sides of the simulated domain, with the exception of the bottom

of the SiGe bu↵er, which is grounded. We assume the following heterostructure profile for all

the modeled devices. This profile is consistent with the accumulation-mode devices described

in Refs. [131] and [132]: 200 nm of Si0.7Ge0.3 (with dielectric constant " = 13.19), a 10 nm

Si quantum well (" = 11.7), 30 nm of Si0.7Ge0.3, 10 nm of Al2O3 (" = 9.0), a 10 nm layer of

metallic electrodes embedded in the dielectric, 80 nm of Al2O3, and a second 10 nm layer of

metallic electrodes, followed by vacuum. Midway within the Si quantum well, we define a

plane of charge with the charge density given by

�2D(x, y) = �2 ⇥ 2 ⇥ eme↵(U(x, y) + EF )

2⇡~2 ⇥ ✓(U(x, y) + EF ), (A.1)

where e is the charge of an electron, me↵ = 0.19melectron is the transverse e↵ective mass of a

conduction electron in silicon, U(x, y) is the strength of the electrostatic potential energy as

a function of position, EF is the Fermi energy (which we take to be at ground), and ✓(x) is

the step function. The two prefactors account for the spin and valley degeneracies.

The dot occupations are calculated via integrating the charge density found with the

Thomas-Fermi approximation. Transmission coe�cients between dots are calculated by

finding the center of charge of each dot, and applying the WKB approximation [16] across a

straight line connecting the two charge centers. Orbital dot energies are calculated via a 2D

finite-di↵erence Schrödinger solver in the plane of charge, using the electrostatic confinement

potential obtained from the Thomas-Fermi analysis, and the transverse e↵ective mass of a
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conduction electron in silicon.

Our CODA protocol requires all the components of the voltage vector to have the same

units (and comparable magnitudes, for numerical stability). The quantities of interest con-

sidered in our simulations were electron occupations and tunnel barrier heights. When pop-

ulating our vectors in the space Q, we use the units of electron number for dot occupation,

meV for dot energy and we take the logarithm of the transmission coe�cient, divided by

1000, since tunnel couplings can vary by orders of magnitude as a function of gate voltage.

These units were chosen to ensure rapid convergence.

A.3 Tunnel rates and transmission coe�cients

Following Ref. [133] one can derive that the tunnel coupling � between two one-dimensional

simple harmonic oscillators with frequencies !1 and !2 is approximately

� ⇡ 1

2⇡
TWKB~

p
!1!2, (A.2)

where TWKB is the transmission coe�cient calculated via the WKB approximation. For

quantum dots with orbital energies of ⇠1 meV, a transmission coe�cient of 0.01 corresponds

with a tunnel coupling of � ⇡ 1.6 µeV, or a tunnel rate of �/h ⇡ 400 MHz.
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Appendix B

Supplemental information for Ch. 4

B.1 Derivation of an e↵ective Hamiltonian for two cou-

pled QDHQS

In this section, we derive an e↵ective 4D Hamiltonian describing the logical subspace of two

capacitively coupled QDHQs. In the basis {|·Si , |·T i , |S·i}(1) ⌦ {|·Si , |·T i , |S·i}(2), the full
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9D Hamiltonian, Eq. (4.3) of the main text, is given by

H2q =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

E0 0 0 0 �(2)
1 �(1)

1 0 0 0

0 E1 0 0 ��(2)
2 0 0 �(1)

1 0

0 0 E2 0 0 ��(1)
2 �(2)

1 0 0

0 0 0 E3 0 0 ��(2)
2 ��(1)

2 0

�(2)
1 ��(2)

2 0 0 E4 0 0 0 �(1)
1

�(1)
1 0 ��(1)

2 0 0 E5 0 0 �(2)
1

0 0 �(2)
1 ��(2)

2 0 0 E6 0 ��(1)
2

0 �(1)
1 0 ��(1)

2 0 0 0 E7 ��(2)
2

0 0 0 0 �(1)
1 �(2)

1 ��(1)
2 ��(2)

2 E8

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

, (B.1)
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where we adopt the same notation as the main text, and define

E0 = �"
(1)

2
+

g

4
� "(2)

2
, (B.2)

E1 = �"
(1)

2
+

g

4
+ E(2)

ST � "(2)

2
, (B.3)

E2 = �"
(1)

2
+

g

4
+ E(1)

ST � "(2)

2
, (B.4)

E3 = �"
(1)

2
+

g

4
+ E(1)

ST + E(2)
ST � "(2)

2
, (B.5)

E4 = �"
(1)

2
+
"(2)

2
� g

4
, (B.6)

E5 =
"(1)

2
� "(2)

2
� g

4
, (B.7)

E6 = �"
(1)

2
+
"(2)

2
+ E(1)

ST � g

4
, (B.8)

E7 =
"(1)

2
+ E(2)

ST � "(2)

2
� g

4
, (B.9)

E8 =
"(1)

2
+
"(2)

2
+

g

4
. (B.10)

In Eq. (B.1), the solid lines delineate three distinct subspaces. E0 through E3 represent

the logical manifold, in which the energy levels decrease with "(1) and "(2)). E4 through E7

represent a leakage manifold in which "(1) and "(2) have opposite e↵ects on the energy. E8

is an additional leakage state for which the energy increases with "(1) or "(2)). Some typical

eigenvalues of Eq. (B.1) are plotted in Fig. B.1, where we have set "(1) = "(2) and added

"(1) to all the eigenstates. At large detunings, we observe a large energy splitting between

the logical and leakage manifolds. To gain insight into the gate operations, we can therefore

perform a Schrie↵er-Wol↵ [134] decomposition to adiabatically eliminate the leakage states.

Working to fourth order, and further diagonalizing the resulting 4D Hamiltonian, we obtain
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Figure B.1: Energy spectrum of two capacitively-coupled QDHQs as a function of qubit
detunings. In the limit of large detuning, the low-energy logical subspace is well separated from
the leakage states. For smaller detuning values, the mixing between the leakage states and the
low-energy states grows, giving rise to an e↵ective Coulomb interaction between the qubits (inset –
inter-qubit coupling !zz of four-dimensional e↵ective Hamiltonian, see Eq. 4.4 of main text). The

results shown here assume E(1)
ST = 52 µeV, E(2)

ST = 32 µeV, �(i)
1 = 0.64E(i)

ST, �(i)
2 = 0.58E(i)

ST, and
g = �75 µeV. (See Section S6, below, for discussion about the sign of g.)

the leading-order contributions to the prefactors in Eq. (4.4):

~!z1 = E(1)
ST +

�(1)
2

2
� �(1)

1

2

"(1) � g/2
+ O("�2), (B.11)

~!z2 = E(2)
ST +

�(2)
2

2
� �(2)

1

2

"(2) � g/2
+ O("�2), (B.12)

~!zz =
8g
�
g � "(1) � "(2)

� ⇣
�(1)

1

2
� �(1)

2

2
⌘⇣

�(2)
1

2
� �(2)

2

2
⌘

(g � 2"(1))2 (g � 2"(2))2 ("(1) + "(2))
. (B.13)

Here, we have also assumed that E(i)
ST ⌧ "(i) � g/2.
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B.2 Optimizing single qubit dispersions

To achieve high-fidelity two-qubit gates, one must suppress both single- and two-qubit errors.

Dephasing due to charge noise is a significant source of single-qubit errors in semiconductor-

based quantum dot qubits, but can be mitigated by tuning the qubit near a sweet spot

where the splitting between energy levels of the logical states, ~!, is insensitive to small

fluctuations of the detuning, i.e., @!/@" = 0. Since the pure dephasing time T ⇤
2 is inversely

proportional to |@!/@"| [55, 63], it can increase significantly near such a sweet spot. Here,

we identify a working regime for a QDHQ where approximate sweet spot behavior can be

achieved over a wide range of ".

For the QDHQ, the qubit energy dispersion can be made extremely flat at large detunings

by choosing the special values �1 = �2 = EST/
p
2. However, faster two-qubit gates can

be achieved by working at somewhat lower detuning values, where the qubits have large

dipole moments. In Fig. B.2 we plot @!/@" for a range of �1 and �2. Here we note that

large dipole moments occur in the vicinity of the dips in the dispersion. The pulse sequences

shown in Fig. 4.1f require spending time at very large detuning values, and then transitioning

adiabatically (i.e., slowly) to a region with such fast gates.

To reduce the dephasing e↵ects caused by charge noise, we therefore choose values of �1

and �2 that provide relatively flat dispersions over a wide range of epsilon. In Fig. B.2 this

corresponds to tunnel couplings given by �1 = 0.64EST and �2 = 0.58EST, and �1/�2 '

1.103. For these values, the qubit can be operated near the charge transition point (" ' 0),

where gates are fast, while still maintaining long single-qubit coherence times.
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Figure B.2: Adjusting tunnel couplings to optimize single qubit dispersions. The deriva-
tive of the QDHQ frequency ! with respect to the detuning ", plotted as a function of ". a, Here
we consider a fixed value of �2 = 0.58EST and several values of �1. From top to bottom, in units
of EST: �1 =0.6, 0.62, 0.64, 0.66, and 0.68. b, Here we consider a fixed value of �1 = 0.64EST and
several values of �2. From top to bottom, in units of EST: �2 = 0.54, 0.56, 0.58, 0.6, and 0.62. The
combination of �1 = 0.64EST and �2 = 0.58EST yields a dispersion for which ~|@!/@"| < 0.002
for all detunings " > 1.48EST.



96

B.3 Pulse sequences

The simple detuning-only entangling pulse sequence considered in this work is shown in

Fig. 1f of the main text. It is parameterized by the four quantities "(1)wait, "
(2)
wait, ⌧ramp, and

⌧wait. Here we provide the explicit sequence used in our simulations, including the ramp

functions:

"(i) =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

"(i)init t < 0,

"(i)init +
⇣
"(i)wait � "(i)init

⌘
sin2

⇣
⇡t

2⌧ramp

⌘
0 < t < ⌧ramp,

"(i)wait ⌧ramp < t < ⌧ramp + ⌧wait,

"(i)init �
⇣
"(i)wait � "(i)init

⌘
sin2

⇣
⇡(t�⌧ramp�⌧wait)

2⌧ramp

⌘
⌧ramp + ⌧wait < t < 2⌧ramp + ⌧wait,

"(i)init 2⌧ramp + ⌧wait < t.

(B.14)

In our simulations we adopt the initial detuning values "(1)init = "(2)init = 500 µeV, for which

e↵ective one- and two-qubit couplings are negligible. These values are then varied during

the optimization procedure.

To explore the possibility of a dynamical sweet spot, we also consider the tunnel-coupling

pulse sequence shown in Fig. 4.3b, which is parameterized by the variables listed in Table B.1.

Again we provide the explicit sequence used in our simulations, including the ramp functions:

where t1 = ⌧ 0wait, t2 = t1 + ⌧ Iramp, t3 = t2 + ⌧ Iwait, t4 = t3 + ⌧ IIramp, and t5 = t4 + ⌧ IIwait/2. For
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�(t) =

8
>>>>>><

>>>>>>:

�init t  t1

�init +
�
�I

wait � �init

�
sin2

⇣
⇡(t�t1)
⌧ Iramp

⌘
t1  t < t2

�I
wait t2  t < t3

�I
wait +

�
�II

wait � �I
wait

�
sin2

⇣
⇡(t�t3)
⌧ IIramp

⌘
t3  t < t4

�II
wait t4  t < t5,

(B.15)

⌧ 0wait ⌧ Iramp ⌧ Iwait ⌧ IIramp ⌧ IIwait �I
wait �II

wait ⌧ramp ⌧wait

�(i)
1 /�(i)

2

=1.1034

�(1)
1 1.10 0.45 0.00 1.81 2.10 33.263 32.752

2.847 2.587
�(2)

1 1.14 0.31 1.40 0.76 1.83 35.245 28.9555

�(i)
1 /�(i)

2

free

�(1)
1 0.31 1.09 1.27 2.21 1.01 11.200 46.332

4.185 1.705�(1)
2 0.74 0.58 0.38 1.40 2.79 3.977 31.341

�(2)
1 1.06 2.01 0.00 0.69 2.21 20.974 20.828

�(2)
2 0.25 1.28 1.03 2.46 0.86 34.976 67.408

Table B.1: Parameters used in the tunnel coupling pulse sequence shown in Fig. 4.3b, and accom-
panying detuning pulse sequence shown in Fig. 4.1f, obtained using the optimization procedure

described in the Ch. 4. The specific ratio, �(i)
1 /�(i)

2 = 1.1034 used in the first set of solutions is
consistent with the discussion in Section B.2, above. Times are given in ns, and tunnel couplings
are given in µeV.

t > t5,

�(t) = �(t5 � t). (B.16)

For brevity here, we have dropped the superscripts and subscripts on the tunnel coupling

parameters. In this case, we adopt the initial values �(1)
1,init = 33.28 µeV, �(1)

2,init = 30.16 µeV,

�(2)
1,init = 28.8 µeV, and �(2)

2,init = 26.1 µeV, which were chosen according to the considerations

of Section B.2, above. For this sequence, we also assumed the fixed values "(1)wait = 90 µeV

and "(2)wait = 110 µeV, as discussed in the main text. The optimized values obtained for the

other parameters in the sequence are listed in Table B.1.
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B.4 Optimization of detuning pulse parameters

The simple two-qubit detuning-only pulse sequence used in this work is shown in Fig. 4.1f,

and is completely defined by the parameters "(1)wait, "
(2)
wait, ⌧ramp, and ⌧wait, as described in

Section B.3, above. In the current section, we explain how these parameters are chosen in

our analysis, while constraining the total gate time 2⌧ramp + ⌧wait < 50 ns. The procedure is

summarized as follows.

1. Choose specific values for "(1)wait and "(2)wait.

2. Determine ⌧ramp. Consider a “ramp-only” detuning sequence with ⌧wait = 0. Non-

adiabatic e↵ects such as leakage occur only during these ramp steps, and we determine

⌧ramp by ensuring that it satisfies a “fast-adiabatic” criterion, defined as follows. We

first define the leakage fidelity as Fleak = 1
4

P
| hij|U2q |iji |2, where the sum is taken

over the logical states, (i, j) = (0, 1), defined at time t = 0 in the pulse sequence, and

U2q is the 9D unitary operator derived from H2q, and computed here in the absence of

charge noise. (Note that Fleak is defined similarly to Ina in Methods, except that here,

the logical states on either side of the matrix element are evaluated at the initial time,

and are the same as the logical states at the final time of the pulse sequence.) We

then choose a ⌧ramp that corresponds to the shortest ramp time giving Fleak > 99.9%.

Finally, we omit any solutions with 2⌧ramp > 50 ns from the rest of the analysis; these

correspond to the cross-hatched regions of Fig. B.3a. As discussed in the main text,

the fidelity of the results shown in Fig. 4.3c is limited by charge noise, not leakage,
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indicating that the particular choice of Fleak > 99.9% does not a↵ect our final results.

3. Determine the angles �1 and �2, defined such that U4D ' Uideal, where Uideal =

Z(1)(�1)Z(2)(�2) CZ. Here, U4D is the projection of U2q onto the 4D logical subspace;

in this step, U2q is computed as a function of ⌧wait in the absence of charge noise (but

including leakage), using the values of "(1)wait, "
(2)
wait, and ⌧ramp chosen above. CZ is defined

as diag{1, 1, 1,�1}. The explicit method used to determine �1 and �2 as a function of

⌧wait is given as follows. First, we adjust the overall phase of U2q such that h00|U2q |00i

is real and approximately equal to 1. Then we define �1 = angle[h01|U2q |01i]+⇡/2 and

�2 = angle[h10|U2q |10i] + ⇡/2, where the function angle[u] gives the complex phase of

u.

4. Determine ⌧wait. Recompute U2q as a function of ⌧wait, now including charge noise.

Compute the process fidelity F , as described in Section B.5 below, for each value of

⌧wait, where the actual �matrix is obtained from U2q, while the ideal �matrix is derived

from Uideal. Perform an average of F over charge noise configurations, as described in

Section 4.4. Maximize this hFi with respect to ⌧wait, omitting any results for which

⌧total = 2⌧ramp + ⌧wait > 50 ns.

5. Finally, choose the optimal values of "(1)wait and "(2)wait, as described in the main

text, by determining the maximum fidelity shown in Fig. 4.2.
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Figure B.3: Key steps in the detuning-pulse optimization procedure, as described in
Section B.4. a, Step 2: determine ⌧ramp. We simulate the ramp portion of the pulse sequence in the
absence of noise and compute the leakage fidelity Fleak that quantifies the adiabaticity of the pulse,
defined as the probability that a system initialized into a two-qubit logical state remains in that
state after the pulse is applied. The plot shows the shortest values of ⌧ramp giving Fleak > 99.9%.
Results with 2⌧ramp > 50 ns are omitted from the rest of the analysis because they are much slower
than single-qubit gates (cross-hatched region). b, Step 4: determine ⌧wait. We compute the noise-
averaged fidelity hFi of a full CZ pulse sequence, modulo single-qubit gate operations. The plot
shows the value of ⌧wait that maximizes hFi. Solutions with ⌧total = 2⌧ramp + ⌧wait > 50 ns are now
omitted.

B.5 Process fidelity

In Figs. 4.2 and 4.3, we report fidelities that are averaged over a noise distribution. To

compute the fidelity for a given instance of noise, we first solve Eq. (4.6) for the appropriate

pulse sequence to obtain the corresponding unitary operator U2q. The process fidelity is

defined as F = Tr(�ideal�), where � is the actual process matrix, including noise and leakage

e↵ects, and �ideal is the ideal process matrix derived from Uideal. In this case, we use the 4D

Uideal defined above, in Section B.4, which is then embedded in the full 9D Hilbert space.

We obtain the process matrix � from U2q using the Choi-Jamiolkowski isomorphism [115],

in which the process matrix is given by � = d⇢, where d is the dimensionality of the logical

system (in this case, d = 4), and ⇢ is given by

⇢ = [I ⌦ U2q] (|�i h�|) . (B.17)
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Figure B.4: Optimized process infidelities of adiabatic CZ gates as a function of �EST

and g. Results are obtained using the procedure described in Section B.4. a, g < 0. b, g > 0.
In both cases, the markers correspond to �EST = 1 µeV (blue circles), �EST = 3 µeV (orange
downwards-facing triangles), �EST = 5 µeV (green upwards-facing triangles), �EST = 7 µeV
(red left-facing triangles), and �EST = 9 µeV (purple right-facing triangles). The threshold for
acceptable infidelity is chosen to be 1% (black dashed lines). Insets: a, Aligned dipoles (g < 0); b,
Anti-aligned dipoles (g > 0).

Here, I is the identity matrix of the 9D Hilbert space and the Jamiolkowski state |�i is

defined as

|�i = 1

2

X
|iji |iji , (B.18)

where the sum is taken over the logical eigenstates (i, j) = (0, 1) of the two-qubit Hamiltonian

described in Eq. (4.3) of the main text. Note that the Jamiolkowski state only includes four

states despite the full system having nine states.

B.6 Dependence of the fidelity on g and �EST

In the CZ gate analyses presented in Figs. 4.2 and 4.3, g was chosen to be 75 µeV, as this was

an experimentally measured value [94]. Additionally, the singlet-triplet splittings E(1)
ST and

E(2)
ST were chosen to be 52 µeV and 47 µeV, respectively, inspired by experimentally measured
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values [63]. However, both g and the singlet-triplet splittings will vary from experiment to

experiment; indeed, capacitive couplings as large as 200 µeV have been measured [51]. In

this section, we determine whether either g or the di↵erence between the singlet-triplet

splittings, �EST = E(1)
ST � E(2)

ST , can be used to further optimize the fidelity, finding no

significant improvements.

We first note that it is possible to change the sign of the Coulomb interaction g by

reversing the alignment of the charge dipole of one of the qubits (say, i), which amounts to

changing the sign of "(i). Here, we adopt the convention in Eq. (4.3) of the main text that

g < 0 corresponds to the dipoles being aligned in the limit of large detunings, as indicated in

the inset of Fig. B.4a, while g > 0 corresponds to the dipoles being anti-aligned, as indicated

in the inset of Fig. B.4b. Clearly the sign of g also a↵ects the qubits’ tendency to align or

anti-align as the detunings are varied, and we therefore expect our results to depend on this

sign.

In Fig. B.4, we plot the noise-averaged infidelities obtained for a range of g (both positive

and negaive values) and �EST, assuming a constant level of quasistatic charge noise, �" =

1 µeV. The results are obtained using the procedure described in Section B.4 to obtain

the absolute minimum infidelity for the detuning-only pulse sequence. We find that the

infidelities generally fall below a threshold criterion of 0.01 (i.e., 1%), except when �35 

g  50 µeV, or when �EST  3 µeV (with g < 0), or �EST  1 µeV (with g > 0).

We can understand the behaviors observed in Fig. B.4 as follows. The infidelity decreases

with |g| because the entanglement frequency !zz is roughly proportional to g, as observed
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Figure B.5: Adiabatic ramp time diverges for small �EST. Ramp time ⌧ramp obtained by
optimizing the process fidelity of the detuning pulse sequence is plotted as a function of g and

�EST = E(1)
ST � E(2)

ST . When �EST ! 0, the resulting energy level degeneracy causes ⌧ramp to
diverge, to preserve adiabaticity, thus increasing the exposure to charge noise and the infidelity.

in Eq (B.13). When g is small, the entangling gate speed is therefore slow. This must be

compensated by reducing "(1) and "(2); however this also increases the susceptibility to charge

noise, and the infidelity.

The dependence on �EST in Fig. B.4 can be understood by noting that the limit�EST !

0 corresponds to the degeneracy of logical states |01i and |10i in the limit of large detunings.

Degenerate energy levels cause problems for adiabatic operation, which can only be solved

by reducing the ramp speed. This is demonstrated in Fig. B.5 where we plot the optimized

value of ⌧ramp as a function of g and �EST. Here we observe little dependence on g, but

for small �EST, ⌧ramp and therefore ⌧total increase significantly. The longer gates are more

exposed to charge noise, resulting in lower fidelity. On the other hand, for �EST > 3 µeV,

the total gate time is dominated by the waiting time ⌧wait, so the further reduction of ⌧ramp

has a marginal e↵ect on the infidelity.
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a b c

d e

Figure B.6: Pulse sequences involving both the tunnel coupling and detuning parameters
are able to improve the fidelity of a CZ gate. The tunnel coupling pulses shown in Fig. 4.3
improve the process fidelity by lowering the time-averaged value of the derivatives @!j/@"i. As
described in the main text, optimized results are obtained for three di↵erent tunnel coupling pulse
sequences when a, tunnel couplings are held fixed for the duration of the sequence, b, only the ratios

�(1)
1 /�(1)

2 = �(2)
1 /�(2)

2 are held fixed throughout the sequence, and c, no constraints are placed on

the tunnel coupling sequence parameters. Here, the dark solid lines correspond to �(1)
1 , the dark

dashed lines correspond to �(1)
2 , the light solid lines correspond to �(2)

1 , and light dashed lines

correspond to �(2)
2 . The color codings are the same as in Fig. 4.3c. d, The derivative @!z2/@"1

is plotted as a function of time, showing a change of sign due to the application of the tunnel
coupling pulse sequence. e, The squared, time-averaged derivatives are shown for all the di↵erent
qubit frequencies. For a perfect dynamical sweet spot, these integrals would all vanish. Here, the
pink box corresponds to the results shown in d.
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B.7 Approximate formula for the infidelity

In this section, we derive an approximate analytical expression for the charge-noise induced

infidelity, Icn, to more e�ciently identify tunnel coupling pulse sequences that improve the

gate fidelity.

In the absence of non-adiabatic processes, we can evaluate the e↵ective two-qubit Hamil-

tonian H2q in its adiabatic basis, giving Eq. (4.4). Since this Hamiltonian is strictly diagonal,

it is trivial to compute the resulting unitary operator for the logical subspace:

U4D = diag( exp{(i(�✓z1 � ✓z2 + ✓zz)/2)},

exp{(i(✓z1 � ✓z2 � ✓zz)/2)},

exp{(i(�✓z1 + ✓z2 � ✓zz)/2)},

exp{(i(✓z1 + ✓z2 + ✓zz)/2)}),

where ✓i =
R
!idt. Quasistatic charge noise causes the phases to evolve with errors defined

as �✓i = ✓i � ✓ideali . However, the resulting time evolution is unitary, and the methods of

Section B.5 easily give an expression for the process infidelity:

I = 1 � 1

8
[2 + cos(�✓z1 +�✓z2) + cos(�✓z1 � �✓z2)

+2 [cos(�✓z1) + cos(�✓z2)] cos(�✓zz)]. (B.19)
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Again for quasistatic charge noise, we can approximate

�✓i ⇡ �"(1)
Z

@!i

@"(1)
dt+ �"(2)

Z
@!i

@"(2)
dt, (B.20)

where �"(j) is the noise on "(j), which is assumed to be constant over the duration of the

pulse sequence. Substituting these definitions into Eq. (B.19), expanding in small �✓i, and

averaging over the noise distribution as described in Section 4.4 yields Eq (4.5).

B.8 Dynamical sweet spot analysis for the tunnel cou-

pling pulse sequence

In Fig. 4.3, we showed optimized infidelity results for three di↵erent tunnel coupling pulse

sequences. The optimized pulse sequences are shown in Fig. B.6a-c with the same color

coding as Fig. 4.3. In Fig. B.6a the tunnel couplings are held fixed for the duration of

the detuning pulse. Figure B.6b shows the non-constant tunnel coupling pulse sequence

obtained under the constraint that the ratios �(1)
1 /�(1)

2 = �(2)
1 /�(2)

2 = 1.1034 are held fixed

throughout the pulse sequence. Figure B.6c shows the pulse sequence obtained when the

tunnel couplings are allowed to vary without constraint.

A dynamical sweet spot (DSS) is formed when the time-averaged derivatives of the qubit

frequencies go to zero, as described below Eq. (4.5) of the main text. We plot these time

averages in Fig. B.6e for each of the di↵erent pulse sequences, with details of the time
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dependence for one of the qubit frequencies shown in Fig. B.6d. As seen here, certain choices

for the pulse sequence cause the derivatives to change sign as a function of time, leading to

an overall suppression of the time average and the infidelity. We note that the e↵ect is

especially pronounced for the pulse sequence with the largest number of tuning parameters.

However, we also note that the derivative of the !zz qubit frequency is particularly di�cult

to suppress.

B.9 Relaxation time estimate

The hybridization of the spin degree of freedom with the charge degree of freedom in a

QDHQ causes the qubit to be a↵ected by the environmental charge noise. In addition to the

dephasing considered in the main text, this charge noise could also lead to increased qubit

relaxation, as indicated by short T1 times measured in charge qubits [59, 135]. In addition,

phonons can also induce qubit relaxation. The relaxation rates measured in Refs. [135] and

[59] decrease as the detuning is increased, which is consistent with a charge-noise-induced

[136] as opposed to a phonon-induced [137] relaxation mechanism.

Here, we perform a simple estimate of the expected T1 relaxation times for the pulses

considered in Fig. 4.2, finding the estimated infidelity due to relaxation to be less than the

infidelity due to dephasing. To estimate the relaxation time, we use Fermi’s golden rule to
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calculate the relaxation rate assuming a qubit-boson interaction:

1/T1 =
2⇡

~
X

Q

| h0|Hq�b |1i |2�(~!Q � ~!), (B.21)

where Q and !Q are the wavevector and angular frequency of the boson respectively, |0i and

|1i are the ground state and first excited state of the qubit, Hq�b is the qubit-boson coupling

term of the Hamiltonian, and ! is the frequency of the qubit. Eq. (B.21) applies whether

the mechanism leading to qubit relaxation are phonons or classical charge fluctuators.

We first consider classical charge fluctuators. In this case, the charge noise couples to

the qubits mainly through the dipole P = �x̂/d as described in the main text. In the

{|·Si , |·T i , |S·i} basis, we take qubit-fluctuator coupling term Hq�cn = diag{�P,�P, P}.

Using these approximations for the perturbation, we can estimate the expected relaxation

time. First note that h0|Hq�cn |1i = ↵P , where ↵ = h0|S·i hS·|1i�h0|·Si h·S|1i�h0|·T i h·T |1i

is a mixing parameter between zero and one that reflects the composition of the qubit’s

eigenstates; it can be thought of as a measure of how “spin-like” (↵ = 0) or “charge-like”

(↵ = 1) a qubit is. In this proposal, qubit gates are performed by tuning the qubits from

↵ ⇡ 0, to states with much larger ↵ values; the ↵ parameter therefore varies considerably.

In contrast, the qubit frequency ! is essentially constant throughout the detuning pulses

considered here (see Fig. B.1). Thus, we assume that the density of charge fluctuator states

�(~!Q � ~!) remains approximately constant. From Eq. (B.21), this allows us to estimate
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Figure B.7: Estimated error due to relaxation is smaller than error due to dephasing.
a, The estimated relaxation time T1 for the system of coupled QDHQs described in the main text.
While a typical charge-noise-induced relaxation time for a charge qubit is 10 ns, the expected T1

time for the coupled hybrid system as the qubits become entangled is over an order of magnitude
larger. b, The ratio between the estimated infidelity due to relaxation Irelax and the infidelity due
to dephasing Idephase. Irelax is smaller than Idephase for every pair of qubit detunings considered
here, in most cases by over a factor of two. We expect phonon-mediated relaxation times to be
significantly longer than and proportional to the estimated charge-noise-induced relaxation times.

the relaxation time of a QDHQ as

T1 ⇡ Tmin,charge
1 /↵2, (B.22)

where Tmin,charge
1 is the relaxation time of a pure charge qubit at its avoided crossing.

Taking Tmin,charge
1 = 10 ns, as in recent Si charge-qubit experiments [59, 135], in Fig. B.7a

we use Eq. (B.22) to estimate the relaxation time for the capacitively-coupled QDHQ system

with the parameters considered in Fig. 2 of the main text. Because the charge noise relax-

ation mechanism will be maximal when the qubit is the most “charge-like” for the present

calculation, we simplify the pulse shown in Fig. 1f of the main text, considering instead that

the system is simply held constant at the detuning values "(1) = "(1)wait, "
(2) = "(2)wait for a time

⌧wait. We find that for "(1)wait > 115 µeV and "(2)wait > 110 µeV the anticipated T1 time is over

100 ns, an order of magnitude larger than the expected minimum T1 time for a charge qubit.
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Lowering the charge noise will further increase the expected T1 time.

In Fig. B.7b we compare the expected infidelity due to relaxation Irelax with the infidelity

due to dephasing under quasistatic charge noise Idephase. We estimate the infidelity due to

relaxation as

Irelax ⇡ 1 � exp(�⌧wait/T1) (B.23)

where the optimized time ⌧wait is calculated as described in Section S4. Idephase is calculated

as described in the Methods section of the main text. In order to accurately compare these

two error channels, we assume a quasistatic noise level of �" = 4.5 µeV, which has been

measured [63] in a device for which Tmin,charge
1 ⇡ 10 ns [59]. We find that Idephase > Irelax for

all of the pulses we consider here, in most cases by more than a factor of two. For the 10 ns

detuning pulse considered in Fig. 3 of the main text, the expected infidelity due to relaxation

is approximately a factor of four smaller than the calculated infidelity due to dephasing.

We expect the relaxation due to charge noise to dominate over phonon-mediated noise

under experimental conditions. However, as we show now, we expect the two e↵ects to scale

proportionally. The qubit-phonon coupling term Hq�pn in the {|·Si , |·T i , |S·i} basis can be

approximated as

Hq�pn =

0

BBBBBB@

HRR 0 HRL

0 HRR HRL

H⇤
RL H⇤

RL HLL

1

CCCCCCA
, (B.24)

where R and L refer to the third electron being in the right or left dot, respectively. Here

we assume that the intra-dot relaxation is negligible [63]. Since |HLL � HRR| � |HRL| for
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the majority of Q-space [135, 137], we further approximate Hq�pn ⇡ (HLL � HRR)P . Thus

the qubit-phonon coupling term is approximately proportional to the charge noise coupling

term, which by Eq. (B.21) means that the phonon-induced relaxation rate is proportional to

the charge-noise-induced relaxation rate. The Tmin,charge
1 parameter employed previously in

Eq. (B.22) encompasses both relaxation mechanisms simultaneously.

In summary, using rough estimates of the expected T1 time, we have shown that the

under realistic charge noise levels and without sophisticated pulse optimization, charge-noise-

induced dephasing rather than relaxation is the dominant source of error for the proposed

two-qubit gates.
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Appendix C

Supplemental information for Ch. 5

C.1 Parameters of web graph models

In implementing the models used in this paper, the relationship between the parameters

of the network generation algorithms and the generated networks themselves is not always

obvious, so in the following section we explain it in detail.

C.1.1 GZL preferential attachment

The method of graph construction in the GZL Preferential Attachment Model [36] consists

of two phases, each with its own parameter. First, a graph X (with adjacency matrix AX)

is created by adding a new vertex at each time step, where each vertex is created with mX

out-going edges. Next, a second graph Y (with adjacency matrix AY ) is created in the same

fashion, only with each new vertex having mY in-coming edges. AX and AY are then added
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together, with loops and weights discarded, forming the adjacency matrix of the desired

network. mX and mY are the two parameters to consider in this algorithm.

In order for a graph to be scale-free, Pr(din = k) and Pr(dout = k), the probabilities that

the in-degree din and the out-degree dout of a random node have the value k, must satisfy

Pr(din = k) ⇠ k��in , (C.1)

Pr(dout = k) ⇠ k��out ,

where �in and �out are positive real numbers, and it is understood that Pr(din = k) = 0 when

k < mX and Pr(dout = k) = 0 when k < mY . To compute �in and �out, one starts from

the undirected version from Ref. [138]. This result is then combined with a constant o↵set,

since each vertex of X has mx outgoing edges and each vertex of Y has mY incoming edges.

The resulting composite probability distributions follow

Pr(din = k) ⇠ (k +mX � mY )
�3, (C.2)

Pr(dout = k) ⇠ (k � mX +mY )
�3.

Thus, for su�ciently large k, these distributions are scale-free. However, for a large range of

intermediate k, we expect substantial deviation from the power law dependence of Eq. (C.1).

According to GZL [128], the parameters used to generate Fig. 2 in their paper [36], which

provides the main evidence for logarithmic scaling of the gap, follow mY � mX . In Fig. C.1,
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Figure C.1: Degree distributions for the GZL preferential attachment model with mX = 1 and
mY = 15, taken at graph size n = 8196 and averaged over approximately 1000 random graph
realizations. Both the in-degree (blue circles) and out-degree (red squares) distributions are shown.
For reference, the in-degree distribution for mX = 1 and mY = 1 (duplicated from Fig. 5.2 is shown
(black diamonds). The dashed line is the expected power law scaling of d�3, which is applicable for
large d. As predicted by Eq. (C.2), shown as fitting curves, the mX = 1 and mY = 15 distributions
exhibit non-scale-free behavior over a wide region of d.

we show the degree distributions for such a network, where we set mX = 1 and mY = 15.

There, we see that the degree distributions are well-described by Eq. (C.2), and that the

addition process does indeed distort the degree distributions. By requiring mX = mY , as

we have done in this paper (and GZL did for a portion of their supplemental material [36]),

�in = �out = 3 for all k, meaning that the in-degrees and out-degrees both follow the desired

power law behavior.

The asymptotic (large number of nodes) value of average edges per node for the composite

graph is also determined by the parameters mX and mY . Because mX is the number of out-

going edges per vertex in graph X, it is also the average number of edges per vertex in X.

The same logic holds for mY and graph Y . Thus, when constructing the composite graph,

the asymptotic average edges per node would be simply mX +mY . Although loops are then
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eliminated from the composite graph, the expected number of loops is much less than n in

the large-n case, so this has little e↵ect on the average edges per node. To produce a graph

with �in = �out = 3 and average in- and out-edges per node of 2 (as in Fig. 5.2), we use this

model with mX = mY = 1.

C.1.2 GZL copying model

The parameters of the GZL Copying Model [36] are similar to the GZL Preferential Attach-

ment, as they both involve the adding of two graphs to form a composite graph. We again

have the parameters mX and mY , which again indicate the number of out-going edges per

node in one component graph and the number of in-coming edges per node in the other.

This model has two new parameters, pX and pY , which are the probabilities of a new

node connecting to nodes chosen uniformly at random at a given time step during the

construction of X and Y , respectively. We follow Ref. [127] and add a constant o↵set (just

as in the preferential attachment case). Doing so, we again obtain the result that the graphs

are scale-free only for mX = mY . Assuming this constraint, the composite graph follows

�in =
2 � pX
1 � pX

, (C.3)

�out =
2 � pY
1 � pY

. (C.4)

For the data in Fig. 2 of the main text, we used the parameters pX = pY = 0.5 and

mX = mY = 1. In Fig. 3 of the main text, we used pX = 1/11 and pY = 35/86 and
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mX = mY = 1.

C.1.3 ↵-preferential attachment

Just as in the GZL Copying Model, there are multiple possible actions at each time step

in the ↵-Preferential Attachment Model [124], and each of these steps has an associated

probability. p1 is the probability of adding a new vertex with a single out-going edge, p2 is

the probability of adding a new vertex with a single in-coming edge, and 1 � p1 � p2 is the

probability of an edge being added to the existing network without the addition of a new

vertex. ↵, the third parameter, measures how far the generated network deviates from the

GZL preferential attachment model.

As laid out in Ref. [124], the relationship between these 3 parameters and the exponents

is

�in =
2 + (p1 + p2)↵� p2

1 � p2
, (C.5)

�out =
2 + (p1 + p2)↵� p1

1 � p1
. (C.6)

The connection between these parameters and the average number of directed edges per

node in the graph is clear when one considers that the probability that a new node will be

added at a given time step is p1 + p2, and a new edge is added at each step.

Using these constraints, we can find appropriate values for the parameters for both
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Fig. 5.2 and Fig. 5.3. In Fig. 5.2, we used p1 = p2 = 0.25, and ↵ = 1, and in Fig. 5.3,

we used p1 = 0.415, p2 = 0.0851, and ↵ = 0.0128. These choices in parameters keep �in and

�out fixed at our desired values, while simultaneously keeping the graph at an average of 2

in- and 2 out-edges per node.

C.2 Initial conditions

For each of these models, it is necessary to specify an initial graph to seed the network

growth. In our simulations we used a complete graph (including loops) with m+ 1 vertices,

where m is the number of edges added per vertex (in the ↵-Preferential Attachment Model,

we used m = 1).

C.3 Adaptive binning

In the plots of the degree distributions (Figs. 5.2(e)-(f), Figs. 5.3(c)-(d), and Fig. C.1), nu-

merical noise caused by few high-degree vertices leads to data which are di�cult to interpret.

In order to combat this, we use adaptive binning, which functions as follows. First, some

sampling threshold st is set, which we take to be 200 in our analysis. If a given data point,

corresponding to a degree, contains at least st samples, then it is included. If the data point

instead has fewer than st samples, it is combined with nearby points until the aggregated

samples total at least st. The weighted average degree and probability are then recorded.
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