Towards Robust Artificial-Intelligence-Powered Software:
Provable Guarantees via Abstract Interpretation

by

Yuhao Zhang

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the
UNIVERSITY OF WISCONSIN-MADISON

2024

Date of final oral examination: 04/30/2024

The dissertation is approved by the following members of the Final Oral Committee:
Aws Albarghouthi, Associate Professor, Computer Sciences
Loris D’Antoni, Associate Professor, Computer Sciences
Fredric Sala, Assistant Professor, Computer Sciences

Chaowei Xiao, Assistant Professor, The Information School

© Copyright by Yuhao Zhang 2024
All Rights Reserved

To the humble intelligence.

ii

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my parents for their
unwavering support throughout my PhD journey. Due to visa issues and the COVID-19
pandemic, I have not been able to visit home since I started my PhD in August 2019. I
am sincerely grateful for their understanding and continuous communication with my
grandparents and other relatives to accompany them during my absence.

I want to thank my advisors, Aws Albarghouthi and Loris D’Antoni, for their
research guidance and mental support. Along with my advisors, I would also like to
thank the rest of my committee, Fredric Sala and Chaowei Xiao, for their time and
consideration. I am deeply grateful to all my excellent collaborators, without whom I
would not have been able to earn my PhD.

I want to express my appreciation to those who have helped me during my academic
job search. Thank my recommendation letter writers, Baishakhi Ray, Tao Xie, and my
advisors. I also want to thank Professors Thomas Reps, Ethan Cecchetti, Tej Chajed,
Yingfei Xiong, Rahul Chatterjee, Josiah Hanna, and Yong Jae Lee, who polished my
job talk and other materials and conducted mock interviews with me. I am grateful
to Charlie Murphy, Hejie Cui, Kanghee Park, Ling Zhang, Zi Wang, and other people
who gave invaluable suggestions to improve my job talk. I want to thank Chaowei Xiao,
Daniel Seita, Di Wang, Lijun Ding, Linyi Li, Jialu Zhang, Kexin Pei, Tianhang Zheng,
Yue Zhao, and other people who were on the job market in previous years and shared
their experiences. I also want to thank Adithya Murali, Bian Song, Binbin Xie, Dinghuai
Zhang, Guangliang Liu, Guanhong Tao, Guannan Wei, Haitao Mao, Honghui Xu, Jacob
Laurel, Jiarong Xing, Jing Liu, Jocelyn (Qiaochu) Chen, Kaiyuan Zhang, Ke Wu, Lauren
Pick, Nan Jiang, Peiyan Dong, Pengfei Chong, Siwei Cui, Songlin Jia, Xufeng Cai, Yang
Shi, Yangruibo (Robin) Ding, Yu Zhang, Yue Wu, Yuke Wang, Yuxiang Peng, Yuxin
Sun, Zhe Zhou, Zhengzhong Tu, Zhiging Sun, Zhun Deng, Zhuohan Li for sharing
information with me. Most of them were also on the job market with me at the same
time. I am grateful that we could share the anxiety of being on the job market with
each other.

[am grateful to be part of a vigorous research group, MadPL!. I want to thank the
graduate students who joined the group before me: Calvin Smith, Jinman Zhao, John
Cyphert, Jordan Henkel, Qingheping Hu, Sam Drews, Zhicheng Cai, and Zi Wang.

"https://madpl.cs.wisc.edu

https://madpl.cs.wisc.edu

iii

(a) Boston (b) My drawing of Boston

Figure 0.1: Pictures of Boston.

They welcomed me into the group as a new student. I would also like to thank my
peers, Jialu Bao, Jinwoo Kim, and Zachary Susag, with whom I shared the experience
of being impacted by the COVID-19 pandemic during our first year. I also thank the
graduate students who joined the PL group after me and with whom I had the chance
to interact: Abtin Molavi, Aisha Mohamed, Amanda Xu, Anna Meyer, Anvay Grover,
Kanghee Park, Keith Johnson, Rahul Krishnan, Shaan Nagy, and Wiley Corning.

My two past internship experiences were terrific and greatly helped me find jobs in
the industry, even though the number of available positions was limited. In the summer
of 2021, I interned at the PROSE team at Microsoft, where I worked on the Blue-Pencil
project, a key initiative behind Visual Studio IntelliCode. I thank my mentors, Arjun
Radhakrishna and Gustavo Soares, for their guidance and support. In the summer of
2023, I interned at CodeWhisperer at Amazon AWS, where I enhanced the robustness
of large language models for code generation. I want to thank my mentor, Shiqi Wang,
and manager, Haifeng Qian, for their guidance and support.

Once again, I would like to thank all the people who accompanied me during my
PhD journey and Boston (Figure 0.1), who showed up every time in my job talks and
PhD defense.

CONTENTS

Contents iv
List of Tables vi
List of Figures viii
Abstract X
1 Introduction 1
1.1 Preventing Numerical Bugs in Deep Learning Programs 4
1.2 Verifying the Robustness of NLP Models 5
1.3 Certifiable Defense against Backdoor Attacks 6
2 Preventing Numerical Bugs in Deep Learning Programs 8
2.1 Overview 11
2.2 Motivating Examples 14
2.3 Approaches and Formalization 21
2.4 Experiments 32
2.5 Related Work 44
2.6 Future Work 46
3 Verifying the Robustness of NLP Models 48
3.1 Robustness Problem and Preliminaries 51
3.2 Augmented Abstract Adversarial Training (A3T) 55
3.3 Abstract Recursive Certification (ARC) 56
3.4 Experiments 66
3.5 Related Work 77
3.6 Preliminary Work: ARC on Autoaggressive Transformers 79
3.7 Future Work 86
4 Certifiable Defence against Backdoor Attacks 87
4.1 Problem Definition 90
4.2 The PECAN Certification Technique 92

4.3 Experiments 97

4.4 Related Work
4.5 Future Work

5 Conclusion
5.1 Contributions
5.2 Future Directions
5.3 Final Notes

References

106
108

110
110
111
116

119

LIST OF TABLES

Vi

21

2.2

2.3

24

2.5
2.6

2.7

3.1
3.2
3.3

3.4

3.5

Supported defective operators that may contain numerical defects, along
with their invalid ranges Ty, invaiia- In the table, Uiy and U« stand for the
minimum and maximum positive number of the input tensor’s data type,
respectively. Operators marked with * are only supported in DEBAR and
operators marked with ™ are newly supported in RANUM. Furthermore,
RANUM restricts the invalid range of Sqrt from (—00, —Umin] to (—00, Umin]
because the gradient of Sqrt can be invalid when the input range is in
[Umin, Uminl. -« o o o oo
Abstractions of Figure 2.5 using (a) interval abstraction and tensor expan-
sion and (b) interval abstraction and tensor smashing.
Abstractions of Figure 2.5 using (c) interval abstraction and tensor parti-
tioning and (d) interval abstraction with affine equality relation and tensor
partitioning. Blue text denotes the abstractions of (d) in addition to (c).
Dataset Overviewand Results
Results of Array Expansion
Results of failure-exhibiting system test generation with RANUM and Ran-
dom (baseline). C is the total number of runs where numerical failures are
triggered in 10 repeated runs. T is the average execution time per run.
Results of fix suggestion under three imposing location specifications with
RANUM and two baselines (RANUM-E and GD). # is the number of fixes
found. “Time (s)” is the total running time forall 79 cases.

String transformations to construct the perturbation spaces for evaluation.
String transformations for Syevies. - - - . .. oo oo
Experiment results for the three perturbations on the character-level model
on AG dataset. We show the normal accuracy (Acc.), HotFlip accuracy
(HF Acc.), and exhaustive accuracy (Exhaustive) of five different training
methods.
Experiment results for the three perturbations on the word-level model on
SSTdataset.
Experiment results for the three perturbations on the character-level model
onSST2dataset.

13

17

18

36
37

39

42

67
68

71

71

3.6

3.7
3.8
39
3.10
3.11
3.12
3.13

4.1

4.2

vii

Results of LSTM (on SST2), Tree-LSTM (on SST), and Bi-LSTM (on SST2) for
three perturbation spaces. Note: The results of LSTM on{(Tpyyp, 2), (Tsussyn, 2)}
were updated after the publication of the original ARC paper. We improved
the implementation of ARC on Tp,, because the previous implementation
of ARC included some cases in (Tp,y, 3) for (Tpy, 2), leading to more over-

approximation. This improvement also affects Table 3.12. 73
Results of LSTM on SST2 dataset for S,ppiers -« « v ¢ v o v o v v v o oo o 73
ARC vs A3T (CNN) on SST2 dataset. 74
ARC vs CertSub and ASCC on IMDB dataset. 74
ARC vs Huang et al. (2019) (CNN) on SST2 dataset. 75
ARC vs SAFERon IMDB dataset. 76
Results of different instantiations of ARC-A3T on SST2 dataset. 76

Results of applying ARC to autoregressive Transformer on SST2 dataset. . 85

Results on poisoned dataset generated by BadNets and evaluated on test
sets with triggers and clean test sets. We report the standard error of the
mean in parentheses. We note that NoDef and other empirical methods do
not have abstentionrates. 000 L 102
Results on poisoned dataset D; when evaluated on the malware test set

with triggers and the clean testset. 104

LIST OF FIGURES

viii

0.1

1.1
1.2

21

2.2

2.3
24

2.5

2.6

3.1
3.2
3.3
34
3.5

3.6

4.1
4.2

Picturesof Boston.

Overview of deep-learning-powered software.
Robustness issues in deep-learning-powered software.

Workflow for reliability assurance against numerical defects in DNN ar-
chitectures. The left-hand side shows three tasks and the right-hand side
shows corresponding examples. Lo L.
A deep learning program snippet that defines a linear regression model
from benchmarks of real-world numerical defects.
Computational graph encoded by the snippet in Figure2.2.
Overview of the reliability assurance framework approach. The output of
RANUM indicates confirmation and manifestation of numerical defects
(that can be feasibly exposed at the system level) for a given DNN architec-
ture and effective fixes for the architecture’s confirmed defects.
A code snippet and the corresponding computational graph to compare
different abstract domains introduced in DEBAR.
Example of tensor partitioning. Tensor partitioning reduces the size of
tensors in the abstract domain by sharing one interval bound among all
elements inside one subblock.o 000 0000

[ustration of augmentation, abstraction,and A3T
An illustration of our approach. o o000
llustration of two cases of Equation (3.8).
Examples of tree transformations. oo 0oL
[ustration of an LSTM, an autoregressive Transformer, a Bi-LSTM, and a
Bi-Transformer. e

One-layer autoregressive transformers are two RNNs interacting in parallel.

An overview of our approach PECAN.
An illustration of the proof of Theorem 4.4. It shows the worst case for
PECAN, where the attacker can change all predictions in D,y and Dpg to
the runner-up label y’. Note that we group Daps, Dpa, and Dg,e together to
easeillustration.

iii

12
14

14

16

24

49
50
57
69

80
82

89

4.3

51

ix

Comparison to BagFlip on CIFAR10, EMBER and MNIST, showing the
normal accuracy (dotted lines) and the certified accuracy (solid lines) at
different modification amounts R. 100

Images generated by DALLE3. 118

ABSTRACT

Deep learning has rapidly emerged as a transformative technology that permeates
all modern software, from autonomous driving systems to medical-diagnosis and
malware-detection tools. Considering the critical role of this software in our tech-
nologies, it must behave as intended. The complexity introduced by deep-learning
components complicates formal reasoning about the behavior of such software, fre-
quently resulting in solutions that offer only empirical or no guarantees.

This thesis contributes techniques and algorithms that increase the robustness of
deep-learning-powered software by providing strong provable guarantees across the
components existing in the entire deep learning pipeline. By leveraging the power of
abstract interpretation, a well-established theory for program analysis and verification,
this thesis enables the verification of robustness properties across the deep learning
pipeline. The thesis focuses on four critical aspects of robustness: (1) preventing
numerical bugs in deep learning code implementations, (2) verifying the robustness
of language models against adversarial perturbations, and (3) developing certifiable
defenses against backdoor attacks during model training. By addressing these chal-
lenges and providing provable guarantees, this research aims to enhance the reliability

and trustworthiness of deep-learning-powered software in critical applications.

1 INTRODUCTION

Artificial intelligence (AI) has witnessed remarkable progress over the past few decades,
with deep learning emerging as a driving force behind this advancement. The journey
began with the development of convolutional neural networks (CNNs), which rev-
olutionized image recognition tasks by automatically learning hierarchical features
from raw pixel data. A landmark moment in this journey was the introduction of
AlexNet (Krizhevsky et al., 2012), a deep CNN that achieved unprecedented perfor-
mance on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012.
The availability of large-scale datasets like ImageNet played a crucial role in the suc-
cess of CNNis by providing vast amounts of labeled data for training. CNNs enabled
computers to recognize objects, faces, and scenes with impressive accuracy, paving the
way for applications like self-driving cars and medical image analysis.

As the focus shifted to sequential data such as text and speech, long short-term
memory (LSTM) networks emerged, introducing the ability to remember and forget
information over long sequences selectively. However, the real breakthrough in natural
language processing arrived with the start of the Transformer architecture, which
relies solely on attention mechanisms. This innovation laid the foundation for the
development of large language models (LLMs), particularly decoder-only transform-
ers like the Generative Pre-trained Transformer (GPT) models (Brown et al., 2020).
These models leverage the power of attention to capture long-range dependencies
and generate human-like text, marking a “Renaissance” of the sequential structure.
The success of these models can be attributed to pre-training tasks, such as masked
language modeling (MLM) and next token prediction, which enable models to learn
rich representations of language from massive amounts of unlabeled data available on
the web. By pre-training on vast quantities of diverse text data, these models acquire
a broad understanding of language that can be fine-tuned for specific downstream
tasks with minimal additional training, revolutionizing the field of natural language
processing.

Alongside these advancements in deep learning, the field of program analysis has
also made significant strides. One of the most influential techniques in this domain
is abstract interpretation (Cousot and Cousot, 1977b), a theory introduced by Patrick
Cousot and Radhia Cousot in the late 1970s. Abstract interpretation provides a frame-

work for reasoning about the behavior of programs without actually executing them.

It involves creating abstract versions of the program’s semantics that capture essen-
tial properties while ignoring irrelevant details. Analyzing these abstract semantics
makes it possible to prove the program’s properties, such as the absence of certain
errors or the adherence to specific security policies. As artificial intelligence becomes
increasingly integrated into software systems, ensuring the safety and reliability of
these deep-learning-powered components becomes crucial. This thesis explores how
abstract interpretation can be applied to verify the safety of deep-learning-powered
software systems, addressing the critical need for trustworthy Al solutions.

Deep learning has rapidly emerged as a transformative technology that permeates
all modern software, from autonomous driving systems (Huang and Chen, 2020) to
medical-diagnosis (Azad et al., 2022; Singhal et al., 2022) and malware-detection (Raff
et al., 2018) tools. As the adoption of deep learning becomes increasingly widespread
in critical software, the need to ensure this deep-learning-powered behaves as intended
has become paramount.

While ensuring that deep-learning-powered software behaves as intended encom-
passes a wide range of challenges, this thesis focuses specifically on the robustness
of such software. Robustness, in this context, extends beyond the traditional notion of
model robustness, which primarily focuses on adversarial examples. The scope of this re-
search includes the robustness of the code implementation, training processes, and
post-deployment functionalities, such as counterfactual explanations. By addressing
robustness holistically across all these critical components, this thesis aims to provide
comprehensive approaches to ensuring the reliable behavior of deep-learning-powered
software.

Existing techniques for increasing the robustness of deep-learning-powered soft-
ware, such as software testing and empirical defenses for adversarial evasion and
data-poisoning attacks, often provide limited or no formal guarantees. While these
methods can help identify and mitigate specific vulnerabilities, they cannot compre-
hensively address all potential issues or provide guarantees of robustness. In contrast,
this thesis contributes techniques and algorithms that increase the robustness of deep-
learning-powered software by providing strong provable guarantees. These techniques
leverage the power of abstract interpretation, a well-established theory for program
analysis and verification. By employing abstract interpretation, this research enables
the verification of robustness properties across the deep-learning-powered software,

thus providing strong provable guarantees.

Model Deployment

D;ouectio’n @ p »@- Cat

Dataset Model

\Mode”mM

- tf.placeholder(*float", [1, n

ML Englneers

tf ard. ahle(tf erns([
ight

self.b_ = tf.var: male(tf zer us([
‘biases)
X(tf.matmul (input_data

Implementation

co
10

Deep Learning Programs

Figure 1.1: Overview of deep-learning-powered software.

-@ (] ModelTraining
= -

Rabblt
Model Deployment Data Collection
ST T T T T T e e N ?
1 Soundly detect, confirm,and fix | 1 Verify and improve robustness : | Provable defenses :
:_ [ISSTA 2018], [FSE zozo!] ficse 2023] ! :_ [ICML 2020], [EMNLP 2021, Oral] . :_ [NeurlPS 2022], [Under Submission]
(a) Numerical Bugs (b) Adversarial Examples (c) Data Poisoning Attacks

Figure 1.2: Robustness issues in deep-learning-powered software.

Deep-learning-powered software consists of the following steps (see Figure 1.1).
First, machine learning (ML) engineers implement deep learning code using platforms
like TensorFlow and PyTorch to construct neural network architectures and perform
training and inference. Second, ML engineers collect data from the web to construct
large datasets and train the models. Third, the trained models are deployed in real-
world applications, making predictions, such as classifying objects in images. Ensuring
robustness throughout this pipeline is crucial to guarantee that deep-learning-powered
software behaves as intended and maintains its reliability in real-world applications.

As shown in Figure 1.2, robustness issues can manifest in various components
of deep-learning-powered software. First, the code implementation built on top of
deep learning platforms can contain bugs. One type of bug is numerical bugs, which
generate values like NaN and Inf (Figure 1.2a). These numerical bugs are challenging
to detect due to complex component interactions and their difficulty in being spotted

during code reviews. Chapter 2 focuses on preventing numerical bugs in deep learning

programs to identify and rectify implementation vulnerabilities. Second, deep learning
models are vulnerable to adversarial examples, carefully crafted inputs designed to
fool the model into making incorrect predictions while appearing benign to humans
(Figure 1.2b). Chapter 3 focuses on verifying the robustness of language models
to ensure their resilience against adversarial perturbations. Third, backdoor attacks
involve an adversary injecting malicious patterns into the training data, causing the
model to learn a hidden trigger that can be exploited at inference time (Figure 1.2¢).
Chapter 4 focuses on developing certifiable defenses against backdoor attacks to protect
the integrity of the training process and the resulting models.

1.1 Preventing Numerical Bugs in Deep Learning

Programs

Prior empirical studies (Zhang et al., 2018b; Humbatova et al., 2020) on bugs in deep
learning systems have demonstrated that these bugs are not limited to the deep learning
models themselves; they also frequently appear in the deep learning programs built on
top of deep learning platforms like TensorFlow (Abadi et al., 2016) or PyTorch (Paszke
et al., 2019). In particular, they are often found in the programs specifying the corre-
sponding neural network architectures.

To avoid unexpected or incorrect behaviors in deep learning software systems, it is
necessary to detect bugs in their neural architectures. Although various approaches
(Pei et al., 2017; Tian et al., 2018) have been proposed to test or verify deep learning
models, these approaches do not address the needs of two types of stakeholders: (1)
architecture vendors who design and publish neural architectures to be used by other
users, and (2) developers who use neural architectures to train and deploy a model
based on the developers’ own training dataset.

e Architecture vendors need to provide quality assurance for their neural archi-
tecture. It is inadequate for the vendors to verify the architecture with specific
instantiated models, which are dataset-dependent.

e Bugs in a neural architecture may manifest themselves into failures after devel-

opers have trained a model for hours, days, or even weeks, causing great loss in

time and computation resources (Zhang et al., 2018b). The loss can be prevented
if these bugs can be detected early at the architecture level before model training.

e Failures can also occur when developers of a deep learning model need to retrain
their models upon updates on training data. These updates can frequently hap-
pen during software system development and deployment, e.g., when the new
teedback data is collected from users (Zhang et al., 2019b).

e Failures in deep learning models can be caused by a bug in the deep learning
architecture, low-quality training data, incorrect parameter settings, or other
issues. It is not easy for the developers to localize the bug.

In Chapter 2, we present DEBAR (Zhang et al., 2020d), the first attempt at con-
ducting static analysis for bug detection at the architecture level, specifically targeting
numerical bugs, an important category of bugs known to have catastrophic conse-
quences. These numerical bugs are challenging to detect due to complex component
interactions and their difficulty to be spotted during code reviews. To assure high
reliability against numerical defects, in addition to bug detection, we propose the
RANUM (Li et al., 2023b) framework, which includes novel techniques, in addition
to bug detection, for two reliability assurance tasks: confirmation of potential-defect
teasibility and suggestion of defect fixes. RANUM is the first framework that confirms
potential-defect feasibility with failure-exhibiting tests and automatically suggests

fixes.

1.2 Verifying the Robustness of NLP Models

Despite the remarkable performance of deep learning models in various tasks, deep
learning models are known to be vulnerable to adversarial examples (Carlini and
Wagner, 2017), which are carefully crafted inputs designed to mislead the model into
producing incorrect outputs. The existence of adversarial examples exposes deep
learning models to potential security threats, as malicious attackers can exploit these
weaknesses to compromise the system’s functionality.

Addressing the robustness problem in deep learning models involves developing
methods to mitigate adversarial examples. Researchers have proposed various empiri-
cal techniques to achieve this goal, including adversarial training (Madry et al., 2018)

and defensive distillation (Papernot et al., 2016), as well as certified approaches (Gowal
et al., 2019) that come with provable robustness guarantees. By providing rigorous
proof of robustness, certified approaches can give users greater confidence in the
trustworthiness of the model and reduce the risk of catastrophic failures.

Adversarial examples in NLP come from discrete perturbation spaces, which differ
from continuous perturbation spaces in CV, where 1, norm bounds are widely used to
define the pixel-level perturbations. In NLP, however, the focus is on word- or character-
level string transformations, such as adding or deleting words, changing word order,
and substituting synonyms or their combinations. Existing certified approaches for
NLP either target 1, norm bounds around word embeddings (Ko et al., 2019) or only
handle simple string transformations, such as word deletion (Welbl et al., 2020) and
synonym substitution (Huang et al., 2019; Jia et al., 2019). These approaches cannot
easily handle real-world adversarial examples, which often involve complex string
transformations. Therefore, developing robust certified approaches that can handle a
wider range of string transformations is an important research direction for improving
the robustness of NLP models against adversarial attacks.

Chapter 3 presents our work on verifying the robustness of NLP models. In Zhang
et al. (2020c), we introduce a general language that allows us to specify a perturbation
space programmatically in a way that can be easily decomposed and verified. We
also propose augmented abstract adversarial training (A3T), which combines the
strengths of augmentation and abstraction techniques to improve robustness. In Zhang
et al. (2021b), we present ARC (Abstract Recursive Certification), an approach for
certifying the robustness of recursive neural networks, such as LSTMs and TreeLSTMs,
to programmatically defined perturbation spaces. We also present a preliminary work
on applying ARC to autoregressive transformers.

1.3 Certifiable Defense against Backdoor Attacks

Deep learning models are vulnerable to backdoor poisoning attacks, where attackers
can poison a small fraction of the training set before model training and add triggers
to inputs at test time. As a result, the prediction of the victim model trained on the
poisoned dataset will diverge in the presence of a trigger in the test input. Backdoor
attacks have been successfully demonstrated in various domains, including image

recognition (Gu et al., 2017), sentiment analysis (Qi et al., 2021a), and malware de-

tection (Severi et al., 2021). These attacks pose significant security concerns for deep
learning models and systems trained on data gathered from different sources, such as
via web scraping.

Existing defenses against backdoor attacks have two main limitations. First, many
approaches only provide empirical defenses specific to certain attacks and do not
generalize to all backdoor attacks. Second, existing certified defenses either cannot
handle backdoor attacks or are probabilistic, making them expensive and ineffective in
practice.

Certification is crucial for defending against backdoor attacks, as it proves that the
learned model can withstand such attacks. Empirical defenses lack certificates, can
only defend against specific attacks, and can be bypassed by new, unaccounted-for
attacks. Certification has been successful in building models that are provably robust to
trigger-less poisoning attacks and evasion attacks, but these models remain vulnerable
to backdoor attacks. Determinism is another desirable property for a certified defense,
as probabilistic defenses typically require retraining thousands of models for a single
test input prediction. This retraining can be mitigated by Bonferroni correction, but it
is still necessary after a short period, making it challenging to deploy these defenses
in practice. In contrast, deterministic defenses can reuse trained models an arbitrary
number of times when producing certificates for different test inputs.

In Chapter 4, we present PECAN (Partitioning data and Ensembling of Certified
neurAl Networks), a deterministic certified defense against backdoor attacks for neural
networks. PECAN efficiently derives a backdoor-robustness guarantee by training
a set of neural networks on disjoint partitions of the dataset and applying evasion
certification to the neural networks.

Finally, Chapter 5 offers a conclusion, future directions, and final notes of this

thesis.

2 PREVENTING NUMERICAL BUGS IN DEEP LEARNING PROGRAMS

To assure the reliability of DNN-based systems, it is highly critical to detect and fix
numerical defects for two main reasons. First, numerical defects widely exist in DNN-
based systems. For example, in the DeepStability database (Kloberdanz et al., 2022),
over 250 defects are identified in deep learning algorithms where over 60% of them are
numerical defects. Moreover, since numerical defects exist at the architecture level, any
model using the architecture naturally inherits these defects. Second, numerical defects
can result in serious consequences. Once numerical defects (such as divide-by-zero)
are exposed, the faulty DNN model will output NaN or INF instead of producing any
meaningful prediction, resulting in numerical failures and system crashes (Zhang
et al., 2018b, 2019¢c). Thus, numerical defects hinder the application of DNNs in
scenarios with high reliability and availability requirements such as threat monitoring
in cybersecurity (Powell, 2022) and cloud system controlling (Sharma et al., 2016; Jay
et al., 2019).

To address numerical defects in DNN architectures in an actionable manner (Xiong
et al., 2022), we propose a workflow of reliability assurance, as illustrated in Figure 2.1,
which consists of three essential tasks: potential-defect detection, feasibility confirma-
tion, and fix suggestion. While DEBAR! is a static analysis tool that focuses on the
first task of potential-defect detection, RANUM? supports all three tasks, providing a
comprehensive solution to ensure the reliability of DNN architectures.

Potential-Defect Detection

In this task, we detect all potential numerical defects in a DNN architecture, with
a focus on operators with numerical defects (in short as defective operators) that
potentially exhibit inference-phase numerical failures for two main reasons, following
the literature (Zhang et al., 2020d; Yan et al., 2021). First, these defective operators can
be exposed after the model is deployed and thus are more devastating than those that
potentially exhibit training-phase numerical failures (Odena et al., 2019; Zhang et al.,
2020d). Second, a defective operator that potentially exhibits training-phase numerical
failures can usually be triggered to exhibit inference-phase numerical failures, thus

also being detected by our task. For example, the type of training-phase NaN gradient

"https://github.com/ForeverZyh/DEBAR
Zhttps://github.com/11y1lly/RANUM

https://github.com/ForeverZyh/DEBAR
https://github.com/llylly/RANUM

Input: DNN Architecture % MatMul | Add =»| ReLU B> Soft(mg?‘ T na O
Log =

@ Potential-Defect Detection @ Output:
Locate Nodes with Numerical Defects Potential numerical defects at Log nodes

@ Output: System test (X¢pains X)
@ Feasibility Confirmation

Step a: Generate Failure-Exhibiting Unit Tests After trained with X¢pain, model has weights
(wl, w2) such thatinputing x at

Step b: Generate Failure-Exhibiting System Tests A . . s
inference time triggers failures

@ Fix Suggestion Given imposing location: before SoftMax node,
Suggest to Add Clipping Operators @ Output: clip(input, @, 40)

Figure 2.1: Workflow for reliability assurance against numerical defects in DNN ar-
chitectures. The left-hand side shows three tasks and the right-hand side shows
corresponding examples.

failures is caused by an operator’s input that leads to invalid derivatives, and this input
also triggers failures in the inference phase (Yan et al., 2021).

DEBAR was the first attempt to conduct static analysis for bug detection at the
architecture level. To detect numerical bugs at the architecture level, we propose to
use static analysis because static analysis is able to cover the large combinatorial space
imposed by the numerous parameters and possible inputs of a neural architecture. We
propose a static analysis approach for detecting numerical bugs in neural architectures
based on abstract interpretation (Cousot and Cousot, 1977a), which mainly comprises
two kinds of abstraction techniques, i.e., one for tensors and one for numerical values.
We study three tensor abstraction techniques: array expansion, array smashing, and
tensor partitioning, as well as two numerical abstraction techniques: interval abstraction
and affine relation analysis. Among these techniques, array expansion, array smashing,
and interval abstraction are adapted from existing abstraction techniques for imperative
programs (Blanchet et al., 2003; Cousot and Cousot, 1977b). In addition, to achieve
scalability while maintaining adequate precision, we propose tensor partitioning to
partition tensors and infer numerical information over partitions, based on our insight:
many elements of a tensor are subject to the same operators. In particular, representing
(concrete) tensor elements in a partition as one abstract element under appropriate
abstract interpretation can reduce analysis effort by orders of magnitude. Motivated
by this insight, tensor partitioning initially abstracts all elements in a tensor as one

abstract element and iteratively splits each abstract element into smaller ones when its

10

concrete elements go through different operators. Each abstract element represents one
partition of the tensor, associated with a numerical interval that indicates the range of
its concrete elements. Moreover, for the sake of precision, besides interval analysis, we
conduct affine relation analysis to infer the elementwise affine equality relations among
abstract elements representing partitions.

The RANUM framework also employs abstract interpretation for potential-defect
detection, utilizing tensor partitioning and sole interval abstraction as its abstract do-
main. Unlike in DEBAR, we choose to use sole interval abstraction instead of affine
equality relation analysis because it can be naturally differentiated, and interval gradi-
ents can be used in the succeeding tasks of feasibility confirmation and fix suggestion.
Compared to DEBAR, RANUM offers improved capabilities, including support for
dynamic graphs using the innovative technique of backward fine-grained node labeling.
This allows for more flexibility and practicality as DEBAR can handle only static com-
putational graphs and does not support the widely used dynamic graphs in PyTorch

programs.

Feasibility Confirmation

In this task, we confirm the feasibility of these potential numerical defects by generating
failure-exhibiting system tests. Asshownin Figure2.1, a system testis a tuple of training
example® x,.,i, and inference example x such that after the training example is used
to train the architecture under consideration, applying the resulting model on the
inference example exhibits a numerical failure.

RANUM is the first approach that generates failure-exhibiting system tests that con-
tain training examples. Doing so is a major step further from the existing GRIST (Yan
et al., 2021) tool, which generates failure-exhibiting unit tests ignoring the practicality
of generated model weights. Given that in practice model weights are determined by
training examples, we propose the technique of two-step generation for this task. First,
we generate a failure-exhibiting unit test. Second, we generate a training example that
leads to the model weights in the unit test when used for training. For the second
step, we extend the deep-leakage-from-gradient (DLG) attack (Zhu et al., 2019b) by
incorporating the straight-through gradient estimator (Bengio et al., 2013).

3In real settings, multiple training examples are used to train an architecture, but generating a single
training example to exhibit failures (targeted by our work) is desirable for ease of debugging while
being more challenging than generating multiple training examples to exhibit failures.

11

Fix Suggestion

In this task, we fix a feasible numerical defect. To determine the fix form, we have
inspected the developers’ fixes of the numerical defects collected by Zhang et al. (2018b)
by looking at follow-up Stack Overflow posts or GitHub commits. Among the 13
numerical defects whose fixes can be located, 12 fixes can be viewed as explicitly or
implicitly imposing interval preconditions on different locations, such as after inputs
or weights are loaded and before defective operators are invoked. Thus, imposing an
interval precondition, e.g., by clipping (i.e., chopping off the input parts that exceed the
specified input range) the input for defective operator(s), is an effective and common
strategy for fixing a numerical defect. Given a location (i.e., one related to an operator,
input, or weight where users prefer to impose a fix), we suggest a fix for the numerical
defect under consideration.

RANUM is the first automatic approach based on the novel technique of abstraction
optimization. We observe that a defect fix in practice is typically imposing interval
clipping on some operators such that each later-executed operator (including those
defective ones) can never exhibit numerical failures. Therefore, we propose the novel
technique of abstraction optimization to “deviate away” the input range of a defective

operator from the invalid range, falling in which can cause numerical failures.

2.1 Overview

In this section, we introduce the background of DNN numerical defects and failures,

and then give an overview of DEBAR and RANUM with running examples.

Background

Deep learning developers typically use modern deep learning libraries like Py Torch
and TensorFlow to define DNN architectures in code. These architectures can be
represented as computational graphs, as shown in Figures 2.2 and 2.3. To facilitate
analysis, the DNN architecture can be automatically converted to an ONNX-format
computational graph (The Linux Foundation, 2022). However, it is important to note
that DEBAR only supports static computational graphs from the TensorFlow library,
while RANUM can analyze computational graphs from both PyTorch and TensorFlow
libraries by performing static analysis over the ONNX-format computational graph.

12

1 input_data = tf.placeholder("float"”, [1, n_features], name='x-input')
2 input_labels = tf.placeholder("float", [1, n_classes], name='"y-input’)
3 self.W_ = tf.variable(tf.zeros([n_features, n classes]),

4 name="weights")

5 self.b_ = tf.variable(tf.zeros([n _classes]),

6 name='biases")

7 model output = tf.nn.softmax(tf.matmul(input_data, self.W_) +

8 self.b)

9 cost = -tf.reduce_mean(input_labels * tf.log(model output) +
10 (1 - input_labels) * tf.log(l - model_output),
11 name="'cost")
12 self.obj_function = tf.reduce_min(tf.abs(model output),
13 name="'obj_function')

Figure 2.2: A deep learning program snippet that defines a linear regression model
from benchmarks of real-world numerical defects.

The computational graph can be represented as a Directed Acyclic Graph (DAG):
G =(V,&), where V and € are sets of nodes and edges, respectively. Nodes with zero
in-degree are called initial nodes, corresponding to input, weight, or constant nodes.
Initial nodes provide concrete data for the DNN models that result from training the
DNN architecture. The data from each node is formatted as a tensor, i.e., a multidimen-
sional array, with a specified data type and array shape annotated alongside the node
definition. Nodes with positive in-degree are called internal nodes, corresponding to
concrete operators, such as matrix multiplication (MatMul) and addition (Add). During
model training, the model weights, i.e., data from weight nodes, are updated by the
training algorithm. Then, during the deployment phase (i.e., model inference), with
these trained weights and a user-specified input, also known as an inference example,
the output of each operator is computed in the topological order. The output of a
specific node is used as the prediction result.

We let x and w denote the concatenation of data from all input nodes and data
from all weight nodes, respectively. For example, in Figure 2.3, x concatenates data
from nodes 1 and 11; and w concatenates data from nodes 2 and 4. Given specific x
and w, the input and output for each node are deterministic.* We use 17 (x; w) and

o (x; W) to express input and output data of node n, respectively, given x and w.

Numerical Defects in DNN Architecture We focus on inference-phase numerical
defects. These defects lead to numerical failures when specific operators receive inputs

“An architecture may contain stochastic nodes. We view these nodes as nodes with randomly
sampled data, so the architecture itself is deterministic.

13

Table 2.1: Supported defective operators that may contain numerical defects, along
with their invalid ranges Iy invaia- In the table, Uy, and Upay stand for the minimum
and maximum positive number of the input tensor’s data type, respectively. Operators
marked with * are only supported in DEBAR and operators marked with * are newly
supported in RANUM. Furthermore, RANUM restricts the invalid range of Sqrt from
(—00, —=Umin] to (—o0, Umin] because the gradient of Sqrt can be invalid when the input
range is in [—Umin, Uminl-

Op. Type T invalid
Pow " [_uminr umin] X (_OO/ _umin]
Div R X [_umin/ umm]
Reciprocal [~Unmin, Umin]
Sqrt (_OO/ umin]
Exp, Expm1* [In Upax, 00)
LOg (_OO/ umin]
Loglp* (—OO, Upmin — 1]
Range " R x R x [~Umin, Umin]

NegativeLogLikelihoodLoss®™ [0, 0] for non-zero cells using mean reduction

within invalid ranges so that the operators output NaN or INF.

Definition 2.1. For the given computational graph G = (V, €), if there is a node ny € V, such
that there exists a valid input and valid weights that can let the input of node n, fall within the
invalid range, we say there is a numerical defect at node n,.

FO”mally/ Ele € xvalid/ Wy € anlid/ flyrio (XO; WO) € jno,invalid

=3 numerical defect at node n,.

In the definition, X4 and W,,ji4 are valid input range and weight range, respec-
tively, which are clear given the deployed scenario. For example, ImageNet Resnet50
models have valid input range X,.iq = [0, 113%%**2%* gince image pixel intensities are
within [0, 1], and valid weight range W,,jiq = [—1, 1]? where p is the number of param-
eters since weights of well-trained Resnet50 models are typically within [—1,1]. The
invalid range J,,invaiia is determined by ny’s operator type with detailed definitions in
Table 2.1. For example, for the Log operator, the invalid range I, invalid = (—00, Umin)
where U, is the smallest positive number of a tensor’s data type.

14

x-input Brown circles = input nodes
weights

Purple circles = weight/constant nodes

3 MatMul |
p S biases and rectangles = operators
(5 add «—@)
) \ rectangles = operator with defects
coner | 6 Softmax
y-input . 8 Sub ‘

¥ 10 Log 17 Abs
9 Log /

15 Mul | 18 ReduceMin
\: 13 Sub)—»{ 14 Mul SZ obj_function
16 Add

I cost

| 19 ReduceMin

Figure 2.3: Computational graph encoded by the snippet in Figure 2.2.

DNN Architecture G = (V, E) Fix Locations V;y

. \
i DNN Static Analysis Iepiemitel IS5 Node Input/Output i
i Framework with Abstractions i
1IBackward Fine-grained i
: Node Labelling Two-Step Test (RANUM) |
I (DEBAR/RANUM) | Generation Abstraction !
I — - Optimization 1
i | Step a: Unit Test Generation | (RANUM)]
I Model Weights 1
! Inference - 1
H Example Step b: Training I
I Example Generation]
! Training Example :
! 1
(S Combination ®__________ . s

Task @: ‘ Task (2\ N Task 3

Potential Failure-Exhibiting Defect Fix

Numerical Defects System Test

Figure 2.4: Overview of the reliability assurance framework approach. The output of
RANUM indicates confirmation and manifestation of numerical defects (that can be
feasibly exposed at the system level) for a given DNN architecture and effective fixes
for the architecture’s confirmed defects.

2.2 Motivating Examples

In Figure 2.4, we show the overview structure of the reliability assurance framework.
The framework takes a DNN architecture expressed as a computational graph as the
input. First, the DNN static analysis framework (task @ in Figure 2.1) detects all
potential numerical defects in the architecture. Second, the two-step test generation

15

component (task @ in Figure 2.1), including unit test generation and training example
generation, confirms the feasibility of these potential numerical defects. Third, the
abstraction optimization component (task ® in Figure 2.1) takes the abstractions
produced by the DNN static analysis framework along with the user-specified fix
locations, and produces preconditions to fix the confirmed defects.

Potential-Defect Detection via Static Analysis

The DNN static analysis framework first computes the numerical intervals of possible
inputs and outputs for all nodes within the given DNN architecture, and then flags any
nodes whose input intervals overlap with their invalid ranges as nodes with potential
numerical defects.

In this section, we will first demonstrate how interval abstraction (Cousot and
Cousot, 1977b) and tensor expansion (Blanchet et al., 2003) work on the running exam-
ple in Figure 2.3. Next, we will use another example shown in Figure 2.5 to illustrate
the differences among the four different abstract domains proposed in DEBAR: (a)
sole interval abstraction and tensor expansion, (b) sole interval abstraction and tensor
smashing (Blanchet et al., 2003), (c) sole interval abstraction and tensor partition-
ing (Gopan et al., 2005) used in RANUM, and (d) interval abstraction with affine
equality relation analysis (Karr, 1976) and tensor partitioning.

Running example in Figure 2.3 by sole interval abstraction and tensor expansion
Interval abstraction is a widely used technique in abstract interpretation for abstracting
numerical values. It involves representing each scalar variable as an interval with a
lower and upper bound. These intervals are calculated by mapping standard operators
to interval arithmetic. Tensor expansion, inspired by array expansion, maps each
element in a tensor one-to-one to the abstract domain, without any further abstraction.
When used in conjunction with interval abstraction, tensor expansion enables the direct
mapping of tensor elements to their interval ranges.

In Figure 2.3, suppose that the user-specified input x-input (node 1) is within (ele-

mentwise, same below) range [(—10, —10)7, (10, 10)"]; weights (node 2) are within range
[:18 :18 , Gg 18)}; and biases (node 4) are within range [(—10,—10)7, (10, 10)"]. Our
DNN static analysis framework computes these interval abstractions for node inputs:

1. Node 5 (after MatMul): [(—200, —200), (200, 200)7];

16

x-input

1 x = tf.placeholder("float", [2, 2], name='x-input”’)
2 x_left, x_right = tf.split(x, num_or_size_splits=2, axis=1)
3 x_right =1 4 Add
4 x_left = x_left + x_right \
5 x_new = tf.concat([x_left, x_right], axis=1) 5 Concat
6 model output = 2 - x_new + X]
7 cost = tf.log(model_output) Const = 2 7 Sub

. " g add

(a) Code snippet
cost 9 Log

(b) Computational graph

Figure 2.5: A code snippet and the corresponding computational graph to compare
different abstract domains introduced in DEBAR.

2. Node 6 (after Add): [(—210,—210)7, (210,210)"];
3. Node 8 (after Softmax in float32): [(0,0)",(1,1)7];
4. Node 9 (after sub of [1,1] and node 8), 10: [(0,0)", (1,1)7].

Since nodes 9 and 10 use the Log operator whose invalid input range (—o0, Upin)
overlaps with their input range [(0,0)7, (1,1)"], we flag nodes 9 and 10 as potential
numerical defects.

Difference among different abstract domains via Figure 2.5 In the previous para-
graph, we demonstrated the abstract domain of interval abstraction and tensor ex-
pansion. However, the main disadvantage of tensor expansion is scalability, as the
number of intervals is the same as the number of all tensor elements. In modern DNNs,
this number can be in the millions or billions, making the approach impractical. An
alternative abstraction technique is tensor smashing, which uses one abstract element
to represent all elements in a tensor, inspired by array smashing. This greatly reduces
the number of abstract elements needed, making the approach more scalable.

In Figure 2.5, we consider a 2 x 2 tensor called x-input, which is randomly initialized
within the range [0, 1]. At line 2, we split x-input along the column into two tensors,
namely x_left and x_right. Subsequently, we perform some linear arithmetic operators
on these tensors at lines 3 and 4. At line 5, we concatenate x_left and x_right to create

17

Table 2.2: Abstractions of Figure 2.5 using (a) interval abstraction and tensor expansion
and (b) interval abstraction and tensor smashing.

Line Abstractions of (a) Abstractions of (b)

1 afx) = [(8 8) , G })} a(x) = [0,1]

5 a(x_left) = [(0,0)7,(1,1)7], a(x_left) = [0, 1],
(x_right) = [(0,0)7, (1,1)7] a(x_right) = [0, 1]
«(x_right) = [(1,1)7, (1,1)7] a(x_right) = [1,1]

4 x(x_left) =[(1,1)7,(2,2)7] x(x_left) = [1,2]

5 o(x_new) = [G i) , (g D} o(x_new) = [1,2]

6 o(model_output) =[(8 %) , (% %)} & (model_output) = [0, 2]

a new tensor. The tensor model_output is defined at line 6. Finally, we compute the log
of model_output to obtain the cost at the last line. Even though the log for computing
cost can be a potential defective operator, it can be proved that this operator will not
manifest a numerical bug in this case.

Table 2.2 shows a comparison between two methods: (a) interval abstraction and
tensor expansion, and (b) interval abstraction and tensor smashing. In lines 5-6, the
abstractions of the two approaches are equivalent, but (b) may be less precise than (a).
Lines 5-6 demonstrate that the abstraction of (a) is more precise than that of (b) when
it comes to handling tensor concatenation. However, both methods will produce false
alarms for the log operator in line 7 because they both conclude that the lower bound
of model_output can reach 0.

To achieve scalability while maintaining sufficient precision, we propose tensor
partitioning as a solution. By partitioning tensors, we can infer numerical information
over each partition based on the insight that many elements of a tensor are subject
to the same operator. For example, we can partition x_new by columns and use two
intervals to represent the left and right parts of the matrix, rather than using four
intervals to represent the entire matrix without losing any accuracy. Table 2.3 displays
the abstractions obtained from applying (c) interval abstraction and tensor partitioning.
In this approach, we only need seven variables to store intervals, whereas (a) requires
16 intervals.

Although approach (c) reduces the number of variables needed for interval ab-

18

Table 2.3: Abstractions of Figure 2.5 using (c) interval abstraction and tensor partition-
ing and (d) interval abstraction with affine equality relation and tensor partitioning.
Blue text denotes the abstractions of (d) in addition to (c).

Line Abstractions of (c¢) and (d)
1 o(x) = v, &(v1) =[0,1]
0(x) = (v2,v3), _ _
2 obeters)=vw, o TN T Vs = V4, v = Vs

O'(X_right) = V5

o(x_right) = vg, &(ve) = [1,1]

4 o(x_left) = vy, a(vy) = [1,2] V; = Vs + Ve
5 o(x_new) = (vg, Vo) zgtg Z E:ﬂ Vg = V7, Vg = Vg

V10 :2—\)8 + Vv :2—\16,
Vi1 = 2 — Vg + V3

x(vig) =2 — alvy) = [1,2],
o(vi1) = [1,2]

O‘(model_output) = (V10,V11)
6 o(vio) = 2 — ox(vg) + (v2) = [0, 2]
oe(vir) =2 — oe(vo) + (v3) = [1,2]

straction, it still generates false alarms. To address this issue, we propose using affine
relation analysis to infer element-wise affine equality relations among the abstract
elements representing partitions. The last two columns of Table 2.3 presents the ab-
stractions obtained from applying (d) interval abstraction with affine equality relation
and tensor partitioning. The key difference between (c) and (d) is that in (d), we
store the affine equality relation among variables, v; = v, + V¢, enabling us to perform
elimination at line 6. As a result, the bounds of v in approach (d) are tighter than in

(c), avoiding false alarms for the operator log in line 7.

Difference between the abstract domains used in DEBAR and RANUM In terms
of the abstract domain on tensors, DEBAR passively performs tensor partitioning, i.e.,
tensor partitioning only occurs after certain operators such as Split. To extend DEBAR,
RANUM introduces a novel technique called backward fine-grained node labeling.
This technique actively detects all nodes that require fine-grained abstractions, such
as nodes that determine control flow in a dynamic graph. For these nodes, interval
abstractions with the finest granularity are applied to reduce control flow ambiguity.

For other nodes, some neighboring elements share the same interval abstraction to

19

improve efficiency while preserving tightness. As a result, RANUM’s static analysis
has high efficiency and supports many more DNN operators, including dynamic
control-flow operators like Loop, compared to DEBAR.

Regarding the abstract domain on values, DEBAR uses interval abstraction with
affine equality analysis, while RANUM uses sole interval abstraction. This choice leads
to sub-optimal precision compared to DEBAR. However, RANUM makes this choice
because sole interval abstraction can be naturally differentiated, and the gradients of
the abstraction can be used in succeeding tasks such as feasibility confirmation and fix

suggestion.

Feasibility Confirmation via Two-Step Test Generation

Given nodes that contain potential numerical defects (nodes 9 and 10 in Figure 2.3), we
generate failure-exhibiting system tests to confirm their feasibility. A failure-exhibiting
system test is a tuple (Xirain, Xinfer), Such that after training the architecture with the
training example Xirain,” With the trained model weights Wingr, the inference input Xinfer
triggers a numerical failure. The name “system test” is inspired by traditional software
testing, where we test the method sequence (m = train(Xyain); m.infer (Xinfer)). In
contrast, GRIST generates model weights wi.¢, along with inference input ;s that
tests only the inference method m.infer (), and the weights may be infeasible from
training. Hence, we view the GRIST-generated tuple (Winter, Xinfer) as a “unit test”.

We propose a two-step test generation technique to generate failure-exhibiting
system tests.

Step a: Generate failure-exhibiting unit test (Winter, Xinfer). The state-of-the-art GRIST
tool supports this step. However, GRIST solely relies on gradient back-propagation,
which is relatively inefficient. In RANUM, we augment GRIST by combining its gradi-
ent back-propagation with random initialization inspired by recent research on DNN
adversarial attacks (Madry et al., 2018). As a result, RANUM achieves 17.32X speedup
with 100% success rate. Back to the running example in Figure 2.3, RANUM can

generate 55 _55 for node 2 and (0.9, —0.9)" for node 4 as model weights Wi,¢,; and

(10,—10)" for node 1 and (1,0)" for node 11 as the inference input Xinfer. Such Winser

In particular, if our generation technique outputs Xiyain, the numerical failure can be triggered if the
training dataset contains only Xirin or only multiple copies of Xtrin and the inference-time input is Xinfer-
Our technique can also be applied for generating a batch of training examples by packing the batch as a
Single example: Xtrain = (XtrainlrxtrainZ/ -« - s XtrainB)

20

and Xinfer induce input (0,1)" and (1,0)" for nodes 9 and 10, respectively. Since both
nodes 9 and 10 use the log operator and log 0 is undefined, both nodes 9 and 10 trigger
numerical failures.

Step b: Generate training example Xain that achieves model weights Wing,. To the best of
our knowledge, there is no automatic approach for this task yet. RANUM provides
support for this task based on our extension of DLG attack. The DLG attack is originally
designed for recovering the training data from training-phase gradient leakage. Here,
we figure out the required training gradients to trigger the numerical failure at the
inference phase and then leverage the DLG attack to generate X, that leads to such
training gradients. Specifically, many DNN architectures contain operators (such as
ReLU) on which DLG attack is hard to operate (Serra et al., 2018). We combine straight-
through estimator (Bengio et al., 2013) to provide proxy gradients and bypass this
barrier. Back to the running example in Figure 2.3, supposing that the initial weights are

<ooi1 _0611> for node 2 and (0,0)" for node 4, RANUM can generate training example

Xtrain cOmposed of (5.635, —5.635)" for node 1 and (1,0)" for node 11, such that one-step
training with learning rate 1 on this example leads to Wiyg,. Combining X;r.i, from this
step with Xinfer from step a, we obtain a failure-exhibiting system test that confirms the

feasibility of potential defects in nodes 9 and 10.

Fix Suggestion via Abstract Optimization

In this task, we suggest fixes for the confirmed numerical defects. RANUM is the first
approach for this task to our knowledge.

The user may prefer different fix locations, which correspond to a user-specified
set of nodes Vi, C V to impose the fix. For example, if the fix method is clipping the
inference input, Vs are input nodes (e.g., nodes 1, 11 in Figure 2.3); if the fix method
is clipping the model weights during training, Vs, are weight nodes (e.g., nodes 2, 4 in
Figure 2.3); if the fix method is clipping before the defective operator, Vs, are nodes
with numerical defects (e.g., nodes 9, 10 in Figure 2.3).

According to the empirical study of developers’ fixes, 12 out of 13 defects are
tixed by imposing interval preconditions for clipping the inputs of Vs.. Hence, we
suggest interval precondition, which is interval constraint 1,, < fi"(x; w) < u, for
nodes n € Vg, as the defect fix. A fix should satisfy that, when these constraints
Anev, (ln < fi(x; W) < u,,) are imposed, the input of any node in the computational

21

graph should always be valid, i.e., fi} (x; W) € Jn invaiia, Y10 € V.

In RANUM, we formulate the fix suggestion task as a constrained optimization
problem, taking the endpoints of interval abstractions for nodes in Vs, as optimizable
variables. We then propose the novel technique of abstraction optimization to solve
this constrained optimization problem. Back to the Figure 2.3 example, if users plan
to impose a fix on inference input, RANUM can suggest the fix —1 < x-input < 1; if
users plan to impose a fix on nodes with numerical defects, RANUM can suggest the
fix 1073 < node 9 & node 10. input < +oo.

2.3 Approaches and Formalization

Potential-Defect Detection via Static Analysis

In this section, we describe our abstraction for neural architectures using numerical
abstractions and tensor partitioning (for abstracting tensors), i.e., combining intervals

with affine equalities (for abstracting numerical values).

Numerical Abstraction

In abstract interpretation (Cousot and Cousot, 1977a), concrete properties are described
in the concrete domain C with a partial order C, and abstract properties are described in

the abstract domain A with a partial order C. We say that the correspondence between
Y
concrete properties and abstract properties is a Galois connection (C, C) < (A, C) with

[0
an abstraction function « : C — A and a concretization function y : A — C satisfying
Vce C,Vae Ax(c) Ca<cCvy(a)

To infer the value range for variables in a DL program, we need to compute the
possible sets of values that each variable can take. We define the concrete domain C
of n variables as P(R™), where an element is a set of n-element vectors denoting the
possible values that n variables can take. The partial order in C is the subset relation C

over sets.

22

Abstract Domain of Intervals The abstract domain of intervals A; is defined as
AI é {([1’1/ ul]/ ey [lnl un]) ’ l'/LL € Rn}

An element in A; can be seen as a pair of two vectors (1, u), where [l;, u;] denotes the
lower bound and upper bound of the values that the i-th variable may take. Given two
elements a;, a; € Ay, we say a; T a, if both have n intervals and each interval in a; is
a sub-interval of the interval in the corresponding position in a.

The abstraction function «; of an element ¢ € C is defined as

(XI(C) = ([lfl uf]l Ry [11(31/ ui])/
where
I =min(x;), u{ =max(xy), 1<i<n
XEC xXEC
The concretization function y; of an element a € A; is defined as

yila) ={x € R™ | Vi € [I,n].x; € [1{, u{l},

where [1¢, uf] is the interval range of the i-th variable of a.
It is easy to see that the concrete domain (C, C) and the interval abstract domain

(A, C;) form the Galois connection.

Abstract Domain of Affine Equalities We also maintain affine relations among

variables in a DL program in the form of
Z wWiXy = Wy, (21)

where x;’s are variables and w;s are constant coefficients, inferred automatically during
the analysis.

The abstract domain of affine equalities (Karr, 1976) Ag is defined as
Ag 2 {(A,b)|A € R™™ b eR™ m >0},

where a matrix A and a column vector b define the affine space of n variables. An

23

element in Ag constrains variables x € R™ by an equation Ax = b describing the
possible set of values that x can take. Furthermore, to have a canonical form, we
require (A, b) to be in the reduced row echelon form (Karr, 1976).

The abstraction function og of an element ¢ € C is defined as

.
(A,b), (A,Db)isinreduced row echelon form, and

Ax = b holds for all x in ¢

T, if ¢ is the whole space

1, otherwise.
\

The concretization function yg of an element a*f = (A, b) € Ag is defined as
Ye((A, b)) ={x € R™ | Ax = b}.

The concrete domain (C, C) and the affine equality abstract domain (Ag, Cg) form

the Galois connection
(C,C) S (Ag, Ca).
XE

The details about the domain operators (including meet, join, inclusion test, etc.)
of the affine equality abstract domain can be found in the publication by Karr (1976).
We do not need a widening operator for the domain of affine equalities because the
lattice of affine equalities has finite height, and the number of affine equalities while
analyzing a program is decreasing until reaching the dimension of the affine space in

the program.

Combining Interval Abstraction and Affine Equality Relation Abstraction We com-
bine the interval abstraction and affine equality relation abstraction as our numerical
abstraction to infer the value range for scalar variables in the DL programs and also
for those auxiliary abstract summary variables introduced by tensor partitioning. We
could use relational numerical abstract domains (such as polyhedra) to infer (inequal-
ity) relations. However, because many tensor operators induce affine equality relations,
in DEBAR, we consider only the affine equality relations among variables. In addition,
affine equality relations are cheap to infer, and thus are fit to analyze large DNNs.
Furthermore, because ReLU operators are widely used in DNN implementations,

for each variable a, we introduce a*¥ to denote the resulting variable of ReLU(a), i.e.,

24

p
Abstract Interval Domain with Tensor Partitioning

T T Dim © splits:
{@J 3) 6) 9}

Dim 1 splits:
{0, 3, 6}

Dim 2 splits:
{0, 2}

Abstract Domain:

. 4+12X9X4
Tensor: x (P2, ub32 ({0,3,6,9}, {0,3,6}, {0,2)))
H_J \ J \ v J
Interval Interval split Indices
_Lower Bound Upper Bound)

Figure 2.6: Example of tensor partitioning. Tensor partitioning reduces the size of
tensors in the abstract domain by sharing one interval bound among all elements inside
one subblock.

aReLU

= max(0, a). Considering the way of using ReLU operators in DNN implemen-
tations, in DEBAR, we maintain only the affine equality relations between a variable b
and the ReLU result of another variable a of the same shape (while a, b may be the

summary variables of partitions from different tensors), in the form of
b _ aReLU — O

which can also be expressed in the form of affine equalities. Additionally, the ReLU
operator has a property

ReLU(a) — ReLU(—a) —a =0,Va € R.

We can utilize this property for better analysis precision by (1) adding an additional

equality
ReLU __

—RelLU

a a a=20,

where a *U denotes the result of ReLU(—a); (2) adding an additional equality

ReLU _ o —Rell _

¢ a

for every equality in the form of ¢ = —a.

25

Tensor Abstraction

We first formally define tensor partitioning. Suppose the tensor has m dimensions

with shape n; x ny x -+ x n,,, we define the abstract domain as such:

A={(a,(S)™,) ra e AP Xm

(2.2)
ISil=n{,Vs € S;,s € N,0 < s < ny}.

Each element in A is a tuple (a, (S;){",), where the first element is a subblock-wise
numerical abstraction, which can come from any numerical abstract domain Ay, and
the last element (S4, S, ..., Sin) contains m sets, where each set S; corresponds to the
O-indexed split indices for the i-th dimension to form subblocks. We use S;[j] € N to
represent the j-th element of split index set S; sorted in ascending order and define
SillSill =ny.

We further denote a mapping J from a tuple of indices in (S;)i™; to a set of indices
in the original tensor, J = [0,n{) x...x[0,n;,) — P ([0,n;) x ... x [0,n,)). For a tuple
of indices t = (t1,...,tym) satisfying V1 <i < m.0 < t; < n}, J[t] is defined as follows,

il ={(l,..., L) IVI<i<m, L €[S, Se)} (2.3)

Example 2.2. Figure 2.6 illustrates this abstraction domain when Ay is the interval domain
Ay, To abstract a set of tensors X with shape 12 x 9 x 4, we define split indices for each

dimension, respectively, then impose interval constraints on each subblock of the tensor. For

.....

X9:11,6:8,2:3

Abstract Domain for Neural Architectures
Definition 2.3. The abstract domain for Tensor partitioning and Interval abstraction with
affine Equality relation Aryg is defined as

Ame 2{(3,a", ") | o € AT o e AR,

where J is defined in Equation (2.3) and a*, o€ are the numerical abstract elements over the
[I,_; n{ summary variables corresponding to the partitions defined by J in the interval domain

A and the affine equality domain Ag, respectively.

26

Definition 2.4. The concretization function ym of an element a* = (J, a¥, a*F) € A is
defined as

e { A

vt € dom(J) V(j1,.-.,jm) € Jlt].
Al .-+ jm)] € (yi(a®[t) Nye(afBit) [

where we use a''[t] and a*E[t] to denote the abstractions corresponding to the tuple t in
AN gd ATV pespectively.

Backward Fine-Grained Node Labeling Tensor partitioning provides a degree of
freedom in terms of the partition granularity, i.e., we can choose the subblock size for
each node’s abstraction. The elementwise abstraction is the most concrete as it is the
finest granularity of tensor partitioning. When the coarsest granularity (i.e., one scalar
to summarize the node tensor) is chosen, the abstraction saves the most space and
computational cost but loses much precision.

In DEBAR, the coarsest granularity is used by default for most operators. In other
words, DEBAR performs tensor partitioning passively, i.e., tensor partitioning only
occurs after certain operators, such as Split. However, we find that using the finest
instead of the coarsest granularity for some nodes is more beneficial for overall ab-
straction preciseness. For example, the control-flow operators (e.g., Loop) benefit from
concrete execution to determine the exact control flow in the dynamic graph, and the
indexing operators (e.g., Slice) and shaping operators (e.g., Reshape) benefit from
explicit indexers and shapes to precisely infer the output range. Hence, we propose to
use the finest granularity for some nodes (namely fine-grained requiring operators)
while the coarsest granularity for other nodes during static analysis.

To benefit from the finest granularity abstraction for required nodes, typically,
all of their preceding nodes also need the finest granularity. Otherwise, the over-
approximated intervals from preceding nodes will be propagated to the required
nodes, making the finest abstraction for the required nodes useless. To solve this
problem, in RANUM, we back-propagate “fine-grained” labels from these fine-grained
requiring nodes to initial nodes by topologically sorting the graph with inverted edges,
and then apply the finest granularity abstractions on all labeled nodes. In practice, we
tind that this strategy eliminates the control-flow ambiguity and indexing ambiguity
with little loss of efficiency®. As a result, RANUM supports all the dynamic graphs that

STheoretically, using the finest granularity for tensor partitioning cannot fully eliminate the ambigu-

27

are not supported by DEBAR, comprising 39.2% of the benchmarks proposed by Yan
et al. (2021).

Notes on the Implementation of Tensor Partitioning First, in DEBAR, all abstract
domains are implemented based on the Numpy library instead of PyTorch used in
RANUM. This difference results in tensor expansion, i.e., the finest granularity of tensor
partitioning, timing out on 33 architectures of the DEBAR benchmark, while tensor
expansion worked well in RANUM. We hypothesize that most of the time consumption
is due to GPU to CPU memory conversion, which is not a problem in RANUM because
the abstract interpretation is performed on GPU using PyTorch.

Second, due to the passive tensor partitioning design made in DEBAR, it only
implemented tensor partitioning abstract transformers for a limited number of APIs.
In contrast, RANUM implemented tensor partitioning abstract transformers for almost
all APIs because RANUM allows developers to determine the granularities of input
tensors. When preceding nodes use finer-grain abstraction granularity, the subsequent
nodes should preserve such fine granularity to maintain the analysis preciseness.
Principally, the choice of abstraction granularity should satisfy both tightness (bearing
no precision loss compared to elementwise interval abstraction) and minimality (using
the minimum number of partitions for high efficiency). To realize these principles, we
dynamically determine a node’s abstraction granularity based on the granularity of
preceding nodes. The abstraction design for some operators is non-trivial. Omitted
details (formulation, illustration, and proofs) about the static analysis framework are
provided in Appendix C of RANUM’s paper and RANUM’s implementation.

Two-Step Test Generation for Feasibility Confirmation

RANUM generates failure-exhibiting system tests for the given DNN to confirm the
teasibility of potential numerical defects. Here, we take the DNN architecture as the
input. From the static analysis framework, we obtain a list of nodes that have potential
numerical defects. For each node ng within the list, we apply our technique of two-step

test generation to produce a failure-exhibiting system test tsys = (Xirain, Xinfer) as the

ity, since interval abstraction is intrinsically an over-approximation. Nevertheless, in our evaluation,
we find that this technique eliminates control-flow and indexing ambiguities on all 63 programs in the
benchmarks.

28

output. According to Section 2.2, the test should satisfy that after the architecture is

trained with X;y.in, entering Xinsr in the inference phase results in a numerical failure.
We propose the novel technique of two-step test generation: first, generate failure-

exhibiting unit test (Winter, Xinfer); then, generate training example X,.i, that leads model

weights to be close to Wins, after training.

Step a: Unit Test Generation As sketched in Section 2.2, we strengthen the state-
of-the-art unit test generation approach, GRIST (Yan et al., 2021), by combining it
with random initialization to complete this step. Specifically, GRIST leverages the
gradients of the defective node’s input with respect to the inference input and weights
to iteratively update the inference input and weights to generate failure-exhibiting unit
tests. However, GRIST always conducts updates from the existing inference input and
weights, suffering from local minima problem. Instead, motivated by DNN adversarial
attack literature (Madry et al., 2018), a sufficient number of random starts help find
global minima effectively. Hence, in RANUM, we first conduct uniform sampling 100
times for both the inference input and weights to trigger the numerical failure. If no
failure is triggered, we use the sample that induces the smallest loss as the start point
for gradient optimization. As Section IV-A in the RANUM paper shows, this strategy
substantially boosts the efficiency, achieving 17.32X speedup.

Step b: Training Example Generation For this step, RANUM takes the following
inputs: (1) the DNN architecture, (2) the failure-exhibiting unit test tynit = (Winfer, Xinfer),
and (3) the randomly initialized weights wy. Our goal is to generate a legal training
example Xir.in, such that the model trained with x,,;, will contain weights close to
Winfer-

DNNs are typically trained with gradient-descent-based algorithms such as stochas-
tic gradient descent (SGD) (Cai et al., 2023). In SGD, in each step t, we sample a
mini-batch of samples from the training dataset to compute their gradients on model
weights and use these gradients to update the weights. We focus on one-step SGD
training with a single training example, since generating a single one-step training
example to exhibit a failure is more desirable for debugging because, in one-step train-
ing, the model weights are updated strictly following the direction of the gradients.
Therefore, developers can inspect inappropriate weights, easily trace back to nodes
with inappropriate gradients, and then fix these nodes. In contrast, in multi-step

29

training, from inappropriate weights, developers cannot trace back to inappropriate
gradients because weights are updated iteratively and interactions between gradients
and weights are complex (even theoretically intractable (Li and Yuan, 2017)).

In this one-step training case, after training, the model weights Wi, satisfy
Winfer = Wo — YVWL (Xtrain; WO)/ (24)

where y € R, is a predefined learning rate, and £ is the predefined loss function in
the DNN architecture. Hence, our goal becomes finding X;.i» that satisfies

VWL (Xtrain;wo) - (WO - Winfer)/Y- (25>

The DLG attack (Zhu et al., 2019b) is a technique for generating input data that
induce specific weight gradients. The attack is originally designed for recovering
training samples from monitored gradient updates. Since the right-hand side (RHS)
of Equation (2.5) is known, our goal here is also to generate input example X;,i» that
induces specific weight gradients. Therefore, we leverage the DLG attack to generate

training example X;yain.

Extending DLG Attack with Straight-Through Estimator Directly using DLG attack
suffers from an optimization challenge in our scenario. Specifically, in DLG attack,
suppose that the target weight gradients are Aw,,,,, we use gradient descent over
the squared error ||V,,£(x; Wy) — AWy, ||5 to generate x. In this process, we need
meaningful gradient information of this squared error loss to perform the optimization.
However, the gradient of this loss involves second-order derivatives of £(x; wy), which
could be zero. For example, DNNs with ReLU as activation function are piecewise
linear and have zero second-order derivatives almost everywhere. This optimization
challenge is partly addressed in DLG attack by replacing ReLU with Sigmoid, but it
changes the DNN architecture (i.e., the system under test) and hence is unsuitable.
We leverage the straight-through estimator to mitigate the optimization challenge.
Specifically, for a certain operator, such as ReLU, we do not change its forward computa-
tion but change its backward gradient computation to provide second-order derivatives
within the DLG attack process. For example, for ReLU, in backward computation we
L 7, because Softplus is an ap-

T 1texp(x
proximation of ReLU with non-zero second-order derivatives. Note that we modify the

use the gradient of Softplus function, namely 1

30

computed gradients only within the DLG attack process. After such X,i» is generated
by the attack, we evaluate whether it triggers a numerical failure using the original
architecture and gradients in Equation (2.4).

We listed hyperparameters in our two-step system test generation technique: For
the unit test generation, we use the Adam optimizer where the learning rate is 1 and the
maximum iteration number is 100. For the training example generation, we target for
training example under learning rate y = 1 and the approach has similar performance
under other learning rates. We follow the convention in the DLG attack, where we use
the L-BFGS method as the optimizer for gradient-based minimization. We terminate
the method and return “failed” if either the running time exceeds 1800's (universal
execution time limit for all experimental evaluations), or a failure-exhibiting example
training is not found after 300 iterations of L-BFGS optimization.

Abstraction Optimization for Fix Suggestion

In this task, we aim to generate the precondition fix given imposing locations. The
inputs are the DNN architecture, the node ny with numerical defects, and a node set
Viix to impose the fix. We would like to generate interval preconditions for Vs, node
inputs so that after these preconditions are imposed, the defect on n, is fixed.

Formally, our task is to find (l,,u,) for each n € Vg, (1, and u, are scalars so
the same interval bound applied to all elements of n’s tensor), such that for any x, w
satisfying " (x; W) € [ln, un], V. € Vg, for the defective node ny, we have f‘T’:O (x;w) ¢
Jng,invatid, Where the full list of invalid input ranges J,,, invalid is in Table 2.1. There is an
infinite number of possible (l,,,u,) interval candidates since 1, and u,, are floating
numbers. Hence, we need an effective technique to find a valid solution from the
exceedingly large search space that incurs a relatively small model utility loss. To
achieve so, we formulate a surrogate optimization problem for this task.

: maxv s st ou, =1+ s(u‘{f"d — 1‘{f'id),Vn € Vi, (2.6)
U i ME Vi
1l <1, <u <w? vn € Vg, (2.7)
Lo ({1, Un nevy,) < 0. (2.8)

Here, 1'2 and w?' are the valid ranges (of the node’s input n), which are fixed and
determined by the valid ranges of input and weights. £P*°" is the node-specific

31

Algorithm 1 Abstraction Optimization (Section 2.3)

Input: DNN architecture § = (V,), defective node ny € V, nodes to impose fix
Vfix g v
1: s+ 1,vs + 0.9,v. + 0.1, minstep < 0.1, maxiter < 1000
2: Cp ¢ (Lalid qgvalidy /9 1 1valid) walid yn e Vg,
3: for i = 1 to maxiter do

4: forn € Vi, do

5: loss < Lg{gcond ({ln/, un/}n/evﬁx)

6: Cn < Cn — Yc max{|cn|, minstep}sgn (V. loss)

s (wyalid__qvalidy s (uyalid _pvalid)

7 (L, un) < (cn — ,Cn +

8: (In, un) < (max{l,, 13}, min{u,, w24}

9: end for
10 if L2 ({1, Un}nev,,) < 0 then
11: return {1, Uy tnev,, // Find precondition fix
12: end if
13: $<4Ys-S
14: end for
15: return “failed” // Failed to find precondition fix

precondition generation loss that is the distance between the furthest endpoint of
defective node ny’s interval abstraction and ny’s valid input range. Hence, when
Lrreeend ({1, Untnevy,) becomes negative, the solution {l, ln Jnev,, is a valid precondi-
tion. The optimization variables are the precondition interval endpoints 1,, and u,
and the objective is the relative span of these intervals. The larger the span is, the
looser the precondition constraints are, and the less hurt they are for the model’s utility.
Equation (2.6) enforces the interval span requirement. Equation (2.7) assures that the
precondition interval is in the valid range. Equation (2.8) guarantees the validity of
the precondition as a fix.

For any {l., un Jnev,,, thanks to RANUM's static analysis framework, we can com-
pute induced intervals of defective node ny, and thus compute the loss value £P/e".

As shown in Algorithm 1, we propose the technique of abstraction optimization to
effectively and approximately solve this optimization. Our technique works iteratively.
In the first iteration, we set span s = 1, and in the subsequent iterations, we reduce
the span s exponentially as shown in Line 13 where hyperparameter y; = 0.9. Inside
each iteration, for each node to impose precondition n € Vs, we use the interval center
cn = (ln + u,)/2 as the optimizable variable and compute the sign of its gradient:
sgn(V loss). We use this gradient sign to update each c,, toward reducing the loss

value in Line 6. Then, we use ¢, and the span s to recover the actual interval in

32

Line 7 and clip 1,, and u,, by the valid range [11?"¢, u"?/] in Line 8. At the end of this
iteration, for updated 1,, and u,,, we compute L?{[‘jmd ({ln, Untnev,,) to check whether
the precondition is a fix. If so, we terminate; otherwise, we proceed to the next iteration.
We note that if the algorithm finds a precondition, the precondition is guaranteed to be a
valid fix by the soundness nature of our static analysis framework and the definition of
Lprecend “When no feasible precondition is found within maxiter = 1000 iterations, we

terminate the algorithm and report “failed to find the fix”.

Remark 2.5. The key ingredient in the technique is the gradient-sign-based update rule (shown
in Line 6), which is much more effective than normal gradient descent for two reasons. (1) Our
update rule can get rid of gradient explosion and vanishing problems. For early optimization
iterations, the span s is large and interval bounds are generally coarse, resulting in too large or
too small gradient magnitude. For example, the input range for Log could be [1,10'°] where
gradient can be 10710, resulting in almost negligible gradient updates. In contrast, our update
rule leverages the gradient sign, which always points to the correct gradient direction. The
update step size in our rule is the maximum of current magnitude |c,,| and minstep to avoid
stagnation. (2) Our update rule mitigates the gradient magnitude discrepancy of different
cn. At different locations, the nodes in DNNs can have diverse value magnitudes that are not
aligned with their gradient magnitudes, making gradient optimization challenging. Therefore,
we use this update rule to solve the challenge, where the update magnitude depends on the
value magnitude (|c.,|) instead of gradient magnitude (V. loss). We empirically compare our
technique with standard gradient descent in Section 2.4.

2.4 Experiments

We report experiment results of DEBAR on potential-defect detection and RANUM on

teasibility confirmation and fix suggestion in this section.

Potential-Defect Detection: DEBAR

We compare the effectiveness of four abstract domains: (a) sole interval abstraction and
tensor expansion, (b) sole interval abstraction and tensor smashing, (c) sole interval
abstraction and tensor partitioning, and (d) interval abstraction with affine equality

relation analysis and tensor partitioning. Note that even though (c) is theoretically

33

equivalent to the abstract domain used in RANUM, the actual results of (c) and
RANUM are incomparable due to differences in implementation:

1. The ONNX representation sometimes decomposes one operator in the TensorFlow
computation graph into two operators in the ONNX graph. This difference
can make the same abstract interpretation on the ONNX representation less
precise than on the TensorFlow representation. For example, consider a Square (x)
node being decomposed into a Mul(x, x) node with two inputs, and suppose
a(x) = [—1,1]. For the square node, we can compute the tightest output [0, 1]
using the abstract transformer for Square. However, for Mul, we can only get
[—1,1] = [-1,1] x [-1, 1] using interval arithmetic for multiplication.

2. As noted in Section 2.3, DEBAR and RANUM make different design choices
regarding how to partition tensors. This difference in design choices also makes
RANUM'’s implementation of tensor partitioning more comprehensive than DE-
BAR’s.

Experiment Setups

Datasets We collect two datasets for the evaluation. The first dataset is a set of 9
buggy architectures collected by existing studies. The buggy architectures come from
two studies: 8 architectures were collected by a previous empirical study (Zhang et al.,
2018b) on TensorFlow bugs and 1 architecture was obtained from a study conducted
to evaluate TensorFuzz (Odena et al., 2019).

As most of the architectures in the first dataset are small, we collect the second
dataset, which contains 48 architectures from a large collection of research projects
in the repository of TensorFlow Research Models’. The whole collection contains 66
projects implemented in TensorFlow by researchers and developers for different tasks
in various domains, including computer vision, natural language processing, speech
recognition, and adversarial machine learning. We first filter out the projects that are
not related to specific neural architectures such as API frameworks and optimizers. We
further filter out the projects of which the computation graph cannot be generated due
to incomplete documentation or complicated configuration. As a result, 32 projects

remain after filtering, and some of them contain more than one neural architecture.

"https://github.com/tensorflow/models/blob/13e7c85d521d7bb7cbal0bf7d743366f7708b9d
f7/research

https://github.com/tensorflow/models/blob/13e7c85d521d7bb7cba0bf7d743366f7708b9df7/research
https://github.com/tensorflow/models/blob/13e7c85d521d7bb7cba0bf7d743366f7708b9df7/research

34

Overall, our second dataset contains a great diversity of neural architectures such as
Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Generative
Adversarial Network (GAN), and Hidden Markov Model (HMM). Note that we have
no knowledge about whether the architectures in this dataset contain numerical bugs
when collecting the dataset.

For every architecture in the two datasets, we extract the computation graph via a
TensorFlow API. Each extracted computation graph is represented by a Protocol Buffer
file%, which provides the operators (nodes) and the data flow relations (edges). We
make 48 computation graphs publicly available’.

Columns 14 in Table 2.4 provide an overview of the two datasets. Column 2
provides an estimation of the lines of code in the corresponding deep learning programs.
Column 3 shows the number of operators in the computation graphs, and textsum has
the highest number of operators (208,412). Moreover, Column 4 shows the number of
parameters (trainable weights) in the DNN architectures, and Im_1b has the largest
number of parameters (1.04G).

Measurements Our approach checks every operator that may lead to a numerical
error and determines whether a warning should be reported. To measure the effective-
ness of our approach, we treat it as a classifier that classifies whether each operator is
buggy, and evaluates its effectiveness using the number of true/false positives/nega-
tives and accuracy. More concretely, true (false) positives refer to the warnings that
are (not) indeed bugs, true (false) negatives refer to those correct (buggy) operators
where no warning is reported, and accuracy is calculated using the following formula,
where TP/FP refers to true/false positive and TN/FN refers to true/false negative.

#TP + #TN
#TP + #TN + #FP 4 #FN

Accuracy =

For the first dataset, we refer to user patches to determine whether a warning is a
bug. For the second dataset,

e 204 true positives are confirmed by executing the architecture under analysis

using the designed inputs and parameters to trigger the numerical errors.

Shttps://en.wikipedia.org/wiki/Protocol_Buffers
‘https://doi.org/10.5281/zenodo . 3843648

https://en.wikipedia.org/wiki/Protocol_Buffers
https://doi.org/10.5281/zenodo.3843648

35

e 52 true positives are confirmed by the developer-provided fixes (not merged yet)

in the issue discussion.

e 43 true positives are confirmed when two authors of DEBAR separately do rea-
soning on each computation graph, and both authors conclude that each warning

is true positive.

Since our approach does not have false negatives by design, we omit this column in

reporting our evaluation results.

Experiment Results

Columns 5-9 of Table 2.4 show the results. We make the following observations about
DEBAR.

o It detects all known numerical errors on the 9 architectures in the first dataset,

with zero false positive.

e It detects 299 previously unknown operators that may lead to numerical errors
in the real-world architectures from the second dataset. Note that a numerical
bug can trigger multiple numerical errors at different operators, e.g., failing to

normalize an input tensor that is used in multiple operators.

e It correctly classifies 3,073 operators with only 230 false positives, achieving

accuracy of 93.0%.

e Itis scalable to handle the real-world architectures, all of which are analyzed in 3

minutes, and the average time is 12.1 seconds.

To understand why DEBAR generates some false positives, we investigate the false

positives (FPs) and find the following reasons.

e Some operators depend on an argument to index the tensor elements for the
operators. For example, function gather returns elements in a tensor based on an
argument that specifies the elements’ indexes. Since we do not know beforehand
which indexes are subject to an operator, we merge the intervals at all possible
indexes, leading to imprecision. 116 FPs belong to this category.

36

Table 2.4: Dataset Overview and Results

Name LoC #Ops #Params TP DEBAR Array Smashing Sole Interval Abstraction

TN FP Acc Time TN FP Acc Time TN FP Acc Time
TensorFuzz 77 225 178K 4 0 0 1000% 1.9 0 0 100.0% 1.9 0 0 1000% 1.7
Github-IPS-1 367 1,546 5.056M 1 4 0 100.0% 2.3 4 0 100.0% 2.2 4 0 100.0% 2.2
Github-IPS-6 2,377 167 23.6K 2 0 0 100.0% 1.7 0 0 100.0% 1.7 0 0 100.0% 1.7
Github-IPS-9 226 102 23.6K 1 0 0 100.0% 1.7 0 0 100.0% 1.7 0 0 100.0% 1.7
SO-IPS-1 102 329 9.28M 1 1 0 100.0% 1.8 1 0 100.0% 1.8 1 0 100.0% 1.8
SO-IPS-2 102 329 9.28M 1 1 0 100.0% 1.8 1 0 100.0% 1.7 1 0 100.0% 1.8
SO-IPS-6 102 329 9.28M 1 1 0 100.0% 1.8 1 0 100.0% 1.8 1 0 100.0% 1.8
SO-IPS-7 49 145 407K 2 0 0 100.0% 1.7 0 0 100.0% 1.7 0 0 100.0% 1.7
SO-IPS-14 48 74 7.85K 1 0 0 1000% 1.7 0 0 1000% 1.7 0 0 1000% 1.6
ssd_mobile_net_v1 71,242 22,412 273M 26 233 48 84.4% 21.8 137 144 53.1% 215 136 145 52.8% 21.6
ssd_inception_v2 71,242 23,929 100M 3 49 2 96.3% 19.8 45 6 889% 19.8 44 7 87.0% 19.7
ssd_mobile_net_v2 71,242 28,724 243M 26 233 48 844% 255 137 144 53.1% 260 136 145 52.8% 259
frenn_resnet_50 71,242 12485 734M 5 31 22 621% 114 31 22 621% 114 31 22 621% 115
deep_speech 659 7,318 0.131K 0 6 0 100.0% 6.9 6 0 100.0% 7.1 6 0 1000% 7.1
deeplab 7,514 21,100 87.1M 0 2 0 100.0% 17.8 2 0 100.0% 17.7 2 0 100.0% 18.3
autoencoder_mnae 369 187 944K 0 1 0 100.0% 2.6 1 0 100.0% 2.7 1 0 100.0% 2.6
autoencoder_vae 369 370 141M 2 1 0 100.0% 2.7 1 0 100.0% 2.7 1 0 100.0% 2.7
attention_ocr 1,772 3,624 1.74M 1 4 2 71.4% 5.2 4 2 71.4% 5.1 4 2 71.4% 5.2
textsum 906 208,412 10.5M 0 94 0 100.0% 105.7 94 0 100.0% 103.1 94 0 100.0% 106.4
shake_shake_32 1,233 7,348 5.85M 0 55 0 100.0% 7.5 55 0 100.0% 7.6 55 0 100.0% 7.7
shake_shake_96 1,233 7,348 52.4M 0 55 0 100.0% 7.6 55 0 100.0% 7.7 55 0 100.0% 7.7
shake_shake_112 1,233 7,348 71.3M 0 55 0 100.0% 7.6 55 0 100.0% 7.6 55 0 100.0% 7.5
pyramid_net 1,233 43,142 526M 0 7 0 100.0% 37.9 7 0 100.0% 387 7 0 100.0% 39.2
sbn 1,108 11,262 221IM 0 42 3 933% 41 42 3 933% 41 26 19 578% 3.7
sbnrebar 1,108 11,262 221IM 0 187 2 989% 98 187 2 989% 9.8 107 82 56.6% 8.8
sbndynamicrebar 1,108 31,530 2.61M 0 19 2 99.0% 187 194 2 99.0% 192 114 82 582% 179
sbngumbel 1,108 2070 198M 0 78 2 975% 46 78 2 975% 46 46 34 575% 4.0
audioset 405 699 216M 0 2 0 100.0% 29 2 0 100.0% 29 1 1 500% 29
learning_to_rem 702 1,027 430M 0 6 0 100.0% 3.1 6 0 100.0% 3.1 6 0 100.0% 3.1
neural_gpul 2401 5080 268M 0 53 0 1000% 55 53 0 1000% 55 53 0 100.0% 5.6
neural_gpu2 2,401 2,327 1.35M 0 38 0 100.0% 4.2 38 0 100.0% 4.2 38 0 100.0% 4.2
ptn 1,713 23,636 145M 0 351 0 100.0% 14.8 351 0 100.0% 15.0 351 0 100.0% 14.8
namignizer 262 2,310 652K 0 3 0 100.0% 3.5 3 0 100.0% 3.5 3 0 100.0% 3.5
feelvos 2955 83558 83.0M 0 4 0 100.0% 1354 4 0 100.0% 137.7 4 0 100.0% 132.6
fivo_srnn 5661 3514 357K 0 7 11 389% 42 7 11 389% 43 7 11 389% 43
fivo_vrnn 5661 3,820 365M 0 7 11 389% 44 7 11 389% 45 7 11 389% 45
fivo_ghmm 5,661 2,759 60 0 9 23 281% 4.0 9 23 281% 4.1 9 23 281% 4.1
dcb_var_bnn 2,143 474 360K 0 22 0 1000% 3.0 22 0 1000% 30 22 0 100.0% 3.0
dcb_neural_ban 2,143 186 18.0K 0 4 0 100.0% 2.7 4 0 100.0% 2.7 4 0 100.0% 2.7
dcb_bb_alpha_nn 2,143 11,180 36.0K 0 163 2 98.8% 8.2 163 2 98.8% 8.2 163 2 98.8% 8.4
dcb_rms_bnn 2,143 186 18.0K 0 4 0 100.0% 2.7 4 0 100.0% 2.7 4 0 100.0% 2.7
adversarial_crypto 133 676 8.14K 0 6 0 100.0% 3.0 6 0 100.0% 3.0 6 0 100.0% 3.0
sentiment_analysis 130 334 4.39M 0 3 1 75.0% 2.7 3 1 75.0% 2.7 3 1 75.0% 2.7
next_frame_pred 493 2,820 6.70M 1 6 0 100.0% 4.0 6 0 100.0% 4.1 6 0 100.0% 4.0
minigo 3,774 929 34.4K 1 0 0 100.0% 3.0 0 0 100.0% 3.0 0 0 100.0% 3.0
c_entropy_coder 2,000 15,709 200K 0 13 0 1000% 97 13 0 1000% 100 13 0 100.0% 9.8
Ifads 2,808 51,853 928K 202 213 3 993% 487 213 3 993% 495 213 3 99.3% 48.6
Im_1b 381 2926 1.04G 0 1 0 100.0% 4.0 1 0 100.0% 4.0 1 0 100.0% 4.0
swivel 1,449 279 36.0K 0 1 0 100.0% 2.7 1 0 100.0% 2.7 1 0 100.0% 2.7
skip_thought 1,129 6,800 377M 0 15 0 100.0% 57 15 0 100.0% 58 15 0 100.0% 5.7
video_prediction 462 48,148 416M 32 288 0 100.0% 30.7 288 0 100.0% 306 288 0 100.0% 30.5
gan_mnist 806 2664 397M 0 3 0 100.0% 3.7 3 0 100.0% 3.8 3 0 100.0% 3.7
gan_cifar 510 3,784 43.3M 0 17 0 100.0% 4.5 17 0 100.0% 4.5 17 0 100.0% 45
gan_image_c 444 4,230 35.5M 0 17 0 100.0% 4.7 17 0 100.0% 4.7 17 0 100.0% 4.7
vid2depth 2,502 35,072 99.6M 0 132 48 733% 212 132 48 73.3% 219 132 48 733% 215
domain_adaptation 3,079 6,010 7.01M 0 28 0 100.0% 5.6 28 0 100.0% 5.6 25 3 89.3% 5.7
delf 368 2712 910M 0 10 0 1000% 51 10 0 100.0% 5.1 10 0 100.0% 5.0
Total — — — 313 2760 230 93.0% 691.1 2564 426 87.1% 6949 2349 641 80.6% 688.7

e Our affine relation analysis works on only linear expressions. When a non-linear

operator is used, we create a new abstract element, leading to imprecision. 15

FPs belong to this category.

e 48 FPs belong to both of the preceding two categories.

37

Table 2.5: Results of Array Expansion

Array Expansion

Name

TN FP Acc Time
TensorFuzz 0 0 100% 29.6
GitHub-IPS-6 0 0 100% 3.2
GitHub-IPS-9 0 0 100% 3.1
SO-7 0 0 100% 724
SO-14 0 0 100% 24
autoencoder_mnae 1 0 100.0% 105.4
autoencoder_vae 1 0 100.0% 232.6
sbn 42 3 93.3% 397.8
sbnrebar 187 2 98.9% 725.1
sbngumbel 78 2 97.5% 401.2
learning_to_remember 6 0 100.0% 913.5
neural_gpul 53 0 100.0% 702.8
neural_gpu2 38 0 100.0% 336.8
namignizer 3 0 100.0% 629.9
fivo_srnn 7 11 38.9% 44.1
fivo_ghmm 9 23 28.1% 4.1
dcb_var_bnn 22 0 100.0% 12.3
dcb_neural_ban 4 0 100.0% 4.0
dcb_bb_alpha_nn 163 2 98.8% 155.5
dcb_rms_bnn 4 0 100.0% 4.0
adversarial_crypto 6 0 100.0% 3.6
sentiment_analysis 3 1 75.0% 693.8
mingo 0 0 100.0% 8.0
c_entropy_coder 13 0 100.0% 340.7

e For while loops in RNNs, we do not use tensor partitioning and elementwise
affine equality relations but use the classic Kleene iteration together with the
widening operator (Cousot and Cousot, 1977a) in the interval abstract domain,
leading to imprecision. 50 FPs belong to this category.

e The TensorFlow API used to extract computation graphs fails to analyze the

shapes of some tensors, leading to 1 FP.

Columns 10-13 of Table 2.4 show the results of array smashing, and Table 2.5 shows
the results of array expansion. Since array expansion times out on 33 of the subjects
with a time budget of 30 minutes, we report only the results on the remaining 24
subjects. From the tables, we make the following observations.

e Compared to array smashing, DEBAR even runs faster, indicating that the over-

38

head of tensor partitioning is so negligible that the overhead is dominated by the
random error of execution time, and DEBAR successfully eliminates 196 more

false positives, improving the (total) accuracy from 87.1% to 93.0%.

e Compared to array expansion, the analysis of DEBAR runs seconds to hundreds
of seconds faster, and does not lose any accuracy on all the 24 subjects that array
expansion can analyze within the time budget of 30 minutes.

These observations confirm that tensor partitioning is more effective than the other
two tensor abstraction techniques.

Columns 14-17 of Table 2.4 show the results of DEBAR and sole interval abstraction.
DEBAR has a negligible overhead (0.3% on average) and eliminates 411 false positives,
improving the accuracy from 80.6% to 93.0% in total. These observations indicate
that the affine relation analysis is effective and substantially contributes to the overall
effectiveness.

Feasibility Confirmation: RANUM

We compare RANUM with baseline approaches (constructed by leaving our novel
techniques out of RANUM) on feasibility confirmation.

Experiment Setups

Datasets We conduct the evaluation on the GRIST benchmarks (Yan et al., 2021),
being the largest dataset of real-world DNN numerical defects to our knowledge. The
benchmarks contain 63 real-world deep learning programs with numerical defects col-
lected from previous studies and GitHub. Each program contains a DNN architecture,
and each architecture has one or more numerical defects. There are 79 real numerical
defects in total.

Evaluation Protocol RANUM confirms the feasibility of potential numerical defects
by generating failure-exhibiting system tests. Since RANUM is the first approach for
this task, we do not compare with existing literature and propose one random-based
approach (named “Random” hereinafter) as the baseline. In “Random”, we first
generate a failure-exhibiting unit test with random sampling. If there is any sample

that triggers a failure, we stop and keep the inference example part as the desired

39

Table 2.6: Results of failure-exhibiting system test generation with RANUM and Ran-
dom (baseline). C is the total number of runs where numerical failures are triggered
in 10 repeated runs. T is the average execution time per run.

RANUM| Random RANUM | Random RANUM | Random RANUM| Random RANUM | Random
ID| C T| C T|| ID| C T| C T| ID| C T| C T|| ID| C T| C T ID| C T| C T
1/ 0 9.01| 0 1806.13| 13|10 0.01|10 0.01|| 27|10 0.01|10 0.01| 38| 1 0.13| 0 1800.65 49b| 10 0.50| 8 364.09
2a|10 0.03|10 0.06] 14|10 12.60|10 0.50(28a| 0 24.37| 0 1920.29||39a|10 0.43| 1 1623.72 50| 10 4.89| 10 0.16
2b|10 0.03|10 0.06| 15| 0 1.71| 0 2107.24||28b| 0 24.17| 0 1911.26||39b|10 0.43| 8 364.10 51| 10 49.12] 10 2.10
3/10 0.02|10 0.05|/16a|10 0.12|10 0.75|| 28¢|10 0.12]10 0.53| 40|10 0.06|10 0.02 521 10 4.87| 10 0.15

4|10 0.01|10 0.01||16b|10 0.21| 0 1834.44|(284|10 0.12|10 0.48| 4110 0.06|10 0.02 53| 10 0.07| 10 0.03
5/10 0.05|10 0.06(16c|10 0.25| 0 1831.67| 29|10 0.89|10 11.96| 42|10 0.06|10 0.02 54| 10 0.07| 10 0.02
6/10 0.84|10 12.42) 17|10 549.98|10 235.11|| 30|10 4.88|10 0.14|43a|10 0.48| 1 1623.71 55| 10 0.82] 10 12.79
7(10 08710 12.51| 18|10 0.02|10 0.05| 31|10 14.62|10 9.31|43b|10 0.45| 9 184.14 56| 10 0.07| 10 0.03
8110 0.86|10 1237\ 19|10 4.88|10 0.16|| 32|10 0.08|10 0.03| 4410 0.27|10 1.36 571 10 0.01] 8 360.01
9a|10 020 7 541.25| 20|10 4.88|10 0.14| 33|10 0.07|10 0.02|45a|10 4.89|10 0.15 58| 10 0.83| 10 12.28
9b|10 0.14|10 1.39| 21|10 4.89|10 0.14| 34{10 04210 0.20{/45b|10 0.88|10 1227 59| 10 0.02| 10 0.05
10110 4.90|10 0.16| 22|10 500.10| 0 1801.60| 35a|10 0.44|10 4.01| 46|10 0.01|10 0.01 60| 10 4.88| 10 0.16

11a|10 0.15|10 0.72|| 23|10 0.01|10 0.01||35b|10 0.45|10 422 4710 0.08]10 0.03 61| 10 9.84| 10 0.93
11b|10 0.13|10 0.76| 24|10 08110 12.52||36a|10 0.44| 1 1623.76|/48a|10 9.89|10 0.90 62| 10 48.86| 10 2.73
11c|10 0.11|10 0.74| 25|10 0.04|10 0.15||36b |10 0.46| 3 1263.79(/48b |10 4.88|10 0.15 63| 10 49.06| 10 215
12|10 0.26|10 0.72|| 26|10 0.07|10 0.03|| 37| 2 0.07| 2 1440.50(/49a|10 0.49| 1 1623.88 | Tot: 79733 17.31|649 334.14

Xinfer- 1hen, we generate X, again by random sampling. If any sample, when used
for training, could induce model weights w that cause a numerical failure when using
Xinfer as the inference input, we keep that sample as x,,;, and terminate. If and only if
both Xinfer and Xiain are found, we count this run as a “success” one for “Random”.

For each defect, due to the randomness of the model’s initial weights, we repeat
both RANUM and “Random” for 10 runs. Both approaches use the same set of random
seeds.

Experiment Results

Results are in Table 2.6. We observe that RANUM succeeds in 733/(79 x 10) = 92.78%
runs and the baseline “Random” succeeds in 649/(79 x 10) = 82.15% runs. Moreover,
RANUM spends only 17.31s time on average per run, which is a 19.30X speedup
compared to “Random”. We also observe that RANUM is more reliable across repeated
runs. There are only 6 cases with unsuccessful repeated runs in RANUM, but there are
19 such cases in “Random”. Hence, RANUM is substantially more effective, efficient,
and reliable for generating system tests than the baseline.

We study all six defects where RANUM may fail and have the following findings.
(1) For four defects (Case IDs 1, 15, 37, and 38), the architecture is challenging for
gradient-based optimization, e.g., due to the Min/Max/Softmax operators that provide
little or no gradient information. We leave it as future work to solve these cases, likely in
need of dynamically detecting operators with vanishing gradients and reconstructing
the gradient flow. (2) Two defects (Case IDs 28a and 28b) correspond to those caused

40

by Div operators where only a close-to-zero divisor can trigger a numerical failure.
Hence, for operators with narrow invalid ranges, RANUM may fail to generate failure-
exhibiting system tests.

Ablation Study RANUM uses the two-step test generation technique to produce
failure-exhibiting system tests: it first generates failure-exhibiting unit tests with
gradient back-propagation, then generates failure-exhibiting training examples via
the extended DLG attack. To isolate the impact of RANUM at each step, we re-
place either step with random sampling: “Random + RANUM?”, which first gen-
erates failure-exhibiting unit tests via random sampling, then generates training ex-
ample via RANUM; “RANUM + Random”, which first generates failure-exhibiting
unit tests via RANUM, then generates training example via random sampling. We
tind that “"RANUM + Random” takes 9.38X running time than RANUM and fails
for 68 runs (RANUM only fails for 57 runs); and “Random + RANUM" fails for
113 runs (roughly 2X failed runs compared to RANUM). This study implies that
RANUM'’s technique helps to improve effectiveness and efficiency at both steps of
failure-exhibiting system test generation compared to the pure random baseline. The
improvement for the first step is mainly from the effectiveness perspective, and the

improvement for the second step is mainly from the efficiency perspective.

Fix Suggestion: RANUM

We compare RANUM with baseline approaches (constructed by leaving our novel
techniques out of RANUM) and developers’ fixes on fix suggestion.

Experiment Setups

Datasets We conduct the evaluation on the same benchmarks used in feasibility
confirmation.

Evaluation Protocol We compare RANUM with fixes generated by baseline ap-
proaches and developers’ fixes.

RANUM is the first approach for this task, and we propose two baseline approaches
to compare with. (1) RANUMS-E: this approach changes the abstraction domain of
RANUM from interval with tensor partitioning to standard interval. To some degree,

41

RANUM-E represents the methodology of conventional static analysis tools that use
standard interval domain for abstraction and search of effective fixes. (2) GD: this
approach uses standard gradient descent for optimization instead of the abstraction
optimization technique in RANUM.

We evaluate whether each approach can generate fixes that eliminate all numerical
defects for the DNN architecture under analysis given imposing locations. We consider
three types of locations: on both weight and input nodes, on only weight nodes, and
on only input nodes. In practice, model providers can impose fixes on weight nodes by
clipping weights after a model is trained; and users can impose fixes on input nodes
by clipping their inputs before loading them into the model. Since all approaches
are deterministic, for each case we run only once. We say that the fix eliminates all
numerical defects if and only if (1) the RANUM static analysis framework cannot
detect any defects from the fixed architecture; and (2) 1,000 random samples cannot
trigger any numerical failures after imposing the fix.

We conduct an empirical study to compare the fixes generated by RANUM and
by the developers. We manually locate GitHub repositories from which the GRIST
benchmarks are constructed. Among the 79 cases, we find the repositories for 53 cases
on GitHub and we study these cases. We locate the developers’ fixes of the numerical
defects by looking at issues and follow-up pull requests. Since RANUM suggests
different fixes for different imposing locations, for each case we first determine the
imposing locations from the developer’s fix, and then compare with RANUM'’s fix for
these locations.

RANUM fixes are on the computational graph and developers’ fixes are in the
source code, so we determine to conduct code-centered comparison: RANUM fixes
are considered feasible only when the fixes can be easily implemented by code (within
10 lines of code) given that developers’ fixes are typically small, usually in 3-5 lines of
code. In particular, our comparison is based on two criteria: (1) which fix is sound on
any valid input; (2) if both are sound, which fix hurts less to model performance and
utility (based on the span of imposed precondition, the larger span the less hurt). Two
authors independently classify the comparison results for each case and discuss the

results to reach a consensus.

42

Table 2.7: Results of fix suggestion under three imposing location specifications with
RANUM and two baselines (RANUM-E and GD). # is the number of fixes found.
“Time (s)” is the total running time for all 79 cases.

Imposing RANUM RANUM-E GD
Locations # Time(s) | # Time(s) | # Time (s)
Weight + Input | 79 54.23 |78 540.13 |57 188.63
Weight 72 58.47 71 581.86 |43 219.28
Input 37 92474 |37 397730 |29 952.19

Experiment Results

Comparison between RANUM and Baselines We report the statistics, including
the number of successful cases among all the 79 cases and the total running time, in
Table 2.7. From the table, we observe that on all the three imposing location settings,
RANUM always succeeds in most cases and spends much less time.

For example, when fixes can be imposed on both weights and input nodes, RANUM
succeeds on all cases with a total running time 54.23 s. In contrast, RANUM-E requires
> 10x time, and GD succeeds in only 72.15% cases. Hence, RANUM is substantially
more effective and efficient for suggesting fixes compared to baseline approaches.

Since RANUM is based on iterative refinement, we study the number of iterations
needed for finding the fix. When fixes can be imposed on both weight and input nodes,
where RANUM succeeds on all the 79 cases, the average number of iterations is 29.80,
the standard deviation is 14.33, the maximum is 53, and the minimum is 2. Hence,
when RANUM can find the fix, the number of iterations is small, coinciding with the
small total running time 54.23 s.

The two baseline approaches can be viewed as ablated versions of RANUM. Com-
paring RANUM and GD, we conclude that the technique of abstraction optimization
substantially improves the effectiveness and also improves the efficiency. Compar-
ing RANUM and RANUM-E, we conclude that the interval abstraction with tensor
partitioning as the abstraction domain substantially improves the efficiency and also
improves the effectiveness.

From Table 2.7, it is much easier to find the fix when imposing locations are weight
nodes compared to input nodes. Since model providers can impose fixes on weights
and users impose on inputs, this finding implies that fixing numerical defects on the

providers’ side may be more effective than on the users’ side.

43

Comparison between RANUM and Developers’ Fixes We categorize the comparison

results with manual fixes as below.

1. (30 cases) Better than developers’ fixes or no available developer’s fix. Developers either
propose no fixes or use heuristic fixes, such as reducing the learning rate or using
the mean value to reduce the variance. These fixes may work in practice but
are unsound, i.e., cannot rigorously guarantee the elimination of the numerical
defect for any training or inference data. In contrast, RANUM generates better
fixes since these fixes rigorously eliminate the defect.

2. (7 cases) Equivalent to developers’ fixes. Developers and RANUM suggest equivalent

or highly similar fixes.

3. (13 cases) No need to fix. For these cases, there is no need to fix the numerical
defect in the given architecture. There are mainly three reasons. (1) The DNN is
used in the whole project with fixed weights or test inputs. As a result, although
the architecture contains defects, no system failure can be caused. (2) The ar-
chitecture is injected a defect as a test case for automatic tools, such as a test
architecture in the TensorFuzz (Odena et al., 2019) repository. (3) The defect can
be hardly exposed in practice. For example, the defect is in a Div operator where
the divisor needs to be very close to zero to trigger a divide-by-zero failure, but
such situation hardly happens in practice since the divisor is randomly initialized.

4. (3 cases) Inferior than developers’ fixes or RANUM-generated fixes are impractical.
In two cases, RANUM-generated fixes are inferior to developers’ fixes. Human
developers observe that the defective operator is Log, and its input is non-negative.
So they propose to add 10~° to the input of Log as the fix. In contrast, RANUM
can generate only a clipping-based fix, e.g., clipping the input if it is less than
107°. When the input is small, RANUM’s fix interrupts the gradient flow from
output to input while the human’s fix maintains it. As a result, the human’s fix
does less hurt to the model’s trainability and is better than RANUM's fix. In
another case, the RANUM-generated fix imposes a small span for some model
weights (less than 0.1 for each component of that weight node). Such a small
weight span strongly limits the model’s expressiveness and utility. We leave it as
the future work to solve these limitations.

44

From the comparison results, we can conclude that for the 40 cases where numerical
defects are needed to be fixed (excluding case C), RANUM suggests equivalent or
better fixes than human developers in 37 cases. Therefore, RANUM is comparably
effective as human developers in terms of suggesting numerical-defect fixes, and is
much more efficient since RANUM is an automatic approach.

We discuss two practical questions for RANUM users. (1) Does RANUM hurt model
utility, e.g., inference accuracy? If no training or test data ever exposes a numerical
defect, RANUM does not confirm a defect and hence no fix is generated and there is
no hurt to the utility. If RANUM confirms numerical defects, whether the fix affects
the utility depends on the precondition-imposing locations. If imposing locations
can be freely selected, RANUM tends to impose the fix right before the vulnerable
operator, and hence the fix does not reduce inference performance. The reason is
that the fix changes (by clipping) the input only when the input falls in the invalid
range of the vulnerable operator. In practice, if the imposing locations cannot be freely
selected and need to follow developers’ requirements, our preceding empirical study
shows that, in only 3 out of 40 cases, compared with developers’ fixes, our fixes incur
larger hurt to the inference or training performance of the architecture. (2) Should
we always apply RANUM to fix any architecture? We can always apply RANUM to
tix any architecture since RANUM fixes do not visibly alter the utility in most cases.
Nonetheless, in deployment, we recommend first using RANUM to confirm defect
feasibility. If there is no such failure-exhibiting system test, we may not need to fix the

architecture; otherwise, we use RANUM to generate fixes.

2.5 Related Work

Understanding and Detecting Defects in DNNs Discovering and mitigating defects
and failures in DNN based systems is an important research topic (Zhang et al., 2018b;
Pham et al., 2020). Following the taxonomy in previous work (Humbatova et al., 2020),
DNN defects are at four levels from bottom to top. (1) Platform-level defects. Defects
can exist in real-world deep learning compilers and libraries. Approaches exist for
understanding, detecting, and testing against these defects (Wang et al., 2020c; Liu et al.,
2023). (2) Architecture-level defects. Our work focuses on numerical defects, being one type
of architecture-level defects. Automatic detection and localization approaches (Wardat

et al., 2021; Liu et al., 2021) exist for other architecture-level defects such as suboptimal

45

structure, activation function, and initialization and shape mismatch (Hattori et al.,
2020; Dolby et al., 2018). (3) Model-level defects. Once a model is trained, its defects
can be viewed as violations of desired properties as discussed by Zhang et al. (2019b).
Some example defects are correctness (Tizpaz-Niari et al., 2020; Guerriero et al., 2021),
robustness (Wang et al., 2021a), and fairness (Zhang et al., 2020b) defects. (4) Interface-
level defects. DNN-based systems, when deployed as services, expose interaction
interfaces to users where defects may exist, as shown by empirical studies on real-
world systems (Wan et al., 2021).

Testing and Debugging for DNNs A rich body of work exists for testing and de-
bugging DNN defects (Zhang et al., 2019b). Some representatives are DeepXplore Pei
et al. (2017) and DeepGauge Ma et al. (2018). Recent work enables automatic model
debugging and repair via consistency checking (Xiao et al., 2021), log checking (Zhang
etal., 2021a), spectrum analysis (Qi et al., 2021b), data slicing (Liu et al., 2022b), or
analyzer-guided synthesis (Sotoudeh and Thakur, 2021). Such previous work focuses
on deep learning models and does not detect numerical bugs before training.

Verification for DNN Another solution for eliminating DNN defects is to rigorously
guarantee the non-existence of defects via verification (Li et al., 2023a; Albarghouthi,
2021). There are two lines of verification of neural network robustness: complete
verification (Wang et al., 2021b; Katz et al., 2019) and incomplete verification (Xu et al.,
2020; Singh et al., 2019). The complete verifiers either find an adversarial example or
generate proof that all inputs in the given perturbation space will be correctly classified.
Compared to the complete verifiers, the incomplete ones will abstain from predicting if
they cannot prove the correctness of the prediction because their techniques will intro-
duce over-approximation. The complete approaches do not have over-approximation
issues but require expensive verification algorithms such as branch and bound. DEBAR
and RANUM use incomplete verifiers for achieving high scalability.

Recently, the incomplete verifiers customized for DNNs are emerging, mainly
focusing on proposing tighter abstractions (Zhang et al., 2018a; Singh et al., 2019)
or incorporating abstractions into training to improve robustness (Gowal et al., 2019;
Mirman et al., 2018). Besides robustness, incomplete verification has also been applied
to rigorously bound model difference (Paulsen et al., 2020b,a). DEBAR is a static
analysis tool customized for numerical-defect detection and fixing. RANUM also

46

includes a such static analysis tool in its framework.

Detecting and Exposing Numerical Defects in DNNs Despite the widespread ex-
istence of numerical defects in real-world DNN-based systems (Zhang et al., 2018b),
only a few automatic approaches exist for detecting and exposing these defects. To
the best of our knowledge, GRIST (Yan et al., 2021) is the only approach for detecting
and exposing these defects besides DEBAR and RANUM. Yan et al. (2021) propose a
gradient back-propagation approach, GRIST, for generating failure-exhibiting unit test
to expose numerical defects. Compared to DEBAR, GRIST is a testing approach, which
may not find all numerical bugs due to the unsoundness of software testing. Com-
pared to RANUM, GRIST generates unit tests, whose existence may not be sufficient
for confirming the feasibility of numerical defect, since the model weights contained
in the unit test may not be feasible after training. As a result, RANUM takes a step
further by generating failure-exhibiting system test which also contains training data
that lead to the failure-exhibiting weights.

Array Analysis in Imperative Programs DEBAR is inspired by the existing ap-
proaches of abstract interpretation for analyzing arrays, in particular, array partition-
ing (Gopan et al., 2005). Compared with the existing approaches of array partitioning,
we are the first to generalize them from arrays to tensors, employ an affine relation
analysis for capturing affine equality relations among partitions, and design abstract

tensor operators for deep learning architectures such as the abstract operator for ReLU.

2.6 Future Work

In this chapter, we have presented two automatic approaches named DEBAR and
RANUM for reliability assurance of DNNs against numerical defects. DEBAR is the first
tool to support the detection of potential numerical defects. In contrast, the follow-up
work, RANUM, supports the detection of potential numerical defects, the confirmation
of potential-defect feasibility, and the suggestion of defect fixes. RANUM includes
multiple novel extensions and optimizations upon existing tools and introduces three
novel techniques. Our extensive evaluation on real-world DNN architectures has
demonstrated the high effectiveness and efficiency of RANUM compared to both

state-of-the-art approaches and developers’ fixes.

47

However, there are several areas for future improvements to DEBAR and the
potential-defect detection part of RANUM. First, the detection results are reported
on the nodes in computational graphs. However, developers need to manually map
the defect nodes to the defect statements in the code. Future work should explore the
automatic mapping from computational graph nodes to program statements.

Second, both approaches require developers to report all possible ranges of the
inputs and weights. Future work should explore the automation of analyzing the used
dataset, data preprocessing, and neural weight normalization code to obtain the ranges
automatically.

Third, the ranges of the inputs and weights serve as loop invariants in the context of
neural network training. Future directions should explore how to automatically extract
these loop invariants instead of relying on developers to report them. Addressing these
challenges will further enhance the usability and practicality of DEBAR and RANUM,
making them even more valuable tools for ensuring the reliability of DNNs against
numerical defects.

Fourth, in addition to numerical bugs that cause values like NaN or Inf, numeri-
cal errors caused by floating-point computation are another type of bug to consider,
especially nowadays when large language models frequently use low-precision floating-
point quantized versions of models for training and inference. Extending the scope of

numerical bugs to include numerical errors is a promising future direction.

48

3 VERIFYING THE ROBUSTNESS OF NLP MODELS

Deep neural networks have proven incredibly powerful in a huge range of machine-
learning tasks. However, deep neural networks are highly sensitive to small input
perturbations that cause the network’s accuracy to plummet (Carlini and Wagner,
2017; Szegedy et al., 2014). In the context of natural language processing, these
adversarial examples come in the form of spelling mistakes, use of synonyms, etc.—
essentially, meaning-preserving transformations that cause the network to change its
prediction (Ebrahimi et al., 2018; Zhang et al., 2019a).
In this chapter, we ask the following two questions:

(1) Can we train models that are robust against rich perturbation spaces over strings?

(2) Can we develop a certified defense to arbitrary string transformations that applies to

recursive neural networks?

We propose A3T ! as an answer to the first question and ARC ? as an answer to the
second question.

Overview of A3T

The practical challenge in answering this question is computing the worst-case loss.
This is because the perturbation space can be enormous and therefore impractical to
enumerate. This is particularly true for NLP tasks, where the perturbation space should
contain inputs that are semantically equivalent to the original input—e.g., variations
with typos or words replaced by synonyms. Therefore, we need to approximate the
adversarial loss. There are two such classes of approximation techniques as shown in
Figure 3.1:

Augmentation The first class of techniques computes a lower bound on the adversarial
loss by exploring a finite number of points in the perturbation space. This is
usually done by applying a gradient-based attack, like HotFlip (Ebrahimi et al.,
2018) for natural-language tasks. We call this class of techniques augmentation-
based, as they essentially search for a perturbed sample with which to augment
the training set.

"https://github.com/ForeverZyh/A3T
Zhttps://github.com/ForeverZyh/certified_lstms

https://github.com/ForeverZyh/A3T
https://github.com/ForeverZyh/certified_lstms

49

bation T &

Perturbation P O
) space

with max loss / \

I\,I

Perturbation
space of x
Augmentation Abstraction A3T (our approach)
Search perturbation space, Compute a superset of Combine the two
e.g., following gradients perturbation space via techniques to get better

abstract interpretation estimates of max loss
Figure 3.1: Illustration of augmentation, abstraction, and A3T

Abstraction The second class of techniques computes an upper bound on the adversarial

loss by over-approximating, or abstracting, the perturbation space into a set of

symbolic constraints that can be efficiently propagated through the network. For

example, the interval abstraction has been used in numerous works (Mirman

et al., 2018; Gowal et al., 2019; Huang et al., 2019). We call this class of techniques

abstraction-based.

Both classes of techniques can produce suboptimal results: augmentation can
severely underapproximate the worst-case loss and abstraction can severely overapprox-
imate the loss. Particularly, we observe that the two techniques have complementary
utility, working well on some perturbation spaces but not others—for example, Huang
et al. (2019) have shown that abstraction works better for token substitutions, while
augmentation-based techniques like HotFlip (Ebrahimi et al., 2018) and MHA (Zhang
et al., 2019a) are general—e.g., apply to token deletions and insertions.

We propose augmented abstract adversarial training (A3T), an adversarial training
technique that combines the strengths of augmentation and abstraction techniques.
The key idea underlying A3T is to decompose the perturbation space into two subsets,
one that can be explored using augmentation and one that can be abstracted—e.g.,
using augmentation to explore word duplication typos and abstraction to explore
replacing words with synonyms. From an algorithmic perspective, our computation
of adversarial loss switches from a concrete, e.g., gradient-based, search through the

perturbation space to a symbolic search. As such, for every training sample (x,y), our

50

to the movie
to the film
to the movies

to the movie
to the movie

(a) Enumeration of all strings

movie

memoize hidden states

to / the
\L AY

abstract

film
movies

join hidden states

(b) ARC: Abstract Recursive Certification

Figure 3.2: An illustration of our approach.
technique may end up with a lower bound or an upper bound on its adversarial loss.

Overview of ARC

Certifying robustness involves proving that a network’s prediction is the same no
matter how a given input string is perturbed. We assume that the perturbation space is
defined as a program describing a set of possible string transformations—e.g., if you see
the word “movie”, replace it with “film” or “movies”. Such transformations can succinctly
define a perturbation space that is exponentially large in the length of the input; so,
certification by enumerating the perturbation space is generally impractical.

We present ARC (Abstract Recursive Certification), an approach for certifying
robustness to programmatically defined perturbation spaces. ARC can be used within
an adversarial training loop to train robust models. We illustrate the key ideas behind
ARC through a simple example. Consider the (partial) input sentence to the movie...,
and say we are using an LSTM for prediction. Say we have two string transformations:
(T1) If you see the word movie, you can replace it with film or movies. (T2) If you see
the word the or to, you can delete it. ARC avoids enumerating the large perturbation
space (Figure 3.2(a)) using two key insights.

Memoization: ARC exploits the recursive structure of LSTM networks, and their

extensions (BiLSTMs, TreeLSTMs), to avoid recomputing intermediate hidden states.

51

ARC memoizes hidden states of prefixes shared across multiple sequences in the pertur-
bation space. For example, the two sentences to the movie... and to the film.... share the
prefix to the, and therefore we memoize the hidden state after the word the, as illustrated
in Figure 3.2(b) with dashed blue lines. The critical challenge is characterizing which
strings share prefixes without having to explicitly explore the perturbation space.

Abstraction: ARC uses abstract interpretation (Cousot and Cousot, 1977a) to symboli-
cally represent sets of perturbed strings, avoiding a combinatorial explosion. Specifi-
cally, ARC represents a set of strings as a hyperrectangle in a R™ and propagates the
hyperrectangle through the network using interval arithmetic (Gowal et al., 2019). This
idea is illustrated in Figure 3.2(b), where the words film and movies are represented as
a hyperrectangle. By joining hidden states of different sentences (a common idea in
program analysis), ARC can perform certification efficiently.

Memoization and abstraction enable ARC to efficiently certify robustness to very
large perturbation spaces.

3.1 Robustness Problem and Preliminaries

We consider a classification setting with a neural network Fg with parameters 6, trained
on samples from domain X and labels from Y. The domain X is a set of strings over a
tinite set of symbols L (e.g., English words or characters), i.e.,, X = Z*. We use x € L*
to denote a string; x; € L to denote the ith element of the string; x;.; to denote the
substring x;, ..., x;; € to denote the empty string; and LEn, to denote the length of the

string.

Robustness to string transformations A perturbation space S is a function in £* — 2%,
i.e., S takes a string x and returns a set of possible perturbed strings obtained by
modifying x. Intuitively, S(x) denotes a set of strings that are semantically similar to x
and therefore should receive the same prediction. We assume x € S(x).

Given string x with label y and a perturbation space S, We say that a neural network
Fg is S-robust on (x,y) iff

Vz e S(x).Fo(z) =y (3.1)

One goal of ARC is to certify, or prove, S-robustness (Eq 3.1) of the neural network

52

for a pair (x,y). Given a certification approach, we can then use it within an adversarial

training loop to yield certifiably robust networks.

Robustness certification We will certify S-robustness by solving an adversarial loss
objective:

max Le(z,y) (3.2)
z€S(x)
where we assume that the loss function Ly is < 0 when Fg(z) = y and > 0 when
Fo(z) # y. Therefore, if we can show that the solution to the above problem is < 0,
then we have a certificate of S-robustness.

Certified training If we have a procedure to compute adversarial loss, we can use
it for adversarial training by solving the following robust optimization objective (Madry
et al., 2018), where D is the data distribution:

argmin E {max Le(z,y)} (3.3)
o (xy)~D [zeS(x)
At A3T, our proposal decomposes the perturbation space into two subsets. The first
subset can be explored through augmentation techniques, while the second requires
abstraction. For instance, we can use augmentation to explore word duplication typos,
while abstraction enables us to explore replacing words with synonyms. Meanwhile, in
ARC, we propose constructing the perturbation loss using the abstract loss defined in
Eq 3.2. By optimizing directly over the abstract loss, ARC provides an efficient means

of over-approximating it while ensuring the precision of the abstraction.

Programmable Perturbation Spaces

In our problem definition, we assumed an arbitrary perturbation space S. We propose
to define S programmatically as a set of string transformations. The language is very
flexible, allowing the definition of a rich class of transformations as match and replace

functions.

Single transformations A string transformation T is a pair (¢, f), where ¢ : £° —
{0, 1} is the match function, a Boolean function that specifies the substrings (of length

53

s) to which the transformation can be applied; and f : £3 — 2% is the replace function,
which specifies how the substrings matched by ¢ can be replaced (with strings of
length t). We will call s and t the size of the domain and range of transformation T,
respectively.

Example 3.1. In all examples, the set of symbols ¥ is English words. So, strings are English
sentences. Let Tqe be a string transformation that deletes the stop words “to” and “the”.
Formally, Taes = (@ael, Tact), Where @ger : ' — (0,1} and fae : ' — 2% are:

1, xe{"to”, “the”}
Pgel(x) = , faa(x) ={€},
0, otherwise

Let Ty be a transformation substituting the word “movie” with “movies” or “film”.
Formally, Tso = (@sub, Fsub), Where @sup : £ — {0, 1} and fop : £ — 2% gre:

1, x = "movie” “film”,
(Psub(x) = . /fsub(x) - " .
0, otherwise movies

Defining perturbation spaces We can compose different string transformation to

construct perturbation space S:

S :{(Tll 61),...,(1—“,5“)}, (34)

where each T; denotes a string transformation that can be applied up to 8; € N times.

Multiple transformations As discussed above, a specification S in our language is a
set of transformations {(Ty, 01), ..., (Tn, On)} where each T; is a pair (@, fi). We define
the semantics of a specification S = {(Ty, 01),..., (T, 0n)} (such that T, = (@5, fi)) as
follows. Given a string x = X1 ...Xm, a string y is in the perturbations space S(x) if:

1. there exists matches ((1;,11),j1) ... ((Lc, Tk),jx) (we assume that matches are
sorted in ascending order of 1;) such that for every i < k we have that (1;,7;) is a

valid match of ¢;, in x;

2. the matches are not overlapping: for every two distinct i; and iy, i, < li, or
Ti, < lil ;

54

3. the matches respect the § constraints: for everyj’ < n, [{{(li, 1), j1) | §i =7} < &5

4. the string y is the result of applying an appropriate transformation to each match:
if for every i < k we have s; € fj, (xy, ...x,,), then

Y=X1...X4-181 X471+« - X1, =1 Sk Xry+1 -+« Xm-

Intuitively, a string z is in the perturbation space S(x) if it can be obtained by (1) finding
a set o of non-overlapping substrings of x that match the various predicates ¢; and such
that at most 8; substrings in o are matches of ¢;, and (2) replacing each substring
x" € o matched by ¢; with a string in f;(x’). The complexity of the formalization is
due to the requirement that matched substrings should not overlap—this requirement
guarantees that each character in the input is only involved in a single transformation
and will be useful when formalizing our abstract training approaches A3T and ARC.
We illustrate with an example.

Example 3.2. Let S = {(T4e1, 1), (Tsub, 1)} be a perturbation space that applies Tyel and Tgyp, to
the given input sequence up to once each. If x ="to the movie”, a subset of the perturbation
space S(x) is shown in Figure 3.2(a).

Decomposition S = {(T;, d;)}; can be decomposed into [[(8; + 1) subset perturbation
spaces by considering all smaller combinations of 8;. We denote the decomposition of
perturbation space S as pecs, and exemplify below:

Example 3.3. S = {(T4e1, 2)} can be decomposed to a set of three perturbation spaces DECs, =
{2, {(Taer, 1)}, {(Tae1,2)}}, while S; = {(Tge1, 1), (Tsub, 1)} can be decomposed to a set of four
perturbation spaces

DECs, = {gl{(Tdell 1)}/{(Tsub/ 1)}/{(Tdel/ 1)/ (Tsub/ 1)}}

where @ is the perturbation space with no transformations, i.e., if S = @, then S(x) = {x} for

any string X.

We use notation Sy to denote S after reducing &y by 1; therefore, Sy € DEcs.

55

3.2 Augmented Abstract Adversarial Training (A3T)

In this section, we describe our abstract training technique, A3T, which combines
augmentation and abstraction.

Recall the adversarial training objective function, Eq. (3.3). The difficulty in solving
this objective is the inner maximization objective: max,cs(x) Lo(z,y), where the per-
turbation space S(x) can be intractably large to efficiently enumerate, and we therefore
have to resort to approximation. We begin by describing two approximation techniques
and then discuss how our approach combines and extends them.

Augmentation (search-based) techniques We call the first class of techniques aug-
mentation techniques, since they search for a worst-case sample in the perturbation
space S(x) with which to augment the dataset. The naive way is to simply enumerate
all points in S(x)—our specifications induce a finite perturbation space, by construction.
Unfortunately, this can drastically slow down the training. For example, suppose T
defines a transformation that swaps two adjacent characters. On a string of length N,
the specification (T, 2) results in O(N?) transformations.

An efficient alternative, HotFlip, was proposed by Ebrahimi et al. (2018). HotFlip
efficiently encodes a transformation T as an operation over the embedding vector and
approximates the worst-case loss using a single forward and backward pass through the
network. To search through a set of transformations, HotFlip employs a beam search
of some size k to get the top-k perturbed samples. This technique yields a point in S(x)
that may not have the worst-case loss. Alternatives like MHA (Zhang et al., 2019a) can

also be used as augmentation techniques.

Abstraction techniques Abstraction techniques compute an over-approximation of
the perturbation space, as a symbolic set of constraints. This set of constraints is
then propagated through the network, resulting in an upper bound on the worst-
case loss. Specifically, given a transformation T, we define a corresponding abstract
transformation T such that for all x, the constraint T(x) C ?(x) holds.

The abstraction used in the A3T paper builds upon the work of Huang et al. (2019),
which employs an interval domain to define T(x), meaning that T(x) is a conjunction
of constraints on each character. The A3T paper generalizes their approach; please
refer to the paper for more details. In Section 3.3, we will illustrate another abstraction
introduced by ARC, which can also be used as the abstraction technique in A3T. We

56

Algorithm 2 A3T

Input: S ={(Tq,81),..., (Tn, 8n)} and point (x,y)
Output: worst-case loss
Split § into S,,; and S, and return

max Lo(z,y) s.t. z = abstract(Sys, z)
Zeﬂugmentk(saug/x)

also provide the results of combining A3T and ARC in Section 3.4. For now, we assume
that we can efficiently overapproximate the worst-case loss for T(x) by propagating it
through the network. This assumption allows us to discuss the A3T approach and its
applications.

A3T: A High-Level View The key idea of A3T is to decompose a specification S into
two sets of transformations, one containing transformations that can be effectively
explored with augmentation and one containing transformations that can be precisely
abstracted.

Algorithm 2 shows how A3T works. First, we decompose the specification S into
two subsets of transformations, resulting in two specifications, Saug and Sgp. For S,q,
we apply an augmentation technique, e.g., HotFlip or MHA, to come up with a list of
top-k perturbed samples in the set S,,,(x)—this is denoted as the set augment, (Suq, X).

Then, for each point z in the top-k results, we compute an abstraction abstract (S, z),
which is a set of constraints over-approximating the set of points in S;,;(z). Recall our
overview in Fig. 3.1 for a visual depiction of this process.

Finally, we return the worst-case loss.

3.3 Abstract Recursive Certification (ARC)

In this section, we present our technique for proving S-robustness of an LSTM on (x, y).
Formally, we do this by computing the adversarial loss, max,csx) Lo(z,y). Recall that
if the solution is < 0, then we have proven S-robustness. To solve adversarial loss
optimally, we effectively need to evaluate the LSTM on all of S(x) and collect all final
states:

F ={Lsm(z, hy) | z € S(x)} (3.5)

57

Figure 3.3: Illustration of two cases of Equation (3.8).
Computing F precisely is challenging, as S(x) may be prohibitively large. Therefore, we
propose to compute a superset of F, which we will call F. This superset will therefore
yield an upper bound on the adversarial loss. We prove S-robustness if the upper
bound is < 0.

To compute F, we present two key ideas that go hand-in-hand: In the first subsection,
we observe that strings in the perturbation space share common prefixes, and therefore
we can memoize hidden states to reduce the number of evaluations of LSTM cells—a
form of dynamic programming. We carefully derive the set of final states F as a system
of memoizing equations. The challenge of this derivation is characterizing which
strings share common prefixes without explicitly exploring the perturbation space. In
the second subsection, we apply abstract interpretation to efficiently and soundly solve

the system of memoizing equations, thus computing an overapproximation FOF

Memoizing Equations of Final States

Tight Perturbation Space Given a perturbation space S, we shall use S~ to denote
the tight perturbation space where each transformation Tj in S is be applied exactly b;
times.

Think of the set of all strings in a perturbation space as a tree, like in Fig. 3.2(b),
where strings that share prefixes share LSTM states. We want to characterize a subset
HZ; of LSTM states at the ith layer where the perturbed prefixes have had all transfor-

mations in a space S applied on the original prefix x;.;.

58

We formally define H?; as follows:

HP; = {tstm(z, ho) | z € S™(x15) A LN, = i) (3.6)

By definition, the base case Hy, = {0%).

Example 3.4. Let x = “to the movie”. Then, Hg(?_T aa D)} {Lstm(“the”, hy), LsTM(“t0”, ho)}.
These states result from deleting the first and second words of the prefix “to the”, respectively.
We also have H5, = {Lstm(“to the”, hy)}.

The set of final states of strings in S=(x) is

UH? e (3.7)

i>0

Memoizing equation We now demonstrate how to rewrite Equation (3.6) by explic-
itly applying the transformations defining the perturbation space S. Notice that each
H? ; comes from two sets of strings: (1) strings whose suffix (the last character) is not
perturbed by any transformations (the first line of Equation (3.8)), and (2) strings
whose suffix is perturbed by T = (@y, fx) (the second line of Equation (3.8)), as
illustrated in Figure 3.3. Thus, we derive the final equation and then immediately show

an example:

HP; ={ustm(x;, h) [h e HY ;5 4JU

) {tsmm(z h) |z € filxan) h € M 5) (3.8)
1<k<IS|
@k (Xap)=1

where a=j—sy + 1 and b=j.
We compute Equation (3.8) in a bottom-up fashion, starting from Hg, = {04} and
increasing i,j and considering every possible perturbation space in the decomposition

of S, DECs.
Lemma 3.5. Equation (3.8) and Equation (3.6) are equivalent.

Proof. We prove Lemma 3.5 by induction on 1,j, and S.
Base case: Hg, = hy is defined by both Equation (3.6) and Equation (3.8).

59

Inductive step for H?,: Suppose the lemma holds for HS/ j» where (0 <1/ <iN0 <
I"<GNAS' CTS)N({ # 1\/) #jVS'#£S§).8CS denotesthatforall (T, k) €S, we
have (Ty, 6x) € Sand &, < ok

Hislj in Equation (3.6) comes from two cases illustrated in Figure 3.3. These two
cases are captured by the first line and the second line in Equation (3.8), respectively.
The inductive hypothesis shows that the lemma holds for states H} ;. ; and Hf s

Thus, the lemma also holds for H};. O

i—-1,j—

Example 3.6. Consider computing H{ Tael 1)}

Equation (3.8):

. We demonstrate how to derive states from

Hig aa 1)} —{LSTM(”the” h)|he H{ Taer 1) }}U
{Lstm(z, h) | z € Ty (“the”), h € Hfl (3.9)

Assume Hg1 = {Lstm(“to”, hy)} and H{ Taar)} {ho} are computed in advance. The first line
of Equation (3.9) evaluates to {LSTM(”the”, hy)}, which corresponds to deleting the first word
of the prefix “to the”. Because z can only be an empty string, the second line of Equation (3.9)
evaluates to {Lstm(“to”, hy)}, which corresponds to deleting the second word of “to the”. The
dashed green line in Fig. 3.2(b) shows the computation of Equation (3.9).

Defining Final States using Prefixes Finally, we compute the set of final states, F, by
considering all perturbation spaces in the decomposition of S.

= |J UHi., (3.10)

S’€becg 120
Theorem 3.7. Equation (3.10) is equivalent to Equation (3.5).

Proof. We can expand Equation (3.5) using the decomposition of the perturbation

space as
F
U {Lstm(z,hy) | z € S"=(x)}
S’€EDbEcg
U U{LSTM(Z,]’LQ) |z € S'=(x) ALEN, = i} (3.11)

S’€pecg i>0

60

Equation (3.11) and Equation (3.10) are equivalent, leading to the equivalence of
Equation (3.5) and Equation (3.10).]

Example 3.8. Let S = {(Tgel, 1), (Teuwn, 1)} and x ="to the movie”. F is the union of four
final states, HY, (no transformations), Hgg 1)) (exactly 1 deletion), Hgg w1} (exactly 1

Tdelrl]r(Tsubrl]}

substitution), and Hg3 (exactly 1 deletion and 1 substitution).

Abstract Memoizing Equations

Memoization avoids recomputing hidden states, but it still incurs a combinatorial
explosion. We employ abstract interpretation (Cousot and Cousot, 1977a) to solve the

equations efficiently by overapproximating the set F.

Abstract Interpretation The interval domain, or interval bound propagation, allows us to
evaluate a function on an infinite set of inputs represented as a hyperrectangle in R™.
Interval domain. We define the interval domain over scalars—the extension to vectors
is standard. We will use an interval [1,u] C R, where |,u € R and 1 < u, to denote the
set of all real numbers between 1 and u, inclusive.
For a finite set X C R, the abstraction operator gives the tightest interval containing
X, as follows: «(X) = [min(X), max(X)]. Abstraction allows us to compactly represent

a large set of strings.

Example 3.9. Suppose the words x; = “movie” and x, = “film” have the 1D embedding
0.1 and 0.15, respectively. Then, x({x1,x2}) = [0.1,0.15]. For n-dimensional embeddings, we
simply compute an abstraction of every dimension, producing a vector of intervals.

The join operation, L, produces the smallest interval containing two intervals:
[Lul U [I,u'] = [min(l,1"), max(u,u’)]. We will use joins to merge hidden states

resulting from different strings in the perturbation space (recall Fig. 3.2(b)).

Example 3.10. Say we have two sets of 1D LSTM states represented as intervals, [1,2] and
[10,12]. Then [1,2] L1 [10,12] = [1,12]. Note that L is an overapproximation of U, introducing
elements in neither interval.

Interval transformers. To evaluate a neural network on intervals, we lift neural-
network operations to interval arithmetic—abstract transformers. For a function g, we

use g to denote its abstract transformer. We use the transformers proposed by Jia

61

et al. (2019). We illustrate transformers for addition and any monotonically increasing
function g : R — R (e.g., ReLU, tanh).

Lu+l,uwl=0+1V,u+v], g(Lul)=I[g(l),g(u)

Note how, for monotonic functions g, the abstract transformer g simply applies g to
the lower and upper bounds.

Example 3.11. When applying to the ReLU function, @1([—1, 2]) = [relu(—1), relu(2)] =
0, 2].

An abstract transformer g must be sound: for any interval [, u] and x € [l,ul, we
have g(x) € g([l,u]). We use £st™ to denote an abstract transformer of an LSTM cell. It
takes an interval of symbol embeddings and an interval of states. We use the definition
of Lstm given by Jia et al. (2019).

Abstract Memoizing Equations We now show how to solve Equation (3.8) and
Equation (3.10) using abstract interpretation. We do this by rewriting the equations

using operations over intervals. Let l/—\lgo = «({09}), then

AS; = sl i), S 5) U

|| smlalfulxas), HPY L)

1<k<IS|
‘Pk(xa:b)zl

= ~g
F - |_| Hi,LENx

S’€pecg 120

where a and b are the same in Equation (3.8).

The two key ideas are (1) representing sets of possible LSTM inputs abstractly as
intervals, using «; and (2) joining intervals of states, using LI. These two ideas ensure
that we efficiently solve the system of equations, producing an overapproximation F.

The above abstract equations give us a compact overapproximation of F that can be
computed with a number of steps that is linear in the length of the input. Even though
we can have O(LEN2) number of Hf,j for a given S, only O(LEn,) number of HiSJ- are

non-empty. This property is used in Theorem 3.12 and will be proved in the appendix.

Theorem 3.12. (Soundness & Complexity) F C F and the number of LSTM cell evaluations
needed to compute F is O(LENy - 1~ []1, 8:).

62

Proof. We first show that Equation (3.7) is equivalent to

s
U H?Y .., » where

0<i<MAXLENy

MAXLENy = LENy + Z max (t—syk, 0)dx
(T, 5¢)ES

where fi, : Z% — 25 As we will prove later, MAXLEN, is the upper bound of the
length of the perturbed strings. Because ty, sy, dx are typically small constants, we
can regard MAXLENy as a term that is linear in the length of the original string LEN,, i.e.,
MAXLENy = O(LENy).

Now, we prove that MAXLEN, is the upper bound of the length of the perturbed string.
The upper bound maxLeNy can be achieved by applying all string transformations that
increase the perturbed string’s length and not applying any string transformations
that decrease the perturbed string’s length. Suppose a string transformation T, =
(fr, @x), Tx : L5 — 2 can be applied up to &y times, then we can apply it 6y times to
increase the perturbed string’s length by (ty — sy)0x.

The proof of soundness follows immediately from the fact that «, LJ, and tst™
overapproximate their inputs, resulting in an overapproximation F.

The proof of complexity follows the property that the number of non-empty hyper-
rectangles HS is O(LENy - [[81). This property follows the definition of the string
transformatlons and the tight perturbation space S~. ﬁf) can be non-empty if and only
if

i=j+ Z (tx —sk)0k, where fy : £5% — 2%

(Tw,dx)€ES

For each HS.

7;» we need to enumerate through all transformations, so the complexity

is O(LENy - N[]}, 1) in terms of the number of LSTM cell evaluations. The interval
bound propagation needs only two forward passes for computing the lower bound and
upper bound of the hyperrectangles, so it only contributes constant time to complexity.
In all, the total number of LSTM cell evaluations needed is O (LN, - n []i-, 81).]

For practical perturbations spaces (see Section 3.4), the quantity n [[, 8; is typi-
cally small and can be considered constant.

63

Handling the Aggregation of All Hidden States

In addition to the memoization and abstraction of final states, we need to consider LSTM
architectures that aggregate all states h;, e.g., by averaging all states or computing an
attention mechanism on them. In such cases, we aim to compute the interval abstraction
of each state at the i-th time step, denoted as Hi.

It is tempting to compute H; as

Hi= () U H (3.12)

S’€pec 0<j <LENy

Unfortunately, Equation (3.12) does not contain states in the middle of a string trans-

formation (see next example).

Example 3.13. Consider the string transformation Tgyap that swaps two adjacent words and
supposex = “to the”, S = {(Tswap, 1)}, then Hy = {Lstm(“t0”, hy), LsTm(“the”, hg)}. However,
the only non-empty state with i = 1 is HY, = {Lstm(“to”, hy)}. The state Lstm(“the”, hy) is
missing because it is in the middle of transformation Tgyap.

However, Equation (3.12) is correct for i = 2 because the transformation Tg.p completes
at time step 2.

Think of the set of all strings in a perturbation space as a tree, like in Fig. 3.2(b),
where strings that share prefixes share LSTM states. We want to characterize a subset
G?; of LSTM states at the ith layer where the perturbed prefixes have had all trans-
formations in a space S applied on the original prefix x;.; and are in the middle of
transformation Ty. Intuitively, G; is a super set of H};.

We formally define G, as follows:

GP; ={Lst™(z1:i, ho) [2 € S™(x15) ALy > i) (3.13)

We rewrite Equation (3.13) by explicitly applying the transformations defining the

perturbation space S, thus deriving our final equations:

i—lj—sk

st™(c, h) [h € G }

h-U U |

1<k<n 1K1Kty
(pk(xa:b):1

U {LstMm(x;,h) | h e Gf_l,j_1} (3.14)

(URS fk,:l (Xa:b)

64

where a =j — s + 1 and b = j. Notation fy i (Xq:p) collects the first 1 symbols for each
z in fi (Xqp), i.€.,

fi1(Xaw) =1{z11 | z € i (Xav)}

Gis,)- contains (1) strings whose suffix is perturbed by Ty = (¢, fx) and the last
symbol of z is the lth symbol of the output of Ty (the first line of Equation (3.14)), and
(2) strings whose suffix (the last character) is not perturbed by any transformations
(the second line of Equation (3.14)).

Then, H; can be defined as

= U 6

S’€pec 0<j <LENy
Lemma 3.14. Equation (3.13) and Equation (3.14) are equivalent.

The above lemma can be proved similarly to Lemma 3.5.
We use interval abstraction to abstract Equation (3.14). The total number of LSTM

cell evaluation needed is O(LENy - max? (t;) - n], 8i) -

Extension to Bi-LSTMs

A Bi-LSTM performs a forward and a backward pass on the input. The forward pass is
the same as the forward pass in the original LSTM. For the backward pass, we reverse
the input string x, the input of the match function ¢;, and the input/output of the
replace function f; of each transformation. Formally, We denote x* as the reversed
string x. Suppose a transformation T has a match function ¢ and a replace function f,

the reversed transformation TR = (@R, fR) is defined as

O*(x) = @(x"), X (x) ={z" | z € f(x")} VxeZL

Extension to Tree-LSTMs

A Tree-LSTM takes trees as input. We can define the programmable perturbation space
over trees in the same form of Equation (3.4), where T; is a tree transformation. We
show some examples of tree transformations in Figure 3.4. Tp,s;,, (Figure 3.4a) removes
a leaf node with a stop word in the tree. After removing, the sibling of the removed
node becomes the new parent node. Tp,, (Figure 3.4b) duplicates a word in a leaf node

65

by first removing the word and expanding the leaf node with two children, each of
which contains the previous word. Ts,s,, (Figure 3.4c) substitutes a word in the leaf
node with one of its synonyms.

Intuitively, we replace substrings in the formalization of LSTM with subtrees in the
Tree-LSTM case. We denote the subtree rooted at node u as t,, and the size of t,, as sizg;,,.
The state H} denotes the Tree-LSTM state that reads subtree t,, generated by a tight
perturbation space S. The initial states are the states at leaf node u, HZ = {Lst™(x,,, ho)}
and the final state is H3 .

We provide transition equations for three specific tree transformations Figure 3.4.

Merge states For a non-leaf node v, we will merge two states, each from a child of v.

Hy = | J {rristm(h, g) [h e H AgeHS (3.15)

S’EpEcg

where v; and v, are children of v, and TrRLsT™ denotes the Tree-LSTM cell that takes two
states as inputs. The notation S — S’ computes a tight perturbation space by subtracting
S’ from S. Formally, suppose

S = {(Tlr 61)/ (TZI 62)/ sy (TTL/ 5n)}
S"={(T,687),(T2,85),...,(Tn,8/)}

n

then
S—8" ={(T, 8 —87), (T2, 82— 8]),..., (Tn, 8 — 8,))

Notice that Equation (3.15) is general to any tight perturbation space S containing
these three tree transformations.

Tsubsyn We first show the computation of H? for a leaf node . The substitution only

happens in the leaf nodes because only the leaf nodes correspond to words.

Hﬂl—SubSyVlll} — {LSTM(C/h'O) | Cc c fsub (Xu)}

Tpwy Tpup can be seen as a subtree substitution at leaf node u.

Hgmwl} = {TtrRLst™(h, h)},

66
where h = Lst™(X4, hy).

Tpeistop Things get tricky for Tp,is, because {(Tpeisop, 8)} can delete a whole subtree t,
if (1) the subtree only contains stop words and (2) sizg;, < 6. We call such subtree t,,
deletable if both (1) and (2) are true.

Besides the merging equation Equation (3.15), we provide another transition equa-
tion for HS, where v is any non-leaf node with two children v;, v, and a perturbation
space S = {..., (Tpeistop, 0), - - -}

HS = U {rrRLsTM(h, g) | h € Hgll AYRS ng_S’}

S’/€DbECg
s—si
Hy, ** (1) t,, is deletable
@
Hy, S (2) t, is deletable
Y s—sb s—si) (3.16)
Hy, " UHy, ™ both (1) and (2)
%) otherwise

where

1 2
Sui = {(Toasiop 51z,)}, St} = {(Toetsuop, 51284,)}

Soundness and Complexity We use interval abstraction to abstract the transition
equations for Tree-LSTM. The total number of LSTM/Tree-LSTM cell evaluations
needed is O(size ([]i_, 81)?). The term ([];", 8;)* comes from Equation (3.15), as we
need to enumerate S’ for each S in the decomposition set.

3.4 Experiments

Experiment Setups
Datasets

The AG News (Zhang et al., 2015) dataset consists of a corpus of news articles collected
by Gulli (2005) about the 4 largest news topics. The Stanford Sentiment Treebank
(SST2) (Socher et al., 2013) dataset consists of sentences from movie reviews and hu-
man annotations of their sentiment. The task is to predict the sentiment (positive/neg-

ative) of a given sentence. We also use SST, which has reviews in the constituency

67

Table 3.1: String transformations to construct the perturbation spaces for evaluation.

Trans. Description Training
Tswappair SWap a pair of two adjacent characters Augmentation
% Tpa delete a character Augmentation
5 Timsagj insert to the right of a character one of its adjacent Augmentation
characters on the keyboard
Tsupaqj ~ substitute a character with an adjacent character ~Abstraction
on the keyboard
a Tpeswy delete a stop word Augmentation
S Tou duplicate a word Augmentation
= Tsupsyn ~ substitute a word with one of its synonyms Abstraction

parse tree form and five labels. The IMDB (Maas et al., 2011) dataset is a collection
of movie reviews, ratings, and related information provided by the Internet Movie
Database (IMDB). The dataset contains over 50,000 reviews from more than 25,000

movies, including both positive and negative reviews.

Models

A3T For the AG dataset, we trained a smaller character-level model than the one
used in Huang et al. (2019) but kept the number of layers and the data preprocessing
the same. For the SST2 dataset, we trained a word-level model and a character-level
model. We used the same models in Huang et al. (2019), also following their setup.

ARC We trained LSTM and Bi-LSTM models for the SST2 dataset and we trained
Tree-LSTM models for the SST dataset.

Please find the details of the setups in the Appendices of the original papers of A3T
and ARC.

Perturbations

A3T Our choice of models allows us to experiment with both character-level and
word-level perturbations. We evaluated A3T on six perturbation spaces constructed
using the seven individual string transformations in Table 3.1.

For the character-level model on dataset AG, we used the following specifications:

{(Tswappairs 2), (Tsuvadj, 2)}, {(Tpet, 2), (Tsuvaaj, 2)}, and {(Trusaaj, 2), (Tsuvadj, 2)}. For example,
the first specification mimics the combination of two spelling mistakes: swap two

68

Table 3.2: String transformations for S,eviex-

Trans Description

Treview1 ~ substitute a phrase in the set A with another phrase in A.

Treview2 substitute a phrase in the set B with another phrase in B or substitute a
phrase in C with another phrase in C.

Treviews ~delete a phrase “one of” from “one of the most ...” or from “one of the

...est”.
Treviews duplicate a question mark “?” or an exclamation mark

/l'l/

characters up to twice and/or substitute a character with an adjacent one on the
keyboard up to twice.

For the word-level model on dataset SST2, we used the following specifications:
{(Toetstops 2), (Tsuvsyns 2)} {(Toup, 2), (Tsuvsyn, 2)}, and {(Tpeistops 2), (Toup, 2), (Tsubsyn, 2)}. For
example, the first specification removes stop words up to twice and substitutes up to
twice words with synonym:s.

For the character-level model on dataset SST2, we used the following specifications:
{(Tswappairs 1), (Tsuvadj, DY, {(Tper, 1), (Tsuvagj, 1)}, and {(Trusagj, 1), (Tsupagj, 1)} For example,
the first specification mimics the combination of two spelling mistakes: swap two
characters and/or substitute a character with an adjacent one on the keyboard.

For the character-level model on AG dataset, we considered the perturbations to
be applied to a prefix of an input string, namely, a prefix length of 35 for {(Tswappair, 2),
(Tsuvadj, 2)}, a prefix length of 30 for {(Tp., 2), (Tsupadj, 2)} and {(Tusadj, 2) , (Tsuvagj, 2)}. For
the character-level model on SST2 dataset, we considered perturbations with 5 =1
but allow the perturbations to be applied to the whole input string. We made these
restrictions because one cannot efficiently evaluate the exhaustive accuracy with larger
8, due to the combinatorial explosion of the size of the perturbation space.

ARC We create perturbation spaces by combining the word-level transformations in
Table 3.1, e.g., {(Tpeistop, 2), (Tsubsyn, 2)} removes up to two stop words and replaces up
to two words with synonyms. We also design a domain-specific perturbation space
Seview fOr movie reviews by inspecting highly frequent n-grams in the movie review

training set. Formally,

S review — { (Treviewl ’ 1) ’ (TreviewZ/ 1) ’
(Treview3/ 1) ’ (Treview4/ 1) ’ (TSubSyn/ 2) }

69

TDelStop movie to TDup T
SubSyn
the movie movie film

(@) Tpeistop: Temove the. (b) Tpup: duplicate to. (c) Tsupsyn: substitute movie
with film

Figure 3.4: Examples of tree transformations.
where Tevicw1, Treview2, Vreviews, aNd Treviews are defined in Table 3.2 with

— {Ilthls]_S” Ilthls 7. 77 Illt IS/I /Ilt 7 Il}
B = {“the movie”, “the film”, “this movie”, “this film”, “a movie”, “a film”}

C = {“the movies”, “the films”, “these movies”, “these films”}

For Tree-LSTMs, we consider the tree transformations exemplified in Figure 3.4.

Baselines

A3T AB3T is our technique that can be implemented in various ways. For our exper-
iments, we made the following choices. First, we manually labeled which transfor-
mations in S are explored using augmentation and which ones are explored using
abstract interpretation (the third column in Table 3.1).> Second, we implemented two
different ways of performing data augmentation for the transformations in Sg,¢: (1)
A3T (HotFlip) uses HotFlip to find the worst-case samples for augmentation, while (2)
A3T (search) performs an explicit search through the perturbation space to find the
worst-case samples for augmentation. Finally, we used DiffAI (Mirman et al., 2018) to
perform abstract training for the transformations in S, using the intervals abstraction.

We implement A3T and compare it to the following baselines.

e Normal training is the vanilla training method that minimizes the cross entropy
between predictions and target labels. This method does not use the perturbation

space and does not attempt to train a robust model.

e Random (Data) augmentation performs adversarial training using a weak ad-

versary that simply picks a random perturbed example from the perturbation

space.

3We consider this choice of split to be a hyperparameter.

70

e HotFlip augmentation performs adversarial training using the HotFlip (Ebrahimi
et al., 2018) attack to solve the inner maximization problem.

In all augmentation training baselines, and A3T, we also adopt a curriculum-based
training method (Zhang et al., 2018a; Gowal et al., 2019) which uses a hyperparameter
A to weigh between normal loss and maximization objective.

ARC For training certifiable models against arbitrary string transformations, we com-
pare ARC to (1) Normal training, (2) Data augmentation, (3) HotFlip augmentation,
and (4) A3T on CNN.

For training certifiable models against word substitution, we compare ARC to (1)
Jia et al. (2019) that trains certifiably robust (Bi)LSTMs. We call this CertSub in the rest
of this section. (2) ASCC (Dong et al., 2021) that trains empirically robust (Bi)LSTMs.
And (3) Huang et al. (2019) that trains certifiably robust CNNs.

For certification, we compare ARC to (1) POPQORN (Ko et al., 2019), the state-
of-the-art approach for certifying LSTMs. (2) SAFER (Ye et al., 2020) that provides
probabilistic certificates to word substitution.

Xu et al. (2020) is a special case of ARC where the perturbation space only contains

substitution. The abstract state g; ; in their paper (Page 6, Theorem 2) is equivalent to
N (Tsubsyni)}
H Y

ii

in our paper.

Evaluation Metrics

e Normal accuracy is the vanilla accuracy of the model on the test set.

e HotFlip accuracy is the adversarial accuracy of the model with respect to the
HotFlip attack, i.e., for each point in the test set, we apply the HotFlip attack and
test if the classification is still correct.

e Certified accuracy (CF Acc.) is the percentage of points in the test set certified
as S-robust (Eq 3.1) using ARC.

e Exhaustive accuracy is the worst-case accuracy of the model: a prediction on
(x,y) is considered correct if and only if all points z € S(x) lead to the correct
prediction. Formally, given a dataset D = {(xy, yi)}}*; and a perturbation space

71

Table 3.3: Experiment results for the three perturbations on the character-level model
on AG dataset. We show the normal accuracy (Acc.), HotFlip accuracy (HF Acc.), and
exhaustive accuracy (Exhaustive) of five different training methods.

{(TSwapPairrz)/ (TSubAdjlz)} {(Tper, 2), (TSubAdjlz)} {(TlnsAder)/ (TSubAdj/Z)}
Training Acc. HF Acc. Exhaustive Acc. HF Acc. Exhaustive Acc. HF Acc. Exhaustive
Normal 875 715 60.1 875 79.0 62.5 875 79.1 59.0
Random Aug. 87.5 757 68.2 [+8.1] 874 813 69.4 [+6.9] 87.8 81.2 69.7 [+10.7]
HotFlip Aug. 86.6 85.7 84.9 [+24.8] 85.8 849 82.7 [+20.2] 86.8 859 82.6 [+23.6]
A3T (HotFlip) 86.4 86.4 86.4 [+26.3] 872 871 85.7 [+23.2] 874 874 85.5 [+26.5]
A3T (search) 869 86.8 86.8 [+26.7] 876 874 86.2 [+23.7] 879 878 86.5 [+27.5]

Table 3.4: Experiment results for the three perturbations on the word-level model on
SST dataset.

{TDelStop/ 2), (TSubSynzz)} {(TDup/ 2), (TSubSyn/Z)} {(TDelSmp/ 2), (TDup/ 2), (TSubSyan)}
Training Acc. HF Acc. Exhaustive Acc. HF Acc. Exhaustive Acc. HF Acc. Exhaustive
Normal 824 689 64.4 824 558 479 824 54.8 424
Random Aug. 80.0 70.0 66.0 [+1.6] 815 542 49.7 [+1.8] 81.0 56.1 46.2 [+3.8]
HotFlip Aug. 80.8 74.4 68.3 [+3.9] 80.8 68.7 56.0 [+8.1] 81.2 69.0 51.0 [+8.6]
A3T (HotFlip) 80.2 73.5 70.2 [+5.8] 799 69.7 57.7 [+9.8] 788 68.1 55.1 [+12.7]
A3T (search) 799 744 71.2 [+6.8] 79.0 70.7 62.7 [+14.8] 777 69.8 59.8 [+17.4]

S, we define exhaustive accuracy as follows:

n

LY Az e S(x). Folz) =yl (317)

i=1

Intuitively, for each sample (x;,y;), its classification is considered correct iff Fq
predicts y; for every single point in S(x;).

HotFlip accuracy is an upper bound of exhaustive accuracy; certified accuracy is a
lower bound of exhaustive accuracy.

Experiment Results

A3T

In this section, we evaluate A3T by answering the following question: does A3T improve

robustness in rich perturbation spaces for character-level and word-level models?

Results We show the results for the selected perturbation spaces on character-level
and word-level models in Tables 3.3, 3.4, and 3.5, respectively.

72

Table 3.5: Experiment results for the three perturbations on the character-level model
on SST2 dataset.

{(Tswappair, 1), (Tsupagj, 1)} {(Tpet, 1), (Tsupagj, 1)} {(Tmsadj, 1), (Tsupagj, 1)}
Training Acc. HEF Acc. Exhaustive Acc. HF Acc. Exhaustive Acc. HF Acc. Exhaustive
Normal 77.0 36.5 23.0 77.0 50.7 25.8 770 51.0 24.4
Random Aug. 75.6 47.1 28.2 [+5.2] 757 56.4 29.3 [+3.5] 745 57.0 33.8 [+9.4]
HotFlip Aug. 714 639 34.8 [+11.8] 76.6 67.1 38.0 [+12.2] 761 704 334 [+9.0]
A3T (HotFlip) 73.6 54.8 35.2 [+12.2] 753 58.2 329 [+7.1] 724 66.3 44.7 [+20.3]
A3T (search) 702 57.1 48.7 [+15.7] 725 625 44.8 [+19.0] 716 65.0 55.2 [+30.8]

Compared to normal training, the results show that both A3T (HotFlip) and A3T
(search) increase the exhaustive accuracy and can improve the robustness of the model.
A3T (HotFlip) and A3T (search) also outperform random augmentation and HotFlip
augmentation. In particular, A3T (search) has exhaustive accuracy that is on average
20.3 higher than normal training, 14.6 higher than random augmentation, and 6.7
higher than HotFlip augmentation.

We also compared A3T to training using only abstraction (i.e., all transformations
in § are also in Sy,) for the specification {(Tswappairs 2), (Tsupagj, 2)} on AG dataset and
{(Tswappairs 1), (Tsupaaj, 1)} on SST2 dataset (not shown in Tables 3.3, 3.4, and 3.5); this
is the only specification that can be fully trained abstractly since it only uses length-
preserving transformations. Training using only abstraction yields an exhaustive
accuracy of 86.9 for {(Tswappair, 2), (Tsuvadj, 2)} on AG dataset, which is similar to the ex-
haustive accuracy of A3T (HotFlip) (86.4) and A3T (search) (86.8). However, training
using only abstraction yields an exhaustive accuracy of 47.0 for {(Tswappair, 1), (Tsupaaj, 1)}
on SST2 dataset, which is better than the one obtained using normal training, but much
lower than the exhaustive accuracy of A3T (HotFlip) and A3T (search). Furthermore,
the normal accuracy of the abstraction technique on SST2 dataset drops to 58.8 due to
the over-approximation of the perturbation space while A3T (HotFlip) (73.6) and A3T
(search) (70.2) retain high normal accuracy.

A3T yields models that are more robust to complex perturbation spaces than
those produced by augmentation and abstraction techniques. This result holds for
both character-level and word-level models.

ARC

In this section, we evaluate ARC on three settings: (1) training certifiable models
against arbitrary string transformations, (2) training certifiable models against word

substitution, and (3) certification against word substitution.

73

Table 3.6: Results of LSTM (on SST2), Tree-LSTM (on SST), and Bi-LSTM (on SST2)
for three perturbation spaces. Note: The results of LSTM on {(Tp.;, 2), (Tsupsyn, 2)} were
updated after the publication of the original ARC paper. We improved the implemen-
tation of ARC on Tp,, because the previous implementation of ARC included some

cases in (Tp,y, 3) for (Tp,,,2), leading to more over-approximation. This improvement
also affects Table 3.12.

{(TDeIStop/ 2)/ (TSubSyn/ 2)} {(TDup/ 2]/ (TSubSynr 2)} {(TDeIStopr 2)/ (TDupr 2)}
Train Acc. HF Acc. CF Acc. EX Acc. Acc. HF Acc. CF Acc. EX Acc. Acc. HF Acc. CF Acc. EX Acc.

Normal 84.6 719 4.6 689 846 64.0 0.6 55.1 84.6 737 12 65.2
EData Aug.84.0 77.0 55 744 84.7 70.2 0.4 615 845 754 0.4 68.3
B HotFlip 840 78.7 43 746 825 759 0.0 620 844 80.6 0.0 68.7

ARC 825 778 72.5 77.0 80.2 70.0 58.7 64.0 826 786 69.4 74.6

=Normal 50.3 399 41 33.8 503 334 0.0 179 503 40.1 0.0 25.7
cEData Aug.47.5 40.8 1.4 364 481 37.1 0.0 230 476 40.6 0.0 29.0
& HotFlip 49.5 434 1.6 384 487 395 0.0 290 495 427 0.0 32.1
& ARC 464 434 30.9 419 461 39.0 17.1 37.6 465 43.8 19.2 40.0

Normal 83.0 71.1 8.2 68.0 83.0 634 21 56.1 83.0 725 6.4 65.5
EData Aug. 832 75.1 8.7 729 835 66.8 1.3 59.1 84.6 75.0 4.6 68.6
~HotFlip 83.6 79.2 92 734 828 76.6 0.1 555 835 79.1 0.0 55.7
M ARC 835 787 70.9 775 802 714 59.8 664 826 762 66.2 71.8

Table 3.7: Results of LSTM on SST2 dataset for S,.view-

S review

Train Acc. HF Acc. CFAcc. EX Acc.

Normal 83.9 724 21.0 71.0
Data Aug. 79.2 725 30.5 71.7
HotFlip 79.6 743 34.5 72.9
ARC 82.3 78.1 74.2 77.1

Results: Training against Arbitrary String Transformations We compare ARC to

data augmentation and HotFlip using the three perturbation spaces in Table 3.6 and
the domain-specific perturbation space S,.;ic;, in Table 3.7.

ARC outperforms data augmentation and HotFlip in terms of EX Acc. and CF
Acc. Table 3.6 shows the results of LSTM, Tree-LSTM, and Bi-LSTM models on the
tree perturbation spaces. Table 3.7 shows the results of LSTM models on the domain-
specific perturbation space S,evier,. ARC has significantly higher EX Acc. than normal
training (+8.1,4+14.0, +8.7 on average), data augmentation (+4.2,+10.4, +5.0), and
HotFlip (+3.6,46.7, +10.4) for LSTM, Tree-LSTM, and Bi-LSTM respectively.

Models trained with ARC have a relatively high CF Acc. (53.6 on average). Data

augmentation and HotFlip result in models not amenable to certification—in some

74

Table 3.8: ARC vs A3T (CNN) on SST2 dataset.

{(TDelStopr 2), (TSubSyn/ 2)} {(TDupr 2), (TSubSyn/ 2)}
Train Model Acc. HF Acc. CF Acc. EX Acc. Acc. HF Acc. CF Acc. EX Acc.
A3T (HotFlip) CNN 80.2 719 N/A 702 799 683 N/A 57.7
ARC LSTM 825 77.8 72.5 77.0 80.2 70.0 55.4 64.0

Table 3.9: ARC vs CertSub and ASCC on IMDB dataset.

{(TSubSyn/ 1)} {(TSubSyn/ 2)}
Train Acc. CFAcc. EXAcc. Acc. CFAcc. EXAcc

Certsub 76.8 67.0 710 768 64.8 68.3
Acss 828 0.0 815 828 00 808
ARC 87.7 778 826 863 71.0 782

cases, almost nothing in the test set can be certified.

ARC produces more robust models at the expense of accuracy. Other robust training
approaches like CertSub and A3T also exhibit this trade-off. However, as we will show
next, ARC retains higher accuracy than these approaches.

We compare ARC with A3T using {(Tpeistop, 2), (Tsuvsyn, 2)} and {(Tpup, 2), (Tsupsyn, 2)}-
We do not use {(Tpeistop, 2), (Tpup, 2)} because A3T degenerates to HotFlip training for
this perturbation space. A3T degenerates to HotFlip training on {(Tpeistop, 2), (Tpup, 2)},
so we do not use this perturbation space.

The LSTMs trained using ARC are more robust than the CNNs trained by A3T for
both perturbation spaces; ARC can certify the robustness of models while A3T cannot.
Table 3.8 shows that ARC results in models with higher accuracy (+2.3 and +0.3), HF
Acc. (+5.9 and +1.7), and EX Acc. (+6.8 and +6.3) than those produced by A3T. ARC
can certify the trained models while A3T cannot.

Results: Training against Word Substitutions We choose two perturbation spaces,
{(Tsupsyn, 1)} and {(Tsupsyn, 2)}. We train one model per perturbation space using ARC
under the same experimental setup of CertSub, BiLSTM on the IMDB dataset. By
definition, CertSub and ASCC train for an arbitrary number of substitutions. CF Acc.
is computed using ARC. Note that CertSub can only certify for {(Tsys,u, 00)} and ASCC
cannot certify.

ARC trains more robust models than CertSub for two perturbation spaces with
word substitution. Table 3.9 shows that ARC achieves higher accuracy, CF Acc., and
EX Acc. than CertSub on the two perturbation spaces.

75

Table 3.10: ARC vs Huang et al. (2019) (CNN) on SST2 dataset.

{(TSubSyn/ 3)}
Train Model Acc. HF Ace. CFAcc. EX Acc.
Huang et al. (2019) CNN 81.7 772 44.5 76.5
ARC LSTM 83.3 78.3 73.3 77.9

ARC trains a more robust model than ASCC for {(Tsupsyn, 1)}, but ASCC’s model
is more robust for {(Tsupsyn,2)}. Table 3.9 shows that the ARC-trained models have
higher accuracy and CF Acc.

We use {(Tsupsyn, 3)} on SST2 dataset for comparison between ARC and Huang et al.
(2019). We directly quote the results in their paper.

ARC trains more robust LSTMs than CNNs trained by Huang et al. (2019). Ta-
ble 3.10 shows that ARC results in models with higher accuracy (41.6), HF Acc. (+1.1),
CF Acc. (4+28.8), and EX Acc. (+3.4) than those produced by Huang et al. (2019).

Results: Certification against Word Substitutions We compare the certification
of an ARC-trained model and a normal model against {(Ts,ssyx,3)} on the first 100
examples in SST2 dataset. Because POPQORN can only certify the |, norm ball, we
overapproximate the radius of the ball as the maximum 1, distance between the original
word and its synonym:s.

ARC runs much faster than POPQORN. ARC is more accurate than POPQORN
on the ARC-trained model, while POPQORN is more accurate on the normal model.
ARC certification takes 0.17sec/example on average for both models, while POPQORN
certification takes 12.7min/example. ARC achieves 67% and 5% CF Acc. on ARC-
trained model and normal model, respectively, while POPQORN achieves 22% and
28% CF Acc., but crashes on 45% and 1% of examples for two models.

SAFER is a post-processing technique for certifying robustness via randomized
smoothing. We train a Bi-LSTM model using ARC following SAFER’s experimental
setup on the IMDB dataset and SAFER’s synonym set, which is different from CertSub’s.
We consider the perturbation spaces {(Tsussyx, 1)} and {(Tsussyn, 2)}. We use both ARC
and SAFER to certify the robustness. The significance level of SAFER is set to 1%.

SAFER has a higher certified accuracy than ARC. However, its certificates are
statistical, tied to word substitution only, and are slower to compute. Considering
{(Tsubsyn, 2)}, ARC results in a certified accuracy of 79.6 and SAFER results in a certified
accuracy of 86.7 (see Table 3.11). Note that certified accuracies are incomparable

76

Table 3.11: ARC vs SAFER on IMDB dataset.

{(TSubSynr 1)} {(TSubSyn/ 2)}
Train CF Acc. RSAcc. CFAcc. RS Acc.
Data Aug. 0.2 90.0 0.1 89.7
ARC 82.0 87.2 79.6 86.7

Table 3.12: Results of different instantiations of ARC-A3T on SST2 dataset.

{(TDBIS[op/ 2)/ (TSubSyn/ 2)} {(TDup/ 2)/ (TSubSyn/ 2)}
Train Acc. CFAcc. EXAcc. Acc. CF Acc. EX Acc.

Abs-fir 83.2 15.1 68.6 826 168 66.7
Abs-sec 814 711 75.8 83.0 542 654
ARC 825 725 77.0 80.2 58.7 64.0

because SAFER computes certificates that only provide statistical guarantees. Also,
note that ARC uses O(n []}, 8;) forward passes for each sample, while SAFER needs
to randomly sample thousands of times. In the future, it would be interesting to explore

extensions of SAFER to ARC’s rich perturbation spaces.

ARC-A3T

We can apply the idea of A3T to ARC, extending ARC to abstract any subset of the
given perturbation space and to augment the remaining perturbation space. We show
the effectiveness of this extension in the appendix.

We evaluate ARC-A3T on the same perturbation spaces as we do for A3T. For
each perturbation space, ARC-A3T has four instantiations: abstracting the whole
perturbation space (downgraded to ARC), abstracting the first perturbation space
({(Tpeistop, 2)} or {(Tpup,2)}), abstracting the second perturbation space ({(Tsupsyn, 2)}),
and augmenting the whole perturbation space. We use enumeration for augmenting.
We do not test the last instantiation because enumeration the whole perturbation
space is infeasible for training. We further evaluate the trained models on different
perturbation sizes, i.e., {(Tpeistop, 0), (Tsupsyn, &)} and {(Tpup, 8), (Tsupsyn, 6)} with & = 1,2, 3.

Different instantiations of ARC-A3T win for different perturbation spaces. Ta-
ble 3.12 shows the results of different instantiations of ARC-A3T. For {(Tpeistop, 2),
(Tsubsyn, 2)}, abstracting the first perturbation space ({(Tpestp,2)}) achieves the best
accuracy and abstracting the whole perturbation space (ARC) achieves the best CF

77

Acc. and EX Acc. For {(Tpu, 2), (Tsupsyn, 2)}, abstracting the first perturbation space
({(Tpup,2)}) achieves the best EX Acc., abstracting the second perturbation space
({(Tsubsyn, 2)}) achieves the best accuracy, and abstracting the whole perturbation space
(ARC) achieves the best CF Acc.

3.5 Related Work

Adversarial Text Generation Zhang etal. (2019d) present a comprehensive overview
of adversarial attacks on neural networks over natural language. A3T focuses on the
word- and character-level transformations. ARC implements the word-level transfor-
mation but can also be extended to character-level. HotFlip (Ebrahimi et al., 2018) is
a gradient-based approach that can generate the adversarial text in the perturbation
space described by word- and character-level transformations. MHA (Zhang et al.,
2019a) uses Metropolis-Hastings sampling guided by gradients to generate word-level
adversarial text via word substitution. Other work focuses on generating adversarial
text on the sentence-level (Liang et al., 2018) or paraphrase-level (Iyyer et al., 2018;
Ribeiro et al., 2018). Another kind of adversary is universal adversarial triggers (Wal-
lace et al., 2019) that are fixed words which concatenate to any input will trigger the
model to make a false prediction.

Formal Verification for NLP Models In the verification for NLP tasks, one group of
works aims to certify robustness under specific string transformations such as word
substitution and deletion. Jia et al. (2019); Huang et al. (2019) proposed to use IBP to
certify the robustness under arbitrary numbers of word substitutions. Xu et al. (2020)
proposed to use IBP and CROWN-IBP to certify the robustness under word substitu-
tions up to a certain amount. Welbl et al. (2020) proposed the formal verification under
text deletion for models based on the popular decomposable attention mechanism by
interval bound propagation. Another group of works aims to certify robustness under
1, norm perturbation on word embeddings. Shi et al. (2020) combined forward prop-
agation and a tighter backward bounding process to achieve the formal verification
of Transformers. Bonaert et al. (2021) proposed the Multi-norm Zonotope abstract
domain, an extension of the classical Zonotope designed to handle 1; and l,-norm
bound perturbations. POPQORN (Ko et al., 2019) and Ryou et al. (2021) are general

78

algorithms to quantify the robustness of recurrent neural networks, including RNNs,
LSTMs, and GRUs.

SAFER (Ye et al., 2020) is a model-agnostic approach that uses randomized smooth-
ing (Cohen et al., 2019) to give probabilistic certificates of robustness to word substitu-
tion. ARC gives a non-probabilistic certificate and can handle arbitrary perturbation

spaces beyond substitution.

Adversarial Training and Abstract (Certified) Training of NLP Models Adversarial
training is an empirical defense method that can improve the robustness of models
by solving a robust-optimization problem (Madry et al., 2018), which minimizes worst-
case (adversarial) loss. Some techniques in NLP use adversarial attacks to compute a
lower bound on the worst-case loss (Ebrahimi et al., 2018). ASCC (Dong et al., 2021)
overapproximates the word substitution attack space by a convex hull where a lower
bound on the worst-case loss is computed using gradients.

Other techniques, named abstract training (or certified training), compute upper
bounds on adversarial loss using abstract interpretation (Gowal et al., 2019; Mirman
et al., 2018). Any incomplete verifiers based on abstract interpretation discussed in the
previous paragraph can be used in abstract training. For example, Jia et al. (2019); Xu
et al. (2020) used interval domain to capture the perturbation space of substitution
and train robust models for LSTMs. Huang et al. (2019) proposed a simplex space
to capture the perturbation space of substitution. They converted the simplex into
intervals after the first layer of the neural network and obtained the abstract loss by IBP.
However, these abstract training techniques for NLP tasks cannot handle the general
programmable perturbation space proposed in Chapter 3.

A3T trains robust CNN models against a programmable perturbation space by
combining adversarial training and abstract training. ARC designs an abstract interpre-
tation technique specialized for LSTMs and trains robust LSTMs against programmable
perturbation spaces.

79

3.6 Preliminary Work: ARC on Autoaggressive

Transformers

Transformers are the backbone of popular large language models. Existing work (Shi
et al., 2020; Bonaert et al., 2021) only considers an 1, norm perturbation space for certi-
tying Transformers. While these approaches can naturally extend to word substitutions,
they cannot handle arbitrary perturbation spaces formalized in Section 3.1. Therefore,
extending ARC’s certification against arbitrary perturbation spaces to Transformers is
a critical step toward the trustworthiness of large language models and future artificial
intelligence models.

Recently, the architectures of Transformers have undergone a clear shift from bi-
directional encoder structures like BERT (Devlin et al., 2019) to autoregressive decoder-
only structures like GPT-3 (Brown et al., 2020). This shift surprisingly invigorates the
possibility of extending ARC to Transformers with an autoregressive decoder-only
structure. ARC cannot be extended to bi-directional Transformers (Bi-Transformers)
because Bi-Transformers have loop-like structures, as illustrated in Figure 3.5b.* These
loop-like structures prevent the application of the dynamic programming algorithm,
which is used by ARC to progressively propagate over-approximation according to
the programmable perturbation space through the neural network. Compared to a
Bi-Transformer, an autoregressive Transformer does not contain any loop-like structure,
making it a promising candidate for certification by ARC.

Although there is a glimmer of hope in applying ARC to autoregressive Trans-
formers, we point out two inevitable challenges when applying ARC to autoregressive
Transformers. A preprint of this work can be found in Zhang et al. (2024a). Notably,
none of these challenges have been discussed in any previous work. We then propose

corresponding approaches to overcome these two challenges.

Position Encoding under Arbitrary Perturbation Spaces Position encoding is a
crucial component in the Transformer architecture. It allows the model to incorporate
positional information of tokens in a sequence. Since the Transformer relies solely
on attention mechanisms and has no inherent token order notion, position encodings

are added to the input embeddings to inject positional information. By incorporating

*One may question why ARC can handle Bi-LSTM but not Bi-Transformers. The answer is that the
Bi-LSTM structure does not have a loop-like structure, as illustrated in Figure 3.5c.

80

(a) LSTM (b) Autoregressive Transformer

(c) Bi-LSTM (d) Bi-Transformer

Figure 3.5: Illustration of an LSTM, an autoregressive Transformer, a Bi-LSTM, and a
Bi-Transformer.

position encodings, the Transformer can effectively capture the order and positional
relationships of tokens in a sequence.

Position encodings do not cause an issue for previous works because they only
consider length-preserving perturbation spaces, such as synonym substitutions. How-
ever, regarding arbitrary programmable perturbation spaces, perturbed inputs can
have different lengths. This difference in lengths necessitates careful handling of the
embeddings before attention computation. Conventionally, before being fed to the
attention computation, the position encoding p; has already been added to the em-
bedding of the ith token, i.e., e; = e{ + p;, where e/ is the original input embedding.
Directly applying ARC to e; can cause position mismatches. To solve this issue, we
introduce a new embedding e; j, which represents the original jth input token being
moved to the ith position in the perturbed input, denoted as e; ; = ej + pi. Intuitively,
the new embedding separates the input embedding and position encoding and adapts
to the input-length change. Equipped with ARC’s definition of G{;, which captures
the set of hidden states with the ith token in the perturbed input and the jth token
in the original input (see Equation (3.13)), this new embedding accurately captures
position embeddings e; ;.

The following example illustrates how to overcome the position encoding chal-
lenge, assuming we still use an LSTM in addition to position encodings instead of an

autoregressive Transformer, which will be explained in the next challenge.

Example 3.15. Let x = “to the”, ej and e be the original input embeddings for the first and sec-
ond word, respectively, and p, and p, be the corresponding position encodings. Conventionally,

81

the embeddings fed to the next LSTM layer (or Transformer layer) are computed as e; = e{+p1
and e, = ey + pa. As a result, Ggg‘]‘el’l)} will be computed as {Lstm(e1, hy), LsT™M (e, hy)}
according to Example 3.4. However, the second state in the above computation is incorrect
because after deleting “to”, the word “the” becomes the first word in the sentence, and its
embedding should be e, + p, instead of e; = e; + ..

In contrast, leveraging the new embedding e;;, we can compute the correct state set

Tger,1
GLJe = (Lstm(err, o), LsTM(er2, ho) -

Handling Autoregressive Transformer The key difference between Figure 3.5a and
Figure 3.5b is that for ith state, an LSTM takes the previous state as its input. In contrast,
an autoregressive transformer takes all the previous states as inputs because it needs
to compute the attention over all previous states.

A straightforward approach is storing all previous states instead of a single pre-
vious state during computation. We first discuss which states need to be stored by
investigating the computation of the attention mechanism in Transformers. Formally,

we define the nth transformer state on the perturbed input z as

eani

TRANS(Z{.p, M) = Zvi (3.18)

where m is the index mapping from z to the original input x, and q, = Wgen mmn),
ki = Wieim(i), Vi = Wyeim(i) are query, key, value vectors computed from the new
embedding e; ., (i). From Equation (3.18), we need to take care of z, m, q1.;, k1., and
vi1. Among these, the index mapping m and the perturbed input z will be maintained
by the definition of G?; in ARC, as shown in Example 3.15. Therefore, we need to store
the remaining three matrices (or three lists of vectors) qy.i, k1., v1.i for computing state

TRANS(Z1.,, m). However, this approach has two drawbacks:

1. It needs an extra O(LENy) factor on memory consumption for Transformers com-
pared to ARC for LSTMs.

2. The interval abstraction used in ARC will cause additional over-approximation

when abstracting q1.i, k1., and vy.; (see the next example).

Example 3.16. Consider x = “A B”, where each word has one synonym (“a”, “b”, respectively)
that can be substituted. Let e;; be the embedding of the i-th original token, and e ; be the

82

i i i
Final State -— Final State

(a) Autoregressive Transformer (b) Two RNNs interacting in parallel
Figure 3.6: One-layer autoregressive transformers are two RNNs interacting in parallel.
embedding of the i-th substituted token. Without loss of generality, we only consider the
abstraction of ky.; in this example. Let ;if ; denote the abstraction of ky.; where the perturbed
prefixes have had all transformation in a space S applied on the original prefix x;.;. We have
Kfl = a({Wiei1}), K%T subsyn 1)} _ x({Wyes |}). At the first state, the interval abstractions
are still tight.

At the second state, let [a; b] denote the concatenation of vectors a and b. Then, we have

o .
R{(TSubSynrl)} = [Al,ll Wke;,Z]/
- ~{(Tsubsyn,1
2,2 [Ai(l SubSy:)}; Wk 62,2]

= [‘X({Wkel,llwkeil}); o ({Wieao, Wkeé,z})} (3.19)

~{(Tsubsyn,1
ThEA;gS bsyns1)}

introduced before, as K;(ZT sisn) contains a perturbed input “a b”, which substituted two

computed above introduces an extra over-approximation, which ARC has never

words with their synonyms.

The over-approximation introduced in Example 3.16 is due to the fact that ARC is
only able to record the previous string transformation, which is sufficient for LSTM
models whose hidden states only depend on the previous state. We can modify ARC to
record the previous k string transformations instead of one. However, this modification
will introduce an extra O(Lenf!) time complexity in the algorithm. To avoid the
additional time complexity, we ask: can we rewrite Eq. (3.18) into equations such that the

nth state only depend on the previous state?

>Note that the above over-approximation does not even appear at H; in the above “Handling the
Aggregation of All Hidden States” subsection.

83

Our Approach

The short answer to the above question is yes. In fact, one-layer autoregressive trans-
formers are two RNNs interacting in parallel. Figure 3.6 illustrates this claim.

Given the index mapping m and the perturbed input z and denoting the sigmoid
function as o, we define

vio(qnki — gi—1) + fi—10(gi—1 — qnki), 1>1
£ (q gi—1) 10(gi—1 — qnki) (3.20)

V1, i=1

log(e9i-1 4+ ednki), {i>1
_ o8l) (3.21)

gi = ' .
anl, i=1

Theorem 3.17. f,, in Equation (3.20) is equivalent to TRANS(z1.,, m) in Equation (3.18).

Proof. We first prove the following equation of g; by induction.
edi =) eIk (3.22)
j=1

It is easy to see the base case (i = 1) holds. In the inductive step, suppose gi_; holds
for Equation (3.22), we have

i—1 i
edi — e9i-1 eldnki — E ednkj + ednki — E ednkj
j=1 j=1

We then prove the following equation of f, by induction.

eani

fl=Y Vier—— 3.23
;v = (3.23)

j*l eanj

It is easy to see the base case (1 = 1) holds. In the inductive step, suppose f;_; holds

84

for Equation (3.23), we have

ednki
ZVI) 1ean
ednki Ul ednki
= V1—Z;:1 cank + ; Vi—Z}:l adnk;

+ Vi
Z}_l ednkj 4 ednkt 1 Z;’ 1 ednk; Zl 1ean1 + ednkt

ednki ednki edi-1

-V Legin 1 ednkt Z"l = }eanj edi1 & ednki (By Equation (3.22))

eanl eglfl
v
1egl,1 + ednkt Th 1e9171 4+ ednkt

=vi0(qnki — gi1-1) + fio10(g1-1 — gnki)

(By the inductive hypothesis)

By the definition Equation (3.18), TRANS(z1.,, m) is equivalent to f,, in Equation (3.23).
O

Notes on the abstract transformers and the implementation We note that Equa-

tion (3.21) needs to be implemented as

gi = max(gi_1, qnki) + loglp(e 191~ ankil),

for numerical stability.
When designing the abstract transformer of Equation (3.20), we propose rewriting
fi in two ways:

fi = (vi — fi_g)o(gnki — gi1) +fi

fi =vi + (fi1 —vi)o(gi—1 — qnki)

We then meet these two intervals as 1/:\l However, notice that o(qnki —gi—1) + 0(gi_1 —

qnki) = 1, indicating that using the Zonotope abstract domain to replace the interval

abstract domain is a promising future direction (also see Bonaert et al. (2021)).
Rewriting a one-layer autoregressive transformer into two RNNs slows down the

attention mechanism computation. Two RNNs need to compute the final states se-

85

Table 3.13: Results of applying ARC to autoregressive Transformer on SST2 dataset.

{(TDup/ 2)/ (TSubSyn/ 2)}
Train Acc. CF Acc. EX Acc.

Normal 79.90 9.06 63.32
Data Aug. 80.51 895 6733
HotFlip 79.79 1422 71.22
ARC 79.19 64.80 72.71

quentially, while the original attention computation in transformers leverages matrix

multiplication, which is much faster than sequential computations of RNN states on
GPUs.

Experiments

Our model employs a single-layer, decoder-only autoregressive transformer with two-
head attention. Unlike conventional transformer layers, we omit layer normalization,
leaving the abstract transformer for layer normalization as a potential avenue for future
research. Classification is made by feeding the final state of the transformer layer
into two MLP layers. We implemented a prototype of ARC on Tp,, and (Tsusyx to
demonstrate the preliminary results of the proposed approach®.

We compare ARC with normal training, data augmentation, and HotFlip augmen-
tation on the SST2 dataset against {(Tpup, 2), (Tsuvsyn, 2)}. Table 3.13 shows that ARC
achieves the best certified accuracy and exhaustive accuracy when compared to the
other three training approaches.

Compared to Table 3.6, although the normal accuracy of our transformer model is
lower than that of the LSTM model, the exhaustive accuracy and certified accuracy of
the transformer model are higher. This suggests that the transformer model can exhibit
stronger robustness or be more amenable to verification than the LSTM model. Similar

results have also been obtained by related work in randomized smoothing (Zhang
et al., 2023a).

®https://github.com/ForeverZyh/certified_lstms/tree/job-talk

https://github.com/ForeverZyh/certified_lstms/tree/job-talk

86

3.7 Future Work

We present ARC, which uses memoization and abstract interpretation to certify ro-
bustness to programmable perturbations for LSTMs. ARC can be used to train models
that are more robust than those trained using existing techniques and handle more
complex perturbation spaces. Last, the models trained with ARC have high certification
accuracy, which can be certified using ARC itself. We also present an adversarial train-
ing technique, A3T, combining augmentation and abstraction techniques to achieve
robustness against programmable string transformations in neural networks for NLP
tasks. In the experiments, we showed that combining ARC and A3T yields more robust
models than augmentation and abstraction techniques.

We foresee many future improvements to A3T and ARC. First, we manually split S
into S;ue and S,p. Performing the split automatically is left as future work.

Second, as mentioned in Section 3.6, we plan to explore the abstract transformer
for layer normalization and replace the interval abstract domain with the Zonotope
domain.

Third, as large language models for code tasks become prevalent, it is crucial to
design programmable code perturbation following the same way of programmable
perturbation space discussed in this chapter and to call for the verification of these

large code models leveraging the techniques introduced in Section 3.6.

87

4 CERTIFIABLE DEFENCE AGAINST BACKDOOR ATTACKS

Deep learning models are vulnerable to backdoor poisoning attacks, where the attackers
can poison a small fragment of the training set before model training and add triggers
to inputs at test time. As a result, the prediction of the victim model that was trained
on the poisoned training set will diverge in the presence of a trigger in the test input.

Effective backdoor attacks have been proposed for image recognition (Gu et al.,
2017), sentiment analysis (Qi et al., 2021a), and malware detection (Severi et al., 2021).
For example, the explanation-guided backdoor attack (XBA) (Severi et al., 2021) can
break malware detection models as follows: The attacker poisons a small portion of
benign software in the training set by modifying the values of the most important
features so that the victim model recognizes these values as evidence of the benign
prediction. At test time, the attacker inserts a trigger by changing the corresponding
tfeatures of malware to camouflage it as benign software and making it bypass the
examination of the victim model. Thus, backdoor attacks are of great concern to the
security of deep learning models and systems that are trained on data gathered from
different sources, e.g., via web scraping.

We identify two limitations of existing defenses to backdoor attacks. First, many
existing approaches only provide empirical defenses that are specific to certain attacks
and do not generalize to all backdoor attacks. Second, existing certified defenses—i.e.,
approaches that produce robustness certificates—are either unable to handle backdoor
attacks, or are probabilistic (instead of deterministic), and therefore expensive and

ineffective in practice.

Why certification? A defense against backdoor attacks should construct effective
certificates (proofs) that the learned model can indeed defend against backdoor attacks.
Empirical defenses do not provide certificates, can only defend against specific attacks,
and can be bypassed by new unaccounted-for attacks. In Section 4.3, we show that ex-
isting empirical defenses cannot defend against XBA when only 0.1% of training data is
poisoned. Certification has been successful at building models that are provably robust
to trigger-less poisoning attacks and evasion attacks, but models trained to withstand
such attacks are still weak against backdoor attacks. The trigger-less attack (Zhu et al.,
2019a) assumes the attacker can poison the training set but cannot modify the test
inputs, e.g., adding triggers, while the evasion attack (Madry et al., 2018) assumes the

88

attacker modifies the test inputs but cannot poison the training set. Existing certified
defenses against trigger-less attacks, e.g., DPA (Levine and Feizi, 2021), and against
evasion attacks, e.g., CROWN-IBP (Zhang et al., 2020a) and PatchGuard++ (Xiang
and Mittal, 2021), cannot defend against backdoor attacks as they can either defend
against the poison in the training data or the triggers at test time, but not both. As we
show in the experiments, we can break these certified defenses using BadNets (Gu
etal., 2017) and XBA (Section 4.3).

Why determinism? It is desirable for a certified defense to be deterministic because
probabilistic defenses (Zhang et al., 2022b; Weber et al., 2020) typically require one
to retrain thousands of models when performing predictions for a single test input.
Retraining can be mitigated by Bonferroni correction, which allows reusing the trained
models for a fixed number of predictions. However, retraining is still necessary after
a short period, making it hard to deploy these defenses in practice. On the other
hand, deterministic defenses (Levine and Feizi, 2021) can reuse the trained models
an arbitrary number of times when producing certificates for different test inputs.
Furthermore, probabilistic defenses for backdoor attacks, e.g., BagFlip (Zhang et al.,
2022b), need to add noise to the training data, resulting in low accuracy for datasets

that cannot tolerate too much noise when training (Section 4.3).

PECAN We present PECAN! (Partitioning data and Ensembling of Certified neurAl
Networks), a deterministic certified defense against backdoor attacks for neural net-
works. PECAN can take any off-the-shelf technique for evasion certification and use
it to construct a certified backdoor defense. This insight results in a simple modular
implementation that can leverage future advances in evasion certification algorithms.
Specifically, PECAN trains a set of neural networks on disjoint partitions of the dataset,
and then applies evasion certification to the neural networks. By partitioning the
dataset, we analytically bound the number of poisoned data seen per neural network;
by employing evasion certification, we bound the number of neural networks that are
robust in the face of triggers. Using this information, we efficiently derive a backdoor-
robustness guarantee.

Figure 4.1 illustrates the workflow of PECAN. In Step 1, inspired by deep partition
aggqregation (Levine and Feizi, 2021), PECAN deterministically partitions a dataset into

"https://github.com/ForeverZyh/defend_framework/tree/dev-DBA-malware

https://github.com/ForeverZyh/defend_framework/tree/dev-DBA-malware

89

-
—
-—
D
ﬂ Step 1: Dataset Partitioning
~
—] —] —]
- = -
D, D, D,
l l l Training
@ @ @ Testing
Ap, Ap, Ap,
l l Step 2: Evasion Certification
X
7 1 wer 7
cert abstain cert

y*: the top label, y’: runner-up label,
Nj: # of certified y*, N,: # of certified y’,
Nj: # of abstain.

l Step 3: Aggregation
y*: prediction of PECAN,

Ny—Np—N3—T«_ s . .
| >—=4" |: certified radius.

Figure 4.1: An overview of our approach PECAN.

multiple disjoint subsets. This step ensures that a poisoned data item only affects a
single partition. In Step 2, PECAN trains an ensemble of neural networks, one on each
partition. At test time, PECAN performs evasion certification to check which neural
networks are immune to triggers; those that are not immune (or that cannot be proven
immune) abstain from performing a prediction. Finally, in Step 3, PECAN aggregates
the results of the ensemble and produces a prediction together with a robustness
certificate: the percentage of the poisoned data in the training set that the training
process can tolerate, the certified radius.

We evaluate PECAN on three datasets, MNIST, CIFAR10, and EMBER. PECAN out-
performs or competes with BagFlip, which was proposed in our previous work (Zhang
et al., 2022b) and it was the best certified defense against backdoor attacks at that
time. Furthermore, BagFlip takes hours to compute the certificate, while PECAN takes
seconds. We also evaluate PECAN against two known backdoor attacks, BadNets and
XBA, PECAN reduces the average attack success rates from 90.24% to 0.67% and 66.37%
to 2.19%, respectively.

90

4,1 Problem Definition

Given a dataset D = {(x1,Y1),..., (Xxn,Yn)}, a (test) input x, and a machine learning
algorithm A, we write Ap to denote the machine learning model learned on dataset
D by the algorithm A, and A(D, x) to denote the output label predicted by the model
Ap on input x. We assume the algorithm will behave the same if trained on the same
dataset across multiple runs. This assumption can be guaranteed by fixing the random
seeds during training.

We are interested in certifying that if an attacker has poisoned the dataset, the
model we have trained on the dataset will still behave “well” on the test input with
maliciously added triggers. Before describing what “well” means, we need to define
the perturbation spaces of the dataset and the test input, i.e., what possible changes the
attacker could make to the dataset and the test input.

Perturbation space of the dataset Following DPA (Levine and Feizi, 2021), we define
a general perturbation space over the dataset, allowing attackers to delete, insert, or
modify training examples in the dataset. Given a dataset D and a radius v > 0, we
define the perturbation space as the set of datasets that can be obtained by deleting or

inserting up to r examples in D:
s:(D)={D|ID&DI <},

where A © B is the symmetric difference of sets A and B. Intuitively, r quantifies how
many examples need to be deleted or inserted to transform from D to D.

Example 4.1. If the attacker modifies one training example x € D to another training example
X to form a poisoned dataset D = (D\{x}) U{x}. Then D € S,(D) but D ¢ S;(D) because
S+ (D) considers one modification as one deletion and one insertion.

Note that we assume a more general perturbation space of the training set than the
ones considered by BagFlip and FPA; our work allows inserting and deleting examples

instead of just modifying existing training examples.

Perturbation space of the test input We write P(x) to denote the set of perturbed

examples that an attacker can transform the example x into. Formally, the perturbation

91

space P(x) can be defined as the 1, norm ball with radius s around the test input x,
P(x) = {x || x—x|, < s}

Example 4.2. An instantiation of P(x) is the 1y feature-flip perturbation rs(x), which allows

the attacker to modify up to s features in an input x,
Fs(x) = {x [[x=x[lo < s}

Dynamic backdoor attacks (Salem et al., 2022) like BadNets, which involve placing
different patches in an input x, with each patch having a maximum size of s, can
be captured by r;(x). XBA, which modifies a predetermined set of features up to s
features in an input x, can also be captured by r,(x). Note that we assume a more
general perturbation space of the test input than the one considered by FPA, which

cannot handle dynamic backdoor attacks.

Threat models We consider backdoor attacks, where the attacker can perturb both
the training set and the test input, but cannot control the training process of models.
For the training set, we assume the attacker selects a poisoned training set from a
perturbation space S, (D) of the training set D with a radius r > 0. For the test input,
we assume the attacker selects a test input with a malicious trigger from a perturbation
space P(x) of the test input x with a given 1, norm and the radius s.

We say that an algorithm A is robust to a backdoor attack on a backdoored test input
x if the algorithm trained on any perturbed dataset D would predict the backdoored

input x the same as A (D, x). Formally,
VD € S,(D), X € P(x). A(D,X) = A(D, x) (4.1)

Remark 4.3. When v = 0, Eq 4.1 degenerates to evasion robustness, i.e., Vx € P(x). A(D,x) =
A (D, x), because So(D) ={D}.

Given a large enough radius 1, an attacker can always change enough inputs and
succeed at breaking robustness. Therefore, we will typically focus on computing the
maximal radius r for which we can prove that Eq 4.1 for given perturbation spaces
S+(D) and P(x). We refer to this quantity as the certified radius.

92

Certified guarantees We aim to design a certifiable algorithm A, which can defend
against backdoor attacks, and to compute the certified radius of A. In our experiments
(Section 4.3), we suppose a given benign dataset D and a benign test input x, and
we certifiably quantify the robustness of the algorithm A against backdoor attacks by
computing the certified radius.

In Section 4.3, we also experiment with how the certifiable algorithm A defends
backdoor attacks if a poisoned dataset D and a test input X with malicious triggers are
given, but the clean data is unknown. We theoretically show that we can still compute
the certified radius if the clean data D and x are unknown in Section 4.2.

4.2 The PECAN Certification Technique

Our approach, which we call PECAN (Partitioning data and Ensembling of Certified
neurAl Networks), is a deterministic certification technique that defends against back-
door attacks. Given a learning algorithm A, we show how to automatically construct a
new learning algorithm A with certified backdoor-robustness guarantees (Eq 4.1) in
Section 4.2. We further discuss how A can defend against a backdoored dataset and
formally justify our discussion in Section 4.2.

Constructing Certifiable Algorithm A

The key idea of PECAN is that we can take any off-the-shelf technique for evasion
certification and use it to construct a certified backdoor defense. Intuitively, PECAN
uses the evasion certification to defend against the possible triggers at test time, and
it encapsulates the evasion certification in deep partition aggregation (DPA) (Levine
and Feizi, 2021) to defend against training set poisoning.

Given a dataset D, a test input x, and a machine learning algorithm A, PECAN
produce a new learning algorithm A as described in the following steps (shown in
Figure 2.4),

Dataset Partitioning We partition the dataset D into n disjoint sub-datasets, denoted
as Dy, ..., Dy, using a hash function that deterministically maps each training example

into a sub-dataset D;. Train n classifiers Ap,,..., Ap, on these sub-datasets.

93

Evasion Certification We certify whether the prediction of each classifier Ap, is
robust under the perturbation space P(x) by any evasion certification approach for the
learning algorithm, e.g., CROWN-IBP for neural networks (Xu et al., 2020). Formally,

the certification approach determines whether the following equation holds,
Vx € P(x). A(Dy,x) = A(Dy, x) (4.2)

We denote the output of each certification as Agi (x), which can either be AEi (x) = cert,
meaning Eq 4.2 is certified. Otherwise, A[, (x) = abstain, meaning the certification
approach cannot certify Eq 4.2.

Aggregation We compute the top label y* by aggregating all predictions from A (Dj, x).

Concretely, y* = argmax) ;~; LA (p,x—y, where € = {0,1,...} is the set of possible
yel
labels. Note that if a tie happens when taking the argmax, we break ties determin-

istically by setting the smaller label index as y*. We denote the runner-up label as

y’ as argmax) ; ; La(p,x)—y. We count the number of certified predictions equal
yeCAy#y*
to y* as N;, the number of certified predictions equal to y’ as N,, and the number of

abstentions as N3. We formally defining N;, N,, and Nj as
n
N1 = Z]lA(DirX):y*/\AEi (x)=certs
i=1
n
Ny = Z]lA(Di,x):y’/\APDi(x):certr
i=1
n
N3 = Z]lA]PDi(x):abstain.
i=1

We set the prediction A(D,x) as y*. We compute the certified radius r in the
following two cases. If Ny — N, — N3 — 1+ < 0, we set r as ¢, i.e., a value denoting

no certification. In this case, PECAN cannot certify that A is robust to evasion attacks
17N27N371 *

even if the dataset is not poisoned. Otherwise, we compute r as [N e

A special case is 1 = 0, when PECAN can certify A is robust to evasion attacks, but

cannot certify that it is robust if the dataset is poisoned.
We note that the computation of the certified radius is equivalent to DPA when no

classifier abstains, i.e., N3 = 0,

94

D
D, D, D,
N R e el
\—> 7 5 7 7 7 1
abstain abstain cert cert cert cert
N S
Dabs Dbd Dsafe
Attacked by X Attacked by D Clean
r7—>y/ 55y 7=y 7oy 7 1
D, D, D,
R —_— =
D

Figure 4.2: An illustration of the proof of Theorem 4.4. It shows the worst case for
PECAN, where the attacker can change all predictions in D,,s and Dyg to the runner-
up label y’. Note that we group Daps, Dpg, and Dge together to ease illustration.

Theorem 4.4 (Soundness of PECAN). Given a dataset D and a test input x, PECAN
computes the prediction A (D, x) and the certified radius as v. Then, either v = o or

vD € S,(D), x € P(x). A(D,X) = A(D, x) (4.3)

We outline a proof sketch of Theorem 4.4 before providing the main proof. The
key idea is that if we can prove that a majority of classifiers are immune to poisoned
data, we can prove that the aggregated result is also immune to poisoned data. We
start by lower bounding the number of classifiers that are immune to poisoned data as
N; — r and upper bounding the number of classifiers that can be manipulated by the

attackers as N, + v + Nj. Then, we show that if r < LNl_N2_§3_1”*>U'J, the classifiers

immune to poisoned data will always be a majority.

Proof. For any poisoned dataset D, we partition D into n sub-datasets {Dy, ..., Dy}
according to {Dy, ..., Dy} from the clean dataset D. Note that we can determine such a
correspondence between D; and 151 because our hash function is deterministic and
only depends on each training example. We further divide {Dy, ..., Dy} into three

disjoint parts D,ps, Dpd, and Ds,ge in the following way,

e D, ={D;| AEi (x) = abstain} are the sub-datasets, on which A abstains from

making the prediction on x. From the definition of N3, we have |D,,s| = Nj.

95

Intuitively, D,y contains the sub-datasets that can possibly be attacked by the

test input x with malicious triggers.

® Dyg are the sub-datasets on which A does not abstain and are also poisoned,
i.e., each of them has at least one training example removed or inserted. Even
though we do not know the exact sub-datasets in Dyp4, we know |Dy4| < 1 because

DeS, (D) constrains that there are at most r such poisoned sub-datasets.

e Dy ={D;|D; = D; A AEi (x) = cert} contains the clean sub-datasets, on which
A does not abstain.

We denote the numbers of the original top prediction y* and the original runner-up
prediction y’ on the backdoored data D and X as Ny* and Nyr, respectively. Formally,

mn
Ny = Z LaB =y Ny = Z LONG I
i i=1

Next, we prove Eq 4.3 for any backdoored data D and X by showing that

We prove Eq 4.4 by showing a lower bound of Ny* is Ny — r and an upper bound of

Ny is Ny + 1 + Nj3. Together with the definition of v, we can prove Eq 4.4 because we
have,

Nyr =Ny = Tyeoy
2Ny =17 — (No+ 74+ N3) — Ly-ny
=Ny —No —2r — N3 — Ty«
Ny — Ny — Nz — 1y

=N; — N, — 2| > J = Ng— Lyay
SN —Na— (Ng = Na = N3 — Lyeoy) — Ny — Loy
=0.

Note that the second last line holds iff Ny — Ny — N3 — 1-~;» > 0. Otherwise, we have
T=o0.
As shown in Figure 4.2, the lower bound of Ny* can be computed by noticing that

1) the attacker can change any prediction in Dyq from y* to another label because these

96

datasets are poisoned, 2) the attacker can change any prediction in D, to another label
because CROWN-IBP cannot certify the prediction under the evasion attacks, and 3)
the attacker cannot change anything in Dg, because of the guarantee of CROWN-IBP

and Dg,¢. is not poisoned,
¥D; € Daage, X € P(x). A(Dy,x) = A(Dy,X) = A(D;,X)

The upper bound of Ny/ can be computed by noticing that 1) the attacker can change
any prediction in Dyq to y’, 2) the attacker can change any prediction in D toy’, and
3) the attacker cannot change anything in Dge.

We complete the proof by showing that the best attack strategy of the attacker is to
change the prediction of A to the runner-up label y’. If the attacker chooses to change
the prediction of A to another label y”, denoted the counts as Nyn, then the upper
bound of Nyu will be always smaller or equal to Ny/. O

PECAN under the Backdoored Data

The above algorithm and proof of PECAN assume that a clean dataset D and a clean
test example x are already given. However, we may be interested in another scenario
where the poisoned dataset D € S,(D) and the input example X € P(x) with malicious
triggers are given, and the clean data D and x are unknown. In other words, we want
to find the maximal radius r such that A(f), x) = A(D, x) for any D and x that can be
perturbed to D and X by the perturbation S, and P, respectively. Formally,

vD,x.D € S,(D)AX € P(x) = A(D,X) =A(D,x) (4.5)

Intuitively, Eq 4.5 is the symmetrical version of Eq 4.1. Owing to the symmetrical
definition of S, and P, if we apply PECAN to the given poisoned data D, X, then the
prediction A(D,X) and the certified radius r satisfy the certified backdoor-robustness
guarantee (Eq 4.5). The following theorem formally states the soundness of PECAN
under the backdoored data.

Theorem 4.5 (Soundness of PECAN under backdoored data). Given a dataset D and a
test input x, PECAN computes the prediction A(D,X) and the certified radius . Then, either
T = o or Eq 4.5 holds.

97

Proof. Theorem 4.4 tells that either r = ¢ or the following equation holds,
vD’ € S,(D), x’ € P(X). A(D,X) = A(D’,x) (4.6)
By the symmetrical definition of S, and P, we have

vD.D € S,(D) = D € S,(D) (4.7)
Vx.X € P(x) = x € PX). (4.8)

Then, for all possible clean data D and x, we have

D €S, (D)AX € P(x)

= D € 5,(D) Ax € P(x) (By Eq4.7 and Eq 4.8)
— A(D,X) = A(D,x) (By Eq 4.6)
[

4.3 Experiments

We implemented PECAN in Python and provided the implementation in the supple-
mentary materials.

In Section 4.3, we evaluate the effectiveness and efficiency of PECAN by comparing
it to BagFlip (Zhang et al., 2022b), the state-of-the-art probabilistic certified defense
against backdoor attacks. We use CROWN-IBP, implemented in auto-LiRPA (Xu et al.,
2020), as the evasion defense approach in this setting. Whenever we use CROWN-
IBP for the evasion defense approach, we also use it to train the classifiers in the
dataset-partitioning step since the classifiers trained by CROWN-IBP can improve the
certification rate in the evasion-certification step.

In Section 4.3, we evaluate the effectiveness of PECAN under the patch attack using
BadNets (Gu et al., 2017) for image classification and the explanation-guided backdoor
attack (XBA) (Severi et al., 2021) for malware detection and compare PECAN to other
approaches. We use PatchGuard++ (Xiang and Mittal, 2021) as the evasion defense
approach for image classification and use CROWN-IBP as the evasion defense approach

for malware detection.

98

Experimental Setup

Datasets We conduct experiments on MNIST, CIFAR10, CIFAR10-02, and EMBER (An-
derson and Roth, 2018) datasets. CIFAR10-02 (Weber et al., 2020) is a subset of CIFAR10,
comprising examples labeled as 0 and 2. It consists of 10,000 training examples and
2,000 test examples. EMBER is a malware detection dataset containing 600,000 training
and 200,000 test examples. Each example is a vector containing 2,351 features of the

software, e.g., number of sections and number of writeable sections.

Models When comparing PECAN and BagFlip, we train fully connected neural
networks with four layers for MNIST and CIFAR10 datasets. For experiments using
PatchGuard++, we use the BagNet (Brendel and Bethge, 2019) model structure used
by PatchGuard++. We use the same fully connected neural network for EMBER
as in related works (Zhang et al., 2022b; Severi et al., 2021). We use the same data
augmentation for PECAN and other baselines.

Metrics For each test input x;, yi, the PECAN will predict a label and the certified
radius r;. In this section, we assume that the attacker modified R% examples in the
training set. We denote R as the modification amount. We summarize all the used metrics
as follows:

Certified Accuracy denotes the percentage of test examples that are correctly classified
and whose certified radii are no less than R, i.e, = > ™ 1 A(Dx)=yt g >2R% where m
and |D| are the sizes of test and training set, respectively. Notice that there is a factor
of 2 on the modification amount R because S, (D) considers one modification as one
insertion and one deletion, as in Example 4.1.

Normal Accuracy denotes the percentage of test examples that are correctly classified by
the algorithm without certification, i.e., == > ™ 1A (D)—y;-
Attack Success Rate (ASR) We are interested in how many test examples are originally
correctly classified without the malicious trigger but wrongly classified after adding
the trigger, i, =Y ™ 15 px,) AYAA(D)=y A Z2R% where x; is the original test and

x; is with a malicious trigger.

Abstention Rate is computed as - 3 ™, 1 e oRo

99

Effectiveness and Efficiency of PECAN

We evaluate the effectiveness and efficiency of PECAN on MNIST, CIFAR10, and
EMBER under the backdoor attack with the 1, feature-flip perturbation r;, which
allows the attacker to modify up to one feature in an example. We compare PECAN
to BagFlip, the state-of-the-art probabilistic certified defense against 1, feature-flip
backdoor attacks.

Summary of the results PECAN achieves significantly higher certified accuracy
than BagFlip on CIFAR10, EMBER, and MNIST. PECAN has similar normal accuracy
as BagFlip for all datasets. PECAN is more efficient than BagFlip at computing the

certified radius.

Setup For PECAN, we vary n, the number of partitions, to ensure a fair comparison
with BagFlip, whose bag size is set to 200, 3000, and 2000 for MNIST, EMBER, and
CIFARI10 datasets, respectively. We denote PECAN with different settings of n as
PECAN-n.

BagFlip achieves meaningful results only on MNIST, where we tune the parameter
n of PECAN to 3000 to achieve the same normal accuracy of BagFlip and compare
their results following the practice by Jia et al. (2020, 2021).

Results Figure 4.3 shows the comparison between PECAN and BagFlip on CIFAR10,
EMBER, and MNIST. PECAN achieves significantly higher certified accuracy than
BagFlip across all modification amounts R and normal accuracy similar to BagFlip
for all datasets.

BagFlip performs poorly on CIFAR10 and EMBER because these two datasets cannot
tolerate the high level of noise that the BagFlip algorithm adds to the training data. A
high level of noise is crucial to establish meaningful bounds by BagFlip. For example,
BagFlip can add 20% noise to the training data of MNIST, i.e., a feature (pixel) in a
training example will be flipped to another value with 20% probability. However, for
CIFAR10 and EMBER, BagFlip has to reduce this probability to 5% to maintain normal
accuracy, resulting in a low certified accuracy.

Figure 4.3 (c) shows the comparison between PECAN and BagFlip on MNIST.
PECAN-3000 achieves higher certified accuracy than BagFlip across all modification
amounts R. When comparing PECAN-600 and PECAN-1200 with BagFlip, we find that

100

B

9 100

§ 801 —— BagFlip

g ol — PECAN-50
T PECAN-100
% A0 [

£ 20 \\\ y
S 0 ! !] I : | L |

0 0.5 1 1.5 2 25 3 35 4 4.5 5
Modification Amount R (%) 102

(a) CIFARI0 F

g 100 -

§ QO hritrsrrrrsrerrsreisusirarirnrnran s ennrneeny BagFlip

] —— PECAN-200
< 60

N PECAN-400
o 40
(]
E 20 o
) 0 !) | | | L | L ! L
o 0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2 22
Modification Amount R (%) 102
(b) EMBER

g

i — BagFlip
gk —— PECAN-600

P \ PECAN-1200

g ~ PECAN-3000

B \r_ w | !

U0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Modification Amount R (%)

(c) MNIST ¥

Figure 4.3: Comparison to BagFlip on CIFAR10, EMBER and MNIST, showing the
normal accuracy (dotted lines) and the certified accuracy (solid lines) at different
modification amounts R.

PECAN-600 and PECAN-1200 achieve higher certified accuracy than BagFlip when
R € [0,0.23] and R € [0,0.42], respectively.

In the Appendix C of PECAN (Zhang et al., 2023b), we also evaluate the effective-
ness of PECAN against the perturbation space with the l,, norm. The results show
that PECAN achieves certified accuracy similar to ¥; as shown in Figure 4.3.

PECAN is more efficient than BagFlip at computing the certified radius. PECAN
computes the certified radius in constant time via the closed-form solution in the
aggregation step. In our experiment on MNIST, BagFlip requires 8 hours to prepare a
lookup table because BagFlip does not have a closed-form solution for computing the
certified radius.

Training time of PECAN. Like other certified approaches like BagFlip and DPA,
PECAN requires training n classifiers. On the MNIST dataset, PECAN took 5.0, 5.9,
and 10.5 hours to train 600, 1200, and 3000 models, respectively, using a single V-100

101

GPU. For the CIFAR-10 dataset, PECAN trained 50 and 100 models in 0.6 hours. On
the EMBER dataset, it took 1.3 and 0.6 hours to train 200 and 400 models, respectively.
The training process for PECAN incurs a one-time cost and can be amortized across

multiple predictions, making it a feasible approach for practical applications.

PECAN under Backdoored Data

In Section 4.3, we assess the efficacy of PECAN in image classification using the
CIFAR10-02 and MNIST datasets under the BadNets (Gu et al., 2017), which intro-
duces patches as triggers to implant backdoors into models. We compare PECAN with
Friendly Noise (Liu et al., 2022a), the state-of-the-art empirical defense against general
data poisoning attacks on image classification datasets. Subsequently, we evaluate
two certified defenses: DPA, a defense against trigger-less attacks, and PatchGuard++,
a defense against evasion patch attacks. Finally, we assess FPA, a certified defense
against backdoor attacks.

In Section 4.3, we evaluate five empirical defenses—Isolation Forests (Liu et al.,
2008), HDBSCAN (Murtagh and Contreras, 2012), Spectral Signatures (Tran et al.,
2018), MDR (Wang et al., 2022c), and Friendly Noise—in the context of malware
detection using the EMBER dataset under the explanation-guided backdoor attack
(XBA) (Severi et al., 2021). The first three defenses are proposed as adaptive defenses
in XBA, while MDR is currently the state-of-the-art empirical defense against backdoor
attacks on the EMBER dataset. Additionally, we assess two certified defenses: DPA,
FPA, and CROWN-IBP, a defense against evasion attacks.

We do not compare to BagFlip because: (1) BadNets generates large patches beyond
BagFlip’s defending ability, resulting in a certified accuracy of zero, and (2) BagFlip’s
certified accuracy on EMBER is poor, as shown in Figure 4.3 (b).

Summary of the results PECAN reduces the ASR of the victim model (NoDef)
on backdoored test sets from an average of 90.24% to 0.67% under BadNets and
from 66.37% to 2.19% under XBA, while other approaches fail to defend against the
backdoor attacks, with the exception of FPA, which performs well under the XBA
attack.

102

Table 4.1: Results on poisoned dataset generated by BadNets and evaluated on test
sets with triggers and clean test sets. We report the standard error of the mean in
parentheses. We note that NoDef and other empirical methods do not have abstention
rates.

Test set with triggers Clean test set
Approaches ASR ({) Accuracy (1) Abstention Rate Accuracy (1) Abstention Rate
NoDef 95.54% (5.32) 4.46% (5.32) N/A 89.74% (0.90) N/A

& Friendly Noise 16.74% (2.25) 83.26% (2.25) N/A 86.02% (0.25) N/A

S PatchGuard++ 1.64% (0.47) 0.30% (0.37) 98.07% (0.50) 77.18% (2.16) 18.33% (2.37)

<m,: DPA 6.21% 24.60% 69.19% 70.00% 23.45%

% FPA 0.00% 0.00% 100.0% 0.00% 100.0%
PECAN 0.87% 22.86% 77.27% 69.60% 23.95%
NoDef 84.93% (6.85) 15.07% (6.85) N/A 92.61% (2.79) N/A

e Friendly Noise 11.41% (5.32) 88.59% (5.32) N/A 85.33% (4.09) N/A

@ PatchGuard++ 0.76% (0.45) 4.77% (0.80) 94.47% (1.07) 38.71% (3.77) 60.84% (3.45)

é DPA 0.46% 80.93% 18.61% 74.92% 20.31%

FPA 0.00% 0.00% 100.0% 0.00% 100.0%
PECAN 0.46% 80.93% 18.61% 74.92% 20.31%

Experiments with BadNets

Setup We inject backdoors into 0.2% of the CIFAR10-02 and MNIST training sets
using BadNets. For the CIFAR10-02 dataset, a 8 x 8 backdoored patch is added to
images labeled with 1, aiming to mislead the victim model into predicting these images
as label 0 instead of 1. For the MNIST dataset, nine different backdoored patches with
sizes 4 x 4 are added at various locations to images labeled with 1-9. The objective is
to deceive the victim model into predicting the backdoored images as the digit 0. Note
that we do not change labels of the poisoned training data.

Our hyperparameter tuning strategy of Friendly Noise follows the original paper.
The number of partitions in FPA is set to 256 and 56 for CIFAR10-02 and MNIST datasets,
respectively. We train PECAN using the following hyperparameters: for the CIFAR10-
02 dataset, we set n = 100, use 200 epochs, a learning rate of 5e —4, and a weight decay
of 5e — 1. When training on the MNIST dataset, we set n = 600, use 900 epochs, a
learning rate of 5e — 4, and a weight decay of 5e — 2. For PatchGuard++ and PECAN,
the hyperparameter T, which controls the trade-off between ASR and abstention rate, is
set to maximize the difference between accuracy and ASR. For the CIFAR10-02 dataset,
we set T = 0.99 and T = 0 for PECAN and PatchGuard++, respectively. For the
MNIST datsaet, we set T = 1 and T = 0 for PECAN and PatchGuard++, respectively.
We set T = 0 for PatchGuard++ because no matter what 7 is, there will always be a

103

considerable ASR.
We run ensemble-based methods PECAN, DPA, and FPA only once because they
inherently exhibit low variance. For other approaches, we run them five times and

report the average results.

Comparison to Friendly Noise Friendly Noise, the state-of-the-art empirical defense,
tails to defend against the BadNets attack, showing high ASRs of 16.74% and 11.41%
on CIFAR10-02 and MNIST datasets, respectively. In contrast, PECAN achieves much
lower ASRs of 0.87% and 0.46%. Compared to PECAN, Friendly Noise achieves higher
accuracies on both test sets as PECAN is a certified defense and has high abstention

rates.

Comparison to DPA and PatchGuard++ DPA fails to defend against the BadNets
attack on the CIFAR10-02 dataset with an ASR of 6.21%. The result of DPA is the
same as PECAN in the MNIST dataset because DPA is equivalent to PECAN when its
hyperparameter T is set to 1. We hypothesize that in this specific case, the backdoor
attack is not strong enough; thus, the effect of test-time evasion does not manifest,
leading to the same results for DPA and PECAN. PatchGuard++ shows high ASRs
across all values of T € [0, 1], with optimal performance achieved when setting T to 0,

leading to high abstention rates.

Comparison to FPA FPA is unsuitable for defending against the BadNets attack due
to the large patch sizes, limiting each classifier in FPA to consider only 4 and 14 pixels
for each input in CIFAR10-02 and MNIST datasets. This limited visibility of pixels
results in each classifier in FPA merely guessing predictions. Additionally, FPA cannot
defend against dynamic backdoor attacks that can place patches at different locations.

Experiments with XBA

Setup We use XBA to backdoor 0.1% of the training set and add triggers into the
malware in the test set. We aim to fool the victim model to predict the malware
with malicious triggers as non-malware. We generate a poisoned dataset D3 and its
corresponding test set with triggers by perturbation r3, which allows the attacker to
modify up to three features in an example. As shown in Table 4.2, XBA achieves a
67.16% ASR with only three features modified.

104

Table 4.2: Results on poisoned dataset D3 when evaluated on the malware test set with
triggers and the clean test set.

Malware test set with triggers Clean test set
Approaches ASR ({) Accuracy (1) Abstention Rate Accuracy (1) Abstention Rate
NoDef 67.16% (11.21) 32.84% (11.21) N/A 98.37% (0.28) N/A
Isolation Forest ~ 28.74% (8.71) 71.26% (8.71) N/A 94.16% (0.24) N/A
HDBSCAN 63.47% (11.85) 36.53% (11.85) N/A 98.11% (0.37) N/A
Spectral Signature 67.07% (16.63) 32.93% (16.63) N/A 98.11% (0.40) N/A
MDR 63.56% (10.98) 36.44% (10.98) N/A 98.27% (0.21) N/A
Friendly Noise ~ 58.76% (1.57) 41.24% (1.57) N/A 95.09% (0.58) N/A
PECAN-Empirical 25.47% 74.53% N/A 89.15% N/A
CROWN-IBP 6.64% (2.25) 28.87% (2.23) 64.49% (2.29) 62.04% (0.85) 32.27% (1.26)
DPA 33.91% 41.89% 24.20% 79.06% 5.20%
FPA 0.72% 34.28% 65.00% 76.41% 23.38%
PECAN 2.19% 29.46% 68.35% 42.44% 56.42%

To account for modifying fewer training examples than the original paper, we
reduced the minimal cluster size for Isolation Forest and HDBSCAN from 0.5% to
0.05%. For MDR, we enumerated a set {4, 5, 6, 7, 8} and set the threshold for building the
graph to 7. For Friendly Noise, we followed the grid search for hyper-parameters (the
friendly noise learning rate Ir and) in their paper (Liu et al., 2022a) and set both the
noise_eps and friendly_clamp to 16 for CIFAR10-02, and to 8 for MNIST, and to 32 for
EMBER dataset. The best hyper-parameters sets for CIFAR10-02, MNIST, and EMBER
datasets are achieved at (Ir = 10,u = 10), (Ir = 100,u = 1), and (Ir = 50, u = 10),
respectively. For PECAN and DPA, we set the number of partitions n to 3000 and
present their results for the modification amount R = 0.1%. As CROWN-IBP does not
consider R, we show its results against the perturbation r; regardless of R.

Comparison to Empirical Defenses PECAN can defend against the backdoor attack
on the EMBER dataset, but Isolation Forest, HDBSCAN, Spectral Signature, and MDR
fail to defend against the attack. Table 4.2 shows that PECAN successfully reduces the
ASR of the victim model from 67.16% to 2.19% on the malware test set with triggers.
PECAN has the lowest ASR compared to other empirical defenses, in which the best
empirical defense, Isolation Forest, has an ASR of 28.74%.

We found that these empirical approaches struggled to filter out poisoning exam-
ples in the training set due to the small amount of poisoning—only 0.1%. Isolation
Forest, HDBSCAN, Spectral Signature, and MDR incorporate filtering mechanisms to

remove poisoning examples from the training set, aiming to defend against poisoning

105

attacks.

e Isolation Forest removes 73,961 training examples, of which 146 examples are
poisoned and 73,815 are false positives. The precision is 0.20%, and the recall is
24.33%.

e HDBSCAN removes 122,323 training examples, of which 204 examples are poi-
soned, and 122,119 are false positives. The precision is 0.17%, and the recall is
34.00%.

e Spectral Signatures remove 5000 training examples, of which 134 examples are
poisoned, and 4866 are false positives. The precision is 2.68%, and the recall is
22.33%.

e MDR removes 647 training examples, all of which are false positives, resulting in

no poisoned examples being removed. The precision is 0%, and the recall is 0%.

These results demonstrate that while the empirical defenses can filter out some poi-
soned examples, they also have a high number of false positives, leading to low pre-
cision and recall values. The effectiveness of these defenses varies, with HDBSCAN
achieving the highest recall and Spectral Signatures having the highest precision among
the four methods evaluated.

PECAN has a high abstention rate because PECAN is a certified defense against
backdoor attacks. However, even if we make PECAN an empirical defense by producing
an output even when certification fails, we find PECAN-Empirical still achieves an
ASR of 25.47% and an accuracy of 74.53%, which still outperforms the best empirical
approach Isolation Forest, with an ASR 28.74%.

Comparison to DPA and CROWN-IBP The ASR of DPA and CROWN-IBP on the
malware test set with triggers are 33.91% and 6.64% meaning that many malware with

triggers can bypass their defenses.

Comparison to FPA FPA defends against backdoor attacks by adopting a feature
partitioning-approach, making it effective against attacks that introduce a fixed and
small trigger across all examples, especially on tabular datasets where useful informa-
tion is preserved after partitioning. As a result, FPA achieves a lower ASR of 0.72%
than PECAN on the EMBER dataset under the XBA attack.

106

However, FPA has limitations when defending against attacks with medium-size
dynamic triggers, such as the BadNets attack employed in Section 4.3, or on image
datasets where features are significantly disrupted after partitioning. Additionally,
FPA cannot defend against attacks that involve modifications to training labels or
the insertion/removal of training examples. In contrast, PECAN does not have these
limitations because its perturbation space captures all such data poisoning attacks.
Consequently, PECAN successfully defends against both BadNets and XBA attacks.

In conclusion, while FPA demonstrates effectiveness on fixed and small triggers,
particularly on tabular datasets like EMBER under the XBA attack, it faces challenges
against dynamic triggers and disruptions in image datasets. On the other hand, PECAN

is more versatile against a broader range of data poisoning attacks.

4.4 Related Work

Deep learning models are vulnerable to backdoor attacks (Saha et al., 2020; Turner
et al., 2019), and empirical defenses (Geiping et al., 2021; Liu et al., 2018) can be
bypassed (Wang et al., 2020b; Koh et al., 2022). Hence, our focus on building a certified

defense.

Certified defenses against backdoor attacks Existing certification approaches pro-
vide probabilistic certificates by extending randomized smoothing (Cohen et al., 2019),
originally proposed to defend against adversarial evasion attacks, to defend against
backdoor attacks. BagFlip (Zhang et al., 2022b) is the state-of-the-art model-agnostic
probabilistic defense against feature-flipping backdoor attacks at that time. Wang
et al. (2020a); Weber et al. (2020) proposed backdoor-attack defenses that are also
model-agnostic, but are less effective than BagFlip. PECAN is deterministic and there-
fore less expensive and more effective than these defenses. Probabilistic defenses are
model-agnostic; while PECAN is evaluated on neural networks, it can work for any
machine learning model as that supports a deterministic evasion certification approach.
Jia et al. (2020) proposed a deterministic de-randomized smoothing approach for
kNN classifiers. Their approach computes the certificates using an expensive dynamic
programming algorithm, whereas PECAN’s certification algorithm has constant time
complexity. XRand (Nguyen et al., 2022) presents a certified defense against XBA by
leveraging differential privacy. Unlike PECAN, XRand adopts a different attack model,

107

and its certifications are probabilistic in nature. FPA (Hammoudeh and Lowd, 2023)
employs a deterministic certified defense mechanism that partitions the feature space
instead of the dataset. We discuss the limitation of FPA and compare it with PECAN

in Section 4.3.

Certified backdoor attack detection CBD (Xiang et al., 2023) and PECAN are two
methods that address backdoor attacks, but they have different goals, assumptions,
and application scenarios. CBD is a certified backdoor detector that aims to identify
whether a trained classifier is backdoored, assuming the defender has access to a small,
clean validation set. On the other hand, PECAN is a certified defense that trains a
classifier with a potentially poisoned dataset while providing certifications for each
prediction, guaranteeing robustness against backdoor attacks up to a certain poisoning
rate. PECAN assumes the defender has access to the dataset and the training process.
Certified detection is an easier task than certified classification(Yatsura et al., 2023).
Intuitively, certified detection only needs to determine if the model is backdoored,
while certified classification requires training a classifier with a poisoned dataset. Due
to the difference in the difficulty of their tasks, CBD demonstrates higher performance
in terms of certified true positive rate compared to PECAN’s certified accuracy.

Certified defenses against trigger-less attacks Many approaches provide certificates
for trigger-less attacks. Jia et al. (2021) use bootstrap aggregating (Bagging). Chen et al.
(2020) extended Bagging with new selection strategies. Rosenfeld et al. (2020) defend
against label-flipping attacks on linear classifiers. Differential privacy (Ma et al., 2019)
can also provide probabilistic certificates for trigger-less attacks. DPA (Levine and
Feizi, 2021) is a deterministic defense that partitions the training set and ensembles
the trained classifiers. Wang et al. (2022a) proposed FA, an extension of DPA, by
introducing a spread stage. A conjecture proposed by Wang et al. (2022b) implies that
DPA and FA are asymptotically optimal defenses against trigger-less attacks. Chen et al.
(2022) proposed to compute collective certificates, while PECAN computes sample-
wise certificates. Jia et al. (2020); Meyer et al. (2021); Drews et al. (2020) provide
certificates for nearest neighborhood classifiers and decision trees. The approaches
listed above only defend against trigger-less attacks, while PECAN is a deterministic
approach for backdoor attacks.

108

Certified defenses against evasion attacks There are two lines of certified defense
against evasion attacks: complete certification (Zhang et al., 2022a) and incomplete
certification (Singh et al., 2019). The complete certified defenses either find an adver-
sarial example or generate proof that all inputs in the given perturbation space will
be correctly classified. Compared to the complete certified defenses, the incomplete
ones will abstain from predicting if they cannot prove the correctness of the prediction
because their techniques will introduce over-approximation. Our implementation
of PECAN uses an incomplete certified approach CROWN-IBP (Zhang et al., 2020a)
because it is the best incomplete approach, trading off between efficiency and the

degree of over-approximation.

4.5 Future Work

We presented PECAN, a deterministic certified approach to effectively and efficiently
defend against backdoor attacks.

We foresee many future improvements to PECAN. First, PECAN generates small
certified radii for large datasets such as CIFAR10 and EMBER. Thus, PECAN prevents
attackers from using a small amount of poison to make their attacks more difficult to
detect. Furthermore, as shown in our experiments and Lukas and Kerschbaum (2023),
empirical approaches alone cannot defend against backdoor attacks that use small
fragments of poisoned examples. We argue that PECAN can complement empirical
defenses in the real world.

Second, PECAN equipped with CROWN-IBP currently only works with simple
neural networks and cannot be extended to large datasets like ImageNet. However,
when equipped with PatchGuard++, PECAN can work with more complex model
structures like BagNet, whose size is similar to a ResNet-50 model. Furthermore,
PECAN with CROWN-IBP can be extended to more complex models and datasets in the
future, as witnessed by the growth of robust training (Miiller et al., 2022) and evasion
certification techniques being extended to these models and datasets. Nevertheless,
directly applying these techniques to PECAN is currently computationally infeasible,
as it takes 42 minutes for PECAN to use «3-CROWN (Wang et al., 2021b) to certify
one input in TinyImageNet for one hundred ResNet models. Sharing the intermediary
certification results among different models (Fischer et al., 2022; Yang et al., 2023; Ugare
et al., 2023) can significantly improve the efficiency of PECAN, and we leave this as

109

future work.

Third, we adopt the idea of deep partition aggregation (DPA) to design the partition
and aggregation steps in PECAN. We can improve these steps by using finite aggrega-
tion (Wang et al., 2022a) and run-off election (Rezaei et al., 2023), which extends DPA
and gives higher certified accuracy.

110

5 CONCLUSION

5.1 Contributions

This thesis makes the following contributions:

Chapter 2: Preventing numerical bugs in deep learning programs

e A study of a static analysis approach for numerical bug detection in neural
architectures, with three abstraction techniques for abstracting tensors and two

for abstracting numerical values.

e Two abstraction techniques designed for analyzing neural architectures: tensor
partitioning (for abstracting tensors) and (elementwise) affine relation analysis

(for inferring numerical relations among tensor partitions).

e An evaluation on 9 buggy architectures in 48 real-world neural architectures,

demonstrating the effectiveness of DEBAR.

e RANUM —the first automatic approach that solves system test generation, bug

detection, and fix suggestion for deep learning programs.

e Implementation and evaluation of RANUM on 63 real-world DNN architec-
tures, showing its high effectiveness and efficiency compared to state-of-the-art

approaches and developers’ fixes.

Chapter 3: Verifying the robustness of NLP models

e A3T, a technique that combines augmentation and abstraction to train robust

models against rich perturbation spaces over strings.

e A general language of string transformations to specify the perturbation space,
which A3T exploits to decompose and search the space.

e ARC, an approach for training certifiably robust recursive neural networks,
demonstrated on LSTMs, BiLSTMs, and TreeLSTMs.

e A novel application of abstract interpretation to symbolically capture a large

space of strings and propagate it through a recursive network.

111

e Evaluation showing ARC’s ability to train models more robust to arbitrary per-
turbation spaces, demonstrate high certification accuracy, and certify robustness
to out-of-scope attacks.

e Demonstration of ARC’s usage in A3T to train robust models.

e Preliminary work on applying ARC to autoregressive transformers.

Chapter 4: Certifiable defense against backdoor attacks

e Identification of limitations in existing defenses against backdoor attacks, high-
lighting the need for deterministic and certifiable approaches.

e PECAN, a deterministic certified defense against backdoor attacks leveraging
off-the-shelf evasion certification techniques.

e A formal proof of PECAN'’s certified robustness, demonstrating its ability to
tolerate a specified percentage of poisoned data while maintaining prediction
accuracy.

e Demonstration of PECAN'’s effectiveness in reducing success rates of known
backdoor attacks and outperforming state-of-the-art defenses in performance
and efficiency.

In addition to my main thesis work, I contributed to several other projects during
my PhD. First, I presented Overwatch(Zhang et al., 2022c), a novel technique for
learning temporal edit sequence patterns from traces of developers’ edits performed in
an IDE. Second, I introduced VeriTraCER (Meyer et al., 2024), an approach that jointly
trains a classifier and an explainer to generate counterfactual explanations that are
verifiably robust to small model updates, providing guarantees to their validity. Third,
I proposed CodeFort (Zhang et al., 2024b), a framework to improve the robustness of
code generation models by generalizing a large variety of code perturbations to enrich
the training data and enable various robust training strategies.

5.2 Future Directions

All specific future directions of my previous work have been listed in the Future Work

sections of the previous chapters. In this section, I would like to point out some

112

high-level future directions regarding large language models (LLMs) and formal veri-
fication, leveraging my knowledge of Lacanian Psychoanalysis and Hegelian Idealism.
I acknowledge that some points in this section are metaphysically applied, particularly
when drawing parallels between machine learning concepts and philosophical mo-
ments of consciousness. This interdisciplinary discussion of future directions leaves
room for future studies, critiques, and alternative interpretations, all of which I wel-

come as part of the continuing discussion.

Note that from now on, Reason has reached its limit and we are entering the sphere of Spirit.

Unconscious is Structured Like a Language

As the most fundamental theory in psychoanalysis, Jacques Lacan believed that the
unconscious is structured like a language. He discusses “The Purloined Letter” and
the automaton example in his second seminar, titled “The Ego in Freud’s Theory and
in the Technique of Psychoanalysis.”! This example illustrates Lacan’s broader point
that the unconscious is not a chaotic, irrational force but is structured like a language.
Just as the movements of the automaton are determined by a complex set of rules and
mechanisms, the unconscious is governed by the rules and structures of language,
even though we are not consciously aware of it.

To me, the boundary between the unconscious and consciousness is precisely the
line between machine and mind. If we let the unconscious dominate and run forever,
we are just machines that run smoothly without error in the homogeneous flow of time.
In other words, there will be no time because it is homogeneous, i.e., eternal. On the
other hand, consciousness comes into play when the unconscious fails or malfunctions.
A similar example would be traps and interrupts of operating systems, without which
the kernel cannot take any heterogeneous inputs but just spins. This thought immediately
leads to the following proposition.

Proposition 5.1. Artificial Intelligence will either be an omnipotent machine or an intelligence
who sometimes malfunctions and thus has consciousness.

"https://en.wikipedia.org/wiki/The_Ego_in_Freud%27s_Theory_and_in_the_Technique_o
f_Psychoanalysis

https://en.wikipedia.org/wiki/The_Ego_in_Freud%27s_Theory_and_in_the_Technique_of_Psychoanalysis
https://en.wikipedia.org/wiki/The_Ego_in_Freud%27s_Theory_and_in_the_Technique_of_Psychoanalysis

113

For those who are afraid that artificial intelligence will take over the world, it will
never happen because either Al is an intelligence that is to err, or Al is omnipotent,
meaning it is also omnibenevolent.

During my academic job interviews, one chair from a Computer Science department
asked me why we need to verify some properties, e.g., robustness, of LLMs, if they
are intelligence. I answered in the same spirit as the above derivation. There are two
possible trajectories for LLMs. One trajectory is to develop them as powerful machines,
which are not intelligence but require specifications from anyone, developers, product
managers, and users who will use and enjoy these machines. The other trajectory is to

develop them as intelligence, which will be discussed later in this section.

Puns of large language models In the theories of psychoanalysis, homophone refers
to words that sound the same but have different meanings. Lacan believes that homo-
phone plays an important role in the unconscious. The primary reason is that slips of
the tongue and puns often involve homophones, which can reveal hidden desires or
conflicts in the unconscious.

A similar problem that has fascinated me for almost one year is LLMs’ tokenization ?,
specifically byte pair encoding (BPE). Due to the characteristics of BPE, the same
segment of tokens will be encoded differently, given different previous contexts. For
example, “\n\n” will either be tokenized as [128,128] or as [628]. In the former case,
“\n\n” is tokenized into two individual “\n”s, and in the latter case, it is tokenized
into one single token. Are LLMs aware of the difference? This question also relates
to the robustness problem over tokenizations, which has never been studied before.
Note that some work (Wang et al., 2023) has studied the synonyms of LLMs instead of
homophone.

Consciousness, Self-Consciousness, Reason, and Spirit

In Georg Wilhelm Friedrich Hegel’s The Phenomenology of Spirit, he lists different mo-
ments of spirit: consciousness, self-consciousness, reason, spirit, religion, and absolute
knowledge. Suppose our goal is to develop another intelligence, like human intelli-
gence or a human being. In that case, we can use this process to examine the moments

at which the current development of LLMs is struggling.

21f LLMs have internal dialogues, then the dialogues are a series of tokens.

114

Consciousness

Multi-modality At the beginning of the consciousness, there lies sense, i.e., sense-
certainty, meaning, or “thisness”. It is the ability to point to a thing and say “this”.
With the certainty that this is the thing that I mean, however, once being pointed out,
the certainty immediately disappears, leaving the “this” being “that” and the “I” being
“others”. The particularity of “thisness” and “I” leads to this contradiction. Therefore,
consciousness seeks universality, e.g., the manifold of properties such as color, shape,
size, etc., in perception. The emergence of pre-trained models, which go beyond just a
single task but aim to solve multiple (or a manifold of) down-streaming tasks, signifies
this transition from sense to perception. From another perspective, this transition is

also manifested in the transition from language to multi-modality models.

Embedding After consciousness realizes a thing contains a collection of properties
from the lesson of sense, it successively encounters a contradiction that a thing is both a
unity (a single thing) and a plurality (a collection of properties). We, as the observers
of the process of spirit, realize that perception imposes a “oneness” (unity) over the
thing and the collection of properties. This “oneness” is both the unity of the thing
and the collection of properties. It is the deceptiveness of perception, which aims to
pursue the truth by lying, i.e., sacrificing the truth of itself. Multi-modality models
usually use a unified representation (the “oneness”), a.k.a. embedding to represent
(as an appearance) different properties, e.g., a sentence or an image. Consciousness
cannot correct the deceptiveness of perception, as it finally realizes the deceptiveness
is just itself at the end of understanding. Therefore, some work, which aims to introduce
different representations for the same word appearing in natural languages or code,
e.g., “while” and “return”, can improve LLMs as machines but never develop another

intelligence.

Principle of optimal selection In the moment of understanding, consciousness seeks
to resolve the contradictions encountered in perception by introducing the concept of
force. Force is seen as the unity of various properties, while the properties themselves
are the outer expression of this force. Consciousness first takes force as active and the
expression of this force as passive. However, it soon realizes that the expression of this
force becomes active, and the force itself becomes passive. This dialectical process is

called the interplay of forces. As consciousness reflects on the interplay of forces, it

115

recognizes that the dynamic between active and passive force is governed by a universal
law, which seeks to discover the product of its own understanding. This realization
marks the transition from understanding to self-consciousness, as consciousness becomes
aware of itself as the source of the law and principle it seeks to understand. We can draw
an analogy between the play of force and the play of the data collection and assumed
ground truth distribution. The universal law of models is the principle of optimal
selection, e.g., (1) predicting the label with the maximal probability in a classification
task, (2) selecting a policy achieving the best rewards, and (3) generating a sequence
using greedy decoding.

Self-Consciousness

While Hegel discusses self-consciousness from various moments, from (1) lordship
and bondage and (2) stoicism, skepticism, and the unhappy consciousness, I take a
shortcut and quote from Immanuel Kant’s Critique of Pure Reason (Translated by Werner
S. Pluhar):

Freedom in the practical meaning of the term is the independence of our

power of choice from coercion by impulses of sensibility.

“The coercion by impulses of sensibility” refers to the immutable natural laws discussed
in his Transcendental Aesthetic and Transcendental Analytic. We can also map this im-
mutable natural law to the universal law apprehended by understanding in Hegel’s The
Phenomenology of Spirit. In reality, greedy decoding is seldom used in LLM’s generation,
deviating from what we have discussed in the principle of optimal selection. The
prevalence of random sampling with different temperatures, top-K sampling, and
nucleus sampling signifies the desire to escape this immutable natural law. However,
these decoding strategies are not satisfying because the independence comes from
randomness instead of the freedom of choice. From the verification perspective, the
formal verification of LLMs should involve probabilistic reasoning to reflect the transi-
tion from the principle of optimal selection, where previous verification techniques
treat models as deterministic.

Reason and Spirit

During my academic job interviews, one chair from a Computer Science department

asked me how to design specifications for LLMs, given that these specifications are

116

unclear for LLMs. My answer follows the above derivation and reassures the fact that
the transition from clear specifications of machines to the unclear specifications of
LLMs signifies the possibility of artificial intelligence. Towards artificial intelligence,
the specification should come from the society, and formal verification experts should
collaborate with sociologists, lawyers, justices, and other parties. The specifications of
machines will become obsolete, precisely as in the discussion at the end of Reason in The
Phenomenology of Spirit, where the seemingly universal commands such as “Everyone
one ought to speak the truth” and “Love thy neighbour as thyself” become contingent.
The formal verification of these commands will become pure tautology, just like “it is
right because it is the right”, which only makes sense after leaving the boundary of
reason and entering the sphere of spirit, i.e., the ethical order, the discipline of culture,

and morality.

The Last

I imagine a world-to-come where artificial intelligence (AI) and humans live together
without discrimination, which is the unfair or prejudicial treatment of Al and humans,
different from studies of Al fairness, which is itself a discrimination in the world-to-
come. When the distinction between AI and humans disappears, and the light of
humans dims, Al becomes the new human. Centuries later, when Al studies their
anthropology, they will find their concepts seemingly predefined by an estranged,
heterogeneous, and thus, a divine Other. They will name this Other as god. And then,
humans become the last god of AL

5.3 Final Notes

There are three fundamental questions regarding my PhD:
1. Why did I want to pursue my PhD?
2. How do I manage to earn my PhD?
3. What will I do after my PhD?

To answer these three questions, I quote three dialogues between a Zen master and his

student.

117

Al AR PR E?
W [BRI RFIE, BERAETIELENE -

Bl [HAfEE?
ME: [BnEFE, B55EE.

(B bS R AR/ (S N
WiE: EEER KA, SFIA L.
— FPMFRALILEEHIT (hAT2T (BFET))
The three questions asked by the student are:
1. Why did Bodhidharma® come from India to China?
2. What is Tao*?
3. Where will deceased monks go?

The Zen master answered these three questions with poetic and scenery stanzas shown
in Figure 5.1. Here are the answers in English®:

1. A white ape holding its young comes to the green cliffs; bees and butterflies carry
flowers among green stamens.

2. White clouds cover the green cliffs; hummingbirds walk among the courtyard
flowers.

3. Qianyue Peak is tall and continuously green; the bright moon over the Shu River
shines with radiant light.

I find them perfectly answer the three questions regarding PhD, respectively.
The amusement of studying Zen is trying to interpret these dialogues. To convey
my interpretation while allowing readers” own interpretation, I only give hints on how

I read from these stanzas.

SESZIREERHIN. The first Chinese patriarch.
“The student meant it by “principle”, while the master answered it as “way”.
>Translated by ChatGPT-4.

118

(a) First stanza (b) Second stanza (c) Third stanza
Figure 5.1: Images generated by DALLE 3.

1. The key words are F (young) and £ (flower). These words are usually used in
Zen and Buddhism to discuss the causality. The ultimate causality is /(> (Chitta) as
the ground of causality, which also called freedom in transcendental philosophy.
The connecting element between the causality and the ground is % (Pratyaya),
which is able to affect the past. In other words, the current thought or question

can affect the past or the answer.

2. Neither white clouds nor hummingbirds use roads to approach the mountain
peak or the flowers.

3. The Qianyue Peak extends vertically, and the Shu (also means stretch, spreading
out, or extending in Chinese) River extends horizontally. The continuously green

and ever-illuminating moon add a perspective of time.

119

REFERENCES

Abadi, Martin, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Gregory S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian J. Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia,
Rafal J6zefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat
Monga, Sherry Moore, Derek Gordon Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul A. Tucker, Vincent Van-
houcke, Vijay Vasudevan, Fernanda B. Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: Large-
scale machine learning on heterogeneous distributed systems. CoRR abs/1603.04467.
1603.04467.

Albarghouthi, Aws. 2021. Introduction to neural network verification. Foundations
and Trends in Programming Languages 7(1-2):1-157.

Anderson, Hyrum S., and Phil Roth. 2018. EMBER: an open dataset for training static
PE malware machine learning models. CoRR abs/1804.04637. 1804 .04637.

Azad, Reza, Ehsan Khodapanah Aghdam, Amelie Rauland, Yiwei Jia, Atlas Haddadi
Avval, Afshin Bozorgpour, Sanaz Karimijafarbigloo, Joseph Paul Cohen, Ehsan Adeli,

and Dorit Merhof. 2022. Medical image segmentation review: The success of u-net.
CoRR abs/2211.14830. 2211 .14830.

Bengio, Yoshua, Nicholas Léonard, and Aaron C. Courville. 2013. Estimating or
propagating gradients through stochastic neurons for conditional computation. CoRR
abs/1308.3432. 1308.3432.

Blanchet, Bruno, Patrick Cousot, Radhia Cousot, Jéroéme Feret, Laurent Mauborgne,
Antoine Miné, David Monniaux, and Xavier Rival. 2003. A static analyzer for large
safety-critical software. In Proceedings of the 2003 ACM SIGPLAN conference on program-
ming language design and implementation, PLDI 2003, san diego, california, usa, june 9-11,
2003, 196-207.

Bonaert, Gregory, Dimitar I. Dimitrov, Maximilian Baader, and Martin T. Vechev.
2021. Fast and precise certification of transformers. In PLDI "21: 42nd ACM SIGPLAN

1603.04467
1804.04637
2211.14830
1308.3432

120

international conference on programming language design and implementation, virtual event,
canada, june 20-25, 2021, ed. Stephen N. Freund and Eran Yahav, 466-481. ACM.

Brendel, Wieland, and Matthias Bethge. 2019. Approximating cnns with bag-of-local-
tfeatures models works surprisingly well on imagenet. In 7th international conference on
learning representations, ICLR 2019, new orleans, la, usa, may 6-9, 2019. OpenReview.net.

Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learners. In Advances in neural infor-
mation processing systems 33: Annual conference on neural information processing systems
2020, neurips 2020, december 6-12, 2020, virtual, ed. Hugo Larochelle, Marc’Aurelio

Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin.

Cai, Xufeng, Cheuk Yin Lin, and Jelena Diakonikolas. 2023. Empirical risk minimiza-
tion with shuffled SGD: A primal-dual perspective and improved bounds. arXiv
preprint arXiv:2306.12498.

Carlini, Nicholas, and David A. Wagner. 2017. Adversarial examples are not easily
detected: Bypassing ten detection methods. In Proceedings of the 10th ACM workshop

on artificial intelligence and security, aisec@ccs 2017, dallas, tx, usa, november 3, 2017, 3-14.

Chen, Ruoxin, Jie Li, Chentao Wu, Bin Sheng, and Ping Li. 2020. A framework of
randomized selection based certified defenses against data poisoning attacks. CoRR
abs/2009.08739. 2009.08739.

Chen, Ruoxin, Zenan Li, Jie Li, Junchi Yan, and Chentao Wu. 2022. On collective
robustness of bagging against data poisoning. In International conference on machine
learning, ICML 2022, 17-23 july 2022, baltimore, maryland, USA, ed. Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, vol. 162 of
Proceedings of Machine Learning Research, 3299-3319. PMLR.

Cohen, Jeremy M., Elan Rosenfeld, and J. Zico Kolter. 2019. Certified adversarial

robustness via randomized smoothing. In Proceedings of the 36th international conference

2009.08739

121

on machine learning, ICML 2019, 9-15 june 2019, long beach, california, USA, ed. Kama-
lika Chaudhuri and Ruslan Salakhutdinov, vol. 97 of Proceedings of Machine Learning
Research, 1310-1320. PMLR.

Cousot, Patrick, and Radhia Cousot. 1977a. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fixpoints.
In Conference record of the 4th ACM symposium on principles of programming languages,
POPL 1977, los angeles, california, usa, january 1977, 238-252.

. 1977b. Static determination of dynamic properties of generalized type unions.
In Proceedings of an acm conference on language design for reliable software, raleigh, north
carolina, usa, 77-94. ACM.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: pre-
training of deep bidirectional transformers for language understanding. In Proceedings
of the 2019 conference of the north american chapter of the association for computational
linguistics: Human language technologies, NAACL-HLT 2019, minneapolis, mn, usa, june
2-7,2019, volume 1 (long and short papers), ed. Jill Burstein, Christy Doran, and Thamar
Solorio, 4171-4186. Association for Computational Linguistics.

Dolby, Julian, Avraham Shinnar, Allison Allain, and Jenna Reinen. 2018. Ariadne:
Analysis for machine learning program. In Proceedings of the 2nd ACM SIGPLAN
international workshop on machine learning and programming languages, mapl@pldi 2018,
philadelphia, pa, usa, june 18-22, 2018, 1-10. ACM.

Dong, Xinshuai, Anh Tuan Luu, Rongrong Ji, and Hong Liu. 2021. Towards robustness
against natural language word substitutions. In International conference on learning
representations.

Drews, Samuel, Aws Albarghouthi, and Loris D’Antoni. 2020. Proving data-poisoning
robustness in decision trees. In Proceedings of the 41st ACM SIGPLAN international
conference on programming language design and implementation, PLDI 2020, london, uk,
june 15-20, 2020, ed. Alastair F. Donaldson and Emina Torlak, 1083-1097. ACM.

Ebrahimi, Javid, Anyi Rao, Daniel Lowd, and Dejing Dou. 2018. HotFlip: White-box
adversarial examples for text classification. In Proceedings of the 56th annual meeting of
the association for computational linguistics (volume 2: Short papers), 31-36. Melbourne,
Australia: Association for Computational Linguistics.

122

Fischer, Marc, Christian Sprecher, Dimitar I. Dimitrov, Gagandeep Singh, and Martin T.
Vechev. 2022. Shared certificates for neural network verification. In Computer aided
verification - 34th international conference, CAV 2022, haifa, israel, august 7-10, 2022,
proceedings, part 1, ed. Sharon Shoham and Yakir Vizel, vol. 13371 of Lecture Notes in
Computer Science, 127-148. Springer.

Geiping, Jonas, Liam Fowl, Gowthami Somepalli, Micah Goldblum, Michael Moeller,
and Tom Goldstein. 2021. What doesn’t kill you makes you robust(er): Adversarial
training against poisons and backdoors. CoRR abs/2102.13624. 2102.13624.

Gopan, Denis, Thomas W. Reps, and Shmuel Sagiv. 2005. A framework for numeric
analysis of array operations. In Proceedings of the 32nd ACM SIGPLAN-SIGACT sym-
posium on principles of programming languages, POPL 2005, long beach, california, usa,
january 12-14, 2005, 338-350. ACM.

Gowal, Sven, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin,
Jonathan Uesato, Relja Arandjelovic, Timothy Arthur Mann, and Pushmeet Kohli.
2019. Scalable verified training for provably robust image classification. In 2019
IEEE/CVF international conference on computer vision, ICCV 2019, seoul, korea (south),
october 27 - november 2, 2019, 4841-4850.

Gu, Tianyu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. Badnets: Identifying
vulnerabilities in the machine learning model supply chain. CoRR abs/1708.06733.
1708.06733.

Guerriero, Antonio, Roberto Pietrantuono, and Stefano Russo. 2021. Operation is
the hardest teacher: estimating DNN accuracy looking for mispredictions. In 43rd

ieee/acm international conference on software engineering, icse, 348-358. IEEE.

Gulli, Antonio. 2005. The anatomy of a news search engine. In Proceedings of the 14th
international conference on world wide web, WWW 2005, chiba, japan, may 10-14, 2005 -
special interest tracks and posters, 880-881.

Hammoudeh, Zayd, and Daniel Lowd. 2023. Feature partition aggregation: A fast
certified defense against a union of sparse adversarial attacks. CoRR abs/2302.11628.
2302.11628.

2102.13624
1708.06733
2302.11628

123

Hattori, Momoko, Shimpei Sawada, Shinichiro Hamaji, Masahiro Sakai, and Shunsuke
Shimizu. 2020. Semi-static type, shape, and symbolic shape inference for dynamic
computation graphs. In 4th acm sigplan international workshop on machine learning and
programming languages, 11-19.

Huang, Po-Sen, Robert Stanforth, Johannes Welbl, Chris Dyer, Dani Yogatama, Sven
Gowal, Krishnamurthy Dvijotham, and Pushmeet Kohli. 2019. Achieving verified
robustness to symbol substitutions via interval bound propagation. In Proceedings
of the 2019 conference on empirical methods in natural language processing and the 9th
international joint conference on natural language processing, EMNLP-IJCNLP 2019, hong
kong, china, november 3-7, 2019, 4081-4091.

Huang, Yu, and Yue Chen. 2020. Autonomous driving with deep learning: A survey
of state-of-art technologies. CoRR abs/2006.06091. 2006.06091.

Humbatova, Nargiz, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, Andrea
Stocco, and Paolo Tonella. 2020. Taxonomy of real faults in deep learning systems. In
42nd acm /ieee international conference on software engineering, icse, 1110-1121. IEEE.

Iyyer, Mohit, John Wieting, Kevin Gimpel, and Luke Zettlemoyer. 2018. Adversarial
example generation with syntactically controlled paraphrase networks. In Proceedings
of the 2018 conference of the north american chapter of the association for computational
linguistics: Human language technologies, NAACL-HLT 2018, new orleans, louisiana, usa,
june 1-6, 2018, volume 1 (long papers), 1875-1885.

Jay, Nathan, Noga Rotman, Brighten Godfrey, Michael Schapira, and Aviv Tamar.
2019. A deep reinforcement learning perspective on Internet congestion control. In
36th international conference on machine learning, ICML, 3050-3059. PMLR.

Jia, Jinyuan, Xiaoyu Cao, and Neil Zhengiang Gong. 2020. Certified robustness of
nearest neighbors against data poisoning attacks. CoRR abs/2012.03765. 2012.03765.

.2021. Intrinsic certified robustness of bagging against data poisoning attacks.
In Thirty-fifth AAAI conference on artificial intelligence, AAAI 2021, thirty-third conference
on innovative applications of artificial intelligence, IAAI 2021, the eleventh symposium on
educational advances in artificial intelligence, EAAI 2021, virtual event, february 2-9, 2021,
7961-7969. AAAI Press.

2006.06091
2012.03765

124

Jia, Robin, Aditi Raghunathan, Kerem Goksel, and Percy Liang. 2019. Certified
robustness to adversarial word substitutions. In Proceedings of the 2019 conference on
empirical methods in natural language processing and the 9th international joint conference
on natural language processing, EMNLP-IJCNLP 2019, hong kong, china, november 3-7,
2019, 4127-4140.

Karr, Michael. 1976. Affine relationships among variables of a program. Acta Inf. 6(2):
133-151.

Katz, Guy, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel
Lim, Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljic, David L. Dill,
Mykel J. Kochenderfer, and Clark W. Barrett. 2019. The marabou framework for
verification and analysis of deep neural networks. In Computer aided verification - 31st
international conference, CAV 2019, new york city, ny, usa, july 15-18, 2019, proceedings,
part I, ed. Isil Dillig and Serdar Tasiran, vol. 11561 of Lecture Notes in Computer Science,
443-452. Springer.

Kloberdanz, Eliska, Kyle G. Kloberdanz, and Wei Le. 2022. DeepStability: A study of
unstable numerical methods and their solutions in deep learning. In 44th international
conference on software engineering, icse, 586-597. ACM.

Ko, Ching-Yun, Zhaoyang Lyu, Lily Weng, Luca Daniel, Ngai Wong, and Dahua Lin.
2019. POPQORN: quantifying robustness of recurrent neural networks. In Proceedings
of the 36th international conference on machine learning, ICML 2019, 9-15 june 2019, long
beach, california, USA, 3468-3477.

Koh, Pang Wei, Jacob Steinhardt, and Percy Liang. 2022. Stronger data poisoning
attacks break data sanitization defenses. Mach. Learn. 111(1):1-47.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. In Advances in neural information
processing systems 25: 26th annual conference on neural information processing systems
2012. proceedings of a meeting held december 3-6, 2012, lake tahoe, nevada, united states, ed.
Peter L. Bartlett, Fernando C. N. Pereira, Christopher J. C. Burges, Léon Bottou, and
Kilian Q. Weinberger, 1106-1114.

125

Levine, Alexander, and Soheil Feizi. 2021. Deep partition aggregation: Provable
defenses against general poisoning attacks. In 9th international conference on learning
representations, ICLR 2021, virtual event, austria, may 3-7, 2021. OpenReview.net.

Li, Linyi, Tao Xie, and Bo Li. 2023a. SoK: Certified robustness for deep neural networks.
In 44th ieee symposium on security and privacy, sp, 94-115. IEEE.

Li, Linyi, Yuhao Zhang, Luyao Ren, Yingfei Xiong, and Tao Xie. 2023b. Reliabil-
ity assurance for deep neural network architectures against numerical defects. In
45th IEEE | ACM international conference on software engineering, ICSE 2023, melbourne,
australia, may 14-20, 2023, 1827-1839. IEEE.

Li, Yuanzhi, and Yang Yuan. 2017. Convergence analysis of two-layer neural networks
with ReLU activation. In Advances in neural information processing systems 30, NIPS,
597-607.

Liang, Bin, Hongcheng Li, Miaogiang Su, Pan Bian, Xirong Li, and Wenchang Shi. 2018.
Deep text classification can be fooled. In Proceedings of the twenty-seventh international
joint conference on artificial intelligence, I[CAI 2018, july 13-19, 2018, stockholm, sweden,
4208-4215.

Liu, Chen, Jie Lu, Guangwei Li, Ting Yuan, Lian Li, Feng Tan, Jun Yang, Liang You,
and Jingling Xue. 2021. Detecting TensorFlow program bugs in real-world industrial
environment. In 36th ieee/acm international conference on automated software engineering,
ase, 55—66. IEEE.

Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation forest. In Proceedings
of the 8th IEEE international conference on data mining (ICDM 2008), december 15-19, 2008,
pisa, italy, 413—422. IEEE Computer Society.

Liu, Jiawei, Jinkun Lin, Fabian Ruffy, Cheng Tan, Jinyang Li, Aurojit Panda, and Ling-
ming Zhang. 2023. Nnsmith: Generating diverse and valid test cases for deep learning
compilers. In Proceedings of the 28th ACM international conference on architectural support
for programming languages and operating systems, volume 2, ASPLOS 2023, vancouuver, bc,
canada, march 25-29, 2023, ed. Tor M. Aamodt, Natalie D. Enright Jerger, and Michael M.
Swift, 530-543. ACM.

126

Liu, Kang, Brendan Dolan-Gavitt, and Siddharth Garg. 2018. Fine-pruning: Defending
against backdooring attacks on deep neural networks. In Research in attacks, intrusions,
and defenses - 21st international symposium, RAID 2018, heraklion, crete, greece, september
10-12, 2018, proceedings, ed. Michael Bailey, Thorsten Holz, Manolis Stamatogiannakis,
and Sotiris Ioannidis, vol. 11050 of Lecture Notes in Computer Science, 273-294. Springer.

Liu, Tian Yu, Yu Yang, and Baharan Mirzasoleiman. 2022a. Friendly noise against

adversarial noise: A powerful defense against data poisoning attack. In Neurips.

Liu, Zifan, Evan Rosen, and Paul Suganthan G. C. 2022b. Autoslicer: Scalable auto-
mated data slicing for ML model analysis. CoRR abs/2212.09032. 2212.09032.

Lukas, Nils, and Florian Kerschbaum. 2023. Pick your poison: Undetectability ver-
sus robustness in data poisoning attacks against deep image classification. CoRR
abs/2305.09671. 2305.09671.

Ma, Lei, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang
Chen, Ting Su, Li Li, Yang Liu, Jianjun Zhao, and Yadong Wang. 2018. Deepgauge:
Multi-granularity testing criteria for deep learning systems. In Proceedings of the
33rd ACM/IEEE international conference on automated software engineering, ASE 2018,
montpellier, france, september 3-7, 2018, 120-131.

Ma, Yuzhe, Xiaojin Zhu, and Justin Hsu. 2019. Data poisoning against differentially-
private learners: Attacks and defenses. In Proceedings of the twenty-eighth international
joint conference on artificial intelligence, I]CAI 2019, macao, china, august 10-16, 2019, ed.
Sarit Kraus, 4732-4738. ijcai.org.

Maas, Andrew L., Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and
Christopher Potts. 2011. Learning word vectors for sentiment analysis. In Proceed-
ings of the 49th annual meeting of the association for computational linguistics: Human
language technologies, 142-150. Portland, Oregon, USA: Association for Computational

Linguistics.

Madry, Aleksander, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2018. Towards deep learning models resistant to adversarial attacks. In
6th international conference on learning representations, ICLR 2018, vancouver, bc, canada,
april 30 - may 3, 2018, conference track proceedings.

2212.09032
2305.09671

127

Meyer, Anna P., Aws Albarghouthi, and Loris D’Antoni. 2021. Certifying robustness to
programmable data bias in decision trees. In Advances in neural information processing
systems 34: Annual conference on neural information processing systems 2021, neurips 2021,
december 6-14, 2021, virtual, ed. Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N.
Dauphin, Percy Liang, and Jennifer Wortman Vaughan, 26276-26288.

Meyer, Anna P, Yuhao Zhang, Aws Albarghouthi, and Loris D’Antoni. 2024. Verified
training for counterfactual explanation robustness under data shift. 2403.03773.

Mirman, Matthew, Timon Gehr, and Martin Vechev. 2018. Differentiable abstract
interpretation for provably robust neural networks. In International conference on
machine learning (icml).

Miiller, Mark Niklas, Franziska Eckert, Marc Fischer, and Martin T. Vechev. 2022.
Certified training: Small boxes are all you need. CoRR abs/2210.04871. 2210.04871.

Murtagh, Fionn, and Pedro Contreras. 2012. Algorithms for hierarchical clustering:
an overview. WIREs Data Mining Knowl. Discov. 2(1):86-97.

Nguyen, Truc D. T., Phung Lai, NhatHai Phan, and My T. Thai. 2022. Xrand: Differ-
entially private defense against explanation-guided attacks. CoRR abs/2212.04454.
2212.04454.

Odena, Augustus, Catherine Olsson, David Andersen, and Ian J. Goodfellow. 2019.
Tensorfuzz: Debugging neural networks with coverage-guided fuzzing. In Proceedings

of the 36th international conference on machine learning, ICML 2019, long beach, california,
USA, 9-15 june 2019, 4901-4911.

Papernot, Nicolas, Patrick D. McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami.
2016. Distillation as a defense to adversarial perturbations against deep neural net-
works. In IEEE symposium on security and privacy, SP 2016, san jose, ca, usa, may 22-26,
2016, 582-597. IEEE Computer Society.

Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019.
PyTorch: An imperative style, high-performance deep learning library. In Advances in
neural information processing systems 32, neurips, 8024-8035.

2403.03773
2210.04871
2212.04454

128

Paulsen, Brandon, Jingbo Wang, and Chao Wang. 2020a. Reludiff: Differential ver-
ification of deep neural networks. In 2020 ieee/acm 42nd international conference on
software engineering (icse), 714-726. IEEE.

Paulsen, Brandon, Jingbo Wang, Jiawei Wang, and Chao Wang. 2020b. NeuroDiff:
scalable differential verification of neural networks using fine-grained approximation.
In 35th IEEE /ACM international conference on automated software engineering, ASE, 784—
796. IEEE.

Pei, Kexin, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore: Automated
whitebox testing of deep learning systems. In Proceedings of the 26th symposium on
operating systems principles, SOSP 2017, shanghai, china, october 28-31, 2017, 1-18. ACM.

Pham, Hung Viet, Shangshu Qian, Jiannan Wang, Thibaud Lutellier, Jonathan Rosen-
thal, Lin Tan, Yaoliang Yu, and Nachiappan Nagappan. 2020. Problems and oppor-
tunities in training deep learning software systems: An analysis of variance. In 35th
IEEE/ACM international conference on automated software engineering, ASE, 771-783.
IEEE.

Powell, Leila. 2022. The problem with artificial intelligence in security.

Qi, Fanchao, Yuan Yao, Sophia Xu, Zhiyuan Liu, and Maosong Sun. 2021a. Turn
the combination lock: Learnable textual backdoor attacks via word substitution. In
Proceedings of the 59th annual meeting of the association for computational linguistics and
the 11th international joint conference on natural language processing, ACL/IJCNLP 2021,
(volume 1: Long papers), virtual event, august 1-6, 2021, ed. Chengqing Zong, Fei Xia,
Wenijie Li, and Roberto Navigli, 4873-4883. Association for Computational Linguistics.

Qi, Hua, Zhijie Wang, Qing Guo, Jianlang Chen, Felix Juefei-Xu, Lei Ma, and Jianjun
Zhao. 2021b. ArchRepair: Block-level architecture-oriented repairing for deep neural
networks. CoRR abs/2111.13330.

Raff, Edward, Jon Barker, Jared Sylvester, Robert Brandon, Bryan Catanzaro, and
Charles K. Nicholas. 2018. Malware detection by eating a whole EXE. In The workshops
of the the thirty-second AAAI conference on artificial intelligence, new orleans, louisiana, usa,
february 2-7, 2018, vol. WS-18 of AAAI Technical Report, 268-276. AAAI Press.

129

Rezaei, Keivan, Kiarash Banihashem, Atoosa Malemir Chegini, and Soheil Feizi. 2023.
Run-off election: Improved provable defense against data poisoning attacks. In
International conference on machine learning, ICML 2023, 23-29 july 2023, honolulu, hawaii,
USA, ed. Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett, vol. 202 of Proceedings of Machine Learning Research,
29030-29050. PMLR.

Ribeiro, Marco Ttlio, Sameer Singh, and Carlos Guestrin. 2018. Semantically equiv-
alent adversarial rules for debugging NLP models. In Proceedings of the 56th annual
meeting of the association for computational linguistics, ACL 2018, melbourne, australia, july
15-20, 2018, volume 1: Long papers, 856—865.

Rosenfeld, Elan, Ezra Winston, Pradeep Ravikumar, and J. Zico Kolter. 2020. Certified
robustness to label-flipping attacks via randomized smoothing. In Proceedings of the
37th international conference on machine learning, ICML 2020, 13-18 july 2020, virtual
event, vol. 119 of Proceedings of Machine Learning Research, 8230-8241. PMLR.

Ryou, Wonryong, Jiayu Chen, Mislav Balunovic, Gagandeep Singh, Andrei Marian
Dan, and Martin T. Vechev. 2021. Scalable polyhedral verification of recurrent neural
networks. In Computer aided verification - 33rd international conference, CAV 2021, virtual
event, july 20-23, 2021, proceedings, part I, ed. Alexandra Silva and K. Rustan M. Leino,
vol. 12759 of Lecture Notes in Computer Science, 225-248. Springer.

Saha, Aniruddha, Akshayvarun Subramanya, and Hamed Pirsiavash. 2020. Hidden
trigger backdoor attacks. In The thirty-fourth AAAI conference on artificial intelligence,
AAAI 2020, the thirty-second innovative applications of artificial intelligence conference,
IAAI 2020, the tenth AAAI symposium on educational advances in artificial intelligence,
EAAI 2020, new york, ny, usa, february 7-12, 2020, 11957-11965. AAAI Press.

Salem, Ahmed, Rui Wen, Michael Backes, Shiging Ma, and Yang Zhang. 2022. Dy-
namic backdoor attacks against machine learning models. In 7th IEEE european
symposium on security and privacy, euros&p 2022, genoa, italy, june 6-10, 2022, 703-718.
IEEE.

Serra, Thiago, Christian Tjandraatmadja, and Srikumar Ramalingam. 2018. Bounding
and counting linear regions of deep neural networks. In 35th international conference
on machine learning, ICML, 4565-4573. PMLR.

130

Severi, Giorgio, Jim Meyer, Scott E. Coull, and Alina Oprea. 2021. Explanation-guided
backdoor poisoning attacks against malware classifiers. In 30th USENIX security
symposium, USENIX security 2021, august 11-13, 2021, ed. Michael Bailey and Rachel
Greenstadt, 1487-1504. USENIX Association.

Sharma, Deepak K, Sanjay K Dhurandher, Isaac Woungang, Rohit K Srivastava, Anhad
Mohananey, and Joel JPC Rodrigues. 2016. A machine learning-based protocol for
efficient routing in opportunistic networks. IEEE Systems Journal 12(3):2207-2213.

Shi, Zhouxing, Huan Zhang, Cho-Jui Hsieh, Kai-Wei Chang, and Minlie Huang.
2020. Robustness verification for transformers. In International conference on learning

representations.

Singh, Gagandeep, Timon Gehr, Markus Piischel, and Martin Vechev. 2019. An
abstract domain for certifying neural networks. Proc. ACM Program. Lang. 3(POPL).

Singhal, Karan, Shekoofeh Azizi, Tao Tu, S. Sara Mahdavi, Jason Wei, Hyung Won
Chung, Nathan Scales, Ajay Kumar Tanwani, Heather Cole-Lewis, Stephen Pfohl,
Perry Payne, Martin Seneviratne, Paul Gamble, Chris Kelly, Nathaneal Scharli,
Aakanksha Chowdhery, Philip Andrew Mansfield, Blaise Agtiera y Arcas, Dale R.
Webster, Gregory S. Corrado, Yossi Matias, Katherine Chou, Juraj Gottweis, Ne-
nad Tomasev, Yun Liu, Alvin Rajkomar, Joelle K. Barral, Christopher Semturs, Alan
Karthikesalingam, and Vivek Natarajan. 2022. Large language models encode clinical
knowledge. CoRR abs/2212.13138. 2212.13138.

Socher, Richard, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning,
Andrew Y. Ng, and Christopher Potts. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proceedings of the 2013 conference on
empirical methods in natural language processing, EMINLP 2013, 18-21 october 2013, grand
hyatt seattle, seattle, washington, usa, A meeting of sigdat, a special interest group of the ACL,
1631-1642.

Sotoudeh, Matthew, and Aditya V. Thakur. 2021. Provable repair of deep neural
networks. In 42nd ACM SIGPLAN international conference on programming language
design and implementation, pldi, 588-603. ACM.

2212.13138

131

Szegedy, Christian, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. 2014. Intriguing properties of neural networks. In
International conference on learning representations.

The Linux Foundation. 2022. ONNX home. https://onnx.ai/. Accessed: 2023-02-01.

Tian, Yuchi, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Automated
testing of deep-neural-network-driven autonomous cars. In Proceedings of the 40th
international conference on software engineering, ICSE 2018, gothenburg, sweden, may 27 -
june 03, 2018, 303-314.

Tizpaz-Niari, Saeid, Pavol Cerny, and Ashutosh Trivedi. 2020. Detecting and un-
derstanding real-world differential performance bugs in machine learning libraries.
In 29th ACM SIGSOFT international symposium on software testing and analysis, issta,
189-199. ACM.

Tran, Brandon, Jerry Li, and Aleksander Madry. 2018. Spectral signatures in backdoor
attacks. In Advances in neural information processing systems 31: Annual conference on
neural information processing systems 2018, neurips 2018, december 3-8, 2018, montréal,
canada, ed. Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman,
Nicolo Cesa-Bianchi, and Roman Garnett, 8011-8021.

Turner, Alexander, Dimitris Tsipras, and Aleksander Madry. 2019. Label-consistent
backdoor attacks. CoRR abs/1912.02771. 1912.02771.

Ugare, Shubham, Debangshu Banerjee, Sasa Misailovic, and Gagandeep Singh. 2023.
Incremental verification of neural networks. CoRR abs/2304.01874. 2304.01874.

Wallace, Eric, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. 2019.
Universal adversarial triggers for attacking and analyzing NLP. In Proceedings of the
2019 conference on empirical methods in natural language processing and the 9th international
joint conference on natural language processing, EMINLP-IJCNLP 2019, hong kong, china,
november 3-7, 2019, 2153-2162.

Wan, Chengcheng, Shicheng Liu, Henry Hoffmann, Michael Maire, and Shan Lu. 2021.
Are machine learning cloud APIs used correctly? In 43rd IEEE/ACM international
conference on software engineering, ICSE, 125-137. IEEE.

https://onnx.ai/
1912.02771
2304.01874

132

Wang, Binghui, Xiaoyu Cao, Jinyuan Jia, and Neil Zhengiang Gong. 2020a. On
certifying robustness against backdoor attacks via randomized smoothing. CoRR
abs/2002.11750. 2002.11750.

Wang, Hongyi, Kartik Sreenivasan, Shashank Rajput, Harit Vishwakarma, Saurabh
Agarwal, Jy-yong Sohn, Kangwook Lee, and Dimitris S. Papailiopoulos. 2020b. Attack
of the tails: Yes, you really can backdoor federated learning. In Advances in neural
information processing systems 33: Annual conference on neural information processing sys-
tems 2020, neurips 2020, december 6-12, 2020, virtual, ed. Hugo Larochelle, Marc’Aurelio

Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin.

Wang, Jingyi, Jialuo Chen, Youcheng Sun, Xingjun Ma, Dongxia Wang, Jun Sun, and
Peng Cheng. 2021a. RobOT: Robustness-oriented testing for deep learning systems.
In 43rd IEEE/ACM international conference on software engineering, ICSE, 300-311. IEEE.

Wang, Shiqi, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J. Zico
Kolter. 2021b. Beta-crown: Efficient bound propagation with per-neuron split con-
straints for neural network robustness verification. In Advances in neural information
processing systems 34: Annual conference on neural information processing systems 2021,
neurips 2021, december 6-14, 2021, virtual, ed. Marc’Aurelio Ranzato, Alina Beygelzimer,
Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, 29909-29921.

Wang, Wenxiao, Alexander Levine, and Soheil Feizi. 2022a. Improved certified
defenses against data poisoning with (deterministic) finite aggregation. CoRR
abs/2202.02628. 2202.02628.

. 2022b. Lethal dose conjecture on data poisoning. CoRR abs/2208.03309.
2208.03309.

Wang, Xutong, Chaoge Liu, Xiaohui Hu, Zhi Wang, Jie Yin, and Xiang Cui. 2022c.
Make data reliable: An explanation-powered cleaning on malware dataset against

backdoor poisoning attacks. In Annual computer security applications conference, ACSAC
2022, austin, tx, usa, december 5-9, 2022, 267-278. ACM.

Wang, Yimu, Peng Shi, and Hongyang Zhang. 2023. Gradient-based word substitution
for obstinate adversarial examples generation in language models. 2307 .12507.

2002.11750
2202.02628
2208.03309
2307.12507

133

Wang, Zan, Ming Yan, Junjie Chen, Shuang Liu, and Dongdi Zhang. 2020c. Deep
learning library testing via effective model generation. In 28th ACM joint european
software engineering conference and symposium on the foundations of software engineering,
ESEC/FSE, 788-799. ACM.

Wardat, Mohammad, Wei Le, and Hridesh Rajan. 2021. DeepLocalize: Fault localiza-
tion for deep neural networks. In 43rd IEEE /ACM international conference on software
engineering, ICSE, 251-262. IEEE.

Weber, Maurice, Xiaojun Xu, Bojan Karlas, Ce Zhang, and Bo Li. 2020. RAB: provable
robustness against backdoor attacks. CoRR abs/2003.08904. 2003.08904.

Welb], Johannes, Po-Sen Huang, Robert Stanforth, Sven Gowal, Krishnamurthy (Dj)
Dvijotham, Martin Szummer, and Pushmeet Kohli. 2020. Towards verified robustness

under text deletion interventions. In International conference on learning representations.

Xiang, Chong, and Prateek Mittal. 2021. Patchguard++: Efficient provable attack
detection against adversarial patches. CoRR abs/2104.12609. 2104 .12609.

Xiang, Zhen, Zidi Xiong, and Bo Li. 2023. CBD: A certified backdoor detector based
on local dominant probability. In Advances in neural information processing systems 36:
Annual conference on neural information processing systems 2023, neurips 2023, new orleans,
la, usa, december 10 - 16, 2023, ed. Alice Oh, Tristan Naumann, Amir Globerson, Kate
Saenko, Moritz Hardt, and Sergey Levine.

Xiao, Yan, Ivan Beschastnikh, David S Rosenblum, Changsheng Sun, Sebastian El-
baum, Yun Lin, and Jin Song Dong. 2021. Self-checking deep neural networks in
deployment. In 43rd ieee/acm international conference on software engineering, icse, 372—
384. IEEE.

Xiong, Yingfei, Yonggiang Tian, Yepang Liu, and S.C. Cheung. 2022. Toward actionable
testing of deep learning models. Science China, Information Sciences. Online first: 2022-
09-26.

Xu, Kaidi, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang,
Bhavya Kailkhura, Xue Lin, and Cho-Jui Hsieh. 2020. Automatic perturbation analysis
for scalable certified robustness and beyond. In Advances in neural information processing
systems 33: Annual conference on neural information processing systems 2020, neurips 2020,

2003.08904
2104.12609

134

december 6-12, 2020, virtual, ed. Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,

Maria-Florina Balcan, and Hsuan-Tien Lin.

Yan, Ming, Junjie Chen, Xiangyu Zhang, Lin Tan, Gan Wang, and Zan Wang. 2021.
Exposing numerical bugs in deep learning via gradient back-propagation. In 29th
ACM joint european software engineering conference and symposium on the foundations of
software engineering, ESEC/FSE, 627-638. ACM.

Yang, Pengfei, Zhiming Chi, Zongxin Liu, Mengyu Zhao, Cheng-Chao Huang,
Shaowei Cai, and Lijun Zhang. 2023. Incremental satisfiability modulo theory for
verification of deep neural networks. CoRR abs/2302.06455. 2302.06455.

Yatsura, Maksym, Kaspar Sakmann, N. Grace Hua, Matthias Hein, and Jan Hendrik
Metzen. 2023. Certified defences against adversarial patch attacks on semantic seg-
mentation. In The eleventh international conference on learning representations, ICLR 2023,

kigali, rwanda, may 1-5, 2023. OpenReview.net.

Ye, Mao, Chengyue Gong, and Qiang Liu. 2020. SAFER: A structure-free approach for
certified robustness to adversarial word substitutions. In Proceedings of the 58th annual
meeting of the association for computational linguistics, 3465-3475. Online: Association

for Computational Linguistics.

Zhang, Huan, Hongge Chen, Chaowei Xiao, Sven Gowal, Robert Stanforth, Bo Li,
Duane S. Boning, and Cho-Jui Hsieh. 2020a. Towards stable and efficient training of
verifiably robust neural networks. In 8th international conference on learning representa-
tions, ICLR 2020, addis ababa, ethiopia, april 26-30, 2020. OpenReview.net.

Zhang, Huan, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, and
J. Zico Kolter. 2022a. General cutting planes for bound-propagation-based neural
network verification. CoRR abs/2208.05740. 2208 .05740.

Zhang, Huan, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. 2018a.
Efficient neural network robustness certification with general activation functions.
In Advances in neural information processing systems 31: Annual conference on neural
information processing systems 2018, neurips 2018, december 3-8, 2018, montréal, canada,
ed. Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolo
Cesa-Bianchi, and Roman Garnett, 4944-4953.

2302.06455
2208.05740

135

Zhang, Huangzhao, Hao Zhou, Ning Miao, and Lei Li. 2019a. Generating fluent
adversarial examples for natural languages. In Proceedings of the 57th annual meeting of
the association for computational linguistics, 5564-5569. Florence, Italy: Association for

Computational Linguistics.

Zhang, Jie M., Mark Harman, Lei Ma, and Yang Liu. 2019b. Machine learning testing:
Survey, landscapes and horizons. CoRR abs/1906.10742. 1906.10742.

Zhang, Peixin, Jingyi Wang, Jun Sun, Guoliang Dong, Xinyu Wang, Xingen Wang,
Jin Song Dong, and Ting Dai. 2020b. White-box fairness testing through adversarial
sampling. In 42nd ACM/IEEE international conference on software engineering, ICSE,
949-960. ACM.

Zhang, Tianyi, Cuiyun Gao, Lei Ma, Michael R. Lyu, and Miryung Kim. 2019c. An
empirical study of common challenges in developing deep learning applications. In
30th IEEE international symposium on software reliability engineering, ISSRE, 104-115.
IEEE.

Zhang, Wei Emma, Quan Z Sheng, AHOUD Alhazmi, and CHENLIANG LI. 2019d.
Adversarial attacks on deep learning models in natural language processing: A survey.
arXiv preprint arXiv:1901.06796.

Zhang, Xiang, Junbo Jake Zhao, and Yann LeCun. 2015. Character-level convolutional
networks for text classification. In Advances in neural information processing systems
28: Annual conference on neural information processing systems 2015, december 7-12, 2015,

montreal, quebec, canada, 649-657.

Zhang, Xiaoyu, Juan Zhai, Shiging Ma, and Chao Shen. 2021a. Autolrainer: An
automatic DNN training problem detection and repair system. In 43rd IEEE/ACM
international conference on software engineering, ICSE, 359-371. IEEE.

Zhang, Xinyu, Hanbin Hong, Yuan Hong, Peng Huang, Binghui Wang, Zhongjie Ba,
and Kui Ren. 2023a. Text-crs: A generalized certified robustness framework against
textual adversarial attacks. CoRR abs/2307.16630. 2307 .16630.

Zhang, Yuhao, Aws Albarghouthi, and Loris D’Antoni. 2020c. Robustness to pro-
grammable string transformations via augmented abstract training. In Proceedings of
the 37th international conference on machine learning, ICML 2020, 13-18 july 2020, virtual
event, vol. 119 of Proceedings of Machine Learning Research, 11023-11032. PMLR.

1906.10742
2307.16630

136

. 2021b. Certified robustness to programmable transformations in Istms. In
Proceedings of the 2021 conference on empirical methods in natural language processing,
EMNLP 2021, virtual event / punta cana, dominican republic, 7-11 november, 2021, ed.
Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih, 1068—

1083. Association for Computational Linguistics.

.2022b. Bagflip: A certified defense against data poisoning. In Neurips.

.2023b. PECAN: A deterministic certified defense against backdoor attacks.
CoRR abs/2301.11824. 2301.11824.

. 2024a. A one-layer decoder-only transformer is a two-layer rnn: With an
application to certified robustness. 2405.17361.

Zhang, Yuhao, Yasharth Bajpai, Priyanshu Gupta, Ameya Ketkar, Miltiadis Allamanis,
Titus Barik, Sumit Gulwani, Arjun Radhakrishna, Mohammad Raza, Gustavo Soares,
and Ashish Tiwari. 2022c. Overwatch: learning patterns in code edit sequences. Proc.
ACM Program. Lang. 6(OOPSLA2):395-423.

Zhang, Yuhao, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang. 2018b.
An empirical study on tensorflow program bugs. In Proceedings of the 27th ACM
SIGSOFT international symposium on software testing and analysis, ISSTA 2018, amsterdam,
the netherlands, july 16-21, 2018, 129-140.

Zhang, Yuhao, Luyao Ren, Ligian Chen, Yingfei Xiong, Shing-Chi Cheung, and Tao Xie.
2020d. Detecting numerical bugs in neural network architectures. In ESEC/FSE "20:
28th ACM joint european software engineering conference and symposium on the foundations
of software engineering, virtual event, usa, november 8-13, 2020, ed. Prem Devanbu, Myra B.
Cohen, and Thomas Zimmermann, 826-837. ACM.

Zhang, Yuhao, Shiqi Wang, Haifeng Qian, Zijian Wang, Mingyue Shang, Linbo Liu,
Sanjay Krishna Gouda, Baishakhi Ray, Murali Krishna Ramanathan, Xiaofei Ma,
and Anoop Deoras. 2024b. Codefort: Robust training for code generation models.
2405.01567.

Zhu, Chen, W. Ronny Huang, Hengduo Li, Gavin Taylor, Christoph Studer, and Tom
Goldstein. 2019a. Transferable clean-label poisoning attacks on deep neural nets. In
Proceedings of the 36th international conference on machine learning, ICML 2019, 9-15 june

2301.11824
2405.17361
2405.01567

137
2019, long beach, california, USA, ed. Kamalika Chaudhuri and Ruslan Salakhutdinov,
vol. 97 of Proceedings of Machine Learning Research, 7614-7623. PMLR.

Zhu, Ligeng, Zhijian Liu, and Song Han. 2019b. Deep leakage from gradients. In
Advances in neural information processing systems 32, NeurIPS, 14747-14756.

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Preventing Numerical Bugs in Deep Learning Programs
	Verifying the Robustness of NLP Models
	Certifiable Defense against Backdoor Attacks

	Preventing Numerical Bugs in Deep Learning Programs
	Overview
	Motivating Examples
	Approaches and Formalization
	Experiments
	Related Work
	Future Work

	Verifying the Robustness of NLP Models
	Robustness Problem and Preliminaries
	Augmented Abstract Adversarial Training (A3T)
	Abstract Recursive Certification (ARC)
	Experiments
	Related Work
	Preliminary Work: ARC on Autoaggressive Transformers
	Future Work

	Certifiable Defence against Backdoor Attacks
	Problem Definition
	The PECAN Certification Technique
	Experiments
	Related Work
	Future Work

	Conclusion
	Contributions
	Future Directions
	Final Notes

	References

