

# Treatment of cheese processing wastewater by ridge and furrow disposal - nitrogen transformation. [DNR-023] 1985

Boyle, William C. (William Charles), 1936-; Doran, Frederic J. Madison, Wisconsin: Wisconsin Department of Natural Resources, 1985

https://digital.library.wisc.edu/1711.dl/KAA3RICJ66PUE9A

http://rightsstatements.org/vocab/InC/1.0/

For information on re-use see: http://digital.library.wisc.edu/1711.dl/Copyright

The libraries provide public access to a wide range of material, including online exhibits, digitized collections, archival finding aids, our catalog, online articles, and a growing range of materials in many media.

When possible, we provide rights information in catalog records, finding aids, and other metadata that accompanies collections or items. However, it is always the user's obligation to evaluate copyright and rights issues in light of their own use.

# Wisconsin Groundwater Management Practice Monitoring Project No. 23



GROUNDWATER Wisconsin's buried treasure

**Wisconsin Department of Natural Resources** 



Treatment of Cheese Processing Wastewater by Ridge and Furrow Disposal-Nitrogen Transformations (Study No. 26)

Investigators:

Title:

#### Principal Investigator

William Boyle, Professor University of Wisconsin-Madison Dept. of Civil and Environmental Engineering

#### Graduate Research Assistant

Frederic J. Doran University of Wisconsin-Madison Dept. of Civil and Environmental Engineering

average of 14,000 gpd of processing wastewater.

Objectives:

This project was undertaken to determine the nitrogen transformations in wastewater from two dairy products industries as it percolated from the furrows to the groundwater. Ridge and furrow land treatment effectiveness was evaluated under various soil and loading conditions. Operation, maintenance and accuracy of the monitoring equipment used were also studied.

A ridge and furrow land treatment system consists of a series of ditches

which allow for the distribution, infiltration and treatment of wastewater. Two ridge and furrow systems were studied: a cheese factory in Brodhead, Wisconsin which discharged an average of 39,500 gallons per day (gpd) of wastewater, and a creamery in Mindoro, Wisconsin which discharged an

Background/Need:

Methods:

Groundwater monitoring wells and lysimeters were installed and soil grab samples taken during the initial soils borings. Flow composited influent wastewater samples were collected monthly. Furrow samples were taken during intensive sampling periods at Brodhead in October and Mindoro in November of 1984. Samples were also collected routinely from the wells and lysimeters.

Wastewater, furrow, lysimeter, groundwater and stream samples were analyzed for biochemical oxygen demand (BOD<sub>5</sub>), chemical oxygen demand (COD), total suspended solids (TSS), total dissolved solids (TDS), chlorides (Cl<sup>-</sup>), total Kjeldahl nitrogen (TKN), ammonium nitrogen (NH<sub>3</sub>-N), nitrate and nitrite nitrogen (NO<sub>3</sub>-N+NO<sub>2</sub>-N) and pH. Soil and plant samples were also analyzed. Other monitoring included observation of load/rest cycles, reading monthly groundwater and surface water elevations, taking monthly 30-day average wastewater flow readings, cutting periodic grass samples during the growing season to determine nitrogen uptake and performance of infiltration studies to determine unsaturated zone flow rates.

Wastewater nitrogen loss was attributed to denitrification and leaching at both sites. Plant uptake was also a factor for Mindoro. Both Brodhead and

Mindoro had average  $BOD_5$  loading rates over the 100 lb/acre/day Department of Natural Resources limit. COD was greatly reduced as wastewater infiltrated into the groundwater. The nitrogen content of the

Results:

- 55 -

wastewater at both sites was mainly in the organic form. It mineralized to ammonium nitrogen in the settled solids which accumulated in the furrows. The ammonium-nitrogen was oxidized to nitrate-nitrogen as it infiltrated through the unsaturated zone.

Wastewater treatment and disposal in a ridge and furrow system was influenced by wastewater distribution and infiltration, load/rest cycling, winter operation and annual cover crop burning. Grass overgrowth and leaky header gates caused poor wastewater distribution at Mindoro, though this was not a problem at Brodhead. The Brodhead system experienced decreased nitrogen concentrations in the groundwater and improved soil aeration and infiltration due to a short load/rest cycle. Ponding resulted in part from a longer load/rest cycle at the Mindoro system. Annual grass burning enabled a modest nitrogen loss at both locations. Winter operation proceeded adequately at both sites, though Brodhead fared better during subzero temperatures.

Downgradient groundwater concentrations of contaminants were impacted to a greater extent at Brodhead than Mindoro. Nitrogen and COD reductions in the unsaturated zone were similar at Brodhead and Mindoro, though a greater percentage were removed at Brodhead than Mindoro. This difference was attributed to sandy soils at Brodhead which allowed for faster unsaturated travel times than silty loam soils at Mindoro.

Investigators concluded that nitrogen losses around the unsaturated zone were attributable to denitrification at both sites. BOD<sub>5</sub> tests indicate that wastewater loading did not produce an oxygen demand high enough to inhibit denitrification. Nitrogen and COD reductions were dependent on infiltrative capacities. The nitrogen in wastewater applied at both sites was mainly in the organic nitrogen form, which ammonified and eventually diffused into the overlying furrow wastewater. Dissolved ammonium was the primary form of nitrogen in the wastewater applied to the furrows. Surface water remained unaffected from the operation of the ridge and furrow systems at both sites.

Further research is suggested to better determine the impact of loading changes on groundwater quality and to better quantify unsaturated flow times by the installation of tensiometers. Nitrogen loading rates should be met by dischargers to reduce or maintain groundwater nitrogen concentrations. Solids accumulation in the furrows at Brodhead should be reduced with wastewater pretreatment. Chloride concentrations in the Brodhead wastewater should be reduced by brine removal in the plant or prior removal. Annual spring grass burning is suggested for all ridge and furrow systems where feasible. A downgradient well nest should be installed at Mindoro to better define the movement of contaminants off-site. Also suggested is an improved lysimetry method to obtain a more instantaneous sample and allow for winter sampling.

Conclusions:

Recommendations/ Implications: Availability of Report:

This report is available for viewing and loan at:

- 57 -

The Water Resources Center 1975 Willow Drive Madison, WI 53706 (608) 262-3069 Publication 050858

Key Words:

Ammonium-nitrogen, nitrate-nitrogen, ridge and furrow disposal system, wastewater

Funding:

The Wisconsin Department of Natural Resources provided funding for this project through the Groundwater Management Practice Monitoring Program which receives appropriations from the Groundwater Account.

## TABLE OF CONTENTS

| Chapter |                                                            |    |
|---------|------------------------------------------------------------|----|
| 1       | Introduction                                               | 1  |
| 2       | Review of Literature on Nitrogen Removal by Land Treatment |    |
|         | A. Introduction                                            | 4  |
|         | B. Mineralization and Immobilization                       | 10 |
|         | C. Nitrification                                           | 12 |
|         | D. Denitrification                                         | 14 |
|         | E. Dissimilatory Reduction                                 | 19 |
|         | F. N Gas Fixation                                          | 20 |
|         | G. Plant Uptake                                            | 22 |
|         | H. Volatilization                                          | 23 |
|         | I. Ammomium Adsorption                                     | 24 |
| •       | J. Leaching                                                | 27 |
|         | K. Case Study Summary                                      | 28 |
|         | L. History of Ridge and Furrow Treatment                   | 30 |
|         | M. Ridge and Furrow Design Concerns                        | 31 |
| 3       | Materials and Methods                                      |    |
|         | A. Materials                                               | 38 |
|         | B. Field Methods                                           | 45 |
|         | C. Analytical Methods                                      | 48 |
| 4       | Brodhead Results and Discussion                            |    |
|         | A. Site Description                                        | 51 |
|         | B. Wastewater Chemistry                                    | 54 |
|         | C. Wastewater Hydraulic Loading                            | 58 |
|         | D. Organic Loading Rates                                   | 62 |
|         | E. Groundwater Elevations and Flow                         | 63 |

| Chapter |
|---------|
|---------|

| napte | r                                                                            |                                            | Page         |
|-------|------------------------------------------------------------------------------|--------------------------------------------|--------------|
|       | F.                                                                           | Groundwater Chemistry                      | 67           |
|       | G.                                                                           | Unsaturated Zone Flow Rates                | 83           |
|       | H.                                                                           | Furrow and Lysimeter Chemistry             | 90           |
|       | I.                                                                           | Grass Uptake of Nitrogen                   | 116          |
|       | J.                                                                           | Sugar River Chemistry                      | 124          |
|       | K.                                                                           | Site Observation                           | 124          |
|       | L.                                                                           | Nitrogen Budget                            | 126          |
| 5     | Mir                                                                          | ndoro Results and Discussion               |              |
|       | A.                                                                           | Site Description                           | 129          |
|       | в.                                                                           | Wastewater Chemistry                       | 134          |
|       | с.                                                                           | Wastewater Hydraulic Loading               | 1 <u>3</u> 7 |
|       | D.                                                                           | Organic Loading Rates                      | 140          |
|       | E.                                                                           | Groundwater Elevations and Flow            | 142          |
|       | F.                                                                           | Groundwater Chemistry                      | 146          |
|       | G.                                                                           | Unsaturated Zone Flow Rates                | 161          |
|       | H.                                                                           | Furrow and Lysimeter Chemistry             | 171          |
|       | I.                                                                           | Grass Uptake of Nitrogen                   | 179          |
|       | J.                                                                           | Severson Creek Chemistry                   | 182          |
|       | K.                                                                           | Site Observations                          | 182          |
|       | L.                                                                           | Nitrogen Budget                            | 184          |
| 6     | Comparitive Discussion of the Brodhead and Mindoro<br>Ridge and Furrow Sites |                                            |              |
|       | A.                                                                           | Nitrogen Budget                            | 186          |
|       | в.                                                                           | Wastewater Organic Loading Rates           | 188          |
|       | с.                                                                           | Nitrogen Transformations                   | 190          |
|       | D.                                                                           | Ridge and Furrow Operation and Maintenance | 197          |
|       | E.                                                                           | System Performance                         | 199          |

#### Chapter

| 7 | Conclusions     | 201 |
|---|-----------------|-----|
| 8 | Recommendations | 203 |

Page

#### Appendices

- A1: List of References
- A: Well and Lysimeter Logs for Brodhead
- B: Brodhead Soil Analyses
- C: Brodhead Wastewater Chemistry Data
- D: Brodhead Wastewater Flow Data
- E: Groundwater Elevations and Contours for Brodhead
- F: Brodhead Groundwater Chemical Data
  - G: Unsaturated Flow Rate References Bouma
  - H: Furrow Wastewater and Lysimeter Data for Brodhead
  - I: Crop Uptake Data and Calculations Brodhead
  - J: Sugar River Chemistry Data
  - K: Brodhead Nitrogen Budget Calculations
  - AA: Well and Lysimeter Logs for Mindoro
  - BB: Mindoro Soil Analyses

.

- CC: Mindoro Wastewater Chemistry Data
- DD: Mindoro Wastewater Flow Data
- EE: Groundwater Elevations and Contours for Mindoro
- FF: Mindoro Groundwater Chemistry Data
- HH: Furrow and Lysimeter Data for Mindoro
- II: Crop Uptake Data and Calculations Mindoro
- JJ: Severson Coulee Creek Chemistry Data
- KK: Mindoro Nitrogen Budget Calculations

# List of Figures

|   |              |                                                                     | <u> </u>    |
|---|--------------|---------------------------------------------------------------------|-------------|
|   | Figure 2.1:  | The Nitrogen Cycle                                                  | 5           |
|   | Figure 2.2:  | The N-cycle for a Ridge and Furrow Setting                          | 6           |
|   | Figure 2.3:  | Ridge and Furrow Cell Layouts                                       | 34-35       |
|   | Figure 2.4:  | Furrow and Lysimeter Detail                                         | 36          |
|   | Figure 3.1:  | Typical Well Installation                                           | 39          |
|   | Figure 3.2:  | Typical Lysimeter Installation                                      | 41          |
|   | Figure 3.3:  | Typical Stage Marker                                                | 42          |
|   | Figure 3.4:  | Typical Infiltration Station                                        | 43          |
|   | Figure 4.1:  | Brodhead Topography Map                                             | 52          |
| - | Figure 4.2:  | Brodhead System Plan View                                           | 53          |
|   | Figure 4.3:  | Brodhead Average Monthly Wastewater Flows                           | 60          |
| ÷ | Figure 4.4:  | Typical Water Table Contours at Brodhead                            | 64          |
|   | Figure 4.5:  | Well 13A Groundwater Elevations vs. Time                            | 65          |
|   | Figure 4.6:  | Well 15 and 17 Groundwater Elevation Response<br>to Rainfall Events | 67 <b>A</b> |
| - | Figure 4.7:  | Chloride Concentration Contours at the Water<br>Table               | 70          |
| - | Figure 4.8:  | COD Concentration Contours at the Water Table                       | 71          |
|   | Figure 4.9:  | TKN Concentration Contours at the Water Table                       | 73          |
| 7 | Figure 4.10: | Ammonium Concentration Contours at the Water<br>Table               | 74          |
| * | Figure 4.11: | Nitrate Concentration Contours at the Water<br>Table                | 75          |
|   | Figure 4.12: | Well 15 Nitrogen Concentrations                                     | 76          |
|   | Figure 4.13: | Well 15, 16, and 17 Chloride Concentrations                         | 78          |
|   | Figure 4.14: | Well 16 Nitrogen Concentrations                                     | 79          |

۱

.

Page

|               |                                                                       | Page |
|---------------|-----------------------------------------------------------------------|------|
| Figure 4.15:  | Well 17 Nitrogen Concentrations                                       | 80   |
| Fugure 4.16:  | Well 15, 16, 17 Total Nitrogen Concentrations                         | 82   |
| Figure 4.17:  | Barrier Flows - Infiltration Station 1A                               | 84   |
| Figure 4.18:  | Barrier Flows - Infiltration Station 1B                               | 85   |
| Figure 4.19:  | Barrier Flows - Infiltration station 2A                               | 87   |
| Figure 4.20:  | Barrier Flows - Infiltration Station 2B                               | 88   |
| Figure 4.21a: | Cell 1 - Unsaturated Zone Chloride Profile                            | 93   |
| Figure 4.21b: | Cell 2 - Unsaturated Zone Chloride Profile                            | 94   |
| Figure 4.22a: | Cell 1 - Unsaturated Zone Nitrogen Profile                            | 95   |
| Figure 4.22b: | Cell 2 - Unsaturated Zone Nitrogen Profile                            | 96   |
| Figure 4.23a: | Cell 1 Furrow, Lysimeter 1 and 2 Chloride<br>Concentrations vs. Time  | 98   |
| Figure 4.23b: | Lysimeter 3 and Well 17 Chloride Concentra-<br>tions vs. Time         | 99   |
| Figure 4.24a: | Cell 1 Furrow, Lysimeter 1 and 2 Total N Con-<br>centrations vs. Time | 100  |
| Figure 4.24b: | Lysimeter 3 and Well 17 Total N Concentrations<br>vs. Time            | 101  |
| Figure 4.25:  | Cell 1 Furrow Wastewater Nitrogen vs. Time                            | 102  |
| Figure 4.26:  | Lysimeter 1 Nitrogen vs. Time                                         | 103  |
| Figure 4.27:  | Lysimeter 2 Nitrogen vs. Time                                         | 104  |
| Figure 4.28:  | Lysimeter 3 Nitrogen vs. Time                                         | 105  |
| Figure 4.29a: | Cell 2 Furrow and Lysimeter 5 Chloride<br>Concentrations vs. Time     | 108  |
| Figure 4.29b: | Lysimeter 6 and Well 15 Chloride Concentra-<br>tions vs. Time         | 109  |
| Figure 4.30a: | Cell 2 Furrow and Lysimeter 5 Total N Concen-                         | 110  |

~

•

."

.

.

٠

•

|                             | •                                                                           | Page               |
|-----------------------------|-----------------------------------------------------------------------------|--------------------|
| Figure 4.30b:               | Lysimeter 6 and Well 15 Total N Concentra-<br>tions vs. Time                | <u>Page</u><br>111 |
| Figure 4.31:                | Cell 2 Furrow Wastewater Nitrogen Concen-<br>trations vs. Time              | 112                |
| Figure 4.32:                | Lysimeter 5 Nitrogen Concentrations vs. Time                                | 113                |
| Figure 4.33:                | Lysimeter 6 Nitrogen Concentrations vs. Time                                | 114                |
| Figure 4.34:                | Cell 1 Furrow Wastewater Total and Dissolved<br>TKN Concentrations vs. Time | 117                |
| Figure 4.35:                | Cell 2 Furrow Wastewater Total and Dissolved<br>TKN Concentrations vs. Time | 118                |
| . Figure 5.1:               | Mindoro Topography Map                                                      | 130                |
| <pre>&gt; Figure 5.2:</pre> | Mindoro System Plan View                                                    | 131                |
| Figure 5.3:                 | Mindoro Average Monthly Wastewater Flows                                    | 138                |
| Figure 5.4:                 | Typical Water Table Contours at Mindoro                                     | 143                |
| Figure 5.5:                 | Well 5, 6, and 7 Groundwater Elevations<br>vs. Time                         | 144                |
| Figure 5.6:                 | Chloride Concentration Contours at the Water<br>Table                       | 149                |
| Figure 5.7:                 | COD Concentration Contours at the Water Table                               | 151                |
| Figure 5.8:                 | TKN Concentration Contours at the Water Table                               | 152                |
| - Figure 5.9:               | Ammonium Concentration Contours at the Water<br>Table                       | 153                |
| * Figure 5.10:              | Nitrate Concentration Contours at the Water<br>Table                        | 154                |
| Figure 5.lla:               | Well 3, 4, and 9 Chloride Concentrations vs.<br>Time                        | 156                |
| Figure 5.11b:               | Well 3, 4, and 9 TDS Concentrations vs. Time                                | 157                |
| Figure 5.12a:               | Well 2 TDS Concentrations vs. Time                                          | 158                |
| Figure 5.12b:               | Well 2 Dissolved TKN Concentrations vs. Time                                | 159                |

.

•

ς.

9

|        |        |                                                   | Page |
|--------|--------|---------------------------------------------------|------|
| Figure | 5.12c: | Well 2 Chloride Concentrations vs. Time           | 160  |
| Figure | 5.13:  | Well 3, 5, and 9 Total N Concentrations vs. Time  | 162  |
| Figure | 5.14:  | Well 3, 5, and 9 Nitrate Concentrations vs. Time  | 163  |
| Figure | 5.15a: | Cell 1 Furrow Infiltration Rates                  | 164  |
| Figure | 5.15b: | Cell 1 Furrow Infiltration Rates                  | 165  |
| Figure | 5.15c: | Cell 1 Furrow Infiltration Rates                  | 166  |
| Figure | 5.16a: | Cell 2 Furrow Infiltration Rates                  | 167  |
| Figure | 5.16b: | Cell 2 Furrow Infiltration Rates                  | 168  |
| Figure | 6.1:   | Lysimeter 325 Nitrogen Concentrations vs.<br>Time | 193  |
| Figure |        | Lysimeter 415 Nitrogen Concentrations vs.<br>Time | 194  |
| Figure | 6.3:   | Well 5 Nitrogen Concentrations vs. Time           | 195  |

t

•

### List of Tables

|          |       |                                                                                                   | Page    |
|----------|-------|---------------------------------------------------------------------------------------------------|---------|
| Table 3  | 3.1:  | Chemical Analysis Done                                                                            | 49-50   |
| Table 4  | la:   | Well Specifications at Brodhead Site                                                              | 55      |
| Table 4  | 4.1b: | Lysimeter Specifications at Brodhead                                                              | 56      |
| Table 4  | 4.2:  | Brodhead Wastewater Chemistry                                                                     | 57      |
| Table 4  | 4.3:  | Brodhead Hydraulic Loading                                                                        | 61      |
| Table 4  | 4.4:  | Brodhead Organic Loading Rates                                                                    | 62      |
| Table 4  | 1.5:  | Mean and Standard Deviation of Groundwater<br>Chemical Parameters at Brodhead                     | 68      |
| Table 4  | .6:   | Brodhead Unsaturated Zone Travel Times                                                            | 89      |
| Table 4  |       | Brodhead Mean and Standard Deviation of<br>Furrow Wastewater and Lysimeter Chemical<br>Parameters | 91      |
| Table 4  | .8:   | Brodhead Grass Sample Results                                                                     | 119-120 |
| Table 4  | .9:   | Sugar River Quality                                                                               | 123     |
| Table 4  | .10:  | Nitrogen Budget Estimate - Brodhead Site                                                          | 127     |
| Table 5  | .1a:  | Well Specifications at Mindoro Creamery                                                           | 132     |
| Table 5  | .1b:  | Lysimeter Specifications at Mindoro Creamery                                                      | 133     |
| Table 5  | .2:   | Mindoro Wastewater Character                                                                      | 135     |
| Table 5  | •3:   | Mindoro Hydraulic Loading Rates                                                                   | 140     |
| Table 5  | • 4 : | Mindoro Organic Loading Rates                                                                     | 141     |
| Table 5  |       | Mean and Standard Deviation of Groundwater<br>Chemical Parameters at Mindoro                      | 147     |
| Table 5  | .6:   | Average Groundwater Nitrogen Losses at Mindoro                                                    | 150     |
| Table 5. | .7:   | Mindoro Infiltration Rates                                                                        | 169     |
| Table 5. |       | Mindoro Mean and Standard Deviation of Furrow<br>Wastewater and Lysimeter Chemical Parameters     | 172     |

|             |                                                                       | Page |
|-------------|-----------------------------------------------------------------------|------|
| Table 5.9:  | Reductions Along First Mindoro Flow Path                              | 175  |
| Table 5.10: | Reductions Along Second Mindoro Flow Path                             | 175  |
| Table 5.11: | Reductions Along Third Mindoro Flow Path                              | 176  |
| Table 5.12: | Mindoro Wastewater, Header, and Furrow<br>Wastewater Nitrogen Results | 178  |
| Table 5.13: | Mindoro Grass Nitrogen Results                                        | 180  |
| Table 5.14: | Mindoro-Severson Coulee Creek Quality                                 | 181  |
| Table 5.15: | Nitrogen Budget Estimate - Mindoro Site                               | 185  |
| Table 6.1:  | Summary of Relative COD Reductions at Brodhead                        | 191  |
| Table 6.2:  | Summary of Relative COD Reduction at Mindoro                          | 191  |

#### CHAPTER 1: INTRODUCTION

#### What is a Ridge and Furrow?

For many years the ridge and furrow land treatment process has been a popular and simple method of industrial wastewater disposal. A ridge and furrow system is simply described as a series of interconnected ditches (furrows) which allow for the distribution, infiltration, and treatment of wastewater. Ridges between the ditches support a cover crop which takes up nutrients and water and protects the ditches during the winter. In Wisconsin, there are 83 dairies; four meat packers, a rendering plant, and a pet food manufacturer, which utilize the ridge and furrow process (Rodenberg, 1980). Site areas range from 0.1 to 56 acres.

There are three advantages in selecting the ridge and furrow treatment process. They are 1) ease of operation; 2) cost (capital and operation and maintenance), and 3) year around operation. Design of these systems is based on hydraulic loading rates and BOD<sub>5</sub> loading rates. Nitrogen loading rates are currently not considered. Two or more cells are preferred to allow for loading flexibility. A healthy cover crop is also an important feature of a ridge and furrow site.

### Nitrogen Concerns at Ridge and Furrow Systems

Nitrogen, in its organic, ammonium, and nitrate forms, is a major parameter of concern in State groundwater protection programs. The United States Environmental Protection Agency has set a 10 mg/l drinking water

-1-

standard for nitrate-nitrogen. Such standards are set to reduce the occurrence of animal and human disease and to control environmental pollution. These concerns will be discussed in Chapter 2.

#### Project Description

This report presents the results of a study supported by the Wisconsin Department of Natural Resources (WDNR) and conducted at two ridge and furrow sites treating cheese processing wastewater. One system, operated by Universal Foods in Brodhead, Wisconsin, receives 39,000 gallons per day and is located on 4.7 acres of sandy soil. The other system, operated by the Mindoro Co-op Creamery in Mindoro, Wisconsin, receives 14,000 gallons per day and is located on 3.0 acres of silty loam soil. This is the oldest ridge and furrow system in the state.

The project had four objectives. The primary objective was to determine the nitrogen transformations in the wastewater as it percolated from the furrows to the groundwater. In relation to these transformations, a nitrogen budget estimate was attempted at each site. Other project goals were: 1) to analyze ridge and furrow treatment effectiveness under different soil and loading conditions, 2) to examine the operation and maintenance at these systems, and 3) to evaluate the monitoring equipment used.

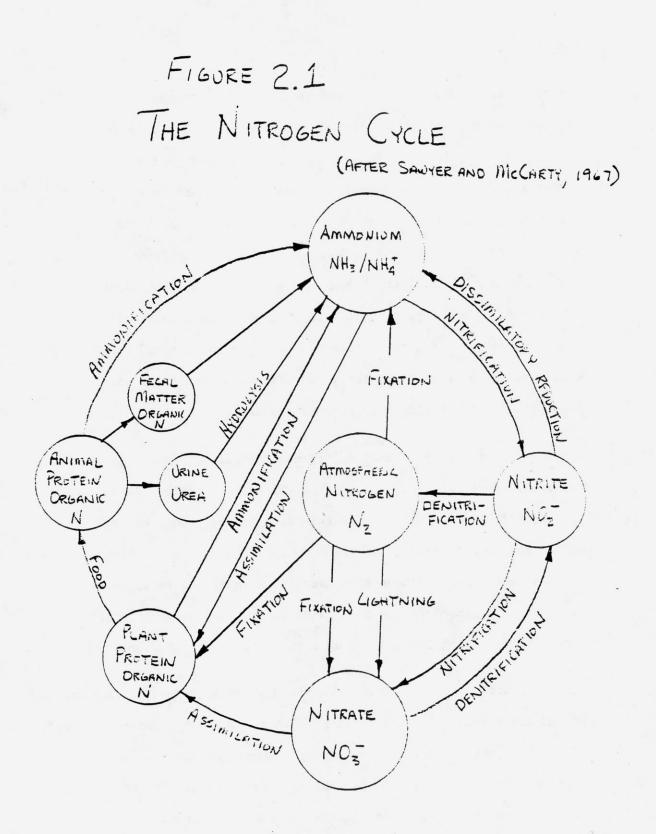
To complete these objectives, groundwater monitoring wells and lysimeters were installed and a sampling program was initiated in August of 1983. Until November of 1984, well, lysimeter, furrow-water, wastewater, and bounding surface water samples were taken and analyzed for

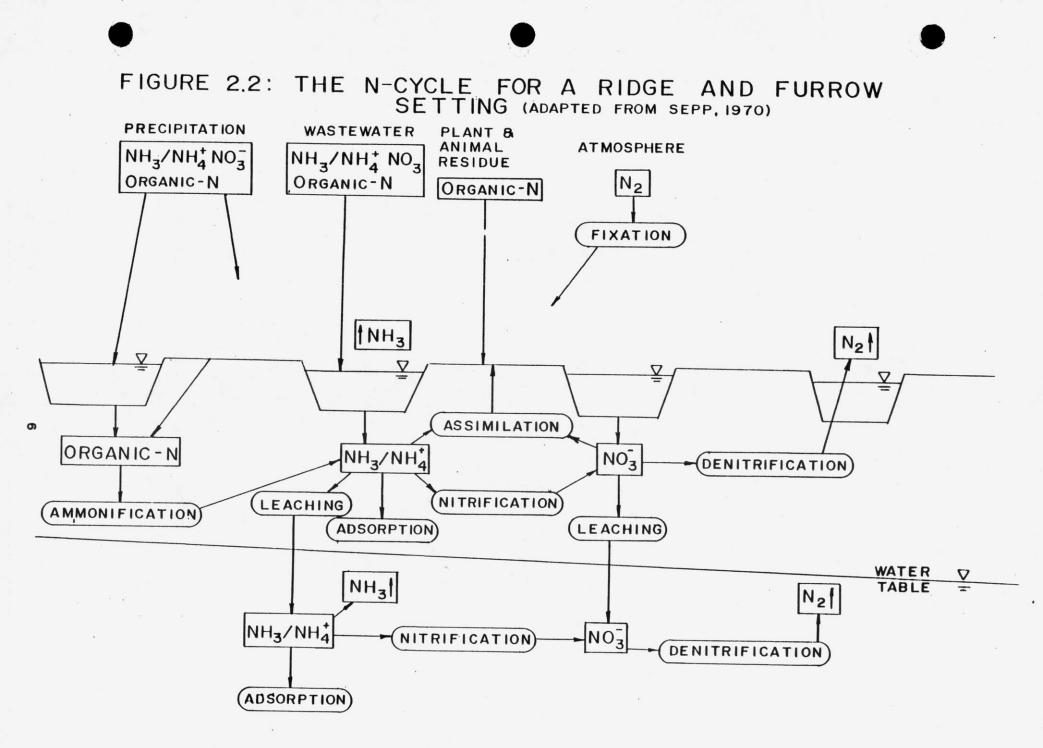
-2-

five day biochemical oxygen demand (BOD<sub>5</sub>), chemical oxygen demand (COD), total suspended solids (TSS), total dissolved solids (TDS), chlorides (Cl-), total Kjeldahl nitrogen (TKN), ammonium nitrogen (NH<sub>3</sub>-N), nitrate and nitrite nitrogen (NO<sub>3</sub>-N+NO<sub>2</sub>-N), and pH. Periodic analysis for alkalinity, total phosphorus (P), sulfate (SO<sub>4</sub><sup>2-</sup>), potassium (K+), sodium (Na+), magnesium (Mg<sup>2+</sup>), and calcium (Ca<sup>2+</sup>) was also done. Analysis was performed by the Wisconsin State Laboratory of Hygiene.

Other work performed included: 1) changing the load/rest cycles at one site to observe effects, 2) reading monthly groundwater and surface water elevations, 3) taking monthly 30-day average wastewater flow readings, 4) cutting periodic grass samples during the growing season to determine nitrogen uptake, 5) performing infiltration studies to determine unsaturated zone flow rates, and 6) making general site observations.

#### CHAPTER 2: LITERATURE REVIEW


#### Introduction


Nitrogen is ubiquitous in our environment. The atmosphere contains 78% nitrogen and topsoils typically contain 4,000 to 200,000 lb N/acre (Winneberger, 1982). Figure 1 illustrates the classical nitrogen cycle indicating the many transformations involved. The nitrogen cycle and its relationship to the soil and groundwater are shown in Figure 2. Nitrogen inputs to the soil system occur through precipitation, waste and fertilizer application, plant residue deposition, and atmospheric nitrogen fixation. System losses occur through ammonia volatilization, plant uptake, and denitrification. Ammonification (or mineralization), assimilation (or immobilization), nitrification, denitrification, and leaching are internal processes.

A large portion (90%) of soil nitrogen is organically bound and contained in the first 40 inches of soil (Tusneem & Patrick, 1971; Winneberger, 1982). Warmer climates favor the breakdown of organic matter and soil N accumulates less rapidly than in cooler climates. Nitrogen and organic matter also increase with effective moisture. Stored N is released when a soil is disturbed (eg. heavy rainfall or fire) with leaching losses ranging from 80 to 4,000 lb N/acre/year.

The inorganic-N soil fraction is in the  $NO_3^-$  or  $NH_4^+$  form and constitutes an immediate source for plant uptake (Tusneem and Patrick, 1971). Most of the inorganic-N is water soluble or adsorped on the soil exchange complex. Approximately five percent, and possibly as high as 30%, of soil  $NH_4^+$  may be fixed in the lattice of silicate minerals in a non-

-4-





exchangeable form. Ammonium may be oxidized to nitrate through nitrification. Nitrate in soil may be removed by leaching, denitrification, or plant uptake. It is possible that the reduction of  $NO_3^-$  to  $NH_4^+$  could occur but this process is not common (Tiedje, Sorenson, and Chang; 1979).

Inorganic-N in waterlogged soils is high in ammonium and low in nitrate (Tusneem and Patrick, 1971). Waterlogged nitrate concentrations range from 0-3 mg/l. Ammonium in waterlogged soils can be taken up by plants, immobilized in bacterial cells, adsorped on soil particles, and volatilize under alkaline conditions.

The goal of many studies of soil nitrogen is to develop a nitrogen budget at a given site. However, it is not as easy as counting the number of marbles dropped over a given area. It is more like trying to balance a checking account when others have made deposits and withdrawals without giving notice of the transactions. Keeping this in mind, general rate ranges for the various nitrogen transformations have been made and are as follows (Winneberger, 1982):

1. N Fixation - 2 to 500 lb N/acre/yr,

2. Fertilizer Leaching - 0 to 200 lb N/acre/yr,

3. Rainfall Input - 4 to 12.5 lb N/acre/yr,

4. Denitrification - 0 to all 1b N/acre/yr,

5. Storage Losses - 80 to 4,000 lb N/acre/yr, and

6. Plant uptake - few quantifications.

Since nitrification does not lead to a loss or gain of soil nitrogen, it was not considered in the budget.

-7-

There are several undesirable effects of nitrification (Alexander, 1977). Nitrate is an anion very susceptible to leaching, which takes an essential nutrient away from plants. Nitrate also has a role in methemoglobinemia in infants and animals, eutrophication, and the formation of nitrosamines. Wastewater, wastewater sludges, fertilizers, and manure are all potential sources of nitrate. Nitrosamines are not common soil constituents but are in pesticides. They are carcinogenic, mutagenic, and teratogenic.

Nitrogen is a concern in the environment when its nitrate form enters groundwater aquifers. Young infants lack stomach acidity and at pH values greater than four, nitrite formers can exist in the gut. Nitrite, formed from nitrate, then combines with hemoglobin in the blood instead of oxygen, causing oxygen starvation. This illness is termed methemoglobinemia (Winneberger, 1982).

Since 1945, 2,000 cases of methomoglobinemia were reported in North America and Europe with 7-8% fatalities (Winneberger, 1982). There were no fatalities between 1960 and 1972. Possibly only 10% of all cases have been reported. Compared to other causes of infant death, however, methemoglobinemia is rare. In 1975 alone, about 9,000 infant fatalities were reported in the United States, 178 by homocide.

Considering the rarity of methemoglobinemia, the 10 mg/l drinking water standard has received criticism. Nitrate ingestion and methemoglobinemia occurrence may be separate events and setting a  $NO_3^--N$  standard may have no effect on the disease rate. Scientists have been limited to correlative studies since direct studies on babies are not ethical.

-8-

The 10 mg/l standard was established using a correlative study. Researchers found that the incidence of methemoglobinemia was insignificant in infants whose drinking water supply contained less than 10 mg/l nitrate. A recent study shows, however, that there is no higher incidence of the disease in babies drinking high nitrate concentrations than in a control group (Winneberger, 1982). The infants had high methemoglobin (NO<sub>2</sub>-hemoglobin) levels no matter what the nitrate concentration was in the water source.

Denitrification is related to environmental pollution (Alexander, 1977). Once nitrate passes through the root zone, denitrification is desired to reduce subsurface nitrate concentrations for reasons stated earlier. This process is possible with depth when carbonaceous nutrients are present. This is the case in waste treatment when production of nitrate coexists with available C.

Current data also suggest that microbial release of N<sub>2</sub>, N<sub>2</sub>O, and NO far exceeds that by human activity (Alexander, 1977). NO reacts with  $O_3$  (ozone) and light to destroy the ozone layer which protects the earth from ultraviolet rays.

With this introduction to the nitrogen cycle and its environmental concerns, this review discusses in more detail the processes of mineralization/immobilization, nitrification, dissimilatory reduction,  $N_2$ fixation, plant uptake, volatilization, leaching, and adsorption. This is followed by sections which summarize current research of the nitrogen cycle as it affects land treatment, which present the history of ridge and furrow systems, and which discuss the design of these systems.

-9-

#### Mineralization and Immobilization

Mineralization (or ammonification) is the conversion of organic-N to ammonia or ammonium. Immobilization is the assimilation of inorganic-N  $(NH_4^+, NO_3^-, and NO_2^-)$  by microorganisms into the nitrogeneous constituents of their cells. The two processes work simultaneously and either net immobilization or net mineralization results. This relationship controls the amount of available N in the soil. In natural systems, mineralization usually exceeds immobilization. (Tusneem and Patrick, 1971; Alexander, 1977).

The decomposition of organic-N in soils is done by general purpose heterotrophs, fungi, and actinomycetes. These organisms use the organic-N compounds as an energy source and produce  $NH_3$ , carboxylic acids, amines, mercaptans, and  $H_2S$  (Tusneem and Patrick, 1971). During immobilization, ammonium and nitrate are incorporated into cell amino acids, amino sugars, nucleic acids, and other organic complexes (Alexander, 1977; Paul and Juma, 1979). Immobilization results in depressed plant uptake of nitrogen and decreased plant yield.

Mineralization and immobilization are dependent on several environmental factors including C:N ratio, waterlogging, wetting and drying cycles, temperature, pH, soil moisture, and soil clay content. The ratio of carbonaceous material (energy source) and nitrogen in substances undergoing decomposition usually dictates whether net mineralization or net immobilization occurs. With similar C available, a source rich in N results in net mineralization while a source poor in N results in net

-10-

immobilization (Tusneem and Patrick, 1971). When C:N falls below the 20-30:1 range, net mineralization occurs and inorganic-N will appear (Alexander, 1977).

In waterlogged (anaerobic) soils, less efficient and more restricted bacteria take over (Tusneem and Patrick, 1971). Both mineralization and immobilization are retarded. The features of this anaerobic decomposition are the following:

- 1. incomplete decomposition of carbohydrates into  $CH_{4}$ , organic acids,  $H_{2}$ , and  $CO_{2}$ ;
- lower energy of fermentation leading to less cell production; and
- 3. a low N requirement leading to a more rapid release of ammonium.

If wetting and drying cycles occur, mineralization proceeds at a faster rate upon rewetting than if the soil had been wet all along (Tusneem and Patrick, 1971). This rate declines in later cycles. Also, the longer the drying period, the faster the rate upon wetting. The wetting/drying process may make substrates readily accessible or drying may cause cell disintegration.

Since mineralization is catalyzed by a temperature sensitive enzyme, temperature also affects this process (Alexander, 1977). Mineralization occurs between the temperatures of two to 60°C with an optimum rate between 40 and 60°C. Thawing/freezing action also has a similar effect as wetting/drying.

Soil pH, moisture, and clay content have influences on the mineralization rate as well (Alexander, 1977). Mineralization is favored by a neutral pH environment and increasing soil moisture content. Clay

-11-

minerals have the ability to adsorb cell enzymes, pulling them away from the decomposition process.

In the land treatment of dairy wastes, the mineralization of proteins is a concern. Proteins are broken down into smaller amino acid chains by the extracellular enzyme protease (Alexander, 1977). Once broken down, these acids enter the cell where they serve as N, C, and energy sources. The four paths of amino acid (AA) breakdown are:

1. deamination by direct removal of NH<sub>3</sub>,

 $AA \rightarrow RCH=CHCOOH + NH_3$ 

2. oxidative deamination,

 $AA + 0.5 O_2 --> RCOCOOH + NH_3$ 

3. reductive deamination, and

 $AA + 2H^+ - RCH_2COOH = NH_3$ 

4. decarboxylation.

AA  $\rightarrow$  RCH<sub>2</sub>NH<sub>2</sub> + CO<sub>2</sub>

where: AA is  $RCH_2CHNH_2COOH$  in Equation 1 and  $RCHNH_2COOH$  in Equations 2, 3, and 4.

#### Nitrification

Nitrification is the biological formation of nitrate or nitrite from reduced N compounds, namely ammonium. Nitrification occurs in two steps, the conversion of ammonium to nitrite and the conversion of nitrite to nitrate. The genera of Nitrosomonas, Nitrosococcus, Nitrosospira, and Nitrosolobus are the principal nitrite formers while Nitrobacter is the principal nitrate former (Alexander, 1977). Heterotrophs and fungi are also capable of oxidizing inorganic nitrogen.

-12-

Nitrosomonas and Nitrobacter are the most frequently encountered nitrifying chemotrophs and they are usually found together. These bacteria typically obtain their energy from the oxidation of inorganic-N. Carbon is obtained from  $CO_2$  or carbonates. Nitrobacter requires low amounts of molybdenum for its metabolism. (Alexander, 1977).

In oxidizing  $NH_4^+$  to  $NO_2^-$ , the N oxidation state changes from -3 to +3. The pathway is unclear but is hypothetically as follows (Alexander, 1977):

 $NH_3 \rightarrow NH_2OH \rightarrow HNO \rightarrow NO \rightarrow NO_2^-$ 

Overall reaction:  $NH_4^+ + 1.5 0_2 - NO_2^- + 2H^+ + H_2O_2^-$ 

Nitrite accumulation is rare. It only results from high alkalinity and high ammonium levels. High ammonium concentrations are toxic to Nitrobacter. Nitrobacter oxidizes N from +3 to +5 yielding two electrons as follows:

 $NO_2^- + H_2O --> H_2O \cdot NO_2^- --> NO_3^- + 2H^+$ 

Many environmental factors affect nitrification. The process is slow in acid habitats (Alexander, 1977). Rates typically fall at pH values below six and are negligible at pH less than five since the nitrifier population is decreased.

Aeration is essential to nitrification and moisture is also a factor (Tusneem and Patrick, 1971; Alexander, 1977). Waterlogged environments lead to complete suppression of nitrification by limiting oxygen diffusion. On the other hand, the process does not work in arid conditions

-13-

due to a lack of water. Generally, nitrate appears at 1/2 to 2/3 of a soil's moisture holding capacity.

In temperate regions, nitrate formation is most rapid in spring and fall and lowest in the summer and winter (Alexander, 1977). Nitrifier populations are decreased during extreme heat or cold. Rates slow at temperatures less than 4°C or greater than 40°C with an optimum between 30 and 35°C. Soil temperatures are not this warm, however. In-field research is needed to better quantify this assertion.

Nitrification is also affected by the type of crop and the soils cation exchange capacity (CEC) (Alexander, 1977). Roots of some grasses excrete compounds deleterious to the process. Once ammonium is adsorbed to a clay mineral, the availability of this fixed cation to chemoautotrophs is low with less than 25% nitrified within several months.

#### Denitrification

Denitrification is the bacterial reduction of  $NO_3^-$  and  $NO_2^-$  with the liberation of N<sub>2</sub>O and N<sub>2</sub>. During this nitrate reduction, nitrogen fails to enter the cell structure and is lost to the atmosphere. Denitrification is encouraged by a supply of decomposable organic matter, high nitrate supply, and anaerobic (reduced) conditions (Winneberger, 1982; Tusneem and Patrick, 1971). In anaerobic environments, facultative anaerobes use nitrate as an electron acceptor and nitrogen escapes as N<sub>2</sub>O or N<sub>2</sub> (Stanford, Vander Pol, and Dzienia, 1975).

Denitrifying bacteria growth is not dependent on nitrate reduction (Alexander, 1977). There presence indicates denitrification potential

-14-

but not that conditions are favorable. Denitrifiers are facultative aerobes which use nitrate as an electron acceptor for growth in the absence of oxygen. Most organisms get less energy using  $NO_3^-$ , ie. fewer cells/unit substrate oxidized (Alexander, 1977). Energy conservation is attained by the electron transport phosphorylation (ETP) process (Tiedje, Sorensen, and Chang, 1979).

Denitrification is done by Paracoccus denitrificans, Pseudomonas aeruginosa, and Bacillus licheniformis. Facultative autotrophic denitrifiers, such as Paracoccus denitrificans, use either organic matter or  $H_2$  as an energy source and  $O_2$  or  $NO_3^-$  as an electron acceptor. One group of denitrifiers is photosynthetic (Alexander, 1977; Knowles, 1979).

Alexander (1977) and Knowles (1979) present the following overall denitrification reaction:

 $4NO_3^- + 5CH_2O + 4H^+ < --> 2N_2 + 5CO_2 + 7H_2O$ 

NaR, NiR, NOR, and N<sub>2</sub>OR are the catalyzing enzymes nitrate reductase, nitrite reductase, NO reductase, and nitrous oxide reductase, respectively. N<sub>2</sub>OR seems most sensitive to low pH and the presence of oxygen, nitrate, and sulfide. In these cases, N<sub>2</sub>O will be a significant product. All reductases are repressed by oxygen presence. Small amounts of molybdenum is required by nitrate reductase.

Denitrification is dependent on many environmental factors including soil moisture, aeration, wetting/drying cycles, available organic

-15-

matter, waste loading rates, nitrate concentration, pH, temperature, and the presence of sulfur or acetylene (Standord, Vander Pol, and Dzienia, 1975; Tusneem and Patrick, 1971; Alexander, 1977; Knowles, 1979; Winneberger, 1982).

In well drained soils, nitrogen loss is related to a soil's moisture content with higher denitrification rates occurring at higher water levels. Losses usually do not occur at moisture contents less than 60% of the soil water holding capacity regardless of the carbohydrate or nitrate supply, or the pH. Moisture content governs the diffusion of oxygen to sites of activity. As soil moisture increases, N<sub>2</sub>O content will decrease as N<sub>2</sub> is formed. Denitrification is high in waterlogged soils and low in drier soils since inorganic-N is immobilized. Rates can be significant in dry soils as well if water pockets develop. These pockets can create anaerobic micro-environments to promote nitrate reduction.

Aeration is necessary in nitrate production, the basic substrate in denitrification. Oxygen presence must not be so great, however, as to inhibit denitrification. Since total nitrogen losses do occur in aerated soils, the existence of anaerobic micro-environments is again proposed. This theory is also reflected by large nitrogen losses at sites undergoing cycles where oxygen is alternately available and then absent.

Tusneem and Patrick (1971) suggest that moisture fluctuations as a result of flooding and draining create ideal conditions for nitrogen loss. Two layers or zones develop: a surface oxidizing layer and an

-16-

underlying reducing layer. Applied ammonium is nitrified in the oxidizing layer by aerobic bacteria. Nitrate then percolates to the reduced layer and is subsequently denitrified biologically and possibly chemically to gaseous N.

Greenland (1962) reported that nitrification and denitrification could occur simultaneously in wet soil due to aerobic and anaerobic microzones. Russell and Richards (1917) determined that alternate wetting and drying would create an ideal environment for denitrification. Patrick and Wyatt (1964) observed a 20% N loss from this cycle. The frequency of wetting/drying affected total N loss as well as the rate of nitrate reduction in subsequent cycles. Major losses occurred during the first two to three cycles, decreasing as cycles progressed.

Winneberger (1982) believes that denitrification is best facilitated by environments alternately exposed to anaerobic and aerobic conditions. This can be done through loading and resting cycles or by adding energy rich organics to create microanaerobic areas.

Denitrification rates positively correlate with the amount of soil water extractable organic-C (Knowles, 1979). Stanford, Vander Pol, and Dzienia (1975) and Alexander (1977) suggest that low carbon containing soils (eg. sand) support a lower rate of denitrification. At wastewater disposal sites, extra organic matter is supplied as reflected by the wastes BOD or COD.

Waste loading rates also affect denitrification. McMicneal and McKee (1966) spread two feet/day of wastewater and most of the applied N was

-17-

accounted for at depth. Lesser loadings have given high nitrogen removals. Kardos, Sopper, and Myers (1965) reported 68 to 82% N removal by sprinkle irrigation of wastewater at one to two inches/week. In the former case, low nitrogen losses resulted from soil saturation which inhibited the necessary production of nitrate. High nitrogen losses were promoted by the aeration provided by the irrigation and the lower loading rate.

The nitrate concentration in the soil pore water is also a factor in denitrification. According to Knowles (1979), at relatively high  $NO_3$  concentrations, the denitrification reaction is frequently zero order. Depending on the environment of the reaction, the denitrification rate increases linearly to a given nitrate concentration, after which, rates level off and little gaseous nitrogen is liberated.

Many denitrifiers are sensitive to low pH and therefore denitrification rates are positively correlated with soil pH (Alexander, 1977; and Knowles, 1979). An optimum range is between pH 7 and 8. Acidity also governs the abundance of certain gases (Alexander, 1977). N<sub>2</sub>O liberation is pronounced in the pH range of 6.0 to 6.5 while NO only appears at low pH. These differences may result from the acid sensitivity of the enzyme system for N<sub>2</sub>O reduction.

Rates of nitrate reduction are also temperature dependent. Alexander (1977) stated that increasing the temperature from 2°C enhances denitrification, with an optimum at approximately 25°C. Knowles (1979) found that denitrification is temperature dependent between 10 and 35°C with maximum rates at 60-75°C. Rates have been measured between 0-5°C. Low temperatures reportedly result in relatively more  $N_2O$  and NO.

-18-

Sulfur compounds affect denitrification by inhibiting the reduction of NO and  $N_2O$  to  $N_2$  (Knowles, 1979). Acetylene also inhibits nitrous oxide reduction.

#### Dissimilatory Reduction

Dissimilatory reduction is the bacterial conversion of nitrate back to an ammonia form. This reduction could occur in anaerobic habitats since oxygen inhibits enzymes and represses sythesis (Tiedje, Sorensen, and Chang, 1979). Microorganism genera responsible for dissimilatory reduction include Bacillus, Enterobacter, Klebsiella, Erwina, and Clostridia. These organisms are more prevalent than the denitrifiers soil. Anaerobic environments have abundant electron donors and a scarcity of electron acceptors. Therefore, the eight electron reduction to  $NH_4^+$ should be favored over the five electron reduction in denitrification. Also, since this reduction is respiratory rather than assimilatory related, one would expect more  $NO_3^-$  to  $NH_4^+$  reduction than assimilatory reduction.

Dissimilatory reduction does not dominate denitrification in most cases, however. Where the oxygen status is more transient or where the redox potential is less reduced, denitrification dominates. Tiedje, Sorenson, and Chang (1979) incubated an organic muck soil (pH 5.7) anaerobically with and without glucose (C) addition. Labeled nitrate and ammonium were added. In the sample without C addition, the dissimilatory reduction rate was 0.3-0.6 ug/g/day while the denitrification rate was 15 ug/g/day. With C addition, the dissimilatory reduction rate was

-19-

1 ug/g/day while the denitrification rate was 25 ug/g/day. The obvious conclusion of the study was that denitrification was the major nitrate reduction process in an organic muck soil.

#### Nitrogen Gas Fixation

Nitrogen fixation is performed by bacteria or blue-green algae, which use  $N_2$  by non-symbiotic means and by symbiotic associations between microorganisms and a higher plant (Alexander, 1977). Non-symbiotic fixation is performed by actinomycetes, fungi, yeasts, aerobic bacteria, facultative anaerobes photosynthetic bacteria (nonsulfur purple, purple sulfur, green sulfur), and blue green algae.

Azotobacter has been the most intensely studied non-symbiotic N fixer but it is not very common in soils. The dominate anaerobes are Clostridia which proliferate when organic matter is added. They are numerous around plant roots at sites with pH values of five and they are capable of fixing N up to pH nine. Fixing efficiency is low with 2-10 mg N fixed/gram carbohydrate consumed. Blue green algae are common in flooded soils and are stimulated by increasing light intensity. Its fixation of nitrogen is less rapid than in Azotobacter or Clostridia. All photosynthetics are affected favorably by light and inhibited by oxygen. Their rate of assimilation is also quite slow. Non sulfur purples are found in flooded soils, ditches, lake muds, and sea bottoms.

Many factors affect the non-symbiotic fixation of gaseous nitrogen. The presence of nitrate or ammonium can reduce fixation. Nitrogen fixers have the ability to use  $NO_3^-$  and  $NH_4^+$  and sometimes prefer them to  $N_2$ .

-20-

Fixation is also dependent on certain metals. Molybdenum, iron, calcium, and cobalt are all critical for the reaction. The availability of energy sources (sugar, cellulose) also limits the rate and extent of fixation by heterotrophs. Typically one to 30 mg of N are assimilated per gram of carbon source.

Bacterial nitrogen fixers are affected by soil acidity. Azotobacter, as well as blue-green algae, are sensitive to pH values less than six. The fixation rate is also determined by soil moisture. Nitrogen assimilation is insignificant when little water is available but activity can be especially great under waterlogged conditions. The optimum water level varies with soil type and quantity or organic matter. Increasing temperature also promotes gas uptake with an optimum of about 35 degrees C. Deliberate vegetation burning seems to promote nitrogen fixation as well and grasslands generally have low activity.

The classic example of symbiotic N fixation is the relationship between leguminous plants and bacteria of the genus Rhizobium. The seat of the symbiosis is in nodules on the plant roots. Rhizobia are gram negative, non-spore forming, aerobic rods which are typically motile. Several carbohydrates are used in its metabolism with occasional acid accumulation. Gas is never liberated. Rhizobia grow readily in media containing a C source,  $NH_4^+$  or  $NO_3$  to supply needed N, several inorganic salts, several B vitamins, and cobalt. Symbiotic  $N_2$  fixation rates range from 65-335 kg N/ha/year. Non-legumenous plants (cg. alder trees) are also capable of nodule formation and  $N_2$  fixation.

-21-

The many environmental influences of symbiotic N<sub>2</sub> fixation include type of legume, inorganic-N content of soil, level of phosphorous and potassium which are essential host nutrients, pH, presence of secondary nutrients, and climate as it affects the host plant. As in nonsymbiotic fixation, symbiotic fixation is inhibited by the presence of inorganic-N. Little nodule formation occurs at pH less than five. This is probably due to iron or aluminum toxicity rather than pH sensitivity. There is some evidence that a calcium deficiency is important in its effects of acidity on fixation. Molybdenum, whose availability is affected by pH, and cobalt also stimulate fixation.

## Plant Uptake

As mentioned earlier in this chapter, research findings regarding plant uptake of nitrogen has been limited. A general rule of thumb is that 1 to 4% of a soil's organic-N is released to plants during the growing season in temperate climates (Alexander, 1977). Nitrate is the preferred form of nitrogen taken up by plants. Factors favoring uptake include vigorous root aeration, low initial salt content in plant tissues, high external nitrate concentrations, and an absence of ions which compete for uptake. Unfavorable factors to uptake include low light intensity and a limited carbohydrate level in the plant. Woodmansee, Vallis, and Mott (1979) determined that nitrogen is taken up to above ground plant parts during the growing season and then, during the fall, nitrogen is translocated back to the plant's crown and roots.

-22-

### Volatilization

Ammonia is a gas at normal temperatures and pressures and its partial pressure is usually low. Volatilization of ammonia is insignificant, however, when the pH of the soil is less than 7.0 (Alexander, 1977). High concentrations of ammonia with high pH, high temperatures, and low CEC are necessary for NH<sub>3</sub> volatilization (Tusneem and Patrick, 1971).

Ammonia sources include organic-N compounds which decompose to release NH<sub>3</sub> (eg. wastewater), fertilizers, ammonia salts, and urea. Most sources provide ammonium which applies to the following equations:

> $NH_4^+ + OH^- < ---> NH_3 + H_2O$  $K_b = [NH_4^+][OH^-]/[NH_3] = 1.774 \times 10^{-5} \text{ at } 25 \circ C$

 $K_w = [H^+][OH^-] = 1.007 \times 10^{-14} \text{ at } 25 \circ C$ 

where:  $-K_b$  is the dissociation constant of the ammonium reaction,  $-K_w$  is the dissociation constant for water,  $-[NH_4^+]$  is the ammonium concentration,  $-[NH_3]$  is the ammonia concentration,  $-[OH^-]$  is the hydroxide ion concentration, and  $-[H^+]$  is the hydrogen ion concentration.

When dividing  $K_b$  by  $K_w$ , one gets a relationship between  $[NH_4^+]$ ,  $[NH_3]$ , and pH (Freney, Simpson, and Denmead, 1979). Note that pK values are constant with temperature. The relation is:

 $\log ([NH_4^+]/[NH_3]) = (pK_w - pK_b) - pH$ 

-23-

### TABLE 2.1

## PH AND PERCENT AMMONIA RELATIONSHIP

| рH | \$NH <sub>3</sub> |
|----|-------------------|
| 6  | 0.0               |
| 7  | 1.0               |
| 8  | 10.0              |
| 9  | 50.0              |

One can see from Table 2.1, derived from the above relationship, that ammonia concentrations are not significant until pH values are greater than eight.

Since the reaction is pH dependent, the buffering capacity (eg. calcium carbonate content) of the soil play an important role. Since hydrogen ions are released with volatilization, a soil will acidify without buffering. High temperatures also enhance volatilization. Besides increasing the pK's, increasing temperatures decrease  $NH_3$  solubility and increase its diffusion rate which all promote volatilization. Since the concentration of ammonium drives the reaction, volatilization is indirectly affected by plant uptake, leaching, application rate, nitrification rate, mineralization, immobilization, and cation exchange. (Freney, Simpson, and Denmead, 1979)

### Ammonium Adsorption

Isomorphous substitution in clay minerals gives clay particles a net negative charge. (Isomorphous substitution is the occupation of a clay matrix position by a cation other than the one normally found, without

-24-

change in the crystal structure.) To preserve electrical neutrality, cations are attracted and held on the surfaces and edges of clay particles. These cations are "exchangeable" since cations of one type may be replaced by cations of another type. The quantity of exchangeable cations required to balance the charge deficiency is called cation exchange capacity and is expressed as milliequivalents per 100 grams of dry soil. (Mitchell, 1976). During this ordinary exchange, larger and high charged cations are preferentially adsorbed as follows:  $Al^{3+} > Ca^{2+} > Mg^{2+} > K^+ = NH_4^+ > Na^+$  (Bohn, McNeal, and O'Connor, 1979).

Besides adsorption of cations to clay surfaces, cations can be "fixed" inside spaces within the layering of clay particles. Ammonium takes part in this reaction. Fixed ammonium is defined as the NH<sub>4</sub><sup>+</sup> ions which are not replaceable by prolonged extraction and leaching of a soil by potassium salt solutions (Nommik, 1979). Tusneem and Patrick (1971) stated that the presence of montmorillinite and illite leads to chemical fixation of NH<sub>4</sub><sup>+</sup> into a non-exchangeable form. These ions are then withdrawn from entering ordinary exchange and have restricted biological activity. Generally less than one-third of fixed NH<sub>4</sub><sup>+</sup> is available for nitrification. It has been established that these ammonium ions can slowly be replaced by cations which expand the interlayer (K, Mg, Ca).

Adsorbed ammonium contents in the topsoil are typically 1-25% of the total N; they are 10-90% of the total soil N in lower horizons (Kudeyarov, 1979). The soils capacity to adsorb NH4<sup>+</sup> depends on the soil's mineral composition, texture, and pH. The amount of fixed ammo-

-25-

nium increases with  $NH_4^+$  concentration in the soil solution as described by the following equilibrium equation:

[NH4+]f <---> [NH4+]ss

where:  $-[NH_{4}^{+}]_{f}$  is the fixed ammonium concentration, and

 $-[NH_4^+]_{SS}$  is the ammonium concentration in the soil solution.

There is also a relationship between soil moisture content and the amount of adsorbed ammonium (Kudeyarov, 1979; Nommik, 1979). Increasing the moisture content influences the degree of expansion of the lattice of clay minerals, causing the release and migration of adsorbed  $\rm NH_4^+$  from the interlayer space. On the other hand, flooding decreases nitrification and as ammonification continues, the ammonium concentration increases in the soil solution. This increase shifts the equilibrium equation towards fixation.

In non-flooded, non-fertilized soils, the maximum ammonium is adsorbed in early spring and late autumn with minimum fixation at the end of the growing season (Kudeyarov, 1979). In the summer, plants assimilate more mineral N than is produced. Therefore, nitrate and ammonium concentrations decrease in the soil. (It was stated earlier that nitrate is assimilated more rapidly by crops than added ammonium. Perhaps  $NH_4^+$ adsorption delays its uptake.) After the vegetation period, nitrogen assimilation and nitrification decline and, as ammonification continues, a net increase in soil  $NH_4^+$  occurs. Therefore, a seasonal pattern exists where the minimum amount of fixed ammonium is during the period of high nitrification and plant uptake.

-26-

## Leaching of Soil Nitrogen

Nitrogen leaching, or migration of N into deeper soil horizons, is serious when rainfall exceeds evapotranspiration (Khanna, 1979). Organic-N, which usually makes up more than 90% of the total soil nitrogen, is considered to have low mobility and leaching potential. Normally 40-50% of total rainwater-N is ammonium. Ammonium leaching is considered unlikely, however, except under heavy rainfall or sewage disposal. The reasons for low  $NH_{ll}^+$  leaching are:

- 1. NH4<sup>+</sup> adsorption by CEC,
- 2. microbial immobilization,
- 3. nitrification,
- 4. plant uptake, and
- 5. NH<sub>3</sub> volatilization.

Nitrates and nitrites are leached the easiest since their negative change prohibits ion adsorption. Khanna (1979) reported an average spring to autumn mineral-N loss leaching rate of 0.6-1.45 kg N/ha/day. In a clay loam soil, Khanna (1979) reported a nitrate leaching rate of 1.9 mm/day.

Vertical solute movement is described by the following equation (Khanna, 1979):  $\frac{\partial C}{\partial t} = D \quad \frac{\partial^2 C}{\partial C^2} - V_0 \quad \frac{\partial C}{\partial Z}$ 

> where:  $C = NO_3$  concentration in mg/l,  $\overline{D}$  = apparent mean diffusion coefficient in cm/d,  $V_o$  = average pore velocity in cm/d, z = linear flow distance in cm, and t = time in days.

> > -27-

This equation may underestimate vertical flow because macropores, created by plants and animals, will act as direct conduits to flow.

Leaching fluctuates with season (Khanna, 1979). Nitrate concentrations rise in streams in autumn and peak in winter or early spring. There is no relation to individual rainfalls. A drought can often lead to an upward migration of nitrate. Increases in stream and soil water nitrate from leaching have been seen after fires as well.

### Land Treatment of Nitrogen: Case Study Summary

Losses of 7 to 94% of applied nitrogen through denitrification were indicated in several lab and field studies. Patrick and Gotoh (1974) observed 67% denitrification loss of applied-N in a silt loam soil mixed with  $(NH_4)_2SO_4$  and incubated in the dark for 120 days at 30°C. Up to 68% losses of added nitrogen resulted when Tusneem and Patrick (1971) incubated a silt loam at 30°C in water saturated air. These losses were attributed to denitrification since they were too large to result from volatilization or adsorption. Reddy and Graetz (1981) observed 58 to 71% applied-N losses in aerobic lab conditions and 94% losses in anaerobic lab conditions using a muck soil. These losses resulted from denitrification since pH values were low (less than 9). The same conclusion was reached by Chen and Patrick (1981) during a lab scale overland flow study where 53 to 61% of added ammonium was lost. Ammonium reduction of 93% were witnessed by Olson et.al. (1980) at a sandy rapid infiltration site treating municipal primary effluent. This loss occurred through 22 feet of unsaturated zone. Lab scale lysimeters were used by Leach and Enfield (1983) to determine 30 and 79% denitrifi-

-28-

cation losses in sand and a sand/clay mixture, respectively. Ryden and et.al. (1981) found only 7-9% loss of total applied-N at a secondary effluent disposal field. One-third of this loss was from volatilization since wastewater pH was high and the buffering capacity was low. Soil aeration, low soil nitrate and high redox potential (600 mV) were also reasons for the low losses at this sandy loam site.

Leaching of nitrate or ammonium was also seen as a potential sink for applied nitrogen. Lund et.al. (1981), while studying a loamy sand pasture irrigated with secondary treated wastewater, determined that 51-76% of the applied-N leached to the groundwater. This was a rate of 833 kg NO<sub>3</sub>-N/acre/yr. Denitrification was not considered due to aerobic soil conditions and the fast percolation rates. Chen and Patrick (1981) observed 10-30% of applied ammonium in the underflow of a lab scale overland flow system.

Crop uptake was a third major sink of applied nitrogen cited in the literature. King (1982) found that 20-30% of applied nitrogen was recovered in a crop irrigated with wastewater from a fiberboard mill. Chen and Patrick (1981) observed 11-22% uptake of added ammonium during simulated overland flow. Palazzo (1981) determined that 50-85% of applied nitrogen was taken up by orchardgrass planted on a silt loam soil and irrigated with municipal wastewater. Palazzo also stated that highest plant yield and nitrogen uptakes occurred during late spring and concluded that higher loading rates could be applied during this period.

-29-

Many case studies indicated parameters such as C:N ratio, load/rest cycling, soil moisture content, and soil oxygen content which affected nitrogen transformations. Lab studies by Patrick and Gotoh (1974), Tusneem and Patrick (1971), and Chen and Patrick (1981) all determined that nitrogen losses increased with decreasing C:N and immobilization increased with added carbon. Highest nitrogen losses were observed at C:N equal to 15:1.

Tusneem and Patrick (1971), Chen and Patrick (1981), King (1982), and Leach and Enfield (1983) all found that nitrogen losses were stimulated by alternate submergence and drying of soils in both lab and field situations. Leach and Enfield also observed that  $NO_3^--N$  concentrations increased in soil pore water during resting and were flushed downward during loading causing nitrate peaks to appear.

Soil moisture content and soil pore air oxygen content also were found to have an effect on denitrification. Ryden et.al. (1981) observed maximum denitrification rates at moisture contents of 15-18% at a secondary effluent disposal area. Patrick and Gotoh (1974) found that nitrogen loss increased with oxygen contents up to 20%. Minimal losses occurred at higher  $O_2$  contents. This indicated that the earth's atmospheric content of 21% is adequate for nitrogen loss.

### The History of Ridge and Furrow Treatment

The historical perspective of the ridge and furrow treatment of wastewater was provided in two reports by Schraufnagel (1956, 1962) and one by Monson (1956). The following discussion was based on their findings.

-30-

Ridge and furrow irrigation, in the form of sewage farms in the 1870's, was one of the earliest methods of sewage disposal. Several canneries in Iowa began operation of ridge and furrow sites in the 1930's; during the late 1940's and early 1950's, Minnesota and Illinois canneries also began ridge and furrow disposal. Seasonal flows ranged from 136 to 250,000 gallons per day and site areas range from 2 to 40 acres.

In 1930, a dairy in Phoenix, Arizona, reportedly discharged 60,000 gpd of effluent to eight furrows which were plowed under every other day. A creamery in Minnesota installed a ridge and furrow system in 1950 on a 2.8 acre site divided into three cells and underlain by a line of drain tile. The total cost of the system, exclusive of land, was \$800. The first ridge and furrow system in Wisconsin was developed at the Mindoro Cooperative Creamery in 1954. The three acre site was similar in design to the Minnesota system. A pumping system was necessary and the total initial cost, including \$2000 for land, was \$8000. In 1962, the system treated 23,300 gallons/acre/day and 50 lb BOD<sub>5</sub>/acre/day. (It should be noted that the drain tile outlet at this site has since been closed.)

Several meat processing and wood pulping plants have also used the ridge and furrow treatment process.

#### Ridge and Furrow System Design Concerns

Before operation of a ridge and furrow treatment system, many design concerns must be considered. They include site selection, system size, operation, cell layout, and cover crop (Rodenberg, 1980).

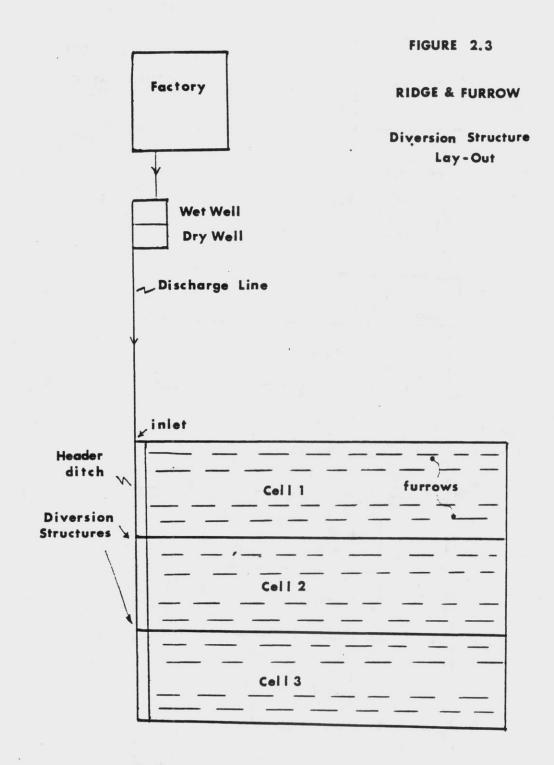
-31-

Site selection is the initial step. A suitable site must be located through a site survey which considers soil classification, topography, and proximity to residences. Relatively permeable soils are needed to provide adequate treatment and hydraulic disposal of wastewater. Low permeability will result in wastewater ponding and high permeability will result in limited contaminant (eg. BOD<sub>5</sub>, TKN, etc.) treatment. Soil suitability is quantified through soil borings and percolation tests.

From a construction view point, the cost of ridge and furrow installation is lower if the topography is fairly level. This also limits cuts and fills which could affect the infiltrative capacity of the soil. Control of wastewater flow is also better on flat systems.

In Wisconsin, the minimum separation distance between ridge and furrow systems and residences is 500 feet. A designer must consider this distance closely. Many proposed designs have been delayed or dropped because of homeowner challenges. Sites must also be located 250 feet from water supply wells in Wisconsin.

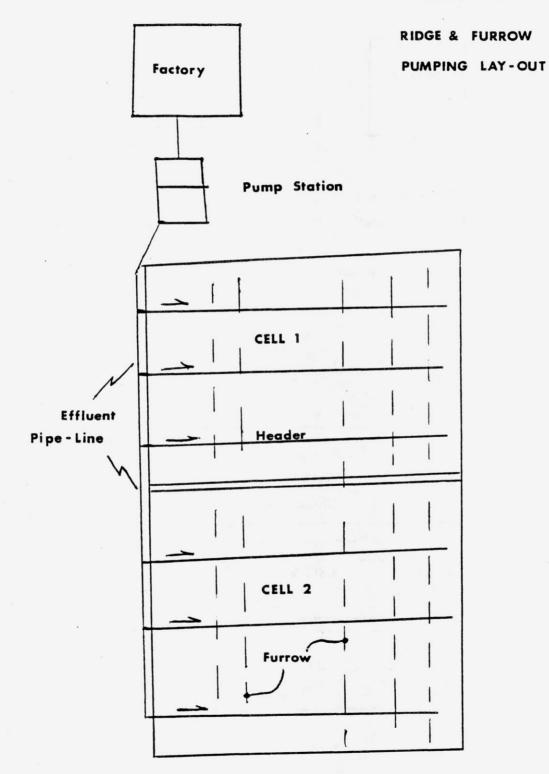
Hydraulic and BOD5 loading rates are currently used to size a ridge and furrow system (Rodenberg, 1980). Clayey soils should generally have hydraulic rates from 2500 to 5000 gallons/acre/day. Sandy soils may receive up to 10,000 gallon/acre/day. Hydraulic overload has historically been the primary failure at these systems in Wisconsin (WDNR, 1984). A conservative design approach is therefore recommended. Wisconsin Code NR 214 states that BOD5 loading rates at ridge and furrow


-32-

sites should not exceed 100 lb BOD5/acre/day. In summary, there are two methods to size a potential system provided that wastewater flow and BOD5 estimates are available.

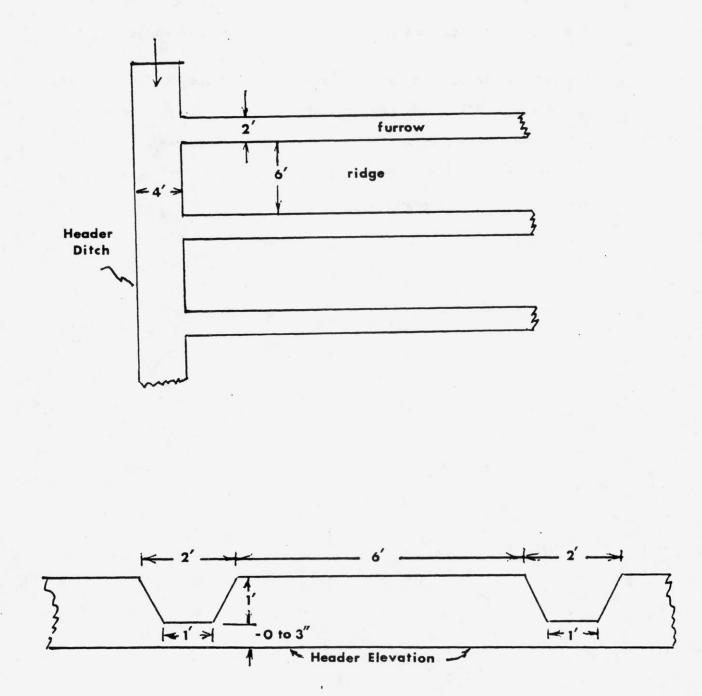
Once the loading rates have been determined, the number, loading schedule, and size of cells (or sections) must be determined (Rodenberg, 1980). It is important to have more than one cell, even in small systems, to allow for alternate loading and resting. Resting helps maintain aerobic conditions beneath the furrows, upholds the adsorptive capacity of the soil, and enhances biodegradation of the wastewater. A cell should not come into service until the previously loaded wastewater has seeped away. A load/rest time period is, therefore, dependent on site soils. Cell size is affected by site topography as well and smaller cells are recommended on steeper slopes. Wastewater distribution efficiency should also be considered in cell sizing. Waste application should be uniform in all loaded furrows.

Figure 2.3 and Figure 2.4 show typical ridge and furrow layouts and furrow construction detail, respectively (Rodenberg, 1980). One typical system layout is to have a header ditch along one side of the site with all furrows, separated eight feet on center, perpendicular to it. Flow is directed to the desired cell by a diversion structure. Another possible layout is to have several header ditches crossing the furrows at right angles within each cell. Flow is directed in valved pipes. Furrows are recommended to be one foot deep, one foot wide at the bottom, and two feet wide at the top. To maintain slope stability, shallower furrow side slopes may be necessary in sandy soils.


-33-



34


.





## FIGURE 2.4

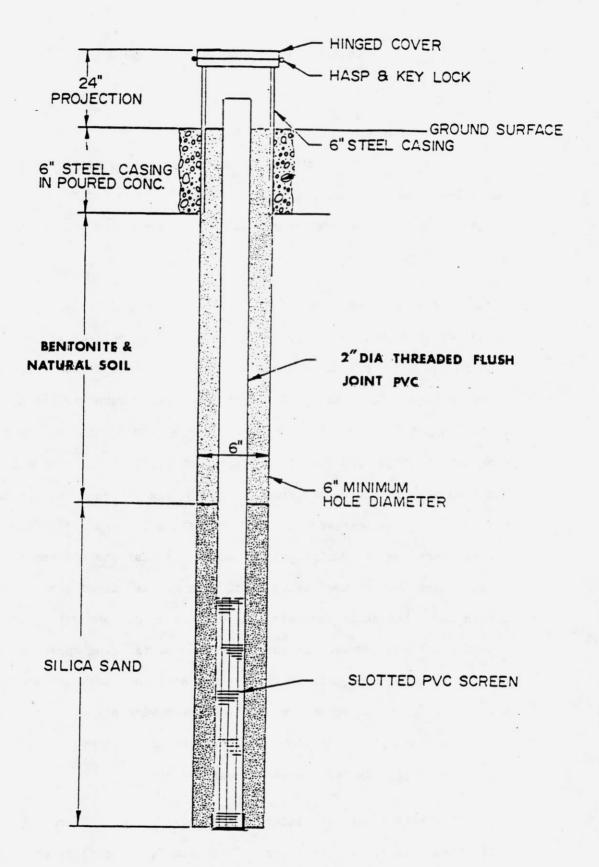
HEADER & FURROW DETAIL

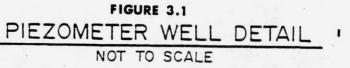


A ridge and furrow system commonly is surrounded by a berm several feet high and cells within a site are usually separated by an embankment eight feet wide (Rodenberg, 1980). These dikes prevent surface runoff from entering the system, contain wastewater during temporary cell flooding conditions, and permit access of maintenance equipment.

A cover crop is also an important feature of a ridge and furrow system (Rodenberg, 1980). Besides maintaining ridge stability, a cover crop allows for nutrient uptake, evapotranspiration, and odor control. A crop should be able to tolerate flooded conditions. In the Midwest, reed canary grass is preferred.

#### CHAPTER 3: MATERIALS AND METHODS


## Materials


Wells, lysimeters, stage markers, and infiltration stations were installed at each site for use in gathering information for the project. Locations of this instrumentation will be discussed in the respective site chapters.

During August and September of 1983, 2 inch I.D. PVC wells were installed at each site. These wells were used to collect groundwater samples and measure groundwater elevations. A typical installation is shown in Figure 3.1. Six inch diameter boreholes were drilled to the desired depth using a rotary auger drill rig provided by the State of Wisconsin Geologic and Natural History Survey. A six inch hand auger was used at locations not accessible to the rig. Screens of two and one-half and five feet were used (slot width = 0.006 inches); the longer screens were used in shallow water-table installations and shorter screens were used in deep wells. Silica sand was placed around the screen and a bentonite seal was packed about a foot above the screen to retard migration downward of surface contaminants. The upper portion of the borehole was backfilled with natural soil and pentonite and compacted. A concrete cap and protective casing were placed at the surface to secure the well. Elevations were shot on the tops of all wells for reference in groundwater elevation measurements.

Vacuum lysimeters were installed in September and October of 1983 at both sites. These were employed to draw samples of pore water at given

-38-





depths in the unsaturated zone. A typical Teflon lysimeter installation with specifications is illustrated in Figure 3.2. A six inch hand auger was used to drill a borehole to the desired depth. The lysimeter was then lowered into the borehole and a silica flour slurry was poured around it. The silica pack allowed for a continuum between the soil and the lysimeter. After the silica pack hardened, the hole was backfilled with natural soil. A concrete cap and protective casing were installed at the surface to secure the lysimeter.

Stage markers were installed in March and April of 1984 for use in stream elevation measurements. A typical marker is shown in Figure 3.3. A metal stake was driven into the stream sediments and protected by a short length of PVC pipe. Elevations were recorded at the top of the stakes for a reference.

Infiltration stations were constructed in October and November of 1984 to determine the infiltration rate of wastewater into the unsaturated zone. A typical station, with dimensions, is shown in Figure 3.4. A station consisted of two sheets of plywood, hand-driven into a furrow, which isolated a short length of furrow.

## Methods

Procedures followed during this ridge and furrow project were based on the objectives listed in Chapter 1 which were:

- 1) to determine the nitrogen transformation in the wastewater during treatment,
- 2) to perform a nitrogen budget at each site,

-40-

## FIGURE 3.2

## TYPICAL LYSIMETER INSTALLATION

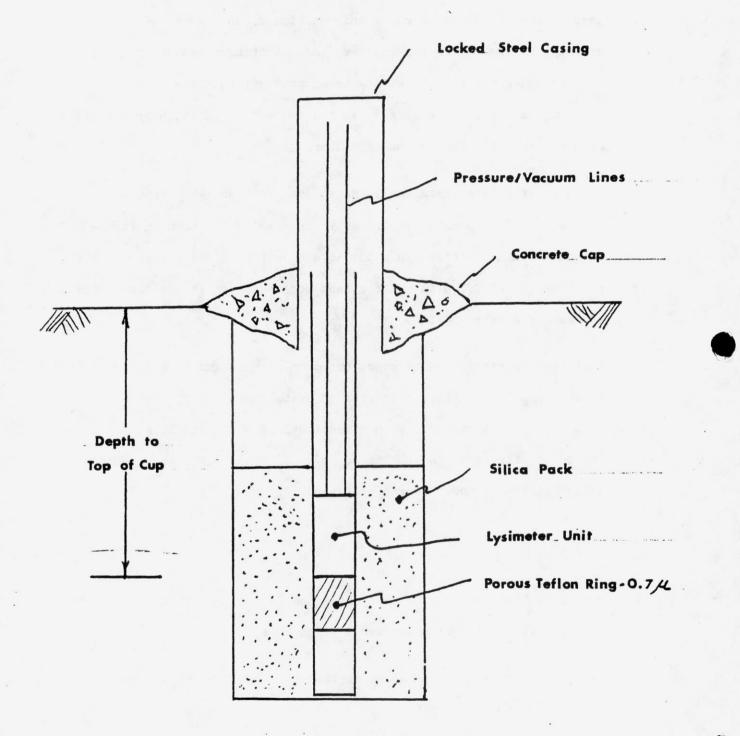



FIGURE 3.3

TYPICAL STAGE MARKER

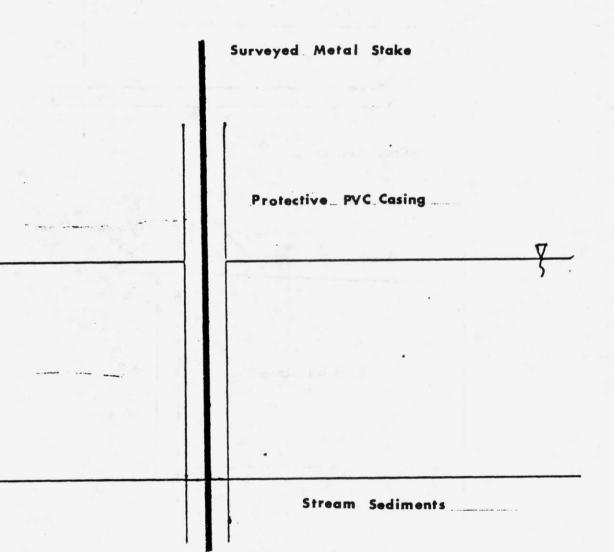
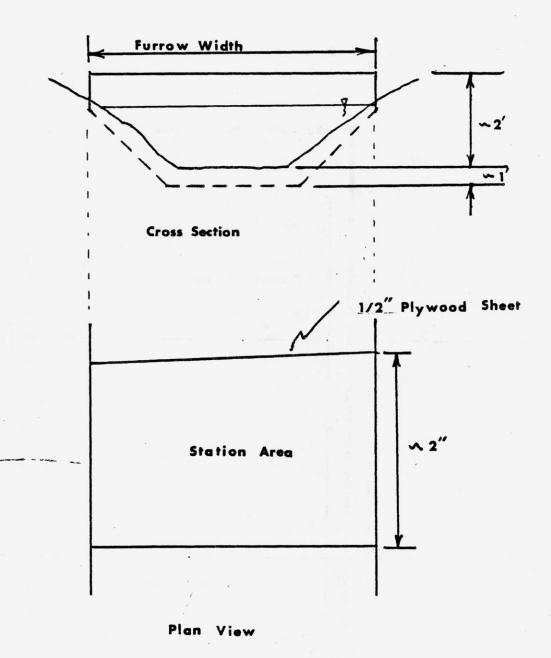




FIGURE 3.4

TYPICAL INFILTRATION STATION



- to analyze ridge and furrow treatment effectiveness under different soil and loading conditions,
- 4) to examine the operation and maintenance at these systems, and
- 5) to evaluate the monitoring equipment used.

This chapter describes these procedures.

The primary task before field work began, was to determine the number and location of well and lysimeter installations. This was done by personnel at WDNR during the summer of 1983. Wells were positioned to detect contamination migrating from each site (shallow and deep) to better define groundwater movement, and to describe background groundwater quality. Additional wells were installed later in the project based on groundwater flow and detected contamination. Lysimeters were placed in centralized areas within site cells which appeared to receive a typical wastewater loading. Background lysimeters were also installed away from the ridge and furrow systems.

Beginning in October of 1983, after initial well and lysimeter installation, a monthly field visit to each site was performed. During a typical visit, groundwater, lysimeter, and wastewater samples were collected, water table elevations were measured, and site observations were conducted.

As the project progressed and questions about the data arose, adjustments in this routine were made. In March and April of 1984, additional wells were installed at each site to better quantify the polluted area. In June of 1984, monthly sampling was discontinued at wells with

-44-

predictable or non-useful chemical trends. At Brodhead, during July-August and October-November of 1984, an intense sampling program was conducted to better quantify nitrogen transformations with depth and time during a loading cycle. July and August sampling occurred during a two week load/rest cycle and the October-November sampling took place during a one-week load/rest cycle. During these sampling periods, wells and lysimeters located inside the system and selected furrows were sampled two or three times per week. An additional well was installed in October 1984 at Brodhead to better define groundwater quality immediately beneath the site.

A complete description of field methods is presented in the following section.

#### Field Methods

Soil samples were taken during initial borehole drilling. Grab samples were removed from the rotary or hand auger at desired depths. Samples were sealed in labeled plastic bags for travel.

During each monthly trip, a flow composite wastewater sample (typically 24-hour) was collected. Each time the pump would run, a fraction of the flow was diverted through a hose, tapped into the discharge side of the pump, which led to a collection reservoir stored in ambient conditions. Non filtered samples were collected. Nitrogen and COD samples were acidified with sulfuric acid to pH<2; metal samples (when taken) were aci-

-45-

As composite waste samples were collected, wastewater flows to the ridge and furrow systems were also determined. At Brodhead, flow was calculated by subtracting the volume of cooling water discharge (to river) from the total production water pumped into the plant. Both of these pumps were metered. At Mindoro, this calculation was made by dividing the volume pumped by the hours of metered pumping time during sample collection. Also, 30-day monthly wastewater flow averages, as reported to the Wisconsin DNR, were recorded at both sites.

Furrow samples were taken during the intensive sampling periods at Brodhead and during October and November of 1984 at Mindoro. Grab samples taken from selected furrows were field filtered and acidified unless travel time to the lab was short (less than 1 hour).

Field filtering was done with a peristaltic pump, powered by a 12 volt D.C. battery, and pressure filter stand. Samples were filtered through a 0.45 micron filter. As described earlier, all nitrogen and COD samples were preserved with sulfuric acid to pH<2; all metals samples were acidified with nitric acid to pH<2. Samples were packed in ice for transport.

Lysimeter samples were taken monthly with accelerated collection during "intense" sampling periods at Brodhead. Twenty inches of mercury vacuum was applied with a two-way hand pump, to draw a pore water sample into the lysimeter. At Brodhead, an adequate volume of sample was obtained after a 48 to 72 hour vacuum period. At Mindoro, adequate volumes could be obtained from the operating lysimeters within 24 hours. Samples were

-46-

removed from the lysimeter's sample reservoir by pressurization with a hand pump. Samples were field filtered and acidified unless travel time to the lab was short.

Well sampling was performed monthly with accelerated collection during "intense" sampling periods at Brodhead. Wells at Brodhead were purged and sampled with a diaphragm pump or PVC bailer while wells at Mindoro were purged and sampled with a PVC bailer. Apparatus was rinsed with deionized water before purging and sampling. For quickly refilling wells, three well volumes were removed before sampling. For slowly refilling wells, water was purged until the well was dry. The latter wells were located at Mindoro and were sampled the following day. Samples were field filtered and acidified.

Periodically, upstream, midstream, and downstream grab samples were taken of neighboring rivers at each site. Non-filtered samples were acidified in the field as described earlier.

Groundwater elevations were taken each time a well was sampled. This was done with a fiberglass surveying tape with a "popper" attached. The popper was a formed metal cup which produced a pop sound as it contacted standing water within a well. Surface water elevations of neighboring streams were taken periodically after stage markers were installed.

Slug tests, as described by Cooper, Bredehoeft, and Papadopulas (1967, 1973), were attempted at each site to determine hydraulic conductivities in the saturated zone. Briefly, this method involves removing or adding a quantity of water to a well and recording the rise/fall of head with

-47-

time. These curves can be related to type curves to determine conductivity and a storage coefficient. This procedure is presented in Appendix E.

During October and November of 1984, plywood infiltration stations were constructed. A volume of wastewater was taken from a neighboring furrow and added to a dry "station." Water elevation drops were measured with time to determine the flow rate of wastewater through the furrow bottom.

Grass samples were collected during the spring, early summer, and late fall to determine plant nitrogen uptake during the growing season. Cuts were made at about two inches above the ground surface and the area of the sample was recorded. Samples were stored in paper bags for transport.

Site observations were made during each visit. These observations included 1) the extent of freezing conditions during the winter, 2) the extent of plant growth during the growing season, 3) the distribution of wastewater to the furrows, 4) cell loading, 5) the amount of solids build-up in the furrow bottoms, and 6) the operation of the monitoring equipment used.

#### Analytical Methods

Chemical analysis of wastewater, furrow, lysimeter, groundwater, and stream samples were performed by the Wisconsin State Laboratory of Hygiene. Complete tab procedures are described in the "Manual of Analytical Methods-Inorganic Chemistry Unit" written by the Lab of Hygiene in 1980. As mentioned before, the lab also filtered and

-48-

acidified samples if travel time from a site was short (less than 1 hour). Table 3.1 lists the frequency of analysis and sample source (waste, furrow, etc.) for each chemical parameter. Readings of pH were made in the field with a <u>Tripar Industries</u>, Inc. three-parameter digital meter.

## TABLE 3.1

### CHEMICAL ANALYSIS DONE

| PARAMETER        | SAMPLE SOURCE                                         | FREQUENCY *      |
|------------------|-------------------------------------------------------|------------------|
| DISS BOD5        | furrow, lysimeter, groundwater                        | 4,4,3            |
| TOTAL BOD5       | wastewater, furrow, stream                            | 1,4,4,           |
| DISS COD         | furrow, lysimeter, groundwater                        | 2,3,3,           |
| TOTAL COD        | wastewater, stream                                    | 1,4              |
| TSS              | wastewater                                            | 1                |
| TDS              | wastewater, furrow, lysimeter, groundwater            | 4,4,4,1          |
| DISS TKN         | wastewater, furrow, lysimeter,<br>groundwater         | 2,2,3,3          |
| TKN              | wastewater, furrow, stream                            | 1,2,4            |
| DISS NH3-N       | wastewater, furrow, lysimeter,<br>groundwater, stream | 1,2,3,3,4        |
| DISS NO2-N+NO3-N | wastewater, furrow, lysimeter,<br>groundwater, stream | 1,2,3,3,4        |
| c1-              | wastewater, furrow, lysimeter,<br>groundwater, stream | 1,2,3,3,4        |
| pH               | wastewater, furrow, lysimeter,<br>groundwater, stream | 1, 1, 1, 1, 1, 1 |
| DISS ALK         | groundwater                                           | 4                |
| TOTAL ALK -      | wastewater, stream                                    | u, 4             |

TABLE 3.1 (Continued)

| PARAMETER              | SAMPLE SOURCE      | FREQUENCY # |
|------------------------|--------------------|-------------|
| DISS TOTAL P           | groundwater        | 4           |
| TOTAL P                | wastewater, stream | 4,4         |
| DISS SO4 <sup>2-</sup> | groundwater        | 4           |
| total so42-            | wastewater, stream | 4,4         |
| DISS Na+               | groundwater        | 4           |
| TOTAL Na+              | wastewater, stream | 4,4         |
| DISS K+                | groundwater        | 4           |
| TOTAL K+               | wastewater, stream | 4,4         |
| DISS Mg <sup>2+</sup>  | groundwater        | 4           |
| TOTAL Mg <sup>2+</sup> | wastewater, stream | 4,4         |
| DISS Ca <sup>2+</sup>  | groundwater        | 4           |
| TOTAL Ca <sup>2+</sup> | wastewater, stream | 4,4         |

\*Frequencies: 1 - monthly

2 - intense periods only 3 - 1 and 24 - periodically

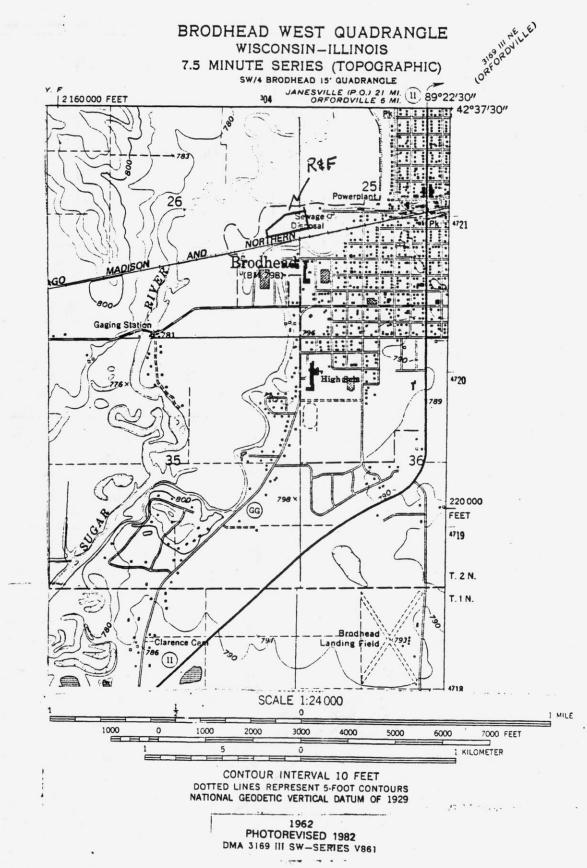
Soil and plant analysis was performed by the Soil & Plant Analysis Laboratory, University of Wisconsin Extension. Complete lab procedures are described in "Wisconsin Procedures for Soil Testing, Plant Analysis, and Feed and Forage Analysis" (1980). Soil samples were analyzed for percent sand, silt, clay, and total nitrogen; CEC; and pH. Plant samples were analyzed for sample weight; percent ash; percent nitrogen of dry and ash sample; and percent P, K, Ca, Mg, and S; and Zn, B Mn, Fe, Cu, Al, and Na concentrations.

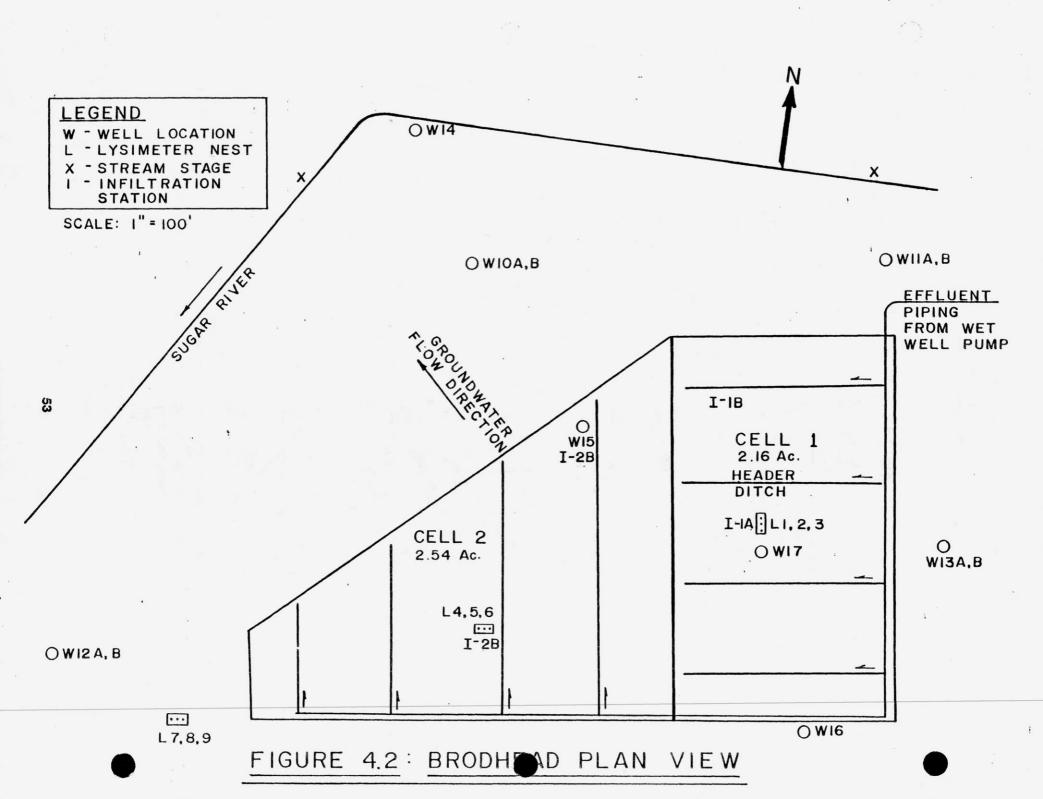
-50-

### CHAPTER 4: BRODHEAD SITE - RESULTS AND DISCUSSION

## Site Description

The Universal Foods cheese factory is located in Brodhead, Wisconsin in eastern Green County. The plant receives 260,000 pounds of milk per day and discharges 39,500 gpd (average) of processing wastewater which is treated by a 4.7 acre ridge and furrow system consisting of two cells. This treatment system began operation in 1972. Figure 4.1 is a topographical map showing the general location of the system.


A plan view of the treatment system is illustrated in Figure 4.2. Well, lysimeter, stream stage, and infiltration station locations are indicated as well as cell locations and areas. General information concerning well and lysimeter depths and location is presented in Table 4.1. Complete well and lysimeter logs are given in Appendix A.


The ridge and furrow site is located on an unconfined aquifer consisting of glacial outwash material along the Sugar River. This sandy material extends approximately 70 feet deep and overlays a sandstone aquifer. The Soil Conservation Service describes this Maumce, Orion soil as a poorly drained sandy loam soil over a fine to medium sand. It is formed on low stream terraces and somewhat poorly drained soils formed in silty alluvium (DNR, 1984).

Results of the soil analysis at Brodhead indicated the following parameter ranges:

-51-

# FIGURE 4.1





-sand: 81-99% -silt: 0-16% -clay: 1-5% -Total N: 0-0.11% -CEC: 1-13 meg/100g soil -pH: 6.5-8.6

The higher silt, clay and total N fractions occurred in shallow samples. Also CEC tended to decrease with depth and soil pH tended to increase with depth. Complete soil analysis data are presented in Appendix B. After reviewing the data, it may be concluded that the soil below the treatment system is predominantly sand with an average CEC of 3 meg/100g.

Soil borings during well and lysimeter installation also produced the following information. First, profiles outside the system showed a one to four foot silty topsoil layer overlying the sand. Second, cell 1 borings indicated a dark saturated organic layer beneath the furrows. This layer was absent in the extremities of cell 1 and was about one foot thick in the center of the cell. Finally, cell 2 only had these organic layers around the header ditches. The largest thickness found under this cell was three inches.

#### WASTEWATER CHEMISTRY

Universal Food's wastewater was strong with an average  $BOD_5$  of 1780 mg/l, COD of 2390 mg/l, TKN of 42 mg/l, and chloride of 930 mg/l. Means, medians, and ranges of these and other chemical parameters of the

-54-

wastewater are provided in Table 4.2. Values of a strong typical domestic waste are provided for comparison. A complete tabulation of data is provided in Appendix C.

## TABLE 4.1a

## WELL SPECIFICATIONS

## AT BRODHEAD SITE

| WELL* | WELL TOP<br>ELEVATION | DEPTH<br>(ft) | WELL POINT<br>ELEVATION | APPROXIMATE<br>SURFACE ELEVATION | SCREEN<br>LENGTH(ft) | LOCATION              |
|-------|-----------------------|---------------|-------------------------|----------------------------------|----------------------|-----------------------|
| 10A   | 778.37                | 13.2          | 763.37                  | 776.6                            |                      |                       |
| 10B   | 777.86                | 26.2          | 750.36                  | 776.6                            | 2.5                  | Downstream            |
| 11A   | 775.80                | 8.8           | 765.80                  | 774.6                            | 774.6 5              |                       |
| 11B   | 776.41                | 24.0          | 750.61                  | 774.6                            | 2.5                  | Adjacent<br>to cell 1 |
| 12A   | 778.06                | 9.9           | 766.06                  | 776.0                            | 5                    | Background            |
| 12B   | 777.37                | 26.1          | 749.87                  | 776.0                            | .0 2.5               |                       |
| 13A   | 776.75                | 9•3           | 766.75                  | 776.0                            | 776.0 5              |                       |
| 13B   | 777.40                | 26.3          | 749.90                  | 776.0                            | 776.0 2.5            |                       |
| 14    | 776.29                | 5.8           | 769.00                  | 774.8 2.5                        |                      | Downstream            |
| 15    | 780.15                | 8.5           | 769.80                  | 778.3 2.5                        |                      | Cell 2                |
| 16    | 780.05                | 11.0          | 769.99                  | 781.0 2.5                        |                      | Upstream<br>of cell 1 |
| 17    | 780.18                | 9.8           | 770.35                  | 778.7                            | 2.5                  | Cell 1                |

\*All Wells PVC, 2 inch inside diameter

-55-

## TABLE 4.1b

## LYSIMETER SPECIFICATIONS

## AT BRODHEAD SITE

| LYSIMETER | DEPTH BELOW*<br>FURROW (FT) | LOCATION   |  |
|-----------|-----------------------------|------------|--|
| 1         | 1.0                         | Cell 1     |  |
| 2         | 3.0                         | Cell 1     |  |
| 3         | 4.8                         | Cell 1     |  |
| 4         | 1.0                         | Cell 2     |  |
| 5         | 1.8                         | Cell 2     |  |
| б         | 3.6                         | Cell 2     |  |
| 7         | 1.7                         | Background |  |
| 8         | 3.7                         | Background |  |
| 9         | 4.7                         | Background |  |
| •         |                             | 1          |  |

\* Depth is to top of teflon cup

• • •

-56-

## TABLE 4.2

## BRODHEAD WASTEWATER CHEMISTRY

| PARAMETER     | # OF<br>SAMPLES | MEAN  | MEDIAN | RANGE     | SD  | STRONG<br>TYPICAL<br>DOMESTIC |
|---------------|-----------------|-------|--------|-----------|-----|-------------------------------|
| Total BOD5    | 11              | 1780# | 1700   | 980-3200  | 650 | 400                           |
| Total COD     | 9               | 2390# | 2300   | 2000-3400 | 440 | 1000                          |
| TSS           | 10              | 876   | 869    | 464-1570  | 344 | 350                           |
| Total TKN     | 11              | 42    | 40     | 28-78     | 13  | 85                            |
| Dissolved TKN | 3               | 26    | 21     | 21-37     | 9   |                               |
| NH3-N         | 11              | 2.5   | 2.5    | 1.4-4.1   | 0.7 | 50                            |
| NO2-N+NO3-N   | 11              | 2.7   | 2.7    | 0.2-5.8   | 1.9 | 0                             |
| C1-           | 11              | 930   | 890    | 32-2300   | 700 | 100                           |
| рН<br>        | 7               | 7.5   | 7.4    | 6.6-9.4   | 0.9 |                               |

- All units mg/l except pH; typical domestic values from Metcalf and Eddy, . 1979

\* - Average contains samples which exceeded detection limit, see Appendix C for specific days

SD - Standard Deviation

In addition to the wastewater's general high strength, four other observations were made. First, the chemical data were highly variable. For example, the average chloride was 930 mg/l but the standard deviation was 700 mg/l and the range was 32-2300 mg/l. These variations, which did but occur seasonly, were most likely due to the changes in the amount of rinse water used in the plant. Days of higher rinsing resulted in lower concentrations and vice versa.

Second, the wastewater was high in chloride and sodium content (930 and 843 mg/l, respectively). The source of this brine was from the salt drippings resulting from cheese block formation and from the water softener. It is suggested that waste pretreatment or an in-plant process change be considered to limit the amount of brine pumped to the ridge and furrow system. As will be discussed later, the chloride concentrations in the groundwater downstream from the site were high.

Third, the pH of the wastewater was slightly above neutral(7.5 average). Since volatilization of ammonia predominant at pH > 9, as stated in Chapter 2, one would expect little loss of ammonia from the wastewater.

Fourth, the nitrogen fraction of the wastewater was principally organic-N. This was expected since the wastewater was derived from milk which contains protein. About one-half of this organic -N was in the solid fraction. This was seen by comparison of total and dissolved TKN.

### Wastewater Hydraulic Loading

All flow to the ridge and furrow system was derived from cheese production. Flow was calculated by subtracting the cooling discharge (to the

-58-

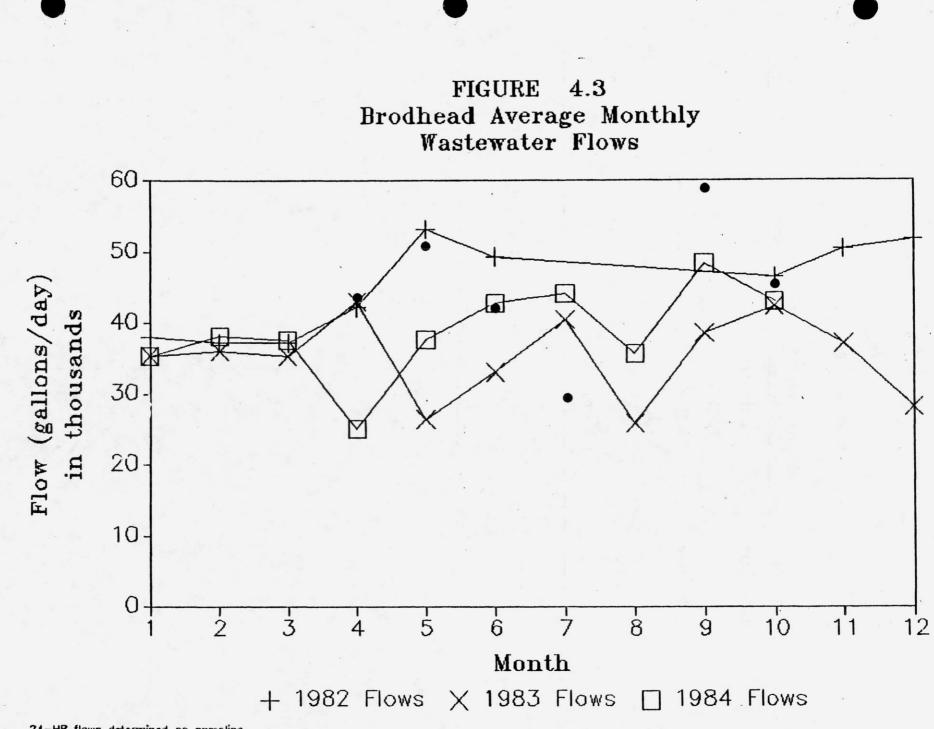

Sugar River) from the total water pumped into the production end of the plant. Both pumps were metered. Drinking and lavatory water was obtained from the city and these wastewaters were discharged to the city treatment plant.

Figure 4.3 illustrates the 30-day average wastewater flow values for the years 1982-1984 as well as 24-hour flows measured on project sampling days. A complete listing of flow data for the past six years is given in Appendix D. The 30-day monthly flows averaged 39,500 gallons per day since 1979. One can see from Figure 4.3 that from 1982 to 1984, flows ranged from 25,056 to 48,414 gallons per day. This was well under the DNR permit flow of 55,000 gpd. Flows during the years 1979 to 1981 were more variable with ranges from 12,700 to 61,500 gpd.

Prior to 1980, cell 1 received most of the wastewater with cell 2 serving as a back-up during high flow periods or when odor problems occurred. After 1980, a flexible 2-week load/2-week rest cycle was employed. A strict 2-week load/rest cycle began on 7/9/84. This scheme was followed until 10/15/84 when a week to week load/rest cycle was instituted. After 11/20/84, cell 2 was loaded for two weeks while cell 1 was loaded for one week. This last change was made based on project observations and will be discussed later. As mentioned in Chapter 2, load/rest cycles help aerate the soil and promote wastewater treatment.

In ridge and furrow systems, as well as other land treatment sites, it is useful to look at hydraulic loading rates in terms of inches per day or gallons/ acre/day. These rates for Brodhead shown in Table 4.3. Using the total site area, the average hydraulic loading rate was

-59-



24-HR flaws determined on sampling days indicated by  ${\color{black} \bullet}$ 

# TABLE 4.3

# BRODHEAD HYDRAULIC LOADING

| FLOW (GAL)   | TOTAL AREA<br>LOADED | CELL 1<br>LOADED | CELL 2<br>LOADED |  |  |
|--------------|----------------------|------------------|------------------|--|--|
| 25,056 (min) | 0.196                | 0.427            | 0.363            |  |  |
|              | (5,330)              | (11,600)         | (9,860)          |  |  |
| 39,500 (ave) | 0.310                | 0.673            | 0.573            |  |  |
|              | (8,400)              | (18,290)         | (15,550)         |  |  |
| 48,414 (max) | 0.379                | 0.825            | 0.702            |  |  |
|              | (10,300)             | (22,410)         | (19,060)         |  |  |

Cell 1 = 2.16 acres

Cell 2 = 2.54 acres

Units inches/day; or (units) gallons/acre/day

-61-

0.31 inch/day (8400 gpad) with a range of 0.196-0.379 inch/day (5,330-10,300 gpad). This is classified as a high rate system (Rodenberg, 1980). Since single cells were loaded during a load/ rest cycle, single cell hydraulic loading rates are also shown in Table 4.3 for comparison. These rates were about double the total area rates.

## Organic Loading Rates (BOD5, TKN)

Code NR 214 of the Wisconsin DNR states that a ridge and furrow system should receive no greater than 100 lb BOD5/acre/day. Using the average flow rate and BOD5 concentration of the wastewater, however, the Brodhead site received 125 lb/acre/day. Using the minimum and maximum hydraulic rates and the average wastewater BOD5 concentration, the BOD5 loading rate range was 79-153 lb/acre/day. These numbers, as well as individual cell BOD5 loading rates, are given in Table 4.4.

#### TABLE 4.4

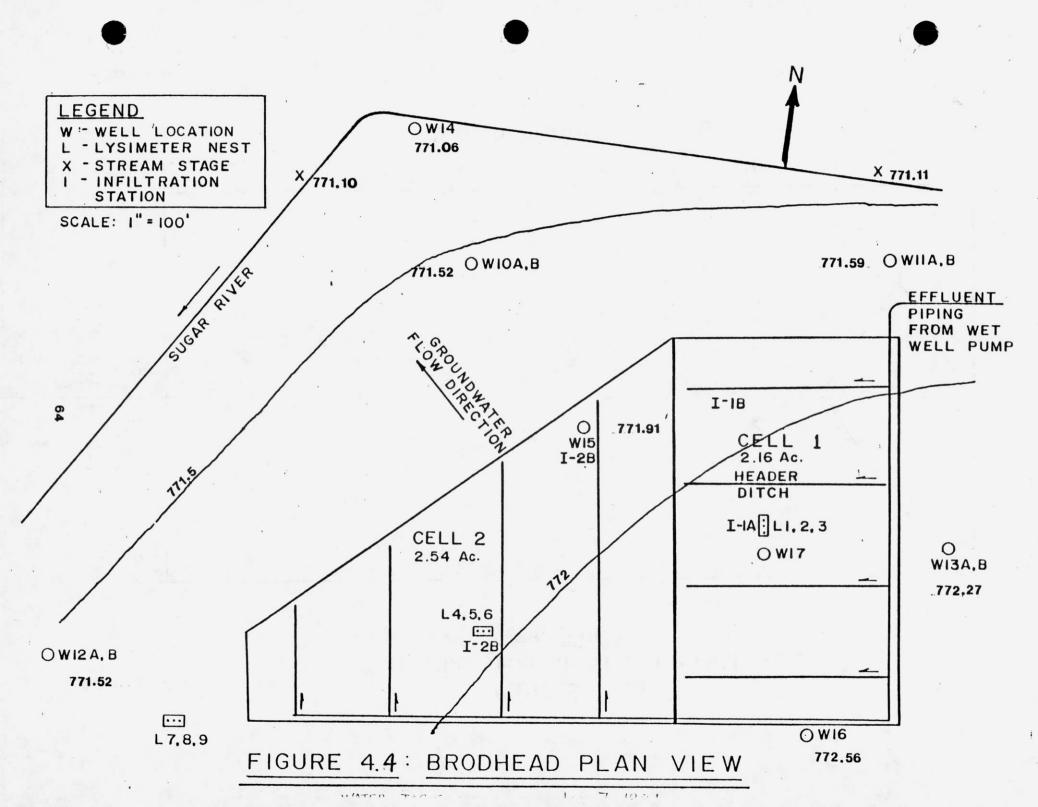
BRODHEAD ORGANIC LOADING RATES (1b/day/acre)

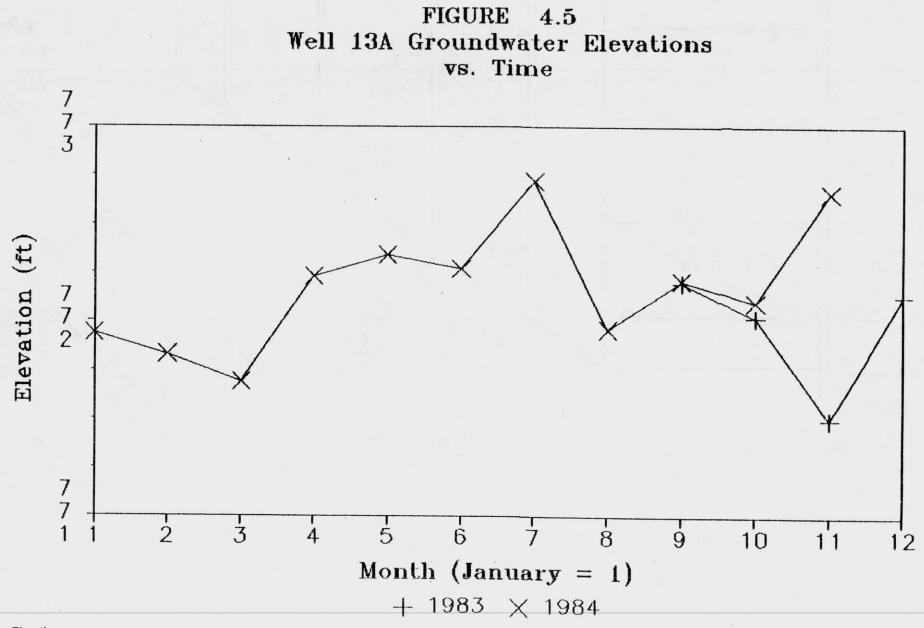
| LOAD                        | TOTAL AREA<br>LOADED | CELL 1<br>LOADED | CELL 2<br>LOADED |
|-----------------------------|----------------------|------------------|------------------|
| BOD5(min-flow)              | 79                   | 172              | 146              |
| BOD <sub>5</sub> (ave-flow) | 125                  | 271              | 231              |
| BOD <sub>5</sub> (max-flow) | 153                  | 333              | 283              |
| TKN(min-flow)               | 1.9                  | 4.1              | 3.4              |
| TKN(ave-flow)               | 2.9                  | 6.4              | 5.4              |
| TKN(max-flow)               | 3.6                  | 7.8              | 6.7              |

Ave.  $BOD_5$  Conc = 1780 mg/l

Ave. TKN Conc = 42 mg/l

Similar calculations for TKN loading rates were performed and are also presented in Table 4.4. There is currently no Wisconsin DNR code for nitrogen loading. Using the range of hydraulic flows presented in Table 4.3 and the average wastewater TKN concentration, TKN loading rates at Brodhead ranged from 1.9 to 3.6 lb/acre/day with an average of 2.9 lb/acre/day. Suggestions for possible loading rates will be made later in this report.


#### Groundwater Elevations and Flow


In general, groundwater flow at the Brodhead ridge and furrow was northwesterly toward the Sugar River with a gradual gradient of 0.0025 ft/ft from well 16 to the river. With the exception of well nest 11, no vertical gradients were indicated. Wells 11A and 11B were located within 50 feet of the Sugar River, which was considered a discharge zone boundary for this groundwater flow system. This was verified by the higher head readings in well 11B (than 11A), indicating upward flow gradients into the river.

Since a well nest was not located inside the system, it was not possible to determine whether downward gradients existed due to mounding. Figure 4.4 shows the groundwater contours measured on June 7, 1984. Appendix E contains a complete list of elevation and contour data.

Groundwater (water table) elevations tended to fluctuate with seasonal recharge but not with changes in wastewater flow. Readings decreased during the winter of 1984, increased during the spring (1984) thaw, decreased during the drier late summer months, and increase again during fall rains. This pattern is shown for well 13A in Figure 4.5.

-63-





Elevations mean sea level

The water table response to rainfall events was rapid occurring within one to two days. This is illustrated in Figure 4.6 where head readings in wells 15 and 17 were plotted against time during October and November of 1984. These similar responses were not due to cell loading since groundwater elevations in different cells responded identically to the rainfall. It should also be noted that a two inch rainfall is over three times the average single cell loading rates and that rainfall can also enter the unsaturated zone from the ridges.

Another task in defining the groundwater hydraulic characteristics was to determine horizontal flow velocities. This was done using Darcy's Law:

V = KI/n

where:

V = average linear groundwater velocity (L/T), K = hydraulic conductivity of aquifer (L/T), I = hydraulic gradient dH/dL (L/L), and n = porosity.

Unsuccessful slug and bail tests to determine K were attempted on wells 10B, 11B, and 12B at Brodhead in April of 1984. The wells returned to equilibrium too quickly to acquire meaningful data. Therefore a value of 0.0005 ft/s, obtained from a local pumping test record on file at the Wisconsin DNR, was used for hydraulic conductivity. As mentioned earlier, the aquifer beneath the ridge and furrow is principally sand. For this project, the aquifer was assumed to be homogeneous and isotropic. (This meant that K did not vary in space or direction.) A

-66-

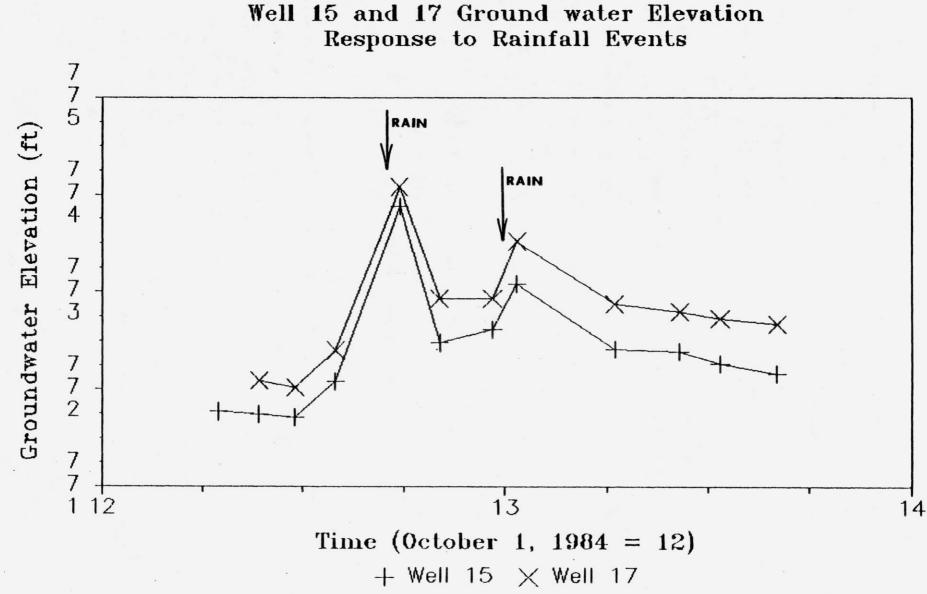



FIGURE 4.6

67A

hydraulic conductivity of 0.0005 ft/s is reasonable for this type of medium (see Freeze and Cherry, 1979).

Two different hydraulic gradients were used. For flow between wells 16 and 10, I was 0.0018 ft/ft; for flow between wells 10 and 14, I was 0.0046 ft/ft. It is reasonable to find that gradients increase near surface waters. A porosity of 0.35 for a typical sand was used (Freeze and Cherry, 1979).

With the above input data, velocities of 0.22 ft/day between wells 16 and 10 and 0.57 ft/day between wells 10 and 14 were calculated. These velocities gave the following travel times:

- from W16 to W17: 2.5 years,

- from W17 to W15: 2.7 years,

- cell 1 boundary to W15: 1.9 years,

- from W15 to W10A: 2.5 years, and

- from W10A to W14: 0.5 years.

One would expect the travel times in this sandy medium to be shorter but since the hydraulic gradient was shallow, the travel times were longer. One should realize, however, that the K value used could realistically be off by an order of magnitude, altering the travel times by a factor of ten.

### Groundwater Chemistry

Mean and standard deviations for selected parameters ab each well for Brodhead are listed in Table 4.5. Complete data listings are given in Appendix F. When looking at the chloride data, a good indicator of con-

-67-

# TABLE 4.5

### MEAN AND STANDARD DEVIATION OF

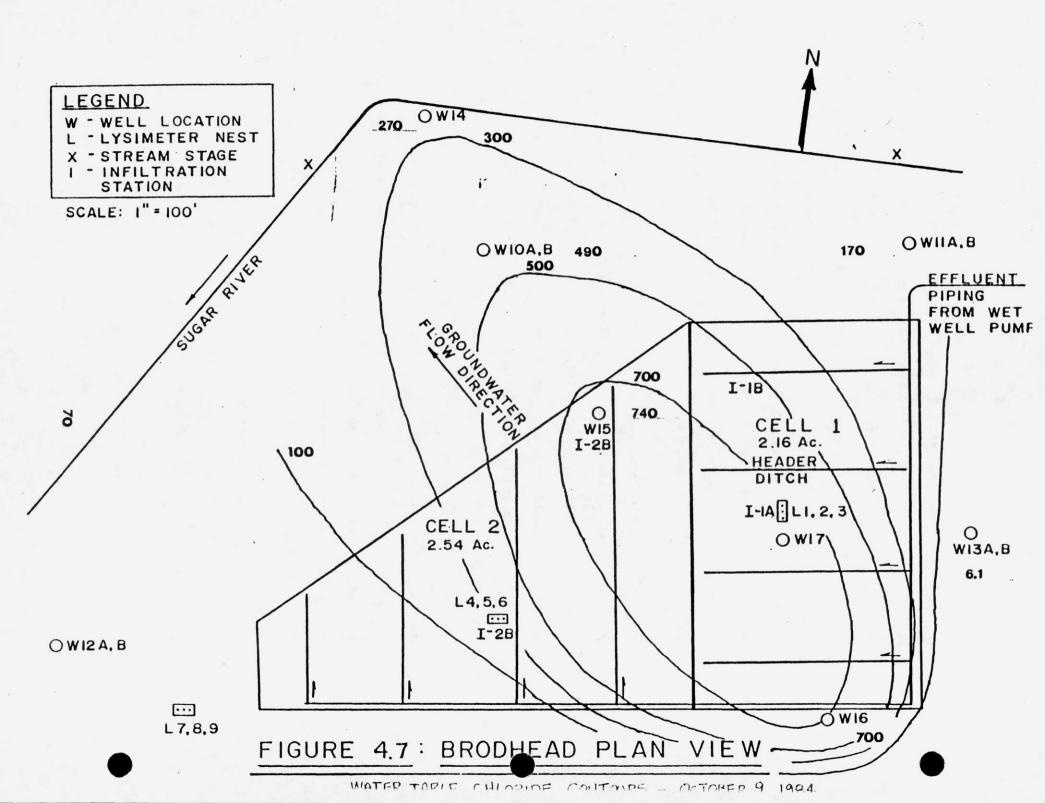
# GROUNDWATER CHEMICAL PARAMETERS

### AT BRODHEAD

| WELL | DISSOLVED<br>BOD5             | DISSOLVED<br>COD     | TDS                   | DISSOLVED<br>TKN                                                                          | DISSOLVED<br>NH <sub>3</sub> -N                                   | DISSOLVED<br>NO <sub>2</sub> -N+NO <sub>3</sub> -N | C1-                  | FIELD<br>pH          |
|------|-------------------------------|----------------------|-----------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------|----------------------|----------------------|
| 10 A | 7.5 <u>+</u> 4.6(13)*         | 17 <u>+</u> 2.3(13)  | 1020 <u>+</u> 163(12) | 13 <u>+</u> 2.0(13) 13 <u>+</u> 1.8(13) 0.5 <u>+</u> 0.4(13) <b>*</b> 380 <u>+</u> 92(14) |                                                                   | 6.9 <u>+</u> 0.13(8)                               |                      |                      |
| 10B  | 10 <u>+</u> 6.5(13)*          | 24 <u>+</u> 6.9(13)  | 1680 <u>+</u> 157(12) | 12 <u>+</u> 6.8(13)                                                                       | $12\pm 6.8(13)$ $12\pm 6.9(13)$ $0.3\pm 0.4(13)$ $630\pm 120(13)$ |                                                    | 630 <u>+</u> 120(13) | 6.8 <u>+</u> 0.09(8) |
| 11A  | 4.0 <u>+</u> 1.7(13) <b>*</b> | 23 <u>+</u> 7.6(13)  | 516 <u>+</u> 151(12)  | 3.3 <u>+</u> 0.58(13)                                                                     | 2.8 <u>+</u> 0.55(13)                                             | 0.1 <u>+</u> 0.0(13) <b>*</b>                      | 140 <u>+</u> 63(14)  | 6.8 <u>+</u> 0.18(8) |
| 11B  | 6.0 <u>+</u> 5.4(13)#         | 11 <u>+</u> 16(13)#  | 434 <u>+</u> 256(12)  | 0.41 <u>+</u> 0.31(13)                                                                    | 0.27 <u>+</u> 0.24(13)                                            | 0.1 <u>+</u> 0.0(13) <b>*</b>                      | 73 <u>+</u> 110(13)  | 7.1 <u>+</u> 0.15(8) |
| 12A  | 3.1 <u>+</u> 0.89(8)#         | 9.5 <u>+</u> 7.0(8)* | 373 <u>+</u> 45.0(7)  | 0.50 <u>+</u> 0.63(8)                                                                     | 0.10 <u>+</u> 0.0(8)                                              | 8.6 <u>+</u> 1.6(8)                                | 27 <u>+</u> 3.6(8)   | 7.0 <u>+</u> 0.15(3) |
| 12B  | 2.8 <u>+</u> 0.47(9)*         | 5.4 <u>+</u> 0.73(9) | 383 <u>+</u> 42.6(8)  | 0.20 <u>+</u> 0.0(9)#                                                                     | 0.10 <u>+</u> 0.0(9)*                                             | 10.8 <u>+</u> 2.70(9)                              | 38 <u>+</u> 1.4(9)   | 7.5 <u>+</u> 0.10(3) |
| 13A  | 2.8 <u>+</u> 0.61(13)*        | 23 <u>+</u> 6.5(13)  | 313 <u>+</u> 95.6(12) | 0.83 <u>+</u> 0.22(13)                                                                    | 0.18 <u>+</u> 0.07(13)                                            | 0.38 <u>+</u> 0.51(13)*                            | 3.8 <u>+</u> 2.0(14) | 7.0 <u>+</u> 0.18(8) |
| 13B  | 2.8 <u>+</u> 0.66(11)*        | 5.1 <u>+</u> 0.3(11) | 317 <u>+</u> 15.4(10) | 0.20 <u>+</u> 0.0(11)*                                                                    | 0.10 <u>+</u> 0.0(11)*                                            | 4.2 <u>+</u> 0.33(11)                              | 35 <u>+</u> 2.3(11)  | 7.2 <u>+</u> 0.16(6) |
| 14   | 5.2 <u>+</u> 5.2(8) <b>*</b>  | 18 <u>+</u> 7.4(8)   | 648 <u>+</u> 111(8)   | 1.8 <u>+</u> 0.64(8)                                                                      | 1.4 <u>+</u> 0.83(8)                                              | 1.4 <u>+</u> 1.6(8)                                | 190 <u>+</u> 68(8)   | 7.1 <u>+</u> 0.08(7) |
| 15   | 51 <u>+</u> 55(12) <b>*</b>   | 57 <u>+</u> 50(19)   | 1640 <u>+</u> 216(12) | 16 <u>+</u> 21(23)                                                                        | 15 <u>+</u> 20(23) <b>*</b>                                       | 17 <u>+</u> 21(23) <b>*</b>                        | 570 <u>+</u> 110(23) | 6.4 <u>+</u> 0.12(8) |
| 16   | 57 <u>+</u> 57(12) <b>*</b>   | 83 <u>+</u> 62(19)   | 1600 <u>+</u> 436(12) | 5.0 <u>+</u> 2.5(20)                                                                      | 3.9 <u>+</u> 2.6(20)                                              | 0.10 <u>+</u> 0.0(20) <b>*</b>                     | 580 <u>+</u> 180(20) | 6.4 <u>+</u> 0.10(7) |
| 17   | 34 <u>+</u> 37(2)*            | 54 <u>+</u> 5.8(7)   | 2540 <u>+</u> 643(2)  | 31 <u>+</u> 2.6(11)                                                                       | 30 <u>+</u> 1.8(11)                                               | 0.92 <u>+</u> 0.27(11)*                            | 650 <u>+</u> 77(11)  |                      |
|      |                               |                      |                       |                                                                                           |                                                                   |                                                    |                      |                      |

# means contain data that was above or below a detection limit; limit was used in average

All values mg/l except pH; ( ) indicates # of observations.


-68-

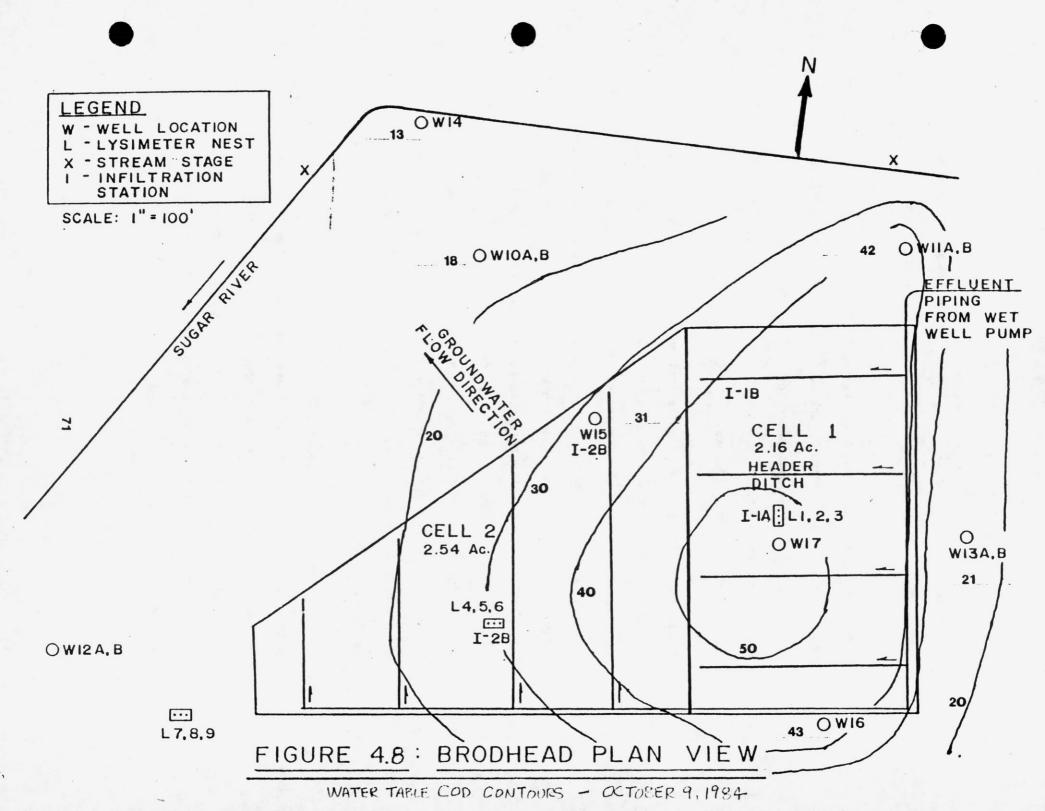
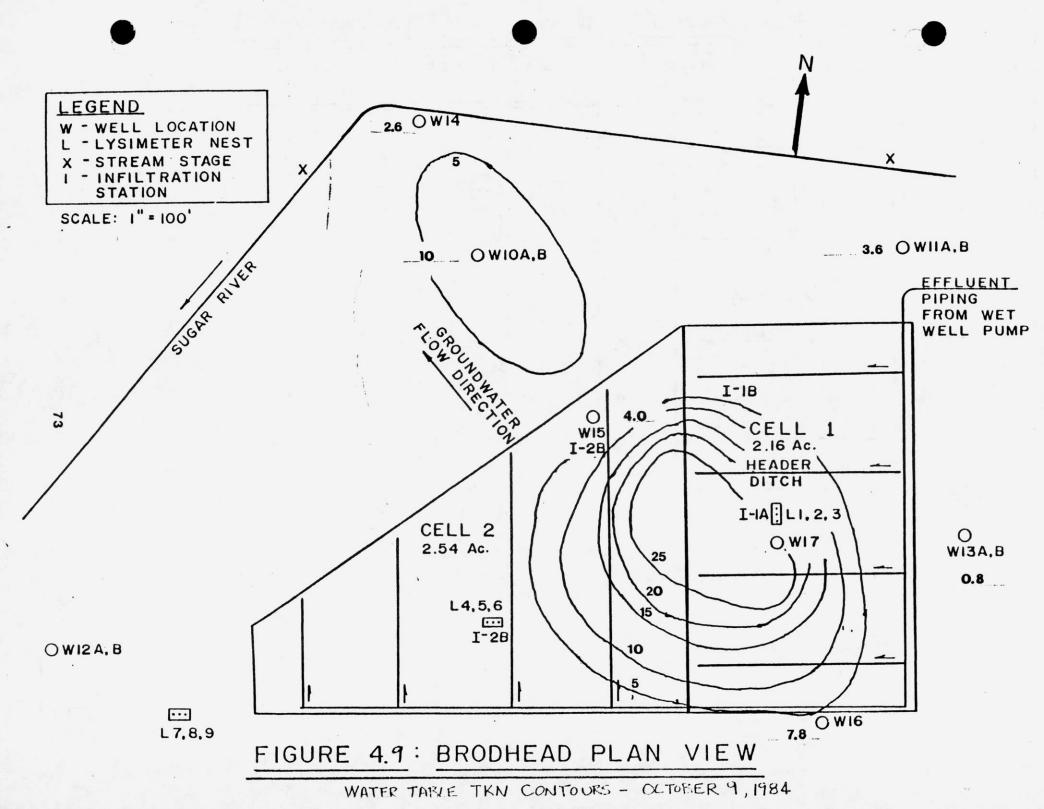

tamination, one can catagorize the wells into three types. Wells 12A, 12B, 13A, and 13B were not influenced by the ridge and furrow system; wells 11A, 11B, and 14 were moderately affected by the site, and wells 10A, 10B, 15, 16 and 17 were highly impacted by the system. This grouping matched the observed flow pattern. It should be realized that averages and standard deviations of well data at this site do not fully describe the contamination. Parameters were variable with time which resulted in high standard deviations (eg. W15 TKN). Averages were only used for relative comparisons.

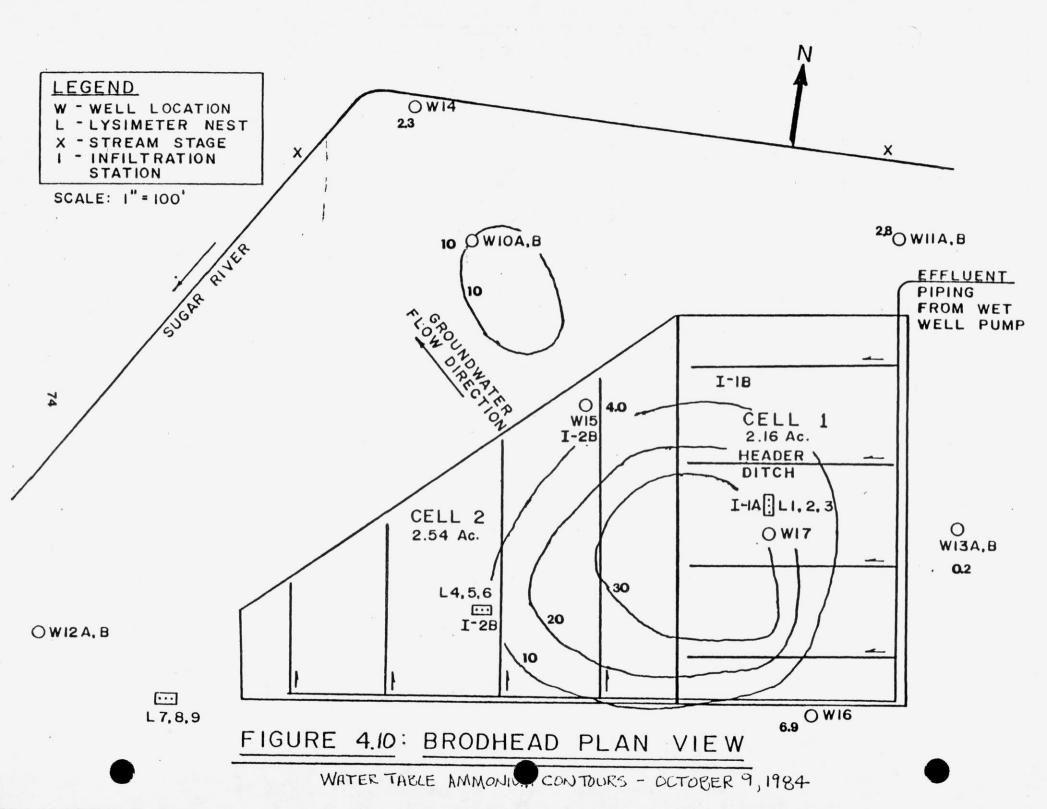
Figure 4.7 presents a plan view of chloride contours at the water table on October 9, 1984. The contours are approximate but they generally represent the contaminated area. Well 16, which was installed on the south berm, exhibited high chloride concentrations throughout the project. Even though the well was upgradient of the system, it was close enough to be affected by dispersion (or diffusion). Also, in well 10B, at 21 feet depth below the water table, chloride concentrations were about 1.5 times greater than well 10A concentrations at the water table during the study. Well 10B and well 15 values were of the same relative magnitude, indicating that the contaminant was sinking as it traveled downstream due to the density of the plume. This was reasonable since the linear groundwater velocity was slow.

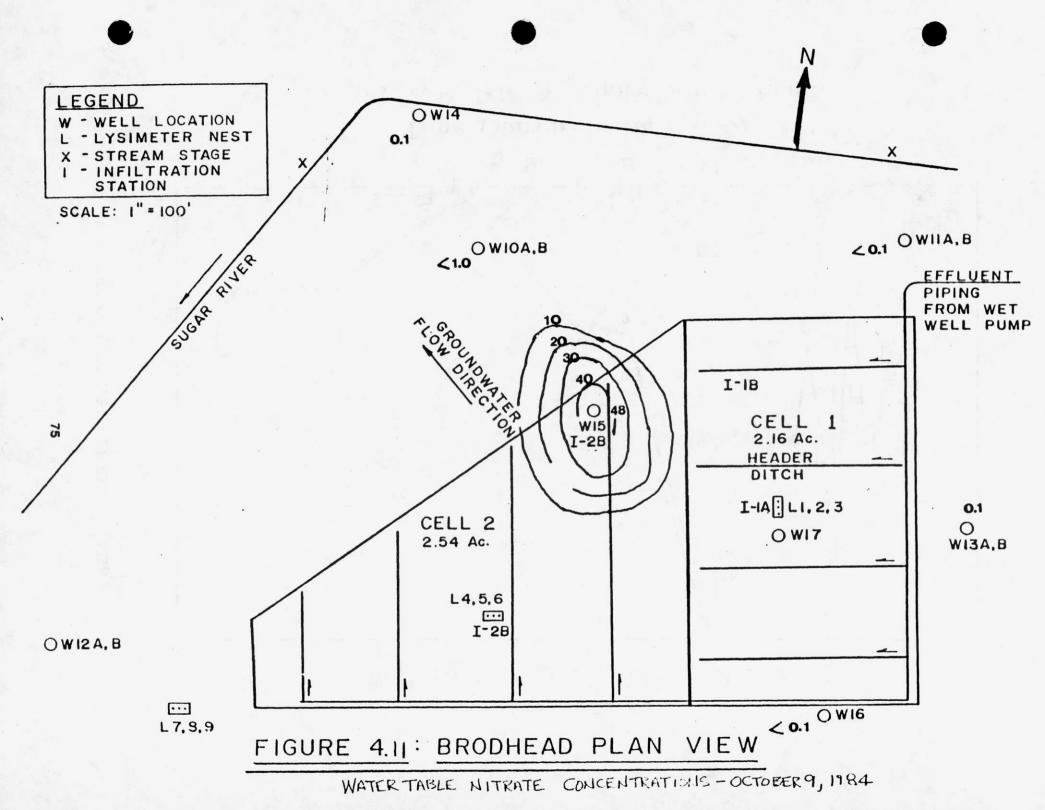
A similar contour pattern existed for COD concentrations at the water table and is shown in Figure 4.8. Again, note the elevated value for well 16 and the deep well 10B concentration relatively higher than the surface well 10A.

-69-







Plan views for the parameters TKN,  $NH_3-N$ , and  $NO_2-N+NO_3-N$  (from 10/9/84) are shown in Figures 4.9, 4.10, and 4.11, respectively. The TKN and  $NH_3-N$  maps are quite similar with high concentrations underneath the middle of the system, a sag area near well 15, and relatively high concentrations near well 10A. Figure 4.11 shows high nitrate values in the vicinity of well 15. Again, note that TKN and  $NH_3-N$  values in wells 16 and 10B were relatively high but wells 15 and 10B do not correspond as they did for COD and chlorides.


Previous to 10/9/84, nitrate concentration in well 15 were low and ammonium was the principal form of nitrogen. In early October (1984), nitrification of this ammonium in the unsaturated zone began, as depicted by the nitrate contours on Figure 4.11. These contours were estimates and more wells would have been necessary to completely define the nitrifying area. This nitrification is also responsible for the sag areas shown in Figures 4.9 and 4.10. Cell 2 was loaded (to allow cell 1 to completely dry) for four weeks prior to 10/9/84 and this wastewater flushed out a majority of soil pore water nitrate into the groundwater. Nitrate concentrations subsequently decreased at well 15 in late October and November (see Figure 4.12).

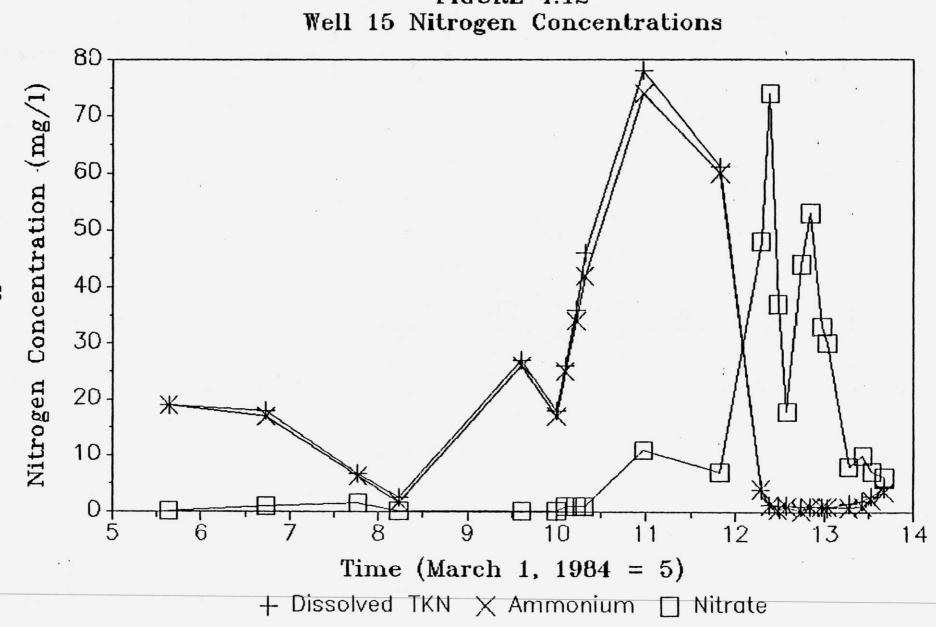
The pH in the background wells (12A, 12B, 13A, 13B) was slightly above neutral, ranging from 7.0 to 7.5 on average. Both wells 15 and 16, located within the system, had a pH of 6.4 on average. Downgradient wells (10A, 10B, 11A, 11B, and 14) exhibited pH values nearing neutrality, indicating dilution of this groundwater by water of background quality.

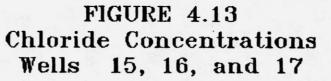
-72-

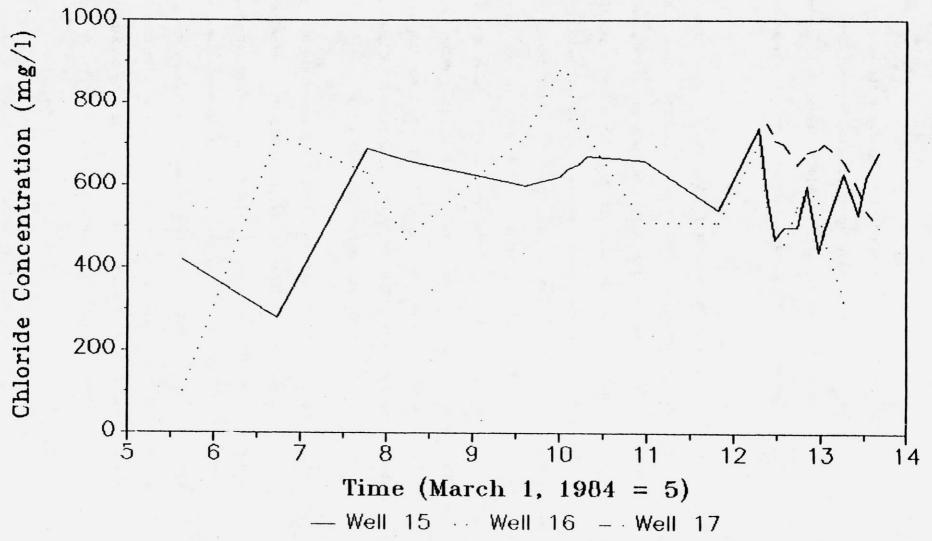


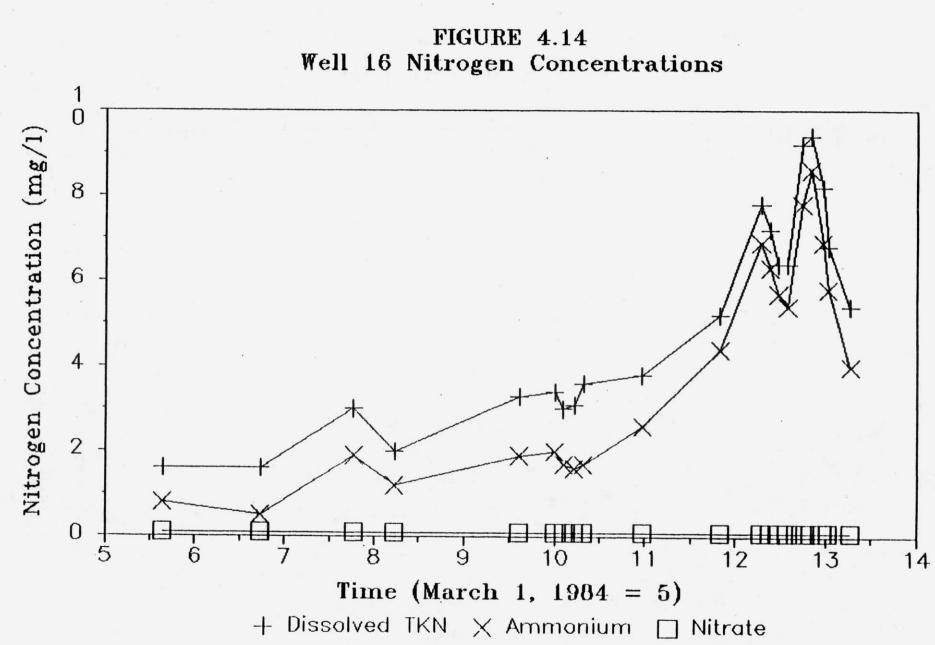








FIGURE 4.12


An attempt was made to match chemical changes in space with time between wells. Due to the slow groundwater velocities, however, this was not possible. A longer sampling period would be needed to properly evaluate the data. General observations of temporal trends in the groundwater follow.


Wells 16 and 17 responded similarly with time. This was expected since both wells were directly affected by cell 1 loading. Direct increases in C1<sup>-</sup> or N concentration with cell 1 loading were not detected, however. Chloride concentrations with time for wells 16 and 17 appear in Figure 4.13. Nitrogen concentrations with time for well 16 appear in Figure 4.14; Figure 4.15 presents nitrogen concentrations with time for well 17. Chloride data from wells 16 and 17 both had concentration decreases in late October (1984) and early November (1984) with a peak on November 1. These decreases were the result of heavy rains on October 18 and October 31. Note that well 16 values were lower than well 17 due to background dilution. TKN and NH<sub>3</sub>-N concentrations followed a similar pattern. Little nitrate was present in these wells.

Well 15 (cell 2) chloride and nitrogen concentrations did not respond in the same fashion as well 16 and 17 values. Well 15 chloride concentrations are plotted in Figure 4.13; nitrogen values for well 15 are presented in Figure 4.12. The most obvious difference between well 15 and wells 16 and 17 was the nitrogen transformation which was occurring in well 15 during October of 1984. Well 15 nitrogen concentrations, which were quite high, changed from primarily  $NH_3-N$  to primarily  $NO_3-N$ . Nitrogen values then reduced to concentrations of relatively good

-77-







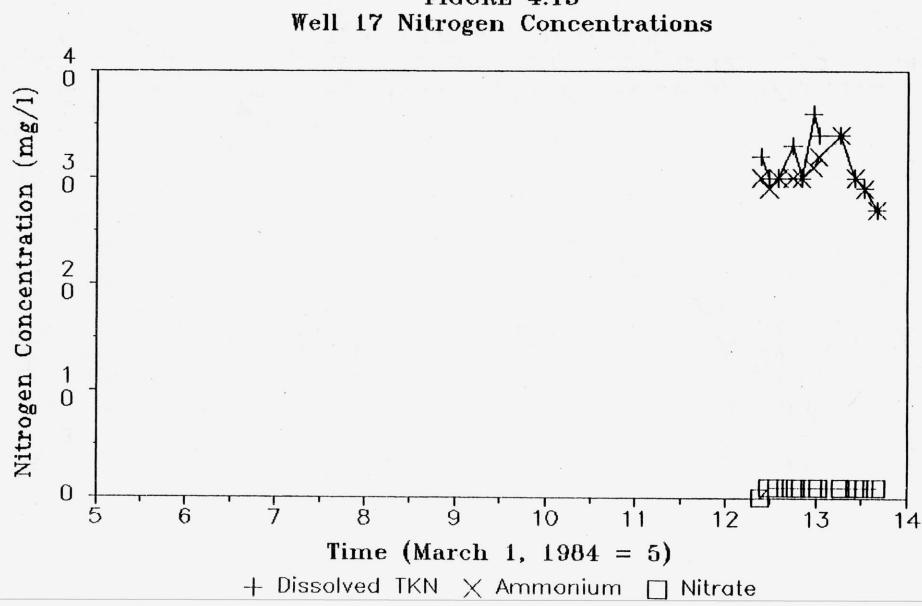
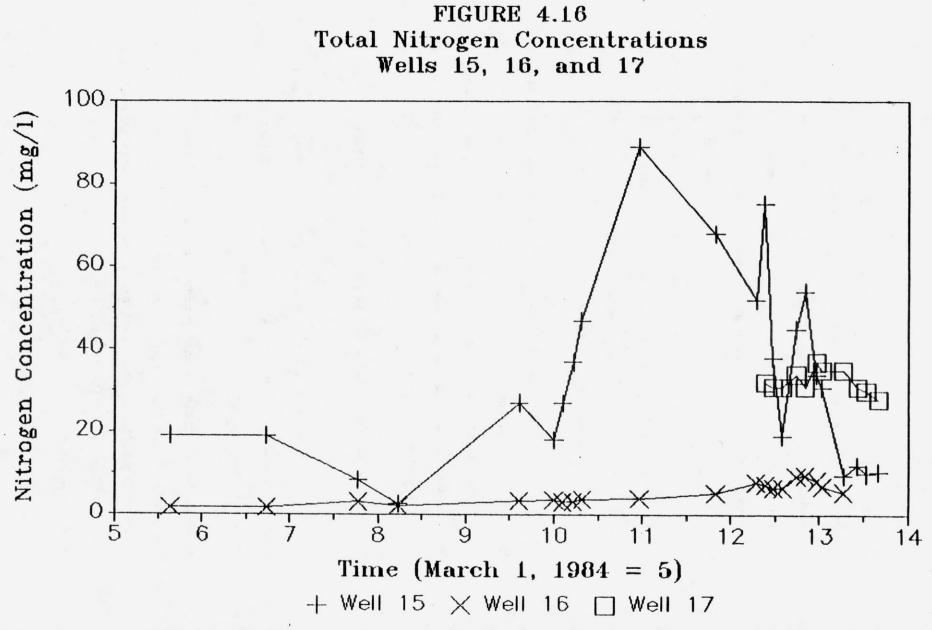



FIGURE 4.15


quality (less than 10 mg-N/l). The most likely cause of this transformation was the loading schedule changes initiated in July of 1984. The two week, and later, one week load/rest cycles allowed for aeration of the percolate and in turn, nitrification of the ammonia fraction. As mentioned earlier, the nitrate was flushed out by a four week cell 2 loading while cell 1 was allowed to dry in late September (1984). It was not understood why well 17 did not respond similarly after loading continued in October. Further sampling is necessary to determine if well 15 nitrogen concentration would remain low or whether large concentration variance would continue.

Nitrate decreases in well 15 occurred in late October (1984) and early November (1984) during the periods of heavy rain. When comparing the nitrate decreases to the chloride decreases, however, the nitrogen declines were relatively larger than the chloride declines. This was most likely a result of denitrification losses.

When looking at Figure 4.13, one can see that the relative magnitude of chloride concentrations for wells 15, 16, and 17 was similar. When studying Figure 4.16, which plots total nitrogen concentrations for these three wells, it is clear that the relative magnitude of nitrogen concentrations was not similar.

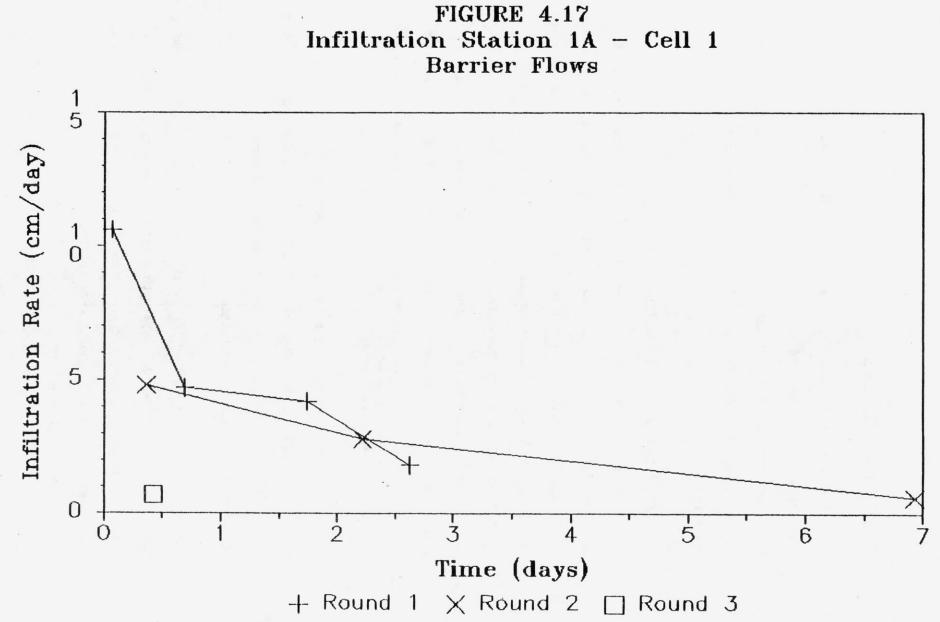
One final point should be made concerning the groundwater chemistry at Brodhead. The possibility of the contaminant plume sinking exists. Groundwater quality at 30-50 feet below the water table at well 14 is likely similar to quality in well 10B. A deep well near well 14 would be needed to make this conclusion.

-81-



.

### Unsaturated Zone Flow Rates


Since the furrows contained up to six inches of settled solids, vertical unsaturated flow rates were divided into two parts: percolation through the furrow "organic barrier" and travel through the underlying unsaturated zone. Furrow side wall flow was considered part of the "barrier" flow.

The infiltration stations, installed in October (1984), were used to determine barrier flow-through times. Barrier thicknesses ranged from less than one inch in cell 2 and outer cell 1 furrows, to two inches in inner cell 1 furrows, to six inches in the header ditches. Station 1A (see Figure 4.2) was located near cell 1 lysimeters in a two inch barrier region. Station 1B was located in the outer northwest corner of cell 1 in a 0.5 inch barrier region. Station 2A was located near cell 2 lysimeters in a one inch barrier region. Station 2B was located near well 15 in cell 2 in a one inch barrier region. Rates were measured three times (or three rounds).

Figure 4.17 illustrates the barrier infiltration rates at station 1A. Steady-state was reached after about 1.5 days with a flow rate of about 4 cm/day. With a two inch barrier at this rate, a barrier travel time of 1.3 days was calculated at this location.

Figure 4.18 presents barrier infiltration rates at station 1B. Steadystate was reached after 0.5 days with a rate of 6 cm/day. With a one inch barrier at this rate, a travel time of 0.4 days was calculated at this location. Round 1 results were omitted since furrow dryness caused the rate to be nearly infinite.

-83-



**%** 

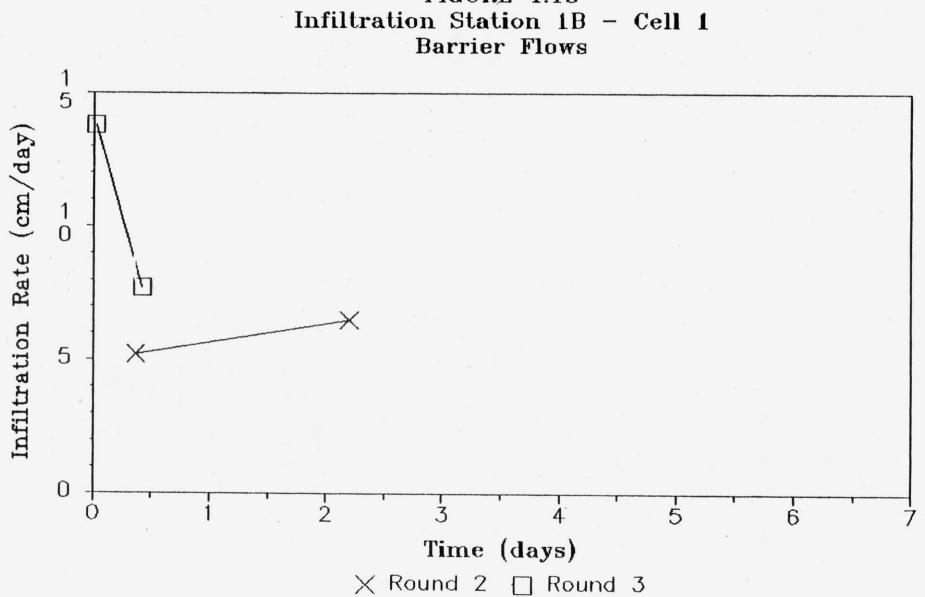
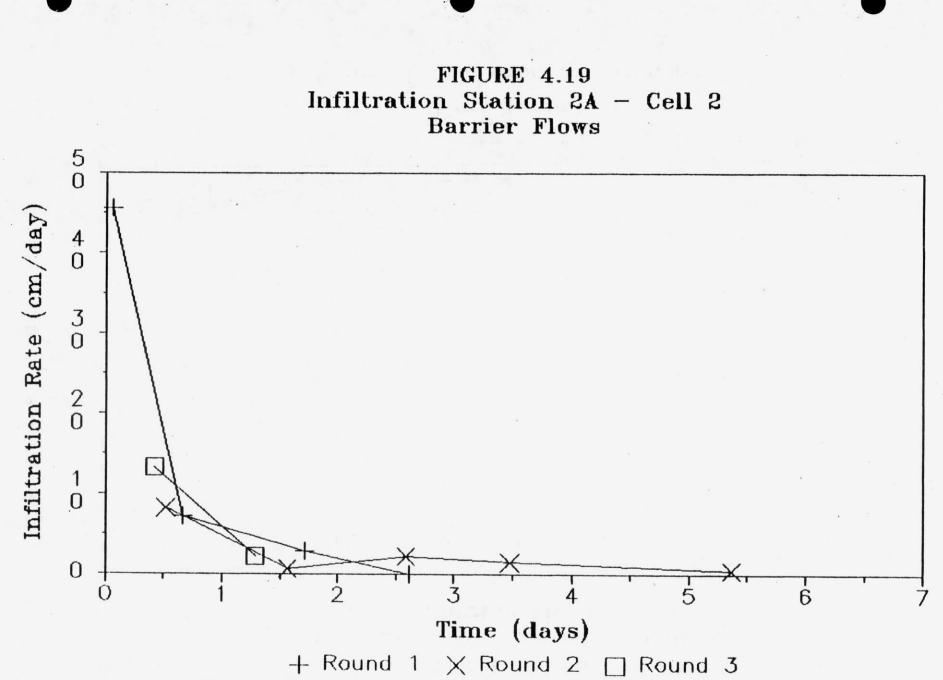
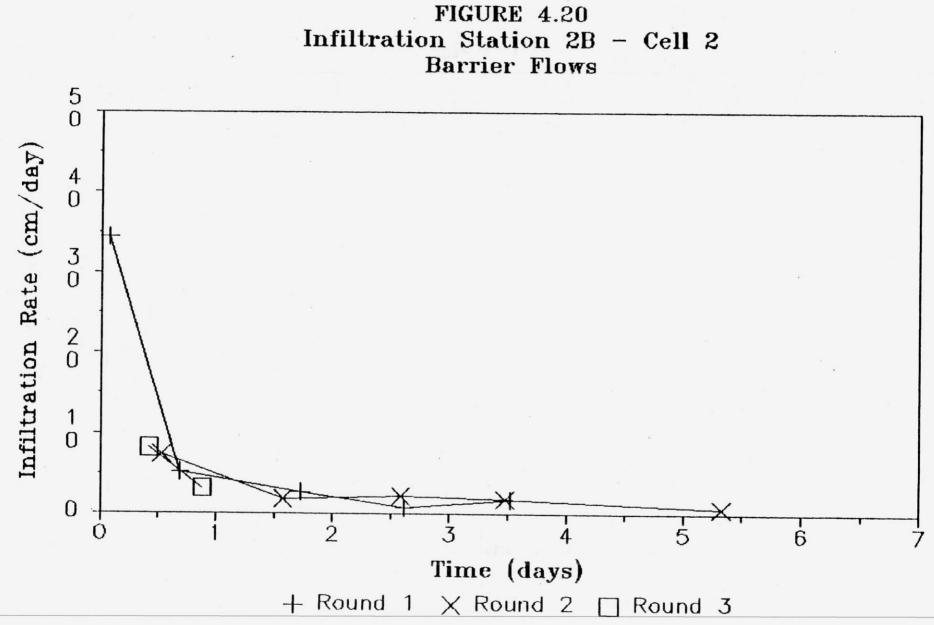



FIGURE 4.18

Station 2A infiltration rates are plotted in Figure 4.19. Steady-state was reached after about two days with a percolation rate of 2 cm/day. With a one inch barrier, a travel time through the barrier of 1.3 days was calculated at this point.

Figure 4.20 illustrates barrier infiltration rates at station 2B. Steady-state was achieved after approximately two days with a rate of 2 cm/day. With a one inch barrier, a travel time of 1.3 days was determined at this location.


Assuming that an infiltration rate of 2 cm/day was applied to the header ditch, travel through the six inch organic barrier would be 7.6 days.


When considering these barrier travel times for the furrows and header ditches, an approximate time range of 0.5-8.0 days was developed for infiltration through the barrier.

Once wastewater percolated through the furrow barriers, it traveled approximately 5.5 feet through the unsaturated zone to the groundwater. Methods by Bouma (1975) were used to calculate these travel times. A graph and table (from Bouma, 1975), used to determine hydraulic conductivity and soil moisture tension, are presented in Appendix G.

From Table 2 of Appendix G, a typical soil moisture tension, in a sandy soil below a seepage system barrier, of 20 cm  $H_2O$  was estimated. It was also assumed that this tension was constant with depth. Using a 20 cm  $(H_2O)$  soil moisture tension, a hydraulic conductivity of 100 cm/day was estimated from Figure 1 (Appendix G) for a sandy soil. This K value was used to calculate travel times through the unsaturated zone to the

-86-





.

# TABLE 4.6

| LOCATION              | DEPTH<br>BELOW<br>FURROW(ft) | BARRIER(a)<br>TRAVEL<br>TIME(Day) | UNSAT(b)<br>ZONE<br>TRAVEL<br>TIME(Days) | TOTAL<br>TRAVEL<br>TIME(Days) |  |
|-----------------------|------------------------------|-----------------------------------|------------------------------------------|-------------------------------|--|
| Lysimeter 1<br>Cell 1 | 1.0                          | 1.3                               | 0.3                                      | 1.6                           |  |
| Lysimeter 2<br>Cell 1 | 3.0                          | 1.3                               | 0.9                                      | 2.2                           |  |
| Lysimeter 3<br>Cell 1 | 4.8                          | 1.3                               | 1.5                                      | 2.8                           |  |
| Lysimeter 5<br>Cell 2 | 1.8                          | 1.3                               | 0.6                                      | 1.9                           |  |
| Lysimeter 6<br>Cell 2 | 3.6                          | 1.3                               | 1.1                                      | 2.4                           |  |
| Groundwater           | 5.5                          | 1.3                               | 1.7                                      | 3.0                           |  |

# BRODHEAD UNSATURATED ZONE TRAVEL TIMES

(a) Based on infiltration tests: site 1A represented flow near

cell 1 lysimeters

site 2A represented flow near

cell 2 lysimeters

(b) Based on Bouma (1975), Appendix G.

depths of the various lysimeters. These results are tabulated in Table 4.6. Travel of percolate in the unsaturated zone to the groundwater took 1.7 days as calculated by the latter method.

Results shown in Table 4.6, combining barrier and unsaturated zone flow times, indicated that it took approximately three days for furrow wastewater to reach the groundwater near the lysimeters. This matched the water table response time to precipitation recharge that was presented in Figure 4.6. Considering the range of barrier flow through times discussed earlier, the range of combined (barrier plus unsaturated zone) travel time at the Brodhead system was 2.2 to 9.7 days. In future work, it is recommended that soil moisture tension instrumentation be used to better define hydraulic conductivity with unsaturated depth.

### Furrow Wastewater and Lysimeter Chemistry

Mean and standard deviations of chemical parameters for wastewater at each furrow sampling point and lysimeter are listed in Table 4.7. Complete data listings are given in Appendix H.

When comparing chloride averages, one can see that all lysimeter points were contaminated by the ridge and furrow wastewater except lysimeters 8 and 9, which were intended to be located in an area of background quality. Large data variations existed in furrows and lysimeters affected by cell loading. This resulted in large standard deviations. Therefore, it was realized that these average values do not fully describe the contamination and were only used for relative comparisons.

The chloride averages from cell 1 indicate no dilution from the furrows to the depth of lysimeter 3, and yet considerable reduction of other

-90-

## TABLE 4.7

### BRODHEAD MEAN AND STANDARD DEVIATION OF

## FURROW WASTEWATER AND LYSIMETER CHEMICAL PARAMETERS

### (Units in mg/l except pH)

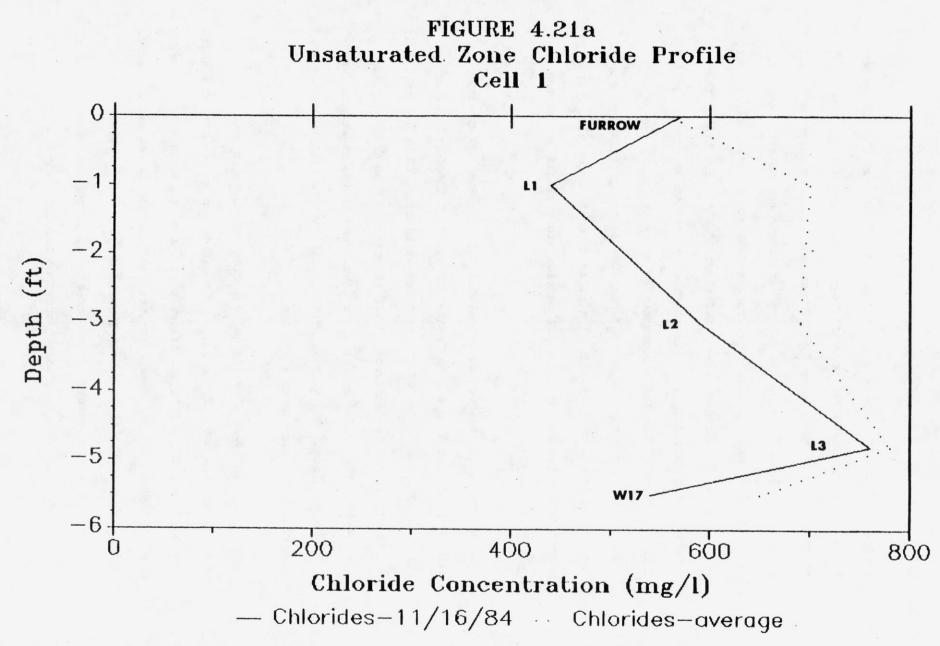
| LOCATION         | DISS<br>BOD5              | TOTAL<br>BOD5     | DISS<br>COD      | DISS<br>TKN      | TOTAL<br>TKN    | DISS<br>NH3-N             | DISS<br>NO <sub>2</sub> +NO <sub>3</sub> | C1-              | TDS               | FIELD<br>pH       |
|------------------|---------------------------|-------------------|------------------|------------------|-----------------|---------------------------|------------------------------------------|------------------|-------------------|-------------------|
| Furrow-Cell 1    | 330 <u>+</u> 310          | 660 <u>+</u> 490  | 490 <u>+</u> 290 | $20 \pm 12$      | $31 \pm 18$     | 14 <u>+</u> 12            | 0.4+0.5*                                 | 560 <u>+</u> 190 | 1780+280          | 7.1+0.56          |
| Lysimeter 1      | (4)                       | (5)               | (16)             | (20)             | (9)             | (20)                      | (20)                                     | (19)             | (3)               | (2)               |
| (1' depth)       |                           |                   | 55+12            | 22+8.6           |                 | 16 <u>+</u> 10            | 0.6+0.4*                                 | 700 <u>+</u> 170 | 2130 <u>+</u> 184 | $7.1 \pm 0.30$    |
| -                | 1 1.0 0                   |                   | (14)             | (18)             | ·               | (22)                      | (22)                                     | (16)             | (2)               | (3)               |
| Lysimeter 2      | 4.1+0.0                   |                   | $51 \pm 6.6$     | 12 <u>+</u> 10   |                 | 9.8 <u>+</u> 10 <b>*</b>  | 8.6 <u>+</u> 9.3 <b>*</b>                | 690 <u>+</u> 100 | 2040 <u>+</u> 191 | 7.2 <u>+</u> 0.33 |
| (3' depth)       | (1)                       |                   | (21)             | (27)             |                 | (30)                      | (30)                                     | (17)             | (2)               | (4)               |
| Lysimeter 3      |                           |                   | 56 <u>+</u> 4.2  | $2.7 \pm 0.80$   |                 | 2.5 <u>+</u> 3.9 <b>*</b> | 6.3 <u>+</u> 4.7                         | 780 <u>+</u> 100 |                   | 7.6 <u>+</u> 0.0  |
| (4.8' depth)     |                           |                   | (2)              | (8)              |                 | (17)                      | (17)                                     | (10)             |                   | (1)               |
| Well 17 <b>0</b> | 34 <u>+</u> 37 <b>*</b>   |                   | 54 <u>+</u> 5.8  | 31 <u>+</u> 2.6  |                 | 30 <u>+</u> 1.8           | 0.92 <u>+</u> 0.27*                      | 650 <u>+</u> 77  | 2540 <u>+</u> 643 |                   |
|                  | (2)                       |                   | (7)              | (11)             |                 | (11)                      | (11)                                     | (11)             | (2)               |                   |
| Furrow-Cell 2    | 580 <u>+</u> 120 <b>#</b> | 2400 <u>+</u> 0.0 | 91 <u>0+</u> 530 | 26 <u>+</u> 14   | 70 <u>+</u> 100 | 14 <u>+</u> 10            | 1.5+2.9*                                 | 620+200          | 2630+127          | 6.7+0.0           |
|                  | (3)                       | (1)               | (12)             | (16)             | (11)            | (16)                      | (16)                                     | (15)             | (2)               | (1)               |
| Lysimeter 5      | 3.0 <u>+</u> 0.0*         |                   | 32 <u>+</u> 11   | 0.9 <u>+</u> 0.3 |                 | 0.3+0.4#                  | 11+9.0                                   | 400+170          |                   | 7.4+0.0           |
| (1.8' depth)     | (1)                       | 1                 | (16)             | (22)             |                 | (22)                      | (22)                                     | (14)             |                   | (1)               |
| Lysimeter 6      | 3.3 <u>~</u> 0.69*        |                   | 20 <u>+</u> 4.0  | 0.7+0.2          |                 | 0.4+0.4#                  | 21+10                                    | 390+150          | 1400+162          | 6.8+0.0           |
| (3.6' depth)     | (11)                      |                   | (14)             | (19)             |                 | (21)                      | (21)                                     | (19)             | (10)              | (1)               |
| Well 150         | 51 <u>+</u> 55 <b>*</b>   |                   | 57 <u>+</u> 50   | 16+21            |                 | 15+20*                    | 17+21*                                   | 570+110          | 1640+216          | 6.4+0.12          |
|                  | (12)                      |                   | (19)             | (23)             |                 | (23)                      | (23)                                     | (23)             | (12)              | (8)               |
| Lysimeter 8      | 3.4+0.47*                 |                   | 12+1.6           | 0.4+0.06         |                 | 0.1+0.0*                  | 0.1+0.1*                                 | 1.2+0.29         | 267+19.9          |                   |
| (3.7' depth)     | (4)                       |                   | (9)              | (11)             |                 | (13)                      | (13)                                     | (11)             | (6)               |                   |
| Lysimeter 9      | 3.2+0.37                  | 6+0.0             | 24+3.7           | 0.6+0.2          | 0.6+0.2         | 0.1+0.0*                  | 0.1+0.02#                                | 1.3+0.34         | 323+24.9          | 6.8+0.07          |
| (4.7' depth)     | (7)                       | (1)               | (14)             | (17)             | (2)             | (19)                      | (19)                                     | (16)             |                   |                   |
|                  |                           |                   | 、···/            | · · · · /        |                 | ( 77)                     | (197                                     | (10)             | (8)               | (2)               |
|                  | I                         |                   | <u> </u>         |                  |                 |                           |                                          |                  |                   |                   |

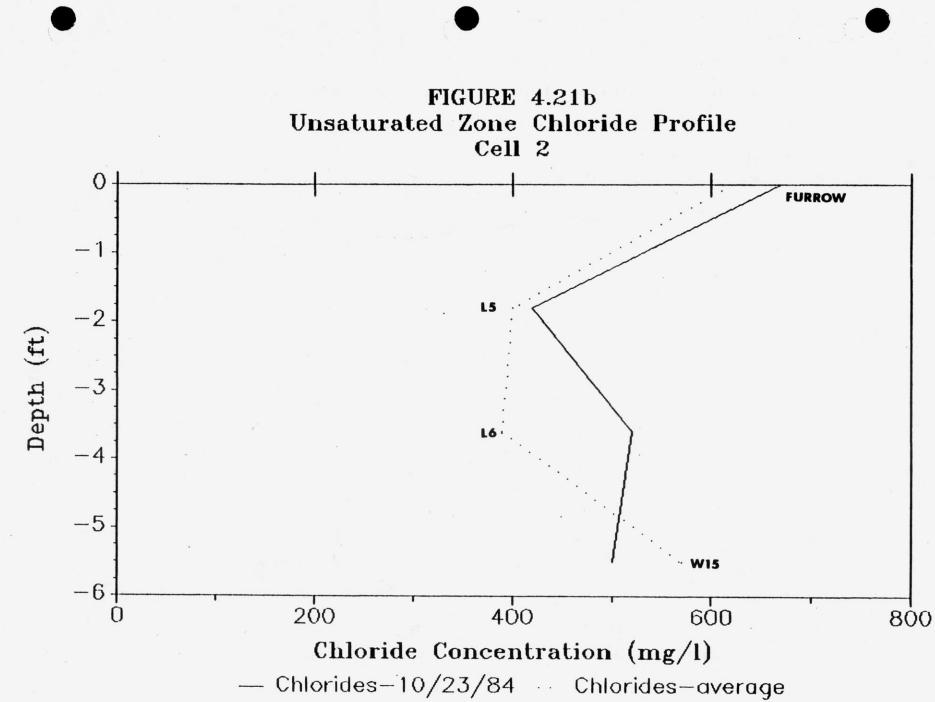
.

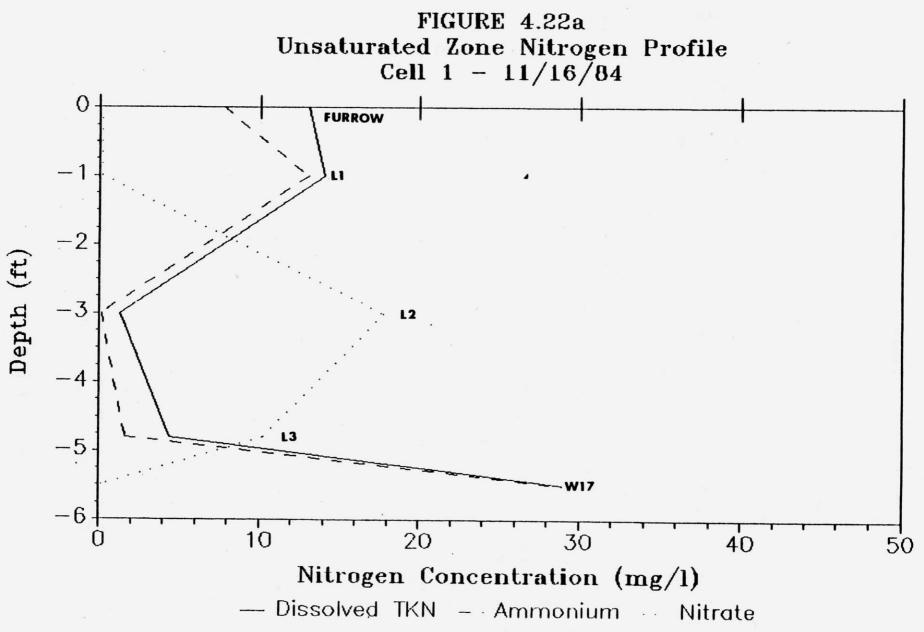
e Well data added to observe transformations of groundwater; ( ) - # of observations.

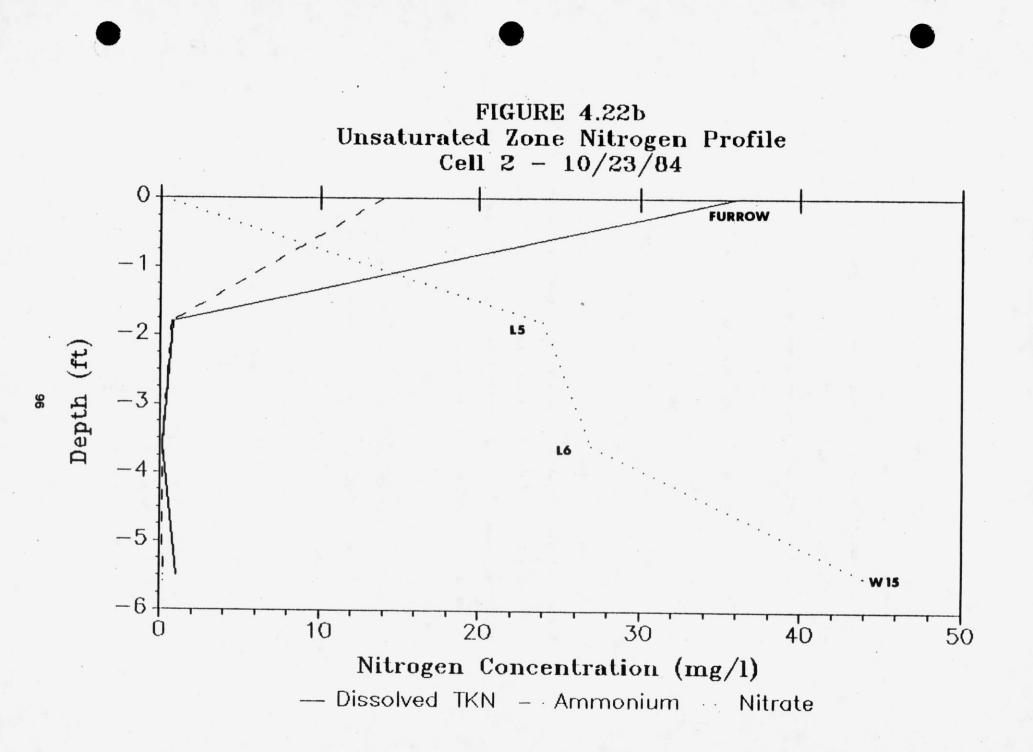
\* Mean includes data above or below a detection limit, limit was used in average.

-16


chemical parameters was seen at this depth. Dissolved COD values were reduced 88% and dissolved total nitrogen (TKN +  $NO_3$  +  $NO_2$ ) concentrations were reduced by 56%. Groundwater quality underneath cell 1, as shown by well 17 data, did not reflect these reductions, however. Dissolved COD concentrations were reduced 89% at the water table, but, dissolved total nitrogen values in the groundwater were higher than furrow concentrations. This was attributed to past overuse of cell 1 prior to 1980. Since the groundwater velocity was slow, the zone beneath cell 1 did not flush out during the course of this project, as the region around well 15 did. A similar discussion for cell 2 average concentration reductions could not be made since values varied too greatly in well 15.


Another important observation from Table 4.7 concerned the transformation of organic-N in the wastewater to  $NH_3$ -N in the furrow water. Ammonium comprised only 10% of the dairy wastewater TKN while the TKN in the furrow wastewater contained 54-70% ammonium. From Table 4.5, one can see that TKN values in the wells downstream of the ridge and furrow system were almost 100%  $NH_4$ +-N. This transformation will be discussed in more detail later in this chapter.


Figures 4.21 and 4.22 show typical chloride and nitrogen profiles, respectively, in both of the cells. Concentration movement in the unsaturated zone could not be correlated with travel time since the travel times presented earlier were less than the time period between sampling. The profiles do illustrate the following points:


no dilution of wastewater occurred as it percolated beneath cell 1,
 slight dilution of percolate occurred beneath cell 2,

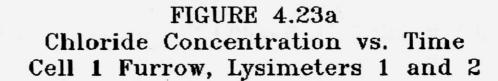
-92-



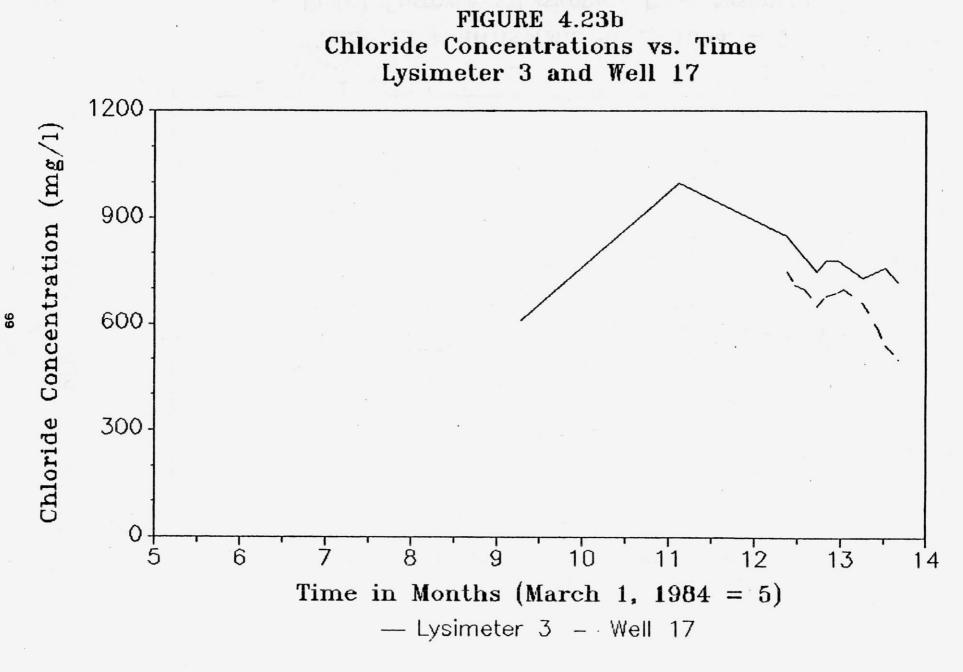


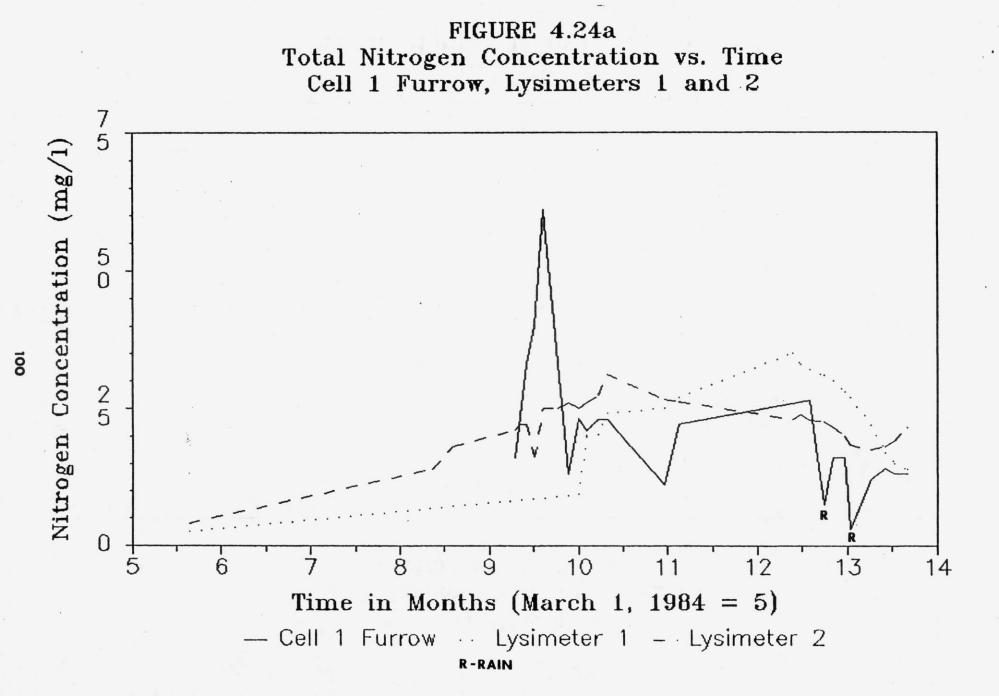


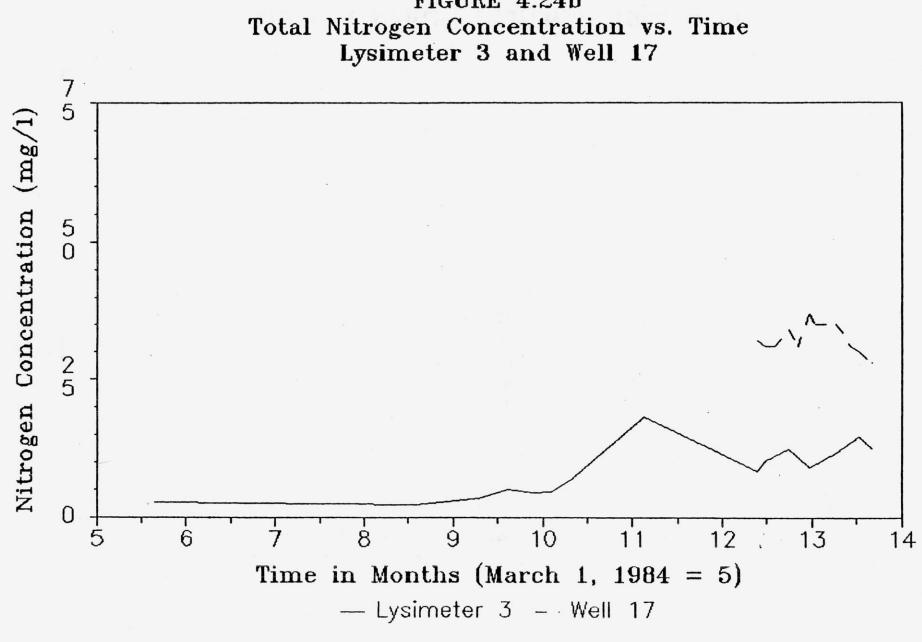



- 3) TKN was transformed to  $NH_4^+-N$  after one foot depth in cell 1 and two foot depth in cell 2,
- 4) nitrification occurred beneath 1 and 3 feet depth underneath cell 1,
- 5) nitrification occurred along the whole profile underneath cell 2,
- 6) possible denitrification occurred between the 3 and 5 feet depth underneath cell 1, and
- 7) high TKN and  $NH_{4}^{+}$ -N concentrations were observed at the water table beneath cell 1.

Furrow and unsaturated zone pH values (Table 4.7) ranged from 6.7 in a cell 2 furrow to 7.6 in lysimeter 3. These values are somewhat higher than the average pH values seen in wells 15 and 16, immediately underneath the system. The lower pH values (about 6.4) in the contaminated groundwater were attributed to the past use of the system when overloading caused anaerobic conditions and lower pH values. The low groundwater velocity has delayed the flush out of this zone.

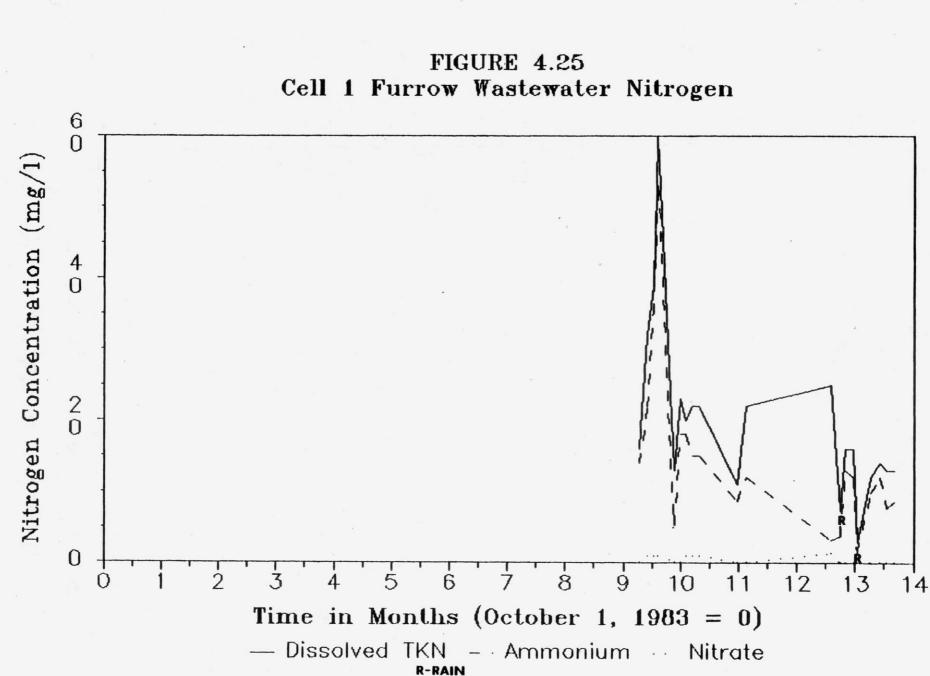

Chloride and nitrogen time plots for furrow, lysimeter, and well data were compared with depth in both cell 1 and cell 2 at Brodhead. Figure 4.23 illustrates chloride concentrations versus time for cell 1 furrow wastewater; lysimeters 1, 2, and 3; and well 17. Figure 4.24 presents total nitrogen concentrations versus time for these respective sampling points. The reader is referred to Figures 4.25 to 4.28 and 4.15 for TKN, NH<sub>3</sub>-N, and NO<sub>3</sub>-N plots of respective points.


These cell 1 chloride and nitrogen plots were compared to determine if nitrogen decreases were mainly due to dilution (as seen by comparing chlorides) or if unsaturated zone nitrogen losses were actually greater


-97-












# FIGURE 4.24b

ī



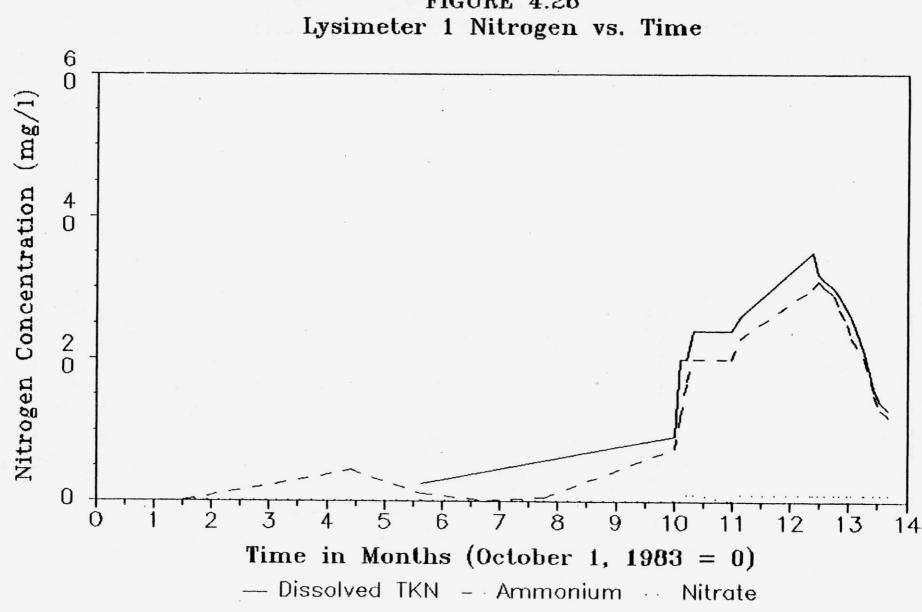



FIGURE 4.26



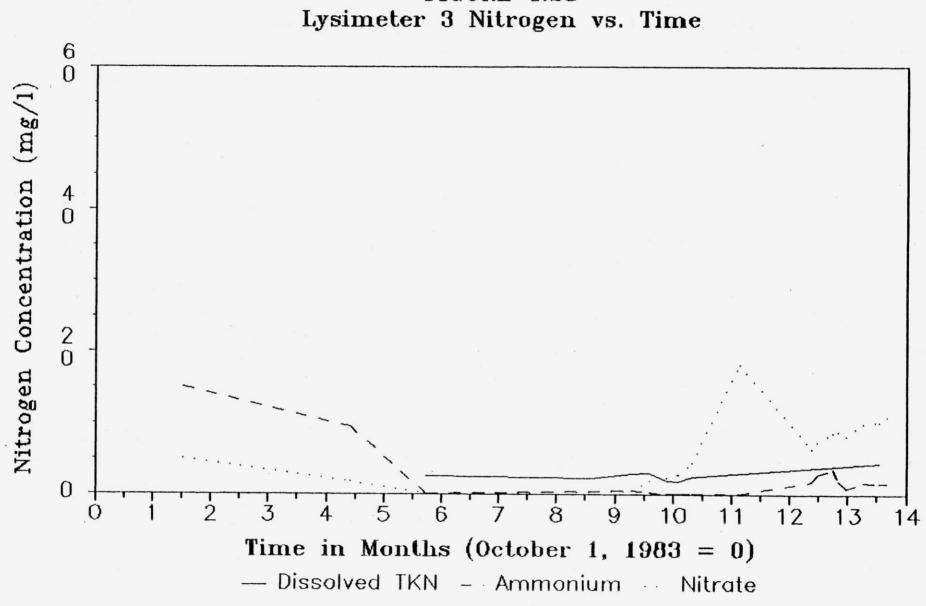


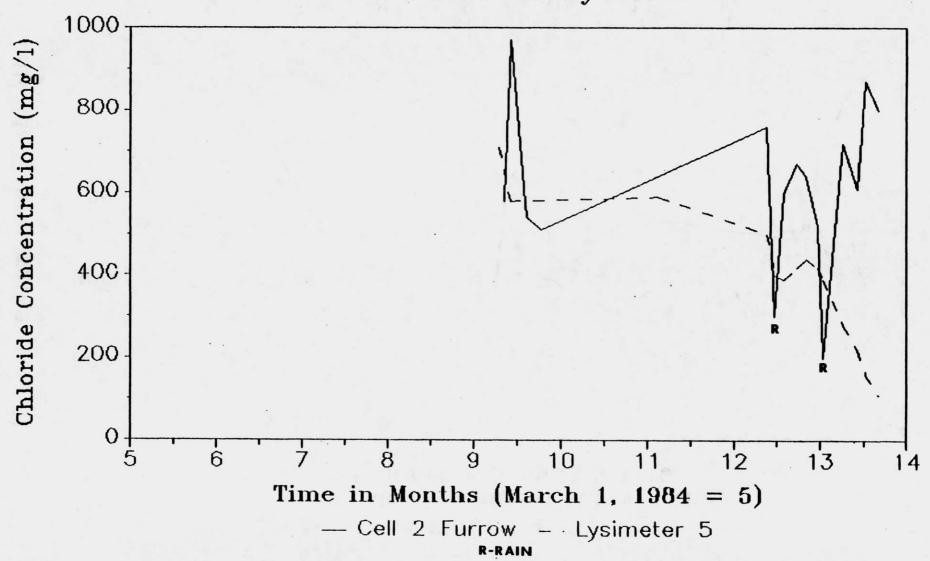

FIGURE 4.28

than chloride decreases. Late October and November (1984) was the best period to compare chloride concentrations with depth in cell 1. As mentioned earlier, heavy rains occurred on October 18 and November 1. This was reflected by a decrease in furrow chloride concentration on these dates as shown in Figure 4.23. After the November 1 rain, a 42% drop in chloride values in lysimeter 1 occurred. A 24% decrease with a subsequent 8% increase in chloride concentrations occurred in lysimeter 2 during the same period. A 28% drop which began November 1, was observed in well 17 as well. Figure 4.23 shows these declines. These results complement the unsaturated zone travel time of less than 3 days calculated earlier. It was not known why a decrease in chloride concentration was not seen in lysimeter 3.

Similar decreases were observed in the total nitrogen concentrations of cell 1 furrow wastewater; lysimeters 1 and 2; and well 17 as shown in Figure 4.24. Decreases in furrow nitrogen occurred on 10/18 and 11/1 as expected. A 52% drop in total nitrogen was observed in lysimeter 1 during the same time period as a 42% chloride decrease. It was not feasible to attribute the additional 10% loss to denitrification since no nitrate was present in the first one foot of depth. Plant uptake of NH4<sup>+</sup>-N was possible since lush growth was occurring on furrow fringes in late November. In lysimeter 2, total nitrogen concentrations decreased by 27% (similar to chloride dilution) and then increased by 20% (compared to a 8% chloride increase). This 12% addition was attributed to nitrate production. Total nitrogen losses in well 17 declined by 20% during this period (compared to 28% for Cl<sup>-</sup>). Lysimeter 3 nitrogen values increased 20% during this period. A decreasing denitrification

-106-

rate could have accounted for this since nitrate values increased and chloride concentrations were fairly level.


Figure 4.24 indicates that nitrogen losses, most likely through denitrification, occurred from lysimeter 2 to lysimeter 3 after September 1. Prior to this time, both nitrification and denitrification occurred between these two points (see Figures 4.27 and 4.28) since total nitrogen decreased in lysimeter 3 but little nitrate was present.

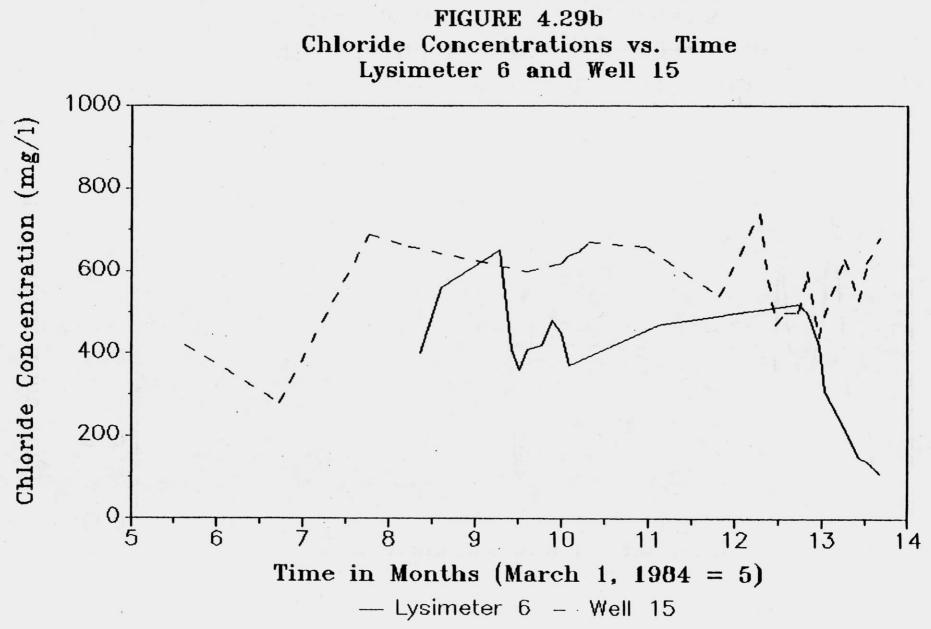
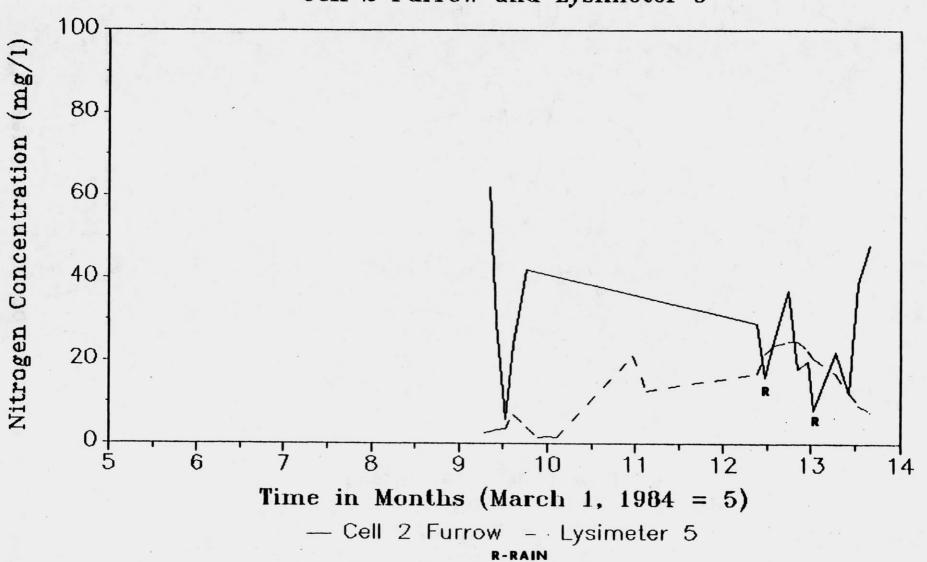
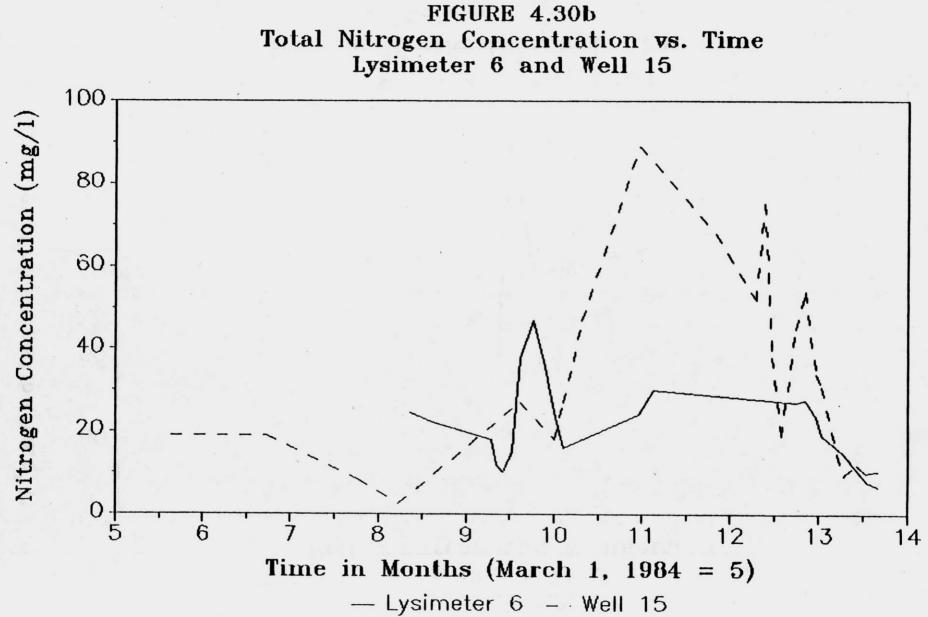
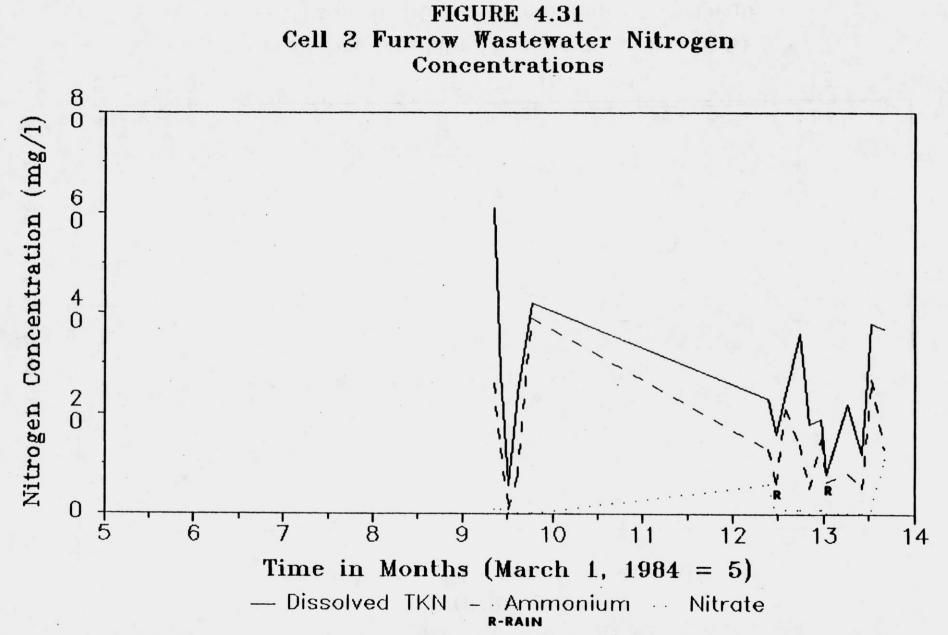
After September 1, nitrification occurred between lysimeters 1 and 2 as seen in Figures 4.26 and 4.27. Prior to 9/1, however, lysimeter 2 samples contained high nitrogen values (in ammonia form) which did not appear in lysimeter 1 samples. Since nitrogen can not be created, this phenomenon may have been the result of the horizontal positioning of the lysimeters. Since the lysimeters were located adjacent to one another (2 to 3 feet apart), the possibility of the device receiving wastewater of different initial quality existed. Local channeling in the unsaturated zone created by organic barrier heterogenetities may also have caused these anomalies.

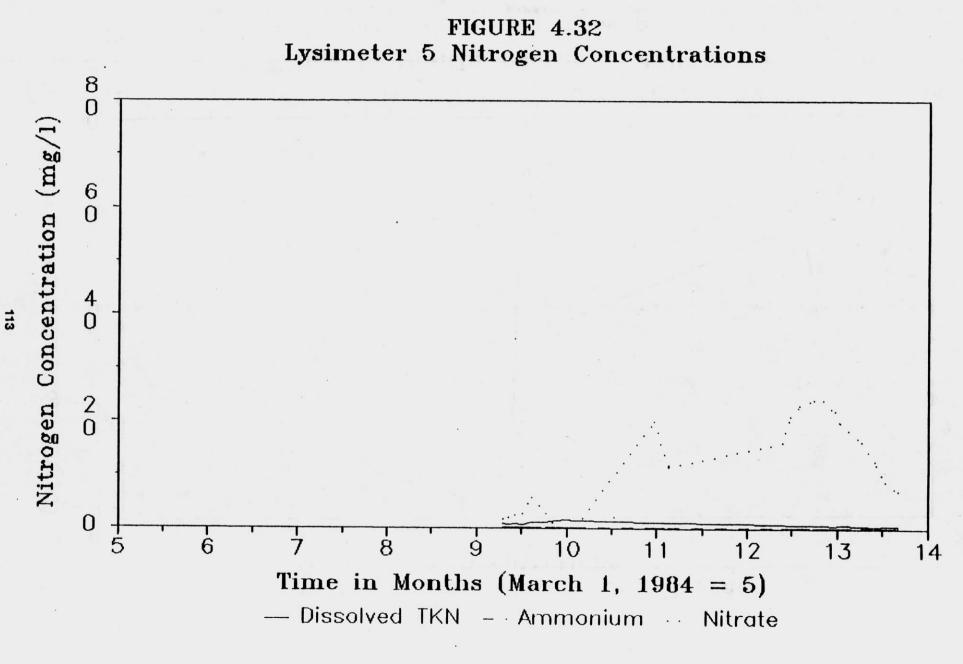
As in cell 1, late October and November (1984) was the best period to compare chloride concentrations with nitrogen concentrations through the unsaturated depth of cell 2 to analyze dilution and possible denitrification losses. Figure 4.29 presents chloride data versus time for cell 2 furrow wastewater; lysimeters 5 and 6; and well 15. Figure 4.30 illustrates total nitrogen values versus time for these respective sampling points. TKN, NH<sub>3</sub>-N, and NO<sub>3</sub>-N plots for these points appear in Figures 4.31 to 4.33 and 4.12, respectively.

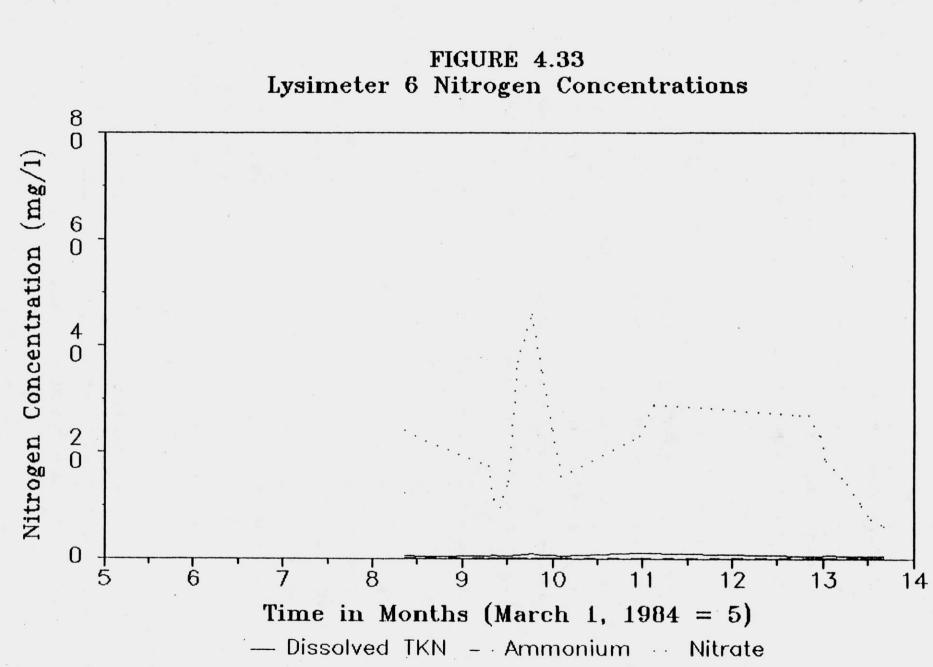
-107-

FIGURE 4.29a . Chloride Concentrations vs. Time Cell 2 Furrow and Lysimeter 5





FIGURE 4.30a Total Nitrogen Concentration vs. Time Cell 2 Furrow and Lysimeter 5






Ħ







Cell 2 furrow chloride values decreased sharply on rainy days just as they did in cell 1. A 75% decrease in chloride concentrations was observed in lysimeter 5 after October 26. Lysimeter 6 chloride values declined 79% after October 23. Similar decreases were not observed in well 15 during this period.

Similar declines during this time were witnessed in total nitrogen concentrations for lysimeters 5 and 6, as well as, well 15 (see Figure 4.30). Dilution (75% chloride decrease) accounted for most of a 71% drop in total nitrogen concentrations in lysimeter 5 after October 6. A 77% decrease in lysimeter 6 N values was also caused by the dilution rainwater. During this period, an 88% decline of N concentrations occurred in well 15. These losses were likely the result of denitrifi-

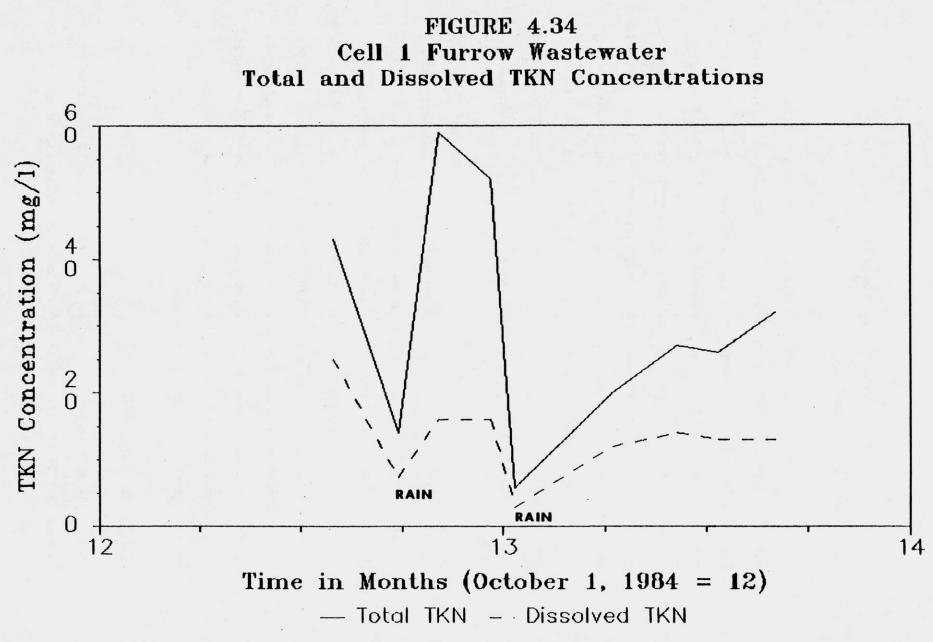
cation since well 15 Cl<sup>-</sup> concentrations did not decrease. Underneath cell 2, all denitrification losses occurred below 3.6 feet depth.

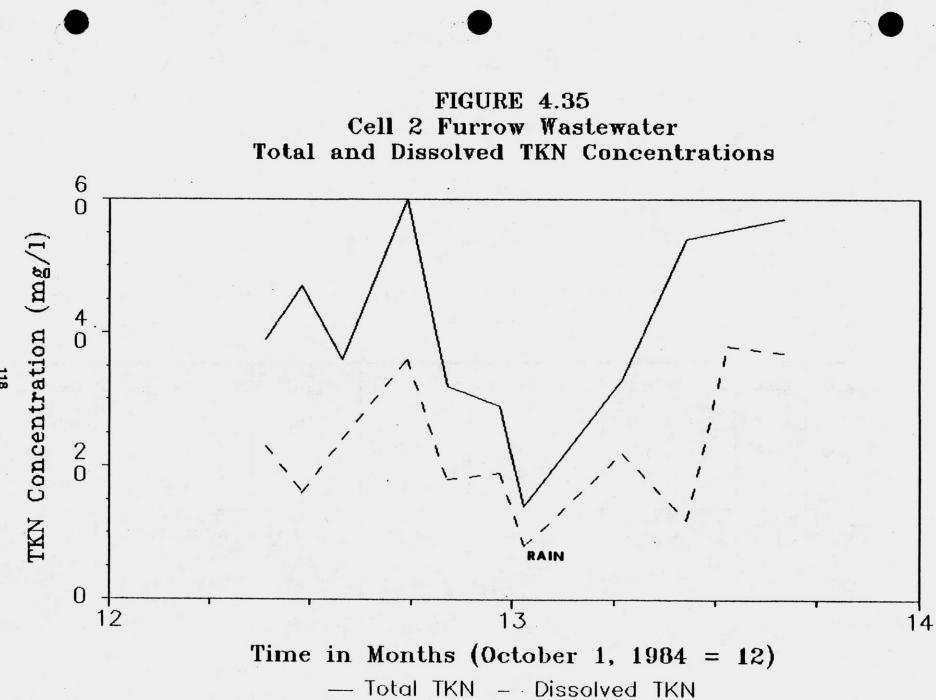
Figure 4.30 gives the illusion that nitrogen concentrations did not decrease but actually increased. There were three possible reasons for this. First, lysimeters 5 and 6 are located about ten feet apart and may not have received an identical quality waste. Second, local channeling resulting from unsaturated zone heterogeneities (eg. organic barrier) may have occurred. Third, since groundwater flowed from underneath cell 1 past cell 2, water quality in well 15 was directly affected by the past water quality underneath cell 1.

Nitrate peaks were observed in lysimeter and well data for both cells. These peaks (see lysimeter nitrogen series plots) appeared either late in a loading cycle or just after. Increased vertical flow from loaded

-115-

wastewater tended to flush out nitrate which accumulated in unsaturated pore spaces during rest cycles.


Figures 4.25 and 4.31 present TKN, NH<sub>3</sub>-N, and NO<sub>3</sub>-N concentrations versus time for cell 1 and cell 2 furrow wastewater samples, respectively. Figures 4.34 and 4.35 present total and dissolved TKN versus time for furrow samples in cells 1 and 2, respectively. The following sequence of furrow nitrogen transformations were established from these results. As stated previously, the wastewater discharges contained nitrogen primarily in organic-N form. Thirty to 90% of this organic-N was tied up in wastewater solids. This was seen by comparing total and dissolved TKN results (Table 4.2). Depending on furrow mixing, total TKN concentrations were quite variable and of the same magnitude as wastewater TKN's.


Dissolved TKN showed a distinctive pattern, however, especially during the dry period of July and August (1984). During initial cell loading, dissolved TKN's were lowest since the solids contained much of the nitrogen. Toward the end of a loading cycle and during the rest cycle, dissolved TKN concentrations increased. This was possibly the result of mineralization of settled furrow solids and diffusion of ammonium into the overlying water column. Reddy and Graety 1981) recognized a similar occurance in their study. These transformations were not as apparent during shorter load/rest cycles.

#### Crop Uptake of Nitrogen

Seven grass samples were cut at the Brodhead ridge and furrow system during the 1984 growing season. One sample was collected in April

-116-





# TABLE 4.8

## BRODHEAD GRASS SAMPLE RESULTS

| DATE     | TOTAL DRY WT OF<br>GRASS ON SITE(1b) | \$ N DRY<br>WT-CELL 1 | % N DRY<br>WT-CELL 2 | <b>\$</b> ASH-CELL 1<br>AFTER BURNING | <b>%</b> ASH-CELL 2<br>AFTER BURNING | % N<br>CELL 1 | OF ASH<br>CELL 2 |
|----------|--------------------------------------|-----------------------|----------------------|---------------------------------------|--------------------------------------|---------------|------------------|
| 4/24/84  | 11,646                               |                       | 1.44                 |                                       | 10.1                                 |               | 2.64             |
| 7/13/84  | 22,847                               | 1.28                  |                      |                                       | 5.9                                  |               | 0.48             |
| 9/25/84  | 9,171                                | 2.70                  | 3.50                 | 5.5                                   | 5.6                                  | 0.72          | 0.50             |
| 11/20/84 | 23,282                               | 1.59                  | 1.41                 | 3.9                                   | 3.1                                  | 0.45          | 0.49             |

- weights extrapolated to total site area from weights corresponding to sample areas

| DATE     | TOTAL N<br>ON SITE<br>BEFORE BURNING(1b) | TOTAL N<br>ON SITE<br>AFTER BURNING(1b) | % N LOST<br>BY<br>BURNING |
|----------|------------------------------------------|-----------------------------------------|---------------------------|
| 4/24/84  | 168                                      | 31.0                                    | 81.5                      |
| 7/13/84  | 292                                      | 6.5                                     | 97.8                      |
| 9/25/84  | 276                                      | 3.2                                     | 98.9                      |
| 11/20/84 | 347                                      | 3.7                                     | 98.9                      |

TABLE 4.8 Cont.

- weights extrapolated to total site area from weights corresponding

to sample areas

before growth began, two were taken in July at peak growth, two were cut in September during declining growth, and two were taken in November during rejuvenated growth. Results of these analyses are shown in Table 4.8. Calculations are presented in Appendix I. These results were used for the following three purposes: 1) to determine the plant nitrogen uptake during the growing season, 2) to calculate the effect of grass burning on nitrogen losses, and 3) to estimate a nitrogen plant uptake value for a nitrogen budget.

When looking at the total weight of nitrogen on site before burning in Table 4.8, plant uptake of nitrogen appeared to be highest in late spring, slightly declining in summer and slightly increasing in late fall. Heavy rainfall in late October and early November stimulated new growth in November.

The nitrogen taken up over the total area of the ridge and furrow system, by the cover crop during the growing season was 347 lbs. This corresponded to the grass nitrogen content on 11/20/84. Since grass from the previous year died and was immobilized in the soil, the April site grass nitrogen content of 168 lb was not considered a loss to the treatment system nor was it subtracted from the final grass nitrogen weight (347 lb.). Since the Brodhead system operator did not burn site grasses, all grass nitrogen returned to the soil. This meant that grass uptake losses were not a part of a system nitrogen budget. Some operators of land treatment systems do burn the site grasses in the spring to eliminate dead grass accumulation and stimulate new growth. Besides stimulating new luxerient growth, Woodmansee and Wallach (1979) stated that nitrogen losses and nitrogen transformation rate increases occur

-121-

after fires. Nitrogen losses depend on plant biomass and elemental composition, fire intensity and duration, and winds. Since spring fires at land treatment sites are of low intensity, plant roots are not killed and growth will continue. Dead grasses contain most of their N in the root zone, so nitrogen losses are lowest when these grasses are burned.

Knowing this information, grass samples were burned and analyzed for percent ash and percent N in ash. Total pounds of ash-nitrogen were highest in April at 31 lbs. as shown in Table 4.8. The July ash sample indicated 6.5 lbs. of nitrogen on site after burning, the September sample indicated 3.2 lbs., and the November sample indicated 3.7 lbs. A range of 82%-99% nitrogen loss by burning was observed when comparing total nitrogen in the site grasses before and after burning. The lowest loss occurred in April.

After studying the data, one could conclude that it would be best to burn the cover crop of a ridge and furrow site in late fall since grass N losses of 99% would be seen. This would not be advisable, however, since the cover crop provides a vital function in the winter. Dead grasses insulate the soil from freezing thereby providing for wastewater percolation during the winter, protect the furrows from direct exposure to cold weather, and provide ridge stability during the spring thaw. It must also be realized that the grass burning may not be practical at all treatment sites. The operator must be able to access the site with fire fighting equipment in case burning gets out of control.

### TABLE 4.9

# SUGAR RIVER QUALITY

| LOCATION   | TOTAL<br>BOD5              | TOTAL<br>COD    | C1-             | TKN               | NH3-N             | NO3-N             | TSS              | FIELD<br>pH       |
|------------|----------------------------|-----------------|-----------------|-------------------|-------------------|-------------------|------------------|-------------------|
| Upstream   | 3.4 <u>+</u> 0.49 <b>*</b> | 14 <u>+</u> 6.4 | 23 <u>+</u> 2.0 | 1.0 <u>+</u> 0.21 | 0.3 <u>+</u> 0.1  | 3.8 <u>+</u> 0.07 | 382 <u>+</u> 0.0 | 7.9 <u>+</u> 0.14 |
|            | (2)                        | (2)             | (3)             | (2)               | (2)               | (2)               | (1)              | (2)               |
| Midstream  | 3.1 <u>+</u> 0.0           | 14 <u>+</u> 4.9 | 25 <u>+</u> 6.8 | 0.8 <u>+</u> 0.0  | 0.2 <u>+</u> 0.07 | 3.6 <u>+</u> 0.07 | 380 <u>+</u> 0.0 | 7.9 <u>+</u> 0.14 |
|            | (2)                        | (2)             | (3)             | (2)               | (2)               | (2)               | (1)              | (2)               |
| Downstream | 3.5 <u>+</u> 0.71 <b>*</b> | 14 <u>+</u> 4.9 | 19 <u>+</u> 1.4 | 0.8 <u>+</u> 0.28 | 0.1 <u>+</u> 0.0  | 3.4 <u>+</u> 0.07 | 366 <u>+</u> 0.0 | 8.0 <u>+</u> 0.07 |
|            | (2)                        | (2)             | (3)             | (2)               | (2)               | (2)               | (1)              | (2)               |

- All values mg/l except pH

-123-

- ( ) is # of observations

\* Mean includes data below detection limit, limit used in average

#### Sugar River Chemistry

Mean and standard deviations of upstream, midstream, and downstream Sugar River samples are tabulated in Table 4.8. Complete data are located in Appendix J. All values were typical of a river of this size and were uniform upstream to downstream. The Brodhead ridge and furrow system did not adversely affect the Sugar River. It must be remembered, however, that the contaminant plume could be sinking below the river due to density effects (see discussion in groundwater chemistry section).

#### Site Observations

During the course of the project, the following site observations were made at the Brodhead ridge and furrow facility: 1) wastewater distribution and solid build-up, 2) cover crop, 3) winter operation, and 4) monitoring equipment performance.

Wastewater distribution at Brodhead was 100%. That is, during a cell loading, furrows and headers contained wastewater. The grid pattern of headers, crossed by furrows, was a very efficient distribution design. At times during the study, however, furrows became flooded to the point where the water level was as high as the ridge tops. This was especially true after heavy rainfalls. A lower hydraulic loading rate (ie. more system area) may be necessary if wastewater flows increase in the future.

Settled solids build-up was also a problem. Equipment was used to clear the furrows in the spring of 1983 and within a year, one to six inches

-124-

of solids build-up had reoccurred. The need to remove suspended solids at the plant was discussed earlier.

The cover crop of canary grass and weeds at Brodhead flourished with the additional water and nutrients provided by the wastewater. During early spring, grasses were brown and knocked down to about knee high. Grasses grew hip high and weeds grew head high during late spring and early summer. In July and August, grasses and weeds began dying and were blown over. Regrowth along the furrow edges occurred during fall rains. The cover crop did not protect the furrows from the elements that well during the winter at Brodhead since the furrows were wide (about four feet).

Winter operation at the Brodhead ridge and furrow facility was not a problem since wastewater effluent temperatures were about 90°F. No matter what the ice or snow conditions were in the furrow, once cell loading began, the ice would melt and infiltration would begin. No change in hydraulic loading occurred during winter conditions. Ice conditions ranged from no ice near header inlets, to two inches at the extremities of a loaded cell, to completely frozen in resting furrows.

The monitoring equipment used at this site (wells, lysimeters, bailers, etc.) was quite adequate. The only problems which occurred concerned the teflon lysimeters. To obtain a sample of sufficient volume (greater than 50 ml) for chemical analysis, a 20 inch (mercury) vacuum was applied to a lysimeter and a two to three day vacuum period was used. This technique was used on lysimeters 1, 2, 3, 5, 6, 8, and 9. Remembering that the flow times through the unsaturated zone were about 3

-125-

days, a lysimeter sample was not really instantaneous as was assumed in the previous analysis.

Lysimeters did not operate in shallow, drier regions (about one foot) at Brodhead as well. Lysimeters 4 and 7 never provided samples during the study. This was most likely the result of easy air entry form the surface, after vacuum application, and low soil moisture in these particular locations. Teflon is hydrophobic and, therefore, at low soil moisture contents, a high, continuous vacuum may have been necessary.

Winter conditions also caused trouble with lysimeter operation. During sub-freezing weather, ice droplets would form in the tygon tubing and the tubing itself would contract. The tubing near the clamps actually closed. The pressure provided by the hand pump typically could not overcome these blockages. Lysimeter samples were obtained on sunny, 20°F days after working the tygon tubing open. A wider diameter tubing (one quarter inch) and a different type of tube closing valve could help overcome these problems.

#### Brodhead Nitrogen Budget

A nitrogen balance was estimated for the unsaturated zone of each cell at the Brodhead ridge and furrow system. Wastewater flow readings, waste nitrogen data, plant uptake results and, deep lysimeter nitrogen data were used in this estimate. The balance was on a total pounds per year basis.

Additions to the budget came from applied wastewater nitrogen. Total TKN plus NO<sub>3</sub>-N was used assuming all N would have eventually entered the soil. Nitrogen fixation and rainfall N addition were assumed to be

-126-

negligible. In chapter 2, a large input estimate of 12.5 lb N/acre/yr was given for rainfall. This quantity would have been added by the wastewater in about four days. Nitrogen losses in the balance were by plant uptake and leaching. The difference between these additions and losses was accounted for by denitrification. It was further assumed that precipitation and evaportranspiration water volumes canceled out each other (ie. all leaching vertical flow was from wastewater), no volatilization occurred (pH < 9), and all NH4<sup>+</sup>-N adsorption sites were saturated (ie. no soil storage). Results of the budget are shown in Table 4.10; calculations appear in Appendix K.

#### TABLE 4.10

#### NITROGEN BUDGET ESTIMATE - BRODHEAD SITE

| ADDITION/LOSS                    | CELL 1 |         | CEL   | L 2     | TOTAL |         |  |
|----------------------------------|--------|---------|-------|---------|-------|---------|--|
|                                  |        | % of    |       | % of    |       | % of    |  |
|                                  | lb/yr  | added N | lb/yr | added N | lb/yr | added N |  |
| Wastewater                       | 2687   | 100     | 2687  | 100     | 5375  | 100     |  |
| Net Plant<br>Uptake <sup>a</sup> | 0      | о       | 0     | o       | 0     | o       |  |
| Leaching                         | 541    | 20      | 1304  | 49      | 1845  | 34      |  |
| Denitrifica-<br>tion             | 2146   | 80      | 1273  | · 51    | 3529  | 66      |  |

#### (4.7 acres)

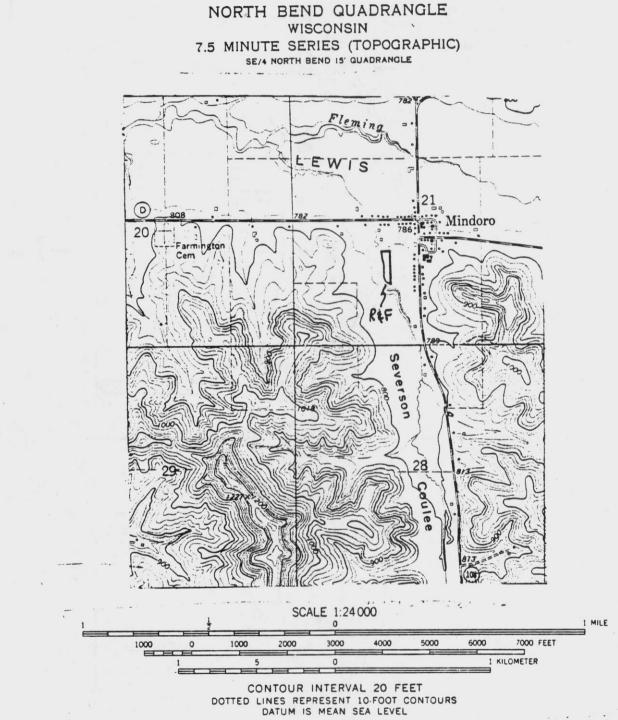
a: net uptake loss = Grass N before burning - Grass ach N after burning (no burning at Brodhead) With this procedure, a denitrification loss of 80% of applied N calculated for cell 1 and 51% for cell 2 as shown in Table 4.10. Leaching accounted for 20% of applied N loss in cell 1 and 49% of applied N loss in cell 2. Plant uptake was zero because of reasons discussed earlier. Considering the total Brodhead site area, leaching accounted for 34% of applied-N and denitrification accounted for 66% of nitrogen losses.

The difference in denitrification losses between the cells made sense considering the past use of the system. Prior to 1980, cell 2 was used only as a backup. This cell still provided good aeration to percolating wastewater and probably contained fewer anaerobic microzones than cell 1. These zones, as described in Chapter 2, would have enhanced denitrification.

#### CHAPTER 5: MINDORO SITE - RESULTS AND DISCUSSION

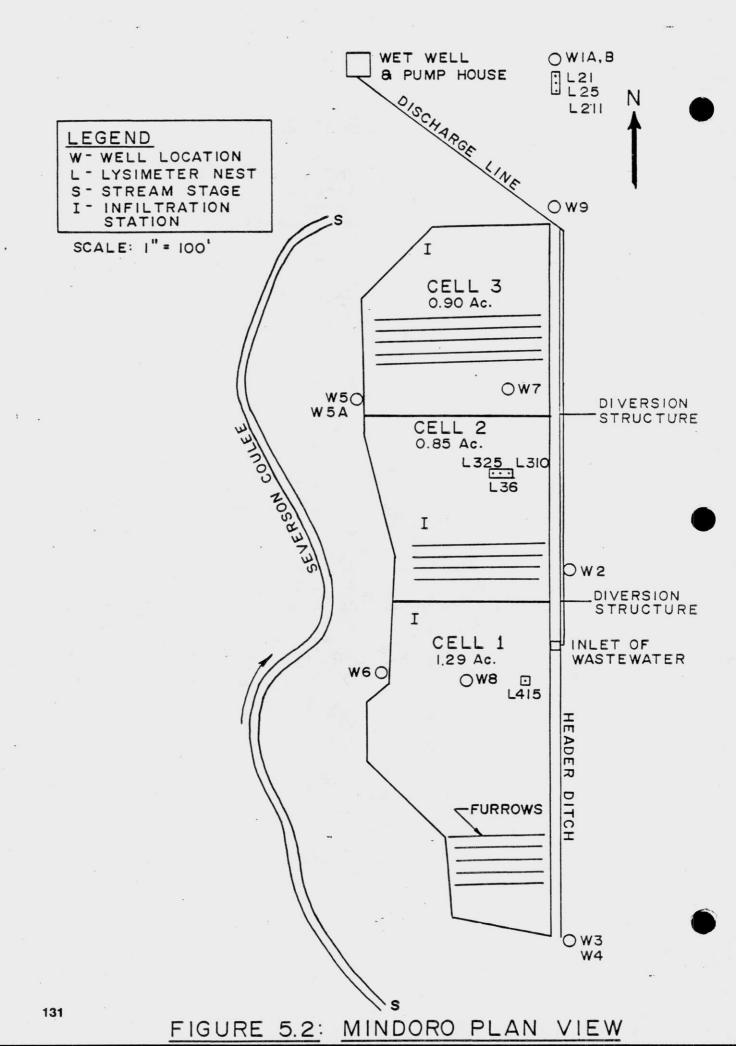
#### Site Description

The Mindoro Co-op Creamery is located in Mindoro, Wisconsin, in northern La Crosse County. The plant produces 10,000 lb of colby cheese per day with 14,000 gpd (average) of processing wastewater being treated by a 3.0 acre ridge and furrow system consisting of three cells. As mentioned in Chapter 2, this system was the first such treatment installation in Wisconsin beginning operation in 1954. A topographical map showing the general location of the system appears in Figure 5.1.


A plan view of the treatment system is illustrated in Figure 5.2. Well, lysimeter, stream stage, and infiltration station locations are indicated as well as cell locations and areas. General information concerning well and lysimeter depths and location is presented in Table 5.1. Complete well and lysimeter logs are given in Appendix AA.

The ridge and furrow site is located over about 12 feet of silt loam soil underlain by a sand and gravel aquifer next to Severson Coulee. This sand and gravel material extends to a depth of approximately 85 feet and overlays a sandstone containing shale seams. The Soil Conservation Service describes the overlying loam as a Toddville loam which is a deep, well to moderately well drained, silty soil formed on stream terraces (WDNR, 1984).

Results of this study's soil analysis at Mindoro indicated the following parameter ranges for the overlying silt loam:


-129-

# FIGURE 5.1



1.00

. . .



# TABLE 5.1a

## WELL SPECIFICATIONS

# AT MINDORO CREAMERY

.

|       | Well Top  | Depth | Well Point | Approximate | Screen<br>Length |                         |
|-------|-----------|-------|------------|-------------|------------------|-------------------------|
| Well* | Elevation | (ft)  | Elevation  | Surf. Elev. | (ft)             | Location                |
|       |           |       |            |             |                  |                         |
| 1A    | 781.59    | 13.0  | 766.59     | 779.6       | 5                | Background              |
| 1B    | 781.36    | 35.5  | 744.16     | 779.7       | 2.5              | Background              |
| 2     | 783.61    | 13.2  | 768.61     | 781.8       | 5                | Adjacent to<br>Cell 2   |
| 3     | 785.32    | 15.2  | 768.49     | 783.6       | 5                | Adjacent to<br>Cell 1   |
| 4     | 785.28    | 35.7  | 747.78     | 783.4       | 2.5              | Adjacent to<br>Cell 1   |
| 5     | 782.63    | 15.0  | 765.80     | 780.8       | 5                | Downstream<br>of Cell 3 |
| 5A    | 782.31    | 31.9  | 749.01     | 780.9       | 2.5              | Downstream<br>of Cell 3 |
| 6     | 785.69    | 17.5  | 765.79     | 783.3       | 5                | Downstream<br>of Cell 1 |
| 7     | 782.00    | 14.0  | 766.80     | 780.8       | 2.5              | Cell 3                  |
| 8     | 783.85    | 9.5   | 772.05     | 781.6       | 2.5              | Cell 1                  |
| 9     | 779.68    | 12.2  | 765.98     | 778.2       | 2.5              | Adjacent to<br>Cell 3   |

#All wells PVC, 2 inch inside diameter.

# TABLE 5.1b

## LYSIMETER SPECIFICATIONS

## AT MINDORO CREAMERY

| Lysimeter | Depth Below<br>Furrow (ft)* | Location   |
|-----------|-----------------------------|------------|
| 21        | 1.0                         | Background |
| 25        | 5.0                         | Background |
| 211       | 11.0                        | Background |
| 325       | 2.5                         | Cell 2     |
| 36        | 6.0                         | Cell 2     |
| 310       | 10.0                        | Cell 2     |
| 415       | 1.5                         | Cell 1     |
|           |                             |            |

\*Depth is to top of Teflon cup

į

| - sand :   | 11-15%                 |
|------------|------------------------|
| - silt :   | 64-68%                 |
| - clay :   | 19-25%                 |
| - total N: | 0.01-0.31%             |
| - CEC :    | 11-22 mg/100 gram soil |
| - pH :     | 5.5-7.9                |

The higher silt and total N fractions occurred in shallow samples. Also CEC tended to decrease with depth and soil pH increased with depth. Complete soil analysis data are presented in Appendix BB. In summary, the soil immediately below the treatment system is primarily silt with some clay. The silt loam had an average CEC of 14.5 mg/100 gram of soil.

Soil borings during well and lysimeter installation also brought out the following five points.

- 1) moist, sticky clays appeared deeper in bore holes,
- 2) some holes had a blue-gray clay just above the sand layer
- 3) the top of the sand tended to be greenish-blue in color,
- 4) in-cell borings had 5-10 feet of gray mottled clay, indicating a flucuating water table, and
- 5) in-cell borings near the north end of cell 3 had groundwater elevations within 1 to 2 feet of the surface.

#### Wastewater Chemistry

Mindoro Creamery's wastewater had mild strength when compared to the Brodhead site. Mindoro's average wastewater BOD5, COD, TKN, and chloride

-134-

### TABLE 5.2

#### MINDORO WASTEWATER CHARACTER

| Parameter        | Samples | Mean | Median | Range    | SD  | Strong Typical <sup>a</sup><br>Domestic |
|------------------|---------|------|--------|----------|-----|-----------------------------------------|
|                  |         |      |        |          |     |                                         |
| TOTAL BOD5*      | 74      | 830  | 860    | 430-1300 | 280 | 400                                     |
| TOTAL COD        | 12      | 1200 | 1300   | 660-1900 | 360 | 1000                                    |
| TSS              | 14      | 262  | 194    | 80-616   | 163 | 350                                     |
| TOTAL TKN        | 14      | 32   | 34     | 14-52    | 11  | 85                                      |
| DISSOLVED<br>TKN | 2       | 24   | 24     | 16-31    | 11  |                                         |
| NH3-N            | 10      | 0.9  | 1.1    | 0.1-1.8  | 0.6 | 50                                      |
| NO3-N+NO2-N#     | 10      | 0.4  | 0.2    | 0.1-1.6  | 0.5 | 0                                       |
| C1-              | 14      | 100  | 91     | 70-210   | 34  | 100                                     |
| рH               | 8       | 7.5  | 7.8    | 5.1-9.5  | 1.4 |                                         |

(all units mg/l except pH)

a from Metcalf and Eddy, 1979

# - Mean contains data below or above a detection limit; the limit was included in average

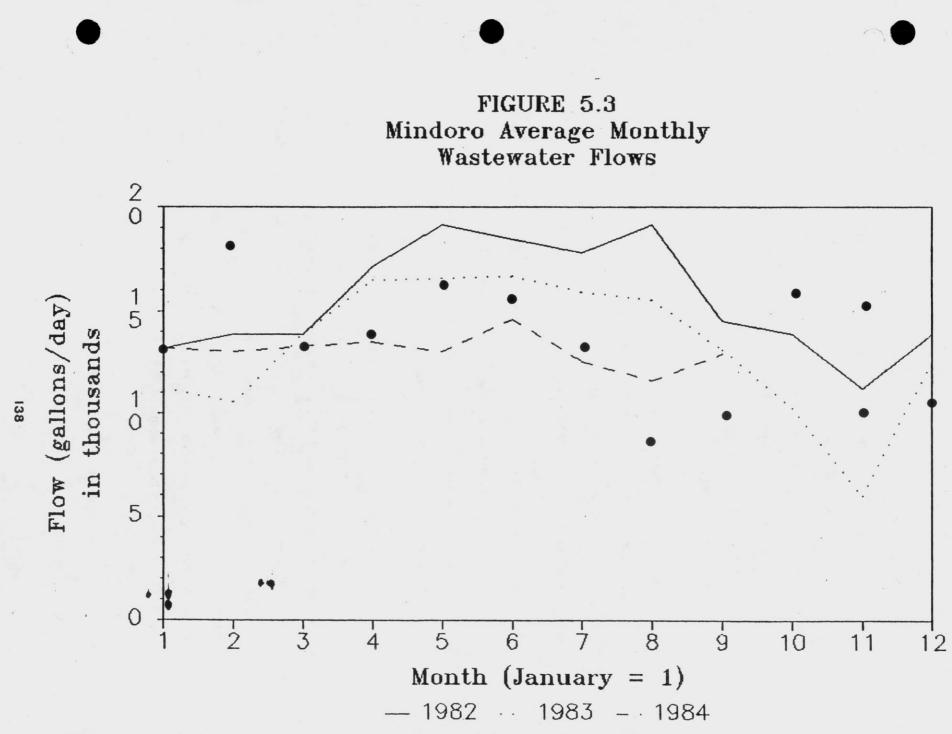
SD - Standard Deviation

concentrations were 830 mg/l, 1200 mg/l, 32 mg/l, and 100 mg/l, respectively. Means, medians and ranges of these and other chemical parameters of the wastewater are provided in Table 5.2. Values of a strong typical domestic waste are provided for comparison. A complete list of data is given in Appendix CC.

There were three general observations made concerning the Mindoro wastewater chemistry. First, the results were highly variable and this variance was not seasonal. For example, the average total suspended solids value was 262 mg/l but the standard deviation was 163 mg/l and the range was 80-616 mg/l. These variations, as mentioned in Chapter 4, were most likely due to the variation in the amount of rinse water used in the plant.

Second, the average pH (7.5) of the wastewater was slightly above neutral. Since major volatilization of NH<sub>3</sub> occurs at pH greater than nine, one would expect negligible gaseous loss of ammonia from this wastewater.

Finally, the nitrogen fraction of the wastewater was primarily organic-N. This was expected since the wastewater was derived from cheese production. Unlike the Brodhead wastewater, however, only around 25% of this organic-N was tied up in the solid fraction. This was seen by comparing total and dissolved TKN concentration averages (Table 5.2).


-136-

#### Wastewater Hydraulic Loading

All flow to the Mindoro ridge and furrow system was derived from cheese production. A low and a high speed pump, alternated periodically, were used to convey flow to the system. Discharge was calculated two ways. During sampling days, the flow was found by first dividing the average pump time, in minutes, into the total wet well volume discharged (260 gallons) per pump run. Then, using the pump's hour meter, this value was multiplied by a pumping hours per day factor and a time conversion to obtain the gallons per day value. For example, the average pump time to remove 260 gallons from the wet well was 3.09 minutes. If the pump ran 2.59 hours during the 24 hour sampling period, the wastewater flow during that day was 13,100 gallons (ie. 260 gal/3.09 min  $x_{2.59}x$  60 min/hr = 13,100 gal). Wastewater volume flowing into the wet well during pumping was neglected. Thirty-day monthly averages were obtained by relating the monthly metered pumping time to a pump time versus discharge curve.

Figure 5.3 presents the 30-day average, monthly Mindoro wastewater flow readings for the years 1982-1984 as well as 24-hour flows measured on project sampling days. A complete listing of flow data for the past three years is given in Appendix DD. Thirty-day monthly flows averaged 14,000 gallons per day since 1982. One can see from Figure 5.3 that from 1982 to 1984, flows ranged from 6006 to 19,140 gallons per day. These discharges were well under the WDNR permit flow of 25,000 gpd.

-137-



--24-HR flows determined on sampling days indicated by

A seasonal trend existed in flow volumes to the Mindoro system. Flows were high from April to July with values decreasing during the hot summer months, fall, and winter. Cheese production at Mindoro was more dependent on local milk supply than Brodhead. The most productive milking period is in spring and early summer. Summer flow readings in 1984 were lower due to a process change made in March which allowed for recycling of cooling water.

A flexible load/rest cycle was followed at this site. The intent was to load a cell for one month and rest it for two months. Each month, the longest rested cell was placed on line. It was not uncommon during this study, however, to see the same cell loaded for three to four months.

Due to inefficient header ditch flow control and blocked furrow openings, wastewater distribution at the Mindoro site was poor. Typically, 1/3 of cell 1, 1/5 of cell 2, and 1/3 of cell 3 were loaded no matter which cell was technically being loaded.

Total area and actual area hydraulic loading rates were calculated and are presented in Table 5.3. Using the total site area, the average hydraulic loading rate was 0.172 inches/day (4670 gpad) with a range of 0.074-0.235 inches/day (2000-6380 gpad). This is classified as a fairly medium rate system (Rodenberg, 1980). A high rate classification would result if actual hydraulic loadings were considered. These values were over three times greater than total area calculations and almost two times greater than average Brodhead system rates.

-139-

### TABLE 5.3

#### MINDORO HYDRAULIC LOADING RATES

### units: in/day (gal/acre/day)

| Flow (gal)                              | Total Area<br>Loaded | Actual Area<br>Loaded |
|-----------------------------------------|----------------------|-----------------------|
|                                         |                      |                       |
| 6006 (min)                              | 0.074                | 0.246                 |
|                                         | (2000)               | (6670)                |
| 14,000 (ave)                            | 0.172                | 0.573                 |
| 14,000 (2007                            | (4670)               | (15,600)              |
| 19,140 (max)                            | 0.235                | 0.783                 |
| · ) ; · · · · · · · · · · · · · · · · · | (6380)               | (21,300)              |

Total Area = 3.0 acres Actual Area = 0.9 acres

#### Organic Loading Rates (BOD5, TKN)

Code NR 214 of the Wisconsin DNR states that a ridge and furrow system should receive no more than 100 lb BOD5/acre/day. Using the average total area hydraulic loading rate and the average BOD5 concentration of the wastewater, the Mindoro site received 32 lb BOD5/acre/day. Using the minimum and maximum total area flow rates and the average wastewater BOD5 concentration, the BOD5 loading rate range was 14-44 lb BOD5/acre/ day. These numbers were well under the code requirement.

If the actual area hydraulic loading rates were used, however, higher BOD<sub>5</sub> loading rates resulted. The average rate was 108 lb BOD<sub>5</sub>/acre/day with a range of 46-147 lb BOD<sub>5</sub>/acre/day. These results are presented in Table 5.4.

-140-

Similar calculations for TKN loading rates were performed and are also presented in Table 5.4. There is currently no Wisconsin DNR code for nitrogen loading. Using the range of total area hydraulic flows presented in Table 5.3 and the average wastewater TKN concentration, TKN loading rates at Mindoro ranged from 0.53-1.7 lb N/acre/day with an average of 1.2 lb N/acre/day. Using the range of actual area hydraulic flows and the average wastewater TKN concentration, TKN loading rates ranged from 1.8-5.7 lb N/acre/day with an average of 4.2 lb N/acre/day. Suggestions for possible loading rates will be made in Chapter 6.

#### TABLE 5.4

#### MINDORO ORGANIC LOADING RATES

#### (Units are lb/day/acre)

| Total Area<br>Loaded | Actual Area<br>Loaded                   |
|----------------------|-----------------------------------------|
| 14                   | 46                                      |
| 32                   | 108                                     |
| 44                   | 147                                     |
| 0.53                 | 1.8                                     |
| 1.2                  | 4.2                                     |
| 1.7                  | 5.7                                     |
|                      | Loaded<br>14<br>32<br>44<br>0.53<br>1.2 |

| Ave BOD5 Conc | = | 830 | mg/l  |
|---------------|---|-----|-------|
| Ave TKN Conc  | = | 32  | mg/l  |
| Total Area    | = | 3.0 | acres |
| Actual Area   | = | 0.9 | acres |

#### Groundwater Elevations and Flow

In general, groundwater flow at the Mindoro ridge and furrow was north northwesterly, following in the direction of Severson Coulee. An approximate gradient in the sand layer from well 4 to well 5A was 0.006 ft/ft. Vertical gradients were observed between wells 1A and 1B, 5 and 5A. and 3 and 4 and mounding of groundwater within the system was detected during borings. When standing water was present in well 1A, its elevations were higher than elevations in well 1B, indicating downward flow from the silt to the sand layer. Elevation differences between wells 5 and 5A were variable during the study. If cell 2 was loaded, the groundwater beneath the northern section of cell 2 would mound, and a downward gradient would result. As cell 2 rested, the mound dissipated and upward gradients would begin. The gradients near wells 3 and 4 were unexplainable. The southern section of cell 1 was continually ponded during the project, yet, oscillating elevation differences between these two wells indicated both upward and downward gradients. Downward gradients at Mindoro ranged from 0.01 to 0.04 ft/ft. A well nest within the system would have better defined these gradients. Figure 5.4 shows the groundwater contours on November 5, 1984. Appendix EE contains a complete list of elevation and contour data.

Groundwater (water table) elevations varied 0.7 to 4.7 feet during the project. Time plots for the elevations of wells 5, 6, and 7 are graphed in Figure 5.5. High level values in September (1983) with a subsequent decrease were most likely the result of high summer wastewater flow

-142-

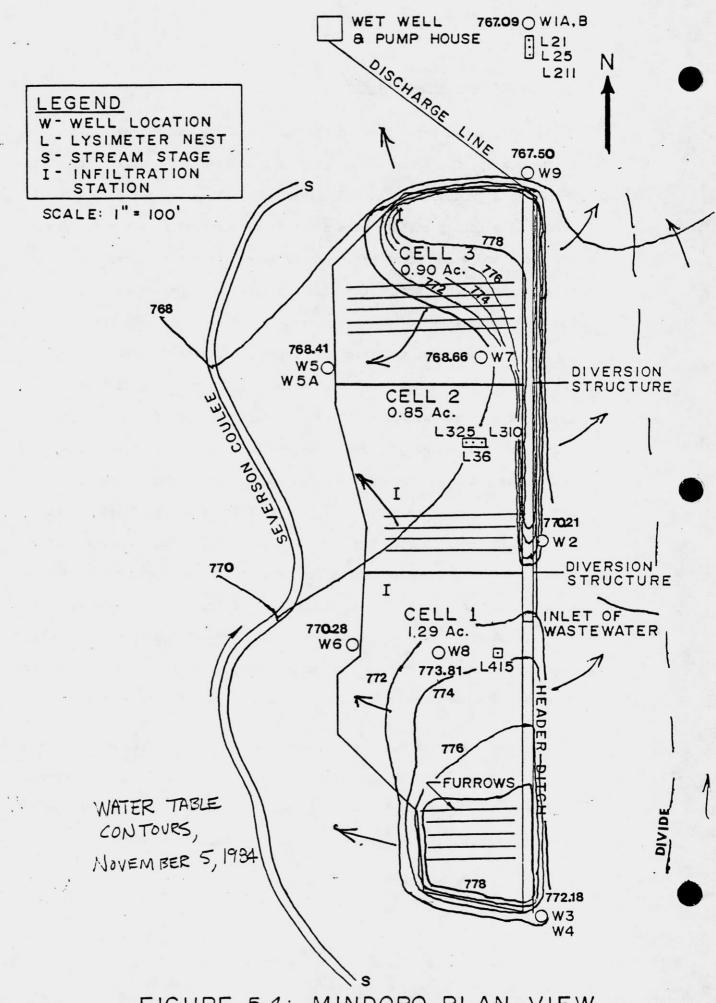
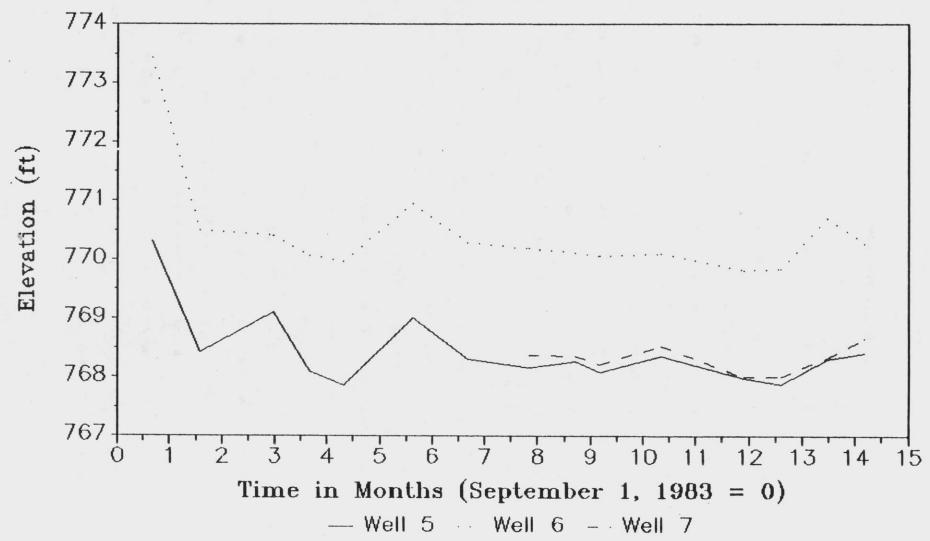




FIGURE 5.4: MINDORO PLAN VIEW

FIGURE 5.5 Mindoro Groundwater Elevation vs. Time for wells 5, 6, and 7



Elevations are mean sea level

followed by lower fall waste flows. Elevation changes could not be correlated with wastewater flow after this period though. No seasonal pattern of water table fluctuation was observed.

Once percolated wastewater entered the saturated zone at Mindoro, its flow regime was complex. In the silt loam layer, flow within the system was principally vertical with some horizontal movement away from the mound. Flow in the silt and upper sand layers beneath the site was totally derived from recharge (wastewater) to the system. This meant a flow divide was created east and south of the site, separating background groundwater flow from wastewater derived flow. This is depicted on Figure 5.4. Upon entering the sand layer, the groundwater flow was horizontal to the northwest.

Determination of flow velocities through the silt layer and the sand layer was difficult and only estimates were made. Darcy's Law (V=KI/n) was used to find the average vertical velocity in the silt loam layer. Slug tests were performed in November (1984) to determine the hydraulic conductivity near wells 1A, 2, and 8. Calculations are presented in Appendix EE. Results of the tests provided K values of 7 x 10<sup>-7</sup> ft/s, 2 x 10<sup>-5</sup> ft/s, and 2 x 10<sup>-7</sup> ft/s for wells 1A, 2, and 8, respectively. It must be realized that these values were for horizontal hydraulic conductivity. Therefore, it was assumed that the silt loam was homogeneous and isotropic. A spatially averaged vertical K of 7 x 10<sup>-6</sup> ft/s was used. An average vertical gradient of 0.025 ft/ft (from 0.01-0.04 ft/ft range) and a typical porosity for silt of 0.4 (Freeze and Cheng, 19;9) were also assumed.

-145-

With the above input data, a vertical velocity of 0.04 ft/day was determined. Assuming that the sand layer is one to 10 feet below the water table, travel times through the saturated silt strata of between 25 and 250 days were calculated. These values were reasonable.

Unsuccessful slug and bail tests to determine K in the sand layer were attempted on well 1B in April (1984). The well returned to equilibrium too quickly to acquire meaningful data. Since this response was similar to the slug tests attempted at Brodhead, an estimated hydraulic conductivity of 0.0005 ft/s was used. Imputing the gradient of 0.006 ft/ft and a porosity of 0.35 (for sand) into Darcy's Law provided a horizontal linear velocity of 0.7 ft/day in the sand layer. At this velocity, it would take about three years for groundwater to flow from the south end to the north end of the site.

#### Groundwater Chemistry

Chemical analyses of groundwaters for each well at Mindoro are listed in Table 5.5. Complete data listings are given in Appendix FF. When reviewing chloride data, a good indicator of contamination, one can categorize the wells into two types. Wells 1B and 4 were not affected by the ridge and furrow system whereas wells 2, 3, 5, 6, 7, 8, and 9 were influenced by the system. Except for well 2, all of the affected wells contained 77 to 92% of the wastewater chloride concentration on average and demonstrated low standard deviations. This verified the assertion made earlier that the groundwater below the system was primarily derived from applied wastewater. The average wastewater concentration was 100 mg/l. Well 2 chloride values decreased about 70%

-146-

### TABLE 5.5

.

•

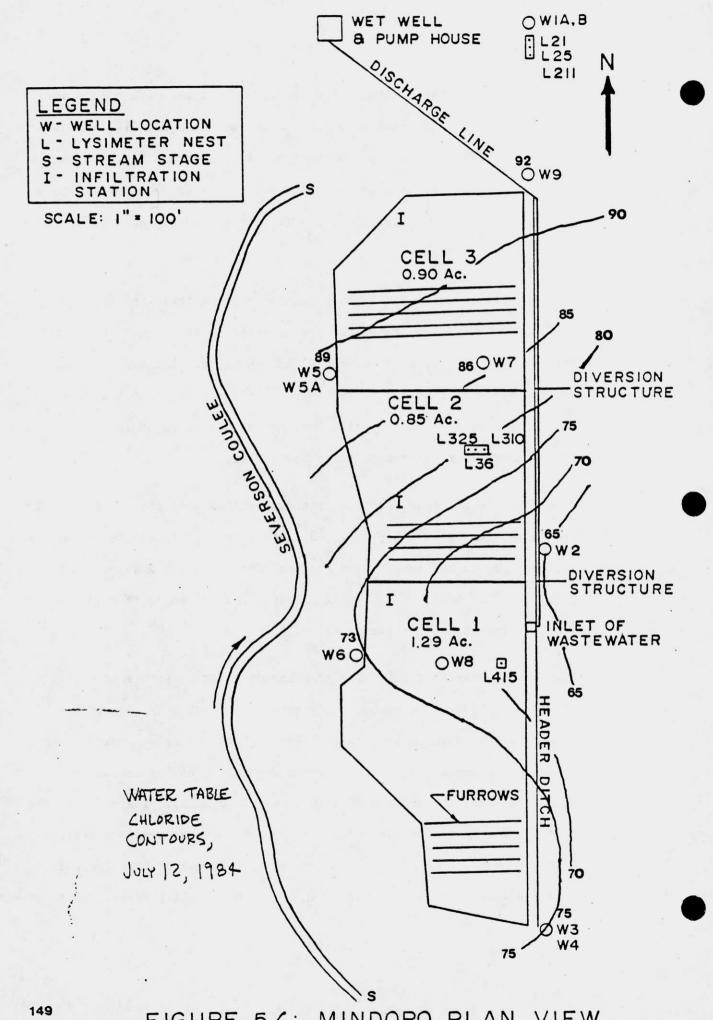
| MEAN AND STANDARD DEVIATION OF  |
|---------------------------------|
| GROUNDWATER CHEMICAL PARAMETERS |
| AT MINDORO                      |

|            | Dissolved                                        | Dissolved                       |                                    | Dissolved                            | Dissolved                         | Dissolved                            |                                      | Field                    |
|------------|--------------------------------------------------|---------------------------------|------------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|--------------------------------------|--------------------------|
| Well       | BOD <sub>5</sub>                                 | COD                             | TDS                                | TKN                                  | NH3-N                             | NO2-N+NO3-N                          | C1-                                  | рH                       |
| 14         |                                                  |                                 |                                    |                                      | $0.1 \pm 0.0$<br>(1)              | $1.9 \pm 0.0$<br>(1)                 |                                      |                          |
| 1B         | 3.3 <u>+</u> 1.1*<br>(8)                         | 5.2 <u>+</u> 0.71<br>(8)        | 350 <u>+</u> 11.2<br>(8)           | 0.2 <u>+</u> 0.1 <sup>#</sup><br>(8) | 0.1 <u>+</u> 0.0*<br>(8)          | 3.3 <u>+</u> 0.61<br>(8)             | 9.3 <u>+</u> 0.54<br>(3)             | 7.4 <u>+</u> 0.15        |
| 2          | 9.1 <u>+</u> 14#<br>(10)                         | 18 <u>+</u> 20<br>(11)          | 537 <u>+</u> 127<br>(10)           | 1.5 <u>+</u> 0.88<br>(11)            | $0.3 \pm 0.2$<br>(13)             | 0.1 <u>+</u> 0.06 <b>*</b><br>(13)   | 59 <u>+</u> 20<br>(9)                | $7.5 \pm 0.20$           |
| 3          | $3.0 \pm 0.56$<br>(13)                           | 11 <u>+</u> 3.1<br>(13)         | 692 <u>+</u> 51.2<br>(13)          | 0.6 <u>+</u> 0.2<br>(13)             | $0.1 \pm 0.06$<br>(13)            | 0.1 <u>+</u> 0.06#<br>(1 <u>3</u> )  | 77 <u>+</u> 7.3<br>(13)              | $6.9 \pm 0.17$           |
| 4          | $3.1 \pm 0.28$<br>(13)                           | 5.0 <u>+</u> 0.04<br>(13)       | 278 <u>+</u> 5.34<br>(13)          | 0.2 <u>+</u> 0.07 <b>*</b><br>(13)   | 0.1 <u>+</u> 0.0#<br>(13)         | 0.2 <u>+</u> 0.09<br>(13)            | 2.1 <u>+</u> 0.19<br>(13)            | $7.3 \pm 0.20$           |
| 5          | $\begin{array}{c} 11 + 7.71 \\ (13) \end{array}$ | 31 <u>+</u> 9.5<br>(12)         | 715 <u>+</u> 42.4<br>(13)          | 4.0 <u>+</u> 0.74<br>(13)            | 3.0 <u>+</u> 1.0<br>(1 <u>3</u> ) | 0.1 <u>+</u> 0.0*<br>(13)            | 91 <u>+</u> 2.3<br>(13)              | 6.7 <u>+</u> 0.14<br>(8) |
| 6          | 4.5 <u>+</u> 2.2*<br>(13)                        | 25 <u>+</u> 3.6<br>(12)         | 737 <u>+</u> 26.8<br>(1 <u>3</u> ) | 1.8 <u>+</u> 0.66<br>(13)            | 1.0 <u>+</u> 0.40<br>(13)         | 0.1 <u>+</u> 0.0#<br>(1 <u>3</u> )   | 77 <u>+</u> 3.7<br>(1 <u>3</u> )     | 6.8 <u>+</u> 0.13<br>(8) |
| 7          | $7.6 \pm 6.9$<br>(7)                             | 18 <u>+</u> 10<br>(7)           | 690 + 88.6                         | 2.5 <u>+</u> 0.50<br>(7)             | 1.9 <u>+</u> 0.42<br>(7)          | 0.1 <u>+</u> 0.0 <del>*</del><br>(7) | 85 <u>+</u> 5.7<br>(7)               | $6.6^{+} + 0.21^{-}$     |
| <b>8</b> · | $3.2 \pm 0.42$<br>(7)                            | 25 + 4.3<br>(7)                 | 774 <u>+</u> 201<br>(7)            | 2.5 <u>+</u> 1.1<br>(7)              | 0.3 <u>+</u> 0.16<br>(8)          | 0.2 <u>+</u> 0.1 <b>*</b><br>(8)     | $\frac{84}{(7)}$ $\frac{+}{(7)}$ 0.1 | 6.8 <u>+</u> 0.21<br>(3) |
| 9          | 16 <u>+</u> 12≇<br>(7)                           | $\frac{47}{(7)} + \frac{28}{7}$ | $607 \pm 89.9$                     | $2.8 \pm 0.73$                       | 1.5 <u>+</u> 0.34<br>(7)          | 0.1 <u>+</u> 0.04<br>(7)             | 92 $\frac{+}{(7)}$ 12                | 6.7 <u>+</u> 0.14<br>(7) |

--->All values mg/l except pH; ( ) indicates # of observations

147.

\* - means include values above or below a detection limit; the limit was included in average


during the last five months of the project. This may have been caused by a shift of the groundwater divide to the west (Figure 5.4), diluting the region of well 2 with groundwater of background quality. It should be realized that averages and standard deviations of well data at this site do not fully describe the contamination and should only be used for relative comparisons.

The pH in wells 1B, 2 and 4 was slightly above neutral, ranging from 7.3 to 7.5 on average. Wells which were affected by the Mindoro ridge and furrow system (3, 5, 6, 7, 8, and 9) had pH values slightly less than neutral, ranging from 6.6 to 6.9. This was the same trend that was witnessed at Brodhead. Since wells were not placed north of the system, it is not known if pH increased again downstream.

Using average chloride and total nitrogen  $(TKN+NO_3-N)$  concentrations for the wastewater and wells 5, 6, 7, 8, and 9, one can calculate the well nitrogen losses not caused by dilution. These results are presented in Table 5.6. In these wells, total nitrogen losses ranged from 71-83%. A sample calculation is shown in Appendix FF.

Figure 5.6 presents a plan view of chloride contours at the water table on July 12, 1984. The contours are approximate but they generally represent the contaminated area. These results indicated a high chloride contamination in the southern section of cell 1 (about 80 mg/l) and in the northern section of cell 3 (about 90 mg/l). These areas were ponded with wastewater throughout the project. Concentrations decreased along the eastern boundary of the system as groundwater traveled away from the mounded area and mixed with background quality flow. Chloride

-148-



MINDORO PLAN VIEW FIGURE 5.6:

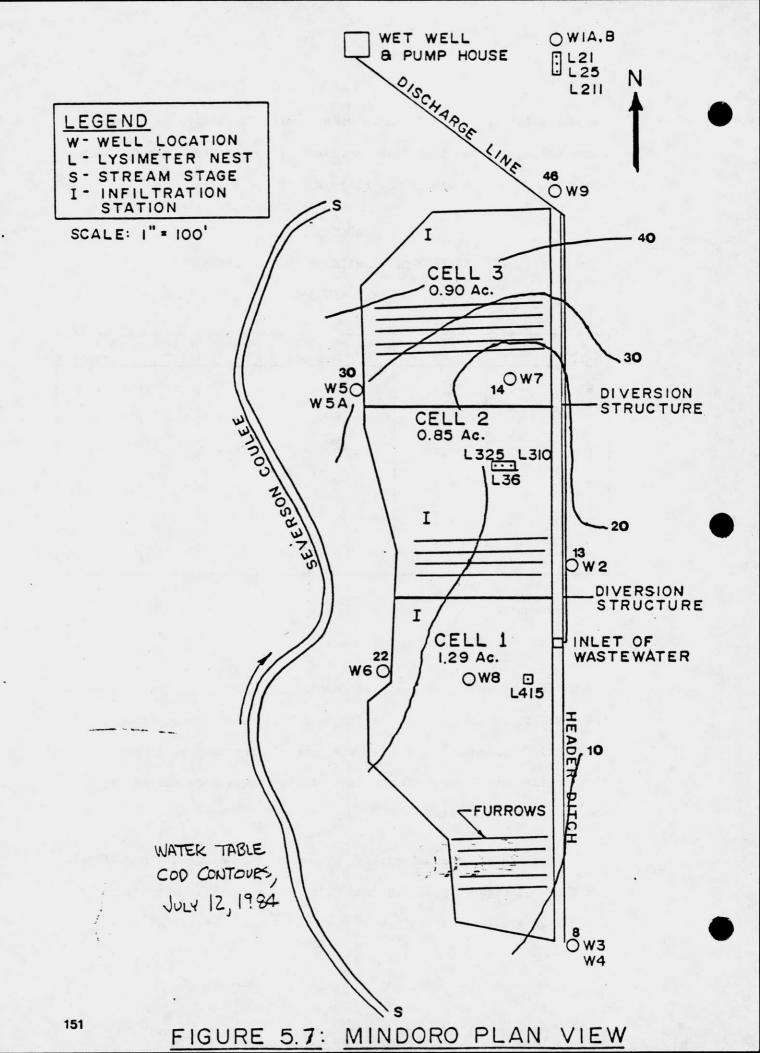
concentration for wells 1B and 4 were considered background quality. Since wells were not installed northwest of the system, chloride values were unknown downstream of the ridge and furrow system.

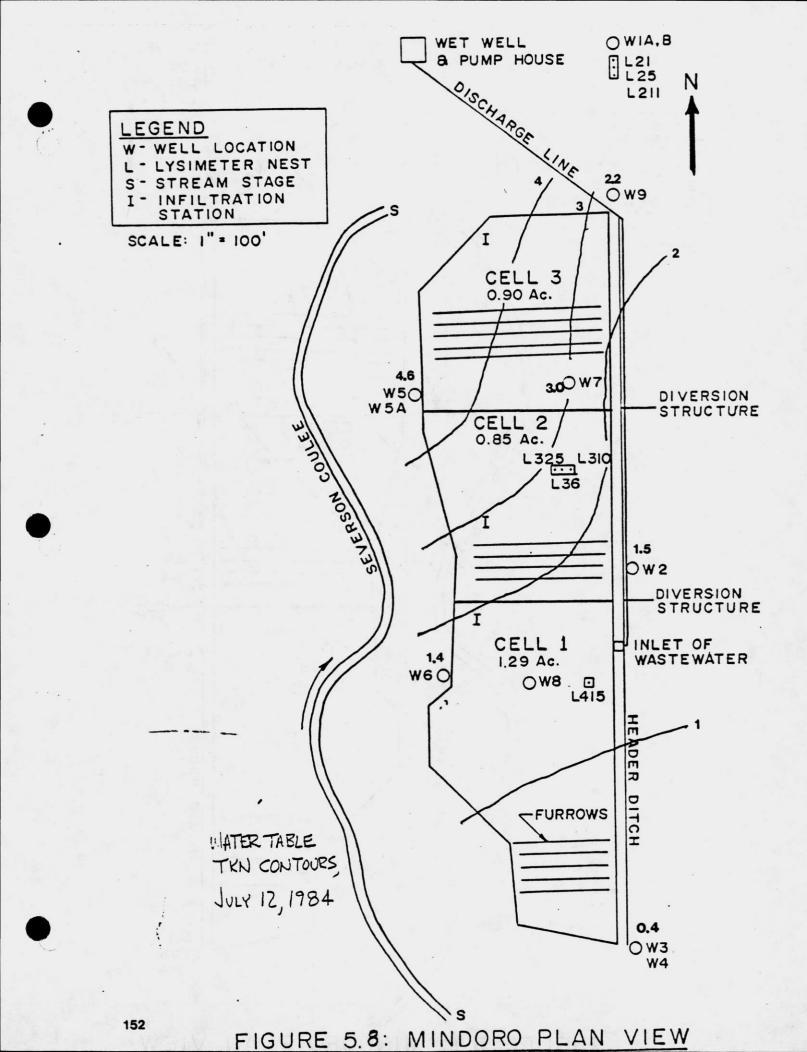
#### TABLE 5.6

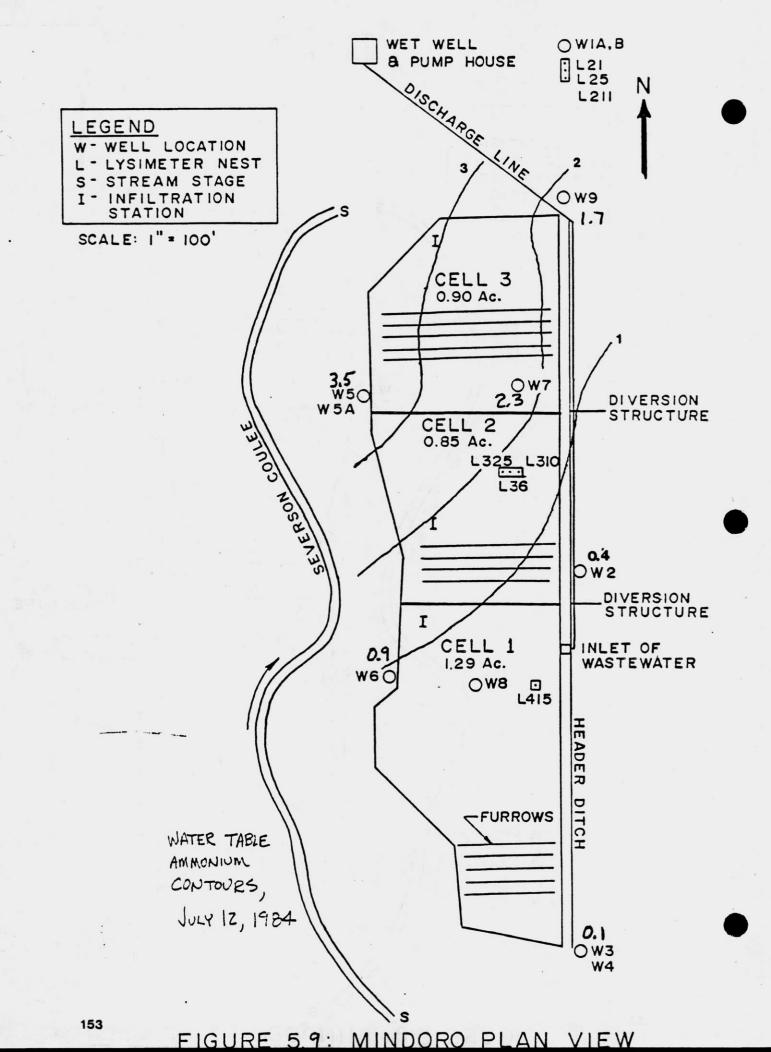
#### AVERAGE GROUNDWATER NITROGEN LOSSES

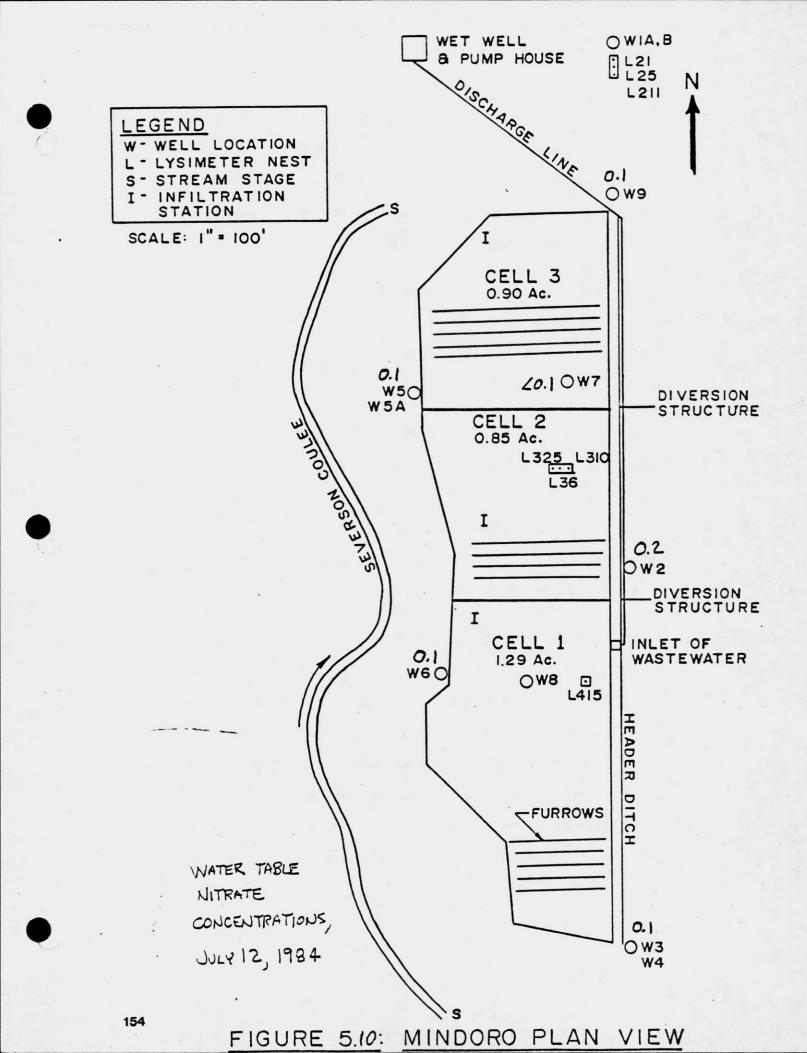
| C1- | Total<br>N                  | % Reduction<br>of Chloride                                                                                                                   | <pre>% Reduction of Total N</pre>                                                                                                                                                                                     | % N<br>Losses                                                                                                                                                                                                                                                                                  |
|-----|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 100 | 32.2                        | 0                                                                                                                                            | 0                                                                                                                                                                                                                     | о                                                                                                                                                                                                                                                                                              |
| 91  | 4.1                         | 9                                                                                                                                            | 87                                                                                                                                                                                                                    | 78                                                                                                                                                                                                                                                                                             |
| 77  | 1.9                         | 23                                                                                                                                           | 94                                                                                                                                                                                                                    | 71                                                                                                                                                                                                                                                                                             |
| 85  | 2.6                         | 15                                                                                                                                           | 92                                                                                                                                                                                                                    | 77                                                                                                                                                                                                                                                                                             |
| 84  | 2.7                         | 16                                                                                                                                           | 92                                                                                                                                                                                                                    | 76                                                                                                                                                                                                                                                                                             |
| 92  | 2.9                         | 8                                                                                                                                            | 91                                                                                                                                                                                                                    | 83                                                                                                                                                                                                                                                                                             |
|     | 100<br>91<br>77<br>85<br>84 | C1-         N           100         32.2           91         4.1           77         1.9           85         2.6           84         2.7 | Cl-         N         of Chloride           100         32.2         0           91         4.1         9           77         1.9         23           85         2.6         15           84         2.7         16 | Cl-         N         of Chloride         of Total N           100         32.2         0         0           91         4.1         9         87           77         1.9         23         94           85         2.6         15         92           84         2.7         16         92 |

#### AT MINDORO


WW = Wastewater


- chloride and total nitrogen in mg/l


A similar contour pattern existed for COD concentrations (on 7/12/84) at the water table and is shown in Figure 5.7. Again, concentrations increased from south to north in the general direction of groundwater flow in the sand layer. COD concentration changes were not known downstream of the system.


Plan views for the parameters TKN,  $NH_3-N$ , and  $NO_2-N+NO_3-N$  (from 7/12/84) are shown in Figures 5.8, 5.9, and 5.10, respectively. The TKN and  $NH_3-N$  maps are quite similar with concentrations increasing to the

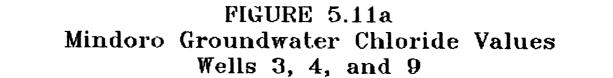
-150-

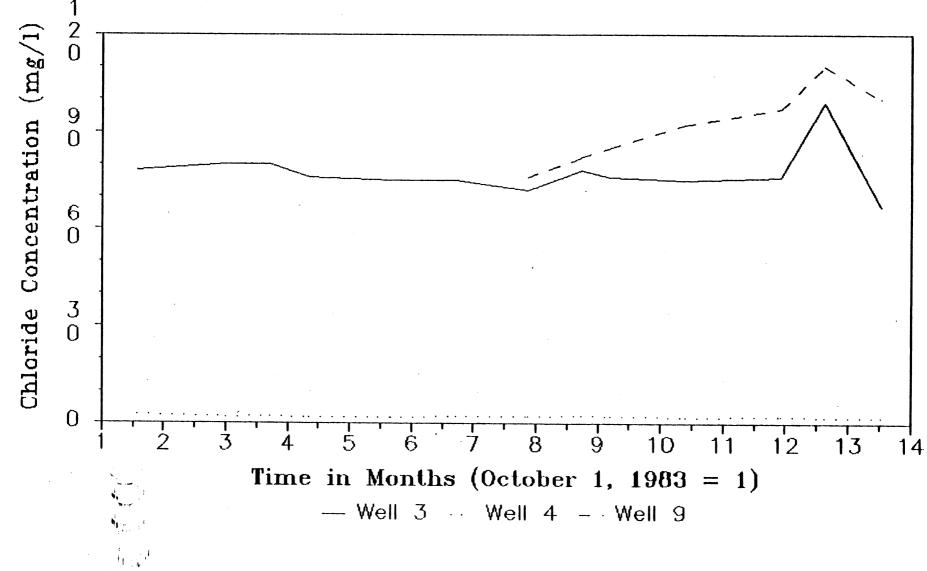









northwest in the groundwater beneath the system. Ammonium values were 75% lower than TKN values on this day. The nitrate concentrations, as shown in Figure 5.10, were low ( $\leq 0.2 \text{ mg/l}$ ) everywhere in the shallow groundwater. Again, nitrogen concentrations downstream of the Mindoro ridge and furrow system where unknown.


An attempt was made to match chemical changes in space with time between wells. Due to the complexity of the groundwater flow regime, however, this was not possible. General observations of temporal trends in the groundwater follow.

First, chloride and TDS concentrations in the wells were not variable during the Mindoro study. This can be seen in Figure 5.11a and b where chloride and TDS data are plotted versus time for wells 3, 4, and 9, respectively. This graph also shows that downstream well chloride values were of the same magnitude as the wastewater and that no dilution occurred along the groundwater flow path (well 3 to well 9).

Second, well 2 TDS, TKN, and chloride concentrations decreased from June (1984) to October (1984). These plots are illustrated in Figure 5.12a, 5.12b, and 5.12c, respectively. TDS concentrations declined 42%, TKN's decreased 44%, and chlorides dropped 73%. These declines were attributed to the cell loading schedule. Cell 1 had not been loaded since September of 1983. With no wastewater recharge to the cell, the groundwater divide mentioned earlier shifted west and background quality groundwater was able to penetrate the well 2 region, diluting contaminant concentrations.

-155-





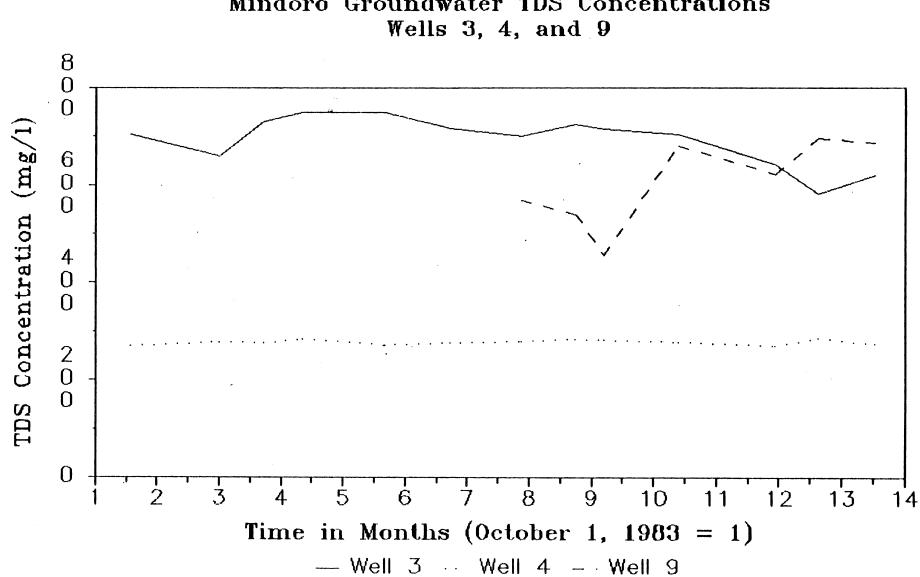
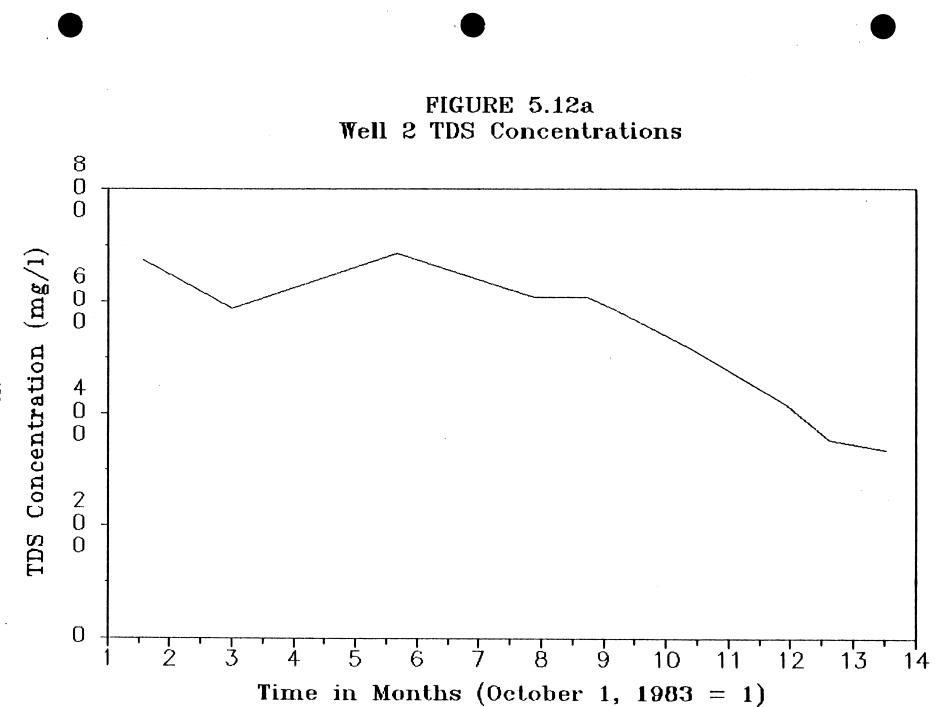




FIGURE 5.11b Mindoro Groundwater TDS Concentrations



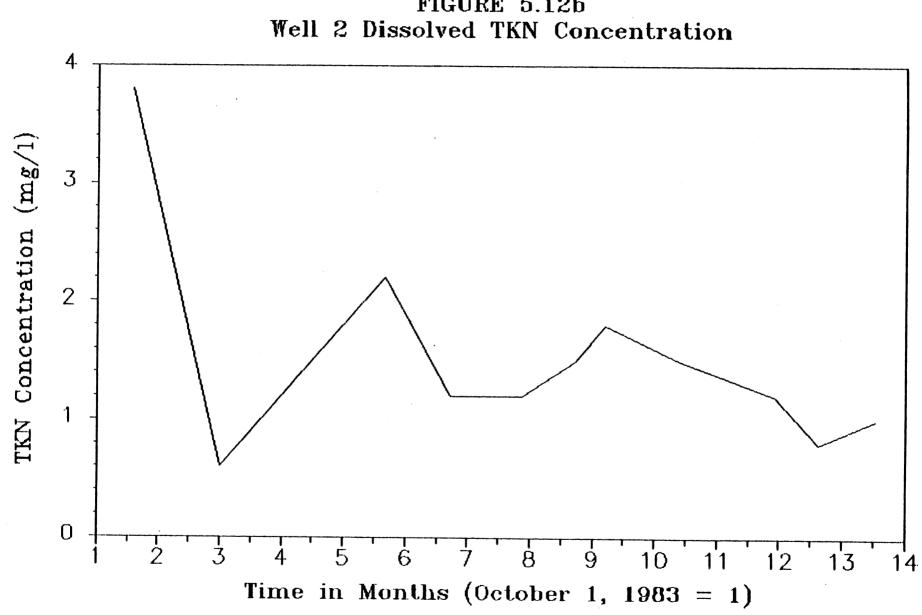
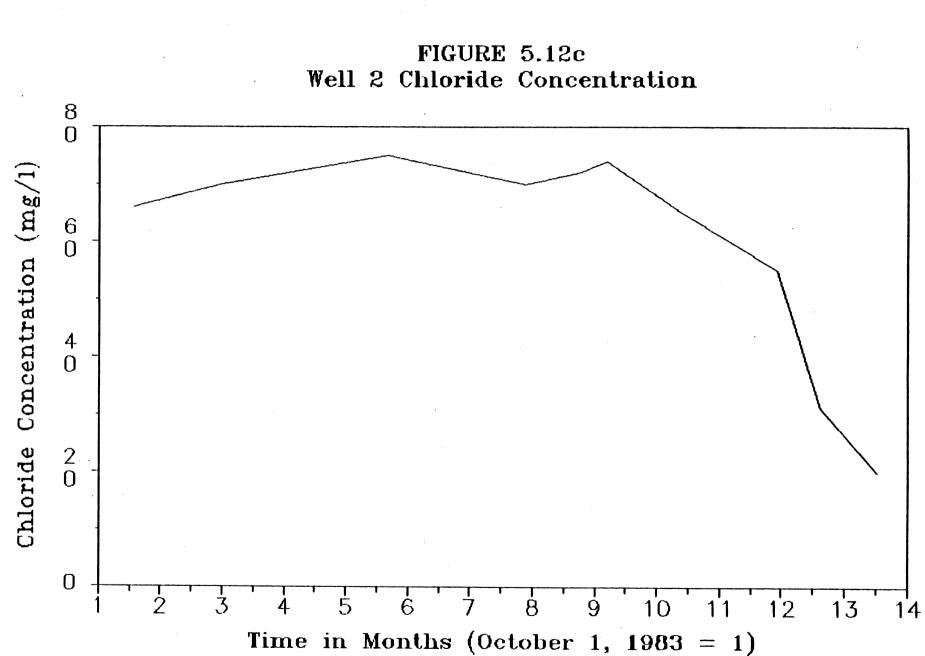
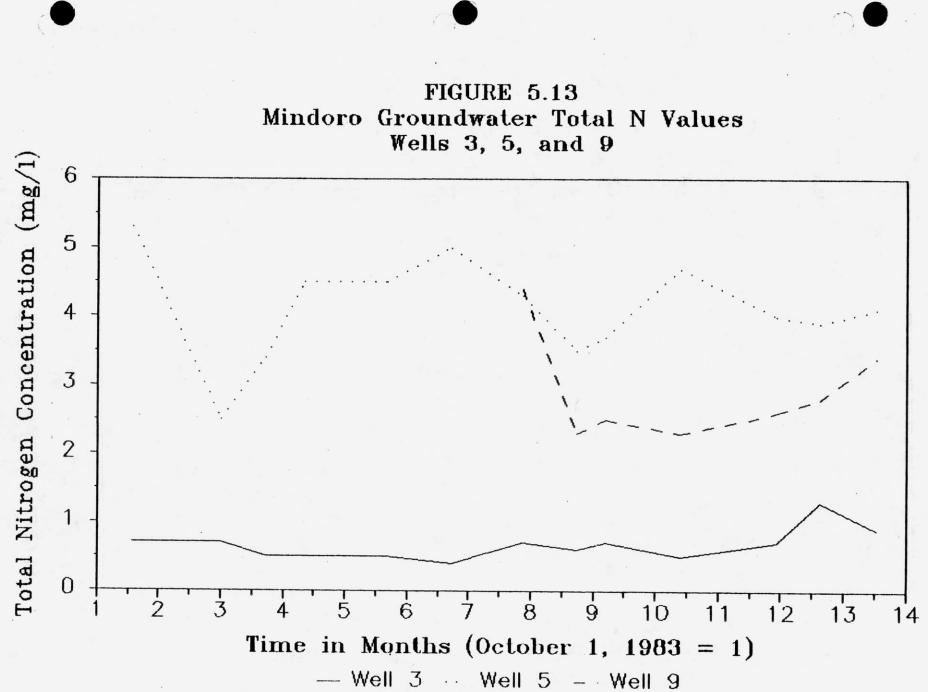
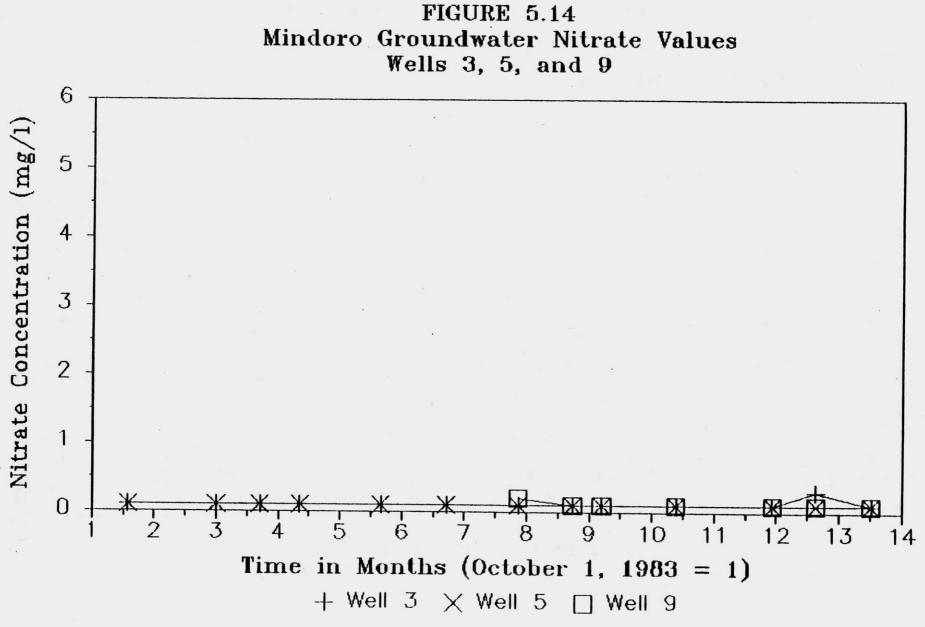



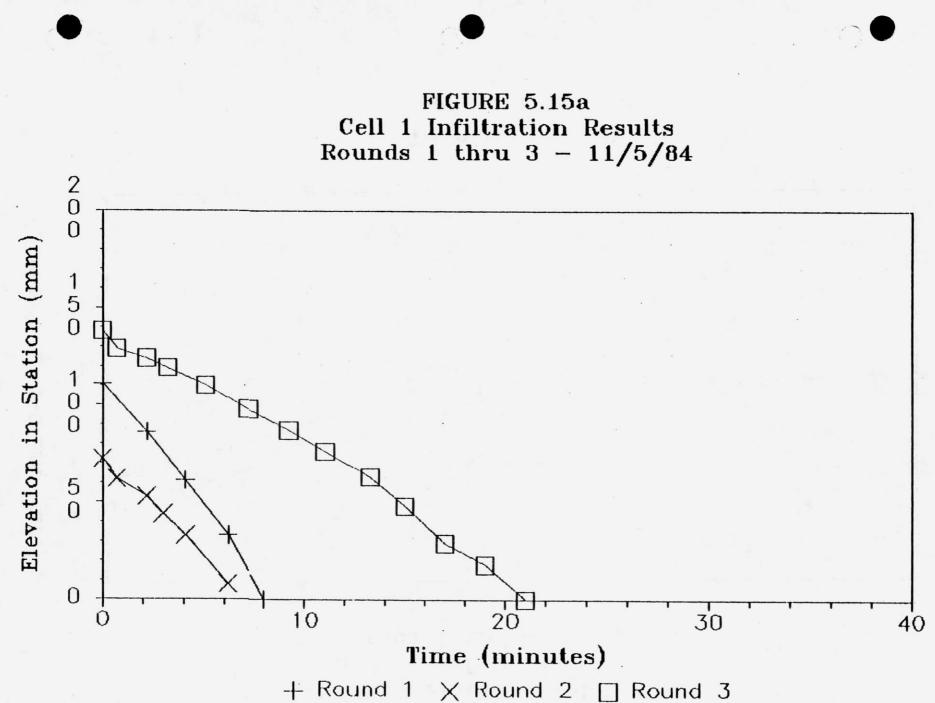

FIGURE 5.12b

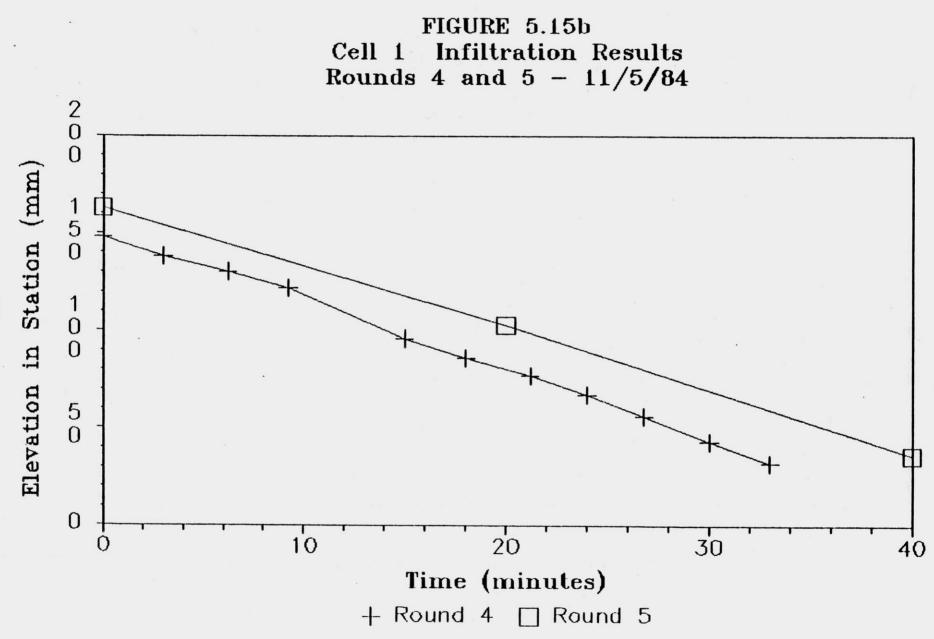


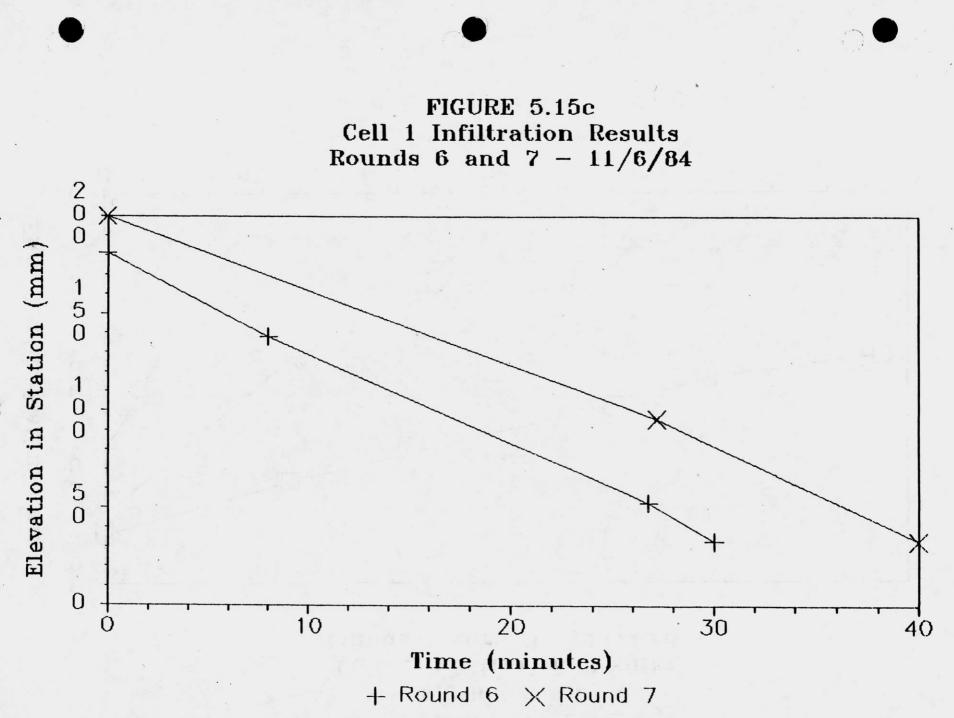
Finally, nitrogen concentrations were more variable than chlorides values. This can be seen in Figure 5.13 where total nitrogen data are plotted versus time for wells 3, 5, and 9. This plot also shows that nitrogen values increased downstream. Nitrate time plots shown for these three wells in Figure 5.14 indicated that little  $NO_3$ -N was present in the groundwater and no changes in time were apparent.

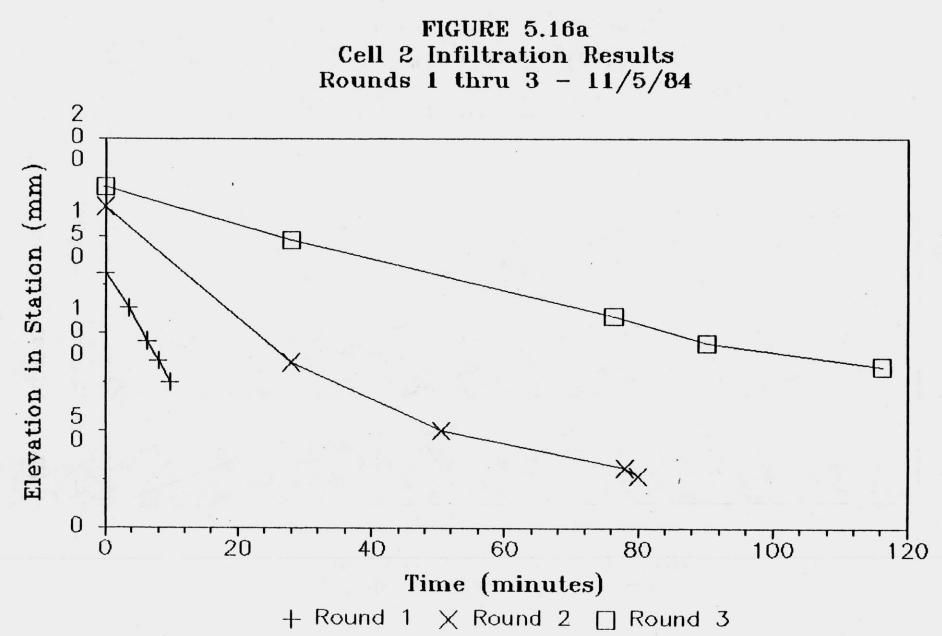

One final comment on the groundwater chemistry at Mindoro is in order. To completely define the chemistry at this site, the installation of a well nest is recommended downstream of the ridge and furrow. This would indicate whether there was nitrification occurring or if a sinking plume existed.

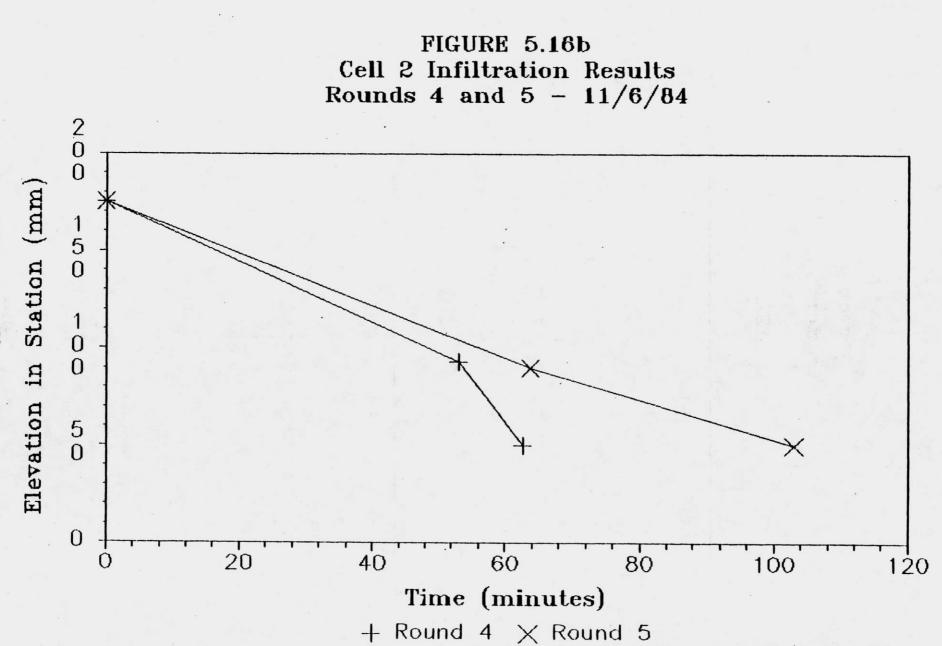

#### Unsaturated Zone Flow Rates


Since furrows at the Mindoro ridge and furrow did not contain a solids barrier, one vertical unsaturated flow rate range was estimated. Two methods were used for this calculation; infiltration station results and the methods of Bouma (1975).


Infiltration stations, installed in November (1984), were used as one method of determining unsaturated zone flow-through times. Results of this work for cells 1 and 2 are presented in Figures 5.15 and 5.16 and summarized in Table 5.7. Cell 3 was loaded in November and water head in this infiltration station did not decline. Cell 1 and cell 2 stations were located in areas that were not loaded during the project. The cell 3 station was representative of unsaturated hydraulic conductivities in a heavily loaded area.


-161-














# TABLE 5.7

# MINDORO

# INFILTRATION RATES

# CELL 1

| Round | H (cm) | t (min) | cm/d |         |
|-------|--------|---------|------|---------|
| . 1   | 11.1   | 8       | 1998 |         |
| 2     | 6.4    | 6       | 1536 |         |
| 3     | 13.8   | 21      | 946  | 11/5/84 |
| 4     | 11.6   | 33      | 506  |         |
| 5     | 12.7   | 40      | 457  |         |
| 6     | 14.8   | 30      | 710  | 11/6/84 |
| . 7   | 16.7   | 30      | 802  | •       |

# CELL 2

| Round | H (cm) | t (min) | cm/d |         |
|-------|--------|---------|------|---------|
| 1     | 8.4    | 10      | 1210 |         |
| 2     | 20.6   | 80      | 371  | 11/5/84 |
| 3     | 13.9   | 116     | 173  |         |
| 4     | 18.8   | 62.5    | 433  |         |
| 5     | 18.8   | 103.5   | 262  |         |

Results plotted in Figures 5.15 and 5.16 show that head decline with time was linear and that infiltration rates decreased with each new test (round). Rates were faster in cell 1. These rates would have continued to decrease with time (to a rate similar to cell 3) had time allowed for more tests. Since a lower steady-state infiltration rate was not found, the lowest rate for each cell was used to calculate flow through times. It should be realized, however, that these times were on the high side.

For cell 1, with an unsaturated flow rate of 457 cm/d, the following travel times were determined:

- Between the furrow and lysimeter 325 (at 2.5 feet depth)
   4 hours,
- 2) between the furrow and a water table at 5 feet depth- 8 hours,
- 3) between the furrow and a water table at 12 feet depth- 19 hours.

For cell 2, with an unsaturated flow rate of 173 cm/d (Table 5.7), the following travel times were determined:

- between the furrow and lysimeter 415 (1.5 feet depth)
   6 hours,
- 2) between the furrow and a water table at 5 feet depth- 21 hours,
- 3) between the furrow and a water table at 12 feet depth51 hours

A technique based on work by Bouma (1975) was the second method used to determine unsaturated zone flow rates. Assuming a constant soil tension of 20 cm  $H_2O$  and using Figure 1 (Appendix G) of Bouma (1975), a flow rate of 1.5 cm/day was found. This value was considerably lower than

rates determined in the field, but it was representative of a heavily loaded area such as the ponded regions of this system. Use of this infiltration rate, therefore, provided low travel time estimates.

Using a 1.5 cm/d flow rate, the following travel times were determined:

- between the furrow and lysimeter 415 (1.5 feet depth)
   30 days
- 2) between the furrow and lysimeter 325 (2.5 feet depth) - 51 days,
- 3) between the furrow and a water table at 5 feet depth - 102 days, and
- 4) between the furrow and a water table at 12 feet depth
   244 days.

Based on these calculations, a realistic infiltration rate would have occurred between 1.5 and 457 cm/d and a realistic travel time to a 12 foot deep water table would have been between 2 and 244 days. Loaded areas at this site, however, most likely had unsaturated zone travel times (for 12 feet) on the order of hundreds of days. Installation of tensiometers and further infiltration station work would have better defined unsaturated flow rates at Mindoro.

#### Furrow and Lysimeter Chemistry

Mean and standard deviations of chemical parameters for each Mindoro furrow wastewater sampling point and lysimeter are listed in Table 5.8. Complete data listings are given in Appendix HH. When comparing chloride averages, one can see that all sampling points in Table 5.8 were contaminated by the ridge and furrow wastewater. Lysimeters 325 and 415 were the only lysimeters providing samples. The reasons for the

-171-

### TABLE 5.8

### MINDORO MEAN AND STANDARD DEVIATION OF FURROW WASTEWATER AND LYSIMETER CHEMICAL PARAMETERS (unit mg/l except pH)

| LOCATION                      | DISS<br>BOD <sub>5</sub>       | TOTAL<br>BOD5            | DISS<br>COD              | DISS<br>TKN               | TOTAL<br>TKN           | DISS<br>NH <sub>3</sub> -N | DISS<br>NO <sub>2</sub> +NO <sub>3</sub> | C1-                     | TDS                       | Total<br>pH               |
|-------------------------------|--------------------------------|--------------------------|--------------------------|---------------------------|------------------------|----------------------------|------------------------------------------|-------------------------|---------------------------|---------------------------|
| Lysimeter 415<br>(1.5' depth) | 4 <u>+</u> 0.6*<br>(3)         |                          | 10 <u>+</u> 1.3<br>(4)   | 1.6 <u>+</u> 0.66<br>(5)  |                        | 0.1 <u>+</u> 0.0#<br>(5)   | 8.0 <u>+</u> 8.0<br>(5)                  | 53 <u>+</u> 21<br>(8)   | 491 <u>+</u> 43.8<br>(2)  | 6.2 <u>+</u> 0.1(<br>(4)  |
| Well 8 <b>0</b>               | 3.2 <u>+</u> 0.42<br>(7)       |                          | 25 <u>+</u> 4.3<br>(7)   | 2.5 <u>+</u> 1.1<br>(7)   |                        | 0.3 <u>+</u> 0.16<br>(8)   | 0.2 <u>+</u> 0.1 <b>*</b><br>(8)         | 84 <u>+</u> 8.2<br>(7)  | 744 <u>+</u> 201<br>(7)   | 6.8 <u>+</u> 0.2<br>(3)   |
| Header-Cell 2                 |                                | 1400 <u>+</u> 0.0<br>(1) | 3600 <u>+</u> 0.0<br>(1) | 30 <u>+</u> 12<br>(2)     | 86 <u>+</u> 32<br>(2)  | 11 <u>+</u> 0.0<br>(1)     | 0.1 <u>+</u> 0.0<br>(2)                  | 100 <u>+</u> 27<br>(2)  |                           | 6.1 <u>+</u> 0.1#<br>(2)  |
| Furrow-Cell 2                 | 220 <u>+</u> 0.0<br>(1)        |                          | 320 <u>+</u> 0.0<br>(1)  | 16 <u>+</u> 0.0<br>(1)    |                        | 16 <u>+</u> 0.0<br>(1)     | 1.0 <u>+</u> 0.0 <b>*</b><br>(1)         | 99 <u>+</u> 0.0<br>(1)  | 796 <u>+</u> 0.0<br>(1)   | 6.6 <u>+</u> 0.0<br>(1)   |
| Lysimeter 325<br>(2.5' depth) | 4 <u>+</u> 0.7*<br>(2)         |                          | 35 <u>+</u> 33<br>(5)    | 2.0 <u>+</u> 1.3<br>(5)   |                        | 0.4 <u>+</u> 0.6<br>(5)    | 3•9 <u>+</u> 3•3<br>(5)                  | 92 <u>+</u> 16<br>(4)   | 588 <u>+</u> 33.9<br>(2)  | 6.6 <u>+</u> 0.1'/<br>(4) |
| Well 50                       | 11 <u>+</u> 7.71<br>(13)       |                          | 31 <u>+</u> 9.5<br>(12)  | 4.0 <u>+</u> 0.74<br>(13) |                        | 3.0+1.0<br>(13)            | 0.1 <u>+</u> 0.0 <b>*</b><br>(13)        | 91 <u>+</u> 2.3<br>(13) | 715 <u>+</u> 42.4<br>(13) | 6.7 <u>+</u> 0.1#<br>(8)  |
| Header-Cell 3                 |                                | 250 <u>+</u> 0.0<br>(1)  | 1200 <u>+</u> 0.0<br>(1) | 15 <u>+</u> 2.8<br>(2)    | 42 <u>+</u> 25<br>(2)  | 12 <u>+</u> 2.8<br>(2)     | 0.7 <u>+</u> 0.4"<br>(2)                 | 82 <u>+</u> 0.71<br>(2) |                           | 6.4 <u>+</u> 0.0<br>(1)   |
| Furrow-Cell 3                 |                                | 94 <u>+</u> 0.0<br>(1)   | 160 <u>+</u> 0.0<br>(1)  | 15 <u>+</u> 1.4<br>(2)    | 20 <u>+</u> 3.5<br>(2) | 14 <u>+</u> 2.1<br>(2)     | 0.6 <u>+</u> 0.6 <b>*</b><br>(2)         | 77 <u>+</u> 1.4<br>(2)  |                           | 6.6 <u>+</u> 0.0<br>(1)   |
| Well 90                       | 16 <u>+</u> 12 <b>*</b><br>(7) |                          | 47 <u>+</u> 28<br>(7)    | 2.8 <u>+</u> 0.73<br>(7)  |                        | 1.5 <u>+</u> 0,34<br>(7)   | 0.1 <u>+</u> 0.04<br>(7)                 | 92 <u>+</u> 12<br>(7)   | 607 <u>+</u> 89.9<br>(7)  | 6.7 <u>+</u> 0.14<br>(7)  |

( ) indicates # of observations

-172-

April 1

they

@ Well values added for comparison of furrow & lysimeter concentrations to downstream well concentrations

\* Mean contains values above or below a detection limit; limit used in average

inability of the other lysimeters to provide samples will be discussed later in this chapter. Large data variations existed in the furrow wastewater and lysimeters affected by cell loading, resulting in large standard deviations. Therefore, it was realized that these numbers do not fully describe the contamination and the averages were only used for relative comparisons.

To determie unsaturated zone COD and total nitrogen losses in comparison to chloride dilution, the flow at the Mindoro ridge and furrow system was broken into three paths. They were:

- 1) from the inlet, to lysimeter 415, to well 8;
- 2) from the inlet, to the cell 2 header ditch, to the cell 2 furrows, to lysimeter 325, to well 5; and
- 3) from the inlet, to the cell 2 header ditch, to the cell 3 header ditch, to the cell 3 furrows, to well 9.

Along the first flow path, chloride concentrations were diluted 16% from the wastewater (100 mg/l) to well 8. COD and total nitrogen averages declined 98 and 92 percent, respectively, along the same path. This implied that actual average COD and total nitrogen reductions were 82 and 76 percent, respectively. Reduction along this flow path are completely listed in Table 5.9.

From Table 5.8, one notices that the lysimeter 415 chloride average was relatively lower than other furrow and lysimeter averages and its stan-

-173-

furrows adjacent to lysimeter 415 did not receive fresh wastewater during the study. Chloride concentrations decreased in lysimeter 415 from 82 mg/l on 5/23/84 to 35 mg/l on 9/19/84.

Along the second flow path at Mindoro, chloride concentrations were diluted 9% from the wastewater to well 5. COD and total nitrogen averages declined 97 and 87 percent, respectively, along the same path. This meant that actual average COD and total nitrogen reductions were 88 and 78 percent, respectively. Reduction along this flow path are completely listed in Table 5.10.

Along the third flow path at Mindoro, chloride averages were diluted 8% from the wastewater to well 9. COD and total nitrogen averages decreased 96 and 91 percent, respectively, along the same path. This implied that actual average COD and total nitrogen reductions were 88 and 83 percent, respectively. Reductions along this flow path are completely listed in Table 5.11.

Nitrogen transformations observed in the applied wastewater at Mindoro were similar to trends observed at Brodhead. As at Brodhead, Mindoro's wastewater nitrogen was principally in organic form. While this waste traveled in the header ditch, the organic-N mineralized to  $NH_4^+$ -N. In the cell 2 header ditch, the average TKN concentration contained approximately 40%  $NH_4^+$ -N and in the cell 3 header ditch, the average TKN value contained 80%  $NH_4^+$ -N. As mentioned in the previous discussion, N losses occurred alorg the header ditch. These were attributed to plant uptake of  $NH_4^+$  since pH values were not conducive to  $NH_3$  volatilization and little  $NO_3$ -N was produced in the header ditch to promote denitrification.

-174-

| TABLE 5.9 |  |
|-----------|--|
|-----------|--|

| LOCATION      | C1- | COD  | TOTAL N | % C1 REDUCTION<br>FROM WASTE | <pre>\$ COD REDUCTION FROM WASTE</pre> | RELATIVE COD<br>LOSS | <b>%</b> TOTAL REDUCTION<br>FROM WASTE | RELATIVE N<br>Loss |
|---------------|-----|------|---------|------------------------------|----------------------------------------|----------------------|----------------------------------------|--------------------|
| Wastewater    | 100 | 1200 | 32.4    | 0                            | 0                                      | 0                    | 0                                      | 0                  |
| Lysimeter 415 | 53  | 10   | 9.6     | 47                           | 99                                     | 52                   | 70                                     | 23                 |
| Well 8        | 84  | 25   | 2.7     | 16                           | 98                                     | 82                   | 92                                     | 76                 |
|               |     |      |         |                              |                                        |                      |                                        |                    |

### REDUCTIONS ALONG FIRST MINDORO FLOW PATH

## TABLE 5.10

### REDUCTIONS ALONG SECOND MINDORO FLOW PATH

| C1- | COD                    | TOTAL N                                                          | % C1 REDUCTION<br>FROM WASTE         | <pre>\$ COD REDUCTION     FROM WASTE</pre>                                                                                                                                                                                                         | RELATIVE COD<br>LOSS                                                                                                                                                                                                                                                                                   | <b>\$</b> TOTAL REDUCTION<br>FROM WASTE                                                                                                                                                                                                                                                                                                              | RELATIVE N<br>Loss                                                                                                                                                                                                                                                                                                                                                                                               |
|-----|------------------------|------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 100 | 1200                   | 32.4                                                             | 0                                    | 0                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100 | 3600                   | 30.1                                                             | 0                                    |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                        | 7                                                                                                                                                                                                                                                                                                                                                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                |
| 99  | 320                    | 17                                                               | 1                                    | 73                                                                                                                                                                                                                                                 | 72                                                                                                                                                                                                                                                                                                     | 47                                                                                                                                                                                                                                                                                                                                                   | 46                                                                                                                                                                                                                                                                                                                                                                                                               |
| 92  | 35                     | 5.9                                                              | 8                                    | 97                                                                                                                                                                                                                                                 | 89                                                                                                                                                                                                                                                                                                     | 82                                                                                                                                                                                                                                                                                                                                                   | ,<br>74                                                                                                                                                                                                                                                                                                                                                                                                          |
| 91  | 31                     | 4.1                                                              | 9                                    | 97                                                                                                                                                                                                                                                 | 88                                                                                                                                                                                                                                                                                                     | 87                                                                                                                                                                                                                                                                                                                                                   | 78                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | 100<br>100<br>99<br>92 | 100     1200       100     3600       99     320       92     35 | 100120032.4100360030.1993201792355.9 | C1-         COD         TOTAL N         FROM WASTE           100         1200         32.4         0           100         3600         30.1         0           99         320         17         1           92         35         5.9         8 | C1-         COD         TOTAL N         FROM WASTE         FROM WASTE           100         1200         32.4         0         0           100         3600         30.1         0            99         320         17         1         73           92         35         5.9         8         97 | C1-         COD         TOTAL N         FROM WASTE         FROM WASTE         LOSS           100         1200         32.4         0         0         0           100         3600         30.1         0             99         320         17         1         73         72           92         35         5.9         8         97         89 | C1-         COD         TOTAL N         FROM WASTE         FROM WASTE         LOSS         FROM WASTE           100         1200         32.4         0         0         0         0           100         3600         30.1         0          7           99         320         17         1         73         72         47           92         35         5.9         8         97         89         82 |

- average concentrations used

-175-

- % Relative loss = % total reduction - % chloride dilution

### TABLE 5.11

### REDUCTIONS ALONG THIRD MINDORO FLOW PATH

|               | 01-        | 000  | momar N | S C1 REDUCTION | S COD REDUCTION | RELATIVE COD | <b>\$ TOTAL REDUCTION</b> | RELATIVE I |
|---------------|------------|------|---------|----------------|-----------------|--------------|---------------------------|------------|
| LOCATION      | <u>C1-</u> | COD  | TOTAL N | FROM WASTE     | FROM WASTE      | LOSS         | FROM WASTE                | LOSS       |
| Wastewater    | 100        | 1200 | 32.4    | 0              | 0               | 0            | 0                         | 0          |
| Cell 2-Header | 100        | 3600 | 30.1    | 0              |                 |              | 7                         | 7          |
| Cell 3-Header | 82         | 1200 | 15.7    | 18             | 0               |              | 52                        | 34         |
| Cell 3-Furrow | 77         | 160  | 15.6    | 23             | 87              | 64           | 52                        | 29         |
| Well 9        | 92         | 47   | 2.9     | 8              | 96              | 88           | 91                        | 83         |

- average concentrations used

-176-

- % Relative loss = % total reduction - % chloride dilution

.

Once wastewater entered the furrows from the header ditch at Mindoro, this ammonification to  $NH_4^+-N$  was completed. Furrow sample TKN's collected contained 85 to 100% ammonium. Nitrogen losses, as previously discussed, were also observed in furrow samples as compared to the applied wastewater. Since furrow pH values were low and no nitrate was produced, these N losses were most likely the result of plant uptake of  $NH_4^+-N$ . Nitrogen losses were higher in cell 2 furrows than in cell 3 furrows on average.

As the wastewater percolated from the furrows, through the unsaturated zone, to the groundwater, simultaneous nitrification and denitrification were found to occur at Mindoro. Both lysimeter 325 and 415 samples contained nitrate (see Table 5.8) and total N values were lower in these lysimeters than the overlying furrow samples. Samples from wells 5, 8, and 9 indicated a further decrease in total nitrogen averages, as well as nitrate losses, in the unsaturated zone. Nitrification occurred in the upper aerated section of the unsaturated zone. This section also contained anaerobic microenvironments which facilitated denitrification losses. Plant uptake of nitrate and ammonium could also have accounted for N losses in this upper layer. As flow continued to the water table, denitrification losses continued. Ammonium adsorption was neglected assuming that all exchange sites were saturated.

By comparing total and dissolved TKN results for wastewater, header, and furrow samples, the same nitrogen solids dissolution pattern that was observed at Brodhead was established at Mindoro. These data are presented in Table 5.12. As mentioned earlier, the Mindoro wastewater con-

-177-

tained nitrogen primarily in organic-N form. Twenty to 45% of this organic-N was tied up in wastewater solids. Total TKN concentrations in the header ditch were quite variable and were usually higher than wastewater values. In the cell 2 header, 40-80 percent of the TKN was tied up in solids. In the cell 3 header, 45-70 percent of the TKN was tied up in solids.

### TABLE 5.12

MINDORO WASTEWATER, HEADER, AND FURROW WASTEWATER NITROGEN RESULTS

| DATE     | TOTAL TKN | DISS TKN | DISS NH3-N | DISS NO3-N+NO2-N |
|----------|-----------|----------|------------|------------------|
|          |           | WASTE    | EWATER     |                  |
| 10/16/84 | 40        | 31       | 0.9        | 0.8              |
| 11/6/84  | 29        | 16       | 1.4        | 0.6              |
|          |           | HEADER - | - CELL 2   |                  |
| 10/16/84 | 108       | 21       | 11         | 0.1              |
| 11/6/84  | 63        | 38       |            | 0.1              |
|          |           | HEADER - | - CELL 3   |                  |
| 10/16/84 | 59        | 17       | 14         | 0.4              |
| 11/6/84  | 24        | 13       | 10         | <1.0             |
|          |           | FURROW - | - CELL 3   |                  |
| 10/16/84 | 17        | 14       | 12         | 0.1              |
| 11/6/84  | 22        | 16       | 15         |                  |

-178-

Due to the poor distribution of wastewater at Mindoro, suspended solids settled in the header ditch. Ammonium concentration in the header ditch were the result of ammonification of these settled solids and diffusion of  $NH_4^+$ -N into the overlying water column. This was the same event that was observed at Brodhead. Due to plugging of furrow inlets, flow entering the furrows was analogous to the overflow of wastewater over the weir of a clarifier. Furrow samples were low in solids and only 20-30 percent of the total TKN was tied up in solids. Also, about 70% of the TKN was in ammonium form.

A final comment on furrow and lysimeter chemistry at Mindoro concerned pH. Even though the mean wastewater pH was 7.5, header, furrow, and lysimeter pH values were consistently between 6.1 and 6.6. Since negligible nitrite was found in header and furrow samples, this pH lowering was not the result of nitrification. Tusneem and Patrick (1971) attributed a similar pH reduction to volatile acid production. In aerobic and anaerobic degradation of organic matter, organic acids are the final product of glycolysis. In anaerobic environments (eg. header and furrow water), terminal oxidation is suppressed and organic acids accumulate. This process was most likely the reason for lower pH in downstream wells at Mindoro and Brodhead as well.

#### Grass Uptake of Nitrogen

Six grass samples were cut at the Mindoro ridge and furrow system during the 1984 growing season. Two samples were collected in April before growth began, two were taken in July at peak growth, and two were taken

-179-

in November during declining growth. Average results of these analyses are shown in Table 5.13. Calculations are presented in Appendix II. These results were used for the following purposes: 1) to determine the plant nitrogen uptake during the growing season; 2) to calculate the effect of grass burning on nitrogen losses, and 3) to estimate a plant nitrogen uptake value for a nitrogen budget.

#### TABLE 5.13

#### MINDORO GRASS NITROGEN RESULTS

| Date    | lb of<br>Dry<br>Grass<br>on Site<br>(1b) | % N Dry<br>Wt Basis | % Ash<br>After<br>Burning | % N<br>of Ash | lb N<br>On Site<br>Before<br>Burning | lb N<br>On Site<br>After<br>Burning | % N<br>Lost<br>Due to<br>Burning |
|---------|------------------------------------------|---------------------|---------------------------|---------------|--------------------------------------|-------------------------------------|----------------------------------|
| 4/26/84 | 22,255                                   | 1.56                | 17.1                      | 2.49          | 347                                  | 95                                  | 72.6                             |
| 7/12/84 | 29,962                                   | 2.15                | 8.5                       | 0.64          | 644                                  | 16.3                                | 97.5                             |
| 11/6/84 | 44,439                                   | 1.0                 | 8.9                       | 0.31          | 444                                  | 12.2                                | 97.2                             |

- weights are for total site area (3 acre) extropolated from sample area results

The mass of nitrogen on site calculations indicate that plant uptake of nitrogen was high in late spring and early summer. Plant nitrogen content decreased in the fall as plants died and nitrogen moved to the root zone. At the end of the growing season, 444 lb nitrogen was contained on site in the standing cover crop.

The operator of the Mindoro ridge and furrow system burns site grasses in the spring to eliminate dead grass accumulation and to stimulate new growth. Collected grass samples were burned and analyzed for percent ash and percent N in ash to determine the effect of grass burning.

-180-

Total pounds of ash-nitrogen on site were highest in April at 95 lbs as shown in Table 5.13. The July ash sample indicated 16.3 lbs of nitrogen on site after burning and the November sample indicated 12.2 lbs. A range of 72-98% nitrogen loss by burning was observed when comparing total nitrogen in the site grasses before and after burning. The lowest loss occurred in April.

Since site grasses were burned in early spring, the 95 lbs of nitrogen on site after burning was immobilized into the soil. Since this mass did not leave the material balance, it was not a loss or an addition to the budget. Grass nitrogen losses during the growing season studied (4/26/84-11/6/84) were those lost from burning in April or 252 lb. This mass was used in the nitrogen budget estimate.

#### TABLE 5.14

| Location   | Total<br>BOD <sub>5</sub> | Total<br>COD   | C1-               | TKN               | NH3-N            | NO3-N             | Field<br>pH      |
|------------|---------------------------|----------------|-------------------|-------------------|------------------|-------------------|------------------|
| Upstream   | 3 <u>+</u> 0.0*           | 6 <u>+</u> 0   | 7.4 <u>+</u> 0.71 | 0.2 <u>+</u> 0.0  | 0.1 <u>+</u> 0.0 | 0.8 <u>+</u> 0.07 | 8.0 <u>+</u> 0.0 |
|            | (2)                       | (2)            | (2)               | (2)               | (2)              | (2)               | (1)              |
| Midstream  | 3 <u>+</u> 0.0*           | 5 <u>+</u> 0*  | 7.8 <u>+</u> 1.2  | 0.2 <u>+</u> 0.0  | 0.1 <u>+</u> 0.0 | 0.8 <u>+</u> 0.0  | 8.0 <u>+</u> 0.0 |
|            | (2)                       | (2)            | (2)               | (2)               | (2)              | (2)               | (1)              |
| Downstream | 3 <u>+</u> 0.0*           | 7 <u>+</u> 0.0 | 7.6 <u>+</u> 0.56 | 0.4 <u>+</u> 0.07 | 0.1 <u>+</u> 0.0 | 0.8 <u>+</u> 0.0  | 8.0 <u>+</u> 0.0 |
|            | (2)                       | (2)            | (2)               | (2)               | (2)              | (2)               | (1)              |

#### MINDORO: SEVERSON COULEE CREEK QUALITY

- all values mg/l except pH

- ( ) is # of observations

mean includes data below detection limit; limit used in average

#### Severson Coulee Creek Chemistry

Mean and standard deviations of upstream, midstream, and downstream Severson Creek samples are tabulated in Table 5.14. Complete data are located in Appendix JJ. All values were low and were uniform upstream to downstream. The Mindoro ridge and furrow system did not adversely affect this creek.

#### Site Observations

During the course of this study, the following site observations were made at the Mindoro ridge and furrow: 1) wastewater distribution and solids build-up in furrows, 2) cover crop, 3) winter operation, 4) monitoring equipment performance, and 5) slope stability.

At Mindoro, only 40% of the furrows received wastewater and only 30% of the total area was loaded during the project. Dead grass accumulation has plugged furrows in the northern half of cell 1, the southern 75% of cell 2, and the southern half of cell 3. The header ditch design was not efficient as well. Since the inlet was located in cell 1, the southern half of this cell continually received wastewater. The stop gates between cells were in need of attention. Wastewater flow either went through or underneath them, causing cells 2 and 3 to also receive *z*. continuous load. An improvement of wastewater distribution at this site could considerably improve treatment by spreading the load over more area and providing more soil aeration. Since many of the furrow openings were plugged, most of the wastewater suspended solids settled in the header ditch. There was no noticeable solids accumulation in the furrows. The cover crop of canary grass at Mindoro flourished with the additional water and nutrients provided by the wastewater. During early spring, before site burning, grasses were brown and knocked down to about knee high. Thick grasses grew head high during spring and early summer in used portions of the system. In August and September, grasses were browning and knocked down by wind. Grass was completely brown and knocked down to about hip high in November. Grasses in unused portions of the system were not as thick and only knee high. Since furrows were only two feet wide, these tall grasses provided furrow protection during the winter months.

Winter operation at the Mindoro ridge and furrow was not a major problem since wastewater effluent temperatures were warm. The southern quarter of cell 1 and northern quarter of cell 3 received wastewater during subzero weather. During above-zero whether, however, most of the area normally treating wastewater was operable. Once system loading began, the ice would melt and infiltration would continue. Header ice conditions ranged from no ice near the inlet to six inches at the far north end. Furrow ice conditions ranged from no ice near the header, to one inch thick ice with wastewater or air underneath, to completely (two inches thick) frozen.

The monitoring equipment used at this site was quite adequate. The only problems which occurred concerned the Teflon lysimeters. To obtain a sample of sufficient volume (greater than 50 ml) for chemical analysis, a 20-inch (mercury) vacuum was applied to a lysimeter and a two to 24 hour vacuum period was used. This technique was successful for lysime-

-183-

ters 325 and 415 only. The background lysimeters (21, 25, 211) lost a vacuum within 15 minutes. This was most likely the result of easy air entry from the surface or low soil moisture. A high, continuous vacuum or a bentonite seal may have been necessary to obtain a sample. Lysimeters 36 and 310, located in cell 2, did not provide samples but did maintain a 20 inch (mercury) vacuum for more than a month. These units were installed in soils with a higher clay content. A high soil moisture tension, caused by low moisture content, was most likely the reason for the failure of these lysimeters to obtain samples.

Winter conditions also caused trouble with lysimeter operation. During sub-freezing weather, ice droplets would form in the Tygon tubing and the tubing itself would contract. The pressure provided by the hand pump could not overcome these blockages. Lysimeters were not used from December (1983) to March (1984) at this site.

A final site observation concerned slope stability along the southern half of the west system boundary. Site topography from well 6 to the creek drops at least 20 feet. Obvious soil creep was noticed near well 6. This slope movement should be monitored in the future so the integrity of the cell 1 berm can be maintained.

#### Mindoro Nitrogen Budget

A nitrogen balance was estimated for the unsaturated zone at the Mindoro ridge and furrow system. Wastewater flow readings, wastewater nitrogen data, plant uptake results, and well 5 nitrogen data-were used in this estimate. The balance was on an annual total pounds basis.

-184-

Additions to the budget came from applied wastewater nitrogen. Total TKN plus  $NO_3$ -N averages were used assuming all N eventually entered the soil. As with the Brodhead budget, additions to the system by nitrogen fixation, rainfall, and organic soil debris mineralization were assumed negligible. Nitrogen losses in the balance were be plant burning and leaching. The difference between these additions and losses was accounted for by denitrification. It was further assumed that precipitation and evapotranspiration were approximately equal (ie. all vertical flow was from wastewater), no volatilization occurred (pH less than 9), and all soil NH<sub>4</sub>+-N adsorption sites were saturated (ie. no soil storage). Table 5.15 tabulates the results of this budget; calculations are presented in Appendix KK.

#### TABLE 5.15

### NITROGEN BUDGET ESTIMATE - MINDORO SITE

| Addition/Loss        | lb/yr | % of Applied N |
|----------------------|-------|----------------|
| Wastewater Applied N | 1381  | 100            |
| Plant Uptake Loss    | 252   | 18             |
| Leaching             | 175   | 13             |
| Denitrification      | 954   | 69             |

With this procedure, a denitrification loss of 69% of applied nitrogen was calculated for the Mindoro site. This figure was similar to flow path losses discussed previously in this chapter. Leaching accounted for 13% of applied N loss and plant uptake accounted for 18%.

# CHAPTER 6: COMPARATIVE DISCUSSION OF THE BRODHEAD AND MINDORO RIDGE AND FURROW SITES

Brodhead and Mindoro ridge and furrow system nitrogen budgets, wastewater organic loadings, nitrogen transformations, and operation and maintenance were compared in order to discuss the treatment and performance of ridge and furrow systems.

#### Nitrogen Budget

On a total pounds/year basis, the Brodhead ridge and furrow received 5375 lb N/yr while Mindoro treated 1381 lb N/yr, almost four times less. If actual area loading rates are used, however, the nitrogen applied at Brodhead and Mindoro was 1144 lb N/acre/year (3.1 lb N/acre/day) and 1534 lb N/acre/year (4.2 lb N/acre/day), respectively. With improved distribution at Mindoro, the nitrogen loading rate could have been 460 lb N/acre/year (1.3 lb N/acre/day).

The nitrogen budget estimates for the Brodhead ridge and furrow sites showed that denitrification was the major sink for applied wastewater nitrogen. Denitrification accounted for 66% of wastewater-N loss at Brodhead and 69% of the applied-N loss at Mindoro. These percentages matched those cited earlier in the literature (Patrick and Goth, 1974; Tusneem and Patrick, 1971; Reddy and Graetz, 1981; Chen and Patrick, 1981; Olson et. al., 1980; and Leach and Enfield, 1983). Respective denitrification rates were 751 lb/acre/year at Brodhead and 1060 lb/acre/year at Mindoro using actual loaded areas. If the total Mindoro site area was used, a denitrification rate of 318 lb/acre/day resulted. As stated earlier, improved wastewater distribution may have increased

-186-

denitrification loss by providing soil aeration and lowering the groundwater mound. Lowering the mound would increase the unsaturated zone travel time.

Plant uptake losses accounted for 0% of applied wastewater nitrogen at Brodhead and 18% (or 280 lb N/acre/year) at Mindoro. Even though a crop nitrogen uptake of 74 lb N/acre/year was observed at Brodhead, grass nitrogen losses were zero since the crop was not burned in the spring. Whatever nitrogen that was taken up during the growing season was returned again by the dead plants resulting in a zero net loss. Spring burning of the dead grass at Mindoro removed 73% of the nitrogen contained in the crop. A nitrogen uptake of 493 lb N/acre/year, using the actual loaded area was found at Mindoro for the 1984 growing season. Uptake using the total site area was 148 lb N/acre/year. Higher crop uptakes at Mindoro were attributed to the silt loam soil. The soil's lower infiltrative capacity improved the availability of nutrients and water to the plants. Burning may also have enhanced nutrient uptake.

The remaining loss of applied wastewater nitrogen was through leaching from the unsaturated zone to the groundwater. Leaching losses accounted for 34% (392 lb N/acre/year) of applied nitrogen at Brodhead and 13% (193 lb N/acre/year) of added nitrogen at Mindoro. A rate of 58 lb N/acre/year was calculated if total site area was used for Mindoro. Higher leaching losses at Brodhead resulted from the higher travel times through the sandy soils. These faster travel times meant a shorter contact time between the percolating wastewater and the denitrifying soil bacteria.

-187-

Finally, it should be remembered that inputs of nitrogen by fixation and precipitation, losses by volatilization, and soil absorption were assumed negligible. These assumptions seemed practical and were discussed previously.

#### Wastewater Organic Loading Rates

As stated in the last section, Brodhead received 1144 lb N/acre/year (3.1 lb N/acre/day) while Mindoro treated 1534 lb N/acre/year (4.2 lb N/acre/day). Currently, the Wisconsin DNR does not have a nitrogen loading limit. Using the nitrogen budget results, a suggested total nitrogen loading rate was suggested for each site in order to meet a 5 mg/l total nitrogen increase above background quality in the groundwater beneath the site. The choice of 5 mg/l was arbitrary; the intent was to present two procedures in which to calculate a loading rate. Proposed loading rates were determined using both the percentage of denitrification loss and the rate of denitrification loss. It was assumed that denitrification and leaching rates would remain constant under changes in the nitrogen loading rate.

At Brodhead, 34% of the applied wastewater nitrogen leached to the groundwater and 66% of the added nitrogen was lost through denitrification. At the current loading rate, the concentrations in lysimeters 3 and 6 were 9.0 and 21.7 mg/l total nitrogen on average. These lysimeters were considered to represent unsaturated pore water upon entering the groundwater. In order to set a necessary wastewater concentration to meet a 5 mg/l increase, this value was divided by the leaching percentage, or 0.34. This was based on an earlier assumption that waste-

-188-

water flow volume and leaching flow volume were essentially equal. With this procedure, a wastewater concentration of 15 mg/l total nitrogen would be needed to meet a 5 mg/l groundwater concentration increase. Using the average wastewater flow of 39,500 gpd, this would result in a nitrogen loading rate of 384 lb N/acre/year (1.05 lb N/acre/day). This rate is about a third of the present rate. In order to meet this rate, the Brodhead ridge and furrow system would have to be expanded or wastewater pretreatment before application to the furrows would be needed.

The denitrification loss rate of 751 lb N/acre/year at Brodhead was also used to suggest a nitrogen loading rate at this site. Assuming that the average wastewater flow rate of 39,500 gpd equals the leaching flow rate, a mitrogen leaching rate of 128 lb N/acre/year would increase the lysimeter total nitrogen concentration 5 mg/l above background. The summation of these two rates (751 + 128) would account for a new suggested wastewater loading rate of 879 lb N/acre/year. This corresponds to an average wastewater total nitrogen concentration of 34 mg/l which is 75% of the current nitrogen concentration.

At Mindoro, 13% of the applied wastewater nitrogen leached to the groundwater and 69% of the added nitrogen was lost through denitrification. At the current loading rate, the highest average total nitrogen concentration in the groundwater beneath the system was 4.1 mg/l. The current rate of 1534 lb N/acre/year (or 4.2 lb N/acre/day) was adequate to meet a 5 mg/l total nitrogen groundwater concentration increase above

-189-

background. With improved wastewater distribution and proper load/rest cycling, the Mindoro site could most likely treat a higher nitrogen loading rate if necessary.

It should be remembered that these suggested rates do not apply to all ridge and furrow systems but only those with similar hydrogeological characteristics to Brodhead or Mindoro, respectively.

Using the actual site area loaded during the study, both Brodhead and Mindoro had average BOD<sub>5</sub> loading rates over the 100 lb/acre/day DNR limit. Brodhead's average rate was 125 lb/acre/day while Mindoro's rate was 108 lb/acre/day. Site expansion, pretreatment, and wastewater distribution improvement are all possible methods to meet this standard.

Based on project results, however, the COD concentrations (which follow BOD5 values) were greatly reduced as wastewater infiltrates from the furrows, through the unsaturated zone, and down gradient in the groundwater. Tables 6.1 and 6.2 summarize COD reductions at Brodhead and Mindoro, respectively. Both ridge and furrow systems had high COD reductions (96-99%) at the sampling locations indicated but these site decreases were achieved differently. Brodhead reductions were aided by dilution, as indicated by the chloride data (16-80% chloride dilution). Cell 1 unsaturated zone actual COD reductions, as indicated in lysimeters 2 and 3, were relatively high at 72-82%. With contined use of the 2 week/1 week load/rest cycle, the groundwater most likely will reflect these losses as well. Mindoro declines were mainly biological, with 52-89% actual COD losses. Since nitrification was observed at both

-190-

### TABLE 6.1

### SUMMARY OF RELATIVE COD

### REDUCTIONS AT BRODHEAD

| LOCATION    | AVE#<br>Cl- | AVE#<br>COD | % C1-<br>REDUCTION | % COD<br>REDUCTION | % ACTUAL COD<br>LOSS |
|-------------|-------------|-------------|--------------------|--------------------|----------------------|
| Wastewater  | 930         | 2390        | 0                  | 0                  | 0                    |
| Lysimeter 2 | 690         | 51          | 26                 | 98                 | 72                   |
| Lysimeter 3 | 780         | 56          | 16                 | 98                 | 82                   |
| Lysimeter 5 | 400         | 32          | 57                 | 99                 | 42                   |
| Lysimeter 6 | 390         | 20          | 58                 | 99                 | · 41                 |
| Well 15     | 570         | 57          | 39                 | 98                 | 59                   |
| Well 10A    | 380         | 17          | 59                 | 99                 | 40                   |
| Well 10B    | 630         | 24          | 32                 | 99                 | 67                   |
| Well 14     | 190         | 18          | 80                 | 99                 | 19                   |

# units: mg/l

### TABLE 6.2

SUMMARY OF RELATIVE COD

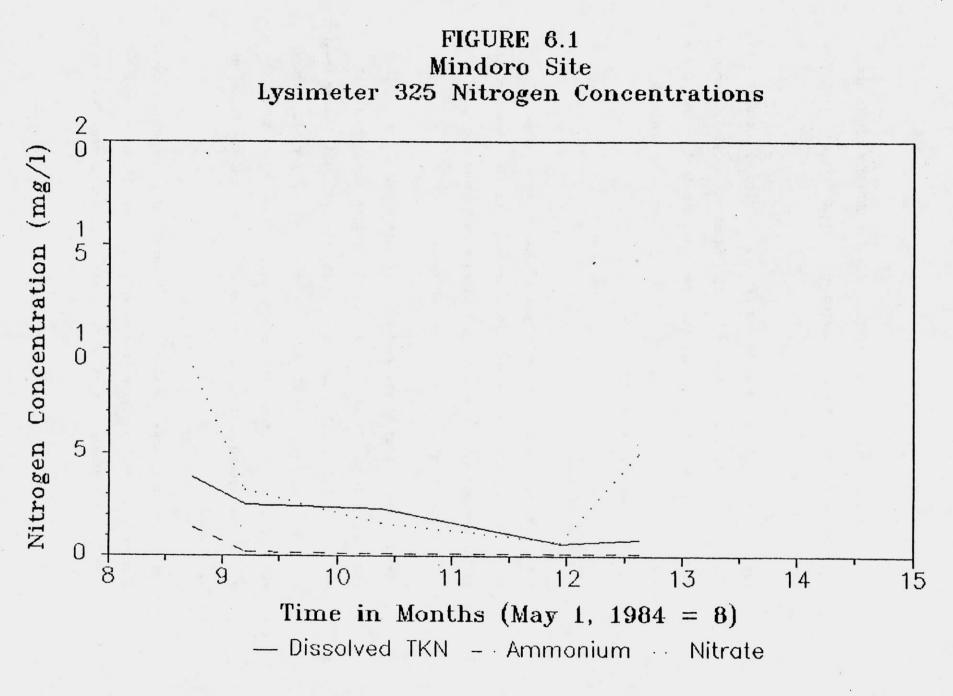
### REDUCTIONS AT MINDORO

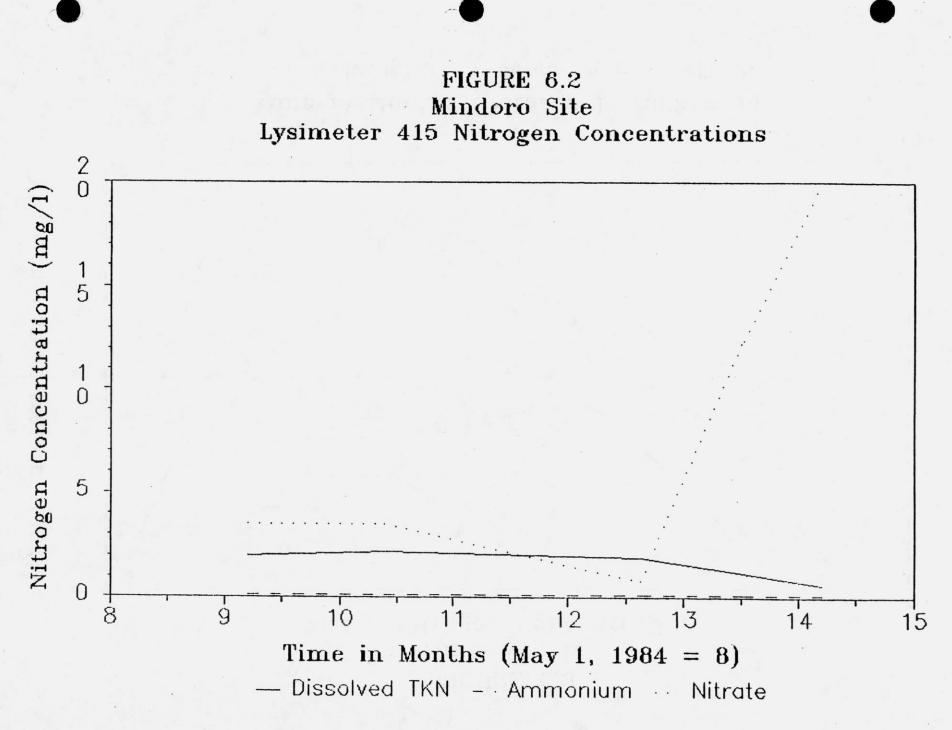
| LOCATION      | AVE# | AVE#<br>COD | % C1-<br>REDUCTION | % COD<br>REDUCTION | S ACTUAL COD<br>LOSS |
|---------------|------|-------------|--------------------|--------------------|----------------------|
| Wastewater    | 100  | 1200        | 0                  | 0                  | 0                    |
| Lysimeter 325 | 92   | 35          | 8                  | 97                 | 89                   |
| Lysimeter 415 | 53   | 10          | 47                 | 99                 | 52                   |
| Well 5        | 91   | 31          | 9                  | 97                 | 88                   |
| Well 9        | 92   | 47          | 8                  | 96                 | 88                   |

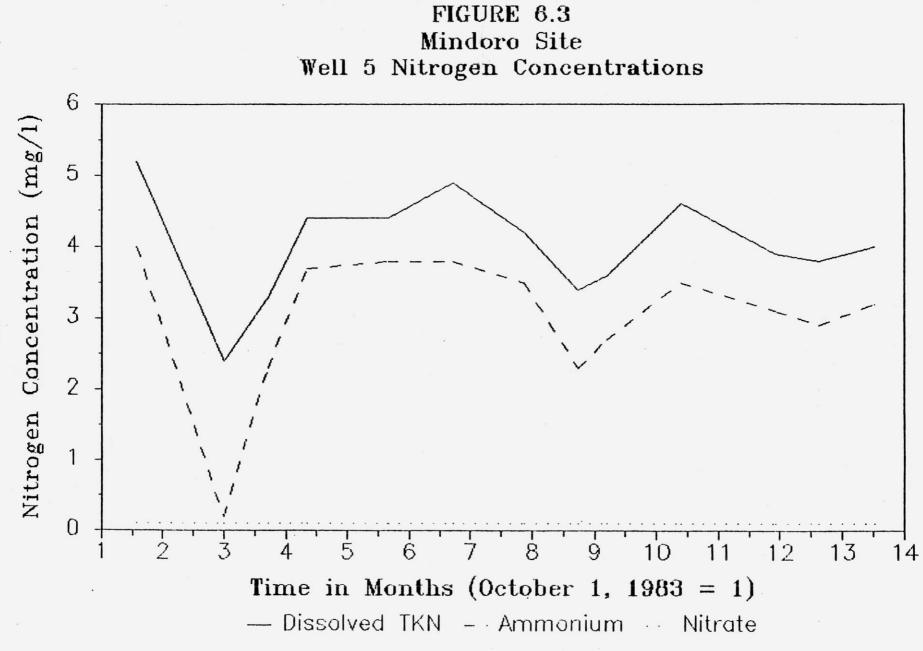
# units: mg/l

sites, it was determined that applied BOD5 (or COD) did not impart a high oxygen demand on the soil system which would have inhibited this transformation.

The present BOD<sub>5</sub> loadings at both sites are, therefore, not overtaxing the treatment capacity of the soil. COD reductions of 96-99% occurred at both sites and nitrogen reductions were not impaired by the applied oxygen demand. Load/rest cycle most likely aided in controlling  $O_2$ demand, especially at Brodhead.


#### NITROGEN TRANSFORMATIONS


A similar nitrogen transformation pattern was observed at both the Brodhead and Mindoro ridge and furrow systems. Little ammonia rolatilization occured since wastewater pH values were less than nine. Both site wastewater samples had average pH values of 7.5.


The nitrogen content of the wastewater at both sites was mainly in the organic form. On average, the total nitrogen concentration at Brodhead contained 88% organic-N while the Mindoro total N concentration contained 96% organic-N. Twenty-five to 40% of this organic nitrogen was associated with the solid form as well. These solids subsequently settled and accumulated in the furrows at Brodhead and the header ditch at Mindoro.

The organic-N in these settled solids mineralized to ammonium and this diffused into the overlying furrow water column. Dissolved organic nitrogen also mineralized to  $NH_4^+$ -N in the furrows. Furrow TKN samples

-192-







at both sites contained 54 to 100% ammonium. The literature in Chapter 2 stated that mineralization was favored at C:N ratios below 20 to 30:1. For wastewater, this ratio was represented by the ratio BOD<sub>5</sub>:TKN (EPA, 1975). The BOD<sub>5</sub>:TKN ratios in this project were 42:1 and 26:1 for the Brodhead and Mindoro wastewater, respectively. The Brodhead C:N ratio was high but furrow samples had BOD<sub>5</sub>:TKN ratios ranging from 21 to 34:1, which would promote mineralization. Furrow wastewater pH values were not condusive to ammonia volatilization.

As ammonium infiltrated the unsaturated zone, it was aerated to nitrate at both sites. This transformation occured between lysimeters 1 and 2 (or 1 and 3 feet depth) underneath cell 1 at Brodhead, between the furrow and the water table (or 0 and 5.5 feet depth) underneath cell 2 at Brodhead, and the upper few feet of the unsaturated zone at Mindoro. Tables 4.7 and 5.8 and Figures 4.26, 4.27, 4.31, 4.32, 4.33, 6.1, 6.2, and 4.12 illustrate this change.

This nitrate denitrified to nitrogen gas (NO, N<sub>2</sub>O, or N<sub>2</sub>) as the percolate ecountered anaerobic microzones in the unsaturated zone at both ridge and furrow sites. This transformation was verified by observing nitrate decreases between lysimeters 2 and 3 (between 3 and 4.8 feet depth) beneath cell 1 at Brodhead, between lysimeter 6 and well 15 (between 3.6 and 5.5 feet depth) in November (1984) at Brodhead, and between the shallow lysimeters (L325 and L415) and the water table at Mindoro. These changes were illustrated in Tables 4.7 and 5.8 and Figures 4.27, 4.28, 4.33, 4.12, 6.1, 6.2, and 6.3. As mentioned in

-196-

Chapter 4, well 17 nitrogen concentrations did not reflect recent well 1 nitrification or denitrification due to the slow groundwater velocities. Ammonium concentrations averaged 30 mg/l in this well.

It should finally be noted that the nitrogen transformations were quite dynamic at Brodhead. Nitrogen species in certain lysimeters or wells did not remain consistantly nitrate or consistantly ammonium during the project. Data from lysimeter 2, lysimeter 3, and well 15 were good examples (Figures 4.27, 4.28, 4.12). During the late summer (1984), nitrogen values switched from being mainly ammonium to being mainly nitrate in these lysimeters. In well 15 ammonium concentrations increased dramatically in late summer (1984). This was followed by a dramatic rise in nitrate values, with concurrent ammonium decreases in October (1984). Nitrate decreases in November (1984) subsequently followed. Such radical changes were not observed at Mindoro.

The dynamic nature of nitrogen transformations was most likely the result of the load/rest cycle. Nitrate production was encouraged by soil aeration during resting and inhibited by cell overloading. These transformations or increases/decreases could not be especially related to the load/rest cycle when comparing time concentration plots to the loading schedule, however.

#### Ridge and Furrow Operation and Maintenance

Operation and maintenance is an important yet often neglected aspect of a ridge and furrow treatment system. Wastewater distribution and infiltration, load/rest cycling, winter operation, and annual cover crop burning are all aspects of operation and maintenance which influence wastewater treatment and disposal.

-197-

Wastewater distribution at the Brodhead site was complete, meaning that all cell furrows received waste during a loading cycle. This allowed for even distribution of liquid and centaminants over the entire site area which improved the hydraulic (infiltrative) capacity and contaminant reductions (eg. nitrogen reduction) of the site. Due to grass overgrowth and leaky header gates, the wastewater distribution at Mindoro was poor. Even though cell loading changes were made, the same area (0.9 acres) was loaded throughout the study. As a result, ponding of wastewater occurred in the far north and south ends of the system with other regions receiving little or no wastewater. Overloading of waste in the ponded areas reduced the soils infiltrative capacity and could also have decreased the soil's ability to reduce contaminant concentrations.

Load/rest cycling of cells at a ridge and furrow site is also an important part of system operation. It alternately aerates and deaerates the soil which stimulates nitrogen reductions by nitrification and denitrification. After strictly loading cell 1 before 1980, the Brodhead system had utilized a consistant two week load/rest pattern. This was modified during the project to determine the effect of a shorter cycle (one week beginning October 1984) on wastewater treatment in the unsaturated zone. The impact of a shorter cycle was favorable beneath cell 2 as well 15 total nitrogen concentrations decreased from almost 80 mg/l to less than 10 mg/l during October (1984). Future sampling would be needed to determine if low levels would continue or if well 15 concentrations were inherintly variable.

-198-

After November 20, 1984, the Brodhead system has been on a cycle which loads cell 1 for one week and rests it for two. Cell 2 has been operated in the opposite mode. This was done to improve the soil aeration beneath cell 1 and also improve the cell's infiltrative capacities. As mentioned in Chapter 4, the cell 1 infiltration rates were slower than those in cell 2. Improved soil aeration may cause groundwater around well 17 to nitrify as those around well 15.

The Mindoro ridge and furrow has been on a one month loading, two month resting schedule for each of its three cells. The site operator has not followed this pattern strictly, however. This, combined with the slower unsaturated flow rates and poor wastewater distribution, has resulted in the observed ponding. Following the 2/1 schedule more closely would result in better soil aeration and possibly improved contaminant reduction.

Winter operation was not a problem at the ridge and furrow sites studied. Both had wastewater effluent temperatures warm enough to melt existing ice and snow and to allow percolation into the soil. Distribution of wastewater remained excellent at Brodhead and fair at Mindoro during subzero temperatures.

Annual grass burning at ridge and furrow sites is also an important maintenance procedure at some systems and could be at other sites. Besides volatilizing cover crop nitrogen, burning clears the furrows of dead grass and enhances new spring crop growth. An 18% nitrogen loss occurred during burning at Mindoro and a possible 3% nitrogen loss could have occurred at Brodhead had the operator burned at that site. Spring burning of grass is recommended for all sites where it is feasible.

-199-

#### System Performance

When comparing downgradient contaminant concentrations at both sites, the Mindoro ridge and furrow system appeared to impact groundwater quality less than the Brodhead system. Downstream wells at Brodhead contained total nitrogen concentrations greater then 10 mg/l on average. This nitrogen was also in  $NH_4^+$ -N form. Nitrogen concentrations averages in downstream wells at Mindoro were consistantly below 5 mg/l. These downgradient values do not provide the complete picture however. Brodhead concentrations in wells 10A, 10B, and 14 were indicative of past use. Loading changes made during the course of this project would not be reflected in these wells until the spring of 1987 due to the travel times involved.

During this study, nitrogen and COD reductions in the unsaturated zone, as demonstrated by nitrogen budgets and data comparisons (Tables 6.1 and 6.2), were similar at Brodhead and Mindoro. The percentage of applied wastewater nitrogen leached was the major difference in the unsaturated zone treatment provided at these sites. At Brodhead, 34% of applied -N was leached; at Mindoro, 13% of applied -N was leached. This difference was attributed to the different soil types at the respective sites. At Brodhead, the sandy soil allowed for faster unsaturated travel times. This limited the available nitrification and denitrification time which allowed ammonium and nitrate to reach the groundwater only partially treated. Uniform wastewater distribution and proper load/rest operation were critical to treatment at Brodhead to keep the soil alternately aerated and deaerated. Considering the infiltrative capacities

-200-

of cell 1 and cell 2, the 2 week cell 2 loading followed by a 1 week cell 1 loading would optimize nitrogen and COD reduction at Brodhead. Higher nitrate concentrations in lysimeters 5 and 6 and well 15 could be reduced if cell 2 received a longer loading; high ammonium values in well 17 could be nitrified if cell 1 underwent a longer resting period.

The Mindoro site provided good treatment of wastewater nitrogen even though flow distribution and load/rest operation were poor. The silty loam soil, with its slower unsaturated and saturated zone travel times, overcame these operational problems. Better treatment could have been obtained with improved distribution and a strict load/rest cycle.

In general, nitrogen reductions at ridge and furrow sites are dependent on the soils infiltrative capacity, the wastewater distribution efficiency, and the load/rest cycle.

-201-

#### CHAPTER 7: CONCLUSIONS

The following were conclusions of the ridge and furrow study at Brodhead and Mindoro:

- Sixty-six to 69% nitrogen losses were observed in nitrogen budgets around the unsaturated zone at both sites. These were attributed to denitrification. Leaching accounted for the fate of 34% and 13% of applied nitrogen at Brodhead and Mindoro, respectively. Plant uptake losses accounted for 0% and 18% at Brodhead and Mindoro, respectively. These budgets are summarized in Table 7.1.
- 2) Since nitrification occurred in the unsaturated zone at each site, it was concluded that the BOD<sub>5</sub> wastewater loading did not place an oxygen demand high enough to inhibit this transformation.
- 3) Actual COD (after dilution) reduction in the unsaturated zone ranged from 41-82% at Brodhead and 52-89% at Mindoro.
- 4) Nitrogen and COD reductions were dependent on infiltrative capacity, which affected travel times, wastewater distribution efficiency, and the load/rest cycle. The distribution and load/rest cycling were more critical at Brodhead, where unsaturated zone flow times were fast (three days).
- 5) The wastewater nitrogen applied at both sites was mainly in organic-N form. Much of this organic-N was contained in the suspended solids of the wastewater and settled in furrows upon loading. This organic-N then ammonified to dissolved ammonium and diffused into the overlying furrow wastewater.

-202-

### TABLE 7.1

## SUMMARY OF RIDGE AND FURROW

### NITROGEN BUDGETS

|                 | BR    | BRODHEAD    |     | MINDORO |             |     |
|-----------------|-------|-------------|-----|---------|-------------|-----|
| •               | lb/yr | lb/acre/yr* | ¥.  | lb/yr   | lb/acre/yr* | z   |
|                 |       |             |     |         |             |     |
| Total N Loading | 5375  | 1144        | 100 | 1381    | 1534        | 100 |
| Losses Due to   |       |             |     |         |             |     |
| Denitrification | 3529  | 751         | 66  | 954     | 1060        | 69  |
| Leaching        | 1845  | 392         | 34  | 175     | 193         | 13  |
| Plant Uptake    | 0     | 0           | 0   | 252     | 280         | 18  |
|                 |       |             |     |         |             |     |

#Areas: Brodhead - 4.7 acres

Mindoro - 0.9 acres

- 6) Dissolved ammonium was the primary form of nitrogen in the furrow wastewater. As this percolated into the unsaturated zone, nitrification occurred within 3 feet (cell 1) and 3.6 feet (cell 2) at Brodhead and 1.5 feet at Mindoro. Denitrification of this nitrate was observed below 3 feet depth (cell 1) and 3.6 feet depth (cell 2) at Brodhead and through the entire unsaturated profile at Mindoro.
- 7) In order to meet a 5 mg/l total nitrogen arbitrary increase above background quality in the groundwater immediately beneath the ridge and furrow systems, it was determined that Brodhead's wastewater nitrogen loading rate be reduced to 384 lb N/acre/year (1.05 lb N/acre/day) on a percent basis and 879 lb N/acre/year (2.4 lb N/acre/day) on a denitrification rate basis. Mindoro's present 1534 lb N/acre/year (4.3 lb N/acre/day) was adequate.
- 8) No surface water contamination resulted from operation of these ridge and furrow systems.
- 9) Winter operation at ridge and furrow systems is possible if effluent temperatures are warm.
- 10) Spring burning of grass removed a significant portion of applied nitrogen at Mindoro (18%) and also stimulated new growth.

-204-

#### CHAPTER 8: RECOMMENDATIONS

The following recommendations were based on results of the ridge and furrow study at Brodhead and Mindoro:

1) Continued research at Brodhead should be done to:

- a) better determine whether loading changes impacted the groundwater quality or whether the dynamic nature of concentrations occur every year by sampling wells 10A, 10B, 14, and 15 and lysimeters 1, 2, 3, 5, and 6 twice a year,
- b) better quantify unsaturated flow times by installing tensionmeters (or some other appropriate method), and
- c) evaluate the sinking contaminant plume by installing a deep well in the location of well 14, which would be sampled twice annually.
- 2) The factories should meet the suggested nitrogen loading rates, on average, to reduce or maintain groundwater nitrogen concentrations.
- 3) Wastewater pretreatment at Brodhead would reduce solids accumulation in the furrows and lower the amount of applied nitrogen. Changes inside the plant could also be made to reduce the amount of lost product.
- 4) The chloride concentrations in the Brodhead wastewater should be reduced by brine removal in the plant to reduce groundwater chloride values.

-205-

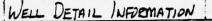
- 5) Annual spring grass burning is suggested for all ridge and furrow systems where it is feasible.
- 6) An improved lysimetry method is necessary to obtain a more "instantaneous" sample and to allow for winter sampling.

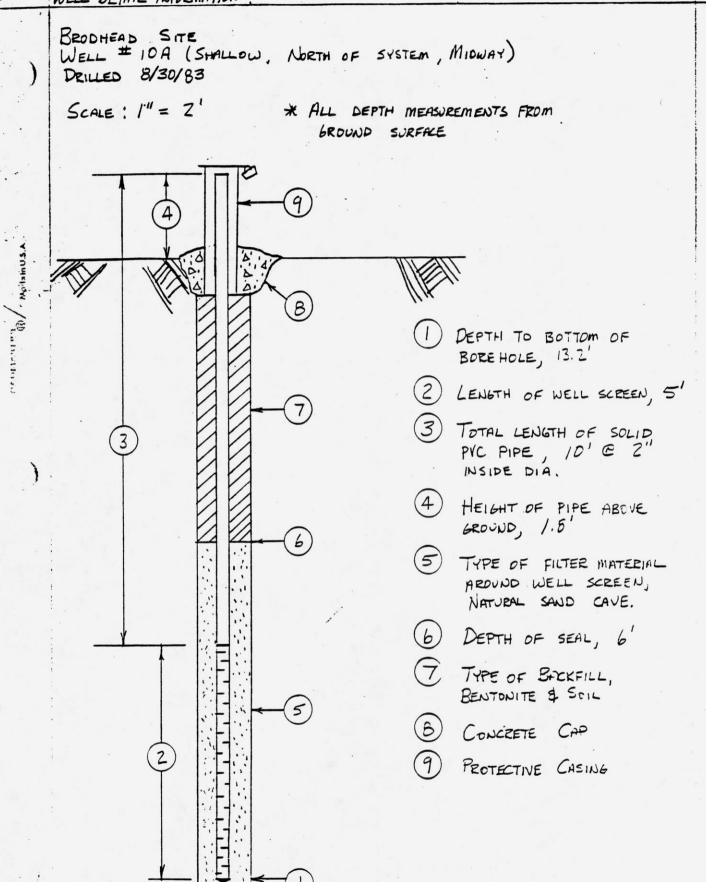
.

7) A downstream well nest should be installed at Mindoro to better define the movement of contaminants off-site.



Appendix A1: List of References


- 1. Alexander, Martin, <u>Introduction to Soil Microbiology</u>, 2nd ed. New York: John Wiley and Sons, 1977
- 2. Bohn, Hinrick L., Brian L. McNeal, and George A. O'Connor. Soil Chemistry, New York: John Wiley and Son, 1979
- 3. Bouma, Johannes, "Unsaturated Flow During Soil Treatment of Septic Tank Effluent", J. Environ Eng. Div. ASCE, 101, 967 (1975)
- 4. Chen, R. L. and W. H. Patrick, Jr., "Efficiency of Nitrogen Removal in a Simulated Overland Flow Waste Water Treatment System", <u>J. Environ, Qual.</u>, 10, 98 (1981)
- 5. Cooper, Hilton H., John D. Bredehoeft, and Istavros S. Popadopulos, "Response of a Finite-Diameter Well to an Instantaneous Charge of Water", <u>Water Resour. Res.</u>, 3(1), 263 (1967)
- 6. Cooper, Hilton H., et.al., "On the Analysis of 'Slug Test' Data", Water Resour. Res., 9(4), 1078 (1973)
- 7. EPA, Process Design Manual for Nitrogen Control (1975)
- 8. Freeze, R. Allan and John A. Cherry, <u>Groundwater</u>, Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1979
- 9. Freney, J. R., J. R. Simpson, and O. T. Denmead, "Ammonia Volatilization", <u>Terrestrial Nitrogen Cycles</u>, Proceedings of International Workshop arranged by SCOPE/UNEP International Nitrogen Unit of the Royal Swedish Academy of Sciences and the Commission of Research on Natural Resources of the Swedish Council for Planning and Coordination of Research at Gysinge Vardshus, Osterfarenbo, Sweden. (Sept. 16-22, 1979)
- 10. Kardos, L. T., et. al. "Sewage Effluent Renovated through Application to Farm and Forest Land," <u>Science and the Farmer XII</u>, <u>4</u>, 4 (1965)
- 11. Khanna, P. K., "Leaching of Nitrogen from Terrestrial Ecosystems -Patterns, Mechanisms and Ecosystem Responses', <u>Terrestrial Nitrogen</u> <u>Cycles</u>, Proceedings of International Workshop arranged by SCOPE/UNEP International Nitrogen Unit of the Royal Swedish Academy of Sciences and the Commission of Research on Natural Resources of the Swedish Council for Planning and Coordination of Research at Gysinge Vardshus, Osterfarenbo, Sweden. (Sept. 16-22, 1979)
- 12. King, Larry D., "Land Application of Untreated Industrial Waste Water", <u>J. Environ. Qual.</u>, <u>11(4)</u>, 638 (1982)


- 13. Knowles, R., "Denitrification", <u>Terrestrial Nitrogen Cycles</u>, Proceedings of International Workshop arranged by SCOPE/UNEP International Nitrogen Unit of the Royal Swedish Academy of Sciences and the Commission of Research on Natural Resources of the Swedish Council for Planning and Coordination of Research at Gysinge Vardshus, Osterfarenbo, Sweden. (Sept. 16-22, 1979)
- 14. Kudeyarov, V. N., "Mobility of Fixed Ammonium in Soil", <u>Terrestrial</u> <u>Nitrogen Cycles</u>, Proceedings of International Workshop arranged by SCOPE/UNEP International Nitrogen Unit of the Royal Swedish Academy of Sciences and the Commission of Research on Natural Resources of the Swedish Council for Planning and Coordination of Research at Gysinge Vardshus, Osterfarenbo, Sweden. (Sept. 16-22, 1979)
- Leach, Lowell E. and Carl G. Enfield, "Nitrogen Control in Domestic Wastewater Rapid Infiltration Systems", <u>JWPCF</u>, <u>55</u>, 1150 (1983)
- 16. Lund, L. J., et. al., "Nitrogen Balances for an Effluent Irrigation Area", <u>J. Environ. Qual.</u>, <u>10(3)</u>, 349 (1981)
- 17. McMichael, F. C. and J. E. McKee, "Wastewater Reclamation at Whittier Narrows", State of California, State Water Quality Control Board Pub. No. 33 (1966)
- 18. Metcalf & Eddy, Inc., <u>Wastewater Engineering: Treatment, Disposal,</u> <u>Reuse,</u> 2nd Ed. New York: McGraw-Hill Book Co., 1979.
- 19. Mitchell, James K., <u>Fundamentals of Soil Behavior</u>, New York: John Wiley and Sons, Inc., 1976
- 20. Monson, Helmer, "Disposal of Cannery Waste by Ridge and Furrow Irrigation", <u>Land Disposal of Liquid Waste</u>, a Collection of Papers Presented at the University of Wisconsin Engineering Institute on Industrial Wastes, 1956
- 21. Morrison, Robert D., "A Modified Vacuum Pressure Lysimeter for Soil Water Sampling", <u>Soil Science</u>, <u>134(3)</u>, 206, (1982)
- 22. Nommik, H., "Fixation and Biological Availability of Ammonium in Soil Clay Minerals", <u>Terrestrial Nitrogen Cycles</u>, Proceedings of International Workshop arranged by SCOPE/UNEP International Nitrogen Unit of the Royal Swedish Academy of Sciences and the Commission of Research on Natural Resources of the Swedish Council for Planning and Coordination of Research at Gysinge Vardshus, Osterfarenbo, Sweden. (Sept. 16-22, 1979)
- 23. Palazzo, A. J., "Seasonal Growth and Accumulation of Nitrogen, Phosphorous, and Potassium by Orchardgrass Irrigated with Municipal Waste Water", <u>J. Environ. Qual.</u>, <u>10(1)</u>, 64 (1981)

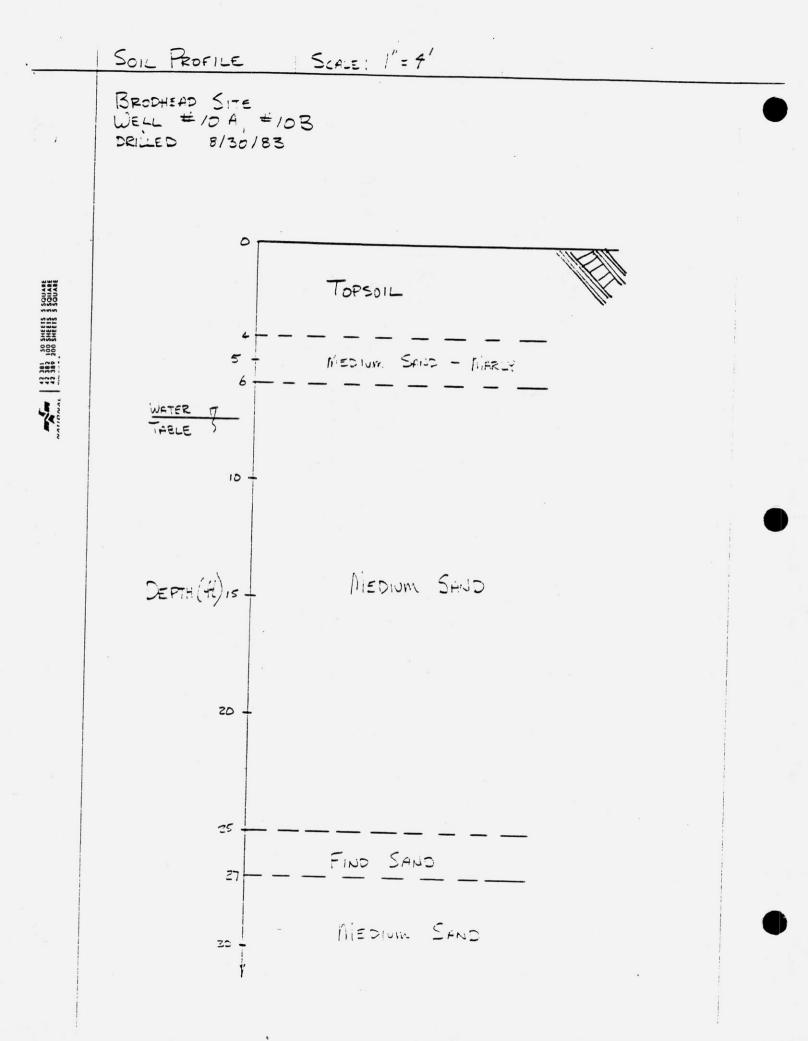
- 24. Patrick, W. H. and R. Wyatt, "Soil N Loss as a Result of Alternate Submergence and Drying", <u>Soil Sci. Soc. Amer. Proc., 28</u>, 647 (1964)
- 25. Patrick, W. H. and S. Gotoh, "The Role of Oxygen in N Loss from Flooded Soils", <u>Soil Sci.</u>, <u>118(2)</u>, 78 (1974)
- 26. Paul, E. A. and N. G. Juma, "Mineralization and Immobilization of Soil N by Micro-organisms", <u>Terrestrial Nitrogen Cycles</u>, Proceedings of International Workshop arranged by SCOPE/UNEP International Nitrogen Unit of the Royal Swedish Academy of Sciences and the Commission of Research on Natural Resources of the Swedish Council for Planning and Coordination of Research at Gysinge Vardshus, Osterfarenbo, Sweden. (Sept. 16-22, 1979)
- 27. Reddy, K. R. and D. A. Graetz, "Use of Shallow Reservoir and Flooded Organic Soil Systems for Waste Water Treatment: Nitrogen and Phosphorous Transformations", <u>J. Environ. Qual.</u>, <u>10(1)</u>, 113 (1981)
- 28. Rodenberg, Jerry R., "Ridge and Furrow System Design", Wisconsin Department of Natural Resources, Industrial Wastewater Section, (1980)
- 29. Ryden, J. C., et. al., "Direct Measurement of Gaseous Nitrogen Losses from an Effluent Irrigation Area", <u>JWPCF</u>, <u>53(12)</u>, 1677 (1981)
- 30. Sawyer, C. N., and P. L. McCarty, <u>Chemistry for Sanitary Engineers</u>. New York: McGraw-Hill Book Co., 1967
- 31. Schraufnogel, F. H., "Ridge and Furrow Irrigation Disposal of Milk Wastes", <u>Land Disposal of Liquid Waste</u>, A Collection of Papers Presented at the University of Wisconsin Engineering Insititute on Industrial Waste (1956)
- 32. Schraufnagel, F. H. "Waste Disposal by Ridge and Furrow Irrigation", Wisconsin Committee on Water Pollution Report No. WP-108, Engineering Experiment Station Research Report No. 20 (1962)
- 33. Sepp, E., <u>Nitrogen Cycle in Groundwater</u>, Bureau of Sanitary Engineering, State of California Department of Public Health (1970)
- 34. Soil and Plant Analysis Laboratory, University of Wisconsin Extension, <u>Wisconsin Procedures for Soil Testing</u>, Plant Analysis, and Feed and Forage Analysis (1980)

- 35. Stanford, G., R. A. Vander Pol, and S. Dziena, "Potential Denitrification Rates in Relation to Total and Extractable Carbon", <u>Soil</u> <u>Sci. Soc. Amer. Proc., 39</u>, 284 (1975)
- 36. Tiedjo, J. M., J. Sorenson, and Y-YL. Chang, "Assimilatory and Dissimilatory Nitrate Reduction: Perspectives and Methodology for Simultaneous Measurement of Several Nitrogen Cycle Processes", <u>Terrestrial Nitrogen Cycles</u>, Proceedings of International Workshop arranged by SCOPE/UNEP International Nitrogen Unit of the Royal Swedish Academy of Sciences and the Commission of Research on Natural Resources of the Swedish Council for Planning and Coordination of Research at Gysinge Vardshus, Osterfarenbo, Sweden. (Sept. 16-22, 1979)
- 37. Tusneem, M. E. and W. H. Patrick, Jr., <u>Nitrogen Transformations in</u> <u>Waterlogged Soil</u>, Louisiana State Univ., Agricultural and Mechanical College, Dept. of Agronomy, Ag. Expt. Station Bulletin No. 657 (1971)
- 38. Winneberger, J. H. T., <u>Nitrogen, Public Health and the Environment:</u> <u>Some Tools for Critical Thought</u>, Ann Arbor, Mich.: Ann Arbor Science, 1982
- 39. Wisconsin Department of Natural Resources, <u>Evaluation of Industrial</u> Wastewater Ridge and Furrow Systems, (1984)
- 40. Wisconsin State Lab of Hygiene, <u>Manual of Analytical Methods</u> -<u>Inorganic Chemistry Unit</u>, (1980)
- 41. Woodmansee, R. G. and L. S. Walloch, "Effects of Fire Regimes on Biogeochemical Cycles", <u>Terrestrial Nitrogen Cycles</u>, Proceedings of International Workshop arranged by SCOPE/UNEP International Nitrogen Unit of the Royal Swedish Academy of Sciences and the Commission of Research on Natural Resources of the Swedish Council for Planning and Coordination of Research at Gysinge Vardshus, Osterfarenbo, Sweden. (Sept. 16-22, 1979)
- 42. Woodmansee, R. G., et. al., "Grassland Nitrogen", <u>Terrestrial</u> <u>Nitrogen Cycles</u>, Proceedings of International Workshop arranged by SCOPE/UNEP International Nitrogen Unit of the Royal Swedish Academy of Sciences and the Commission of Research on Natural Resources of the Swedish Council for Planning and Coordination of Research at Gysinge Vardshus, Osterfarenbo, Sweden. (Sept. 16-22, 1979)

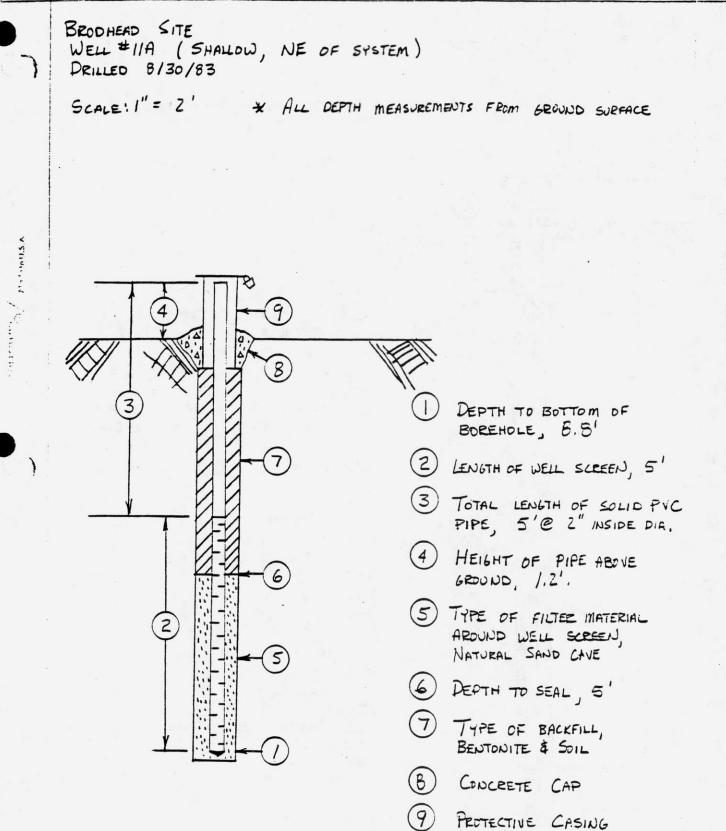
A PPENDIX A Prode In U.S.A. BRODHEAD : WELL AND LYSIMETER LOGS



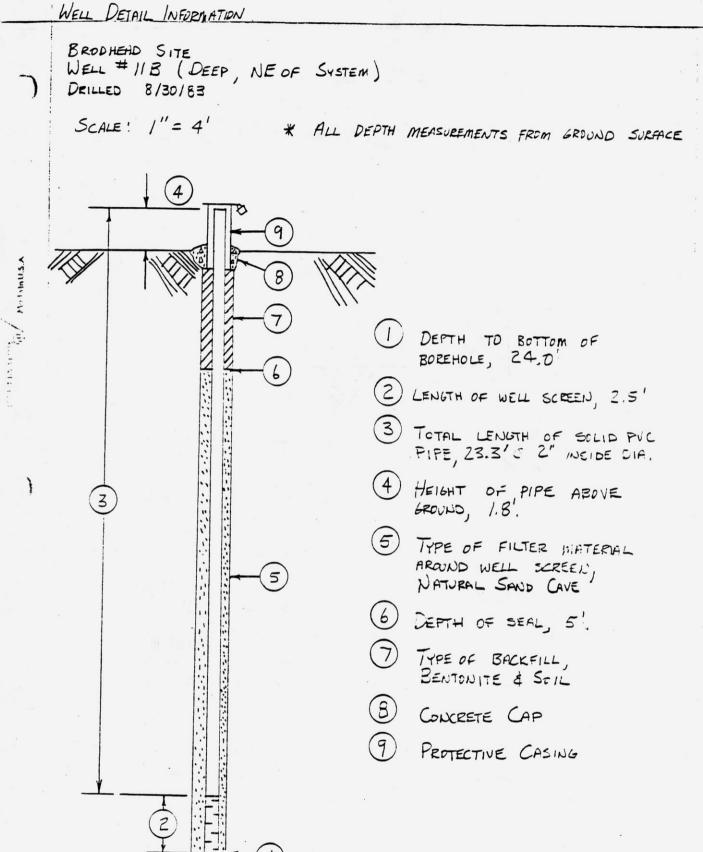


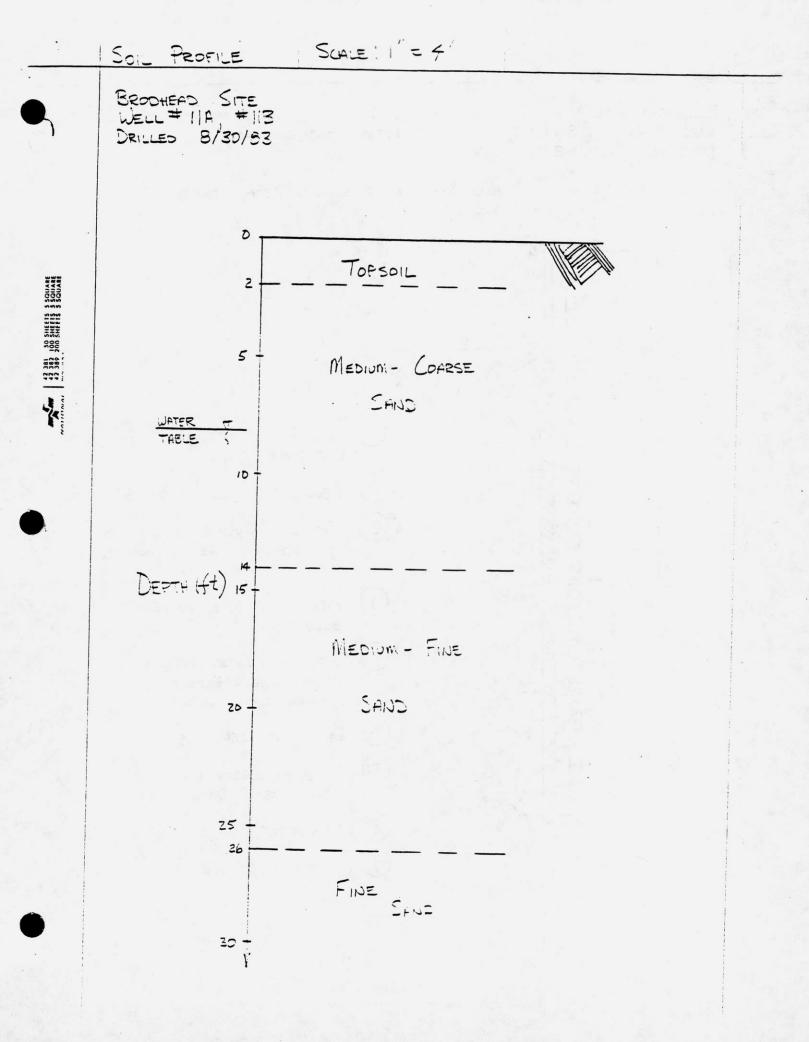

WELL DETAIL INTERNATION

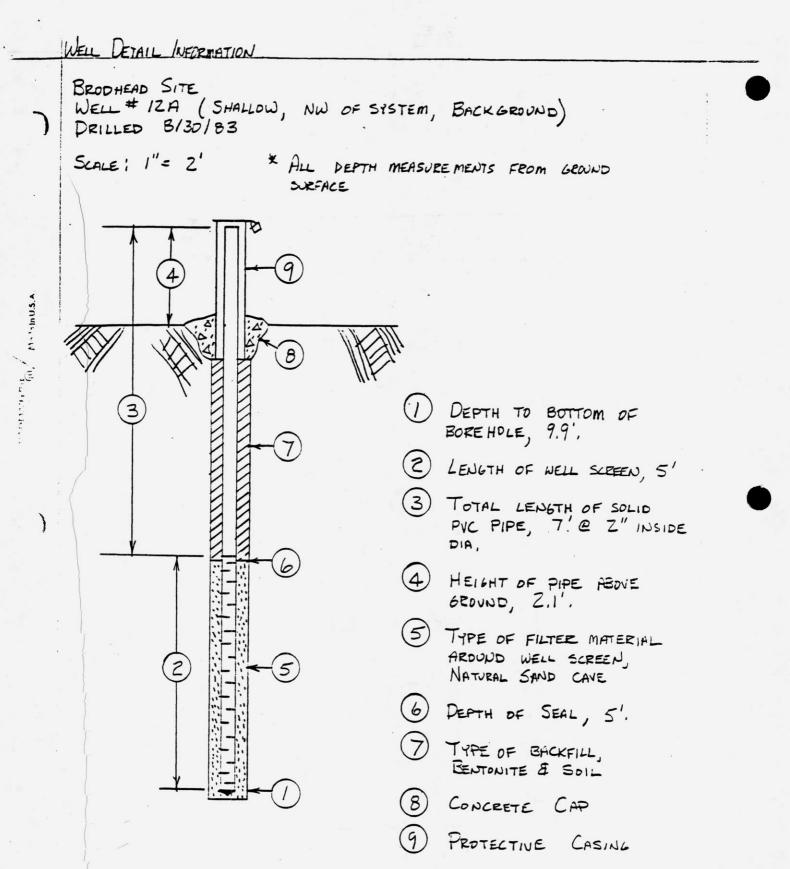
BRODHEAD SITE WELL #10B (DEEP, NORTH OF SYSTEM, MIDWAY) DRILLED 8/30/83 SCALE: 1"= 4' \* ALL DEPTH MEASUREMENTS FROM GROUND SURFACE 4 9 8 DEPTH TO BOTTOM OF BOREHOLE, 26.2' 6 (2)LENGTH OF WELL SCREEN, 2,5' 3 TOTAL LENGTH OF SOLID PUC PIPE, 25'@ 2' INSIDE DIA. (4) HEIGHT OF PIPE ABOVE 60000, 1.3' 3 (5) TYPE OF FILTER MATERIAL AROUND WELL SCREEN, 5 NATURAL SAND CAVE 6 DEPTH OF SEAL, 6' 7 TYPE OF BACKFILL, BENTONITE AND SOIL B CONCRETE CAP 9 PROTECTIVE CASING

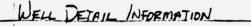

•

Alamanus.A


1 Case



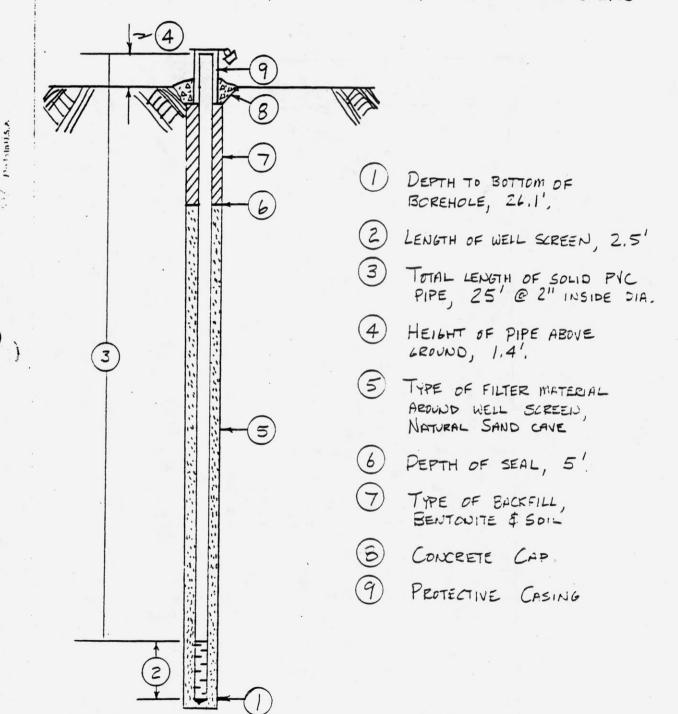


## WELL DETAIL INFORMATION



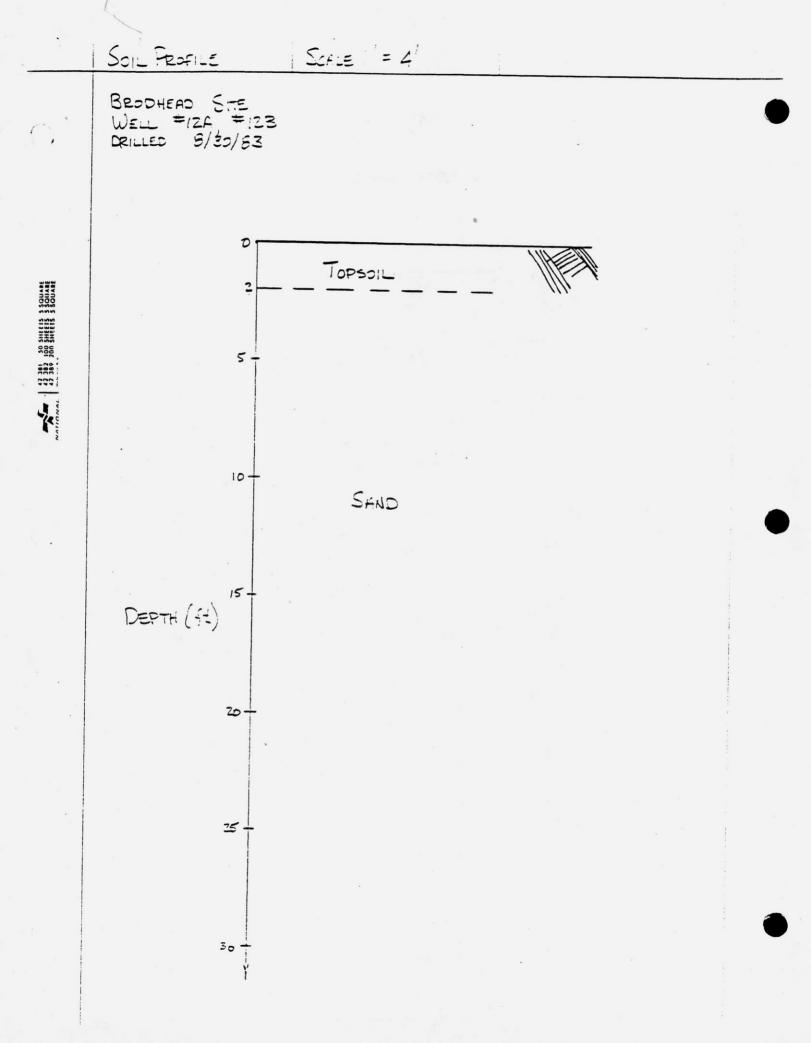

•



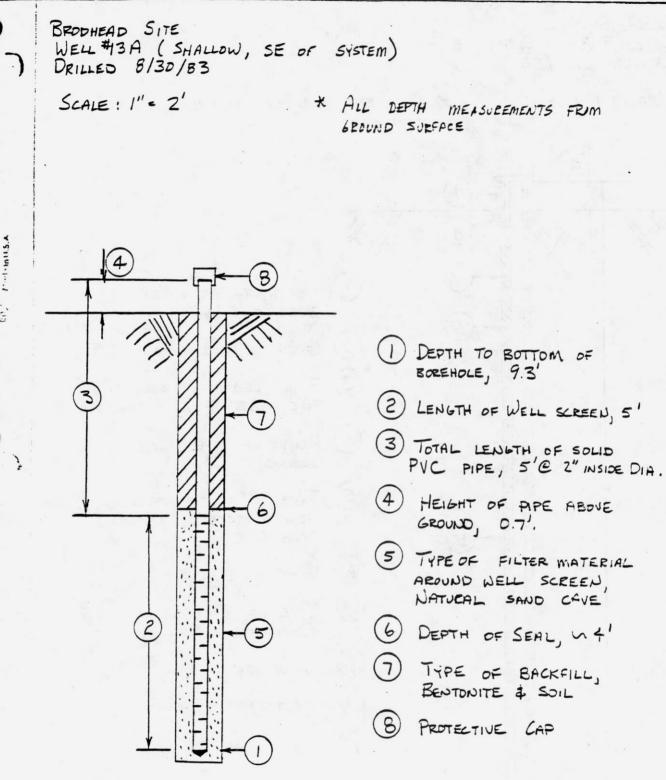


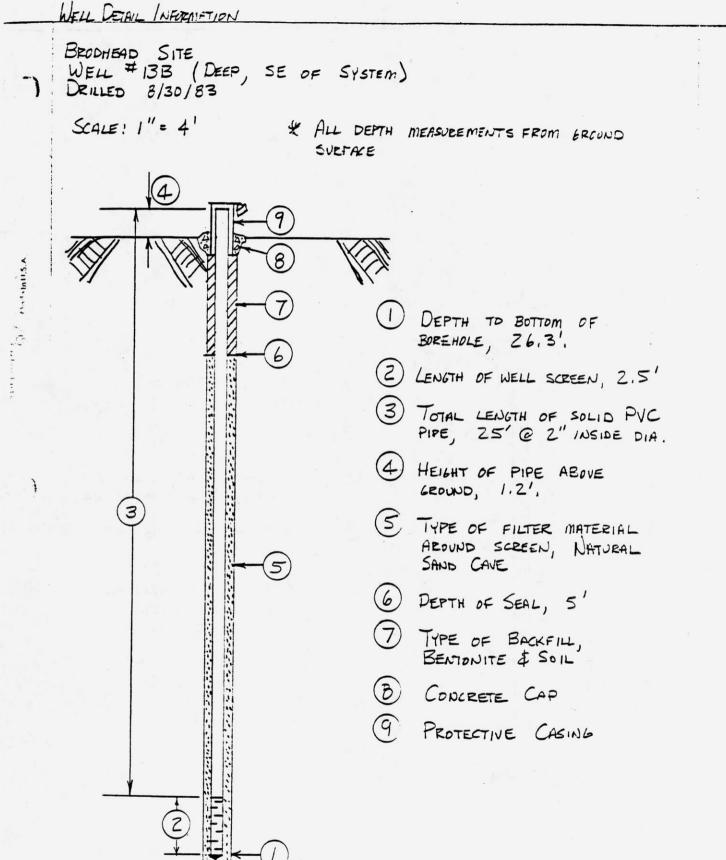


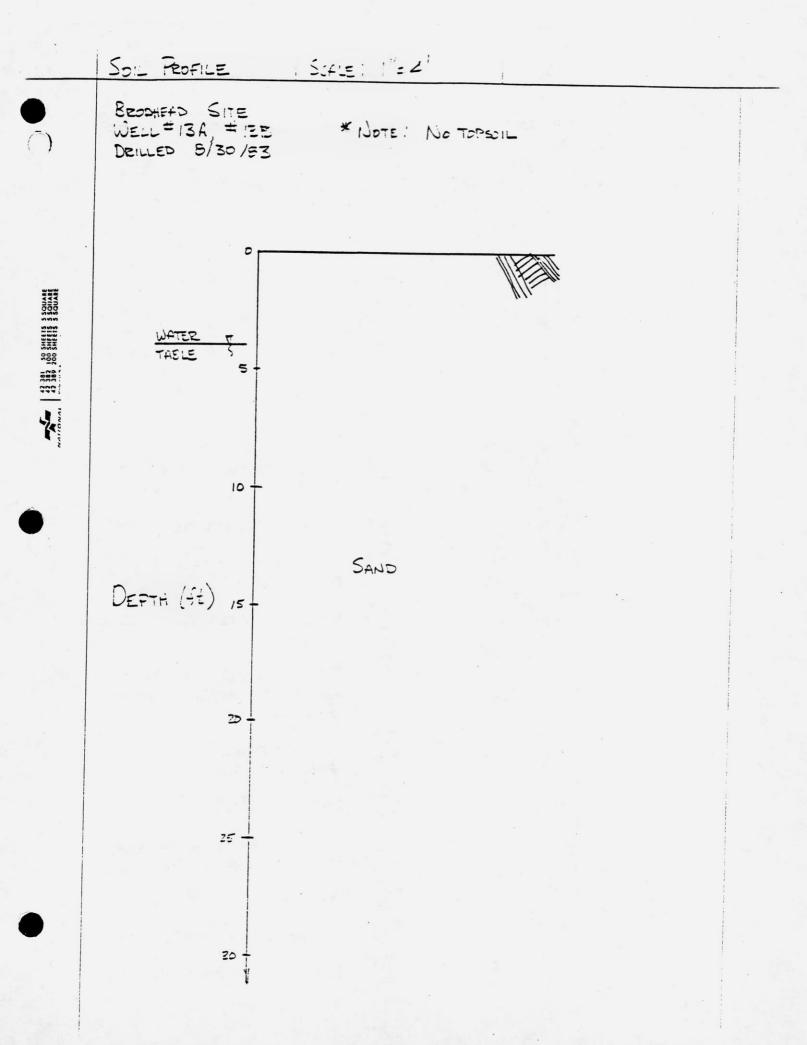


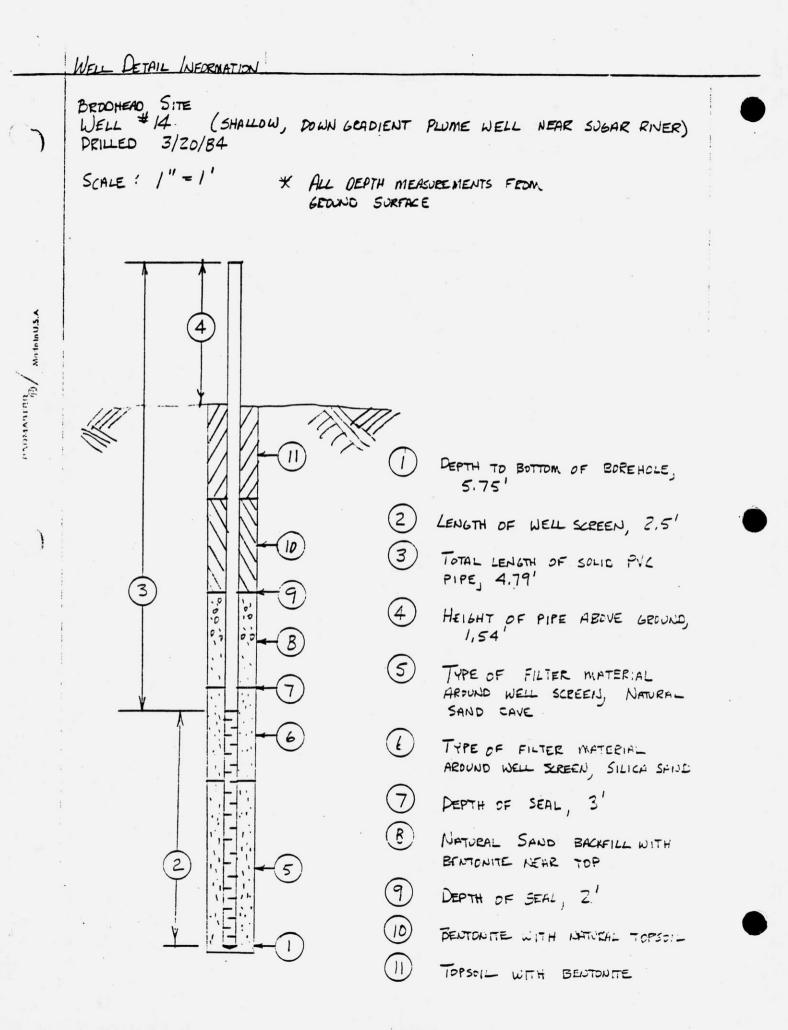


BRODHEAD SITE WELL #12B (DEEP, NW OF SYSTEM, BACKGROUND) DRILLED B130/83

SCALE: 1" = 4'

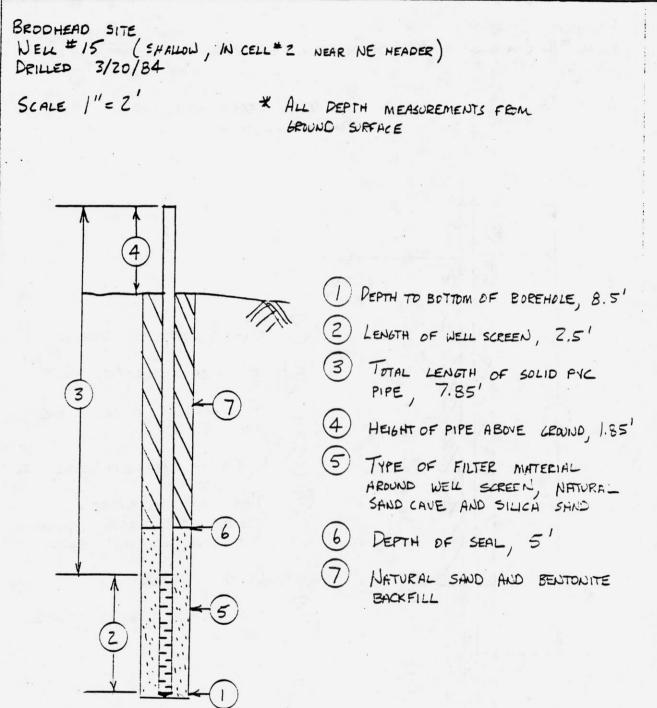

\* ALL DEPTH MEASUREMENTS FROM GROWD SURFACE





•

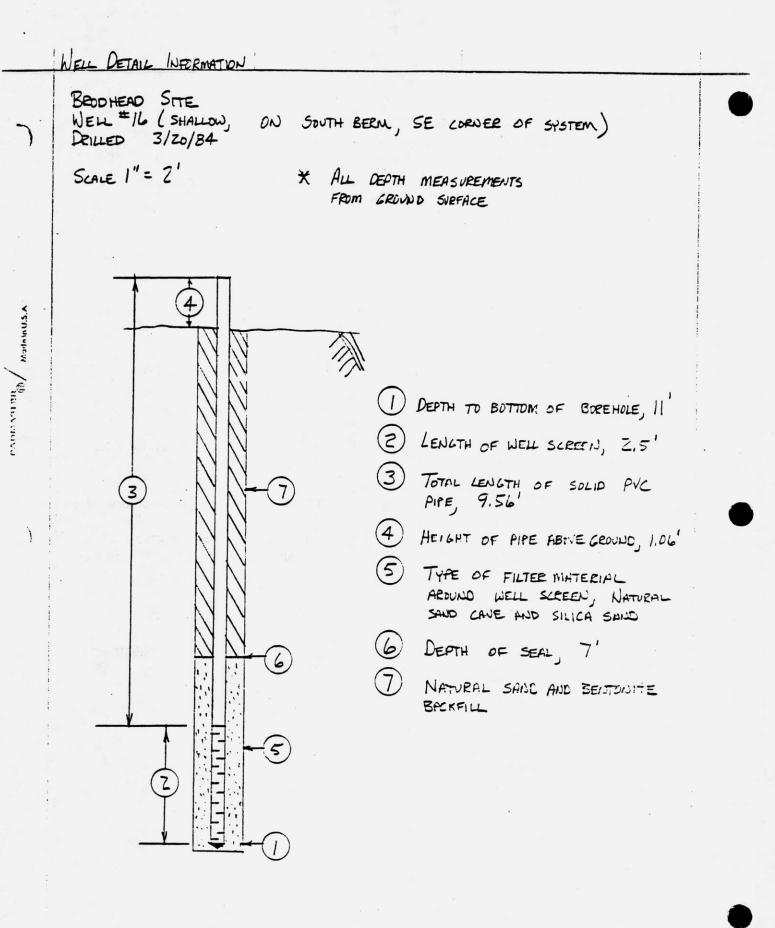



## WELL DETAIL INFORMATION.

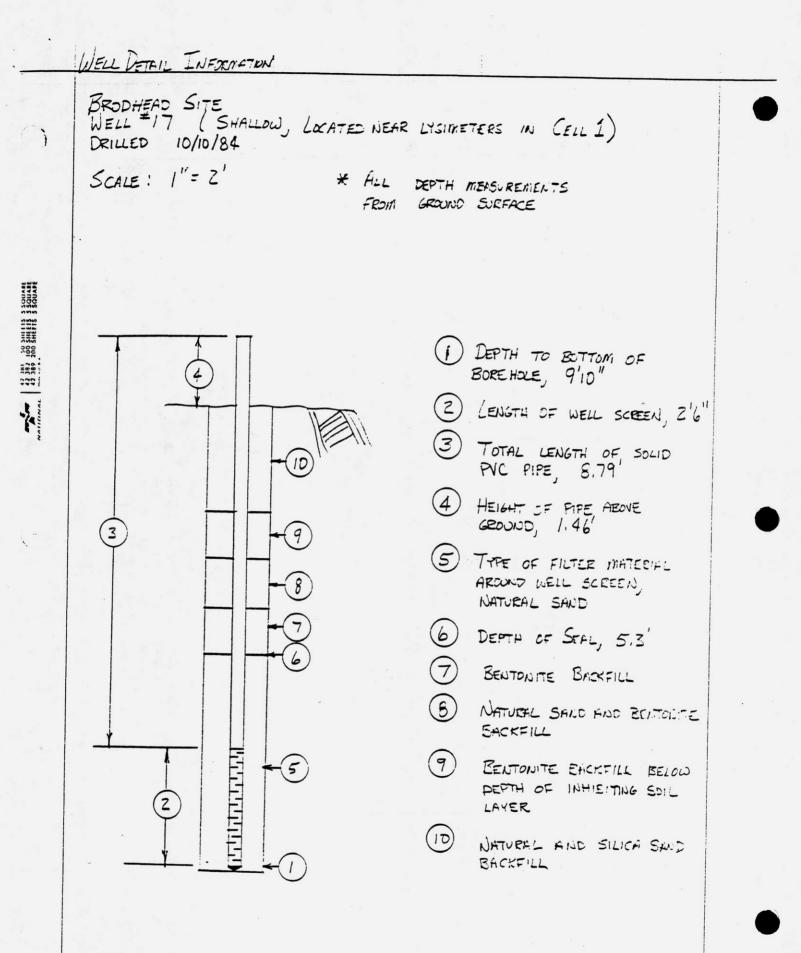







# WELL DETAIL INFORMATION




A.S.Uni-ticle 10

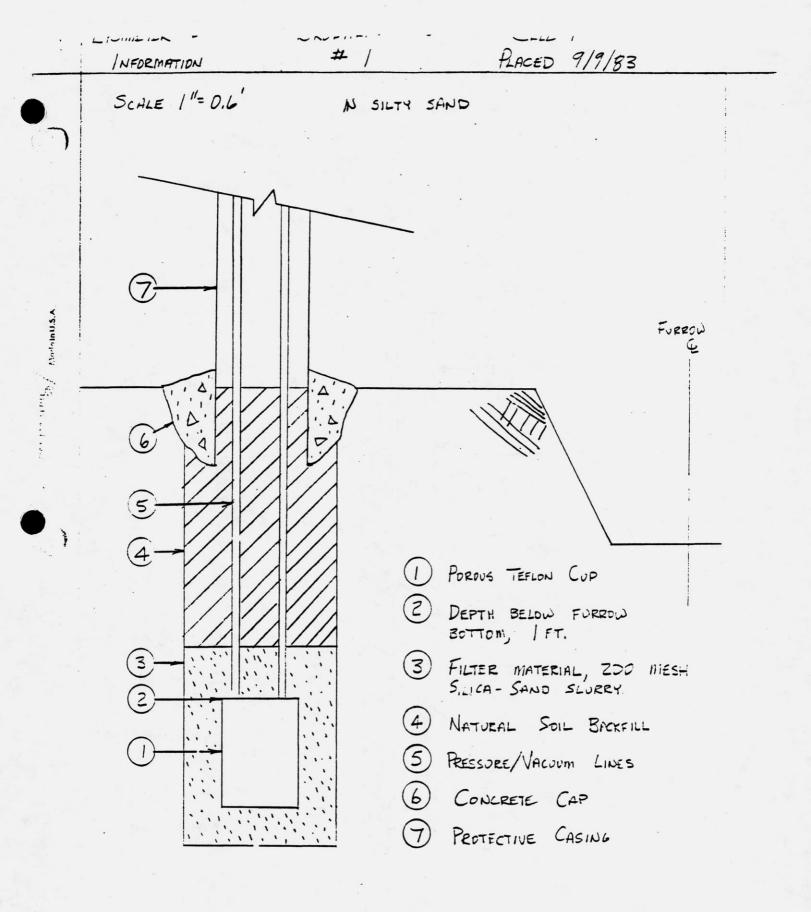
1 Manaration of

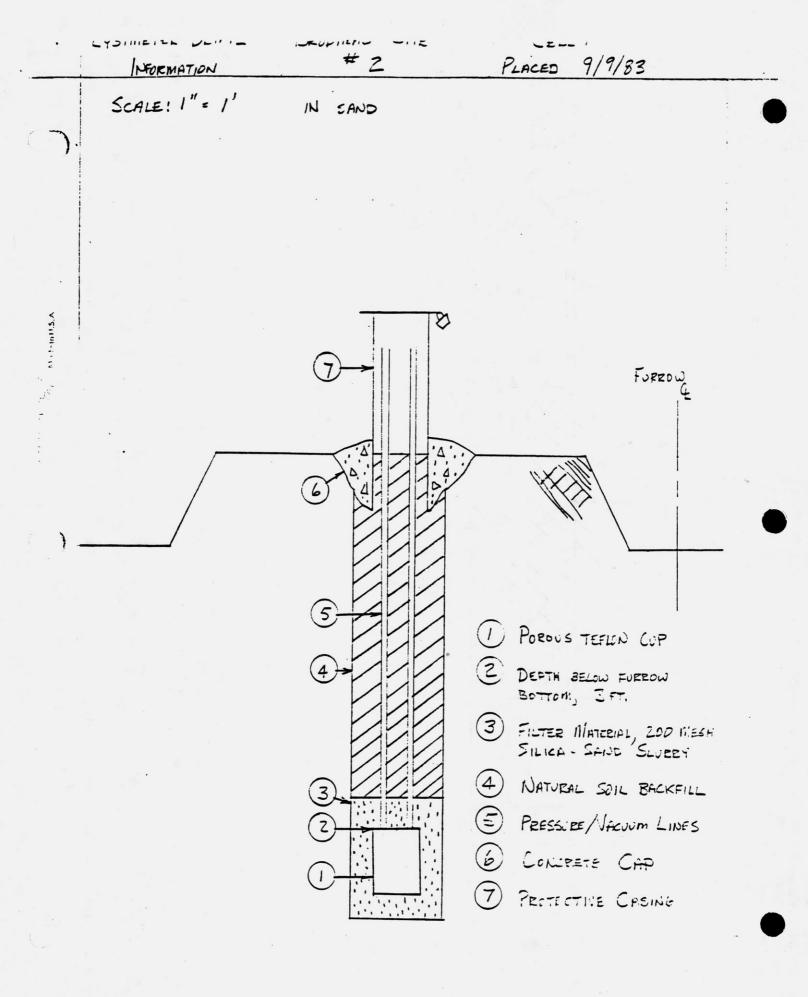


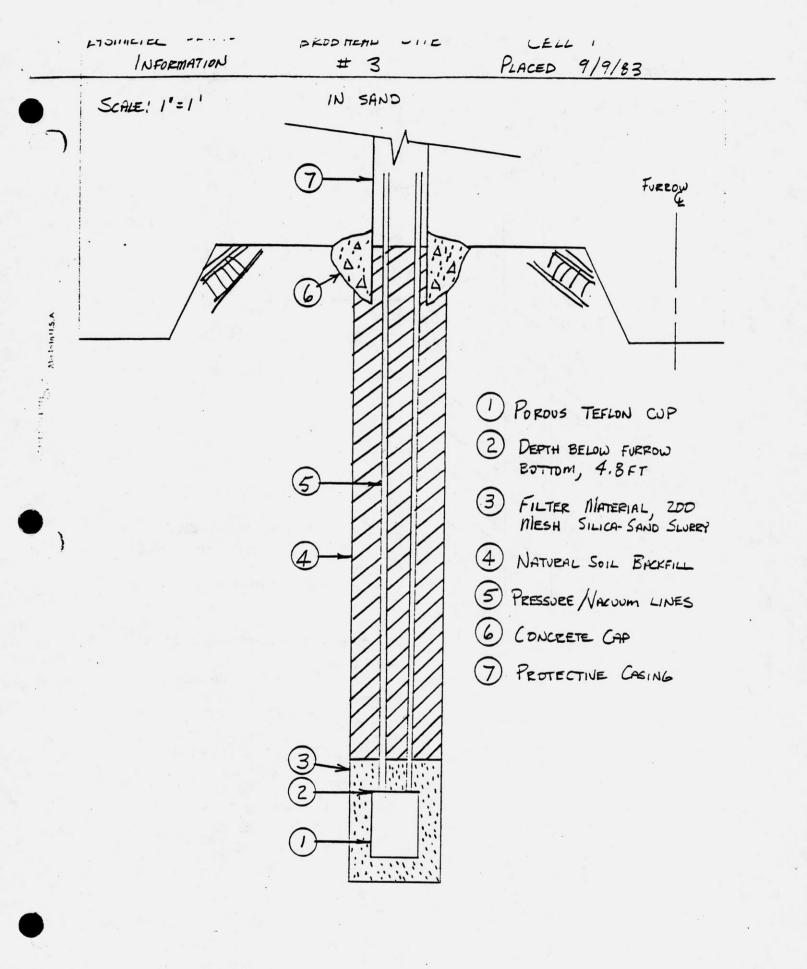
WENS 14, 15, 10 SOIL PROFILE SCALE: 1"=1" DRILLED 3/20/84 WELL 14 WELL 15 7 WELL 16 0 SILTY TOPSOIL 1 SILTY TOPSOIL V.S.University APPENENTING Ζ SAND 3. SAND DEPTH (41) 4 SAND TABLE S 5 . . . . . 6 3 7 6 ٩

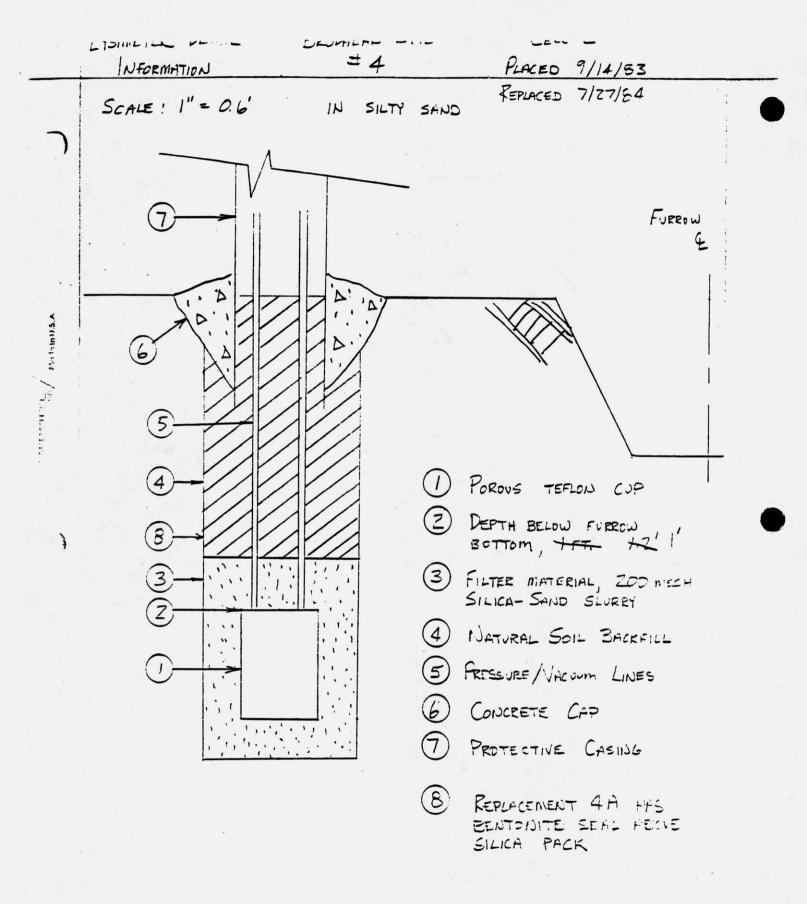


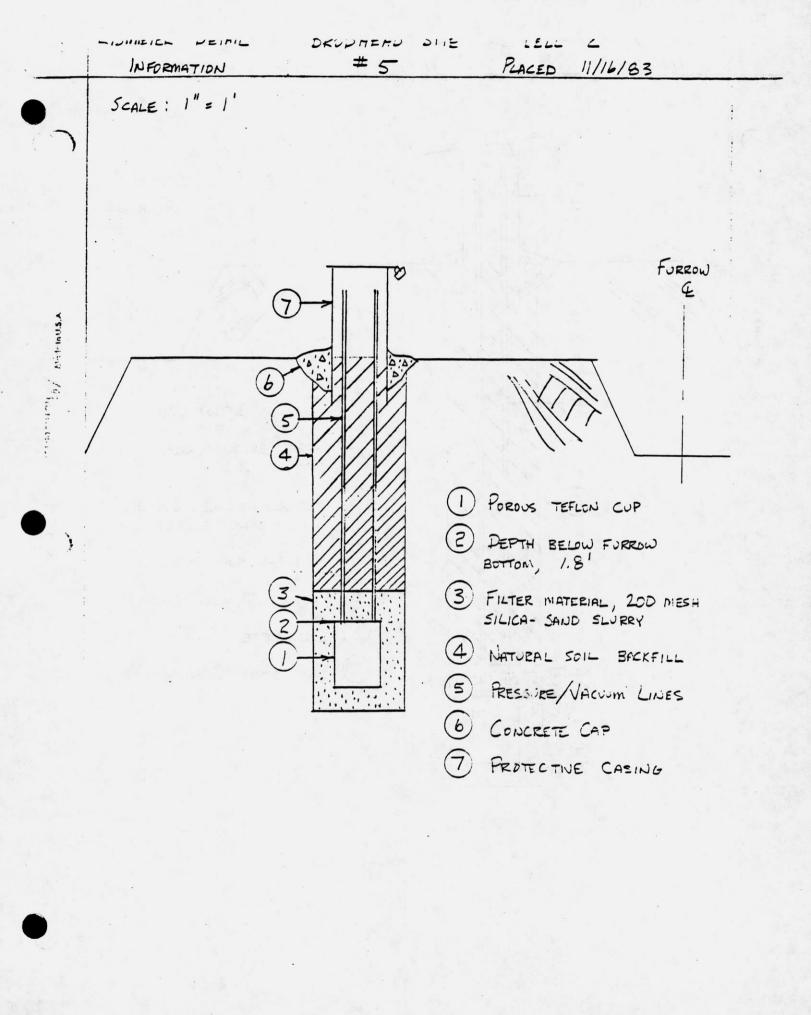
SOIL PROFILES

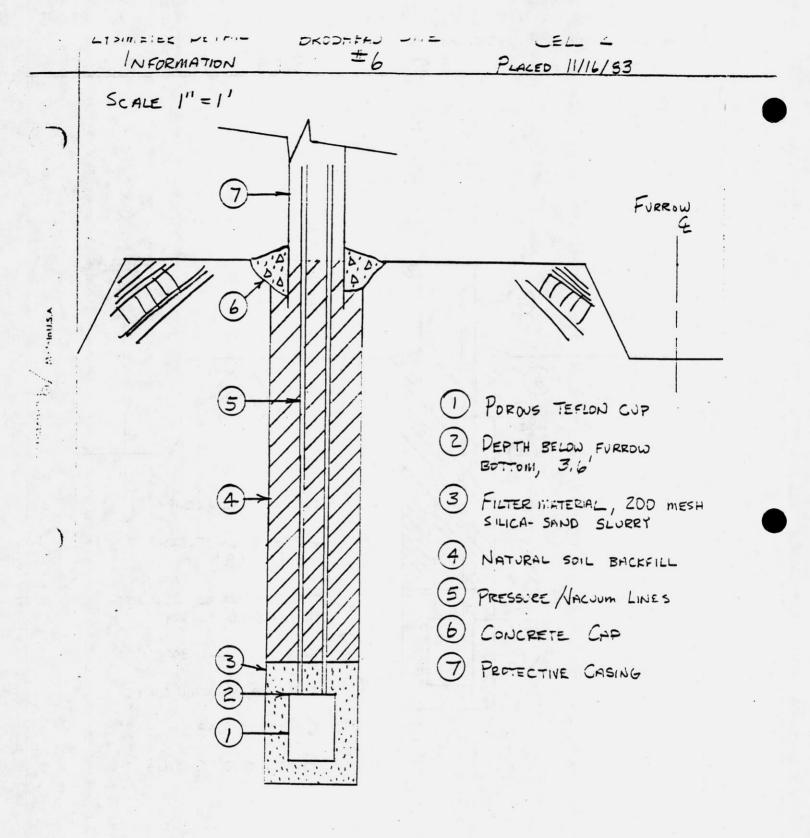

.5/10/84

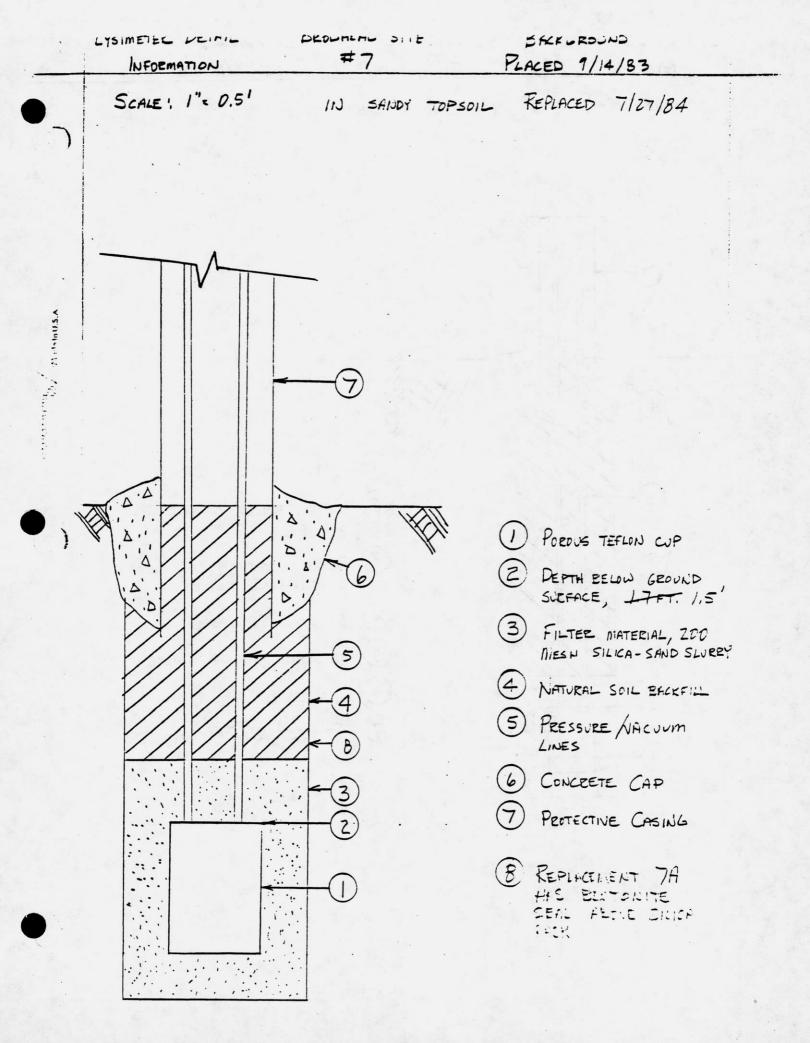

•

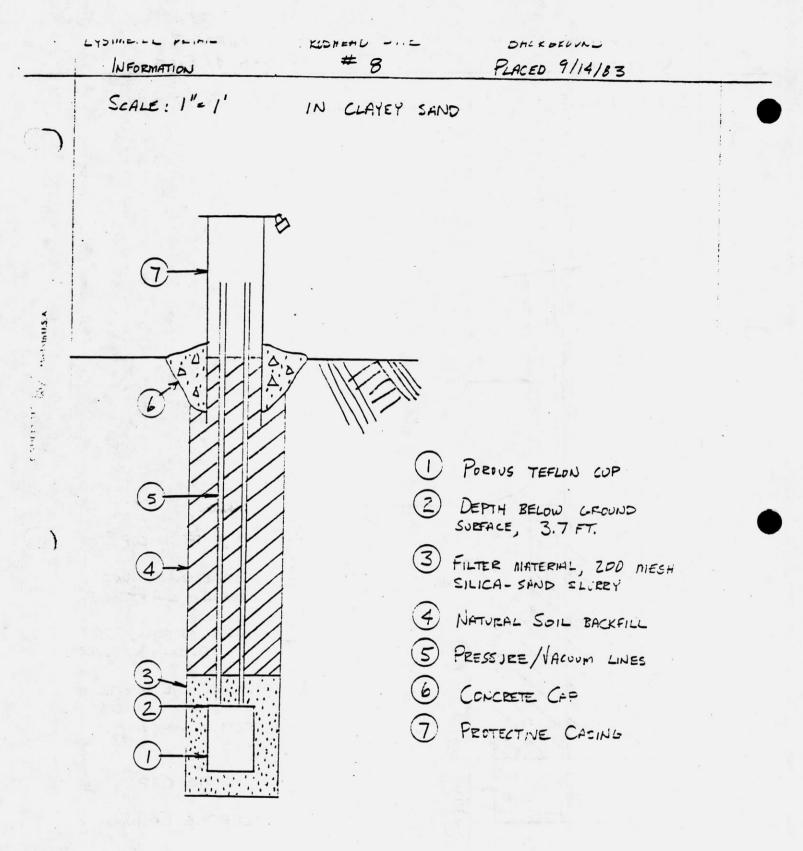

| •                               | 6 -      | WELL 17                               | CELL I FURROW<br>By Lysimeters | FUREOW NU IN<br>CELLI OUTSIDE<br>HEADER | RIDLE IN HIN CELL!<br>AUTEIDE HEADER |
|---------------------------------|----------|---------------------------------------|--------------------------------|-----------------------------------------|--------------------------------------|
| ()                              |          |                                       |                                |                                         |                                      |
|                                 |          | DARK SATURATED                        |                                |                                         |                                      |
|                                 | · 1      | SAND                                  | AIR!                           | AIR                                     | REDDISH                              |
| QUARE<br>QUARE<br>QUARE         | *        |                                       |                                |                                         | SAND                                 |
| SHEELS SS                       | 2        | FUREOW<br>BOTTOM                      | ORGANIC MAT                    | ORGANIC MAT )                           |                                      |
| 42 381 50                       |          | DARK SAND-ORGHISC<br>INHIBITING LAYER | DARK SHND                      | DARKER<br>Sand                          |                                      |
| Marianar 13 38, 100 SHEIS SOUND | 3 -      | CLEAN                                 | DARK<br>Organic                |                                         | WHITISH.<br>SAND                     |
|                                 |          | Moist                                 | BASFIER                        |                                         |                                      |
| •                               | 4 +      | SAND                                  | CLEANER<br>SAND                |                                         |                                      |
|                                 | 5        |                                       |                                |                                         |                                      |
|                                 | 6 +      | "ANAERDEIC"                           |                                |                                         |                                      |
|                                 | 0        | DARK SAND                             |                                |                                         | (and)                                |
|                                 | 7 +      | 7 WHTER<br>7 TAELE                    |                                |                                         |                                      |
|                                 |          |                                       |                                |                                         |                                      |
|                                 | в        |                                       |                                |                                         |                                      |
|                                 |          |                                       |                                |                                         |                                      |
|                                 | 9 -<br>¥ |                                       |                                |                                         |                                      |

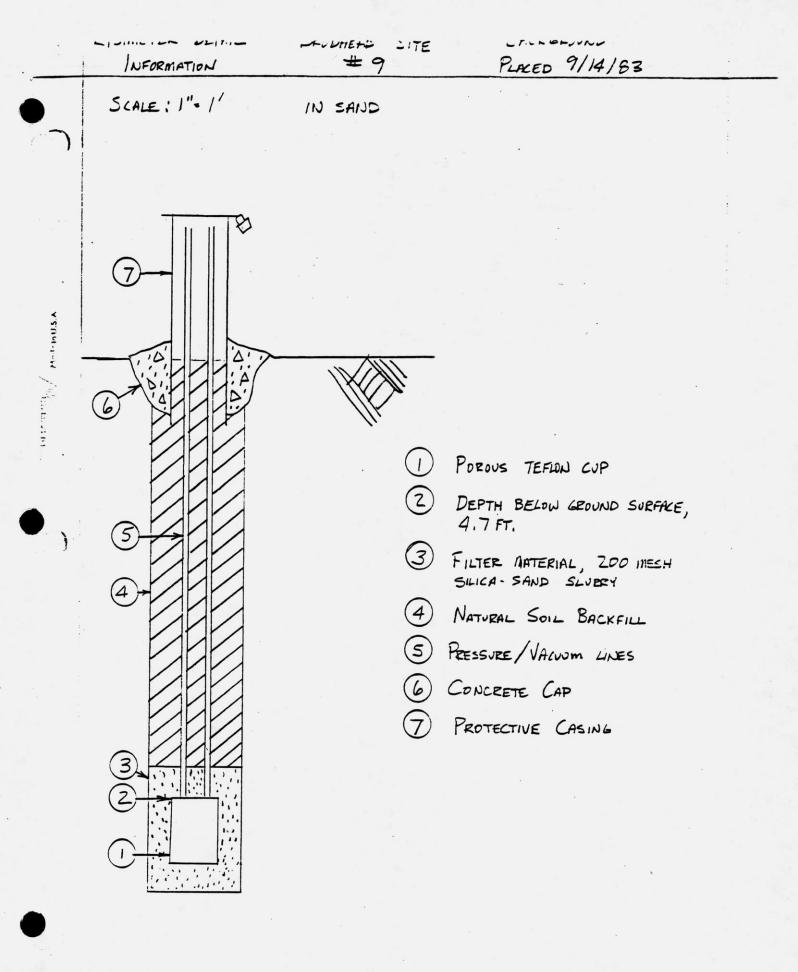

| ο.  | NWCELL 1 FUEDOW<br>INSIDE HEADER | NW CELL - RIDLE<br>INSIDE HEADER | NE CELL ZRIDGE<br>Dutside header | CENTER CELLZ<br>Eftween Headers |  |
|-----|----------------------------------|----------------------------------|----------------------------------|---------------------------------|--|
| , _ | AIR!                             |                                  | D11.                             | Au                              |  |
|     | ORGANIC MAT )                    | Sand                             | ALL<br>Sand                      | ALL<br>Sand                     |  |
|     | Dark<br>Sand                     | DAEK SAIJD<br>DAERIER            |                                  |                                 |  |
|     | LIGHTER<br>Sand                  | LIGHTER<br>SAND                  |                                  |                                 |  |
|     |                                  |                                  |                                  |                                 |  |

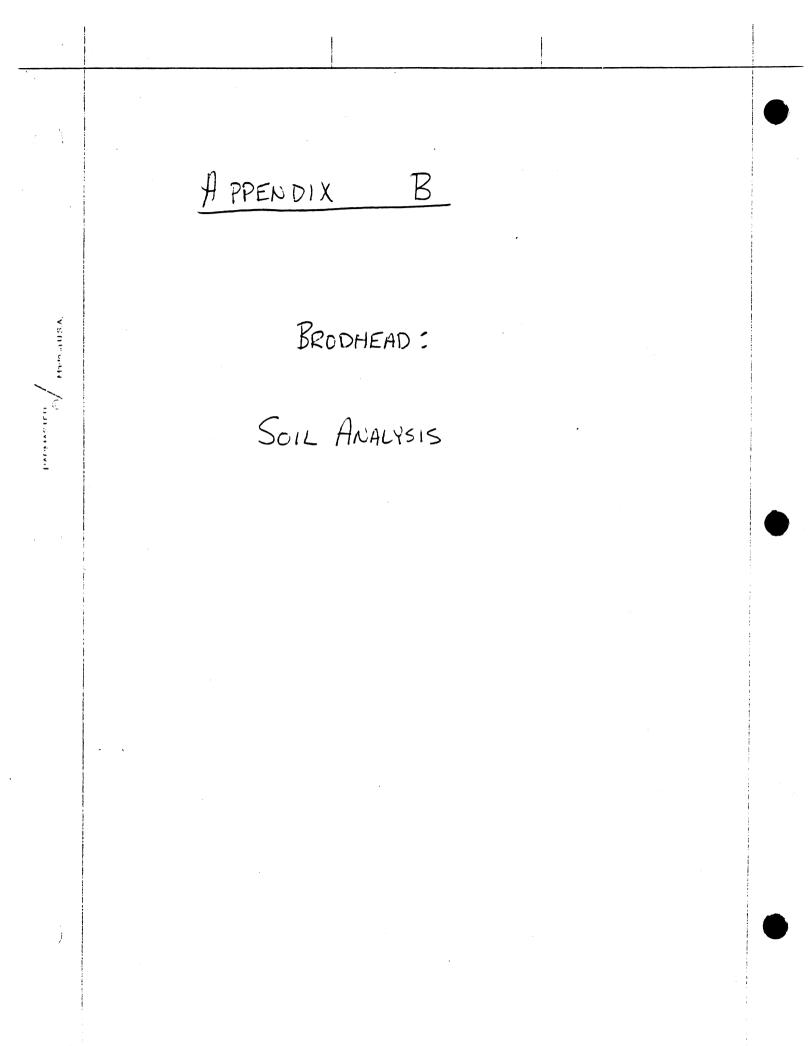

CELL Z HAS SUBSURINCE BARRIERS ONLY AROUND # 44 HEAVER AS SEEN WHEN INSTALLING LYSINGTER # 44














OPERATIVE EXTENSION PROGRAMS

University of Wisconsin-Extension

LUEX University of Wisconsin-Madison Chil & Plant Analysis Laboratory, 806 South Park Street, Madison, Wisconsin 53715; 608-262-4364



DEPARTMENT OF SOIL SCIENCE

October 7, 1983 Acct. 900 Lab No. 00290

MEMORANDUM

David Sauer Wis. DNR Box 7921 53707 Madison, WI

FOR BEDDHIFD

Soil/Plant Analysis Lab FROM:

5 soil samples submitted Sept. 15, 1983.

| RE: Results o      | r analyses on 5 s | 5011 Jump - |      | Total    |
|--------------------|-------------------|-------------|------|----------|
|                    | Sand              | Silt        | Clay | <u>N</u> |
| Sample No.         |                   |             | -%   | 0.04     |
|                    | 91                | 4           | 5    |          |
| $\sum_{i=1}^{n-1}$ |                   | 16          | 3    | 0.11     |
| レビン 2<br>して 2      | 81                |             | 3    | 0.01     |
| √ 2 2<br>√ 3 2 4 3 | 96                |             | 2    | 0.01     |
| 1                  | 93                | 5           | -    | -0.01    |
|                    | 95                | 3           | 2    |          |
| £' 5               | ,,                |             |      |          |

"\_" values = less than.

All additional analyses are attached.

Your invoice for these analyses is enclosed.

Encls.

/sf

University of Wisconsin-Extension . United States Department of Agriculture . Wisconsin Counties Cooperating and Providing Equal Opportunities in Employment and Programming

| IDENTIFICATION<br>FIELD         VIELD         GGALS         S3707         S3707         FARME           ACRES<br>NAME<br>BOIL<br>NAME<br>BOIL<br>NAME<br>BOIL<br>DATS         CON         ALFAFA         DATS         70.0         LABORATORY ANALYSIS FOR EACH SAMPLE         FARME           Image: State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0-00290<br><b>LAS. FARM NO.</b><br>11A18 CUMITY ACCOMING<br>WI 13 900<br>DATE REGIVED DATE PROCESSIO<br>09-21-83 09-21-83                                                | SOIL & PLANT ANALYSIS LAB<br>806 S PARK<br>MADISON WI<br>53715                                                                                                                                  | SOIL TEST REPORT<br>Somples Analyzed By:<br>SOIL & PLANT ANALYSIS LAB<br>806 S. PARK<br>MADISON WI                                                                                                         | IS FOR:<br>DAVID SAUER<br>WIS DNR-BOX 7921                                                                                                                                                                                        | COOPERATIVE EXTENSION I<br>UWEX University of Wistoman<br>Soils Department, Ma<br>WISC |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| ORAGE         Bit Generita<br>Bit Generit | FIELD 1<br>ACRES<br>SOIL<br>NAME GROUP XE<br>PLOW                                                                                                                        | CORN ALFALFA                                                                                                                                                                                    | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                     | ANALYSIS FOR EACH SAMPLE                                                                                                                                                                                                          | 07 COOPE<br>FARMER                                                                     |
| Induman       Image: Constant of the state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LIME TONS HIS ACR<br>GRADE PH on PH<br>USED 0.6 6.9<br>00-89 NONE on NONE<br>10 ONE MONE                                                                                 | CROP<br>YEAR         PLANI NUINENIS<br>P205         CORN<br>YIELD GOAL<br>BU/A           FIRST         0         110         61-80           SECOND         0         110         81-100        | PLANT NUTRIENTS         ALFALFA           N $\frac{7}{20}$ s $\frac{1}{8}$ N $\frac{7}{20}$ s $\frac{1}{8}$ 100         0         20           120         0         25           140         0         30 | FERTILIZER         PROGRAM           NUT NUTRIENTS         OTHER CHOPS AND VIELD GOAL           05         K20           010         R CHOPS AND VIELD GOAL           0         75           0         75           0         150 | PLANT NUTRIEN                                                                          |
| RETEST THIS FIELD AT LEAST EVERY 2 YEARS BECAUSE OF THE LOW POTASSIUM BUFFERING CAPACITY OF ITS SOILS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FERTILIZATION<br>PROGRAM<br><u>CORRECTIVE</u><br><u>MAINTENANCE</u><br><u>NUTRIENT ADJUSTMENT (S<br/>TOTAL</u><br>FERTILIZATION RECORD DATE<br>AND/OR METHOD OF APPLICAT | SI<br>RATE<br>TION<br>RATE<br>CRADE<br>RATE<br>CRADE<br>RATE<br>CRADE<br>RATE<br>CRADE<br>RATE<br>CRADE<br>RATE<br>CRADE<br>RATE<br>CRADE<br>FERTILIZAT<br>AND/OR ME<br>FERTILIZAT<br>AND/OR ME | TION VEAR 19<br>M PLANT NUTRIENT STIVE ENANCE NT ADJUSTMENT (S) TOTAL ION RECORD DATE THOD OF APPLICATION                                                                                                  | LIZER REQUIREMENTS<br>CROP<br>FERTILIZATION<br>PROGRAM<br>CORRECTIVE<br>MAINTENANCE<br>ICTRIENT ADJUSTMENT (S)<br>TOTAL<br>FERTILIZATION RECORD DATE<br>AND/OR METHOD OF APPLICATION                                              |                                                                                        |

## COOPERATIVE EXTENSION PROGRAMS

LLLEX University of Wisconsin-Madison

Soil & Plant Analysis Laboratory, 806 South Park Street, Madison, Wisconsin 53715; 608-262-4364

## DEPARTMENT OF SOIL SCIENCE

September 21, 1983 Acct. 900 Lab No. 00221

## MEMORANDUM

Dave Sauer TO:

Wis. DNR Box 7921 Madison, WI 53707

BRODHEAD

FROM: Soil/Plant Analysis Lab

RE: Results of analyses on 7 soil samples submitted Sept. 1, 1983.

| Sample No.   | Sand  | Silt | Clay | Total<br>N |
|--------------|-------|------|------|------------|
|              | ***** | %    |      | *******    |
| 1 W10 4-6    | 95    | 2    | 3    | 0.04       |
| 2 10 6-5     | 97    | 0    | 3    | 0.02       |
| 3 10 9-14    | 96    | 1 ·  | 3    | 0.03       |
| 4 WID 21-29' | 99    | 0    | 1    | -0.01      |
| 5 WII 2-4    | 95    | 2    | 3    | 0.04       |
| 6 WII 9-14'  | 99    | 0    | 1    | -0.01      |
| 7 WIZ 2-4    | 95    | 0    | 5    | 0.03       |

Note: "-" values = less than.

If you have any questions concerning these analyses, please feel free to contact us.

Additional analyses attached.



)

| I E PLANT                                     | ANALYSIS LAB |                  |                           | S           |            |                           | Analyzed By            |                       | THIS R             | EPORT                                 |          |                      |                         |                                  | LUEX                | University<br>University | NBION P<br>of Wisconsin<br>of Wisconsin<br>partmant, Ma | <ul> <li>Extension</li> <li>Madison</li> </ul> |
|-----------------------------------------------|--------------|------------------|---------------------------|-------------|------------|---------------------------|------------------------|-----------------------|--------------------|---------------------------------------|----------|----------------------|-------------------------|----------------------------------|---------------------|--------------------------|---------------------------------------------------------|------------------------------------------------|
| S PARK<br>ISON                                | WI<br>53715  |                  |                           |             | . C<br>S.  | PLAN1<br>PARK             | ANALY                  | SIS LAD               |                    | UN:                                   | И        |                      | SAUER<br>NR BOX 7<br>ON | 7921<br>537(                     | WI<br>07            |                          |                                                         | ISCONSIN<br>DEPERATIVE<br>S COPY               |
| YIELD G                                       | QALS         |                  | 的。                        |             |            |                           |                        | <b>LABORAT</b>        | ÓRY AN             | ALYSI                                 | Ş F      | OR EA                | сн şамр                 | LE State                         |                     |                          |                                                         |                                                |
| A A                                           | _FALFA       | Sample<br>Number | Soil<br>Texture<br>(Code) | Est.<br>CEC | Soil<br>pH | Organic<br>Matter<br>Tons | P<br>Phosphorus<br>Ibs | K<br>Potassium<br>Ibs | Ca<br>Culci<br>Ibs | um                                    | Mag      | Mg<br>gnesium<br>Ibs | B<br>Boron<br>Ibs A     | Mn<br>Manganese<br>Ibs           | Zn<br>Zinc<br>Ibs A | s                        | S<br>ultur<br>Ibs/A                                     | Lab Use<br>Buffer<br>Code                      |
|                                               | 70.0         | 12               | 1                         | 2<br>1      | 6.5<br>7.1 | 32                        | 15 VL<br>23 VL         | 65 L<br>75 L          | 700                | M                                     | 18       | M DI                 | WID 6.8                 |                                  |                     |                          |                                                         | 7.5                                            |
|                                               |              | 3                | 1                         | 22          | 7.3        | 2                         | 14 VL<br>11 L          | 75 L<br>50 L          | 900<br>900         | M                                     | 10       |                      | 10 -1-14<br>10 26-21    |                                  |                     |                          |                                                         |                                                |
|                                               |              | 5                | 1                         | 3           | 7.4        | 11<br>2                   | 23 VL<br>-14 L         | 45 L<br>55 L          | 1250<br>550        |                                       | 25<br>10 | 0 M<br>0 L           | WI 2.41                 |                                  |                     |                          |                                                         |                                                |
|                                               |              |                  |                           |             | SOIL       | TEST LEVE                 | L CODES: VL (V         | (ery Low), L(Low)     | , LM(Low Med       | ium), M(Mə                            | idium) , | HM(High N            | Aodium), H(High),       | VH(Very High), E                 | H(Excussively F     | ligh)                    |                                                         |                                                |
| CORRECTIVE                                    |              | 1. L. A. L.      |                           | * 3         |            |                           | M                      | AINTENAN              | NCE FEF            | TILIZE                                | R P      | ROGR                 | AM                      | n Fris de La Su<br>Antoine La Su |                     | 1-7-942<br>              |                                                         |                                                |
| - PLAN<br>NUTRIE<br>P205<br><sup>105</sup> /A |              | AL               |                           | P           |            | NTS<br>K20                | ALFAI<br>YIELD<br>T/A  | LFA<br>GOAL           |                    | NT<br>ENIS<br>K <sub>2</sub> O<br>Ibs |          | ОТНЕ                 | ER CROPS A              | ND YIELD                         | GOAL                | PLANT<br>N               |                                                         | NTS<br>K20<br>Ibs/A                            |
| ND                                            |              |                  | <u> </u>                  |             |            |                           |                        |                       | ·                  |                                       |          |                      |                         |                                  |                     |                          |                                                         |                                                |
| ,                                             |              |                  |                           |             |            |                           |                        |                       |                    |                                       |          |                      |                         |                                  |                     |                          |                                                         |                                                |

· .

|   | WORKSPACE FO                                                                              | R CALCULATING YOUR TOTAL ANNU | Al <sup>de</sup> fertilizer requir | IEMENTS                  |         |
|---|-------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|--------------------------|---------|
|   | YEAR 19                                                                                   | C-1OP:                        | YEAR 19                            | CROP;                    | YEAR 19 |
|   | $\frac{PLANT NUTRIENTS}{N} \frac{P_2 O_6}{(t_0, t_0, t_0)} \frac{\kappa_2 O}{\kappa_2 O}$ | FERTILIZATION<br>PROGRAM      | PLANT NUTRIENTS                    | FERTILIZATION<br>PROGRAM |         |
| [ |                                                                                           | CORRECTIVE                    |                                    | CORRECTIVE               |         |

|                | ·                                 |                  |                                |                                  |                             |                                   |                                          |                                                                                                                                    |                 |                  |                          |                   |                                                                            | •                         |
|----------------|-----------------------------------|------------------|--------------------------------|----------------------------------|-----------------------------|-----------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|--------------------------|-------------------|----------------------------------------------------------------------------|---------------------------|
| C PLANT ANALYS | IS LAU                            |                  |                                |                                  |                             | T REP(<br>Analyzed By:<br>AtiALYS |                                          | This report<br>Is for:                                                                                                             | DAVE S          | 54UER            | c                        |                   | University of Wisconsin<br>University of Wisconsin<br>Soils Department, Mi | Madison 🚦                 |
| YIELD GOALS    |                                   | Semple<br>Number | Soil E<br>feature Cl<br>(Code) | at. Soil<br>pH                   | Organic<br>Matter<br>Tone A | Phosphorus<br>Ibs<br>17 VL        | ABORATO<br>Polessium<br>Ibs<br>A<br>60 L | Ce<br>Culcium<br>Ibs/A<br>8CJ M                                                                                                    | ISTFOR FA       | CH SAMP          | Mn<br>Manganese<br>Ibs A | Zn<br>Zinc<br>Ibe | S<br>Sultur<br>Ibs/A                                                       | Lab Use<br>Buller<br>Code |
| 7              | C.C                               |                  |                                | 2 6.9                            | 4                           | Ti Ar                             | OV L                                     |                                                                                                                                    |                 |                  |                          |                   |                                                                            |                           |
|                | CORN<br>YIELD GOA<br>BU/A<br>61-8 | AL<br>10         | PLAI                           | NT NUTRIE<br>P205<br>Ibe/A<br>30 |                             | ALFAL<br>YIELD<br>T/A             | INTENAN                                  | LM(Low Muchum), M(N<br>CETREFTILL<br>PLANT<br>PLANT<br>PLOS<br>F205<br>IUS<br>105<br>105<br>105<br>105<br>105<br>105<br>105<br>105 | ERIPROGR<br>OTH | AM<br>ER CROPS A |                          | GOAL              |                                                                            |                           |
| 60 110<br>60 0 | 81-1<br>101-1                     |                  | 120<br>140                     | 35<br>40                         | 30                          |                                   | 1-4.0                                    | 50 200                                                                                                                             |                 |                  |                          |                   |                                                                            |                           |

------

 $\mathcal{C}$ APPENDIX BRODHEAD: WASTEWATER CHEMISTRY DATA )

|   | BRODH<br>Data Sh |               | INULATIVE         | Chem<br>(m)(c) |                               | BWWNSE     |                        | IW<br>ASTEW   | TAKEOFF<br>ATER | - Speaketert |
|---|------------------|---------------|-------------------|----------------|-------------------------------|------------|------------------------|---------------|-----------------|--------------|
|   | DATE             | TOTAL<br>BOD5 | TOTAL<br>COD      | 165<br>705     | 3 a<br>TKNX                   | 10         | 11<br>NO2-N+<br>NO3-NX |               | NOB)<br>PH      | OTHER        |
|   | 0/20/53          | 3200          |                   | _              | 46.0                          | 1.4        | 3.0                    | 89D           | 10.4<br>W       | _            |
|   | 3/7/34           | 1700          | 2300              | 5961570        | 34                            | 2.7        | 4.1                    | 32            | -               | TSS<br>1570  |
|   | 4/23/34          | 1200          | 2400              | 964            | 4)                            | 2,5        | 5.8                    | 1600          | 6.6             | 775<br>3775  |
| • | 5/24/84          | 1600          | 2100              | 805            | 4D                            | 2.2        | 0.7                    | 2300          | 7.4             | 7.4 IAE ph   |
|   | 6/7/84           | 1600          | >2000 ?           | 930            | 45                            | 2,5        | 2.7                    | 90            | 6,3             |              |
|   | 7/19/84          | 1800          | 2700              | 470            | 44                            | 4,1        | 1.6                    | 1300          | 7,1             | -            |
|   | 7/31/84          | 1700          | 2400              | 464            | 36                            | Z.8        | z ,4                   | 980           | -               |              |
|   | 8/30/34          | >1100         | 2100              | 764            | 32                            | 1,5        | 0,4                    | 620           | 7.4             |              |
|   | 9  25  84        | Z500          | 3400              | 1110           | 75 TOT<br>37 DISS             | Z.9<br>Z.9 | 5.2                    | 94 <i>0</i> . | 7,4             |              |
|   | 10/9/84          | 980           | 3220 0655<br>2100 | 555            | 28 TOT                        | 2,6        | 4.2                    | 1400          | 7,8             |              |
|   | 11/20/34         | 2200          |                   | 1130           | 21 0155<br>38 tot<br>2.1 0:55 | 2.0        | 5,2                    | 190           |                 |              |
|   |                  |               |                   |                |                               |            |                        |               |                 |              |
|   |                  |               |                   |                |                               |            |                        |               |                 |              |
|   |                  |               | -                 |                |                               |            |                        |               |                 |              |
|   |                  |               | -                 |                |                               |            | ·                      |               |                 |              |
|   |                  |               |                   |                |                               |            |                        |               |                 |              |
|   |                  |               |                   |                |                               |            |                        |               |                 |              |
|   |                  |               |                   |                |                               |            |                        |               |                 |              |
|   |                  |               |                   |                |                               |            |                        |               |                 |              |
|   |                  |               | -                 |                |                               |            |                        |               |                 |              |
|   |                  |               |                   |                |                               |            |                        |               |                 |              |
|   |                  |               |                   |                |                               |            |                        |               |                 |              |

|                                         | DATA SH  |           |            | TAR   | AMETERS        | (mg/_) | ) KA  | w was | TENATER |
|-----------------------------------------|----------|-----------|------------|-------|----------------|--------|-------|-------|---------|
|                                         | DATE     | ALKALINIT | P<br>TOTAL | 50,2- | $\int Ca^{2+}$ | Nat+   | Mg2+  | K+    | OTHER   |
|                                         | 10/20/83 | ~814*     | 120.       | 14,   | 170            | 840    | 78-   | -     | _       |
|                                         | 3/7/84   | <u> </u>  | 29         | 210   | 69             | 86     | 3Z    | 35    | _       |
|                                         | 4/23/84  | 35Z       | 44         | -     | 110            | 1100   | 49    | 5/    | -       |
| ••••••••••••••••••••••••••••••••••••••• | 5/24/84  | 67Z       | 46         | /al T | 89             | 0071   | 28 j  | 47    | -       |
| - 1.<br>                                | 6/7/84   | —         | -          |       | _              |        | -<br> |       | -       |
| 7                                       | 7/19/84  | -         | -          | -     | _              | -      | -     | _     | -       |
| 1                                       | 7/31/84  | _         | -          | _     | ~              | _      | -     | -     | _       |
|                                         | 8/30/24  | 530       | 49         |       | 110            | 490    | 52    | 22    | _       |
|                                         |          |           |            |       | 109.6          | 343.2  | 47,8  |       |         |
|                                         |          |           |            |       | 1.37           | 36.68  | 0.98  |       |         |
| $\mathbf{v}$                            |          |           |            |       |                |        |       |       |         |
| /                                       |          |           |            |       |                |        |       |       |         |
|                                         |          |           |            |       |                |        |       |       |         |
|                                         |          |           |            |       |                |        |       |       |         |
|                                         |          |           |            |       |                |        |       |       |         |
|                                         |          |           |            |       |                |        |       |       |         |
|                                         |          |           |            |       |                |        |       |       |         |
| •                                       |          |           |            |       |                |        |       |       |         |
|                                         |          |           |            |       |                |        |       |       |         |
| •                                       |          |           |            |       |                |        |       |       |         |
|                                         |          |           |            |       | -              |        |       |       |         |
|                                         |          |           |            |       |                |        |       |       |         |
| 1                                       |          |           |            |       |                |        |       |       |         |

APPENDIX D. PARMATER / HARMUEA BRODHEAD: WASTEWATER FLOWS TO RIDGE & FURROW 30- DAY AVERAGES 24 HR PROJECT FLOWS

|   |                        | _     |       |                  |         |         |       |          |
|---|------------------------|-------|-------|------------------|---------|---------|-------|----------|
|   |                        | U     | BRO   | XDHEAD<br>TER FL | ош (баш | cns/DAt |       |          |
|   |                        |       | YEARS | 1979 -           | 1984    |         |       |          |
|   | MONTH                  | 1979  | 1980  | 1981             | 1982    | 1983    | 1984  | 1924     |
|   | JANUARY                | 26496 | 54740 | 43214            | 37966   | 35371   | 35289 |          |
|   | FEBRUNRY               | 36459 | 55575 | 48502            | 3721Z   | 36024   | 3816Z |          |
|   | MARCH                  | 39979 | 59618 | 51924            | 37/74   | 35347   | 37548 |          |
|   | APRIL                  | 19054 | 49288 | 31206            | 42200   | 43000   | 25056 | 43070    |
|   | MAY                    | 12734 | 32466 | 27764            | 53220   | 26429   | 37656 | 50400    |
| - | JUNE                   | 16785 | 39547 | 28506            | 49348   | 33035   | 428R  | 42064    |
|   | JULY                   | 43178 | 22780 | 33018            |         | 40441   | 44145 | 29167    |
|   | AUGUST                 | 428ZI | 27567 | 40469            |         | 25855   | 35664 |          |
|   | SEPTEMBER              | 41895 |       | 50317            |         | 38578   | 48414 | 56600    |
|   | OCTOBER                | 54664 | 36849 | 49852            | 46469   | 4234Z   | 43075 | 45000    |
|   | NOVEMBER               | 55658 | 35616 | 61427            | 50389   | 37665   | -     |          |
|   | Decemetr               | 45124 | 41563 | 22339            | 51731   | 28197   |       |          |
|   | YEARLY<br>AVERAGE      | 36237 | 41436 | 40713            | 45082   | 35140   | 38783 | 44717    |
|   | Commutative<br>Averave | 36237 | 38723 | 394D6            | 40567   | 39404   | 39507 | $\times$ |

ł

\* 24-HR FLOWS DETERMINED ON SAMPLING DAYS

- )

Presenting LL C. A.

)

) APPENDIX E A S H ni ebeta BRODHEAD : GROUNDWATER ELEVATIONS AND CONTOURS

DATA SHEET ! WELL IDA / ENISTH ! 15/10 17/10

- ..

SHALLOW

|               | DATA     | SHEET ; WEL    |                 | 6TH: 15/ H.67      | 1.4.64             | SHALLOW           | ·                                      |
|---------------|----------|----------------|-----------------|--------------------|--------------------|-------------------|----------------------------------------|
|               | DATE     | DEPTH TO<br>GW | GW<br>Elevation | Volume HzD<br>(ft) | 3 Volumes<br>(GAL) | Volume<br>Removed | COMMENT                                |
|               | 9/23/83  | 6.37           | 772.00          | -                  |                    |                   |                                        |
|               | 10/20/83 | 7.00           | 771,37          | ~ B                | . 4                | 5                 |                                        |
|               | 11/16/83 | 7.54           | 770.83          | 7. /               | 3,6                | 5                 | GRAY TINT, SLIGHT<br>ODDE, NO DRAWDOWN |
|               | 12/20/B3 | . 6.67         | 07 <i>.</i> 177 | ~ 8                | 4                  | 4                 | LIGHT BROWN, SMELLY<br>LOOKS OILY      |
| . • •         | 1/12/84  | 7.00           | 771.37          | 7.7                | 3.8                | 4                 | BROWN - GBAY<br>ODOR                   |
| A.2.UnlahrM   | 2/12/84  | 7.18           | 771.19          | 7.5                | 3.7                | 4                 | LIGHT - BROWN<br>COOR                  |
| · .           | 3/20/84  | 7,40           | 770.97          | 7,2                | 3,6                | 4                 | CLEAR TO YELLOW<br>COOR                |
| саналагин 60/ | 4/22/84  | 6.34           | 771.53          | 7.8                | 3.9                | 4                 | LIGHT BROWN<br>Slight oddr             |
| 40101010      | 5/24/84  | 6.73           | 771.64          | 7,9                | 4.0                | 4                 | LIGHT BEDWN                            |
|               | 6/7/84   | 6.85           | 771.5Z          | 7.3                | 3.9                | 4                 | BROWNISH - YELLOW                      |
|               | 7/19/84  | 6.35           | 771,99          | 8.3                | 4.)                | 5                 | YELLOW                                 |
| )             | 8/30/£4  | 7.18           | 19.17           | 7.5                | 3.3                | 4                 | YELLOW                                 |
|               | 9/25/84  | 7.06           | 77/.31          | 7.6                | 3.3                | 4                 | YELLOW - JOOR                          |
|               | 10/9/84  | 6.92           | 771.45          | 7,7                | 3,9                | 4                 | TELLOW                                 |
|               | 11/20/84 | 6.59           | 771.73          |                    | _                  |                   |                                        |
| :             |          | 1              |                 |                    |                    |                   |                                        |
|               |          |                |                 |                    |                    |                   |                                        |
|               |          |                |                 |                    |                    |                   |                                        |
|               |          |                |                 |                    |                    |                   |                                        |
|               |          |                |                 |                    |                    |                   |                                        |
|               |          |                | -               |                    |                    |                   |                                        |
|               |          |                |                 |                    |                    |                   |                                        |
|               |          |                |                 |                    |                    |                   |                                        |
|               |          |                |                 |                    |                    |                   |                                        |

|   | ے ہور ہوت میں اور | 111- 14 |     |  |
|---|-------------------------------------------------------|---------|-----|--|
| - | 1                                                     | 1       | lla |  |

Ur

DATA SHEET : WELL IOB LENGTH : 27.5/26. 78/76 76 DEEP

|                    | DATA :   | SHEET WEL       | T 108 TEN       | 6TH: 27.5/Cb.     | 78/26.76           |                                                                                             |                                        |
|--------------------|----------|-----------------|-----------------|-------------------|--------------------|---------------------------------------------------------------------------------------------|----------------------------------------|
|                    | DATE     | DEPTH TO.<br>GW | GW<br>Elevation | Volume H20<br>(H) | 3 NOLUMES<br>(GAL) | VOLUME<br>REMOVED                                                                           | COMMENT                                |
|                    | 9/23/83  | 6,87            | 770.99          |                   |                    | _                                                                                           | _                                      |
|                    | 10/20/03 | 6.51            | 771,35          | ~ ZI              | 10.5               | 15                                                                                          |                                        |
|                    | 11/16/83 | 7.06            | 770,80          | ~ 19.7            | 9.9                | 15                                                                                          | GRAY TINT, SLIGHT<br>ODOR, NO DRAWODWN |
|                    | 12/20/83 | 6.21            | 771.65          | ZD. 6             | 10.3               | 12                                                                                          | CLEAR, SMELLY                          |
| ·                  | 1/12/84  | 6.50            | 771.36          | 20.3              | 10.1               | 12                                                                                          | YELLOW, STEALS OOOR                    |
| <b>∧.2.</b> U ut - | 2/12/84  | 6.69            | 771.17          | 20,2              | 10.1               | 12                                                                                          | LIGHT BROWN<br>CDDR                    |
| / wet              | 3/20/84  | 6.90            | 770.96          | 19,9              | 9,9                | 12                                                                                          | JELLOW TO GREEN<br>COOR                |
|                    | 4/22/84  | 6.35            | 771.51          | Z0.4              | 10.2               | 12                                                                                          | LIGHT BEDWN<br>Slight Odor             |
|                    | 5/24/84  | 6.22            | 771.64          | 2D, 5             | 10.3               | 12                                                                                          | LIGHT BROWN<br>SLIGHT DOOR             |
| •                  | 6/7/84   | 6.35            | 771.51          | 20.4              | 10.2               | . 12                                                                                        | YELLOW - CODE                          |
|                    | 7/19/54  | 5.88            | 771.98          | ZD.9              | 1D.4               | 12                                                                                          | YELLOW                                 |
| )                  | 8/30/54  | 6.68            | 171,18          | 20.1              | 10.l               | 12                                                                                          | LIGHT YELLON - DOOR                    |
|                    | 9/25/84  | 6,56            | 771,30          | Z0,Z              | 10.1               | 12                                                                                          | LIGHT VELLOW - DOR                     |
|                    | 10/9/84  | 6,43            | 771.43          | 20,3              | 10. Z              | 12                                                                                          | LIGHT YELLOW - DEOR                    |
|                    | 11/20/84 | 6.12            | 771.74          |                   |                    |                                                                                             |                                        |
|                    |          |                 |                 |                   |                    |                                                                                             |                                        |
|                    |          |                 |                 |                   |                    | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 |                                        |
|                    |          |                 |                 |                   |                    |                                                                                             |                                        |
|                    | :        |                 |                 |                   |                    |                                                                                             |                                        |
|                    |          |                 |                 | 、                 |                    |                                                                                             |                                        |
|                    | -        |                 |                 |                   |                    |                                                                                             |                                        |
| <b>D</b>           |          |                 |                 |                   |                    |                                                                                             |                                        |
|                    |          |                 |                 |                   |                    |                                                                                             |                                        |

| ļ | <u></u>  | DEPTH TO     | GW<br>ELEVATION | VOLUME HED | 3 VOLUMES<br>(GAL) | VOLUME  |                                |
|---|----------|--------------|-----------------|------------|--------------------|---------|--------------------------------|
|   | DATE     | GW           |                 | (ft)       | (GTL)              | REMOVED | COMMENT                        |
|   | 9123/83  | 4.15         | 771.65          |            |                    |         |                                |
| 1 | 10/20/83 | •            | 771.58          | 5,5        | 2.8                | 5       | FAIRLY CLEAR, SLIGHT           |
|   | 11/16/83 | 4.86         | 770,94          | 4,95       | 2,5                | 5       | ODOR, NO DRAWDIN<br>BROWN-GRAY |
|   | IZ/20/83 |              | 771, 73         | 5,75       | 2.9                | 4       | SLIGHT ODOR                    |
|   | 1/12/B4  | 4.38         | 771.42          | 5.4        | 2.7                | 4       | BROWN- GRAY<br>SLIGHT ODOR     |
|   | 2/12/54  | •            | 771.32          | 5.3        | 2.7                | 4       | LIGHT BEDWD<br>SLI GHT DOCR    |
|   | 3/20/84  | 4.78         | 771.02          | 5.D        | 2,5                | 4       | YELLOW<br>CDOR                 |
| 4 | 4,/22/84 | 4.1D         | סר ודר          | 5-7        | Z.B                | 4       | LIGHT GREY                     |
|   | 5/24/84  | 4.06         | 771.74          | 5.7        | Z, 9               | 4       | (LEAR                          |
| 1 | 617184   | 4.21         | 771.59          | 5.6        | Z. 8               | 4       | WHITISH YELLOW                 |
| : | 7/19/84  | 3.62         | 771.98          | 6 · D      | 3.0                | 4       | LIGHT YELLOW                   |
|   | 8/30/84  | 4.42         | 771.38          | 5.4        | 2.7                | 4       | DOLL HITE - COOR               |
| • | 9/25/84  | 4.37         | 77/,43          | 5,4        | 2,7                | 4       | LIGHT YELLOW - DEER            |
|   | 10/9/54  | 4,25         | 771,55          | 5,5        | Z,B                | 4       | YELLOW                         |
|   | 11/20/84 | 3,97         | 771.83          | -          |                    |         |                                |
| ÷ |          |              |                 |            |                    |         |                                |
| • |          |              |                 |            |                    |         |                                |
|   |          |              |                 |            |                    |         |                                |
|   |          |              |                 |            |                    |         |                                |
|   |          | -<br>        |                 |            |                    |         |                                |
|   |          |              |                 |            |                    | 1       |                                |
|   |          | 40 - 4 Vieta |                 |            |                    |         |                                |
|   |          |              |                 |            |                    |         |                                |

| DATA S | HEET | WELL IIB | LENGTH: 27.5 /25.52/25.49 |
|--------|------|----------|---------------------------|
|--------|------|----------|---------------------------|

| ~               | DATA S    | SHEET ; WELL    | 1/B LEN         | LTH: 27.5 /25.5   | 2/25.49            | DEEP              |                                          |
|-----------------|-----------|-----------------|-----------------|-------------------|--------------------|-------------------|------------------------------------------|
|                 | DATE      | DEPTH TO<br>6 W | 6W<br>ELEVATION | Volume HD<br>(52) | 3 VOLUMES<br>(GAL) | Volume<br>Removed | COMMENT                                  |
|                 | 9/23/83   | 4.72            | 771.69          |                   | -                  |                   |                                          |
|                 | 10/20/83  | 4,81            | 771.60          | ~ Z               | 10.5               | 15                |                                          |
|                 | 11/16/83  | 5,45            | 770.96          | 20,1              | 10.0               | 15                | FAIRLY CLEAR, SLIGHT<br>DOR, No DRANDOWN |
|                 | 12/20/83  | 4,66            | 771.75          | 20.86             | 10.4               | 12                | CLEAR, SLIGHT ODOR                       |
|                 | 1/12/84   | 4,93            | 771.43          | 20.5              | 10.3               | 12                | FAIRLY CLEAR<br>SLILHT ODOR              |
| Ahod atn U.S. A | 2/12/84   | 5.07            | 771.34          | 20,4              | 10. Z              | 1Z                | CLEAR<br>SJUHT DOOR                      |
| , Wate          | 3/20/84   | 5,33            | 77]. OB         | 20.2              | 10,1               | 12                | DULL CLEAR                               |
|                 | 4/22/84   | 4.66            | 771.75          | 20.B              | 10.4               | 12                | CLEAR                                    |
| 4<br>           | 5/24/8A   | 4.62            | 771.79          | ZD. 9             | 10.4               | 12                | CLEAR                                    |
|                 | 617/84    | 4.77            | 771.64          | 20.7              | 10.4               | 12                | FAIRLY CLEAR                             |
|                 | 7/19/84   | 4.36            | 772.05          | 21.1              | 1D.6               | 12                | CLEAR                                    |
|                 | 3/3c/84   | 4.99            | 771.42          | ZD.6              | 10.3               | 12                | DULL CLEAR                               |
|                 | 9/25/84   | 4,94            | 771.47          | 20,6              | 10.3               | 12                | CLEAR                                    |
|                 | 10/9/84   | 4,31            | 771.60          | ZD,7              | 10.3               | 12                | CLEAR                                    |
|                 | 11 /20/84 | 4.54            | 771,37          |                   |                    | -                 |                                          |
|                 | :         |                 |                 |                   |                    |                   |                                          |

| ```            | DATA 2   | SHEET: 12 1<br>DEPTH TO | water wa | TH: 12/12.54/1<br>VOLUME 12D |             | •       | BACKGROUND                    |  |
|----------------|----------|-------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------|-------------|---------|-------------------------------|--|
|                | DATE     | 62                      | ELEVATION                                                                                                      | (5t)                         | (GAL)       | REMOVED | COMMENT                       |  |
| $\overline{)}$ | 9/23/83  | 6.57                    | 771.49                                                                                                         |                              | -           |         | _                             |  |
|                | 10/20/83 | 6.76                    | 771.30                                                                                                         | 5.3                          | 2.7         | 5       |                               |  |
|                | 11/16/83 | 7,32                    | 770.74                                                                                                         | 4.B                          | 2,4         | 5       | CLEAR, NO ODOR<br>NO DRAWDOWN |  |
|                | 12/20/BZ | 6.39                    | 771.67                                                                                                         | 5.75                         | Z. 9        | 5       | BROWN, SILTY                  |  |
| 4              | 1/12/84  | 6.73                    | 771.33                                                                                                         | 5.4                          | Ζ,7         | 4       | YELLOW - BEDWIN               |  |
| 4.5.Uuls.>     | 2/12/84  | 6.93                    | 771.13                                                                                                         | 5.2                          | 2.6         | 4       | BROWN SILTY                   |  |
|                | 3/20/84  | 7.11                    | 770.95                                                                                                         | 5,0                          | 2.5         | 4       | CLEAR                         |  |
| -              | 4/22/84  | 6,53                    | 771.48                                                                                                         | 5.6                          | <i>2.</i> B | 4.      | CIEAR                         |  |
|                | 5/24/84  | 6.43                    | 771.63                                                                                                         | 5.7                          | Z. B        | 4       | CLEAR                         |  |
|                | 6/7/84   | 6.54                    | 771.5Z                                                                                                         | -                            | -           | _       |                               |  |
|                | 7/19/84  | 6.03                    | 772.03                                                                                                         | —                            | -           | -       | _                             |  |
|                | 8  3)/84 | 6.89                    | 71.17                                                                                                          |                              | -           | -       | -                             |  |
|                | 9/25/84  | 6.75                    | 771, 31                                                                                                        | -                            | ~           | -       | _                             |  |
|                | 10/9/84  | 6.67                    | 771,39                                                                                                         | -                            | -           | -       | _                             |  |
|                | 11/20/84 | 6.25                    | 771.31                                                                                                         | -                            | -           | -       | -                             |  |
|                | -        |                         |                                                                                                                |                              |             |         |                               |  |
|                |          |                         |                                                                                                                |                              |             |         |                               |  |
|                |          |                         |                                                                                                                |                              |             |         |                               |  |
|                |          |                         |                                                                                                                |                              |             |         |                               |  |
|                |          |                         |                                                                                                                |                              |             |         |                               |  |
|                |          |                         |                                                                                                                |                              | -           |         |                               |  |
| •              |          |                         |                                                                                                                |                              |             | -       |                               |  |
|                |          |                         |                                                                                                                |                              |             |         |                               |  |

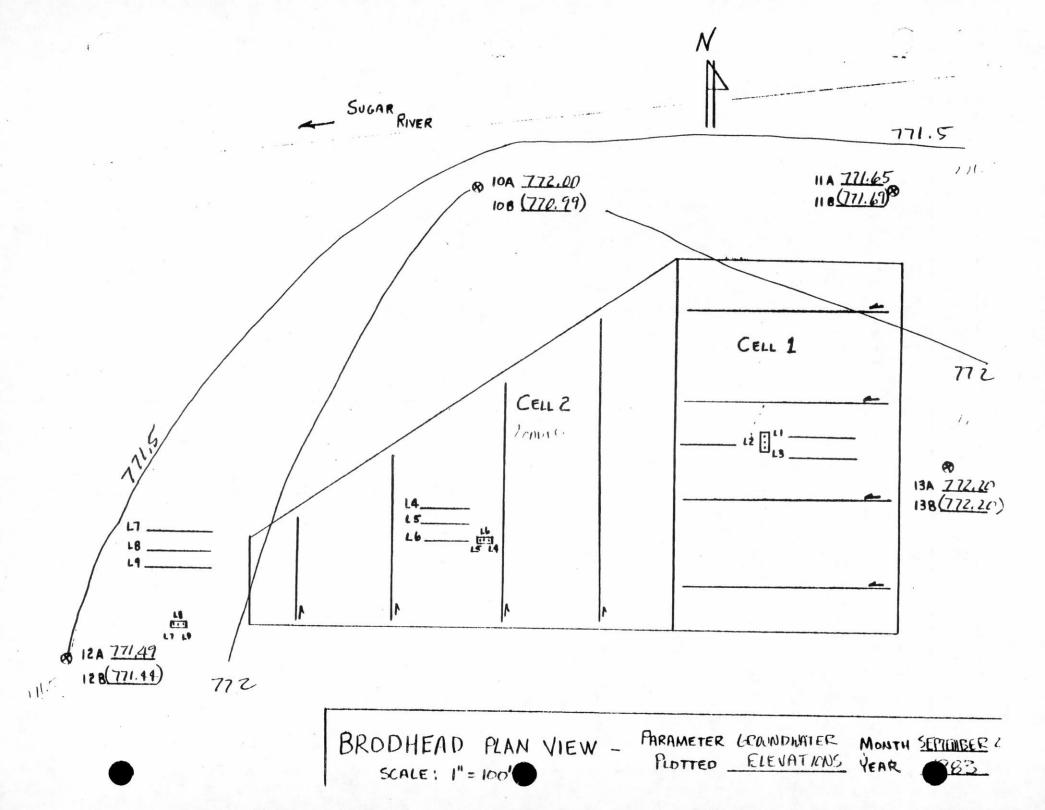
|   | DATE     | DEPTH 70<br>GW | 6W<br>ELEVATION | Volume H20<br>(ft) | '3 Volumes<br>(GAL) | Volume<br>Removed | COMMENT                       |
|---|----------|----------------|-----------------|--------------------|---------------------|-------------------|-------------------------------|
| 7 | 9/23/83  | 5.93           | 771,44          | -                  | -                   |                   |                               |
|   | 10/20/83 | 6.10           | 771.27          | ∽z1                | 10.5                | 15                |                               |
|   | 11/16/83 | 6.65           | 770.72          | 20.Z               | 10.1                | 15                | CLEAR, No DOR<br>NO ORAW DOWN |
|   | /2/20/83 | 5,72           | 771,65          | 21.15              | 10.6                | 12                | LIFAR, ODOPLESS               |
| ¢ | 1/12/84  | 6.03           | 771.34          | 20, 3              | 10.4                | 12                | FAIRLY CLEAR                  |
|   | 2/12/84  | 6,25           | 771,12          | ZD.6               | 10.3                | 12                | CLEAR                         |
|   | 3/20/84  | 6.43           | 770,94          | 20.4               | 10.3                | 12                | CLEAR                         |
| • | 4/22/84  | 5.92           | 771.45          | 20,9               | 10.5                | 12                | CLEAR                         |
|   | 5/24/84  | 5.75           | 771.62          | 21.1               | 10.5                | 12                | CLEAR                         |
|   | 6/7/84   | 5.85           | 771.52          |                    |                     | . —               |                               |
| 1 | 7/19/84  | 5.36           | 772.01          | <u> </u>           | -                   | -                 | _                             |
| • | 8/30/84  | 6.21           | 771.16          | -                  | -                   | -                 | <u> </u>                      |
|   | 9/25/24  | 6.06           | 771.31          | -                  | -                   | -                 | -                             |
|   | 10/9/84  | 5,93           | 771,39          | -                  | -                   | -                 | -                             |
|   | 11/20/84 | 5.57           | 771.30          |                    |                     | _                 | _                             |
|   |          |                |                 |                    |                     |                   |                               |
|   |          |                |                 |                    |                     |                   |                               |
|   |          |                |                 |                    |                     |                   |                               |
|   |          |                |                 |                    |                     |                   |                               |
|   |          |                |                 |                    |                     |                   |                               |
|   |          |                |                 |                    |                     |                   |                               |
|   |          |                |                 |                    |                     |                   |                               |
|   | •        |                |                 |                    | 1                   |                   |                               |

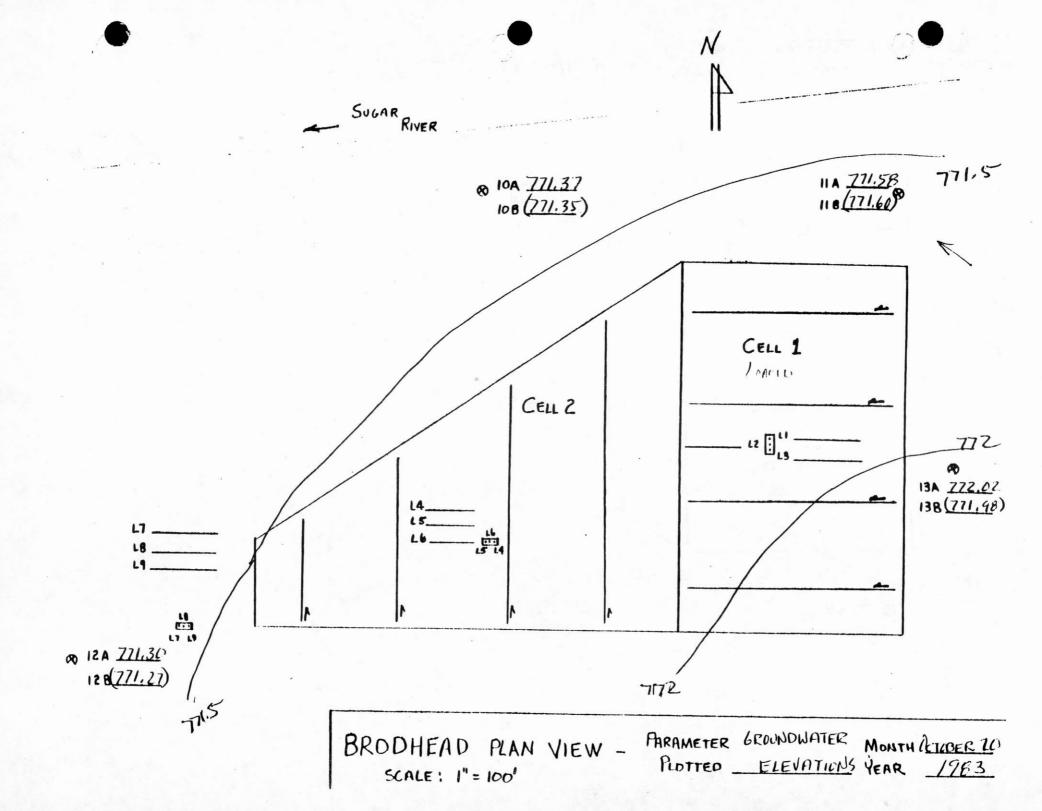
|   | DATE     | DEPIH TD<br>Gw | 6W<br>Elevation | Volume to D<br>(ft) | 3 VOLUMES<br>(GAL) | VOLUME<br>REMOVED | COMMENT                                   |
|---|----------|----------------|-----------------|---------------------|--------------------|-------------------|-------------------------------------------|
| ) | 9/22/63  | 4.55           | 772,20          |                     | _                  |                   |                                           |
|   | 10/20/83 | 4.73           | 1772.02         | ~5                  | 2.5                | 5                 |                                           |
|   | 11/16/83 | 5.26           | 771.49          | 4.5                 | Z.3                | 5                 | LIGHT BROWN TINT,<br>NO ODDE, No DEAWDOWN |
|   | 12/20/83 | 4,62           | 1772.13         | 5.2                 | 2.6                | 4                 | SLILHTLY<br>CLOUDY ODORLESS               |
|   | 1/12/84  | 4.31           | v771.94         | 5.0                 | 2,5                | 4                 | BROWN- LEAY                               |
|   | z/12/84  | 4,92           | j771, B3        | 4,5                 | 2,4                | 4                 | LIGHT BROWN                               |
|   | 3/20/84  | 5.06           | 1771.69         | 4.7                 | 2.4                | 4                 | YELLOW TO CLEAR                           |
|   | 4/22/34  | 4,52           | 1772.23         | 5.2                 | Z. 6               | 4                 | LIGHT GREY                                |
|   | 5/24/84  | 4,41           | ? 772.34        | 5.4                 | 2.7                | 4                 | CLEAR                                     |
|   | 6/7134   | 4.43           | 2772.27         | 5.3                 | . 2.6              | 4                 | LIGHT YELLOW                              |
| ì | 7/19/84  | 4.03           | 1772.72         | 5.8                 | 2.9                | 4                 | CLEAR                                     |
| ; | 8/30/84  | 4.79           | 1771.96         | 5.0                 | Z.5                | 4                 | LIGHT YELLOW                              |
|   | .9/25/84 | 4,54           | 772.21          | 5,3                 | 2,6                | 4                 | LIGHT YELLOW                              |
|   | 10/9/84  | 4,65           | 1772.10         | 5.1                 | 2,6                | 4                 | LIGNT YELLEN                              |
|   | 11/20/24 | 4.08           | 772.66          | _                   | _                  | <u> </u>          | _                                         |
|   |          |                |                 |                     |                    |                   |                                           |
| ; |          |                |                 |                     |                    |                   |                                           |
|   |          |                |                 |                     |                    |                   |                                           |
|   |          |                |                 |                     |                    |                   |                                           |
|   |          |                |                 |                     |                    |                   |                                           |
|   |          |                |                 | -                   |                    |                   |                                           |
|   |          |                |                 |                     |                    |                   |                                           |
|   |          |                |                 |                     | -                  | -                 |                                           |

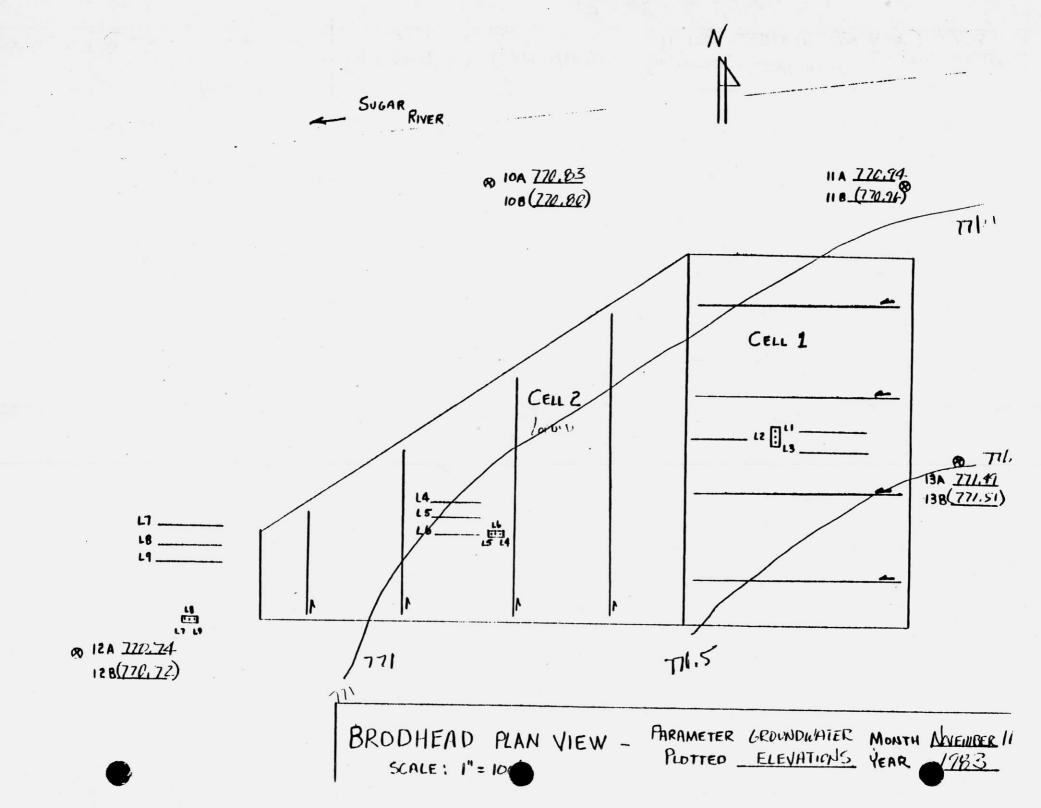
| 1- WIETU WINNUETIVE   |                           |
|-----------------------|---------------------------|
| DATA SHEET ! WELL ISB | LENGTH: 27.5 /26 ET/2: 00 |

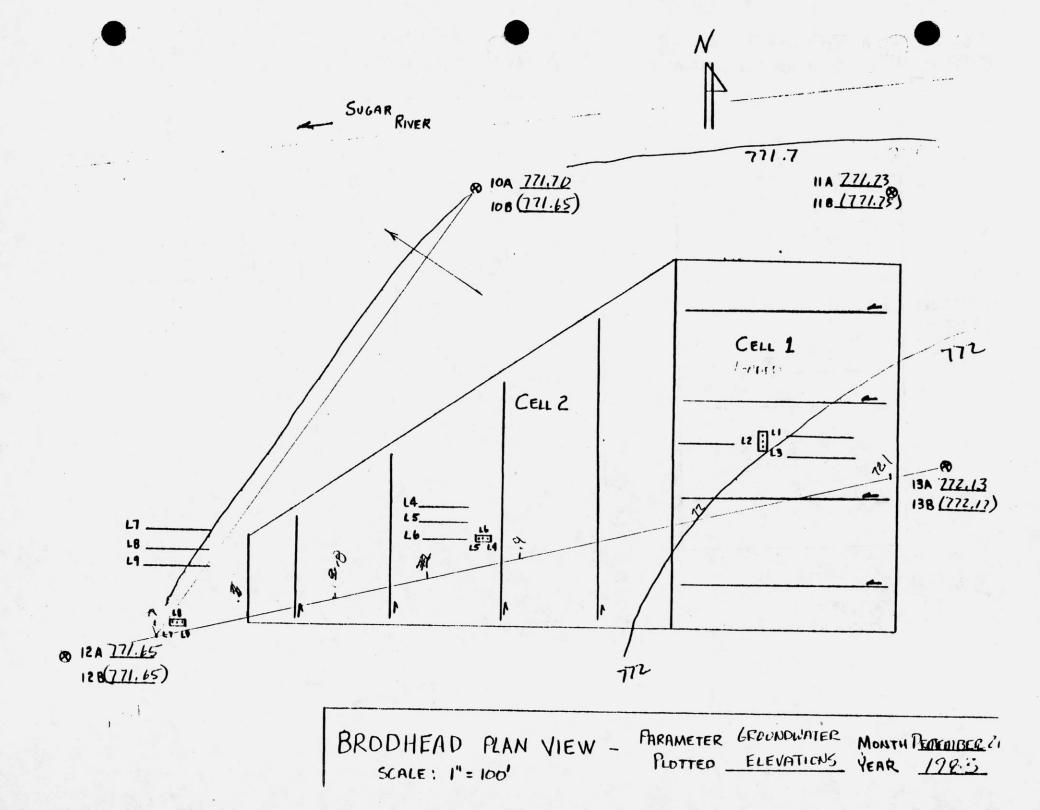
| x              |          | SHEET ! WELL   |                 | GTH: 27.5/26.8     | ····· | DEEP              |                               |  |
|----------------|----------|----------------|-----------------|--------------------|-------|-------------------|-------------------------------|--|
|                | DATE     | DEPTH 70<br>6W | 6W<br>Elevation | Volume H20<br>(ft) |       | VOLUME<br>REMOVED | COMMENT                       |  |
| $\overline{)}$ | 9/23/83  | 5.20           | 772.20          |                    | _     |                   |                               |  |
| ·              | 10/20/83 | 5.42           | 771.98          | ~Z1                | 10.5  | 15                |                               |  |
|                | 11/11/83 | 5.89           | 771.51          | 20,9               | 10.5  | 15                | CLEAR, NO ODOR<br>NO DRAWDOWN |  |
|                | 12/20/83 | 5,23           | 772.17          | Z].64              | 10.8Z | /Z                | CLEAR, CODRLESS               |  |
|                | 1/12/54- | 5.46           | 94.17           | 21.4               | 7.0   | 12                | CLEAR                         |  |
| Alctinu.S.A    | 2/12/84  | 5.54           | 771.86          | 21,3               | 10.7  | 12                | CLEAR                         |  |
|                | 3/20/84  | 5,71           | 771.69          | 21.1               | 10.6  | 12                | CLEAR                         |  |
| i g            | 4/22/84  | 5,14           | 772.26          | 21.7               | Ю.9   | 12                | CLEAR                         |  |
|                | 5/24/34  | 5,0Z           | 772.33          | 21.8               | 10.9  | 12                | CLEAR                         |  |
|                | 6/7/84   | 5.12           | 772.23          | _                  |       | -                 | _                             |  |
| ) .            | 7/19/154 | 4.66           | 772.74          | -                  | -     | -                 | _                             |  |
|                | 3/30/84  | 5.42           | 771.95          | 21.5 -             | 7.01  | 12                | CLEPR                         |  |
|                | 9/25/84  | 5,18           | 772.22          | 21.7               | 10,9  | 12                | CLIFAR                        |  |
|                | 10/9/54  | 5,27           | 51,277          | Z1.6               | 10.5  | 12                | CLEAR                         |  |
|                | 11/20/24 | 4.72           | 772.68          |                    |       |                   |                               |  |
|                |          |                |                 |                    |       |                   |                               |  |
|                |          |                |                 |                    |       |                   |                               |  |
|                |          |                |                 |                    |       |                   |                               |  |
| ;              |          |                |                 |                    |       |                   |                               |  |
|                |          |                |                 |                    |       |                   |                               |  |
|                |          | -              |                 | • •                |       |                   |                               |  |
|                |          |                |                 |                    | -     |                   |                               |  |
|                |          |                |                 |                    |       |                   |                               |  |
|                |          |                |                 |                    |       |                   |                               |  |

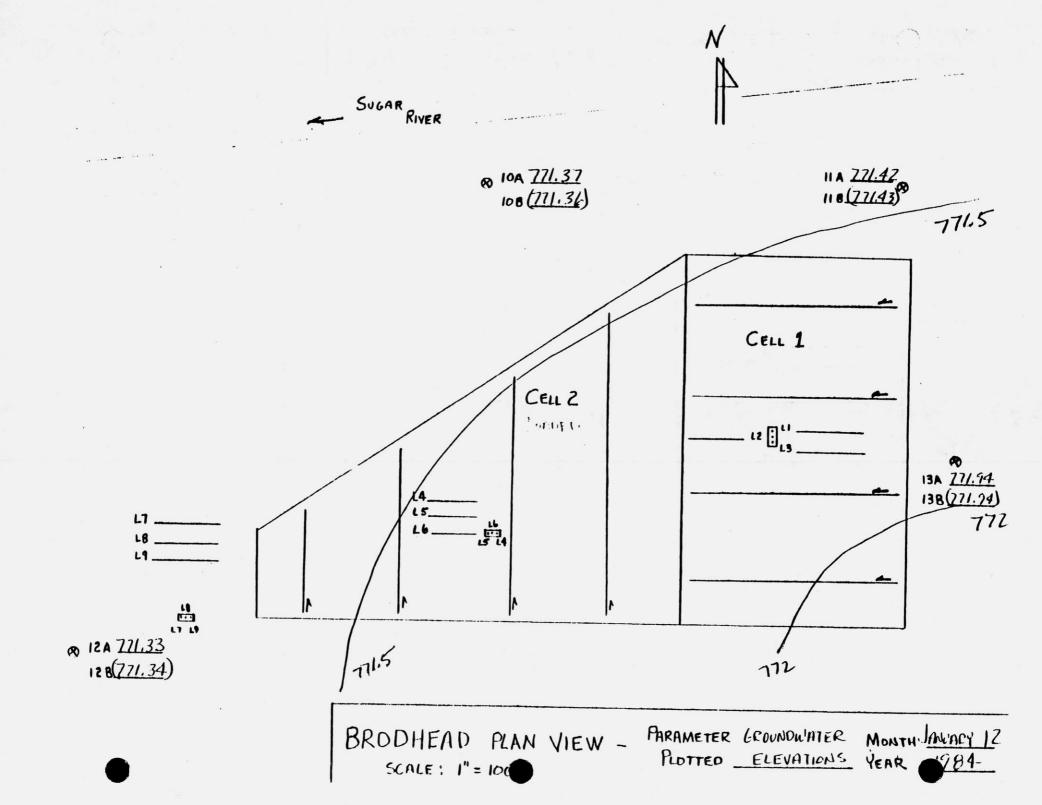
Contraction / Contraction SA

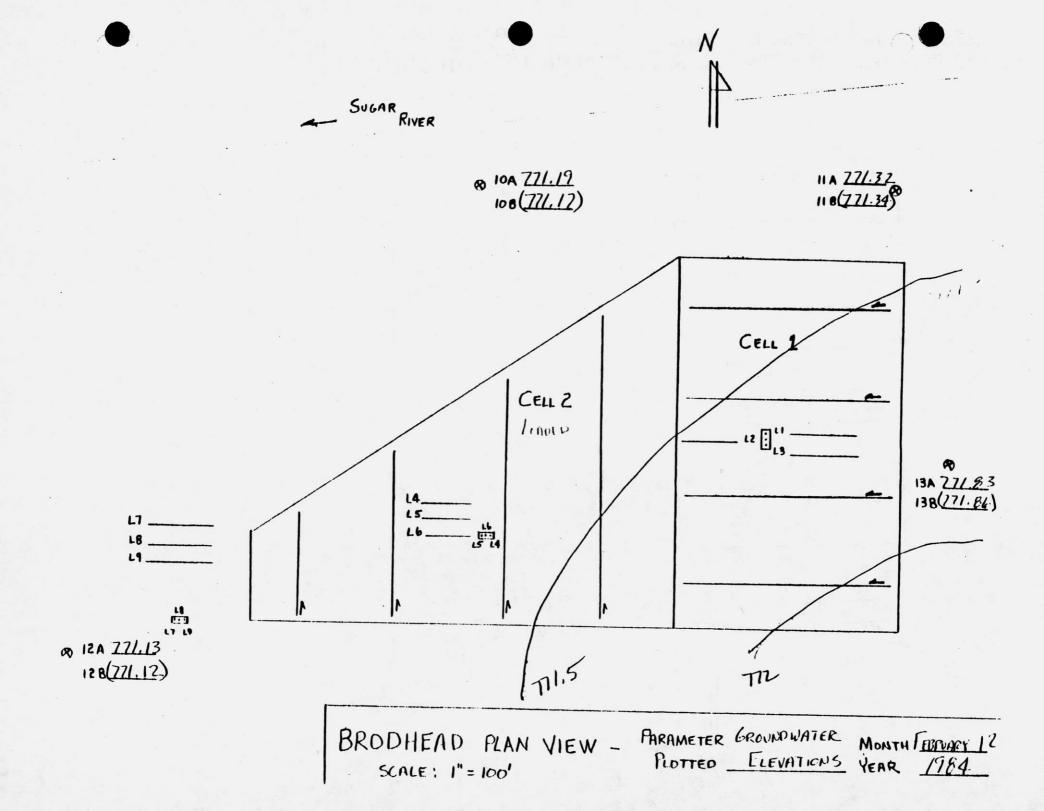

|   | DATA S  | I              |                 | <u>стн: 7.29'/л</u> | · · · · · · · · · · · · · · · · · · · | SHALLOW           |             |
|---|---------|----------------|-----------------|---------------------|---------------------------------------|-------------------|-------------|
|   | DATE    | DEPTH TO<br>GW | GW<br>ELEVATION | Volume H2D<br>(ft)  | 3 VOLUMES<br>(GAL)                    | VOLUME<br>REMOVED | COMMENT     |
| • | 3/20/84 | 5.84           | 770.45          | 1.45                | _                                     |                   | LIGHT BROWN |
|   | 4/22/84 | 5.12           | רו .ודך         | 2.2                 | 1.1                                   | 2                 | BROWN       |
|   | 5/24/84 | 5.06           | 771.23          | Z.Z                 | 1.1                                   | 2                 | LIGHT BROWN |
|   | 6/7/84  | 5.23           | 771.06          | Z.D                 | 1.0                                   | 2                 | LIGHT BROWN |
|   | 7/17/84 | 4.83           | 771.46          | Z.5                 | 1.2                                   | Z                 | Brown       |
|   | 8/30/84 | 5.46           | 770.83          | 1.9                 | 0,9                                   | Z                 | Brown       |
|   | 9/25/84 | 5.56           | 770.73          | 1,8                 | 0.9                                   | 1                 | BROWN       |
|   | 10/9/84 | 5,24           | 771.05          | 2.0                 | 1.0                                   | Z                 | LIGHT BROWN |
| 1 | 1/20/34 | 5,08           | 771.20          | _                   | -                                     | -                 | -           |
|   |         |                |                 |                     |                                       |                   |             |
|   |         |                |                 |                     |                                       |                   |             |
|   |         | 2              |                 |                     |                                       |                   |             |
|   |         |                |                 |                     |                                       |                   |             |
|   |         |                |                 |                     |                                       |                   |             |
|   |         |                |                 |                     |                                       |                   |             |
|   |         |                |                 |                     |                                       |                   |             |
|   |         |                |                 |                     |                                       |                   |             |
|   |         |                |                 |                     |                                       |                   |             |
| 1 |         |                |                 | -                   |                                       |                   |             |
|   |         |                |                 |                     |                                       |                   |             |
|   |         |                |                 |                     |                                       |                   | ·           |
|   |         | -              |                 |                     |                                       |                   |             |
|   |         |                |                 |                     |                                       |                   |             |

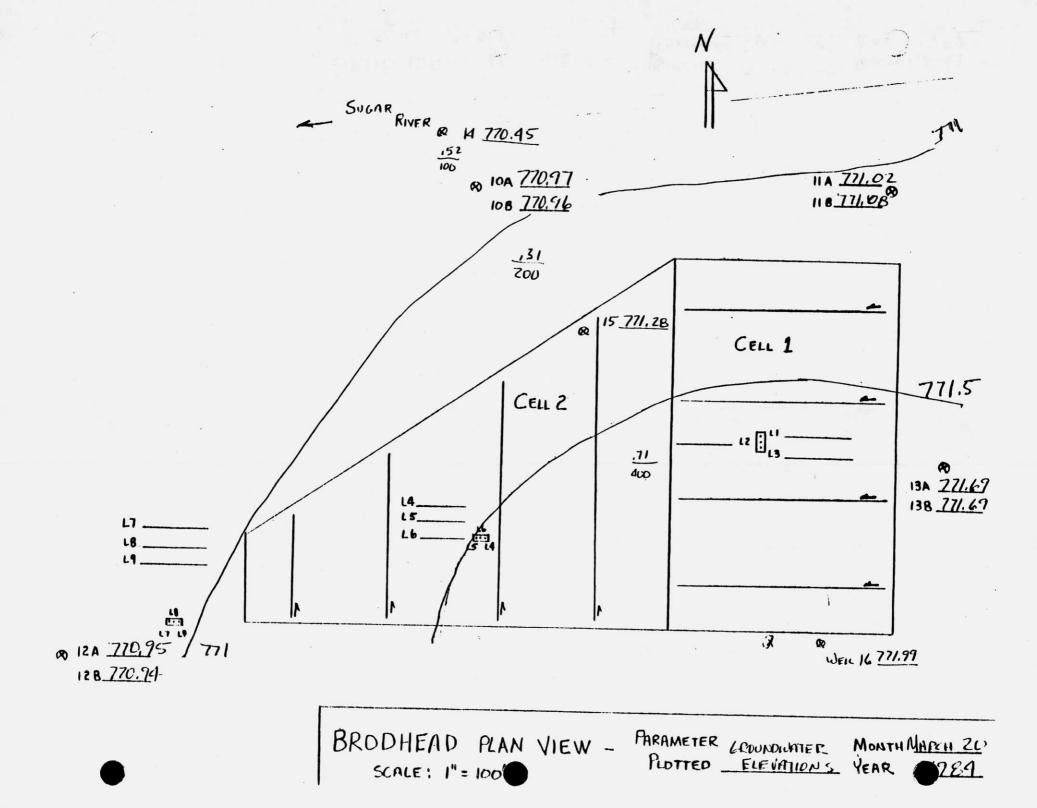

|    | DATE     | Рергн то<br>Бы | GW<br>Elevation | Volume HD<br>(St) | 3 VOLUMES<br>(GAL) | VOLUME<br>REMOVED | COMMENT                    |
|----|----------|----------------|-----------------|-------------------|--------------------|-------------------|----------------------------|
| )• | 3/20/84  | 8.87           | 771.ZB          | 1.48              | ·                  | _                 | LIGHT BEOWN<br>STEDNG OPOR |
|    | 4/22/84  | 8.35           | 771.80          | 2.0               | 1.0                | Z                 | GEEY, STEDHE DOOR          |
|    | 5/24/84  | 8,15           | 772.00          | 2.2               | 1: 1               | Z                 | DULL CLEAR, OPOR           |
|    | 6/7/84   | 8.Z4           | 771.91          | Z.1               | 1.0                | Z                 | WHITE - COOR               |
|    | 7/17/84  | 7.72           | ·772,43         | Z.6               | 1.3                | Z                 | DULL - ODOR                |
|    | 8/30/84  | 8.61           | 771.54          | 1.8               | 0,9                | Z                 | Dull - COOR                |
|    | 9/25/34  | 8,32           | 77/, 83         | 2,1               | 1,0                | 1:5               | YELLAN - OCOR              |
|    | 10/9/84  | 8.37           | 771.77          | Z,D               | 1,0                | 1.5               | FOLGY CLEAR - DOOR         |
|    | 10/12/84 | 8.42           | 771,73          | 1,9               | 1,D                | 1,5               |                            |
|    | 10/15/84 | 8.44           | 771.71          | 1.9               | 1.0                | 1.5               |                            |
|    | 10/18/84 | 8.07           | 772.08          | 2.2               | 1.1                | 1,5               |                            |
|    | 10 23/84 | 6.28           | 773.87          | 4,1               | 2 <sub>:</sub> 0   | 3,5               |                            |
|    | 10/26/84 | 7.67           | 772.43          | 2.7               | 1.3                | 2                 |                            |
|    | 10/30/24 | 7,54           | 772.61          | z.8               | 1.4                | 2                 |                            |
|    | 11/1/84  | 7.07           | 773.08          | 3,3               | 1,6                | 2                 | -                          |
|    | 11/8/84  | 7,74           | 772.41          | 2.6               | 1.3                | 2                 |                            |
|    | 11/13/84 | 7.76           | 772.39          | -                 | -                  | -                 |                            |
|    | 11/16/34 | 7,89           | 772.26          | 2,5               | 1.2                | Z                 |                            |
| •  | 11/20/34 | 7.99           | 772.16          | 2,4               | 1-2                | 2                 |                            |
|    |          |                |                 |                   |                    |                   |                            |
|    |          |                |                 |                   |                    |                   |                            |
|    |          |                |                 |                   |                    |                   |                            |
|    |          |                |                 |                   |                    |                   |                            |

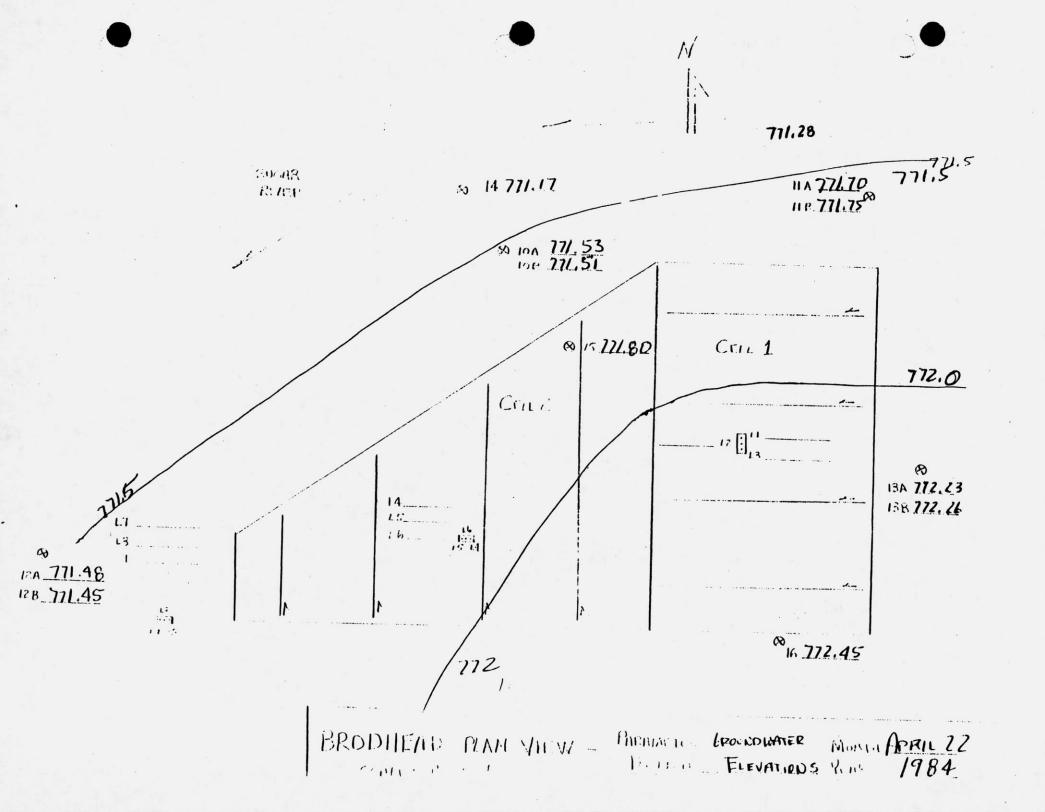

|                |                  | SHEET! WE      | I GW      | GTH 12.06          | 7.1                |                   | LOW, SE BERM       |
|----------------|------------------|----------------|-----------|--------------------|--------------------|-------------------|--------------------|
|                | DATE             | РЕРТН ТО<br>6W | ELEVATION | Volume H2D<br>(57) | 3 VOLUMES<br>(GAL) | VOLUME<br>REMOVED | COMMENT            |
| )              | 3/20/84          | 10.06          | 771.99    | Z,D                | -                  | _                 | BROWN              |
|                | 4/22/84          | 9.60           | 772.45    | 2,5                | 1.2                | 2                 | GREEN, GREY, DOOR  |
|                | 5/74/84          | 9.43           | 772.62    | Z.6                | 1.3                | Z                 | LIGHT BROWN SLIGHT |
|                | 617184           | 9.49           | 77.2.56   | 2.6                | /.3                | Z                 | BEOWN, SLIGHT DOD  |
|                | 7/ <i>191</i> 84 | 8,95           | 773.10    | 3.1                | 1.6                | Z                 | Brown              |
| Alade In U.S.A | 8/30/84          | - 9.78         | 772.27    | 23                 | 1.2                | Z                 | DULL               |
| < l>           | 9/25/84          | 9,55           | 772.50    | 2,5                | 1.Z                | Z                 | PARK GREEN         |
| <b>0</b> ,     | 10/9/82          | 9,73           | 772.32    | 2,3                | 1,2                | Z                 | Beown              |
|                | 10/12/84         | 9,75           | 772,30    | 2,3                | 1.2                | 2                 |                    |
|                | 10/15/84         | 9.75           | 772,30    | 2.3                | 1.2                | 1.5               |                    |
|                | 10/18/84         | 9,42           | 772.63    | 2.7                | 1,3                | 2                 |                    |
| }              | 10/23/24         | 7.81           | 774.24    | 4,3                | 2,1                | 3                 |                    |
|                | 10/26/82         | B.71           | 773.34    | 3,4                | 1.7                | 2                 |                    |
|                | 10/20/34         | B.79           | 773.Zb    | 3.3                | 1.6                | 2                 |                    |
|                | 11/1)84-         | 8,12           | 773,93    | 4.0                | 2.0                | 2,5               |                    |
|                | 11/8/84          | 8.76           | 773, 29   | 3.3                | 1.7                | 2                 |                    |
|                | 11/20/84         | 9.00           | 773.05    | -                  | _                  | -                 |                    |
|                |                  |                |           |                    |                    |                   |                    |
|                |                  |                |           |                    |                    |                   |                    |
|                | •                |                |           |                    |                    |                   |                    |
|                |                  |                |           |                    | . '                |                   |                    |
| -              | <b>4</b>         |                |           |                    |                    |                   |                    |

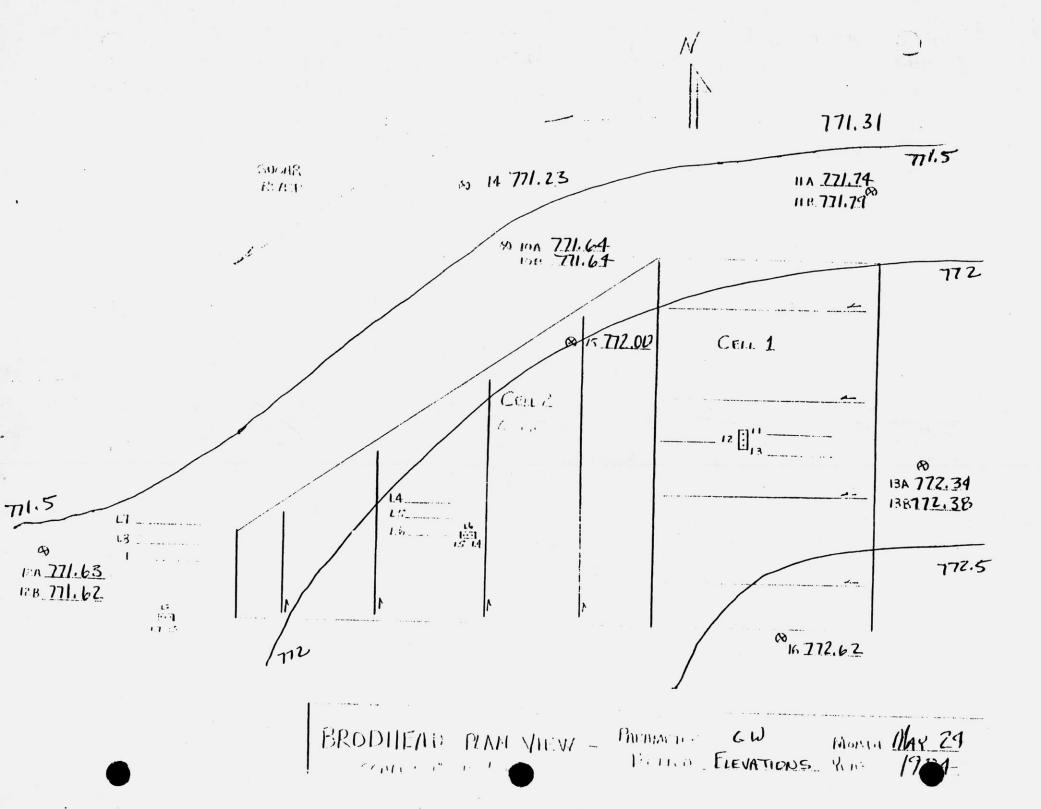

| CATE     | DEPTH TO<br>GW | GW<br>Eleverick | VELUME<br>HZE (GE) | E VILUMES<br>(612) | VOLUME<br>RENEVED | COMMELT  |
|----------|----------------|-----------------|--------------------|--------------------|-------------------|----------|
| 10/12/54 | 8.59           | 772.09          | 3,4                | 1.7                | 6                 | BLACK    |
| 10/15/84 | 8.16           | 772.02          | 3.4                | 1.7                | Z                 | <b>.</b> |
| Ø18/84   | 7,78           | 772,40          | 4,2                | 2.1                | 3                 |          |
| 10/23/24 | 6.10           | 774.05          | 5,4                | 2.7                | 4                 |          |
| 10/26/34 | 7,25           | 772,93          | 4,3                | 2.1                | 3                 | -        |
|          | 7.25           | 772.93          | 4.3                | 2,1                | 3                 |          |
| 11/1/84  | 6.66           | 773.52          | 4.9                | 2.4                | 3                 |          |
| 11/8/84  | 7,30           | 772.88          | 4,2                | 2,1                | 3                 | •        |
| 11/12/84 | 7,39           | 772,30          | ~                  |                    |                   |          |
| :1/16/84 | 7,45           | 772.73          | 4,1                | 2.0                | Z,5               |          |
| 1 /20/24 | 7.51           | 772.67          | 4.0                | Z.0                | 2,5               |          |
|          |                |                 |                    |                    |                   |          |
|          |                |                 | •                  |                    |                   |          |
|          |                |                 |                    |                    |                   |          |
|          |                |                 |                    |                    |                   |          |
|          |                |                 | ·                  |                    |                   |          |
|          |                |                 |                    |                    |                   |          |
|          |                |                 |                    |                    |                   |          |
|          |                |                 |                    |                    |                   |          |
|          |                |                 |                    |                    |                   |          |
|          |                |                 |                    |                    |                   | •        |
|          |                |                 |                    |                    |                   |          |
|          |                |                 |                    |                    |                   |          |

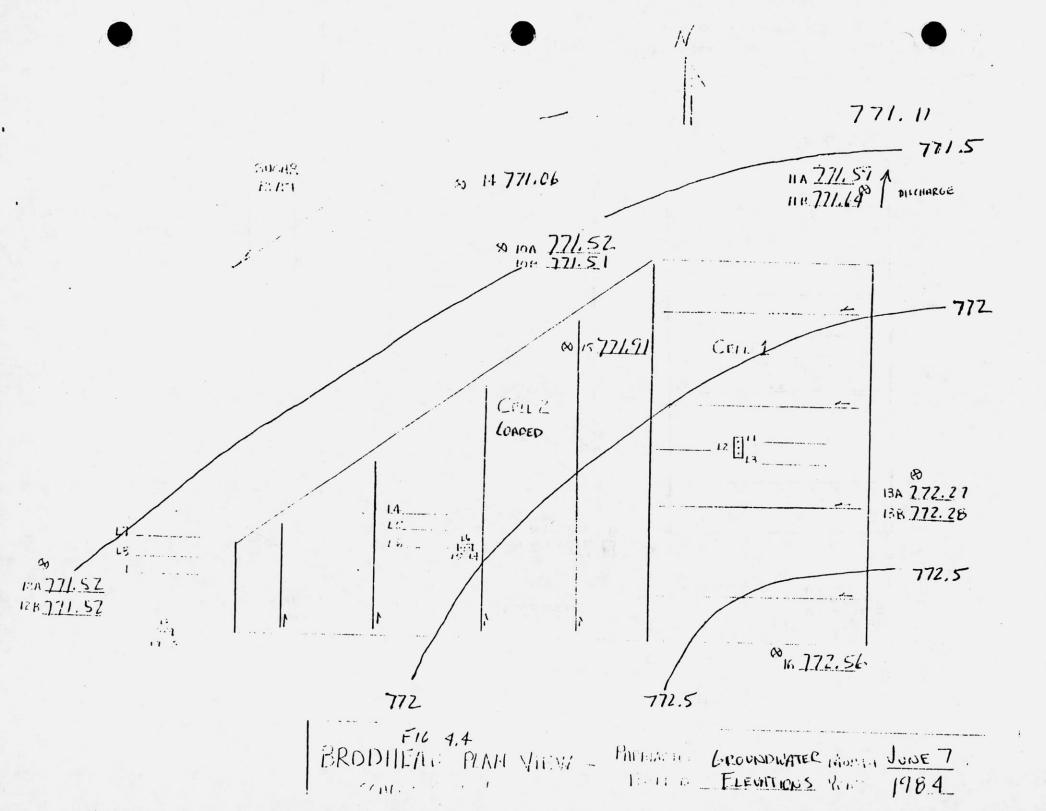

The state and surfice a source

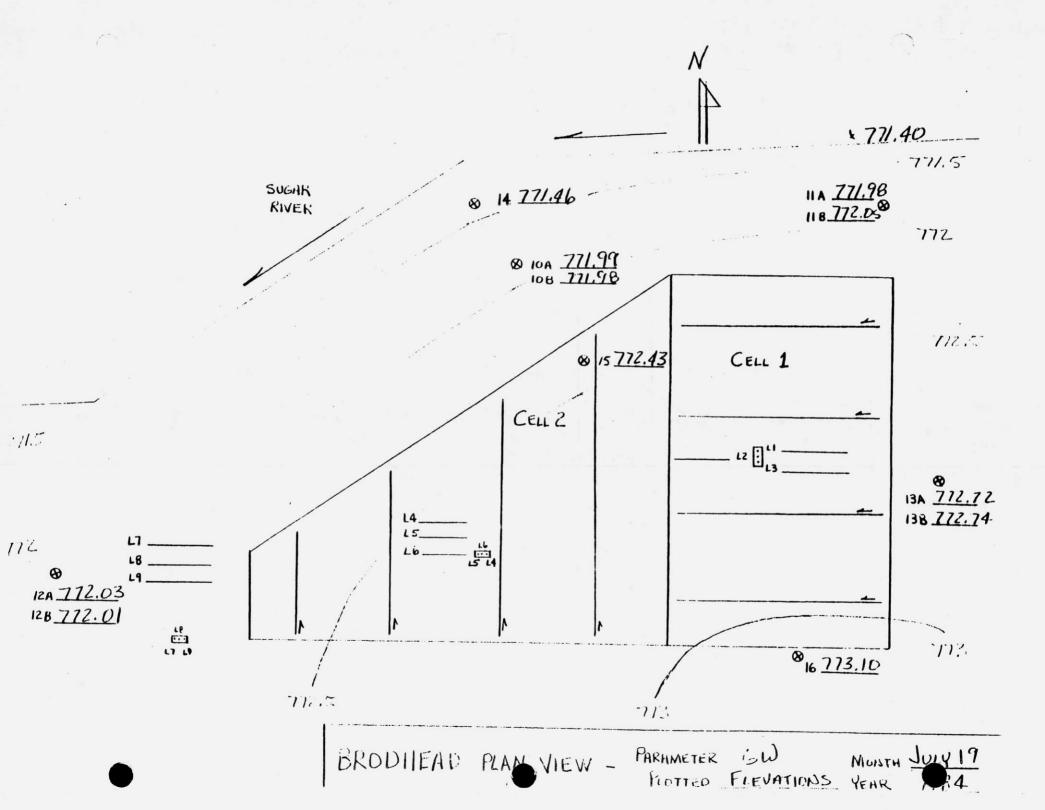


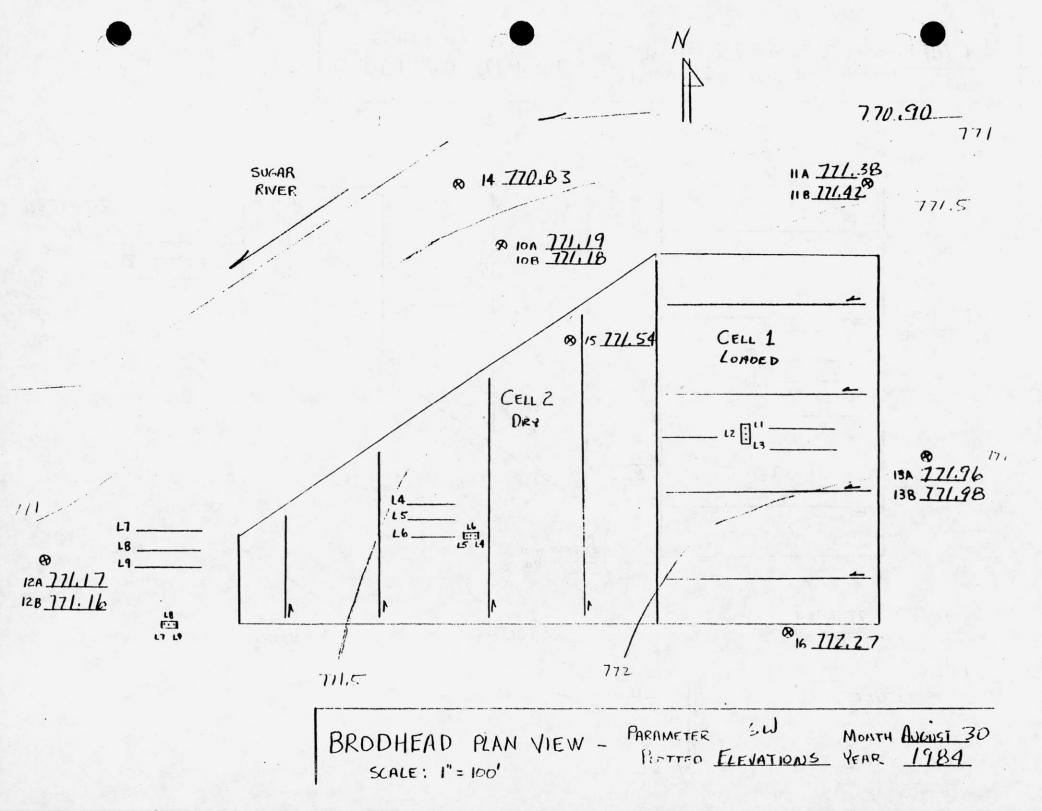



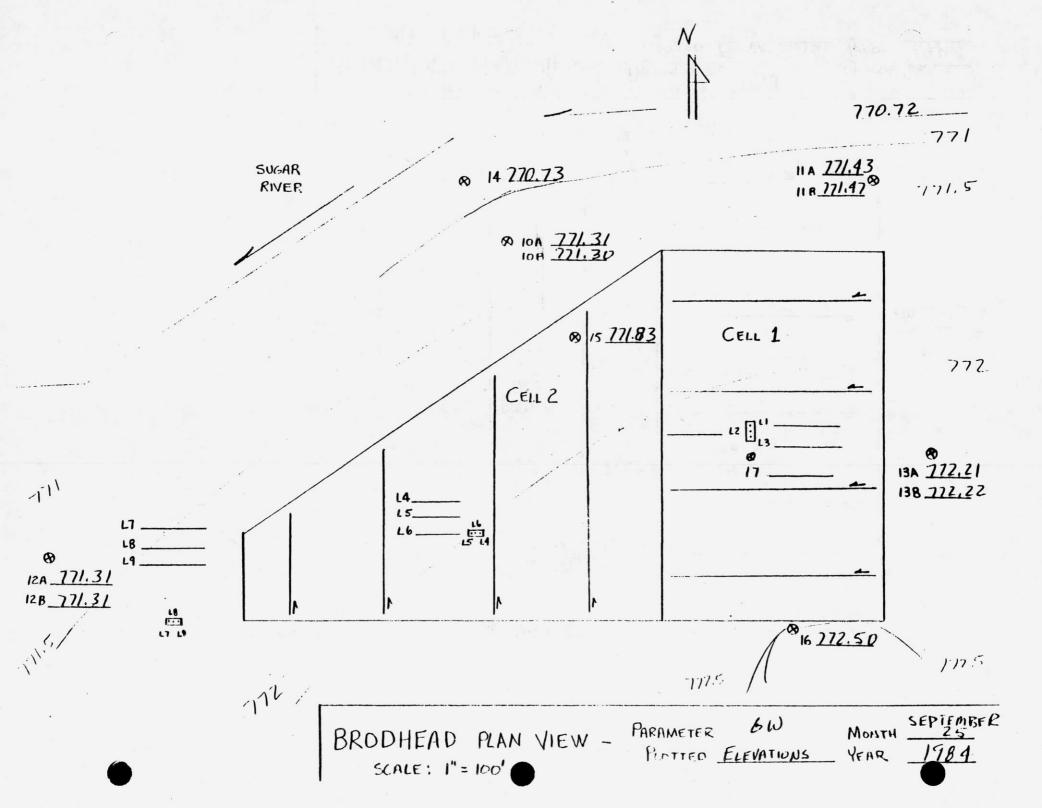



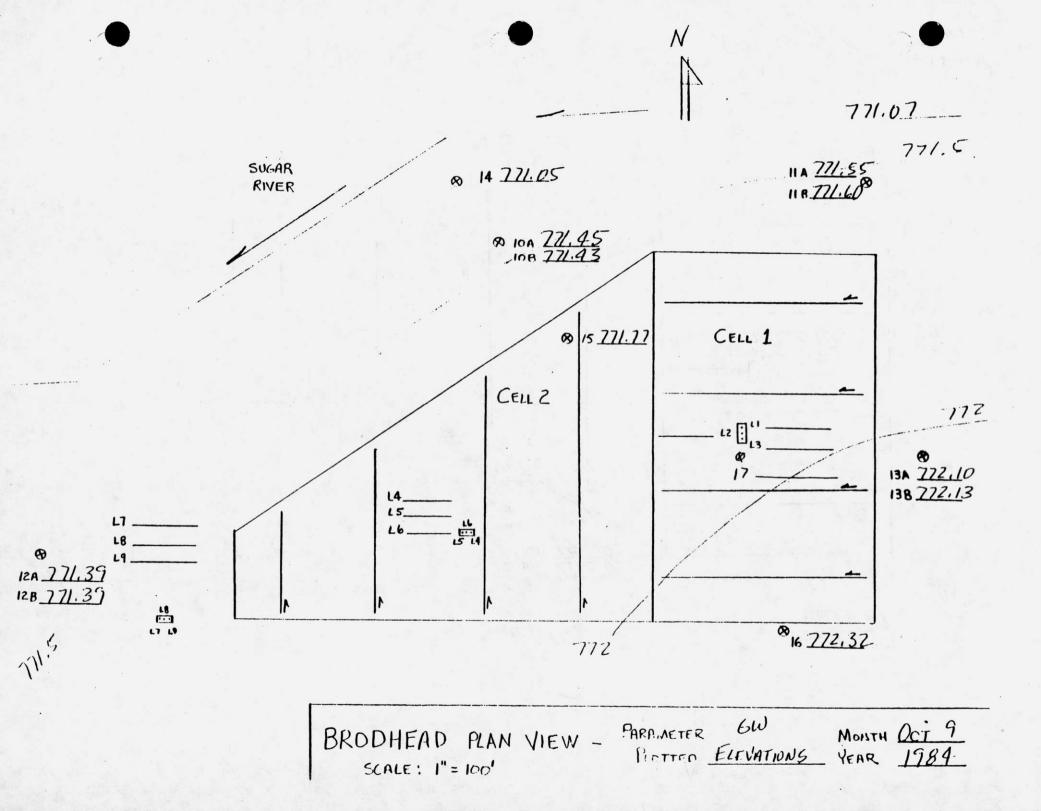



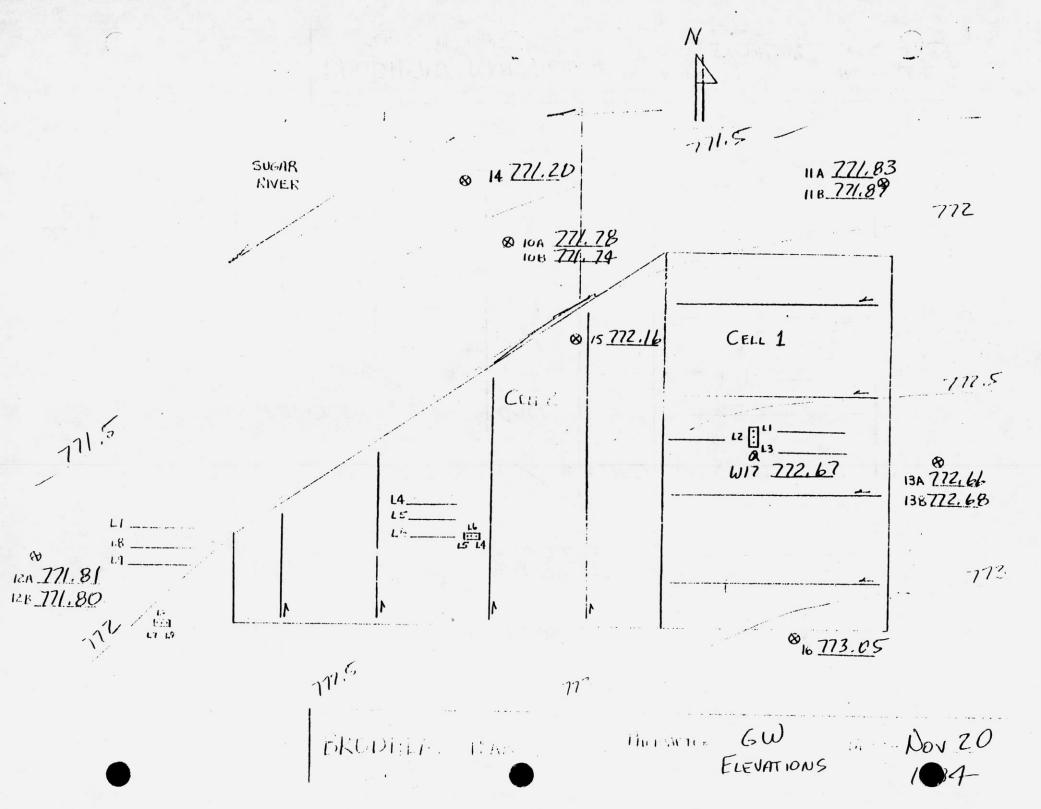














Ì APPENDIX F PAPA4ASTER (m) Hoom HUSA. BRODHEAD : GROUNDWATER CHEMISTRY DATA

|                     | DRDD HE<br>DATA  | HD LUMA           |                  | _                | METERS           | (mg/] | •      | L IDA | - SHAL      | Low             |   |
|---------------------|------------------|-------------------|------------------|------------------|------------------|-------|--------|-------|-------------|-----------------|---|
| •                   | DATE             | DISSOLVED<br>BODS | DISSOLVED<br>COD | (100°C))         | DISSOLVED<br>TKN | NH3-N | NOZ-N+ |       | (LAB)<br>PH | OTHER           |   |
|                     | <i>10/20/</i> 83 | 1.8               | 14,              | -                | 15,              | 14.   | <0.1   | 230.  | 8.5         | -               |   |
|                     | 11/16/83         | 9.8               | 18.              | 672              | 13.              | 17.   | < 1    | 230   | -           |                 |   |
|                     | 12/20/83         | 6.5               | 17.              | 922              | 14.              | 4.    | Z 1.D  | 350   | -           | -               |   |
|                     | 12/20/83         | TOTAL<br><4       | TOTAL<br>19      | TOTAL SS<br>2020 | TOTAL 14, -      | -     | -      | 340   | _           | -               |   |
| ,                   | 1/12/84          | 3.4               | 17               | 920              | 13               | 12    | 0,1    | 340   | _           | _               |   |
| Mada <b>h U.S.A</b> | 2/12/84          | 43                | 16               | 888              | 12               | 12    | 0.1    | 310   | _           | _               |   |
|                     | 3/20/84          | 23                | 15               | 960              | 11               | 11.0  | 20.1   | 350   | 6.9         | -               |   |
| Non anten co        | 4/22/54          | >13               | 14               | 1010             | 13               | 13    | D, 1   | 360   | 7.1         | -               |   |
| aran co             | 5/24/84          | 4,9               | 14               | 1020             | 15               | 15    | 0.2    | 380   | 7.0         | 7.9<br>(hb = 17 |   |
|                     | 6/7/84           | 10                | 19               | 1000             | 14               | 14    | D.1 -  | Z90   | 6.9         |                 |   |
| )                   | 7/19/84          | 12                | 17               | 1220             | 7                | 16    | <1.D   | 530   | 6.3         | -               |   |
| 1                   | 8/30/24          | 6,5               | 20               | 1230             | 13               | 12    | 20.5   | 500   | 6.7         | -               | Ļ |
|                     | 9/25/54          | 8.2               | 21               | 1160             | 10               | 10    | <1.0   | 460   | 6.5         | —               |   |
|                     | 10/9/84          | n                 | 13               | 1180             | 10               | 10.   | 21.0   | 490   | 6.5         | _               |   |
|                     |                  |                   |                  |                  |                  |       |        |       |             |                 |   |
|                     |                  |                   |                  |                  |                  |       |        |       |             |                 |   |
|                     |                  |                   |                  |                  |                  |       |        |       |             |                 |   |
|                     |                  |                   |                  |                  |                  |       |        |       |             |                 |   |
|                     |                  |                   |                  |                  |                  |       |        |       |             |                 |   |
|                     |                  |                   |                  |                  |                  |       |        |       |             |                 |   |
|                     |                  |                   |                  |                  |                  |       |        |       |             |                 |   |
|                     |                  |                   |                  |                  |                  |       |        |       |             |                 |   |
|                     |                  |                   |                  |                  |                  |       |        |       |             |                 |   |
|                     |                  |                   |                  |                  |                  |       |        |       |             |                 |   |

| <b>.</b>    | DATA     | SHEET              | ······   |       | meters           | (mg/_I) | WE   | 10A- | SHALLOW |            |
|-------------|----------|--------------------|----------|-------|------------------|---------|------|------|---------|------------|
|             | DATE     | ALKALINITY         | TOTAL    | 504-  | Ga <sup>2+</sup> | Na+     | Mg2+ | К+   | OTHER   | •          |
|             | 10/ZD/83 | ∽ 250 <sup>≭</sup> | <0.02    | 16.   | 5Z               | 130     | 30   | _    | _       | 1          |
|             | 11/16/83 | -                  | -        | -     | -                | . –     | -    | _    | _       | 2          |
|             | 12/20/83 | -                  | -        | -     | _                | -       | -    | · -  | —       | 4 · · ·    |
|             | 1/12/84  | _                  | <b>—</b> | -     |                  | -       | _    | _    |         |            |
|             | 2/12/84  | -                  | _        | -     | -                | _       | _    | _    | _       | 3          |
| ►.C.U.n.    | 3/20/84  | -                  | -        | -     | -                | _       | _    | -    | _       |            |
| 1 Parts     | 4/22/54  | -                  | ~        | -     | ~                | -       | -    | -    | _       |            |
| <br>        | 5/24/84  | 352                | 0.0Z     | D.B * | 45               | 270     | 23   | 30   | -       |            |
| u Marana'ru | 617184   | -                  | -        | ~     | -                | -       | _    | _    | ~       |            |
|             | 7/19/84  | -                  | -        | -     | —                | _       | -    |      | _       |            |
|             | 8/30/774 | 406                | < 0.02   | <1.0  | 53               | 360     | 27   | 26   | -       |            |
|             |          |                    |          |       |                  |         |      |      |         |            |
|             |          |                    |          |       |                  |         |      |      |         |            |
|             |          |                    |          |       |                  |         |      |      |         |            |
|             | •        |                    |          |       |                  |         |      |      |         |            |
|             |          |                    |          |       |                  |         |      |      |         |            |
| •           |          |                    |          |       |                  |         |      |      |         | <b>`</b> . |
|             |          |                    |          |       |                  |         |      |      |         |            |
|             |          |                    |          |       |                  |         |      |      |         |            |
|             |          |                    |          |       |                  |         |      |      | •       |            |
|             |          |                    |          |       |                  |         |      |      |         |            |
|             |          |                    |          |       |                  |         |      |      |         |            |
|             |          |                    |          |       |                  |         | -    |      |         |            |
|             | * 1000   |                    |          |       |                  |         |      |      |         |            |

| `           | DATA     | SHEET              |     | Paran | neters | ( <sup>mg</sup> /_ |                       |     | - PEEI            | 2         |
|-------------|----------|--------------------|-----|-------|--------|--------------------|-----------------------|-----|-------------------|-----------|
|             | DATE     | DISSOLVED<br>BODSX | COD | TDS   | TKNX   | NH3-NY             | $NC_2 - N + NC_3 - N$ | CTX | PH<br>(LAB)       | CTHER     |
|             | 10/20/83 | 2.5                | 9   | -     | 6.0    | 5.1                | < 0.1                 | 350 | 8.4               | _         |
|             | 11/16/83 | 11.                | 27. | 1390  | 10.    | 9.3                | 0.1                   | 520 | -                 | _         |
|             | 12/20/83 | 12                 | 24  | 1570  | 9.6    | 9.7                | ل. ا                  | 550 | <b>—</b>          | -         |
|             | )/12/84  | 4.9                | 25  | 1538  | 7.5    | 6.7                | 0.1                   | 560 | -                 | -         |
|             | 2/12/84  | 23                 | 21  | 1670  | 7.D    | 7.0                | 20,1                  | 650 | -                 | -         |
| MadalnU.S.A | 3/20/84- | 5.3                | 18  | 1550  | 5,4    | 5,2                | D,1                   | 580 | 6.8               | _         |
|             | 4/22/34  | 718                | 13  | 1650  | 7,4    | 7.2                | D,1                   | 640 | 6,9               | -         |
| Allen Inv   | 5/24/84  | 8,9                | 19  | 1660  | 10     | iO                 | 0.1                   | 690 | 6.8               | 7.5 LAEpH |
| •           | 6/7/84   | 77                 | 23  | 0771  | 15     | 15                 | 20.1                  | 740 | 6.7               | _         |
|             | 7/19/84  | 21                 | 25  | 1510  | 17     | 16                 | L1.0                  | 750 | 6.7               | -         |
|             | 6/30/84  | <12                | 33  | 1980  | 17     | 17                 | <0,5                  | 790 | 6.6               | -         |
| )           | 9/25/84  | 21                 | 21  | 1920  | 24     | 24                 | <1.0                  | סור | \$ . <del>5</del> |           |
|             | 10/7/54  | 3.7                | 34  | 1730  | 26     | 26                 | <1.0                  | 650 | 6.7               |           |
|             |          |                    |     |       |        |                    |                       |     |                   |           |
|             |          |                    |     |       |        | -                  |                       |     |                   |           |
|             |          |                    |     |       |        |                    |                       |     |                   |           |
|             |          | •                  |     |       |        |                    |                       |     |                   |           |
|             |          |                    |     |       |        |                    |                       |     |                   |           |
|             | :        |                    |     |       |        |                    |                       |     |                   |           |
|             |          |                    |     |       |        |                    |                       |     |                   |           |
|             |          |                    |     |       |        |                    |                       |     |                   |           |
|             |          |                    |     |       |        |                    |                       |     |                   |           |
|             |          |                    |     |       |        |                    |                       |     |                   |           |

|                   | DR.UN    | TA SHE     | ET      | PARAM             | ETERS            | (m=/_{) | WE   | L IDB | - DEEP |
|-------------------|----------|------------|---------|-------------------|------------------|---------|------|-------|--------|
|                   | DATE     | ALKALINITY | P TOTAL | 504 <sup>2-</sup> | Ca <sup>2+</sup> | [ Na+   | M-2+ | κ+    | OTHER  |
| 7                 | 10/20/83 | ~ 220      | <0.0Z   | 5,9               | 59               | 230     | 24   | -     | -      |
|                   | 11/16/83 | -          | -       | -                 | _                | -       | -    | -     | -      |
|                   | 12/20/83 | -          | -       | _                 | -                | -       | -    | -     | -      |
|                   | 1/12/84  | ~          | -       | -                 | -                | -       | -    | -     |        |
|                   | z/12/84  | -          |         | -                 | _                | -       | _    | -     | -      |
| A. 2-1 n IU. S. A | 3/20/84  | -          | · ~     | ~                 | -                | -       | -    | -     | -      |
|                   | 4/22/84  | -          | -       | _                 | -                | _       | -    |       | -      |
|                   | 5/24/84  | 436        | LD.02   | 1.D               | 80               | 440     | 37   | 30    | -      |
|                   | 617184   | -          | -       |                   | -                | -       | -    | -     | -      |
|                   | 7/19/84  | -          | _       | _                 |                  | -       | _    | -     | _      |
| ,                 | 8/30/84  | 608        | 0.02    | 10                | 73               | 570     | 39   | 47    | ~      |
| )                 |          |            |         |                   |                  |         |      | -     |        |
|                   |          |            |         |                   | •                |         |      |       |        |
|                   |          |            |         |                   |                  |         |      |       |        |
| -                 |          |            |         |                   |                  |         |      |       | -      |
|                   |          |            |         |                   |                  |         |      |       |        |
| -                 | •        |            |         |                   |                  |         |      |       |        |
|                   |          |            |         |                   |                  |         |      |       |        |
|                   |          |            | -       |                   |                  |         |      |       |        |
|                   |          |            |         |                   |                  |         |      |       |        |
|                   |          |            |         |                   |                  | -       |      |       |        |
|                   |          |            |         |                   |                  |         |      |       | · ·    |
|                   |          |            |         |                   |                  |         |      |       |        |
|                   |          |            |         |                   |                  |         |      |       |        |

| Dat      | A SHEE                                                                                                                                                                      | T                                                                                                                                                                                                                                                                                                                                                                                                                                        | Paran                                                  |                                                                                                           | (mg/2,                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   | - SHALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -ow                                                    |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| DATE     | Dissolved,<br>BODs                                                                                                                                                          | diss<br>Cod                                                                                                                                                                                                                                                                                                                                                                                                                              | DISS<br>TDS X                                          | DISS<br>TKN X                                                                                             | DISS<br>NHJ-NX                                                                               | $NC_2 - N + NC_3 - N$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CIT                                                                                                                                                                                                                                                                                                               | PH<br>(LAR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OTHER                                                  |
| 10/20/33 | 1.8                                                                                                                                                                         | 19                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                      | 4.0                                                                                                       | 3.2                                                                                          | < 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 96.                                                                                                                                                                                                                                                                                                               | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                      |
| 11/16/83 | <b>26</b>                                                                                                                                                                   | 13                                                                                                                                                                                                                                                                                                                                                                                                                                       | 312                                                    | 2.4                                                                                                       | Z. D                                                                                         | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 49                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                      |
| 12/20/83 | <4                                                                                                                                                                          | 15                                                                                                                                                                                                                                                                                                                                                                                                                                       | 494                                                    | 3.8                                                                                                       | 3.6                                                                                          | < D. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                      |
| 12/20/83 | TOTAL<br>1B                                                                                                                                                                 | TCTAL<br>26                                                                                                                                                                                                                                                                                                                                                                                                                              | TOTAL SS<br>1980                                       | 707 AL<br>5, 2                                                                                            | -                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ΠQ                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |
| 1/12/84  | ∠3                                                                                                                                                                          | 30                                                                                                                                                                                                                                                                                                                                                                                                                                       | 64D                                                    | 4.D                                                                                                       | 3,4                                                                                          | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 160                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                      |
| 2/12/84  | 23                                                                                                                                                                          | 13                                                                                                                                                                                                                                                                                                                                                                                                                                       | 514                                                    | 3, Z                                                                                                      | 3.0                                                                                          | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DII                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
| 3/20/84  | ∠3                                                                                                                                                                          | 19                                                                                                                                                                                                                                                                                                                                                                                                                                       | 476                                                    | 2.6                                                                                                       | 2.1                                                                                          | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100                                                                                                                                                                                                                                                                                                               | 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |
| 4/22/84  | <3                                                                                                                                                                          | ZD                                                                                                                                                                                                                                                                                                                                                                                                                                       | 493                                                    | 3,4                                                                                                       | 2,9                                                                                          | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110                                                                                                                                                                                                                                                                                                               | 7.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                      |
| 5/24/84  | 23                                                                                                                                                                          | 22                                                                                                                                                                                                                                                                                                                                                                                                                                       | 526                                                    | 3,5                                                                                                       | 3.0                                                                                          | 0,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110                                                                                                                                                                                                                                                                                                               | 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В, I (АВр1                                             |
| 6/7/84   | <3                                                                                                                                                                          | 25                                                                                                                                                                                                                                                                                                                                                                                                                                       | 57 <del>9</del>                                        | 3.3                                                                                                       | Z.9                                                                                          | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 140                                                                                                                                                                                                                                                                                                               | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                      |
| 7/19/84  | 4.3                                                                                                                                                                         | 23                                                                                                                                                                                                                                                                                                                                                                                                                                       | 552                                                    | 2.9                                                                                                       | 2,3                                                                                          | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 130                                                                                                                                                                                                                                                                                                               | 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |
| 8 30/84  | 26                                                                                                                                                                          | 26                                                                                                                                                                                                                                                                                                                                                                                                                                       | 948                                                    | 2.2                                                                                                       | 1.5                                                                                          | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 230                                                                                                                                                                                                                                                                                                               | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |
| 9/25/84  | 4,9                                                                                                                                                                         | 30                                                                                                                                                                                                                                                                                                                                                                                                                                       | 833                                                    | 3,5                                                                                                       | 2.9                                                                                          | <0,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 260                                                                                                                                                                                                                                                                                                               | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |
| 10/9/84  | 7.7                                                                                                                                                                         | 42                                                                                                                                                                                                                                                                                                                                                                                                                                       | 640                                                    | Ξe                                                                                                        | 2,8                                                                                          | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 170                                                                                                                                                                                                                                                                                                               | 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                      |
|          |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |                                                                                                           |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
| 1        |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                      |                                                                                                           |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
|          |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |                                                                                                           |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
|          |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |                                                                                                           |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
|          |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |                                                                                                           |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
|          |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |                                                                                                           |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
|          |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |                                                                                                           |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
|          |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |                                                                                                           |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
|          | •                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |                                                                                                           |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
|          | DATE<br>10/20/33<br>11/16/83<br>12/20/83<br>12/20/83<br>1/12/84<br>2/12/84<br>3/20/84<br>4/22/84<br>5/24/84<br>6/7/84<br>5/24/84<br>6/7/84<br>5/24/84<br>8/30/84<br>9/25/84 | DATE       Dissoured, BOD; $10/20/33$ $1.8$ $11/16/83$ $1.6$ $11/16/83$ $46$ $11/16/83$ $46$ $12/20/83$ $41$ $12/20/83$ $41$ $1/12/84$ $43$ $1/12/84$ $43$ $1/12/84$ $43$ $1/12/84$ $43$ $1/12/84$ $43$ $1/12/84$ $43$ $1/12/84$ $43$ $1/12/84$ $43$ $1/12/84$ $43$ $1/12/84$ $43$ $1/12/84$ $43$ $1/12/84$ $43$ $1/12/84$ $43$ $1/12/84$ $43$ $1/12/84$ $43$ $1/12/84$ $43$ $1/12/84$ $43$ $1/12/84$ $43$ $1/19/84$ $46$ $1/19/84$ $49$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | DATEDissoured<br>BODsDiss<br>CODDiss<br>TDS<br>TDS<br>X $10/20/33$ 1.819- $11/16/83$ 1.819- $11/16/83$ <6 | DATEDissalued<br>BOD,Diss<br>CODDiss<br>TDS,<br>TDS,<br>TKN,<br>X10/20/831.819-4.011/16/83<6 | DATE         Diss alled         Diss         Dis         Dis         Diss | Drift         Diss         Diss         Diss         Diss         Diss         Diss         Diss         Diss $ND_2 - N$ DATE         BODs         COD         TDS         TKN         NH2-N         ND2-N         ND2-N           10/20/83         1.8         19         -         4.0         3.2         <0.1 | DATE         Disc         Diss         Dis         Diss         Diss <th< td=""><td><math display="block">\begin{array}{c c c c c c c c c c c c c c c c c c c </math></td></th<> | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

| ` | DAT       | a Shee     | Τ             | Paran | netees           | (me/s) | WEL    | /H -       | StIALLOW |
|---|-----------|------------|---------------|-------|------------------|--------|--------|------------|----------|
|   | DATE      | ALKALINITY | TOTAL         | 5042- | G2+              | 1.b+   | Aig 2+ | К <b>†</b> | OTHER    |
| ) | 10/20/83  | - 191      | 0.72          | 43.   | 47               | ଚା     | 20-    |            |          |
|   | 11/16/53  | -          | -             | -     | -                | -      | -      | -          | ~        |
|   | 12/20/83  | -          | ~             | -     | -                | -      | -      | -          |          |
|   | 1/12/84   | -          | ~             | -     | -                | -      | -      | -          |          |
|   | 2/12/84   | -          | _             | .—    | -                | -      | -      | -          |          |
|   | 3/20/84   |            |               | -     | -                | -      | -      | -          | -        |
|   | 4/22/84   | -          | -             | ~     | -                | -      | -      | _          | -        |
|   | 5/24/64   | 270        | D <b>.</b> 39 | 24    | 57               | 95     | 24     | 5          | -        |
|   | 6/7/24    | -          | -             | -     | -                | -      | -      | -          | -        |
|   | 7/19/84   | -          |               | _     | -                |        | -      |            |          |
| ` | 8   30/84 | 358        | 1.07          | 5,Z   | 74               | ZID    | 30     | 6          |          |
| ) | 1<br>r    |            |               |       |                  |        |        |            |          |
|   | •         |            |               |       | 4<br>4<br>4<br>4 |        |        |            |          |
|   | · ·       |            |               |       |                  |        |        |            |          |
|   |           |            |               |       |                  |        |        |            |          |
|   |           |            |               |       |                  |        |        |            |          |
| • | •         |            |               | _     |                  |        |        | N          |          |
|   |           |            | -             |       |                  |        |        |            |          |
|   |           |            |               |       |                  |        |        |            |          |
|   |           |            |               |       |                  |        |        |            |          |
|   |           |            |               |       |                  |        |        |            |          |
|   |           |            |               |       |                  | 1      |        |            |          |
|   |           |            |               |       | Ĩ                |        |        |            |          |

|             | DAT      | DISSOLVED |      | 0155              | DISS                       | DISS<br>NHZ-NY | NO2-13+               | LIB              | - L  |             |
|-------------|----------|-----------|------|-------------------|----------------------------|----------------|-----------------------|------------------|------|-------------|
| -           | DATE     | BODS      |      | TDS               | A                          |                |                       | <b>`</b>         |      |             |
| )           | 10/20/53 |           | <5   |                   | D.4                        | 0.2            | 0,1                   | 94. <sup>-</sup> | e. 2 |             |
|             | 11/16/83 | ¢ ک       | 5    | 326               | 0.Z                        | 0. ]           | 0.1                   | 29               | -    | -           |
|             | 12/20/83 | < 4       | <5   | 308               | 0.Z                        | 0.1            | <i>∠0.</i> 1          | 12               |      | -           |
|             | 1/12/84  |           | . <5 | 316               | 0.3                        | D.1            | <b>≺</b> D.1          | 12               |      | -           |
| ۲.          | z/1z/84  | 23        | <5   | 304               | 0.2                        | 0.1            | 20.1                  | 12               |      |             |
| A.S.Unitera | 3/20/84  | <3        | 25   | 304               | 0.2                        | 0.2            | 0,1                   | 15               | 7.2  | _           |
|             | 4/22/84  | 23        | ×5   | 30 B              | 0.Z                        | 0,1            | 0,1                   | 13               | 7.2  |             |
|             | 5/24184  | <3        | 45   | 336               | D. Z                       | 0.1            | D, 1                  | 17               | 7.3  | 8.2 LABAH   |
|             | 6/7/34   | 18        | 62   | 75 2              | 0.2                        | D.1            | 20.1                  | 190              | 7.D  |             |
|             | 7/19/84  | 15        | 17   | 1140              | 1.2                        | 0.5            | 0.1                   | 390              | 6.9  | <b>.</b>    |
| ``          | 8 30/84  | ×12       | م ا  | 324               | 0.6                        | 0.5            | 0.1                   | 46               | 6,9  | <b>—</b>    |
| )           | 9/5/84   | <4        | <5   | 358               | 0.6                        | 0.5            | 20,1                  | 34               | 7,0  | <br>-<br>•  |
|             | 10/9/84  | 23        | B.   | 432               | 0,8                        | 0.6            | <i>20,1</i>           | 75               | 7.0  |             |
|             |          |           |      |                   |                            |                |                       |                  |      |             |
| •           |          |           |      |                   |                            |                |                       |                  | -    | 1<br>-<br>1 |
|             |          |           |      |                   | •<br>•                     |                |                       |                  |      | •           |
|             |          |           |      | 4<br>4<br>4       |                            |                |                       |                  |      |             |
|             |          |           |      | • • •<br>• •<br>• | )<br>1                     |                |                       |                  |      |             |
|             |          |           |      | 1                 |                            |                |                       |                  |      |             |
|             |          |           |      | :                 | -<br>-<br>-<br>-<br>-<br>- |                |                       |                  | -    |             |
|             |          |           |      |                   | k                          |                | -                     |                  |      |             |
| •           |          |           |      | •                 | :                          |                |                       |                  |      |             |
|             | · .      |           |      | :                 |                            |                |                       |                  |      |             |
|             |          |           |      | •                 | •                          | •              | -<br>-<br>-<br>-<br>- | •                |      | •<br>•<br>• |

| ` | DA              | TA SHE |          | Parai             | neters          | (mg/_()         | WEL    | <u>л // В</u> . |       |
|---|-----------------|--------|----------|-------------------|-----------------|-----------------|--------|-----------------|-------|
|   | DATE            |        | TOTAL    | 504 <sup>2-</sup> | G <sup>2+</sup> | Na <sup>+</sup> | Nig 2+ | К†              | STHER |
| ) | 10/20/83        | w21Z   | 0.07     | 23.               | 70              | 47              | 35     | -               |       |
|   | 11/16/83        | -      | -        | -                 | -               | -               | -      | -               | -     |
|   | 12/20/83        | -      | -        | -                 | -               | -               | -      | -               | —     |
|   | 1/12/84         | ~      | <u> </u> | ~                 | -               | ~               | ~      | -               | -     |
|   | 2/12/84         | -      | -        |                   | -               | _               | -      | -               | -     |
|   | 3/20/84         | -      | ~        | -                 | -               | ~               | -      | -               | -     |
|   | 4/22/84         | -      | ~        | ~                 | <u> </u>        | -               | _      | _               | _     |
|   | 5/24/84         | 222    | <0.02    | 31                | 61              | 5               | 27     | Z               | _     |
|   | 6/7/84          | -      | ~        | -                 | -               | -               | _      | -               | ~     |
|   | 7/19/84         | -      | -        | -                 | -               | -               | -      | -               |       |
|   | <i>2 30</i> /84 | 252    | <0.0Z    | 26                | 66              | 34              | 24     | 6               | _     |
| * | •               |        |          |                   |                 |                 |        |                 |       |
|   |                 |        | -        |                   |                 |                 |        |                 |       |
|   |                 |        |          |                   |                 |                 |        |                 |       |
|   |                 |        |          |                   |                 |                 |        |                 |       |
|   |                 |        |          |                   |                 |                 |        |                 |       |
|   |                 |        |          |                   |                 |                 |        |                 |       |
|   |                 |        |          |                   |                 |                 |        |                 |       |
|   |                 | -      |          |                   |                 |                 |        |                 |       |
|   |                 |        |          |                   |                 |                 |        |                 |       |
|   |                 |        |          |                   |                 | -               |        |                 |       |
| • |                 |        |          |                   |                 |                 |        |                 |       |
|   |                 |        |          |                   |                 |                 |        | -               |       |

| 1.6<br>2.3<br>4.9<br>2.3<br>2.3<br>2.3<br>2.3<br>2.3 | 0155<br>20<br>7<br>9<br>14<br>8<br>25<br>25<br>25 | DISS<br>TDSX<br>356<br>470<br>378<br>378<br>346 | DISS<br>TKN <sub>X</sub><br>0. Z<br>0. Z<br>0. 7<br>0. 3<br>2.0 | NHz-N<br><0.1<br><0.1<br>0.1<br>20.1 | 122-N+<br>1303-NX<br>12.0<br>8.3<br>8.7<br>7.9 | CI-K<br>6524<br>29<br>33<br>29 |               |                   |
|------------------------------------------------------|---------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------|--------------------------------------|------------------------------------------------|--------------------------------|---------------|-------------------|
| 23<br>4,9<br>23<br>23                                | 9<br>14<br>8<br>25                                | 470<br>378<br>346                               | 0.Z<br>0.7<br>D <b>.3</b>                                       | <0,1<br>0,1<br>20,1                  | 12.0<br>8.3<br>8.7                             | Z9<br>33                       | B.4<br>-<br>- | -                 |
| 4,9<br>23<br>23<br>23                                | 14<br>8<br>25                                     | 470<br>378<br>346                               | 0.7<br>D <b>.3</b>                                              | 0,1<br>20,1                          | 6,7                                            | 33                             | -             | -                 |
| 23<br>23<br>23                                       | 8<br>25                                           | 378<br>346                                      | D.3                                                             | 20,1                                 |                                                |                                | -             | -                 |
| 23<br>23                                             | 25                                                | 346                                             |                                                                 |                                      | 7.9                                            | 29                             | -             |                   |
| 23                                                   |                                                   |                                                 | 2.0                                                             | /                                    |                                                |                                | -             |                   |
|                                                      | 25                                                |                                                 |                                                                 | ∠D.1                                 | 7.6                                            | Z9 ·                           | _             | _                 |
| < 3                                                  |                                                   | 343                                             | 0.Z                                                             | 0.1                                  | 7,3                                            | 25                             | 6.5           | - ·               |
|                                                      | <5                                                | 34 D                                            | 0.Z                                                             | 0.1                                  | 7.6                                            | 2.3                            | 7.1           | _                 |
| 23                                                   | 25                                                | 372                                             | C. Z                                                            | 0,1                                  | 9,7                                            | 23                             | 7.0           | <i>G.3 lae</i> pH |
| ~                                                    |                                                   | ~                                               |                                                                 | -                                    | <b>—</b>                                       | -                              | -             | -                 |
| -                                                    | · -                                               | _                                               | _                                                               | -                                    | -                                              | -                              | -             | -                 |
| -                                                    | <b></b> .                                         | -                                               | _                                                               | -                                    | -                                              |                                | _             |                   |
|                                                      |                                                   |                                                 |                                                                 |                                      |                                                |                                |               |                   |
|                                                      |                                                   |                                                 |                                                                 |                                      |                                                |                                |               |                   |
|                                                      |                                                   |                                                 |                                                                 |                                      |                                                |                                |               | 4<br>•<br>•       |
|                                                      |                                                   |                                                 | ·                                                               |                                      |                                                |                                |               | •                 |
|                                                      |                                                   |                                                 |                                                                 |                                      |                                                |                                |               | *<br>:<br>:       |
|                                                      |                                                   |                                                 | -                                                               |                                      |                                                |                                |               |                   |
|                                                      |                                                   |                                                 |                                                                 |                                      |                                                | •                              |               |                   |
| -                                                    |                                                   |                                                 |                                                                 |                                      |                                                |                                |               |                   |
|                                                      |                                                   |                                                 |                                                                 |                                      |                                                |                                |               |                   |
|                                                      |                                                   |                                                 |                                                                 |                                      |                                                |                                |               |                   |
|                                                      |                                                   |                                                 |                                                                 | -                                    |                                                |                                | -             |                   |
|                                                      |                                                   |                                                 |                                                                 |                                      |                                                |                                |               | -<br>-<br>-<br>-  |
|                                                      |                                                   |                                                 |                                                                 |                                      |                                                |                                |               |                   |

•

| DATE     | ALKALINIT | TOTAL P | 5042- | G <sup>2+</sup> | Nat | Mg <sup>2+</sup> | Κ <b>†</b> [ | DTHER            |
|----------|-----------|---------|-------|-----------------|-----|------------------|--------------|------------------|
| 10/20/53 |           | 0.02    | 17.   | 65              | 14  | 30               | -            | ·                |
| 11/16/83 |           | -       | -     | -               | -   | -                | -            | -                |
| 12/20/83 | -         | -       | _     | -               | -   | -                | -            | . —              |
| 1/12/84  | -         | ~       |       | -               | -   | -                | _            |                  |
| 2/12/84  | -         |         | -     | -               | -   | -                | -            |                  |
| 3/20/84  | -         | -       | -     | -               | -   | _                | -            |                  |
| 4/22/84  | -         | -       | ~     | -               | -   | -                | -            | -                |
| 5/24/84  | 214       | 20.02   | ZD    | 61              | 12  | ZB               | Z            | -                |
| 617/84   | -         | -       | -     | -               |     | -                | -            | -                |
| 7/19/84  |           | -       | -     | -               | -   | -                | -            |                  |
| 8/30/34  |           | -       |       | -               | -   | -                |              | _                |
|          |           |         |       |                 |     |                  |              |                  |
|          |           |         |       |                 |     |                  |              |                  |
|          |           |         |       |                 |     |                  |              | f<br>i<br>i<br>- |
|          |           |         |       |                 |     |                  | -            |                  |
|          |           |         |       |                 |     |                  | •            |                  |
|          |           |         |       |                 |     |                  |              |                  |
|          |           |         |       |                 |     |                  |              |                  |
|          |           |         |       |                 |     |                  |              |                  |
|          |           |         |       |                 |     |                  |              | · ·              |
| •        |           |         |       |                 |     |                  |              |                  |
|          |           | :       |       |                 |     |                  |              |                  |

|                   | Дата                    | SHEE              | 10-ri , 10- | PARA       |             | (m;/,)        | WELL<br>0155-<br>ND2-N+, | 128-     | DEEP, E     | 36        |
|-------------------|-------------------------|-------------------|-------------|------------|-------------|---------------|--------------------------|----------|-------------|-----------|
|                   | DATE                    | Dissolved<br>BOD5 | 0135<br>COD | TDS        | CISS        | DISS<br>NH3-N | NO2-N+<br>NO3-N          | -۱۷      | CH<br>(LAB) | DTHER     |
| )                 | 10/20/83                | 1.6               | < 5         | <b>—</b>   | 0.2         | <0.1          | 10.1                     | 39.      | 5.7         |           |
|                   | 11/16/83                | < 3               | 6           | 330        | <0.Z        | <0.1          | 8.4                      | 40       | -           |           |
|                   | 12/20/83                | 23                | L5          | 396        | 0.Z         | <0.1          | 13.Z                     | 37       | -           |           |
|                   | 1/12/84<br>SPLIT SAMPLE | 23<br>23          | 76          | 432<br>438 | 0.2<br>20,2 | <0.1<br><0.1  | 13.6<br>13.2             | 36<br>36 |             | -         |
| 1.5.A             | 2/12/8 <b>4</b>         | 23                | 25          | 414        | . 20,2      | 20.1          | 12.7                     | 37       | -           |           |
| A.2.11 n1 - 1-1-1 | 3/20/84                 | 23                | 25          | 368        | 0.2         | 0.1           | 9.4                      | 39       | 7.4         | -         |
|                   | 4/22/84                 | 23                | <5          | 35D        | < 0, 2      | 0,1           | 8,3                      | 33       | 7.5         |           |
| 1.1.5.7.7.        | 5/24/84                 | 23                | 25          | 335        | <0.2        | 0.1           | 6.9                      | 33       | 7.6         | 5.3 LABPH |
| 1.<br>1           | 6/7/24                  | -                 | -           | -          | -           | ~             | -                        | -        |             | -         |
|                   | 7/19/84                 | -                 | -           | -          |             |               | -                        | -        | -           | ~         |
| )                 | 8/30/54                 | -                 | -           | -          | -           | -             | -                        | -        |             | -         |
|                   |                         |                   |             |            |             |               |                          |          |             |           |
|                   | •                       |                   |             |            |             | -             |                          |          |             |           |
| •                 |                         |                   |             |            |             |               |                          |          |             |           |
|                   |                         | :<br>:<br>!       |             |            |             |               |                          |          |             |           |
|                   |                         |                   | 1           |            |             |               |                          |          |             |           |
|                   |                         |                   |             |            |             |               |                          |          |             |           |
|                   |                         |                   |             |            |             |               |                          |          |             |           |
|                   |                         | -                 |             |            |             |               |                          |          |             |           |
|                   |                         |                   |             |            |             |               |                          |          |             |           |
|                   | •                       |                   |             |            |             |               |                          |          |             |           |
| •                 |                         |                   | •<br>1<br>- |            |             |               |                          |          |             |           |
|                   |                         | 4<br>             | :<br>:<br>4 |            |             |               | •                        | 1<br>1   |             | •         |
|                   |                         |                   |             |            |             |               |                          |          | •           |           |

|                       | DA1      | iu Winin<br>Ta Shee | T     | Param | ICTERS           | (ب_رومه)        | WEL    | L 12B-1    | Deep, 35 |  |
|-----------------------|----------|---------------------|-------|-------|------------------|-----------------|--------|------------|----------|--|
| X.                    | DATE     | REKA LINTY          | TOTAL | 5042- | Ca <sup>2+</sup> | Na <sup>+</sup> | Nig 2+ | κ <b>+</b> | dther    |  |
|                       | 10/20/83 | ~214                | 0.04  | 23,   | 56               | 24              | 32     | -          |          |  |
|                       | 11/16/83 | _                   | -     | -     | -                | -               | -      | _          | -        |  |
| ·                     | 12/20/83 | -                   | _     | -     | -                | -               | -      | -          | ~        |  |
|                       | 1/12/84  | -                   | -     |       | -                | -               | ~      | ~          | —        |  |
|                       | Z/12/84  | -                   | _     | -     |                  | -               | -      | -          | _        |  |
| Alada <b>InU.S</b> .A | 3/20/84  | _                   | -     | -     | -                | -               |        |            | -        |  |
| / Mad                 | 4/12/84  | -                   | -     | -     | -                | -               | _      | ~          | -        |  |
| / Barro               | 5/24/84  | 166                 | 0,02  | 24    | 42               | 21              | Z6     | 2          | -        |  |
| a + Ptharster         | 617/84   | -                   | -     |       | -                | -               |        | _          |          |  |
|                       | 7/19/84  | -                   | -     | -     | -                | -               | -      |            | _        |  |
| •                     | 8/30/84  | -                   | -     | _     | -                |                 | -      | -          |          |  |
|                       |          |                     |       |       |                  |                 |        |            |          |  |
|                       |          |                     |       |       |                  |                 |        |            |          |  |

|          | t Sheet                                                                                                                                                                         | ,                                                                                                                                                                                                                                                           | PARAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (m;/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - piss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L 13A-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| ATE      | DISSOLVED.<br>BOD5                                                                                                                                                              | Diss<br>Cod                                                                                                                                                                                                                                                 | TDSX                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DISS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DISS<br>NH3-NX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Noz-N+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (LAE)<br>Ptl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OTHER                                                 |
| 120/83   | 0.3                                                                                                                                                                             | 20                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Z,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | —                                                     |
| /16/83   | < 3                                                                                                                                                                             | 18                                                                                                                                                                                                                                                          | ZIZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                     |
| 120/63   | <3                                                                                                                                                                              | 17                                                                                                                                                                                                                                                          | Z16                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                     |
| 2/20/83  | TOTAL<br>< 3                                                                                                                                                                    | TOTAL<br>18                                                                                                                                                                                                                                                 | total 55<br>334                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |
| /12/84   | < 3                                                                                                                                                                             | 17                                                                                                                                                                                                                                                          | 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                     |
| /12/84   | 23                                                                                                                                                                              | 16                                                                                                                                                                                                                                                          | 236                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>40.1</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                     |
| /20/84   | ∠3                                                                                                                                                                              | 21                                                                                                                                                                                                                                                          | 286                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     |
| 12 /84   | 23                                                                                                                                                                              | 22                                                                                                                                                                                                                                                          | 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |
| 124/84   | <b>43</b>                                                                                                                                                                       | 25                                                                                                                                                                                                                                                          | 384                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E.DLAZ;H                                              |
| ,/7/54   | 23                                                                                                                                                                              | 31                                                                                                                                                                                                                                                          | 438                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .1.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D.Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     |
| /19/84   | < 3                                                                                                                                                                             | 36                                                                                                                                                                                                                                                          | 476                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |
| 3 /30/84 | 13                                                                                                                                                                              | 33                                                                                                                                                                                                                                                          | 432                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |
| 25/84    | 23                                                                                                                                                                              | 20                                                                                                                                                                                                                                                          | 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |
| c/9/84   | イス                                                                                                                                                                              | 21                                                                                                                                                                                                                                                          | 254                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |
|          |                                                                                                                                                                                 |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |
|          |                                                                                                                                                                                 |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |
|          |                                                                                                                                                                                 |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |
|          |                                                                                                                                                                                 |                                                                                                                                                                                                                                                             | •<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |
|          |                                                                                                                                                                                 |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |
|          |                                                                                                                                                                                 |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |
|          |                                                                                                                                                                                 |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |
|          |                                                                                                                                                                                 |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |
|          |                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |
|          | 20/63<br>111/83<br>120/63<br>120/63<br>120/63<br>120/63<br>120/64<br>120/84<br>120/84<br>120/84<br>121/84<br>121/84<br>121/84<br>121/84<br>121/84<br>130/84<br>130/84<br>125/84 | 20/63  0, 6<br> 11/83  < 3<br> 20/63  < 3<br> 20/63  < 3<br> 20/63  < 3<br> 20/63  < 3<br> 11/84  < 3<br> 12/84  < 3<br> 20/84  < 3<br> 20/84  < 3<br> 20/84  < 3<br> 21/84  < 3<br> 24/84  < 3<br> 24/84  < 3<br> 21/84  < 3<br> 25/84  < 3<br> 25/84  < 3 | 20/83 $0, 9$ $20$ $116/83$ $< 3$ $18$ $120/63$ $< 3$ $17$ $120/63$ $< 3$ $17$ $120/63$ $< 3$ $17$ $120/63$ $< 3$ $17$ $120/63$ $< 3$ $17$ $120/83$ $< 3$ $17$ $120/83$ $< 3$ $17$ $12/84$ $< 3$ $17$ $12/84$ $< 3$ $16$ $120/84$ $< 3$ $21$ $12/84$ $< 3$ $22$ $121/84$ $< 3$ $22$ $121/84$ $< 3$ $22$ $121/84$ $< 3$ $22$ $121/84$ $< 3$ $25$ $121/84$ $< 3$ $31$ $121/84$ $< 3$ $35$ $121/84$ $< 3$ $35$ $17/64$ $< 3$ $36$ $130/84$ $4 3$ $33$ $125/64$ $23$ $20$ | 20/83 $0.9$ $20$ $ 116/83$ $< 3$ $18$ $212$ $120/63$ $< 3$ $17$ $216$ $120/63$ $< 3$ $17$ $216$ $120/63$ $< 3$ $17$ $216$ $120/63$ $< 3$ $17$ $216$ $120/63$ $< 3$ $17$ $222$ $12/84$ $< 3$ $17$ $222$ $12/84$ $< 3$ $17$ $222$ $12/84$ $< 3$ $16$ $236$ $120/84$ $< 3$ $21$ $286$ $120/84$ $< 3$ $22$ $320$ $121/84$ $< 3$ $25$ $364$ $121/84$ $< 3$ $25$ $364$ $121/84$ $< 3$ $25$ $364$ $17/64$ $< 3$ $31$ $425$ $19/84$ $< 3$ $36$ $476$ $130/84$ $43$ $36$ $432$ $125/64$ $23$ $20$ $280$ | 120/63 $0.6$ $20$ $ 1.0$ $116/83$ $< 3$ $18$ $212$ $0.6$ $116/83$ $< 3$ $17$ $216$ $0.6$ $120/63$ $< 3$ $17$ $216$ $0.6$ $120/63$ $< 3$ $17$ $216$ $0.6$ $120/63$ $< 3$ $17$ $216$ $0.6$ $120/63$ $< 3$ $17$ $222$ $0.6$ $120/83$ $< 3$ $17$ $222$ $0.6$ $111/84$ $< 3$ $17$ $222$ $0.6$ $112/84$ $< 3$ $17$ $222$ $0.6$ $120/84$ $< 3$ $21$ $286$ $0.7$ $121/84$ $< 3$ $22$ $320$ $0.3$ $121/84$ $< 3$ $25$ $384$ $0.9$ $1/21/84$ $< 3$ $25$ $384$ $0.9$ $1/21/84$ $< 3$ $31$ $4256$ $1.0$ $1/9/84$ $< 3$ $36$ $476$ $1.2$ < | 120/63 $0.6$ $20$ $ 1.0$ $0.1$ $116/83$ $< 3$ $18$ $212$ $0.6$ $0.1$ $116/83$ $< 3$ $18$ $212$ $0.6$ $0.1$ $120/63$ $< 3$ $17$ $216$ $0.6$ $0.1$ $120/63$ $< 3$ $17$ $216$ $0.6$ $0.1$ $120/63$ $< 3$ $17$ $216$ $0.6$ $0.1$ $120/63$ $< 3$ $17$ $222$ $0.6$ $0.1$ $120/83$ $< 3$ $17$ $222$ $0.6$ $0.1$ $11/84$ $< 3$ $17$ $222$ $0.6$ $0.1$ $112/84$ $< 3$ $16$ $236$ $0.7$ $0.2$ $120/84$ $< 3$ $21$ $286$ $0.7$ $0.2$ $121/84$ $< 3$ $25$ $384$ $0.9$ $0.3$ $17/64$ $< 3$ $31$ $435$ $1.0$ $0.2$ $19/84$ $< 3$ $36$ $476$ $1.2$ | 1.0 $1.0$ $0.1$ $1.6$ $11.93$ $3$ $18$ $212$ $0.6$ $0.1$ $4.6$ $11.93$ $3$ $18$ $212$ $0.6$ $0.1$ $4.6$ $11.93$ $3$ $17$ $216$ $0.6$ $0.1$ $4.6$ $120/63$ $43$ $17$ $216$ $0.6$ $0.1$ $4.6$ $120/63$ $43$ $17$ $216$ $0.6$ $0.1$ $4.6$ $120/63$ $43$ $17$ $222$ $0.6$ $0.1$ $0.1$ $120/63$ $43$ $17$ $222$ $0.6$ $0.1$ $0.1$ $120/64$ $43$ $17$ $222$ $0.6$ $0.1$ $0.1$ $121/84$ $43$ $21$ $286$ $0.7$ $0.2$ $0.2$ $1/20/84$ $43$ $25$ $364$ $0.9$ $0.3$ $0.72$ $0.7$ $1/24/84$ $43$ $34$ $476$ $1.2$ $0.2$ $0.7$ $1/1/84$ $43$ $33$ | 1.0 $1.0$ $0.1$ $1.6$ $7.4$ $20/63$ $0.6$ $20$ $ 1.0$ $0.1$ $1.6$ $7.4$ $11.183$ $< 3$ $18$ $212$ $0.6$ $0.1$ $<0.1$ $2.4$ $11.183$ $< 3$ $18$ $212$ $0.6$ $0.1$ $<0.1$ $2.5$ $120/63$ $< 3$ $17$ $216$ $0.6$ $0.1$ $20.1$ $2.1$ $120/63$ $< 3$ $17$ $216$ $0.6$ $0.1$ $20.1$ $2.1$ $120/63$ $< 3$ $17$ $216$ $0.6$ $0.1$ $0.1$ $2.1$ $120/83$ $< 3$ $17$ $222$ $0.6$ $0.1$ $0.1$ $1.5$ $11/84$ $< 3$ $16$ $236$ $0.6$ $0.2$ $2.3$ $0.2$ $2.3$ $11/2/84$ $23$ $21$ $286$ $0.7$ $0.2$ $0.2$ $2.3$ $1/2/84$ $< 3$ $21$ $232$ $326$ $0.7$ $0.2$ $0.7$ <t< td=""><td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td></t<> | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

|                | DA       | th Shee    | -            | PARAN | neters | [no]s                 | ) WEL  | L 13H- | SHALLOW |
|----------------|----------|------------|--------------|-------|--------|-----------------------|--------|--------|---------|
|                | DATE     | ALKALINITY | TOTAL        | 5042- | G2+    | No.+                  | Nig 2+ | K+     | OTHER   |
| ·              | 17/20/83 | ~196       | 0.14         | 33    | 48     | З                     | 27     | . –    |         |
|                | 11/16/83 | -          | -            | -     | -      |                       | -      | -      | -       |
|                | 12/20/83 | -          | -            | -     | -      | -                     | -      | -      | -       |
|                | 1/12/84  | -          | ~            |       | -      | -                     | -      |        | -       |
|                | 2/12/84  | -          | -            | -     | -      | -                     | -      | _      | _       |
| Mad • In U.S.A | 3/20/84  | -          | -            | -     | -      | -                     | -      | -      |         |
|                | 4/22/84  | -          | -            | -     | -      | -                     | -      | -      | -       |
|                | 5/24/84  | 244        | 0.03         | 71    | 67     | 3                     | 35     | Z      | _       |
|                | 6/7/84   |            | -            | -     | -      | -                     | -      | _      |         |
|                | 7/19/84  |            | NSS<br>POLEP | -     | -      | ~                     | -      | -      | _       |
|                | 8/30/84  | 250        | 0.04         | 100   | -      | 4                     | 39     | 3      | -       |
| )              |          |            |              |       |        |                       |        |        |         |
|                | •        |            |              |       |        |                       |        |        |         |
|                |          |            |              |       |        |                       |        | -      |         |
|                |          |            |              |       |        |                       |        |        |         |
|                |          |            |              |       |        |                       |        |        |         |
|                | •        |            |              |       |        |                       |        |        |         |
|                |          |            |              |       |        |                       |        |        |         |
|                |          |            |              |       |        |                       |        |        |         |
|                |          |            |              |       |        |                       |        |        |         |
|                |          |            |              |       |        |                       |        |        |         |
|                |          |            |              | :     |        | 1<br>1<br>1<br>1<br>1 |        |        |         |
|                |          |            |              |       |        | •                     |        |        |         |

|          |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Para                                                                                                                                                                                                                                                                                             | METERS                                                                                                                                                                                                                                                                                                                                                                         | (mg/1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ALS C                                                  | L 13B-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | >                                                      |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| DATE     | DISSOLVED.<br>BOD5                                                                                                                                                                                         | DISS                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TDS                                                                                                                                                                                                                                                                                              | DISS<br>TKN                                                                                                                                                                                                                                                                                                                                                                    | DISS<br>NH3-N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NOz-N+                                                 | CI-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ۲ŧ۹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OTHER                                                  |
| 10/20/83 | 0.3                                                                                                                                                                                                        | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                | 20.2                                                                                                                                                                                                                                                                                                                                                                           | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.6                                                    | 32.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                      |
| 11/16/83 | 23                                                                                                                                                                                                         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 300                                                                                                                                                                                                                                                                                              | 0.Z                                                                                                                                                                                                                                                                                                                                                                            | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.7                                                    | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                      |
| 12/20/83 | < 3                                                                                                                                                                                                        | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 292                                                                                                                                                                                                                                                                                              | 0.2                                                                                                                                                                                                                                                                                                                                                                            | 20,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.6                                                    | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                      |
| 1/12/84  | <3                                                                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32Z                                                                                                                                                                                                                                                                                              | 0.2                                                                                                                                                                                                                                                                                                                                                                            | 20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4,3                                                    | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                      |
| 2/12/84  | 23                                                                                                                                                                                                         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 316                                                                                                                                                                                                                                                                                              | 0.2                                                                                                                                                                                                                                                                                                                                                                            | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.5                                                    | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                      |
| 3/20/84  | 23                                                                                                                                                                                                         | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 314                                                                                                                                                                                                                                                                                              | 0.Z                                                                                                                                                                                                                                                                                                                                                                            | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.2                                                    | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                      |
| 4/22/84  | 23                                                                                                                                                                                                         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3/2                                                                                                                                                                                                                                                                                              | 0.2                                                                                                                                                                                                                                                                                                                                                                            | 0,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.9                                                    | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                      |
| 5/24/84  | 23                                                                                                                                                                                                         | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 344                                                                                                                                                                                                                                                                                              | 20.2                                                                                                                                                                                                                                                                                                                                                                           | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.7                                                    | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.2 LACF 4                                             |
| 6/7/84   | -                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                      |
| 7/19/34  | -                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                      |
| 8/30/34  | . 23                                                                                                                                                                                                       | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 316                                                                                                                                                                                                                                                                                              | 0.2                                                                                                                                                                                                                                                                                                                                                                            | 0,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.9                                                    | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |
| 9/25/24  | 23                                                                                                                                                                                                         | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 339                                                                                                                                                                                                                                                                                              | 0.2                                                                                                                                                                                                                                                                                                                                                                            | 20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .4.1                                                   | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |
| 10/9/84  | 23                                                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 316                                                                                                                                                                                                                                                                                              | QZ                                                                                                                                                                                                                                                                                                                                                                             | K0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4,2                                                    | 37 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |
|          |                                                                                                                                                                                                            | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |
|          |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |
|          |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |
|          |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
|          |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |
|          |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |
|          |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |
|          |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |
| -        |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |
|          |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |
|          | DATE<br>DATE<br>10/20/83<br>11/16/83<br>12/20/83<br>1/12/84<br>2/12/84<br>3/20/84<br>3/20/84<br>3/20/84<br>5/24/84<br>5/24/84<br>5/24/84<br>5/24/84<br>5/24/84<br>5/24/84<br>5/24/84<br>5/24/84<br>9/25/84 | DATA         SHEE           DATE         Dissolved           DONTE         BODs           10/20/83         0.8           11/16/83         23           12/20/63         3           12/20/63         3           2/12/84         23           3/20/84         23           3/20/84         23           4/22/84         23           5/24/84         23           6/1/84         23           7/19/54         -           8/30/34         23           9/25/84         23 | 10/20/93 $0.8$ $45$ $11/1L/83$ $43$ $45$ $11/1L/83$ $43$ $45$ $12/20/63$ $43$ $45$ $1/12/84$ $43$ $45$ $1/12/84$ $43$ $45$ $2/12/84$ $43$ $45$ $3/20/84$ $43$ $45$ $3/20/84$ $43$ $45$ $4/122/184$ $43$ $45$ $5/24/84$ $43$ $45$ $6/7/124$ $  7/19/54$ $  8/30/34$ $43$ $45$ $9/25/74$ $43$ $45$ | DATA         SHEET         PARAI           DATE $BOD_5$ $COD$ TDS $In/Zo/83$ $O.8$ $45$ $ II/IL/83$ $43$ $45$ $ II/IL/83$ $43$ $45$ $ II/IL/83$ $43$ $45$ $292$ $I/IZ/84$ $43$ $45$ $292$ $I/IZ/84$ $43$ $45$ $312$ $2/IZ/84$ $43$ $45$ $314$ $4/22/84$ $43$ $45$ $314$ $4/22/84$ $43$ $45$ $344$ $6/7/84$ $   7/19/54$ $   8/30/34$ $43$ $45$ $316$ $9/25/64$ $43$ $45$ $339$ | DATA SHEETPARAMETERSDATEDISSOLVED,<br>BOD5DISS<br>CODTDSTKN10/20/030.8 $< 5$ - $< 0.2$ 11/11/183 $< 3$ $< 5$ - $< 0.2$ 11/11/183 $< 3$ $< 5$ $< 0.2$ 11/11/183 $< 3$ $< 5$ $< 0.2$ 12/20/63 $< 3$ $< 5$ $2.92$ $0.2$ 11/12/184 $< 3$ $< 5$ $2.92$ $0.2$ 11/12/184 $< 3$ $< 5$ $3.16$ $0.2$ 2/12/184 $< 3$ $< 5$ $3.14$ $0.2$ 3/20/184 $< 3$ $< 5$ $3.14$ $0.2$ 4/122/184 $< 3$ $< 5$ $3.44$ $2.2$ $< 1/21/184$ $   < 1/19/54$ $   < 1/19/54$ $   < 1/19/54$ $< 3$ $< 5$ $3.16$ $< 1/25/184$ $< 3$ $< 5$ $3.39$ $0.2$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | DATA SHEET       PARAMETERS $(mg/1)$ WEL         DATE       DISSOLVED,       DISS       TDS       TKN       NH3-N       ND3-N         DATE       BODs       COD       TDS       TKN       NH3-N       ND3-N         In/20/93       O.B $4.5$ $ 20.2$ $20.1$ $4.6$ 11/1L/83 $4.3$ $4.5$ $ 20.2$ $20.1$ $4.6$ 11/1L/83 $4.3$ $4.5$ $2.92$ $0.2$ $20.1$ $4.7$ 12/20/63 $4.3$ $4.5$ $2.92$ $0.2$ $20.1$ $4.3$ $2.5$ $2/12/84$ $2.3$ $4.5$ $314$ $0.2$ $0.1$ $4.2$ $4/12/84$ $4.3$ $4.5$ $314$ $0.2$ $0.1$ $3.7$ $5/24/84$ $4.3$ | DATA         SHEET         PARAMETERS $(mg/1)$ WELL 13:5-<br>biss           DATE         BODs         COD         TDS         TKN         NH3-N         ND2-N+           DATE         BODs         COD         TDS         TKN         NH3-N         ND2-N+           10/20/03         0.3 $45$ - $20.2$ $20.1$ $4.6$ $32.$ 11/16/83 $43$ $25$ $300$ $0.2$ $20.1$ $4.6$ $32.$ 11/16/83 $43$ $45$ $292$ $0.2$ $20.1$ $4.6$ $32.$ 11/16/83 $43$ $45$ $292$ $0.2$ $20.1$ $4.6$ $35$ 12/20/63 $43$ $45$ $292$ $0.2$ $20.1$ $4.3$ $40$ 2/20/64 $43$ $45$ $316$ $0.2$ $0.1$ $4.3$ $40$ 2/2/84 $43$ $45$ $314$ $0.2$ $0.1$ $3.7$ $34$ $4/22/84$ $43$ $45$ $314$ $0.2$ <td><math display="block">\begin{array}{c c c c c c c c c c c c c c c c c c c </math></td> | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

|                 | DATE     | ALKALINTY     | P     | 504 <sup>2-</sup> | Ca <sup>2+</sup> | Nat | Mg <sup>2+</sup> | K+  | OTHER |             |
|-----------------|----------|---------------|-------|-------------------|------------------|-----|------------------|-----|-------|-------------|
| )               | 10/20/83 | ∽ <i>1</i> 78 | <0.02 | 25.               | 52               | 17  | Z 2              | -   | _     | •           |
|                 | 11/16/83 | -             | -     | -                 | -                | _   | -                | -   | _     |             |
|                 | 12/20/83 | -             | ~     | -                 | -                | -   | -                | -   |       | •<br>•<br>• |
|                 | 1/12/84  | -             | -     | -                 | -                | -   | -                | -   |       | -<br>-      |
|                 | z/14/84  | -             | -     | -                 | _                | -   | -                | -   | -     | •           |
| A.3.1.4.4.1.5.A | 3/20/84  | -             | -     | -                 | -                | -   | -                | • 🗕 |       |             |
| - F1 - F        | 4/22/84  | -             | -     | -                 | -                |     | -                | —   |       |             |
| 1 (L)           | 5/24/84  | 193           | 27.02 | 25                | 49               | 21  | 23               | 6   | -     |             |
|                 | 617/84   |               | -     | -                 | -                | -   | -                | _   | -     |             |
|                 | 7/19/84  | -             | -     | -                 | -                | -   | -                |     | -     |             |
| Ň               | 8 30/84  | . 193         | 20.02 | 24                | 54               | 23  | 22               | 8   | -     |             |
| )               |          |               |       |                   |                  |     |                  |     |       |             |
|                 |          |               |       |                   |                  |     |                  |     |       |             |
|                 |          |               |       |                   |                  |     |                  |     |       |             |
| •               |          |               |       |                   |                  |     |                  | •   |       |             |
|                 |          |               |       |                   |                  |     |                  |     |       |             |
|                 |          |               |       |                   |                  |     |                  |     |       |             |
|                 |          |               |       |                   |                  |     |                  |     |       |             |
|                 |          |               |       |                   |                  |     |                  |     |       |             |
|                 | -        |               |       |                   |                  |     |                  |     |       |             |
|                 | •        |               |       |                   |                  |     |                  |     |       |             |
|                 | :<br>!   |               |       |                   |                  |     | -                |     |       |             |
| -               |          |               |       |                   |                  |     |                  |     |       |             |

| ·           |          | HD CUNIM<br>ATA SHE |             |      | mg/l)         | (1)L'I ERS    | WE                       | 14 - |              | DW        |
|-------------|----------|---------------------|-------------|------|---------------|---------------|--------------------------|------|--------------|-----------|
|             | DATE     | DISS<br>BOD5X       | PISS<br>CDD | TDSX | DISS<br>TKN X | DISS<br>NH3-N | D155<br>NO2-N+<br>NO3-NX | CIT  | PH           | OTHER     |
| )           | 3/20/84  | 4.6                 | 15          | 638  | 1.4           | 1.]           | 0.4                      | 180  | (118)<br>7.2 | ~         |
|             | 4/22/84  | 1B                  | 30          | 634  | 1.3           | 0.3           | 1,5                      | 160  | 7.D          | -         |
|             | 5/24/84  | 23                  | 14          | 646  | 1.3           | 1.0           | 4,5                      | 150  | 7.0          | Bil LABEN |
|             | 6/7/84   | 24                  | 14          | 634  | 1.4           | 1.0           | 2.4                      | 150  | 7.1          | -         |
|             | 7/19/84  | 23                  | 30          | 410  | 1.2           | D. Z          | 1.8                      | 80   | 7.2          |           |
|             | 8/30/34  | 23                  | 13          | 017  | 2.1           | Z.0           | 0.1                      | 250  | 0.7          | -         |
|             | 9/25/84  | 23                  | רו          | 774  | Z.3           | 2.6           | 0.1                      | 230  | 71           |           |
|             | 10/9/84  | 23                  | /3          | 742  | 2.6           | 2.3           | 0.1                      | 270  | 7.1          |           |
|             | ,<br>,   |                     |             |      |               |               |                          |      |              |           |
|             |          |                     |             |      |               |               |                          |      |              |           |
| ,<br>,<br>, |          |                     |             |      |               |               |                          |      |              | 1         |
|             | а<br>- С |                     |             |      |               |               |                          |      |              |           |
|             | •        |                     |             |      |               |               |                          |      |              |           |
|             | :        |                     |             |      |               |               | -                        |      |              |           |
|             |          |                     |             |      |               |               |                          |      |              |           |
|             |          |                     |             |      | -             |               |                          |      |              |           |
|             |          |                     |             |      |               |               | :                        |      |              |           |
|             | :        |                     |             |      |               |               |                          |      |              |           |
|             | , -      |                     |             |      |               |               |                          |      |              |           |
|             | •        |                     |             |      |               |               |                          |      |              |           |
|             |          |                     |             | -    |               |               | • .                      |      |              |           |
|             |          |                     |             |      | -             |               |                          |      |              |           |
|             | 1        |                     |             |      |               |               | •                        |      |              |           |

|     |         | HL CONN<br>SHEE |       | FARET            | eteks – |       | VJE | 14 -       | SFFICEW |
|-----|---------|-----------------|-------|------------------|---------|-------|-----|------------|---------|
|     | DRITE   | ALKALINITY      | TOTAL | 55 <sup>2-</sup> | G2+     | í Ja: | 116 | <u>K</u> + | ÛTHE R  |
| 、 [ | 5/24/84 | 238             | acz   | 45               | 43      | 120   | 29  | 9          | -       |
|     | 6/7/84  | -               | ~     | -                | -       | -     | -   | -          | -       |
|     | 7/19/84 | -               | -     | -                | -       | _     | _   | -          | -       |
|     | 8/30/84 | Z30             | 0.05  | /9               | 48      | 180   | 23  | 11         | -       |
|     |         |                 |       |                  |         |       |     |            |         |
|     |         |                 |       |                  |         |       |     |            |         |
|     |         |                 |       |                  |         |       |     |            |         |

. . •

|        | DATE      |                |      | +    | (mg/_        | · · · · · · · · · · · · · · · · · · · |                          |      |       | V, CELL 2 |
|--------|-----------|----------------|------|------|--------------|---------------------------------------|--------------------------|------|-------|-----------|
|        | DATE      | DISS<br>BODS X | Diss | TDSX | DISS<br>TKNX | D155<br>NH3-N3                        | DISS<br>NO2-N+<br>NO2-NY | Ċľ,× | FIELD | OTHER     |
| Ĵ.     | 3/20/84   | 160            | 170  | 1390 | 19           | 19                                    | D, 1                     | 420  | 6.4   | -         |
|        | 4/22/84   | 120            | 130  | 1360 | 18           | 17                                    | 21.0                     | 280  | 6.4   | -         |
|        | 5/24/84   | <15            | 28   | 1620 | 6.8          | 6.3                                   | 1.6                      | 690  | 6.2   | 7.2 LHBCH |
|        | 6/7/84    | 230            | 30   | 1560 | Z,5          | 1.7                                   | 0.1                      | 660  | 6.3   | _         |
|        | 7/17/84   | 12             | 42   | 161D | 27           | 26                                    | 0.1                      | 600  | 6.6   | -         |
|        | 7/31/84   | 12             | 34   | 1570 | 18           | 17                                    | 0.1                      | 620  | -     | _         |
|        | 8/3/84    | 30             | 51   | 1660 | 26           | 25                                    | <1.0                     | 640  | -     | -         |
|        | 3/7/84    | 87             | 120  | 1800 | 36           | 34                                    | 21,0                     | 650  | -     | -         |
|        | 5/10/84   | 120            | 150  | 1500 | 46           | 42                                    | <1.0                     | 670  | -     | ~         |
|        | 8  30 /84 | 11             | 100  | 1910 | 78           | 74                                    | 11                       | 660  | 6.5   |           |
| `<br>` | 9/25/54   | 7,8            | 23   | 1320 | 61           | 60                                    | 7.0                      | 540  | 6.5   | _         |
| 1      | 10/9/84   | 11             | 31   | 1960 | 4.0          | 4,0                                   | 48                       | 740  | 64.   |           |
|        | 10/12/84  | -              | 27   | -    | 7,3          | 1.2                                   | 74                       | 560  |       | _         |
|        | 10/15/84  |                | 27   | -    | 1.1          | 0.4                                   | 37                       | 470  |       | -         |
| :      | 10/13/54  | $\sim$         | 25   | -    | 1.2          | <1.0                                  | 17,8                     | 500  | -     | -         |
| •      | 10/23/64  | -              | 21   | _    | 1.0          | 0.2                                   | 44                       | 500  | -     |           |
|        | 10/26/84  | _              | 25   |      | 1.0          | ×1.0                                  | 53                       | 600  |       |           |
| ;      | is 3:/E4  |                | 23   | -    | 1.0          | 21.0                                  | 33.                      | 440  |       |           |
| ;      | 11/1/85   | -              | 24   | -    | D, 3         | <1.0                                  | 30                       | 490  | _     | -         |
|        | 11/5/84   | -              | -    | -    | 1,5          | 0,3                                   | G, B                     | £30  | _     | -         |
|        | 11/13/84  |                |      |      | 2.0          | 1.0                                   | 10                       | 530  | _     | · _ ·     |
| •      | 11/16/84  | -              |      |      | Z. B         | 2.1                                   | 7.2                      | 620  |       |           |
|        | 11/20/34  | -              | -    | ·    | 4.Z          | 3.6                                   | 6.2                      | 680  | _     |           |

| DATE    | HIKALINTY   | TOTAL | 5042-       | G24                                                                                         | 1.0 | 11/02+ | K *      | S7HER       |
|---------|-------------|-------|-------------|---------------------------------------------------------------------------------------------|-----|--------|----------|-------------|
| 5/24/84 |             | 15    | F 0         | 92                                                                                          | 350 | 51     | 26       |             |
| 617/84  | -           | -     | ~           | ~                                                                                           | -   | -      |          | <b>—</b>    |
| 7/19/84 | _           | -     | -           | -                                                                                           | -   | -      | -        | -           |
| 7/31/84 | -           | -     | -           | -                                                                                           | _   | -      | <u> </u> | _           |
| 3/3/84  |             | -     | -           | -                                                                                           |     | -      | _        | _           |
| 8/7/84  |             | -     | -           | -                                                                                           | -   | -      | -        | -           |
| 6/10/34 | -           | -     | -           |                                                                                             | -   | -      | (        | -           |
| 8/30/84 | 563         | 22    | 190         | 43                                                                                          | 540 | 26     | 43       |             |
|         |             |       |             |                                                                                             |     |        |          |             |
|         |             |       |             |                                                                                             |     |        |          |             |
|         |             |       |             |                                                                                             |     |        |          | ·<br>·<br>· |
|         |             |       |             |                                                                                             |     |        |          |             |
|         | :<br>:<br>: |       |             |                                                                                             |     |        |          |             |
|         |             | 6<br> |             | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |     |        |          |             |
|         |             |       |             |                                                                                             |     |        |          |             |
|         |             |       |             |                                                                                             | -   |        |          | · · ·       |
|         | à           | 2     | •<br>•<br>• |                                                                                             |     |        |          |             |
|         |             |       |             |                                                                                             |     |        |          |             |
|         |             | -     |             |                                                                                             |     |        |          |             |
|         |             |       |             |                                                                                             |     |        |          |             |

•

|               |          | DISS     | ASS . | <del></del> | (mc/)            | DISS           | D155<br>NO3-NT | 1                                                                                           | FIELD        | 1           |
|---------------|----------|----------|-------|-------------|------------------|----------------|----------------|---------------------------------------------------------------------------------------------|--------------|-------------|
|               | DATE     | BODSY    | CO D  | TDSX        | TKNX             | NH3-N          | NOZ-NT         | Cix                                                                                         | p +1         | OTHER       |
| r.            | 3/20/84  | 7.7      | 34    | 550         | 1.6              | 0.8            | 0.1.           | 100                                                                                         | 445)<br>7.0  | -           |
|               | 4/22/84  | 743      | 160   | 1650        | 1,6              | 0,5            | 0,1            | 720                                                                                         | 6.4          | -           |
|               | 5/24/84  | 83       | 130   | 1500        | 3,D <sup>-</sup> | 1,9            | 0.1            | 630                                                                                         | 6.4          | 7.4 LAEF-   |
|               | 617184   | ID       | 38    | 1140        | Z.D              | 1.Z            | 0,1            | 470                                                                                         | 6.4          |             |
| ,             | 7/17/84  | 140      | 200   | 1370        | 3.3              | 1.9            | 0,1            | 720                                                                                         | 6.6          |             |
| C.C.D.UI EDOM | 7/31/84  | 42       | 36    | 1990        | 3.4              | 2.0            | 0.1            | Bġd                                                                                         |              | _           |
|               | 8/3/84   | 73       | 130   | 2030        | 3.0              | 1.7            | 0.1            | 370                                                                                         | -            |             |
|               | 8/7/34   | 35       | 92    | 1900        | 3,1              | 1.6            | 0.1            | 740                                                                                         | _            | <b>—</b> ', |
|               | 3/10/84  | 190      | ZAD   | 2010        | 3.6              | 1,7            | 0,1            | 720                                                                                         | -            |             |
|               | 8/30/34  | 39       | 100   | 1460        | 3,8              | 2,6            | 0.1            | 510                                                                                         | 6.4          | _           |
| ì             | 9/25/24  | 9.2      | 39    | 1350        | 5.2              | 4.4            | 20.1           | 510                                                                                         | 6.4          |             |
| j             | 10/9/24  |          | 43    | 1730        | 7.8              | 6.9            | 20,1           | 700                                                                                         | 6.6          |             |
|               | 10/12/24 | _        | 41    | _           | 7.2              | 6.3            | 20.1           | 550                                                                                         |              | _           |
|               | 10/15/24 | ·        | 41    | _           | 6.4              | 5.7            | 6.1            | 480                                                                                         |              | _           |
|               | 17/18/54 | -        | 34    | <u> </u>    | 6.4              | 5,4            | 20.1           | 460                                                                                         | ·            | _           |
|               | 10/23/24 | -        | 41    | -           | 9,2              | 7,8            | 0.1            | 550                                                                                         | <b>—</b> .   | -           |
|               | 10/2-154 |          | 40    | —           | 9,4              | <del>،</del> ت | 0.1            | 600                                                                                         | _            |             |
|               | 0/3:124  |          | 48    | <u> </u>    | 8.Z              | 6.9            | 0.1            | 560                                                                                         | _            | -           |
|               | 11/1/34  |          | 41    |             | 6.3              | 5,3            | 0.1            | 430                                                                                         | <del>.</del> | _           |
|               | 11/2/84  | —        | -     | -           | 5,4              | 4.0            | 0.1            | 320                                                                                         |              | -           |
|               |          | <b>1</b> |       |             |                  |                |                | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, |              |             |
|               |          |          |       |             |                  |                | 1              |                                                                                             |              |             |
|               |          |          |       | .           |                  |                | -              | •                                                                                           |              |             |

|                                                                                                                   | D4.7    | م<br>جوينا ج | -  | CTEA.<br>FFR- |                | ر اجراح | )                                     | • _ /io -    | SE EFFI |  |
|-------------------------------------------------------------------------------------------------------------------|---------|--------------|----|---------------|----------------|---------|---------------------------------------|--------------|---------|--|
|                                                                                                                   | DATE    | HLKELINT     |    | 5022-         | 2 <sup>4</sup> | Nat     | î lir                                 | \$. <b>4</b> | JTHER.  |  |
|                                                                                                                   | 5/24/34 | 329          | 14 | 100           | 5              | 450     | 20                                    | 24           | -       |  |
|                                                                                                                   | 617/84  | -            | -  | -             | _              | _       | · · · · · · · · · · · · · · · · · · · |              | _       |  |
|                                                                                                                   | 7/19/84 | -            | -  | ~             | _              | -       |                                       | -            | -       |  |
|                                                                                                                   | 7/31/84 | -            | -  | -             | -              | -       | _                                     |              | _       |  |
| S SQUARE<br>S SQUARE                                                                                              | 813/84  | -            | ~  | -             | -              | -       | -                                     | _            |         |  |
|                                                                                                                   | 8/1/84  | -            | -  | -             | ~              | -       | -                                     | _            | -       |  |
| 42 391 10 301 10 300 400<br>42 347 100 300 10 10 10 300 40<br>41 10 100 300 10 10 10 10 10 10 10 10 10 10 10 10 1 | 6/10/24 | -            | -  | -             |                | -       | -                                     | -            | -       |  |
| WATIONAL                                                                                                          | 8/35/84 | 433          | 11 | 7,4           | 44             | 460     | 25                                    | 27           | ~       |  |
|                                                                                                                   |         |              |    |               |                |         |                                       |              |         |  |

|                                                            | UNUITE<br>DATA | SHEET        | v v. p. v<br>- | (7× 11) | برزم بر                                            |              |                 | 12 17           | · CE11     | 1     | i.<br>I |
|------------------------------------------------------------|----------------|--------------|----------------|---------|----------------------------------------------------|--------------|-----------------|-----------------|------------|-------|---------|
|                                                            | PATE           | 0155<br>BOD5 | D155<br>(07    | TPS     | DISS                                               | 015 S<br>NH3 | 2155<br>124-122 | CI <sup>-</sup> | ρH         | CTHER |         |
|                                                            | 10/12/24       | 23           | 55             | 2090    | ΞZ                                                 | 20           | < 2.1           | 750             |            |       |         |
|                                                            | 10/15/84       |              | 49             |         | 30                                                 | 29           | <1.0            | סור             | ~          | -     |         |
|                                                            | 10/18/84       | < 61         | 63             | 3000    | 30                                                 | 30           | <1.0            | 700             | . <u> </u> |       |         |
|                                                            | 10/25/84       | _            | 60             |         | 33                                                 | 30           | <1.0            | 650             |            |       |         |
| S SQUARE<br>S SQUARE<br>S SQUARE                           | 10/26/84       | _            | 50             |         | 30                                                 | 30           | <1.0            | 680             |            | _     |         |
|                                                            | 10/30/84       | _            | 51             |         | 36                                                 | 31           | <1,5            | 690             |            | -     |         |
| 42 381 50 SHEETS<br>42 382 100 SHEETS<br>42 382 200 SHEETS | 11/1/84        | _            | 43             |         | 34                                                 | 22           | <1.0            | 700             | -          | -     |         |
| WALLOWAL                                                   | 11/3/34        |              | -              | ~       | 34                                                 | 34           | <1.0            | 660             | _          | -     |         |
| • • • •                                                    | 11/13/84       |              |                | -       | 30                                                 | 30           | <1.0            | 590             | _          | -     |         |
|                                                            | 11/16/54       |              | -              |         | 29                                                 | 29           | <1.0            | 540             | _          | _     |         |
|                                                            | 11/25/84       | -            | _              |         | 27                                                 | Z7           | <1.0            | 500             | _          | -     |         |
|                                                            |                |              |                |         |                                                    |              |                 |                 |            |       |         |
|                                                            |                |              |                |         | · · · · · · · · · · · · · · · · · · ·              | ,            |                 |                 |            |       |         |
|                                                            |                |              | -              |         |                                                    |              |                 |                 |            |       |         |
|                                                            |                |              | -              |         |                                                    |              |                 |                 |            |       |         |
|                                                            |                |              |                |         |                                                    |              |                 |                 |            |       |         |
|                                                            |                |              | :              |         |                                                    |              |                 |                 |            |       |         |
|                                                            |                |              |                |         |                                                    |              |                 |                 |            |       |         |
|                                                            |                | -            |                |         | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br> |              |                 | -<br>-<br>-     |            |       |         |
|                                                            |                |              |                |         |                                                    |              |                 |                 |            |       |         |
|                                                            |                |              |                |         |                                                    | . ··         |                 |                 |            |       |         |
|                                                            |                |              |                |         |                                                    |              |                 |                 |            |       |         |
| ·                                                          |                |              |                | -       |                                                    |              |                 |                 |            |       |         |
|                                                            |                |              |                |         |                                                    |              |                 |                 |            |       |         |

| 6/83<br>20/83<br>2/84 | < 3<br>< 3<br>< 3 | <5<br>6 (?)<br>25 | 6<br>4<br>8 | <0.2<br><0.2<br><0.2 | NH3-N<br><0.1<br>20.02<br><b>20,1</b> | NO3-N<br>D. 1<br>20.02<br>0.1 | <0,3<br><0,3<br><0,3 | - |
|-----------------------|-------------------|-------------------|-------------|----------------------|---------------------------------------|-------------------------------|----------------------|---|
|                       |                   |                   | 1           |                      |                                       |                               |                      | - |
| 2/84                  | < 3               | 25                | 8           | <0,2                 | £0,1                                  | 0.1                           | <0,3                 |   |
|                       |                   |                   |             |                      |                                       |                               |                      |   |
|                       |                   |                   |             |                      |                                       |                               |                      |   |
|                       |                   |                   |             |                      |                                       |                               |                      |   |
|                       |                   |                   |             |                      |                                       |                               |                      |   |
|                       |                   |                   |             | -                    |                                       |                               |                      |   |
|                       |                   |                   |             |                      |                                       |                               | 1                    | 1 |
|                       |                   |                   |             |                      |                                       |                               |                      |   |
|                       |                   |                   |             |                      |                                       |                               |                      |   |
|                       |                   |                   | ·           |                      |                                       |                               |                      |   |
|                       |                   |                   |             |                      |                                       |                               |                      |   |
|                       |                   |                   | •           |                      |                                       |                               |                      |   |
|                       |                   |                   |             |                      |                                       |                               |                      |   |
|                       |                   |                   |             | -                    |                                       |                               |                      |   |
|                       |                   |                   |             |                      |                                       |                               |                      |   |
|                       |                   |                   |             |                      |                                       |                               |                      |   |
|                       |                   |                   |             |                      |                                       |                               |                      |   |
|                       |                   |                   | ۲.          |                      |                                       |                               |                      |   |
|                       |                   |                   |             |                      |                                       |                               |                      |   |
|                       |                   |                   |             |                      |                                       |                               |                      |   |
|                       |                   |                   |             |                      |                                       |                               |                      |   |
|                       |                   |                   |             |                      |                                       |                               |                      |   |

APPENDIX G Plade in U.S.A. BRODHEAD : ระกษณะเรย โต UNSATURATED ZONE REFERENCES - BOUMA, 1975 )

| System<br>no. |      | tension (cm)<br>sidewall | s for twelve subsurface<br>R (days) |          | Calculated flow in gals/sq ft/day (cm/day) |            |  |
|---------------|------|--------------------------|-------------------------------------|----------|--------------------------------------------|------------|--|
|               |      |                          | bottom                              | sidewall | bottom                                     | sidewall   |  |
|               | 23   | 35                       | 6.9                                 | 35       | 1.8(7.5)                                   | 0.4(1.7)   |  |
| 1<br>2        | 23   | 24                       | 6.5                                 | 6.5      | 1.4(5.8)                                   | 1.4(5.8)   |  |
| 3             | 25   | 21                       | 4.6                                 | 3.2      | 1.6(6.6)                                   | 2.2(9.2)   |  |
| 4             | 25   | 28                       | 7.1                                 | 9        | 1.8(7.5)                                   | 1.1(4.6)   |  |
| 5             | 80   | 60                       | 267                                 | 74       | 0.09(0.4)                                  | 0.2(0.8)   |  |
| 6             | 120  | 100                      | 9000                                | 4000     | 0.007(0.03)                                | 0.011(0.04 |  |
| 7             | 65   |                          | 34                                  |          | 0.45(1.9)                                  |            |  |
| 8             | 34   | 37                       | 73                                  | 82       | 0.16(0.67)                                 | 0.14(0.6)  |  |
| 9             | n.d. | 20                       | n.d.                                | 97       | n.d.                                       | 0.16(0.7)  |  |
| 10            | 20   | 20                       | 52                                  | 47       | 0.22(0.92)                                 | 0.20(0.8)  |  |
| 11            | 6    | 6                        | 115                                 | 115      | 0.04(0.17)                                 | 0.04(0.17) |  |
| 12            | 15   | . 20                     | 28                                  | 30       | 0.18(0.75)                                 | 0.15(0.62  |  |
| 13            | 4    |                          | 20                                  |          | 0.15(0.62)                                 |            |  |

Table 2. Monitoring data obtained in situ with tensiometry and derived performance characteristics for twelve subsurface seepage systems.

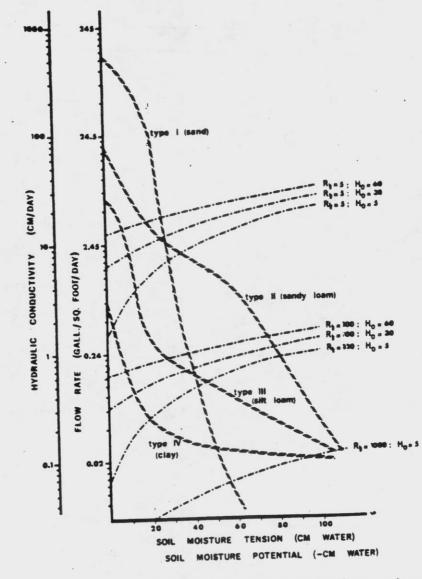



Fig. 1. Hydraulic conductivity curves for four major types of soil and curves expressing the hydraulic effects of impeding barriers and different hydraulic heads (see text).

APPENDIX H BRCOHEAD : FURROW WASTEWATER AND LY SIMETER CHEMISTEY DATA

| 1         | DATA SAFET    |             | 1 2.4               | (my/d)            |                 | TURRICO CRUE 1<br>CONSTRUCTOR CRUE 1 |     |             | 42 <u></u> |
|-----------|---------------|-------------|---------------------|-------------------|-----------------|--------------------------------------|-----|-------------|------------|
| DATE      | TOTAL<br>BOL: | DIES<br>COD | DISS                | 10155<br>10113-10 | DISS<br>NOZTNOZ |                                      | P.H | בד+רג ER    | STHER      |
| 7/9/34    | DISS<br>400   | 460         | 16                  | 14                | 0.1             | 740                                  |     | 705         |            |
| 7/13/34   | 0155<br>50    | 300         | 32                  | 22                | <1.0            | 570                                  |     | حت ما ا     |            |
| 7/10/34   |               | 150         | 39                  | 35                | 21.0            |                                      |     |             |            |
| 7/19/34   | DISS<br>130   | 160         | 60                  | 53                | <1.0            | 550                                  | 7,5 | 705<br>1610 | _          |
| 7/27/34   | DISS<br>710   | 810         | 13                  | 5.3               | 0,1             | 820                                  | -   | _           | _          |
| 7/31/54   | 1000          | 870         | 23                  | /3                | 0.1             | 720                                  | _   | _           | _          |
| 8/2/54    | 0155<br>750   | 740         | てつ                  | 15                | 41.0            | 900                                  | _   | _           | -          |
| 9/7/34    | 110           | 230         | 22                  | 15                | <1.0            | 570                                  | _   | -           |            |
| 8/10/54   | 300           | 370         | Z2                  | 15                | <1.0            | 240                                  |     | -           | _          |
| 8/37/34   | 707AL<br>590  | 710         | 11                  | 8.7               | 0.1             | 660                                  | 6.7 |             |            |
| 9/4/84    | 707<br>1300   | 1000        | ZZ                  | 12                | 0.1             | 640                                  | _   |             | _          |
| 10/12/82  | $\overline{}$ | <u> </u>    |                     |                   | -               | -                                    |     |             | _          |
| 10/15/34  | <b>-</b>      | ⊷           |                     | •                 |                 |                                      | -   |             | _          |
| 15/18/54  |               | 790         | 25 DISS<br>43 757   | N Z               | 1,4             | 700                                  |     |             |            |
| 12/23/84  | _             | 390         | 14 707<br>7.4 D165  | 5.5               | <u></u>         | 3ZD                                  |     | _           | -          |
| 10/26/84  | _             | 470         | 16 DISS<br>59 TOT   | 13                | 0.1             | 460                                  | _   | _           | _          |
| 4 ت/زيز/ر | -             | 3E D        | EZTOT<br>160155     | 12                | 5.1             | 350                                  | _   | _           | _          |
| 1:11:24   | <u> </u>      | 87          | 5.8 Tot<br>2.9 0155 | 1.6               | 0.1             | 160                                  | _   | _           |            |
| 1/8/84    | -             | -           | 12 0155             | 9,3               | 0.1             | 540                                  | -   | -           | _          |
| 112/22    | _             |             | 27 707<br>14 DKS    | 12                | 2,1             | 4ED                                  | _   | -           | _          |
| 110107    |               |             | 20 TOT              | 7.7               | 20,1            | 570                                  |     |             | _          |
| 1=0/34    | _             | <u> </u>    | 32 TOT<br>13 C:55   | (B),T             | <0.1            | 60                                   | _   | _           | _          |

WAYKEWAL 12 301 500 SHEETS 3 SOUARE

(<sup>-</sup>)

.

`

|                                                                                        |          | 974 Shee      | ······                                                                                      |                    | 11.11 - 17<br>(11-12 | )               | TUK.  | li li<br>TEWATE E | - (E4       | 2        |  |
|----------------------------------------------------------------------------------------|----------|---------------|---------------------------------------------------------------------------------------------|--------------------|----------------------|-----------------|-------|-------------------|-------------|----------|--|
|                                                                                        | DATE     | TOTAL<br>BOLS | DISS<br>CDD                                                                                 | Diss<br>TKN        | Diss<br>NH3-N        | 6155<br>NO2+NO2 | c1-   | ¢Н                | ether       | CTHER    |  |
|                                                                                        | 7/11/84  | DISS<br>700   | 1100                                                                                        | 61                 | 26                   | <1.0            | 580   | -                 | 705<br>2540 | _        |  |
|                                                                                        | 7/13/84  | DISS<br>>450  | 1300                                                                                        | ZS                 | 13                   | <1.0            | 970   |                   | TD5<br>2720 | _        |  |
|                                                                                        | 7/16/84  | _             | 570                                                                                         | 5.7                | 0.9                  | 0.1             | _     | _                 | -           | -        |  |
| and<br>And<br>And<br>And<br>And<br>And<br>And<br>And<br>And<br>And<br>A                | 7/19/84  | 2400          | 430                                                                                         | 24                 | 7.4                  | 0.1             | 540   | 6.7               | -           |          |  |
| 42 301 500 SHEETS 5 SOULAR<br>42 302 300 SHEETS 5 SOULAR<br>42 303 300 SHEETS 5 SOULAR | 7/24/84  | dis 5<br>580  | 2300                                                                                        | 42                 | 39                   | 0.1             | 510   | _                 | _           | _        |  |
| 200 SHE<br>200 SHE<br>200 SHE                                                          | 15/12/84 | _             | 850                                                                                         | -= 015<br>50 - T   | 13                   | 6               | -60   | _                 | _           |          |  |
|                                                                                        | 10/15/84 | —             | 600                                                                                         | 16. 5155<br>47 TOT | 6.1                  | 0,1             | 300   | . —               | —           | _        |  |
| untional                                                                               | 10/18/24 |               | 830                                                                                         | 24 DISS            | 21                   | 4.0             | 600 . | <u> </u>          |             | _        |  |
|                                                                                        | 10/23/84 | _             | 1200                                                                                        | 60 tot<br>36 dis6  | 14.                  | Z1.0            | 670   | _                 | -           | -        |  |
|                                                                                        | 10/20/24 | -             | 800                                                                                         | 32 TOT<br>18 DISS  | 5.2                  | 0,1             | 640   | _                 | -           | -        |  |
| •                                                                                      | 10/30/84 | -             | 710                                                                                         | 29 TOT<br>19 DISS  | 15                   | <1.0            | 520   |                   | -           | _        |  |
|                                                                                        | 11/1/84  | -             | Z30                                                                                         | 14 TOT<br>5.0 DISS | ک ک                  | 5.1             | 200   | -                 | _           | _        |  |
|                                                                                        | 11/8/24  | -             | -                                                                                           | 2270T<br>227155    | 3.2                  | 0.1             | 720   | -                 | _           | _        |  |
|                                                                                        | 11/1=/24 | -             |                                                                                             | 54 TOT<br>12 DISS  | 5.3                  | 0,1             | 610   | _                 | -           | <u> </u> |  |
|                                                                                        | 11/16/24 | ~             | -                                                                                           | 370,TOT<br>33 0155 | 27                   | 21.0            | 870   | -                 | -           |          |  |
|                                                                                        | 177:184  | -             | -                                                                                           | 57 TOT<br>27 DISS  | 13                   | 11.0            | Edo   |                   |             |          |  |
|                                                                                        |          |               |                                                                                             |                    |                      |                 |       |                   |             |          |  |
|                                                                                        |          |               |                                                                                             |                    |                      |                 |       |                   |             |          |  |
|                                                                                        |          |               |                                                                                             |                    |                      | -               |       |                   |             |          |  |
|                                                                                        |          | -             |                                                                                             |                    |                      |                 |       |                   |             |          |  |
|                                                                                        |          |               |                                                                                             |                    |                      |                 |       |                   |             |          |  |
| •                                                                                      |          |               |                                                                                             |                    |                      |                 |       |                   |             |          |  |
|                                                                                        |          |               | a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a |                    |                      |                 |       |                   |             |          |  |
|                                                                                        |          |               | ţ                                                                                           |                    |                      |                 |       | i                 | i           |          |  |

|                     | DA-                  | TA SHEE  | T                | - ۳۱۲۲<br>ا       | (mg/1)       | )       |                               | SIMETE | r =   - | CELLI    |
|---------------------|----------------------|----------|------------------|-------------------|--------------|---------|-------------------------------|--------|---------|----------|
|                     | DATE                 | BODS     | 600              | TDS               | DISS         | DHSOLVE | 01550LVED<br>NO2-N+<br>1303-N |        | ρH      | OTHER    |
| $\overline{)}$      | 11/16/83             | -        | LOW LEVEL        | d                 | 1.3          | 20.1    | D,]                           | -      | ~       | -        |
|                     | 2/12/84              | -        | TOTAL<br>760     | JET NE            | [7.2]        | 4,4     | 20.1                          | -      | -       |          |
| •                   | 3/20/84              | -        | scivele<br>51    | -                 | 2,5          | 1.1     | 20.1                          | _      | 6.8     | _        |
| -                   | 4/24/84              | <b>—</b> | LIWLEVEL<br>61 A | W -               | 70TAL<br>2.4 | 0,1     | <0.1                          |        | ~       | —        |
|                     | 5/24/84              | _        | -974L            | -                 | 4.3          | 0.6     | D. 1                          | -      | 12      | _        |
| Madaln <b>U.S.A</b> | 7/31/ <del>3</del> 4 | -        | 501.0BLE<br>76   |                   | 9.2          | 7.5     | 0.1                           | 1100   | _       | -        |
|                     | 8/3/84               | -        | 62               | _                 | zÓ           | 12      | 20.1                          | _      | -       | -        |
| 6                   | 3/7/ <i>8</i> 4      |          | 67               | -                 | ZO           | · ۲۱    | 0.2                           | 900    | ~       | -        |
|                     | 8 /10/34             |          | 502              | ZZ60              | 24           | ZD      | Di 1.                         | 360    | —       |          |
|                     | 8/30/84              | _        | 5° L<br>63       | -                 | 24           | 20      | <1.0                          | 770    | 7,1     | _        |
| )                   | 9/4/84               | -        | 50L<br>70        | _                 | Z6 ·         | 23      | <1.0                          | 630    |         | <u> </u> |
|                     | ic/12/84             | _        | 50               | <u> </u>          | 35           | 30      | 0.1                           | 720    | -       | -        |
|                     | 10/15/84             |          | 43               | ·                 | 3Z           | 3)      | ×1.0                          | 707    |         | ~        |
|                     | 10/18/84             | _        | 44               | —                 | 31           | 30      | 21.0                          | 720    | -       | _        |
|                     | 10/23/84             | -        | 42               | Z <del>2</del> 00 | 30           | 29 .    | <i>≺1,</i> 0                  | 710    |         |          |
| •                   | 10/26/84             | -        | 40               | _                 | 29           | 27      | <1.0                          | 690    | -       | _        |
|                     | 10/30/84             |          | 47               | —                 | 27           | 25 -    | <1.D                          | 730    |         | _        |
|                     | 11/1/84              | _        | 46               | -                 | 26           | Z3      | <i>∠</i> 1.0                  | 710    | -       | _        |
|                     | 11/8/84              | -        | -                | -                 | ZI           | 20      | <1,0                          | 610    | -       | -        |
| -                   | 11/13/84             | -        | -                |                   | 16           | 15      | <1.0                          | 480    | -       |          |
|                     | 11/14/84             | <u> </u> | -                | _                 | 14           | 13      | 21.0                          | 440    | -       |          |
| •                   | 11) 25  84           | -        | —                |                   | 13           | 12      | <i>∠1.</i> 0                  | 420    | _       |          |
|                     |                      |          |                  |                   |              | -       |                               |        |         |          |
|                     |                      |          |                  |                   | 1            | 4       |                               | 1      |         |          |

|            | DATE             |              |              | <u>رت الم</u> | (mg/-1)      | -7 2 200                  | _ • 5              | METER |     | ELL 1    |
|------------|------------------|--------------|--------------|---------------|--------------|---------------------------|--------------------|-------|-----|----------|
|            | DATE             | 0155<br>3005 | D:55<br>(20) | TDS           | TKI          | (1540-050<br>1012-1.<br>K |                    | N CI  | F H | STHER    |
|            | Z/12/B4          | -            | 410          | -             | TOTAL        | 2.2                       | 20.1               | _     |     |          |
|            | 3/20/84          |              | 5.76         | _             | 4.0          | 5.2                       | 0,1                | 530   | 6.7 |          |
|            | 4/24/84          | _            | TOTAL<br>62  | -             | Z.B          | 0.1                       | < 2.1              | _     | -   |          |
|            | 5/24/84          | -            | 62           | -             | TOTHL<br>G.D | I.D                       | 0.1                | -     | 7,4 | _        |
|            | 6/11/34          |              | 49           | -             | 14           | 14                        | 0.0                | _     | -   | _        |
| -<br>-<br> | 6/18/84          | -            | 42           | ~             | 18           | 16                        | 20.1               | -     | -   |          |
|            | 7/9/84           | 4,1          | 43           | 1910          | ZI           | 20                        | <0,1               | 750   | _   | :        |
| -          | 4 <i>ב וו</i>  ר | -            | 53           |               | 22           | -20                       | 0.1                | -     | _   | <b>—</b> |
|            | 7/13/84          | _            | 51           | 2130          | 22           | 21                        | 0.1                | _     |     |          |
|            | 7/16/84          |              | 37           | _             | 16           | 16                        | <i>0.</i> Z        | -     | -   |          |
|            | 7/19/84          | -            | 49           | -             | 24           | 22                        | 21.0               | -     | 7,4 | _        |
|            | 7/24/34          |              | 58           | -             | 24           | 23                        | <1.D               | -     |     |          |
|            | 7/27/84          |              | 52           |               | 25           | . 22                      | <1,0               | ·     | _   | -        |
|            | 7/3/154          | _            | 52           | -             | 24           | 23                        | <1,D               | -     | —   |          |
|            | 8/3/84           | -            | 54           | -             | 25           | Z5                        | <i><b>L</b>1.D</i> | -     | _   | _        |
|            | 8/7/84           | -            | 56           |               | 25           | 23                        | 2.4                | 300   |     | <u>-</u> |
|            | <i>2/10/</i> 94  | -            | 62           |               | 25           | Z4                        | 3,2                | 840   | -   |          |
|            | 8/30/84          | _            |              | -             | 11           | 8,3                       | 15.6               | 500   | 7.2 |          |
|            | 9/4/34           | _            | 63           | -             | 6.2          | 4,1                       | ZD                 | 740   | -   | —        |
|            | 10/12/34         | -            | 52           | -             | 2.0          | 21.0                      |                    | 730   | -   | -        |
|            | 10/15/24         | <u> </u>     | 55           | -             | 1.9          | <1.0                      | 22                 | 750   |     |          |
|            | 10/19/84         |              | 46           |               | 1.8          | -1.0                      | 2/                 | 720   | -   | _        |
|            | 125/54           |              | 45           |               | 1.6          | <1.D                      | 21                 | 710   | -   | -        |
|            | 12/20/24         | _            | 42           |               | 1.10         | D.1                       | 20.                | 690   | ·   | _        |

i

|                       | DATA                | SHEET        |             | <i>ت</i> من ا | 1111 (71 - | VACANESE    | 245             | INNETER | = Z, C  | E21)  | Z |
|-----------------------|---------------------|--------------|-------------|---------------|------------|-------------|-----------------|---------|---------|-------|---|
|                       | ÛATE                | DIES<br>BODS | diss<br>COD | TOS           | OKS<br>TKN | DISS<br>NH3 | 0155<br>NOz+NO2 |         | ρH      | OTHER |   |
| Ì                     | 10/30/84            |              | IS          | _             | 1.6        | 0.1         | 18.4            | 660     |         | _     |   |
|                       | 11/1/ê <del>4</del> |              | 50          |               | 1.9        | 2.1         | 16,5            | 630     |         | _     |   |
|                       | 11/5/84             | _            | _           | _             | 1.6        | D.1         | 16.0            | 550     | -       |       |   |
|                       | 11/13/84            |              | -           | -             | 1.5        | 0,1         | 16.6            | 550     | _       | _     |   |
| S SQUARE              | n/16/54             | -            | -           | -             | 1.3        | D.1         | 17.3            | 590     | <u></u> | -     |   |
| 6 200 SHEETS 3 SQUARE | 11/20/84            |              |             |               | 1.6        | 20.1        | 20              | 600     |         | -     |   |
|                       |                     |              |             |               |            |             |                 | -       |         |       |   |
| WATERAL               |                     |              |             |               |            |             |                 |         |         |       |   |
|                       |                     |              |             | -             |            |             |                 |         |         |       |   |
|                       |                     |              |             |               |            |             |                 |         |         |       |   |
|                       |                     |              |             |               |            |             |                 |         |         |       |   |
|                       |                     |              |             |               |            |             |                 |         |         |       |   |
|                       |                     |              |             |               |            |             |                 |         |         |       |   |
|                       |                     |              |             |               |            |             |                 |         |         |       |   |
|                       |                     |              |             |               |            |             |                 |         |         | -     |   |
|                       |                     |              |             |               |            |             |                 |         |         |       |   |
|                       |                     |              |             |               |            |             |                 |         |         |       |   |
| :                     |                     |              |             |               |            |             |                 |         |         |       |   |
|                       |                     |              |             |               |            |             |                 |         |         |       |   |
|                       |                     |              |             |               |            |             |                 |         |         |       |   |
|                       |                     |              |             |               |            |             |                 |         |         |       |   |
|                       |                     |              |             |               |            |             |                 |         |         |       |   |
|                       | •                   | •            |             | I             | 1          | I           |                 | i       | i       |       |   |

-

. • •

|   | DATE     | BODS     | COD            | TDS    | TKN   | <b>I</b> | NCZ-N+      | 101-        | pH  | OTHER    |
|---|----------|----------|----------------|--------|-------|----------|-------------|-------------|-----|----------|
| 7 | 11/16/83 |          | LOWLEVEL<br>44 |        | TOTAL | 15       | 5,0         |             |     |          |
| 2 | 2/12/84  | ~        | TOTAL<br>52D   |        | TOT 4 | 9.5      | 1.8         |             |     |          |
|   | 3/23/84  |          | 190            |        | 2.6   | <0,1     | 0,1         |             |     |          |
|   | 6/18/84  | _        | _              |        | 2,3   |          |             |             |     |          |
|   | 7/9/84   | -        | 53             |        | 2,9   | 0.6      | 0,5         | 610         |     |          |
| [ | 7/19/84  |          | _              |        | 3.0   | 0.3      | Z.D         |             | 7.6 | -        |
| 1 | 7/27/84  | <u>`</u> | _              |        | 2.0   | 0.1      | 2,4         | -           | _   | _        |
|   | 8/3/84   |          | 59             | _      | 1,8   | 0.1      | Z,S '       | _           | _   | _        |
|   | 8/10/84  |          | ~              |        | 2.5   | 0.1      | 4.4         | _           |     |          |
|   | 9/4/84   |          |                |        | IS    | 0.1      | 18.Z        | 1000        | _   | · · ·    |
|   | 10/12/84 | _        |                |        | IS    | 1,9      | 6.4         | 850         |     |          |
|   | 10/15/84 | _        |                | _      | Is    | 2.3      | 7.4         | 92 <b>0</b> |     |          |
| Ľ | 10/15/84 |          | No             | SAMPLE |       |          | -           |             |     | •        |
|   | 10/23/24 | _        | 15             |        | 15    | 3.6      | 8,7         | 750         |     | _        |
|   | 10/26/84 | _        | 15             | _      | IS    | 2.0 1    | 8.9         | 730         | -   | -        |
| Ì | 10/30/84 | _        | _              | _      | IS    | 0.9      | ê.Z         | 750         | _   | <u> </u> |
| X | 11/134   |          | No             | SAMPLE |       |          |             |             |     |          |
|   | 11/8/84  | -        | -              | -      | IS    | 1.7      | 10.0        | 730         | -   | ·        |
|   | 11/11/24 |          | -              |        | 4,4   | 1.6      | 10.2        | 760         |     | -        |
| 1 | 11/20/84 | -        | -              | -      | IS    | 1.6      | 10.9        | 720         | -   |          |
| 1 |          |          |                |        |       |          | 1<br>1<br>1 |             |     |          |
|   |          |          | -              |        |       |          | f           |             |     |          |
| : |          |          |                | -      |       |          |             |             |     |          |

|   | Driff                | DISS     |     |          | (me/l<br>0155 | DISS   | 24   | IME TER | #5-C | F12 Z  |
|---|----------------------|----------|-----|----------|---------------|--------|------|---------|------|--------|
|   | DATE                 | BODS     | COD | TOS      | TKN           | 11H3-1 |      | S CI-   | φH   | C7 HER |
| Ì | -,/9/54              | <3       | 24  | · -      | 0.9           | 0,1    | 1.3  | 710     |      |        |
|   | 7/11/84              | _        | 24  | -        | 0.5           | 20,1   | 2,1  | _       | _    | _      |
|   | 7/13/84              |          | 27  | _        | 0,9           | 0,1    | 2.5  | 580     |      | -      |
|   | 7/16/54              |          | 23  | _        | 0,6           | D.1    | 2.7  |         | _    | _      |
|   | 7/19/84              | -        | 30  | _        | 1.1           | 0,1    | 5,8  | _       | 7,4  | _      |
|   | 7/24/84              | _        | 40  | _        | 1,Z           | 0.1    | 2,5  |         | -    |        |
|   | 7/27/84              | _        | 53  |          | 1,4           | 0.1    | 0.1  |         |      | -      |
|   | 7/3//84              | -        | 51  | <b>_</b> | 116           | 0.1    | 0.1  | -       | _    | -      |
|   | 5/3/84               | _        | 4 E | -        | 1,4           | 0.1    | 5.1. | _       | -    | -      |
|   | 8/30/24              |          |     |          | 1.2           | 0.1    | 20   |         |      |        |
|   | 9/4/24               |          | 39  | _        | 1.2           | 0.1    | 11.5 | 590     |      |        |
|   | 10/12/84             | _        | —   | -        | 0,7           | 0.1    | 16,1 | 500     |      | _      |
|   | 10/15/84             | <u> </u> | 31  |          | D, 3          | 0.1    | 21   | 400     |      | -      |
|   | 10/18/34             | _        | 24  |          | 0,3           | <1.0   | 23   | 390     |      | _      |
|   | 10/23/26             | <u> </u> | 23  |          | D, 3          | 21.0   | 24   | 420     | -    |        |
|   | 10/26/84             | _        | 19  | _        | 0.7           | <1.0   | 24   | 440     |      |        |
|   | :5/3:/34             |          | 27  | —        | 0,6           | 21.0   |      | 420     | -    | . —    |
|   | /:/ <del>:</del> /:/ |          | 23  | _        | 2,3           | 401    | 19,9 | 290     |      |        |
|   | 11/8/31              | -        | -   |          | 0.6           | 0.1    | 16.3 | Z30     | -    | -      |
|   | 11/13/54             |          | -   | -        | 0.5           | <0,1   | 12   | 220     |      | -      |
|   | 11/16/24             |          | -   | -        | 0.6           | 20.1   | 6.6  | 160     | -    | -      |
|   | 1:/20/34             |          | . — | _        | 0.6           | 0.1    | 7.0  | 110     | -    | -      |
|   |                      |          |     | -        |               |        |      |         |      |        |
|   |                      |          |     |          |               |        |      |         |      |        |

A2 349 200 SHEETS 3 SQUARE

| ×.                          | A         | T            | ee -        |          | r           |                  | <u>_</u>    | E METER | =<br>-<br>( | Ell Z  |
|-----------------------------|-----------|--------------|-------------|----------|-------------|------------------|-------------|---------|-------------|--------|
|                             | DATE      | 5155<br>2025 | 2:55<br>C0D | TDS      | Dies<br>TKN | , DISS<br>1343-N | D155        | C1-     | pH          | CT PSE |
| / `\<br>•                   | 6/11/34   | 23           | /9          | 1230     | 0.6         | 0.1              | 24          | 400     |             |        |
|                             | 6/13/84   | 2,5          | 19          | 1490     | 0.4         | -20.1            | 22          | 56D     | -           | _      |
|                             | 7/9/34    | 23           | 17          | 1680     | 0.6         | 0.1              | 17.5        | 652     | -           | _      |
|                             | 7/11/84   | 23           | 13          | -        | 0,3         | 0.1              | $ 1\rangle$ |         |             | -      |
| SQUARE                      | 7/13/34   | <4           | 14          | 1210     | 0.Ь         | 0.1              | .9.6        | 410     | _           | -      |
| 0 SHEE15 1<br>0 SHEE15 1    | -116/84   | 23           | /3          | כרוו     | 0.6         | 0.1              | 4,5         | 360     |             | _      |
| 42.382 100 SHEELS 5 SQUARE  | 7/19/34   | ۷٢.          | 24          | 1400     | С, Э        | 0,1              | 37          | 415     | 6.3         | -      |
| NALITY N                    | 7/24/84   | 4,9          | 30          | ل 147 ک  | 1.0         | 2.1              | 46          | 420     | _           | -      |
| <b>4</b> - <del>2</del> - 2 | 7/27/5.4  | 24           | 24          | 1540     | 0,5         | <1.0             | 35          | 430     |             | _      |
| -                           | 7/31/84   | 23           | 22          | 1430     | 0.5         | <1,0             | 24          | 450     |             | -      |
|                             | S/3/E4    | <3           | 17          | 1370     | 0.6         | D. 1             | 15.5        | 270     | _           | -      |
|                             | 5/30/84   |              | _           | _        | 1.2         | <1.D             | 23          |         |             |        |
| -                           | 9/4/84    |              |             |          | IS          | ∠1.0             | 29          | 470     |             |        |
|                             | 10/12/84  |              |             |          |             |                  |             |         |             |        |
|                             | 10/15/24  |              |             |          |             |                  |             |         |             |        |
|                             | 10/18/84  |              |             |          |             | -                |             |         |             |        |
|                             | ic/2=/34_ |              | <u>-</u> کر |          | 15          | 0.1              | 27          | 520     |             | -      |
|                             | 10/20/24  | -            | 20          | <u> </u> | 0.6         | <1.0             | 27          | 500     | _           |        |
|                             | /5/30/34  | -            | 21          | -        | 0.6         | <1.0             | 23.0        | 420     |             |        |
|                             | 11/1/54   |              | ZO          |          | 0.5         | 20.1             | 18.4        | 310     | -           | -      |
|                             | 11/E /¿4  | -            | -           | -        | D.6         | 0.1              | 14,1        | 220     |             | -      |
|                             | 11/13/84  |              |             | -        | C.6         | 20,1             | 10          | 150     |             | -      |
|                             | 16/24     | -            | -           |          | C.6         | Z D.1            | 7,5         | 140     | —           | -      |
|                             | 11/20/24  | _            | -           | <u> </u> | 0,6         | <0,1             | 6,2         | 110     | -           | -      |

|                   |          | a <u>Shife</u><br>Diss | DISS |     | (m/)<br>D155 | DISS          | 2155     |             | 5-5   |        |
|-------------------|----------|------------------------|------|-----|--------------|---------------|----------|-------------|-------|--------|
|                   | DATE     | EODs                   | 600  | TES | 7KN          |               | hig-high | <i>C</i> 1- | P :-/ | £7,⊬ER |
| )                 | 7/24/84  | 3,4                    | 14   | 236 | 0.4          | 0,1           | 0.1      | 1.2         | -     | -      |
|                   | 7/27/84  | 24                     | 12   | 276 | 0.4          | <0,1          | 0,1      | 1,4         | -     | _      |
|                   | 7/31/84  | <3                     | D    | 254 | 0,4          | <i>D.1</i>    | 0.1      | 0,6         | -     | _      |
|                   | 8/3/84   | 23                     | 12   | Z50 | 0,4          | 0.1           | 0,1      | 0.9         | -     | -      |
| 5 SQUARE          | 2/30/84  | -                      | -    |     | 0.6          | 0.1           | 0,5      |             | . –   |        |
| DO SHEETS         | 10/12/84 |                        | 14   | 273 | 04           | 0,1           | D, 1     | 1.3         |       | -      |
| 42 389 200 SHEETS | 10/15/84 |                        | []   | -   | 5.4          | <i>حال.</i> ا | 20.1     | 1.5         |       | _      |
| NA110NA1          | 10/18/94 |                        | 12   | -   | 0.4          | 451           | <0.1     | 1.5         |       |        |
| 2                 | 10/23/84 | -                      | 12   | 243 | 0,4          | 20.1          | 0,1      | 1,4         |       | _      |
|                   | 13/3-/34 |                        | 15   | -   | 6.4          | 2.1           | 3.1      | 1.3         |       | _      |
|                   | 10/30/34 | -                      | -    |     | IS           | 2.1           | <01      | 1.5         |       | _      |
|                   | 11/1/202 |                        | -    | -   | IS           | <0.1          | 2.1      | IS          | -     | _      |
|                   | n/8/84   | -                      | -    | -   | D,4          | 0.1           | <0,1     | 1. D        | -     | -      |
|                   |          |                        |      |     |              |               |          |             |       |        |
|                   |          |                        |      |     |              |               |          |             |       |        |
|                   |          |                        |      |     |              |               |          |             |       |        |
|                   |          |                        |      |     |              |               |          |             |       |        |
|                   |          |                        |      |     |              |               |          |             |       |        |
|                   |          |                        |      |     |              |               |          |             |       |        |
|                   |          |                        |      |     |              |               |          |             |       |        |
|                   |          | -                      |      |     |              |               |          |             |       |        |
|                   | -        |                        |      |     |              |               |          |             |       |        |
|                   | •        |                        |      | -   |              |               |          |             |       |        |

|                | DATE     | Diss<br>Bods | COD         | TDS | OISS<br>TKN  | NH3-N | 1 ND3 - N+ | CT  | IPH       | OTHER    |
|----------------|----------|--------------|-------------|-----|--------------|-------|------------|-----|-----------|----------|
| $ \mathbf{r} $ | 11/16/83 | . <b></b>    | LOW LEVEL   | -   | TOTAL<br>0,7 | 20.1  | 0.2        | -   | -         | _        |
| i              | 3/23/84  | ∠3           | JOTAL<br>ZO | 360 | 0.5          | 0.1   | 0,1        | 2,4 | _         |          |
|                | 4/24/84  | LB           | TOTAL       | _   | тотац<br>0,4 | DI    | 0,1        | 1,4 | -         |          |
|                | 5/24/84  | _            | 15          |     | 0.4          | 20.1  | 0.1        | -   | 6.7       | C.03 615 |
|                | 6/11/84  | 13           | ZI          | 320 | 0.5          | <0,1  | 0:1        | /.3 |           |          |
|                | 6/18/184 | 3.1          | 25          | 330 | 0.6          | 0.1   | 0,1        | 1.2 | _         | -        |
| i              | 7/19/34  | <3           | 20          | -   | 0.6          | 20.1  | 0,1        | 1.4 | 6,3       | _        |
|                | 7/24/84  | 23           | 25          | 296 | 0,6          | 0.1   | 0,1        | 1.2 | _         | -        |
|                | 7/27/34  | 24           | 23          | 320 | 0,6          | <0.1  | 0,1        | 1.4 |           | -        |
| :              | 3/3/84   | 23           | Z6          | 356 | 0,6          | 0.1   | 0,1        | 1.7 |           | -        |
|                | 8  30/84 | -            | -           | -   | 1,2          | 0.1   | 0.1        |     |           |          |
| }              | 10/12/54 | _            | 25          | 304 | С.Ь          | 0.1   | 0,1        | 1.2 |           | _        |
|                | 10/15/34 | · _          | 23          | -   | 0.6          | 20.)  | 201        | 1.3 | -         | -        |
|                | 10/18/54 | _            | 19          |     | ما، 0        | 20,1  | 20.1       | 1.2 | -         | _        |
| 1              | 10/23/54 | _            | 24          | 296 | 0,7          | 20,1  | 0,1        | 1.1 |           |          |
| ; )<br>;       | 10/26/84 |              | 27          | -   | 0.6          | 9.1   | 0.1        | 1,0 |           | _        |
| 1              | 10/30/84 | )            | 28          |     | D.6          | 0.1   | (0.1       | 1.0 |           | _        |
|                | :/1/84   | -            | 28          | _   | 0,3          | 20,1  | 0,1        | 1.1 | -         | _        |
| 1              | 18/84    | -            | -           | -   | 0.7          | 20.1  | 20,1       | 1,3 | -         |          |
|                |          |              |             |     |              |       |            |     |           |          |
| -              |          | -            |             |     |              |       |            |     | an anna 1 | . · ·    |
| i              |          |              |             |     |              |       |            |     |           |          |
| i              |          |              | !           | -   | -            |       |            |     | 1         | •        |

| ••                           |                                                       | - |
|------------------------------|-------------------------------------------------------|---|
| (* )                         | APPENDIX I                                            |   |
| 174644451En / Mada In U.S.A. | BRUDHEAD:<br>CROP UPTAKE ANALYSES<br>AND CALCULATIONS |   |
|                              |                                                       |   |
|                              |                                                       |   |

19611 -

SALIER

UNEX SOIL AND PLANT ANALYSIS LAB 5711 MINERNU FOUNT FOAD MADIOON WI FEBROS

• • •

•

-

SITE OF ANALYSIS: 5/23/34

Phase

|     |     |       |       | %        |       |       |       |       |       | opei  |       |       |        |
|-----|-----|-------|-------|----------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| SAM | PLE | P     | ĸ     | CA       | MG    | S     | ZN    | 5     | М     | FE    | 55    | -1    | NA -   |
|     |     |       |       | <u> </u> |       |       |       |       |       |       |       |       |        |
| 1   | 1A  | 0.130 | 0.154 | 0.417    | 0.099 | 0.163 | 45.71 | 6.421 | 165.1 | 915.3 | 5.778 | 856.8 | ( 23.2 |
| 2   | 18  | 0.203 | 0.165 | 0.544    | 0.110 | 3.175 | 46.37 | 7.501 | 173.0 | 323.2 | 5.538 | 1032  | ( 64.6 |
| 3   | 2   | 0.149 | 0.335 | 0.300    | 0.877 | 0.153 | 22.22 | 5.303 | 34.83 | 230.2 | 4.390 | 239.7 | < al.7 |

| 1A    | 1.56 |   |
|-------|------|---|
| 2     | 1.44 |   |
| Ashed |      |   |
| 1B    | 0.42 |   |
| 2     | 0.26 | • |

| X N of A | sh   |  | • | • |
|----------|------|--|---|---|
|          | 2.49 |  | • | - |
| 2        | 2.64 |  |   | • |

| Weight | of oven | dried | sample | (grams) |   | Z Ash |
|--------|---------|-------|--------|---------|---|-------|
| 1.4    | 87.3    |       |        |         |   |       |
| 18     | 67.2    |       |        |         |   | 17.1  |
| 2      | 311.3   |       |        |         | • | 10.1  |

IA, IB -> MINDORD 2 -> EREDHEAD

APRIL SAMPLES OF GRASS

SAUER ASHED SAMPLES KSL

448 5010 AND FLANT ANALLEDIS 148 5701 MINESAL FOINT 7040 - -401100 TA ADDIS

CATE OF ANALYSIS: 7/6/84

|        | <u> </u> |       |       |       |       | 254   |             |       |       |       |       |                  |
|--------|----------|-------|-------|-------|-------|-------|-------------|-------|-------|-------|-------|------------------|
| SAMPLE | P        | ĸ     | CA    | MG    | S     | ZN    | 8           | N     | - FE  | CU    | ÷.    | N <del>'</del> A |
|        | <u> </u> |       |       |       |       |       | <del></del> |       |       |       |       |                  |
| 1 18   | 0.137    | 0.149 | 9.495 | 0.096 | 0.071 | 35.51 | 5.330       | 157.6 | 638.2 | 4.711 | 662.2 | < 61.3           |
| 2 28   | 0.140    | 0.352 | 0.278 | 0.072 | 0.072 | 20.33 | 3.249       | 32.65 | 243.4 | 4.448 | 243.8 | ( 62.5           |

#### COOPERATIVE EXTENSION PROGRAMS University of Wisconsin-Extension University of Wisconsin-Madison

Soil & Plant Analysis Laboratory, 5711 Mineral Point Road, Madison, Wisconsin 53705; 608-262-4364

#### DEPARTMENT OF SOIL SCIENCE

September 14, 1984 Acct. 900 Lab No. S0035



#### MEMORANDUM

TO: Dave Sauer--DNR 101 S. Webster, Box 7921 Madison, WI 53707

FROM: Soil/Plant Analysis Lab

RE: Results of analyses on 4 canary (+grass) samples submitted July 24, 1984.

| Sample Identification |   | Sample<br>Weight | Ash | Nitrogen<br>of Tissue | Nitrogen<br>of Ash |
|-----------------------|---|------------------|-----|-----------------------|--------------------|
|                       |   | grams            | %   | %                     | 3/<br>/g           |
| Mindoro               | 1 | 87               |     | 2.15                  |                    |
| Brodhead              | 1 | 134              |     | 1.28                  |                    |
| Mindoro               | 2 | 121              | 8.5 |                       | 0.64               |
| Brodhead              | 2 | 110              | 5.9 |                       | 0.48               |

Additional analyses are attached.

If you have any questions concerning these analyses, please feel free to contact either Todd Kaehler or Ita Steingraeber at 262-4364.

Encl.

/ss

S35 DAVE SALER DNR

UNEX SOIL AND PLANT AVALISIS LAB 5711 MINERAL POINT ROAD MADISON HI 53705

JATE OF ANALYSIS: 9/14/84

| <u> </u> |       |       |       |       |       |       |       |       | PPM   |       |        |        |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|
| SAMPLE   | Ρ     | K     | CA    | MG    | S     | ZN    | 8     | HN    | FE    | CU    | AL     | NA     |
|          |       |       |       |       |       |       |       |       |       |       |        |        |
| 1 MIN.1  | 0.255 | 2.443 | 0.314 | 0.216 | 0.252 | 12.73 | 5.361 | 43.93 | 60.01 | 3.843 | < 36.7 | < 63.8 |
| 2 BR0.1  | 0.229 | 1.632 | 0.235 | 0.128 | 0.144 | 12.43 | 3.736 | 54.69 | 42.23 | 3.828 | < 35.8 | 294.7  |
| 3 HIN.2  | 0.327 | 2.632 | 0.298 | 0.214 | 0.249 | 16.72 | 4.708 | 88.24 | 56.14 | 4.626 | < 36.4 | < 63.3 |
| 4 BR0.2  | 0.306 | 1.953 | 0.300 | 0.180 | 0.182 | 20.50 | 4.709 | 40.22 | 62.70 | 3.724 | < 36.2 | 296.0  |

5 DAVE SALER (ASHED)

UNEX SOIL AND PLANT ANALYSIS LAB 5711 MINERAL POINT ROAD MADISON HI 53705

INIE OF ANALYSIS: 9/14/84

| X       |       |       |             |       | PPM   |       |       |       |       |       |        |       |
|---------|-------|-------|-------------|-------|-------|-------|-------|-------|-------|-------|--------|-------|
| SAMPLE  | P     | K     | CA          | MG    | S     | ZN    | 8     | MN    | FE    | CU    | AL     | NA    |
|         |       |       | ', <u> </u> |       |       |       |       |       |       |       |        |       |
| 1 MIN.2 | 0.318 | 2.509 | 0.296       | 0.204 | 0.145 | 16.88 | 5.042 | 85.15 | 63.52 | 6.397 | < 36.1 | 99.24 |
| 2 BR0.2 | 0.293 | 1.813 | 0.289       | 0.165 | 0.056 | 18.51 | 4.301 | 39.88 | 70.66 | 3.827 | < 36.0 | 295.8 |

1985

S134 DAVE SAUER

act samples

THE OF ANALYSIS: 12/28/84

|     |             |       |       | %     |             |       |       |       |       | PFM   |       |       |       |  |
|-----|-------------|-------|-------|-------|-------------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| SAY | IPLE        | P     | K     | CA    | MG          | Ş     | ZN    | 8     | Mi    | FE    | CU    | AL    | 141   |  |
|     | <del></del> |       |       |       | <del></del> |       |       |       |       |       |       |       |       |  |
| 1   | BROD.1      | 0.264 | 2.091 | 0.277 | 0.142       | 0.199 | 15.03 | 4.999 | 47.97 | 79.14 | 4.834 | 59.96 | 219.6 |  |
| 2   | BRCD.2      | 0.300 | 1.909 | 0.323 | 0.209       | 0.231 | 14.14 | 4.598 | 96.42 | 66.52 | 5.836 | 46.27 | 118.7 |  |
| 1   | BROD.1 ash  | 0.258 | 1.819 | 0.273 | 0.139       | 0.073 | 15.98 | 4.959 | 47.48 | 79.84 | 4.631 | 71.31 | 426.4 |  |
| 2   | BROD.2 ash  | 0.300 | 1.808 | 0.329 | 0.209       | 0.071 | 14.44 | 3.662 | 95.97 | 70.06 | 5.610 | 50.63 | 404.0 |  |

| Sample Id.      | Sample Wt. grams | %Ash | N of Tissue |
|-----------------|------------------|------|-------------|
| Brodhead Cell 1 | 64.2             | 5.5  | 2.70        |
| Brodhead Cell 2 | 67.5             | 5.6  | 3.50        |

\* Results for 2N of Ash will follow in several days.

235 DAVE SAUER Dec Somples

TE OF ANALYSIS: 12/28/84

## UNEX SOIL AND PLANT ANALYSIS LAB 5711 MINERAL POINT ROAD MADISON WI 53705

| !   |            |       |       |       |       |       |             |        | PFM   |       |       |       |        |
|-----|------------|-------|-------|-------|-------|-------|-------------|--------|-------|-------|-------|-------|--------|
| 4   | PLE        | P     | К     | CA    | MG    | S     | ZN          | В      | MN    | FE    | CU    | ĤL    | N#1    |
|     |            |       |       |       |       |       | <del></del> |        |       |       |       |       |        |
| 1   | BROD.1     | 0.189 | 0.651 | 0.201 | 0.092 | 0.158 | 14.20       | 4.326  | 56.47 | 87.73 | 3.712 | 65.37 | 835.3  |
| 2   | BROD.2     | 0.197 | 0.491 | 0.146 | 0.136 | 0.117 | 40.26       | 3.183  | 79.76 | 57.89 | 4.060 | 42.81 | 430.5  |
| -   | MIND.1     | 0.139 | 0.497 | 0.230 | 0.094 | 0.086 | 23.59       | 4.866  | 139.9 | 106.3 | 4.450 | 102.9 | < 61.0 |
| - 4 | MIND.2     | 0.172 | 0.549 | 0.177 | 0.097 | 0.158 | 28.68       | 4.610  | 70.91 | 79.80 | 3.719 | 64.15 | 184.6  |
| 1   | BROD.1 ash | 0.183 | 0.603 | 0.194 | 0.038 | 0.065 | 11.36       | 3.085  | 48.61 | 82.87 | 3.032 | 68.71 | 992.6  |
| ż   | BROD.2 ash | 0.197 | 0.472 | 0.142 | 0.135 | 0.046 | 38.19       | 2.927  | 74.83 | 55.44 | 3.273 | 43.73 | 555.2  |
| 3   | MIND.1 ash | 0.135 | 0.431 | 0.225 | 0.039 | 0.048 | 28.92       | 3.336  | 128.6 | 103.0 | 4.723 |       | < 59.3 |
| 4   | MIND.2 ash | 0.165 | 0.480 | 0.175 | 0.092 | 9.077 | 25.42       | < 3.56 | 67.28 | 81.79 | 4.276 | 89,32 | 242.9  |

| Sample Id.       | Sample Wt. grams | %Ash | WN of Tissue |
|------------------|------------------|------|--------------|
| Brodhead Cell 1  | 54.5             | 3.9  | 1.59         |
| Brodhead Cell 2  | 61.0             | 3.1  | 1.4i         |
| ⊮ Mindore Cell 1 | 88.7             | 9.2  | 0.58         |
| Mindoro Cell 2   | 219.8            | 8.6  | 1.42         |

\*Results for  $\mathbb{A}N$  of Ash will follow in several days.

#### COOPERATIVE EXTENSION PROGRAMS University of Wisconsin—Extension University of Wisconsin—Madison

Soll & Plant Analysis Laboratory, 5711 Mineral Point Road, Madison, Wisconsin 53705, 608-262 4364

### DEPARTMENT OF SOIL SCIENCE

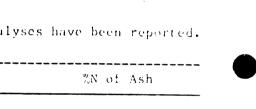
January 7, 1985 Acct. No. 900 Lab Nos. S134; S235

#### MEMORANDUM

TO: Dave Sauer Wis. Dept. of Natural Resources Box 7921 Madison, WI 53707

FROM: Soil/Plant Analysis Lab

RE: Results of %N of Ash on 5 samples. All other analyses have been reported.


| Sample Identificar                               | on     | %N of Ash |
|--------------------------------------------------|--------|-----------|
| (S134) CC <sup>A</sup> SH MMS<br>BRODHEAD CELL 1 | 1      | 0.72      |
| BRCDHEAD CELL<br>(S235) Control BRODHEAD CELL    | 2      | 0.50      |
| BRODHEAD CELL                                    | 1      | 0.45      |
| BRODHEAD CELL                                    | 3<br>- | 0.49      |
| MINDORO CELL                                     | 1      | 0.15      |
| MINDORO CELL                                     | 2      | 0.47      |

If you have any questions concerning these analyses, please feel tree to contact us.

The invoice for all of the tissue analyses is enclosed.

/ 55

Encl.



BRODHEAD - GRASS NITEOGEN CALCULATIONS APRIL 21, 1984 CELLZ (AREA - 110,000 ft2) AREA OF SAMPLE = 3'x4' = 12 ft<sup>2</sup> WEIGHT OF SAMPLE = 311.39 (OVEN DRIED) TOTAL WEIGHT OF GRASS - CEIL Z =  $\frac{311.39}{17.572} \times 110,000 \text{ ft}^2 \times \frac{16}{453.89} = 6288 \text{ lb}$ 70 N (DRY WEIGHT BASIS) = 1.44 AMOUNT OF N IN CELL Z GRASS PRICE TO BURNING = 6288 (0.0144) = 90.6 1b 20 ASH AFTER BURNING = 10.1 WEIGHT OF ASH - CELL Z = 6288(D.101) = 635 16 JON OF ASH = 2.64 AMOUNT OF AGHNON CELL Z AFTER BURNING = 635(0.02.4) = 16.8 16 EXTRAPOLATE VALUES TO TETAL SITE AREA TOTAL AREA CELL 2 ASEA = 1.85 TOTAL WEIGHT OF GRASS = 6288 × 1.85 = 11.646 15 A MOUNT OF GRASS N PRICE TO BURNING = 90.6 (1.85)= 168 16 AMOUNT OF ASH NON SITE AFTER BURNING = 15.8(1.85) = 31.0 90 N LOST = 168-31 (100) = 81.5%

► ∠``)

$$\underbrace{\bigcup_{U \in Y} 13, 1984}$$
AREA OF GRASS SAMPLES - CELL 1 = 1'x2' = 251<sup>2</sup>  
CELL 2 = 1'x3' = 351<sup>2</sup>  
WEIGHT OF GRASS SAMPLES - CELL 1 = 134g  
CELL 2 = 110g  
TOTAL LUEIGHT OF GRASS ON SITE = NOTE: CELL 1 is  
 $4670 \text{ or}$   
TETL HEEA;  
 $(246 (4.7 \text{ MEES})(43500 \frac{31\%}{\text{MARX}})(134g)$   
 $453.8 \frac{9}{16} \times 251^{2}$   
+  $\frac{0.54(4.7)(43560)(110)}{453.8(3)} = 22,847 \text{ Ib}$   
 $2 = N (DRY WEIGHT BASIS) = 1.28$   
And WEIGHT OF N ON SITE PRICE TO BURDING = 22,847(0.0126) = 29216  
 $20 \text{ ASH AFTER BURDING = 5.7}$   
WEIGHT OF ASH ON SITE =  $22,647(0.057) = 1347 \text{ Ib}$   
 $20 \text{ N OF ASH = 0.48}$   
Ancident OF N ON SITE AFTER BURDING = 1347(0.0026)  
 $= 6.5 \text{ Ib}$   
 $20 \text{ N LOST BY BURDING =  $\frac{292-6.5}{292}$$ 

)

PAREASTER / 1140 M.15 A.

SEPTEMBER 25, 1984 AREA OF GRASS SAMPLES - CELL 1 = ZO"X 17" = Z,36 ft"  $CELL 2 = 24" \times 28" = 4.67 ft^2$ WEICHT OF GRASS SAMPLES - CELL 1 = 64.29 CELL 2 = 67.59 TOTAL WEIGHT OF GRASS ON SITE (0.46)(4.7)(43560)(64.2), (0.54)(4.7)(43560)(67.5)453.8 (2.36) 453,8(4,67) = 5648,0 + 3522,6 = 9171 1b 90 N (DEY WEIGHT BASIS) - CELL 1 = 2,70 CEIL 2 = 3.50 AMOUNT OF NON SITE PRICE TO BURNING = 5648 (0.0270) + 3522,8 (0.0350) = 276 16 20 ASH AFTER BURNING - CELL 1 = 5,5 (EIL Z= 5.6 WEIGH OF ASHEN SITE = 5648(0,055) + 3522,8(0.056) = 507.9 K 20 NOF ASH → CELL 1 = 0.72 CELL 2 = 0.50 AMOUNT OF NON SITE AFTER BURNING = 5648(0.055)(0.0072) + 3522.8(0.056)(0.0050) = 3,2 16 9° N LOST BY BRNING = 276-3.2 (100) = 98.970

A 2.0 al chert

1. HULLAN MINIT

NOVEMBER 20, 1984

)

v Sill të spred

1

AREA OF GRASS SAMPLES - CEIL 1 =  $14" \times 11" = 1.07 ft^2$ CEIL 2 =  $12" \times 14" = 1.17 5t^2$ WEIGHT OF GRASS SAMPLES - CEIL 1 =  $54.5_q$ CEIL 2 =  $61.C_q$ 

TOTAL LUEIGHT OF GRASS ON SITE =

- $\frac{(0.46)(4.7)(43560)(54.5)}{453.8(1.07)} + \frac{(0.54)(4.7)(43560)(61.5)}{453.8(1.17)}$ = 10,575 + 12,707 =
- 90 N (DRY WEIGHT BASIS) = CEIL 1 = 1.59 CEIL 2 = 1.41 AMOUNT OF NON SITE PRIOR TO BURUNG = 10,575(0.0159) + 12,707(0.0141) = 347 16 70 ASH AFTER BURNING  $\Rightarrow$  CEIL 1 = 3.9 CEIL 2 = 3.1 WEIGHT OF ASH ON SITE = 10,575(0.037) + 12,707(0.031) = 412 + 394 = E06 16 70 N OF ASH - CEIL 1 = 0.45 CEIL 2 = 0.49 AMUCUNT OF N ON SITE AFTER BURNING = 412(0.0045) + 394(0.0047) = 3.7 16 90 N BURNING LOSS =  $\frac{347 - 3.7}{347}$  [100] 70 PE,97.

APPENDIX J

Place in U.S.A.

L'UNASIEN

BRODHEAD : SUGAR RIVER CHEMISTRY DATA

|                                                                                 | :        | SHEET         |              | _====           | •   |        | LUGAR FRER<br>JPSTREAM                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------|----------|---------------|--------------|-----------------|-----|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •                                                                               | DATE     | TOTAL<br>BDD5 | Total<br>Cod | C1 <sup>-</sup> | TKN | 755    | OTHER                                                                                                                                                                                                                              |
| $\langle \rangle$                                                               | 12/20/83 | 41            | 470          | 25              | 22  | 2600   | -                                                                                                                                                                                                                                  |
|                                                                                 | 4/22/84  | 23            | 9            | 21              | 0,9 | 382    | pH - B.D NO2+NO2 - 3.7<br>No12 - 0.4                                                                                                                                                                                               |
| •                                                                               | 8/30/84  | 3.7           | 18           | 23              | 1.2 |        | TALK - Z60                                                                                                                                                                                                                         |
|                                                                                 |          |               |              |                 |     |        | pH = 7.8<br>$TM_0 = 3L$                                                                                                                                                                                                            |
| J.S.A                                                                           |          |               |              |                 |     |        | $T_{K} - 260$ $T_{G} + - 66$ $P_{H} - 7.8$ $T_{M_{g}} + - 36$ $D_{ND_{2}} + ND_{2} - 3.8$ $D_{T} KN - 0.6$ $T_{N_{0}} + - 12$ $T_{SD_{4}} - 22$ $T_{SD_{4}} - 22$ $T_{FD_{4}} - 0.32 (CP - 0.24)$ $D_{NH_{3}} - 0.2$ $T_{K} + - 3$ |
| Ala:1+ In U.S.A                                                                 |          |               |              |                 |     |        | $TN_{0}^{+} - 12$<br>$T50_{4}^{+} - 22$                                                                                                                                                                                            |
| ()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>( |          |               |              |                 |     |        | $7 PO_2 - D.32 (CP - 0.24)$<br>D $NH_3 - 0.2$<br>T $V + 0.2$                                                                                                                                                                       |
|                                                                                 |          |               |              |                 | -   |        |                                                                                                                                                                                                                                    |
| ۳.                                                                              |          |               |              |                 |     |        |                                                                                                                                                                                                                                    |
| ·                                                                               |          |               |              |                 |     |        |                                                                                                                                                                                                                                    |
|                                                                                 |          |               |              |                 |     |        |                                                                                                                                                                                                                                    |
| 2<br>7<br>8<br>8<br>8<br>8                                                      |          |               |              | -               |     |        |                                                                                                                                                                                                                                    |
| Ĩ                                                                               |          |               |              |                 |     |        |                                                                                                                                                                                                                                    |
| •                                                                               |          |               |              |                 |     |        |                                                                                                                                                                                                                                    |
|                                                                                 |          |               |              |                 |     |        |                                                                                                                                                                                                                                    |
| ļ                                                                               |          |               |              |                 |     |        |                                                                                                                                                                                                                                    |
| •                                                                               |          |               |              |                 |     |        |                                                                                                                                                                                                                                    |
| -                                                                               |          |               |              |                 |     |        |                                                                                                                                                                                                                                    |
|                                                                                 | -        |               |              |                 |     |        |                                                                                                                                                                                                                                    |
| •                                                                               |          |               |              |                 |     |        |                                                                                                                                                                                                                                    |
|                                                                                 |          |               |              |                 | 1   |        |                                                                                                                                                                                                                                    |
|                                                                                 | •        | i             | <b>I</b>     |                 |     | i<br>i | •                                                                                                                                                                                                                                  |

|                |          | SHEET<br>TOTAL | TOTAL |             | (-{)<br>+ | 1-11 | MIDSTREAM                                                         |                       |
|----------------|----------|----------------|-------|-------------|-----------|------|-------------------------------------------------------------------|-----------------------|
|                | DATE     | BOD            | COD   | C/ <b>-</b> | TKN       | TSS  | OTHER                                                             |                       |
| · )            | 12/20/83 | 15             | 150   | 33          | 6.4       | 510  | -                                                                 |                       |
|                | 4/22/64  | 3.1            | ]]    | 20          | 0.3       | 380  | ρH- B.D "                                                         | az-203-3,6<br>NHz-0,2 |
|                | 8/30/84  | 3,1            | 18    | 23          | 0,8       |      | TALK - ZGZ                                                        |                       |
|                |          |                |       |             |           |      | TCa# - 66<br>pH - 7.8                                             | •                     |
|                | -        |                |       |             |           |      | TG# - 66<br>pH - 7.8<br>TM,# - 36<br>DNO2+NO3 - 2.5<br>DTKN - 0.4 |                       |
| Alada in U.S.A |          |                |       |             |           |      | $17 N_{p}^{+} - 12$                                               | 1                     |
|                |          |                |       |             |           |      | $T SO_4^2 - 21$<br>$T PO_4 - 0.281$<br>$D NH_3^4 - 0.1$           | (CP-0,20)             |
|                |          |                |       |             | •         |      | $DNH_{3}^{4} - O_{1}$<br>TK <sup>+</sup> - 3                      |                       |
| VDH1A8         |          |                |       |             |           |      |                                                                   | •                     |
| Ċ              |          |                |       |             |           | •    |                                                                   |                       |
| -              |          |                |       |             |           |      |                                                                   |                       |
| )              |          |                |       |             |           |      |                                                                   |                       |
|                |          |                |       |             |           |      |                                                                   | •                     |
|                |          |                |       |             |           |      |                                                                   |                       |
|                |          |                |       |             |           |      |                                                                   |                       |
| :              |          |                |       |             |           |      |                                                                   |                       |
|                |          |                |       |             |           |      |                                                                   |                       |
| 1              |          |                | -     |             |           |      | <b>`</b>                                                          |                       |
|                |          |                |       |             |           |      |                                                                   |                       |
| .              |          |                |       |             |           |      | •                                                                 |                       |
| •              |          |                |       |             |           |      |                                                                   |                       |
| :              |          |                |       |             |           |      |                                                                   |                       |
| )<br> <br>     |          | -              |       |             |           |      | •                                                                 |                       |
|                |          |                | -<br> |             |           |      |                                                                   |                       |

|             | DATA     | Sheet         |              | CHERICA. | L IFRHILET<br>IL)       | er>    | SUBAR KIVER<br>Downstream                                                                                                    |      |
|-------------|----------|---------------|--------------|----------|-------------------------|--------|------------------------------------------------------------------------------------------------------------------------------|------|
|             | DATE     | TOTAL<br>BODS | TOTAL<br>COD |          | TKN                     | T55    | OTHER                                                                                                                        |      |
|             | 12/20/83 | 6.8           | Z9           | 30       | 1.6                     | 13 2 : | - 2                                                                                                                          | 6 5. |
|             | 4/22/84  | 23            | ID           | 13       | 0.6                     | 366    |                                                                                                                              | •    |
| Ma†nInU.S.A | 8/30/ 84 | 24            | 17           | 20       | DISS<br>D.4<br>TOTAL ID |        | $TALK - Zb2  TG + - b6  pH - 7,9  TMg + - 36  DISS N0_{2} + N0_{3} - 3.4 TNa + - 70:TS0_{4} - 21T P0_{4} - 0.26 (@P - 0.17)$ | )    |
|             |          |               |              |          |                         |        | T PO4 - 0.26 (@P-D.17)<br>NH2 - 0.1<br>T K+ - 2                                                                              |      |
|             |          |               |              |          |                         |        |                                                                                                                              |      |
|             |          |               |              |          |                         | -<br>- |                                                                                                                              |      |
| -           |          |               |              |          |                         |        |                                                                                                                              |      |
|             |          |               |              |          |                         |        |                                                                                                                              |      |
| •           |          |               |              |          |                         | -      |                                                                                                                              |      |
| :           |          |               |              |          |                         |        |                                                                                                                              |      |
| -           |          |               |              |          |                         |        |                                                                                                                              |      |
| :           |          |               |              |          |                         |        | -                                                                                                                            |      |

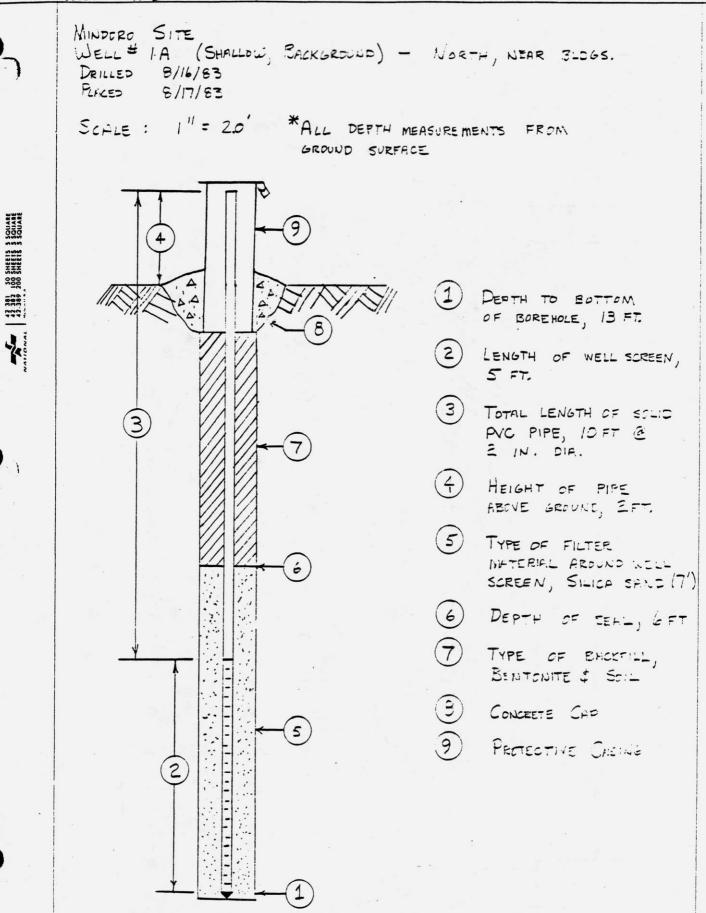
A PPENDIX K BRODHEAD : Production II.S.A. NITROGEN BUDGET CALCULATIONS

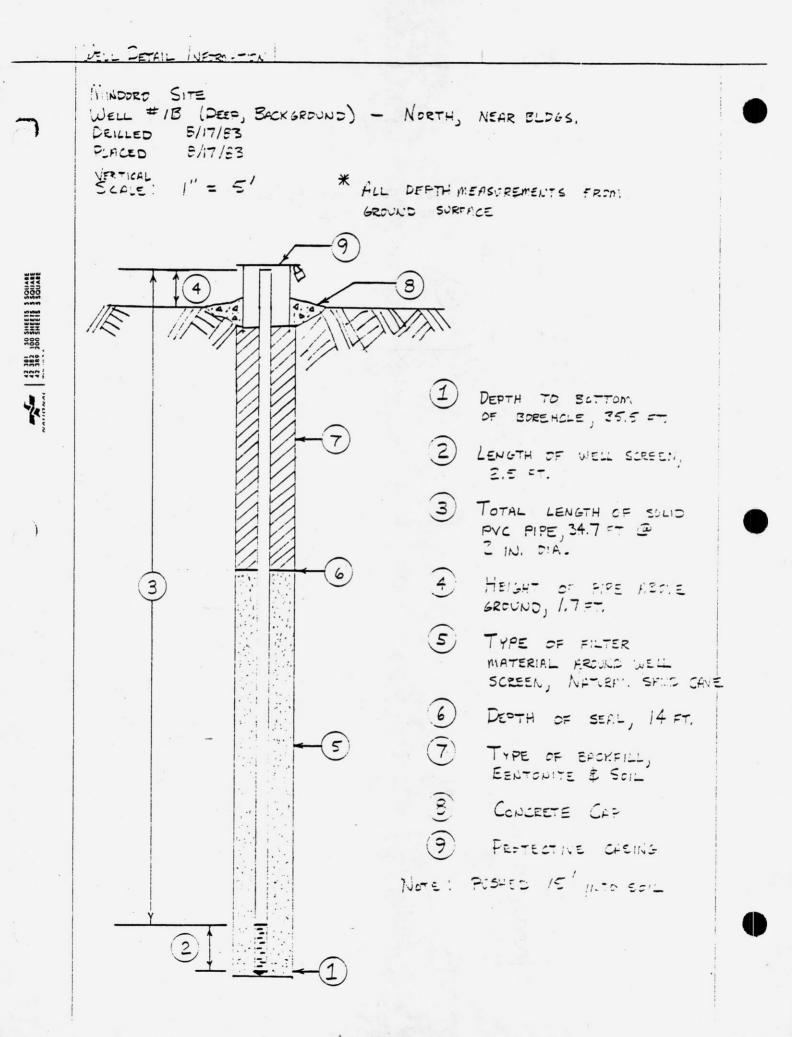
$$\begin{split} & \bigcup_{ASTE WATER ADDITION} (EACH CELL RECEIVED ½ OF Finit) \\ & CELL 1 = \frac{19750}{10^{6}} \frac{g_{Ay}}{g_{Ay}} \times \frac{44.7}{M} \frac{mg \cdot N}{R} \times 8.34 \times \frac{3650 \text{ M}^2}{72} = \\ & = 26.87 \frac{10}{M} \frac{1}{72} \times \frac{10}{10^{6}} \times \frac{10}{1$$

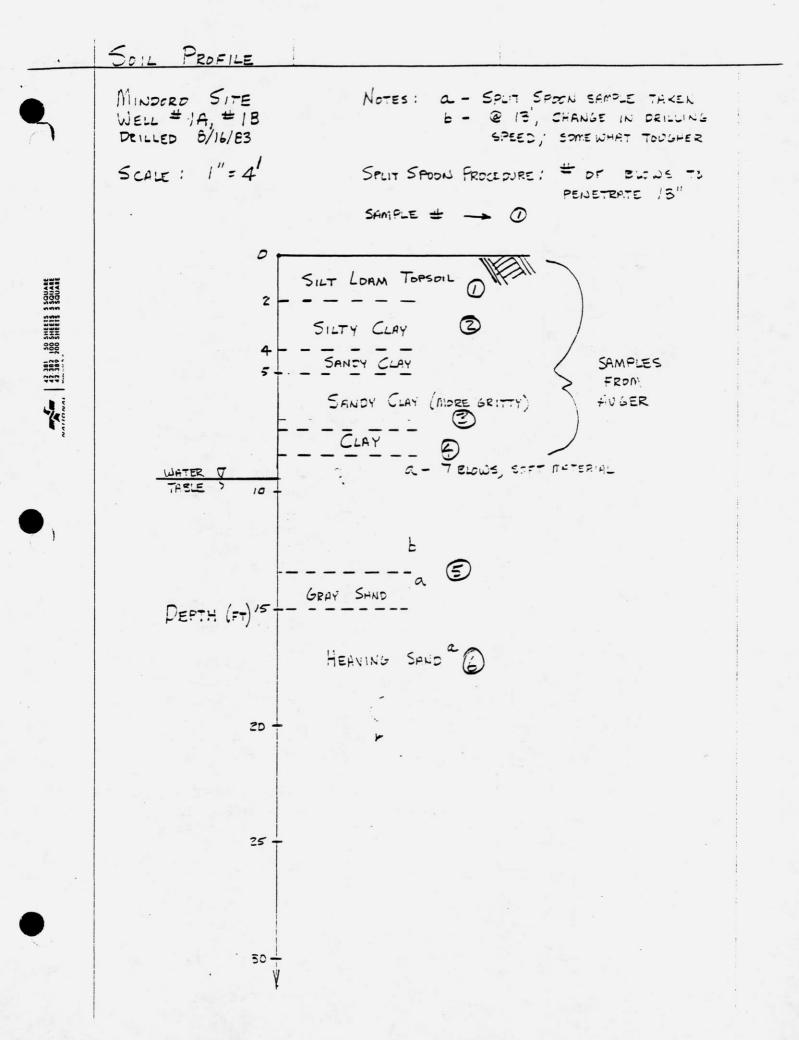
 $\langle \rangle$ 

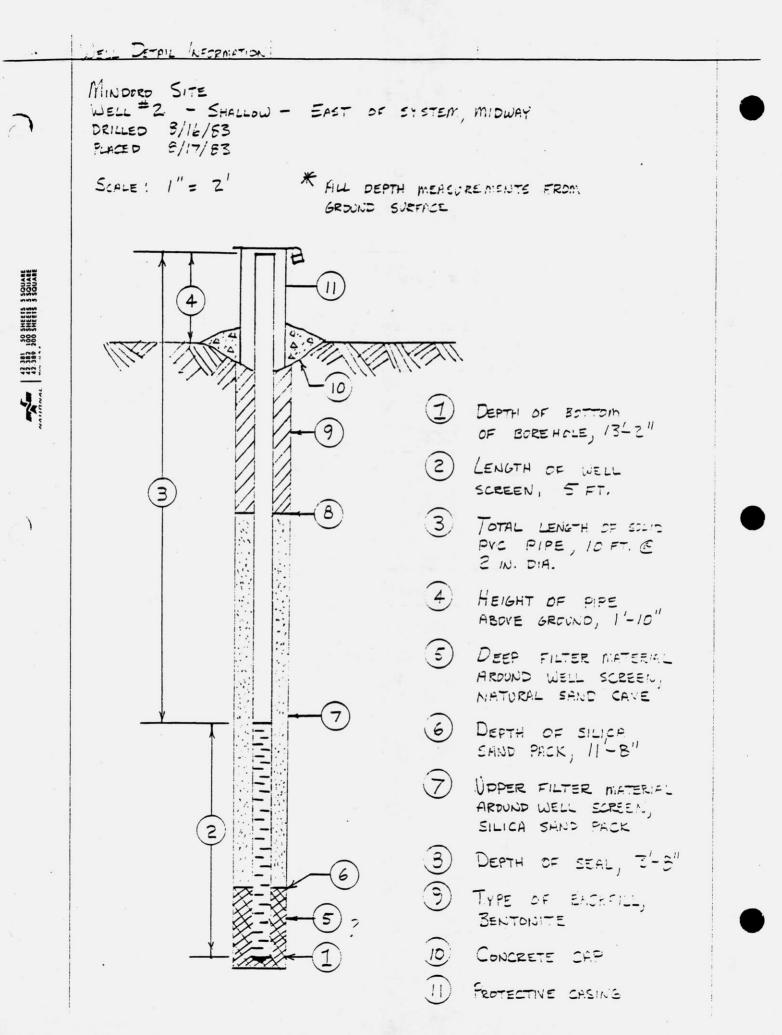
J

DENITRIFICATION LOSS


Marte Ig U S.A.

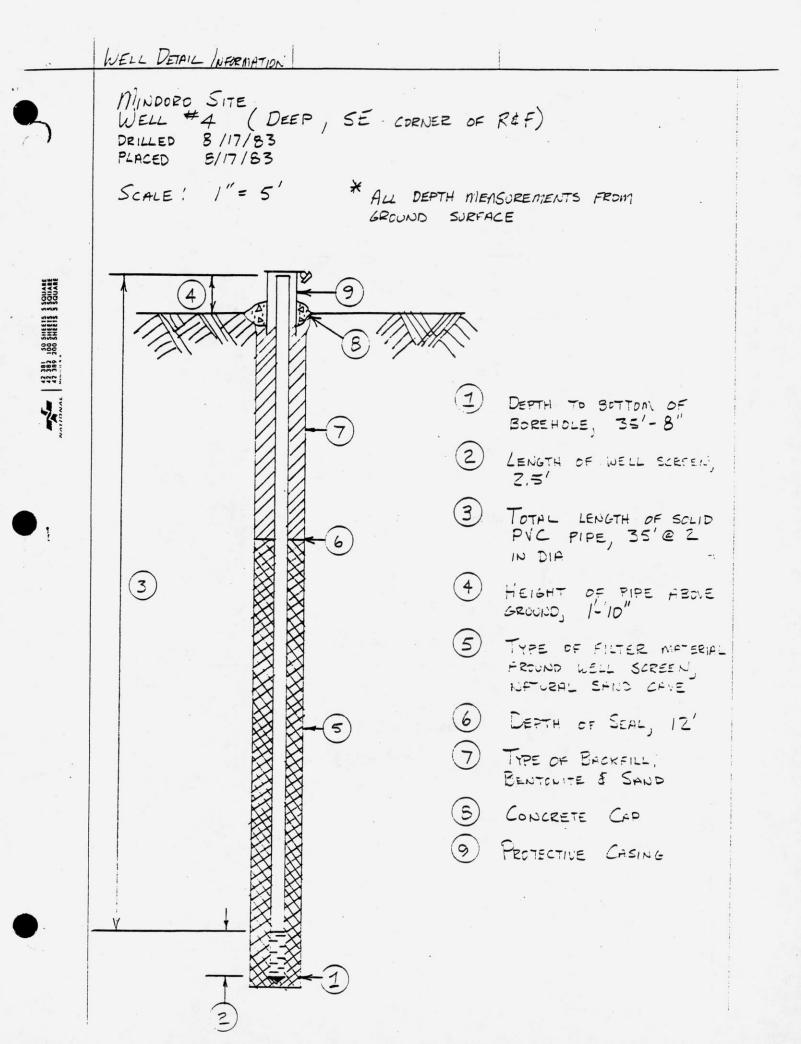

คงกพงจรรรก /


 $\begin{array}{rcl} (E111 = 2687 - 541 = 2146 \frac{b}{yr} (or E0% cF \\ CELL 1 APPLIEON) \\ CELL 2 = 2687 - 1304 = 1383 \frac{b}{yr} (or 51% oF CELL 2 \\ APPLIED - N) \\ TOTAL = CELL 1 + CELL 2 = 3529 \frac{b}{yr} (or 66% cF \\ TOTAL APPLIED - N) \end{array}$ 

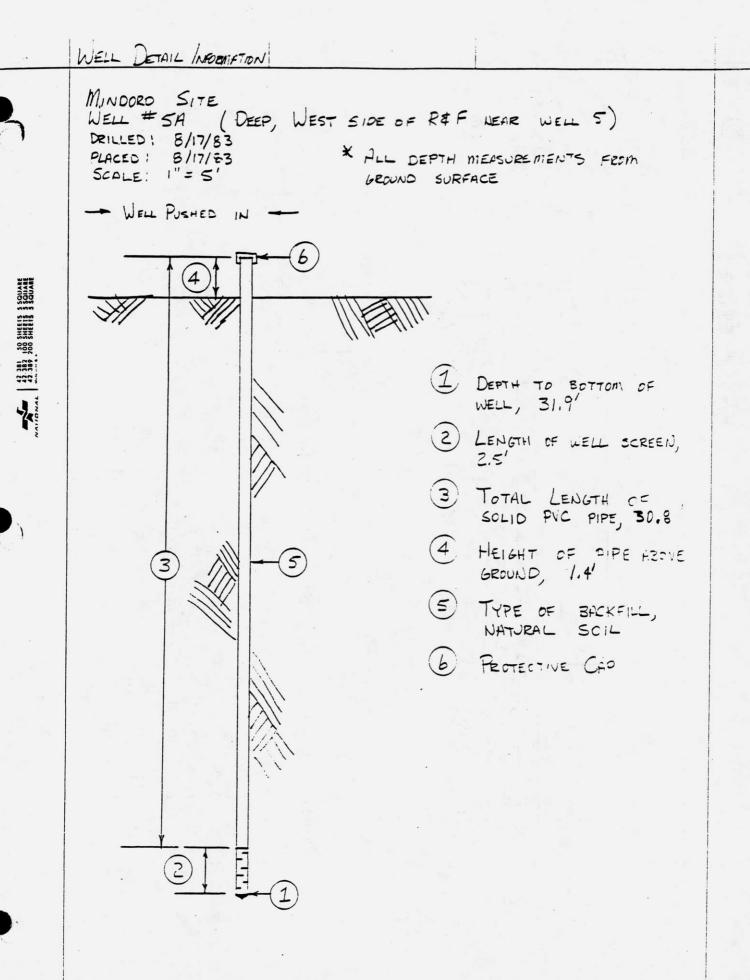

APPENDIX AA MINDORO : EACHAASTER (iii)/ HANDAINUSA WELL AND LYSIMETER LOGS

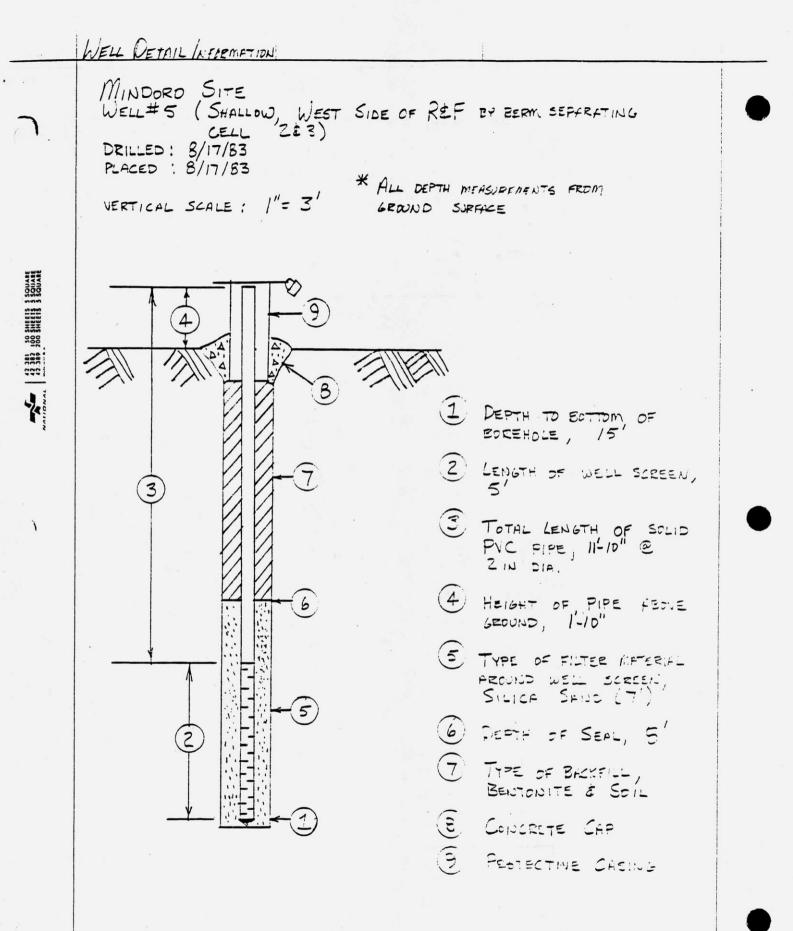
# WELL DETAIL INFORMATION.



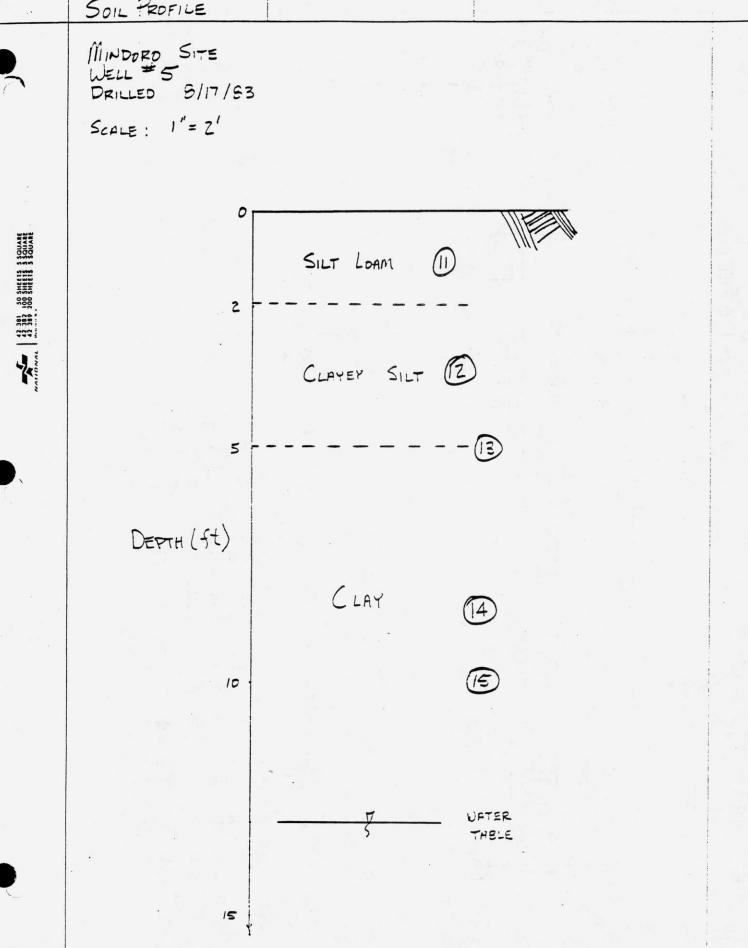


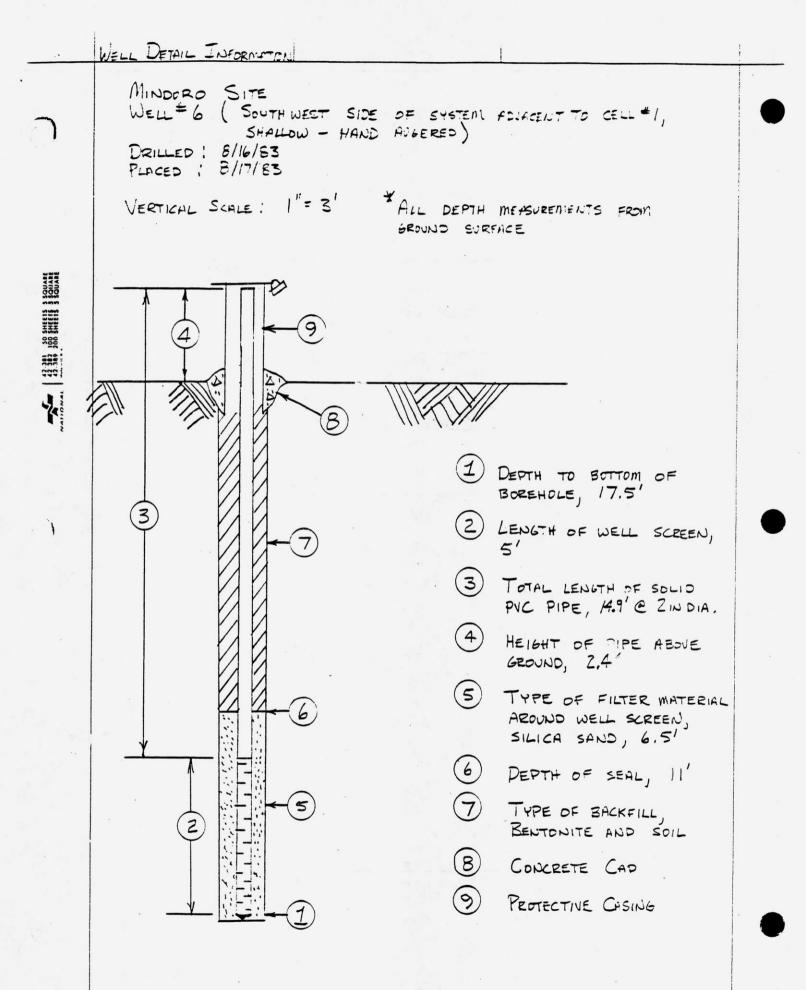


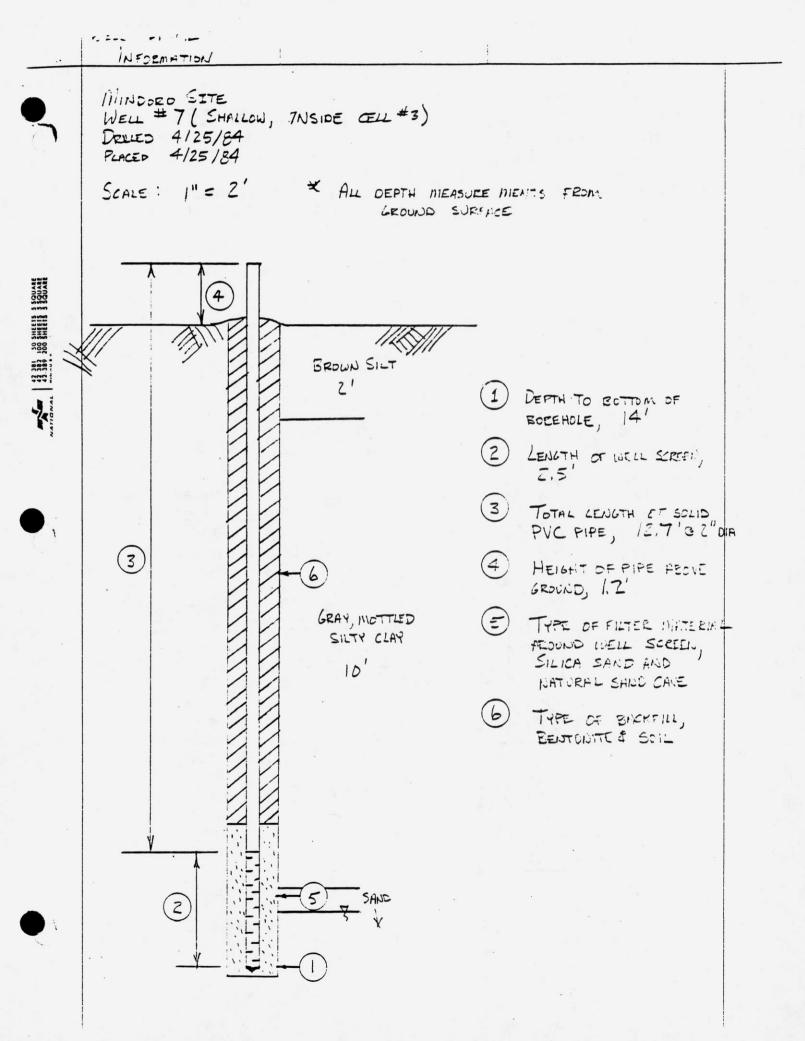



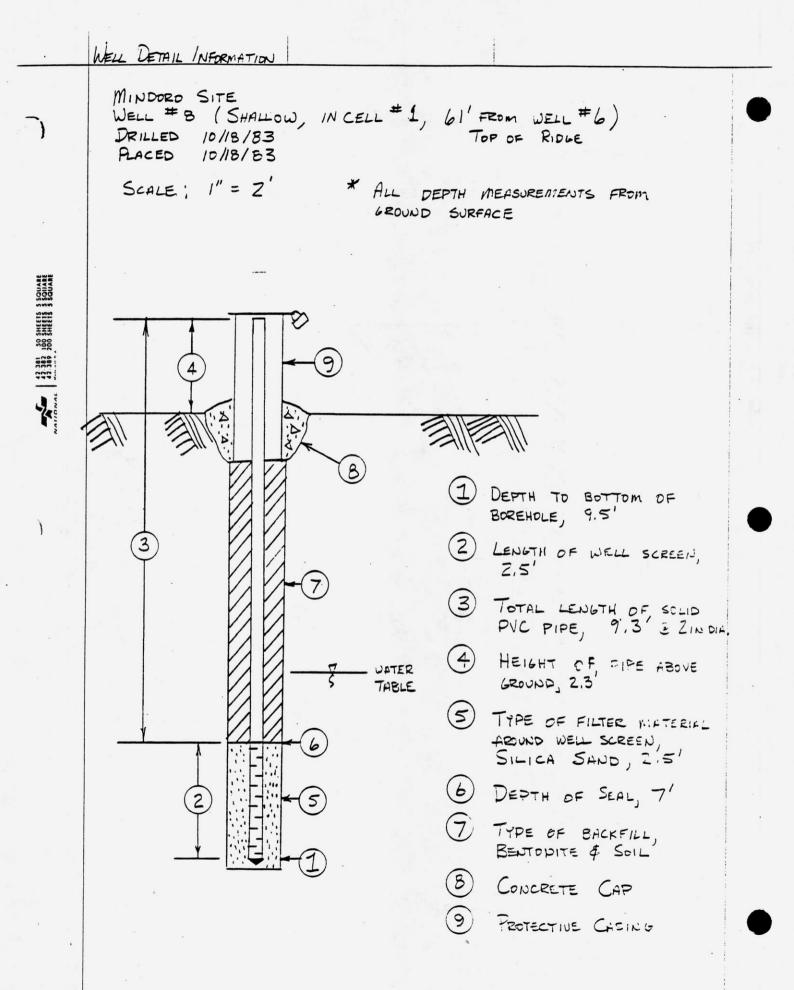


SOIL PROFILE MINDORO SITE Well#2 Drilled B/16/83 VERTICAL : 1"= 2' SCALE : 1"= 2' D 175,811 SILT LOAM TOPSCIL 3 5 DARK BEOWN CLAY DEPTH (FT) 8 LIGHT BROWN CLAY 10 11 SAND AND CLAY 13 GREENISH SAND ( UNIFORM WELL ROUNDED BRANE) 15 .

|                                            | WELL DETRIL INFORMETION                                                                  |   |
|--------------------------------------------|------------------------------------------------------------------------------------------|---|
| A                                          | MINDORD SITE<br>Well #3 (SHALLOW, SE CORNER OF R&F)<br>DRILLED B/17/83<br>PLACED B/17/83 | • |
|                                            | SCALE: 1" = 3' * ALL DEFTH MEASUREMENTS FROM<br>GROUND SURFACE                           |   |
| 100 SHEETS 5 SQUARE<br>100 SHEETS 5 SQUARE |                                                                                          |   |
| 42.388                                     |                                                                                          |   |
|                                            | (1) DEPTH TO BATTOM OF<br>BOREHOLE, 15'-2"                                               |   |
|                                            | 3 2 LENGTH OF WELL SCREEN, SFT.                                                          |   |
| )                                          | B TOTAL LENGTH OF FILD<br>PVC PIPE, 11-10"E ZIN DIA.                                     | • |
|                                            | HEIGHT OF PIFE REIVE<br>GROUND, 1'8" FT.                                                 |   |
|                                            | TYPE OF FILTER MATERIAL<br>AROUND LOWER WELL<br>SCREEN, NATURAL SHALL CALE               |   |
| (e                                         | 6 DEPTH OF SAND PACK, 12 FT                                                              |   |
|                                            | 2 TYPE OF FILTER WATERIAL<br>PROVINE UPPER WILL                                          |   |
|                                            | ECREEN, SHLICA SAND PROK                                                                 |   |
|                                            | 9 TYPE OF EXERCISE DENTROLITE                                                            |   |
|                                            | 10 CONCRETE CAP                                                                          |   |
|                                            | T FROTECTIVE CHSING                                                                      | ٠ |

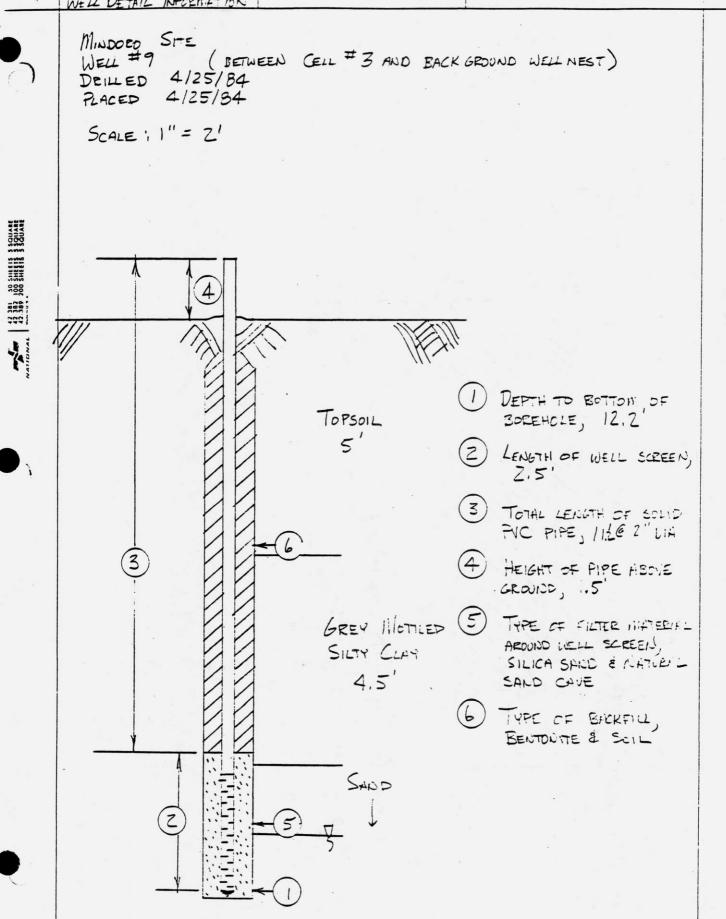


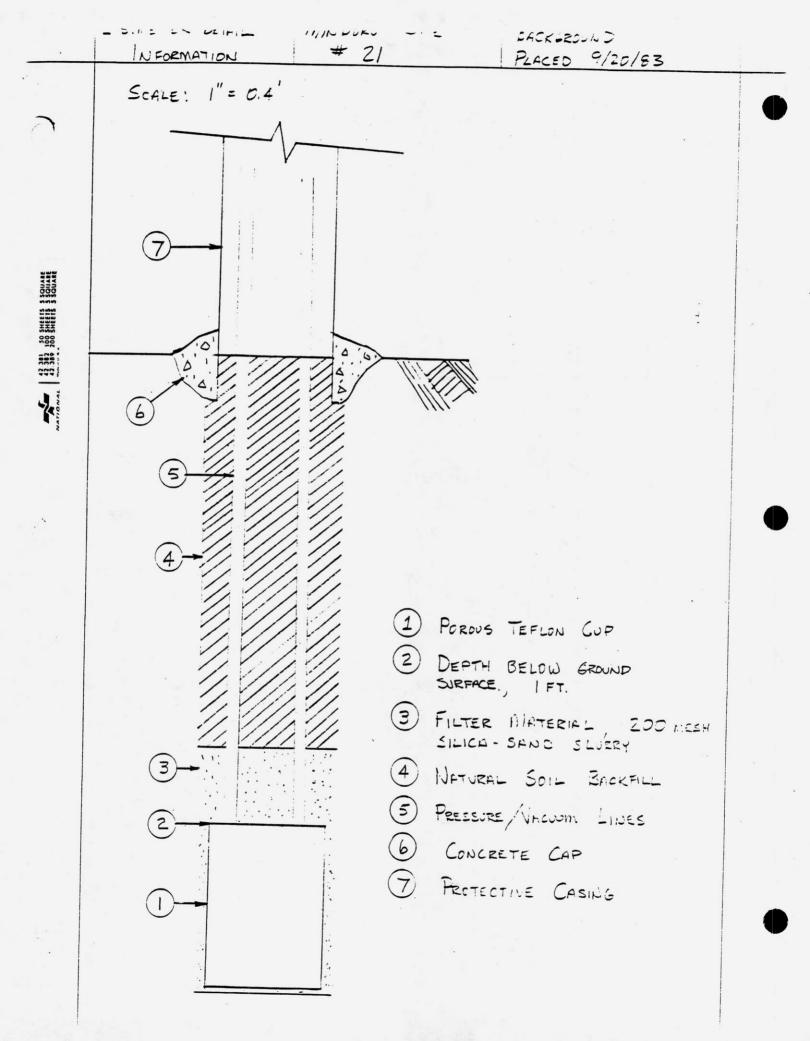


SOIL PROFILE Mindoro Site Well #3 & #4 8/17/83 DRILLED SCALE ! 1"= 3" 0 22 301 300 SHEETS 3 SOULAR SILT LOAM TOPSOIL 2 BROWN CLAY Ð 5 BEDWN- GRAY CLAY 3 GRAY CLAY 0 ) DEPTH (52)10 11 BLUE - GRAY CLAY 10 13 WATER 5 TABLE LIGHT BROWN -BLUE SAND 15-(SATURATES) 20 V

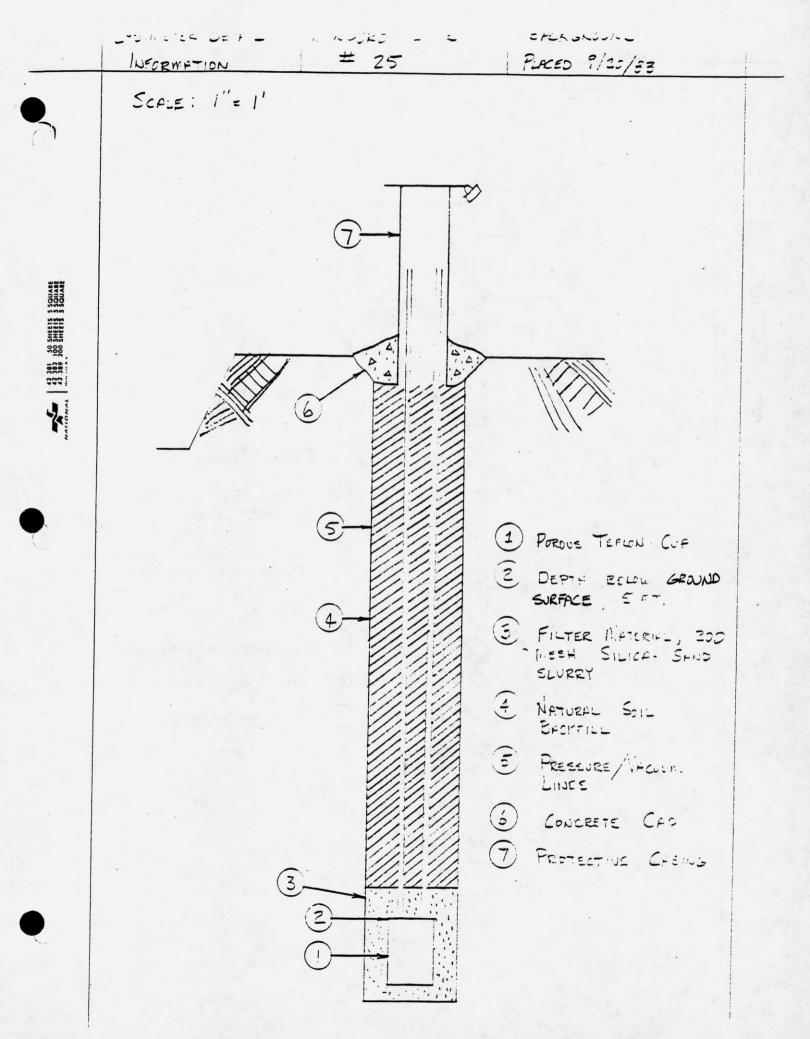


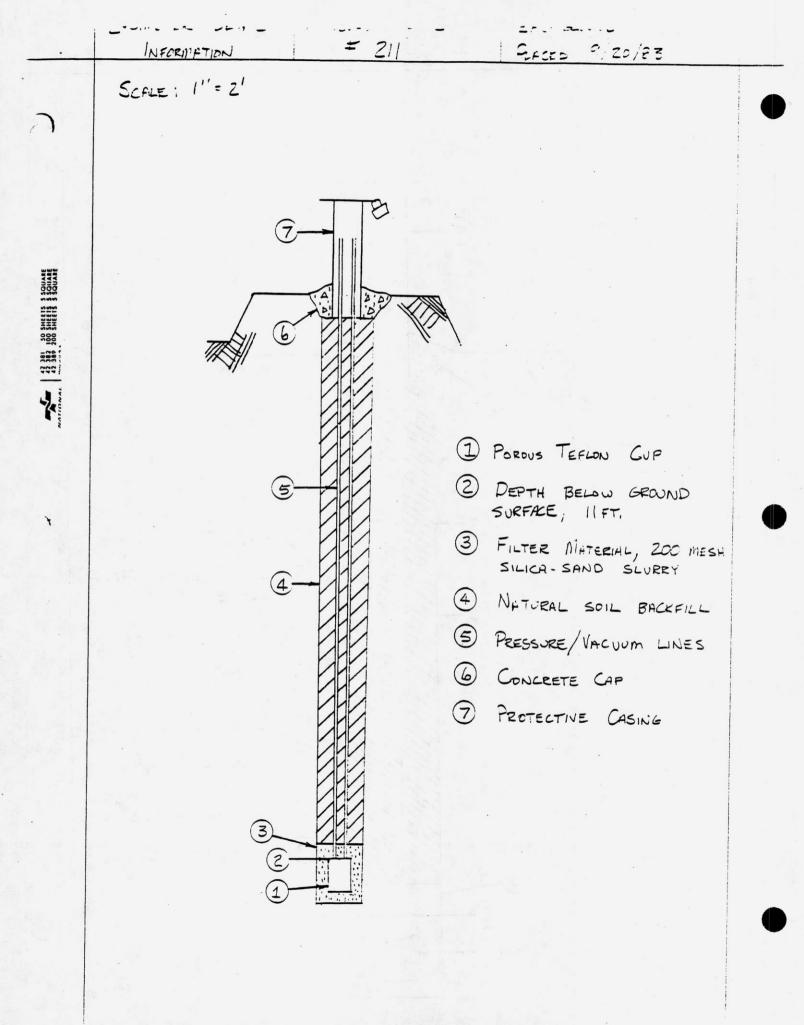



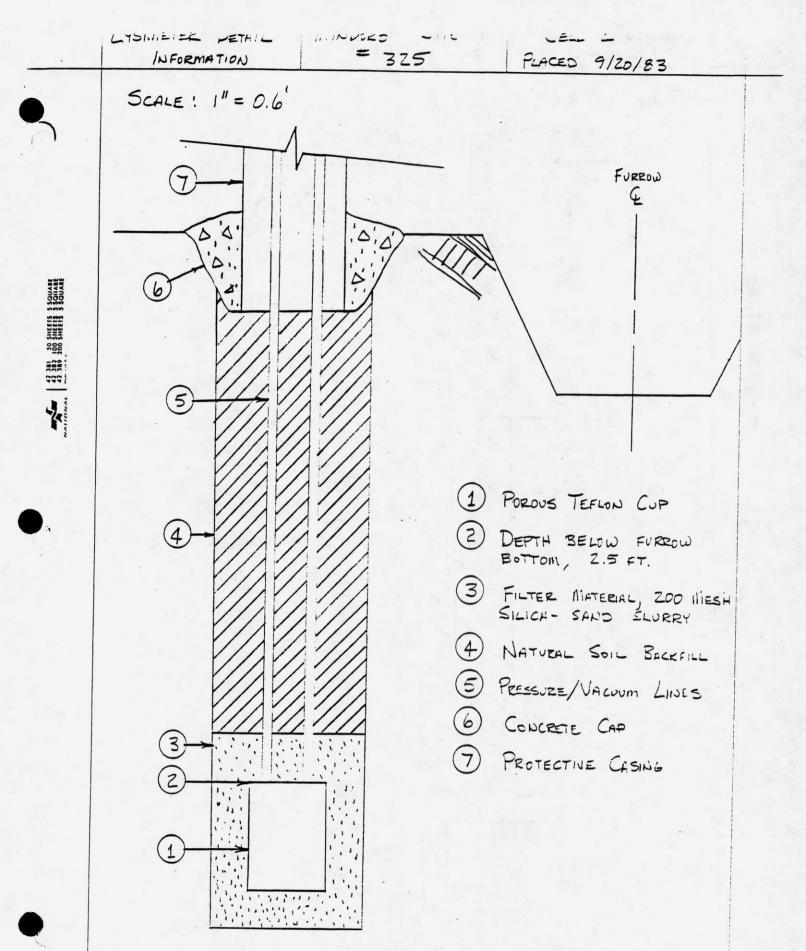

# SOIL PROFILE

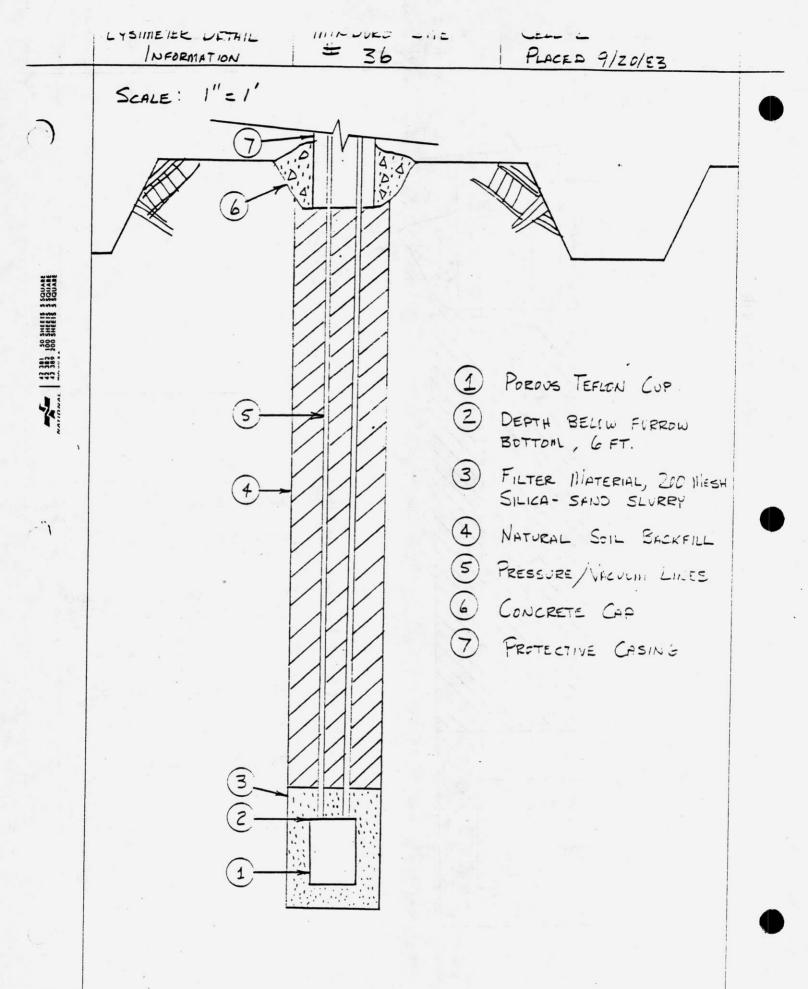


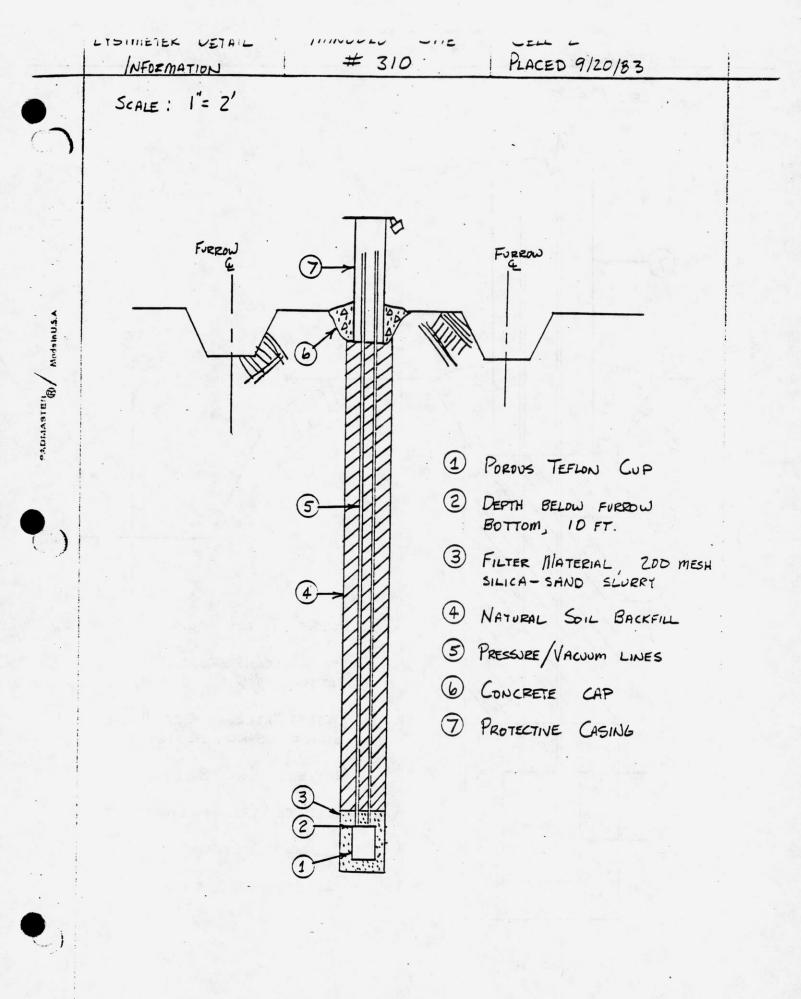



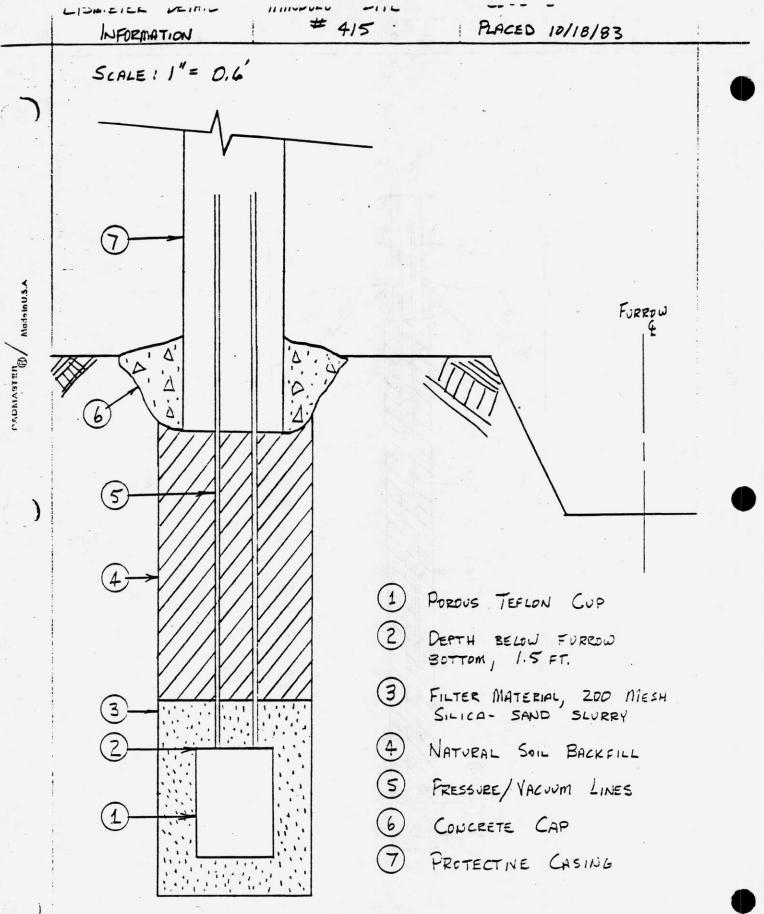



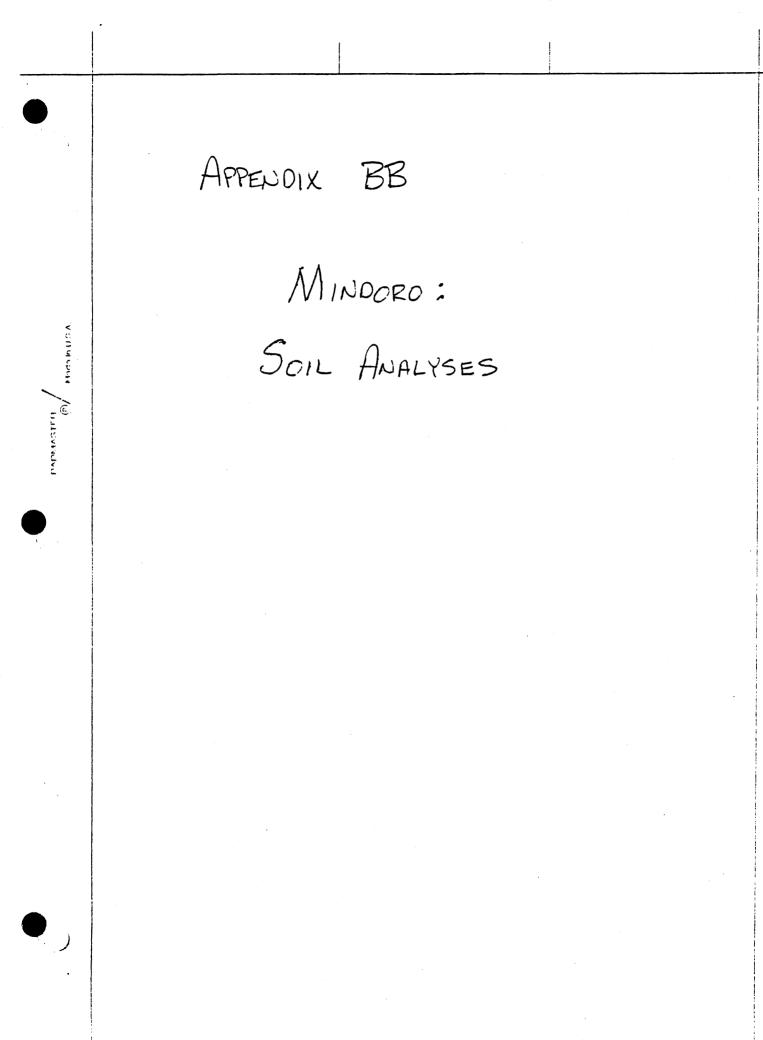





WELL DETAIL INFORMETION














COOPERATIVE EXTENSION PROGRAMS University of Wisconsin-Extension University of Wisconsin-Madison

Soil & Plant Analysis Laboratory, 806 South Park Street, Madison, Wisconsin 53715; 608-262-4364 Street, Madison, Wisconsin 53715; 608-262-4364

## DEPARTMENT OF SOIL SCIENCE

August 31, 1983 Acct. 900 Lab No. S0052

#### MEMORANDUM

<u>TO</u>: Dave Sauer Wis. DNR - Box 7921 Madison, WI 53707

FROM: Soil/Plant Analysis Lab

RE: Results of analyses on 15 soil samples submitted August 19, 1983.

| Sample<br>No.            | рH                                              | SMP         | 0.M.                                                                               | Р                                                                                   | к                                                                                                      | <br>Ca                                                                                                                        | <br>Mg                                                                                                           | Est                                                                                                       | <br>Total                                                                                                                                                                  |
|--------------------------|-------------------------------------------------|-------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ICPSCIL 1<br>CLAY-SILT 2 | 8.0×<br>8.0×<br>7.2<br>7.5<br>7.7<br>7.7<br>6.0 | <pre></pre> | T/A<br>55<br>6<br>5<br>4<br>1<br>1<br>7<br>3<br>4<br>10<br>55<br>17<br>4<br>5<br>4 | 54<br>30<br>34<br>5<br>8 x<br>17<br>36<br>91<br>40<br>6<br>40<br>13<br>52<br>7<br>5 | 155<br>230<br>190<br>205<br>105×<br>155<br>200<br>245<br>240<br>285<br>155<br>200<br>160<br>250<br>225 | 4050<br>4050<br>3000<br>3450<br>3000 <i>x</i><br>2000<br>4200<br>3600<br>3450<br>7000<br>4500<br>4900<br>4000<br>3550<br>3450 | 880<br>800<br>800<br>1250<br>300 ×<br>280<br>980<br>1120<br>1090<br>1080<br>1020<br>1120<br>1090<br>1220<br>1180 | CEC<br>14<br>14<br>11<br>11<br>9×<br>6×<br>15<br>14<br>13<br>22<br>16<br>17<br>15<br>14<br>14<br>14<br>14 | N<br>%<br>0.31<br>0.03<br>0.02<br>0.05<br>0.01 ×<br>0.01 +<br>0.07<br>0.01<br>0.02<br>0.04<br>0.28<br>0.10<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01 |

Physical analyses will follow.

If you have any questions concerning these analyses, please feel free to contact us.

Encl.

/sf



University of Wisconsin—Extension • United States Department of Agriculture • Wisconsin Counties Cooperating and Providing Equal Opportunities in Employment and Programming COPERATIVE EXTENSION PROGRAMS University of Wisconsin-Extension University of Wisconsin-Madison

uil & Plant Analysis Laboratory, 806 South Park Street, Madison, Wisconsin 53715; 608-262-4364



## DEPARTMENT OF SOIL SCIENCE

October 7, 1983 Acct 900 Lab No. 00341

### MEMORANDUM

| :01 | David Sauer |       |
|-----|-------------|-------|
|     | Wis. DNR    |       |
|     | Box 7921    |       |
|     | Madison, WI | 53707 |

FORM: Soil/Plant Analysis Lab

**<u>RE</u>**: Results of analyses on  $\beta$  soil samples submitted Sept. 22, 1983.

|                             |                                  |      | -    | •    |            |
|-----------------------------|----------------------------------|------|------|------|------------|
| Sample                      | No.                              | Sand | Silt | Clay | Total<br>N |
|                             |                                  |      |      | %    |            |
| LYSIMIETER 36 1<br>@ 1.5'   | BEOWD SILT                       | 11   | 64   | 25   | 0.11       |
| LYSIMETER 36, 2<br>Z.5      | GREY/ZLUE CLAY<br>(SMELLY)       | 13   | 68   | 19   | 0.07       |
| LYL INIETER 310 3<br>@ 9.5' | GREY/ZLUE CLAY<br>(SMELLY)<br>11 | 15   | 64   | 21   | 0.03       |

All additional analyses are attached.

You invoice for these analyses is enclosed.

Encls.

/sf

| 0-00341<br>STATE COUNTY ACCOUNT NO<br>WI 32 900<br>BATE MECHANIN<br>09-28-83 09-28-83 | SOIL & PLANT ANALYSIS LAB<br>Bog S Park<br>Madison Wi<br>B3715 | SOIL TEST REPORT<br>Samples Analyzed By:<br>SOIL & PLANT ANALYSIS LAB<br>BOG S. PARK<br>MADISON WI<br>53715 | THIS REPORT<br>IS FOR: DAVE SAUER<br>WIS DNR BOX 71<br>MADISON                                                            | COOPERATIVE EXTENSION PRODUCT<br>UMEX University of University of University<br>Solids Department, Medican, Wis<br>WISCONSIN<br>WISCONSIN<br>WI<br>53707 FARMER COPY |
|---------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FIELD 1                                                                               | CORN ALFALFA                                                   |                                                                                                             | Contain Magning Borgan I                                                                                                  | APLI           4                                                                                                                                                     |
| ACRES<br>SOIL<br>NAME GROUP XA                                                        | 0ATS 70.0 2                                                    | 2 12 6.9 4 126 EH 310 H<br>2 14 7.6 4 B L 280 H                                                             | 3000 M 1000 M 4REY/ 3                                                                                                     | LUE CATY I C 25                                                                                                                                                      |
| PLOW<br>DEPTH                                                                         | SON 1                                                          | EST LEVEL CODES VL Nory Low, I Rowl, IM R                                                                   | ow Madium), M (Madium), HM Bligh Madium), H                                                                               | Brligh), VH (Very High), EH Encassively High).                                                                                                                       |
| LIME PROGRAM                                                                          |                                                                |                                                                                                             | E FERTILIZEA PROGRAM                                                                                                      | PLANT NUTRIENTS                                                                                                                                                      |
| GRADE PH or PH<br>USED 6.0 0 6.9<br>0-09 NONE NONE                                    | VEAR P205 K20 VIELD GOAL<br>BU/A BU/A                          | N P205 K20<br>N 1A N1A N1A<br>140 40 30 3.1-4.0                                                             | P205         K20         OTHER CROPS AND V           mi1A         mi1A         01A           50         200         61-90 |                                                                                                                                                                      |

250

300

65

75

4.1-5.0

8.1-6.0

| CROP:                                                    | _            | YEAR |               | CROP:                 |                                       |              | YEAR  | 19            | CROP:   |                                             |              | YEAR  | 19     |
|----------------------------------------------------------|--------------|------|---------------|-----------------------|---------------------------------------|--------------|-------|---------------|---------|---------------------------------------------|--------------|-------|--------|
| ERTILIZATION<br>PROGRAM                                  | PLAN<br>MIA  |      |               | FERTILIZAT<br>PROGRAM |                                       | PLAN<br>PLAN | TNUTH |               | FERTILI | ZATION<br>GRAM                              | PLAN         | TNUTA | ILENIS |
| CORRECTIVE                                               |              |      |               | CORREC                | TIVE                                  |              |       |               | CO      | RRECTIVE                                    |              |       | 1      |
| MAINTENANCE                                              |              |      |               | MAINTE                | NANCE                                 |              |       |               | MA      | INTENANCE                                   |              |       |        |
| NUTRIENT ADJUSTMENT (S)                                  |              |      |               | NUTRIE                | NT ADJUSTMENT (S)                     | 1            |       |               | NU      | RIENT ADJUSTMENT (S)                        |              |       |        |
| TOTAL                                                    |              |      |               |                       | TOTAL                                 |              |       |               |         | TOTAL                                       |              |       | 1      |
| ERTILIZATION RECORD DATE<br>AND/OR METHOD OF APPLICATION | RATE<br>h)/A |      | ADE<br>05 K20 | FERTILIZAT            | ON RECORD DATE                        | RATE HILA    |       | ADE<br>05 K20 |         | ZATION RECORD DATE<br>METHOD OF APPLICATION | RATE<br>hi/A |       |        |
|                                                          |              |      |               |                       | · · · · · · · · · · · · · · · · · · · |              |       |               |         | · · · · · · · · · · · · · · · · · · ·       |              |       |        |

45

50

160

190

35

40

0

0

121-140

141-180

0

0

SECOND

THIRD

" NONE

NONE

FOR OTHER LIME GRADES SEE LIME SECTION ON BACK

80-89

APPENDIX CC MINDORO : PAPETER // HIVIN IN U.S.A. WASTEWATER CHEMISTRY DATA

|                         | ·······<br>[ | )<br>ATA SH   | HEET | _   | METERS            | (mg/f)        | Kai                 | ~ WAS | TEWATER        | 2          |
|-------------------------|--------------|---------------|------|-----|-------------------|---------------|---------------------|-------|----------------|------------|
|                         | DATE         | TOTAL<br>BODS | COD  | TSS | +TKN*             | NH3-N         | NO2-N+<br>NO3-N     | +CI-* | (LAE)          | OTHER      |
|                         | 10/18/83     | < 600         | _    | 110 | 17.               | 1.7           | 0.1                 | 96.   | 6.9            | _          |
|                         | 11/30/63     |               | 1300 | 332 | 40                | 1.3           | 0.2                 | 210   | 9.Z            |            |
|                         | 12/22/83     | 430           | 660  | 80  | 14,               | _             | -                   | 70,   | -              |            |
|                         | 1/11/84      | 470           | 077  | 110 | 20                | _             | _                   | ଟଠ    |                |            |
|                         | Z/19/84      | 1300          | 1600 | 440 | 52                | _             | _                   | 86    | 9.3            | -          |
| Matinu.S.A              | 3/22/84      | 7 <b>30</b>   | 1300 | 192 | 40                | -             | -                   | 120   | (FIELD)<br>B.Z | -          |
| ~                       | 4/26/34      | 920           | 1000 | 616 | 40                | (0155)        | 0,5                 | 43 N  | 9,5            | p = 7.3143 |
| Agener.                 | 5/23/34      | 920           | 1400 | 472 | 34                | (C155)<br>0,9 | 1.6                 | 95    | 8.6            | _          |
| 1445-11                 | 6/6/84       | 890           | 1300 | 404 | 33                | D.6           | D. 1                | 110   | 8.1            | <b>—</b>   |
|                         | 7/12/84      | 550           | 850  | 192 | 23                | 0,1           | 0.1                 | 87    | 6.4            | <b>—</b>   |
| $\langle \cdot \rangle$ | B/29/34      | 93D           | 1300 | 212 | 35                | 0,4           | $\mathcal{D}_{i,1}$ | 110   | 5.1            |            |
| · )                     | 9/19/34      | 640           | 1000 | 165 | 25                | 0.1           | <0.1                | - 86  | 6.5            |            |
|                         | 10/16/84     | 1200          | 1900 | 149 | 31 0:55<br>40 tst | C, 9          | 0,3                 | 100   | 7.5            | •          |
|                         | 11/6/84      | 830           |      | 195 | Z9 TOT<br>16 DISS | 1,4           | 0.6                 | 97    | . —            |            |
|                         |              |               |      |     |                   |               |                     |       |                |            |
|                         |              |               |      |     |                   |               |                     |       |                |            |
|                         |              |               |      |     |                   |               |                     |       |                |            |
|                         |              |               |      |     |                   |               |                     |       |                |            |
|                         |              |               |      |     |                   |               |                     |       |                |            |
| :                       |              |               |      |     |                   |               |                     |       |                |            |
| •<br>•<br>•             |              |               | -    |     | -                 |               |                     |       |                |            |
|                         |              |               |      |     |                   |               |                     |       |                |            |
| :                       |              |               |      |     |                   |               | :                   |       |                |            |

.

|            | DATE             | TO TAL | TOTAL | 504  | Ca <sup>2+</sup> | Na <sup>+</sup> | Mg Z+ | κ+  | OTHER    |             |
|------------|------------------|--------|-------|------|------------------|-----------------|-------|-----|----------|-------------|
| <b>`</b> ) | 10/18/23         | 394    | 17.   | 100. | 73               | 160             | 38    | -   | -        |             |
|            | 11/30/83         | 294    | 34    | ~    | _                | -               | -     | -   | -        |             |
|            | 12/22/83         | _      | -     | -    | -                |                 | -     | -   | _        | -<br>-<br>- |
|            | 1/11/84          | . –    | -     | -    | -                | -               | -     | -   | _        |             |
|            | 2/19/84          | -      | -     | -    | -                | -               |       |     | -        |             |
| Ma1940.5.A | 3/22/84          |        | _     | _    |                  |                 | .—    | -   |          | •           |
|            | 4/26/84          | 446    | 37    | 57   | 95               | ZCO             | 23    | Z3  |          |             |
| Currentine | .5/23/84         | ~      | _     | -    | -                | -               | -     | . — | -        | •           |
|            | 6/6/84           | ~      | -     |      | -                | -               | -     | ~   | -        |             |
|            | 7/12/84          | -      | -     |      | -                | -               | -     | -   | <b>—</b> |             |
|            | 8/ <i>2</i> 9/84 | Z66    | 45    | . —  | 62               | 130             | 35    | 36  |          |             |
|            | •                |        |       |      | 53.3             | 163,3           | 57, 2 |     |          |             |
|            | :                |        |       |      | 1,02             | 7.15            | 0.7E  |     |          |             |
| -          |                  |        |       |      |                  |                 |       |     |          |             |
|            |                  |        |       |      |                  |                 |       |     |          |             |
|            |                  |        |       |      |                  |                 |       |     |          |             |
|            |                  |        |       |      |                  |                 |       |     |          |             |
|            |                  |        |       |      |                  |                 |       |     |          |             |
|            |                  |        |       |      |                  |                 |       |     |          |             |
|            |                  | _      |       |      |                  |                 |       |     |          |             |
|            |                  |        | -     |      |                  |                 |       |     | •        |             |
|            |                  |        |       |      |                  |                 |       |     |          |             |

APPENDIX DD

P1114 In U S A.

PACHARTER (

MINDORO :

WASTEWATER FLOWS TO RIDGE AND FURROW

- 30 DAY AVERAGES - 24-HR ON SAMPLING DAYS

MINDORD WASTEWATER FLOW (GALLONS/OAY)

| MONTH                  | 1982   | 1983   | 1984  | 1984*    | 1983* |
|------------------------|--------|--------|-------|----------|-------|
| JANUARY                | 13200. | 11220  | 13200 | 13012    |       |
| FEBRUARY               | 13860  | 10560  | 13011 | 18175    |       |
| MARCH                  | 13860  | 13860  | 13294 | 13099    |       |
| APRIL                  | 17160  | 16500  | 13482 | 13921    |       |
| MAY                    | 19140  | 16594  | 13011 | 16155    |       |
| UNE                    | 18480  | 16688  | 14614 | 15613    |       |
| JULY                   | 17820  | 15934  | 12540 | 13086    |       |
| AUCUST                 | 19140  | 15557  | 11597 | 8582     |       |
| SEPTEMBER              | 145ZD  | 13105  | 12917 | 98CB     |       |
| OCTOBER                | 13860  | 10227  |       | 15766    |       |
| NOVEMBER               | 11220  | 6006   |       | 15379    | 9978  |
| DECEMBER               | 13860  | 12634  |       |          | 10263 |
| YEARLY<br>AVERAGE      | 15510  | 13244  | 13074 | + 13295  | X     |
| C.MMVLATINE<br>Averabe | 15510  | )4 377 | 14022 | $\times$ | X     |

\* 24 HR FLOWS DETERMINED ON SAMPLING DAYS

PROJECT Z4 - MR FLOW AVERAGE

Plade in U.S.A.

PACMASTER (P)

ر 🖓

APPENDIX EE

MINDORO :

というこう

/ (B) 1000 4000

)

GROUNDWATER ELEVATIONS AND CONTOURS SLUG TEST DATA AND CALCULATIONS

|                                                                                       | DATE                 | DEPTH TO<br>GW | GW<br>ELEVATION  | Volume HzJ<br>(St) | Z Volumes<br>(GAL) | Volume<br>Removed | COMMENT                                      |
|---------------------------------------------------------------------------------------|----------------------|----------------|------------------|--------------------|--------------------|-------------------|----------------------------------------------|
| )                                                                                     | 9/20/83              | 10.40          | 771. :9'         | _                  |                    |                   |                                              |
|                                                                                       | 10/18/53             | 14.49          | 767.10           | 0.14               | 0.07               | 0.02              |                                              |
|                                                                                       | 11/27/63<br>11/30/83 |                | 767.31<br>767,02 | 0.35               | 0.2                | ALL               | € 2:30 PM TOU DRY<br>€ 10.30 AM TOU SAMPLE   |
| SOUARE<br>SOUARE<br>SOUARE                                                            | 12/21/83<br>12/22/83 | 14.59<br>14.61 | 767.CO<br>766,98 | 0.05               | 0.02               | NONE              | C 12:18 Fr. Too Day<br>C 9:55 HT. To SAMIPLE |
| 42 391 50 SHEETS 5 SOULAR<br>42 392 100 SHEETS 5 SOULAR<br>44 399 200 SHEETS 5 SOULAR | 1/10/64<br>1/11/84   | DRY<br>Dey     | -                |                    | -                  |                   | E 11:55AM TOU DRY<br>E 9:11AM TO SAMPLE      |
|                                                                                       | 7/18/84<br>Z/19/84   | 13.89<br>14,02 | 767.70<br>767.57 | 0,73               | 0,36               | l volume          | ЦЬНТ ВЕОШЛ (10:40)<br>(9:25)                 |
|                                                                                       | 3/21/84<br>3/22/84   | 14,50<br>14.55 | 767.09<br>767.01 | 0.12               | 0.06               | NONE              | TOO DET TOO SAMPLE                           |
|                                                                                       | 4/25/34              | DRY            | _                | -                  | -                  | -                 |                                              |
|                                                                                       | 5/22/34              | dry            | -                | -                  | -                  |                   | <b>-</b> *                                   |
|                                                                                       | 6/5/34               | DRY            | -                | ~                  | ~                  | ~                 | -                                            |
|                                                                                       | 7/11/84              | Dry            | -                | -                  | _                  | _                 | -                                            |
|                                                                                       | 8/25/84              | DRY            | -                | -                  | -                  |                   |                                              |
|                                                                                       | 9/18/84              | DP.Y           | _                | -                  |                    | _                 | -                                            |
|                                                                                       | 10/15/34             | dry            | _                | -                  | -                  | -                 | -                                            |
|                                                                                       | 11/5/32              | 14,50          | 767.09           |                    |                    |                   | <u> </u>                                     |
|                                                                                       |                      |                |                  |                    |                    |                   |                                              |
|                                                                                       |                      |                |                  |                    |                    |                   | -                                            |
|                                                                                       |                      |                |                  |                    |                    |                   |                                              |
|                                                                                       |                      |                |                  |                    |                    |                   |                                              |
|                                                                                       |                      |                |                  |                    |                    |                   |                                              |

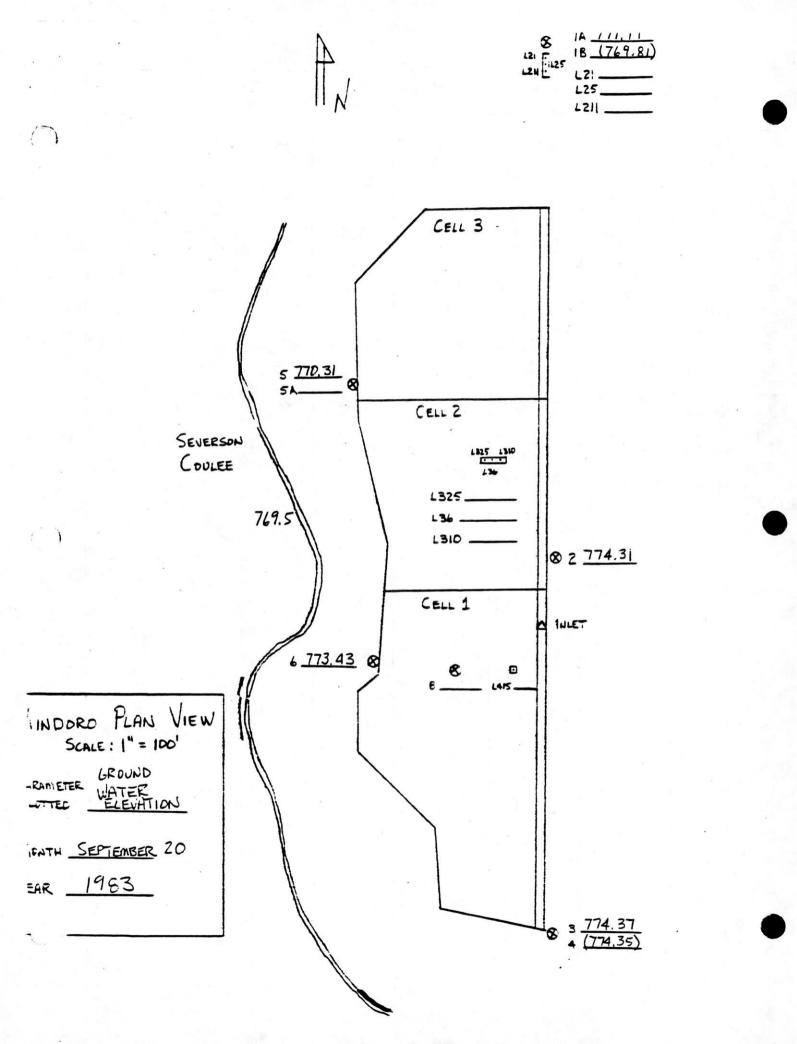
| ę. ę.                                                                                 |            | DATA                        | Sheet : We     | ELLIB LEN         | GTH : 37.2         | / 37.13/37.11      | DEEP,             | BRCKLRDUND                         |
|---------------------------------------------------------------------------------------|------------|-----------------------------|----------------|-------------------|--------------------|--------------------|-------------------|------------------------------------|
| •                                                                                     |            | DATE                        | DEPTH TO<br>SW | GWI<br>ELEVATION  | Nolume HD<br>(ft)  | 3 Volumes<br>(GAL) | Volume<br>Renoved | COMMENT                            |
|                                                                                       |            | 9/20/83                     | 1.55'          | 769.51            | _                  | _                  |                   |                                    |
|                                                                                       | J          | 10/15/53                    | 14.69          | 766,67            | 22.6               | 11.3               | -                 | —                                  |
|                                                                                       | ſ          | 11/29/83<br>11/30/83        | 4.36<br>14.53  | 767.00<br>766,83  | 22.77              | 11.4               | -<br>15           | CIZ:40 PM<br>CIC:40 AM LIGHT BROWN |
| SQUARE<br>SQUARE<br>SQUARE                                                            | 1          | 12/21/83<br>12/22/83        | -              | 766.34<br>766.22  | 22.10              | 11.05              | 12                | C 12:20 PM.<br>C 9:57 AN NO SMELL  |
| 42.381 50 SHEETS 5 SOUARE<br>42.382 100 SHEETS 5 SOUARE<br>42.387 200 SHEETS 5 SOUARE | !<br>√     | 1/10/B4<br>1/11/84          | 15.30<br>15.29 | 766.06.<br>766.07 | 21.87              | 10.97              | 12                | E 11:56 AM<br>C9:11 AM CLEAR       |
| 1933                                                                                  |            | Z/18/84<br>Z/19/84          | 13.85<br>13.80 | 767.51<br>767.56  | 23.3               | 11.67              | 17)               | (12:40) LIGHT BROWN<br>(9:30)      |
| T ex                                                                                  |            | 3/21/84<br>3/22/84          | 14.64<br>14.77 | 766.72<br>766.59  | ZZ. <del>.</del> 5 | 11. 2              | 12                | CLEAR                              |
|                                                                                       | Ţ          | 4/25 <i>/</i> 34            | 14.87          | 766.49            | 22,2               | )].]               | 12                | _                                  |
| `                                                                                     | 1          | 5/22/34                     | 14.89          | 766.47            | -                  | -                  | -                 | fict same is                       |
|                                                                                       | •          | 6,5,34                      | 15.03          | 766.23            | <b>—</b>           | · _                | -                 | • 7                                |
|                                                                                       | t          | 7/11/84                     | 14,66          | 766.70            | -                  | ~                  | -                 | ι <b>ι</b>                         |
|                                                                                       | ʻj         | 8/2 <i>5/</i> 84<br>3129/84 | 5.34<br> 5.37  | 766.02<br>765.99  | Z1. B              | 10.9               | 12)               | CLEFE                              |
|                                                                                       | ~          | 9/18/84                     | 15.31          | 766.05            | -                  |                    | -                 | ·                                  |
|                                                                                       | <b>;</b> * | 10/15/84                    | 15,19          | 76.6.17           | <u> </u>           | -                  |                   |                                    |
|                                                                                       | {          | 11/5/34                     | 14.55          | 766.81            | ·                  | _                  |                   | <u> </u>                           |
|                                                                                       |            |                             |                |                   |                    |                    |                   |                                    |
|                                                                                       |            |                             |                |                   |                    | -                  |                   |                                    |
|                                                                                       |            |                             |                |                   |                    |                    |                   |                                    |
|                                                                                       |            |                             |                |                   |                    |                    |                   |                                    |
|                                                                                       |            |                             |                |                   |                    |                    |                   |                                    |
|                                                                                       |            | 1                           |                |                   |                    |                    |                   |                                    |

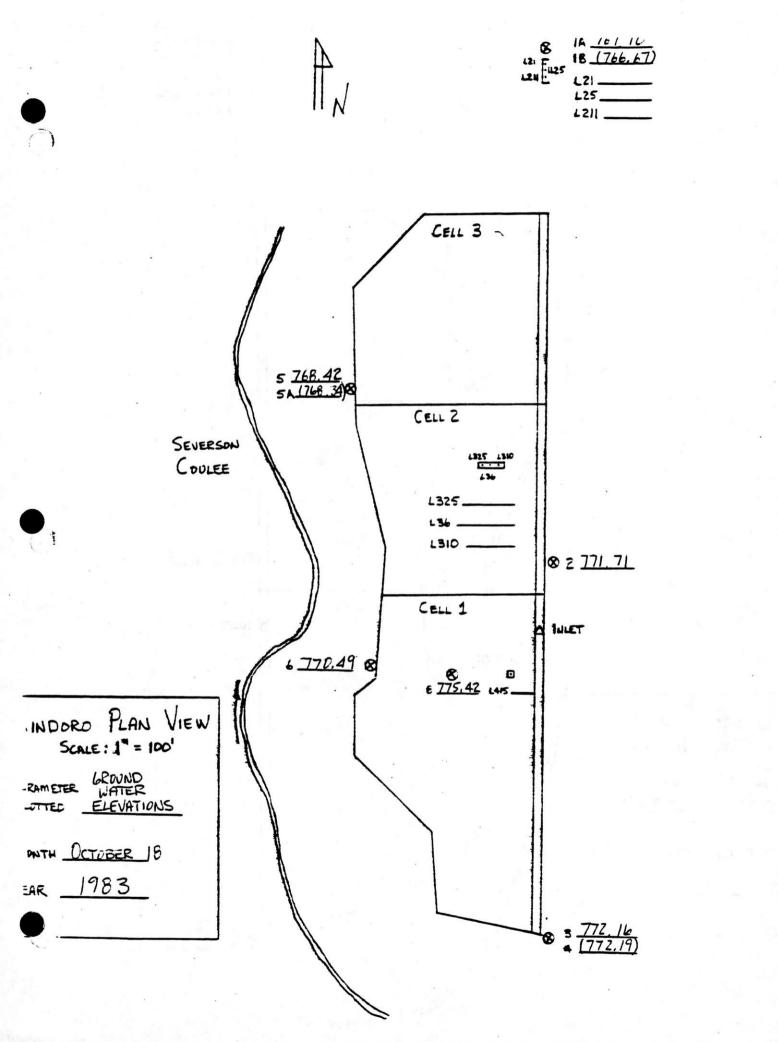
| *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LAIA -                        | HEET ! WEL     | GW                 | 6TH ; 15/4;<br>VOLUME H2D |             | VOLUME        | 1                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------|--------------------|---------------------------|-------------|---------------|------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATE                          | 64             | ELEVATION          | (+2)                      | (GAL)       | REMOVED       | COMMIEN-                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/20/83                       | 9.30'          | 774.31             |                           |             |               |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10/16/63                      | 11.90          | 17.10              | 3.0                       | 1.5         | -             |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11/ <i>2</i> 1/83<br>11/30/83 | 10.76<br>12.73 | 772,85<br>772,85   | A 3.97                    | 42          | ALL           | EZ:50<br>EID:50 BLACK, TUREID      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/21/83<br>12/22/83          | 13.22<br>13.69 | 770.29<br>769.92   | 1.39                      | 0.7         | -             | E 1:00 PM<br>E 10:12 AM GRY NO SME |
| 2000 SHEETS 2000 S | 1/10/84<br>1/11/84            | 13.85<br>13,83 | 769.76<br>769.78   | 0.8                       | 0.4         | VOLUME        | E 12:04 PM<br>E 9.49 ANL GEAY      |
| *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2/18/84<br>2/19/84            | 12.48<br>12,48 | 771, 13<br>171, 13 | 2.2                       | 1.1         | 1 VOLUME      | (10:53)<br>ВР-ШМ<br>(10:01)        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3/21/84<br>3/ <i>2</i> 2/84   | 13.47<br>13.55 | 770.14<br>770.06   | 1.2                       | 0.6         | / VCLUME      | LIGHT BROWN                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4/2 <i>5/</i> 34<br>4/26/34   |                | 770.CZ<br>770.71   | 1.1                       | 0.6         | I V CLUME     |                                    |
| · )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5/22/34<br>5/22/84            | 13.62<br>13.65 | 769,99<br>769,96   | ).                        | 0.5         | VOLUNE<br>-   | ZIGHT EFOUND                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 615154<br>616184              | 13.72<br>13.75 | 769,89<br>769.56   | 1.0                       | 0,5         | /vsiume<br>—  | LIGHT ESCLAR                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7/11/84<br>7/12/54            | 13,56<br>13,63 | 770.05<br>769.98   | 1.1                       | 0.6         | l volune<br>— | LIGHT BROWN                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5/28/34<br>8/29/84            | 14.02<br>14.02 | 769,59<br>769,59   | 6,7                       | 0.4         | lyelume       | Reown                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/18/84                       | 14.01          | 769,60             | 0.7                       | <i>C</i> .4 | / VOLUM: E    | LIGHT SROWN                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10/15/34                      | 13.52          | 770.09             | 1.2                       | 0.6         | IVAUME        | BEOWN                              |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11/5/84                       | 13.40          | 770,21             |                           |             | _             |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                |                    |                           | -           |               |                                    |

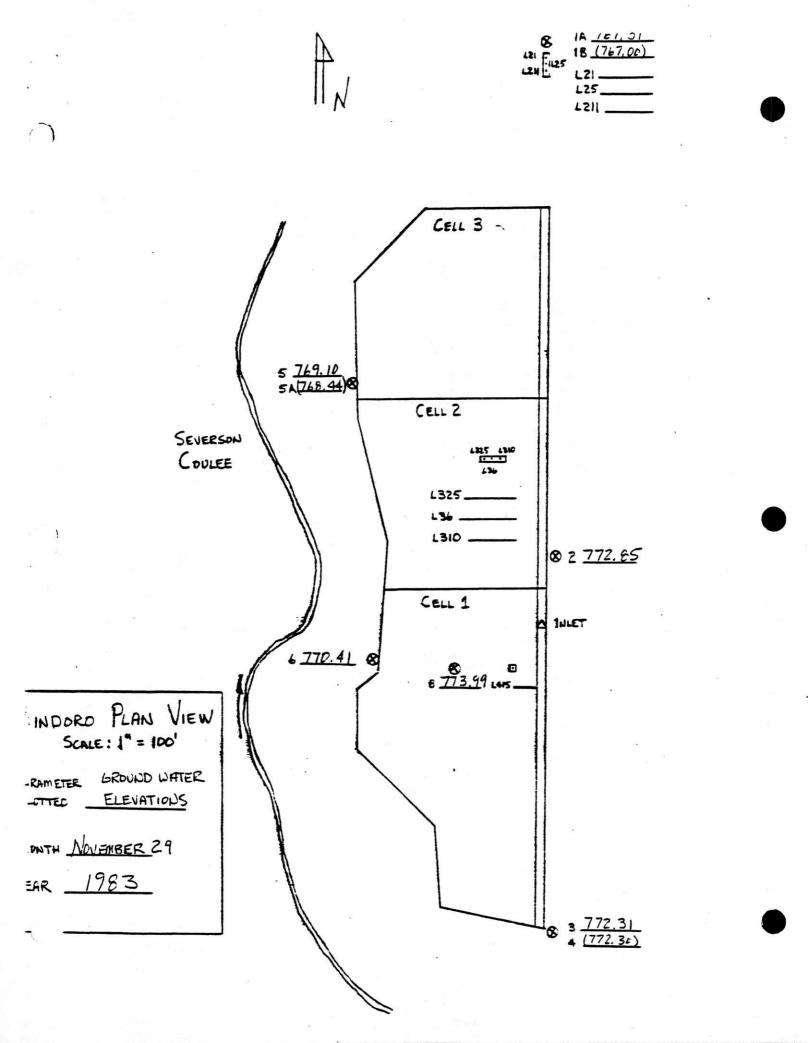
| DATE                        | DEPTH TO<br>GW | GW<br>ELEVATION    | VELOME HZD<br>(ft) | 3 VOLUMES<br>(GAL) | NOLUME<br>REMOVED | COMMENT                                            |
|-----------------------------|----------------|--------------------|--------------------|--------------------|-------------------|----------------------------------------------------|
| 9/20/83                     | 10.95'         | 774.37             |                    |                    |                   |                                                    |
| 10/18/83                    | 13.16          | 772.16             | 3.52               | 1.76               |                   | _                                                  |
| 11/29/83<br>11/30/83        | 13:01<br>13:08 | 772.31<br>772.24   | 3,5                | 1.75               | √5<br>_           | C 3:25<br>C10:55 BROWN TURBID                      |
| 12/21/E3<br>12/22/E3        |                | 771.95<br>771.92   | 3.12               | 1,56               | WELL<br>Volume    | C 1:15 PM<br>LIGHT BROWN<br>C 10:25 MI NO SHELL    |
| 1/10/84<br>1/11/84          |                | 771.86<br>771.85   | 3,0                | 1.5                | WELL<br>VOLUME    | C 12:19AN WELL CAP<br>OFF<br>C 10:00 AM LIGHT BROW |
| Z/18/64<br>2/19/84          | 12.37<br>12.36 | 772.95<br>772.96   | 4.1                | 2.1                | / VOLUME          | (11:05)<br>(10:20) BRDWN                           |
| 3/21/84<br>3/22/84          |                | 772.17<br>772.08   | 3.3                | 1,7                | / VOLUME          | LIGHT BROWN                                        |
| 4/25/54<br>4/26/84          |                | 772. 13<br>772. 13 | 5.3<br>L           | 1.6                | I VOLUME          |                                                    |
| 5/22/84<br>5/23/84          | 13.28<br>13.32 | 772.04<br>772.00   | 3.2                | 1.6                | Ivalunt           | CLERE                                              |
| 615/84<br>6/6/84            |                | 771.96<br>96,177   | 3.1                | 1,5                | I VOLUME          | LIGHT BEOULL                                       |
| 7/11/84<br>7/17./5 <u>4</u> | 13,44<br>1343  | 771.85<br>771.34   | 3.0                | 1,5                | IVOLUME           | LIGHT RECUN                                        |
| 3/28/54<br>E/29/24          |                | 771.62<br>771.62   | z,8                | 1.4                | lve: une          | LIGHT BEACH                                        |
| 9/18/34                     | 13.33          | 771,99             | 32                 | 1.6                | IVOLUME           | VERY LIGHT BROWN                                   |
| 10/15/84                    | 12.97          | 772.35             | 3,5                | 1.8                | I VOLUME          | LIGHT BROWN                                        |
| 11/5/84                     | 3.  4          | 772,18             |                    |                    |                   | -                                                  |
|                             |                |                    |                    |                    |                   |                                                    |
|                             |                |                    |                    |                    |                   |                                                    |

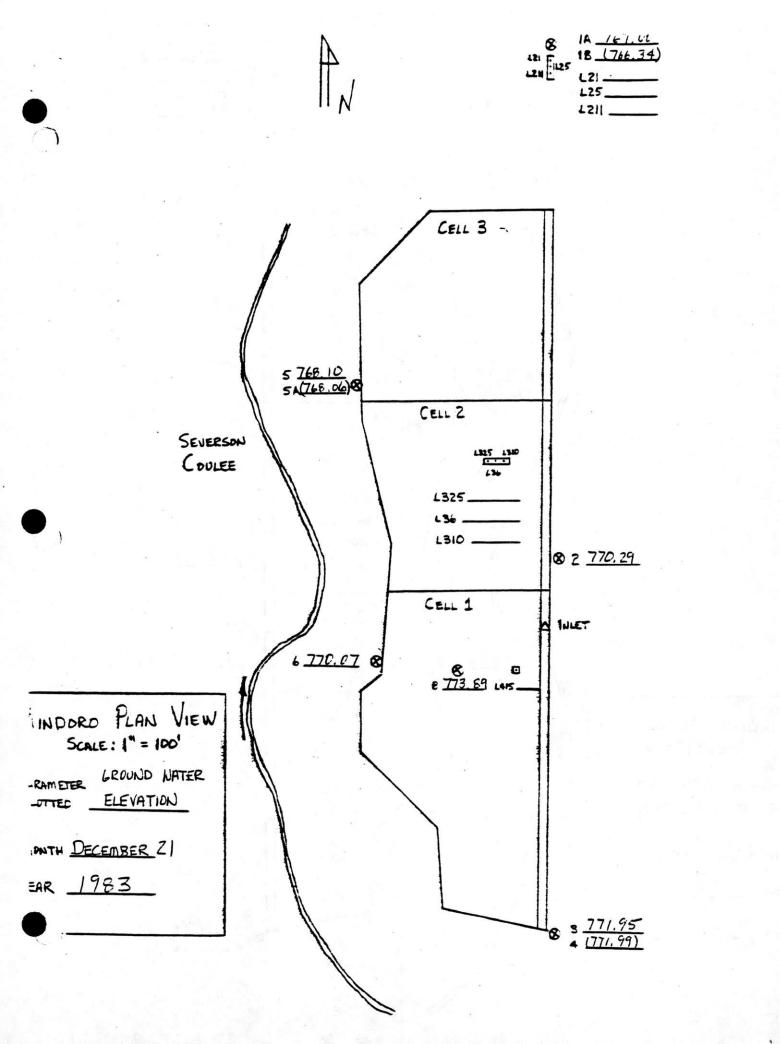
|                            | GATE                         | DEPTH TO<br>GW             | 6W<br>ELEVATION   | $Volume H_2 O$<br>(-ft) | 3 VOLUMES<br>(GAL) | Volume<br>Removed | COMMENT                                  |
|----------------------------|------------------------------|----------------------------|-------------------|-------------------------|--------------------|-------------------|------------------------------------------|
| 5                          | 9/20/83                      | 10,93                      | 774.35            |                         |                    |                   |                                          |
| -                          | 10/18/63                     | 13.09                      | 772.19            | 17.7                    | 5.85               | -                 | -                                        |
|                            | 11 <i>/29/83</i><br>11/30/83 | 12,9 <del>8</del><br>13.01 | 772.30<br>772.27  | 23.55                   | u12<br>            | - 15              | С 3:25<br>С 11.05 УЕЦСИ- Верин Тле       |
|                            | 12/21/33<br>12/22/83         | 3.29<br> 3.31              | 771.99<br>771,97  | 22.22                   | 11.61              | 12                | G 1:17PM<br>3 10 26 ft clear<br>200 sach |
| 42 389 200 SHEETS 3 SQUARE | 1/10/84<br>1/11/84           | 3.38<br> 3,37              | 771.90<br>1,91,91 | 23.1                    | 11.5               | - 12              | E 12:21 PM<br>E 10:01 AM CLEAR           |
|                            | 2/18/84<br>2/19/84           | 12.35                      | 772.93<br>772.97  | -<br>24.1               | 12, 1              | 12+               | (11:05) BEOUN<br>(16:21)                 |
|                            | 2/21/E4<br>3/22/84           | 13.07<br>12.13             | 772.21<br>772.15  | 23.4                    | 11.7               | 12                | BROWN                                    |
|                            | 4/25/84<br>4/26/84           |                            | 772.17<br>772.16  | <br>23.4                | 11.7               | _<br>1Z           |                                          |
|                            | 5/22/84<br>5123/84           | 13.20<br>13.23             | 22,25<br>2,05     | 23.3                    | 11.6               | 12                | LITT BROWN                               |
|                            | 6/5/34<br>6/6/E4             | 13.27<br>13.27             | 772.01<br>772.01  | 22.2                    | 11.6               | -<br>12           | List Besurd                              |
|                            | 7/11/8 4<br>7/12/84          | 13.34<br>13.39             | 771,94<br>90,177  | 23.1                    | 11.6               | 12                | LIGHT BROWN                              |
|                            | 8/28/54<br>8/29/84           | 13.63<br>13.53             | 771.65<br>771.70  | 72,8                    | 11.4               | 12                | CLIPE                                    |
|                            | 9/18/94<br>9/19/84           | 13.58<br>13.55             | 771.70<br>771.73  | 23.0                    | 11.5               | <br>12            | CLEAR                                    |
|                            | 10/15/84                     | 12.80                      | 772.48            | 23.7                    | 11.8               | 12                | BRWRISH CLEAR                            |
|                            | 11/5/84                      | 13,16                      | 772,12            |                         |                    |                   |                                          |
|                            |                              |                            |                   |                         |                    |                   |                                          |

|                            | DATE                          | DEPTH TO<br>GW                        | GU)<br>ELEVATION | Volume HD<br>(fl) | 3 VOLUMES<br>(GAL) | Volume<br>Removed | Comment                                        |
|----------------------------|-------------------------------|---------------------------------------|------------------|-------------------|--------------------|-------------------|------------------------------------------------|
| )                          | 9/20/83                       | 12.32'                                | 770.31           |                   | · · · · ·          | -                 | _                                              |
|                            | 10/18/23                      | <i> </i> 4,21                         | 765,42           | Z.5               | 1.25               | -                 | _                                              |
|                            | 11/ <i>29/8</i> 3<br>11/30/83 |                                       | 769,10<br>765:60 | 3                 | 1,5                | ALL               | @4:10<br>@11.5D TAIRLY LLEAR                   |
| SQUARE                     | 12/21 /83<br>12/22 /93        | 4,53<br> 4.63                         | 768.10<br>762.00 | 2                 | <u>/</u>           | 3                 | © 2:45 PM<br>© 11:18 AM ERDUN - GRA<br>ST.ELLY |
| 42.309 200 SHEEIS 5 50UARE | 1/10/84<br>1/11/84            | 14.77<br>14.73                        | 767.86<br>767.90 | 1.8               | 0.9                | 2<br>-            | С 1:05 PM<br>С 11:03 Am Вешил-серч             |
| 17.30<br>                  | 2/13/84<br>2/ <i>P</i> /84    | 13.62<br>13.51                        | 769.01<br>769.12 | 2,9               | 1.4                | 4                 | (11:35) BROWN - GEEEN<br>(11:25) OPOR          |
|                            | 3/21/84<br>3/22/84            | 14,33<br>14,35                        | 768,30<br>768,25 | 2.2               | 1.1                | - 1.5             | FLECK - GREEF N<br>SVOR                        |
|                            | 4/25/84<br>4/26/84            |                                       | 765.16<br>768.18 | 2.0               | 1.0                |                   |                                                |
|                            | 5/22 <i>/</i> 84<br>3/23/84   | 14.26<br>14.40                        | 728.27<br>768.23 | 2.1               | 1.1                | - 2               | DJLI CLEVE<br>OP SE                            |
|                            | 6/5/34<br>6/6/34              | 14,55<br>19,55                        | 763.03<br>768.05 | 1.9               | 1.0                | - 2               | SEEN TERMIN - SOOR                             |
|                            | 7/11/84<br>7/12/34            | 14,27<br>14,34                        | 763.36<br>768,29 | 2,2               | . i                | 1,5               | .HEISH, ODIR                                   |
|                            | 8/28/24<br>8/29/24            | 4.65                                  | 767.95           | 1.9               | 9.9<br>-           | —<br>i            | JELLON, OPOR                                   |
|                            | 9/13/84<br>9/17/84            | 14,75<br>14,73                        | 767,88<br>767,90 | 1.8               | C.9                | 1                 | YELLOW · DOOR                                  |
|                            | 10/15/24                      | 14.33                                 | 765.30           | 2,2               | 1.1                | 1.5               | LIGHT TELLOUISH DEDIND                         |
|                            | 11/5/94                       | 14.22                                 | 768.41           |                   | -                  |                   |                                                |
|                            |                               | · · · · · · · · · · · · · · · · · · · |                  |                   |                    |                   |                                                |
|                            |                               | :                                     |                  |                   |                    |                   |                                                |


|          | DATE     | DEPTH TO<br>GW | GW<br>ELEVATION | 6TH 133.3/52.2<br>Volume H20<br>(ft) |               | Vowme<br>Removed | COMMENT          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------|----------|----------------|-----------------|--------------------------------------|---------------|------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| )        | -        |                |                 |                                      |               |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | 10/18/83 | 13.97          | 768.34          | V.8.2                                | 9.1.          | -                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | 11/30/83 | 13.87          | 768.44          |                                      |               |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | 12/21/83 | 14.25          | 768.56          |                                      |               |                  | C Z: 4 - P/r     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | 1/10/84  | 14.41          | 767.90          |                                      |               |                  | C 1:0LPM         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | Z/18/84  | 13.07          | 769.24          |                                      |               | /                | (11:35)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | 3/21/34  | 13,99          | 763.32          |                                      |               |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TENGILEN | 4/25/54  | 4,13           | 763.13          |                                      |               |                  | _                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ***      | 5/22/84  | 14.16          | 768.15          |                                      |               |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | 613/34   | 14.24          | 763.07          | V                                    |               |                  | -                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | 7/11/84  | 13.98          | 768,33          |                                      | $\setminus$ / |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | 5/2.8/E4 | 4,41           | 767.90          |                                      | X             |                  | -                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | 9/18/84- | 14.43          | 767.88          |                                      |               |                  |                  | and the to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | 10/15/34 | 14.05          | 768.26          |                                      | /             |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | 11/5/34  | 13.90          | 768.41          |                                      |               |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |          |                |                 |                                      |               | -                | •<br>• • • • • • |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |          |                |                 |                                      |               |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |          |                |                 |                                      | V             |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |          |                |                 |                                      |               | \<br>\.          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |          |                |                 |                                      |               |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |          |                |                 |                                      |               |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |          |                |                 |                                      | ·             |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |          |                |                 | - 4<br>- 4<br>- 7<br>- 7<br>- 7      |               |                  |                  | - Marine - |

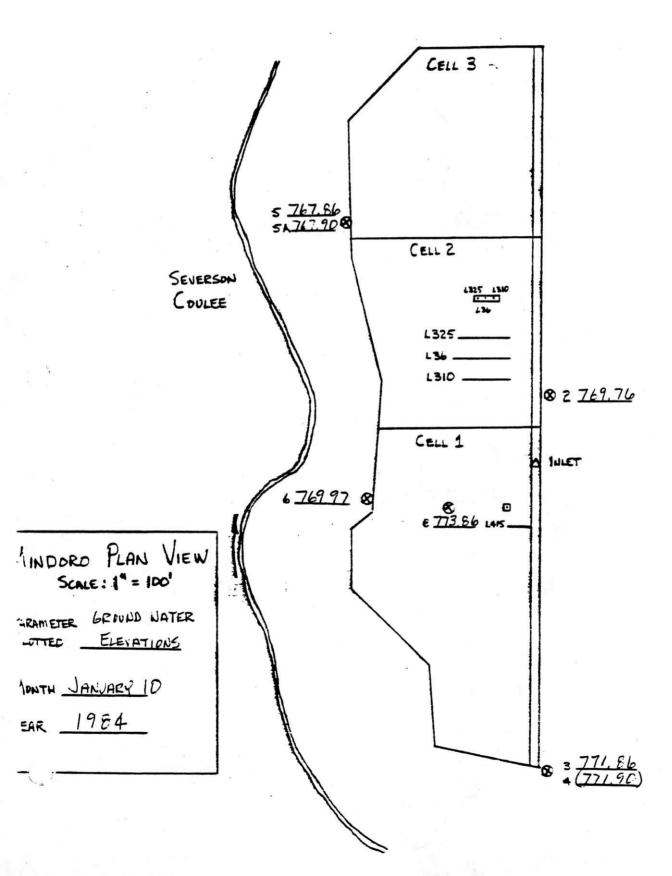

| DATE                                   | DEPTH TO<br>GW | 6W<br>ELEVATION  | Volume Hz D<br>(ft)  | 3 VOLUMES<br>(GFL) | Volume<br>Removed | COMMENT                                       |
|----------------------------------------|----------------|------------------|----------------------|--------------------|-------------------|-----------------------------------------------|
| 9/20/83                                | 12.26          | 773.43           |                      |                    |                   |                                               |
| 10/18/83                               | <i>15.2</i> 0  | 770.49           | 5.0                  | 2.5                | _                 | ·                                             |
| <i>  29/83</i><br>   <i> 30/</i> 83    |                | 770.41<br>770.31 | 4,2                  | 2.1                | ~5<br>-           | @ 4:00<br>@ 11:40 FAIRLY CLEAR                |
| IZ/21/83<br>IZ/2Z/83                   |                | 770,07<br>776,05 | 3.50                 | 1.93               | 4                 | & 2110 PM BLACK SILT<br>C ID:58 AM LITLE CALL |
| 1/10/87<br>1/11/84-                    | 15.72<br>15.71 | 769.97<br>769.98 | 3.76                 | 1.9                | 4                 | @ 12:45 PM<br>@ 10:54 AM BLA(KIS H            |
| <i>Z/18/<del>04</del><br/>21/17/84</i> |                | 770,95<br>771.01 | 4.7                  | <br>Z.4            | 4                 | (11:30) BLACK<br>(11:10) ODOR                 |
| 3/21/54<br>3/22/84                     |                | 770.29<br>770.22 | 4.1                  | 2.0                | - 4               | GREY<br>CDOR                                  |
| 4/25/84<br>4/26/84                     |                | 770.19<br>770.19 | -<br>4, <del>c</del> | <br>Z . D          | / <sub>(v)</sub>  | _                                             |
| 5/22/84<br>5/23/34                     | 1              | 770,12<br>770,05 |                      | 1.9                | _<br>Z            | GREY                                          |
| 6/5/84<br>6/6/54                       |                | 770.06<br>770.55 | 3.5                  | 1.9                | - ~,              | GCEY                                          |
| 7/11/84<br>7/12/84                     |                | 770.10<br>770.03 | <u> </u>             | ; <del>9</del>     | - 2               | DARK GREY                                     |
| 8/28/E4<br>E/29/E4                     |                | 769,82<br>769,82 | 3.6                  | 1,8                | -<br>2            | LEEY                                          |
| 9/13/34<br>9/19/84                     | 15.85<br>15.82 | 769,84<br>769,87 | 3.7                  | 1,8                | Z                 | LIGHT GREY                                    |
| 10/15/84                               | 14,93          | 770.71           | 4.5                  | 2.2                | 3                 | GREVISH                                       |
| 11 <i> 5 </i> 84                       | 15.41          | 770,28           | —                    |                    | -                 |                                               |
|                                        | •              |                  |                      |                    |                   |                                               |

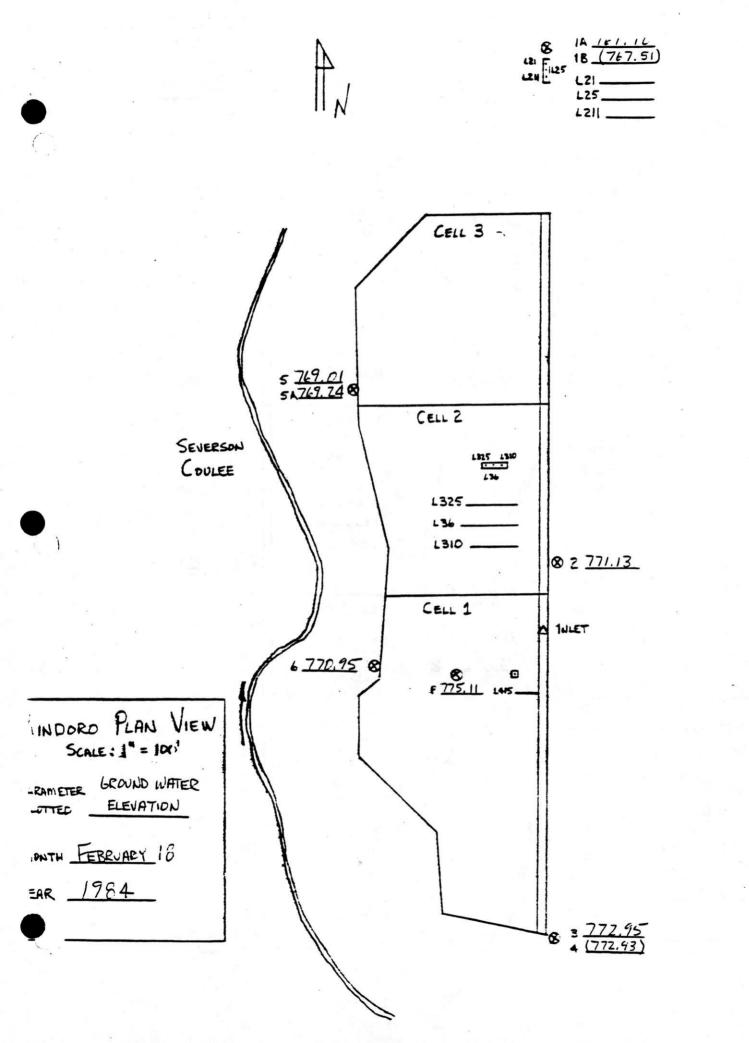

|                      | L7 LEI                                                                                                                                                                                              | JGTH : 15.22                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | يند ٢ ٢٠٢٢ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ce41 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                          |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| E DEPTH TO           | GW<br>ELEVATION                                                                                                                                                                                     | Volume Hz D<br>(ft)                                                                                                                                                                                                                                                                                                                                                                                               | E VOLUMES<br>(GRL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Voume<br>Renoved                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                          |
| 84 13,63             | 768,37                                                                                                                                                                                              | 1.6                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                          |
|                      | 1                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DULL CLEAR ODDR                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                          |
|                      | 768.22<br>768.20                                                                                                                                                                                    | 1.0                                                                                                                                                                                                                                                                                                                                                                                                               | 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GREY EROWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                          |
|                      | 768,53<br>769,44                                                                                                                                                                                    | /,B                                                                                                                                                                                                                                                                                                                                                                                                               | 0,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br>1.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LIGHT BROWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                          |
|                      | 768,00<br>768,00                                                                                                                                                                                    | 1.3                                                                                                                                                                                                                                                                                                                                                                                                               | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FELLOW - BROWN, DOOR                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                          |
| 34 13.99<br>84 13.99 | 768.01<br>765.01                                                                                                                                                                                    | /,3                                                                                                                                                                                                                                                                                                                                                                                                               | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LIGHT YELLOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                          |
| 13.67                | 768.33                                                                                                                                                                                              | 1.6                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YELLOW EEDWAL                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                          |
| [3,33                | 768.66                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                          |
|                      |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                          |
|                      | 184 13,63<br>164 13,64<br>164 13,68<br>13,68<br>13,78<br>13,78<br>13,78<br>13,78<br>13,78<br>13,78<br>13,78<br>13,78<br>13,79<br>14,00<br>184<br>13,99<br>13,99<br>13,99<br>13,99<br>13,99<br>13,99 | 13, 63 $768, 37$ $164$ $13.64$ $768, 36$ $164$ $13.68$ $768, 36$ $164$ $13.68$ $768, 32$ $14$ $13.68$ $768, 32$ $14$ $13.78$ $768, 22$ $14$ $13.78$ $768, 22$ $14$ $13.78$ $768, 22$ $14$ $13.78$ $768, 22$ $14$ $13.78$ $768, 22$ $14$ $13.78$ $768, 20$ $14$ $13.78$ $768, 53$ $14$ $13.99$ $768, 00$ $768, 01$ $768, 01$ $768, 01$ $84$ $13.99$ $768, 01$ $84$ $13.99$ $768, 01$ $768, 33$ $768, 33$ $768, 33$ | 13.63 $768.37$ $1.6$ $164$ $13.64$ $768.36$ $ 164$ $13.68$ $768.32$ $1.6$ $14$ $13.68$ $768.32$ $1.6$ $14$ $13.68$ $768.32$ $1.6$ $14$ $13.78$ $768.22$ $ 13.78$ $768.20$ $1.0$ $13.30$ $768.20$ $1.0$ $13.47$ $768.53$ $ 13.47$ $768.53$ $ 13.47$ $768.53$ $ 14.00$ $768.00$ $1.3$ $184$ $13.99$ $768.00$ $1.3$ $13.99$ $768.01$ $1.3$ $13.99$ $768.01$ $1.3$ $13.99$ $768.33$ $1.6$ <td>13.63 <math>768.37</math> <math>1.6</math> <math>0.8</math> <math>154</math> <math>13.64</math> <math>768.36</math> <math>  154</math> <math>13.64</math> <math>768.36</math> <math>  154</math> <math>13.68</math> <math>768.32</math> <math>1.6</math> <math>0.8</math> <math>154</math> <math>13.68</math> <math>768.32</math> <math>1.6</math> <math>0.8</math> <math>13.47</math> <math>768.22</math> <math>   13.30</math> <math>768.20</math> <math>1.0</math> <math>0.5</math> <math>84</math> <math>13.47</math> <math>768.53</math> <math>  84</math> <math>13.99</math> <math>768.00</math> <math>1.3</math> <math>0.6</math> <math>184</math> <math>13.99</math> <math>768.01</math> <math>  84</math> <math>13.99</math> <math>768.01</math> <math>1.3</math> <math>0.6</math> <math>84</math> <math>13.99</math> <math>768.01</math> <math>1.3</math> <math>0.6</math> <math>84</math> <math>13.99</math> <math>768.01</math> <math>1.3</math> <math>0.6</math> <math>84</math> <math>13.99</math> <math>768.23</math> <math>1.6</math> <math>0.8</math> <math>0.6</math> <math>85</math> <math>13.67</math> <math>768.33</math> <math>1.6</math> <math>0.8</math> <math>0.6</math> <math>0.8</math></td> <td>13.63 <math>768.37</math> <math>1.6</math> <math>0.5</math> <math>2</math> <math>164</math> <math>13.64</math> <math>768.36</math> <math>    164</math> <math>13.68</math> <math>768.36</math> <math>     164</math> <math>13.68</math> <math>768.32</math> <math>1.6</math> <math>0.8</math> <math>1.5</math> <math>                                                                          -</math><!--</td--><td>13.63 <math>768.37</math> <math>1.6</math> <math>0.6</math> <math>Z</math> <math> 164</math> <math>13.64</math> <math>768.36</math> <math>                                                                                              -</math></td></td> | 13.63 $768.37$ $1.6$ $0.8$ $154$ $13.64$ $768.36$ $  154$ $13.64$ $768.36$ $  154$ $13.68$ $768.32$ $1.6$ $0.8$ $154$ $13.68$ $768.32$ $1.6$ $0.8$ $13.47$ $768.22$ $   13.30$ $768.20$ $1.0$ $0.5$ $84$ $13.47$ $768.53$ $  84$ $13.99$ $768.00$ $1.3$ $0.6$ $184$ $13.99$ $768.01$ $  84$ $13.99$ $768.01$ $1.3$ $0.6$ $84$ $13.99$ $768.01$ $1.3$ $0.6$ $84$ $13.99$ $768.01$ $1.3$ $0.6$ $84$ $13.99$ $768.23$ $1.6$ $0.8$ $0.6$ $85$ $13.67$ $768.33$ $1.6$ $0.8$ $0.6$ $0.8$ | 13.63 $768.37$ $1.6$ $0.5$ $2$ $164$ $13.64$ $768.36$ $    164$ $13.68$ $768.36$ $     164$ $13.68$ $768.32$ $1.6$ $0.8$ $1.5$ $                                                                          -$ </td <td>13.63 <math>768.37</math> <math>1.6</math> <math>0.6</math> <math>Z</math> <math> 164</math> <math>13.64</math> <math>768.36</math> <math>                                                                                              -</math></td> | 13.63 $768.37$ $1.6$ $0.6$ $Z$ $ 164$ $13.64$ $768.36$ $                                                                                              -$ |

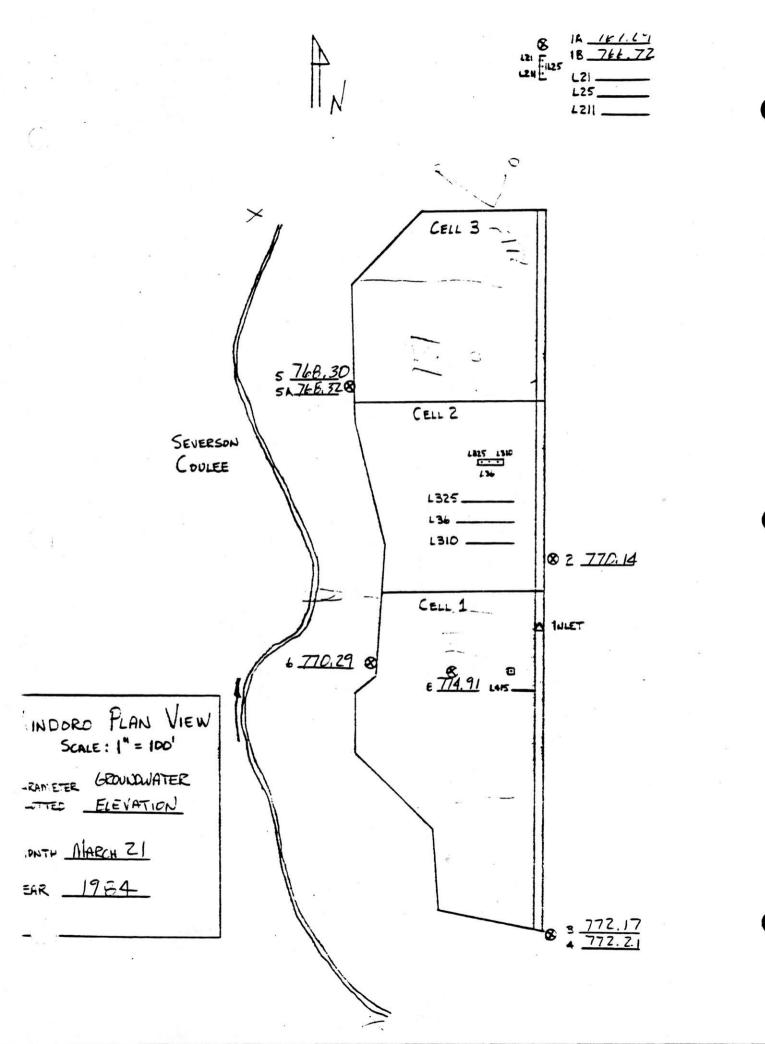

|                            | DATE                       | DEPTH TO<br>GW | GW<br>ELEVATION    | VOLUME HZD<br>(ft) | 3 VOLUMES (GAL) | VOLUME<br>REMOVED | COMMENT                                          |
|----------------------------|----------------------------|----------------|--------------------|--------------------|-----------------|-------------------|--------------------------------------------------|
|                            |                            |                |                    |                    | (ene)           | NERIUYEL          |                                                  |
|                            | <i>10  </i> 19/83          | 8,43           | 775.42             | 3.2                | 1.6             |                   |                                                  |
| •                          | 11/27/83<br>11/30/83       | 9.86<br>10.23  | 773.99<br>773.62   | 1.8                | 0.9             | ALL<br>-          | © 3:50<br>© 11:35 LIGHT BROWN                    |
| SQUARE<br>SQUARE<br>SQUARE | 12/21/83<br>12/22/83       | 9.96<br>10.35  | 773. E9<br>773. 50 | 1,72               | 5.56            | WELL<br>Volume    | E 1:50 PM<br>G 12:46 ANI LIGHT BEACH<br>No small |
|                            | 1 <i>/10/84</i><br>1/11/84 | 9.99<br>9.66   | 773.36<br>774,19   | 1.7                | 0.8             | UELL<br>VOLUME    | @ 12:36 PM<br>EIL OVERNITE<br>INCREASE - LIG     |
|                            | 2/13/84<br>2/19/84         | 8.74<br>9.12   | 775.11<br>774.73   | 2.9                | 1.5             | VOLUME            | (11:20)<br>(11:00) BROWN                         |
| <b>L</b>                   | 3/21/84<br>3/22/84         | 8,94<br>8,99   | 774.91<br>774.86   | 2.7                | 1.4             | 1 VOLUME          | LIGHT BEDWIL                                     |
| X                          | 4/25/E4<br>4/26/E4         | 9,33<br>9.76   | 774.47<br>774.59   | 2.3                | .               | VOLUME            | -<br>-                                           |
| ·                          | 5/22/EL<br>5/22/EL         | 10.15<br>10.54 | 773.70<br>773.21   | 1,5                | 0.5             | NOLUNE            | Light others                                     |
| ·                          | 6/5/52<br>6/6/54           | 11.35<br>11.50 | 772.50<br>771.25   | 0.3                | 0.2             | VELUNIE<br>—      | Too 253                                          |
|                            | フルをチ                       | DRY            | · -                |                    | -               | -                 | _                                                |
|                            | 8/75/54                    | DRY            |                    |                    | -               | -                 | -                                                |
|                            | 9/13/54                    | Dey            | -                  | -                  | -               | -                 | -                                                |
|                            | 10/15/54                   | DRY            | -                  | -                  | -               | _                 | _                                                |
|                            | 11/5/84                    | 10.04          | 773.81             | -                  | _               | ~                 | -                                                |
|                            |                            |                |                    | -                  |                 | -                 |                                                  |
| • •                        |                            |                |                    |                    |                 |                   |                                                  |
|                            | · · ·                      |                |                    |                    | •               |                   |                                                  |

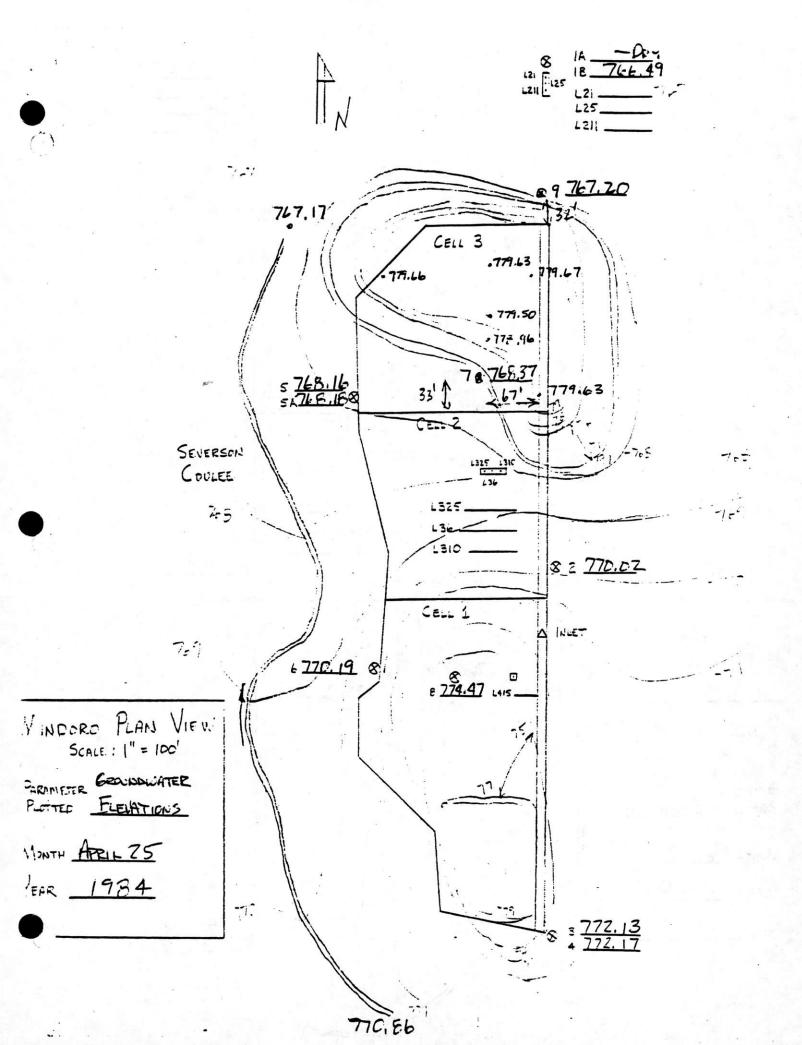
|                              | DATA S                             | HEET I WELL    | 9 LEN                        | 6741 [3.7]         |                    | 5442000,            | NORTH OF CELL BERN | -<br> |
|------------------------------|------------------------------------|----------------|------------------------------|--------------------|--------------------|---------------------|--------------------|-------|
| È                            | DATE                               | DEPTH TO<br>GW | GW<br>Elevation              | Volume H20<br>(ft) | 3 volumes<br>(GAL) | Volumet<br>Remisved | Comment            |       |
|                              | 4/26/84                            | 12.48          | 767.20                       | 1.2                | 0.6                | IJIUME              | _                  |       |
|                              | 5/22/3 <b>4</b><br>5/23/8 <b>4</b> |                | 767.15<br>767.10             | 1.2                | 0.6                | VOLUME              | BROWN              |       |
|                              | 615/84<br>616/84                   | 12,69          | 766.99                       | 1.0                | 0,5                | VELVME              | RUSTY              |       |
| EIS SQUARE                   | 7/11/8A<br>7/12/64                 |                | 767.3 <del>8</del><br>767.26 | 1.4                | 7.0                | 1.0                 | RUSTY              |       |
| 43 311 200 SHEETS \$ 500 ANT | 8/25/24<br>8/29/64                 | 12,95<br>12,97 | 766,73<br>766,73             | 0.8                | 0.4                | IVELOME             | Rusy               |       |
| naviour.                     | 9/18/84                            | 12,89          | 766.79                       | 0,9                | 0.4                | ) VOLUME            | Rusty              |       |
|                              | 10/15/84                           | 12.73          | 766.95                       | 1.0                | 0.5                | / VOLUME            | RUSTY              |       |
|                              | 11/5/84                            | 12.18          | 767,50                       | -                  | -                  | -                   | -                  |       |
|                              |                                    |                |                              |                    |                    |                     |                    |       |
|                              |                                    |                |                              |                    |                    |                     |                    |       |
|                              |                                    |                |                              |                    |                    |                     |                    | -     |
|                              |                                    |                |                              |                    |                    |                     | •                  |       |
|                              | -                                  |                |                              |                    |                    |                     |                    |       |
|                              |                                    |                |                              |                    |                    |                     |                    |       |
|                              |                                    |                |                              |                    |                    |                     |                    |       |
|                              |                                    |                |                              |                    |                    |                     |                    |       |
| •                            |                                    |                |                              |                    |                    |                     |                    |       |

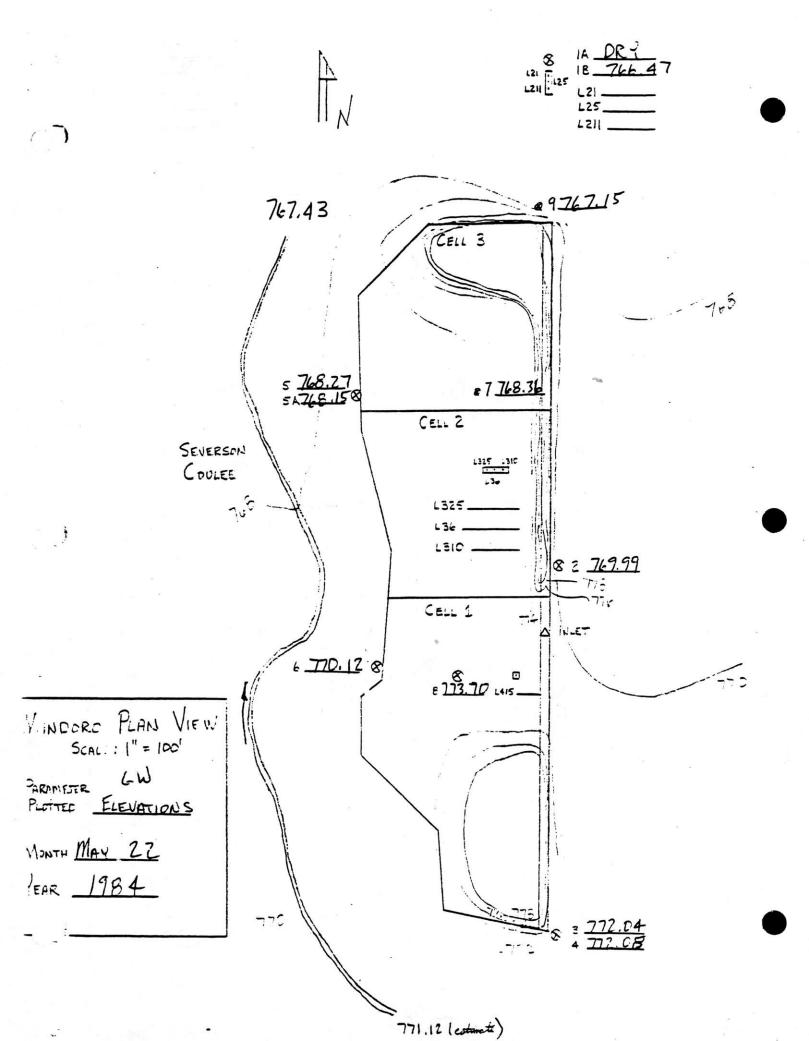


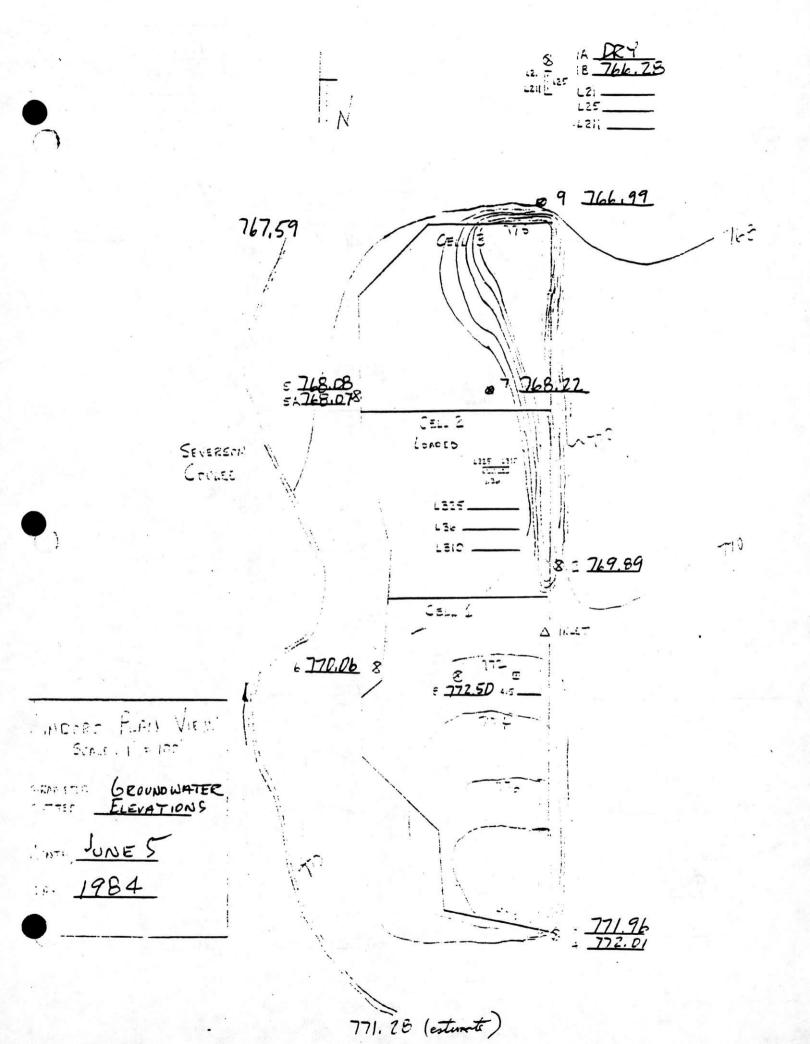


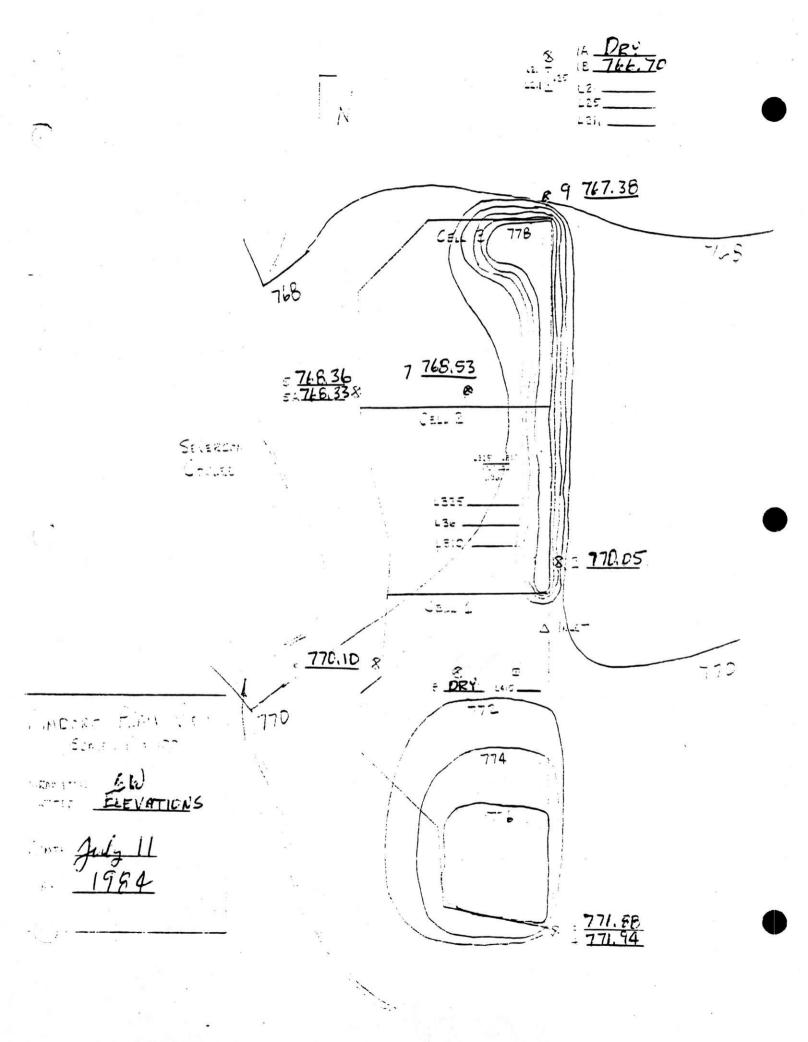



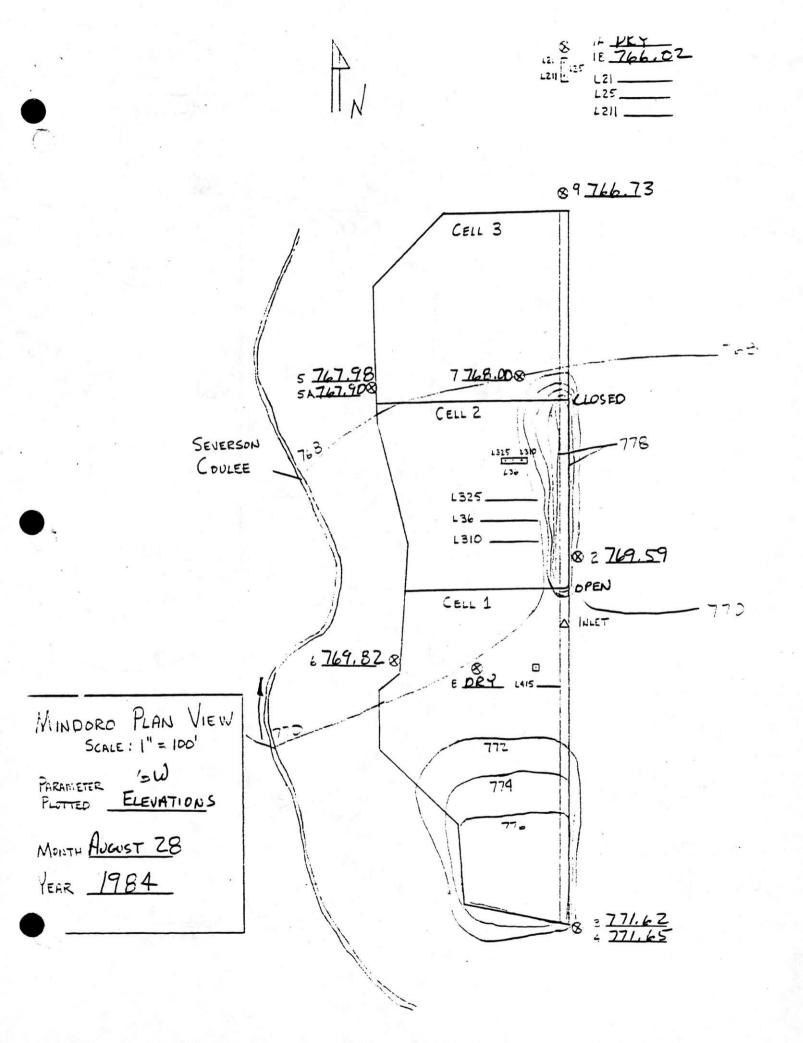



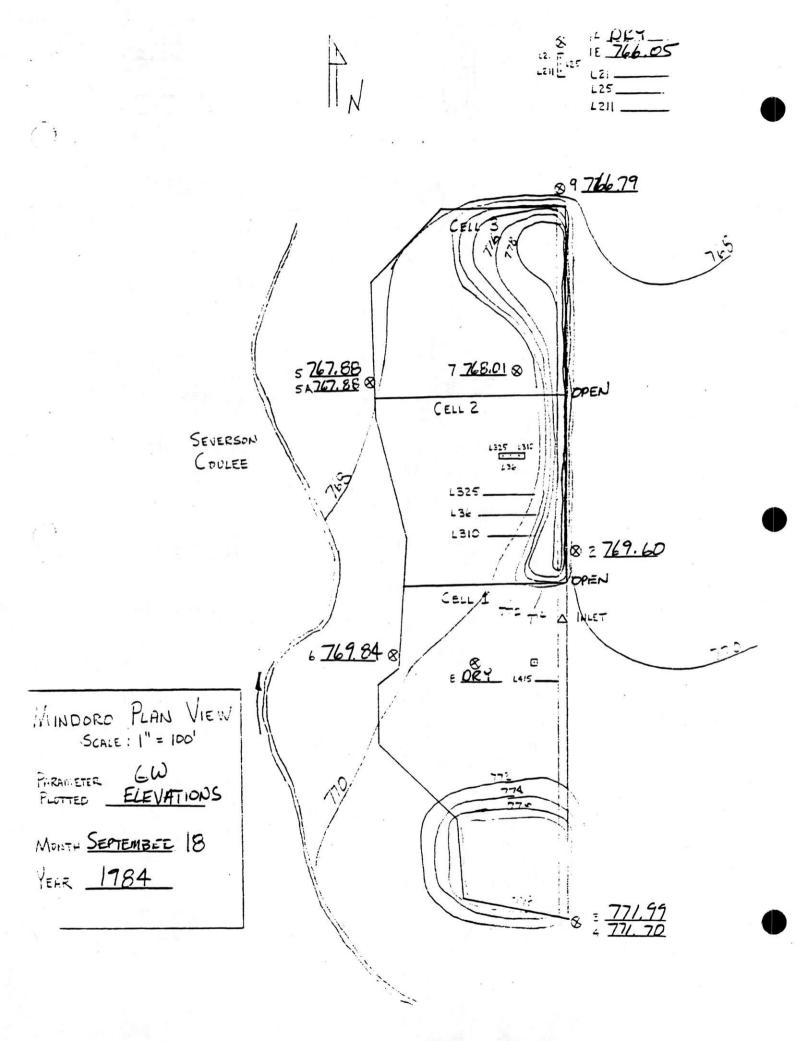


Π<sub>N</sub>

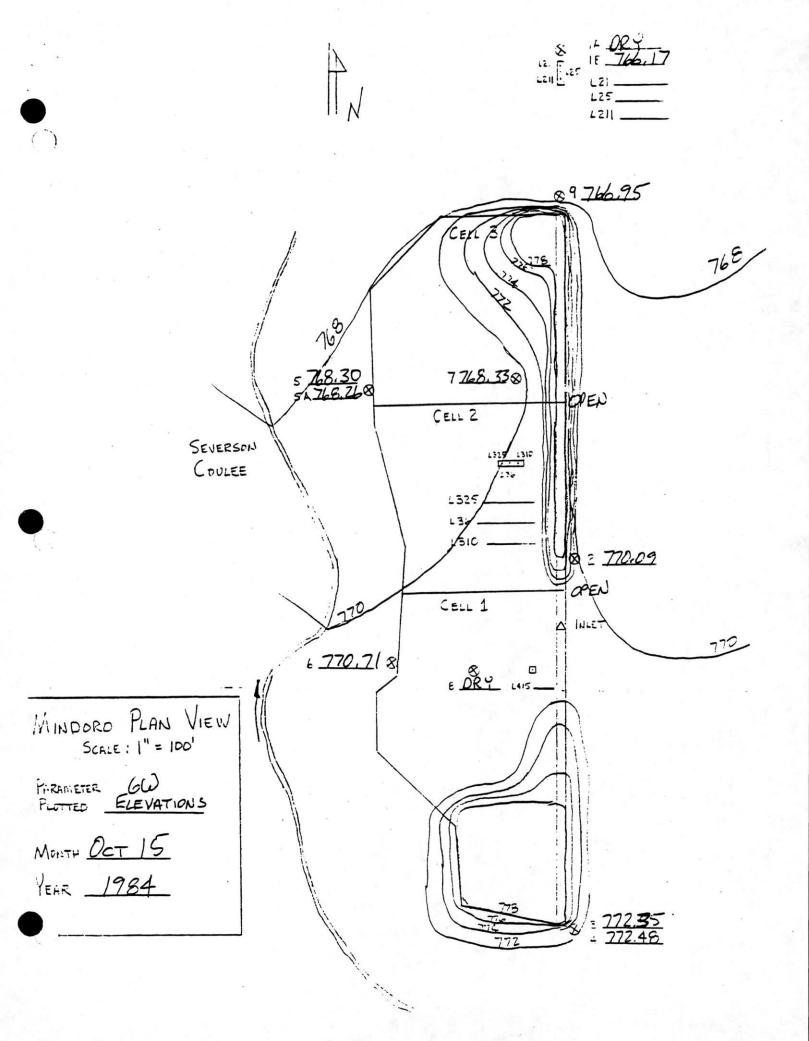

18 1766.06) 121 -1125 L21 -L25\_ 1211 \_











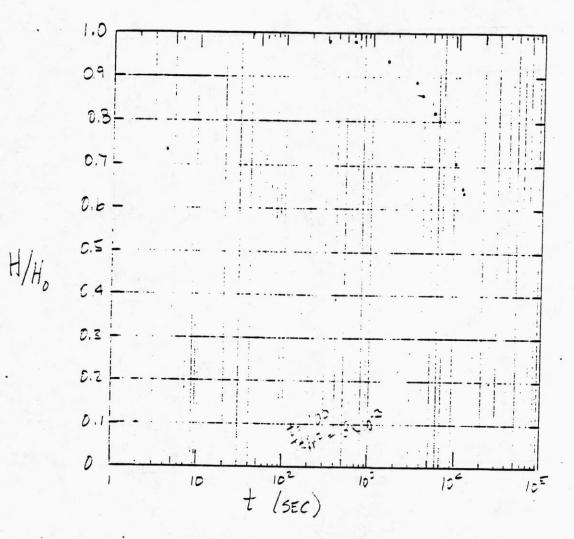



гопынатен 🦯 ниса ина А. SLUG TEST RESOLTS

| · · · · · · · · · · · · · · · · · · · | TEST              | 5         | SITE: MIN                     | DORO                 | he                 | ELL:  | 2                    |                      |   |
|---------------------------------------|-------------------|-----------|-------------------------------|----------------------|--------------------|-------|----------------------|----------------------|---|
|                                       |                   | NITIAL DE | РТН ТО (                      | _ : لمار             | <u>13.48</u><br>Te | ()    | Ho) Rous             | 12                   |   |
|                                       |                   | DEPTH (t) | H(+)                          | H/H_0<br>1.00        | t                  | D(t). |                      | H/HD<br>0,37         | - |
|                                       | #1<br>5           |           | 11.75<br>1 <b>¢</b> .50       | 0.96<br>0. <b>94</b> | 188<br>201<br>212  |       | 4.25                 | 0.35                 |   |
|                                       | 9<br>15<br>21     |           | 11.25<br>10.92<br>10.50       | 0.9Z<br>0.50<br>0.86 | 225<br>24 I        |       | 3.75<br>3.50         | 0.31<br>0.29         |   |
|                                       | 31<br>36          |           | 10.00<br>9.75                 | 0.82<br>0.80         | 254<br>273         |       | 3.25                 | 0.27                 |   |
| •                                     | 40<br>45<br>50    |           | 9,50<br>9.25<br>9, <b>0</b> 0 | 0.78<br>0.76<br>0.74 | 290<br>308<br>327  |       | 2.75<br>2.50<br>2.25 | 0,22<br>0.20<br>0.18 |   |
|                                       | 57<br>62<br>68    |           | 8,75<br>8.50<br>8.25          | 0.72<br>6.70<br>0.68 | 360<br>376         | •     | 2.00<br>1.75         | 0.16<br>0.14         |   |
|                                       | 75<br>80<br>91    |           | 8.00<br>7.75<br>7.42          | 0.66<br>0.64<br>0.61 | 425<br>466         |       | 1.50<br>1.25         | 0,12<br>0.10         | • |
|                                       | 98<br>106         |           | 7.08<br>6.75                  | 0.58<br>0.55         | 504<br>556<br>642  |       | 1.00<br>1.83<br>0.50 | 0.08<br>0.07<br>0.64 |   |
|                                       | 11 Z<br>120       |           | 6,50<br>6,25                  | 0.51                 | 981<br>1220        |       | 0.25<br>0.08         | 0,02<br>0,01         |   |
|                                       | 129<br>136<br>142 |           | 6,20<br>5,75<br>5.50          |                      | 1356               |       | 0.04                 | D 100                |   |
|                                       | 154<br>161        | -         | 5.25<br>5.00                  | 0.43<br>0.41         |                    |       |                      |                      |   |
|                                       | 169               |           | 4.75                          | 0.39                 |                    |       |                      |                      |   |

|   |          | • • • • •                             | SITE : MII    |        |            |             | 0      |              |
|---|----------|---------------------------------------|---------------|--------|------------|-------------|--------|--------------|
|   | TEST     | · · · · · · · · · · · · · · · · · · · |               |        | - WI       |             | 2      | -            |
|   |          | INITIAL DE                            | PTH TO (      | - : Lu | 14-E       | <u>8</u> (1 | $t_o)$ |              |
|   | -        | RIAL 1                                |               |        | 13.4<br>To | B<br>Liar Z |        |              |
|   |          |                                       |               | 1      |            |             |        |              |
|   | £ (sec)  | DEPTH (t)                             | H(t)          | H/H    | t          | D(±).       | H(+)   | H/H0         |
| · |          | 13.48                                 | 0             | 0      | 182        |             | 4.25   | 0.39         |
|   | 0<br>i4  | 2,65<br>3,40                          | $H_0 = 10.83$ | 1.00   | 189        |             | 4.08   | 0.38         |
|   |          |                                       | 10.08         | 0.93   | 197        |             | 3.92   | 0.36         |
|   | 18<br>22 |                                       | 9.83          | 0.91   | 205        |             | 3.75   | 0.35         |
|   |          |                                       | 9,58<br>9,25  | 0.88   | 215        |             | 3.58   | 0.33         |
|   | 27       |                                       |               | 0.85   | 224        |             | 3.4Z   | 0.32         |
| * | 32       |                                       | 9.00          | 0,83   |            |             | -      |              |
| τ | 37       |                                       | 8.75          | 0.81   | Z30        |             | 3.25   | 0.30         |
|   | 42       |                                       | 8,50          | 0.78   | 245        |             | 3.17   | 0.29         |
|   | 45       |                                       | 8.25          | 0.76   | 251        |             | 3.03   | 0.28         |
|   | 65       |                                       | 7,58          | 0.70   | 255        |             | 3,00   | 0.28         |
|   | 75       |                                       | 7.25          | 0.67   | S.         |             | 2.92   | 0.27         |
|   | 85       |                                       | 6.92          | 0.A    | 260        |             |        |              |
|   | 92       |                                       | 6.58          | 0.61   | 263        |             | 2.83   | 0.26 .       |
|   | 95       |                                       | 6.42          |        | 268        |             | 2.75   | 0.25         |
|   | 118      |                                       | 5.75          | 0.53   | Z73        |             | 2.67   | 0.25         |
|   |          |                                       |               | 0.51   | 280        |             | 2.58   | 0.24         |
|   | 126      |                                       | 5,50          |        | 315        |             | 2,25   | 0.21         |
|   | 13)      |                                       | 5.33          | 0.49   | 338        |             | 2.00   | 0.18         |
|   | 136      |                                       |               | 0.48   | 366        |             | 1.75   | 0.16         |
|   | 140      |                                       |               | 0,48   | 398        |             |        | 0,14         |
|   | 145      |                                       | 5.00          | 0.16   | 454        |             |        | 0.12         |
| , | 153      |                                       |               | 0.44   | 502<br>582 |             | 1      | 0,09<br>0,07 |
|   | 162      |                                       | 4.67          | V75 N  | 646        |             | · ·    | 0.05         |
|   | 168      |                                       | 4.50          | 0,42   | 750        | 1           |        | 0,04         |
|   | 176      |                                       | 4.33          | 9,40   | 870        |             | 0.29   | 0,03         |
|   |          | •                                     |               | T.     | 1000       |             |        | ~~~          |

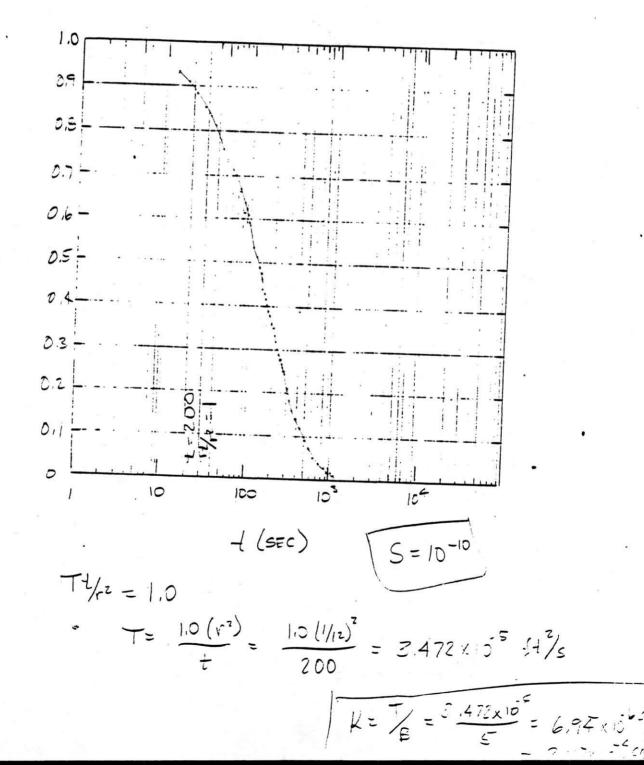
.


Ę

,

|          | TEST    | 15        | SITE: MI               | JOORO | W    | ELL : | 1A     | ·    |   |
|----------|---------|-----------|------------------------|-------|------|-------|--------|------|---|
| <b>N</b> |         |           |                        | ςω: _ |      |       | 40)    |      |   |
|          | T       | RIAL 1    |                        |       | Te   |       | 1 cnt. |      |   |
|          | Ł (sēc) | DEPTH (t) | ( H(+)                 | H/H   | t    | D(±). | <br>   | H/H= |   |
|          | -1      | 4,50      | 0                      | 0     | 553  |       | 8.52   | 0.62 |   |
|          | 0       | 0.73      | H <sub>0</sub> ← 13.77 | 1.00  | 604  |       | 8.27   | 0.60 |   |
|          | 10      |           | 13.60                  | 0.99  | 663  |       | 8.02   | 0.58 |   |
|          | 21      |           | 13.44                  | 0.98  | 719  |       | 7.77   | 0.56 |   |
|          | 31      |           | 13.27                  | 0.96  | 790  |       | 7,52   | 0.55 |   |
|          | 46      |           | 13.02                  | 0.94  | 851  |       | 1.27   | 0,53 | - |
|          | 64      |           | 12.77                  | 0.93  | 941  |       | 7.02   | 0.51 |   |
|          | 77      |           | 12.52                  | 0.91  | 1018 |       | 6.77   | 0,49 |   |
|          | 98      |           | 12.27                  | 0.89  | 1136 |       | 6.52   | 0.17 |   |
|          | 123     |           | 12.02                  | 0,87  | 1243 |       | 6.27   | 0.46 |   |
|          | 146     |           | 11.77                  | 0.85  | 1379 |       | 6.02   | 0.44 |   |
|          | 162     |           | 11.52                  | 0.84  | 1514 |       | 5.77   | 0.92 |   |
|          | 184     |           | 11.27                  | 0.82  | 2024 |       | 5.06   | 0.37 | • |
|          | 216     |           | 11.02                  | 0.80  | 2936 |       | 4.19   | 0.30 |   |
|          | 235     |           | רד.01                  | 0.78  | 3358 |       | 4.10   | 0.30 |   |
|          | 258     |           | 10,52                  | 0.76  |      |       |        | #12  |   |
|          | 295     |           | 10.27                  |       | 1145 |       | 0.17   | 0.02 | ı |
|          | 321     |           | 10.02                  | 077   | 1256 |       | 0,0B   | 0.01 |   |
|          | 367     |           | 9,69                   | 0.70  |      |       |        | -    |   |
|          | 384 .   |           | 9.52                   | 0.69  | 182D |       | 0.04   | 0.00 |   |
|          | 431     |           | 9.27                   | 0.67  |      |       |        |      |   |
|          | 475     |           | 9,02                   | 0.66  |      |       |        |      |   |
|          | 524     |           | 8.73                   | 0.63  |      |       |        |      |   |

| . <u> </u>       | TES     | сн.<br>Т <b>S</b> | SITE: MI      | NOORA | W | ELL:   | 8                 |      |   |
|------------------|---------|-------------------|---------------|-------|---|--------|-------------------|------|---|
| · •• •           |         | INITIAL (         | Дертн то      |       |   | ()     | \$                |      |   |
| ( <sup>-</sup> ) |         | RIAL 1            |               |       |   | CIAL Z |                   |      |   |
|                  | t (sec) | <b>ДЕРТН</b> (    | t) Η(t)       |       | t | D(±).  | H( <del>{</del> ) | H/HD |   |
|                  | 0       |                   | $H_0 = 10.04$ | 1.00  |   |        |                   |      |   |
|                  | 300     |                   | 9.89          | 0.48  |   |        |                   |      |   |
|                  | 600     |                   | 9.80          | 0.98  |   |        |                   |      |   |
|                  | 1680    | •                 | 9 AD          | 0.94  |   |        |                   |      |   |
|                  | 3210    |                   | 8.90          | 0.89  |   |        |                   |      |   |
|                  | 3869    |                   | 8.68          | 0.86  |   |        |                   |      |   |
|                  | 5400    |                   | 8.23          | 0.82  |   |        |                   |      |   |
|                  | 6060    |                   | 8.04          | 0.80  |   |        |                   |      |   |
|                  | 9540    |                   | 7.15          | 0.71  |   |        |                   |      | _ |
|                  | 12,360  |                   | 6.52          | 0.65  |   |        |                   |      |   |
|                  | 12,780  |                   | 6.44          | 0.64  |   |        |                   |      |   |
|                  |         |                   |               |       |   |        |                   | •    |   |
|                  |         |                   |               |       |   | :      |                   |      |   |
|                  |         |                   |               |       |   |        |                   |      |   |
| -                |         |                   |               |       |   |        |                   |      |   |
|                  |         |                   |               |       |   |        |                   |      |   |
|                  |         |                   |               |       |   |        |                   |      |   |
|                  |         |                   |               |       |   |        |                   |      |   |
|                  |         |                   |               |       |   |        |                   |      | ٠ |
|                  | 3       |                   |               |       |   |        |                   |      |   |
|                  |         |                   |               |       |   |        |                   | -    |   |
|                  |         |                   |               |       |   |        |                   |      |   |
|                  |         |                   |               |       |   |        |                   |      |   |

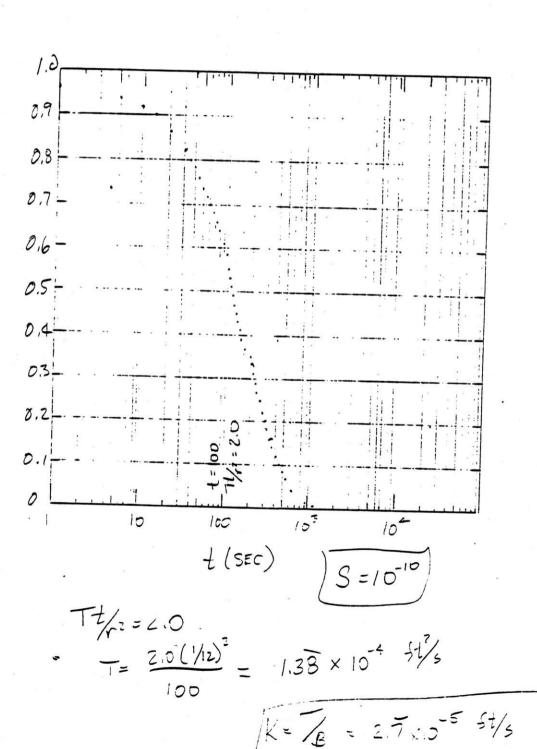

Shing Test Will 8 H/Ho vst



 $S = 10^{-4}$ 

T-1/r= 8×10-2  $T = \frac{2 \times 10^{-7} (V_e)}{100} = 5.5 \times 10^{-7} f_{e}^{2}/s$ K= 7/2 = 7/2 = 2.2×15 72/5 cm/s

Slug Test H/ ust Well 2 Round 1




H/H.

H/Hors t Mindozo IA ()1.0 0.9 0.5 0.7-0.6 H/Ho 04 0.3 100 0.1 D 10 10 100 1000 screen length 5' ft x 17: x 2,54 cm. t (sec) 5=10-1 T=KE Tt/r2 = 5x10-2  $T = \frac{5 \times 10^{2} (r_{c}^{2})}{t} = \frac{5 \times 10^{2} (V_{12})^{2}}{100} = 3.472 \times 10^{10} \frac{1}{5}$  $K = \frac{3.472 \times 10^{\circ}}{5} = 6.944 \times 10^{7} \frac{51}{5}$ 

Slug Test H/H vst Well 2 Round 2

8,46×0° cm/2



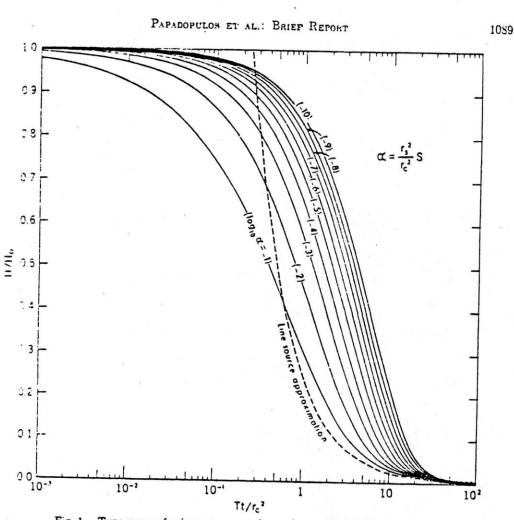



Fig. 1. Type curves for ins antaneous change in a well of finite diameter.

mination of S by this method has questionable reliability'; reliability becomes even more questionable when  $\alpha$  is smaller than 10<sup>-0</sup> Of course, the similarity of the type curves in this ange of  $\alpha$  also affects the determinations of transmissivity. Even the most carefully and accurately collected test data could easily be marinel with more than one of the type curves. The the could expect is to be within one or two orders of magnitude of the actual  $\alpha$ . An analysis in the range  $\alpha < 10^{-4}$  indicates that, if the  $\cdots$  is a for the chosen type curve is within two entries of magnitude of its actual value, the the determined T would be less than above gree. This possible error should be kept in in i were one is making use of transmissivities 

## REFERENCES

- Cooper, H. H., Jr., J. D. Bredehoeft, and I. S. Papadopulos, Response of a finite diameter well to an instantaneous charge of water, Water Resour. Res., 3(1), 263-269, 1967.
- Ferris, J. G., and D. B. Knowles, The slug test for estimating transmissibility, U.S. Geol. Surv. Ground Water Note 26, 1-7, 1954.
- Ferris, J. G., D. B. Knowles, R. H. Brown, and R. W. Stallman, Theory of aquifer tests, U.S. Geol. Surv. Water Supply Pap. 1536-E, 104-105, 1962.

Kohlhaas, C. A., A method for analyzing pressures measured during drillstem-test flow periods, J. Petrol. Technol. 24, 1278-1282, 1972.

(Received February 23, 1973.)

APPENDIX FF MINDORO : rvns4451617 / Hacein113.4 GROUNDWATER CHEMISTRY DATA TABLE 5.6 SAMPLE CALCULATION

| DATE     | BOD5 | Diss<br>Cod       | TDS | TKN | NHJ-N | NO3-N+ | <1- | P(LAE) | OTHER |
|----------|------|-------------------|-----|-----|-------|--------|-----|--------|-------|
| 10/18/83 | DRY  |                   |     |     |       |        |     |        |       |
| 11/30/83 |      |                   |     |     |       |        |     |        |       |
| 12/22/83 |      |                   |     |     |       |        |     |        |       |
| 1/11/84  | DEY  |                   |     |     |       |        |     |        |       |
| 2/19/E4  |      | TOTAL<br>10       | _   | 4,5 | 0.1   | 1,9    |     | -      | -     |
| 3/22/64  |      |                   |     |     |       |        |     | - >    |       |
| 4/26/84  |      |                   |     |     |       |        |     |        |       |
| 5/23/84  |      |                   |     |     |       |        |     |        |       |
| 6/6/84   |      |                   |     |     |       |        |     |        |       |
| 7/12/84  |      |                   | ~   |     |       |        |     |        |       |
| 8/29/24  | 1    |                   |     |     |       |        |     |        | -     |
| 9/19/E4  |      | _ <del>````</del> | •   |     |       |        |     |        |       |
| 10/16/84 |      | <del>_</del>      |     |     |       |        |     |        |       |
|          |      |                   |     |     |       |        |     |        |       |
| :        |      |                   |     |     | -     |        |     |        |       |
|          |      |                   |     |     |       |        |     |        |       |
| •        |      |                   |     |     |       |        |     |        |       |
| 1        |      |                   |     |     |       |        |     |        |       |
|          |      |                   |     |     |       |        |     |        |       |
|          |      |                   |     |     | -     |        |     |        |       |
|          | -    |                   |     |     |       |        |     |        |       |
|          |      | -                 |     |     |       |        |     |        |       |

| DATE     | ALKALINITY                                                                                         | TOTAL<br>P                                                                                                                                          | 5042-              | G2+                                                                                                                                                                                                                                                                                       | Na <sup>+</sup>                                                                                                                                  | Mg Z+                                                                                                                                                            | ≮†                                                                                                                                 | CTHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10/18/83 | dry                                                                                                |                                                                                                                                                     |                    |                                                                                                                                                                                                                                                                                           |                                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                    | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11/30/83 | DRY                                                                                                |                                                                                                                                                     |                    |                                                                                                                                                                                                                                                                                           |                                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 12/22/83 | DRY                                                                                                |                                                                                                                                                     |                    |                                                                                                                                                                                                                                                                                           |                                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                    | ·<br>·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1/11/84  | dry -                                                                                              |                                                                                                                                                     | >                  |                                                                                                                                                                                                                                                                                           |                                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Z/19/84  | -                                                                                                  | _                                                                                                                                                   | -                  | -                                                                                                                                                                                                                                                                                         | _                                                                                                                                                | -                                                                                                                                                                | -                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3/22/84  | Dey                                                                                                |                                                                                                                                                     |                    |                                                                                                                                                                                                                                                                                           | й.<br>                                                                                                                                           |                                                                                                                                                                  |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4/26/84  | DEY                                                                                                |                                                                                                                                                     |                    |                                                                                                                                                                                                                                                                                           | -                                                                                                                                                |                                                                                                                                                                  |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5/23/84  |                                                                                                    |                                                                                                                                                     |                    | -                                                                                                                                                                                                                                                                                         |                                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                                    |                                                                                                                                                     | >                  |                                                                                                                                                                                                                                                                                           |                                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7/12/84  | DRY                                                                                                |                                                                                                                                                     | $\rightarrow$      |                                                                                                                                                                                                                                                                                           |                                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                                    |                                                                                                                                                     |                    |                                                                                                                                                                                                                                                                                           |                                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                                    |                                                                                                                                                     |                    |                                                                                                                                                                                                                                                                                           |                                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                                    |                                                                                                                                                     |                    |                                                                                                                                                                                                                                                                                           |                                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| :        |                                                                                                    |                                                                                                                                                     |                    |                                                                                                                                                                                                                                                                                           |                                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                                    |                                                                                                                                                     |                    | -                                                                                                                                                                                                                                                                                         |                                                                                                                                                  | -                                                                                                                                                                |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                                    |                                                                                                                                                     |                    |                                                                                                                                                                                                                                                                                           |                                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ·        |                                                                                                    |                                                                                                                                                     |                    |                                                                                                                                                                                                                                                                                           |                                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                                    |                                                                                                                                                     |                    |                                                                                                                                                                                                                                                                                           |                                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                                    |                                                                                                                                                     |                    |                                                                                                                                                                                                                                                                                           |                                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                                    |                                                                                                                                                     |                    |                                                                                                                                                                                                                                                                                           |                                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                                    | <u>.</u>                                                                                                                                            |                    |                                                                                                                                                                                                                                                                                           |                                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                    | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                                                                                    |                                                                                                                                                     |                    |                                                                                                                                                                                                                                                                                           |                                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          | 10/18/83<br>11/30/83<br>12J2Z/83<br>1/11/84<br>2/19/84<br>3/22/84<br>4/26/84<br>7/12/84<br>7/12/84 | 10/18/83 DRY<br>11/30/83 DRY<br>12/22/83 DRY<br>1/11/84 DRY<br>2/19/84 -<br>3/22/84 DRY<br>4/26/84 DRY<br>5/23/84 DRY<br>7/12/84 DRY<br>7/12/84 DRY | 10/18/83       DRY | 10/18/83       DRY         11/30/63       DRY         12/22/83       DRY         1/11/84       DRY         2/11/184       DRY         3/22/84       DRY         3/22/84       DRY         4/26/84       DRY         5/23/84       DRY         5/23/84       DRY         7/12/84       DRY | 10/18/83 DRY<br>11/30/83 DRY<br>12/22/83 DRY<br>1/11/84 DRY<br>2/19/84<br>3/22/84 DRY<br>4/26/84 DRY<br>5/23/84 DRY<br>6/6/84 DRY<br>7/12/84 DRY | 10/18/83 DRY<br>11/30/63 DRY<br>12/12/63 DRY<br>1/11/84 DEY<br>2/19/84<br>3/22/84 DEY<br>4/24/84 DEY<br>5/23/84 DEY<br>5/23/84 DEY<br>7/12/84 DEY<br>7/12/84 DEY | 10/18/83 DRY<br>11/30/63 DRY<br>12/12/84 DRY<br>2/19/84<br>3/22/84 DRY<br>4/26/84 DRY<br>5/23/84 DRY<br>7/12/84 DRY<br>7/12/84 DRY | 10/18/83       DRY         11/30/03       DRY         12/12/83       DRY         1/11/84       DRY         2/14/84       DRY         3/22/84       DRY <td< td=""></td<> |

|   | Dr                    | TA SHE            |               |       | METERS           | (براجس) | DISSACRED               | 1B-                                       | PEEP,    |                       |
|---|-----------------------|-------------------|---------------|-------|------------------|---------|-------------------------|-------------------------------------------|----------|-----------------------|
|   | Date                  | DISSOLVED<br>BOD5 | PISS          | + TDS | DK SOLVED<br>TKN | NH2-N   | NO2-N-<br>11003-N       |                                           | PH (LAE) | OTHER                 |
|   | 10/18/83              | Z.4               | 7             | 336   | 0.4              | D.      | Z.3                     | 8.9                                       | 8.5      | -                     |
|   | 11/30/83              | <6                | <5            | 340   | <0,Z             | <0.)    | Z.8                     | 9.7                                       | -        | -                     |
|   | 12/zz/83              | < 3               | SOLUBLE<br><5 | 340   | < 0, Z           | D.1     | 3.5                     | 9.7                                       | . —      | -                     |
|   | 1 <i>/11/</i> 84      | ≺3                | 45            | 358   | <0.2             | 20.1    | 3.8                     | 9.8                                       |          |                       |
|   | 2/19/ <del>84</del> - |                   | <5            | 366   | <i>40.2</i>      | <0.1    | 3.5                     | 8.9                                       | FIELD)   | -                     |
|   | 3/22/ <del>84</del>   |                   | <i></i>       | 362   | < D. 2           | 0.1     | 3.2                     | 3,3                                       | 7,2      | -                     |
|   | 4/26/84               | <3                | <5            | 346   | 20.Z             | 0,1     | 3.1                     | 9.4                                       | 7,5      | PHIAE 5               |
|   | 5/22/34               | -                 | _             |       |                  | -       | -                       | -                                         | -        | _                     |
|   | 6/6/84                |                   | -             |       | -                |         | _                       | -                                         | (        |                       |
|   | 7/12/84               | ~                 |               |       | -                | -       | _                       | _                                         | -        | -                     |
| ) | 3/29/64               | 23                | <5            | 352   | 0.2              | 0,1     | 4,3                     | 9.7                                       | 7,4      |                       |
|   |                       |                   |               | -     |                  |         |                         |                                           |          |                       |
|   |                       |                   |               |       |                  |         |                         |                                           |          |                       |
|   | :<br>:                |                   |               |       |                  |         |                         |                                           |          |                       |
|   | :                     |                   |               |       |                  |         |                         |                                           |          | •<br>•<br>•<br>•<br>• |
|   | -                     |                   |               |       |                  |         |                         |                                           |          |                       |
|   |                       |                   | 1             |       |                  |         |                         |                                           |          |                       |
|   |                       |                   |               |       |                  |         |                         |                                           |          |                       |
|   |                       |                   |               |       |                  |         |                         |                                           |          |                       |
|   |                       | -                 |               |       |                  |         |                         | 117 <b>Manufactura</b><br>1 - Manufactura |          |                       |
|   |                       |                   |               |       |                  |         | va di Milinia<br>Anglia |                                           |          |                       |
|   | •                     |                   | i<br>I<br>I   |       |                  |         |                         |                                           |          |                       |

| •                     | DAT                 | a Shée    |      | PARA  | METERS           | (mg/l)          | WE    | UL 18-     | DEEP, BG |
|-----------------------|---------------------|-----------|------|-------|------------------|-----------------|-------|------------|----------|
|                       | DATE                | ALKALWITY | P    | 5042- | Ca <sup>2+</sup> | Na <sup>+</sup> | Mg 2+ | K+         | OTHER    |
|                       | 10/18/83            | 254       | 0.06 | 43.   | 65               | 6               | 33    | <b>-</b> . | -        |
|                       | 11 /30/83           | _         | -    | -     | -                | -               | -     | _          | -        |
|                       | 12/22/83            | —         | _    | _     | -                | _               | -     | -          |          |
|                       | 1/11/84             | -         | -    | -     |                  |                 | -     | -          | 1        |
|                       | 2/19/8 <del>4</del> | -         | -    | -     | -                | -               | -     | -          | -        |
| Alvelaln <b>U.S.A</b> | 3/22/84             | -         | -    | -     | _                | _               | -     | -          | -        |
| / w.w.                | 4/26/84             | 262       | 0.06 | 37    | 72               | 6               | 32    | 1          | -        |
|                       | 5/23/34             | _         | _    | _     |                  | -               | -     | -          |          |
|                       | 6/6/84              | -         | -    | _     | -                | -               | _     | -          | _        |
|                       | 7/12/34             | -         | -    | -     | -                | -               | -     | -          | _        |
| `                     | 3   29   84-        | 250       | 0.06 | 48    | 70               | 7               | 34    | 1          | -        |
| )                     | ;                   |           |      |       |                  |                 |       |            |          |
|                       |                     |           |      |       |                  |                 |       |            |          |
|                       |                     |           |      |       | -                |                 |       |            |          |
|                       |                     |           |      |       |                  |                 |       |            |          |
|                       |                     |           |      |       |                  |                 |       |            |          |
|                       |                     |           |      |       |                  |                 |       |            |          |
|                       |                     |           |      |       |                  |                 |       |            |          |
|                       |                     |           |      |       |                  | -               |       |            |          |
|                       |                     |           |      |       |                  |                 |       |            |          |
|                       |                     | -         |      |       |                  |                 |       |            |          |
|                       |                     |           |      |       |                  |                 |       |            |          |
|                       |                     |           |      |       |                  |                 |       |            |          |

|                                               | DATA     | SHEE                |             | PARA | METERS       | (mg/£) | DISS.  | u Z-  | SHALLO         | ω     |  |
|-----------------------------------------------|----------|---------------------|-------------|------|--------------|--------|--------|-------|----------------|-------|--|
|                                               | DATE     | , Dissolved<br>BODS | DISS<br>COD | TDSX | TKN X        | DISS   | NO2-N+ |       | P(LAR)         | OTHER |  |
| $\left( \begin{array}{c} \end{array} \right)$ | 10/18/83 | 49                  | 76          | 674  | 3.8          | D. I   | 0.1    | 66.   | 8.4            | -     |  |
|                                               | 11/30/83 | 7.4                 | 22          | 583  | 0.6          | 0.1    | 20,1   | 30 70 | -              | -     |  |
|                                               | 12/22/83 | -                   | LOW LEVEL   | _    | TOTAL<br>12. | 0.4    | 0,1    | -     | _              | -     |  |
|                                               | 1/n/84   | -                   | TOTAL<br>96 | _    | TOTAL<br>6.5 | 0.6    | 0.1    | -     | _              | -     |  |
|                                               | 2/19/84  | <3                  | 16          | 686  | 2.Z          | 0,4    | D.J    | 75    | -              | -     |  |
| Alada <b>inU.S.A</b>                          | 3/22/84- | -                   | 10          | -    | 1.2          | 0.1    | D,Z    | -     | (FIELD)<br>7.3 | _     |  |
|                                               | 4/26/E4  | ×3                  | 7           | 603  | 1.Z          | 0.1    | 0.3    | 70    | 7.5            | -     |  |
|                                               | 5/23/84  | <3                  | 12          | 608  | 1,5          | 0,1    | <0.1   | 72    | 73             | -     |  |
| i tri v u                                     | 616184   | 4.D                 | 11          | 584  | 1.B          | 0.3    | .0.1   | 74    | 7.7            |       |  |
|                                               | 7/12/84  | 4,9                 | 13          | 516  | 1,5          | 0.4    | 0.2    | 65    | 7.6            | -     |  |
|                                               | B/29/E4  | 3.7                 | 1D          | 416  | 1.2          | 0.7    | D.1    | 55    | 7.3            |       |  |
| ()                                            | 9/19/84  | 23                  | 9           | 354  | D.B          | 0.5    | D.1    | 31    | 7,4            |       |  |
|                                               | 10/16/84 | JD                  | 71          | 336  | 1.0          | 0.4    | 0.1    | 20    | 7,3            |       |  |
|                                               |          |                     |             | 429c | 44.4%        | 4.55   |        | 73%   |                |       |  |
|                                               |          |                     |             |      |              |        |        |       |                |       |  |
|                                               | : ·      |                     |             |      |              |        |        |       |                |       |  |
|                                               | •<br>•   |                     |             |      |              |        |        |       | χ.             |       |  |
|                                               |          |                     |             |      |              |        |        |       |                |       |  |
|                                               |          |                     |             |      | -            | -      |        |       |                |       |  |
| -                                             |          |                     |             |      |              |        |        |       |                |       |  |
|                                               |          |                     |             |      |              |        |        |       |                |       |  |
|                                               |          |                     |             |      |              |        |        |       |                |       |  |
|                                               |          |                     |             |      |              |        |        |       |                |       |  |
|                                               |          |                     |             |      |              |        |        |       |                |       |  |

|              | IIINULK<br>DA | U LUMMU<br>TA SHEE |         | PARA | METERS          | (m)/l) | WE               | L Z - | SHALLOW |   |
|--------------|---------------|--------------------|---------|------|-----------------|--------|------------------|-------|---------|---|
|              | DATE          | Ажалыц             | TOTAL P | 504  | G <sup>2+</sup> | Nh+    | Mg <sup>z+</sup> | κ+    | OTHER   |   |
|              | 10/18/83      | 40Z                | 0.04    | 76.  | 87              | 110    | 32               |       | _       | • |
|              | 11/30/83      | -                  | -       | -    | -               | -      | -                | _     | -       |   |
|              | 1Z/2Z/B3      | -                  | -       | -    | <b>—</b> .      | -      | _                |       | -       |   |
|              | 1/11/84       |                    | -       | -    | -               | -      | -                | -     | -       |   |
| ,            | 2/19/84       | -                  | -       | -    | -               | -      | -                | -     | _       |   |
| A.1.11.5.A   | 3/22/84       | -                  | -       | -    | -               | -      | ·                | -     |         |   |
|              | 4/26/84       | 415                | 0.02    | 120  | _               | -      | _                | _     | -       |   |
| С.<br>1-1-1- | 5/23/24       | -                  | -       | · _  | -               | -      | _                | -     | -       |   |
|              | 6/6/84        | -                  | ~       | ~    | <b>-</b> .      | -      | -                | -     | _       |   |
|              | 7/12/B4       | -                  | -       | _    | -               | -      | _                | -     | _       |   |
| )            | -<br>-        |                    |         |      |                 |        |                  |       |         |   |
| 1            |               |                    |         |      |                 |        |                  |       | -       |   |
|              |               |                    |         |      |                 |        |                  |       |         |   |
|              |               |                    |         |      |                 |        |                  |       |         |   |
|              | -             |                    |         |      |                 |        |                  |       |         |   |
|              |               |                    |         |      |                 |        |                  |       |         |   |
|              | :             |                    |         |      |                 |        |                  |       |         |   |
|              |               |                    |         |      | •               |        |                  |       |         |   |
|              | ,             |                    |         |      |                 |        | •                |       |         |   |
|              |               |                    |         |      |                 |        |                  |       |         |   |
|              |               | -                  |         |      |                 |        |                  |       |         | - |
| 1<br>N       |               |                    |         |      |                 |        |                  |       |         |   |
|              |               |                    |         |      |                 |        |                  |       |         |   |
| ·            | •             |                    |         |      |                 |        |                  |       |         |   |

| ` | Dr       | TA SHE   | 57            | PARA  | METERS | ["]]]) | WE DIES         | - 2 11 | SHALL          | $\omega$  |
|---|----------|----------|---------------|-------|--------|--------|-----------------|--------|----------------|-----------|
|   | DATE     | BOD5     | COD           | TDS   | TKN    | NHJ-N  | NO2-N+<br>NO3-N | CIT    | PH<br>(LAR)    | OTHER     |
|   | 10/18/83 | 1.6      | 11            | 704 . | 0.6    | D.1    | 0.1             | 78.    | 8.1            | -         |
|   | 11/30/83 | 23       | 16            | 660   | 0.6    | 0.1    | < 0. J          | 30     | -              | -         |
|   | 12/22/83 | 23       | SOLUBLE<br>9  | 730   | 0,4    | 0.1    | <i>20.1</i>     | BD     | -              | -         |
|   | 1/11/84- | <u>ل</u> | SULJELE<br>10 | 750   | 0.4    | 0.1    | ٢٥،١            | 76     | -              |           |
|   | Z/19/84  | 23       | 10            | 750   | 0.4    | 0.1    | <0.1            | 75     | -              | -         |
|   | 3/22/84  | ۷3       | 10            | 716   | 0.3    | 2,1    | < D. 1          | 75     | (FIELC)<br>6.5 | -         |
|   | 4/24/83  | 23       | 7             | 700   | 0.6    | 0.1    | 9.1             | 72     | 7.1            | LABFH 7.4 |
|   | 5/25/84  | 23       | 10            | 7:4   | 0,5    | 0.1    | 0,1             | 73     | 6.6            |           |
|   | 6/6/84   | 23       | ID            | 714   | 0.6    | D.1    | 0.1             | 76     | 6.9            | -         |
|   | 7/12/84  | <3       | 3             | 704   | C.4    | 0,1    | 0,1             | 75     | 7.0            | _         |
|   | 5/29/84  | 3.3      | 9             | 642   | 0.6    | 0.1    | 0.1             | 76     | 7.0            |           |
| ) | 9/19/84  | 23       | 15            | 532   | 1.0    | 0.3    | 0.3             | 99     | 5.3            |           |
|   | 10/16/84 | 4.3      | 17            | 620   | 0,3.   | 0,1    | 0.1             | .67.   | 7.1            |           |
|   |          |          |               |       |        |        |                 |        |                |           |
|   | •        |          | -             |       |        |        |                 |        |                |           |
|   |          |          |               |       |        |        |                 |        |                |           |
|   |          |          |               |       |        |        | 8               |        |                |           |
|   |          |          |               |       |        |        | 4               |        |                |           |
|   |          |          |               |       |        |        |                 |        |                |           |
|   |          |          |               |       |        |        |                 |        |                |           |
|   |          |          |               |       |        |        |                 |        |                |           |
|   |          |          |               |       |        |        |                 |        |                |           |
|   |          |          |               |       |        |        |                 |        |                |           |

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | `                   | DAT      | A SHE      |            |          | nca L<br>Meters    | (mjj)           | WE    | 43- | SHALLOW |
|--------------------------------------------------------|---------------------|----------|------------|------------|----------|--------------------|-----------------|-------|-----|---------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  |                     | DATE     | ALKALIN TH | TOTAL<br>P | 50+2-    | [ Ca <sup>2+</sup> | Na <sup>+</sup> | Mg Z+ | K†  | CTHER   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | <b>F</b> )          | 10/18/83 | 430        | 0.02       | 48.      | 100                | 120             | 44.   |     | -       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  |                     | 11/30/83 | -          | -          | -        | -                  | -               | -     | -   | -       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  |                     | 12/22/83 | —          | -          | <b>—</b> | _                  | _               | _     | -   | -       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  |                     | 1/11/84  | -          | -          |          | -                  | -               | -     | -   | -       |
| 6/6/84                                                 |                     | 2/19/84  | -          | -          | -        | -                  | -               | _     | -   | -       |
| 6/6/84                                                 | <b>K.C.</b> D. W.C. | 3/22/84  | -          | _          |          | _                  | _               | -     | -   | _       |
| 6/6/84                                                 | 7 Mar               | 4/26/84  | 473        | 20.CZ      | 62       | 100                | סון             | 3.5   | 1   | -       |
| 7/12/84                                                |                     | 5/23/34  | _          | -          | -        | -                  | -               | -     | -   | -       |
|                                                        |                     | 6/6/84   | _          | -          | _        |                    | _               | -     | _   | _       |
| 3/29/34 472 0.02 63 95 120 38 1                        |                     | 7/12/34  | -          | _          | _        | -                  | -               | -     | -   | _       |
|                                                        | 3                   | 3/29/34  | 472        | 0.02       | 63       | 95                 | 120             | 35    | 1   |         |
|                                                        | )                   |          |            |            |          |                    |                 |       |     |         |
|                                                        |                     |          |            |            |          |                    |                 |       |     |         |
|                                                        |                     |          |            |            |          |                    |                 |       |     |         |
|                                                        |                     |          |            |            |          |                    |                 |       |     |         |
|                                                        |                     |          |            |            |          |                    |                 |       |     |         |
|                                                        |                     |          |            |            |          |                    |                 |       | • . |         |
|                                                        |                     |          |            |            |          |                    |                 |       |     |         |
|                                                        |                     |          |            |            |          |                    |                 |       |     |         |
|                                                        |                     |          | -          |            |          |                    |                 |       |     |         |
|                                                        |                     |          |            | -          |          |                    |                 |       |     |         |
|                                                        | 2                   |          |            |            |          | <i>.</i>           |                 |       |     |         |

|     | DATE     | A SHEE<br>, DKSOLVED<br>BODS |               | TDS                                                                               | AMETER<br>DISS<br>TKN | S (19)/,<br>DISS<br>NH3-N | NO3-N+       |              | PH<br>(LAR)    | OTHER     |   |
|-----|----------|------------------------------|---------------|-----------------------------------------------------------------------------------|-----------------------|---------------------------|--------------|--------------|----------------|-----------|---|
| `)  | 10/18/83 | 3,1                          | <5            | 270                                                                               | 0.4                   | < 0.1                     | 0.3          | Z.6          | 8.5            | -         |   |
|     | 11/30/83 | 23                           | <5            | 273                                                                               | <0.Z                  | <0.1                      | D. I         | 2.0          | -              |           |   |
|     | 12/22/83 | 23                           | Soluble<br><5 | 276                                                                               | ZD.Z                  | 20.1                      | 0.2          | 2.1          | -              | -         | • |
|     | 1/11/84  | 23                           | <b>&lt;5</b>  | 284                                                                               | <0.2                  | 20,1                      | 0.Z          | 1,9          |                |           |   |
|     | z/19/84  | 23                           | 25            | 272                                                                               | <0.Z                  | 20.1                      | 0,3          | Z. D         |                | -         |   |
|     | 3/ZZ/84  | < 3                          | <5            | 276                                                                               | < D. Z                | 0,1                       | 0,4          | 2.1          | (FIELD)<br>7.2 | -         |   |
|     | 4/26/84  | 23                           | <5            | 280                                                                               | 40.2                  | 0.1                       | <i>D</i> 1.3 | 2.1          | 7.5            | pHiae 8.2 |   |
|     | 5/23/84  | < 3                          | <5            | 284                                                                               | 0. Z                  | 0.1                       | 0.3          | 2.4          | 7.0            |           |   |
|     | 616184   | 23                           | 5             | 252                                                                               | D. Z                  | ∠D.1                      | 0.3          | <i>Z</i> , Z | 7.3            |           |   |
|     | 7/12/84  | <3                           | 15            | 278                                                                               | 0.1                   | <i>≺</i> 0,1              | 0.Z          | Z.0          | 7.5            |           |   |
| `   | 3/29/84  | <4                           | <b>~</b> 5    | 270                                                                               | 0.2                   | <0.)                      | D.)          | 2.1          | 7.5            |           |   |
| )   | 9/19/24  | <3                           | 15            | 286                                                                               | 0.2                   | 20.1                      | C.2          | 2.0          | 7.1            |           |   |
|     | 10/16/84 | <3                           | 5             | 274                                                                               | 0,1                   | 0,1                       | 8.3          | Z.0          | 7,4            |           |   |
|     |          | . 9                          |               |                                                                                   |                       |                           |              |              |                |           |   |
|     |          |                              |               |                                                                                   | -                     |                           |              |              |                |           |   |
| . 1 |          |                              |               | ат.<br>Фила<br>Вил<br>Вил<br>Вил<br>Вил<br>Вил<br>Вил<br>Вил<br>Вил<br>Вил<br>Вил |                       |                           |              |              |                |           |   |
| •   |          |                              |               |                                                                                   |                       | 1<br>                     |              |              |                |           |   |
| 1   |          |                              |               |                                                                                   | •<br>•<br>•           |                           |              |              |                |           |   |
| •   |          |                              |               |                                                                                   | •                     |                           |              |              |                |           |   |
|     |          |                              |               |                                                                                   |                       |                           |              |              |                |           |   |
| -   |          |                              |               |                                                                                   |                       |                           |              |              |                |           |   |
|     |          |                              |               |                                                                                   |                       |                           |              |              |                |           |   |
| :   |          |                              | •             | •                                                                                 |                       |                           |              |              |                |           |   |

|           | DA                                    | TA SHEE    |                                                                                             | PARA | METERS           | (كرادس   | WEL     | L4 - | DEEP  | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|-----------|---------------------------------------|------------|---------------------------------------------------------------------------------------------|------|------------------|----------|---------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|           | DATE                                  | ALKALINITY | TOTAL<br>P                                                                                  | 5042 | Ca <sup>2+</sup> | Nat      | 111g 2+ | K+   | other |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|           | 10/18/83                              | 240        | D. O.B                                                                                      | 21.  | 55               | 3        | ZB      | -    | J     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|           | 11/30/83                              | ~          | -                                                                                           | ~    | ~                | <b>~</b> | -       | -    | -     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|           | 12/22/83                              | -          |                                                                                             | -    | -                | -        | _       | _    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|           | 1/11/84                               | ~          | -                                                                                           | -    | ~                | -        | -       |      | -     | 1944 - 1944<br>1944 - 1944 - 1944<br>1944 - 1944 - 1944<br>1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1 |   |
| ÷         | z/19/84                               | -          | -                                                                                           | ~    | -                | -        |         | _    | -     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|           | 3/22/84                               | -          | _                                                                                           | _    | -                | -        | -       | -    | _     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|           | 4/26/84                               | 242        | 0.06                                                                                        | 22   | 55               | 2        | 25      | /    | _     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|           | 5/23/84                               | -          | ~                                                                                           | -    | -                |          | -       | -    | -     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|           | 616/84                                | -          | -                                                                                           | -    | -                | -        | ~       | -    | -     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|           | 7/12/84                               | -          |                                                                                             |      | -                | -        | -       | -    | · —   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| ì         | 8/29/84                               | 246        | 5.06                                                                                        | 23   | 60               | 3        | 30      | 1    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| ,         | •                                     |            |                                                                                             |      |                  |          |         |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|           | · · · · · · · · · · · · · · · · · · · |            |                                                                                             |      |                  |          |         |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| •         | •<br>•<br>•                           |            |                                                                                             |      |                  |          |         |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|           | •                                     |            | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 |      |                  |          |         |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|           |                                       |            |                                                                                             |      |                  |          |         |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|           |                                       |            |                                                                                             |      |                  |          |         |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|           | :                                     |            |                                                                                             |      |                  |          |         |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|           |                                       |            |                                                                                             |      |                  | -        |         |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · |
|           |                                       | -          |                                                                                             |      |                  |          |         |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| · · · · · |                                       |            | -                                                                                           |      |                  |          |         |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|           |                                       |            |                                                                                             |      | :                |          |         |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|           |                                       |            |                                                                                             |      |                  |          |         |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|           | . 1                                   |            |                                                                                             |      |                  | 3<br>4   |         |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |

|               | DAT                 |                    |              | LHEN.<br>PARA | iichl<br>Meters | (mg/)          |        |      | <i>Shall</i> ou | 1       |
|---------------|---------------------|--------------------|--------------|---------------|-----------------|----------------|--------|------|-----------------|---------|
|               | DATE                | , Ossowed<br>BODSX | DISS         | TDSX          | DISS<br>TKN     | DISS<br>NH3-NX | NCz-N+ | CITX | PH<br>(LAB)     | OTHER   |
|               | 10/18/83            | 3.1                |              | 664           | 5.2             | 4.0            | < 0.1  | 39.  | 8.4             | _       |
|               | 11/30/83            | 12                 | 30           | 605           | 2.4             | 0.Z            | 20.1   | 92   | -               | -       |
|               | 12/22/93            | 15                 | scuere<br>23 | 708           | 3.3             | 2.3            | <0,1   | 87   | -               | -       |
|               | 1/11/84             | 12                 | 36           | 726           | 4.4             | 3.7            | 20,1   | 91   | _               |         |
|               | Z/19/84             | 3.7                | 25           | 716           | 4.4             | 3.B            | 20.1   | 90   | -               | _       |
| Mada In U.S.A | 3/22/8 <del>4</del> | <3                 | 25           | 77Z           | 4.9             | 3,3            | <0.1   | 94   | (FIELD)<br>6.7  | -       |
|               | 4/26/84             | 23                 | 22           | 694           | 4.2             | 3,5            | 0.1    | EB   | 6,9             | pti437. |
|               | 5/23/84             | 12                 | 33           | 762           | 3,4             | 2,3            | 0,1    | 95   | 6.6             | -       |
|               | 6/6/84              | 32                 | 59           | 784           | 3.6             | 2.7            | 0.1    | 92   | 6.3             | -       |
|               | 7/12/84             | 13                 | 30           | 764           | 4.6             | 3,5            | 0,1    | 39   | 6.3             | _       |
| )             | 8/29/84             | <12                | 27           | 734           | 3,9             | 3.)            | 0.1    | 92   | 6.3             |         |
| )             | 9/19/84             | <12                | 23           | 750           | 3,3             | 2,9            | 20.1   | 91   | 6,5             |         |
|               | 10/16/84            | 9                  | 31           | 733           | 4,0             | 5,2            | <0.1   | 93   | 6.6             |         |
|               |                     |                    |              |               |                 |                |        |      |                 |         |
| ·             |                     |                    |              |               | -               |                |        |      |                 |         |
|               |                     |                    |              |               |                 |                |        |      |                 |         |
|               |                     |                    |              |               |                 | • •.           |        |      |                 |         |
|               | •                   |                    |              |               |                 |                |        |      |                 |         |
|               |                     |                    |              |               |                 |                |        |      |                 |         |
|               |                     |                    |              |               |                 |                |        |      |                 |         |
| :             |                     |                    |              |               |                 |                |        |      |                 |         |
| -             |                     |                    |              |               |                 |                |        |      |                 |         |
|               |                     |                    |              |               |                 |                | •      |      |                 |         |

|    | DAT      | ia She     |            | PARA  | METERS           | (""/[)  | WEL    | 1 5 . | SHALLOW |
|----|----------|------------|------------|-------|------------------|---------|--------|-------|---------|
|    | DATE     | ALKALINITY | TOTAL<br>P | 5042- | Ca <sup>2+</sup> | Nat Nat | Mg2+ ( | K+    | OTHER   |
|    | 10/18/83 | 49 Z       | 0.02       | 2.3   | 76               | 130     | 34     | )     | -       |
|    | n/30/83  | -          | -          | -     | -                | -       | -      | -     | —       |
|    | 12/22/83 | -          | -          | -     | -                | _       | -      | -     |         |
|    | 1/11/84  | -          | -          | -     |                  | -       | -      | -     | _       |
| •  | z/19/84  | _          | -          | _     | -                | _       | —      | _     | _       |
|    | 3/22/8A  | -          | -          | -     | —                | _       | -      | _     | _       |
|    | 4/26/84  | 452        | 20,52      | 30    | 77               | IID     | 32     | 2     | -       |
|    | 5/23/84  | -          | -          |       | -                | _       | -      | -     | -       |
|    | 616134   | _          | -          | ~     | -                |         | _      | _     |         |
|    | 7/12/54  | _          | —          |       | -                | _       |        | -     | —       |
|    | 8/29/34  | 532        | 20.02      | 3,3   | 87               | 40      | 36     | Z     |         |
| ł  |          |            |            |       |                  |         |        |       |         |
|    |          |            |            |       |                  |         |        |       |         |
|    |          |            |            |       |                  |         |        |       |         |
|    | •        |            | -          |       |                  |         |        |       |         |
|    | •        |            |            |       |                  |         |        |       |         |
|    | -        |            |            |       |                  |         |        |       |         |
|    |          |            |            |       |                  |         |        |       |         |
|    | •        |            |            |       |                  |         |        |       |         |
|    |          |            |            |       |                  |         |        |       | •       |
|    |          | <b>-</b> . |            |       |                  |         |        |       |         |
| ۰. | -        |            |            |       |                  |         |        |       |         |
|    |          |            |            |       |                  |         |        |       |         |

|                | DATE     | DISSOLVED<br>BODS | COD                   | TDS | TKNV | NH3-N        | NOZ-N+<br>NOZ-N | CI-V | pH<br>(LAE)    | OTHER     |
|----------------|----------|-------------------|-----------------------|-----|------|--------------|-----------------|------|----------------|-----------|
| )              | 10/18/83 | 4,6               | -                     | 684 | 3.2  | 1.4          | 20.1            | 5/,  | B. Z           | -         |
|                | 11/30/83 | <6                | 34                    | 750 | 3.Z  | 2.2          | 20.1            | 33   | -              | -         |
|                | 12/22/B3 | ∠3                | 5010 <b>8-E</b><br>29 | 724 | 1.8  | 1.1          | 20.1            | 80   | . —            |           |
|                | 1/11/84  | 3.(               | 24                    | 077 | 1.6  | 0.8          | <0.1            | 53   | -              | -         |
|                | z/19/84  | ∠3                | 27                    | 778 | 1.6  | 0.9          | <0.1            | 79   | _              |           |
| Alada in U.S.A | 3/22/84  | < 3               | 26                    | 750 | 1.6  | 0.3          | 20,1            | 78   | (FIELD)<br>6.8 | -         |
|                | 4/26/84  | 23                | 23                    | 716 | 2.4  | 0.3          | 0.1             | 72   | 7.D            | (АВр 47.4 |
|                | 5/23/84  | <3                | 25                    | 710 | 1.4  | 0,5          | <0. l           | 77   | 6.6            |           |
| / <b>6</b> 1   | 616/84   | 3.1               | 23                    | 720 | 1.4  | <i>D</i> , B | 20.1            | 75   | 6.3            | -         |
| ·              | 7/12/84  | <6                | ZZ                    | 736 | 1,4  | 0.9          | D,1             | 73   | 7.0            | -         |
|                | 8/29/84  | <1D               | 23                    | 724 | 1.5  | 0.9          | 0,1             | 74   | 6,9            |           |
|                | 9/19/84  | 27                | 21                    | 760 | 1,4  | 2,3          | 20.1            | 71   | 6.3            |           |
|                | 10/16/84 | 4,1               | 26                    | 756 | 1.5  | C ,9         | 20.1            | 75   | 6.9            |           |
|                |          |                   |                       |     |      |              |                 |      | -              |           |
|                |          |                   |                       |     |      |              |                 |      |                |           |
|                |          |                   |                       | •   |      |              |                 |      |                |           |
|                |          |                   |                       |     |      |              |                 |      |                | · · · ·   |
|                |          |                   |                       |     |      |              |                 |      |                |           |
|                |          | -                 |                       |     |      |              |                 |      |                |           |
|                |          |                   |                       |     |      |              |                 |      |                |           |
|                |          |                   |                       |     |      |              |                 |      |                |           |
|                |          |                   |                       |     |      |              |                 |      |                |           |

|    | DATE     | ALKALINITY | P     | 5042-                                 | Ca 21       | Nat 1 | Mg 2+ | κ+ ( | OTHER          |             |
|----|----------|------------|-------|---------------------------------------|-------------|-------|-------|------|----------------|-------------|
| )  | 10/18/83 |            | 2,3   | 49.                                   | BB          | 120   | 38    |      |                |             |
|    | 11/30/83 | _          | -     | _                                     | _           | _     | -     | -    | <del>_</del> . |             |
|    | 12/22/83 | -          | -     | _                                     |             | _     | -     | -    |                |             |
|    | 1/11/84  |            | -     | -                                     | -           | -     | -     | _    | _              |             |
|    | 2/19/84  | -          | _     | _                                     | _           | -     | _     | -    | _              |             |
|    | 3/ZZ/84  | -          | -     | -                                     | -           | -     | -     | -    | -              |             |
|    | 4/26/84  | 466        | <0.02 | 56                                    | 89          | IID   | 36    | l    | -              | -<br>-<br>- |
|    | 5/23/24  | -          | -     | -                                     | -           | -     |       | -    | <b>—</b> ·     | 1           |
|    | 616184   | -          | -     | -                                     | -           | -     | -     | -    | _              |             |
|    | 7/12/84  |            | _     | -                                     | -           | -     | -     | -    |                |             |
| ì  | 3/29/54  | 476        | 20.02 | 77                                    | 93          | 120   | 40    | )    | -              |             |
| j. | :        |            |       |                                       |             |       |       |      |                |             |
|    |          |            |       |                                       |             |       | -     |      |                |             |
|    |          |            |       |                                       |             |       |       |      |                |             |
|    |          |            |       |                                       |             |       |       |      |                | •           |
|    |          |            |       |                                       |             |       |       |      |                |             |
|    |          |            |       | -                                     |             |       |       |      |                |             |
|    | •        |            |       |                                       |             |       |       |      |                |             |
|    |          |            |       | · · · · · · · · · · · · · · · · · · · |             |       |       |      |                |             |
|    |          |            |       |                                       |             |       |       | ·    |                |             |
|    | 1<br>    |            |       | :<br>:                                |             |       |       |      |                |             |
|    | •        |            |       | •                                     | 1<br>2<br>1 | ;     |       |      |                |             |

|                                       | 11 iscaes       |                | 2          | -772 P. |                      | (~/-()  | i he         |                                       | SHRILDU, C    | CELL 3      |  |
|---------------------------------------|-----------------|----------------|------------|---------|----------------------|---------|--------------|---------------------------------------|---------------|-------------|--|
|                                       | DATA            | SHEE -<br>Diss | D.55       |         | CTEES<br>Diss<br>TKN | 0155    | D155         | CI <sup>-</sup>                       | FIELE<br>6 17 | CTHER       |  |
|                                       | DATE<br>4/21/84 | 3005<br>>23    | (1)<br>(4) | 738     | ZS                   | IJHIZ-N | 0.1          | 79                                    |               | 1 - LAE 1.5 |  |
| · }                                   | =/23/34         |                | 16         | EZD     | 2.8                  | 2.3     | <i>L</i> D.1 | 93                                    | 6.5           | -           |  |
|                                       | 616/84          |                | 1.2        | 680     | 3.0                  | 2.4     | <0.1         | 33                                    | 6.6           | -           |  |
|                                       | 7/12/84         | 26             | 14         | 764     | 3,0                  | Z.3     | <0,1         | 86                                    | 6.3           |             |  |
| S SOUARE<br>5 SOUARE<br>5 SOUARE      | 3/29/84         | <6             | 14         | 574     | Z.D                  | 1.7     | 0.1          | 77                                    | 63            |             |  |
| 200 SHEETS 35                         | 9/19/84         | 24             | 11         | 605     | 1.8                  | 1.4     | -22.1        |                                       | ;4            |             |  |
| 42 181 50<br>42 182 100<br>42 189 200 | 13/16/24        | 6.5            | 23         | 644     | 2.2                  | 1.6     | 201          | 90                                    | 6.5           |             |  |
| MAN WALL                              |                 |                |            |         |                      |         |              |                                       |               |             |  |
| -                                     |                 |                |            |         |                      |         |              |                                       |               |             |  |
|                                       |                 |                |            |         |                      |         |              |                                       |               |             |  |
|                                       |                 |                |            |         |                      |         |              |                                       |               |             |  |
|                                       |                 |                |            |         |                      |         |              |                                       |               |             |  |
| •                                     |                 |                |            |         |                      |         |              |                                       |               |             |  |
|                                       |                 |                |            |         |                      |         |              |                                       |               |             |  |
| •                                     |                 |                |            |         | 、                    |         |              |                                       |               |             |  |
|                                       |                 |                |            |         |                      |         |              |                                       |               |             |  |
|                                       |                 |                |            |         |                      |         |              |                                       |               |             |  |
|                                       |                 |                |            |         |                      |         |              |                                       |               |             |  |
|                                       |                 |                |            |         |                      |         |              |                                       | :<br>:<br>:   |             |  |
|                                       |                 |                |            |         |                      |         |              |                                       |               |             |  |
|                                       |                 |                |            |         | :<br>;               |         | !<br>!       | · · · · · · · · · · · · · · · · · · · |               | •           |  |

| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IIIINLORD<br>DATE | CUTTIN JU<br>SHEET | £7/7£<br>► | L-En<br>Para      | METERS          | (mo/ | . JE              | 22 7- | SHFULDU<br>CELL 3 |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|------------|-------------------|-----------------|------|-------------------|-------|-------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | ALKALINITT         | TETAL      | 50 <del>2</del> - | 6 <sup>2+</sup> | Nat  | Nig <sup>Z+</sup> | ¦ ⊀+  | DTHER             |  |
| $\langle \gamma \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4/26/84           | 572                | 0.02       | ./9               | 120             | 95   | 46                | 1     | _                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5/25/84           | -                  | -          | _                 | -               | -    | -                 | -     | -                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 616184            | ~                  | -          | -                 | -               | · •  | -                 | -     | -                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7/12/34           | -                  | -          | -                 | -               | -    | -                 | -     | -                 |  |
| 42         141         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50 | 8/29/34           | 376                | £0.02      | 3.2               | 5 <u>-</u>      | 73   | 35                | < )   |                   |  |
| anionar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | •                  |            |                   |                 |      |                   |       |                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                    |            | •                 |                 |      |                   |       |                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                    |            |                   |                 |      |                   |       |                   |  |

|             | DA                    |                   |                   | Paeai | METERS        |                   | ) WE<br>NO3-NH |               |                | ~     |
|-------------|-----------------------|-------------------|-------------------|-------|---------------|-------------------|----------------|---------------|----------------|-------|
|             | DATE                  | DISGOLVED<br>BOD5 | DISS.<br>COD      | TDSX  | DISS.<br>TKNX | 0155.<br>1 JH3-NX | NOZ-N          | $C\Gamma_{X}$ | pH<br>(LARE)   | OTHER |
|             | 10/15/23              | 4.1               | 34                | 373   | 4.4           | 0.6               | 0.Z            | 69.           | 8.Z            | -     |
|             | 11/30/83              | <3                | 20                | 654   | 1.4           | 0.1               | Q.5            | 81            | -              | _     |
|             | 12/22/83              | -                 | LOW LEVEL<br>55   | ~     | TOTAL<br>3.B  | 0.2               | <0.1           | -             |                | _     |
|             | 1/11/84               | 23                | SOLUBLE<br>25     | 888   | 1.4           | 0.2               | 20,1           | 8Z            | -              | -     |
| •           | 2/19/84               | < 3               | Z4                | 970   | 1.6           | 0.1               | 20.1           | 84-           | _              | _     |
| Madninu.s.A | 3/22/84               | 23                | 25                | 394   | 2.5           | 0,3               | LD,1.          | 89            | (FIELD)<br>b.b |       |
|             | 4/26/84               | ζ3                | 26                | 336   | 3.Z           | D.3               | D.1            | 94            | 7.0            | _     |
| 14          | 5123134               | 23                | 23                | 793   | 2,8           | 6,3               | <0,1           | 90            | 6.7            | -     |
|             | 616/84                | DRY               | $\rightarrow$     |       |               | •                 |                |               |                |       |
|             | 7/12/84               | Dey -             | $\longrightarrow$ |       |               |                   |                |               |                |       |
|             | -<br>-<br>-           |                   |                   |       |               |                   |                |               |                |       |
| }           |                       |                   |                   |       |               |                   |                | -             |                |       |
|             |                       |                   |                   |       |               |                   |                |               |                |       |
|             |                       |                   |                   |       |               |                   |                |               | -              |       |
|             | 4                     |                   |                   |       |               |                   |                |               |                |       |
|             |                       |                   |                   |       |               |                   |                |               |                |       |
| •           |                       |                   |                   |       |               |                   |                |               |                |       |
|             | •                     |                   |                   | -     |               |                   |                |               |                |       |
|             | •                     |                   |                   |       |               |                   |                |               |                |       |
|             | 1<br>1<br>1<br>1<br>1 |                   |                   |       |               |                   |                |               | -              |       |
|             |                       |                   |                   |       |               | -                 |                |               |                |       |
|             |                       |                   |                   |       |               |                   | -              |               |                |       |
| •           | -<br>-<br>-<br>-      |                   |                   |       |               |                   |                |               |                |       |

|                     | ,D               | TA SHE     |                                         | PARA        | metees          | (mg/1            | ) WE  | 11 3 - | SHALLOW          |             |
|---------------------|------------------|------------|-----------------------------------------|-------------|-----------------|------------------|-------|--------|------------------|-------------|
|                     | DATE             | ALKALINITT | P                                       | 5042-       | G <sup>24</sup> | 1Ja <sup>+</sup> | Mg Z+ | K+     | OTHER            |             |
| ÷.)                 | 10/18/83         | 130        | 0.04                                    | 62,         | N.B.            | N.B.             | N.B.  | N.B,   | -                |             |
|                     | 11/30/83         | -          | -                                       | ~           | -               | -                | —     | -      |                  |             |
|                     | 12/ZZ/83         | -          | -                                       | -           | -               |                  | -     |        |                  |             |
|                     | 1/11/84          | -          | -                                       | -           | -               | -                | -     | _      | _                |             |
|                     | Z/19/84          | -          | -                                       |             |                 | -                | -     | _      |                  |             |
| Madoln <b>U.S.A</b> | 3/22/84          |            | -                                       | _           | -               | -                | -     | -      |                  |             |
| · ·                 | 4/24/34          | 372        | 20.02                                   | 130         | _               |                  | _     | -      | -                | -<br>-<br>- |
| Abun wennen         | 5/23/89          | -          | -                                       | -           | -               | -                | -     | -      | -                | · · ·       |
| PRANK I             | 6/6/84           |            | >                                       |             |                 |                  |       |        |                  |             |
|                     | 7/12/54          | Det.       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |             |                 |                  |       |        |                  |             |
| )<br>1 (            |                  |            | :<br>•                                  |             |                 |                  |       |        |                  |             |
|                     |                  |            | •                                       |             |                 |                  |       |        |                  |             |
|                     | -<br>-<br>-<br>- |            | · ·                                     |             |                 |                  |       |        |                  |             |
|                     |                  |            | •                                       | 1           |                 |                  |       |        |                  |             |
|                     |                  |            | •                                       |             |                 |                  |       |        |                  |             |
|                     |                  |            |                                         | •           |                 |                  |       |        |                  |             |
|                     |                  |            |                                         | :           |                 |                  |       |        |                  |             |
|                     | :<br>:<br>:      | •          |                                         |             |                 |                  |       |        |                  |             |
|                     | •                | -          |                                         | -<br>       |                 |                  |       |        |                  |             |
|                     | :                |            |                                         | 4<br>•<br>• |                 |                  |       |        |                  |             |
| •                   |                  |            |                                         |             |                 |                  |       |        | 1                | ۲           |
|                     |                  |            |                                         |             |                 |                  |       |        |                  |             |
|                     | :<br>-<br>:      |            |                                         |             |                 |                  |       |        | :<br>:<br>:<br>: |             |
|                     |                  |            |                                         |             |                 |                  |       |        |                  |             |

|                                  | DATA     | SHEET        | • •          |     | CH-<br>ETFES | ra(1)          |                      | 29-31 | Hill Ding K | log sen II |
|----------------------------------|----------|--------------|--------------|-----|--------------|----------------|----------------------|-------|-------------|------------|
| Č.                               | DATE     | Diss<br>BCDs | Friss<br>COD | TDS | DISS         | Diss<br>1JH3-N | 1 DB5 -<br>1153-1552 | CIT   | Fiere       | DTHER      |
|                                  | 4/26/84  | >23          | 76           | 568 | 4.2          | 1.4            | 5.2                  | 76    | 6.9         | 1- at 7 C  |
|                                  | 5/23/84  | 4,3          | 20           | 540 | 2.2          | 1.             | C. I                 | 3Z    | 6.6         | -          |
|                                  | 616/84   | >22          | 93           | 456 | 2.4          | 1.1            | 0.1                  | 35    | 6,7         | -          |
|                                  | 7/12/84  | 38           | 46           | 680 | 2.2          | 7.1            | 0.1                  | 9Z    | 6,8         |            |
| S SQUARE<br>5 SQUARE<br>5 SQUARE | 8/29/84  | ≺7           | 20           | 622 | 2,5          | 1.3            | <i>D.</i> 1          | 97    | 6,3         |            |
| 200 SHEETS                       | 9/19/24  | 4,5          | 26           | 696 | 2.1          | 1.9            | 5.1                  | 10    | 6.6         |            |
| 42 381                           | 10/16/54 | 12           | 47           | 636 | (1)<br>(1)   | 1.3            | 5,1                  | 100   | 6.5         |            |
|                                  |          |              |              |     |              |                |                      |       |             |            |
| ž                                |          |              |              |     |              |                |                      |       |             |            |
|                                  |          |              |              |     |              |                |                      |       |             |            |
|                                  |          |              |              |     |              |                |                      |       |             |            |
|                                  |          |              |              |     |              |                |                      |       |             |            |
|                                  |          |              |              |     |              |                |                      |       |             |            |
|                                  |          |              |              |     |              |                |                      |       |             |            |
|                                  |          |              |              |     |              |                |                      |       |             |            |
|                                  |          |              |              |     |              |                |                      |       |             |            |
|                                  |          |              |              |     |              |                |                      |       |             |            |
|                                  |          |              |              |     |              |                |                      |       |             |            |
|                                  |          |              |              |     |              | -              |                      |       |             |            |
|                                  |          | -            |              |     |              |                |                      |       |             |            |
|                                  |          |              |              |     |              |                |                      |       |             |            |
|                                  |          |              |              |     |              |                |                      |       |             |            |
|                                  | 4        |              |              |     |              |                |                      |       | •           |            |
|                                  |          |              |              |     |              |                |                      |       |             |            |

|   | DATE             | ALKALINITY | TOTAL P | SC4      | G <sup>z+</sup> | Not | 11:0 | 1<br>K | UTHER |   |
|---|------------------|------------|---------|----------|-----------------|-----|------|--------|-------|---|
| ) |                  | :          | 0.02    |          | _               |     | _    | -      |       | - |
|   | 5/23/34          | -          | -       | -        | -               | -   | -    | -      | -     |   |
|   | 6/6/84           | -          |         | -        | -               | -   | _    | -      |       |   |
|   | 7/12/34          | -          | -       | -        | -               | -   | -    | -      | -     |   |
|   | B <i> 29 5</i> 4 | -          | -       | <u> </u> |                 | -   | -    | _      | -     |   |
|   |                  |            |         |          |                 |     |      |        |       |   |
|   |                  |            |         | 9 .      |                 |     |      |        |       |   |
|   |                  |            |         |          |                 |     |      |        |       |   |
|   |                  |            |         |          |                 |     |      |        |       |   |
|   |                  |            |         |          |                 |     | -    |        |       |   |
|   |                  |            |         |          |                 |     |      |        |       |   |
|   |                  |            |         |          |                 |     |      |        |       |   |
|   |                  |            |         |          |                 |     |      | •      |       |   |
|   |                  | -          | :       |          |                 |     |      |        |       |   |
|   |                  |            |         |          |                 | • : |      |        |       |   |
|   |                  |            |         |          |                 | :   |      |        |       |   |
|   |                  |            |         |          |                 |     | -    |        |       |   |
|   |                  |            |         |          |                 |     |      |        |       |   |
|   |                  | -          |         |          |                 |     |      |        |       |   |
|   |                  |            |         |          |                 |     | 1    |        |       |   |
|   |                  |            |         |          |                 |     |      |        |       |   |
|   |                  |            |         |          |                 |     |      |        |       |   |
|   |                  |            |         |          |                 |     |      |        |       |   |

| <b>x</b>       | DAT      | A SHEE | T              | 1    | (mg/_                    | l)                      | L   | I WA           |          |  |
|----------------|----------|--------|----------------|------|--------------------------|-------------------------|-----|----------------|----------|--|
|                | DATE     | BODS   | SOLUBLE<br>COD | C1-  | DISS.<br>NO2-N+<br>NO2-N | Di <del>ss</del><br>TKN | TOS | 0155.<br>NH3-N | OTHER    |  |
| 3              | 12/22/83 | 23     | <5             | <0,3 |                          | <i>40</i> , Z           | 10  | 20,1           | <u> </u> |  |
|                | 1/11/84  | دع     | <5             | <0.3 | 40.1                     | <0.2                    | 12  | ×0,1           | -        |  |
|                |          |        |                | -    |                          |                         |     |                |          |  |
|                |          |        |                |      |                          |                         |     |                |          |  |
|                |          |        |                |      |                          |                         |     |                |          |  |
| Alada In U.S.A |          |        |                |      |                          |                         |     |                |          |  |
| ~              |          |        |                |      |                          |                         |     |                |          |  |
| агал<br>())    |          |        |                |      |                          |                         |     |                |          |  |
| MUTERMORY      |          |        |                |      |                          |                         |     |                |          |  |
|                |          |        |                |      |                          |                         |     |                |          |  |
|                |          |        |                |      |                          |                         |     |                |          |  |
| )              |          |        |                |      |                          | ÷                       |     |                |          |  |
|                |          |        | -              |      |                          |                         |     |                |          |  |
|                |          |        |                |      |                          |                         |     |                |          |  |
|                |          |        |                |      |                          |                         | · . |                |          |  |
|                |          |        |                |      |                          |                         |     |                |          |  |
| -              |          |        |                | -    |                          |                         |     |                |          |  |
|                |          |        | •              |      |                          |                         |     |                |          |  |
|                |          | -      |                |      |                          |                         |     |                |          |  |
|                |          |        |                |      |                          |                         |     |                |          |  |
|                |          |        |                |      |                          |                         |     |                |          |  |
|                |          |        | ~              |      |                          |                         | -   |                |          |  |
| ·              |          |        |                |      |                          |                         |     |                |          |  |

$$T_{ABLE} 5.6 CALCULATION$$
EXAMPLE - WELL 5
$$CI^{-} CONCENTRATION = 91 \text{ mg/l}$$

$$TOTAL N CONCENTRATION = 4.1 \text{ mg/l}$$

$$\int WASTEWATER HAD \quad CI^{-} = 100 \text{ mg/l}$$

$$TOTAL N = 32.2 \text{ mg/l}$$

$$7c \text{ REDUCTION (DILUTION) of CHLORIDE AT INELL 5 = (FROM WAITE)$$

$$\frac{100 - 91}{100} \times 100 = 923$$

$$\frac{32.2 - 4.1}{32.2} = 87.90$$
ACTUAL 70 J LOSSES AT WELL 5 = 87.90

.

)

ļ

APPENDIX HH

РАРИАСТЕП / ННА НЦЕА.

MINDOED :

FURROW WASTEWATER AND LYSIMETER CHEMICAL DATA

| *                          | •        | cumul.<br>Ta Shee        |                                       |                      | ст. 1 л<br>mg /J) | L7111.2 - 2 - 3      | FURE<br>WAST                | ci-<br>Tenater | · (£4            | Ē |
|----------------------------|----------|--------------------------|---------------------------------------|----------------------|-------------------|----------------------|-----------------------------|----------------|------------------|---|
|                            | DATE     | diss<br>Edl <sub>s</sub> | DIES<br>Coc                           | C1-                  | PH                | ries<br>Ricz+nicz    |                             | TCS            | 12155<br>12Hz-12 |   |
|                            | ד/ג/34/  | 220                      | 320                                   | 99                   | 6.6               | <1.0                 | (6                          | 796            | 16               | _ |
|                            |          |                          |                                       |                      |                   |                      |                             |                |                  |   |
| 42 342 200 SHEFTS 5 SQUARE | 10/16/84 | тст)<br>94               | 160                                   | TURROW<br>76         | WW -<br>6.6       | Сец З<br>0,1         | 4,¤∺≦<br>[7] 70T            |                | 12,              | _ |
| 200 States 12:382 200 St   | 11/6/84  |                          |                                       | 78                   |                   | <i>∠1.</i> ∂         | 22 TOT<br>16 0155           |                | 15               |   |
| MATTINAL                   |          |                          | · · · · · · · · · · · · · · · · · · · |                      |                   |                      |                             |                |                  |   |
|                            | 15/16/34 | (187)<br>1400            | 2600                                  | <u>+ Eno-1</u><br>82 | 670               | <u>GELL Z</u><br>0.1 | 21.0<br>108707              | _              | )/               | - |
|                            | 11/6/24  | _                        | -                                     | 120                  | 6.2               | 0.1                  | 63 707<br>23 diks           | _              | _                | - |
|                            | 10/10/24 | (707)<br>250             | 1200                                  | HEADER<br>B.Z.       | шш-<br>6,4        | <u>(ru 3</u><br>9.4  | 17. Dons                    |                | . 4              |   |
|                            | .i/6/84  | -                        | -                                     | 81                   | ~                 | ×1.0                 | 59 707<br>24 TOT<br>13 DISS | _              | 10               |   |
| ·                          |          |                          |                                       |                      |                   |                      |                             |                |                  |   |
|                            |          |                          |                                       |                      |                   |                      |                             |                |                  |   |
|                            |          |                          |                                       |                      |                   |                      |                             | •              |                  |   |
|                            |          |                          |                                       |                      |                   |                      |                             | ·              |                  |   |

| <i>د</i>                   | the second s | SHEF        |                                                              | TAKI                                  | いいていたら        | 1914             | 145                                                                                         | erter - | 325 - CEL | <u> </u> |
|----------------------------|----------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------|---------------------------------------|---------------|------------------|---------------------------------------------------------------------------------------------|---------|-----------|----------|
|                            | DATE                                                                                                           | CISS<br>COD | AISS                                                         | TKN                                   | 10153<br>1043 | i diss<br>· Bode |                                                                                             | ςH      | TES       |          |
| - ? <i>5</i><br>} <b>*</b> | 5/23/84                                                                                                        | 94          | 9.1                                                          | 1                                     | 14            |                  | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |         |           |          |
| <del>14</del> 4            |                                                                                                                |             | 3.2                                                          | 2,5                                   | D.Z           | <3               | 65                                                                                          | 6.4     | 612       |          |
| /rº X                      | 7/11/24                                                                                                        | 2×          | 4)3                                                          | 1,5                                   | <0/1          | -                | 73                                                                                          | -       | -         |          |
|                            | 7/12/84                                                                                                        |             | 1.6                                                          | 2,3                                   | 0.1           | -                | ~                                                                                           | 6,8     |           |          |
| 10000 C C                  | 8/29/24                                                                                                        | 15          | 0.7                                                          | 0,6                                   | 0.1           | 24               | 110                                                                                         | 6.6     | 564       |          |
| بر<br>مر                   | 9/1E/54                                                                                                        | N.          | )Xr                                                          | 346                                   | -3×1          |                  | IDD                                                                                         |         | 15        |          |
| 1<br>7<br>7<br>7<br>7      | 9/19/54                                                                                                        | 24          | 5.0                                                          | 0,6                                   |               | _                | IS                                                                                          | 6.7     |           |          |
| 221                        |                                                                                                                |             |                                                              |                                       |               |                  |                                                                                             |         |           |          |
|                            |                                                                                                                |             |                                                              |                                       |               |                  |                                                                                             |         |           |          |
| •.                         |                                                                                                                |             |                                                              |                                       |               |                  |                                                                                             |         |           |          |
|                            |                                                                                                                |             |                                                              |                                       |               |                  |                                                                                             |         |           |          |
|                            |                                                                                                                |             |                                                              |                                       |               |                  |                                                                                             |         |           |          |
|                            |                                                                                                                |             | - 19<br>- 19<br>- 19<br>- 19<br>- 19<br>- 19<br>- 19<br>- 19 |                                       |               |                  |                                                                                             |         |           |          |
|                            |                                                                                                                |             |                                                              |                                       |               |                  | •                                                                                           | -       |           |          |
|                            |                                                                                                                |             |                                                              | • • • • • • • • • • • • • • • • • • • |               |                  | :                                                                                           |         |           |          |
|                            |                                                                                                                |             | ~                                                            |                                       |               | •                |                                                                                             |         |           |          |
|                            |                                                                                                                |             |                                                              |                                       |               | 1                |                                                                                             |         |           |          |
|                            |                                                                                                                |             |                                                              | -                                     |               |                  |                                                                                             | 1       |           |          |
|                            |                                                                                                                |             |                                                              |                                       |               |                  |                                                                                             |         |           |          |
|                            |                                                                                                                |             |                                                              |                                       |               |                  |                                                                                             |         |           |          |
|                            |                                                                                                                |             |                                                              |                                       |               |                  |                                                                                             |         |           |          |

| `         |       | DATE                                                  | SHEET        | •           | THA AVI | eter: ( | "5/2)             | 6751 | hir *r I | 415.0         | . 541 |
|-----------|-------|-------------------------------------------------------|--------------|-------------|---------|---------|-------------------|------|----------|---------------|-------|
|           |       | DATE                                                  | 7155<br>Bodg | DISS<br>COD | C1-     | ρH      | 0 55<br>1 NO2-NO3 | TKN  | TDS      | DISS<br>NH3-N | OTHER |
|           | ) 1 m | 5/23/84                                               | ->≵          | Ŕ           | 82      | 鋏       | 6.6               | Ż∕∕₹ | 522      | 3/1           | -     |
|           |       | 6/6/84                                                | 4            | 11          | 81      | 6.1     | 3,5               | Z.D  | _        | 0.1           |       |
|           | Xan   | 7/11/34                                               | Va           | -           | •       | -       | . M               | 24   | -        | XI            | _     |
|           | ى ،   | 7/1Z/84                                               | ∠3           | 9           | 73      | 6.3     | 3.5               | 2.2  | 460      | 0.1           | -     |
| SQUARE    | 10    | 10/15/84                                              |              | int         | 36      | _       | Ì,∕\$             | NŞ   | _        | X1            |       |
| O SHEETS  | 6     | 10/16/84                                              |              | 10          | 59.0    | 6.3     | 12.4              | 1.2  | _        | 0,1           |       |
| 42.389 20 | eş    | 9/19/54                                               | 24           | 2           | 122     | 6.3     | 5.3               | 1.9  | 15       | 2.1           | _     |
| hand      | ₹ ؟   | 11/15/84<br>12/11/54<br>9/19/54<br>11/5/84<br>11/6/24 | _            |             | 39      | -       | X                 | NÓ   |          | <ک×ز          |       |
|           | leng  | 11/6/24                                               |              | -           | 42      | _       | ZD                | 0.6  |          | 20,1          | _     |
|           |       |                                                       |              |             |         |         |                   |      |          |               |       |
|           |       |                                                       |              |             |         |         |                   |      |          |               |       |
|           |       |                                                       |              |             |         |         |                   |      |          |               |       |
|           |       |                                                       | -            |             |         |         |                   |      |          |               |       |
|           |       |                                                       | -            | 1           |         |         |                   |      |          |               |       |
|           |       |                                                       |              |             |         |         |                   |      |          |               |       |
|           |       |                                                       | -            |             |         |         |                   |      |          |               |       |
|           |       |                                                       | :            |             |         |         |                   |      |          |               |       |
|           |       |                                                       |              |             |         |         |                   |      |          |               |       |
|           |       | 1                                                     |              |             |         | ł       |                   |      | -        |               |       |
|           | -     |                                                       |              |             |         |         |                   |      |          |               |       |
|           |       |                                                       |              |             |         |         |                   |      |          |               |       |
|           |       |                                                       |              |             |         |         |                   |      |          |               |       |
|           |       |                                                       |              |             |         |         |                   |      |          |               |       |

 $\left( \begin{array}{c} \\ \end{array} \right)^{*}$ APPENDIX TI MIDORO : คายหนะระกุ/ คาวสายเปรา CROP NITROGEN UPTAKE AND CALCULATIONS

UNEX SOIL AND PLANT ANALYSIS LAB TOTAL MINETAL FOUNT FOR MANISTRY ALL FORME

CON

M

15.1

:73.0

34.83

....

B

6.421

7.501

5.303

ZN ·

45.71

46.97

22.22

FE

815.3

329.2

230.2

. .

NA

255.8 ( 68.2

1032 ( 64.6

299.7 ( 81.7

. . -

-

30

5.778

5.598

4,390

••••

mass

S

0.163

0.175

0.153

MG

6.099

0.110

3.877

CA

0.417

0.544

0.300

0.154

0.166

0.335

0.190

0.203

0.149

SAMPLE P K

SALER

non-A:

| _  |               |
|----|---------------|
|    |               |
| 1A |               |
|    |               |
| 2  |               |
|    | 1A<br>1B<br>2 |

| ZN (on d         | ry weight basis) |  |
|------------------|------------------|--|
| 1A<br>2          | 1.56<br>1.44     |  |
| Ashed<br>1B<br>2 | 0.42<br>0.26     |  |

| <u>z n</u> | of      | Ash          |
|------------|---------|--------------|
|            | 1B<br>2 | 2.49<br>2.64 |

|           | e over drie | d sample (grams) | 7 Ash |
|-----------|-------------|------------------|-------|
| Weight of | UVE         |                  |       |
|           | 87.3        | · · ·            | 17.1  |
| 14        | 67.2        | •                | 10.1  |
| 18        | 311.3       |                  | •     |
| 2         |             |                  |       |

IA, IB -> MINDORD 2 -> BREDHEAD

APRIL SAMPLES OF GRASS

SAVER ASHED SAMPLES ASh

UNEX SOLL AND PLANT ANALYSIS LAB STLL MINERAL POINT POAR MADIODN AL SERVES

DATE OF ANALYSIS: 7/6/84

|              |                |                | z              |                |                |                |                |                | DDM            |                |                |                  |
|--------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|------------------|
| SAMPLE       | P              | K              | CA             | MG             | S              | ZN             | B              | MN             | T FE           | 3              | AL.            | NA               |
|              |                |                |                |                |                |                |                |                |                |                |                |                  |
| 1 1B<br>2 2B | 0.187<br>0.140 | 0.149<br>0.352 | 0.495<br>0.278 | 0.096<br>0.072 | 0.071<br>0.072 | 38.51<br>20.93 | 5.330<br>3.249 | 157.6<br>32.65 | 638.2<br>243.4 | 4.711<br>4.448 | 662.2<br>243.8 | < 61.3<br>< 62.5 |



COOPERATIVE EXTENSION PROGRAMS University of Wieconsin-Extension

University of Wisconsin-Medicon

Soil & Plant Analysis Laboratory, 5711 Mineral Point Road, Madison, Wisconsin 53705; 608-262-4364

## DEPARTMENT OF SOIL SCIENCE

September 14, 1984 Acct. 900 Lab No. S0035





MEMORANDUM

Dave Sauer--DNR TO: 101 S. Webster, Box 7921 Madison, WI 53707

Soil/Plant Analysis Lab FROM:

Results of analyses on 4 canary (+grass) samples submitted July 24, 1984. RE:

| Sample Identification |   | Sample<br>Weight | · Ash | Nitrogen<br>of Tissue | Nitrogen<br>of Ash |
|-----------------------|---|------------------|-------|-----------------------|--------------------|
|                       |   | grams            | %     | %                     | %                  |
| Mindoro               | 1 | 87               |       | 2.15                  |                    |
| Brodhead              | 1 | 134              |       | 1.28                  |                    |
| Mindoro               | 2 | 121              | 8.5   |                       | 0.64               |
| Brodhead              | 2 | 110              | 5.9   |                       | 0.48               |

Additional analyses are attached.

If you have any questions concerning these analyses, please feel free to contact either Todd Kaehler or Ita Steingraeber at 262-4364.

Encl.

· /ss

535 DAVE SALER DAR

UNEX SOIL AND PLANT ANALYSIS LAB 5711 HINERAL POINT ROAD MADISON HI 53705

JATE OF ANALYSIS: 9/14/84

|         |       |       | *     |       |       |       |       |       | PPM   |       |        |        |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|
| SAMPLE  | P     | K     | CA    | MG    | S     | ZN    | 8     | HN    | FE    | CU    | AL     | NA     |
|         |       |       | ·     |       |       |       |       |       |       |       |        |        |
| 1 MIN.1 | 0.255 | 2.443 | 0.314 | 8.216 | 0.252 | 12.73 | 5.361 | 43.93 | 60.01 | 3.843 | ( 36.7 | < 63.8 |
| 2 BR0.1 | 0.229 | 1.632 | 0.235 | 0.128 | 0.144 | 12.43 | 3.736 | 54.69 | 42.23 | 3.828 | < 35.8 | 294.7  |
| 3 MIN.2 | 0.327 | 2.632 | 0.298 | 0.214 | 0.249 | 16.72 | 4.708 | 88.24 | 56.14 | 4.626 | < 36.4 | < 63.3 |
| 4 BR0.2 | 0.306 | 1.953 | 0.300 | 0.180 | 0.182 | 20.50 | 4.709 | 40.22 | 62.70 | 3.724 | < 36.2 | 296.0  |



DAVE SAVER (ASHED)

# UHEX SOIL AND PLANT ANALYSIS LAB 5711 MINERAL POINT ROAD MADISON HI 53705

OF ANALYSIS: 9/14/84

5

| -     | <b>x</b> |       |       |       |       |       | PPM   |       |              |       |        |              |  |  |
|-------|----------|-------|-------|-------|-------|-------|-------|-------|--------------|-------|--------|--------------|--|--|
| £     | P        | K     | CA    | MG    | S     | ZN    | B     | ĦN    | FE           | α     | AL     | NA           |  |  |
| -     |          |       | ·     |       |       |       |       |       |              |       |        |              |  |  |
| 1IN.2 | 0.318    | 2.509 | 0.296 | 0.204 | 8.145 | 16.88 | 5.042 | 85.15 | <b>ଣ</b> .52 | 6.397 | < 36.1 | <b>99.24</b> |  |  |
| 3R0.2 | 0.293    | 1.813 | 0.289 | 0.165 | 0.056 | 18.51 | 4.301 | 39.88 | 70.66        | 3.827 | < 36.0 | 295.8        |  |  |

5235 DAVE SAUER Dec Somples

ATE OF ANALYSIS: 12/28/84

# UNEX SOIL AND PLANT ANALYSIS LAB 5711 MINERAL POINT ROAD MADISON WI 53705

|            |            |       |       | 07<br>70    |       |       |       |        |       | PPM   |       |       |        |
|------------|------------|-------|-------|-------------|-------|-------|-------|--------|-------|-------|-------|-------|--------|
| SAM        | PLE        | P     | К     | CA          | MG    | S     | ZN    | В      | MN    | FE    | CU    | AL.   | NA     |
|            |            |       |       | <del></del> |       |       |       |        |       |       |       |       |        |
| 1          | BROD.1     | 0.189 | 0.651 | 0.201       | 0.092 | 0.158 | 14.20 | 4.326  | 56.47 | 87.73 | 3.712 | 65.37 | 886.3  |
| 2          | BROD.2     | 0.197 | 0.491 | 0.146       | 0.136 | 0.117 | 40.26 | 3.188  | 79.76 | 57.89 | 4.060 | 42.81 | 430.5  |
| ₩ <b>3</b> | MIND.1     | 0.139 | 0.497 | 0.230       | 0.094 | 0.086 | 28.59 | 4.866  | 139.9 | 106.8 | 4.450 | 102.9 | < 61.0 |
| ٠4         | MIND.2     | 0.172 | 0.549 | 0.177       | 0.097 | 0.158 | 28.68 | 4.610  | 70.91 | 79.80 | 3.719 | 64.15 | 184.6  |
| 1          | BROD.1 ash | 0.183 | 0.603 | 0.194       | 0.038 | 0.065 | 11.36 | 3.085  | 48.61 | 82.87 | 3.032 | 68.71 | 992.6  |
| 2          | BROD.2 ash | 0.197 | 0.472 | 0.142       | 0.135 | 0.046 | 38.19 | 2.927  | 74.83 | 55.44 | 3.273 | 43.73 | 555.2  |
| . 3        | MIND.1 ash | 0.135 | 0.431 | 0.225       | 0.089 | 0.048 | 28.92 | 3.336  | 128.6 | 103.0 | 4.723 | 126.2 | < 59.3 |
| · 4        | MIND.2 ash | 0.165 | 0.480 | 0.175       | 0.092 | 0.077 | 25.42 | < 3.56 | 67.28 | 81.79 | 4.276 | 89.32 | 242.9  |

| Sample Id.       | Sample Wt. grams | %Ash | %N of Tissue |
|------------------|------------------|------|--------------|
| Brodhead Cell 1  | 54.5             | 3.9  | 1.59         |
| Brodhead Cell 2  | 61.0             | 3.1  | 1.41         |
| ✓ Mindoro Cell 1 | 88.7             | 9.2  | 0.58         |
| ✓ Mindoro Cell 2 | 219.8            | 8.6  | 1.42         |

\*Results for TN of Ash will follow in several days.

# COOPERATIVE EXTENSION PROGRAMS

University of Wisconsin-Extension

University of Wisconsin-Madison

Soil & Plant Analysis Laboratory, 5711 Mineral Point Road, Madison, Wisconsin 53705, 608-261-4364

#### DEPARTMENT OF SOIL SCIENCE

January 7, 1985 Acct. No. 900 Lab Nos. S134; S235

### MEMORANDUM

Dave Sauer TO: Wis. Dept. of Natural Resources Box 7921 Madison, WI 53707

Soil/Plant Analysis Lab FROM:

Results of %N of Ash on 5 samples. All other analyses have been reported. RE:

| Sample Identificat                    | %N of Ash |      |
|---------------------------------------|-----------|------|
| (S134) Cこう Sameras<br>BRODHEAD CELL 1 | 1         | 0.72 |
| BRODHEAD CELL                         | 2         | 0.50 |
| (S235) BRODHEAD CELL                  | 1         | 0.45 |
| BRODHEAD CELL                         | 2         | 0.49 |
| MINDORO CELL                          | 1         | 0.15 |
| MINDORO CELL                          | 2         | 0.47 |

If you have any questions concerning these analyses, please feel free to contact us.

The invoice for all of the tissue analyses is enclosed.

/ss

Encl.

APRIL 26, 1984 WEICHT 9 AREA OF SAMPLES => CELL 3 = 1×1'= 1512 87.3  $CELL 3 = 1'x' = 1ft^{2}$ 67.2 AVERALE WEIGHT OF = 87.3+67.2 = 77.25gGRASS SAMPLE = 2SYSTEM AREA = BACRE × 43560 5t<sup>2</sup> = 130,680 ft<sup>2</sup> TOTAL WEIGHT OF GRASS ON SITE =  $\frac{116}{1.5t^2} \times 130,6805t^2 \times \frac{116}{453.8q} = 22,2551b$ TON (DRY WEIGHT BASIS) = 1.56 AMONT OF NON SITE PRICE TO BURNING = 22,255 (0.0156) = 397 16 26 ASH AFTER BURNING = 17,1 WEIGHT OF ASH ON SITE = 22,255 (0.171) = 3806 1/2 2 N OF ASH = 2,49 AMOUNT OF N ON SITE AFTER BURNING = 3506(0.0249) 95 lbs 2 20 N LOST BY BURNING =  $\frac{347-95}{247}(100) = 72.6\%$ 

Plade In U.S.A.

La Contrated

JULY 12, 1984 WEICHT 9 AREA OF SAMPLES -> CELL Z= 1'x1'= 15t2 87 CELL Z= 1'x1'= 15t2 121 AVERAGE WEIGHT OF =  $\frac{87+121}{2} = 10.4g$ TOTAL WEIGHT OF GRASS =  $\frac{104_{7}}{15t^{2}} \times 130,680 \text{ ft}^{2} \times \frac{116}{453.8_{5}}$ = 29,962 lb 70 N(DRY WEICHT BASIS) = 2.15 AMOUNT OF NON SITE = 29,962 (0.0215) = 644 16 (PRICE TO BLENING) 7. ASH AFTER BURNING = 8.5 WEIGHT OF ASH ON SITE = 29,962 (0.085) = 2547 15 70 NOF ASH = 0.64 WEIGHT OF NON SITE FFTER BURNING = 2547 (0.0064) = 16.3 16 70 N Loss BY BURNING = 97.570  $= \frac{644 - 16.3}{(.44)} (100)$ 

PTIM IN U.S.A.

NOVEMBER 6, 1984 AREA OF GRASS SAMPLES - CELL Z = 1'X1'=15t2 58.7 (EIL Z = 1'x1'= 15t 219.8 AVE. Wt. OF GDASS SAMPLE = 88.7 + 219.8 = 154.2 TOTAL WE. OF SITE GRASS = 154.2 (130,680) = 44,439 16  $\mathcal{D}_{r} \mathcal{N}(024 \text{ wt. Basis}) = \frac{1.42 + 0.58}{7} = 1.0$ AMOUNT OF NON SITE PERR TO = 44,439 (0.01) = 444 16 BURNING 90 ASH AFTER BURNING = 9.2 + 8.6 = 8.9 Wt OFASH ON SITE = 44,439(0.089) = 3955 16 % N OF ASH = 0.15+0.41 = 0.31 AMOUNT OF NON SITE AFTER = 3955 (0.0031) = 12.215 BURNING  $9 \cdot N \text{ LOST BY BURNING} = \frac{444 - 12.7}{44/1} (100) = 97.270$ 

( \_\_\_\_)

A 211 M PERA (6)

APPENDIX MINDORO : SEVERSON COULEE CREEK CHEMISTRY DATA

| •                           | DAT      | a Shee |                 |                 | (mg/1)                       | 1"IEI EK >                      | <u>i</u>           | REEK UPSTREAM                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------|----------|--------|-----------------|-----------------|------------------------------|---------------------------------|--------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | DATE     | BODS   | LOWLENEL<br>COD | C1 <sup>-</sup> | DISSOLVED<br>NOZ-N+<br>NOZ-N | TKN                             | DISSAULED<br>NH3-N |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                             | 11/30/83 | 23     | 6               | 7,9             | 0.7                          | 0.Z                             | 0.1                | -                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                             | B/29/94  | 23     | 6               | 6.9             | 0.8                          | 0,2 7155<br>0.2 70 <del>.</del> | 0.1                | ALK = 250<br>$C_0 = 53$<br>$M_0 = 20$<br>PH = 8.0<br>$N_0 = 4$<br>$SQ_1 = 14$<br>$T_0TP = 0.06$ | te a constant a constant de semanante e a constant a |
| การกระการนี้มี/ การกระการระ |          |        |                 |                 |                              |                                 |                    | K <sup>+</sup> = Z                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                             |          |        |                 |                 |                              |                                 | -                  |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                             |          |        |                 |                 |                              |                                 |                    |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                             |          |        |                 |                 |                              |                                 |                    |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                             |          | -      |                 |                 |                              |                                 |                    |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

|             | DATA        | Shee |                 |     | (mg/l)                       |          |                    | EEK MIOWAY                           |       |
|-------------|-------------|------|-----------------|-----|------------------------------|----------|--------------------|--------------------------------------|-------|
|             | DATE        | BODS | LONLEVEL<br>COD |     | DISSOLVED<br>NOZ-N+<br>NOZ-N | TKN      | DISSOLVED<br>NH3-N | CTHER                                |       |
| )           | 11/30/83    | <3   | 25              | 3.6 | 0.8                          | 0.2      | 0.1                | ~                                    |       |
|             | 8/29/84     | ∠3   | 25              | 6.9 | 0.8                          | D.Z DISS | 0.1                | ALK = 252                            |       |
|             |             |      |                 |     |                              | 0.2 757  |                    | Ca#= 59<br>CI = 6.9                  |       |
|             |             |      |                 |     |                              |          |                    | $m_{g} = 30$<br>$\rho H = 8.0$       |       |
|             |             |      |                 |     |                              |          |                    | Not = 4<br>50 = - 14<br>Tot P = 0.06 |       |
| Mad•InU.S.A |             |      |                 |     |                              |          |                    | K+= 2                                |       |
|             |             |      |                 |     |                              |          | -                  |                                      |       |
| 18          |             |      |                 |     |                              |          |                    |                                      |       |
|             |             |      |                 |     |                              |          |                    |                                      |       |
|             |             |      |                 | -   |                              |          |                    |                                      |       |
|             |             |      |                 |     |                              |          |                    |                                      |       |
|             |             |      |                 |     |                              |          |                    |                                      |       |
|             |             |      |                 |     |                              | •        |                    |                                      |       |
|             |             |      |                 |     |                              |          |                    |                                      |       |
|             |             |      |                 |     |                              | -<br>-   |                    |                                      |       |
|             |             |      |                 |     |                              |          |                    |                                      |       |
| •           | •<br>•<br>• |      |                 |     |                              |          |                    |                                      | · · · |
|             |             |      |                 |     |                              |          |                    |                                      |       |
|             | 2           | -    |                 |     |                              |          |                    |                                      |       |
|             | :<br>:<br>: |      |                 |     |                              |          |                    |                                      |       |
|             | :<br>:      |      |                 |     |                              | •        |                    |                                      |       |
| ì           |             |      |                 |     |                              |          |                    |                                      |       |
|             |             |      |                 |     |                              |          |                    |                                      |       |

|                     | Dat      | A SHEE | LOWLENEL |             | (mg/l)                    | )                   | PISSOLVED | REEK DOWNSTREAM                                                                                                                    |  |
|---------------------|----------|--------|----------|-------------|---------------------------|---------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------|--|
|                     | DATE     | BOD5   | 00       | <u>C</u> 1- | DISSOLVED<br>NG-N<br>NG-N | TKN                 | NH3-N     | DTHER                                                                                                                              |  |
|                     | 11/30/83 | 23     | 7        | 8.0         | 98                        | 0.3                 | 0.1       | -                                                                                                                                  |  |
|                     | 8/29/84  | ∠3     | 7        | 7,2         | 0.8                       | 0.3 0455<br>0.4 TOT | 0,1       | $ALK = 250$ $Ca^{\#} = 58$ $PH = 8.0$ $M_{0}^{\#} = 30$ $Na^{\#} = 4$ $S0_{4}^{*} = 15$ $To 7 P = 0.06$                            |  |
| N.S.N               |          | LOW SE | POFI     | RY WELL     |                           |                     |           | K+= 2                                                                                                                              |  |
| PADRARIEN AndeinUSA | 3/29/84  | 23     | 8        | 7.2         | 0.8                       | 0.2 DISS<br>0.2 TeT | 0.1       | $f_{ik} = 252$ $G_{+} = G_{3}$ $p_{i} = 7.9$ $n_{i} = 30$ $n_{i} = 4$ $SO_{+} = 15$ $ToT P = 0.15(visc)$ $= 0.17(707)$ $K^{+} = 2$ |  |
| ( )                 |          |        |          |             |                           |                     | -         |                                                                                                                                    |  |
| • *                 |          |        |          |             |                           |                     |           |                                                                                                                                    |  |
|                     |          |        |          |             |                           |                     |           |                                                                                                                                    |  |
|                     |          |        |          |             |                           |                     |           |                                                                                                                                    |  |
|                     |          |        |          |             |                           |                     |           |                                                                                                                                    |  |
|                     |          |        |          |             |                           |                     |           |                                                                                                                                    |  |
|                     |          |        |          |             |                           |                     |           |                                                                                                                                    |  |
|                     |          |        |          |             |                           |                     |           |                                                                                                                                    |  |
|                     |          |        |          |             |                           |                     |           | -                                                                                                                                  |  |
|                     |          |        |          |             |                           |                     |           |                                                                                                                                    |  |
|                     |          |        |          |             |                           | -                   |           |                                                                                                                                    |  |
| <u>,</u>            |          |        | -        |             |                           |                     |           |                                                                                                                                    |  |
|                     |          |        |          |             |                           | •                   |           |                                                                                                                                    |  |

f A PPENDIX KK MINDORD : 'ade In U S A. NITROGEN BUDGET CALCULATIONS 

WASTEWATER ADDITION (APPLIED)  $\frac{16}{yr} = \frac{14,000}{10^{6}} \frac{941}{x} \times 32.4 \frac{mg-N}{e} \times 8.34 \times 365 \frac{04y}{ye} =$ = 1381 16/yr V STER SEA PLANT UPTAKE LOSS 252 10/yr per Discussion in CHAPTER 5 ุ่ม เกษณะสายก\_\_\_\_ (or 1820 OF APPLIED-N) LEACHING LOSS (BASED ON WELL 5 TOTAL-N CONCENTRATION AVERACE)  $\frac{16}{3r} = \frac{14,000 \text{ g/day}}{166} \times 4.1 \frac{m_2 N}{4} \times 8.34 \times 365 \frac{DAY}{YR} = 175 \frac{16}{3r}$ (UR 13900F APPLIED N) DENITRIFICATION LOSS 1b/yr = 1381 - 252 - 175 = 954 1b/yr (or 6950 CF APPLIED - N)



