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ABSTRACT

A perception system is a crucial component of several applications, including
autonomous driving, surveillance, embodied perception, consumer devices like
smartphones, and many more. Deep learning techniques have matured signifi-
cantly over the past years and are the primary choice for many perception and
scene inference tasks. Although these models show high performance on the
overall accuracy of the perception tasks, it is often not sufficient for their safe
deployment in real-world applications, as worst-case performance is also an
important consideration. For instance, the performance on challenging scenarios
such as low-light, motion, and extreme weather is considered extremely cru-
cial in determining the viability of a perception system for many safety-critical
applications like autonomous driving.

My thesis is that we can unlock robust perception under adverse real-world
conditions by improving the worst-case performance of the perception models
and employing well-designed learning approaches that are tied to its sensing
modalities.

To prove this thesis, we propose a perception framework that is robust under
a variety of adverse scenarios. We consider numerous sensing modalities like
single photon cameras (SPCs), which are based on single-photon avalanche diodes
(SPADs) technology, LiDARs, and conventional CMOS cameras, under a variety
of challenging conditions such as low light, camera or scene motion, and extreme
weather.

First, we consider a SPAD LiDAR and introduce a new 3D scene representation
called probabilistic point cloud (PPC), which allows us to do robust 3D object
detection for distant low albedo objects. Next, we demonstrate robustness with
the passive imaging mode of a single photon camera under extremely low light
conditions, which results in low signal-to-noise ratio (SNR) captures. We introduce
photon scale space, a collection of varying SNR images with the same scene

content for training perception tasks. Finally, we show robust scene inference



using conventional cameras under low light and motion conditions. We discuss
the tradeoff between two kinds of image degradations, i.e, motion blur and noise,
which we refer to as dual corruption.

The work in this dissertation shows that the key to unlocking robust perception
under various adverse conditions lies in (A) emerging sensing technologies such as
SPADs because of the high timing precision capability, and (B) effective learning

techniques designed for these sensors to train scene inference models.



1 INTRODUCTION

Deep learning based techniques have matured significantly for complex, real-world
scene inference and perception tasks. With these advancements, a new axis in
the performance space is emerging, driven by applications such as autonomous
navigation, where reliable performance under non-ideal imaging conditions is
as important as the overall accuracy. In such safety-critical applications, it is
important to consider the worst-case performance of the vision system to ensure
robustness across all conditions. For example, for a vision system to be deployed
on an autonomous car, it must perform reliably across the entire range of imaging
scenarios, including nighttime and poorly-lit scenes, high-speed moving objects,
and extreme weather conditions like fog, snow, rain, etc. Even the state-of-the-art
inference algorithms tend to fail for such scenarios where the sensor has not
collected sufficient light or the captured image has been degraded due to rain, fog,

Oor Snow.

Learning based methods for perception: Most perception models are learned
from large amounts of data collected under common operating conditions. Chal-
lenging scenarios mentioned above form a small fraction of the overall scenes that
are captured for training. This causes such scenarios to be long-tail cases for the
deep learning models, where most learning based models tend to struggle. Thus,
the usual training approaches lack designs that explicitly improve the performance

on such long-tail cases resulting in unreliable worst-case perception.

Sensing Modalities for perception: Perception pipelines are designed for a
variety of sensors, such as cameras, depth sensors like LiDARSs, and radars. Many
perception stacks often include multiple such sensing modalities. Each sensor
has different operating conditions that are considered adverse for its usage. For
instance, RGB cameras struggle at nighttime due to an insufficient amount of
light during the capture. On the other hand, Time of Flight (ToF) depth sensors
like LiDARSs are not impacted by nighttime but suffer from large noise under

strong ambient lighting conditions. Thus, adverse conditions for perception can



take different forms for each modality and hence require careful consideration
for each individual sensor. In this chapter, we introduce each sensing modality
that is considered in this dissertation, along with their corresponding challenging
scenarios, namely SPAD LiDARs, single photon cameras, and conventional RGB

cameras.

1.1 Active Imaging with SPADs

LiDARs are a prominent 3D imaging modality driving several applications, from
embodied perception and autonomous vehicles (Wang et al., 2024; Li and Ibanez-
Guzman, 2020), to surveillance (Guo et al., 2024), and more recently, deployed
even in consumer devices (e.g., Apple iPhones). LiDARs are based on the
time-of-flight (ToF) principle; a typical LiDAR consists of a laser source that
emits short sub-nanosecond light pulses into the scene and a sensor that captures
the reflected pulses; scene depths are estimated by computing the time delay
between emitted and received pulses (Lange, 2000) (Fig. 3.1a). Increasingly,
single photon avalanche diodes (SPADs) (Cova et al., 1996) are becoming the
sensor-of-choice in LiDARSs due to their high sensitivity (Pellegrini et al., 2000),
and amenability to fabrication of high-resolution arrays (Morimoto et al., 2021).
It is not a surprise that the next generation of LiDAR devices is dominated by
solid-state, high-resolution, and low-cost SPAD technology.

A typical single-photon LiDAR builds a histogram of photon counts over time
(Fig. 3.1b). Under ideal imaging conditions, the peak in the timing histogram
can be reliably detected, resulting in an accurate estimation of the time delay and
hence the scene depth (Fig. 3.1b). This estimated depth at each pixel can then be
used to construct a 3D point cloud-based scene representation, a canonical input

to various downstream 3D perception tasks (Li and Ibanez-Guzman, 2020).

Adverse conditions for SPAD LiDARs: Under several real-world conditions, the
raw timing histograms do not have a single, clearly discernible peak (Fig. 3.1b).

This could be due to a variety of factors, including (a) distant objects or low scene
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Figure 1.1: 3D Inference with SPAD LiDARs: a) A LiDAR measures depth by
emitting a pulsed laser and measuring time delays between emitted and received
pulses. b) The raw sensor data at each LiDAR pixel is a temporal histogram
(photon counts vs. time) where the time location of the peak corresponds to the
scene distance, which is then converted to a 3D point in a point cloud.

albedo, (b) strong ambient illumination which increases the background level
and noise, (c) other sources e.g non-diffuse and specular materials, multi-path or
multi-camera interference, weather phenomena such as rain, snow, fog (Pellegrini
etal., 2000; Pediredla et al., 2018; Beer et al., 2018; Satat et al., 2018) etc. Imagine
a LiDAR mounted on an autonomous vehicle needing to safely navigate the world,
not just under fair lighting and weather, but across all operating conditions. Under
these scenarios, it is often challenging to detect the correct peak location, resulting
in large depth errors.

This challenge is typically addressed by filtering techniques that retain only the
measurements with prominent peaks, while discarding the rest (Zhang et al., 2013;

Chen et al., 2020; Goudreault et al., 2023). Therefore, in challenging scenarios



mentioned above, most raw histograms that have small or ambiguous peaks either
get filtered out, resulting in incorrect removal of scene components, or introduce
significant noise in the final point cloud if they are retained. Such filtering steps
severely affect the inference performance by: (1) removing critical scene content
in low signal regimes due to over-aggressive filtering, or (2) propagating excessive
measurement noise to downstream inference models. These issues are exacerbated
for distant, small, or low albedo objects, which is indeed where a LiDAR sensor
is needed the most. Fig. 1.1b shows an example where distant low albedo chairs
are not detected by a downstream 3D detection model due to a sparse and noisy

point cloud capture.

1.2 Passive Imaging with SPADs

Single-photon avalanche diodes (SPADs) are capable of detecting individual
incident photons with high timing precision. In the past, these sensors were limited
to single-pixel or low-resolution devices, e.g., 32x32 pixels, and thus restricted
to scientific applications (Buttafava et al., 2015; O’Toole et al., 2018; Bruschini
et al., 2019). But, recently, due to their compatibility with CMOS fabrication
processes, high-resolution cameras up to 1 MP have been developed based on
SPADs (Morimoto et al., 2020), as well as the jots (Ma et al., 2017) technology.
SPADs have primarily been used for recovering image intensities (Antolovic et al.,
2018; Ingle et al., 2019; Ma et al., 2020) and low/mid-level scene information
such as 3D shape (O’Connor and Phillips, 1984; Renker, 2006; Dautet et al., 1993;
Kirmani et al., 2014; Shin et al., 2016; Gupta et al., 2019c,a) and motion (Gyongy
et al., 2018). High-level inference using single photon cameras is the next frontier

for single photon imaging technology.

Adverse conditions of low light: One of the most critical scenarios of perception
pipelines with cameras is low-light, due to the presence of a large amount of noise,
primarily due to read noise and shot noise. Figure 1.2 shows a scene captured at

nighttime and its brightened image for reference, which highlights the amount of
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Figure 1.3: Single Photon Cameras: Low bit captures from SPCs contain large
amounts of shot noise.

noise in low light. In such extreme conditions, images captured by conventional
cameras get overwhelmed by noise, causing the signal-to-noise ratio (SNR) to
dip below the threshold required for downstream inference algorithms to extract
meaningful scene information.

When operating in passive imaging mode, single photon cameras are capable
of capturing sequences of binary frames with minimal read noise (Ulku et al.,
2018), and hence a prime candidate for low light sensing. Despite low read
noise, the stochastic nature of photon arrival results in considerable shot noise in

single-photon binary frames captured by SPAD cameras. Figure 1.3 includes a
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Figure 1.4: Noise Blur Dual: Under low light and motion, there exists a tradeoff
between noise and blur.

scene captured under low light by a SwissSAPAD?2 Ulku et al. (2018) camera.
Low bit captures (binary frames in this case) suffer from severe shot noise, making
it extremely challenging to do robust inference. Although there has been some
recent work on joint denoising and classification (Liu et al., 2020a, 2019; Diamond
et al., 2017), inference on ultra-low-light images where each pixel receives less

than a photon on average still remains an intractable problem.

1.3 Imaging with conventional CMOS cameras

Conventional RGB cameras have matured over decades and are still the go-to
choice for many perception stacks because of many factors such as low cost, low
power usage, small form factor, high resolution, etc. Despite all these advantages,
their inability to capture high-quality images under challenging imaging conditions
like low light, motion, extreme weather, etc., makes them a liability for many

perception systems.

Adverse conditions of low light and motion: One challenging condition that is
fairly common for cameras is low-light and motion (scene or camera). In such
conditions, multiple types of corruption are bound to be present in the image. As
discussed earlier, low light could cause the images captured by the camera to

exhibit strong noise. While it is possible to mitigate noise by capturing longer



exposures (or larger apertures), this often results in strong motion (or defocus)
blur, leading to another kind of image quality degradation. Hence, noise and
blur represent "dual corruptions", reducing one (e.g., by adjusting the exposure)
necessarily increases the other. Figure 1.4 shows an example of a scene with
increasing exposure times, which illustrates this tradeoff between noise and
blur. As we can observe, each capture suffers from dual corruption, making it

challenging to do inference with any of these captures.

1.4 Thesis

It is my thesis that:

We can unlock robust perception under adverse real-world conditions
by improving the worst-case performance of the perception models and

employing well-designed learning approaches that are tied to its sensing

modalities.

To prove this thesis, I propose a perception framework that is robust under a
variety of challenging conditions. We consider numerous sensing modalities like
single photon cameras (SPCs), LiDARs and conventional CMOS cameras, under
a variety of challenging conditions such as low light, camera or scene motion, and
extreme weather.

I start with a SPAD sensor in active imaging mode to demonstrate robust 3D
object detection for distant low albedo objects. We introduce a new 3D scene
representation called probabilistic point cloud (PPC), which retains the uncertainty
information in each LiDAR measurement (Chapter 3). PPCs allow robust 3D
object detection under challenging scenarios of low signal-to-background ratio
(SBR) in raw LiDAR measurements. Numerous real-world scenarios can lead
to low SBR measurements, such as (a) distant objects or low scene albedo, (b)
strong ambient illumination and noise, (c) other sources, e.g. non-diffuse and

specular materials, multi-path or multi-camera interference, weather phenomena



such as rain, snow, fog, etc. I then demonstrate scene inference using a single
photon camera in passive imaging mode under extremely low light conditions. We
introduce photon scale space, a collection of varying signal-to-noise ratio (SNR)
images with the same scene content, which are used for training perception tasks
(Chapter 4). Our proposed training procedure with feature consistency of photon
scale images is able to train monocular depth estimation and image classification
models that are robust to shot noise present in low light conditions. Finally, I show
robust scene inference using conventional cameras under low light and motion
conditions. We propose to utilize multiple exposures of the same scene and their
ensemble output prediction for scene inference and perception tasks like object
detection (Chapter 5).
The main contributions of this dissertation can be summarized as follows:

e A new 3D scene representation called probabilistic point clouds (PPCs) that
retains confidence information of each depth measurement from a LiDAR.

¢ 3D inference approaches designed to utilize probabilistic point clouds that are
robust to distant low albedo objects.

e A learning procedure that utilizes photon scaled images, which is a set of
varying SNR images of the same scene, to train robust perception models for
extremely low light inference.

e A multi exposure ensemble approach for robust 3D object detection under low

light and motion, that utilizes multiple captures of varying exposures.

Dissertation Overview: Here is an overview of the dissertation:

e Chapter 2 provides the necessary background on imaging models for the variety
of sensing modalities considered in this dissertation. It also discusses the noise
models for various challenging conditions considered in our work.

e Chapter 3 details a new 3D scene representation called Probabilistic Point
Cloud (PPC), introduces inference approaches to utilize PPCs, and shows its
benefits on 3D inference for distant low-albedo objects.

e Chapter 4 introduces photon scale space, a training procedure using feature



consistency and experiments to show its effectiveness under low light.

e Chapter 5 proposes a multi exposure ensemble approach for scene inference, a
camera setup for simultaneously capturing with varying exposure times, and
its performance under low light and moving conditions.

e Chapter 6 concludes this dissertation, provides limitations of our work, and its
future outlook.
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2 IMAGING MODEL BACKGROUND

In this section, we discuss the imaging model used for the range of sensors that
are considered in our work. We include the background details for both active and
passive imaging with SPAD sensors, as well as imaging with conventional CMOS
cameras. We also discuss major sources of noise in these sensing modalities and

their respective noise models.

2.1 Active Imaging: SPAD LiDAR 3D Sensing
Model

A LiDAR imaging system typically consists of a synchronized pulsed laser source
and a high-speed time-resolved detector such as a single-photon avalanche diode
(SPAD) (Cova et al., 1996). The laser source transmits a pulsed signal s(t), e.g
a Gaussian pulse with a repetition period of J,.. The scene is illuminated in a
raster-scan manner or flood-illuminated to cover the detector’s field of view, and
the sensor observes the reflected light from the scene. For each pixel location
(1,j), the incident photon flux 1i,; is modelled (Lindell et al., 2018; Peng et al.,
2020) by the following equation:

(n+1)At di,j

ri,j [Tl] = J A (Di,j . S(t — IS

)dt + by, 2.1)

where At is the time duration of each discrete time-bin, n € {1,2,...N} where N
is the number of time bins over the duration of a laser period, @ ; is a term that
accounts for the distance fall-off, scene reflectance, and Bidirectional Reflectance
Distribution Function (BRDF), s(t) denotes the pulsed signal from the laser,
C denotes the speed of light, d;; is the distance of the scene at the point of
illumination (i,j), and b, denotes the photon flux from the ambient light.
Suppose the sensor has a quantum efficiency 1 € [0, 1), which describes the

probability that the sensor can detect an incident photon. The detector’s dark
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count is modeled as by, the number of spurious photon detections. Then, the
number of photons measured by the sensor at each pixel can also be represented

as a 1D timing histogram (raw sensor measurement) h; ; as follows:

hijMm] ~ P{mry;Mm] + bal}. (2.2)

The measurements are modeled as a Poisson process P with a time-varying arrival
function 1y ;[n] as the mean rate. Fig. 3.1 shows an example histogram captured
under low and high noise. Distance estimate ai,)- for each location is computed
using the bin with the highest photon count (peak location) from each timing
histogram! and by converting the time of flight to distance using the following

equation:

dij = (At % €/2) x arg max hy;[nl, 2.3)

Finally, the distance estimates can be converted to coordinates in a 3D point

cloud using camera intrinsic parameters.

2.2 Passive Imaging: Single Photon Imaging Model

Passive imaging is a common operating mode of single photon cameras because
of their capability of capturing high-speed binary frames. In this section, we look
at the image formation model of a single photon camera and also discuss its noise

characteristics.

Image Formulation Model: The number Z(x,y) of photons arriving at pixel
(x,y) of a single photon camera during an exposure time of T seconds is modeled

as a Poisson random variable (Yang et al., 2012), whose distribution is given as:

! Although we focus on SPAD histograms, the proposed analysis and techniques are compatible
with other direct ToF time-resolved sensors, including avalanche photodiodes (APDs) and Silicon
photomultiplier (SiPMs), which follow a similar peak detection approach.
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(pTn)*e ¢
k! ’
where ¢(x,y) is the photon flux (photons/seconds) incident at (x,y), and 0 <

P{Z =k} = (2.4)

1n < 1 is the quantum efficiency of the pixels. In the binary mode, each pixel
detects at most one photon during the exposure time and returns a binary value
B(x,y) such that B(x,y) = 1if Z(x,y) > 1; B(x,y) = 0 otherwise.? Due to the
randomness in photon arrival, the binary measurements B(x,y) are also random

variables with a Bernoulli distribution:

P{B =0} = e (¢™¥raT),

PB=1}=1-— e (@T+rqT) (2.5)

where 1 is the dark count rate (DCR), which is the rate of spurious photon

detections.

Sources of Image Noise: Conventional sensors measure incident photons as an
analog current, which is then converted to a discrete number. This analog-to-digital
conversion (ADC) results in a fixed read noise per frame, which leads to a low
signal-to-noise ratio (SNR) in dark scenes. In contrast, SPCs directly measure the
photon counts, skipping the intermediate ADC, thereby avoiding read noise.
Although SPCs have minimal read noise, binary frames still have extremely
low signal-to-noise ratio (SNR) in low flux environments due to shot noise. Fig. 1.3
shows an example of a clean image, with the corresponding binary image (S1).
The shot noise in the binary image (Eq. 2.5) causes extreme degradation. While it
is possible to increase the SNR by temporally averaging a large number of binary
frames, this approach is not applicable in the presence of scene/camera motion

due to motion blur or large computational requirements of motion compensation

2After each photon detection, a SPAD pixel experiences a dead time during which it cannot
detect any further photons (Rochas, 2003a). For modern SPAD pixels, the dead time is significantly
smaller than the exposure time T, and therefore is not considered in the following analysis.
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algorithms (Chi et al., 2020; Ma et al., 2020).

2.3 Imaging with Conventional CMOS cameras

In this section, we discuss the image degradations for conventional CMOS cameras
that are observed under low light and motion conditions. We describe the noise and
blur degradation model that is considered for our work, then introduce noise-blur

dual corruption that accounts for the presence of both degradations.

Noise Blur Trade-off in Image Formation: The number of photons incident at a
given pixel during the exposure is small under low-light conditions. Because of this,
noise becomes dominant in the captured images and has to be properly modeled.
In the presence of scene/camera motion, let the photon flux (photons/second) at a
pixel p on time t be ¢, ;. The key is to consider that the incident flux at each
pixel changes over time t, since the pixel may image different scene points due
to scene/camera motion, resulting in an image x with motion blur. Assuming an
exposure time At and a linear camera with quantum efficiency n, the raw reading

at pixel p (without quantization) is given by

At
I, = J bp,m dt +z; (2.6)
0

where z,, is the noise at pixel p. Here we ignore the non-uniformity of photon
response and noise (Granados et al., 2010), and consider three sources of noise.
e Shot noise z;, refers to the inherent natural variation of the incident photons
due to the Poisson process of photon arrival P and is modelled as the square
root of the signal. Therefore, z3, ~ P ( OA t bp,M dt).
® Readout noise z;, comes from the process of quantizing the electronic signal
as well as electrical circuit noise, which is modelled as a zero mean Gaussian
with variance 07 at each readout. Namely, z7, ~ N(0, 07).
e Dark current zg arises due to thermally generated electrons and also follows

a square root relationship with signal with a variance of 4. We thus have
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Zg ~ fP(GdAt).

We further assume that z%, z{,, and zg are independent of each other, and
follow an additive noise model (Hasinoff et al., 2010b), such that z,, = Z; +
z;, +zg (Granados et al., 2010). Thus, Var(z,,) = Var(z;,) + Var(z) —I—Var(zg).
This leads to the derivation of the signal-to-noise ratio (SNR) for the captured

images, given by

(5o opm at)’

SNR = — .
o $pndt+o?+ oAt

(2.7)

We now discuss the relationship of noise and blur with the exposure time
under the presence of both low-light and scene (or camera) motion. The longer
exposure time during capture leads to improved SNR, as the noise increases more
slowly than the signal. This, however, comes at a cost of increased motion blur
in the captured images due to the integral of the incoming flux ¢, . Hence, the
exposure time allows us to trade off noise and blur in the image degradation space,

which we term as Dual Corruption Space.

Dual Corruption: We define the spectrum of dual-corruption images by varying
the camera parameters, resulting in a set J = {xy, ...xn} of images with different
low-level characteristics (e.g, different amounts of blur and noise). For example,
varying exposure time At creates a sequence of images where noise gradually
decreases but the amount of blur increases. An example such sequence is shown
in Figure 1.4. Since these images are captured simultaneously (or in rapid

succession), we can assume that they have similar semantic content.

An Image without Noise and Blur. A special and theoretically interesting case
in the dual corruption space is an ideal clean image Xc1eqn captured using a
very short exposure time (At — 0) and without noise corruption (z, = 0). Such
an image is free of noise and blur. Despite being physically implausible, this

construct is sometimes convenient for our derivations.
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3 ROBUST 3D OBJECT DETECTION FOR DISTANT
LOW-ALBEDO OBJECTS

LiDARs are a prominent 3D imaging modality driving several applications, from
embodied perception and autonomous vehicles (Wang et al., 2024; Li and Ibanez-
Guzman, 2020), to surveillance (Guo et al., 2024), and more recently, deployed
even in consumer devices (e.g., Apple iPhones). LiDARs are based on the
time-of-flight (ToF) principle; a typical LiDAR consists of a laser source that
emits short sub-nanosecond light pulses into the scene and a sensor that captures
the reflected pulses; scene depths are estimated by computing the time delay
between emitted and received pulses (Lange, 2000), Fig. 3.1a). Increasingly,
single photon avalanche diodes (SPADs) (Cova et al., 1996) are becoming the
sensor-of-choice in LiDARSs due to their high sensitivity (Pellegrini et al., 2000),
and amenability to fabrication of high-resolution arrays (Morimoto et al., 2021).
It is not a surprise that the next generation of LiDAR devices is dominated by
solid-state, high-resolution, and low-cost SPAD technology.

A typical single-photon LiDAR builds a histogram of photon counts over time
(Fig. 3.1b). Under ideal imaging conditions, the peak in the timing histogram
can be reliably detected, resulting in an accurate estimation of the time delay and
hence the scene depth (Fig. 3.1b). This estimated depth at each pixel can then be
used to construct a 3D point cloud-based scene representation, a canonical input
to various downstream 3D perception tasks (Li and Ibanez-Guzman, 2020).

However, under several real-world conditions, the raw timing histograms do
not have a single, clearly discernible peak (Fig. 3.1b). This could be due to a variety
of factors, including a) distant objects or low scene albedo, b) strong ambient
illumination which increases the background level and noise, c) other sources
e.g non-diffuse and specular materials, multi-path or multi-camera interference,
weather phenomena such as rain, snow, fog (Pellegrini et al., 2000; Pediredla
et al., 2018; Beer et al., 2018; Satat et al., 2018) etc. Imagine a LIDAR mounted

on an autonomous vehicle needing to safely navigate the world, not just under fair
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Figure 3.1: Robust 3D Inference under Challenging Real-World Conditions:
a) A LiDAR measures depth by emitting a pulsed laser and measuring time delays
between emitted and received pulses. b) The raw sensor data at each LiDAR pixel
is a temporal histogram (photon counts vs. time) where the time location of the
peak corresponds to the scene distance, which is then converted to a 3D point
in a point cloud. Under challenging conditions, the histogram peaks cannot be
easily discerned from the background, resulting in large errors in the point clouds
and incorrect inference. ¢) We propose Probabilistic Point Clouds (PPC), a scene
representation with a probability attribute for each point. The figure shows real
LiDAR captures, where PPC is visualized with heatmap colors. Leveraging PPC,
our proposed approaches achieve robust 3D inference even under challenging
scenarios.
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lighting and weather, but across all operating conditions. Under these scenarios,
it is often challenging to detect the correct peak location, resulting in large depth
errors.

This challenge is typically addressed by filtering techniques that retain only the
measurements with prominent peaks, while discarding the rest (Zhang et al., 2013;
Chen et al., 2020; Goudreault et al., 2023). Therefore, in challenging scenarios
mentioned above, most raw histograms that have small or ambiguous peaks either
get filtered out resulting in incorrect removal of scene components, or introduce
significant noise in the final point cloud if they are retained. Such filtering steps
severely affect the inference performance by: (1) removing critical scene content
in low signal regimes due to over-aggressive filtering, or (2) propagating excessive
measurement noise to downstream inference models'.

We present a different approach. Our key observation is that raw SPAD
histograms encode rich scene information, which traditional LiDAR signal-
processing approaches overlook by relying solely on peak locations to estimate
point clouds. Instead of deterministically removing/retaining depth measurements,
we propose augmenting point clouds with meaningful “confidence” features
that encode physics-based information about the raw sensor measurements that
could be valuable for downstream inference under challenging scenarios. These
confidence features require only lightweight compute operations, which is a
critical consideration since these operations need to be performed on/close to the

sensor where compute and memory resources are extremely scarce.

Confidence. If you have it, you can make anything look good.

Diane Von Furstenberg

IThis filtering is a pre-processing step before outputting the final point-cloud. Consequently,
such noise is not observed in widely-used point cloud datasets as they consist of processed point
clouds where low-confidence observations have already been removed, e.g., a distant pedestrian
wearing dark clothing. Hence, a considerable amount of useful scene information is irretrievably
lost from such point clouds.
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We use these confidence measures to create probabilistic point clouds (PPC),
a novel 3D scene representation where each scene point is augmented with
the confidence (or probability) attribute. Going further, we leverage this PPC
representation to design computationally cheap inference approaches that are
plug-and-play compatible with a wide range of existing 3D perception models,
without needing to alter the architectures. We demonstrate the effectiveness
of our approach using widely employed point cloud-based 3D object detection
models across both indoor and outdoor scenarios, for both LiDAR as well as
camera-LiDAR fusion models. Despite its simplicity, the proposed approach
achieves significant performance gains under challenging conditions, such as
severe noise encountered in low albedo or distant scenes and intense ambient
illumination, outperforming complex point cloud denoising methods.

While the above methods can be inserted as drop-in modules in any 3D
inference network, we also explore the integration of the PPC representation
directly within point cloud based 3D object detectors. Our findings indicate
that architectures tailored for PPC can provide further performance gains under
challenging scenarios, thereby pointing towards future development of PPC-aware
3D object detectors.

This work takes the first steps toward designing an end-to-end 3D inference
pipeline that is capable of propagating the uncertainty in depth measurements, start-
ing from raw SPAD data, to downstream 3D inference models. Our contributions
can be summarised as:

e Designing lightweight physically meaningful confidence features from raw
SPAD histograms.

e Developing a geometric scene representation (PPC) that propagates sensor
uncertainty to point clouds.

e Designing computationally low-cost approaches that utilize PPCs for robust
3D inference.

e Demonstrating the performance of PPCs for 3D inference tasks using both

simulations and real LiDAR captures, under a variety of challenging scenarios.
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3.1 Related Work

3D Inference using Point Clouds: Point-based feature extraction networks (Qi
et al., 2017a,b) have become a standard building block for 3D inference (Qi
et al., 2019; Shi et al., 2019; Qi et al., 2018; Yang et al., 2020; Yin et al., 2021).
These methods largely evaluate using clean point clouds on benchmark datasets,
but not on noisy point clouds under challenging conditions; in fact, several
works (Qi et al., 2017a; Zhang et al., 2024; Liu et al., 2020b) explicitly mention
that network backbones are not robust to noise in the point clouds. Although a lot
of work has been done for 2D image-based inference under challenging scenarios
(Gnanasambandam and Chan, 2020; Goyal and Gupta, 2021; Diamond et al., 2021;
Hendrycks and Dietterich, 2019; Goyal et al., 2022), there is surprisingly little
prior work on analyzing the 3D inference performance under physically-accurate
sensor noise, especially for LIDARs. We show the performance degradation of
widely used 3D detection models under real-world noise, and design approaches

that perform robustly under such scenarios.

Confidence Attribute in 3D Inference: While methods have been proposed
to predict depth uncertainty from a camera image as part of monocular depth
estimation (Bae et al., 2022; Xia et al., 2020), there are no prior works that leverage
confidence or uncertainty in depth from 3D LiDAR sensor data. This is largely
because of limited access to raw sensor data. Our work is a first in designing
and propagating such confidence attributes from raw LiDAR sensor data, and

accompanying processing techniques, for robust 3D inference.

Point Cloud Denoising: Denoising could potentially be used to reduce the noise
in point clouds, and multiple algorithmic (Digne and De Franchis, 2017; Wolff
et al., 2016) and learning-based (Ma et al., 2023; Rakotosaona et al., 2020; Luo
and Hu, 2021; Hermosilla et al., 2019; Luo and Hu, 2020) solutions have been
proposed. These methods often introduce an extra, often significant, computation
step to the 3D inference pipeline. Perhaps more critically, these methods do not

consider physically realistic sensor noise models and achieve limited success
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under challenging conditions with large depth errors, especially for 3D inference.
In this work, we evaluate and compare the performance and computational cost

of these denoising methods under a wide gamut of challenging conditions.

LiDAR Data Denoising: Emerging high-resolution LiDAR sensor arrays are an
exciting new platform for 3D computer vision (Hutchings et al., 2019; Gyongy
et al., 2020; Della Rocca et al., 2020; Morimoto et al., 2020; Milanese et al.,
2023). It has been shown that directly denoising raw LiDAR timing histograms
can increase 3D reconstruction quality (Lindell et al., 2018; Peng et al., 2020;
Tachella et al., 2019; Rapp and Goyal, 2017; Lee et al., 2023), albeit at the expense
of significant computation. In this work, we bypass the expensive denoising
step and perform 3D inference on the lighter-weight (but potentially noisy) PPC

representation extracted from the raw LiDAR data.

3D Sensing in Challenging Conditions: Challenging conditions during sensing
discussed in Section 1 result in a timing histogram of low signal-to-background
ratio (SBR). Fig. 3.1 shows an example histogram where in ideal high SBR
conditions, the signal peak is clear, but in challenging low SBR conditions, there
are multiple small peaks. Consequently, the estimated depths will be noisy due
to the lack of a dominant peak. Another challenge faced by SPADs in ambient
illumination is that of photon pileup (Heide et al., 2018; Gupta et al., 2019b)
which distorts the histograms. There are approaches that computationally mitigate
the structured pileup distortions (Coates, 1968), but end up amplifying the noise
in the histograms (Lee et al., 2023), making it challenging to detect low SBR
peaks. In that regard, the proposed approaches are complementary to (and can be

applied in conjunction with) these pileup mitigation methods.

Noise in Low SBR Point Clouds: Noisy depth measurements under challenging
conditions result in point clouds that are sparse or prone to severe noise. Since
background peaks are uniformly distributed over the timing bins, the noise points
are often arbitrarily far away from the ground truth (GT) depth and along the

camera ray axis. Therefore, physically realistic noise under such scenarios is
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anisotropic and often more severe than traditional isotropic Gaussian noise often

considered in the existing literature.

3.2 Probabilistic Point Clouds

We introduce a confidence measure that can be derived from raw timing histograms
using light-weight compute operations. The following equation shows a probability
Pr(.) of a point defined as the ratio of photon detections for the peak bin to the
total photon detections in a histogram:
Pr(pY) = —l} i ,
2= iy 3.1)
where m = arg max h;;[n]
n

and pY is the point corresponding to the sensor pixel (i,j) and N is the number
of timing bins in the histogram. We augment points with this probability attribute
to create a Probabilistic Point Cloud (PPC). Under ideal conditions and with no
background photons, all photons would be detected in a single bin, resulting in a
point with a probability of 1. Fig. 3.1c shows a PPC captured under a challenging
scenario. Our probability measure is a simple yet effective statistical estimate of

the confidence in sensor depth measurements.

Inference with Probabilistic Point Clouds

The point-wise probability attribute in PPC provides vital information for robust
inference. Normally, one would expect most spurious points to have a low
probability (due to smaller peaks from background photons). However, under
challenging scenarios, even ground truth points may have low probability values.
Hence, simply filtering low-probability points would remove noise, but also
remove true scene points with low signal. To this end, we propose the following

approaches to leverage the probability measure of points for robust inference. A
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key feature of these approaches is that they do not require significant modifications

to the inference model or its training procedures.

Neighbor Probability Density (NPD) Filtering

Our key observation is that most spurious points in a point cloud under challenging
conditions have low probability and/or low spatial density. In contrast, points that
belong to true scene objects typically have a high local spatial density of points
due to neighboring points being on the same surface or object. To leverage this,
we compute a score called the Neighbor Probability Density (NPD) score for each
point, which encapsulates both the spatial density and the average probability of
its neighbors as follows:

NPD (pl) = ZPJEBQLT(pl)PT(p])/L/ (32)

where Pr(-) is the probability of a point and BQ; ,(-) returns up to L points that
are in the local neighborhood ball of radius T around a point. We aggregate the
probability of these neighbors and normalize it with L to get the final score. Since
the ball query returns up to L neighbors, the score for spatially dense points
with > L neighbors is the average probability of its L neighbors in the local
neighborhood ball, whereas sparse points with < L neighbors get penalized with
a lower score, as we normalize the score with L which is greater than its number
of neighbors.

Fig. 3.2 shows the distribution of NPD scores of all points in scenes under
different SBR levels. A large peak of noise points (red) on the left of each plot has
much lower NPD scores than the GT points (green). The points below a certain
NPD score () can be filtered out without removing many GT points. As SBR
decreases, GT points also have lower NPD scores, as expected, but the separation
between the peak of noise points and the rest remains. Another smaller peak
towards the right also contains some noise points with higher NPD scores. NPD

filtering cannot remove these points as it would also remove many GT points.
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Figure 3.2: Distribution of Point Probability and NPD Score: Point probabilities
(top row) and NPD scores (bottom row) of all points in scenes under different
SBR levels. NPD Scores for the noise (red) are lower as they have lower spatial
density than ground truth points (green). We use an NPD threshold to filter out a
large number of noise points from our point cloud. Point probability (proportional
to the number of photon detections) alone is not a good indicator for separating
noise from GT as many GT points also have low probability.

NPD score is a simple but effective way to filter out noise points as it leverages
information from multiple sensor measurements by considering neighboring
points, whereas filtering approaches based on low photon counts only rely on the
timing histogram of the same pixel. Note that we do not make any assumptions
regarding the object/scene surface, and the score is easy to calculate without much

computational overhead.

Farthest Probable Point Sampling (FPPS)

A key component in many point cloud inference models (e.g, PointNet++ (Qi
et al., 2017b) and Point Transformer (Zhao et al., 2021)) is the Farthest Point
Sampling (FPS) which is used for keypoint sampling. FPS samples the points
that are farthest from each other. This ensures that sampled keypoints cover all
scene regions, including objects with sparse or few points.

However, FPS is not robust to strong noise as it prioritizes points that are

distant from each other. Since noise points can be spread out far from object
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(Ground Truth) (Challenging conditions) (Challenging conditions)

Figure 3.3: Farthest Probable Point Sampling (FPPS): Sampled points using
Farthest Point Sampling (FPS) are not robust to the noise present under challenging
conditions. FPS samples a large number of noise points as it prioritizes farther
points (column 2). We propose FPPS which utilizes the point probability to build a
candidate set of high-probability points for sampling which ensures most sampled
points are on the object surface while still covering the entire scene (column 3).

surfaces, this results in a large number of noise points being sampled and thus a
significant drop in performance. Fig. 3.3 shows a point cloud of a scene under both
ideal (column 1) and challenging (column 2) conditions along with its sampled
keypoints using FPS. While FPS is effective in high SBR scenarios and covers
most surfaces and objects, it suffers in challenging scenarios by sampling a lot of
noise.

To address this issue, we propose Farthest Probable Point Sampling (FPPS),
which only considers high-probability points as candidates for sampling. We build
a candidate set of points above a certain probability value (3) and perform FPS

on this candidate set. This ensures that the sampled centers have fewer spurious
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points and more surface or ground truth points, which results in more effective
inference output (Fig. 3.3).

We should note that the low-probability points are still part of the point cloud
and are included in the rest of the network operations like feature aggregation.
This allows the network backbone to still utilize low-probability points for feature
extraction if they are in the neighborhood of a sampled keypoint. FPPS is
not needed for the network backbones that do not include a keypoint sampling

operation.

3.3 3D Object Detection Results

Datasets: We evaluate our approach on 3D object detection benchmarks of
SUN RGB-D (Song et al., 2015) and KITTI (Geiger et al., 2012). SUN RGB-D
consists of ~10K RGB-D scans of indoor scenes annotated with 3D bounding
boxes. We use the standard evaluation protocol that considers 10 common object
categories. KITTI dataset is a widely used outdoor autonomous driving dataset
containing ~7.4k annotated scenes with LiDAR point clouds. We follow the
standard evaluation protocol using three categories: car, pedestrian, and cyclist.

Point Clouds under Challenging Conditions: We use ground truth depth
maps to simulate a physically realistic photon timing histogram for each pixel
using the simulation model and code provided by (Lindell et al., 2018). Each
histogram has 1024 bins and a temporal bin width of 97ps. Our pulsed signal has
a repetition period of 100ns and the detected illumination pulse has a full-width
half maximum of ~350ps. We simulate histograms with various levels of mean
Signal to Background Ratio (SBR) for the scene to cover a variety of scenarios.
Our benchmark consists of the following SBR levels {0.1 (5-50), 0.05 (5-100),
0.02 (1-50), 0.01 (1-100), Clean} where Clean denotes the ground truth point

cloud.

Implementation: We implement our method using the MMDetection3D frame-
work (Contributors, 2020) provided by OpenMMLab. For the SUN RGB-D
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dataset, we evaluate using VoteNet (Qi et al., 2019) architecture, which is a
LiDAR-based 3D object detector and uses PointNet++ (Qi et al., 2017b) as the
point processing network backbone. For the KITTI dataset, we use PV-RCNN (Shi
et al., 2020) architecture, which is a LIDAR-based 3D object detector and uses 3D
Voxel CNN with sparse convolutions (Graham et al., 2018) as a backbone. Our
NPD filtering step uses L(= 64) neighbors within radius r(= 0.2) to calculate the
NPD score. We use o« =0.003 and 3 = 0.01 as hyperparameters for NPD Filtering
and FPPS respectively for our model. Please refer to the supplement for ablation

studies on hyperparameters.

Baselines: We compare our approach with the following set of baselines. All
methods use the same 3D detection model architecture and backbone for a fair

comparison.

e Matched Filtering (Turin, 1960): This method uses matched filtering output of
the timing histograms. We convolve the histograms with the signal pulse in
Eq. 2.3 before calculating the depth estimate. This provides a strong baseline
for temporal denoising.

e Thresholding: This method uses a thresholding approach where depth estimates
corresponding to small bin values are ignored. This removes a large number
of spurious points from the point cloud. We select the optimal value of the
threshold for our evaluation.

e PointClean Net (Rakotosaona et al., 2020): This is a point cloud denoising
network that uses a combination of outlier removal and denoising steps.

e Score-based Denoising (Luo and Hu, 2021): This is a state-of-the-art point
cloud denoising approach, which denoises each point in the point cloud by
updating them to their estimated local surface based on a calculated score.

e PathNet (Wei et al., 2024): This is a point cloud denoising method based on

reinforcement learning using a noise and geometry-based reward function.

We use a matched filtering step for all methods (including PPC) for temporal
denoising of the histograms. We retrain all denoising networks (PointClean
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Avg. SBR Clean 0.1 0.05 0.02 0.01

AP@25 AP@50 AP@25 AP@50 AP@25 AP@50 AP@25 AP@50 AP@25 AP@50

Matched Filtering 51.34  27.45 4243 20.49 38.77  17.57 1695  5.05 1134 273

Thresholding 57.11  33.21 5127 28.62 46.44  24.86 29.58 14.81 16.47 645
PointClean Net ~ 54.58  31.89 45.65 26.44 40.19 19.15 18.24  8.05 12.78  3.01

Score Denoising  57.38  34.02 53.19 29.45 48.61 25.78 2635 13.73 1455 473

PathNet 57.16  33.87 52.16  28.79 47.11 24.89 2545 12.96 13.87  4.56

PPC (Ours) 58.61 34.99 5429 3115 5246  30.20 3849 1647 2942  13.16

Table 3.1: 3D Object Detection Comparison: Table shows AP@0.25 and
AP@0.50 results on the SUN RGB-D dataset using VoteNet architecture. Our
approach outperforms all baselines and shows large gains under very low SBR
conditions.

Net, PathNet, and Score-denoising) using the SUN RGB-D dataset. Denoised
point clouds are used for training and testing 3D detection models for these
baselines. Other approaches for timing histogram denoising are also discussed in

the supplement.

Benchmark Results: For every method, we train a joint model using all SBR
levels and evaluate the performance at each SBR level. Table 3.1 shows AP@25
and AP@50 comparisons on the SUN RGB-D dataset with VoteNet. Matched
Filtering and Thresholding suffer due to a large amount of noise. PointClean Net,
PathNet, and Score-denosing show improvement for higher SBR levels, but are
not as effective under low SBR conditions. Our approach performs significantly
better even under extremely low SBR conditions. Please see supplementary text
for per-category results. Table 3.2 shows mAP on moderate difficulty of KITTI
val split calculated with 11 recall positions for PV-RCNN architecture (Shi et al.,
2020). Our approach shows significant gains for pedestrian and cyclist categories
under low SBR conditions.

Observations: Fig. 3.4 and 3.5 visualize results on the SUN RGB-D and KITTI
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Matched Filtering Thresholding Score-Denoising PPC (Ours) Ground Truth

Figure 3.4: 3D Object Detection Visualization: Figure shows results from the
SUN RGB-D dataset using VoteNet under low SBR (0.05) conditions. Matched
Filtering struggles with noise and misses a lot of objects. Thresholding misses
smaller ( ) and farther (bookshelf) objects. Score-Denoising removes noise
closer to the surface but still misses a few objects. PPC (Ours) outperforms all
baselines.

Avg. SBR Clean 0.05 0.02 0.01 0.005

Car Ped Cyc Car Ped Cyc Car Ped Cyc Car Ped Cyc Car Ped Cyc

Matched Filtering 82.48 60.11 71.36 73.14 55.76 61.84 68.17 50.03 52.85 59.95 47.06 43.74 50.68 37.01 35.01
Thresholding  82.81 58.63 71.55 72.80 57.72 60.44 68.05 54.80 52.71 59.40 49.23 44.96 50.35 38.62 35.74

PPC (Ours) 83.56 60.62 73.35 73.03 59.12 64.14 68.42 59.04 53.18 60.29 55.39 47.76 51.30 49.51 36.44

Table 3.2: KITTI 3D Detection Comparison: Table shows mAP for car, pedes-
trian, and cyclist category on moderate difficulty of KITTI val split calculated
with 11 recall positions for PV-RCNN architecture. Our method shows significant
gains under low SBR conditions.
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Figure 3.5: 3D object detection visualization on the KITTI dataset under low SBR
(0.02) conditions. Baselines miss small and farther objects: car and pedestrian
(zoom-in). PPC detects most objects.

datasets respectively using LiDAR-only 3D detectors. Matched filtering misses
many objects due to strong noise. Thresholding removes a large number of noise
points but also removes ground truth points that have low photon detections.
Thus, it performs better on larger and closer objects as they include points with
high incident photon flux but misses farther objects like nightstands and chairs.
Score-based Denoising is able to denoise points closer to a surface. However,
the recognition is still affected by noise points that are far from the surface as
they are not denoised effectively. Our approach can detect smaller and farther
objects more consistently. Color information is only used for visualization and not
for inference. Please refer to the supplementary material for more visualization

results.

Generalization: We also evaluate using ImVoteNet (Qi et al., 2020) (fusion
of camera and LiDAR), Uni3DETR (Wang et al., 2023) (LiDAR only with
Transformer-based architecture), and PointPillars (Lang et al., 2019) (LiDAR
only with pillar-based representation) in the supplementary section which shows

the effectiveness of our method on a wide range of 3D detectors.
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Matched Thresh- PointClean Score- PathNet PPC
Filtering olding Net Denoising (Ours)
Runtime (ms) 87 89 755 1345 867 95

Table 3.3: Comparison of Inference Time: Our method adds no significant
computational cost while outperforming all baselines.

Should we use denoising networks for point cloud inference? Current denoising
networks are designed for surface reconstruction but are not very effective for
downstream inference tasks like 3D object detection. This is because, under
challenging real-world conditions considered in this work, noise is usually more
severe due to spurious points with large depth errors. Further, these denoising
networks add a significant computational overhead, whereas our method performs
inference robustly without the extra computational cost of denoising. Table 3.3
shows per scene runtime for each method. This suggests that training a robust
inference model to handle noise is more beneficial than denoising point clouds

under challenging conditions.

Modeling with Probabilistic Points

Moving forward, we explore the integration of the PPC representation directly
into the point cloud models. To this end, we focus on VoteNet (Qi et al., 2019) —
a classic model built on PointNet++ (Qi et al., 2017b) for 3D object detection.
VoteNet processes a point cloud by taking points and their attributes as input,
leveraging PointNet++ to extract point-wise features. These features are passed
through a voting module that groups the point cloud into local clusters. Each
cluster generates 3D boxes as the object proposal. The proposals are then classified
to produce the final detection results.

This design allows integrating point probability at various stages of the model,
including the input, point-wise features, and object proposals. We explore these
options through the experiments detailed below. While alternative approaches to

integrate probability into point cloud networks may exist, our goal is to delineate
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Avg. SBR Clean 0.1 0.05 0.02 0.01

PPC (Baseline) 58.61 54.29 52.46 38.49 29.42
PPC + A 58.35 55.73 53.67 39.10 30.58
PPC +B 59.29 55.86 52.95 37.68 30.42
PPC +C 58.53 55.18 53.15 38.76 30.17
PPC + A+B+C 59.35 56.11 53.45 39.87 30.81

Table 3.4: AP@25 results on SUN RGB-D with PPC variants.

evident design choices to build PPC-aware 3D inference models.

e Probability as a point attribute (A): Point probability can be treated as an
attribute for the point and used as an input for the network. This design tasks
the network to learn effective features from the probability.

e Probability weighted point feature vectors (B): Point-wise features from Point-
Net++ can be weighted by the average neighborhood probability. This allows
the network to prioritize features from high-probability points.

e Probability weighted objectness scores (C): The objectness score for a proposal
can be weighted by the average probability of points within the corresponding
3D box. This allows the network to assign higher objectness scores for proposals

with high confidence points.

Results and Discussion: Table 3.4 presents the AP@25 results on the SUN
RGB-D dataset. By employing individual options, the model attains a further gain
of 1-2%. Using all three options leads to a modest boost of ~2%. We note that
this boost is on top of our already strong baseline. Our results show the potential
of integrating PPC with deep models and further call for innovative approaches in

this area.

3.4 Ablation Studies

In this section, we include the ablation studies of our proposed method. We

evaluate various design choices on the SUN RGB-D benchmark using the VoteNet
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architecture.

First, we analyze the effectiveness of both NPD Filtering and FPPS individually.
Fig. 3.6a shows the results of our approach without NPD and FPPS. NPD filtering
shows a significant gain in performance, especially under very low SBR scenarios.

FPPS shows an additional 2-4% improvement in mAP under very low SBR

conditions.
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Figure 3.6: Ablation Study of PPC Components: Performance of our approach
(a) without FPPS and NPD Filtering, and (b) without probability attribute.

Second, we show the performance of our method on point clouds without the
probability attribute in Fig. 3.6b. This is equivalent to using our approach with
a conventional point cloud (i.e, all points with probability 1). The probability
attribute accounts for about a 4-5% gain in mAP performance and is significant in
very low SBR conditions.

We also show the performance of our approach by varying the hyperparameters
of NPD filtering () and FPPS (3). Fig. 3.7a and 3.7b show the mAP on the
complete SUN RGB-D test set of all SBR levels. We chose the best performing
value of & = 0.003 and 3 = 0.01 for our models.

We also analyze our method by varying the hyperparameters of NPD score
calculation, i.e. max ball neighbors (L) and ball radius (r). Fig. 3.7c and 3.7d
show the mAP on the complete SUN RGB-D test set of all SBR levels. We find
an optimal NPD score value («) for each experiment. Increasing the radius too

much starts to hurt the performance as noisy sparse points have more neighbors if
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Figure 3.7: Ablation Study of PPC Hyperaparametes: Performance of our
approach with varying (a) NPD Score Value, (b) FPPS Value, (c) Max Ball
Neighbors, and (d) Ball Radius.

the ball radius is bigger. Performance improves as the value of L increases but
saturates around 64. We chose the values of v = 0.2 and L = 64 for our models.
Table 3.5 analyzes the total per-scene runtime of our method on the SUN
RGB-D dataset. We use a single RTX2070 Super GPU machine for inference
time calculation. Adding FPPS adds no computational overhead, whereas adding

NPD filtering adds less than 8% of runtime with our implementation.
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Inference Time (ms)

PPC 95

PPC w/o FPPS 95
PPC w/o NPD 88
PPC w/o FPPS & NPD 88

Table 3.5: Ablation Study of Runtime: Our method adds no significant compu-
tational cost to runtime.

We analyze the performance of the Thresholding baseline by varying the
threshold used for the model. Fig. 3.8 shows AP@25 results on the complete
SUN RGB-D test set of all SBR levels. We select the best-performing threshold
(=1.1) for evaluating this baseline.

0.6 0.8 1.0 1.2 1.4
Thresholding Value

Figure 3.8: Ablation Study of Thresholding baseline: Performance of the
Thresholding baseline with varying threshold used for the model.

3.5 Experiments with Real Hardware

Finally, we demonstrate our approach using real PPCs captured by our prototype
Single-photon LiDAR systems.

Indoor Capture Setup: We use a HORIBA FLIMera (Henderson et al., 2019)
SPAD camera (Fig. 3.9) since it allows access to raw timing histograms for each
pixel. The camera consists of a 192x128 pixel SPAD array; each pixel has a
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FLIMera
Base
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Figure 3.9: Camera Setup: Figure shows our complete LiDAR setups with
FLIMera (left) and Adaps (right) sensors.

quantized 12-bit (4096 bins) time axis, with each bin having a width of 41.1ps.
We use a flash illumination setup using a diffuser to illuminate the field of view
of the sensor. We consider several indoor scenes (e.g, conference rooms, lecture
halls, and living rooms) under ambient light ranging from 200-800 lux under

varying exposure times from 0.1s to 1s to simulate various signal levels.

Outdoor Capture Setup: For outdoor captures, we use Adaps ADS6311 (Adaps,
2024) sensor which is a commercial medium-range Single-photon LiDAR. It
has a spatial resolution of 256x192 pixels and allows raw temporal histogram
read-out for each pixel. Each pixel has 672 temporal bins with a bin width of
297ps. We consider outdoor scenes (e.g, parking lots, traffic stops, and busy

roads) for captures. Please refer to the supplement for more details on both setups.

3D Object Detection Results: Fig. 3.10 and Fig. 3.11 show the results of our
approach compared with the baselines using real captures for indoor and outdoor
scenes, respectively. PPC can detect most objects with accurate bounding boxes.

More results on real captures are in the supplement.
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PPC (Ours)

Scene Matched Filtering Thresholding Score-Denoising

Figure 3.10: 3D Detection Results on Indoor Real Captures: Figure shows

scenes under challenging conditions captured by our FLIMera LiDAR system.

Baselines fail to detect many small distant objects. PPC detects all objects (e.g
, and couch).

Scene (GT) Matched Filtering Thresholding PPC (Ours)

Figure 3.11: 3D Detection Results on Outdoor Real Captures: Figure shows
scenes under challenging conditions captured by our Adaps LiDAR system.
Baselines fail to detect distant cars, whereas PPC detects farther cars with accurate
bounding boxes.

3.6 Conclusion

In this work, we demonstrate numerous real-world challenging scenarios of
3D object detection using LiDAR point clouds, such as long-distance or low-
albedo objects. These conditions produce sparse or erroneous point clouds,
resulting in severe loss of accuracy. To mitigate this, we propose a novel 3D
scene representation called Probabilistic Point Cloud (PPC), where each point
is augmented with a probability attribute that encapsulates the measurement
uncertainty (confidence) in raw data. We further introduce inference approaches

that leverage PPC for robust 3D object detection; these methods are versatile
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and can be used as computationally lightweight drop-in modules in 3D inference
pipelines. We demonstrate, via both simulations and real captures, that PPC-
based 3D inference methods outperform several baselines with LiDAR as well as
camera-LiDAR fusion models, across challenging indoor and outdoor scenarios

involving small, distant, and low-albedo objects, as well as strong ambient light.

3.7 Supplementary Section: Recognition with Real

Captures

In this section, we provide further details about our LiDAR setups and more

results on real PPC captures.

Camera Setups

We use a LiDAR sensor with an external laser for our indoor captures. This allows
us to control various camera and scene parameters (e.g, exposure time, laser power,
and ambient illumination) over a wide range. We use a commercial LiDAR sensor
for our outdoor captures. This allows us to have a portable low-power LiDAR

setup for outdoor environments. Here are the details of both setups:

Indoor Camera Setup: Our indoor setup uses a SPAD-LiDAR sensor with
an external class 4 laser. Fig. 3.12 shows the front view of our setup with the
HORIBA FLIMera (Henderson et al., 2019) camera. The temporal resolution of
the camera is about 380ps, which is in line with the full-width at half-maximum
(FWHM) of the instrument response function (IRF) of the device. We set up our
camera system with the Katana laser (Katana, 2024) which is a high-powered
pulsed picosecond laser system by OneFive. The laser has a wavelength of 532nm
(green). We operate the laser under low power settings (ranging from 50-100
mW). We use a flash illumination setup with a diffuser to illuminate the field of
view of the sensor. We use a 3.8mm focal length lens for a wider field of view

of the scene. The laser system, as well as the FLIMera sensor, are connected to
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Figure 3.12: Indoor Camera Setup: The Figure shows the front view of our
FLIMera camera setup (left) and the sensor (right).

Figure 3.13: Outdoor Camera Setup: The Figure shows the front view of our
Adaps camera setup (left) and the sensor (right).

an external computer to receive the synchronization signal and trigger for the

capture.

Outdoor Camera Setup: Our outdoor camera setup uses a commercial LIDAR
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sensor which is a more portable camera and uses low input power. Fig. 3.13
shows the front view of the setup with Adaps (Adaps, 2024) camera. The camera
is rated for an accuracy of more than Scm up to a range of 30m. The setup has
a wide FOV (120°horizontal and 90°vertical). We also vary the exposure time
from 0.1s to 1Is to simulate various signal levels. The camera can operate at a
very low power input (<10W) and is connected to a small portable AC power
source. The camera also saves low-resolution (256x192) grayscale images, which
are used for visualizations only. We also mount a smartphone camera in our setup
to simultaneously capture high-res RGB images, used for visualizations only for

some static scenes shown in the main paper and supplementary report.

3D Object Detection Results

Fig. 3.14 and 3.15 show a comparison of our approach with the baselines using
real indoor and outdoor captures. Matched Filtering baseline suffers from noise
and often detects false positives. Thresholding frequently misses small or farther
objects in the scene. Baselines struggle with farther chairs in indoor captures
and farther cars and pedestrians in outdoor captures. Our approach detects most

objects with tight bounding boxes.

3.8 Supplementary Section: Additional 3D Object

Detection Results

In this section, we include additional results and analysis that supplement the

experiments in the main paper.

Implementation Details

We implement our method using the MMDetection3D framework (Contributors,
2020) provided by OpenMMLab and use the same evaluation procedure as the
previous literature. For the SUN RGB-D dataset, the color information from the



40

Scene Matched Filtering Thresholding Score-Denoising PPC (Ours)

T
TR T
AWRRNN g L]
ezl 3y —
7=

Figure 3.14: 3D Detection Results on Real Indoor Captures: Figure compares
our method with the baselines under challenging low SBR conditions. Baselines
fail to detect many small and farther objects, e.g chairs in the back of many scenes.
PPC detects most objects (e.g , , and couch) with tight bounding boxes.
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Figure 3.15: 3D Detection Results on Real Outdoor Captures: Figure compares
our method with the baselines under very challenging low SBR conditions. The
first scene includes 6 cars and baselines fail to detect farther cars. The second
scene shows 2 cars and a pedestrian, and baselines struggle to detect the distant
pedestrian. The third scene includes a car, two pedestrians, and a cyclist. The
ground truth objects are marked in the camera scene images for easier visualization.
PPC detects most objects (e.g cars, pedestrians, and ) in all scenes with
accurate bounding boxes.

point clouds is not used for inference and is only used for visualization. For the
KITTTI dataset, the reflection intensity information from LiDAR point clouds is
used as input for all methods.

Category-wise Performance

Table 3.6 shows per-category AP@25 results on the SUN RGB-D dataset for
all methods under low SBR (0.02) conditions. Our approach shows significant
gains for all categories, particularly larger gains for small-sized object categories
(e.g chair, nightstand, dresser) which typically suffer the most under low SBR
conditions. Table 3.7 shows mAP on the KITTI val split for PV-RCNN architecture
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Matched  Thresh- PointClean Score PathNet PPC

Category Filtering olding Net Denoise (Ours)
Bed 54.37 67.33 53.59 68.57 67.53 72.97
Sofa 16.20 28.15 22.00 38.25 38.03 45.19
Table 29.61 37.99 30.20 33.93 32.17 40.47
Bathtub 6.04 25.14 271 14.04 13.46 54.32
Desk 7.97 14.16 7.78 8.33 9.18 17.37
Bookshelf 2.12 4.85 0.67 1.01 0.89 9.80
Chair 22.05 34.27 22.92 27.45 25.43 47.47
Night Stand 3.10 14.45 741 10.23 9.13 30.49
Dresser 2.58 4.64 2.80 2.44 2.09 13.73

Table 3.6: Category-wise 3D Object Detection Results: Table shows per category
AP @25 results on SUN RGB-D dataset under low SBR (0.02) conditions. Our
approach outperforms all baselines and shows large gains for smaller object
categories (below the line) like chairs and nightstands.

Avg. SBR Car Pedestrian Cyclist
Easy Mod Hard Easy Mod Hard Easy Mod Hard

Matched Filtering 79.02 59.95 57.67 50.85 47.06 43.51 68.78 43.74 41.10
Thresholding ~ 78.73 59.40 5535 54.45 49.23 4538 68.13 44.96 42.64
PPC (Ours) 79.10 60.29 59.08 60.42 55.39 50.82 7199 47.76 44.84

Table 3.7: KITTI 3D Detection Comparison: Table shows mAP for easy,
moderate, and hard difficulty levels on KITTT val split calculated with 11 recall
positions for PV-RCNN architecture under low SBR (0.01) conditions.

under low SBR (0.01) conditions calculated with 11 recall positions in a standard

format similar to previous works. PPC outperforms the baselines in all categories.

Visualizations and Observations

Fig. 3.16 to 3.19 show visualizations of 3D object detection on the SUN RGB-D
dataset for all methods under different SBR conditions using VoteNet architecture.
Fig. 3.16 and 3.17 show complex scenes with a large number of small objects
(e.g chairs). Baselines fail to detect a lot of small and farther objects (last row

of chairs) whereas PPC detects the most number of objects accurately. Fig. 3.18
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Scene Matched Filtering Thresholding Score-Denoising PPC (Ours) Ground Truth

Figure 3.16: 3D Object Detection Results: Figure shows scenes from the SUN
RGB-D dataset under medium SBR (0.1) conditions. The first scene contains
multiple rows of small objects ( ). Baselines fail to detect farther rows of
chairs. Our approach detects most and

Matched Filtering Thresholding Score-Denoising PPC (Ours) Ground Truth
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Figure 3.17: 3D Object Detection Results: Figure shows scenes from SUN
RGB-D dataset under medium SBR (0.05) conditions. Scenes consist of small
( ) and farther objects (bookshelf). Our approach detects most objects with
no false detections.

and 3.19 show scenes with very low SBR conditions. Baselines fail to detect
many objects whereas our approach performs significantly better even under the
presence of a large amount of noise. Fig. 3.20 shows a few failure cases for our
method. PPC can sometimes detect multiple overlapping bounding boxes for the
same object under noise. Couch or single-sitter couches are often detected as
chairs by PPC or other baselines. Fig. 3.21 to 3.24 show scenes from the KITTI
val dataset under varying SBR conditions using PV-RCNN architecture. Baselines

fail to detect many objects like farther cars and pedestrians, whereas our approach
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Figure 3.18: 3D Object Detection Results: Figure shows scenes from the
SUN RGB-D dataset under low SBR (0.02) conditions. Scenes consist of small
(nightstand) and occluded objects ( ). Our approach performs better than all
baselines.

Scene Matched Filtering Thresholding Score-Denoising PPC (Ours) Ground Truth

Figure 3.19: 3D Object Detection Results: The figure shows scenes from the
SUN RGB-D dataset under low SBR (0.01) conditions. Baselines fail to detect
numerous objects ( ) due to noise whereas our approach detects most objects
in the scene.

detects most objects.

3.9 Supplementary Section: More 3D Detection

Architectures

In this section, we evaluate our PPC approach using a variety of 3D object detection

architectures. First, we evaluate a camera-LiDAR fusion approach ImVoteNet
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Matched Filtering Thresholding Score-Denoising PPC (Ours) Ground Truth

Figure 3.20: 3D Detection Failure Cases: The first scene shows a scenario where
PPC detects multiple boxes for the same object (nightstand). The second and
third scenes show scenarios where a couch is detected as a chair by PPC and the
baselines. Single-sitter couches are often detected as chairs by this model.

Thresholding PPC (Ours) Ground Truth

Scene Matched Filtering

Figure 3.21: 3D Object Detection Results: Figure shows scenes from the KITTI
dataset under medium SBR (0.05) conditions. Baselines fail to detect farther cars.
PPC is more robust for distant objects.
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Figure 3.22: 3D Object Detection Results: Figure shows scenes from the KITTI
dataset under low SBR (0.02) conditions. The first scene shows a scenario where
baselines fail to detect objects like farther cars and pedestrian. PPC is more robust
for distant objects.

Scene Matched Filtering Thresholding PPC (Ours) Ground Truth

Figure 3.23: 3D Object Detection Results: Figure shows scenes from the KITTI
dataset under low SBR (0.01) conditions. Baselines struggle with farther cars,
whereas PPC detects most objects.
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Figure 3.24: 3D Object Detection Results: Figure shows scenes from the KITTI
dataset under low SBR (0.005) conditions. Baselines fail to detect dark and farther
objects like black cars. PPC is more robust for distant objects.

Avg. SBR Clean 0.1 0.05 0.02 0.01
AP@25 AP@50 AP@25 AP@50 AP@25 AP@50 AP@25 AP@50 AP@25 AP@50

Matched Filtering 63.37 35.51 53.89 27.64 5323 2467 3754 1099 33.17 17098
Thresholding 6425 36.17 59.57 33.44 5882 3245 4243 1817 3951 1261
PPC (Ours) 6436 3694 6151 35.69 60.19 3138 53.21 2537 4684 20.14

Table 3.8: 3D Detection Comparison using camera-LiDAR fusion architecture:
AP@0.25 and AP@0.50 results on the SUN RGB-D dataset using ImVoteNet
show significant gains for PPC for all SBR levels.

(Qi et al., 2020). Table 3.8 includes the comparison on the SUN RGB-D dataset,
which shows significant improvement for all SBR levels. Second, we evaluate
using a recent LiDAR-only transformer-based architecture Uni3DETR (Wang
et al., 2023). Table 3.9 includes mAP comparison on the SUN RGB-D dataset
which shows performance improvement for low SBR levels. Lastly, we evaluate
using a Pillar-based architecture PointPillars (Lang et al., 2019). Table 3.10
includes mAP for car, pedestrian, and cyclist categories on moderate difficulty of
KITTI val split calculated with 11 recall positions. Our method shows significant
improvements under low SBR conditions for pedestrian and cyclist categories.

PPC shows significant gains under low SBR for all detection architectures,
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Avg. SBR Clean 0.1 0.05 0.02 0.01
AP@25 AP@50 AP@25 AP@50 AP@25 AP@50 AP@25 AP@50 AP@25 AP@50

Matched Filter 64.98 4828 61.52 45.09 6082 4392 51.12 34.09 4529 2797
Thresholding 64.50 47.94 61.08 4471 61.19 4429 5197 3487 48.13 28.64
PPC (Ours) 65.53 4935 62.58 46.71 6198 4828 56.46 38.03 51.21 31.16

Table 3.9: 3D Detection Comparison using LiDAR-only tranformer-based
architecture: AP@0.25 and AP@0.50 results on the SUN RGB-D dataset using
Uni3DETR show significant gains for PPC under low SBR conditions.

Avg. SBR Clean 0.05 0.02 0.01 0.005
Car Ped Cyc Car Ped Cyc Car Ped Cyc Car Ped Cyc Car Ped Cyc

Matched Filtering 77.08 52.78 64.49 68.25 49.52 58.96 64.13 47.67 46.45 54.43 41.61 41.76 45.03 32.46 31.06
Thresholding ~ 77.34 52.09 64.81 68.06 49.63 59.09 63.87 47.92 46.96 54.18 40.88 42.18 45.11 32.79 31.89
PPC (Ours) 77.19 52.12 65.21 69.12 50.23 62.44 65.63 49.27 48.09 56.39 45.77 44.46 47.24 38.74 34.89

Table 3.10: 3D Detection Comparison using LiDAR-only pillar-based ar-
chitecture: mAP results for car, pedestrian, and cyclist category on moderate
difficulty of KITTI val split calculated with 11 recall positions for PointPillars.
Our method shows significant gains under low SBR conditions.

which shows its versatility for a wide range of 3D detection models. The gain is
large for point-net or transformer-based architectures (Uni3DETR, VoteNet, and
ImVoteNet) as they suffer the most from the low SBR noise. The gain is significant
but comparatively smaller for voxel or pillar-based architectures (PointPillars and
PV-RCNN). Intuitively, this could be because the spurious points with large depth
errors are away from the surface, and are not part of the same voxel or pillar as

the surface points. Hence, their impact on the performance is also smaller.

3.10 Supplementary Section: Comparison with

Denoised 3D Temporal Histograms

An effective approach for removing noise in 3D sensing systems described in
this work is to denoise the 3D temporal histograms. Current state-of-the-art

denoising methods for temporal histograms denoising (Peng et al., 2020) show
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high performance on depth reconstruction tasks. Hence, we also evaluate our
approach and baselines using denoised temporal histograms. We use a 3D-CNN
denoising model (Peng et al., 2020) to denoise the temporal bins which are then
used to construct point clouds for inference. We compare our method with the
baselines under low SBR (0.02) conditions in Table 3.11. As expected, all methods
perform better with denoised temporal histograms. Our method shows a further
gain in AP@0.25 of about 3-4% which shows that 3D inference can benefit from

our PPC approach with denoised temporal histograms as well.

Histogram Thresholding  PointClean Score- PathNet  PPC
Denoising Method Net Denoising (Ours)
- 29.58 18.24 26.35 25.45 38.49
3D-CNN 50.30 51.03 50.85 51.07 54.25
Gaussian Filter 38.79 40.12 43.36 43.25 50.93

Table 3.11: 3D Object Detection Results: Comparison of AP@0.25 results using
denoised temporal histograms.

We also compare the effectiveness of our method with a non-learning-based
histograms denoising method. We use a 5x5 Gaussian filter in the spatial dimension
to denoise histograms. Matched filtering is still used over the temporal dimension.
Table 3.11 shows our method has significant gains with Gaussian denoised
histograms and the performance is comparable to the results with 3D-CNN

denoising.

Should we denoise 3D temporal histograms for inference? Denoising methods
like (Peng et al., 2020) require compute and memory-intensive 3D-CNN operations,
which makes it infeasible for real-time applications. It is thus not suitable for sensor
on-chip processing. It also requires a read-out of full 3D temporal histograms,
which has a significantly high data-bandwidth cost (compared to only reading out
a point cloud as considered in earlier approaches in the main paper). However, it
is an effective approach for denoising in non-real-time applications.

Gaussian filter is a computationally cheap non-learning-based operation and

is feasible with sensor on-chip processing. Table 3.12 shows the inference time
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of our complete recognition pipeline (including denoising temporal histograms,
point cloud processing, and inference) with different histogram denoising methods
that are discussed. This suggests that, given a computational budget, a simple

histogram denoising approach like a Gaussian filter is a good candidate for 3D

recognition.
Histogram Denoising Method Runtime (ms)
- 95
3D-CNN 7200
Gaussian Filter 98

Table 3.12: Runtime Time for 3D Detection: Comparison of per scene runtime
time of our method using different histogram denoising methods.

Comparison with Compressed 3D Timing Histograms

Recently, compression techniques have been proposed to read out compressed
representations (Gutierrez-Barragan et al., 2022) of the temporal histograms to
reduce data bandwidth requirements. We also show the performance of our
approach on such decompressed histograms in Table 3.13. We use a lightweight
Truncated Fourier (k=32) representation from (Gutierrez-Barragan et al., 2022)
for evaluation. Our approach is effective even under the data loss incurred due to
compression and shows significant gains over the Thresholding baseline for 3D

detection.

Threshoding PPC (Ours)

Decompressed Histograms 16.50 29.77

Table 3.13: 3D Object Detection Results: Comparison of AP@0.25 results using
decompressed histograms.
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4 ROBUST SCENE INFERENCE UNDER LOW-LIGHT

Over the past decade, deep learning has achieved unmatched accuracy on several
complex, real-world scene inference tasks. As these techniques have matured,
a new axis in the performance space is emerging, driven by applications (e.g.,
autonomous navigation), where reliable performance under non-ideal imaging
conditions is as important as overall accuracy. In such safety-critical applications,
it is important to consider the worst case performance of the vision system to
ensure robust all-weather operation. For example, for a vision system to be
deployed on an autonomous car, it must perform reliably across the entire range
of imaging scenarios, including nighttime and poorly-lit scenes, and high-speed
moving objects, all of which result in photon-starved images. Even state-of-the-art
inference algorithms tend to fail for such images where the sensor has simply not
collected sufficient light.

The goal of this work is to develop vision systems that achieve high accuracy
even in ultra low-light, when a camera pixel may receive even less than one photon
per pixel. In such extreme conditions, images captured by conventional cameras
get overwhelmed by noise, causing the signal-to-noise ratio (SNR) to dip below
the threshold required for downstream inference algorithms to extract meaningful
scene information. We propose a two-pronged approach to achieve these goals:
(a) Leverage a class of highly sensitive single-photon detectors, and (b) Develop

inference algorithms that are optimized for low-flux operation.

Single-Photon Sensors: Single-photon avalanche diodes (SPADs) (Niclass et al.,
2005; Rochas, 2003b) are an emerging image sensor technology that is capable of
detecting individual incident photons with high timing precision. In the past, these
sensors were limited to single pixel or low-resolution devices (e.g., 32x32 pixels),
and thus restricted to scientific applications (Buttafava et al., 2015; O’Toole
et al., 2018; Bruschini et al., 2019). But, recently, due to their compatibility
with CMOS fabrication processes, high-resolution cameras (up to 1 MPixel)
have been developed based on SPADs (Morimoto et al., 2020), as well as the
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Figure 4.1: Inference in Low-Light using Photon Scale-Space. (Top) Photon
scale-space is a hierarchy of images, each with a different flux level, but sharing
the same scene content. Successive images in the hierarchy have similar flux so
that high-flux images can guide the low-flux images during a training procedure.
(Middle) We use photon-scale space to develop a meta network architecture called
the photon net, where a network is trained with multiple input images with the
same scene content but with varying noise levels in order to push them together
in the feature space. (Bottom) The proposed approach is modular and versatile,
lending itself to a wide range of inference tasks such as classification and depth
estimation.



53

jots (Ma et al., 2017) technology. These single photon cameras are capable of
capturing sequences of binary frames with minimal read noise (Ulku et al., 2018),
thus opening the possibility of capturing high-quality images even in low-flux

conditions.

High-level Inference on Low-Flux Images: So far, SPADs have primarily been
used for recovering image intensities (Antolovic et al., 2018; Ingle et al., 2019; Ma
et al., 2020) and low/mid-level scene information such as 3D shape (O’Connor
and Phillips, 1984; Renker, 2006; Dautet et al., 1993; Kirmani et al., 2014; Shin
et al., 2016; Gupta et al., 2019c,a) and motion (Gyongy et al., 2018). Can we go
beyond low-level imaging and signal processing, and develop algorithms for direct,
high-level inference from SPAD cameras? Despite low read noise, the stochastic
nature of photon arrival results in considerable shot noise in single-photon binary
frames captured by SPAD cameras. Although there has been some recent work on
joint denoising and classification (Liu et al., 2020a, 2019; Diamond et al., 2017),
inference on ultra-low-light images where each pixel receives less than a photon
on average still remains an intractable problem.

To address this problem, we design inference techniques based on the notion
of guided training, where a high-quality image is used as a guide for training
low-quality images. This is similar in spirit to the classical guided filtering (He,
2010) where a guidance image is used for low-level image processing tasks, such
as denoising (He, 2010) and super-resolution (de Lutio et al., 2019). More recently,
the idea of guided training has been explored in the context of student-teacher
training (Gnanasambandam and Chan, 2020) where a teacher network pre-trained
on high-quality images guides a student network operating on low-flux images.
These approaches rely on underlying similarities in the inputs of the student and
teacher networks to aid the guidance process, and therefore, are not very effective
in the extreme case where the student’s and teacher’s input images may have a
huge difference in the number of photons-per-pixel (e.g., < 1 vs. > 1000). These
images may have no structural similarity despite representing the same scene. If

the guide and the guidee images have no common content and features, how can
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one perform guided training?

Photon-Scale Space: We propose using a hierarchy of guide images from a
wide spectrum of photon levels, each having the same scene content, but varying
number of average photons-per-pixel (PPP), from as low as PPP ~ 0.1, going
up to PPP > 100. The key idea is that although all the images taken together
span a large range of SNR values (including high SNR images at the top which
provide the most accurate labels), successive images in the hierarchy have a similar
number of photons (and thus, similar features) so that guidance percolates down
effectively to the lowest levels, to the images with the minimum PPP. We call this
hierarchy of images the photon scale-space (Fig. 4.1), reminiscent of the classical
image-size scale-space (Lindeberg, 1994) which is used in many computer vision

algorithms.

Photon-Net Guided Training: Based on photon scale-space, we propose Photon
Net, a meta architecture and training techniques for performing inference on low-
flux input images (Fig. 4.1). The key idea is to train a given network architecture
with different images from a photon scale, so that the images having the same
scene content (but different flux level) are trained together leading to effective
guidance from the highest SNR training images to the low SNR test images. We do
this by enforcing feature consistency for high-level features (e.g., the final feature
vector) of the network. Since frames at different levels in the photon scale space
share the same scene content, we encourage the similarity of high-level features,
despite having large differences in the low-level image statistics (low/mid-level
features).

We perform empirical analysis on various design choices for creating the
photon scale space (e.g., the number of levels), and suggest rules-of-thumb
for good performance. Due to the known forward model of the single photon
imaging process (Poisson sampling), the photon scale-space can be created using
images captured from conventional cameras, making the proposed approach
amenable to training using existing large-scale image datasets. We demonstrate,

via extensive simulations as well as real experiments on a 1/8 megapixel SPAD
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array (SwissSPAD2 (Ulku et al., 2018)), considerable (up to 10%) improvement

for various inference tasks in extreme low-light conditions (~0.1 PPP).

Scope and Implications: The proposed approach is modular and versatile — it is
possible to use a wide range of network architectures, loss functions, and model
outputs in the same framework — thus lending itself to a variety of inference
tasks including low-light image classification and even regression tasks such
as monocular depth estimation in the dark (Fig. 4.1). SPADs remain a nascent
imaging modality, and cannot yet directly compete with conventional sensors
which have been optimized over decades. However, given their sensitivity, high
speed, and dynamic range (Antolovic et al., 2018; Ingle et al., 2019; Ma et al.,
2020), they have the potential to provide capabilities (e.g., vision in ultra low-light
and rapid motion) that were hitherto considered impossible. This work takes
the first steps towards exploring SPADs as all-purpose sensors capable of not
just low-level imaging, but also high-level inference across a wide gamut of

challenging imaging conditions.

4.1 Related Work

Single-Photon (Quanta) Sensors: SPADs and jots are two current major tech-
nologies for large single-photon camera arrays. Jots amplify the single-photon
signal by using an active pixel with high conversion gain (Fossum, 2005). By
avoiding avalanche, jots achieve smaller pixel pitch, higher quantum efficiency and
lower dark current, but have lower temporal resolution (Ma et al., 2017). Although
we demonstrate our approaches using SPADs, the computational techniques are

applicable generally to a single-photon sensors, including jots.

Inference on Single Photon Sensors: Starting with the early (primarily theoret-
ical) work (Chen and Perona, 2016, 2017) which proposed the idea of directly
performing computer vision tasks on stream of photons instead of forming an
image, there has been a growing trend of using quanta sensors for various scene

inference applications. This includes high-speed tracking using quanta sen-
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sors (Gyongy et al., 2018), and more recently, object identification (Antsiperov,
2019) and image classification (Gnanasambandam and Chan, 2020). Our work is
a next step in this direction, providing a general and versatile approach capable of

achieving high performance across a wide variety of scene inference tasks.

Low-light Classification: There has been a lot of work on inference in low-light
using conventional cameras as well. The most notable in this line of work are
recent approaches that perform joint denoising and inference on noisy images (Liu
et al., 2020a, 2019; Diamond et al., 2017). Although such joint denoising and
inference techniques outperform conventional sequential denoising and inference
approaches, they do not have the benefit of effective guidance from high SNR
images, and thus are unable to achieve high performance in extreme low-light
conditions (~ 0.1 PPP).

Image-size Scale Space: A recent work (Xu et al., 2020) proposes techniques
that use image-size scale space, i.e., images at multiple resolutions, for designing
pose estimation techniques that can perform well for very low resolution images.
We borrow numerous insights from this work, as we create photon scale-space

and photon net family of architectures for inference on very low-light images.

4.2 Photon Scale Space

To address this question, we develop a guided training approach, where high SNR
images act as a guide for training low SNR images. To facilitate such guided
training, we propose the concept of photon scale-space, a hierarchy of guide
images with varying flux levels, each having the same scene content. The key
idea is that although all the images taken together span a large range of SNR
values (including high SNR and most informative images at the top), successive
images in the hierarchy have similar SNR levels (and thus, similar features) so

that guidance percolates down effectively to the lowest levels.

How to generate a photon scale space? Consider a ‘clean image’ as captured

by a camera in high-flux conditions. Assuming the pixel intensities in the clean
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image to be the ground-truth flux values for the corresponding scene points', we
can generate multiple stochastic binary images as captured by a single photon
camera using the image formation model described in Section 2.2. Assuming the
scene is stationary, i.e. there is no motion between binary frames, we can simulate
a series of images with different flux levels by summing a sequence of N binary

frames (for various values of N) to get N-sum images (8"), defined as follows:

Definition 4.1 (N-Sum image 8N). The average of N binary frames

N
SN(x,y) =) Bilxy) . (4.1)
i=1

Using the definition of N-Sum images, we define Photon Scale Space as a

hierarchy of images with successively higher flux levels as follows:

Definition 4.2 (Photon Scale Space PSS(K, L, n)). A set of n N-Sum images,
starting from the lowest-SNR image S¥ (noisiest), to the highest-SNR image S*,
with K < L.

We choose the parameters (K, L, n) so that the images span a large gamut
of SNR levels (i.e., K < L). The choice of the number of levels n presents a
tradeoff: To ensure effective guidance from high SNR to low SNR images, the
successive images in the hierarchy should have similar flux levels, thus requiring
a large n. On the other hand, a large n would increase the computational cost
of the training algorithms. In our implementation, we choose images with N
increasing as a geometric series N € [K, K(L/ K)ﬁ, K(L/ K)%..., L] so that the
approximate ratio of the flux level between successive images is a constant. We

round the values of N to the nearest integer if it is a fraction.

'In general, the pixel intensities have a non-linear relationship to incident flux due to the
sensor’s radiometric response and image compression algorithms. Although we do not explicitly
model these effects, they can be accounted for in the following discussion.
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For instance, suppose we want to train inference models for 8! images (1
binary frame), but use high flux images up to §*°¢ (256 binary frames) for guidance
during training. The photon scale space for this setting with, say, 5 levels would
consist of 8', 8%, 81, 8%* and §2° images. Fig. 4.1 shows an example of images
from photon scale space with K =1, L = 256, and n = 5, thereby spanning a
broad range of SNR levels, while ensuring that successive images have similar
SNR and features.

What is the range of flux values spanned by a photon scale space? Since each

binary frame is independent, the expected value of the sum image 8™ (x, y) is:

E[SN(x,y)] = N % E[B(x,y)]

4.2)
= N(1 — e (®mFraT)

The maximum likelihood estimate (MLE) of the incident flux (¢) is therefore

given as
$(x,y) =—In(1—8(x,y)/N)/m —14/n. (4.3)

This non-linear relationship between 8 (number of photons detected by the camera),
and ¢ (number of photons incident of camera) has an asymptotic behavior Ma
et al. (2020); Antolovic et al. (2018) — 8™ keeps increasing with increasing
number of incident photons ¢, allowing us to span a large range of incident flux

levels in the photon scale space, even with a finite range of N values.

4.3 Guided Training with Photon Scale Space

In this section, we design a guided training technique that leverages photon scale

space images for developing high-performance low-light inference algorithms.

Photon Net: The key enabling component of the proposed technique is a meta
architecture called Photon Net that uses photon scale space images as input, along

with a feature consistency loss that encourages similar feature representations for
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all the images belonging to the same photon scale space (thus having the same
scene content), despite having a large variation in brightness levels.

Fig. 4.1 shows the overview of the architecture, which consists of several
identical network branches. During training, each branch takes as input an image
from the photon scale space with a certain PPP level (ranging from low SNR
to high SNR images). All the branches are trained with shared weights, so that
gradient updates from high PPP branches can guide low PPP branches. In order
for high SNR images to act as a guide to low SNR images, all the photon scale
space images with different PPP levels from the same original image are trained
together by sampling them in the same mini-batch. Since the weights are shared,
there is no additional overhead of network parameters as we do not keep multiple

copies of the network.

Encouraging Feature Consistency: In order to encourage consistency in the
learned feature representations for different inputs of the network (images with
the same scene content but different noise levels), we use feature consistency loss
during training. It is possible to use a variety of loss functions such as contrastive
loss, L2, or L1 loss for consistency. In our implementation, we used an L2 loss
function (Mean Squared Error loss), to push features from the same image with

different PPP levels closer to each other.

Lmse({xi}) = %Z lo(xi) — (x5 (4.4)
ij

where {(x{)} is a set of all training images, N is the total number of training pairs
in the mini-batch with the same scene content (i.e. x; and x; are images from the
same original image with different PPP level) and ¢(.) is the feature output from
the network. We use a feature vector from the final layer of the CNN (after the
global pooling layer) as our feature representation.

The overall loss function is the combination of Ly,sg and the primary loss
function for the inference task. For the case of image classification: Lyyerqin =

Lce + ALmse, where L is cross entropy loss and A is the weighting factor to
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Clean Images

Binary Images S1

10-Sum Images (S'°)

Figure 4.2: Simulated Single-Photon Images: Clean images and simulated noisy
images from CUB-200-2011 and CARS-196 dataset. SPCs capture a sequence of
binary images like (8!) with heavy shot noise. 10-sum images (8'°) are average
of 10 binary images.

control the contribution of both losses. Please see the supplementary report for
details.

4.4 Low-Light Scene Inference

The guided training approach based on photon scale space and photon net is
modular since it is possible to use a wide range of network architectures, loss
functions, and tasks in the same framework (Fig. 4.1). We demonstrate the
effectiveness and versatility of the proposed techniques via two low-flux inference

tasks: image classification and monocular depth estimation.

Image Classification

We first show the application of our approach to image classification task.

Datasets: We first show the performance of our approach using simulated images
using two datasets: CUB-200-2011 image classification dataset (Wah et al., 2011)
and CARS dataset (Krause et al., 2013). CUB-200-2011 is commonly used for
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Figure 4.3: Comparison of Architectures with Existing Approaches for Low-
Light Inference: (a) Joint Denoising consists of a denoiser jointly trained with
an inference network. (b) Student Teacher Learning uses a fixed teacher model
trained on clean images and a trainable student model for noisy images. (c)
Photon Net (Ours) uses multiple images with different PPP level as input to the
network. Different branches of network corresponds to different PPP levels, and
all branches share weights with each other. A loss function such as mean squared
error between feature representations is used to push images with different PPP
level closer to each other in feature space.
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fine-grained image classification benchmarks and consists of 200 species of birds
with 5,994 training images and 5,794 test images. The CARS dataset contains
images of 196 classes of cars (with different make, model and year) with 8,144
training images and 8,041 testing images.

We generate sequences of binary frames from the original images in the dataset
(images captures by CMOS cameras) for training using the image formation model
in Equation 2.5. ¢ in the model corresponds to the poisson parameter for the
model. We assume 1 * T = 1/1000 to be constant for the dataset to simulate
low flux setting and ¢ proportional to pixel value of original image. We then
sum N binary frames together to generate 8™ images for the complete dataset.
Figure 4.2 shows sample clean images from the dataset and sample noisy images

generated using imaging model for Single Photon Cameras.

Comparisons and Baselines: We compare our method with two approaches
that are designed for inference on low-SNR images. Our baseline approach is
Joint Denoising (Diamond et al., 2017), which uses a denoiser for noisy images
coupled with a conventional image classification architecture. Both denoiser and
classifier are trained together on noisy data (Fig. 4.3a), with a combined loss
consisting of cross entropy loss for the classification and mean squared error for
the denoiser. We also compare our method with the Student-Teacher learning
approach (Gnanasambandam and Chan, 2020) where clean images are used to
train a fixed teacher network and noisy images are used for training the student
network (Fig. 4.3b). This approach encourages consistency between feature
representation of clean image and noisy images by minimizing a mean squared
error between the feature outputs of the student and the teacher networks. For

more comparisons, please refer to the technical report.

Experiments: We perform all of our experiments with ResNet-18 (He et al.,
2016) as the backbone architecture provided by Pytorch (Paszke et al., 2019)
for all the baselines. As shown in Figure 4.3, output of global pooling layer of
size 512 is used as our feature extractor. We choose 5 levels of Photon Scale

Space images for training Photon Net in our experiments. This choice of number
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CUB-200-2011 CARS-196
Test PPP Joint Student-Teacher Photon Net Joint Student-Teacher Photon Net
Data Denoising Learning (Ours) Denoising Learning (Ours)
8T 0.11 27.21 35.43 42.37 34.51 57.81 64.23
8§ 022 31.33 39.50 48.56 43.14 65.85 70.51
85 053 39.41 44.46 55.19 57.11 71.13 75.23
810 1.07 44.17 48.08 58.68 65.78 73.51 78.97

Table 4.1: Image Classification Results: Top-1 Accuracy results on CUB-200-
2011 and CARS-196 dataset. Photon Net outperforms both Joint Denoising
(Diamond et al., 2017) and Student-Teacher Learning (Gnanasambandam and
Chan, 2020) on all noise levels.

of levels is analyzed later in the paper as part of an ablation study. All photon
scale space images corresponding to the same image are sampled together in
the same minibatch during training. We initialize our network with pre-trained
weights from the model trained on clean images. Stochastic gradient descent
with momentum optimizer with momentum as 0.9, base learning rate of 0.1 with

cosine decay and batch size of 80 is used for fine-tuning.

Results and Implications: Table 4.1 shows the results of our approach on
CUB-200-2011 and CARS-196 dataset for different illumination levels. The
proposed approach significantly outperforms Joint Denoising since denoising in
the image space is not very effective for extreme noise levels (e.g., PPP < 0.1).
With as few as ~ 0.1 Photons Per Pixel, our approach is able to get top-1 accuracy
comparable to what conventional denoising approaches can achieve with 1 Photon
Per Pixel (1 magnitude higher). Student Teacher Learning performs better than
Joint Denoising as it enforces feature consistency between noisy and clean images.
However, since it uses a fixed teacher network with only clean images, the guidance
is not as effective. Photon Net trains a wide gamut of SNR images together in the

same network with noisy images.

Ablation Study: We study the effect of the parameters of the Photon Scale Space
(PSS) on the performance by varying the number of levels of PSS during training.
We start with 2 levels of PSS (only noisy and clean image) and increase up to 9

(noisy, clean and 7 more intermediate levels). Fig. 4.4 shows results of image
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Figure 4.4: Effect of Photon Scale Space Parameters on Inference Perfor-
mance: Top-1 classification accuracy of Photon Net on 8! test images (PPP~0.11)
with increasing number of levels in Photon Scale Space. Performance increases
with the increasing number of levels in PSS and saturates at 5-6 levels for both
datasets.

classification on 8! test images of CUB-200-2011 and CARS-196 dataset. For
these datasets, the performance of the model increases with increasing number of
PSS levels, but saturates around 5 levels, thus informing the choice of parameters
in our experiments. An important next step is to perform a similar empirical

analysis for a wider range of datasets and tasks.

Monocular Depth Estimation

We also show the application of our approach to monocular depth estimation, a

regression task.

Depth Estimation Overview: For this application, we use the DenseDepth (Al-
hashim and Wonka, 2018) base architecture, consisting of an Encoder and a
Decoder. The Encoder is a deep CNN (ResNet-34 pretrained on ImageNet (Deng
et al., 2009)) which extracts the feature maps and the Decoder is a series of
upsampling layers with skip connections to construct the depth map from the
feature maps. Loss function used is a combination of point-wise L1 loss and
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Test Set PPP Method 01T &1 &1 rell rmms] logipd
8t 0.11  Joint Denoising 0.671 0.896 0.967 0.209 1.412 0.087
Photon Net (Ours) 0.713 0.917 0.976 0.183 1.275 0.078

810 1.07  Joint Denoising 0.763 0.941 0.984 0.162 1.177 0.069
Photon Net (Ours) 0.793 0.953 0.987 0.149 1.104 0.063

Table 4.2: Monocular Depth Estimation Results: on NYUV?2 dataset.

Structural Similarity loss between predicted and ground truth depth values. We

use the same training procedure as described in (Alhashim and Wonka, 2018).

Photon Net training for Depth Estimation: We train our Depth Estimation
architecture with photon scale space images. Mean Squared Error Loss is used
for feature consistency of the feature outputs of the images from different PPP
levels. We use output of the Encoder network (after global pooling layer) for
our feature representation. We provide more details on the architecture in the
technical report.

Experiments and Results: We evaluate our approach on NYUV2 dataset (Sil-
berman et al., 2012). Same training and testing split is used as (Alhashim and
Wonka, 2018) which includes 50K training and 654 testing images. We simulate
SPC images using the same procedure described earlier in Section 4.4. The

following six standard evaluation metrics are used:

* average relative error (rel): %ZEE%E,

* root mean square error (rms): \/ %Zg(yp —Up)%
* average (log) error: %Zg!logw(yp) —logio(Jp)l and

e threshold accuracy (8;): % of yy, s.t. max(t’f, g&) = d; < thr for thr =
1.25,1.25%, 1.25°

where y,, is a pixel in the depth image y, {, is a pixel in the predicted depth
image U, and n is the total number of pixels for each depth image.

We compare our method with Joint Denoising, which uses a denoiser with a
Depth Estimation architecture. Table 4.2 shows results on the NYUV?2 dataset,
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Test Image (S'°)

Clean Image
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RMSE=1.57
RMSE=0.74 RMSE=0.38
RMSE=0.85 RMSE=0.35

Figure 4.5: Estimated depth maps: Comparison of depth maps from Photon
Net (Ours) and the baseline on NYUV?2 test images §'° (PPP~1.07).

and Fig. 4.5 shows example depth output results of our approach and the baseline.
Photon Net outperforms the baseline approach both qualitatively and quantitatively

for multiple noise levels.

4.5 Experiments on Real SPAD Images

In order to evaluate the validity of the SPC image simulation model and the
proposed approaches on real SPAD images, we collect a data-set of SPAD images
using a SwissSPAD2 camera (Ulku et al., 2018) (Fig. 4.6).

Camera Setup: We operate the camera in the binary mode where it captures binary
frames at a spatial resolution of 512x256 with maximum frame rate at 96.8kHz.
Currently, the sensor is not equipped with Bayer filters, so only gray-scale (single
channel) frames are captured. The captured images contain hot pixels which

we correct in post processing. We capture an image of a black scene to identify



Figure 4.6: Camera Setup: SwissSPAD2 board (Left) and the setup for image
capture (Right).

the location of the hot pixels and then filter them by using spatial neighborhood

information.

Dataset: For the dataset collection for image classification task, we displayed
the original RGB images on a monitor screen (Dell P2419H, 60Hz) and then
captured it using SPAD sensors. The camera is placed at around 1m distance
from the screen and positioned to cover the display in its field of view. We
selected a subset of images from CUB-200-2011 dataset (CUB-subset) for the
data collection, including 3656 training images and 3518 testing images from a
randomly collected subset of 122 categories. Fig. 4.7 shows examples of N-Sum

images captured by the camera.

Experiments and Results: We follow the same procedure for training as described
in Section 4.4. Table 4.3 shows results of our approach on real images from
SPADs. Although the overall accuracy levels are lower (for all approaches) than
those with simulated images due to the real images having a lower resolution and
only gray-scale intensities (no Bayer filter on the real SPAD sensor), Photon Net
outperforms both baselines on all noise levels.

Fig. 4.8 shows output probabilities of the predicted classes with ground truth

for a few samples. Even in extreme low-light conditions with PPP as low as
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S1 S4 s16 364 8256
(Low SNR) (High SNR)

[PPP] 0.127 0.508 8.128 16.256 32.512

Figure 4.7: Real SPAD images captured from CUB-200-2011 dataset using the
SwissSPAD?2 camera.

Test Images (S') [PPP=0.127]

Student Teacher Learning
(27%) Canada Warbler F (32%) Brewer Blackbird (35%) Common Yellowthroat

(4%) Red Eyed Vireo (8%) Common Raven (9%) Hooded Oriole

Photon Net (Ours)

(5%) Canada Warbler h (11%) Brewer Blackbird I (8%) Common Yellowthroat
(29%) Red Eyed Vireo (51%) Common Raven (56%) Hooded Oriole

Figure 4.8: Results with Real SPAD Sensor of image classification on CUB-200
dataset for 8! test images with prediction probabilities output by both Student
Teacher Learning and Photon Net (Ours). Classification output is highlighted in
red for wrong predictions and green for correct predictions.
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Test  PPP Joint Student-Teacher Photon Net
Data Denoising Learning (Ours)
st 0.127 13.34 17.54 21.78
82 0.254 16.57 20.67 26.74
8*0.508 18.82 24.55 32.33
8¢ 1.016 21.07 28.34 35.79
S16 2,032 2491 29.82 39.14

Table 4.3: Experiments with real SPAD data. Top-1 image classification results
on CUB-subset images captured using a SPAD camera.

~ 0.1, the proposed photon net approach is able to recover correct class labels.

4.6 Discussion

In this work, we present an approach for scene inference using single photon
cameras, which shows significant improvement under low light conditions. Our
proposed method uses higher SNR images during training and encourages the
model to use them as a guide for low SNR images. This improves robustness
to shot noise originating from the stochastic nature of photon arrival during
image capture. We demonstrate our method on multiple image classification and
monocular depth estimation tasks, and show significant gains in extreme low light

conditions (~0.1 photons per pixel).

Low-light inference beyond classification and depth estimation: So far in
this work, we demonstrated the benefits of the proposed approaches for image
classification and depth estimation tasks. A natural direction is to extend these ideas
to inference models for a larger gamut of image inference and scene understanding
tasks, including object detection (Ren et al., 2015), instance segmentation (He
et al., 2017), and key-point detection (Newell et al., 2016).

Inference in high-flux scenarios: Although the primary focus of this paper is on
low-light inference, due to the high dynamic range capabilities of SPADs (An-
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tolovic et al., 2018; Ingle et al., 2019; Ma et al., 2020), the proposed techniques can
be adapted for inference in extremely bright scenes where conventional sensors

get saturated.

4.7 Supplementary Section: Additional Image

Classification Results

In this section, we include further technical details and results that complement

our main results for image classifiation.

Architecture Overview

We provide more detailed overview of the architectures used for the image
classification task.

Joint Denoising: Joint Denoising architecture (Diamond et al., 2017) consists of a
joint network with a denoiser (20 layer UNet) and a CNN classifier (Resnet-18 (He
et al., 2016)). We use Mean Squared Error loss for the denoiser which uses noisy
and clean images. Cross Entroy Loss is used for the classifer with uses the class
label of the image. The joint network is trained with sum of both the losses
(Figure 4.9a). The denoiser is initialized with pretrained weights on noisy and

clean images.

Student Teacher Learning: Student Teacher architecture (Gnanasambandam
and Chan, 2020) is composed of a teacher network and a student network. Teacher
network (ResNet-18) is a pre-trained classifier on clean images. Student Network
uses the same network architecture as the teacher network (ResNet-18). Inter-
mediate feature output maps (’relu’, ’layerl’, ’layer2’, ’layer3’, ’layer4’ from
pytorch’s implementation) from the CNN Network of both student and teacher
network is used for feature consistency. Final training consists of training the
student network with cross entropy loss and mean squared error loss while teacher

network is kept fixed (Figure 4.9b). Student Teacher learning uses double the
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Figure 4.9: Architecture Overview for Image Classification
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Clean Image
T\

Test Image (S") [PPP=0.11]

Student Teacher
(27%) Rusty Blackbird (45%) Winter Wren r (29%) Ring Billed Gull

(1%) Palm Warbler (17%) Overbird (2%) Northern Gulmar

Photon Net (Ours)

(5%) Rusty Blackbird (3%) Winter Wren (2%) Ring Billed Gull
(75%) Palm Warbler (71%) Ovenbird h (87%) Northern Gulmar h

Figure 4.10: Image Classification Results using Photon Net on CUB-200-2011
Dataset for 8! test images.

network parameters for classifier during training but only uses student network

for testing.

Photon Net (Ours): Photon Net training uses multiple images with different
PPP level as input to the network. Different branches of the network are CNN
architectures (ResNet-18) which share weights with each other and act as a feature
extractor. Images with different PPP levels are sampled together in the same
mini-batch so gradients from high SNR image branches can guide the low SNR
images. The feature output from the final layer (after global pooling layer) is used
for the feature consistency of different PPP levels using Mean Square Error Loss.
Cross Entropy Loss is used for the training the image classifier which uses the

classification label.
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Clean Image

Test Image (S") [PPP=0.11]

Student Teacher

(84%) Dodge Dakota Crew Cab 2010 (23%) Chevrolet Traverse SUV 2012 (53%) Aston Martin Virage Convertible 2012
(4%) Dodge Dakota Crew Cab 2007 (4%) Ford Expedition EL SUV 2009 (2%) Mercedes-Benz SL-Class Coupe 2009
Photon Net (Ours)

(1%) Dodge Dakota Crew Cab 2010 (3%) Chevrolet Traverse SUV 2012 (3%) Aston Martin Virage Convertible 2012

(35%) Dodge Dakota Crew Cab 2007 (43%) Ford Expedition EL SUV 2009 (19%) Mercedes-Benz SL-Class Coupe 2009

Figure 4.11: Image Classification Results using Photon Net on CARS Dataset
for 8! test images.

Clean Image

C S WARES
Test Image (S') [PPP=0.11]

Photon Net (Ours)
(24%) Winter Wren F (28%) Eared Grebe r (13%) Buick Regal GS 2012 (31%) Mercedes-Benz SL-Class Coupe F

(7%) American Pipet (12%) Barn Swallow (5%) Audi V8 Sedan 1994 (7%) Ford Edge SUV 2012

Figure 4.12: Few Failure cases examples of Photon Net on CUB-200-2011 and
CARS dataset for 8! test images.
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Figure 4.13: Ablation Studies: Performance of Photon Net training while varying:
(a) MSE loss weight factor (A) , (b) CNN backbones

Additional Results

Figure 4.10 and 4.11 shows results of image classification on CUB-200-2011
(Wah et al., 2011) and CARS (Krause et al., 2013) dataset 8! test images using
Photon Net. Probability output of incorrect class is highlighted in red and correct
class is highlighted in green. Even in the case of extreme low light (PPP 0.1),
Photon Net is able to recover the correct output label. Figure 4.12 example of
few failure cases where Photon Net architecture fails to get the correct prediction.

As we can observe, these cases are extremely challenging.

More Ablation Studies

We study the effect of the hyper parameter of the Photon Net training on the
performance. We vary the weighting factor of the MSE loss in the overall loss for
image classification. We start with A=0 and increase upto A = 50.0. Figure 4.13
shows Photon Net performs best for A=25.0.

We also analyse the performance of Photon Net using different base architecture
for the feature extractor. We compare ResNet-18 with deeper CNN architectures
such ResNet-50 and InceptionV3. (Szegedy et al., 2016). Figure 4.13 shows

increase in the performance of Photon Net with deeper CNN architectures. This
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Test PPP Vanilla Vanilla Net w/ BM3D Curriculum  Student Teacher Photon Net

Data Net Photon Scaled Denoising  Learning Learning (Ours)
Images (N-steps)

8T 011 2135 28.92 25.52 33.72 35.79 42.37

8§ 022 2561 34.51 29.15 39.44 42.16 48.56

8§ 053 37.14 43.26 38.81 44.99 46.91 55.19

80 1.07 4299 44.63 43.34 48.65 48.86 58.68

Table 4.4: Ablation Study: Top-1 Accuracy results of image classification on
CUB-200-2011 dataset.

shows the versatility and ease to extend Photon Net to different CNN architectures.

We perform an ablation study to analyse the individual contribution of Photon
Net training and using Photon Scaled Images in the final performance. Table
4.4 shows Top-1 accuracy on CUB-200-2011 dataset. ‘Vanilla Net‘ represents
the training procedure where a conventional image classification CNN model
(ResNet-18) is trained with cross entropy loss using only noisy images. ‘Vanilla
Net w/ Photon Scaled Images* trains the Vanilla Net with photon scaled images.
As we an see, adding Photon Scale Space images increases the performance by
about 8-9% on all noise levels and shows the effectiveness of high SNR images
in training. Photon Net training further improves the model by more than 13%
as feature consistency loss increases the robustness to noise. ‘BM3D denoising*
shows the performance of Vanilla Net training on denoising training and testing
images using BM3D algorirhtm.

We also compare our model to Curriculum Learning technique, where the
Vanilla Net is trained in N steps, starting with only the clean images first step and
successively finetuning the model by adding images with higher noise levels in
next steps. Photon Net outperforms Curriculum Learning as it uses the high SNR
as a guide more effectively by adding the feature consistency loss. We also do
Student Teacher Learning in N-steps (N is number of photon scaled levels) using
the Photon Scaled Images. We use successive levels of photon scaled images
for student and teacher network. Photon Net performs better Student Teacher

Learning by significant margin.
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Figure 4.14: Arechitecture Overview of Monocular Depth Estimation with
Photon Net:

4.8 Supplementary Section: Additional Monocular
Depth Estimation Results

In this section, we include further technical details and results that complement

our main results for monocular depth estimation.

Architecture Overview

We provide more detailed overview of the architectures used for the monocular

depth estimation task.

Joint Denoising: Joint Denoising consists of a depth estimation architecture
based on DenseDepth (Alhashim and Wonka, 2018) coupled with a denoiser for
noisy images. Denoiser is a UNet network (20 layers) which is pretrained on noisy

and clean images using Mean Square Error Loss. DenseDepth architecture for
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depth estimation consists of an encoder network (Deep CNN network pretrained
on Imagenet) and a decoder network (upsampling layers with skip connects)
that generates the output depth maps. Loss function for depth estimation is a
combination of point wise L1 loss and Structural Similarity loss between predicted
and ground truth depth values. Overall Loss is the sum of losses from denoiser

and depth estimation.

Photon Net: Photon Net architecture takes multiple images with different PPP
levels as the input to the network. Different branches of the network are the
encoder networks with shared weights. We use the same encoder and decoder
as baseline for fair comparison. Different images are sampled together in the
same mini-batch in order for high SNR images to guide the low SNR images.
Final feature output map from the encoder (after global pooling layer) is used
for the feature consistency of different PPP levels (using Mean Square Error
Loss). Overall Loss is the combination of Mean Square Error loss (for feature
consistency) and depth estimation loss (point wise L1 loss and Structural Similarity
Loss).

Additional Results

Figure 4.15 shows examples of output depth maps from the Photon Net and
the baseline for more sample test cases, which shows significant gains both
qualitatively and quantitatively. Figure 4.16 shows output depth maps while using

increasing SNR test image of the same scene.

4.9 Supplementary Section: Additional Real SPAD

Captures

In this section, we provide further details regarding real SPAD dataset collectoin
method and additional real captures for visualization. To collect dataset of real

captures from SPAD sensors, we displayed the original RGB images on a monitor
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Figure 4.16: Monocular Depth Estimation Results on NYUV?2 dataset with
increasing PPP level in the testing image

s1 S4 s16 sGA 3256
(Low SNR) (High SNR)
[PPP] 0.127 0.508 8.128 16.256 32.512

Figure 4.17: Real Captures: Sample of images from SPAD cameras

Figure 4.18: Artifacts in Real Captures from SwissSPAD2 camera
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screen (full screen while maintainting the aspect ratio) and captured it using SPAD
sensors. The camera is positioned to cover the monitor display in its field of
view. Since the monitor has the aspect ratio of 16:9 and camera has the resolution
512x256, captured frames have black padding outside the screen area. We crop
all the captured frames based on the size of the original images to remove all
the padding. Frames are grayscale and contain hot pixels. We correct these hot
pixels by capturing an image of a black scene to identify the locations and then
filter them using spatial neighborhood information. Figure 4.17 shows example
of images captured using SwissSPAD2 camera (Ulku et al., 2018) as described in
Section 7 of the main text. Images formed from the sensor contain a few artifacts

(in form of black patches) as shown in Figure 4.18.
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5 ROBUST SCENE INFERENCE UNDER LOW-LIGHT AND
MOTION

Consider a set of images captured under low-light at varying exposures (Figure 5.1),
thereby spanning the space of noise-blur “dual corruptions”. Each image, being
corrupted in its own way, offers a different “window” on the scene: moving
objects will appear sharper when the exposure is lower, while static low-contrast
regions will be more easily perceptible in longer exposures. In other words, while
any single image from the set might never be optimal in challenging scenarios,
the set of images spanning the dual corruption space contains much richer and
complementary information that can be leveraged for performing robust scene

inference even under challenging imaging scenarios.

All happy families are alike;

each unhappy family is unhappy in its own way.

Leo Tolstoy

In this work, we propose the idea of performing scene inference in the space
of noise-blur corruption. Our key observation is that by utilizing the “persistence
of prediction” across differently degraded images of the same scene, significantly
higher accuracy can be achieved as compared to performing inference on individual
images. Figure 5.1 shows an example. Although differently degraded images
have different low-level features, the semantic content remains the same across all
images. We develop techniques that encourage similar predictions from individual
captures, and aggregate the predictions across individual images for robust visual
recognition.

We demonstrate the proposed approaches on two visual recognition tasks,
namely image classification and object detection. We perform experiments on
large scale datasets of real images with synthetic corruptions and show that

performing inference on a set of dual corruption images outperforms conventional
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Figure 5.1: Multi Exposure Ensemble: Figure shows a scene containing a fast
moving object under low-light. Images with short exposure (a) and long exposure
(b) suffer from dual corruption: noise and/or blur. Inference tasks like object
detection on these images are severely affected: numerous false positives and
wrong bounding boxes. (¢) Our approach leverages multiple captures of varying
exposures for robust inference: accurate and tight bounding boxes. (d) Such
multi-exposure images are easy to capture with machine vision cameras or modern
smartphone cameras (e.g, Google Pixel and iPhone) that use burst photography
for HDR imaging.

baselines in extreme low-light and motion conditions. Finally, we also show

improved performance on real-world experiments using machine vision sensors.

Scope and Limitations: While implementing this idea requires capturing multiple
exposures, most modern cameras already allow varying imaging parameters (e.g,
exposure, aperture) in rapid succession. For example, modern cell phone cameras
can take multiple snaps with a variety of exposures and fuse them to create an
aesthetically pleasing image (Hasinoff et al., 2016). Increasingly, machine vision
sensors (Comma, 2022) are also starting to perform exposure bracketing to capture
high dynamic range (HDR) images for autonomous driver assist systems, while
others go further and offer the capability of simultaneously capturing different
exposure images via a spatially varying exposure sensor for HDR imaging (Nayar
and Mitsunaga, 2000) and motion-deblurring (Nguyen et al., 2022). These ongoing
developments in camera technology, coupled with the proposed computational
techniques can lead to the next generation of computer vision systems which

will perform reliably even in non-ideal real-world scenarios (e.g, imagine an
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autonomous car driving on a dark night attempting to detect pedestrians) where
it is extremely challenging for conventional algorithms to extract meaningful

information reliably.

5.1 Related Work

Image Corruptions and Benchmarks: There has been some recent interest
in simulating common image corruptions and benchmarking their adversarial
effect on the performance of computer vision models, especially those relying
on deep models (Hendrycks and Dietterich, 2018; Michaelis et al., 2019). In
parallel, developing robust visual inference methods has also received much
attention. For example, a teacher-student framework was proposed (Xie et al.,
2020) to improve image classification performance. Several noise and corruption
models have been considered, including both physics-based (Wei et al., 2020) and
learning-based (Abdelhamed et al., 2019). Efforts in capturing real datasets of
noisy images have also been pursued. A dataset of images captured in low light
with annotations for object detection (Loh and Chan, 2019) has been collected.
Another example is the dataset containing low-light and corresponding well-lit
cellphone images for denoising (Abdelhamed et al., 2018), which has recently
been extended to videos in (Wang et al., 2021b). Most previous works simulate
or collect real captures with image degradations like noise in low-light, but we
consider a more challenging and practical setting where both low-light and motion

are present, and hence dual image degradation comes into play.

Noise Removal and Deblurring: Due to its importance in image processing,
denoising and/or deblurring degraded images has been a very popular topic for
decades. Recently, numerous works have been proposed using neural networks
for deblurring (Xu et al., 2014; Schuler et al., 2015; Zhang et al., 2017a) and
denoising (Zhang et al., 2017b). For example, a sparse denoising auto-encoder
was considered for robust denoising (Agostinelli et al., 2013). A recent line of

work proposes to perform joint denoising and inference on noisy images (Liu et al.,
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2019, 2020a; Diamond et al., 2017). While existing image restoration methods
can obtain high quality reconstructions, performing inference directly on the
corrupted images does not require any pre-processing and is thus more efficient
and as we demonstrate, can achieve increased robustness under severe image
degradation. Alternatively, other methods aim to design cameras that produce
better images directly, either by optimizing the hyperparameters of existing image
signal processors (ISP) (Tseng et al., 2019) or, by designing novel ISPs (Heide
et al., 2014; Gharbi et al., 2016; Chen et al., 2017, 2018). These methods may,
however, not entirely remove noise in challenging low-light situations, due to the

fundamental limitation of the optics and sensors.

Inference on Corrupted Images: Many recent works tackle different inference
tasks directly on images with common corruptions. Rozumnyi et al. (Rozumnyi
et al., 2021) proposed a matting and deblurring network for faster inference for
the detection of fast moving objects in videos. Cui ef al. (Cui et al., 2021)
designed a multitask auto-encoder for image enhancement, which leverages a
physical noise model and ISP setting in a self-supervised manner to improve
detection performance. Wang et al. (Wang et al., 2021a) presented a framework
for monocular depth estimation under low-light using self-supervised learning
and demonstrate their results on nighttime datasets. Others have used knowledge
distillation techniques for image classification under low-light (Gnanasambandam
and Chan, 2020), or for object detection by leveraging bursts of short exposure
frames (Li et al., 2021). Photon Net (Goyal and Gupta, 2021) used a single
photon camera and proposed to train on a wide spectrum of images at various
SNR, with encouraging results on image classification and monocular depth
estimation. Song ef al. (Song et al., 2021) introduced a technique for image
matching using local descriptors and initial point-matching methods for extremely
low-light images in RAW format. Wang ef al. (Wang et al., 2020) proposed to
learn the mapping relationship between representations of low and high quality
images, and used it as a deep degradation prior (DDP) for image classification on

degraded images. Adversarial Logit Pairing (Kannan et al., 2018) also provides
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some robustness to the inference on noise and blur corruptions (Hendrycks and
Dietterich, 2018) by matching the logits output of a clean image with an adversarial
perturbed image.

Our goal is different from all previous approaches. We propose techniques that
leverage the space of noise-blur dual corruptions rather than looking at a single
image corruption. We show that our approach is versatile for several downstream

tasks, including image classification and object detection.

Leveraging Multiple Captures: Multiple exposures can be used to reconstruct
high dynamic range (HDR) images (Debevec and Malik, 1997), even in the pres-
ence of motion (Sen et al., 2012; Kalantari and Ramamoorthi, 2019). Hasinoff et
al. (Hasinoff et al., 2009, 2010a) proposed ways to select settings for these multiple
captures, like ISOs and focus settings. The popularity of mobile photography
has led to the further development of burst photography (Hasinoff et al., 2016),
which has been used for denoising (Mildenhall et al., 2018), deblurring (Delbracio
and Sapiro, 2015; Aittala and Durand, 2018), and super-resolution (Wronski
et al., 2019). In sharp contrast, we exploit multiple exposures for high-level
inference tasks such as classification and detection, rather than low-level image

reconstruction.

5.2 Scene Inference under Noise-Blur Dual

Corruptions

We consider scene inference tasks represented as an inference module f(x) =
g o @(x), where, without loss of generality, @(x) is a feature extractor, and g
is a prediction module. Here, o is the composition operator. f(x), oftentimes
represented by a neural network, maps an input image x into its semantic label
y. This generic formulation covers several vision recognition tasks, including
image classification, where y is a categorical label, and object detection, where y

is a set of labeled bounding boxes. We further assume that this function f(-) is
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Figure 5.2: Architecture Overview: Our approach trains an inference model
using multiple captures of varying exposures, all containing the same semantic
content but different amounts of noise-blur dual corruptions. We introduce feature
consistency loss during training to enforce the consistency of feature outputs from
individual captures. During testing (dashed lines), our model returns the ensemble
prediction using each individual capture to produce the final output for a more
robust prediction.

learned from data by minimizing a certain loss function.

Given a set of N noise-blur dual corruption images X = {x4, ...xn} capturing
the same scene, our key intuition is that despite differences in low-level image
features (e.g, pixel values), their latent features should remain similar. In what
follows, we formulate this intuition as a data prior, devise the training and inference

schemes, and demonstrate interesting properties of the resulting method.

Robust Inference with Multiple Exposures

A simple prior is to assume that the latent features {@(x1), ... (x)n} follow a
Gaussian distribution, centered at the ideal clean image X.1.qn and with a small
variance €. This prior ensures that with high probability the distance between
any pair of latent features will stay in a small {, radius controlled by €. With

such assumption, we arrive at the following conditional probability p(y|x) for
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scene inference.

pylx) o< pyle(x))ple(x)[x), (5.1)

where p(@(x)[x) ~ N(@(Xctean ), €2) represents the data prior and p (y| @ (x))
is given by the prediction module g. We now describe the training and inference

schemes based on this formulation, as illustrated in Figure 5.2.

Training with Multiple Exposures: Given the ground-truth label y, minimizing
the negative log likelihood of Equation 5.1 on a training sample (a set of images

{xi} spanning the dual corruption space) leads to the following loss function

e — Z etask y!(P Xl 2 Z H(P Xl - Xclean)“%- (52)

Here, we slightly abuse the notation to replace the first term - log (p (yl @ (x) ), y)
with a more general task-specific loss i qs1 (P (yl@(x)),y). Itis easier to consider
the case of image classification, where the target y is a categorical variable. The
term of —log(p(yle(x)),y) becomes the cross-entropy loss, commonly used for
classification. When y moves beyond simple categorical or scalar outputs (e.g,
for the object detection task), Equation 5.2 allows to plug in any loss function
{1 qsk tailored for the task. On the other hand, the second term can be interpreted
as a feature consistency loss, re-weighted by a coefficient as the reciprocal of the
Gaussian variance (1/¢€?).

Our loss function in Equation 5.2 assumes that a reference clean image is
available during training, as is often the case in our experiments. When such a
clean image is not presented, we simply replace the second term with its equivalent

form that only involves the summation of pairwise distances between ¢ (x;) and
(p(x) )’ i~e’ 2]\]1_62 Zi,j H (p(xi) - (p(xl ) ||%
Inference with Model Aggregation: At inference time, the maximum likelihood

estimation of Equation 5.1 is not viable without the clean image Xcjcqn. Instead,
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we resort to using the ensemble of the predictions from individual multi-exposure
images as the final output prediction. Our key intuition is that no individual capture
in the dual corruption space captures all the necessary information that may be
required for robust inference, but the ensemble output is more effective as it uses
the predictions from individual images that contribute the relevant information

individually. This is given by
f(X) = §(f(x1), f(x2)...f(xn)), (5.3)

where G is an aggregate function to get the ensemble prediction. G is highly
flexible and often task-relevant. For example, for the image classification task,
G could be a simple average operator over the probability outputs. For object
detection, G might be a voting scheme of detected objects. By aggregating multiple
model outputs, Equation 5.3 is conceptually similar to the well-known model
ensemble (Rokach, 2010).

Certified Robustness: When considering a classification problem with c cat-
egories (e.g, image classification), we notice an interesting link between our
inference scheme and a well-known robust classifier (Cohen et al., 2019). Specifi-
cally, when G is an average operator and the decision is made by taking the category
with the highest confidence from f(X), our inference defines a “smoothed” classi-

fier with certified robustness (Cohen et al., 2019) under the Gaussian distribution

argmax p(g(p(x)) =c),

(5.4)
where @(X) ~ N((p(xclean)/ 62)'

(Cohen et al., 2019) showed that such a classifier, if it passes additional
certification, is robust within a certain ¢, radius around @ (Xciean). Intuitively,
this indicates that our model will produce consistent results (the same as ones given
by the clean image) for all corrupted images spanning the dual corruption space,

should the Gaussian assumption be satisfied. We deem a theoretical investigation
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in this direction as our future work.

5.3 Evaluation of Robust Scene Inference

We demonstrate the effectiveness of our method on two important scene inference

tasks: object detection and image classification.

Object Detection

Instantiation: Figure 5.2 shows the overview of our approach using a multi-
exposure ensemble for the object detection task. We implement our approach using
the single-stage FCOS architecture (Tian et al., 2019b). The output prediction of
the FCOS model for image of size H x W consists of pixel-wise classification
scores (H x W x C) for C object categories, centerness scores (H x W x 1) and
bounding box coordinates regression outputs (H x W x 4). During inference,
our ensemble predictor (G), takes the pixel-wise classification scores, centerness
scores, and box coordinates, and returns their average at each FPN level. Loss
function for the inference task (£;4sx) is the same as defined in FCOS architecture
(i.e., sum of focal loss, regression loss for bounding boxes, and centerness 10ss).
Refer (Tian et al., 2019b) for details. Our feature consistency loss ({.) is the L2
distance between feature outputs from the CNN network (final layer after global

average pooling).

Datasets and Metrics: We evaluate our approach using three object detection
datasets: Cityscapes (Cordts et al., 2016), MS-COCO (Lin et al., 2014), and
REDS (Nah et al., 2019). Cityscapes consists of street scenes captured from a
vehicle and consists of 8 categories related to autonomous driving, with 2975
training and 500 test images. MS-COCO consists of 80 categories for general
object detection with 118k training and 5k validation images. REDS consists
of 120fps video sequences of 270 scenes captured by a high-speed camera. The

dataset represents images with common objects (like person, car, chair etc.).
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The ground truth annotations provided in Cityscapes and MS-COCO are
used for evaluation. We follow common conventions, train our models on their
training sets, and report results on the validation sets. In contrast, REDS does not
have object annotations. We thus use a pretrained Faster R-CNN object detector
model (Ren et al., 2015) available in the Detectron2 platform (Wu et al., 2019)
to obtain pseudo-ground truth annotations to create our evaluation benchmark
containing 270 images with 2160 box annotations.

All results are reported using mean average precision (mAP) across multi-
ple intersection-over-union (IoU) thresholds, following the COCO evaluation
protocol (Lin et al., 2014).

Low-light and Motion Blur Dataset Generation: All three datasets mentioned
above contain images captured in sufficient light and no noticeable motion blur
(scene or camera). Since there is no publicly available large-scale annotated
dataset containing images captured in low-light and motion blur conditions, we

simulate such conditions using various strategies, as described below.

e REDS: Since the REDS dataset contains video sequences captured by a 120fps
camera, we first simulate low-light conditions for each individual frame of the
sequence by adding Poisson noise (shot noise) and read noise. Multiple frames
are then averaged together to generate images with motion blur that capture
realistic motion conditions of the camera or scene. In practice, we select a
random frame from each video sequence, select a varying number of adjacent
frames (from O to 3 on each side of the frame), and compute their average
(after adding noise) to simulate blurry images with motion. This generates
images with different exposures, examples of which are shown in Figure 5.3b.

e CityScapes: CityScapes provides low-fps video sequences around each an-
notated frame in the dataset (30-frame sequence captured at 17fps). We use
a pretrained video interpolation network (Sim et al., 2021) to synthesize a
high-fps video sequence by increasing the frame rate by a factor of 4x. A
motion-blurred image is then generated as with the REDS dataset, that is adding

noise to each individual frame, and averaging a number of adjacent frames.



Short Exposure Long Exposure
(Noise) (Blur)

(a) CityScapes

Short Exposure Long Exposure

Clean (Noise) (Blur)

Short Exposure Long Exposure
(Noise) (Blur)

(c) MS-COCO

hort Exposur » o Long Exposure
(Noise) (Blur)
(d) CUB-200-2011

Figure 5.3: Simulated Images: Few examples of images with simulated noise
and blur. CityScapes and REDS dataset images are generated by simulating
low-light frames from high-speed video sequences. MS-COCO and Birds dataset
images are generated using a single frame by adding noise (shot noise and read
noise) and blur (random motion blur kernel) of varying amounts.
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Figure 5.3a shows examples of simulated low-light and motion-blur frames
used for training and evaluation on the CityScapes dataset. The resulting
images indeed represent realistic motion conditions under autonomous driving
scenarios (like fast moving camera/car or moving pedestrians, other vehicles
etc.).

e MS-COCO: As the MS-COCO dataset does not contain any video sequences,
we simulate the blur and noise from a single image using the same procedure
as the image corruptions benchmark in (Hendrycks and Dietterich, 2018) by
selecting varying severity of shot noise and motion blur. Specifically, the
noisiest image has a shot noise level of 4 and a motion blur level 1. Subsequent
levels in the dual corruptions are simulated by increasing the motion blur and
decreasing the shot noise successively to generate 4 levels of dual corruptions.
Figure 5.3c shows a few examples of simulated images. We note that, contrary
to the other two datasets above, the blur simulated by this approach is not

spatially varying.

Baselines: We compare our approach with the following set of baselines. All
approaches use the same backbone for fair comparison. We evaluate all the
methods using all four exposures and report the results for the best exposure

settings.

e Clean Model: This baseline model is trained only on clean images and evaluated
on noisy images.

o Stylized Training: We follow the data augmentation approach of (Michaelis
et al., 2019), who propose to augment training images with stylization for
robustness.

e Single Exposure: We train a model on a dataset containing varying exposures
and clean images, essentially considering distortions as a way to perform data
augmentation (Hendrycks and Dietterich, 2018). For evaluation, we select the
single exposure setting yielding the best performance and report those results.
This baseline acts as an oracle for selecting the best-performing exposure time

at inference time.
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Method REDS CityScapes MS-COCO

mAP APs APm APl mAP APs APm APl mAP APs APm APl
Clean Model 16.36 17.96 18.46 1645 | 2.72 0.22 247 7.02 |3.35 0.21 2.51 7.69
Stylized Training 19.13 18.11 21.64 23.71 | 6.75 0.24 3.32 20.00 | 7.89 0.25 3.13 17.07
Single Exposure 30.17 20.27 25.75 36.88 [18.07 3.96 15.77 35.54 |21.25 6.58 22.39 33.88
Denoising (BM3D) 30.25 20.28 25.90 37.08 |18.01 3.82 15.53 35.97 |21.78 6.76 22.78 34.43
Denoising (MPRNet) 25.67 18.97 23.47 31.84 [15.26 2.97 13.89 34.11 |18.78 5.12 17.45 27.13
Deblurring 30.68 18.82 26.36 36.02 |17.67 3.63 15.90 34.67 (12.42 2.52 11.77 21.11
Denoising + Deblurring |29.45 18.46 26.35 34.46 [17.91 4.01 15.34 35.09 |22.03 6.79 22.89 34.63
Short Exposures (N = 4)(30.81 18.41 26.53 36.02 |18.46 4.33 15.97 35.86 |22.17 6.87 23.91 35.11

Ours (N =2)
Ours (N =4)

33.76 14.67 27.64 40.81
36.17 14.15 29.04 42.17

19.36 5.11 17.23 37.66
20.97 5.38 19.46 38.95

23.11 8.01 25.87 36.09
24.71 9.13 27.08 37.79

Table 5.1: Object Detection Results: AP results on REDS, MSCOCO, and
CityScapes datasets. Our approach of Multi-Exposure Ensemble (Ours) outper-

forms all baselines.

e Denoising: This baseline represents the conventional approach of denoising

the noisy images under low-light conditions. We perform both training and
inference on denoised images. Here, we experiment with the BM3D (Dabov
et al., 2007) and MPRNet (Zamir et al., 2021) approaches for denoising the
images.

Deblurring: We also compare with the approach of deblurring the images for
scene inference, where we use a deblurring model (Carbajal et al., 2021). We
perform both training and evaluation of our model using deblurred images.
Denoising + Deblurring: As the test images in low-light and motion blur
have both noise and blur, we also compare with the approach of denoising
(BM3D) followed by deblurring. The model is trained and evaluated using
Denoised+Deblurred images.

Short Exposures: This baseline compares with the approach of evaluating
using multiple short exposures by using the ensemble prediction from N short

exposure images. The model is trained with short exposure images.

Implementation Details: We used the official implementation of the FCOS

architecture (Tian et al., 2019a) for the object detection experiments, which is
based on the Detectron2 framework (Wu et al., 2019). ResNet-50 (He et al., 2016)
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with FPN was used as the backbone for training and initialized with ImageNet
pretraining weights for all our models. We followed the hyperparameters from
Detectron? to train our models. MS-COCO models were trained with a learning
rate of 0.01, batch size of 16 for 90k iterations, whereas CityScapes models were
trained with a learning rate of 0.005, batch size of 8 for 24k iterations. REDS is

used only for evaluation; in this case, we use the model trained on MS-COCO.

Results and Discussions: Table 5.1 shows the results (in mAP along with AP
of small, medium and large objects) of our approach on all three datasets. Our
method outperforms all baselines by a significant margin. Our approach beats
Single Exposure baseline by 6% in REDS, 2.9% in CityScapes, and 3.5% in
MS-COCO with four exposures. In other words, it is best to leverage all the
dual-corruption images even if we knew the best possible single exposure ahead
of time. Denoising provides improvements over Single Exposure baseline in some
cases but is not as effective. Deblurring approaches does not show performance
improvement over Single Exposure baseline in most cases. This is because images
contain both noise and blur and deblurring models are specialized to handle only
blur. Deblurring+Denoising baseline also shows relatively minor performance
gain. We see significant gain with Short Exposures (with 4 exposures) baseline,
highlighting the benefit of ensemble prediction. However, since all the exposures
are short, they all suffer from sever noise and have similar errors, and hence
outperformed by our method. Our method provides large improvements even
with two exposures, and increasing the number of exposures (from two to four)
further increases the performance. This highlights that our approach benefits with
more number of exposures as different exposures have a wide variety of dual
corruption level.

Figure 5.4 shows representative qualitative examples of our approach for
object detection and shows direct comparison with each individual exposure and
its predictions. The correct/incorrect bounding boxes are highlighted in green/red
and ground truth bounding boxes are highlighted in blue on the clean image

(right). Our approach makes fewer false positive predictions (red) compared to the
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Short Exposure Long Exposure Multi Exposure GT

(Noise) (Blur) Ensemble (Ours)
(a) MS-COCO Dataset Results

1

Short Exposure Long Exposure Multi Exposure GT
(Noise) Blur) Ensemble (Ours)

(
(b) REDS Dataset Results

Short Exposure Long Exposure Multi Exposure
(Noise) (Blur) Ensemble (Ours)

(c) CityScapes Dataset Results

Figure 5.4: Object Detection Results for MS-COCO, REDS and CityScapes
Dataset. Correct/Incorrect predictions are highlighted with green/red, and ground
truth boxes are highlighted with blue in the clean image. The first 4 columns show
results on single captures, followed by a column with results from multi-exposure
captures using our approach. Single Captures have a lot more false positives (red)
while our approach effectively removes those cases (Better viewed on screen).
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Figure 5.5: Precision Recall Curve of our approach and baselines on CityScapes
Dataset for all 8 categories with IOU threshold of 0.5. We see significant
improvement for ‘person’ and ‘car’ categories, which are the most common in
the dataset.

Single Exposure. Since individual single captures make different false positive
predictions, the ensemble is able to remove those false positive boxes. Figure 5.5
shows the precision recall curve on CityScapes dataset for IOU threshold of 0.5
for all 8 categories in the dataset. We see a significant improvement in area under

the curve for person and car category, which is the most common in the dataset.

Image Classification

Instantiation: Similar to object detection, our approach uses a shared CNN
architecture as a feature extractor. In particular, we used a ResNet-18 (He et al.,
2016) as the image classification architecture. The feature consistency loss (¢ is
defined as the L2 distance between the feature map output of the final layer (after
global average pooling) to encourage consistent predictions. The model returns

the average of the predictions (probability output) from multiple degraded images
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Method Top-1  Top-5
Clean Model 6.13 13.45
Stylized Training [(Michaelis et al., 2019)] 9.51 17.83
Single Exposure 41.18 64.13
Denoising (BM3D) [(Dabov et al., 2007)] 4334 67.11
Deblurring [(Carbajal et al., 2021)] 39.13  60.45
Denoising [(Dabov et al., 2007)] + Deblurring [(Carbajal et al., 2021)] 42.95  66.59
Short Exposures (N = 4) 45.16 69.84
Multi Exposure Ensemble (N = 2) 52.10 74.13
Multi Exposure Ensemble (N = 4) 55.27 79.34

Table 5.2: Image Classification Results: Top-1 and top-5 accuracy results on
CUB-200-2011 dataset. Our approach of Multi-Exposure Ensemble outperforms
all the baselines.

(as the ensemble operator G) for the final output.

Datasets, Metrics, and Baselines: We use simulated images from the CUB-
200-2011 image classification dataset (Wah et al., 2011). CUB-200-2011 is
commonly used for fine-grained image classification benchmarks and consists
of 200 species of birds with 5,994 training images and 5,794 test images. All
results are reported using top-1/5 accuracy on the test set, following the standard
evaluation protocol for image classification. A set of baselines similar to the ones

used in the experiments on object detection (Section 5.3) is considered here.

Simulating Noise and Blur: Since CUB only contains single images, we employ
the same strategy to generate dual corruption images as for the MS-COCO dataset
in the object detection experiments (Section 5.3). Figure 5.3d shows a few

examples of simulated images.

Implementation Details: The model is trained with SGD with the momentum of
0.9, a base learning rate of 0.1 with cosine decay, and a batch size of 32 is used to

train for 100 epochs.

Results and Discussions: Table 5.2 shows top-1 and top-5 accuracy of our

approach on the simulated CUB dataset. We report the results of our model using
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Figure 5.6: Ablation Studies: Image classification results of our approach on
CUB-200-2011 while varying feature consistency loss weight and backbone
architecture.

two and four exposure settings. Our method outperforms both baselines using a
single exposure by a significant margin. Compared to choosing the single best
exposure, our approach, with N = 4, attains an overall gain of 14.1% and 15.2%
in top-1 and top-5 accuracy, respectively. Our approach shows significant gains
with only two exposures; however, having more number of exposures (from 2 to

4) further helps the overall performance.

Ablation Studies: We study the performance of our approach with varying weights
for feature consistency loss. Figure 5.6 shows that our approach performs best for
the weight factor of 5 in image classification on the CUB-200-2011 Dataset. We
also evaluate the performance of our approach with another backbone architecture.
Figure 5.6 shows similar performance gain using DenseNet-121 (Huang et al.,
2017), which highlights the versatility of our approach as it can extend to different

CNN feature extractors.
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Figure 5.7: Camera Setup for capturing multiple exposure images

20ms 50ms
(Severe Noise) (Severe Blur)

20ms 40ms 60ms 80ms
(Severe Noise) (Severe Blur)

Figure 5.8: Examples of Real Captures: Images captured with varying exposure
settings with our multi-camera setup. Images with shorter exposure have severe
noise, while images with longer exposure contain motion blur for the moving
objects.
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20ms 50ms Denoised Deblurred Denoised Multi Exposure Ensemble
(Severe Noise) (Severe Blur) +Deblurred (Ours)

(Severe Noise) (Se

Figure 5.9: Object Detection Results on Real Captures: Scene in the first row
contains an indoor scenario with two objects: a person (moving) and a chair
(stationary). Single Exposures are severely affected by noise and/or blur: detect
false positives or inaccurate bounding boxes. Scene in the second row contains
a driving scenario with a car (moving) on the left and a traffic light (stationary)
in the front. Single Exposures fail to detect the moving car or the stationary
traffic light. The Multi-Exposure Ensemble approach (right) leverages multiple
exposures and detects all objects with correct labels and tight bounding boxes in
both scenes.

5.4 Experiments with Real Captures

Finally, we evaluate our approach on real images by capturing multiple simultane-

ous exposures of the same scene.

Camera Setup: Our setup includes four BlackflyS USB3 cameras (Teledyne,
2022) by Teledyne Flir. These are machine vision cameras that can capture colored
images with a resolution of 1280 x 1024 with up to 175 frames per second. Same
lenses (Tamron 8mm) are used for all cameras, which are stacked together to
get similar (overlapping) fields-of-view. Aside from an approximate physical
alignment of the cameras, no further alignment of the captured images is done
as all cameras have similar fields-of-view, and the scene is sufficiently far away.
Cameras are connected to a computer that triggers the simultaneous captures
(software sync). Our complete setup is shown in Figure 5.7.

We use Spinnaker SDK (Spinnaker, 2022) provided by Teledyne to capture

RAW images. Maximum available gain (18dB) for the camera is used, and a
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gamma correction (y = 2.2) is applied on the captures to get the final images. We
set different exposure times for each camera and synchronously capture images

using all the cameras.

Exposure Selection: We manually select the exposure times in order to span
a wide range of exposures while ensuring that images are not too under- nor
over-exposed. Our indoor scenes consist of fast-moving objects in a very dark
environment (~0.25lux) lit by a single light source. We experiment with multiple
settings depending on the lightning conditions, including A) 20-30-40-50ms, B)
20-40-60-80ms, and C) 16-33-66-100ms. When evaluating our approach, we use

two or four exposures, examples of which are shown in Figure 5.8.

Results and Discussions: We train our object detection models with the simulated
images from the MS-COCO dataset and evaluate the trained model on real captures.
Figure 5.9 shows sample results with the real captures on two scenes. Both
scenes consist of both fast-moving and stationary objects under low light. The
prediction output from the individual exposure contains several false positives
and inaccurate boxes. By leveraging the multiple exposures across the space of
dual corruptions, our method is able to correctly detect all the objects with tight
bounding boxes and remove false positive boxes.

Our approach performs better inference even with two exposures (N = 2).
As we increase the number of exposures, the prediction improves as long as the
exposures are not too noisy or blurry for inference (as that can deteriorate the
performance of the ensemble prediction). One simple heuristic that performs well
with our approach is to select exposure times around the auto-exposure value,
as this ensures the frames are not too under- or over-exposed. We show more
examples in the supplementary text with two and four exposures, including failure

cases.
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5.5 Conclusion

Our work demonstrates the challenges in scene inference under low-light and
motion conditions. We discuss the trade-off between two kinds of image degrada-
tions: motion blur (due to long exposure) vs. noise (due to short exposure), also
referred to as a dual image corruption pair in this paper. To this end, we propose
a method to leverage multi exposure captures for robust inference under low-light
and motion. Our method builds on a feature consistency loss to encourage similar
results from these individual captures and uses the ensemble of their final pre-
dictions for robust visual recognition. We demonstrate the effectiveness of our
approach on simulated images as well as real captures with multiple exposures,

and across the tasks of object detection and image classification.

5.6 Supplementary Section: Additional Object

Detection Results

Comparison to Baselines: We compare our approach with additional baselines.
Table 5.3 shows the performance of the model trained and evaluated on clean
images. We also show the results of training and testing with a single corruption
level. Results are included for four different noise-blur dual corruption levels
(from 1 to 4) with increasing motion blur and decreasing shot noise. Comparing
with clean images shows the impact of noise and blur degradation as the mAP
drops significantly. Our approach utilizes clean images and corrupted images
with feature consistency that helps the model learn robust features. Our model

outperforms these baselines by a significant margin using the same model capacity.

Results Visualization for Object Detection: Figure 5.10 shows examples where
our approach outperforms the baselines. The first row of Figure 5.10 shows an
example where one baseline predicts correct bounding boxes, and our approach
is as good as the best single-exposure baseline. Figure 5.11 shows a few result

images with real captures using our approach and the baseline. Our method
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Method

REDS

CityScapes

MS-COCO

mAP APs APm API

mAP APs APm APl

mAP APs APm API

Clean Training & Testing

78.21 52.94 73.91 84.33

33.36 10.40 32.26 54.70

38.59 22.9 42.28 49.56

Corruption Level 1 (Severe Noise)

Corruption Level 2
Corruption Level 3

Corruption Level 4 (Severe Blur)

23.46 16.14 24.08 26.27
30.20 20.27 25.75 36.88
27.85 19.75 23.80 35.09
26.78 15.51 20.13 33.53

14.06 1.82 11.80 30.98
17.19 3.71 15.36 33.84
17.07 3.26 15.45 32.89
15.94 4.21 14.73 30.39

20.26 6.18 21.18 32.73
20.29 5.59 21.19 32.21
20.21 6.35 20.94 32.70
20.47 6.45 20.94 32.32

Multi-Exposure Ensemble (N = 4)

36.17 14.15 29.04 42.17

20.97 5.38 19.46 38.95

24.71 9.13 27.08 37.79

Table 5.3: Object Detection Results: AP results on REDS, MSCOCO, and

CityScapes datasets.

is more effective in predicting the correct bounding boxes and predicts fewer

false-positive boxes.

Failure Cases for Object Detection: Figure 5.12 and 5.13 show some failure

cases where our approach performs worse than a single-exposure baseline. Since

our approach relies on the average of output predictions, it fails to perform well

when one of the exposures has too much degradation.
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Short Exposure Long Exposure Multi Exposure GT
(Noise) (Blur) Ensemble
(Ours)

Figure 5.10: Object Detection Results on MS-COCQO dataset: Correct/Incorrect
predictions are highlighted with green/red, and ground truth boxes are highlighted
with blue in the clean image. Single Exposures have a lot more false positives
(red) while our approach effectively removes those cases. For the first scene, our
approach produces tighter bounding boxes than individual predictions (Better
viewed on screen).
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20ms 50ms Multi Exposure Ensemble
(Severe Noise) (Severe Blur) (Ours)

20ms 40ms 60ms 80ms Multi Exposure Ensemble
(Severe Noise) (Severe Blur) (Ours)

Figure 5.11: Object detection results with Real Captures: Single Exposures
are severely affected by noise and/or blur. The model detects false positives
and inaccurate bounding boxes. The Multi-Exposure Ensemble approach (right)
leverages multiple exposures and detects all objects with correct labels and tight
bounding boxes.
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Short Exposure Long Exposure Multi Exposure GT
(Noise) (Blur) Ensemble
(Ours)

Figure 5.12: Object Detection Failure Cases on MS-COCO dataset: Figure
shows examples where single exposure performs better than our approach. The
first scene contains two objects, and our approach fails to detect the second object.
The second scene contains a lot of overlapping ground truth bounding boxes, and
our approach fails to detect a few bounding boxes.

20ms 40ms 60ms 80ms Multi Exposure Ensemble
(Severe Noise) (Severe Blur) (Ours)

Figure 5.13: Object Detection Failure Cases on Real Captures: Figure shows
a failure case with the real captures where a single exposure (60ms) detects all
three objects correctly, whereas our model a detects false positive box and fails to
detect skateboard object. Our model performs worse in cases when any single
exposure has too much degradation.
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6 CONCLUSION AND FUTURE OUTLOOK

The robustness of perception models on challenging scenarios such as low-light,
motion, and extreme weather is an important factor and often a bottleneck to
the safe deployment of vision systems. This dissertation provides a perception
framework that is capable of performing robust inference under a variety of
challenging conditions and for multiple sensing modalities. We discuss numerous
scenarios, such as autonomous driving, where the reliable performance under these
non-ideal imaging conditions is critical. Our proposed framework improves the
worst-case performance of such vision systems significantly for sensors including
SPAD LiDARs, single photon cameras, and conventional RGB cameras.

I would now conclude this dissertation by discussing some limitations of our
work and providing some future outlook on approaches that could further improve

this goal.

6.1 Scope and Limitations

Learned Confidence Measure

In our proposed method, we handcrafted an effective confidence measure from
raw LiDAR measurements. Although our proposed confidence measure shows
significant performance gains, our work does not explore other possible confidence
attribute formulations. Finding an optimal confidence measure for downstream
inference could be helpful in further performance improvements.
Generalizability of our confidence attribute across different LiIDAR sensors
is also an important consideration. A learned representation of the confidence

attribute could be useful for better generalizability as well.
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Exposure Selection for Multiple Captures

Our proposed approach of multiple captures uses a manually chosen set of exposure
times while capturing. Most modern cameras, however, have the functionality
of auto-exposure that selects the exposure setting based on the lighting and
motion conditions (light and motion metering) of the scene for the best image
quality. Determining the optimal exposure for inference automatically (for a
single exposure) is an active area of research (Onzon et al., 2021). With the
ability to capture multiple exposures, an important research problem is to develop
generalized auto-exposure techniques for multiple captures that result in the best

performance for the inference tasks under these challenging conditions.

Computational Considerations

Capturing, processing, and performing inference on multiple exposures incurs a
linear increase in computational cost. However, since many of these computations
can be done in parallel, the increase in latency is small, which is important for
safety-critical applications like autonomous driving. Our approach is agnostic
to the number of exposures during inference, which allows inference systems
to switch between multi-exposure settings (during challenging conditions of
low-light and/or motion) and single-exposure settings during less challenging
conditions (daytime driving or slow/no motion). In practice, the inference system
can operate at no computational overhead by using a single exposure setting
during most of the time (e.g, daytime driving) and use a multi-exposure setting

during more challenging conditions (e.g, nighttime driving).

6.2 Future Outlook for Robust Perception

All-Weather Perception Model

We have considered various adverse conditions in this dissertation, but a crucial

scenario of extreme weather, such as rain, fog, and snow, has not been explored in
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detail. Although our approach of photon scaled images is also applicable to such
types of image degradation, more thorough analysis and inference approaches for
extreme weather are very promising research directions.

The future goal should be to design a single perception framework that is
robust to all such image degradations. Such a robust all-weather perception
system would be extremely valuable for a huge number of outdoor applications,

including autonomous driving.

Sensor Fusion Approaches

This dissertation aims to improve the robustness of inference models using
individual sensing modalities like SPAD cameras and LiDARs. A promising
direction is to tackle this problem using a fusion approach for multiple sensors.
Raw sensor measurements from multiple sensing modalities, like RGB images and
raw LiDAR data, could provide additional benefits in conditions where different

modalities perform better or worse in the same conditions.

MultiModal Foundation Models

Recent advances in foundation models for various sensing modalities (Bachmann
et al., 2022; Girdhar et al., 2023; Zhang et al., 2023) have shown great improve-
ments in model pre-training for downstream inference performance. Fusion
models mentioned above can benefit greatly from such pre-training. Multi-modal
foundation model that can (a) learn from multiple modalities in a self-supervised

manner, and (b) utilize raw sensor measurements is a promising future direction.

Confidence Measure from Other Depth Sensors

Although our work considers LiDARSs, other 3D sensors such as stereo (Zaarane
et al., 2020), structured light (Gupta et al., 2013), and indirect time-of-flight,
e.g. Azure Kinect (Qiu et al., 2019), also suffer from noise and low fidelity
in challenging imaging scenarios, and could benefit from similar probability



110

attributes. Since the proposed inference approaches do not make any assumption
about the nature of the probability attributes or the noise characteristics of the
underlying sensing modality, it could be extended to a wide range of 3D sensors.

This is a promising future research direction.

Inference on Time-Varying Inputs

In their current form, the proposed approaches assume static single-frame input.
However, most current single-photon sensors (Ma et al., 2017; Ulku et al., 2018)
can capture binary frames at high speeds, up to several thousand frames per second.
A promising future research direction is to perform inference in the presence of a
high-speed camera or scene motion on a temporal sequence of such low bit-depth

frames, while exploiting temporal correlations.

Multi-Exposure Cameras

We demonstrated our approach of multi-exposure captures by utilizing multiple
cameras with similar or overlapping fields-of-view. With cameras that are capable
of capturing multiple images with varying exposures simultaneously (Nayar
and Mitsunaga, 2000; Nguyen et al., 2022), multiple exposure images could be
captured with a single camera, thus making it easier to perform spatio-temporal
alignment. Our work can be considered as a preliminary proof-of-concept for
an eventual implementation where a single camera captures multiple exposure

images. Demonstrating our approach on such images is an important next step.

Dual Image Degradations

So far, we have considered the dual corruptions of noise and blur. In principle, a
similar dual relationship exists between several other image degradation pairs,
such as rain and defocus blur (Garg and Nayar, 2005), and snow and motion

blur (Barnum et al., 2008). A promising research direction is to evaluate the
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proposed approach on other such dual pairs of image degradations, toward the

goal of achieving ‘all-weather’ computer vision systems.
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