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1 Introduction

Type Ia supernovae (SNe Ia) are thought to result from thermonuclear explosions of carbon-oxygen

white dwarf stars. The amount of energy released from fusion reactions is converted into kinetic

energy that unbinds the star. The resulting fluid is ballistic and homologous within ∼100 seconds

of the initial fusion disruption. During the span of several weeks, radioactive 56Ni emits gamma

rays that heat the ejecta to produce visible light. The luminosities of SNe Ia typically span a small

range and are often correlated. Consequently, these events are of interest to cosmology as “standard

candles” for measuring the expansion rate of the Universe.

Photon transport in Type Ia supernovae is challenging to simulate with high fidelity. The ob-

served light curves and spectra result from the interaction of photons with millions of spectral lines

of a multi-species fluid in various excitation and ionization stages. Moreover, the fluid is expanding

at a semi-relativistic rate; so a photon that does not interact with a line in one part of the ejecta can

transport into resonance with the same line elsewhere in the fluid. The complicated opacity spec-

trum and the high-velocity expansion of the fluid imply that the span of material properties over

physical time scales of weeks is large. Depending on the transport method and code, high-fidelity

simulations of SNe Ia can be demanding to memory and efficiency. Enough opacity data must be

stored to resolve the spectrum and the transport method must be efficient in optically thick regions

of the domain.

The intent of this thesis is to describe the theory of a hybrid transport-diffusion, Monte Carlo,

local thermodynamic equilibrium (LTE), radiative-transfer code for Type Ia supernovae and other

applications. The methods applied are Implicit Monte Carlo (IMC) for radiation transport and Dis-

crete Diffusion Monte Carlo (DDMC) for radiation diffusion. DDMC accelerates IMC calculations

where diffusion theory is applicable. The code presented, named SuperNu, implements IMC and

DDMC in one-dimensional, spherical geometry to propagate and deposit radiation energy in either

static material or ballistic, homologous fluid. The fluid velocity field does not depend on radiation

momentum deposition. At the time of the writing of this thesis, novel features of SuperNu include:

• a Lagrangian IMC-DDMC implementation for homologous flow [104] (see Section 3.1),
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• a boundary condition for high-velocity spatial cell edges that interface IMC and DDMC [104]

(see item 1 of Section 3.1.2),

• a “distance to Doppler shift” for IMC and an asymptotically informed scheme that emulates

continuous redshift for DDMC [103] (see item 2 of Section 3.1.2),

• a non-contiguous opacity regrouping scheme that optimizes DDMC by allowing groups to

have disjoint frequency intervals [103] (see Section 3.1.4),

• and an implementation of the W7 Type Ia supernova (SN Ia) problem [76] solved with IMC-

DDMC (see Section 3.3.3).

The ability of the code to solve the W7 problem efficiently is attributable to the non-contiguous

opacity regrouping method. This method finds DDMC groups that are optically thick and com-

bines them to reduce effective or physical, inelastic scattering. For the numerical tests presented in

Chapter 3, only effective scattering is considered.

The outline of the thesis is as follows: in Chapter 1, the relevant theory and motivations are

given for transport and transport methods; in Section 2.1, articles detailing features, limitations,

and improvements of IMC and related transport methods are discussed; in Section 2.2, the physics

of SNe Ia and codes used to simulate SNe Ia are reviewed; in Chapter 3, the SuperNu radiation

transport methods and framework are presented along with numerical tests of particular features;

in Section 3.3.3, IMC-DDMC simulation data for the W7 SN Ia problem are presented; and in

Chapter 4, conclusions and avenues of future research are summarized.

1.1 Radiative Transport

Radiative transport is the phenomenon of photon propagation through space, time, and matter. In

many cases, it is possible to accurately describe a field of photons with a distributional density pro-

file in phase space, fν . The subscript, ν, indicates photon frequency or energy dependence and is

often expressed as a parenthetical argument. Excluding polarization [19, p. 70], the radiation distri-

bution, fν , and intensity, Iν , depend on seven variables: three spatial dimensions, ~r, two direction
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dimensions, Ω̂, time, t, and frequency, ν. Furthermore, fν and Iν are related by (see, e.g., [86,

p. 2], [73, p. 311]),

Iν = chνfν , (1.1)

where c is the speed of light in a vacuum and h is Planck’s constant. Briefly, Iν(~r, Ω̂, t) is the

amount of power at a time t, per differential surface neighborhood around a position ~r, per differ-

ential solid angle around a direction Ω̂, per differential frequency interval about a frequency ν [73,

p. 311]. Castor [19, p. 70] provides an intuitive description of radiation intensity from the stand-

point of measurement from a detector in an idealized apparatus. In the set-up, radiation from an

aperture open for a finite time interval streams through a vacuum to a detector that registers radia-

tion in a finite frequency band. The amount of energy detected divided by the measurement time,

the frequency band, the solid angle of the detector viewed from the aperture, and the area of the

aperture gives an estimate of intensity at the aperture [19, pp. 70-72]. Figure 1 is a copy of Castor’s

illustration [19, p. 71].

  

r

A2

A1

Δ E = I ν

A1 A2

r2 Δ t Δ ν

Figure 1: Intensity measuremant apparatus of Castor [19], where A1, A2, r, ∆t, ∆ν, and ∆E are

aperture area, detector area, distance, time span, detector frequency range, and detected energy.

If initial, boundary, and source conditions for a radiation field are known, then Iν may be ob-
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tained from the radiation transport equation. The transport equation is a statement of energy conser-

vation along a direction. For a given direction, photon particles advect at the speed, c, are removed

from the direction by absorption and scattering, and are added to the direction by sources and scat-

tering. Despite different speeds and interactions, the description for neutron transport is similar.

Consequently, we summarize the derivation of the transport equation by Lewis and Miller [62] but

use photon transport notation. The summary is a statement of energy balance in one inertial frame

of reference. Buchler [14] provides a derivation of the transport equation in a general, comoving

fluid frame that is discussed in section 1.1.1. For a small volume in phase space, |∆~r|∆A∆Ω∆ν,

the change in Iν over a small change in the local time ∆t is balanced by losses from streaming and

collisions and gains from emission and scattering. This balance can be expressed as [62, p. 22]

1

c
(Iν(~r, Ω̂, t+ ∆t)− Iν(~r, Ω̂, t))|∆~r|∆A∆ν∆Ω =

− (Iν(~r + |∆~r|Ω̂, Ω̂, t)− Iν(~r, Ω̂, t))∆A∆t∆ν∆Ω

− σν(~r)Iν(~r, Ω̂, t)|∆~r|∆A∆t∆ν∆Ω +
qν(~r, Ω̂, ν, t)

4π
|∆~r|∆A∆t∆ν∆Ω , (1.2)

where |∆~r| is the distance to change position along direction Ω̂, ∆A is the area of a surface oriented

with normal vector Ω̂, ∆t is a finite time span, ∆ν is a bandwidth containing ν, and ∆Ω is a solid

angle neighborhood around Ω̂. The “macroscopic” opacity [62, p. 4], σν , dictates the amount of

energy removal out of the phase space volume; the external and scattering sources, qν , dictate the

amount of energy addition to the phase space volume. Following Lewis and Miller [62, pp. 4-5],

a beam traveling along a direction is diminished proportional to the ratio of collision area to beam

area. For a |∆~r| that resolves one layer of collision centers across a beam area of ∆A, the density of

collision centers for ∆A|∆~r| multiplied by the collisional area per center multiplied by |∆~r| yields

the loss fraction for the beam traveling |∆~r| [62, p. 5]. Considering Eq. (1.2), σν is the loss ratio per

|∆~r|. Dividing Eq. (1.2) by ∆t|∆~r|∆A∆Ω∆ν and taking the limit of the result as ∆t, |∆~r| → 0

yields
1

c

∂Iν
∂t

+ Ω̂ · ∇Iν =
qν
4π
− σνIν , (1.3)
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where the streaming operator, Ω̂ · ∇, is the directional derivative along Ω̂. The source term qν can

be expressed as the sum of external sources (i.e. material emission) and scattering sources. For

photons of frequency ν ′ traveling in direction Ω̂′, the portion of Iν′(~r, Ω̂′, t) redistributed into the

neighborhood of direction Ω̂ and the neighborhood of ν is governed by the differential scattering

opacity, σs(~r, ν ′ → ν, Ω̂′ · Ω̂). In Eq. (1.3), qν divides into external and scattering sources [62,

p. 35],

qν = qν,e +

∫
4π

∫ ∞
0

ν

ν ′
σs(~r, ν

′ → ν, Ω̂′ · Ω̂)Iν′(~r, Ω̂
′, t) dν ′ dΩ′ , (1.4)

and the total opacity σν is

σν = σν,a +

∫
4π

∫ ∞
0

σs(~r, ν → ν ′, Ω̂ · Ω̂′) dν ′ dΩ′ , (1.5)

where qν,e and σν,a are the external source and absorption opacity, respectively [86, p. 13-15]. Con-

sidering Eq. (1.1), the fraction ν/ν ′ conserves particle number through collision events. Castor indi-

cates it is also possible to derive the transport equation purely from classical electromagnetism [19,

p. 70].

Radiation traveling through a small aperture may diffract; in this case, geometric ray tracing for

photons no longer furnishes a complete description. In transport theory, particles are assumed to be

points [62, p. 3]. The point particle assumption is valid when the particle wavelength, λ, is small

compared to the characteristic size of collision centers, |∆~r|, and mean free path length, 1/σ. For

some material, the spacing of collision locations is analogous to the aperture while mean free path

length is analogous to a distance to a detector in Castor’s construction. Hence, if the objective is to

apply transport theory where valid, 1/σ must be large (see, e.g., [19, p. 70], [53, p. 478]) and |∆~r|

must be large enough to subtend the characteristic diffraction angle. The complimentary constraint

is that diffraction angle or λ must be sufficiently small. For two rays associated with oscillatory

fields initially in phase at a distance |∆~r| apart and directed to meet at a distance 1/σ along a vector
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orthogonal to ∆~r, the phase difference of the fields at the meeting point is

∆φ =
2π

λ


(

σ−1

cos(θ)

)(( |∆~r|cos(θ)
σ−1

)2

− 2|∆~r|sin(θ)

σ−1
+ 1

) 1
2

− 1

 , (1.6)

where ∆φ is the phase change and θ is the observation angle of one of the rays with respect to the

axis orthogonal to ∆~r. Setting λ� |∆~r| � σ−1 and expanding to leading order, Eq. (1.6) implies

a minimum of the diffracted intensity profile at

θ ≈ λ

2|∆~r|
. (1.7)

Notably, 1/σ is not present in Eq. (1.7) and the angular span of diffraction viewing angles must

diminish with decreasing wavelength or increased collision center spacing.

For a plane wave normally incident on a circular aperture of radius |∆~r|, Jackson [53, p. 492]

computes the diffracted power per solid angle as

dP

dΩ
= Pi

(k|∆~r|)2

4π
(µ2 + η2)

∣∣∣∣2J1(k|∆~r| sin(θ))

k|∆~r| sin(θ)

∣∣∣∣2 , (1.8)

where Pi is total incident power, k = 2π/λ, µ = cos(θ) = k̂ · Ω̂, Ω̂ is the unit normal to the

aperture, k̂ is a wave direction after transmission through the aperture, η = k̂ ·∆~r/|∆~r| and J1 is

the first-order Bessel function of the first kind. The value |2J1(k|∆~r| sin(θ))/k|∆~r| sin(θ)|2 peaks

to one at θ = 0 and drops sharply to zero when |k∆~r| � 1 [53, p. 492]; the radiation passes through

the aperture geometrically.

The radiation transport equation has been applied to compute radiation fields in astrophysical

settings and high energy density experimental settings. Considering a pure Nickel-56 fluid of 2 solar

masses (M�), or ∼2.8×1033 g, homologously expanding at U = 2.2× 109 cm/s at t =2 days with

maximum radius R = Ut, adopting a nominal grey microscopic opacity of 0.13 cm2/g from Pinto

and Eastman [85] for Type Ia supernovae, and setting the material at 105 K: |∆~r| ≈ 5.08× 103 cm,

σ−1 ≈ 6.33 × 1011 cm, and λ ≈ 10−5 cm. Thus, in the context of the early phase of thermonu-

clear supernovae, the result, λ � |∆~r| � σ−1, roughly implies transport theory is satisfactory in
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predicting radiation propagation. Considering a high energy density regime with an electron den-

sity ne = 1018 cm−3, σ−1 = 10−24T 3
e cm−1 (Te in K), and a temperature of Te = 107 K, the

result is: |∆~r| ≈ 1/n
1/3
e = 10−6 cm, σ−1 = 10−3 cm, and λ ≈ 10−7. The electron aperture

and photon wavelength are small with respect to the mean free path for the estimates considered.

The strength of diffraction is low for modest diffraction angles; at a 0.1 radian diffraction angle,

|2J1(k|∆~r| sin(θ))/k|∆~r| sin(θ)|2 ≈ 0.005, or approximately half a percent of the geometric com-

ponent. The drop in power transmission with increasing diffraction angle is sharper for the as-

trophysical case. Pomraning [86] provides an in depth discussion of the validity of the transport

equation. Since the equation for photon transport, or radiative transfer, is an equation of intensity,

photon interference and diffraction are ignored by the solutions [86]. Perceiving photons as lo-

calized wave packets instead of plane waves, the width of the packets must be small compared to

atomic spacing and photon separation [86].

1.1.1 Radiation Matter Interaction

Radiation interactions with material are mediated through the cross section and emission in Eq. (1.3).

Three primary types of interaction for which one can compute a photon cross section are [4, p. 345]:

• Emission

– Bremsstrahlung (free-free)
– Radiative capture (free-bound)
– Line emission (bound-bound)

• Absorption

– Inverse bremsstrahlung (free-free)
– Photo-ionization (bound-free)
– Line absorption (bound-bound)

• Scattering

– Compton (Thomson)
– Pair production

The terms “bound” and “free” refer to electron states before and after a photon collision with

respect to a potential field. The processes listed manifest in the quantization of the Hamiltonian for
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an atom in an external field [19, p. 152] (shown in Gaussian units),

H = −
∑
i

Ze2

ri
+
∑
i<j

e2

rij
+
∑
i

1

2m
[~pi −

e

c
~A(~ri)]

2 +

∫
1

8π
(| ~E|2 + | ~B|2)d V , (1.9)

where the terms on the right side are (left to right): potential energy due to electron interaction

with atomic nucleus, electron-electron Coulomb repulsion, kinetic energy, and electromagnetic field

energy. Expanding the kinetic energy term yields a radiation-matter interaction Hamiltonian [19,

p. 153],

Hint = − e

mc

∑
i

~pi · ~A(~ri) +
e2

2mc2

∑
i

| ~A(~ri)|2 , (1.10)

where to first order the terms linear in vector potential, ~A, account for absorption and emission while

the terms quadratic in ~A account for scattering. To compute rates and cross sections associated

with the different portions of the Hamiltonian from first principles, one can choose a quantum or

quasi-classical (equivalently quasi-quantum) approach [4, p. 345]. One can either use the scattering

matrix-propagator framework [89] or the closely related Fermi’s golden rule,

R(i→ f) =
4π2

h
|〈f |Hint|i〉|2ρf , (1.11)

where i denotes the initial state, f denotes the final state, and ρf is the state density about the

final state. The quantity R(i → f) is the transition probability per unit time from i to f . A cross

section can be thought of as a transition probability per unit time per the photon current incident on

a collision target. The probability rate is often written as a differential [89, p. 80]. With this in mind

an alternative to Eq. (1.11) is

dR(i→ f)

dΩ
=

4π2

h
|〈f |Hint|i〉|2ρ′f , (1.12)

where Ω is solid angle and ρ′f is the state density per unit energy per unit solid angle. Then

dσν
dΩ

=
1

|
∫

Ωinc
Ω̂IνdΩ|

dR(i→ f)

dΩ
, (1.13)
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where Ωinc is the domain of solid angle of the intensity incident on the target particle and dσ/dΩ is

the differential cross section for the interaction implied by the quantum state transition i→ f . Cross

sections computed with Eq. (1.13) are important to accurately model radiative transfer in computer

codes. In addition, the cross section σ is informative as to whether the diffusion equation can be

used instead of (1.3) to solve for the scalar flux
∫

4π IνdΩ. Fick’s law [19, p. 84],

∫
4π

Ω̂IνdΩ = − 1

3σν
~∇
∫

4π
IνdΩ = − 1

3σν
~∇φν , (1.14)

can be derived from the lowest order terms in an asymptotic expansion of Eq. (1.3). Integrating

Eq. (1.3) and incorporating Eq. (1.14) then yields

1

c

∂φν
∂t
− ~∇ ·

(
1

3σν
~∇φν

)
= qν − σνφν (1.15)

where it has been assumed that the scattering, absorption, and emission are isotropic.

Equations (1.12) and (1.13) indicate that the cross sections for emission, absorption and scat-

tering can each be formulated with probabilities. For line-line interactions, the probability density

functions for absorption, stimulated emission, and spontaneous emission are the Einstein coeffi-

cients {Bij , Bji, Aji}, respectively [73, p. 329], where i represents a lower energy state and j

represents the higher energy state.

For a given line profile Ξν with the i ↔ j transition, the rates of energy absorbed and emitted

from the line per unit volume are [73, p. 329]

(σν,a + σ̃ν,a)Iν =
Bijhνij

4π
niΞνIν , (1.16a)

σ̃ν,aIν =
Bjihνij

4π
njΞνIν , (1.16b)

qν,e =
Ajihνij

4π
njΞν , (1.16c)

where ni and nj are the population densities at state i and j, and hνij is the energy difference

between state i, j. The stimulated (or induced) emission coefficient is written as σ̃ν,a because

it is seen as a correction to the absorption. Given the symmetry of form between Eqs. (1.16a)
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and (1.16b), stimulated emission can be thought of as negative absorption. Bound-free and free-free

interactions are discussed in 1.1.3.

In conjunction with collision type, the state of the radiation field also depends on the motion of

the matter with which photons interact. At relativistic speeds, in different frames of reference the

properties of a radiation field are different. For instance, a radiative emission source moving away

from an observer will appear to the observer to be emitting lower frequency photons than an identical

radiation source not moving with respect to the observer. Thus, it must be that relativistic effects

affect the collision expressions described above by changing intensity, direction, and frequency.

There are several ways to both express and derive the set of radiation hydrodynamics equations that

incorporate relativity in the radiation coupling with matter. The starting point of special relativity is

the acknowledgement that different inertial frames of reference observe the same speed of light. An

equation that preserves light speed for each frame is

c2∆t2 − |∆~r|2 = c2∆t20 − |∆~r0|2 , (1.17)

where (c∆t,∆~r) and (c∆t0,∆~r0) are the change in spacetime coordinates of two different refer-

ence frames. Eq. (1.17) implies that a transformation in reference frame must be accompanied by

changes in length and time that preserve the equality. The set of transformations between frames

that preserve Eq. (1.17) is the Minkowski group of three dimensional rotations along with the 4x4

hyperbolic transformation [19, p. 103]

A =

 γ γ~UT /c

γ ~U/c I + (γ − 1)~U ~UT /U2

 , (1.18)

where ~U , U , and γ = 1/
√

1− U2/c2 are the velocity, speed, and dilation factor of the frame being

transformed with respect to the resulting frame. The superscript, T , indicates the transpose is taken;

for a column vector, the transpose is a row vector. Without loss of generality, if one spatial direction

(z) is made to align with the velocity, then the orthogonal components of ~r don’t change between
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frames and A can be reduced to a 2x2 matrix ct

z

 = A

 ct0

z0

 = γ

 1 U/c

U/c 1


 ct0

z0

 . (1.19)

Henceforth, the terms adorned with a 0 subscript will denote quantities measured in the material

fluid comoving frame while the bare quantities will denote those measured in the lab frame. A

thought experiment about spatial contraction and time dilation reveals Lorentz invariant quantities.

Briefly using Eq. (1.19),

 0

∆z

 = γ

 1 U/c

U/c 1


 c∆t0

∆z0

 → ∆z =
1

γ
∆z0 , (1.20a)

 c∆t

∆z

 = γ

 1 U/c

U/c 1


 c∆t0

0

 → ∆t = γ∆t0 , (1.20b)

where ∆z is a length measured at one point in time in the lab frame, ∆t is a time duration in the

lab frame following a spatial point moving at ~U . Since the orthogonal lengths do not change, it is

apparent that in the differential limit of the spacetime measures

dt d3~r = dt0 d
3~r0 . (1.21)

Because any lab frame coordinate system can be rotated to align one axis with the velocity of the

other inertial frame without changing the magnitude of the velocity between the frames, Eq. (1.21)

must be true between any two inertial frames [19, p. 106]. The differential time parameter τ of a

particle inertial frame must satisfy c2dτ2 = c2dt2 − |~r|2. Differentiating the spacetime vector with

respect to the proper time τ yields the energy-momentum vector. Incorporating the invariance of

the measure of τ along with
dt

dτ
∼ ν into Eq. (1.21) yields [19, p. 105]

νd3~r = ν0d
3~r0 . (1.22)
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The 4x1 vector for photon energy-momentum is [19, p. 103]
hν

c2
(1, cΩ̂)T = (E/c2, ~p)T . Hence

the magnitude of the momentum scales with the energy. Pomraning [86, p. 270] defines a Jacobian

matrix for the momentum volume element. With Ω̂ = (µi), the Jacobian can be expressed as

J =
ν

ν0

(
∂µi
∂µ0,j

)
=

ν

ν0
R (1.23)

where R is a three dimensional rotation. Given d3~p ∼ ν2dνdΩ, another invariant equation is then

νdνdΩ = ν0dν0dΩ0 . (1.24)

Equations (1.21), (1.22), and (1.24) can be used to construct the comoving frame transport

equation. In the lab frame, the form of Eq. (1.3) remains unchanged while the individual terms will

be affected by fluid motions of the interacting material. For instance, if the comoving scattering

cross sections are isotropic, the lab frame scattering cross sections will be anisotropic. In addition,

the radiation field will be affected by aberration and Doppler shift. These relations are derived by

Pomraning [86, p. 156] and Castor [19, p. 102–111]. Buchler [14, p. 396] expands the proper time

derivative of the photon Boltzmann distribution using a basis of 4-vectors orthogonal with respect

to the Minkowski inner product. The essential result for photons can be obtained by neglecting

O(U2/c2) in a variational (chain rule) expansion in the space-time and energy-momentum of a

Lorentz invariant distribution, f̃ ,

df̃

dτ
=

(
1 +

~U · Ω̂0

c

)(
∂f̃

∂t
+ ~U · ∇f̃

)
+ cΩ̂0 · ∇f̃ − ν0

(
1

c

∂ ~U

∂t
+ Ω̂0 · ∇~U

)
· ∇ν0Ω̂0

f̃ ,

(1.25a)

f̃ ∼ Iν
ν3

=
Iν0

ν3
0

, (1.25b)

where it has been assumed that spacetime in the inertial lab frame is not curved so that one may

directly apply Eq. (1.3) to get the transport solution. Equation (1.25a) is mixed in independent vari-
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ables with photon energy and direction defined with respect to the comoving frame and space-time

with respect to the lab frame. Equation (1.25b) results from the invariant differentials. Incorporating

Eq. (1.25b) into Eq. (1.25a), multiplying through by ν3
0 and balancing the resulting expression with

q0/4π − σ0I0 gives Castor’s equation,

(
1 +

Ω̂0 · ~U
c

)(
1

c

∂I0

∂t
+
~U

c
· ∇I0

)
+ Ω̂0 · ∇I0 −

ν0

c
(~a/c+ Ω̂0 · ∇~U) · ∇ν0Ω̂0

I0

+
3

c
(Ω̂0 · ~a/c+ Ω̂0 · ∇(~U · Ω̂0))I0 =

q0

4π
− σ0I0 , (1.26)

where ~a = ∂~U/∂t and the ν0 subscripts have been discarded for convenience. In practice, it is

often assumed the right side of Eq. (1.26) is isotropic [19, p. 109]. Applying
∫∞

0

∫
4π dν0dΩ0 and∫∞

0

∫
4π Ω̂0dν0dΩ0 to the right side of Eq. (1.26) yield radiation energy-momentum terms to couple

to the Euler equations, g0
0 and ~g0. The 4x1 vector given by (g0, ~g) is a 4-vector in the relativistic

sense [19, p. 109], hence to first order

g0 = g0
0 +

~U

c2
· ~g0 , (1.27a)

~g = ~g0 + ~Ug0
0 . (1.27b)

Neglecting other external forces, the set of coupled Euler equations are [19, p. 85]

∂ρ

∂t
+∇ · (ρ~U) = 0 , (1.28a)

∂ρ~U

∂t
+∇ · (ρ~U ~UT ) +∇P = −~g , (1.28b)

∂

∂t

(
ρe+

1

2
ρU2

)
+∇ ·

(
ρ~U(e+ P/ρ) +

1

2
ρ~UU2

)
= −g0 , (1.28c)

where e, ρ, ~U and P are the internal energy, density, velocity, and pressure fields to be solved for

over the given space-time domain. The mass conservation law remains unchanged with radiation

coupling; there is no coupling term in Eq. (1.28a). With either Eq. (1.3) or (1.26), the resulting set

of six equations (Eq. (1.28b) has one for each spatial dimension) has seven unknowns. To close the

set of equations, an equation of state relating pressure to internal energy and density can be used.
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A discussion of state variables such as temperature and pressure from micro-physics is available

provided by Mihalas and Weibel Mihalas [73]. If a temperature field exists and the near-equilibrium

state of the fluid is not perturbed by the radiation field in such a way that causes the characteristic

thermalization time to become comparable in magnitude to the characteristic fluid flow time, then

one may use local thermodynamic equilibrium (LTE) radiative transport with Eq. (1.28). Otherwise,

one must keep track of the micro-physical energetic state of the matter to determine the nature of

the vector (g0, ~g).

1.1.2 NLTE Transport

Non-LTE or NLTE stands for non-local thermodynamic equilibrium. In terms of radiation matter

interaction, non-LTE transport accounts for the effects of the photon field on the ionization and

excitation state of the matter [19, p. 179]. If material collisions (electron-ion, ion-ion, etc.) are not

sufficiently frequent, the relaxation time to ascribe local temperatures may be too large to ascribe a

material temperature field. In other words, one temperature may not be sufficient or accurate enough

to describe the material state. In such instances, the computations of the matter radiation interaction

can be resolved to the microscopic level by keeping track of atomic populations. This indexing of

the atomic populations is obtained with the kinetic equation, [19, p. 180]

ρ
D(Nij/ρ)

Dt
=
∑
k

[Nik(Pkj + Ckj)−Nij(Pjk + Cjk)] , (1.29)

where Nij is a number density of atoms of species i at energy j, Pkj is a radiative rate from energy

state k to energy state j, and Ckj is an inelastic electron collision rate between the same states.

This equation is coupled through the rate coefficients with the intensity, Iν , so Eq. (1.29) along with

Eq. (1.3) are a solvable system of equations.

For k > j, the values of Pkj and Pjk can be obtained from Eq. (1.16). Balancing photon
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transitions with atomic state [19, p. 181],

Ni,kPk,j =
1

4π

∫
4π

∫ ∞
0

Nik(BkjIν +Akj)Ξν,j,k dν dΩ , (1.30a)

Ni,jPj,k =
1

4π

∫
4π

∫ ∞
0

NijBjkIνΞν,j,k dν dΩ . (1.30b)

The values σν,a and qν,e are

σν,a =
hν

4π

∑
i

∑
j

∑
k>j

(NijBjk −NikBkj)Ξν,j,k , (1.31a)

qν,e =
hν

4π

∑
i

∑
j

∑
k>j

NikAkjΞν,j,k , (1.31b)

where the contributing state transitions as well as the number of atomic species has been summed

over. Though not explicitly expressed, the rates and number of energy levels delineated with the

instantiations of j and k are dependent on the atomic species index, i.

1.1.3 LTE Transport

If the assumptions underlying local thermodynamic equilibrium (LTE) [73, p. 386–387] hold, then

the state of the material can be partially described with a temperature field. Moreover, if radiation

sources do not significantly unbalance the material state, then the spectrum of the emitted photons

can be described in terms the material temperature as well. The microscopic implications have been

covered by Mihalas and Weibel Mihalas [73]. With respect to Eq. (1.31), one can show the Planck

function results from detailed balance of radiative processes. Detailed balance of radiation processes

implies each transition j → k that absorbs a photon is exactly balanced by the inverse k → j stim-

ulated or spontaneous emission [73, p. 387]. Another LTE assumption is complete redistribution of

photon frequency in an absorption followed by an emission [19, p. 194–195]. Complete redistribu-

tion occurs when the frequency of a photon absorbed by a particular atom does not correlate with the

atom’s subsequent emission; correlation is tempered by atomic and electronic collisions. Because

LTE hinges on material collisions occurring much more frequently than radiative processes [73,

p.387], it is valid to group the assumption of complete redistribution with LTE. Balancing absorp-
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tion with spontaneous and stimulated emission for one line, k′ → j′, and solving Eq. (1.16) for

Iν = Sν,j′,k′ , the source intensity must be [19, p. 182]

Sν,j′,k′ =
qν,e(k

′ → j′)

σν,a(j′ → k′)
=

Nik′Ak′j′

Nij′Bj′k′ −Nik′Bk′j′
. (1.32)

From the interaction Hamiltonian, Eq. (1.10), and the relativistic invariants, Eqs. (1.21), (1.22),

and (1.24), the rate coefficients can be expressed in terms of the photon frequency and degeneracy

of the two atomic states to give

Sν,k′,j′ =
2hν3/c2

Nij′gik′/Nik′gij′ − 1
, (1.33)

where gij′ and gik′ are the number of angular momentum projections of atom i at energy level j′

and k′, respectively [19, p. 155].

The macroscopic state of an ensemble of particles is completely specified with the internal

energy, volume, and number of particles [73, p. 35]. In statistical mechanics, entropy is defined as

being proportional to the logarithm of the number of possible distinct particle configurations that

yield the macroscopic state [73, p. 36],

S = k ln(W ) , (1.34)

where S is the entropy, k is Boltzmann’s constant, and W is the number of microscopic configura-

tions. To compute W , Mihalas assumes the state of the gas is in a classical limit [73, p. 37]. The

procedure of counting divides phase space into energy cells; each energy cell having a number of

phase space configurations, gij , associated with the energy level. In using gij , it has been implied

that the energy bin j is associated with a particular atomic species i; hence the particles are tacit

electrons for the purpose of this summary. The species index is carried through the analysis but

ignored to maintain the classical assumption. Consequently W is (with a subscript i) [73, p. 38]

Wi(vij) =
∏
j

(gij)
vij /

∏
j

(vij)! , (1.35)
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where vij is the number of electrons occupying a state of energy j. From the numerator of Eq. (1.35),

it can be inferred that the Pauli exclusion principle has been neglected. Equation (1.35) might

be reasonably applicable to a plasma with ion species i where the free energy spectrum of the

electrons has been artificially discretized. Incorporating Eq. (1.35) into (1.34), applying Sterling’s

approximation [73, p. 39], deriving the partition function [73, p. 40], and using the first and second

law of thermodynamics results in a relationship between the ratio of two atomic state densities and

temperature [73, p. 41],

Nij′/Nik′ =
gij′

gik′
e−

hν
kT , (1.36)

where hν is the transition energy for k′ → j′ (j′ and k′ are not necessarily bound energy states)

and Nij′ = vij′/V for system volume V . So for a near-equilibrium system of radiating particles,

combining Eq. (1.36) with Eq. (1.33) yields the Planck function,

Sν,j′,k′ = Bν =
2hν3/c2

e−
hν
kT − 1

. (1.37)

Considering Eq. (1.33) with Eq. (1.37), each radiative process must, as a collective component of

the electron dynamics, contribute a Planckian source intensity. By construction, Eq. (1.37) must

be the equilibrium radiation intensity in a thermal material. Additionally, Eq. (1.37) indicates the

well known result that photons obey Bose-Einstein statistics and are thus bosons. The implication

that photons are bosonic can be traced back to the interaction Hamiltonian in Eq. (1.10) and the

consequent dependence of the total emission rate on Iν .

Incorporating Eq. (1.37) into Eq. (1.3), the frequency dependent, thermal radiative transport

equation is [86, p. 46]

1

c

∂Iν
∂t

+ Ω̂ · ∇Iν = σν,a(Bν − Iν)

+

∫
4π

∫ ∞
0

ν

ν ′
σs(~r, ν

′ → ν, Ω̂′ · Ω̂)Iν′(~r, Ω̂
′, t)

(
1 +

c2Iν(~r, Ω̂, t)

2hν3

)
dν ′ dΩ′

−
∫

4π

∫ ∞
0

σs(~r, ν → ν ′, Ω̂ · Ω̂′)Iν(~r, Ω̂, t)

(
1 +

c2Iν′(~r, Ω̂
′, t)

2h(ν ′)3

)
dν ′ dΩ′ . (1.38)
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It is assumed in Eq. (1.38) that σν,a is corrected for stimulated emission. In addition, the angular

arguments of the scattering opacities imply that bulk material motion is not being taken into account.

To do so, one needs to include additional angular arguments to the opacity and source terms to

account for the relativistic anisotropies that the lab frame observes [86, p. 154]. In many practical

contexts, the frequency shift of the photons from scattering is negligible [19, p. 160–161]. If it is

further assumed that σs(~r, ν → ν ′, Ω̂ · Ω̂′) = σs(~r, ν
′ → ν, Ω̂′ · Ω̂), then σs(~r, ν ′ → ν, Ω̂′ · Ω̂) =

σν,s(~r, Ω̂
′ · Ω̂)δ(ν − ν ′) and

1

c

∂Iν
∂t

+ Ω̂ · ∇Iν = σν,a(Bν(T )− Iν)− σν,sIν +

∫
4π
σν,s(Ω̂

′ · Ω̂)Iν(~r, Ω̂′, t) dΩ′ , (1.39)

where σν,s =
∫

4π

∫∞
0 σs(~r, ν → ν ′, Ω̂ · Ω̂′)dν ′ dΩ′. When the material background is absent of bulk

fluid flow Eq. (1.28) reduces to

∂(ρe)

∂t
= −

∫
4π

∫ ∞
0

σν,a(Bν − Iν) dν dΩ . (1.40)

Defining the specific heat as cv = ∂e/∂T and Cv = ρcv, at constant density, Eq. (1.40) becomes

Cv
∂T

∂t
=

∫
4π

∫ ∞
0

σν,a(Iν −Bν(T ))dν dΩ . (1.41)

The Planck spectrum’s dependence on the material temperature, T , is written explicitly in Eq. (1.41)

and Eq. (1.39) to show the material-radiation coupling.

The above description of LTE allows for a robust treatment of photoionization, recombination,

and bremsstrahlung processes. Using Saha’s equation, the Maxellian distribution, and energy con-

servation, the photoionization probability is [73, p. 331],

pν =

(
8πm2

ev
2
eg1

h2g0

)
G(v) , (1.42)

where me is the electron mass, ve is the electron velocity after collision, g1 is the ion degeneracy

weight, g0 is atom degeneracy weight, and G(v) is the induced recombination probability. Using
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the Einstein relations, Mihalas and Weibel Mihalas [73] write the total absorption cross section for

photoionization at LTE as

σν,a = n0hνpν(1− e−hν/kT ) , (1.43)

where n0 is the density of atoms [73, p. 332]. The derivation of free-free absorption is similar [19,

p. 168].

The theory presented is meant to be a survey of the electrodynamical physics that contribute to

a theoretical foundation for subsequent sections of this thesis. Topics that have not been discussed

include: polarization of light, refraction, dispersion, and fully relativistic quantum electrodynamics

(QED). Detailed derivations of transport with polarized light and in refractive or dispersive media

can be found in Pomraning’s book on the foundations of radiation hydrodynamics [86, p. 106–153].

Finally, it is worth noting one additional argument for neglecting radiation diffraction provided by

Pomraning [86, p. 47–49]. Pomraning states that the interacting material must not have crystalline

regularity. The systems of interest are gases and plasmas; thus the material is not crystalline.

1.2 Applications of Radiation Transport Theory

Since equilibrium radiation energy density is proportional to the fourth power of temperature, ra-

diation can have an important effect on material or fluid properties at high temperature. Examples

where radiation transport is important to complete physical descriptions include stars, active galax-

ies, supernovae, high energy density experiments such as radiative shocks in Xenon, and inertial

confinement fusion [19, 4]. High temperatures manifest in astrophysical and laboratory plasma

contexts. Pomraning [86, p. ix] states generally that for material at temperatures on the order of

thousands of degrees, radiation primarily transports energy; at temperatures on the order of millions

of degrees, the radiation field may dominate the energy and momentum balance in the radiation-

matter system. Consequently, multi-physics simulations of problems involving high temperature

generally need to have a radiation field coupled to the material. In Sections 1.2.1 and 1.2.2, Type

Ia supernovae (SNe Ia) and Inertial Confinement Fusion (ICF) are summarized, respectively. These

fields motivate the radiation transport calculations presented in this thesis.
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1.2.1 Type Ia Supernovae

Supernovae are the bright explosions of stars. The term, supernova, derives from the explosion

appearing as a new astronomical object [52, 39]. Classifications of supernovae depend on charac-

teristics of the observed spectra and, relatedly, the mechanism behind the explosion [83, p. 1]. If

the spectrum of a supernova has hydrogen lines, it is classified as a Type II. Otherwise if there is no

hydrogen in the spectrum, then the supernova is classified as a Type I.

Type Ia supernovae have been used as “standard candles” to measure the accelerated rate of

expansion of the Universe (see, e.g. [90, 81]). The findings motivate the existence of dark energy.

The majority of the events appear to display remarkably close peak luminosities. Moreover, the

differences in the peak of the luminosity readings appear to be correlated with the duration of the

events. Roughly speaking, the luminosity profiles versus time, or the light curves (LCs), of the

observed events fit a one-parameter family; the parameter used by Phillips [84] is the amount of

decline in the light curve magnitude in 15 days after maximum luminosity, ∆m15. Phillips and

others found that larger decline rates corresponded to more brief, less luminous events. Additionally,

the luminosity magnitudes appear to scale roughly linearly with ∆m15 [84, 82]. Depicted in Fig.,

Perlmutter et al. propose a stretch factor of the time scale to fit light curves to a standard “template”

LC [82, 80].
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Figure 2: Absolute magnitude of light curves fit to a template light curve with a stretch correc-

tion [87]. The parameter family allows for direct comparison between luminosity measurements

and thus relative distances.

SNe Ia are thought to have a thermonuclear burn phase that releases a large amount of energy and

a ballistic phase. In the thermonuclear burn phase, heavier elements are synthesized in a burn wave

that may become supersonic [92]. In the ballistic phase the post-explosion, high-velocity outflow

emits gamma rays from radioactive decay of 56Ni [98]. Evidence indicates that most observed Type

Ia supernovae originate from the thermonuclear disruption of Carbon-Oxygen (C-O) white dwarf

stars that have approached the Chandrasekhar mass,∼ 1.4 M� [52]. To approach the Chandrasekhar

mass, it is believed that C-O white dwarfs accrete mass from a companion star; this is inferred

through elimination of other candidate systems [52, 7, 92]. Gamezo [39] provides a description of

what must occur as the star accretes mass to cause an explosion:

1. As the star obtains mass near M = 1.4 M�, the temperature and rate of fusion reactions

increase from gravitational compression.

2. The energy decrease from neutrino cooling and heat transfer is eventually less in magnitude

than the energy increase from thermonuclear fusion.
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3. Expansion becomes significant when thermal pressure overtakes the electron degeneracy pres-

sure.

4. Expansion cannot cool the material enough to prevent thermonuclear burn. An energy of

approximately 1051 ergs is released over several seconds.

During the nuclear deflagration, many SN Ia appear to produce approximately∼0.6 M� of 56Ni [52].

Seitenzahl et al. [92] present simulation results with a range of 0.3 to 1.11 M� of 56Ni produced.

For many SNe Ia, evidence of Si II, Ca II, S II appear in the line spectra around maximum lumi-

nosity [10]. The decay chain that heats the outflow is 56Ni→56Co→56Fe. For the spectra, SN Ia

are characterized by an absence of Hydrogen lines and the presence of a strong Silicon line; these

features constrain the nature of the possible progenitor system.

1.2.2 Inertial Confinement Fusion

The following discussion closely follows the text of Atzeni and Meyer-ter-Vehn [4]. From Einstein’s

mass-energy equivalence, energy release from a nuclear reaction with a change in total mass is [4,

p. 2]

Q =

∑
i

mi −
∑
f

mf

 c2 , (1.44)

where Q is the net energy, mi is the initial mass of a reactant, mf is the final mass of a product,

and c is again the speed of light. If the Q value is positive, the sum of the initial masses is greater

than that of the final masses and the reaction is exothermic. The amount of energy released is equal

to the amount of binding energy between the constituent nucleons of the products gained. Hence,

reactions increasing the binding energy per nucleon are favored [4, p. 2–3]. It has been observed

that fission reactions, where a nucleus splits into several smaller nuclei, occur for mass numbers

greater than A ≈ 56. At mass numbers greater than A ≈ 56, the binding energy per nucleon begins

to decreases with increasing mass number [4, p. 3]. Thus fusion reactions, where smaller nuclei

collide and form larger nuclei, are more likely to occur in the mass number region below 56.

As with α-decay [55, p. 251–257], a fusion interaction involves transmission through a Coulomb

potential barrier. Hence the calculation of probabilities or rates are similar in form. A rudimentary
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treatment of the fusion cross section calculation is given in [4]. Some important fusion reactions are

given below [4, p. 11].

Table 1: Fusion reactions.

Reaction Q (MeV)

D + T → α+ n 17.59

D +D → α+ γ 23.85

3He+ 3He→ α+ 2p 12.86

p+ 15N → 12C + α 4.97

In Table 1, D is deuterium and T is tritium. The third and fourth reactions are the ends of the

p − p cycle and CNO cycle, respectively. In the first (DT) reaction, 14.1 MeV is carried on the

neutron product [4, p. 13]. The DT reaction has the largest reactivity of all fusion reactions in any

temperature interval below 400 keV [4, p. 18].

The two principle types of plasma confinement for controlled fusion experiments are inertial

confinement fusion (ICF) and magnetic confinement fusion (MCF) [4, p. 31]. Both approaches are

thermonuclear in that Coulomb scattering may redistribute a particle’s kinetic energy several times

before it fuses with another [4, p. 32]. In addition, both fusion reactor types require temperatures of

order 10 keV [4, p. 34]. The dominant form of radiation emission at temperatures of order 10 keV

is bremsstrahlung which leads to a power loss per unit volume of [4, p. 32]

Wff = 5.34× 10−24n2T 1/2 erg
s cm3

, (1.45)

whereWff is the free-free cooling power per cubic centimeter, n is either the electron or ion density

for a fully ionized DT gas in cm−3, and T is material temperature in keV. The power from fusion

surpasses radiative cooling at T ≈ 4.3 keV [4, p. 33].

Magnetic confinement employs magnetic fields to constrain the motion of the plasma. Current

magnetic confinement reactors include the toroidal tokamak, stellerator and other systems.



24

Figure 3: A tokamak uses toroidal and poloidal magnets to confine the plasma [1].

There are many introductory references on basic plasma physics in magnetically confinement

reactors. One such book is by Chen [21]. One key figure of merit for MCF is the ignition ratio

Pfus/Paux, where Pfus and Paux are the power produced from fusion and the auxiliary power re-

quired by the reactor to maintain equilibrated operating conditions [4, p. 35]. If the reactor achieves

ignition, the fusion energy will sustain the state of the plasma; so Pfus/Paux = ∞. Another key

parameter is the plasma density multiplied by the confinement time, nτE , where τE is the time dif-

fusion would take to remove all thermal energy from the plasma [4, p. 36]. For a DT plasma, the

Lawson criterion implies steady state reactor operation satisfies

nτE =
3kT

(Paux/Pfus + 0.2)〈σv〉Q/4− CbT 1/2
, (1.46)

where k is Boltzmann’s constant, T is temperature in keV, 〈σv〉 is the fusion reactivity, and Cb =

5.34 × 10−24erg cm3s−1keV−1/2 [4, p. 37]. Incorporating Pfus/Paux = 5 and T = 10 keV into

Eq. (1.46) yields nτE ≈ 5 × 1014s/cm3. Given that densities in MCF are of order 1014cm−3, the

time for energy loss from diffusion must be on the order of seconds or greater to obtain good reactor

performance. This order of confinement time is much greater than that of typical ICF systems.

Inertial confinement employs particle inertia to implode a (typically small) volume of plasma in

very short time scales when compared to magnetic fusion. Current inertial confinement reactors use

laser or ion beams to drive the fuel.
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Figure 4: An ICF reactor uses particle beam pulses to confine the plasma [4, p. 48]: 1. irradiation,

2. ablation driven implosion of fuel, 2. thermonuclear ignition, 3. explosion [33]

The confinement time for the process shown in Fig. 4 is on the order of nanoseconds for typical

target specifications. The solid shell of the target fuel must be compressed by a factor of ∼1500 [4,

p. 43]. The compression ratio is derived from a fractional burn up of ∼0.3 of 1 mg of fuel with

solid DT initially at 0.225 g/cm3 [4, p. 43]. The irradiation can be performed directly with particle

beams reaching the surface of the fuel or indirectly from X-rays produced from particle beams in a

cavity surrounding the fuel. The radiation cavity used for indirect drive is often called a hohlraum.

The hohlraum emits thermal radiation that is consequently isotropic; which allows for theoretically

uniform fuel capsule heating [4, p. 303]. This uniformity however hinges on how the beam that

impacts the hohlraum is interacting with local plasma. The key quantity of merit for ICF is the

“target energy gain”, G = Efus/Ed, where Efus is the energy obtained from one target and Ed is

the energy transferred to the target by the beam [4, p. 35]. The target energy gain must be 30 to 100

for feasible power production of an ICF reactor. At temperatures of order ∼1 keV, radiation is a

non-negligible component of the physics dictating how efficiently a fusion capsule may burn.

1.3 Computational Transport Methods

There exist computational methods to solve the transport equation, in order to predict properties of

supernovae and high energy density experiments. In the following Sections 1.3.1 and 1.3.2, common

deterministic and stochastic transport methods are briefly described.
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1.3.1 Deterministic Methods

Two well researched deterministic methods for solving the transport equation are discrete ordinates

and integral transport. Some features and limitations of these methods are detailed in the ensuing

descriptions. Section 1.3.1 is a summary of more complete arguments and problems given by Lewis

and Miller [62] as well as other texts.

A discrete ordinates method solves the transport equation for discrete directions [62, p. 116].

Eq. (1.3) becomes (
1

c

∂

∂t
+ Ω̂κ · ∇+ σν

)
Iν(~r, Ω̂κ, t) =

qν(~r, t, Ω̂κ)

4π
(1.47)

where κ→ (k′′, k′, k) is the index of a particular ray. Often the ray direction is described with three

orthogonal projection cosines when in fact there are only two independent direction variables,

µk′′ = cos(θ) , (1.48a)

ηk′ = (1− µ2
k′′)

1/2 cos(ω) , (1.48b)

ξk = (1− µ2
k′′)

1/2 sin(ω) , (1.48c)

where (θ, ω) are the spherical coordinates for direction κ and µ2
k′′+η

2
k′+ξ

2
k = 1. Accompanying the

set {Ω̂κ} is a corresponding set of weights {wκ} that quantitatively ascribe to each ray an amount

of influence on the scalar radiation field. To determine the value of each weight, the ray directions

must be selected; this selection of directions and the associated weights is referred to as a quadrature

set [62, p. 158].

A commonly used quadrature set for multiple dimensions is the level symmetric quadrature.

Each of the three direction cosines in (µk′′ , ηk′ , ξk) described in Eq. (1.48) belong to a set of N/2

values in {Ωk ∈ [0, 1]|k ∈ {1 . . . N/2}} (N/2 is a convention of convenience used by Lewis and

Miller). So µk = ηk = ξk [62, p. 158]. The number of directions in the first octant is N(N + 2)/8.

By symmetry, the number of directions for each octant then is N(N + 2)/8. Furthermore, Lewis

and Miller show that there is only one degree of freedom in choosing the direction cosines. Given
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Ω1, [62, p. 160]

Ωk = Ω1 + (k − 1)
2(1− 3Ω2

1)

N − 2
. (1.49)

The weights can be computed by requiring they be [62, p. 160] normalized:

N(N+2)/8∑
κ=1

wκ = 1/8 , (1.50)

equal for directions that are a permutation of the same three Ωk, and constrained with closure equa-

tions for the remaining degrees of freedom. For the LQN method, the constraints are [64, p. 2],

along with Eq. (1.50),

N(N+2)∑
κ=1

wκµ
p
κ =

N(N+2)∑
κ=1

wκη
p
κ =

N(N+2)∑
κ=1

wκξ
p
κ =


0 for odd p

1/(p+ 1) for even p
, (1.51)

where p is a nonnegative integer.

Other quadrature methods may reduce the symmetry constraints to better capture aspects of a

particular problem to be solved. Having obtained the quadrature set the transport problem remains

to be solved. Given the scattering term in qν of Eq. (1.47), deterministic solutions of the transport

equation are often obtained iteratively. Introducing a time index , n and an iteration per time step

index, l, Eq. (1.47) can be finite differenced to

(
1

c∆tn
+ Ω̂κ · ∇+ σν

)
I l+1
ν,n+1 =

qlν,n+1

4π
+

I∞ν,n
c∆tn

, (1.52)

where I∞ν,n is the fully converged solution from the previous time step. Note that as ∆tn → ∞,

Eq. (1.51) approaches steady state. The source term with discrete ordinates is [62, p. 172]

qlν,n+1 =

N(N+2)∑
κ=1

wκσν,s,κI
l
ν,n+1 + qν,e,n+1 (1.53)

The spatial derivative can be discretized in one of several ways to yield a system of equations.

A limitation of discrete ordinates methods is an error referred to as ray effects. Optically thin
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(or generally transparent) or low scattering problems with sources localized relative to the domain

size may induce these effects [62, p. 195]. Ray effects are errors that arise from an insufficient

approximation of the scalar flux by the angular quadrature [62, p. 196]. Resolving the spatial grid

does not reduce the error as it is intrinsic to the discretization in angle. The scalar flux profile can

have spurious oscillations that do not appear for the solution with angular continuity. The peaks of

the oscillation in the scalar flux are along the discrete rays pointing away from the source.

Integral transport obviates the discretization in direction by integrating over solid angle. Thus

the scalar flux is the dependent variable for which to be solved. In principle, the solution should

have no error due to approximation in angle. Time dependent, neutral particle, integral transport

solutions have been obtained by Olson and Henderson [79]. For time dependent problems, applying

the method of characteristics ~r = ~r′ + sΩ̂, t = t′ + s/c will allow the transport equation to be

expressed in a general integral form. The parameter s tracks the change in flux in space and time

along a ray in the direction Ω̂. With ~r = ~r(s) and t = t(s) [86, p. 30]

− d

ds
Iν(~r − sΩ̂, Ω̂, t− s/c) =

(
1

c

∂

∂t
+ Ω̂ · ∇

)
Iν(~r − sΩ̂, t− s/c) . (1.54)

Incorporating the total path derivative into Eq. (1.1) and solving for Iν in terms of s yields [86,

p. 30]

Iν(~r, Ω̂, t) =
1

4π

∫ ∞
0

qν(~r − s′Ω̂, Ω̂, t− s′/c)e−
∫ s′
0 σν(~r−s′′Ω̂,Ω̂,t−s′′/c)ds′′ds′ . (1.55)

Recalling
∫

4π IνdΩ = φν ,

φν(~r, t) =
1

4π

∫
4π

∫ ∞
0

qν(~r − s′Ω̂, Ω̂, t− s′/c)e−
∫ s′
0 σν(~r−s′′Ω̂,Ω̂,t−s′′/c)ds′′ds′dΩ . (1.56)

If the source and total opacity are isotropic, Equation (1.56) can be converted into a time-dependent

volume integral by noting s′2ds′dΩ = dV ′ [62, p. 212] while taking ~r′ = ~r− s′Ω̂ and t′ = t− s′/c,

φν(~r, t) =
1

4π

∫
qν(~r′, t′)

c2(t− t′)2
e−τ(~r,t;~r′,t′)dV ′ , (1.57)
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where τ(~r, t;~r′, t′) =
∫ c(t−t′)

0 σν(~r − s′′Ω̂, t − s′′/c)ds′′ and the integral is taken over all space.

From here, we will make various simplifications to Eq. (1.57) to arrive at a particular equation set

that would be amenable to computation.

For one dimensional planar geometry, the volume element can be expressed as a symmetric

differential expanding ring, dV ′ = 2πc2(t− t′)dx′dt′. With t′ ∈ [0, t] and x′ ∈ [−∞,∞], causality

implies qν(x′, t′) must have no influence on the solution if |x− x′| > c(t− t′). So

φν(x, t) =
1

2

∫ t

0

∫ ∞
−∞

qν(x′, t′)

(t− t′)
Θ(c(t− t′)− |x− x′|)e−τ(x,t;x′,t′)dx′dt′ , (1.58)

where Θ(c(t− t′)− |x− x′|) is the Heaviside function. Equation (1.57) was derived starting from

general transport with scattering as done by Bell, Glasstone [6, p. 23–25], and Pomraning. It is

notable that causality is not an automatic result from the above derivation. Henderson [50] takes

an alternative approach to arriving at Eq. (1.58) by deriving the single-collision transport kernel

for planar geometry. In the article referenced [50], Henderson applies the Laplace transform to the

planar geometry transport equation. Henderson’s solution has the following form (using notation

consistent with the article) [50, p. 173]:

φν(x, t) =

∫ t

0

∫ ∞
−∞

K(x, x′; t, t′)qν(x′, t′)dx′dt′ , (1.59)

where K(x, x′; t, t′) is the planar kernel. Particles can be partitioned by the number of scattering

events they have undergone. Each set of particles that have undergone j−1 collisions are the source

of the set of particles that undergo j collisions [50, p. 174]. So the single collision (or equivalently

pure absorbing) kernel solution can be used to obtain the solution with scattering for the scalar flux.

The multiple collision concept has a significant role as the theoretical basis of Monte Carlo transport

methods in Section 1.3.2.

For Eq. (1.58), some simplifications result in a matrix equation that can be solved algebraically.

For a finite slab of material, 0 ≤ x ≤ L, with vacuum boundary conditions

φν(x, t) =
1

2

∫ t

0

∫ L

0

qν(x′, t′)

(t− t′)
Θ(c(t− t′)− |x− x′|)e−τ(x,t;x′,t′)dx′dt′ . (1.60)
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Averaging φν over a width ∆xi and a time step ∆tn, Eq. (1.60) becomes

∆tn∆xiφν,i,n =
1

2

∫ tn

tn−1

∫ xi+1/2

xi−1/2

∫ t

0

∫ L

0

qν(x′, t′)

(t− t′)
Θ(c(t−t′)−|x−x′|)e−τ(x,t;x′,t′)dx′dt′ dx dt ,

(1.61)

where ∆tn = tn − tn−1 and ∆xi = xi+1/2 − xi−1/2. We may break the integral up into zones

in space and time and approximate the source, qν(x′, t′) ≈ σν,s,i′,n′φν,i′,n′ + qν,e,i′,n′ = qν,i,n, to

obtain

∆tn∆xiφν,i,n =
n∑

n′=1

I∑
i′=1

qν,i,n×∫ tn

tn−1

dt

∫ xi+1/2

xi−1/2

dx

∫ min(tn′ ,t)

tn′−1

dt′
∫ xi′+1/2

xi′−1/2

dx′
(

1

2

Θ(c(t− t′)− |x− x′|)
t− t′

e−τ(x,t;x′,t′)

)
,

(1.62)

where i, i′ ∈ {1 . . . I}, n′ ∈ {1 . . . n}, and n ∈ {1 . . . N}. Setting Pi,n;i′,n′ equal to σν,i,n
∆tn′∆xi′

multiplied by the integral term in Eq. (1.62),

σν,i,n∆tn∆xiφν,i,n =
n∑

n′=1

I∑
i′=1

Pi,n;i′,n′∆tn′∆xi′(σν,s,i′,n′φν,i′,n′ + qν,e,i′,n′) . (1.63)

Equation (1.63) is the time dependent analogue of the formula presented by Lewis and Miller for the

“collision probability method” [62, p. 216]. The left hand side is simply the number of collisions in

time step ∆tn and spatial cell ∆xi. The Pi,n;i′,n′ term can be interpreted as the probability a particle

from cell and time step (i′, n′) will stream to (i, n) and make its first collision there. Conveniently,

the identities in [62] for the collision probability method may be used here (with deletion of the per

time unit):

fi,n = σν,i,n∆tn∆xiφν,i,n , (1.64a)

Hi,n;i′,n′ = δi,i′δn,n′ −
σν,s,i′,n′

σν,i′,n′
Pi,n;i′,n′ , s̃i,n =

n∑
n′=1

I∑
i′=1

Pi,n;i′,n′∆tn′∆xi′qν,e,i′,n′ , (1.64b)

Hf = s̃ (1.64c)
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where δi,i′ , δn,n′ are Kronecker delta functions. Equation (1.64c) can be solved algebraically with

scalar flux trivially obtained from f . To verify the discretized scheme described here, the benchmark

solutions of Olson and Henderson may be used [79].

The collision probability method is advantageous over discrete ordinates in that there is no

accuracy loss due to approximation in angle. The exact treatment in angle can be inferred from

Eq. (1.64). There are several drawbacks to using integral transport. The matrix H is generally

dense and unsymmetric [62, p. 218]. These features of H may prohibit the method from scaling

to problems on large, multidimensional spatial domains over long periods of time. Indeed, even

deriving the entries of H for multidimensional problems requires considerable algebra.

1.3.2 Monte Carlo Methods

Before considering transport, we discuss some basic principles of Monte Carlo. Monte Carlo meth-

ods solve deterministic problems with randomly sampled independent variables. In doing so, the

MC method tallies an expected value that in principle should equal the solution to the problem for

an infinite number of samples (and infinite grid resolution if there is a grid). A well known tally

experiment, invented by Georges-Louis Leclerc, Comte de Buffon, involves dropping a stick of

length 1 on a surface with lines spaced uniformly 1 apart. The problem is to compute how likely the

stick will touch one of the lines after being dropped once. The ratio of drops that result in the stick

intersecting a line, Nl, to the total number of drops, Nt, converges to 1/π as Nt →∞.

Suppose instead a stick of length 1 is dropped on a uniform grid of 1×1 squares. The probability

that the stick touches a square boundary is different than the probability the stick would touch one

of the lines in the original experiment. Values sufficient for specifying the stick’s position and

orientation are the location of one of the stick’s ends and the angle the stick makes with a reference

axis, (x, y, θ). For this problem, it was found to be easier to calculate the probability that a stick is

entirely in a square and subtract the result from 1. The coordinate (x, y) is always in a square or on

a cell boundary, so (x, y) ∈ [0, 1] × [0, 1] can be sampled in one square without loss of generality.

The probability of finding (x, y) ∈ [x1, x2]× [y1, y2] where 0 ≤ x1 ≤ x2 ≤ 1 and 0 ≤ y1 ≤ y2 ≤ 1

is (x2 − x1)(y2 − y1). Similarly the probability of finding 0 ≤ θ1 ≤ θ ≤ θ2 ≤ 2π is (θ2 − θ1)/2π.
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So the probability density function, p, satisfies

p(x, y, θ) =
1

2π
. (1.65)

If 0 ≤ θ ≤ π/2, then in order for the stick to be in the square, 0 ≤ x ≤ 1 − cos(θ) and 0 ≤

y ≤ 1 − sin(θ). If (x, y) is moved from (0, 0), the constraints imply the range of angles for θ

must decrease. But this is a rotationally symmetric condition for any of the four corners, so the

probability a stick will be entirely in the square without touching the boundary is

1− Pl = 4

∫ π/2

0

∫ 1−cos(θ)

0

∫ 1−sin(θ)

0
p(x, y, θ) dy dx dθ . (1.66)

So the probability of a dropped stick touching a square boundary is

Pl =
3

π
, (1.67)

or three times as likely as a stick touching one of the uniformly spaced lines. The process of

dropping Nt sticks onto a grid can be simulated with the following pseudo-code:

• Nl = 0

• For i = 1..Nt

– sample x, y, θ

– If x+ cos(θ) /∈ [0, 1] or y + sin(θ) /∈ [0, 1]

∗ Nl = Nl + 1

– End If

• End For

• P̃l = Nl/Nt

Figure 5 is a plot of |P̃l − Pl| versus Nt for the above algorithm.
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Figure 5: The stick drop simulation produces an a probability that converges to 3/π for an increasing

number of samples.

The ability to numerically acquire Pl from random processes highlights an important feature of

Monte Carlo algorithms:

• The solution of the integral Eq. (1.66) can be solved stochastically by ascribing a probabilistic

interpretation to Pl and p(x, y, θ).

Eq. (1.66) could have been constructed without explicit reference to the stick problem, yet the stick

simulation solves Eq. (1.66). Moreover, each stick can be thought of as a “particle” of the solution

given it has properties x, y and θ that allow the integral quantity Nl to be incremented during the

simulation.

For MC transport, the field of particles are not sticks but photon packets. Since photons are

quantum particles, the transport equation is a statement of particle conservation as well. A state-

ment of particle conservation along a direction can be obtained from substituting the right side of

Eq. (1.1), Iν = chνfν , into the transport equation; the conservation implies that the number of par-
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ticles is accounted for across the domain by balancing streaming and absorption with scattering and

emission. In Monte Carlo transport, the transport equation is thought of as describing a field of dis-

crete particles generated with varying properties from a source and interacting with the background

material independently from each other. Moreover, there are features of transport that for photons

are inherently stochastic in nature (e.g. thermal emission, scattering). To both invoke causality and

partition the stochastic process used in tracking photon packets, we return to the concept underlying

the multiple-collision method discussed in Section 1.3.1.

From Section 1.3.1, particles having undergone j − 1 collisions can be thought of as a source

for particles having undergone j collisions. The integral equation for each set of photon packets

enumerated by j is [50, p. 174]

φν,j(~r, t) =
1

4π

∫
4π

∫ ∞
0

qν,j(~r − s′Ω̂, Ω̂, t− s′/c)e−
∫ s′
0 σν(~r−s′′Ω̂,Ω̂,t−s′′/c)ds′′ds′dΩ , (1.68)

where [50, p. 174]

qν,j(~r, Ω̂, t) =



qν,e(~r, Ω̂, t) for j = 1 ,

∫
4π

∫ ∞
0

ν

ν ′
σs(~r, ν

′ → ν, Ω̂′ · Ω̂)Iν′,j−1(~r, Ω̂′, t) dν ′ dΩ′ otherwise ,

(1.69)

and φν,j =
∫

4π Iν,j . Only a subset of particles in the j − 1 class scatter into the j class, so the time

integrated total of photons in j − 1 class must be greater than or equal to the total energy of the j

class over the same time span; a photon cannot unscatter unless time is reversed. This implies that

the integral in Eq. (1.68) is a bounded operator and the total scalar flux φν can be expressed as [50,

p. 174]

φν(~r, t) =

∞∑
j=0

φν,j(~r, t) (1.70)

without diverging. From the preceding arguments, it seems that the MC process for a photon packet

must be to first generate properties from the source density (j − 1 = 0) and update the properties

through deterministic streaming until the distance to the next collision is traversed. At this point
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the particle can either be absorbed (if not accounted for by deterministically lowering the particle

weight) or scattered. If the particle is scattered it becomes a source for the next class j − 1 → j.

Additionally, we may use Eq. (1.70) to tally the scalar flux since it relates the flux to counting

collisions.

We consider an external source density of photon packets qν,e(~r, Ω̂, t)/4π over a domain D and

time span [T0, T ]. This source density can be converted to a probability density function for photon

packets in the domain and time span with properties that allow for the integration of qν,e/4π,

pe(~r, Ω̂, t, ν) =
qν,e(~r, Ω̂, t)∫

D
dV ′

∫
4π
dΩ′

∫ T

T0

dt′
∫ ∞

0
dν ′qν′,e(~r

′, Ω̂′, t′)

=
qν,e(~r, Ω̂, t)

Ee
, (1.71)

where Ee is the total energy added to the domain over the time span from the external source. If Nt

photon packets are used in the integration, the expected number of packets in a parameter volume

dV dΩ dt dν around a point (~r, Ω̂, t, ν) from the external source is Nt pe(~r, Ω̂, t, ν)dV dΩ dt dν. As

in the stick-drop-grid experiment, particles generated outside the domain and time span of interest

are neglected in order to arrive at a meaningful solution. Additionally, each particle in the domain

and time span can have energy Ep = Ee/Nt. Sources on the boundary, ∂D, can be treated in a

similar manner.

With the source particles generated and the collided fluxes, φν,j , constrained to a causal order-

ing, there must be no other sources for j + 1 until the existing particles collide. So the equation

corresponding to the flux of each particle from its location and time, (~r′, t′), is

1

c

∂Iν,0
∂t

+ Ω̂ · ∇Iν,0 = 0 (1.72)

which has the solution Iν,0(~r, Ω̂, t) = Iν,0(~r′ + sΩ̂, Ω̂, t′ + s/c). This solution is satisfied by

changing the photon packet properties in the same manner, in other words advecting the packet. But

this solution only exists in this form until the characteristic parameter, s, is equal to the distance

where a collision must occur. This distance can be obtained by constructing another probability
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density function from Beer’s Law [19, p. 76] (assuming σν does not vary significantly over s),

Iν,0(~r, Ω̂, t) = Iν,0(~r′, Ω̂, t′)e−σνs , (1.73)

which is the solution to Eq. (1.72) with non-zero opacity. Since the energy in a parameter volume

dV dΩ dν = dAds dΩ dν around a point (~r′, Ω̂, t′, ν ′) is Iν(~r′, Ω̂, t′)dAds dΩ dν/c, the expected

uncollided energy at a point (~r, Ω̂, t) later on the characteristic for the same differential volume is

reduced by a factor of e−σνs. Hence the probability that a particle makes it uncollided from s = 0

to s = l and subsequently collide in a neighborhood dl about l is e−σν lσνdl. Then the probability of

a particle colliding between 0 and d is 1− ζ = 1− e−σνd [62, p. 303]. Lewis and Miller show [62,

p. 300–302] that ζ can be uniformly sampled between 0 and 1 to obtain a distance to collision

(scattering or absorption),

d = − 1

σν
ln(ζ) . (1.74)

To summarize, a source particle generated from qν,e with appropriate properties is advected until

s = d, at which point it may become part of the source for the j = 1 class of photon packets.

The particles that do not get absorbed during the collision event are scattered. The process for

the particles generated in the j 6= 0 class is nearly the same as the process of the j = 0 class. The

only difference is that qν,e is substituted with qν,j . The scattering distribution is fully specified by

σs(~r, ν
′ → ν, Ω̂′ · Ω̂) and the particle properties of the j − 1 set.

A tally for particles in a frequency range [νg−1, νg] may be constructed. If p ∈ {1 . . . Nt} is a

particle index, lp,g is the total distance traversed events per particle in domain D in the time span

[0, T ] while having a frequency in the range indexed by g, then the average scalar flux per particle

may be approximated as [62, p. 311]

φ̃p,g =
Eplp,g

∆νgVDT
=

Ep
∆νgVDT

Jp,g∑
j=0

lp,j,g =
Ep

∆νgVDT

∞∑
j=0

lp,j,gH(Jp,g − j) , (1.75)

where lp,j,g are the straight line distances between collisions, VD is the volume of D, ∆νg =

νg − νg−1, Jp,g is the total number of collisions in g before the particle terminates (by absorption,
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escaping the problem bounds, or scattering indefinitely out of g) and H(Jp,g − j) is the discrete

Heaviside step function. The total scalar flux at frequency ν in the domain is

φ̃g =
∞∑
j=0

∑
p

(
Eplp,j,g

∆νgVDT

)
H(Jp,g − j) =

∞∑
j=0

φ̃g,j , (1.76)

where φ̃g,j is the flux contribution from particles that have collided j times. If the domain and the

time span are subdivided into cells and time steps, Vi and ∆tn, as had been done for the integral

collision probability method, then the scalar flux can be calculated from a tally in each zone and time

step. Since particles will cross boundaries and are censused at the end of time steps, the problem of

particle tracking is more complicated than the unpartitioned tally. With frequency, space, and time

grids introduced, the Monte Carlo scalar intensity estimate may be written as

φ̃g,i,n =
∞∑
j=0

∑
p

(
Eplp,j,g(i, n)

∆νgVi∆tn

)
H(Jp,g(i, n)− j) =

∞∑
j=0

φ̃g,j,i,n , (1.77)

where Jp,g(i, n) and lp,j,g(i, n) are the total number of collisions and the path length after collision

j, respectively, for particle p in group g in cell i in time step n. By construction, φ̃g,i,n is an ap-

proximation of the expectation value φg,i,n. φg,i,n, in turn, is the the flux averaged over a frequency

group, spatial cell, and time step. In the limit as the number of particles, Nt, the number of cells I ,

the number of groups G, and the number of time steps N go to infinity,

φ̃g,i,n → φν(~r, t) , (1.78)

which is the scalar intensity solution for fully continuous independent variables.

The theoretical insight into Monte Carlo transport is that the integral form of the transport equa-

tion can be partitioned into an iterative series of the same integral form. Particles have to have prop-

erties that satisfy the iterated source density as a probability distribution. Advecting each photon

packet deterministically to a collision location is merely a means of initializing the next iteration

of a source integral. Solving the transport equation with particles is consequently equivalent to

atemporally solving a series of source integrals.
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1.3.3 Residual Monte Carlo

Monte Carlo transport does not only derive theoretical underpinnings from integral transport but

may in fact form part of a composite solution scheme along with a collision probability approach.

In particular, Wollaeger and Densmore [102] find that Monte Carlo and a collision probability matrix

may be used to formulate a Residual Monte Carlo method for the spatially discrete, angularly con-

tinuous, steady state transport equation. The extension to time dependence is simple but the scheme

to be described is iterative; in some time-dependent problems such a solution may be expensive.

Moreover, as will be discussed, the continuous angle residual Monte Carlo transport scheme requires

matrix multiplication. In one dimension this multiplication is not costly but in two dimensions or

higher the matrix storage becomes problematic. The matrix is not generally sparse. If a matrix-free

continuous angle residual Monte Carlo transport scheme is discovered, then there would potentially

exist a means to remove statistical noise from multi-dimensional radiation-hydrodynamics calcu-

lations with Monte Carlo radiation transport with modest additional computational cost. To our

knowledge, a general, continuous angle residual scheme has not been discovered. Consequently,

the following derivation is a proof of principle extracted from the summary by Wollaeger and Dens-

more [102]. We stress that there are no novelties to the method presented here.

Residual Monte Carlo is a Monte Carlo technique that yields exponential convergence of the

statistical error with respect to the number of particle histories. In contrast, standard Monte Carlo

produces statistical error that converges as the inverse of the square root of the number of particle

histories [62]. Due to the improved convergence rate, residual Monte Carlo is typically more effi-

cient than standard Monte Carlo. Additionally, the exponential convergence rate of residual Monte

Carlo is advantageous relative to standard Monte Carlo in the context of multiphysics calculations

that treat the coupling between different physics iteratively. In such calculations, the statistical error

can be reduced such that it is less than the iterative error when enough MC particles are applied.

Work in exponentially convergent Monte Carlo includes the article by Booth for a continuous trans-

port [8] and the article by Evans et al. for spatially discrete residual Monte Carlo radiation diffusion

[35]. Recently, Evans et al. [34] formulated a Monte Carlo synthetic acceleration method for solv-

ing the thermal radiation diffusion equation in three spatial dimensions. The residual Monte Carlo
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scheme is used to accelerate a fixed point iteration [34]. Since the discrete diffusion matrix is sparce,

it should not be as prohibitive to memory in 3D; we find that the transport matrix, M in Eq. (1.101),

would be problematic even in 2D.

Wollaeger and Densmore [102] provide a scheme for applying the residual Monte Carlo tech-

nique to transport for spatially discrete, angularly continuous radiation transport problems. First the

transport equation is discretized, then the resulting terms are given stochastic interpretations. Addi-

tionally the associated integral transport equation is constructed for the spatially discretized system.

A source term for residual Monte Carlo particles can be obtained from the integral transport formu-

lation so that no angular discretization is required. It is to this integral equation that residual Monte

Carlo is applied.

The use of a spatial discretization in the method not only simplifies implementation but also

should not be a significant disadvantage if the simulation of other physics besides radiation transport

involves spatial discretizations as well. In addition, by not employing an angular discretization, the

ray effects mentioned in Section 1.3.1 are avoided.

Residual Monte Carlo can be applied to a general transport problem of the form

Ax = b , (1.79)

where A represents an appropriate transport operator, x is the solution (for example, the angular

or scalar flux), and b is the external source including boundary conditions. Standard Monte Carlo

can be used to generate an estimate of the solution of Eq. (1.79), x(0). In residual Monte Carlo, the

initial estimate is improved upon through an additive correction [102],

x = x(0) + δx . (1.80)

Substituting Eq. (1.80) into Eq. (1.79) results in an equation for the additive correction, δx,

Aδx = r(0) , (1.81)
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with the residual r(0) given by

r(0) = b−Ax(0) . (1.82)

Because Eq. (1.81) is of the same form as Eq. (1.79), the same Monte Carlo procedure that yielded

x(0) can be employed to produce an estimate of δx, δx(0), and hence an improved estimate of the

solution through Eq. (1.80),

x(1) = x(0) + δx(0) . (1.83)

This process can be generalized to an arbitrary number of iterations such that

r(n) = b−Ax(n) , (1.84)

δx(n) is an estimate of the solution to

Aδx = r(n) , (1.85)

as determined by a standard Monte Carlo simulation, and

x(n+1) = x(n) + δx(n) . (1.86)

It is generally difficult to evaluate the residual for transport problems that are continuous in,

for example, space and angle. This computation would require a pointwise representation of the

solution, which is typically not provided by a Monte Carlo simulation. To reiterate, the residual

Monte Carlo scheme presented here employs a spatial discretization. Along with the corresponding

integral equation, the residual can be calculated from only the angularly integrated value of the

solution in each spatial cell.

The planar-geometry, monoenergetic, time-independent transport equation with isotropic scat-

tering and sources is

µ
∂ψ

∂x
+ σtψ(x, µ) =

σsφ(x) + q(x)

2
. (1.87)

In this expression, 0 < x < L is the spatial variable, −1 < µ < 1 is the angular variable, ψ(x, µ)
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is the angular flux, σt(x) is the total cross section, σs(x) is the scattering cross section, and q(x) is

the radiation source. In addition, φ(x) here is the scalar flux,

φ(x) =

∫ 1

−1
ψ(x, µ)dµ . (1.88)

In prior and subsequent sections, φ is the scalar intensity. Scalar flux and scalar intensity are re-

lated through the (solid) angular integration of Eq. (1.1), where ψ replaces fν . Equation (1.87) is

supplemented by boundary conditions that specify the angular flux for incoming directions,

ψ(0, µ) = f(µ) , µ > 0 , (1.89)

and

ψ(L, µ) = g(µ) , µ < 0 , (1.90)

where f and g are arbitrary distributions with respect to µ.

For simplicity, using step differencing, for a grid of I spatial cells, the discrete equations for cell

i are [62, p. 133]

µ
ψi − ψi−1

∆xi
+ σt,iψi =

σs,iφi + qi
2

, µ > 0 , (1.91)

and

|µ|ψi − ψi+1

∆xi
+ σt,iψi =

σs,iφi + qi
2

, µ < 0 , (1.92)

with

ψ0(µ) = f(µ) , µ > 0 , (1.93)

and

ψI+1(µ) = g(µ) , µ < 0 , (1.94)

where ∆xi is the cell width and the subscript i otherwise denotes cell-averaged or piecewise con-

stant quantities.

Equations (1.91)–(1.94) are amenable to Monte Carlo simulation [97]. This technique was
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originally developed for lumped, linear-discontinuous spatial discretizations but is much simpler to

reduce to step differencing [97, 102]. It should be stated that the step differenced form does not

preserve the correct discrete diffusion limit as demonstrated by Clouet [23] (and discussed in the

literature review). Following this previous work, Eqs. (1.91) and (1.92) are rearranged as

(µ+ σt,i∆xi)ψi =
σs,iφi∆xi

2
+
qi∆xi

2
+ µψi−1 , µ > 0 , (1.95)

and

(|µ|+ σt,i∆xi)ψi =
σs,iφi∆xi

2
+
qi∆xi

2
+ |µ|ψi+1 , µ < 0 . (1.96)

If we note that Eqs. (1.95) and (1.96) are balance equations over cell i for positive and negative

directions, respectively, their Monte Carlo interpretation becomes apparent. From the left side of

these expressions, the probability that a particle will leak to the next cell (or through a problem

boundary) is

Pleak =
|µ|

|µ|+ σt,i∆xi
, (1.97)

where whether the next cell is to the left or right is determined by the particle’s direction, and the

probability that a particle will instead undergo a collision is

Pcollision =
σt,i∆xi

|µ|+ σt,i∆xi
. (1.98)

The three terms on the right sides of Eqs. (1.95) and (1.96) represent sources due to particles scatter-

ing, the usual radiation source, and particles leaking from adjacent cells [or the boundary conditions

through Eqs. (1.93) and (1.94)], respectively. After the particle’s initial cell and direction are sam-

pled appropriately from the cell-averaged values of the radiation source and boundary conditions, it

can either leak to the next cell, scatter isotropically, or be absorbed. This process continues until the

particle is absorbed or leaks through a problem boundary. Note we do not have to track the particle

continuously with advection and Beer’s Law as was delineated in Section 1.3.2.

So far in Section 1.3.3, the general framework of residual methods and a simple step-discretized

Monte Carlo solution have been described. It remains to write the discrete integral equations and
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subsequently the differential residual equations to be used to generate “correction particles.”

Solving Eqs. (1.91) through (1.94) for the spatially discrete angular flux yields

ψi(µ) =
i∑

k=1

(
i∏
l=k

µ

µ+ σt,l∆xl

)(
σs,kφk∆xk + qk∆xk

2µ

)
+

(
i∏

k=1

µ

µ+ σt,k∆xk

)
f(µ) ,

µ > 0 , (1.99)

and

ψi(µ) =

I∑
k=i

(
k∏
l=i

|µ|
|µ|+ σt,l∆xl

)(
σs,kφk∆xk + qk∆xk

2|µ|

)
+

(
I∏
k=i

|µ|
|µ|+ σt,k∆xk

)
g(µ) ,

µ < 0 , (1.100)

where the
∏i
l=k denotes a product of terms indexed with l ranging from integer k to i. Incorporating

Eqs. (1.99) and (1.100) into Eq. (1.88), the following system of equations for the cell-averaged scalar

flux is

MΦ = Q . (1.101)

This expression is the desired integral equation. Here, Φ is an array of the cell-averaged values of

the scalar flux, M is a matrix where

Mi,k =



−σs,k∆xk
∫ 1

0

1

2µ

i∏
l=k

µ

µ+ σt,l∆xl
dµ , k < i ,

1− σs,i∆xi
∫ 1

0

1

µ

µ

µ+ σt,i∆xi
dµ , k = i ,

−σs,k∆xk
∫ 0

−1

1

2|µ|

k∏
l=i

|µ|
|µ|+ σt,l∆xl

dµ , k > i ,

(1.102)
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Q is an array defined by

Qi =

I∑
k=1

1

σs,k
(δi,k −Mi,k)qk +

∫ 1

0
f(µ)

i∏
k=1

µ

µ+ σt,k∆xk
dµ

+

∫ 0

−1
g(µ)

I∏
k=i

|µ|
|µ|+ σt,k∆xk

dµ , (1.103)

and, as in Section 1.3.1, δi,k is the Kronecker delta function. The integrals in Eq. (1.102) can be

evaluated analytically, while the integrals in Eq. (1.103) can be evaluated analytically for certain

forms of f(µ) and g(µ).

A integral transport residual may now be constructed. Such a residual is fully discrete since an

integration over angle has been taken. An estimate for Φ(0) is obtained with the step-discrete Monte

Carlo method described above. The scalar flux array for subsequent iterations are obtained from

Φ(n+1) = Φ(n) + δΦ(n) , (1.104)

where δΦ(n) is an estimate of the solution to

MδΦ = R(n) , (1.105)

and the residual in the current situation is

R(n) = Q−MΦ(n) . (1.106)

For the integral, or scalar, residual in Eq. (1.106), it is unclear what the set of differential

Monte Carlo equations would be. Instead of treating the full residual directly with corrective Monte

Carlo, Wollaeger and Densmore observe that R(n) is the uncollided component of the solution to

Eq. (1.105). Dividing the solution into uncollided and collided parts gives

δΦ = δΦc +R(n) , (1.107)
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and substituting this expression into Eq. (1.105) shows that the collided component δΦc satisfies

MδΦc = (I−M)R(n) , (1.108)

where I is the identity matrix. The form of Eq. (1.108), along with a few manipulations involving

Eq. (1.102), allows us to construct an equivalent set of equations similar to Eqs. (1.91) through

(1.94):

µ
δψc,i − δψc,i−1

∆xi
+ σt,iδψc,i =

σs,iδφc,i + σs,iR
(n)
i

2
, µ > 0 ; (1.109)

|µ|δψc,i − δψc,i+1

∆xi
+ σt,iδψc,i =

σs,iδφc,i + σs,iR
(n)
i

2
, µ < 0 ; (1.110)

δψc,0(µ) = 0 , µ > 0 ; (1.111)

δψc,I+1(µ) = 0 , µ < 0 . (1.112)

Here, δφc,i and R(n)
i are the values of δΦc and R(n) for cell i, and δφc,i is related to δψc,i(µ) by

δφc,i =

∫ 1

−1
δψc,i(µ)dµ , (1.113)

analogous to Eq. (1.88). Therefore, Eqs. (1.109)–(1.112) are amenable to S∞ simulation, from

which we can generate an estimate of δΦc and then δΦ through Eq. (1.107). This above procedure

constitutes the continuous angle, spatially discrete residual Monte Carlo method. Figure 6 from

the summary of Wollaeger and Densmore [102] demonstrates exponential error convergence for a

problem consisting of a 1 cm slab, a total opacity of σt = 1 cm, a scattering opacity of σs = 0.5

cm, a uniform source of q = 1 cm−1s−1 and 400, 800, or 1600 particles per residual iteration. The

error is plotted versus total number of particles used; this includes standard and error particles.
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Figure 6: Residual Monte Carlo test in a homogeneous medium. Error convergence versus total

particle number simulated.

By using a discrete integral transport (Section 1.3.1) to compute a residual source for Monte

Carlo transport iterations (Section 1.3.2), discrete ordinates are not needed to achieve exponential

convergence. The error does not saturate above machine precision and ray effects are avoided

(Section 1.3.1).
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2 Literature Review

Indicated in Section 1.3, there exists a field of research to develop methods to perform numerical

transport and diffusion calculations. Specifically, focus is allocated to constructing methods that a

computer code can execute efficiently and without exhausting memory resources. It is desirable to

have the resulting program scale efficiently to many cores; thus allowing for intensive simulation in

a timely manner. Efficiency must be balanced with fidelity to the underlying physical system; often

high-fidelity simulations are expensive since more computational details may give rise to more

computational work.

Monte Carlo (MC) methods are often useful in complicated problems where scaling to many

CPUs is a concern. Monte Carlo particles are independent from one another, and hence the pro-

cesses involved in their transport can be treated by independent processors. Another typical advan-

tage, in Monte Carlo transport in particular, is that particles are somewhat agnostic of grid structure.

The material-radiation interaction is dependent on cell properties, but the outline of the transport

process is the same for each cell. Consequently, extending the MC component of codes to multi-

ple dimensions often does not present the same challenge as corresponding deterministic methods

might.

Relative to deterministic schemes, Monte Carlo has drawbacks as well. Because of the statis-

tical nature of MC, Monte Carlo transport is prone to noise. Moreover, statistical noise is exacer-

bated by increasing grid resolution while keeping total particle number constant. However, there

are techniques to reduce variance in the solution. Citing examples from Lewis and Miller, reduc-

tion techniques include: absorption suppression, Russian Roulette, and importance sampling [62,

p. 329–333]. In the context of multi-physics codes that employ Monte Carlo, spurious statistical

fluctuations can couple into deterministic calculations and therefore spread damaging error.

Apart from statistical quality, problem-specific domain properties may deteriorate the effective-

ness of a Monte Carlo scheme that is naive to appropriate optimization. For instance, simulations

with pure transport MC over optically thick, highly scattering regimes can cause particles to scatter

many times before reaching the end of a time step or terminating. The larger number of Monte



48

Carlo steps per particle in the highly scattering domain generally leads to longer CPU times spent

per particle. With domain decomposition on a strongly heterogeneous material, load imbalance may

occur between a set of processors that transport particles in the optically thick regions and a set of

processors that transport particles in more transparent regions. In this case, the overall computation

time is rate-limited by the overtaxed cores.

Concerning fidelity to physics, in recent decades it has been demonstrated that certain deter-

ministic and stochastic transport methods do not preserve correct diffusion behavior. Piecewise

constant discretization of either the radiation field or material field through the introduction of grids

lead to incorrect solutions when there are many mean free paths per cell dimension or character-

istic cell size. Asymptotic analyses by various authors have demonstrated that the leading order

behavior of certain spatially discrete transport schemes do not produce correct discretizations of

the appropriate continuous radiation diffusion equation. In addition to error incurred from spatial

grids, time-dependent MC transport has been shown to be unstable for large time steps even after

measures are taken to make the transport implicit.

In the following literature review, advances in radiative transfer methods, method theory, and

theory are summarized. The set of articles heading the sections are meant to provide points of

reference in broader efforts associated with the method pathologies or astrophysics discussed. Thus,

articles without dedicated sections are referenced throughout. In Section 2.1, findings in articles

pertinent to developing IMC-DDMC code described in Chapter 3 are described. In Section 2.2,

relevant articles of theory and methods for radiation transport in Type Ia supernovae are described.

2.1 IMC-DDMC Review

2.1.1 Fleck and Cummings Implicit Monte Carlo (IMC)

The Implicit Monte Carlo (IMC) method of Fleck and Cummings [37] is a Monte Carlo radiation

transport method that has been explored extensively since its conception. The method is, in fact,

semi-implicit in time and is prone to non-physical violations of a “maximum principle” for large

time step sizes [60, 101]. The important ingredient in the treatment of the radiation-material inter-

action is effective scattering and absorption [37]. Despite still being prone to over-heating, IMC
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is an improvement over time-dependent MC transport that treat the temperature update explicitly.

IMC generally can use larger time step sizes than the explicit counterpart. An absurd instance of

over-heating in an explicit MC treatment would be to model a time-dependent transport problem

with one optically thick spatial cell and one time step. If emission is not captured in some manner

during the time step, then many photon packets would be absorbed and no emission would ever

occur. If instead we have one spatial cell, two time steps, and a source spatially localized in the cell,

uniformly sampling emission in the subsequent time step would induce a loss of information on the

thermal profile; as if packet energy had teleported across the domain of the cell. These pathologies

are discussed more in following sections.

IMC works against the pathologies to some extent through effective scattering, where a fraction

of an absorbed particle is instantaneously re-emitted in a way that resembles inelastic scattering. In

the original article by Fleck and Cummings, they consider both grey and multi-frequency transport

in one dimensional, planar geometry under LTE conditions. As for many of the subsequent papers

discussed, they exclude real scattering since it does not add any novel complication to the description

of the method [37]. The grey equations are

1

c

∂I

∂t
+ µ

∂I

∂x
+ σI =

1

2
σacT 4 , (2.1a)

∂Um
∂t

= σ

(∫ 1

−1
I dµ′ − acT 4

)
+ S , (2.1b)

where I = 2π
∫∞

0 Iνdν, T is the material temperature, Um is the material energy density, S is

an external material source, σ is a frequency independent absorption opacity, (x, t) is the space-

time coordinate, µ is the x-component of the direction, and a = 8π5k4/15c3h3 is the radiation

constant [37]. Adding an external source to Eq. (2.1a) does not inform the IMC discretization

procedure. For convenience, Ur = aT 4 and β = ∂Um/∂Ur are introduced to give

1

c

∂I

∂t
+ µ

∂I

∂x
+ σI =

1

2
σcUr , (2.2a)

∂Ur
∂t

= βσ

(∫ 1

−1
I dµ′ − cUr

)
+ βS . (2.2b)
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The material equation, Eq. (2.2b), is integrated over a time step and a time-centering parameter, α,

is introduced. Accordingly, Eq. (2.2b) becomes

Ur,n+1 − Ur,n = ∆tnβσ

(∫ 1

−1
Idµ′ − c(αUr,n+1 + (1− α)Ur,n)

)
+ β∆tnS , (2.3)

where ∆tn = tn+1 − tn, and β, σ, S, and I are assumed to be appropriately time-centered [37].

For a perfect gas, β = 4aT 3/Cv, where Cv is constant. The opacity is generally dependent on

temperature as well, σ = σ(T ). Because the temperature at the end of the time step isn’t known,

β and σ are typically evaluated at the beginning of the time step. The approximations β = βn and

σ = σn are the reason for categorizing IMC as a semi-implicit numerical method. With Eq. (2.3),

Ūr = αUr,n+1 + (1− α)Ur,n can be expressed in terms of Un and I as

Ūr =
(1− fn)

c

∫ 1

−1
I dµ′ + fnUr,n +

(1− fn)

cσ
S , (2.4)

where

fn =
1

1 + αβnc∆tnσn
(2.5)

is termed the Fleck factor [37, p. 324] in subsequent literature on or related to IMC.

Replacing Ur with Ūr, β with βn, and σ with σn in Eq. (2.1) yields the grey, differential IMC

equations

1

c

∂I

∂t
+ µ

∂I

∂x
+ σnI =

1

2
(1− fn)σn

∫ 1

−1
I dµ′ +

1

2
fnσncUr,n +

1

2
(1− fn)S , (2.6a)

∂Um
∂t

= fnσn

(∫ 1

−1
I dµ′ − cUr,n

)
+ fnS . (2.6b)

Integrating Eq. (2.6a) over µ and adding the result to Eq. (2.6b) gives

1

c

∂φ

∂t
+
∂F

∂x
= −∂Um

∂t
, (2.7)

where φ =
∫ 1
−1 Idµ and F =

∫ 1
−1 µIdµ. Equation (2.7) is the correct statement of energy conserva-

tion for the original system of equations, (2.1). Applying a similar procedure, Fleck and Cummings
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subsequently arrive at that the non-grey, differential IMC equations,

1

c

∂Iν
∂t

+ µ
∂Iν
∂x

+ σν,nIν =
1

2
(1− fn)

σν,nbν,n
σP,n

∫ 1

−1

∫ ∞
0

σν′,nIν′ dν
′ dµ′

+
1

2
fnσν,nbν,ncUr,n +

1

2
(1− fn)

σν,nbν,n
σP,n

S , (2.8a)

∂Um
∂t

= fn

∫ ∞
0

∫ 1

−1
σν,n (Iν − 2πBν,n) + fnS , (2.8b)

where bν,n = 4πBν,n/cUr,n is the normalized Planck function, σP,n =
∫∞

0 bν,nσν,n is the Planck

opacity at the beginning of time step n, and 2πIν → Iν .

In Eqs. (2.6) and (2.8), setting the control parameter, α, to 0 yields fully explicit equation sets

with the usual Monte Carlo interpretation. Setting α = 1 leads to a Monte Carlo method that is

less prone to the unphysical heating error mentioned above. Fleck and Cummings realized that

Eq. (2.8a) is amenable stochastic interpretation after the IMC discretization procedure. Since σν =

fnσν + (1 − fn)σν , (1 − fn)σν is interpreted as an artificial scattering opacity and fnσν is an

artificial absorption opacity. The first terms on the right sides of Eqs. (2.6a) and (2.8a) are scattering

sources; the effective scattering source in Eq. (2.8a) is inelastic.

Despite the increased stability of the the α 6= 0 IMC equations over explicit coupled transport,

IMC is observed to be prone to over-heating instability. In the following section, Section 2.1.2, the

theoretical source of IMC instability is discussed. Recent schemes for mitigating over-heating are

reviewed in Sections 2.1.3 and 2.1.4.

2.1.2 IMC Maximum Principles

The semi-implicit nature due to the linearization within time steps has been mathematically proven

to still allow for nonphysically large heating to occur for large time steps by Larsen and Mercier

[60]. The “Maximum Principle” for the thermal transport equations is [60]:

• For a domain D, let 0 ≤ TL < TU be fixed constants.
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• Let Iν , T , and Iν,b (the boundary intensity) satisfy

Bν(TL) ≤ Iν(~r, Ω̂, 0) ≤ Bν(TU ) , (2.9a)

TL ≤ T (~r, 0) ≤ TU , (2.9b)

Bν(TL) ≤ Iν,b(~r, Ω̂, t) ≤ Bν(TU ) , ~r ∈ ∂D, Ω̂ · ~n < 0 (2.9c)

where ~n is the unit outward normal vector at ~r on ∂D.

• Then, for all ~r ∈ D and t > 0,

Bν(TL) ≤ Iν(~r, Ω̂, t) ≤ Bν(TU ) , (2.10a)

TL ≤ T (~r, t) ≤ TU . (2.10b)

Larsen proves a statement analogous to the one listed above but for the IMC equations [60]. The

proof is not given here, but the statement may be summarized as follows:

• For a domain D, let 0 ≤ TL < TU be fixed constants.

• Let Iν , T , and Iν,b satisfy Eq. (2.9).

• Additionally, for all time steps n, let ∆tn satisfy

ζ1 = sup
TL<T<TU

(
16πα

Cv(T )

∫ ∞
0

σν(T )

(
Bν(TU )−Bν(T )

TU − T
− Bν(T )

T

))
, (2.11a)

ς(TL, T, TU ) =

max

(∫
4π

∫ ∞
0

σν(T )
Bν(TU )−Bν(T )

Um(TU )− Um(T )
dν dΩ , (2.11b)∫

4π

∫ ∞
0

σν(T )
Bν(T )−Bν(TL)

Um(T )− Um(TL)
dν dΩ

)
, (2.11c)

ζ2 = sup
TL<T<TU

(ς(TL, T, TU )− αβ(T )σP (T )) , (2.11d)

∆tn max(ζ1, ζ2) ≤ 1 . (2.11e)
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• Then, for all ~r ∈ D and t > 0,

Bν(TL) ≤ Iν(~r, Ω̂, t) ≤ Bν(TU ) , (2.12a)

TL ≤ Tn(~r) ≤ TU . (2.12b)

Larsen and Mercier prove the condition by induction of the time steps. In other words, if

Eq. (2.11) is satisfied for all time steps, then TL ≤ Tn ≤ TU and Bν(TL) ≤ Iν(~r, Ω̂, t ∈

[tn−1, tn]) ≤ Bν(TL) imply TL ≤ Tn+1 ≤ TU and Bν(TL) ≤ Iν(~r, Ω̂, t ∈ [tn, tn+1]) ≤ Bν(TU )

[60]. Ultimately, the maximum principle for the continuous IMC equations is a sufficient but not

necessary condition to avoid over-heating. In practice, IMC can often perform well for time step

sizes that are larger than the maximum principle constraint predicts.

Recently, Wollaber et al. [101] formulated a discrete maximum principle for the IMC equa-

tions that includes a spatial grid in the derivation. They further demonstrate the discrete maximum

principle is a better predictor of time step induced over-heating. The development of the discrete

maximum principle is communicated in the context of a one dimensional, semi-infinite medium,

Marshak wave problem with a Planckian source at a temperature TU on the finite boundary of the

medium [101]. To form the inequality and hence the conditions, Wollaber et al. constrain the left-

most piecewise-constant temperature to be less than or equal to TU after the first time step update.

The resulting inequality for the time step size is written as [101]

∆t0 <
Cv,0(TU − T0)

R(∆x1,∆t0)− f0σP,0acT 4
0

, (2.13)

where R(∆x1,∆t0) is the average effective deposition rate density in the leftmost cell for the first

time step, n = 0. The authors both introduce approximate procedures to obtain an estimate of R

and rigorously bound R to provide both necessary and sufficient conditions for ∆tn.

The separate necessary and sufficient conditions are realized by using modified transport equa-

tions to obtain analytic solutions to substitute forR in Eq. (2.13). For the necessary condition, a false
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radiation intensity, Ĭ , and false updated discrete material temperature, T̆1, are solved from [101]

1

c

∂Ĭν
∂t

+ µ
∂Ĭν
∂x

+ σν,0Ĭν = σν,0f02πBν(T0) , (2.14a)

Cv,0
T̆1 − T0

∆t0
=

1

∆t0∆x1

∫ ∆x1

0

∫ ∆t0

0

∫ ∞
0

∫ 1

−1
σν,0f0(Ĭν − 2πBν(T0))dµdνdtdx , (2.14b)

Ĭν(x, µ, 0) = 2πf0B0 , 0 ≤ x <∞,−1 ≤ µ ≤ 1 , (2.14c)

Ĭν(0, µ, t) = Bν(TU ) , t > 0, 0 < µ ≤ 1 , (2.14d)

where effective scattering is removed [101]. It should be noted that σν,0 indicates a lab frame,

frequency-dependent opacity evaluated at the beginning of the first time step while σ0,ν0 frequency

dependent comoving opacity. Thus subscript ordering is conserved to prevent conflicting notation

with later sections. The authors prove that T1 > T̆1 is always true; hence if ∆t0 admits a T̆1 > TU ,

then T1 > TU . Ergo, it is necessary that Eq. (2.13) not allow for T̆1 > TU [101]. After considerable

analysis, Wollaber et al. arrive at a necessary deposition rate, R, that has distinct formula for the

cases c∆t0 ≤ ∆x1 and c∆t0 > ∆x1; the former case allows for radiation from the x = 0 boundary

to escape before time step completion so the formulae are distinct.

The analysis for the sufficient condition is similar, with the false intensity being set to [101]

Îν =


2π(Bν(TU ) +Bν(T0)) , x < ct ,

2πBν(T0) , x ≥ ct ,
(2.15a)

Cv,0
T̂1 − T0

∆t0
=

1

∆t0∆x1

∫ ∆x1

0

∫ ∆t0

0

∫ ∞
0

∫ 1

−1
σν,0f0(Îν − 2πBν(T0))dµdνdtdx . (2.15b)

It turns out T̂1 > T1 is always true; thus a time step that has T̂1 < TU is sufficient.

Wollaber et al. [101] subsequently employ the diffusion approximation for the grey and multi-

frequency cases to get thresholds that estimate the maximum principle boundary. The plots demon-

strate close agreement between the derived discrete maximum principle and experimentally obtained

over-heating for 1D Marshak wave problems. The continuum condition of Larsen and Mercier ap-

pears conservative compared even to the sufficient condition derived by Wollaber et al. Thus, the
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inclusion of spatial grid effect appears to be essential in explaining why the condition of Larsen and

Mercier is sufficient but often much too conservative [60, 101].

In the next section, we review Gentile’s modified IMC method that mitigates over-deposition

of radiation [42]. In other words, the method reduces the R value of Wollaber et al. to relax the

constraint on time step size.

2.1.3 Gentile-Fleck Factor Modified IMC

Gentile explores a higher order discretization of the material temperature equation. The result,

along with approximations, is a “Gentile-Fleck” factor that has the standard Fleck factor as a lower

bound [42]. The procedure involves linear expansions in opacity and the Planck function [42]. Thus

Gentile commences with the transport and material temperature equation written as

1

c

∂Iν
∂t

+ Ω̂ · ∇I +

(
σν,n + ∆Tn

∂σν,n
∂T

)
I =

(
σν,n + ∆Tn

∂σν,n
∂T

)(
Bν,n + ∆Tn

∂Bν,n
∂T

)
,

(2.16)

and

Cv,n
∆Tn
∆tn

=

∫ ∞
0

∫
4π

(
σν,n + ∆Tn

∂σν,n
∂T

)
IνdΩdν

−
∫ ∞

0

∫
4π

(
σν,n + ∆Tn

∂σν,n
∂T

)(
Bν,n + ∆Tn

∂Bν,n
∂T

)
dΩdν , (2.17)

where ∆Tn = Tn+1 − Tn and Bν,n = Bν(Tn) [42]. Gentile solves Eq. (2.17) for ∆Tn/∆tn to get

Cv,n
∆Tn
∆tn

= g

(∫ ∞
0

∫
4π
σν,n(Iν −Bν,n)dΩdν

)
, (2.18)

where [42]

gn ≡
1

1 + ∆tn
Cv,n

∫ ∫
(σν,n∂Bν,n/∂T − (Iν,n −Bν,n)∂σν,n/∂T )dΩdν

(2.19)

is the naive form of the Gentile-Fleck factor. According to Gentile, the form for ∆Tn can be incor-

porated into the linear expansions in Eq. (2.16) and terms of order ∆T 2
n can be neglected. The trans-
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port equation that results has effective emission and scattering terms with probability distribution

functions that are dependent on Bν,n, σν,n and ∂Bν,n/∂T , ∂σν,n/∂T and In. The Gentile-Fleck

factor, gn, takes the role of the Fleck factor, fn from standard IMC. To avoid having to sample

direction-dependent probability densities, Gentile reduces the probability densities to the standard

IMC distributions. The argument provided is that direction-dependent sampling is susceptible to sta-

tistical noise [42]. Equation (2.19) can yield negative values of gn. Evidently, arguments provided

by Gentile indicate this is physical; negative effective absorption removes energy from the material

and adds to the radiation field [42]. To avoid negative material temperature, gn is constrained to be

positive and less than or equal to the Fleck factor [42],

gn =
1

1 + βncσP,n∆tn −min{(E − aT 4)∂σP,n/∂T, 0}
≤ fn . (2.20)

By replacing fn with gn in IMC, Gentile demonstrates the new MC scheme avoids a “temperature

flip” [41, 42] over-heating pathology of standard IMC for opacity inversely proportional to the fifth

power of temperature. For coarse time steps, within the first time step, a high radiation temperature

and low material temperature causes large and immediate over-deposition. The material temperature

jumps roughly to the initial radiation temperature while the radiation temperature abruptly drops to

the initial material temperature. For the given form of opacity, emission drops as 1/T to make the

error persist across computed times [42]. Despite the improvement, the Gentile-Fleck factor also

induces more effective scatters per IMC particle. To mitigate the additional computational expense,

Gentile couples IMC to Random Walk (RW). The RW method is discussed in Section 2.1.10. In

our implementation of the Gentile-Fleck factor, we have IMC-DDMC which similarly mitigates the

cost of increase in effective scattering.

In Chapter 3, we briefly touch on a compressed derivation of the Gentile-Fleck factor as well

as a simple optimization for intensive opacity calculations. We apply the Gentile-Fleck factor to

IMC-DDMC in the W7 model of Type Ia supernovae and verify it counteracts the “temperature

flip” pathology in the context of high-velocity fluid.

An alternative to encapsulating higher order in a modified Fleck factor is to increase the order of
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the time discretization of the material temperature equation. A review of the second order backward

difference formula (BDF-2) for time integration, developed by McClarren and Urbatsch, is also seen

to mitigate over-heating. The BDF-2 approach is discussed in the next review, Section 2.1.4.

2.1.4 McClarren and Urbatsch’s BDF-2 Scheme for Temporal Discretization in IMC

In the absence of external sources, taking α = 1 in the material IMC equation, Eq. (2.3), yields

Ur,n+1 − Ur,n
∆tn

= βσ

(∫ 1

−1
Idµ′ − cUr,n+1

)
. (2.21)

If β 6= βn+1 and σ 6= σn+1, then the integral over intensity I is computed from a tally of par-

ticles whose energy is determined from values computed in a time step preceding n + 1. Hence∫ 1
−1 Idµ

′ would be algorithmically independent of Ur,n+1. Regardless of the conditions on β, σ, or

I , Eq. (2.21) can be interpreted as a backward differenced formula (BDF) of O(1),

Ur,n+1 − Ur,n
∆tn

= g(Ur,n+1) , (2.22)

where g can be an arbitrary function. For the purposes of thermal transport, it is the right hand side

of Eq. (2.21). McClarren and Urbatsch apply a method that replaces Eq. (2.22) with a second order

BDF formula (BDF-2) [71, p. 502],

3Ur,n+1 − 4Ur,n + Ur,n−1

3∆tn
=

2

3
g(Ur,n+1) . (2.23)

Defining Ur,n+1/2 = (4Ur,n−Ur,n−1)/3 and evaluating β, σ, and indirectly I at Ur,n+1/2 linearizes

Eq. (2.23) in Ur,n+1. Then [71]

Ur,n+1 = mUr,n+1/2 + (1−m)
1

c

∫ 1

−1
Idµ′ , (2.24)

where

m =
1

1 + 2
3βn+1/2cσn+1/2∆tn

. (2.25)
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McClarren and Urbatsch use a different form for β described by

βCv
∂T

∂t
=

1

σ(T )

∂(σ(T )aT 4)

∂t
. (2.26)

Then it must be that [71]

β =
a

Cv

(
4T 3 + T 4 d

dT
ln(σ)

)
. (2.27)

Now if σ and β are taken to be constants at T = Tn+1/2, Eqs. (2.24) and (2.25) are still satisfied,

but with βn+1/2 equal to Eq. (2.27) evaluated at T = Tn+1/2. It was further found that setting

m =
1

1 + θβn+1/2cσn+1/2∆tn
, (2.28)

where θ ∈ [2/3, 1], gave more robust results for some certain numerical experiments [71].

The quantity m takes the place of the Fleck factor in IMC (along with σ = σn+1/2) after in-

corporating Ur,n+1 into the transport equation. With several infinite medium tests [71], McClarren

and Urbatsch show that the BDF method can suffer some oscillation effects, but these effects can

be reduced by setting θ = 1. The BDF-2 scheme apparently mitigates the “temperature flip” phe-

nomenon without having the opacity derivative with respect to temperature in the β term. Thus

the method should not be much more expensive than standard IMC in regimes where gn from Sec-

tion 2.1.3 is significantly smaller than fn.

Including Section 2.1.4, the preceding reviews have described the IMC maximum principles

and means of preventing violation of the maximum principles. The unifying theme has been over-

deposition due to large time steps or small cell sizes. Another IMC pathology exists in the regime

of small time steps and large, or optically thick cell, cell sizes. For both Symbolic Implicit Monte

Carlo (SIMC) and IMC, small time steps in optically thick spatial cells allows radiation energy to

propagate across cells faster than may be permitted by causality. An attempt to treat the numerical

energy “teleportation” error in SIMC is discussed in Section 2.1.5. SIMC should not suffer max-

imum principle violations since the method is fully implicit. In Sections 2.1.6, 2.1.7, 2.1.5, 2.1.8,

and 2.1.9, theoretical explanations for the manifestation of error from spatial discretization are dis-
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cussed. The underlying theme is that certain discretizations for transport methods generally do not

preserve correct diffusion behavior for optically thick spatial cells.

2.1.5 Symbolic Implicit Monte Carlo (SIMC)

Symbolic Implicit Monte Carlo (SIMC) is a realization of the stochastic interpretation of the col-

lision probability matrix described in the introduction. By not assigning each particle an explicit

weight, one can solve the material coupled transport equation implicitly without introducing ef-

fective scattering [11]. The method was developed by recognizing that the particle transport did

not depend on the weight of the particle [11]. The independence of the transport process from the

particle weights allows one to solve the updated material state from a matrix equation with matrix

coefficients determined from collision probability tallies. Problems that would have much effective

scattering due to a small Fleck factor (fn << 1) in IMC do not suffer effective scattering in SIMC.

The equations of Brooks [11] are the time dependent equations for a NLTE, two state material

in slab geometry. SIMC can be used to solve steady state problems as Clouet and Samba show with

Eq. (2.55). The physical scattering in Φ in Eq. (2.55) is not modeled directly by introducing ansatz

ϕl,i(~r) and Il,i(~r, Ω̂). Monte Carlo may then be directly applied to Eq. (2.57a) to directly obtain

the matrix element al,i;l′,i′ . To elaborate on a previous statement, the analysis be Samba and Clouet

is useful for IMC because the derivations are translatable under the mapping σ → σa, σa → fσa,

σs → (1 − f)σa, where f is an equilibrium Fleck factor. This mapping is similar but not identical

to that of Densmore’s equilibrium model problem [25].

The LTE SIMC of N’Kaoua also avoids effective scattering [75, 28]. From the summary of

Densmore, the appropriate equations are [28]

1

c

∂I

∂t
+ Ω̂ · ∇I + σnI =

1

4π
σnacT

4
n+1 , (2.29a)

∂Um
∂t

= σn

∫
4π
I dΩ− σnacT 4

n+1 . (2.29b)

It is discernible that the material properties are evaluated at the end of the previous time step. The

radiation particles censused from a previous time step have packets of known energy, since pre-
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sumably, the cell-centered material temperature, Tn,i, has been solved. So the censused particles’

motions are governed by [28]

∂Icen

∂t
+ Ω̂ · ∇Icen + σnIcen = 0 , (2.30)

where Icen is the portion of radiation intensity that had been censused on the previous time step.

With the naive piecewise discretization of the method observables, radiation generated in a cell i is

governed by [28]
∂IDi
∂t

+ Ω̂ · ∇IDi + σnIDi =
σncϕi

4π
, (2.31)

where ϕi is one in cell i and zero everywhere else in the domain D and IDi is intensity in the

domain originating from the subdomain (cell) Di. The birth cell index of a photon packet can be

stored as a property of the packet in order to assign a numeric weight between time steps. Making

the assumption of the material being a perfect gas, the discrete material equation becomes [28,

p. 183]

Cv(Tn+1 − Tn) =
1

Vi

∫ tn+1

tn

∫
4π

∫
Di

σn,iIcend
3~rdΩdt+

1

Vi

I∑
i′=1

aT 4
n+1,i′

∫ tn+1

tn

∫
4π

∫
Di

σn,iIDi′d
3~rdΩdt− σn,i∆tnacT 4

n+1,i (2.32)

where Vi and σn,i are the volume and cell-centered opacity of cell i, respectively. Equation (2.32)

describes a system of equations over the spatial domain for each time step. The matrix may be both

dense and lacking in symmetry since it is tallied stochastically. One might expect issues to occur

for scalability to problems with large, highly resolved, multi-dimensional spatial domains given

Eq. (2.32) is a stochastic analogue to the time dependent collision probability method derived in

section 1.3.1.

With piecewise constant ϕi sources, SIMC has been observed to produce Marshak waves that

propagate too quickly [72]. As a remedy for the teleportation error, Brooks et al. [12] incorporate

trial space discretizations for the material temperature equation. These discretizations are self-
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consistent.

Brooks et al. [12] unify N’Kaoua’s method and Clouet and Samba’s [23] SIMC trial space

extension to both a discontinuous and continuous finite element formulation of SIMC for thermal

radiative transport. A material state variable is discretized over a linear trial space; this variable

is either the material temperature, T (~r, t), or the equilibrium radiation energy density, aT 4 for the

difference formulation of the thermal transport equations [12],

1

c

∂δIν
∂t

+ µ
∂δIν
∂x

= −σν,a∂Iν −
1

2c

∂Bν(T )

∂t
− µ

2

∂Bν
∂x

, (2.33a)

∂Um
∂t

=

∫ ∞
0

∫ 1

−1
σν,aδIν + S , (2.33b)

where δIν = Iν − Bν(T (x, t))/2 as in the IMC section, the azimuthal component of the direction

has been integrated out of Iν and Bν/4π, and S is an external source expressed in the material

energy balance. The frequency may be sampled without knowing Tn+1. The SIMC frequency

distribution is separated from the Planck functions on the right hand side of Eq. (2.33a) [12]:

1

c

∂Bν(T )

∂t
− µ∂Bν

∂x
= − 1

ca

∂B

∂T 4

(
aT 3∂T

∂t
+ µcaT 3∂T

∂x

)
, (2.34)

where (1/ac)∂B/∂T 4 can be a probability distribution function in frequency since it integrates

to one. SIMC without the difference formulation apparently suffers inhibitive noise effects for

optically thick materials [12].

For either state variable considered, the expansions in T (x, t) or aT (x, t)4 are made to be al-

gebraically self-consistent [12]. According to Brooks [12], expanding in aT 4 makes for a simpler

sampling distribution than expanding the trial functions in material temperature. Unfortunately with

the constraint of consistency, incorporating a linear expansion in aT 4 causes T to be non-linear at

the sub-cell level. Making a linear expansion in the material temperature allows for more straight-

forward coupling to other physics [12] but sampling MC particles becomes more complicated. In
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either case the basis functions for the linear discontinuous component of the analysis are [12]

ϕi,1 =


xi+1/2−x

∆xi
for x ∈ [xi−1/2, xi+1/2] ,

0 otherwise
, (2.35a)

ϕi,2 =


x−xi−1/2

∆xi
for x ∈ [xi−1/2, xi+1/2] ,

0 otherwise
. (2.35b)

Instead of reviewing the equations here, we will paraphrase an outline of the solutions scheme [12,

p. 474] and discuss some of the features in the derivation.

• The material state variable is a superposition of trial space functions with time dependent

coefficients.

• Space, angle and frequency sampling distributions are known at the beginning of a time step

while per SIMC the source strengths are undetermined.

• The particle advance is made to tally the collision probability matrix (or the matrix that re-

sulted from the inner products of the intensity field with the trial functions).

• The collision probability matrix is incorporated into the nonlinear material state equations.

• The equations are solved (Brooks uses a Newton-Raphson iteration [12]).

The discontinuous linear T and T 4 trial spaces tested by Brooks et al. [12] appear to have

some difficulty solving a Marshak wave with a steep gradient for large cells. Specifically, the

temperature profiles are able to become non-monotonic for large cells at early time. Otherwise, the

self-consistent SIMC trial space formulation significantly mitigates teleportation error relative to

the ancestral piecewise constant method.

To understand why a higher order representation is required to obtain robust solutions in op-

tically thick cells, it is informative to review Adam’s article on finite element solutions [3]. In

Adam’s article on discontinuous finite element schemes for transport, requirements are put on trial

spaces so that a transport method can correctly solve optically thick problems. The article only



63

considers discrete ordinate systems; this does not detract from the generality of the conclusions. We

cover a small portion of Adam’s article in Section 2.1.6 and subsequently consider a similar anal-

ysis for continuous-angle transport in Section 2.1.7. Additionally in Section 2.1.7, we discuss the

asymptotic derivation of the fully continuous diffusion equation from the fully continuous transport

equation.

2.1.6 Discontinuous Finite Element Transport in Diffusive Problems

Finite elements have been applied to transport problems in both deterministic and Monte Carlo

methods. In particular, a trial space approach has been explored for SIMC; this is reviewed in the

previous section, Section 2.1.5. Adams [3] provided analysis and testing of discontinuous finite ele-

ment methods (DFEMs) applied to optically thick transport problems. Discontinuous finite elements

can in some problems help capture sharp changes in material properties at boundaries contained by

spatial cell surfaces [3]. The analysis follows the approach of asymptotic analysis elaborated by

Larsen and Keller [59] and explored by others (see, e.g. [44, 67, 25]) but considers discretization

and discrete ordinates. Larsen et al. [61] have applied asymptotic analysis to the discrete ordinate

transport equations previously for different discretizations in planar geometry.

Adams determines conditions of the discontinuous elements that need to be met in order for the

discrete leading order solution to be a correct discretization of the diffusion equation [3]. Adams

outlines all the conditions required for good code performance and recovery of the correct diffusion

solution:

• Resolution: transport methods must have at least one degree of freedom per spatial vertex

devoted to allow for the scheme to emulate the correct discrete diffusion behavior.

• Continuity: the solution should be continuous or approach continuity in optically thick do-

main interiors.

• Robustness: it is desirable that the DFEM method not allow for spurious oscillations in space

or negative flux.
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• Accuracy: grid resolution in an optically thick domain should furnish a method solution close

to the corresponding resolved diffusion solution.

• Boundary condition: the DFEM should reproduce the asymptotic diffusion-limit boundary

condition [44, 67] when the boundary layer is not resolved by the spatial grid.

We focus the discussion here on “resolution” and “continuity” since these conditions are critical to

correct solutions of transport in optically thick media and affect results in other pertinent articles.

One issue in an FEM transport method that uses discontinuous elements is that the leading order

discrete, asymptotic solution may not be continuous at cell edges [3]. Adams appears to circumvent

this issue by applying lumping in the finite element matrix for cell interfaces [3]. The article poses

arguments general enough to be applied to multiple grid geometries and topologies. The portion

discussed here is only a brief summary of Adam’s article. The equation solved is the steady state,

grey transport equation in discrete ordinates [3],

(
Ω̂κ · ∇+ σ(~r)

)
I(~r, Ω̂κ) =

1

4π
(σs(~r)φ(~r) + qe(~r)) , for ~r ∈ D , (2.36a)

φ(~r) =
K∑
κ=1

wκI(~r, Ω̂κ) , (2.36b)

I(~r, Ω̂) = Ib(~r, Ω̂) , for ~r ∈ ∂D , ~n(~r) · Ω̂ < 0 . (2.36c)

Adams then defines several quantities for the subsequent manipulations:

• Di = domain of cell i,

• Li = number of faces of cell i,

• ∂Di,l = face l ∈ {1 . . . Li} of cell i,

• ∂Di = boundary of cell i, ∂Di = ∪Lil ∂Di,l,

for non overlapping cells [3]. The generality of Adams’ approach even admits non-planar spatial
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cell faces which each have average outward normal vectors [3],

~ni,l =

∫
∂Di,l

~n(~r)d2~r∫
∂Di,l

d2~r
, (2.37)

as well as weight functions enumerated by cell [3],

ϕi,j(~r) = 0 for ~r 6∈ cell i , (2.38)

where j ∈ {1 . . . Ji} and Ji are the number of weight functions in cell i. In performing the weak

formulation of the transport equation, Adam applies Green’s theorem (the divergence theorem on

∇·(IΩ̂ϕi,j) is equivalent) to the streaming operator as Samba and Clouet do in the transport “corner

term” (CT) derivation [23]. In contrast to Samba and Clouet’s analysis, Eq. (2.36) is discretized in

angle, and the postulated leading order weak variation solution, in orders of a small parameter ε,

can be obtained without corner terms. The resulting equation in our notation is [3, p. 301]

∫
∂Di

~n · Ω̂ϕi,jI d2~r +

∫
Di

(ϕi,jσI − IΩ̂ · ∇ϕi,j)d3~r =
1

4π

∫
Di

ϕi,j(σsφ+ qe) (2.39)

where d2~r and d3~r are differential surface and volume elements, respectively. By using calculus

identities, the surface of each cell is explicitly incorporated into the finite element analysis. Adams

also discriminates between weight functions described above and basis functions [3], bi,j , where

i ∈ {1 . . . I} is the spatial cell index and j ∈ {1 . . . Ji} so that a solvable system of equations is

obtained for each cell i (i.e. the number of basis functions in each cell must equal the number of

weight functions). So for cell i,

I(~r, Ω̂) ≈
Ji∑
j

Ii,j(Ω̂)bi,j(~r) . (2.40)

Equation (2.40) is then inserted into the volume integral on the left hand side of Eq. (2.39). The

boundary condition is discretized in streaming direction to ensure particle properties correspond to

the cell they are coming from (in Monte Carlo, this is an explicit condition on quantities associated
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with packets crossing a surface [31]) [3]. The discontinuous finite element equations in fully general

matrix form are [3]

Ω̂κ · (Lb,i~Ib,i + Li~Ii) + Ti
~Ii =

1

4π
Si~φi +

1

4π
~qe,i , (2.41)

where Lb,i, Li, Ti, and Si are the Ji×Ji inner product matrices approximating operators of stream-

ing at the cell surface, streaming in the cell interior, the total opacity, and the scattering opacity,

respectively, for cell i. Additionally, ~Ib,i, ~Ii, ~φi and ~qe,i are Ji × 1 arrays approximating intensity at

the cell boundary, cell interior intensity, scalar intensity, and external sources, respectively.

After examining discontinuous finite elements for a two dimensional Cartesian grid using bi-

linear finite elements, Adam discusses “mass-matrix” lumping. For transport equations where σ

and σs are constant within cells, lumping the mass matrix Mi = Ti/σi constrains collisions to be

cell-local [3]. After introducing a new concept termed “surface lumping”, which essentially diago-

nalizes Lb,i by evaluating the basis function of each entry (j, j′) at the point where bi,j′ is maximum

(referred to as the support point ~ri,j ; in practical terms, these are cell vertices) [3].

Adams applies asymptotics first to the un-lumped discontinuous FEM (DFEM) system and

demonstrates that there is no requirement on the leading order solution (the scalar flux) to be point-

wise continuous at the boundaries of cells [3]. Although pointwise continuity is not necessarily

obtained from a general DFEM, weak continuity is preserved [3],

Li∑
l=1


2

∑
κ|~ni,l·Ω̂κ>0

wκ~ni,l · Ω̂κ

∑
κ|~ni,l·Ω̂κ>0

wκ


∫
∂Di,l

ϕi,j(~r)(φ
(0)(~r−i,l)− φ

(0)(~r+
i,l)) d

2~r = 0 , (2.42)

where ~r−i,l is a point in Di immediately on the interior of the surface i, l and ~r+
i,l is presumably the

reflection of ~r−i,l about a plane tangent to the cell surface at ~ri,l, the closest point on the surface to

~r−i,l. The value φ(0)(~r) is the lowest order scalar flux from the usual expansion in ε. With surface

lumping over weight functions that have “locality”, where ϕi,j(~r) = 0 for ~r ∈ ∂Di,l and l 6∈ {lj}
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[3], Eq. (2.42) becomes [3]

Li,j∑
lj=1


2

∑
κ|~ni,lj ·Ω̂κ>0

wκ~ni,lj · Ω̂κ

∑
κ|~ni,lj ·Ω̂κ>0

wκ

 (φ(0)(~r−i,j)− φ
(0)(~r+

i,j))

∫
∂Di,lj

ϕi,j(~r) d
2~r = 0 , (2.43)

where ri,j is the support point (vertex) of a weight function ϕi,j , r±i,j are the immediate exterior

and interior (boundary layer) points about the support point, respectively. Equation (2.43) implies

that the scalar flux at the vertex j must be equal for all spatial cells meeting j from the set of cells

adjacent to faces of i. The set lj ∈ {1 . . . Li,j} enumerates faces of cell i that touch vertex j. But

this must ensure pointwise continuity at cell boundaries. Adams rephrases the condition as a matrix

equation [3]

Mφ(0)
i,j

= 0 , (2.44)

where M is a symmetric, singular matrix with Mi,i = −
∑

i′ 6=iMi,i′ . The matrix exists for each

vertex, j, and the cell index, i, covers the range of cells that have vertex j. Given the properties of

M, to solve Eq. (2.44) for each j, φ(0)
i,j for all i must be equal [3].

Adam’s use of surface-matrix lumping at the cell bounds constrains the leading order scalar flux

to be continuous at cell bounds. The continuity for the leading order solution arises despite the

use of discontinuous trial spaces. Without surface lumping, the continuity condition is a weighted

integral, Eq. (2.42).

The portion of Adam’s article that includes the asymptotic analysis is not provided here. The

review consequently is a small portion of the article’s contents. We have highlighted the equations

that indicate weak and strong continuity of the leading order solution at cell boundaries. An equa-

tion similar to Eq. (2.44) manifests in the asymptotic work of Clouet and Samba [23] for Symbolic

IMC (SIMC). In these references, a symmetric, singular matrix equation of the scalar fluxes gives

rise to incorrect solutions when the explicit or implicit trial space applied does not satisfy the “res-

olution” requirement of Adams [3]. In other words, there are not enough degrees of freedom for

the continuity constraint to yield a reasonable solution. In one dimension a concrete example of no
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resolution is the piecewise constant representation over a finite planar domain. If the boundary con-

ditions prescribe zero scalar flux at the boundaries, then since each interior cell profile is uniform

the entire leading order interior solution must be zero [23].

In the following section, the approach to asymptotically analyze the continuous transport equa-

tion is described. For continuous-angle transport over arbitrary grids, Clouet and Samba apply

asymptotic analysis with “corner terms” that decay to zero as the domain gets optically thick [23].

With vanishing corner terms in the weak formulation of the angularly integrated transport equation,

if the external and scattering sources are piecewise constant, then the leading order equation is a

false discrete diffusion equation that has the properties of M [23].

2.1.7 Clouet and Samba’s Corner Term Analysis

Here, the corner term analysis of Clouet and Samba [23] is discussed. Also referenced is the work

of Larsen and Keller [59] and Habetler and Matkowski [44], which are early examples of the utility

of asymptotic analysis. If there exists a small parameter ε in a set of equations with boundary

conditions, asymptotic analysis allows for the derivation of an approximate interior solution and

an approximate “boundary layer” solution. So the intensity is often expressed as Iν = Iν,b + Iν,i

where Iν,b is the solution near the boundary and Iν,i is the interior solution. Early time values

of Iν may be considered a boundary layer in time, so the solution may be further subdivided to

Iν = Iν,b + Iν,i + Iν,b,0 + Iν,i,0 where Iν,b,0 is the solution at early time near a boundary and Iν,i,0 is

the interior solution at early times [59]. The notions “early” and “near” correspond to time t ∼ εT

and position |~r − ~rb| ∼ εLD where T is on the order of the observational time scale of the problem

and LD is a typical length scale of the domain D. Considering a plane parallel system and setting,

ε = 1/σLD, x̃ = x/LD, and t̃ = |~U |t/LD the grey transport equation with isotropic scattering and

no external sources can be rewritten as [44]

ε

(
|~U |
c

∂I

∂t̃
+ µ

∂I

∂x̃

)
+ I =

σs
2σ
φ , (2.45)
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where σs is a grey scattering opacity and ~U is a velocity. For many problems of interest, one may

assume that a typical macroscopic velocity is O(ε), so

Kε2
∂I

∂t̃
+ µε

∂I

∂x̃
+ I =

σs
2σ
φ , (2.46)

whereK is O(1) [44]. Incorporating I =
∑∞

j=0 I
(j)εj and χ = σs/σ =

∑∞
p=0 χ

(p)εp into Eq. (2.46)

and matching terms with coefficients εj yield a set of recursive equations [44],

I(j) =
1

2
χ(j)φ(j) for j = 0 , (2.47a)

K
∂I(j−2)

∂t̃
+ µ

∂I(j−1)

∂x̃
+ I(j) =

1

2
χ(0)φ(j) +

1

2

j∑
p=1

χ(p)φ(j−p) otherwise . (2.47b)

So χ(0) must be one. Reducing Eq. (2.47) for j ∈ {0, 1, 2} in terms of the scalar flux coefficients

yields
K

2

∂φ(0)

∂t̃
+ µ

∂

∂x̃

(
φ(1)

2
− µ

2

∂φ(0)

∂x̃

)
+ I(2) =

1

2
φ(2) +

1

2
χ(2)φ(0) . (2.48)

Finally, integrating over µ yields a diffusion equation for φ(0),

K
∂φ(0)

∂t̃
− 1

3

∂2φ(0)

∂x̃2
− χ(2)φ(0) = 0 , (2.49)

where σ(1 + ε2χ(2)) ≈ σs → χ(2) ≈ −σa/ε2σ and σa is the absorption opacity. Substituting the

dimensional coordinates into Eq. (2.49) introduces the recognizable radiation diffusion equation,

1

c

∂φ

∂t
− 1

3σ

∂2φ

∂x2
+ σaφ = 0 , (2.50)

where the 0 subscript has been dropped to give φ the interpretation as an approximation of scalar

flux. Incorporating higher asymptotic moments, j > 2, would give improvements over diffusion

theory [44].

Fick’s law follows from Eq. (2.50). The formula I = φ/2 + 3µF/2 where F =
∫ 1
−1 µIdµ

satisfies Fick’s law and the diffusion equation. The linearity of I in µ admits a simple boundary
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condition for flux into the domain,

4

∫ 1

0
µ′I(xb, µ

′, t) dµ = φ(xb, t)−
2

3σ

∂φ

∂x

∣∣∣∣
x=xb

. (2.51)

The plane parallel formulation of Eq. (2.51) can readily be generalized by making the boundary a

tangent plane to a more arbitrary surface ∂D with unit normal vector field ~n(~rb) such that ~rb ∈ ∂D,

4

∫
Ω̂′·~n(~rb)<0

|Ω̂′ · ~n(~rb)|Ib dµ′ = φ(~rb, t) +
2

3σ
~n(rb) · ∇φ

∣∣∣∣
~r=~rb

, (2.52)

where Ib = I(~rb, µ
′, t). Equation (2.52) is often referred to as the Marshak boundary condition [27].

The incoming flux can be described with Chandrasekhar’s H-function [20, p. 77]. Chandrasekhar

starts the derivation with discrete ordinates incident on a surface of the domain to obtain the solution

of transmitted radiation immediately on the interior of the domain [20, p. 77],

N/2∑
j=1

wj = 1 , (2.53a)

1 =

N/2∑
j=1

wj
1− µ2

jk
2
p

, p ∈ {1 . . . N/2− 1} , (2.53b)

H(µ) =
1

µ1 . . . µN/2

∏N/2
i=1 (µ+ µi)∏N/2−1

p=1 (1 + kpµ)
, (2.53c)

φ(~rb, t)

2
=

√
3

2

N/2∑
κ=1

wκµκIκ

H(µ) , (2.53d)

where kp is is an eigenvalue from separations of variables,H(µ) is the H-function that describes dif-

fuse reflection (or equivalently “darkening” of transmitted radiation). The continuous form Clouet

and Samba employ is [23]
φ(~rb, t)

2
=

√
3

2

∫ 1

0
µH(µ)Ibdµ , (2.54)

where µ = |Ω̂ · ~n| and Ω̂ · ~n < 0.

Clouet and Samba demonstrate that the leading order continuous transport solution with piece-
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wise constant sources does not discretize to the solution of a discretization of Eq. (2.50). The result

is for Symbolic Implicit Monte Carlo method but motivates similar analysis for IMC. The equa-

tions used are in steady state as adding time dependence does not modify the implication of the

proofs [23]. So,

Ω̂ · ∇I + σI = σΦ (2.55)

where σΦ = (σsφ + qe)/4π. Introducing basis functions ϕl,i(~r) for each cell i over a domain,

Samba and Clouet approximate Φ(~r) =
∑

l

∑
i Φl,iϕl,i(~r). The weak formulation of the solution Φ

satisfies [23] ∫
D

(σΦ− (σφ+ qe)/4π)ϕl,i(~r)dV = 0 , (2.56)

where D again is the domain. If I(~r, Ω̂) =
∑∑

Φl,iIl,i(~r, Ω̂), the resulting system of equations

can be further modified to

Ω̂ · ∇Il,i + σIl,i = σϕl,i , (2.57a)∑
i

∑
l

(bl,i;l′,i′ − al,i;l′,i′)Φl,i =
1

4π

∫
D
qeϕl′,i′dV , (2.57b)

Il,i(~r, Ω̂) = 0 , ~r ∈ ∂D, Ω̂ · ~n < 0 (2.57c)

where bl,i;l′,i′ =
∫
D σϕl,iϕl′,i′dV , al,i;l′,i′ = (4π)−1

∫
D σsφl,iϕl′,i′dV and φl,i =

∫
4π Il,idΩ. The

corner term is defined as [23]

CT(ε) =

∫
∂Di

d2~r

∫
DΩ

dΩQ(~r, Ω̂)e−
σL(~r,Ω̂)

ε . (2.58)

where ∂Di is the surface of cell i and DΩ is a subset of the directions. The functions Q(~r, Ω̂)

and L(~r, Ω̂) are non-negative and bounded over ∂Di and DΩ. Samba and Clouet prove a two part

lemma for Eq. (2.58) that shows [23]: limε→0CT(ε)→ 0 exponentially for 1D problems if there

exists a constant lower bound of L(~r, Ω̂) and CT(ε) = C(ε/σ)d−1+O(εd) for some constant C and

dimension d if L(~r0, Ω̂) = 0 → L(~r, Ω̂) ≈ C0(Ω̂)|~r − ~r0| when ~r is close to ~r0. With the CT

properties, performing the asymptotic expansion over Eq. (2.57) and ϕl,i(~r) = δi,i′ , one can prove
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that the lowest order φi in the ε satisfies a discretization consistent with [23]

−∂
2φ

∂x2
=
K

4π
qe , (2.59)

in one dimension, where K = 4 limε→0,∆xi→0(ε/∆xi). Eq. (2.59) is of course not the same equa-

tion as Eq. (2.50). The piecewise constant representation of the scalar flux does not produce the

correct asymptotic limit of transport. If instead a piecewise (bi)linear set of basis functions ϕl,r are

employed, one regains an asymptotic limit to a discretization of the correct diffusion equation. The

functions F (~r, Ω̂) and L(~r, Ω̂) manifest in the corner term as coefficients and path length in an exact

solution to Eq. (2.57a), respectively.

Samba and Clouet’s analysis is an example of the importance of the quantities that are dis-

cretized for Monte Carlo tallies in the transport equation. Similar to Adams [3], the article highlights

the utility of asymptotic analysis in determining discretization effects on transport methods. While

the treatment of radiation is continuous in the IMC scheme of Fleck and Cummings, temperature is

discrete in space and time. The effects of the spatial and temporal grid are shown by Densmore [25]

to have a non-trivial effect on the quality of the solution through an asymptotic analysis similar to

that of Clouet and Samba.

2.1.8 Densmore’s Analysis of Spatial Discretization in IMC

Densmore [25] performs an asymptotic analysis on three time scalings for IMC where the spatial

sub-cell representation of the artificial emission source is either constant or piecewise-linear. One

motivation for these sub-cell representations is the ubiquitous application of “source tilting” meth-

ods in IMC. Source tilting attempts to mitigate numerical teleportation error in IMC by sampling

particle emission locations from a non-constant temperature profile (for LTE) within a spatial zone

(cell). The sub-cell material temperature profile is often constructed with temperatures from adja-

cent cells. In one dimension, for example, a cell i may use the temperature values in cells i− 1 and

i + 1 to construct a linear slope. This slope is used as a probability density function for particles

generated in a time step.
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The three time scalings for the asymptotic analysis Densmore uses are [25]:

1. a time step on the order of mean free times,

2. a time step at the Courant limit of the problem,

3. a scaling independent time step.

Solving Eqs. (2.6) or Eqs. (2.8) with IMC requires both a spatial grid and temporal grid. The IMC

equations with spatial discretization in planar geometry for grey transport with isotropic scattering

and without external sources are [37], [25, p. 1117],

1

c

∂I

∂t
+ µ

∂I

∂x
+ σn,iI =

1

2
(1− fn,i)σn,i

∫ 1

−1
I dµ′ +

1

2
fn,iσn,icUr,n,i , (2.60a)

∂Um,i
∂t

= fn,iσn,i

(
1

∆xi

∫ xi+1/2

xi−1/2

∫ 1

−1
I dµ′ − cUr,n,i

)
, (2.60b)

where x1/2 < x3/2 < . . . < xI+1/2 and t0 < t1 < . . . < tN . The Fleck factor is

fn,i =
1

1 + αβn,iσn,ic∆tn
(2.61)

where βn,j = 4aT 3
n.i/Cv,n,i. Incorporating a linear tilt in the thermal emission source of Eq. (2.60a),

the transport equation becomes

1

c

∂I

∂t
+ µ

∂I

∂x
+ σn,iI =

1

2
(1− fn,i)σn,i

∫ 1

−1
I dµ′ +

1

2
(1 +mn,i(x− xi))fn,iσn,icUr,n,i , (2.62)

where Densmore uses

mn,i ≈
1

T 4
n,i

∂T 4

∂x

∣∣∣∣
n,i

, |mn,i| ≤
2

∆xi
, (2.63)

and xi = (xi+1/2 + xi−1/2)/2 [25, p. 1118]. The probability distribution then must be [36, 25],

pn,i =
1 +mn,i(x− xi)

∆xi
. (2.64)

Instead of applying an asymptotic analysis to the IMC equations, Densmore constructs [25,
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p. 1119] an equivalent model problem from the steady state Eq. (2.55),

µ
∂I

∂x
+σI =

(1− f)σs
2

∫ 1

−1
I(x, µ′)dµ′+

fσs
2

1 +mi(x− xi)
∆xi

∫ xi+1/2

xi−1/2

∫ 1

−1
I(x′, µ′)dµ′dx′+

qe
2

,

(2.65)

where f represents the Fleck factor. Instead of dividing a physical absorption opacity into fictitious

scattering and absorption opacities, Eq. (2.65) separates a physical scattering into fictitious scatter-

ing, absorption and discrete emission over the prescribed grid. But if σs → σa = σ, then Eq. (2.65)

is the steady state version of Eq. (2.62).

In the diffusive regime, σs ≈ σ >> σa = σ − σs. The introductory derivation in Section 2.1.7

suggests mapping σ → σ/ε and σa → εσa to renormalize the quantities σ, σs and σa to O(1).

Additionally, the external source and speed of light are renormalized to O(1) with qe → εqe and

c→ c/ε [25]. Densmore introduces these scaling into Eq. (2.65) and the Fleck factor. If βn,i and α

are of O(1), then the Fleck factor [25],

fn,i =
ε2

ε2 + Cn,i∆tn
, (2.66)

where Cn,i is an O(1) quantity. Supposing fn,i =
∑∞

j=0 f
(j)εj , the three scalings listed above then

imply the following list in order:

1. if ∆tn ∼mean free time, fn,i ≈ f (0),

2. if ∆tn ∼ min1≤i≤I(∆xi/c), fn,i ≈ f (1)ε and f (0) = 0,

3. if ∆tn ∼O(1), then fn,i ≈ f (2)ε2 and f (0) = f (1) = 0,

where f (0), f (1) and f (2) are of O(1). Along with the other specified scalings in ε, the equations

f = εjf (j) for j ∈ {0, 1, 2} are used in Eq. (2.65) to obtain recursive equations of angular and

scalar flux [25] in the boundary layer and interior of each spatial cell. Like the analysis by Clouet

and Samba, if the lowest order solution obeys a discrete form of the correct diffusion equation, or

Eq. (2.50) with source q added to the right hand side, then the method is robust in the diffuse regime

of transport problems.
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The conclusion of the analysis is that for the piecewise-constant IMC thermal emission source,

or equivalently mi = 0 for all i ∈ {1 . . . I}, only f = ε2f (2) results in a discretization of the

proper diffusion equation [25]. The small scaling of the Fleck factor for piecewise-constant emis-

sion sources implies fictitious scattering must dominate the emission process, which in turn indicates

a lower bound on ∆t for simulations that do not employ source tilting techniques. The observed con-

sequence of not employing source tilting is teleportation error. We have not observed teleportation

errors in simulations that directly solve the diffusion equation either stochastically or deterministi-

cally; this finding is supported by a remark from Adams [3], who indicates that obtaining the correct

leading order diffusion behavior can be achieved by directly applying diffusion in optically thick

regimes.

A high-level conclusion of Densmore’s considerable analysis is that discontinuous source tilt-

ing, where themi slopes in Eq. (2.62) do not enforce continuity at cell edges, may furnish a transport

solution that discretizes to the correct diffusion equation; source tilt slopes that are constructed accu-

rately should not return absurd results. In Section 2.1.9, we conclude the source tilt, finite element,

and asymptotic analysis discussion with a survey of the unifying work of Smedley-Stevenson and

McClarren [93]. Instead of discontinuous tilt accuracy, following a rigorous analysis, they enforce

absolute continuity at cell bounds.

2.1.9 Smedley-Stevenson and McClarren’s Source Tilt Reconstruction

Smedley-Stevenson and McClarren propose continuous source tilting based on asymptotic analyses

for thermal radiation transport schemes that have linear discontinuous representations of material

reconstructed from cell-centered temperatures. Consequently, in contrast to the discontinuous finite

element approach, the work presented in the article assumes there are not enough inherent degrees

of freedom per spatial cell for the methods to produce good diffusion behavior unless a non-uniform

subcell temperature profile is heuristically incorporated. This constraint is made so that the transport

calculation only needs cell-centered quantities from a hydrodynamics calculation [93].

Both spatially continuous and spatially discrete transport are asymptotically analyzed. In both

systems, the leading order diffusion equation has spurious sources, referred to as “jump terms,”
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that arise from cell edge temperature profile discontinuities. The analysis is in one dimensional,

planar coordinates. Considering continuous transport with pure absorption and discrete material,

the cell-centered energy balance, for a cell i, is written as [93]

∆xi

(
Cv,i

∂Ti
∂t

+
1

c

∂φi
∂t

)
=

∫ xi+1/2

xi−1/2

∫ 1

−1
µ
∂I

∂x
dµ dx = F (xi+1/2)− F (xi−1/2) , (2.67)

where F is the radiation flux; it is the flux terms that give rise to jump terms after asymptotic

analysis [93]. Smedley-Stevenson and McClarren neglect coupling from cells that are not adjacent

to i in estimating F (xi±1/2). In the context of the analysis, this approach is supported by the more

rigorous corner term system developed by Clouet and Samba [23]. Only coupling to adjacent cells,

if i is on the interior of the problem domain, Eq. (2.67) is written as

∆xi

(
Cv,i

∂Ti
∂t

+
1

c

∂φi
∂t

)
= −τi(φi,LLi,L→i−1 + φi,RLi,R→i−1)+

τi+1(φi+1,LLi+1,L→i + φi+1,RLi+1,R→i)− τi(φi,LLi,L→i+1 + φi,RLi,R→i+1)+

τi−1(φi−1,LLi−1,L→i + φi−1,RLi−1,R→i) , (2.68)

where τi = σi∆xi is both the absorption and total number of mean free paths across cell i,

φ(x) = φi,Lϕi,1 + φi,Rϕi,2 , (2.69)

the ϕ are defined in Eq. (2.35), Li,L→i−1 = Li,R→i+1, Li,L→i+1 = Li,R→i−1, and the L values are

obtained solving the steady state equation with the linear source [93]. Thus, I is solved in terms of

φ(x) as though φ(x) is a source in the Swarzchild-Milne problem [19, 93]. For τi � 1,

Li,L→i−1 = Li,R→i+1 ≈
1

4τi
− 1

6τ2
i

, (2.70a)

Li,L→i+1 = Li,R→i−1 ≈
1

6τ2
i

. (2.70b)
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Incorporating Eq. (2.70) into Eq. (2.68),

∆xi

(
Cv,i

∂Ti
∂t

+
1

c

∂φi
∂t

)
=
φi+1,L − φi,R

4
−
φi,L − φi−1,R

4
+

φi+1,R − φi+1,L

6τi+1
−
φi,R − φi,L

6τi
−
φi−1,R − φi−1,L

6τi−1
. (2.71)

No small parameter, ε, was used to rescale terms in the transport and material equations. The

first two terms on the right side of Eq. (2.71) are the non-physical jump terms. They appear to be

artificial surface sources at cell edges. Enforcing continuity implies φi,L = φi−1,R and φi,R =

φi+1,L. Hence, regardless of the choice of source tilting procedure, if the source tilting procedure

is continuous at cell edges, then the artificial sources in the leading order equilibrium diffusion

equation always vanish. Equation (2.71) is then a physical discretization. The pure absorption

approximation is meant to emulate the case where IMC has very resolved time steps [93]. When the

time step is small enough, it follows that the IMC Fleck factor fn ≈ 1. A Fleck factor of 1 without

physical scattering produces the purely absorbing, coupled transport equations. When time steps

are small in IMC, teleportation error is generally seen to increase.

Smedley-Stevenson and McClarren also examine the case when effective scattering is signifi-

cant. The formulae for the jump terms are somewhat more complicated, but ultimately as effective

scattering increases, the jump terms diminish [93]. The result agrees with the notion that increas-

ing time step sizes both increases effective scattering and decreases teleportation error in IMC. An

increase in effective scattering implies more absorption and emission are modeled as instantaneous

particle events where the information on absorption location at the sub-spatial-cell (subcell) level is

conserved.

For the spatially discrete transport analysis, Smedley-Stevenson and McClarren rescale the

equations with a small parameter, ε � 1. For the discretized system, the result is similar to

Eq. (2.71), with non-physical jump terms that vanish when continuity is enforced. The difference is

that flux from i± 2 affects the solution for cell i [93]; this does not affect the non-physicality of the

jump terms.

Continuous source tilting schemes are proposed, including:
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• averaging over the discontinuous values, obtained from a standard linear discontinuous tilt, at

cell edges, φi,R = φi+1,L = (φi + φi+1)/2 + (∆φi − ∆φi+1)/4. This approach is seen to

suffer from a “saw-tooth” instability where energy in adjacent cells can decouple [93],

• and sub-dividing the source tilt profile at an inflection point taken to be x̄i = (xi−1/2 +

xi+1/2)/2 to have two subcell linear profiles.

With either continuous source tilting approach, the cell-average value implied by the subcell

profile does not in general match the true cell-centered scalar intensity [93]. The tilt scheme de-

scribed in the second item in the above list does not succumb to spurious saw-tooth oscillations and

mitigates teleportation error [93].

As discussed by Adams [3], a discrete form of the diffusion equation can be solved directly in

optically thick regions so long as care is taken to select the regions. Teleportation error, which results

from the inability of a time-dependent transport scheme coupled to discrete sources to produce

a correct diffusion solution, can be at least partially avoided when diffusion theory is applied in

optically thick cells and small time steps. For the remainder of the IMC-DDMC review elaborated in

this section, Section 2.1, we describe some diffusion transport hybrid schemes that form precursors

to the method described in Chapter 3.

2.1.10 Random Walk in Diffusive IMC

Symbolic Implicit Monte Carlo eludes the effective scattering of IMC by simulating particle histo-

ries without numerical weights and then solving a system of equations for material state over a grid.

An alternative to applying pure transport without any artificial scattering in diffuse regions is to ap-

ply pure transport with artificial scattering in thin regions and diffusion in thick regions. In optically

thin regions, the effective scattering is not computationally taxing. For the regions where diffusion

is applied, the solution should be accurate if there are enough mean free paths over a characteristic

spatial cell length.

It seems Fleck and Canfield were among the first to devise a diffusion transport hybrid method

that incorporates the random walk (RW) method for diffusion and IMC for transport [36]. Inci-
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dentally, Fleck and Canfield’s article appears to be the first to mention the source tilting method,

reviewed in preview sections. The version of pure IMC described is otherwise the same as the

original method [36]. For random walk, a particle or packet propagates in a sequence of isotropic

scattering events with effective scattering opacity (1−f)σν [36]. If ~r(Nc) is the vector displacement

of a particle, then for random walk [36]

~r(Nc) =

Nc∑
p=1

~Rp , (2.72)

where the scattering collision path vectors, ~Rp, are independent from one another [36]. With

Eq. (2.72), the expected squared displacement is

〈r2(Nc)〉 = Nc〈R2〉 , (2.73)

where R is a characteristic distance between scattering events. For IMC, Fleck and Canfield find

〈r2〉 =
2Nc

(1− f)2σPσR
, (2.74)

where σP and σR are Planck and Rosseland opacities, respectively, and the probability density

function,

pd(~r, t) =
e−3r2/2〈r2〉

(2π〈r2〉/3)3/2
. (2.75)

The diffusion coefficient for RW was found to be c/3(1 − f)σR [36, p. 516]. A particle’s location

becomes the center of a sphere whose radius is determined by the nearest cell bound if it does not

stream out of the domain. If the radius is R0, then if R0 > 1/σR and dcol = − ln(ζ)/(1− f)σP <

R0, then the particle may be advanced randomly to a point a distance R0 away. The solution of the

diffusion equation can be used to compute a probability that the particle will travel a net distance

R0 before the end of the time step is reached [36, p. 518].
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Particle weight is reduced with a multiplication factor [36]

〈W 〉 = e(1−f) ln(1−f)σP ct . (2.76)

Random walk has been found to increase the speed of IMC where IMC uses optically thick cells.

One unfortunate feature of RW is that particles in optically thick cells that are sufficiently close to a

cell bound will not take large diffusion steps. This occurs since a sufficient diffusion radius would

allow position updates to points past the cell boundary. Thus, these particles may rate-limit certain

IMC-RW simulations.

2.1.11 N’Kaoua’s Monte Carlo Coupling with Diffusion via Domain Decomposition

The leading order, nonlinear equilibrium diffusion equation can be obtained asymptotically using

the prescription described at the beginning of Section 2.1.7 or in Densmore and Larsen’s analysis

of time-dependent thermal transport methods. The equation is [28]

∂Um
∂t

+
1

c

∂φ

∂t
= ∇ · 1

3σR
∇φ , (2.77)

where φ = caT 4 is the correct limiting condition on the scalar flux [28], and σR is the grey Rosse-

land opacity defined by [75]

1

σR(T )
=

(∫ ∞
0

∂Bν
∂T

dν

)−1 ∫ ∞
0

1

σν(T )

∂Bν
∂T

dν . (2.78)

The scalar flux solution of N’Kaoua’s thermal SIMC equation has been shown to have the equilib-

rium condition under asymptotic scaling [28].

N’Kaoua performs an implicit finite difference of Eq. (2.77) to yield

Um,n+1 − Um,n = Dφ
n+1

, (2.79)

and uses the Marshak boundary condition to couple the transport and diffusion domains. The trans-
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port region of the discretized material energy balance has

Um,n+1 − Um,n = Mφ
n+1

+ S . (2.80)

The collision probability matrix including coupling matrices is [75, p. 517]

 M C1

C2 D

 , (2.81)

where C1 and C2 signify energy exchange between the SIMC transport region and the diffusion

region. The diffusion component of Eq. (2.81) is deterministic [75].

The diffusion component can be both stochastic and discrete [40, 31]. Such an approach may be

simpler to implement, since the description of the radiation field uses MC particles entirely. Discrete

Diffusion Monte Carlo (DDMC) [31, 27, 2] or Implicit Monte Carlo Diffusion (IMD) [40, 22], are

methods that simulate diffusion Monte Carlo particles with discrete events. The particle position is

not tracked at the subcell level; thus the rate-limiting pathology associated with IMC-RW is avoided.

Since the spatial propagation of DDMC and IMD are discrete, the sampling procedures somewhat

resemble the residual Monte Carlo scheme elaborated in Chapter 1.

2.1.12 Discrete Diffusion Monte Carlo (DDMC)

Discrete Diffusion Monte Carlo (DDMC) is a Monte Carlo method for radiation diffusion that tracks

particle histories in discrete steps over spatial cells [31]. DDMC is distinct from random walk in im-

portant ways. While also taking large steps in place of many physical or effective scattering events,

random walk still resolves particle motion at the subcell level. Numerical results of Densmore et

al. [27] indicate RW is less efficient than DDMC; this is supported by the theoretical differences in

the construction of the methods. However, the formulae of DDMC are dependent on grid geome-

tries; for certain grids, random walk may be more viable. In practical implementation, DDMC is

often directly coupled to Implicit Monte Carlo to produce a method that yields accurate results for

heterogeneous materials [31, 27, 30]. To accurately couple IMC to DDMC, Densmore et al. [31]
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incorporate the asymptotic diffusion-limit boundary condition in order to better capture the effects

of anisotropy of incident radiation on an optically thick domain.

As for IMC particles, the time variable of each DDMC packet is continuous [31]. In leaving

time tracking continuous, DDMC avoids ambiguities in causality that may occur at the interface

of a diffusion method that discretizes time and a fully continuous IMC region. A fully stochastic

diffusion-transport hybrid allows for the radiation field to be treated entirely with particles. The

Implicit Monte Carlo Diffusion (IMD) method developed by Gentile converts IMC particles to

IMD particles by either transporting the IMC particle in the diffusive region until census is taken

after which the particle is converted or allowing the particle to undergo several scattering events to

thermalize with the neighboring material [40].

The theory underlying the asymptotic diffusion limit boundary condition is considerable. Ha-

betler and Matkowski [44] appear to be the first to have derived the condition. Malvagi and Pomran-

ing [67] generalize the analysis to include effects of surface curvature and opacity variation at the

boundary. The derivation scheme for the boundary condition requires both asymptotics and singular

eigenvalue theory to the linear transport equation. On the interior of the domain, the diffusion equa-

tion is the leading order description of radiation propagation, as summarized in section 2.1.7. The

boundary layer, which is of the order of a mean free path into the diffusion domain [3], is treated

as a distinct region from the interior. If boundary layer physics occurs in a ε-fraction of the domain

distance, then a rescaling of the spatial variable is necessary to arrive at an appropriate equation set

for the different asymptotic orders in the boundary layer. Making a change of variable ỹ = x̃/ε,

setting the time derivative to zero in Eq. (2.45), and asymptotically expanding I in ε yields

µ
∂I(j)

∂ỹ
+ I(j) =

1

2

∫ 1

−1
I(j) dµ for j = 0, 1 , (2.82)

where we have made use of χ ≈ 1+χ(2)ε2. The index j ∈ 0, 1 unless otherwise stated. Considering

a solution of the form I(j) = φλ(µ)e−ỹ/λ gives an integral equation for φλ(µ),

φλ(µ) =
λ/2

λ− µ

∫ 1

−1
φλ(µ′) dµ′ . (2.83)
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For λ 6∈ [−1, 1] if
∫ 1
−1 φλ(µ′)dµ′ = 1, then it follows

λ±
2

ln

(
λ± + 1

λ± − 1

)
= λ± tanh−1

(
1

λ±

)
= 1 , (2.84)

where λ± are the two discrete eigenvalues that satisfy Eq. (2.84) [18]. For λ ∈ [−1, 1], the integral

in Eq. (2.83) contains a singularity. To satisfy the presumed normalization condition, the Cauchy

principal value can be used to “tune” the eigenfunction for some λ. The principal value P of the

integral over φλ is

P :
λ

2

∫ 1

−1

dµ′

λ− µ′
=
λ

2

∫ 1

−1
P :

1

λ− µ′
dµ′ = lim

δλ→0

(
ln

(
1 + λ

δλ

)
+ ln

(
δλ

1− λ

))
. (2.85)

For continuous eigenvalues λ, the angular eigenfunction can be expressed as [44, p. 849]

φλ(µ) =
λ

2
P :

1

λ− µ
+ δ(λ− µ)(1− λ tanh−1(λ)) . (2.86)

With λ+ = −λ− = λ0, Case proves the general solution to Eq. (2.82) must be [18]

I(j)(x, µ) = Aλ0,(j)φλ0e
−ỹ/λ0 +A−λ0,(j)φ−λ0e

ỹ/λ0 +

∫ 1

−1
A(j)(λ)φλe

−ỹ/λdλ . (2.87)

But by inspection of Eq. (2.82), a linear function in µ and ỹ is also a solution. C(j) +B(j)(ỹ−µ) is

such a solution and according to Habetler and Matkowski it must also represent the discrete portion

of the eigenvalue spectrum [44]. So

I(j)(x, µ) = C(j) +B(j)(ỹ − µ) +

∫ 1

−1
A(j)(λ)φλe

−ỹ/λdλ . (2.88)

Assuming a left boundary condition that scales as a source g(µ) = εg(1)(µ), the j = 1 coefficients

in Eq. (2.88) must satisfy

g(1)(µ) = C(1) −B(1)µ+

∫ 1

0
A(1)(λ)φλ(µ) dλ . (2.89)
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It would be conducive to determining C(1), B(1) and A(1) if there is a half space condition [44]

∫ 1

0
φλ(µ)γ(µ)dµ = 0 ∀λ ∈ [0, 1] , (2.90)

where γ(µ) is a weight function that only depends on µ. It turns out there exist such a function [44].

So ∫ 1

0
g(1)(µ)γ(µ) dµ = C(1)

∫ 1

0
γ(µ) dµ+B(1)

∫ 1

0
γ(µ)µdµ . (2.91)

Case and Zweifel find

γ(µ) =
3

2
µ(1 + µ)e

− 1
π

∫ 1
0

1
µ′+µ tan−1

(
πµ′/2

1−µ′ tanh−1(µ′)

)
dµ′

, (2.92)

where the form of γ(µ) comes from complex analysis of the eigenfunction properties for a semi-

infinite medium. The integral coefficients ofC(1) andB(1) are 1 and γ1 = 0.7104, respectively. C(1)

and B(1) can be found with asymptotic matching between the boundary layer and interior solutions.

Recalling from section 2.1.7, the equation interior intensity near x̃ = 0 to order ε is [44]

I(x̃) ≈ I(0)(x̃) + ε

(
φ(1)

2
− µ∂I

(0)

∂x̃

)
≈ I(0)(0) +

ε

2

(
φ(1) + (ỹ − µ)

∂φ(0)

∂x̃

)
, (2.93)

where a Taylor expansion of the leading order flux is performed and inserted into the order ε expres-

sion through the identity ỹ = x̃/ε. Taking ỹ → ∞ in Eq. (2.88) makes it clear that 2C(1) = φ(1)

and 2B(1) = ∂φ(0)/∂x̃. Then

2

∫ 1

0
g(1)(µ)γ(µ) dµ = φ(1)(0)− γ1

∂φ(0)

∂x̃

∣∣∣∣∣
x̃=0

. (2.94)

Exchanging γ(µ) withW (µ), g(µ) with Ib gives the boundary condition for planar geometry in one

dimension at x = 0 as it is expressed for DDMC,

2

∫ 1

0
W (µ)Ib(µ)dµ = φ(0)− γ1

σ

∂φ

∂x

∣∣∣∣
x=0

. (2.95)
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For the Marshak condition, Eq. (2.52), W (µ) (or γ(µ)) is approximated as 2µ. Hence the value

of γ1 = 2
∫ 1

0 µ
2 = 2/3 for the Marshak boundary condition. The DDMC method sets W (µ) =

µ+ 3µ2/2 or 0.91µ+ 1.635µ2 [31].

Equation (2.95) is the theoretical foundation for coupling IMC and DDMC across spatial bound-

aries. Densmore et al. [31] incorporate Eq. (2.95) into the discretization procedure of the governing

DDMC equations. The governing equations for grey DDMC in planar geometry are [31]

1

c

∂φ

∂t
+

∂

∂x

1

3σn

∂φ

∂x
+ fnσnφ = fnσnacT

4 , (2.96a)

Cv
∂T

∂t
=

∫ 1

−1
σnI dµ− acT 4 , (2.96b)

where fn has its usual meaning as the Fleck factor. Densmore et al. [31] proceed to discretize the

equations for interior DDMC cells (optically thick cells surrounded entirely by other optically thick

cells) [31],

1

c

dφi
dt

+ (σL,i + σR,i + fn,iσn,i)φi = fn,iσn,iacT
4
n,i+

1

∆xi
(σL,i+1φi+1∆xi+1 + σR,i−1φi−1∆xi−1) , (2.97)

where σL,i and σR,i are the left and right “leakage opacities” for cell i given by [31]

σL,i =
2

3∆xi

1

σ+
n,i−1/2∆xi + σ−n,i−1/2∆xi−1

, (2.98a)

σR,i =
2

3∆xi

1

σ−n,i+1/2∆xi + σ+
n,i+1/2∆xi+1

, (2.98b)

where ∆xi = xi+1/2−xi−1/2 is a cell length and, except for temperature, the + (−) superscripting

the opacities indicates that the opacity is calculated with material properties on the right (left) of

the cell edge. The leakage opacities are obtained through discretizing Eq. (2.96) and quantify the

likelihood a particle will leak left or right. If the DDMC region of the domain has I adjacent cells,

Eq. (2.97) is valid over i ∈ {2 . . . I − 1} [31]. To incorporate the boundary cells 1 or I , the leakage

opacity corresponding to escaping the DDMC region and conversely the probability an IMC particle
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is admitted into the DDMC region are solved with the boundary condition. For i = 1, the DDMC

equation is [31]

1

c

dφ1

dt
+ (σL,1 + σR,1 + fn,1σn,1)φ1 = fn,iσn,iacT

4
n,i+

1

∆xi
(σL,2φ2∆x2 +

∫ 1

0
P (µ)µIb dµ) , (2.99)

where

σL,1 =
1

∆x1

2

3σn,1∆x1 + 6λ
, (2.100a)

P (µ) =
4

3σn,1∆x1 + 6λ

(
1 +

3

2
µ

)
. (2.100b)

Densmore, Davidson, and Carrington [26] devise a more robust formula for P (µ) and σL,1 that

considers emissivity at cell boundaries. The improved boundary condition produces more accurate

solutions at the IMC-DDMC boundaries for optically thick interface cells [26, 31].

A grey DDMC particle either leaks from a cell or is absorbed. Consequently, the particle track-

ing routine does not need to update position or angle [31]. One can only resolve a DDMC particle

location to what cell it inhabits between leakage events. While the position and direction of an

IMC particle become unknown when it begins propagating via DDMC, the particle history time

is kept continuous to ensure causality. Setting the right side of Eq. (2.97) to zero, the solution of

the resulting equation can be thought of as a probability density that a particle will make it into a

neighborhood of time dt about a time t without being absorbed or leaked. So the important time

update is the time to the next collision, which Densmore writes as

δtD = −1

c

1

σL,i + σR,i + fn,iσn,i
ln(ζ) , (2.101)

where ζ ∈ [0, 1] is a uniformly sampled random variable [31]. If the value δtD is less than the time

to census for a particle it will sample either a leakage or absorption from a histogram distribution of

the opacities.
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For multiple simulations and tests, it has been observed that DDMC can provide orders of

magnitude speed-up for problems in optically thick domains when compared to either the RW hybrid

previously discussed or pure IMC [31]. The high efficiency of DDMC is partly due to the absence of

effective scattering in the particle histories. The absence of effective scattering in grey DDMC is a

result of integrating the transport equation in both angle and frequency; which causes the scattering

terms in the transport equation to cancel. To expand the base of application for DDMC, it is desirable

to develop a multi-frequency approach that is not significantly detrimental to the advantageous

property of not having to simulate fictitious scattering directly.

2.1.13 Multi-group IMC Diffusion (IMD)

Multifrequency and multigroup radiation transport methods are needed to solve transport problems

where particles compose a spectrum and interact with matter in a manner dependent on particle

location in the spectrum. Diffusion methods provide a means of optimizing multifrequency radiation

transport methods that solve problems with optically thick ranges of frequency in the spectrum.

One such method was developed by Cleveland, Gentile and Palmer [22] as an extension to Gentile’s

IMD for LTE materials. Incorporating Fick’s Law into the frequency-dependent IMC Eqs. (2.8)

after angular integration gives (generalizing in dimensions) [22]

1

c

∂φν
∂t
−∇ · 1

3σν,n
∇φν + σν,nφν =

σν,nbν,n
σP,n

∫ ∞
0

σν′,nφν′ dν
′ + fnσν,nbν,ncUr,n , (2.102a)

∂Um
∂t

= fn

∫ ∞
0

σν′,nφν′dν
′ − fncUr,n , (2.102b)

where physical scattering and external sources have been neglected. In frequency-dependent IMD

as well as frequency-independent IMD, both the diffusion equation and the temperature equation
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are forward differenced in time,

1

c

φν,n+1 − φν,n
∆tn

−∇ · 1

3σν,n
∇φν,n+1 + σν,nφν,n+1 =

σν,nbν,n
σP,n

∫ ∞
0

σν′,nφν′,n+1 dν
′ + fnσν,nbν,ncUr,n , (2.103a)

Um,n+1 − Um,n
∆tn

= fn

∫ ∞
0

σν′,nφν′,n+1dν
′ − fncUr,n . (2.103b)

Following spatial discretization of the flux divergence term, Cleveland obtains a set of time step

dependent coefficients of the scalar flux that can be interpreted as probabilities. The feature of time

step size dependence of particle probabilities in IMD is not shared with DDMC. Another difference

between IMD and DDMC is IMD’s additional probability for census. In DDMC, the continuity of

each particle’s time implies a deterministic knowledge of the amount of time each particle has left

in ∆tn.

2.1.14 Multi-frequency DDMC

Densmore [29, 30] extends grey DDMC to couple to multigroup or multifrequency IMC. Conse-

quently, in addition to IMC-DDMC spatial interfaces [31], IMC particles may scatter or effectively

scatter into DDMC groups or vice versa. A threshold or cutoff frequency is used in each spatial

cell [30]. Under the cutoff frequency, grey DDMC is applied to the radiation with an additional

leakage opacity for escaping the group and transitioning to IMC. If a DDMC particle effectively

scatters out of the lower group, the particle scatters into some IMC frequency or group. The space

and direction variables of the resulting IMC particle must be sampled. The derivation of the method

is for arbitrary dimensions; a discretization is not specified so the equations are applicable to arbi-

trary spatial grids.

The scalings for light speed and heat capacity are c → c/ε and Cv → εCv, respectively [30].

For opacity [30]

σν →


σν
ε

, ν < νc ,

ε2σν , ν > νc ,

(2.104)
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for some cut-off frequency, νc. Multiplying Eq. (2.104) by the normalized Planck function and

integrating over all frequency, the Planck opacity is [30],

σP =
1

ε
σ

(−1)
P + ε2σ

(2)
P , (2.105)

where σ(−1)
P =

∫ νc
0 σνbνdν, σ(2)

P =
∫∞
νc
σνbνdν. The scalings of Cv, c, and Eq. (2.104), lead to the

Fleck factor,

fn = ε2f (2)
n +O(ε4) , (2.106)

where f (2)
n does not depend on ε. Incorporating the scalings into the transport equation with ν < νc,

expanding intensity in orders of ε, and integrating over ν ∈ [0, νc] and all solid directions, Densmore

et al. [30] obtain a leading order diffusion equation,

1

c

∂φG
∂t
−∇ · 1

σR,n,G
∇φG + ((1− γn,G)(1− fn,G) + fn)σP,n,GφG =

γn,G

∫
4π

∫ ∞
νc

(1− fn)σν,nIνdνdΩ + γn,GfnσP,nacT
4
n , (2.107)

where quantities subscripted with G have been integrated over the lower frequency interval and

σR,n,G =

(∫ νc

0

bν,n
σν,n

dν

)−1 ∫ νc

0
bν,ndν , (2.108a)

σP,n,G =

(∫ νc

0
bν,ndν

)−1 ∫ νc

0
bν,nσν,ndν , (2.108b)

γn,G =
1

σP,n

∫ νc

0
bν,nσν,ndν . (2.108c)

For ν > νc, the opacity is small and the transport equation is

1

c

∂Iν
∂t

+ Ω̂ · ∇Iν + σν,nIν =
1

4π

bν,nσν,n
σP,n

∫
4π

∫ ∞
νc

(1− fn)σν′,nIν′(~r, Ω̂
′, t)dν ′dΩ′+

1

4π

bν,nσν,n
σP,n

σP,n,GφG +
1

4π

bν,nσν,n
σP,n

fnσP,nacT
4
n . (2.109)
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The temperature equation couples material to both frequency domains,

Cv
∂T

∂t
= fnσP,n,GφG +

∫
4π

∫ ∞
νc

fnσν,nIνdνdΩ− fnσP,nacT 4
n . (2.110)

The boundary condition between IMC and DDMC spatial regions depends on the threshold frequen-

cies in the interfacing cells. The spatial boundary condition for radiation incident on the domain in

the range ν ∈ [0, νc] is found to be [30]

2

∫
Ω̂·~n<0

∫ νc

0
W (|Ω̂ · ~n|)Iν,bdνdΩ = φG +

λ

σR,n,G
~n · ∇φG , (2.111)

where ~n is a unit normal vector at a point on the surface. The DDMC equation is obtained from

spatially discretizing Eq. (2.107) with a finite volume approach [30]. The last case of IMC-DDMC

coupling presented by Densmore et al. [30] is that of a DDMC cell with one neighboring cell, i′, that

has a cutoff frequency, ν ′c < νc, and hence requires a composite leakage opacity, σ̃i→i′ , that allows

for leakage to the IMC portion or DDMC portion of the lower frequency interval. Additionally,

the diffusion must be balanced by all possible sources; this includes IMC radiation in the range

ν ∈ [ν ′c, νc] that transmits through the cell edge shared by i and i′, denoted b(i, i′). The frequency

threshold in the remaining adjacent cells, i′′, have the same frequency threshold. On an arbitrary

spatial grid, the result is [30]

1

c

∂φi,G
∂t

+

∑
i′′ 6=i′

σi→i′′ + σ̃i→i′ + (1− γn,i,G)(1− fn,i)σP,n,i,G + fn,iσP,n,i,G

φi,G
=

1

Vi

∑
i′′

σi′′→iφi′′,GVi′′ +
1

Vi

∫
Ab(i,i′)

∫ νc

ν′c

Pb(i,i′)(|Ω̂ · ~n|)|Ω̂ · ~n|IνdνdΩd2~r+

γn,i,G
Vi

∫
Vi

∫
4π

∫ ∞
νc

(1− fn,i)σν,n,iIdνdΩd3~r , (2.112)

where σi→i′′ are DDMC-to-DDMC leakage opacities,

σ̃i→i′ =

∫ ν′c
0 bν,n,idν∫ νc
0 bν,n,idν

σi→i′ +

∫ νc
ν′c
bν,n,idν∫ νc

0 bν,n,idν
σb(i,i′) , (2.113)
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σb(i,i′) is the DDMC-to-IMC leakage opacities, Vi is the volume of cell i, Ab(i,i′) is the surface area

shared between i and i′, and Pb(i,i′) is the IMC-to-DDMC transition probability for i′ to i [30].

Notwithstanding the use of only one cell to construct a mixed interface, Eqs. (2.112) and (2.113)

prescribe a method for diffusion-transport over a domain with spatially varying threshold frequency.

When a DDMC particle leaks according to σ̃i→i′ , it can transmit to IMC with probability [30]

PDDMC→IMC =
1

σ̃i→i′

∫ νc
ν′c
bν,n,idν∫ νc

0 bν,n,idν
σb(i,i′) , (2.114)

or remain a DDMC particle with probability

PDDMC→DDMC =
1

σ̃i→i′

∫ ν′c
0 bν,n,idν∫ νc
0 bν,n,idν

σi→i′ . (2.115)

Numerical results for the hybrid multifrequency method of Densmore et al. [30] indicate sig-

nificant speed-up relative to pure IMC for problems with opacity monotonically dependent on fre-

quency and varying levels of optical thickness. The threshold frequency approach is implemented

indirectly in a multigroup setting by lumping groups that have a number of mean free paths greater

than or equal to a mean free path threshold per cell, τD. Densmore et al. [30] choose τD = 5; this

seems to be a reasonable number of mean free paths per cell to apply a discrete diffusion theory.

2.1.15 Abdikamalov’s Velocity-dependent Multigroup IMC-DDMC

Abdikamalov et al. [2] develop an IMC-DDMC method for neutrino radiation transport. The par-

ticular application of interest is in core-collapse supernovae. The approach is multigroup, and the

authors apply DDMC to a cell-group where there is a sufficient number of mean free paths; so

the method permits DDMC to be applied in groups that are not adjacent to lower groups. In other

words, the method permits DDMC to be applied to high frequency groups that have enough mean

free paths per cell.

Neutrinos are fermions and have different types [2], so the material coupling is somewhat dif-

ferent than that of photons. Unlike photons, neutrinos have anti-neutrinos; these are included in the

type index in Eqs. (2.116) and (2.117). In addition to affecting temperature, neutrinos can change
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the electron fraction, Ye [2]. For each neutrino type, indexed by j, the material equations are [2]

∂Um
∂t

=
∑
j

∫
4π

∫ ∞
0

σν,a(Ij,ν −Bj,ν)dνdΩ +
∑
j

Sj , (2.116)

and

ρNA
∂Ye
∂t

=
∑
j

sj

∫
4π

∫ ∞
0

σν,a
ν

(Ij,ν −Bj,ν)dνdΩ , (2.117)

where Ij,ν is the angular intensity for neutrinos of type j with energy hν, Bj,ν is the Fermi-Dirac

thermal emission function for Type j, NA is Avogardro’s number, ρ is material density, and sj =1,

-1, and 0 for electron neutrinos, electron anti-neutrinos, and any type of heavy neutrino [2]. Ab-

dikamalov et al. [2] operator split the transport of the different neutrinos; thus the transport of the

different neutrino species occurs independently of one another within a time step. Coupling of

neutrino species occurs at material update. Using thermodynamic relations, the authors follow the

temporal discretization procedure of Fleck and Cummings [37] but for neutrinos instead of photons.

The “leptonic” Fleck factor is

fn =
1

1 + αc∆tnγ̄F
, (2.118)

where the bar variable heading indicates time-centering, γ̄F = β̄σ̄F + ξ̄sjχ̄F , σF is the “Fermi”

opacity weighted by the normalized Fermi-Dirac function (analogous to the Planck opacity), χF is

a Fermi-Dirac weighted integral of σν,a/ν,

β =
1

Cv

(
∂Ur
∂T

)
ρ,Ye

, (2.119)

Ur is the equilibrium neutrino energy density, and

ξ =
1

NAρ

[(
∂Ur
∂Ye

)
ρ,T

− 1

Cv

(
∂Um
∂Ye

)
ρ,T

(
∂Ur
∂T

)
ρ,Ye

]
. (2.120)

We do not reproduce the derivation of Eqs. (2.119) and (2.120) here. The material update for tem-

perature and electron number has terms corresponding to effective absorption, emission, and scat-

tering [2]. Without physical scattering and external material sources, the neutrino IMC equations
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are

1

c

∂Ij,ν
∂t

+ Ω̂ · ∇Ij,ν + σ̄ν,aIj,ν =
1

4π
cfnσ̄ν,aUr,nbj,ν+

1

4π

(1− fn)σν,abj,ν
γ̄F

∫
4π

∫ ∞
0

σ̄ν,a
ν
Ij,νdνdΩ , (2.121)

∂Um
∂t

=
∑
j

[
fn

∫
4π

∫ ∞
0

σ̄ν,aIjdνdΩ− cfnσ̄FUr,n+

∫
4π

∫ ∞
0

(
κ̄es,l −

σ̄F
χF

χ̄es,l

)
Ij,νdµdΩ

]
, (2.122)

and

∂Ye
∂t

=
1

ρNA

∑
j

sj

[
fn

∫
4π

∫ ∞
0

σ̄ν,a
ν
IjdνdΩ− cfnχ̄FUr,n+

∫
4π

∫ ∞
0

(
χ̄es,e −

χ̄F
σF

κ̄es,e

)
Ij,νdµdΩ

]
, (2.123)

where κes,l = (1−fn)ξ̄siχ̄Fσν,a/γ̄F , χes,l = (1−fn)ξ̄siχ̄Fσν,a/νγ̄F , κes,e = (1−fn)β̄σ̄Fσν,a/γ̄F ,

and κes,e = (1−fn)β̄σ̄Fσν,a/νγ̄F , and bj,ν is the normalized Fermi-Dirac distribution. The authors

show the neutrino IMC equations conserve energy and lepton number [2].

The authors then formulate the multigroup DDMC scheme [2]. Apart from the time discretiza-

tion, neutrinos transport similarly to photons. Hence, in optically thick regimes, neutrinos should

obey a diffusion equation. In particular, incorporating Fick’s Law into Eq. (2.121) and discretiz-

ing in space yields a DDMC equation with similar stochastic interpretations as for the photonic

case [2]. The procedure is similar to prior DDMC publications but the discretization is over a spher-

ically symmetric grid. Both IMC and DDMC are described for coupling with relativistic flow. For

IMC, the process involves transporting particles in the lab frame and converting the properties into

local fluid frames when collisions are sampled. For DDMC, the first order, O(U/c), relativistic dif-

fusion equation is considered [19, p. 112]. The O(U/c) diffusion equation is discusses in the texts

on radiation hydrodynamics by Mihalas and Weibel Mihalas [73] and Castor [19]. Abdikamalov et
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al. [2] operator split the equation into one for static diffusion,

1

c

∂φ0,ν0

∂t
+∇ · ~F0,ν0 + σ0,ν0,aφ0,ν0 = fnσ0,ν0,abj,0Ur,n+

(1− fn)
σ0,ν0,abj,0

σF

∫ ∞
0

σ0,ν′0,a
φ0,ν′0

dν ′0 , (2.124)

1

c

∂φ0,ν0

∂t
+
ν0

3c

∂φ0,ν0

∂ν0

D ln(ρ)

Dt
= 0 , (2.125)

1

c

∂φ0,ν0

∂t
+

1

c
∇ · (~Uφ0,ν0) , (2.126)

where quantities subscripted with 0 here are evaluated in the comoving frame. Equation (2.124) can

be solved with the static DDMC method described by Densmore et al. [31]. Equation (2.125) has

the Doppler correction term [73, 19] and can be solved like an advection equation over frequency.

Equation (2.126) can be solved by moving DDMC particles. The work presented in Chapter 3

follows this operator split DDMC procedure but for a Lagrangian “velocity grid” instead of Eulerian

coordinates. Lagrangian and Eulerian hydrodynamic schemes are discussed by Castor [19, pp. 41–

68]. Briefly, in Eulerian methods the grid is fixed and velocity is a property of the fluid solved for

each spatial cell [19, p. 49]. In Lagrangian methods, the grid moves with the fluid; hence a constant

mass can be ascribed to cells and the evolution of the fluid may be tracked with respect to a mass

coordinate [19, p. 49]. In the Lagrangian frame, between transport steps, IMC particles have to

move while DDMC particle positions remain unchanged.

2.2 Type Ia Supernovae Review

We briefly review pertinent literature for radiation transport in astrophysical settings with particular

emphasis on Type Ia supernovae (SNe Ia). This portion of the literature review is intended to provide

a summary of explosion mechanisms/calculations and radiation transport methods/ codes for SNe

Ia. It is not an exhaustive survey of all research associated with SNe Ia or supernovae in general.

Type Ia supernovae have historically been difficult to simulate. Incorporation and resolution of

different physical features may be demanding to codes that are not optimized for the problem.
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2.2.1 Type Ia Explosion Model Summary

Type Ia supernovae have seen extensive application as “standard candles” to calculate the local

expansion rate of the Universe (see, e.g. [90, 81]). SNe Ia are useful objects for distance determi-

nation due to the homogeneity in their luminosity. Furthermore, intrinsic differences in the peak

luminosity of many observed SNe Ia are correlated with the duration of the event; thus the duration

of the event can be used to find the intrinsic luminosity [84]. However, some events are intrinsically

subluminous [9, 52].

The observed luminosity is referred to as an “apparent magnitude” while the distance-independent,

intrinsic luminosity is referred to as an “absolute magnitude.” Branch [9] indicates the absolute mag-

nitude can be obtained either from the correlations of the event properties or by using “Cepheid-

based” distances to the galaxies hosting the SN Ia. Cepheids are pulsating stars that have a relation-

ship between luminosity and period [74].

Nearby events have been observed by the Calán/Tololo survey; these supernovae are used as

calibration for more distant and more redshifted events [10, 52] as well as further resolution on

the value of the Hubble constant [9, 52]. The Supernovae Cosmology Project [81] and the High-

z Supernova Search Team [90] have collected data at higher redshift, or further back in time, to

conclude there is an energy pervading the universe that manifests as negative pressure [52]. This

conclusion was drawn by both teams since the distant supernovae were systematically dimmer than

they should have been without accelerating expansion.

There are several approaches to fitting the supernovae to correlated families; a simple parameter

obtained by Phillips [84] is the change in magnitude over 15 days starting from peak luminosity.

The steeper the decline in luminosity over the 15 day span, the dimmer the intrinsic light of the Type

Ia event; moreover, the correlation is roughly linear [84]. Perlmutter [82] applies a stretch parameter

to fit SNe Ia to a template light curve; the stretched apparent magnitude and the absolute magnitude

template allow for a determination of distance. The supernovae that fit the parameter families,

roughly ∼ 85% according to Hillebrandt and Niemeyer [52] fall into this “normal” category, are

believed to satisfy the correlations by explosion strength.

The luminous events are believed to originate from the thermonuclear explosions of carbon-
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oxygen (C-O) white dwarf stars that are near the Chandrasekhar mass, ∼ 1.4 M� [52]. Hillebrandt

and Niemeyer [52] provides a summary of the history of observations of SNe Ia. Briefly, it was real-

ized around the middle of the twentieth century that supernovae could be classified by the absence,

“Type I,” or presence, “Type II,” of hydrogen lines in the observed spectrum [10, 52]. Subsequently,

events without hydrogen and with a strong singly-ionized silicon (Si II) line in the spectra were

designated a subclass of Type I, denoted Type Ia [52]. SNe Ia also have lines of Ca II, S II, neutral

oxygen (O I), and Mg II around maximum light [9]. Forbidden line emissions from iron and cobalt

ions are observable some time after peak luminosity [9].

Type Ia supernovae are thought to have two phases, the initial explosion involving significant

C-O fusion, and a subsequent ballistic phase where radioactive 56Ni generates gamma rays that

thermalize with the fluid to generate visible light. According to Hillebrandt, observation constraints

on the progenitor system must be made indirectly; white dwarf stars are not supposedly very lumi-

nous relative to other progenitor systems [52]. Given the absence of prominent hydrogen features

in the spectrum, the explosion must not contain more than roughly 0.1 M� of hydrogen. The peak

velocities of the ejecta are inferred from properties of the spectrum to be on the order of 10,000 to

30,000 km/s [76, 52]. The radii of the progenitors are thought to be less than or approximately equal

to 10,000 km [52]. In the explosion, roughly half a solar mass of radioactive 56Ni is thought to be

generated in the ejecta [52]. White dwarf progenitors are thought to accrete mass from a companion

in a binary system [52].

Explosions can be modelled with numerical methods in codes; the results can then be coupled

to radiation transport codes as initial conditions. Equations to solve include conservation of mass,

momentum, energy, and some equation of state (EOS) along with effects of chemical composition,

gravitational binding, and viscosity [52]. The FLASH code [38, 16] applies adaptive mesh refine-

ment to solve reactive hydrodynamics problems; the code has been used for high energy density

experiment validation and astrophysics. The FLASH code solves nuclear deflagration and detona-

tion in neutron stars and white dwarfs [38]. The modularity and use of Message-Passing Interface

(MPI) in the code makes it capable of solving multiple physics problems with a range of complex-

ity [38]. In the hydrodynamics section of the paper by Fryxell et al. the listed governing equations
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are [38]

∂ρ

∂t
+∇ · (ρ~U) = 0 , (2.127a)

∂ρ~U

∂t
+∇ · (ρ~U ~UT ) +∇P = ρg̃ , (2.127b)

∂

∂t

(
ρe+

1

2
ρU2

)
+∇ ·

(
ρ~U(e+ P/ρ) +

1

2
ρ~UU2

)
= ρ~U · g̃ , (2.127c)

P =

(
Cp
Cv
− 1

)
ρe , (2.127d)

∂Xj

∂t
+∇ · (ρXj

~U) = 0 , (2.127e)∑
j

Xj = 1 , (2.127f)

where Eq. (2.127a) is the mass conservation equation from Eq. (1.28a) from Chapter 1, Eqs. (2.127b)

and (2.127c) are momentum and energy equations similar to those in Eq. (1.28) but with a grav-

itational acceleration g̃ instead of acceleration due to radiation momentum deposition. Equa-

tion (2.127d) is the EOS for an ideal gas, whereCp is the heat capacity at constant pressure. The last

two subequations characterize the advection and conservation of the different mass fractions, where

ρXj is the partial density for species j [38]. The FLASH code solves Eqs. (2.127) with a high-order

version of the Godunov method, where discontinuities in fluid properties between adjacent spatial

cells are solved with the Riemann shock problem [19, pp. 52–56]. The reconstruction of properties

at cell interfaces is more sophisticated than simply applying cell average values at the discontinuity

locations [38]; in particular, the Piecewise Parabolic Method (PPM) of Colella and Woodward [24]

along with additional algorithmic constraints is implemented. Seitenzahl et al. [92] apply a PPM

hydrodynamic solver to explore different delayed-detonation models for SNe Ia.

Hillebrandt [52] summarizes the possible explosion mechanisms. Provided here is an outline of

some of the mechanisms [52]:

1. Chandrasekhar Mass Models: the majority of observed normal SNe Ia are assumed to be

exploding C-O white dwarves at around 1.4 M�.

(a) Prompt detonation: the thermonuclear combustion commences as a detonation wave.
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The resulting nuclei are around the atomic mass of iron and there is not a significant

amount of mass elements below Ni, Co, and Fe in atomic mass [52].

(b) Pure turbulent deflagration: instabilities in the fusion burn wave induce turbulence that

either is quenched or eventually leads to a supersonic wave. Models indicate that fast

deflagration, yet subsonic, deflagration waves may be sufficient in producing the com-

positions observed in the spectra [76, 52]. The most successful 1D deflagration model

is the W7 model described by Nomoto et al. [76].

(c) Delayed detonation: a subsonic nuclear fusion front may transition to a supersonic wave.

The deflagration phase “pre-expands” the star and the detonation to supersonic burn

velocity produces the high-velocity, intermediate-mass elements [52].

2. Sub-Chandrasekhar Mass Models: the white dwarf accretes a helium layer from the com-

panion star; the He layer detonates and drives a shock into the white dwarf which, in turn,

ultimately induces a carbon detonation [52]. Sub-Chandrasekhar mass models are potential

explanations for subluminous SNe Ia [52].

3. Merging White Dwarfs: due to gravitational wave emission, companion white dwarfs are, in

principle, capable of merging into a “double-degenerate” explosion [52]. Such an explosion

mechanism would explain the absence of H lines in the observed spectra [52]. However, it is

also possible the binary system collapses to form a neutron star [52].

To have candidacy as a progenitor for Type Ia supernovae, a mechanism must satisfy the con-

straints outlined in Section 1.2.1; at least this must be the case for the normal SNe Ia. We now

turn to a review of the ballistic phase of Type Ia supernovae, where radiation transport occurs in a

setting with millions of lines that requires relativistic corrections [54]. In Section 2.2.2, the analytic

diffusion model developed by Pinto and Eastman [85] that allows for study of basic effects of ex-

plosion structure on luminosity is reviewed. In Sections 2.2.3, 2.2.4, and 2.2.5, the deterministic SN

Ia code PHOENIX, the SN Ia MC codes SEDONA and ARTIS are discussed. These codes illustrate

approaches to overcome certain difficulties associated with accurately modelling radiation transport

over the diverse material specifications of SNe Ia.
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2.2.2 Pinto and Eastman Grey Type Ia SN Model

Pinto and Eastman [85] developed an analytic solution for the Type Ia supernova problem for grey

absorption. The computed light curves are similar to those of more expensive calculations [85]. The

analytic model provides evidence for the luminosity-duration correlations being partly attributable

to differing masses [85].

According to the authors, on the time scale the fluid evolves, it is permissible to remove time

and velocity dependent terms from the first moment, comoving transport equation [85]; this leaves

Fick’s law. The diffusion equation is non-dimensionalized and separation of variables is used in

a manner that reflects the nature of Type Ia supernovae. With given gamma ray source deposition

profiles, the problem is recast as an eigenvalue problem in the separated variables.

The article provides a calibrated, grey opacity for the analytic solution [85],

σ0 = 0.13ρ , (2.128)

where the opacity, σ0, is in cm−1. The thermal kinetic energy equation is [85]

ρekin =
3ρNA

2A
(l + 1)kT ∼ 0.4

( ρ

10−12

)( A
56

)(
T

2× 104

)
, (2.129)

where A is the mean mass per nucleon, l is the average ionization, ekin is in erg/g, T is in K, and ρ

is in g/cm3.

2.2.3 PHOENIX Code

The PHOENIX code [46, 47, 48, 98] is a deterministic, one dimensional, radiation transport code.

Recently, it was extended to calculate gas temperature in a manner that is consistent with the radi-

ation field [98]. To do so, a new method of radiation energy balance is introduced that does not

depend on numerically unstable radiation-matter heating and cooling rates [98].

The transport method of PHOENIX is based on the short characteristic method of Olson and

Kunasz [78] and implemented for fully relativistic, spherically symmetric transport by Hauschildt
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and Baron [47]. Hauschildt and Baron present the scalar intensity in an integral form as equal to a

Λ operator operating on sources due to scattering and emission in the comoving frame [47],

φ0,ν0 = cΛν0S0,ν0 , (2.130)

where Sν is the source function due to scattering or emission. Since S0,ν0 depends on φ0,ν0 , iteration

can be used to obtain φ0,ν0 from Eq. (2.130). The form of S0,ν0 considered is

cS0,ν0 = (1− ε)φ0,ν0 + εB0,ν0 , (2.131)

where ε is a thermal coupling parameter and Bν0 is the Planck function [47]. It turns out the largest

eigenvalue for the Λν0 matrix is close to 1 for optically thick, highly scattering problems [47], so

fixed point iteration is a poor choice for certain problems. Consequently, the Λν0 operator is operator

split to give [47]

φ0,ν0,∗ = cΛν0S0,ν0,old , (2.132a)

(1− cΛ∗ν0
(1− ε))φ0,ν0,new = φ0,ν0,∗ − cΛ∗ν0

(1− ε)φ0,ν0,old , (2.132b)

where the new operator, Λ∗, may be constructed to yield iterations with faster convergence [78, 47].

For a homologous outflow, van Rossum constructs a “target flux” equation,

r2F0,ν0,tg =

∫ r

0

(
−ρr

2

c

∂

∂t

φ0,ν0

ρ
− r2

ct
φ0,ν0 +

r2ρε

4π

)
, (2.133)

where spherically symmetric coordinates have been used and F0,ν0,tg is along the radial direction.

The radiation energy balance uses the difference between the target flux and actual flux to approx-

imate temperature corrections and converge iteratively [98]. The temperature iteration scheme is

found to require 3 to 10 iterations [98].
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2.2.4 SEDONA Code

Kasen et al. [54] have developed a three dimensional Monte Carlo code for time-dependent radiation

transport in supernovae. The transport scheme incorporates polarization into the calculation as well.

The three dimensionality allows for the code to be applied to aspherical progenitor systems. Similar

to the PHOENIX code, the 3D MC transport code, called SEDONA, solves radiation transport for

homologous outflow. The structure of the transport code is enumerated in a list [54]:

1. A 3D gamma ray transfer routine calculates energy deposition.

2. Opacities are computed.

3. Optical photon particles are transported and tallied.

4. A material temperature is computed by setting thermal emission rates per cell equal to the

tallied absorption for both gamma photons and optical photons.

5. Opacities must be recomputed and the optical photon transfer is redone.

6. Spectra and light curves (LCs) are obtained from the converged result.

Apart from homologous expansion, the Solobev approximation [19, pp. 122-130] is applied to

treat line transfer. The Solobev approximation assumes the frequency derivative of the intensity is

much larger than the space and time derivatives. Such a condition occurs when there exist bound-

bound transitions that have narrow line width, in velocity, compared to changes in other ejecta

properties [19, 54]. With the narrow line assumption, the Solobev equation is [19, p. 124]

−1

c
Ω̂0 · ∇~U · Ω̂0ν0

∂I0,ν0

∂ν0
=
q0,ν0

4π
− σ0,ν0I0,ν0 , (2.134)

where quantities subscripted with 0 are evaluated in the comoving frame. For one line, or two levels,

the opacity has the form [54]

σ0,ν0 =
πe2

me
fluNl

c

ν2
0

(
1− Nugl

Nlgu

)
Ξ(ν0) = KluΞ(ν0) , (2.135)
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where e is electron charge, me is electron mass, l (u) is the lower (upper) population state, flu

is the oscillator strength [19, p. 157], Nl (Nu) is the number density of the lower (upper) atomic

state, gl (gu) is the statistical weight of the lower (upper) atomic state, and Ξ is the line profile.

Equations (2.134) and (2.135) can be used to obtain the Solobev optical depth [19, p. 125],

τS =
Kluν0

|Ω̂0 · ∇~U · Ω̂0|
, (2.136)

which for homologous expansion simplifies to [54]

τS = Klutν0 , (2.137)

where t is the time since the initial explosion, or the expansion time. If a particle streams to a line

center, then the probability the photon bundle will interact with the line is 1 − e−τs [54]. If a line

interaction occurs, the interacting particle can either be scattered, absorbed, or fluoresce; at least

these are the interactions the authors consider [54].

To track MC particles over the grid, Kasen exploits the homologous relationship between veloc-

ity and space. Since the velocity field does not change from the Lagrangian perspective, particles

are tracked with “velocity distances.” There is velocity distance to line centers, velocity distance to

continuum interactions, velocity distance to census, and velocity distance to cell boundary [54].

To incorporate polarization, each particle has a Stokes vector that is normalized to a magnitude

of one [19, p. 218]. Thus the approach allows for coherence and coherent scattering of the radiation

field.

2.2.5 ARTIS Code

Similar to SEDONA, the ARTIS code described by Kromer and Sim [56] also performs Monte

Carlo radiation transport in three dimensions. The code is based on the approach to astrophysical

transport described by Lucy [66] and applies the Solobev approximation along with the assumption

of homologous outflow. The authors map the explosion ejecta to a 3D Cartesian grid and material

properties are taken to be piecewise constant [56]. The code does not introduce free parameters;
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in other words, the calculation is from first principles [56]. The authors use the “macro-atom”

approach of Lucy [66] to treat atomic internal energy. According to Kromer and Sim, the macro-

atom approach allows for generalized treatment of radiation-matter interactions.

The calculation at early stages of the supernovae is sped up with a grey approximation [56].

Similar to DDMC, the activation of the grey scheme is determined by a threshold optical depth; the

optical depth is threshold is for Thomson scattering. The optimization produces a factor of ∼ 10

speed-up for the calculations considered by the authors [56].

To demonstrate the applicability of the ARTIS code to asymmetric progenitor systems, the

authors implement an ellipsoidal toy model [56]. With the total mass and composition adopted from

the W7 model, the ellipsoid model has the maximum velocities along the minor axes set to half the

maximum velocity in the direction of the major axis. In this asymmetric model, the luminosity

down the minor axis is significantly higher than the luminosity down the major axis [56]. Thus, the

toy model asymmetry has a non-trivial effect on the emitted light.
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3 SuperNu: A Radiative Transfer Code for Type Ia Supernovae

In this chapter, theoretical and practical aspects of a radiative-transfer code, SuperNu, for ther-

monuclear supernovae, are described. As in the literature review, time steps are indexed with

n ∈ {1 . . . N}, space and velocity cells are indexed with i ∈ {1 . . . I}, and frequency groups

are indexed with g ∈ {1 . . . G}. Depending on the nature of the group, group indexes may be

subscripted to indicate type or a sub-index for the set {1 . . . G}.

3.1 IMC-DDMC Method

Here, we describe the novel features of an IMC-DDMC method for high-velocity, homologous,

Lagrangian coordinates. The discussion of the theory and algorithms closely follow the articles of

Wollaeger et al. [104] and Wollaeger and van Rossum [103].

The method described is similar to that of Abdikamalov et al. [2] for neutrino transport in core

collapse supernovae discussed in Section 2.1.15. In contrast to the work of [2], velocity is treated

linearly at the spatial subcell level and IMC particles are tracked with velocity distances [54] (see

Section 2.2.4); the grid is Lagrangian and distinct advection schemes are required; only first-order

relativistic corrections are applied to IMC and DDMC processes; methods for non-uniform group

structuring are provided; asymptotic analyses are employed to obtain a boundary condition for high-

velocity interfaces and to motivate a Doppler shift method; and an algorithm for collapsing non-

contiguous groups of sufficient optical thickness in DDMC is implemented and tested [104, 103].

From Sections 1.1 and 1.1.1, the radiative-transfer and fluid equations are

1

c

∂Iν
∂t

+ Ω̂ · ∇Iν + σν,aIν = σν,aBν − σν,sIν+∫
4π

∫ ∞
0

ν

ν ′
σs(~r, ν

′ → ν, Ω̂′ → Ω̂)Iν′(~r, Ω̂
′, t)dν ′dΩ′ , (3.1)

∂ρ

∂t
+∇ · (ρ~U) = 0 , (3.2)

∂(ρ~U)

∂t
+∇ · (ρ~U ~U) +∇P = −~g , (3.3)
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and
∂

∂t

(
ρe+

1

2
ρU2

)
+∇ ·

(
ρ~U(e+ P/ρ) +

1

2
ρ~UU2

)
= −g(0) , (3.4)

where ~r is the spatial coordinate, Ω̂ is a unit direction, t is time, ν is frequency, c is the speed of

light, Iν is the radiation intensity, and Bν is the lab frame thermal emission. The variables e, ρ, ~U ,

and P are the specific internal energy, density, velocity, and pressure of the fluid in the lab frame, or

with respect to one inertial frame of reference. We have dropped the transpose superscript, T , from

the Kronecker product of vectors used in Chapter 1. If no operational symbol is present between

vectors, then a Kronecker product is assumed; for instance, ~U ~U is a matrix consisting of each

product between any two elements of ~U . The 4-vector (g(0), ~g) is the radiation energy-momentum

coupling [19, p. 109] discussed in Section 1.1.1. If the fluid is static, then Bν(Ω̂) = B0,ν0 is the

Planck function [86, p. 156]. Relativistically induced anisotropy, as described by Pomraning [86],

is assumed in Eq. (3.1). Following Castor [19, pp. 5-10], the Lagrangian form of Eq. (3.4) is written

as

ρ
De

Dt
+ P∇ · ~U = −g(0) , (3.5)

where the operator D/Dt = ∂/∂t + ~U · ∇. In a homologous outflow, ∇ · ~U = 3/tn where tn is

the fluid expansion time. The ratio of the rate of adiabatic, ideal gas cooling to the thermal radiation

deposition rate is approximately Λ =
3NAk

MAaT 3

ρ/cσP
tn

whereNA, k, MA, T , and σP are Avogadro’s

number, Boltzmann’s constant, molar mass, temperature, and Planck opacity, respectively [54]. For

an outflow of Nickel with T = 12, 000 K, σP = 0.1ρ cm−1, and tn = 10 days, the ratio is

approximately Λ ≈ 1.3 × 10−7. As Kasen et al. [54] argue, Λ remains small over the times of

interest in light curve and spectra observation for SNe Ia. For all velocity-dependent calculations

considered, the value Λ will be very small. So for the remainder of the analysis, the gas pressure, and

hence the adiabatic cooling rate, P∇ · ~U , is neglected. Pinto and Eastman [85] provide supporting

arguments for this approximation in the context of SNe Ia as well. We also make the assumption of

homologous outflow as in the codes PHOENIX [98], SEDONA [54], and ARTIS [56]; these codes
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are briefly reviewed in Section 2.2. The homologous outflow equation for the coordinates are [54]

~r = ~Ut ≈ ~Utn , (3.6)

where the approximate equality assumes the transport time and expansion time both start at the same

initial time value and time step size is not detrimentally large. The Lagrangian momentum equation

is [19, p. 9]

ρ
D~U

Dt
+∇P = −~g . (3.7)

Because P is neglected and the of Eq. (3.6) implies D~U/Dt = 0, Eq. (3.7) implies that the mo-

mentum coupling vector, ~g ≈ 0. A negligible momentum coupling vector agrees with the analysis

of Pinto and Eastman [85]. The time-component of the momentum 4-vector, g(0)
0 = g(0)− ~U ·~g/c2;

this implies the comoving radiation-matter coupling term, g(0)
0 , can reasonably replace the lab frame

term, g(0), in the Lagrangian-coordinate material energy equation, Eq. (3.5). If Cv is the heat ca-

pacity at constant volume for a fluid parcel, then Eq. (3.5) may be written as

Cv
DT

Dt
= −g(0)

0 = −g(0)
0,a − g

(0)
0,s =

∫
4π

∫ ∞
0

σ0,ν0,a(I0,ν0 −B0,ν0)dν0dΩ0

+

∫
4π

∫ ∞
0

σ0,ν0,sI0,ν0dν0dΩ0−∫
4π

∫ ∞
0

∫
4π

∫ ∞
0

ν0

ν ′0
σ0,s(~r, ν

′
0 → ν0, Ω̂

′
0 · Ω̂0)I0,ν′0

dν ′0dΩ′0dν0dΩ0 , (3.8)

where the coupling due to inelastic scattering, g(0)
0,s has been written in the form presented by Szőke

and Brooks [96]. The total scattering opacity is dependent on the differential scattering opacity,

σ0,ν0,s =

∫
4π

∫ ∞
0

σ0,s(~r, ν0 → ν ′0, Ω̂0 · Ω̂′0)dν ′0dΩ′0 . (3.9)

3.1.1 Multigroup Velocity Space IMC

Equation (3.8) is amenable to the IMC temporal discretization [37] or the more recent discretization

procedures of Gentile [42], McClarren and Urbatsch [71], or Abdikamalov et al. [2]. For each
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possibility, the coupling term in Eq. (3.8) is in the comoving frame while Eq. (3.1) is in the lab

frame. The resulting comoving IMC equations, in differential form, are

Cv
DT

Dt
= fn

(∫
4π

∫ ∞
0

σ0,ν0,a,nI0,ν0dν0dΩ0 − σP,nacT 4
n

)
− g(0)

0,s (3.10)

and

(
1 + Ω̂0 ·

~U

c

)
1

c

DI0,ν0

Dt
+ Ω̂0 · ∇I0,ν0 −

ν0

c
Ω̂0 · ∇~U · ∇ν0Ω̂0

I0,ν0 +
3

c
Ω̂0 · ∇~U · Ω̂0I0,ν0

+ (σ0,ν0,s,n + σ0,ν0,a,n)I0,ν0 =
fn
4π
σ0,ν0,a,nb0,ν0,nacT

4
n

+
b0,ν0,nσ0,ν0,a,n

4πσP,n
(1− fn)

∫
4π

∫ ∞
0

σ0,ν′0,a,n
I0,ν′0

dν ′0dΩ′0

+

∫
4π

∫ ∞
0

ν0

ν ′0
σ0,s,n(~r, ν ′0 → ν0, Ω̂

′
0 · Ω̂0)I0,ν′0

dν ′0dΩ′0 , (3.11)

where the integer subscript n denotes quantities evaluated at the beginning of a time step. The

expansion time, tn, is also the time at the beginning of the time step, n. The radiation-matter

coupling by inelastic scattering, g(0)
0,s , has been excluded from the IMC temporal discretization. In

Eqs. (3.10) and (3.11), the opacities are evaluated in the comoving frame. The value b0,ν0 is the

frequency-normalized Planck function in the comoving frame, and the Fleck factor fn [37], as

derived by Fleck and Cummings, is

fn =
1

1 + αβnσP,nc∆tn
. (3.12)

Thus, the algebraic form of the Fleck factor, with the assumptions given, is the same as the static grid

form. Later in Section 3.1, a compressed derivation of the Gentile-Fleck factor (see Section 2.1.3)

is presented and optimized for the code. The Lagrangian time step size, ∆tn, is constrained to be

the same as the Eulerian time step size; only one time step is used for the outflow calculations.

The expansion time tn = t1 +
∑n−1

n′=1 ∆tn′ . The comoving differential effective scattering opacity,

(1 − fn)
b0,ν0,nσ0,ν0,a,nσ0,ν′0,a,n

ν′0

4πσP,nν0
, is separable in ν0 and ν ′0. Consequently the new frequency of a

photon undergoing effective scattering is probabilistically independent of the old frequency [73,
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p. 327].

The fully relativistic form of Eq. (3.11) could be obtained by a similar procedure. However,

depending on the intended simulations, the assumptions used to obtain the material coupling, and

consequently Eq. (3.12), may no longer hold. Here, only first order relativistic effects are consid-

ered; higher order effects can be implemented in MC codes [2]. The typical maximum outflow

speed of SNe Ia is approximately Umax = 30, 000 km/s, so (Umax/c)
2 ≈ 0.01.

Equation (3.12) implies Monte Carlo particles effectively scatter in the comoving frame in the

same manner as they do for static material transport. Thus the process of transforming particles

from the lab frame into the comoving frame, resampling particle properties according to local fluid

properties and transforming the particle properties back into the lab frame applies to both physi-

cal and effective scattering [2]. Neglecting all terms of order U2/c2 or higher, the frequency and

direction transformations are [19, p. 103]

ν = ν0

(
1 +

Ω̂0 · ~U
c

)
, (3.13)

which accounts for Doppler shift in IMC, and

Ω̂ =
Ω̂0 + ~U/c

1 + Ω̂0 · ~U/c
, (3.14)

which accounts for aberration in IMC, respectively [66]. According to The radiation hydrodynamics

texts by Pomraning [86, p. 156] and Castor [19, p. 104], the opacity in the lab frame is

σν =
ν0

ν
σ0,ν0 =

(
1− Ω̂ ·

~U

c

)
σ0,ν0 . (3.15)

The second equality in Eq. (3.15) allows for a frequency independent transformation of grouped

opacities.

Following Kasen [54], MC particles are tracked in velocity space. Thus, the grid itself is logi-

cally unchanging and velocity acts as a Lagrangian coordinate. IMC particles translate “velocity dis-

tances,” denoted with a lower case u. Corresponding to the physical distances in standard IMC [37],
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there is a velocity to a cell boundary ub, a velocity to collision ucol, and a velocity distance to census

at the end of a time step ucen. To continuously Doppler shift IMC particles in the presence of a fre-

quency grid, a distance to Doppler shift between groups is incorporated, uDop [104]. This distance

is analogous to a distance to a spatial boundary, but requires the presence of a spatially nonuniform

velocity field. Using Eq. (3.6), the velocity to a boundary can be calculated with the same formula

as the physical distance and is consequently dependent on grid geometry. To write the formulae for

Doppler shift and boundary distances, the group index, g, and spatial index, i, are introduced. The

frequency grid is treated as an invariant in the comoving frame; thus each fluid parcel has the same

local group structure. If fluid parcel 1 is moving relative to fluid parcel 2, then parcel 2 would not

appear to have the same group structure from the perspective of parcel 1. The velocity distances are

ucol =
− ln(ξ)

tn(1− Ω̂p · ~Up/c)σ0,ν0,p,n

, (3.16)

ucen = c

(
tn + ∆tn − tp

tn

)
, (3.17)

ub =


|(U2

i−1/2 − (1− µ2
p)U

2
p )1/2 + µpUp| if µp < −

√
1− (Ui−1/2/Up)2 ,

(U2
i+1/2 − (1− µ2

p)U
2
p )1/2 − µpUp otherwise ,

(3.18)

and

uDop = c

(
1−

νg+1/2

νp

)
− ~Up · Ω̂p , (3.19)

where νp, ν0,p, tp, ~Up, and Ω̂p are the lab frequency, comoving frequency, time, velocity position,

and lab direction of particle p, respectively. In Eq. (3.16), ξ ∈ (0, 1] is a uniformly sampled random

variable. Additionally, µp = Ω̂p · ~U/|~U |. Equation (3.18) is the distance to boundary formula for

a 1D spherical grid; this is the chosen grid for the numerical results that follow. For a geometry in

which the inner most cell has U1/2 = 0, the second case in Eq. (3.18) must be applied for the inner-

most cell, i = 1, and µp ∈ [−1, 1]. Equation (3.19) is obtained from conserving lab frame frequency

while having comoving frequency shift from ν0,p down to νg+1/2. Frequency (wavelength) is taken
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to decrease (increase) with increasing g. Effective absorption can be alternatively calculated with

implicit capture [62, p. 332]. If implicit capture is used to reduce statistical noise in the tallies, the

velocity distance to effective scattering of particle p [37] is

ucol =
− ln(ξ)

tn(1− Ω̂p · ~Up/c)(1− fn)σ0,ν0,p,a,n

. (3.20)

The energy of a particle in the lab frame is reduced by Ep → Epe
−fnσνp,a,nutn .

IMC particle position in velocity space must be updated to have its physical position unchanged.

The censused position is maintained with

~Up,new cen(tn + ∆tn) = ~Up,old centn = ~rp,cen , (3.21)

where ~Up,old cen is particle velocity position after transport, ~Up,new cen is the final censused velocity

position after completion of the time step, and ~rp,cen is the IMC particle position at the end of a time

step. The value, ~Up,new cen, is the IMC particle velocity location at the beginning of the n + 1 time

step. Equation (3.21) does not have to be solved directly. We introduce a time centering parameter,

α2 ∈ [0, 1], to split the velocity position shift before and after transport. The following enumeration

summarizes the steps taken in IMC velocity position shift:

1. ~Up,* cen(tn + α2∆tn) = ~Up,old centn.

2. IMC: ~Up,* cen → ~Up,∗.

3. ~Up,new cen(tn + ∆tn) = ~Up,∗(tn + α2∆tn),

where ~Up,* cen is the intermediate velocity position after completion of IMC transport.

The opacity dependence on frequency is assumed to be piecewise constant and constant within

group intervals, ν0 ∈ [νg+1/2, νg−1/2], for all groups, g ∈ {1 . . . Gi}, for all cells i ∈ {1 . . . I},

where G subscripted with i allows for different cells to have different total numbers of groups. For
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ν0 ∈ [νg+1/2, νg−1/2],

σ0,ν0,a,n = σa,g,n , (3.22a)

σ0,ν0,s,n = σs,g,n , (3.22b)

where σa,g,n (σs,g,n) is the comoving absorption (scattering) opacity that is constant for each group,

g, over comoving frequency, ν0. Integrating the comoving IMC transport equation over the comov-

ing frequency range of group g in cell i,

(
1 + Ω̂0 ·

~U

c

)
1

c

DI0,g

Dt
+ Ω̂0 · ∇I0,g +

4

c
Ω̂0 · ∇~U · Ω̂0I0,g −

1

c
Ω̂0 · ∇~U · (I− Ω̂0Ω̂0) · ∇Ω̂0

I0,g

− 1

c
Ω̂0 · ∇~U · Ω̂0

(
νg−1/2I0,νg−1/2

− νg+1/2I0,νg+1/2

)
+ (σs,g,n + σa,g,n)I0,g =

fn
4π
σa,g,nb0,g,nacT

4
n +

b0,g,nσa,g,n
4πσP,n

(1− fn)

Gi∑
g′=1

∫
4π
σa,g′,nI0,g′dΩ′0

+

Gi∑
g′=1

∫
4π

∫ νg−1/2

νg+1/2

∫ νg′−1/2

νg′+1/2

ν0

ν ′0
σ0,s,n(~r, ν ′0 → ν0, Ω̂

′
0 · Ω̂0)I0,ν′0

dν ′0dν0dΩ′0 , (3.23)

where

I0,g =

∫ νg−1/2

νg+1/2

I0,ν0dν0 , (3.24a)

b0,g,n =

∫ νg−1/2

νg+1/2

b0,ν0,ndν0 =

∫ νg−1/2

νg+1/2

b0,ν0(Tn)dν0 , (3.24b)

and I is the identity matrix. Equation (3.23) makes use of Castor’s division of the Doppler and

aberration corrections from the photon momentum gradient. The term with I0,νg±1/2
on the left

side of Eq. (3.23) indicates that Doppler shifting will cause MC particles to leak between groups.

Considering Eq. (3.6), Ω̂0 ·∇ · Ω̂0 = 1/tn; in this case the Doppler shift coefficients of I0,νg±1/2
are

isotropic. If ~U is constant in space, ∇~U = 0, and the Doppler and aberration corrections vanish;

in this case, all the fluid parcels are in the same reference frame, so streaming across the fluid flow

does not induce change in comoving direction and frequency.
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IMC (and DDMC) particles are generated each time step if there is a source. For IMC particles

generated by thermal emission, we apply a standard, linear tilt in equilibrium radiation energy den-

sity, or T 4
n , to mitigate teleportation error [72]. Numerical teleportation error and source tilting are

reviewed in Sections 2.1.5, 2.1.8, and 2.1.5. Tracking IMC particles in the lab frame and transform-

ing into the comoving frame for all radiation-matter interactions is a means of solving Eq. (3.23).

Otherwise, Eq. (3.23) may be solved directly with Monte Carlo; the additional velocity-dependent

terms must then be explicitly accounted for in the particle processes.

Before turning to IMC-DDMC, we present a brief derivation of the Gentile-Fleck factor and,

with the grey form of the maximum principle of Larsen and Mercier [60], provide some justification

for its use in SN Ia simulations. The multigroup form of Eq. (3.8) is

Cv
DT

Dt
=

G∑
g=1

∫
4π
σa,gI0,gdΩ0 − cσPaT 4 − g(0)

0,s . (3.25)

Defining

E∗ =
1

c∆tnσ̄P

∫ tn+1

tn

G∑
g=1

∫
4π
σa,gI0,gdΩ0dt , (3.26)

where σ̄P is time centered, Equation (3.25) may be stated as

1

σP β̃

D

Dt
[σP (aT 4 − E∗)] =

G∑
g=1

∫
4π
σa,gI0,gdΩ0 − cσPaT 4 − g(0)

0,s , (3.27)

where

β̃ =
1

Cv

[
4aT 3 + (aT 4 − E∗)

1

σP

∂σP
∂T

]
. (3.28)

Evaluating σP β̃ on the left hand side of Eq. (3.27) at the beginning of a time step, integrating

Eq. (3.27) with respect to time, setting
∫ tn+1

tn
σPaT

4 = ∆tn[ασP,n+1aT
4
n+1 + (1 − α)σP,naT

4
n ],

setting σ̄P = ασP,n+1 + (1− α)σP,n, and setting Λa,n = σP,n(aT 4
n − E∗) give

Λa,n+1 − Λa,n = c∆tnσP,nβ̃n

(
−αΛa,n+1 − (1− α)Λa,n − ḡ(0)

0,s

)
. (3.29)



113

From Section 2.1.3, the Gentile-Fleck factor is defined as [42]

f̃n =
1

1 + αβ̃nc∆tσP,n
, (3.30)

where gn has been substituted with f̃n for clarity. The time centered emission term is found to be

ασP,n+1aT
4
n+1 + (1− α)σP,naT

4
n =

f̃nσP,naT
4
n − (1− f̃n)ḡ

(0)
0,s + σ̄P

(
1−

σP,n
σ̄P

f̃n

)
E∗ . (3.31)

The next simplification is σP,n/σ̄P in the last term on the right hand side of Eq. (3.31). The proce-

dure may then follow the standard IMC derivation. To ensure fn ≥ f̃n ≥ 0, the approximation of

Gentile [42], described in Section 2.1.3, for f̃n is incorporated (see Eq. (2.20)). For certain trans-

port problems, such as the W7 SN Ia problem of Nomoto [76], calculating the derivative of the

opacity with respect to temperature is computationally expensive since two opacity calculations are

required. In our implementation, we compute the opacity twice using the initial temperature and an

offset temperature at the first time step, n = 1; then for n > 1,

∂σP,n
∂T

≈
σP,n − (ρn/ρn−1)σP,n−1

Tn − Tn−1
. (3.32)

In Eq. (3.32), if there is no change to the microscopic opacity but density changes, then the derivative

vanishes. Consequently, the effect of expansion alone is not coupled into the calculation of the

Gentile-Fleck factor.

The maximum principle of Larsen and Mercier [60] can provide some indication of whether it is

possible to have temperature instabilities or overheating in an SN Ia simulation. For σP /ρ = 0.13

cm2/g, Cv/ρ = 2.0 × 107 erg/K/g, TU = 100000 K, and TL = 10000 K, the grey maximum

principle gives ∆tn ≤ 0.6 milliseconds. For a range of input near the values considered, the

maximum principle predicts sufficient time steps that are very small for LTE SN Ia simulations.

However, as Wollaber et al. [101] demonstrate, the over-heating pathology in IMC is also dependent

on the spatial grid. In general, the continuous-space maximum principle is not necessary to achieve
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physical radiative-transfer results. In practice, for the W7 SN Ia model, we use quarter-day time

steps sizes.

3.1.2 Asymptotic Analysis for Space and Group Boundaries

Coupling IMC and DDMC in a high-velocity grid requires some consideration of asymptotic diffu-

sion theory. In this section, an attempt is made to motivate development of:

1. a treatment of IMC particles at high-velocity spatial method interfaces,

2. a treatment of DDMC particle Doppler shift that emulates continuous Doppler shift correc-

tions.

1. We start with the first item in the enumeration above and see how a high-velocity interface

cell edge affects the asymptotic diffusion-limit boundary condition at the cell edge. The follow-

ing asymptotic analysis is based on a prescription by Malvagi and Pomraning for incorporating

curvature and opacity variations into the asymptotic diffusion-limit boundary condition [67] and is

extracted from the IMC-DDMC paper by Wollaeger et al. [104]. The grey O(U/c) radiative transfer

equation is considered,

1

c

∂I0

∂t
+Ω̂0·∇I0+σt,0I0+

~U

c
·∇I0−

1

c
Ω̂0·∇~U ·(I−Ω̂0Ω̂0)·∇Ω̂0

I0+
4

c
Ω̂0·∇~U ·Ω̂0I0 = j0 , (3.33)

where I0 =
∫∞

0 I0,ν0dν0, j0 is the total frequency integrated source due to scattering events and

emission and σt,0 = σs,0 + σa,0 is a total opacity. Supposing there exists some spatial surface

denoted by b, we now make use of the homologous outflow assumption to obtain

1

c

∂I0

∂t
+ µ

∂I0

∂z
+ LI0 + (Ω̂0 · ∇)⊥I0 + σt,0I0 +

~r

ctf
· ∇I0 +

4

ctf
I0 = j0 , (3.34)

where µ is the projection of the comoving angle onto an axis z aligned orthogonal to a plane tangent

to surface b, the linear operator L accounts for the change in the directional derivative, Ω̂0 ·∇, due to

non-trivial coordinate curvature, (Ω̂0 · ∇)⊥ is the projection of the directional derivative orthogonal

to z [67], and the “fluid time” tf = tn upon implementation. The expansion of the streaming
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operator is taken from Malvagi and Pomraning. The next step is to postulate a parameter ε� 1 that

is the ratio of mean free path length to domain length [44]. We choose to scale the variables with

respect to ε as follows:

c→ c/ε , (3.35a)

σt,0 → σt,0/ε , (3.35b)

σa,0 → εσa,0 , (3.35c)

tf → tf/ε , (3.35d)

~rb → ~rb/ε , (3.35e)

s = z/ε , (3.35f)

~U(~r, tf ) ≈ ~U(~rb, tf ) , (3.35g)

where ~rb is a location on surface b and the rescaling in Eq. (3.35) permits treating the parameters

as O(1). In terms of ε, the surface coordinate and characteristic fluid time are large in Eqs. (3.35d)

and (3.35e). If r̂b and ẑ are unit vectors of the surface coordinate and z, respectively, then incorpo-

rating Eq. (3.35) into Eq. (3.34) gives

ε2

c

∂I0

∂t
+

[
µ+ ε(r̂b · ẑ)

rb
ctf

]
∂I0

∂s
+ ε

[
L+ ε

rb
ctf
Lr̂
]
I0+

ε

[
(Ω̂0 · ∇)⊥ + ε

rb
ctf

(r̂b · ∇)⊥

]
I0 + σt,0I0 +

4ε2

ctf
I0 = εj0 (3.36)

and

j0 =
(σt,0
ε

+ εσa,0

) 1

4π

∫
4π
I0dΩ0 + εq , (3.37)

where q is external or thermal sources, rb = |~rb|, and the opacities have been assumed isotropic. We

have defined r̂b · ∇ = (r̂b · ẑ)∂/∂z+ (r̂b · ∇)⊥+Lr̂ as a means of tracking the change with respect

to the ballistic fluid trajectories through curved coordinates in a fashion analogous to the streaming

term for photon trajectories. At least for spherical symmetry, Eq. (3.35e) implies L → εL, or spatial

curvature has a small effect. Incorporating Eq. (3.37) into Eq. (3.36) and grouping O(ε2) terms on
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the right hand side,

[
µ+ ε(r̂b · ẑ)

rb
ctf

]
∂I0

∂s
+ εLI0 + ε(Ω̂0 · ∇)⊥I0 + σt,0I0 =

σt,0
4π

∫
4π
I0dΩ′0 +O(ε2) . (3.38)

Equation (3.35) prescribes scalings that make changes in I0 from curvature and surface variation

along the ballistic fluid parcel trajectories at surface b an O(ε2) effect. Only O(ε) effects are consid-

ered in the derivation of the diffusion-limit boundary condition. Consequently, we can neglect sur-

face variations and curvature in the following analysis as these conditions have been thoroughly ex-

amined by Malvagi and Pomraning [67]. Following prior authors, we also separate I0 into a bound-

ary layer solution, I0,b, and an interior solution, I0,i such that I0 = I0,b + I0,i and lims→∞ I0,b = 0

[44, 67]. For I0,b, Eq. (3.38) then reduces further to

[
µ+ ε(r̂b · ẑ)

rb
ctf

]
∂I0,b

∂s
+ σt,0I0,b =

σt,0
4π

∫
4π
I0,bdΩ′0 +O(ε2) . (3.39)

The boundary and interior solutions may be expanded in the small parameter ε. As described

in Section 2.1.7, the expansions are written as I0,(b,i) =
∑∞

m=0 I
(m)
0,(b,i)ε

m. Incorporating the ε-

expansion into Eq. (3.39), balancing ε0 and ε1 coefficients, and integrating over the azimuthal angle

about z, the O(1) and O(ε) equations are

µ
∂Ĩ

(0)
0,b

∂s
+ σt,0

(
Ĩ

(0)
0,b −

1

2

∫ 1

−1
Ĩ

(0)
0,b (µ′)dµ′

)
= 0 , (3.40)

and

µ
∂Ĩ

(1)
0,b

∂s
+ σt,0

(
Ĩ

(1)
0,b −

1

2

∫ 1

−1
Ĩ

(1)
0,b (µ′)dµ′

)
= −(r̂b · ẑ)

rb
ctf

∂Ĩ
(0)
0,b

∂s
, (3.41)

where Ĩ(m)
0,(b,i) =

∫ 2π
0 I

(m)
0,(b,i)dω and ω is the azimuthal angle. Where Malvagi and Pomraning have

O(ε) curvature and spatial variations, we have a velocity term from the advection component of the

Lagrangian time derivative in the original equation, Eq. (3.33). Supposing the boundary intensity at
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s = 0 is known, matching the asymptotic orders gives [67]

Ĩ
(0)
0,b (s = 0, µ, t) = F (~rb, µ, t)−

1

2
φ

(0)
0,i (~rb, t) (3.42)

and

Ĩ
(1)
0,b (s = 0, µ, t) = −1

2

φ(1)
0,i (~rb, t)−

µ

σ0,t

∂φ
(0)
0,i

∂z

∣∣∣∣∣
~rb

 (3.43)

as boundary conditions, where µ > 0 is the magnitude of the angular projection into the diffusive

domain along axis z, φ(m)
0,(b,i) =

∫
4π I

(m)
0,(b,i)dΩ0 and F (~rb, µ, t) =

∫ 2π
0 I0(~rb, Ω̂0, t)dω. Eq. (3.40)

along with Eq. (3.42) is a form of the standard half-space albedo problem examined by Case [18]

and Larsen and Habetler [58]. The solution to Eq. (3.40) is [67]

Ĩ
(0)
0,b = k

(0)
+ +

∫ 1

0
k(0)($)ϕ$(µ)e−σt,0s/$d$ , (3.44)

where k(0)
+ is a constant, $ is an eigenvalue of the singular eigenfunction ϕ$(µ) (the eigenfunction

is formally a distribution), and k(0)($) is a function determined by the orthogonalities, Eqs. (3.47)

and (3.48) below [44]. The constant, k(0)
+ , constitutes the “discrete” component of the solution [44]

and is the limiting behavior of a more general discrete eigenvalue solution having taken σ0,a � σ0,s

with ε. The distribution, ϕ$(µ), is given by

ϕ$(µ) =
$

2
P :

1

$ − µ
+ λ($)δ($ − µ) , (3.45)

where δ($−µ) is the Dirac delta function and λ($) = 1−$ tanh−1($) ensures a normalization

of
∫ 1
−1 ϕ$(µ)dµ = 1 for all$ ∈ [0, 1]. As in Section 2.1.7, the P : is a notational device to indicate

the principal value is taken upon integration [44, 18]. Case [18] rigorously proves that a function,

H(µ), may be found such that ∫ 1

0
µH(µ)ϕ$(µ)dµ = 0 (3.46)
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when Ĩ(0)
0,b satisfies a Hölder condition. It turns out H(µ) is Chandrasekhar’s H-function [67]. Mak-

ing use of the Poincaré-Bertrand formula [45] and Eq. (3.46), the orthogonalities [67]

∫ 1

−1
µϕ$′(µ)ϕ$(µ)dµ = N($)δ($ −$′) (3.47)

and ∫ 1

0
µH(µ)ϕ$′(µ)ϕ$(µ)dµ = N($)H($)δ($ −$′) , (3.48)

where N($) = $(λ($)2 + (π$/2)2), must hold. Incorporating Eq. (3.45) into Eq. (3.44) and

Eq. (3.44) into the boundary condition Eq. (3.42), Eqs. (3.46) and (3.48) indicate that multiplying

the result by µH(µ) or µH(µ)ϕ$′(µ) and integrating over µ ∈ [0, 1] yields

k
(0)
+ =

√
3

2

∫ 1

0
µH(µ)F (~rb, µ)dµ− 1

2
φ0,i(~rb) , (3.49)

or

k(0)($) =
1

N($)H($)

∫ 1

0
µH(µ)ϕ$(µ)F (~rb, µ)dµ , (3.50)

respectively [67], where
∫ 1

0 µH(µ) = 2/
√

3. As s → ∞, Eq. (3.41) becomes homogeneous; then

as s→∞, the O(ε) solution Ĩ(1)
0,b must tend to some constant, k(1)

+ , as well. Now using the boundary

condition (3.44), k(1)
+ may be found in a similar manner to k(0)

+ as

k
(1)
+ =

√
3

2

∫ 1

0
µH(µ)

−1

2

φ(1)
0,i (~rb)−

µ

σ0,t

∂φ
(0)
0,i

∂z

∣∣∣∣∣
~rb

 dµ
−
∫ ∞

0

∫ 1

−1
β(s, µ)(r̂b · ẑ)

rb
ctf

∂Ĩ
(0)
0,b

∂s
dµ ds , (3.51)

where a considerable variational analysis by [67] gives

β(s, µ) = 1 +
3

2
(µ+ σ0,ts)−

(
1 +

3

2
µ

)
e−σ0,ts/µΘ(−µ) , (3.52)
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and Θ is the Heaviside function. Roughly speaking, to obtain Eq. (3.52), Malvagi and Pomraning

[67] construct a linear functional for k(1)
+ with Lagrange multipliers as an estimate to k(1)

+ , find an

adjoint transport solution [62, p. 47] and µ times the adjoint solution as the appropriate multipliers,

and incorporate constants as trial functions for Ĩ(1)
b and the adjoint solution. With the boundary

layer constraint, lims→∞ Ĩ0,b = 0, k(0)
+ and k(1)

+ must vanish. Equations (3.51) becomes [67]

φ
(1)
0,i (~rb) +

λ

σt
ẑ · ∇φ(0)

0,i =

2(r̂b · ẑ)
rb
ctf

∫ ∞
0

(∫ 1

−1
β(η, µ)

∫ 1

0

1

$
k($)ϕ$(µ)e−η/$d$ dµ

)
dη , (3.53)

where λ =
√

3
∫ 1

0 µ
2H(µ)dµ/2 and σt,0s = η. The eigenvalue form of Ĩ(0)

0,b has been incorporated

into Eq. (3.53). Multiplying Eq. (3.53) by ε, adding the result to φ(0)
0,i =

√
3
∫ 1

0 µH(µ)F (~rb, µ)dµ,

reintroducing the interior solution φ0,i = φ
(0)
0,i + εφ

(1)
0,i + O(ε2) , and reverting the ε-scalings from

Eq. (3.35) gives

φ0,i(~rb, t) +
λ

σt,0
ẑ · ∇φ0,i =

2(r̂b · ẑ)
rb
ctf

∫ ∞
0

(∫ 1

−1
β(η, µ)

∫ 1

0

1

$
k($)ϕ$(µ)e−η/$d$ dµ

)
dη

+
√

3

∫ 1

0
µH(µ)F (~rb, µ, t)dµ , (3.54)

which should be correct to O(ε2). We find

∫ ∞
0

∫ 1

−1
β(η, µ)ϕ$(µ)e−η/$dµdη =

$

(
1 +

3

2
$

)
− $2

2
(1 + 3$) ln

(
1 +$

$

)
+

$2

2(1 +$)

(
5

2
+ 3$

)
≡ $h($) , (3.55)

so

∫ 1

0

k(0)($)

$

∫ ∞
0

∫ 1

−1
β(η, µ)ϕ$(µ)e−η/$ dµ dη d$ =

∫ 1

0
h($)k(0)($)d$ . (3.56)
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Incorporating Eq. (3.50), using
√

3µH(µ) ≈ 2W (µ) which is a corollary of the variational deriva-

tion of β(s, µ) by Malvagi and Pomraning [67], and defining

GU (µ) = 1 +
2

c
ẑ · ~U(~rb, tf )

∫ 1

0

h($)ϕ$(µ)

(2 + 3$)N($)
d$ , (3.57)

Eq. (3.54) becomes

φ0,i(~rb, t) +
λ

σt,0
ẑ · ∇φ0,i = 2

∫ 1

0
W (µ)GU (µ)F (~rb, µ, t)dµ . (3.58)

To evaluate the integral in Eq. (3.58), we incorporate Eq. (3.45) for ϕ$(µ) to obtain

∫ 1

0

h($)ϕ$(µ)

(2 + 3$)N($)
d$ = λ(µ)

h(µ)

(2 + 3µ)N(µ)
+

1

2

∫ 1

0

(
$

h($)

(2 + 3$)N($)
− µ h(µ)

(2 + 3µ)N(µ)

)
d$

($ − µ)

+
µ

2

h(µ)

(2 + 3µ)N(µ)
ln

(
1− µ
µ

)
, (3.59)

where, following [67], we have converted the principal value integration to a nonsingular form

amenable to quadrature.

Equation (3.59) along with the form of the functions λ(µ), N(µ), and h(µ) reveal the leading

order behavior of the angular dependence in GU . For the case of µ → 0: λ(µ) → 1, N(µ) → µ

and h(µ)→ 1. Hence, the first term on the right side of Eq. (3.59) tends to 0.5/µ as µ→ 0. From

the last term on the right side of Eq. (3.59), the next order of divergence as µ → 0 is logarithmic.

The remaining terms tend to a bounded integral over $ as µ → 0. We find that the behavior in

µ of Eq. (3.59) is well approximated by C1/µ − C2µ where C1 and C2 are positive constants. In

Section 3.3.2, we test 0.5c(GU − 1)/(ẑ · ~U) = 0.55/µ− 1.25µ for a three mean free path threshold

between IMC and DDMC and 0.5c(GU − 1)/(ẑ · ~U) = 0.6/µ − 1.25µ for a ten mean free path

threshold between IMC and DDMC. These choices are approximations to the quadrature expressed

in Eq. (3.59).
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In Eq. (3.58), replacing ẑ with ~n, dropping the subscript i, replacing µ with |Ω̂0 · ~n|, and adding

a group index yields

φ0,g(~rb, t) +

(
λ

σa,g,n + σs,g,n

)
~n · ∇φ0,g(~rb, t) =

2

∫
Ω̂0·~n<0

∫ νg−1/2

νg+1/2

W (|Ω̂0 · ~n|)GU (|Ω̂0 · ~n|)I0,ν0(~rb, Ω̂0, t)dν0dΩ0 . (3.60)

When ~U = 0, the standard diffusion-limit boundary condition is recovered.

2. The next analysis considers Doppler corrections in the diffusion limit. The frequency is

treated in similar fashion to a spatial variable to examine the validity of boundary layers in fre-

quency and the effect of inelastic scattering on Doppler correction. First, the interior and boundary

layer equations for comoving diffusion are derived with asymptotic analysis; the boundary layer

equation does not have the frequency derivative associated with Doppler correction. It is inferred

that frequency boundary layers are invalid in the O(U/c) comoving diffusion equation. Second,

for a model problem with elastic and inelastic scattering, the Doppler correction term is shown,

to leading order, to depend on the scattering redistribution function. With a frequency boundary,

subscripted b, the scalings chosen are

c→ c/ε , (3.61a)

σ0,ν0 → σ0,ν0/ε , (3.61b)

σ0,ν0,a → εσ0,ν0,a , (3.61c)

ω = (ν − νb)/εm , (3.61d)

q → εq, (3.61e)

where νb is a frequency at boundary b in frequency space and q is the external or thermal source in

j0,ν0 . The valuem is a number introduced to control the amount of variation in intensity with respect

to frequency. If ∂I0,ν0/∂ω is O(1), then ∂I0,ν0/∂ν is O(1/εm). Incorporating the homologous
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relation into the comoving transport equation and rescaling according to Eq. (3.61),

ε2

c

∂I0,ν0

∂t
+ εΩ̂0 · ∇I0,ν0 + σ0,ν0I0,ν0−

ε2−m

ct
ν0
∂I0,ν0

∂ω
+
ε2

ct
~r · ∇I0,ν0 +

3ε2

ct
I0,ν0 = εj0,ν0 , (3.62)

and assuming isotropic elastic scattering,

εj0,ν0 = ε2 q

4π
+
(
σ0,ν0 − ε2σ0,ν0,a

) 1

4π

∫
4π
I0,ν0dΩ′0 . (3.63)

The value, m ∈ {0, 1}, where m = 0 for an interior frequency equation and m = 1 for a frequency

boundary layer solution. Following the prescription for space, I(i,b) =
∑∞

k=0 I
(k)
(i,b)ε

k, where the

subscript i indicates the interior of the frequency domain and the subscript b indicates frequency

within a ε-layer of νb. Additionally, limω→∞ Ib = 0; this constraint is analogous to the spatial

boundary layer constraint, where the stretched variable ω is analogous to the stretched spatial vari-

able, s, from the first asymptotic analysis.

Setting m = 0 and incorporating the power series in ε, Eq. (3.62) may be separated into O(ε0),

O(ε1), and O(ε2) equations:

I
(0)
i =

φ
(0)
i

4π
(3.64)

for O(ε0),

I
(1)
i =

φ
(1)
i

4π
− 1

4π

Ω̂0

σ0,ν0

· ∇φ(0)
i (3.65)

for O(ε1), and

I
(2)
i =

1

4π

[
q

σ0,ν0

+ φ
(2)
i −

σ0,ν0,a

σ0,ν0

φ
(0)
i +

ν0

ctσ0,ν0

∂φ
(0)
i

∂ν0
− ~r

ctσ0,ν0

· ∇φ(0)
i −

3

ctσ0,ν0

φ
(0)
i

− 1

cσ0,ν0

∂φ
(0)
i

∂t
− Ω̂0

σ0,ν0

· ∇

(
φ

(1)
i −

Ω̂0

σ0,ν0

· ∇φ(0)
i

)]
(3.66)

for O(ε2), where Eq. (3.64) has been used in Eq. (3.65) and Eqs. (3.64) and (3.65) have been used

in Eq. (3.66). The values φ(k)
i =

∫
4π I

(m)
i dΩ0 are the ε power series coefficients for scalar intensity.
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Integrating Eq. (3.66) over comoving solid angle,

1

c

∂φ
(0)
i

∂t
−∇ ·

(
1

3σ0,ν0

∇φ(0)
i

)
+ σ0,ν0,aφ

(0)
i −

ν0

ct

∂φ
(0)
i

∂ν0
+
~r

ct
· ∇φ(0)

i +
3

ct
φ

(0)
i = q . (3.67)

Equation (3.67) is the correct O(U/c) comoving diffusion equation with the assumptions of homol-

ogous outflow, Eq. (3.6), and isotropic scattering in the comoving frame.

For m = 1, the O(ε0), O(ε1), and O(ε2) equations for Ib are

I
(0)
b =

φ
(0)
b

4π
(3.68)

for O(ε0),

I
(1)
b =

1

4π

(
φ

(1)
b −

Ω̂0

σ0,ν0

· ∇φ(0)
b +

νb
ctσ0,ν0

∂φ
(0)
b

∂ω

)
(3.69)

for O(ε1), and

I
(2)
b =

1

4π

[
φ

(2)
b −

σ0,ν0,a

σ0,ν0

φ
(0)
b +

νb
ctσ0,ν0

∂φ
(1)
b

∂ω
− ~r

ctσ0,ν0

· ∇φ(0)
b −

3

ctσ0,ν0

φ
(0)
b

− 1

cσ0,ν0

∂φ
(0)
b

∂t
− Ω̂0

σ0,ν0

· ∇

(
φ

(1)
b −

Ω̂0

σ0,ν0

· ∇φ(0)
b

)]
(3.70)

for O(ε2), where φ(k)
b =

∫
4π I

(k)
b dΩ0. Integrating Eq. (3.69) over solid angle, ∂φ(0)

b /∂ω = 0. The

O(ε3) solution in terms of I(1,2,3)
b is

1

c

∂I
(1)
b

∂t
+ Ω̂0 · ∇I(2)

b + σ0,ν0I
(3)
b −

νb
ct

∂I
(2)
b

∂ω
+
~r

ct
· ∇I(1)

b +
3

ct
I

(1)
b

=
σ0,ν0

4π
φ

(3)
b −

σ0,ν0,a

4π
φ

(1)
b . (3.71)

To obtain an equation for φ(1)
b , Eq. (3.70) may be incorporated into the second and fourth terms on

the left hand side of Eq. (3.71) and the overall result may be integrated in Ω0. Since terms that are
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odd in Ω̂0 vanish in the integration, the result is

1

c

∂φ
(1)
b

∂t
−∇ ·

(
1

3σ0,ν0

∇φ(1)
b

)
+ σ0,ν0,aφ

(1)
b −

νb
ct

∂

∂ω

(
νb

ctσ0,ν0

∂φ
(1)
b

∂ω

)
+

3

ct
φ

(1)
b

− νb
ct

∂φ
(2)
b

∂ω
+
~r

ct
· ∇φ(1)

b = 0 . (3.72)

The first and fourth terms in Eq. (3.72) together resemble a diffusion equation in frequency space.

Equations (3.71) and Eq. (3.72) imply

∂

∂ω

(
νb

ctσ0,ν0

∂φ
(1)
b

∂ω

)
= 0 . (3.73)

Taking σ0,ν0 = σ0,νb , the solution of Eq. (3.73)

φ
(1)
b =

ctσ0,ν0

νb
A1ω +A2 , (3.74)

where A1 and A2 are constant in ω. Since limω→∞ φ
(1)
b = 0, so φ(1)

b = A1 = A2 = 0. Integration

of Eq. (3.70) yields

1

c

∂φ
(0)
b

∂t
−∇ ·

(
1

3σ0,ν0

∇φ(0)
b

)
+ σ0,ν0,aφ

(0)
b +

~r

ct
· ∇φ(0)

b +
3

ct
φ

(0)
b = 0 . (3.75)

Equation (3.75) indicates the leading-order boundary layer solution does not have a Doppler correc-

tion term.

Here, the analysis to obtain Eq. (3.75) is extended to a model of the transport equation with

a component of inelastic scattering. Densmore [25] asymptotically analyzes the effect of treating

some absorption and re-emission as instantaneous effective scattering while treating the remainder

explicitly with a linear spatial distribution. To an extent, an analogy may be drawn between elastic

scattering, which preserves ν0, and IMC effective scattering, which preserves ~r. To complete the

analogy, inelastic scattering redistributes ν0 corresponds IMC effective absorption/emission redis-

tributes ~r. Discussed briefly in Section 2.1.8, Densmore’s analysis shows that inaccurate spatial

distributions may not allow the transport equation to asymptotically converge to a correct form of
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the diffusion equation. With a similar construction, but treating frequency like space, the result of

the following analysis is that the Doppler correction depends on the redistribution function within

frequency groups.

The model equation is

1

c

∂I0,ν0

∂t
+ Ω̂0 · ∇I0,ν0 + σ0,ν0I0,ν0 −

ν0

ct

∂I0,ν0

∂ν0
+
~r

ct
· ∇I0,ν0 +

3

ct
I0,ν0 =

q

4π
+

1

4π
(1− χ)σsφ0,ν0 +

1

4π
χσsps(ν0)φ0,g , (3.76)

where χ ∈ [0, 1] is a elastic/inelastic splitting parameter, ps(ν0) is a probability density function,

σs is a frequency independent scattering opacity coefficient, and φ0,g =
∫ νt
νb
φ0,ν0dν0. The value νt

is the upper bound of the diffusive region. Constraining
∫ νt
νb
ps(ν0)dν0 = 1, the integral of the total

scattering source term over frequency is σsφ0,g. Considering Eq. (3.76) implies

∫
4π

∫ νt

νb

ν0

ν ′0
σ0,s(~r, ν

′
0 → ν0, Ω̂

′
0 · Ω̂0)I0,ν′0

dν ′0dΩ′0 =

1

4π
(1− χ)σsφ0,ν0 +

1

4π
χσsps(ν0)φ0,g , (3.77)

the differential scattering opacity is taken to be

σ0,s(~r, ν
′
0 → ν0, Ω̂

′
0 · Ω̂0) =

σs
4π

[
(1− χ)δ(ν0 − ν ′0) + χ

ν ′0
ν0
ps(ν0)

]
, (3.78)

where δ(ν0 − ν ′0) is the Dirac delta function. The total scattering opacity is

σ0,ν0,s = σs

[
(1− χ) + χν0

∫ νt

νb

ps(ν
′
0)

ν ′0
dν ′0

]
. (3.79)

The distribution

p̃s(ν0) ≡
(∫ νt

νb

ps(ν
′
0)

ν ′0
dν ′0

)−1 ps(ν0)

ν0
, (3.80)

is shown to be the O(ε0) and O(ε1) frequency dependence of scalar intensity for ν0 ∈ [νb, νt]. It has

been assumed that ps only redistributes frequency in [νb, νt].
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We define φi,g and φb,g as the interior and boundary scalar intensity group integrated contribu-

tions to to the diffusive range. Applying the scalings with m = 0, considering the interior solution,

and setting φ0,g =
∑∞

k=0 φ
(k)
0,gε

k =
∑∞

k=0(φ
(k)
i,g + φ

(k)
b,g )εk, the O(ε0), O(ε1), and O(ε2) equations

for intensity are

I
(0)
i =

1

4π
p̃s(ν0)φ

(0)
i,g , (3.81)

I
(1)
i =

1

4π
p̃s(ν0)

(
φ

(1)
i,g −

Ω̂0

σ0,ν0,s
· ∇φ(0)

i,g

)
, (3.82)

and

I
(2)
i =

1

4π

[
q

σ0,ν0,s
+

σs
σ0,ν0,s

[(1− χ)φ
(2)
i + χps(ν0)φ

(2)
i,g ]

− σ0,ν0,a

σ0,ν0,s
p̃s(ν0)φ

(0)
i,g +

ν0φ
(0)
i,g

ctσ0,ν0,s

∂p̃s
∂ν0
− p̃s(ν0)

ctσ0,ν0,s
~r · ∇φ(0)

i,g

− 3p̃s(ν0)

ctσ0,ν0,s
φ

(0)
i,g −

1

cσ0,ν0,s

∂(p̃s(ν0)φ
(0)
i,g )

∂t
− p̃s(ν0)

σ0,ν0,s
Ω̂0 · ∇

(
φ

(1)
i,g −

Ω̂0

σ0,ν0,s
· ∇φ(0)

i,g

)]
, (3.83)

respectively. The scattering profile determines the leading interior solution. For m = 1, the O(ε0)

and O(ε1) equations are

I
(0)
b =

1

4π
p̃s(νb)φ

(0)
b,g , (3.84)

I
(1)
b =

1

4π

(
σs

σ0,ν0,s
[(1− χ)φ

(1)
b + χps(νb)φ

(1)
b,g ]− Ω̂0

σ0,ν0,s
· ∇φ(0)

b +
νb

ctσ0,ν0,s

∂φ
(0)
b

∂ω

)
, (3.85)

respectively, where it is assumed the inelastic probability density does not vary strongly in the

boundary layer. This assumption may be expressed in terms of a Taylor expansion of ps(ν) around

νb at a point in the boundary layer: ps(ν) = ps(νb) + εω∂ps(νb)/∂ν. Since Eq. (3.84) is frequency

independent, ∂φ(0)
b /∂ω = 0. Integration of Eq. (3.85) over solid angle yields

φ
(1)
b = p̃s(νb)φ

(1)
b,g . (3.86)
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The O(ε2) boundary layer equation is

I
(2)
b =

1

4π

[
σs

σ0,ν0,s
((1− χ)φ

(2)
b + χps(νb)φ

(2)
b,g )− σ0,ν0,a

σ0,ν0,s
φ

(0)
b −

~r

ctσ0,ν0,s
· ∇φ(0)

b

− 3

ctσ0,ν0,s
φ

(0)
b −

1

cσ0,ν0,s

∂φ
(0)
b

∂t
− Ω̂0

σ0,ν0,s
· ∇

(
φ

(1)
b −

Ω̂0

σ0,ν0,s
· ∇φ(0)

b

)]
. (3.87)

Equation (3.87) yields

1

c

∂φ
(0)
b

∂t
−∇ ·

(
1

3σ0,ν0,s
∇φ(0)

b

)
+ σ0,ν0,aφ

(0)
b +

~r

ct
· ∇φ(0)

b +
3

ct
φ

(0)
b

= χσs

(
ps(νb)φ

(2)
b,g −

ps(νb)

p̃s(νb)
φ

(2)
b

)
, (3.88)

which has an inelastic scattering source from the O(ε2) scalar flux. When χ = 0, Eq. (3.88) sim-

plifies to Eq. (3.75). Similarly to the case of elastic scattering, the leading-order boundary layer

solution of the model problem with inelastic scattering does not have a Doppler correction term.

It is inferred that boundary layers, in which I0,ν0 varies strongly with ν0, do not satisfy the

O(U/c) radiation diffusion for either elastic or inelastic scattering. It may be that applying the

chosen ε-scaling to fully relativistic transport in optically thick media would yield leading-order

Doppler correction terms. We do not provide such an analysis here.

To capture Doppler shift in multigroup, comoving diffusion Mihalas and Weibel Mihalas de-

scribe an upwind approximation for φ0,νg±1/2
[73, p. 475]. Considering Eq. (3.88), multigroup

diffusion with the upwind discretization for Doppler shift between groups may not furnish accu-

rate results with respect to continuous-frequency transport. The multigroup, comoving diffusion

equation with the upwind approximation is

1

c

∂φ0,g

∂t
−∇ ·

(
1

3σ0,g
∇φ0,g

)
+ σ0,gφ0,g +

4

ct
φ0,g +

νg+1/2

ct∆νg
φ0,g +

~r

ct
· ∇φ0,g

= 4πj0,g +
νg−1/2

ct∆νg−1
φ0,g−1 , (3.89)
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where σ0,g = σa,g + σs,g (see Eq. (3.22)). The Doppler correction terms in Eq. (3.89) can be

interpreted as “Doppler shift opacities”, where sampling the value νg+1/2/ct∆νg induces a particle

to transition from group g to group g + 1.

In SuperNu, frequency is tracked continuously in both IMC and DDMC. At the subgroup

level, frequency redistribution is uniform in frequency. In the model equation, Eq. (3.76), uniform

redistribution corresponds to

ps(ν0) =
1

∆νg
, (3.90)

where ∆νg = νg−1/2 − νg+1/2 = νt − νb. From Eqs. (3.80) and (3.90), p̃s ∼ 1/ν ∼ φ(0)
i , and

−
ν0φ

(0)
i,g

ct

∂p̃s
∂ν0

=
1

ct
φ

(0)
i . (3.91)

Incorporating Eq. (3.91) into Eq. (3.88) and integrating comoving frequency over [νg+1/2, νg−1/2]

yields

1

c

∂φ
(0)
0,g

∂t
−∇ ·

(
1

3σ0,g
∇φ(0)

0,g

)
+ σa,gφ

(0)
0,g +

~r

ct
· ∇φ(0)

0,g +
4

ct
φ

(0)
0,g = qg , (3.92)

where the second-order inelastic scattering source has been grouped into the total group source, qg.

In contrast to Eq. (3.89), Eq. (3.92) does not have terms corresponding to discrete Doppler shift.

It is inferred from Eq. (3.92) that upwind Doppler group coupling in DDMC may not be sufficient

to emulate continuous-frequency IMC with effective scattering that dominates the other particle

processes.

In this section:

1. a new asymptotic diffusion-limit boundary condition has been derived for high-velocity cell

edges,

2. the dependence of Doppler corrections on inelastic scattering has been demonstrated for a

model equation.
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3.1.3 Multigroup Velocity Space IMC-DDMC

The preceding asymptotic analyses provide insight into combining velocity-dependent DDMC with

IMC. In this section, velocity-dependent DDMC is described. The approach is similar to that of

Abdikamalov et al. [2], but with method interfacing for a Lagrangian grid and Doppler correction

for continuous frequency.

Integrating over solid angle, neglecting the O(U/c) coefficient of the Lagrangian time derivative,

and assuming isotropic opacity and elastic physical scattering, Eq. (3.23) becomes

1

c

∂φ0,g

∂t
+

1

c
∇ · (~Uφ0,g) +∇ · ~F0,g + (P0,g − νg−1/2P0,νg−1/2

+ νg+1/2P0,νg+1/2
) : ∇~U

+ [fnσa,g,n + (1− γg,n)(1− fn)σa,g,n]φ0,g = fnγg,nσP,nacT
4
n + γg,n(1− fn)

Gj∑
g′ 6=g

σa,g′,nφ0,g′

(3.93)

where γg,n = b0,g,nσa,g,n/σP,n,

φ0,g =

∫
4π
I0,gdΩ0 ,

~F0,g =

∫
4π

Ω̂0I0,gdΩ0 ,

P0,g =
1

c

∫
4π

Ω̂0Ω̂0I0,gdΩ0 ,

P0,νg±1/2
=

1

c

∫
4π

Ω̂0Ω̂0I0,νg±1/2
dΩ0 ,

and the expression W : V is the trace of the matrix product WVT [19, p. 113]. Following Ab-

dikamalov et al. [2], Eq. (3.93) can be operator split into transport, Doppler shift, and advection-

expansion components:

1

c

(
∂φ0,g

∂t

)
Transport

+∇ · ~F0,g + [fnσa,g,n + (1− γg,n)(1− fn)σa,g,n]φ0,g =

fnγg,nσP,nacT
4
n + γg,n(1− fn)

Gj∑
g′ 6=g

σa,g′,nφ0,g′ , (3.94)
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1

c

(
∂φ0,g

∂t

)
Doppler

+ P0,g : ∇~U = (νg−1/2P0,νg−1/2
− νg+1/2P0,νg+1/2

) : ∇~U , (3.95)

and (
∂φ0,g

∂t

)
Adv/Exp

+∇ · (~Uφ0,g) = 0 . (3.96)

With the same assumptions used for Eq. (3.93), multiplying Eq. (3.23) by Ω̂0 and integrating over

solid angle gives a first-moment equation for intensity. The analysis of Buchler [14] is applied to

drop insignificant terms. With the result, the operator splitting procedure is applied to the first-

moment equation to obtain [104]

1

c

(
∂ ~F0,g

∂t

)
Transport

+ c∇ ·P0,g = −(σs,g,n + σa,g,n)~F0,g , (3.97)

and (
∂ ~F0,g

∂t

)
Adv/Exp

+∇ · (~U ~F0,g) = 0 , (3.98)

where now terms with the Fleck factor are no longer present due to comoving isotropy. Neglecting

the time derivative and assuming the intensity is at most linearly anisotropic in the comoving frame,

Eq. (3.97) reduces to Fick’s Law,

~F0,g =
−1

3(σs,g,n + σa,g,n)
∇φ0,g . (3.99)

With Eq. (3.99), Eqs. (3.94) and (3.95) become

1

c

∂φ0,g

∂t
−∇ ·

(
1

3σ0,g
∇φ0,g

)
+ [fnσa,g,n + (1− γg,n)(1− fn)σa,g,n]φ0,g =

fnγg,nσP,nacT
4
n + γg,n(1− fn)

Gj∑
g′ 6=g

σa,g′,nφ0,g′ , (3.100)

and
∂φ0,g

∂t
+
∇ · ~U

3
φ0,g =

∇ · ~U
3

(νg−1/2φ0,νg−1/2
− νg+1/2φ0,νg+1/2

) , (3.101)

respectively. To arrive at a DDMC equation, the spatial derivatives in Eq. (3.100) must be dis-
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cretized; this will yield terms that can be interpreted as leakage opacities. Leakage opacities de-

termine the likelihood a DDMC particle will move from one spatial cell to an adjacent cell in a

grid [31, 27]. Because the form of the opacity is determined by spatial discretization, leakage opac-

ities are dependent on grid geometry. For the numerical tests considered in Chapter 3, the spatial

grid is one dimensional and spherically symmetric. With the homologous coordinate relation and

discretization, interior (DDMC cell-group to DDMC cell-group) leakage opacities for 1D, spherical

coordinates as

σi→i′′,g =



2U2
i−1/2

t2n∆(U3)i

(
1

σ−0,i−1/2,g,n∆Ui−1 + σ+
i−1/2,g,n∆Ui

)
, i′′ = i− 1

2U2
i+1/2

t2n∆(U3)i

(
1

σ−0,i+1/2,g,n∆Ui + σ+
i+1/2,g,n∆Ui+1

)
, i′′ = i+ 1

, (3.102)

where ∆Ui = Ui+1/2 − Ui−1/2 is the radial velocity width, ∆(U3)i = U3
i+1/2 − U3

i−1/2, and

σ0,i±1/2,g,n = σ0,g,n(ri±1/2), where the + (−) superscript indicates the remaining material prop-

erties are evaluated on the outer (inner) side of the cell edge with respect to index i. For DDMC

cell-groups interfacing with IMC cell-groups, Densmore et al. [31] find both a IMC-to-DDMC tran-

sition probability and a DDMC-to-IMC leakage opacity using the asymptotic diffusion-limit bound-

ary condition (see Section 2.1.12). For moving interfaces, the diffusion-limit boundary condition

derived from the first asymptotic analysis in Section 3.1.2 may be used to obtain

σb(i,i′),g =



2U2
i−1/2

tn∆(U3)i

(
1

σ+
i−1/2,g,ntn∆Ui + 2λ

)
, i′ = i− 1

2U2
i+1/2

tn∆(U3)i

(
1

σ−i+1/2,g,ntn∆Ui + 2λ

)
, i′ = i+ 1

, (3.103)
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and

Pb(i,i′),g(µ) =



4(1 + 3µ/2)GUi−1/2
(µ)

3σ+
i−1/2,g,ntn∆Ui + 6λ

, i′ = i− 1

4(1 + 3µ/2)GUi+1/2
(µ)

3σ−i+1/2,g,ntn∆Ui + 6λ
, i′ = i+ 1

, (3.104)

where µ = |~n · Ω̂0|, σb(i,i′),g is the DDMC-to-IMC interface leakage opacity from cell i to i′, and

Pb(i,i′),g/GU is the probability for IMC particles in cell i′ at surface b(i, i′) with ~n · Ω̂0,p < 0 to

transition to DDMC particles in cell i. The IMC-to-DDMC probability formula is almost the same

as that of Densmore et al. [31] with the exception of the singular coefficient, GU . To solve the

DDMC equations with the boundary condition from Section 3.1.2 in Monte Carlo, the term GU

may be interpreted as a factor that multiplies IMC particle weights incident on the moving DDMC

surface. Equations (3.102) to (3.104) were obtained by finite volume integration of the second term

on the left side of Eq. (3.100). Without specifying a particular geometry, taking the finite volume

form of the entire Eq. (3.100) yields

1

c

∂φ0,i,g

∂t
+

[ ∑
i′′ 6=i′

σi→i′′,g + σb(i,i′),g + fi,nσa,i,g,n + (1− γi,g,n)(1− fi,n)σa,i,g,n

]
φ0,i,g =

fi,nγi,g,nσP,i,nacT
4
i,n +

1

Vi

∑
i′′ 6=i

Vi′′σi′′→i,gφ0,i′′,g + γi,g,n(1− fi,n)

Gi∑
g′ 6=g

σa,i,g′,nφ0,i,g′

+
1

Vi

∫
Ab(i,i′)

∫
Ω̂0·~n<0

∫ νg−1/2

νg+1/2

Pb(i,i′)(|Ω̂0 · ~n|)|Ω̂0 · ~n|I0,gdν0dΩ0d
2~r , (3.105)

where, as in Section 2.1.14, Vi and Ab(i,i′) are the volume of cell i and the surface area shared by

cells i and i′, respectively. Equation (3.105) represents a DDMC cell-group surrounded by DDMC

cells, indexed i′′, with one adjacent cell, i′, having the same group interval but with IMC. The

circumstance and form of Eq. (3.105) is similar to Eq. (2.112); but Eq. (3.105) is in multigroup,

without effective scattering to IMC groups, in the comoving fluid frame, and with a multiplication

to particle weights implicit in the IMC-to-DDMC transmission coefficient, Pb(i,i′).

To mix IMC and DDMC over groups and interface groups at cell bounds with group boundaries
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that do not align, sub-indexes gT , for IMC, and gD, for DDMC, are introduced. The possibility

of group edges that do not align between cells may be considered in calculating leakage opacities.

Presented here is a generalization of the composite leakage opacity of Densmore et al. [30] for

transitions to an adjacent cell, i′ with transport groups indexed by g′T and diffusion groups indexed

by g′D,

σ̃i→i′,g =

(∑
g′D
bi,g↔g′D,n

bi,g,n

)
σi→i′,g +

(∑
g′T
bi,g↔g′T ,n

bi,g,n

)
σb(i,i′),g (3.106)

where bi,g,n =
∫ νg−1/2

νg+1/2
b0,ν0(Ti,n)dν0, and

bi,g↔g′,n =



∫ max([νg+1/2,νg−1/2]∩[νg′+1/2,νg′−1/2])

min([νg+1/2,νg−1/2]∩[νg′+1/2,νg′−1/2])
b0,ν0(Ti,n)dν0 ,

[νg+1/2, νg−1/2] ∩ [νg′+1/2, νg′−1/2] 6= ∅

0 , [νg+1/2, νg−1/2] ∩ [νg′+1/2, νg′−1/2] = ∅ ,

(3.107)

where the substitution bi,g↔g′,n and b0,ν0(Ti,n) with I0,g↔g′ and I0,ν0 , respectively, is used for

Eq. (3.108) below. If all group bounds are aligned, the method reduces in complexity to the stan-

dard multigroup approach and the set of (j, g)-transition graphs become completely reducible. If

a leakage is sampled, the probability of a DDMC-to-DDMC leakage transition is
(bi,g↔g′

D
,nσi→i′,g)

(bi,g,nσ̃i→i′,g)

and the probability of an DDMC to IMC leakage transition is
(bj,g↔g′

T
,nσb(j,j′),g)

(bj,g,nσ̃j→j′,g) . If (j, g) is treated

with IMC, then the group in the subsequent cell is determined by particle frequency in the comoving

frame of the boundary. The intensity distribution at the DDMC cell interface is assumed to be well

represented by the Planck function [30]. By substituting the composite leakage opacity, σ̃i→i′,g, in

the left side of Eq. (3.105), complementary modifications must be made to the terms on the right

side; then the equation will represent radiation energy balance in a hybridized system. The hybrid
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DDMC equation is

1

c

∂φ0,i,g

∂t
+

(∑
i′

σ̃i→i′,g + (1− γi,g,n)(1− fi,n)σa,i,g,n + fi,nσa,i,g,n

)
φ0,i,g =

fi,nγi,g,nσP,i,nacT
4
i,n +

1

Vi

∑
i′

Vi′
∑
g′D

bi,g↔g′D,n

bi,g,n
σi′→i,g′Dφ0,i,g′D

+
1

Vi

∑
i′

∑
g′T

∫
Ab(i,i′)

∫
Ω̂0·~n<0

Pb(i,i′)(|Ω̂0 · ~n|)|Ω̂0 · ~n|I0,g↔g′T dΩ0d
2~r

+
γi,g,n(1− fi,n)

Vi

∑
gT

∫
Vi

∫
4π
σa,i,gT ,nI0,gT dΩ0d

3~r

+ γi,g,n(1− fi,n)
∑
gD

σa,i,gD,nφ0,i,gD , (3.108)

and the hybrid Lagrangian temperature equation in differential form is

Cv,i,n
DT

Dt
=

fi,n

[∑
gD

σa,i,gD,nφ0,i,gD +
1

Vi

∫
Vi

∫
4π

∑
gT

σa,i,gT ,nI0,gT dΩ0d
3~r − σP,i,nacT 4

i,n

]
. (3.109)

The terms in Eq. (3.108) can be interpreted as follows:

• 1
c
∂φ0,i,g

∂t with the other terms on the left side determine the time evolution for each DDMC

particle. The time update is δtDDMC = min(δt, δtcen), where δtcen is the time remaining in

the time step and

δt = −1

c

ln(ξ)∑
i′ σ̃i→i′,g + (1− γi,g,n)(1− fi,n)σa,i,g,n + fi,nσa,i,g,n

(3.110)

is the time to a DDMC absorption or leakage event [31]. The form of δt comes about analo-

gously from the stochastic solution to Beer’s Law in Section 1.3.2.

• In the second term on the left side of the equation, from left to right, the opacities are the com-

posite leakage opacities, the effective out-scattering opacity for g, and the effective absorption

opacity. The effective scattering term is referred to as “out-scattering” since scattering is not
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simulated within DDMC groups; a trivial example is grey DDMC, in which γi,g,n = 1 and

effective scattering is not directly modelled at all. If δtDDMC = δt, then the next DDMC event

can be sampled from a histogram of discrete probabilities for each opacity; for instance the

probability of effective absorption in cell i and group g is
fi,nσa,i,g,n∑

i′ σ̃i→i′,g+(1−γi,g,n)(1−fi,n)σa,i,g,n+fi,nσa,i,g,n
.

• The first term on the right is the effective thermal emission source in cell-group (i, g) for time

step n.

• The second term on the right is the source due to DDMC leakage from adjacent cells with

groups that overlap the group g. The DDMC process accounts for this source by having

particles that sample a leakage event sub-sample the target group in the adjacent cell from the

composite leakage opacity formula.

• The third term on the right is analogous to the second term but for IMC transition from cells

i′ to group g in cell i. The IMC process accounts for this source by directly tracking IMC

particle frequency through collisions and relativistic transformation; when an IMC particle,

p, crosses the boundary to DDMC cell i, it is automatically in g if ν0,p ∈ [νg+1/2, νg−1/2] and

sampling Pb(i,i′)/GU permits the IMC-to-DDMC transition. The weight of an IMC particle

incident on cell i is multiplied by GU if the particle is transmitted to DDMC or diffusively

reflected back into the IMC region.

• The fourth term on the right side is a source due to IMC particles effectively scattering into

the DDMC group, g.

• The fifth and last term on the right side of the equation is a source due to DDMC particles

effectively out-scattering into group g.

When an IMC particle transitions to DDMC, the position, direction, and resolved frequency are

no longer tracked with full resolution. Conversely, when a DDMC particle transitions to IMC, its

position, direction and frequency must be sampled from probability distributions. If the transition

occurs in a cell transition, then the IMC particle can be placed isotropically on the surface of the cell.
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Otherwise, if the transition occurs in a cell’s interior, then the particle can be sampled uniformly in

the cell volume or with a source tilt. If the opacity is only elastic scattering, then the change in

frequency from Doppler shift should match the change in particle energy from Doppler shift; hence

if the frequency is known initially, then its final value should be known. Otherwise if there is

an absorption opacity, then the frequency may be sampled with a subgroup distribution. DDMC

is determined to be applicable to a cell-group, (i, g), if the number of mean free paths across a

characteristic dimension of cell i for the opacity in group g is higher than a user-determined or

heuristic threshold value, τD.

The two other equations from operator splitting the comoving diffusion equation must have

solution techniques as well. The Doppler shift equation, Eq. (3.95), can be reduced to

∂φ0,g

∂t
+
φ0,g

tn
=
νg−1/2

tn
φ0,νg−1/2

−
νg+1/2

tn
φ0,νg+1/2

, (3.111)

where use has been made of the homologous relation, Eq. (3.6), and Eddington’s approximation,

P0,ν0 = Iφ0,ν0/3c [19, p. 83]. Doppler shifting from the higher (lower) frequency group edge,

g − 1/2 (g + 1/2), acts as a source (sink). From the homogeneous form of the equation, following

Abdikamalov et al. [2], it is inferred that the change to a DDMC particle weight for a time step,

n, is E0,p → E0,pe
−∆tn/tn . Considering the effect of inelastic scattering on the model problem in

Section 3.1.2, the following algorithm is suggested to adjust frequency for DDMC particles:

1. For each particle: redshift particle energy weight. For a homologous expansion, the energy

weight is multiplied by e−∆tn/tn .

2. For the particle’s current cell and group, (i, g), determine the inelastic opacity. If only ab-

sorption, then σa,i,g,n is the inelastic opacity.

3. Make a uniformly random sample, ξ ∈ [0, 1].

4. If ξ ≤ νg+1/2

ct∆νg
/(
νg+1/2

ct∆νg
+ σa,i,g,n), sample comoving frequency in the group then multiply

comoving frequency by e−∆tn/tn . Otherwise, do not sample or redshift comoving frequency.

The first step ensures grey outflow radiation diffusion problems are solved correctly [73, p. 474]. If
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(i, g) only has elastic scattering, then ν0,p is updated in the same manner as particle energy weight

in IMC and DDMC. The source particle frequency is constrained to be uniform at the subgroup

level; for pure elastic scattering problems, the fourth step above then should emulate the cumula-

tive progression of redshift from elastic scattering in IMC. The fourth step heuristically mitigates

frequency shift when redistribution is a strong effect. In terms of Section 3.1.2, the condition in the

fourth step is similar to ξ ≤ ε, where ε is the asymptotic parameter that scales inelastic scattering

to be a dominant collision.

The remaining operator split equation to consider for IMC-DDMC is the equation for advection

and expansion, Eq. (3.96). For DDMC, it is inferred from Eq. (3.96) that particles are moved along

with the grid. Consequently, in velocity space, DDMC particles stay in their cell at census. For IMC,

the velocity position update scheme, delineated in Section 3.1.1 must be modified to incorporate the

event of an IMC particle being moved onto a DDMC cell. For an IMC particle indexed with p, the

following algorithm is used:

1. Find current fluid cell i from ~Up,old cen and expected fluid cell i′ from ~Up,* cen(tn + α2∆tn +

tmin) = ~Up,old cen(tn + tmin).

(a) For the first diffusive cell i′′ that passes particle p in the span of α2∆t, set particle p’s

velocity position to the point it would pass on the surface of i′′, ~Up,* cen = ~Up,b.

(b) If there are no DDMC cells that pass p in α2∆t, then set i = i′ and use formula from

step (1) for ~Up,* cen.

2. IMC-DDMC: ~Up,* cen → ~Up,∗

3. If p has become a DDMC particle, the position update is finished.

4. Otherwise, use ~Up,new cen(tn + ∆tn + tmin) = ~Up,∗(tn + α2∆tn + tmin) to find fluid cell i′.

(a) For the first diffusive cell i′′ that passes particle p in the span of (1−α2)∆t, set particle

p’s velocity position to the point it would pass on the surface of i′′, ~Up,new cen = ~Up,b.

(b) If there are no DDMC cells that pass p in (1 − α2)∆t, then set i = i′ and use formula

from step (4) for ~Up,new cen.
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If a particle is placed on the spatial surface of a DDMC cell-group, then if the particle is directed

into the cell it will automatically sample the diffusion-limit probability. Otherwise, if the particle

is directed away from the DDMC cell, it will not be forced to transition to DDMC. This approach

is conceived with a thought experiment. If a photon is in a vacuum region just outside an optically

thick, expanding fluid that expands over the particle position during the advection/expansion update,

then the IMC particle would be trapped and possibly destined to never escape. When the photon

is directed away from the expanding fluid, or along the direction of expansion, then because it is

always moving faster than the fluid it should not ever be caught and subsequently trapped.

In the preceding sections, features of the IMC-DDMC method have been discussed with empha-

sis on the novel aspects of the IMC-DDMC implementation in the code, SuperNu. In Section 3.1.4,

an optimization that combines DDMC groups is described. In addition to increasing the efficiency

of simple problems, this optimization, termed opacity regrouping, is found to be essential to solving

the W7 Type Ia supernova model with IMC-DDMC in a reasonable span of time (<O(days)).

3.1.4 Opacity Regrouping

With inelastic opacity, a DDMC particle frequency at the subgroup level is unknown [30, 104].

Since single DDMC steps replace multiple IMC steps, if the replaced IMC steps would have in-

cluded several effective scatters, then the DDMC particle after one step should have a different

frequency relative to its initial value. The requirement to resample is similar to the IMC random

walk scheme [36]. For multigroup DDMC, distinct DDMC groups can have particles scatter back

and forth; in certain calculations this process may deteriorate code efficiency. However, there is no

theory implied by the equations that precludes regrouping disjoint DDMC groups into larger groups.

We extend the group-collapsed DDMC scheme of Densmore et al. [30] to allow DDMC particles

to be identified with multiple, possibly non-contiguous, groups across the entire span of frequency

covered by the group grid.

The process of opacity regrouping involves combining DDMC frequency intervals and proper-

ties corresponding to DDMC frequency intervals to make larger groups. This scheme was devised

by Densmore et al. [30] as an approximation of an adaptive threshold frequency between grey
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DDMC and multigroup IMC. Since the set of groups is divided into a DDMC set and an IMC set

(see Section 3.1.3), the DDMC groups corresponding to a set of frequency intervals do not have to

match the set of IMC groups corresponding to the same set of frequency intervals. Equation (3.108)

accommodates adaptive grouping, unaligned groups at spatial boundaries, and opacity regrouping.

To illustrate the opacity regrouping process, we consider a subset with subindex l ∈ {1 . . . L}

of a resolved group structure. Groups that satisfy given regrouping criteria belong to the subset and

form a group denoted ∪Ll=1gl. The union ∪Ll=1 implies a union of the frequency intervals for each

group index gl. The regrouped absorption opacity is set to

σa,i,∪lgl,n =

∑L
l=1 bi,gl,nσa,i,gl,n∑L

l=1 bi,gl,n
. (3.112)

Similarly, the regrouped leakage opacity is

σ̃i→i′,∪lgl =

∑L
l=1 bi,gl,nσ̃i→i′,gl∑L

l=1 bi,gl,n
. (3.113)

Incorporating Eq. (3.106) into Eq. (3.113) yields

σ̃i→i′,∪lgl =

(
L∑
l=1

bi,gl,n

)−1

×

L∑
l=1

∑
g′D

bi,gl↔g′Dσi→i′,gl→g
′
D

+
∑
g′T

bi,gl↔g′T ,nσb(i,i′),gl→g
′
T

 . (3.114)

If a leakage event from ∪Ll=1gl is sampled, the probability of leaking to an interfacing group g′D

is (σ̃i→i′,∪lgl
∑L

l=1 bi,gl,n)−1
∑L

l=1 bi,gl↔g′Dσi→i′,gl→g
′
D

. The regrouped term responsible for the

increase in efficiency over DDMC without regrouping is

γi,∪lgl,n =

L∑
l=1

γi,gl,n , (3.115)

which reduces overall effective scattering since a DDMC particle in gl may no longer scatter to

gl′ if these groups are in ∪Ll=1gl. Equations (3.112)-(3.115) may be used in place of the non-
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opacity-regrouped (non-OR) counterparts in Eq. (3.108) to solve Eq. (3.108) for a regrouped in-

tensity, φ0,i,∪lgl . The values indexed by gD in the last term on the right hand side of Eq. (3.108)

correspond to DDMC groups not used to construct ∪Ll=1gl.

Regrouping opacities may cause a loss in accuracy of the distribution of the radiation field

over the groups. However, the use of the Planck function in weighting the group quantities for

regrouping may suffice when effective scattering is a dominant interaction. For the many of the

problems described in Section 3.3, effective scattering is a dominant effect.

Similarly to τD, a mean-free path threshold, τL, is used to determine which DDMC groups are

regroupable. The opacity regrouping algorithm is described as follows:

1. For each particle: find current cell and group, (i, g), and measure the inelastic collision mean

free paths. For absorption, tn∆Uiσa,i,g,n is a measure of effective scattering and effective

absorption mean free paths.

2. If tn∆Uiσa,i,g,n > τL, then search about g for neighboring groups gl in cell i satisfying

tn∆Uiσa,i,gl,n > τL.

3. For the set of frequencies corresponding to ∪lgl where g ∈ ∪lgl, apply Eqs. (3.112), (3.114),

and (3.115).

4. Perform a DDMC step for each particle to leak into adjacent cell, effectively scatter out of

group ∪lgl, get absorbed, reach census.

5. If not censused, return to first step.

To incorporate the opacity regrouping scheme into the operator split, comoving DDMC method,

DDMC particles sample a resolved group after finishing the “transport” step within the time step.

Consequently, for the Doppler shift step to solve Eq. (3.111), each particle has a group represented

by a connected frequency interval.

For static grid problems, where ~U = 0, IMC particles are tracked in space and relativistic

corrections are removed. DDMC is only required to solve Eq. (3.108); there is no Doppler shift or

implied particle advection.
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3.2 Code Summary

SuperNu is a domain-replicated parallel, one-dimensional, Monte Carlo radiative-transfer code

written in the Fortran programming language. The code implements 1D, spherically symmetric Im-

plicit Monte Carlo (IMC) and Discrete Diffusion Monte Carlo (DDMC) for either static material or

a homologous velocity field. Grid input data can be generated for certain problems by subroutines

or can be read from data files. Default spatial and temporal grids are uniform and default wave-

length grids are logarithmic. The spatial topology can be set to either be a simply connected sphere

or a shell. A user can specify if input data for velocities, densities, temperatures, and composition

are read or generated. The code runs in parallel with Message Passing Interface (MPI). Paralleliza-

tion is achieved by dividing the MC particles amongst the processors. There is one master rank,

or processor, dedicated to initializing the simulation, calculating opacities, and updating material

properties. The master rank also transports a fraction of the particles.

The main program calls initialization subroutines and possesses the main physical time step

loop. In order, for each time step, the subroutines within the time step loop: update material (ex-

cluding temperature) and grid properties including opacities, calculate the new number of source

particles within a volume or at a surface, find vacant indexes in the particle array, instantiate sur-

face particles, instantiate volume particles, propagate particles with IMC-DDMC and tally radiation

energy density, calculate new material temperature, and check energy conservation (account for all

particle energy losses, gains, and material coupling). The main program and subroutines have access

to several modules. Each module contains variables, including derived data types, and subroutines

associated with the variables in the module. There are modules for: reading and parsing input

parameters; gas grid properties; reading (e.g. W7 data) or generating material structures; timing

diagnostics and particle load balance; physical time step parameters; SuperNu-specific MPI vari-

ables and subroutines; physical constants; the particle data type and variables; reading bound-bound,

bound-free, and free-free opacity data; solving material ionization state; and storing variables for

analytic verifications.

For each time step, output includes: luminosity per group (erg/s), number of escaped particles

per group, material temperature (K), radiation energy density (erg/cm3), conservation error, timing
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data, Fleck factor values, and the number of IMC-DDMC method transitions per cell.

3.3 Numerical Results

Numerical results are described and presented to test the code, SuperNu. Tests include radiation

transport for static material and homologously expanding fluid. For the figure legends, data from

simulations with pure IMC or pure DDMC are labelled “IMC” or “DDMC,” respectively. Data

from simulations applying IMC-DDMC are labelled “HMC” (hybrid Monte Carlo). Descriptions of

additional labels are provided in the sections where they occur.

3.3.1 Static Grid Problems

Thermal P1 Test

The following discussion and verification is extracted from the article by Wollaeger et al. [104].

The benchmark is a minor extension to a solution of McClarren [68] for the thermally coupled,

radiative P1 equations. The P1 equation is an approximation to the transport equation that is valid for

optically thick domains. In terms of time-dependence, in taking the zeroth and first angular moments

of the transport equation, the local time derivative of the flux vector is not assumed to be negligible.

Consequently, the P1 equation is distinct from the diffusion equation. For the purpose of testing

rudimentary frequency dependence, the picket-fence opacity distribution of Su and Olson [94] can

be incorporated into the P1 solution of McClarren. Su and Olson have used the picket-fence opacity

to derive semi-analytic solutions to the radiation transport and diffusion equations. With some

constraints on the values of the picket-fence distribution, a closed analytic solution to the P1 equation

can be obtained. Relative to transport, the P1 solution has a slower wave speed [68]. The benchmark

problem used starts at an initial time after the P1 and transport solutions have had enough time to

propagate through a 100 mean-free path domain. Thus, the spatial and temporal domains allow for

good agreement between IMC, DDMC, and the P1 solutions.

The picket-fence opacity can be thought of as the limit of a multigroup opacity distribution, over

all frequency, as group sizes tend to zero. In this limit, the set of each picket frequency is dense over
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the positive real number line; within any frequency interval of finite width, the frequency subsets

of either picket is non-empty. For a picket-fence distribution with two distinct opacity values, or

two pickets, a fraction p1 of the group intervals have opacity σ1 while the remainder p2 has opacity

σ2 [94]. For finite group sizes, ∆νg, the opacity distribution can be thought of as invariant under

translation across frequency by ∆νg.

In the limit as ∆νg → 0, the thermal emission and external source no longer vary significantly

in ∆νg and the P1 equations can be separated by picket [94]. Consequently, the integrals of the

equations for Iν and Bν over the dense frequency sets can be simplified to coupled group equations

(or “two temperature”) [94].

Neglecting scattering, taking the zeroth and first angular moments of Eq. (1.3), and integrating

the result over the set of frequencies that only yield a contribution from picket g ∈ {1, 2}, the

thermal picket fence P1 equations in planar 1D geometry are

1

c

(
∂Eg
∂t

+
∂Fg
∂z

)
= σg(pgaT

4 − Eg) + pgS , (3.116)

1

c

∂Fg
∂t

+
c

3

∂Eg
∂z

= −σgFg , (3.117)

Cv(T )

c

∂T

∂t
=

2∑
g′=1

σgEg − σ̄aT 4 (3.118)

where z is the spatial coordinate, Eg = φg/c is the radiation energy density, σ̄ = p1σ1 + p2σ2 and

S is an external source. To linearize the system of equations, it is customary to set the heat capacity

proportional to the cube of temperature, Cv(T ) = a′T 3 [68, 94]. With the non-dimensionalizations

of McClarren and Su and Olson [68, 94],

x = σ̄z , ε =
4a

a′
, τ = εcσ̄t , wg =

σg
σ̄

(3.119)

and

Eg =
Eg
aT 4

r

, Fg =
Fg
aT 4

r

, M =
T 4

T 4
r

, Q =
S

σ̄aT 4
r

, (3.120)
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where Tr is a reference temperature. The equations for the non-dimensional variables are

ε
∂Eg
∂τ

+
1

c

∂Fg
∂x

= wg(pgM−Eg) + pgQ , (3.121)

ε
∂Fg
∂τ

+
c

3

∂Eg
∂x

= −wgFg , (3.122)

and
∂M
∂τ

=

2∑
g′=1

wgEg −M . (3.123)

Taking the Laplace transform of Eqs. (3.121), (3.122), and (3.123) in time and making substitu-

tions to removeM, the result is two fourth-order ordinary linear differential equations for the two

radiation energies over space. The coefficients of the equations are functions of s. The system can

be solved numerically; in other words a numerical inverse Laplace transform of the transformed

solution, Ẽg(x, s), may be employed. Alternatively, to leverage the analytic work of McClarren, the

picket-fence distribution can be constrained so that w1/w2 � 1. Additionally, the opacity for g = 2

is constrained to be dependent on the heat capacity, or

w2 = ε . (3.124)

Equation (3.124) does not have any physical motivation or significance but is a means of a obtaining

closed-form, analytic solution of Eqs. (3.121), (3.122), and (3.123). Furthermore, the source is a

Dirac delta function in space and time, Q = δ(x)δ(t); hence the solution obtained may be used as a

kernel for other source distributions [68]. The Fourier-Laplace transformed system of equations is

(k2 + 3ε2s2) ˜̃E1 = 3εs

(
1− 1

ε

)
, (3.125)

(k2 + 3ε2s(s+ 2)) ˜̃E2 = 3(s+ 1) , (3.126)

(s+ 1) ˜̃M≈ w2
˜̃E2 , (3.127)
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where double tilde indicates a Fourier-Laplace transformed quantity. Equations (3.125), (3.126),

and (3.127) may be used trivially as the starting points in McClarrens derivation; the derivation is

not repeated here. The solution to Eqs. (3.125), (3.126), and (3.127) are

E1 =

(
1− 1

ε

) √
3

2
δ(τ − ε

√
3|x|) , (3.128)

E2 =
1

ε

√
3

2
e−τ×[
τI1(
√
τ2 − 3ε2x2)√

τ2 − 3ε2x2
Θ(τ − ε

√
3|x|) + I0(

√
τ2 − 3ε2x2)δ(τ − ε

√
3|x|)

]
, (3.129)

and

M =

√
3

2
e−τI0(

√
τ2 − 3ε2x2)Θ(τ − ε

√
3|x|) (3.130)

where Θ is the Heaviside function, and I0 (I1) is the 0-order (1-order) modified Bessel function. Set-

ting ε = 1 yields the grey kernel solution of McClarren. Equations (3.128), (3.129) and (3.130) are

P1 solutions for planar geometry. The plane-to-point Green’s function mapping may be employed

to obtain the solutions in spherically symmetric coordinates [68],

Gpoint(r, τ) = − 1

2πr

∂Gplane

∂x

∣∣∣∣
x=r

, r > 0 , (3.131)

where Gpoint and Gplane are the Green functions for 1D spherically symmetric and 1D planar ge-

ometry, respectively. For the benchmark presented here, only the material temperature kernel,

Eq. (3.130), is mapped to spherical coordinates and compared to the temperature output of SuperNu.

The spherical material temperature coordinate is

M(r, τ) =

3
√

3

4π
e−τ ε2

I1(
√
τ2 − 3ε2r2)√
τ2 − 3ε2r2

Θ(τ − ε
√

3r) +
3

4π
e−τI0(

√
τ2 − 3ε2r2)ε

δ(τ − ε
√

3r)

r
. (3.132)
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For the test, ε = 2. For the numerical set-up, various cell resolutions are applied over a domain

of 100 mean-free paths. The temporal domain ranges from 300 to 600 mean-free time and the

time step size is fixed at three mean-free times for a total of 100 time steps. For particles, 400,000

source particles are generated per time step and 400,000 initial particles serve as the initial radiation

field. With IMC, we have not discovered a way to model a source that is proportional to a Dirac

delta function directly. Instead, the analytic P1 solution is used to initialize the material temperature

at a time after the initial radiation pulse. For IMC or IMC-DDMC to correctly solve the problem,

radiation generated in the optically thin picket must stream out of the domain and not couple strongly

to the material. Figures 7a and 7b have material temperature profiles for 15 and 50 spatial cells,

respectively, along with the P1 solution, versus the number of radial mean free paths.

By using a large number of particles per cell, a grid convergence test can be performed for the P1

benchmark. The analytic P1 temperature solution can be used as the exact answer in computing the

error. For the domain and cell resolutions considered, the error IMC or DDMC and the P1 solution

decreases monotonically and does not appear to saturate. To remove statistical error, the minimum

number of particles per cell in the spatial resolution tests is over 13,000. Figure 8 demonstrates that

both IMC and IMC-DDMC achieve roughly linear convergence with the L2 error norm.

The P1 results indicate that DDMC computes temperature with higher fidelity at low cell resolu-

tion for this particular problem. The results verify that the IMC and IMC-DDMC implementations

in SuperNu can produce an analytic result for static material.

Next, opacity regrouping is tested in static material for a problem with monotonic opacity de-

pendence on frequency.

Monotonic Opacity Regrouping Test

Here, 30 groups are used to verify the code can produce results presented by Densmore et al. [30]

and have opacity regrouping accelerate the IMC-DDMC calculation. The results of Densmore et

al. [30] are for planar geometry; to approximate planar geometry, the domain is set as a shell with

a non-zero inner radius that is large compared to the radial thickness of the domain. Apart from

grid specifications, the opacity, heat capacity, boundary, and initial conditions are adapted from the
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Figure 7: Solutions to the picket-fence opacity problem in Section 3.3.1. P1 (dashed) and IMC-
DDMC (solid) unitless material temperature profiles at two different (mean free) times plotted as
a function of unitless radius (mean free paths). In Fig. 7a, with 15 cells, DDMC couples to the
material and IMC streams. In Fig. 7b, with 50 cells, IMC is applied to both pickets.
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Figure 8: IMC (solid) and IMC-DDMC (dashed) L2 temperature error relative to the P1 solution
plotted over the number of mean free paths per cell at 600 mean free times.

presentation by Densmore et al. [30].

The radial domain spans from 1 × 109 cm to 1.05 × 109 cm, the time span is 1 ns, and the

wavelength grid spans 1.2398×10−9 to 1.2398×10−3 cm. The heat capacity, Cv = 8.617343×109

erg/K/cm3, and the opacity is purely absorbing [30],

σν = σa,ν =
σ0√
kT

1

(hν)3
, (3.133)

where k and h are the Boltzmann and Planck constants, respectively, and σ0 is a constant to control

optical thickness for all frequency. The grouped opacity is obtained by integrating Eq. (3.133) over

frequency. The initial temperature in the domain is set uniformly to 11,604.505 K, or 1 eV. At the

inner domain radius, there is an isotropic surface source at a temperature of 11,604,505 K, or 1 keV.

For the grids, there are 50 uniform spatial cells, 100 uniform time steps, and 30 logarithmic

wavelength groups. Additionally, 100,000 source particles are generated per time step. For IMC-

DDMC, the DDMC threshold, τD = 5, and, for IMC-DDMC with opacity regrouping, the opacity

regrouping threshold, τL = 5. The problem is solved with pure IMC, non-opacity-regrouped (non-

OR) IMC-DDMC (“UHMC”), and IMC-DDMC with opacity regrouping (“HMC”). To our knowl-
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Figure 9: IMC (solid blue), non-OR IMC-DDMC (dashed green), and opacity-regrouped IMC-
DDMC (dot-dashed red) material temperature versus radius for the monotonic opacity regrouping
problem with σ0 = 5.32345× 1018 K7/2/cm.

edge, there does not exist an analytic solution for this problem. Consequently, IMC is employed as

the benchmark for the IMC-DDMC tests.

In Figs. 9, 10, and, 11, plotted are the different MC solutions with σ0 set to 5.32345 × 1018

K7/2/cm, 5.32345 × 1019 K7/2/cm, and 5.32345 × 1020 K7/2/cm, respectively. Each simulation is

performed on one core; the CPU times are listed in the legends.

Increasing σ0 increases the amount of DDMC applied over the spectrum, and in the case of

opacity-regrouped IMC-DDMC, increases the amount of opacity regrouping as well. Consequently,

the difference in CPU time amongst IMC, non-OR IMC-DDMC, and opacity-regrouped IMC-

DDMC becomes more pronounced with increasing σ0. For σ0 = 5.32345 × 1020 K7/2/cm, the

speed-up with each optimization is most dramatic. Table 2 has the CPU times for each test.
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Figure 10: IMC (solid blue), non-OR IMC-DDMC (dashed green), and opacity-regrouped IMC-
DDMC (dot-dashed red) material temperature versus radius for the monotonic opacity regrouping
problem with σ0 = 5.32345× 1019 K7/2/cm.

1 1.01 1.02 1.03 1.04 1.05

x 10
9

0

2

4

6

8

10

12
x 10

6

Radius (cm)

T
e

m
p

e
ra

tu
re

 (
K

)

 

 

IMC (CPU Time=19416.9 s)

HMC (CPU Time=2761.9 s)
UHMC (CPU Time=69.8 s)

Figure 11: IMC (solid blue), non-OR IMC-DDMC (dashed green), and opacity-regrouped IMC-
DDMC (dot-dashed red) material temperature versus radius for the monotonic opacity regrouping
problem with σ0 = 5.32345× 1020 K7/2/cm.
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Table 2: Monotonic Opacity Computation Times (minutes)

σ0 (K7/2/cm) Method IMC non-OR IMC-DDMC OR IMC-DDMC

5.32345× 1018 6.42 1.76 1.29

5.32345× 1019 41.58 6.22 1.12

5.32345× 1020 323.62 46.03 1.16

For the tests presented, the solutions from the different methods along with the CPU times

provide evidence that the methods are functioning properly.

3.3.2 Velocity-Dependent Problems

Here, a one-group quasi-manufactured solution, a two-group manufactured solution, and a ten-

group step-source problem are presented in the domain of a velocity field with a maximum speed

of 109 cm/s, or roughly 3% the speed of light. The general Method of Manufactured Solutions

(MMS) is described by Oberkampf and Roy [77, p. 219]. MMS involves postulating, or manufac-

turing, an analytic solution, incorporating the manufactured solution into the system of equations,

evaluating the additional terms that appear in the system, and incorporating the additional terms as

sources in the code that solves the system. This approach has been explored for discrete ordinates

transport [100] and radiation-hydrodynamics with the P1 approximation [69].

The one-group, grey verification demonstrates the “temperature-flip” IMC pathology can occur

in high-velocity outflows. The inclusion of the Gentile-Fleck factor greatly mitigates the error and

prevents the radiation temperature from non-physically dropping below the material temperature

in the first time step. The optimized form of the opacity derivative with respect to temperature,

Eq. (3.32), is used in this test. A problem set-up for the pathology in static material is described by

Gentile [42]; values for the quasi-manufactured test are adapted from the values used by Gentile.

The temperature-flip represents an extreme violation of the IMC maximum principle derived by

Larsen and Mercier [60] and with spatial grid effects by Wollaber et al. [101].

Both the two-group and ten-group problems are used to verify that the Doppler shift scheme,

presented in Section 3.1.3 and motivated by the asymptotic analysis in the second part of Sec-
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tion 3.1.2, functions in the limits of elastic scattering and pure absorption with dominant effective

scattering. The ten-group step source test provides evidence that the IMC-DDMC boundary condi-

tion, derived from the asymptotic analysis in the first part of Section 3.1.2, is an improvement over

the static-grid, diffusion-limit boundary condition.

The multigroup step source problem is also used to provide evidence that opacity regrouping of

non-contiguous groups improves computational efficiency. Moreover, for the 10-group, step source

problem, the temperatures and spectrum do not seem significantly modified relative to non-OR

IMC-DDMC.

One-Group Quasi-Manufactured Test

The problem is spatially independent and grey; hence the equations to be solved are

∂E

∂t
+

4

t
E = cσ(T )(aT 4 − E) + Sm , (3.134)

and

Cv
∂T

∂t
= cσ(T )(E − aT 4) , (3.135)

where E is comoving radiation energy density and Sm is a manufactured source. Until the man-

ufactured answer is given for radiation energy density, the manufactured source is unknown. The

heat capacity Cv = ρcv and the opacity is

σ(T ) =
κρ

T 5
, (3.136)

where cv and κ are constants. Manufacturing the comoving radiation energy density as a constant,

the time dependence of the material temperature is solved and the manufactured source can be

obtained from

Sm =
4

t
E + Cv

∂T

∂t
, (3.137)

where Eqs. (3.134) and (3.135) have been summed. If the material temperature increases monoton-

ically in time, then the source, Sm, should be monotonic in time as well. Following Gentile [42],
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Eq. (3.135) is (
(E/a)T

E/a− T 4
− T

)
∂T

∂t
=
acκ

cv
, (3.138)

where ρ is removed by dividing of σ(T ) by Cv. The solution of Eq. (3.138) is

1

4

√
E

a
ln

(
[
√
E/a+ T 2][

√
E/a− T 2

1 ]

[
√
E/a− T 2][

√
E/a+ T 2

1 ]

)
− 1

2
(T 2 − T 2

1 ) =
acκ

cv
(t− t1) , (3.139)

where t1 and T1 are the initial time and initial material temperature, respectively.

For the data that will be used the time to equilibrium is on the order of 1091 seconds. The time

domain of the simulations are much smaller, and it may be assumed that T 2, T 2
1 � (E/a)1/2 = T 2

r .

Only considering early time, t � 1091 s, the solution of Eq. (3.139) for material temperature is

approximately

T (t) = Tr(e
2acκ(t−t1)/cv − 1)1/2 + T1 , (3.140)

and the time step-integrated manufactured radiation source is approximately

∆tnSm,n =
4

tn
E∆tn + Cv,n(Tn+1 − Tn) , (3.141)

for small time steps. With the problem set-up and approximations, the manufactured source is

positive-definite.

Ten spatial cells are used over a homologous outflow with a maximum speed of 109 cm/s.

The material temperature is uniformly initialized to 116,045.05 K and the manufactured radiation

temperature is set to 17,001,992.366 K. Starting from an expansion time of 2 days, the physical time

span for the calculation is only a 10th of a millisecond, or t ∈ [2, 2 + 1.1574 × 10−9] days. Both

100 and 1000 time steps are applied. The manufactured source, Eq (3.141), is uniform in space.

The total mass, M = 1× 1033 g, and the density is set to be uniform in space as well. Additionally,

the fluid properties are κ = 1.421 × 1035 cm2K5/g, cv = 9.3 × 1017 erg/K/g. In Fig. 12a, the

time evolution of the material and radiation temperature profiles show the temperature-flip in both

IMC and DDMC when the standard Fleck factor is used. In Fig. 12b, it is demonstrated that the

Gentile-Fleck factor prevents the temperatures from flipping; this is true even for the larger time
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steps of the 100 time step test.

Because the Gentile-Fleck factor generally increases effective scattering in IMC relative to the

standard Fleck factor, it is very computationally expensive to attempt modified IMC to solve this

problem. Consequently, in Fig. (12b), we have only tested modified DDMC, or DDMC modified

by replacing the Fleck factor with the Gentile-Fleck factor, Eq. (2.20) optimized by Eq. (3.32). The

implementation of the Gentile-Fleck factor has been found to be limited in its ability to correct

pathologies associated with violating the maximum principle. This can be seen in the temporal

shape of the temperatures in Fig. 12b; spurious over-deposition of radiation still occurs.

Two-Group Manufactured Test

For the two-group test, the solutions are fully manufactured. This tests consists of manufacturing

a source in a pure-scattering group that has radiation Doppler shift into a mixed scattering, absorbing

group. The Doppler shift must occur at the correct rate for each method to balance the source for

each group and sustain invariant manufactured profiles. The resulting sources for this test are also

positive definite. In other words, the temperature is not derived from the manufactured radiation

energy density. Instead, the radiation intensity and material temperature are manufactured as

I0(r, t) =
φm
4π

, (3.142a)

T (r, t) = Tm =

(
φm
ca

)1/4

, (3.142b)

respectively, where the subscript m denotes manufacturing and φm is a manufactured scalar flux.

Density is uniform in space, ρ(t) = 3M
4πR(t)3 , where R(t) is the outermost radial coordinate and M

is the total mass. With g ∈ {1, 2}, the absorption opacity is

σ0,ν0,a =


κgρ(t) , for g = 2 ,

0 , for g = 2 ,

(3.143)
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Figure 12: In Fig. 12a, manufactured (solid), standard IMC (dashed), and standard DDMC (dash-
dotted) radiation temperatures (Tr) and material temperatures (T ) for the quasi-manufactured prob-
lem with 1000 time steps. In Fig. 12b, manufactured (solid), modified DDMC with large time steps
(dashed), and modified DDMC with small time steps. The Gentile-Fleck factor prevents the ra-
diation and material temperatures from nearly trading places in the first time step, relative to the
analytic manufactured solution.
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and the scattering opacity is elastic,

σ0,s(ν
′
0 → ν0, Ω̂

′
0 · Ω̂0) =

σs(t)

4π
δ(ν ′0 − ν0) = ρ(t)

κs
4π
δ(ν ′0 − ν0) , (3.144)

where κs is a constant. The frequency-resolved manufactured solution is

ϕm,ν0 =

(
σs

σg + σs

)
ϕm,s,g
∆νg

+

(
σg

σg + σs

)
bν0 , ν0 ∈ [νg+1/2, νg−1/2] , (3.145)

where I0,ν0 = I0ϕm,ν0 , ϕm,s,g is the uniform non-thermal contribution to g and bν0 is the normalized

Planck function. For certain values of opacity, frequency group edges, and ϕm,s,g, the integral of

ϕν0 is unity.

Incorporating the manufactured solutions and opacities into the comoving transport equation

and temperature update, the source terms are found to be

Sm,φ,ν0

φm
=
Umax

cR(t)

(
3ϕm,ν0 − ν0

∂ϕm,ν0

∂ν0

)
+ σg(ϕm,ν0 − bν0(Tm)) , (3.146)

and
Sm,T
φm

=

G∑
g=1

σg(bg(Tm)− ϕm,g) , (3.147)

where Umax is the maximum outflow speed at the outermost radius, R(t), Sm,φ,ν0 is the manufac-

tured source for the comoving transport equation, Sm,T is the manufactured source for the temper-

ature equation, and ϕm,g =
∫ νg−1/2

νg+1/2
ϕm,ν0dν0. Integration of Eq. (3.146) over group g yields

Sm,φ,g
φm

=

Umax

cR(t)

(
4ϕm,g − νg−1/2ϕm,νg−1/2

+ νg+1/2ϕm,νg+1/2

)
+ σg(ϕm,g − bg(Tm)) (3.148)

For the test problem, κ2 = κs = 0.1. For a particle in g = 1, the presence of the elastic scat-

tering opacity and absence of the absorption opacity ensures that the frequency of the particle will

change like the particle energy weight. For a DDMC particle, this implies, from the Doppler shift
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algorithm described in Section 3.1.3, that the frequency is always sampled uniformly from the group

and multiplied by e−∆tn/tn . The statistically converged results for both IMC and DDMC match the

upwind approximation to Doppler correction for optically thick elastic scattering. Incorporating the

upwind approximation for the Doppler correction terms in Eq. (3.148),

Sm,φ,1
φm

=
Umax

cR(t)

(
4ϕm,1 + ν3/2ϕ

+
m,ν3/2

)
, (3.149)

and
Sm,φ,2
φm

=
Umax

cR(t)

(
4ϕm,2 − ν3/2ϕ

+
m,ν3/2

)
+ σ2(ϕm,2 − b2(Tm)) , (3.150)

where quantities superscripted with + are evaluated on the right side of the frequency bound. The

two-group frequency grid is selected in a way that further simplifies the manufactured sources.

Considering Eq. (3.145), if ν5/2 = 0, ϕm,s,1 = ϕm,s,2 = 1/2, and integration of bν0 over ν0 ∈

[0, ν3/2] is 1/2, then ϕ2 = b2 = 1/2 and the source terms become

Sm,φ,1
φm

=
Umax

cR(t)

(
2 +

1

2

ν3/2

∆ν1

)
, (3.151)

Sm,φ,2
φm

=
Umax

cR(t)

(
2− 1

2

ν3/2

∆ν1

)
, (3.152)

and

Sm,T = 0 . (3.153)

Newton iteration yields hν3/2/kTm ≈ 3.503 to obtain b2(Tm) = 1/2. To satisfy the equilibrium

of the manufactured solutions, particles generated in the high energy scattering group must redshift

at the correct rate into the thermally coupled group. If the Doppler shift rate is incorrect, the effect

should be discernible in the material temperature profile. In particular, the material temperature

should decrease with time.

Setting ν3/2/∆ν1 = 3, the effect of Doppler shift on the solution should be significant. The

physical specifications are: Umax = 109 cm/s, R(0) = 1.728 × 1014 cm, t ∈ [2.0, 2.1] days,

M = 1033 g, Cv = 2 × 107ρ, Tm = 1.1602 × 107 K, and a wavelength group grid set to
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{λ1/2, λ3/2, λ5/2} = {2.656838745× 10−8, 3.542× 10−8, 1.2398× 10−3} cm.

The numerical specifications are: 10 time steps, J = 10 spatial cells, 400,000 source particles

generated per time step, 400,000 initial particles. Tests were run for pure IMC, IMC-DDMC with

IMC in the pure-scattering group, and pure DDMC. Depicted in the work of Wollaeger et al. [104],

each test yields solutions that are in satisfactory agreement with the time-invariant, manufactured

solutions. Figures 13a and 13b have DDMC material temperature profiles for a correct implemen-

tation of the source and for a test with the source in the pure-scattering group absent.

The manufactured source simulations depicted in Fig. 13 provide evidence that the sources yield

the correct equilibrium solution with Doppler shift. Without Doppler shift from a higher-frequency

source, the radiation in the thermal absorption group cannot heat the material to counteract system-

atic cooling due to expansion.

Ten-Group Spherical Step Source Tests

The multigroup spherical Heaviside source problem allows for non-trivial testing of the Doppler

shift scheme with high effective scattering, the IMC-DDMC spatial boundary condition, and non-

contiguous opacity regrouping.

The problem has a spherical step source out to 0.8Umax of 4×1024/(tn + tmin)3 erg/cm3/s.

The initial volume material temperature is 11,604,505 K and there is no initial radiation field. The

opacity is absorption over 10 groups logarithmically spaced in wavelength from 1.238×10−9 cm

to 1.238×10−3 cm. Small and large opacities alternate across the wavelength grouping; where odd

groups have the larger opacity. As in previous tests, the speed Umax = 109 cm/s and the total mass

M = 1033 g. Instead of uniform density, the mass is uniformly divided into each cell; given the

spherical geometry, this makes a gradient in density. The density gradient affects the hybridization

of the transport processes through the macroscopic opacity. The opacity is

σg =


0.13ρ , g = 2k − 1

0.13× 10−4ρ , g = 2k .

(3.154)

All simulations in this section use 50 velocity cells from 0 cm/s to Umax. For the first set of
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Figure 13: In Fig. 13a, manufactured (dashed) and DDMC (solid, dot-solid, and dot-dashed) mate-
rial temperature at three different times plotted over the velocity grid. In Fig. 13b, the manufactured
source in the pure scattering group is missing.
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problems that test the moving IMC-DDMC boundary condition, 192 time steps from 2 days to

11 days are simulated. Additionally, 100,000 source particles per time step are generated. The

heat capacity is estimated from the work of Pinto and Eastman [85] (see Section 2.2.2) as Cv ≈

2 × 107ρ ergs/cm3/K. The first and second boundary condition tests use τD = 3 and τD = 10,

respectively. As a consequence of the density gradient, a “method front” is created for IMC-DDMC.

An outer shell of IMC moves inward over the grid as time progresses. This phenomenon occurs in

the optically thick set of groups, g = 2k − 1.

In Figs. 14a and 14b, depicted are simulations of the problem for τD = 3 without and with

the multiplicative term, GU , implemented in the diffusion-limit boundary condition. The value,

GU , is anisotropic and is implemented to multiply the particle energy weights of IMC particles

incident on and directed into a DDMC cell-group. In Fig. 14a, with the static-grid IMC-DDMC

boundary condition, there is a discrepancy between the pure IMC result and the IMC-DDMC result

at the method front at 3 and 7 days after the start time. This discrepancy propagates monotonically

towards the origin as time progresses. In Fig. 14b, with the a fit of the boundary condition from

Section 3.1.2, the discrepancy is mitigated.

In Fig. 15, the problem is solved for τD = 10 mean-free paths with and without the term GU ,

where GU has C1 = 0.6 and C2 = 1.25. From Fig. 15, it is evident that GU is insufficient in

completely removing the error at the high-velocity IMC-DDMC method interface; this is the case

even for a fit that has slightly larger C1 than implied by the asymptotic analysis. The development

and interpretation of the boundary condition is not complete, but the fit ofC1 = 0.55 andC2 = 1.25

for GU , along with τD ∈ [2, 5], provides a practical solution with respect to the high-velocity

outflow problems tested.

Figures 16a and 16b support the Doppler shift analysis of Section 3.1.2 and consequent Doppler

shift method from Section 3.1.3. Full upwind Doppler shift in DDMC groups overpredict redshift

of particles out of the groups relative to IMC in Fig. 16a. The nonmonotonicity of the opacity with

respect to group allows particles that are redshifted from DDMC groups to escape the domain; this

reveals the coarseness of the upwind Doppler correction approximation with respect to Doppler

correction in continuous frequency, pure IMC. In Fig. 16b, for this problem, agreement between
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Figure 14: In Fig. 14a, radiation energy density for pure IMC (solid lines) and IMC-DDMC (dashed
lines) for the step source problem with τD = 3. In Fig. 14b, the fit of Eq. (3.57), with C1 = 0.55
and C2 = 1.25, is implemented for IMC-DDMC.
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Figure 15: Radiation energy density for pure IMC (solid line), IMC-DDMC without a GU factor
(dotted solid line), and IMC-DDMC with GU for the step source problem with τD = 10. The fit of
Eq. (3.57), with C1 = 0.6 and C2 = 1.25, is implemented for IMC-DDMC with GU (“HMC-GU”).

IMC and IMC-DDMC is improved by the Doppler shift method delineated in Section 3.1.3. This

method emulates IMC by mitigating group coupling through redshift in the presence of strongly

inelastic opacity.

For the non-contiguous opacity regrouping tests, the same step source problem is employed, but

with 128 uniform time steps from day 2 to day 5 in the expansion. Additionally, a regrouping integer

control parameter, gc, is implemented to constrain the number of groups surrounding a DDMC

particle that can be combined for diffusion. Figure 17 has material temperature and grouped spectra

for radiation that has escaped the outflow. For this problem, the IMC-DDMC results with opacity

regrouping appear to show satisfactory agreement with the non-OR results. Plotted in Fig. 18 is the

L1 error of the grouped luminosity array versus time.

The data in Fig. 18 indicate that error in the spectrum of the hybrid method, relative to IMC,

increases steadily until the span of time where the outermost cells become amenable to IMC and

the method front starts moving toward the origin. To test the regrouping cutoff, gc, and demonstrate

improved method performance, in Table 3 there are computation times for the step source problem
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Figure 16: In Fig. 16a, radiation energy density for pure IMC (solid lines) and IMC-DDMC (dashed
lines) for the step source problem with τD = 3; IMC-DDMC uses upwind Doppler shift. In
Fig. 16b, the DDMC Doppler shift algorithm from Section 3.1.3 is employed; relative to Fig. 16a,
redshift from optically thick groups is mitigated since absorption/effective scattering is dominant
over Doppler correction.
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Figure 17: Material temperature, and grouped spectra of IMC (solid), non-opacity-regrouped (non-
OR) IMC-DDMC (dashed, gc = 0), and opacity-regrouped IMC-DDMC (dot-solid, gc = 10) at 3.5
and 5 days for the spherical step source problem. In Fig. 17a, material temperature is plotted versus
velocity. In Fig. 17b, grouped luminosity is plotted versus group center.
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Figure 18: Non-opacity-regrouped (non-OR) IMC-DDMC (solid), and opacity regrouped IMC-
DDMC (dashed) L1 error versus time step of group spectra relative to pure IMC for radiation es-
caping the outermost cell of the 10 group, Heaviside source problem.

with 64 time steps from day 2 to day 3.5. The opacity is

σa,g =


0.13ρ , g = 2k − 1

0.13× 10−mρ , g = 2k ,

(3.155)

where m ∈ {4, 7}. All times presented are for simulation on one core.
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Table 3: Run Times for First 64 Time Steps of Heaviside Problem with gc ∈ {0 . . . 10} with 1 Core

(minutes)

Method gc m = 4 m = 7

IMC - 202.23 505.71

HMC 0 23.11 45.09

HMC 1 19.60 37.62

HMC 2 5.80 6.74

HMC 3 5.74 6.71

HMC 4 5.72 6.31

HMC 5 5.79 6.44

HMC 6 5.80 6.41

HMC 7 5.79 6.47

HMC 8 5.83 6.42

HMC 9 5.76 6.54

HMC 10 5.81 6.64

From Table 3, it is evident that non-OR IMC-DDMC improves efficiency over IMC, and re-

grouping only adjacent groups does not significantly improve efficiency over non-OR IMC-DDMC.

However, with gc ≥ 2, optically thick opacities in non-contiguous groups may be combined. This

apparently greatly increases the speed of IMC-DDMC. Additionally, the CPU times agree with the

alternating form of the opacity in Eq. (3.155).

For IMC-DDMC with and without the opacity regrouping optimization, the Doppler shift scheme

outlined in Section 3.1.3 yields satisfactory agreement with the continuous Doppler corrections of

IMC for this problem. The ten-group step source problem has significant effective scattering for

IMC and consequently little redshift from optically thick groups to optically thin groups.
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3.3.3 W7 Model of Type Ia Supernova

For the simulations discussed and the results presented in this section, SuperNu is run on up to

192 cores on the Cray XE6 supercomputer Beagle at the Computation Institute of the University of

Chicago.

The W7 problem of Nomoto [76] has been solved by several authors [see, e.g. [54, 56, 98]]. The

SN Ia radiative transfer codes discussed in Section 2.2 have methods in place for directly treating

the many lines of the ejecta. The IMC-DDMC scheme formulated in this thesis is in multigroup.

Resolving line structure rigorously would in theory require storing ∼10,000 groups per spatial cell.

In multiple dimensions, the memory overhead is much larger than in 1D. Thus, depending on com-

puter architecture, it may not be possible to implement ∼10,000 groups in 2D or 3D spatial grids

The primary focus of this section is on the performance and accuracy of simulations with ∼100

to 1000 groups. Accuracy here implies reasonable agreement with LTE results from the radiative

transfer code PHOENIX.

IMC and IMC-DDMC data for the W7 model indicate it is very computationally expensive to

use pure IMC or non-OR IMC-DDMC, relative to opacity-regrouped IMC-DDMC. For a 100 group

W7 simulation with groups logarithmically spaced from 1×10−6 cm to 3.2×10−4 cm, 64 velocity

cells spaced uniformly from 0 cm/s to 2.2027 × 109 cm/s, a time domain of t ∈ [40, 64] days post

explosion with 0.25 day time steps, 250,000 initial particles, and 250,000 source particles per time

step, neither IMC nor non-OR IMC-DDMC completed the simulation with 192 cores and a wall

time of 40 hours each. In contrast, fully opacity-regrouped IMC-DDMC (gc = 100) completed the

same problem with 24 cores in 1018.9 seconds. Thus, in addition to only considering∼100 to 1000

groups, the scope of the results shown in this section is narrowed further to to IMC-DDMC with

opacity regrouping.

Also tested is an “opacity mix” parameter which, in conjunction with a subgroup structure

for each group, linearly combines direct-averaged group opacities (Planck-type) and reciprocal-

averaged group opacities (Rosseland-type). For each group, g, a subgroup index, gg ∈ {1 . . . Gg},

is used to write the opacity mixing formula. For the simulations presented, subgroups are uniform

across groups. However, the main groups are logarithmically spaced unless otherwise specified.
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Bound-bound (bb), bound-free (bf), and free-free (ff) transition opacities (see Section 1.1.1) popu-

late each group. Values for bb opacities are calculated from oscillator strength data for each atomic

species [57]. It is assumed that a line profile is non-zero only in the subgroup in which its line center

resides [73, pp. 329-332],

σa,gg ,bb =
1

∆λgg

∑
s

∑
i

∑
i′>i

(
π(e−)2

me−c

)
fi,i′,s

λ2
i,i′,s

c
×

[Θ(λi,i′,s − λgg−1/2)−Θ(λi,i′,s − λgg+1/2)]ni,s(1− e
hc

kTλi,i′,s ) , (3.156)

where σa,gg ,bb is the bb contribution to subgroup gg, fi,i′,s is the non-dimensional oscillator strength

from state i to i′ of species s, λi,i′,s is the wavelength center of the line corresponding to the i→ i′

transition, ni,s is the total density of species s occupying state i, and the Θ are Heaviside step

functions constraining the sum to opacity profiles centered in the subgroup. Scattering opacity is

treated as elastic and isotropic; the form in the comoving frame is calculated as [19, p. 161]

σs =
8π

3
ne−

(
e−

me−c
2

)2

, (3.157)

where e− is electron charge, ne− is electron number density, and me− is electron mass in cgs

units. Mass fractions and velocity specific to the W7 problem are read from data files. The Saha-

Boltzmann equations are used to obtain the excitation densities for each atom in the W7 model [73,

p. 49]. The bf opacities are obtained from tables according to the prescription of Verner et al. [99]

and, following Sutherland [95], the ff opacities are calculated with tabulated Gaunt factors. The

total absorption opacity for subgroup gg is σa,gg = σa,gg ,bb + σa,gg ,bf + σa,gg ,ff [73, p. 332].

Introducing the opacity mixing parameter, ασ ∈ [0, 1], the opacity mix formula,

σa,g = (1− ασ)
1

Gg

Gg∑
gg

σa,gg +
ασGg∑Gg
gg

1/σa,gg
, (3.158)

is applied for various values of ασ.

For the W7 tests discussed, gamma ray energy deposition profiles and the initial material and
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radiation temperatures are extracted from the PHOENIX code [46, 47, 48, 98]. A nominal value of

heat capacity of Cv = 2.0× 107ρ erg/K/cm3 is considered. It is found that the heat capacity for this

problem is unimportant since the Fleck factor is so small, fn ≈ Cv,n/α4aT 3
nc∆tnσP,n, division by

Cv,n of the deposition and emission terms in the material update cause the heat capacity to roughly

cancel out of the equation. The heat capacity has been changed by up to a factor of 1000 without

inducing significant changes to light curves.

The first problems considered have 225 and 625 groups, 20 subgroups per group, and an opacity

mixing parameter ασ ∈ {0.0, 0.3, 0.5, 0.8, 1.0}. Each calculation has 64 velocity cells uniformly

spaced from 0 cm/s to 2.2027 × 109 cm/s, 248 uniform time steps for t ∈ [2, 64] days, 250,000

initial radiation particles, 250,000 source particles generated per time step, τD = τL = 3 mean free

paths, and the opacity-regrouped neighborhoods span the entire set of groups (gc = G). Absolute

bolometric magnitudes are calculated with

Mbol = 4.74− 2.5 log10

(
L

3.84× 1033

)
, (3.159)

whereL is luminosity in erg/s. The luminosities are computed by tallying lab frame particle energies

escaping the domain and dividing by time step size. Figures 19a and 19b have light curve data for

225 and 625 groups, respectively. As expected, peak luminosity is earlier and brighter for opacity

mixing that favors reciprocal averaging since smaller subgroup opacity values are preferentially

weighted. Values of ασ near 1 preferentially weight lower opacities in the subgrouped calculation,

Eq. (3.158).

Figures 20a and 20b have spectra for 225 and 625 groups, respectively. For group resolutions

∼100, we find that generating 250,000 source particles per time step is adequate for statistical res-

olution of the spectra at times past ∼5-10 days post-explosion. Computation times for simulations

of the problem with 225, 400, 625, and 1024 groups and different values of ασ are in Table 4.
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Figure 19: Opacity-regrouped IMC-DDMC W7 bolometric light curves for opacity mixing ασ ∈
{0.0, 0.5, 1.0} (solid) and ασ ∈ {0.3, 0.8} (dashed; so solid and dashed curves alternate versus ασ)
and a fixed number of subgroups, Gg = 20. In Figs. 19a, and 19b, group resolutions are G = 225,
G = 625, respectively.
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Figure 20: Opacity-regrouped IMC-DDMC W7 spectra for opacity mixing ασ = 0.0, 0.3, 0.5 (dot-
ted, dashed, and solid, respectively) and a fixed number of subgroups, Gg = 20. In Figs. 20a,
and 20b, group resolutions are G = 225, G = 625, respectively.



172

Table 4: Total Run Times for Opacity-Regrouped HMC W7 with 24 Cores (hours)

G \ασ 0.0 0.3 0.5 0.8 1.0

225 0.92 0.92 0.91 0.89 0.83

400 1.33 1.32 1.32 1.28 1.21

625 1.92 1.88 1.91 1.87 1.89

1024 2.73 2.71 2.70 2.70 3.32

In Fig. 21, W7 material temperatures from IMC-DDMC with the standard Fleck factor are com-

pared to material temperatures from IMC-DDMC applying the Gentile-Fleck factor. For the time

shown of 32 days, the Gentile-Fleck factor mitigates temperature fluctuation at the outer velocities.

However, the spectra are nearly identical at day 32 post-explosion; this indicates the outer cells are

not important to generating the spectrum at 32 days.

For G = 225 and α = 0.5, past day 25, the Gentile-Fleck factor consistently mitigates temper-

ature fluctuations in the outer cells, relative to the standard Fleck factor.

In Fig. 22a, light curves calculated by SuperNu with 500 groups are plotted with light curves

from the radiative transfer code, PHOENIX. PHOENIX is run both in standard high-resolution form,

with 30,000 wavelength points, and with a 500 group scheme for further control in comparisons.

For multigroup, both codes have ασ = 0. The light curve from SuperNu is systematically dimmer

by roughly 10% than the light curve from PHOENIX for multiple time step and group resolutions.

In Fig. 22b, at day 20 post-explosion, the spectrum of 500-group IMC-DDMC appears to agree

well, in shape, with the high-resolution spectrum of PHOENIX.

Lastly reported are findings from preliminary W7 SN Ia error convergence tests. The errors are

computed with the raw luminosity data in erg/s. The convergence variables are wavelength, space,

and time; thus group, cell, and time step numbers are changed. Temporal grid convergence results

average the error over the coarse time steps. Because the present set of simulation results do not

contain pure IMC, luminosity errors are calculated with respect to the luminosity from the most

resolved IMC-DDMC simulation. The highest resolution simulation has 1024 groups, 256 cells,

and 992 time steps with the wavelength, velocity, and time domains unchanged from the prior tests.
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Figure 21: IMC-DDMC (solid) and Gentile-Fleck factor modified IMC-DDMC (dashed) material
temperatures and spectra at day 32 post-explosion with G = 225 and ασ = 0.5.
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Figure 22: In Fig. 22a, bolometric light curves for SuperNu with 500 groups (blue), multigroup
PHOENIX with 500 groups (green), and standard PHOENIX (red). In Fig. 22b, spectra at day 20 for
SuperNu with 500 groups (blue) and standard, or high-resolution, PHOENIX (green).
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All time and velocity grids are uniform and all wavelength grids are logarithmic. Additionally,

ασ = 0 for all simulations. The mean-free path thresholds are unchanged as well, τL = τD = 3.

For the wavelength convergence test, the simulations have 225, 400, and 625 groups; each has 256

cells and 992 time steps. For the spatial convergence test, the simulations have 32, 64, and 128 cells;

each has 992 time steps and 1024 groups. For the temporal convergence test, the simulations have

124, 248, and 496 time steps; each has 1024 groups and 256 cells. All simulations have 2,000,000

source particles generated per time step. On 192 cores, the highest resolution test took 46.44 hours.

These convergence tests have some complicating factors. Firstly, the most resolved W7 simu-

lation (1024 groups, 256 cells, 992 time steps) is not fully converged. In addition to not having an

absolute convergence limit, the validity of Eq. (3.156) diminishes with higher group resolution since

lines are not actually fully contained in groups or subgroups. Secondly, an increase in the number

of: groups changes the opacity profile and the amount of opacity regrouping, cells increases the

number of IMC particles, and time steps changes the amount of IMC particle position displace-

ment in velocity space in between transport steps. Despite the complexities, for the grid resolutions

tested, the data shown in Figs. 23, 24, and 25 show monotonic convergence towards the highest res-

olution data, throughout the time span, in wavelength, space, and time, respectively. In each case,

increasing the number of grid points makes the light curve rise earlier and peak somewhat brighter.

With higher resolution in any of the three independent variables, the early rise in luminosity

shifts to earlier times and consequently induces large error before peak luminosity. Near peak

luminosity, around day 20 post explosion, the least resolved luminosity for each resolution test

appears to be roughly 2% lower than that of the high resolution benchmark. The convergence data,

along with data comparisons with the PHOENIX radiative-transfer code, indicate that the IMC-

DDMC method can accurately simulate radiation transport in Type Ia supernovae.
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Figure 23: W7 SN Ia luminosity error versus time for 225 (blue), 400 (green), and 625 (red) groups
relative to the 1024 group test. The spatial and temporal grids have 256 cells and 992 time steps,
respectively, in each simulation.
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Figure 24: W7 SN Ia luminosity error versus time for 32 (blue), 64 (green), and 128 (red) cells
relative to the 256 cell test. The wavelength and temporal grids have 1024 groups and 992 time
steps, respectively, in each simulation.
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Figure 25: W7 SN Ia luminosity error versus time for 124 (blue), 248 (green), and 496 (red) time
steps relative to the 992 time step test. The spatial and wavelength grids have 256 cells and 1024
groups, respectively, in each simulation.
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4 Conclusions

The IMC-DDMC radiative-transfer code, SuperNu, has been developed to solve a variety of trans-

port problems and, in particular, the one dimensional W7 model of the Type Ia supernovae. The

effort commensurate to the making of this thesis was focused in formulating IMC and DDMC to

function in a high-velocity outflow and writing an efficient code to execute the resulting method. The

resulting scheme has the prescription of Abdikamalov et al. [2] for operator splitting the comoving

diffusion equation, but with an additional algorithm for advecting IMC particles through velocity

space. The formulation included the development of a diffusion-limit boundary condition for mov-

ing hybrid-method interfaces, a redshift scheme in DDMC that can emulates continuous Doppler

shift in IMC, and a generalization of the DDMC opacity regrouping scheme of Densmore et al. [30]

to non-contiguous groups. Both non-contiguous opacity regrouping and continuous Doppler shift-

ing are found to be necessary to computing efficient and accurate W7 spectra for group numbers of

O(100)-O(1000). The ability to use low group numbers to obtain accurate spectra is promising to

mitigating memory overhead in extension to multiple spatial dimensions.

With the numerical results presented in Section 3.3, the novel features of the code are bench-

marked against analytic solutions and tested further with simple problems having analytic opacity.

Using a manufactured source with two groups and a step source with ten groups (Section 3.3.2),

the DDMC Doppler shift scheme from Section 3.1.3 demonstrates agreement to the manufactured

solution and to IMC in both the limits of purely elastic scattering and high effective scattering. The

Doppler shift scheme is motivated by the second asymptotic analysis in Section 3.1.2. The density

gradient in the step source problem can induce a non-physical dip in the IMC-DDMC radiation en-

ergy density solution at the spatial interface between IMC and DDMC for the static-grid, asymptotic

diffusion-limit boundary condition. In Section 3.1.2, the first asymptotic analysis motivates a new

boundary condition that has a multiplicative factor on particle weights. The new boundary condition

mitigates the non-physical dip in radiation energy density for the step source problem. With a static

grid, monotonic opacity test in Section 3.3.1 and, again, the high-velocity, ten-group, step source

problem in Section 3.3.2, the opacity regrouping optimization, described in Section 3.1.4, is seen to
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greatly increase simulation speed.

4.1 Future Work

The interest in pursuing IMC-DDMC to solve the radiative transfer equations in Type Ia supernovae

comes from the possibility of solving the multidimensional problem efficiently and accurately. Cer-

tain progenitor models have spatial asymmetry; having the capability to generate light curves and

spectra from asymmetric progenitors requires the transport code to be multidimensional, or have

multidimensional capabilities. An important objective to extending to two or three spatial dimen-

sions is to minimize the amount of memory required by processors to advance particles. In addi-

tion to absorption and scattering, DDMC requires leakage opacities or probabilities during particle

propagation; this must be implemented carefully in multiple dimensions to not over-tax memory

resources.

The homologous outflow is a very simplified form of hydrodynamics. More realistic hydro-

dynamics must be implemented in SuperNu to be able to solve the fully coupled radiation hy-

drodynamics equations. In multiple dimensions, non-orthogonal meshes cause DDMC to acquire

negative leakage opacities; this must be taken into consideration for a Lagrangian IMC-DDMC

radiation hydrodynamics code.
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