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Chapter 1 
 
Cyanobacteria – a potential platform for production 

of biochemicals 

 
Energy crisis is one of the biggest problems the world is facing nowadays and in the 

future.  Over many years, energy production has heavily relied on the availability of fossil fuels 

via chemical-based processes that are becoming increasingly limited and expensive. In addition, 

these energy resources are not distributed uniformly throughout the world, resulting in political 

and economic imbalances among nations [1]. Carbon dioxide emission from fossil fuel usage 

also raises health and environmental concerns regarding pollution and global warming [2]. The 

disadvantages of fossil fuels directly make renewable fuels stand out as a promising future 

energy source for they are renewable and environmental friendly [2]. The limitations of the 

traditional methods motivate researchers to develop new and “clean” processes to generate 

renewable fuels and chemicals, among which biological processes receive a great deal of 

research interests and investments. In this chapter, we reviewed the use of cyanobacteria as a 

potential platform for production of bio-based chemicals. We discussed different bio-production 

processes, as well as the issues and challenges associated with them. Recent advances in 

metabolic engineering cyanobacteria for bio-chemicals together with some future perspectives 

were also highlighted to provide some useful insights about the potential for this new and 

exciting technology.   
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1.1 Advantages of cyanobacteria 

Cyanobacteria, also known as blue-green algae, are oxygenic photosynthetic bacteria 

found in most ecological niches from fresh water to marine, terrestrial and extreme environments 

[3]. Cyanobacteria can possess 3 basic growth modes: photoautotrophy, photoheterotrophy and 

heterotrophy. During photoautotrophic growth, cyanobacteria use energy from sunlight and 

electrons donated from water to convert CO2 to essential precursors via photosynthesis. While all 

cyanobacteria can grow photoautotrophically, not all of them can grow heterotrophically (in the 

absence of light and presence of some organic carbon sources other than CO2 such as glycerol or 

glucose), or photoheterotrophically (in the presence of light and presence of organic carbon 

sources) [4].  

Cyanobacteria are known to have similar photosynthesis mechanism to that of higher 

plants but possess much simpler physiological structure and genetics, and therefore naturally 

become the most suitable model to study oxygenic photosynthesis. The structure and physiology 

of cyanobacterial cell resemble the chloroplast in plant cells and therefore cyanobacteria and 

chloroplast are believed to be evolutionarily related [5].  In addition, cyanobacteria are the only 

known prokaryotes that exhibit circadian rhythm and this behavior is believed to control 

metabolic processes inside the cyanobacterial cells [6].   

Cyanobacteria are considered important microorganisms on Earth for they play key roles 

in the carbon and nitrogen cycles of ecosystems [7]. Compared to other terrestrial photosynthetic 

systems such as plants and algae, cyanobacteria have faster growth rates and higher 

photosynthetic conversion efficiency (10% compared to 1 - 5% in higher plants or algae [8]). 

Due to their ability to growth in minimal environments (only require mineral, CO2, sunlight, 

water) and to inhabit various environments, biofuel production in cyanobacteria does not 
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compete for arable lands like other processes that require plant-derived (e.g., sugar cane, starch, 

switchgrass) biomass [9]. In addition, cyanobacteria are known to synthesize high-energy storage 

components such as lipids, proteins, and carbohydrates, which can be converted to energy [9]. 

Genome sequences of 41 cyanobacteria strains have been published and genetic modification 

tools have been developed for a few strains, forming the basis to apply synthetic and systems 

biology tools for engineering cyanobacteria for biochemical production. The properties 

mentioned above make cyanobacteria an attractive microbial system for biofuel research.  

1.2 Biochemical production in cyanobacteria 

There are two common processes that are often employed in engineering cyanobacteria to 

produce various native or non-native chemicals. These processes can be categorized based on the 

types of carbon sources (inorganic carbon or organic carbon sources) and the environmental 

conditions (light or dark) in which the cyanobacteria grow (Table 1.1).  

Table 1.1: Biochemical production processes in cyanobacteria 

Processes 
Carbon 
source 

Environment Example of engineered products 

Photofermentation 
(photanol) 

CO2 Light 
1-butanol, isobutanol, isoprene, ethylene, 2-
methyl-1-butanol 

Dark-fermentation 
(photofermentation) 

Organic 
carbon 

Dark 
hydrogen, lactate, succinate, formate, acetate, 
ethanol 

 

Photo-fermentation (or photanol) refers to the direct conversion of CO2 to end products 

via photosynthesis and the addition of exogenous fermentative pathways to cyanobacteria 

(Figure 1.1) [10]. In contrast, in a dark-fermentation process, fermentative products are generated 

from degrading either exogenous organic carbon sources such as glucose, glycerol, or fructose or 

endogenous carbohydrate such as glycogen accumulated during photoautotrophic growth (Figure 

1.1) [11, 12] . Cyanobacteria hosts that are commonly used to study the biochemical production 

are Synechocystis sp. PCC 6803 (Synechocystis 6803) and Synechococcus elongatus PCC 7942 
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(Synechococcus 7942) since the genetic manipulation tools have been developed for these strains 

[13].

 

Figure 1.1: Schematic illustration of biochemical production processes in cyanobacteria  
Pyruvate and acetyl-CoA derived from fixed CO2 are major precursors of the biosynthesis of various 
native chemicals (e.g., lactate, acetate, succinate) and non-native chemicals (e.g., ethanol, 1-butanol, 
isobutanol). Blue arrows represent the foreign genes of exogenous pathways introduced to the 
cyanobacteria to convert the precursors to non-native chemicals. Dash-arrows represent multi-step 
reactions.  kivD – ketoacid decarboxylase from Lactobacillus lactis, yqhD – alcohol dehydrogenases from 
Escherichia coli; Genes from Clostridium acetobutylicum: thiL –acetyl-coA acetyltransferase, hbd – β-
hydroxybutyryl-CoA dehydrogenase, crt – crotonase, bcd – butyryl-CoA dehydrogenase, adhE2 – 
bifunctional aldehyde/alcohol dehydrogenase; Genes from Zymomonas mobilis, pdc – pyruvate 
decarboxylase, adhE – acohol dehydrogenase [13]. 
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1.2.1 Biochemical production via photo-fermentation in cyanobacteria 

Cyanobacteria have the ability to fix CO2 using light energy, however they do not 

normally produce biofuels and chemicals under this condition. In contrast, many fermentative 

bacteria have developed biosynthesis machinery for a variety of compounds such as ethanol, 1-

butanol, and lactic acid. Fortunately, advances in genetic engineering and synthetic biology 

allow the integration of exogenous pathways from other bacteria into cyanobacteria to realize the 

full potential of the combined system (photofermenting bacteria). Photosynthesis provides 

energy (in the form of ATP) and reductant (in the form of NADPH) for carbon fixation process. 

As illustrated in Figure 1.1, CO2 is transformed into glycerate-3-phosphate, which is eventually 

converted to two major precursors (pyruvate and acetyl-CoA) for biosynthesis of various 

chemicals. It should be noted that the term ‘photo-fermentation’ in cyanobacteria described here 

is different from that used in the context of biological production of hydrogen in other 

photosynthetic bacteria such as green sulfur or purple non-sulfur bacteria. In these other 

photosynthetic bacteria, organic substrate is fermented to hydrogen and carbon dioxide, using 

energy from sun light and electrons extracted from non-water sources such as sulfur or hydrogen 

sulfide [14]. In addition, biochemical production via photo-fermentation is not necessary a true 

fermentation process, i.e. process occurs in an anaerobic environment, because the production 

occurs in the presence of light and oxygen constantly evolves from photosynthesis.  

Cyanobacteria have been engineered to produce a number of high-value products via 

photo-fermentation such as isobutyraldehyde, isobutanol, 1-butanol, 2-methyl-1-butanol, 1, 2-

propanediol, 2, 3-butanediol, isoprene, ethylene, lactic acid, ethanol, fatty acids, and fatty 

alcohols [15-25]. Similar to engineering other microorganisms, the genetic modifications 

involved in creating ‘photo-fermenting’ cyanobacteria require the homologous combination of 

genes from one or several microorganisms that encode highly-efficient enzymes into the 
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cyanobacterial genome. For example, Synechococcus 7942 was engineered to produce 1-butanol 

via a modified fermentative pathway derived from Clostridium acetobutylicum [16]. Instead of 

introducing all 5 genes from C. acetobutylicum (Figure 1.1), genes thl and bcd  were replaced 

with atoB from E. coli and ter from Treponema denticola, respectively because the 

corresponding enzymes of these genes have been shown to have higher specific activities [16].   

In many cases, the biochemical production can be increased by improving CO2 fixation activity 

in the cyanobacteria as this is often a limiting step in generating biofuel precursors [15].  

Overexpression of Rubisco, the enzyme responsible for carbon fixation, has led to an 

improvement in isobutanol production by two fold in an engineered strain of Synechococcus 

7942 [15]. Oxygen evolved during photosynthesis poses a potential problem for introducing 

fermentative pathways into cyanobacteria because most often, the fermentative enzymes are 

oxygen-sensitive and thus would not be functional under aerobic condition. Solutions to these 

issues have been addressed in a number of engineered systems including inhibiting oxygen 

evolution by treating the engineered cyanobacteria cell culture with a photosystem II activity 

inhibitor [26], or searching for oxygen-insensitive enzymes [19]. Other engineering strategies 

involve the replacement of enzymes such that the modified enzymes can use cofactors that are 

more available to cyanobacteria. For example, the NADH-dependent enzymes involved in the 

synthetic pathways of 1, 2-propanediol and 1-butanol have been replaced by the NADPH-

dependent enzymes to make use of the NADPH pool generated during photosynthesis [16, 18].  

1.2.2 Biochemical production via dark-fermentation in cyanobacteria 

Although cyanobacteria are oxygenic phototrophic bacteria, many of them live in habitats 

in which absence of light creates an anoxic (no oxygen evolved from photosynthesis) dark 

environment. Therefore, some cyanobacteria also develop the ability to generate energy from 



7 
 

organic substrates to survive in the dark [27]. Biochemical production via dark-fermentation 

therefore refers to the break-down of organic carbon sources in the absence of light to precursors 

of fermentative products [27] (Figure 1.1). The organic carbon sources can come from the uptake 

of exogenous carbon such as glucose, fructose, glycerol, or from accumulated endogenous 

carbon, such as glycogen (autofermentation). The fermentative products often are lactate, 

formate, acetate, hydrogen, and ethanol [27]. Compared to photo-fermentation process, there are 

fewer metabolic engineering studies on dark-fermentation in cyanobacteria. This is mainly due to 

the limited numbers of dark-fermenting cyanobacteria strains, which often are not well-studied 

and thus genetic modification systems have not yet been developed. In addition, the uptake rates 

of exogenous carbon sources are relatively slow which results in a slow growth and product 

formation [27]. Genetic engineering approaches reported thus far for biochemical production in 

dark fermentation conditions involved redirecting reductant toward desired products by deleting 

competing pathways [12, 28]. Recently, an engineered cyanobacteria strain Synechococcus 7002 

lacking a lactate-dehydrogenase enzyme has been shown to produce hydrogen at a  level 5 times 

higher than that of the wildtype via autofermentation of glycogen [12]. In another study, a 

Synechococcus 7002 strain lacking pyruvate:ferredoxin oxidoreductase secreted a ~ 2 fold 

increase in lactate and succinate production compared to wildtype strain [28].   

1.3 Challenges and prospects of biochemical production in 

cyanobacteria 

As a comparison, highest reported yields of selected chemicals produced in engineered 

cyanobacteria are compared with those in the well-studied bacteria E. coli (Table 1.2). It was 

also estimated that in most engineered cyanobacteria systems, only 5-6% of the captured carbon 

dioxide were directed to the desired products [29], while the conversion of glucose to desired 
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products were at least 25% theoretical maximum efficiency in other microorganisms [29]. 

Clearly, efficiency of the chemical production in cyanobacteria is much less than that in other 

engineered microorganisms. It should be noted that, however, the use of E. coli or yeast in 

metabolic engineering have been studied for many years and the genetic modification systems 

for these organisms are much more diverse and developed than for cyanobacteria. With the 

advances in synthetic biology and molecular biology, more genetic tools will be developed for 

cyanobacteria. In addition, systems biology approaches can be employed to improve our 

understanding of cyanobacteria metabolism and regulation, which would be beneficial in 

metabolic engineering cyanobacteria strains with enhanced photosynthesis and carbon fixation 

efficiency, and optimized pathways for biochemical production of value products.  

Table 1.2: Comparison of reported production yields for various chemicals produced in 
cyanobacteria and in E. coli 

Organisms  Cyanobacteria E. coli 
Products  Titer Host/ References Titer References
Ethanol 550 mg/L (6 days) Synechocystis 6803 [23] 36.33 g/L (3 days) [30] 
Isobutanol 450 mg/L (6 days) Synechococcus 7942 [15] 22 g/L (5 days) [31] 
Isobutyraldehyde 1100 mg/L (8 days) Synechococcus 7942 [15] 35 g/L (5 days) [32] 
1-Butanol 30 mg/L (18 days) Synechococcus 7942 [16] 375 mg/L (1 day) [33] 
2-Methyl-1-butanol 200 mg/L (12 days) Synechococcus 7942 [17] 1.25 g/L (1 day) [34] 
Fatty acids 197 mg/L (17 days) Synechocystis 6803 [24] 4.8 g/L (2 days) [24] 
Hydrogen 3.26 g/L/h Cyanothece 51142 [11] 23.6 g/L/h [35] 
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Chapter 2 
 
Metabolic network reconstruction and constraint-

based modeling 
 

The importance of model development in different research areas has been realized for 

many years as models are useful in testing hypotheses, making predictions, reducing significant 

numbers of experiments, and contributing to knowledge discovery. Genome-scale metabolic 

models are important in systems biology and metabolic engineering for many practical 

applications such as generating testable hypotheses, identifying strain-design strategies, or 

integrating high-throughput data. As more genome sequences become available, the need for 

accurate metabolic models becomes more important. In this chapter, we report the reconstruction 

of three genome-scale metabolic models that will be analyzed in later chapters, Cyanothece 

51142 (iCce806), Synechococcus 7002 (iSyp708) and Shewanella W3181 (iW31818_794). The 

analyses of the Cyanothece 51142 metabolic model are presented in chapter 3. Chapter 4 

describes the computational evaluation of the Synechococcus 7002 model for chemical 

production of various compounds. Chapter 5 describes the development of a co-culture model 

using the metabolic models of Synechococcus 7002 and Shewanella W3181.  

2.1 Metabolic network reconstruction 

2.1.1 Databases and draft metabolic network reconstruction 

A metabolic network is reconstructed on the basis of a genome annotation of a particular 

organism combined with knowledge of enzymes and biochemical reactions. A reconstructed 
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metabolic network is composed of a list of three entities, the genes whose annotations suggest 

metabolic functions, the enzymatic proteins encoded by those genes, the biochemical reaction 

equations that are catalyzed by those proteins, and the gene-protein-reaction (GPR) association 

that connects those entities (Figure 2.1). Genome annotation databases for specific organisms 

include EcoCyc (specific for Escherichia coli K12 MG1655) [36], SGD (Sacharomyces Genome 

Database, specific for yeast) [37], CyanoBase (specific for cyanobacteria) [38]. Other databases 

such as CMR (Comprehensive Microbial Resources) [39], SEED [40] or NCBI (National Center 

for Biotechnology Information) [41] contain a collection of genome annotations for a variety of 

organisms.  

 

Figure 2.1: Different presentations of Gene-Protein-Reaction (GPR) association  
G1, G2, …, G7 represent genes. P1, P2, …, P6 represent proteins. R1, R2, …, R6 represent reactions. 
Arrows connecting genes to proteins to reactions describe the GPR association. P1 is a single enzyme 
which encoded by gene G1. P1 can catalyze 2 reactions R1 and R2. P2 is an enzyme that has two subunits 
encoded by gene G2 and G3. P3 and P4 are isozymes for they can both catalyze the same reaction R4. P5 
and P6 are enzyme complexes because they are both needed to create a functional enzyme that catalyzes 
R6. 

 
Reaction and enzyme databases such as KEGG (Kyoto Encyclopedia of Genes and 

Genomes) [42], BRENDA (Braunschweig  Enzyme Database ) [43], MetaCyc [44], TransportDB 

(Transport Database) [45] provide information on reaction properties such as stoichiometry, 
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products, substrates, and reaction directionality. Manual metabolic network reconstruction is a 

laborious and time-consuming process. Fortunately, a number of semi-automatic approaches 

have been developed to speed up the reconstruction process. These approaches include 

SimPheny (Genomatica, San Diego, CA), Model SEED [46], and Pathway Tools [47]. Pathway 

Tools creates model-organism databases for different organisms and allows users to graphically 

visualize and data-mine the contents of the databases [47]. SimPheny and Model SEED provide 

users draft metabolic models for which the GPR associations have already automatically 

constructed [46].  

2.1.2 Manual curation of draft reconstruction 

The draft metabolic models need to be further curated by modelers to ensure accurate 

presentations of the gene-protein-reactions, and proper functions of the network. Metabolic 

network curation normally involves filling network gaps, correctly assigning GPR associations, 

and constructing biomass equation.  

Metabolic gaps are metabolites that are either only produced or consumed in the network, 

which create holes in the network. The presence of these gaps is likely due to errors generated 

during the reconstruction of draft model or incomplete knowledge of the organism’ metabolism 

[48, 49]. An example of network gap and gap-filling solution in the reconstruction of the 

Cyanothece 51142 metabolic model is shown in Figure 2.2. In this example, the draft model of 

Cyanothece 51142 could not produce isoleucine due to a gap in producing the isoleucine 

precursor (2-oxobutanoate, 2obut). Normally, 2obut is produced from threonine via a threonine 

deaminase enzyme (EC-4.3.1.19), which is missing in the genome annotation of Cyanothece 

51142. By genome comparison with Geobacter sulfureducens [50], a new pathway converting 

pyruvate to 2obut was introduced to the draft model, and consequently the model can produce 
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isoleucine. This pathway was later confirmed experimentally in Cyanothece 51142 [51]. A 

number of automatic gap-filling methods have been developed such as GapFind/ GapFill [48], 

Model SEED [46], MetaFlux [52], and SMILEY [49]. These methods often suggest one of the 

following gap-filling strategies: changing the directionalities of existing reactions, and adding 

transport or metabolic reactions from reaction databases specific to the organism or from other 

organisms [48, 52]. The suggested strategies need to be validated with experimental data before 

adding to the metabolic models as it was reported that 50% of the gap-filling reaction candidates 

suggested by MetaFlux have no experimental support and hence were disregarded [52]. Because 

our knowledge of an organism’s metabolism is incomplete and limited, it is generally accepted 

that genome-scale metabolic models can contain a number of metabolic gaps and these gaps may 

not affect model predictions in most cases. Gap-filling is an iterative process for which when 

new knowledge or experimental data become available, the number of gaps can be narrowed.  

 

Figure 2.2: Example of network gap and gap-filling solution in the Cyanothece 51142 model  
Draft model of Cyanothece 51142 could not produce isoleucine due to the gap in producing its precursor 
2-oxobutanoate (2obut). Threonine deaminase (reaction in red), which can convert threonine to 2obut is 
missing in the genome annotation. A new pathway (reactions in green) converting pyruvate to 2obut was 
introduced to the draft model based on genome comparison with Geobacter sulfureducens. Metabolites 
and reactions abbreviations can be found online [53]. 
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Correct GPR associations in a metabolic network reconstruction allow for accurate 

network modifications when simulating gene deletions. Only one gene can be associated with 

one mRNA and one protein, based on central dogma. Any GPR associations that violate this rule 

need to be fixed. An example of incorrect assigning GPR in the early draft model of Cyanothece 

51142 produced by SimPheny and its corrected version in the published model iCce806 [53] are 

shown in Figure 2.3 below. In this example, two genes (cce_2605 and cce_2693) were associated 

with AspB which is an aspartate aminotransferase, an enzyme that involves in the transfer of 

amine group from one amino acid to another. This enzyme catalyzes two reactions ASPTA1 

(which interconverts aspartate and α-ketoglutarate to oxaloacetate and glutamate) and TYRTA 

(which interconverts 3-(4-hydroxyphenyl)-pyruvate and glutamate to tyrosine and α-

ketoglutarate). This GPR association is incorrect because the protein AspB is encoded by two 

genes that are not protein subunits (Figure 2.1). According to the genome annotation of 

Cyanothece 51142 [54], gene cce_2605 encodes L,L-diaminopimelate aminotransferase, an 

enzyme that converts L,L-diaminopimelate to glutamate. Therefore, this GPR association is 

modified such that gene cce_2605 is dissociated from the draft GPR, and is associated with 

enzyme L,L-diaminopimelate aminotransferase (Dapat), which catalyzes a new reaction DAPAT 

(which interconverts glutamate to L,L-diaminopimelate). Consequently, gene cce_2693 is 

associated with protein AspB1 which catalyzes both ASPTA1 and TYRTA reactions. Further 

examinations of the genome annotation and the draft model of Cyanothece 51142 reveal new 

GPR associations for reactions ASPTA1 and TYRTA. The enzyme AspB2, which is encoded by 

gene cce_1121, is an isozyme of AspB1 and therefore can also catalyze ASPTA1 and TYRTA. 

The enzyme HisC, which is encoded by cce_3291 and was associated with histidinol phosphate 

transaminase reaction (HISPT) in the draft model, can also catalyze TYRTA. All three enzymes 
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AspB1, AspB2, and HisC can also interconvert glumate and phenylpyruvate to α-ketoglutarate 

and phenylalanine via reaction PHETA1.  

 

Figure 2.3: Example of incorrect and correct GPR associations  
Left panel shows an incorrect GPR association. Protein AspB, which catalyzes reactions ASPTA1 and 
TYRTA, is associated with two genes cce_2605 and cce_2693 which are not protein subunits. Right panel 
shows correct and new GPR associations. Gene cce_2605 now encodes protein Dapat (an L,L-
diaminopimelate aminotransferase) which catalyzes DAPAT reaction. AspB1 (now encoded by 
cce_2693) and AspB2 (encoded by cce_1121) are isozymes and both catalyze ASPTA1, TYRTA, and 
PHETA1 reactions. HisC, which is a histidinol phosphate transaminase, and was originally only catalyzes 
HISPT reaction, can also catalyze TYRTA and PHETA1 reactions.  
 
 The biomass formation equation is crucial for growth simulations of genome-scale 

models. Biomass compositions measured under different growth conditions and for different 

organisms are different and will certainly affect the model-predicted flux distribution 

quantitatively, and qualitatively. Therefore, an accurate representation of biomass formation 

equation is also an important step in reconstructing a metabolic network. All genome-scale 

models that have been developed consist of at least one biomass equation that represents the 

production of 1 unit (in gram dry weight – g DW or ash-free gram dry weight g AFDW) of 

biomass. In many genome-scale models such as early models of E. coli (iJE660) [55], or 

Synechocystis 6803 [56], the biomass equation was represented as a linear combination of 

various central metabolic precursors (such as glucose-6-phosphate, pyruvate, acetyl-coA) and 
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cofactors (such as nadhp, nadh). This representation is less intuitive since it is difficult to 

measure concentrations of these precursors. Therefore, the biomass formation equation has 

recently been replaced by a more straight-forward representation, which is a linear combination 

of easily quantified macromolecules such as protein, lipids, DNA, RNA, pigments, 

carbohydrates, and cofactors. The three genome-scale models of Cyanothece 51142, 

Synechococcus 7002, and Shewanella W3181 developed in this work have the biomass 

composition constructed in this manner.  

2.1.3 Reconstruction of metabolic network for Cyanothece 51142 

2.1.3.1 Network reconstruction 

A draft metabolic network of Cyanothece 51142 was reconstructed in SimPheny 

(Genomatica, San Diego, CA) using a previously described automated model-building process 

[57]. Metabolic reactions and gene- protein- reaction (GPR) associations from other models were 

incorporated into the reconstruction if good BLAST hits could be found between genes in 

Cyanothece 51142 and genes in other modeled organisms. Additional reactions were added as 

necessary to produce known biomass constituents or utilize known nutrients; detailed literature, 

database, and BLAST searches were then carried out to find genes encoding these reactions in 

Cyanothece 51142 genome. This resulted in several new GPR associations that were 

incorporated into the reconstruction. The resulting model is referred to as iCce806, and its 

content can be found online [53]. The resulting iCce806 network contains 806 genes, 587 

metabolites, and 667 metabolic and transport reactions (see Table 2.1 for network details). Most 

of the 42 reactions without genes associated with them were added to complete metabolic 

pathways needed for biomass production. The final reconstruction encompasses central 

metabolic pathways such as the Calvin-Benson cycle, the pentose phosphate pathway (PPP), 
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reactions within the tricarboxylic acid (TCA) cycle, as well as, the complete set of anabolic 

pathways involved in biosynthesis of glycogen, cyanophycin, amino acids, lipids, nucleotides, 

vitamins, and cofactors. Pathways for glycolate synthesis (via ribulose-1,5-bisphosphate 

carboxylase/oxygenase, i.e.,  photorespiration), glycolate conversion to serine, and glycerol 

catabolism are also included.  

Table 2.1: Statistics of the Cyanothece 51142 genome-scale metabolic model (iCce806) 

Included genes 806 

With gene association 625 

 Reactions Without gene association 42 

  Exchange reactions 52 

Metabolites 587 

Network gaps 95 

 

2.1.3.2 Photosynthetic and respiratory pathways 

The heart of the metabolic network of Cyanothece 51142 lies at the photosynthetic and 

respiratory pathways. Photosynthetic electron transfer associated with the thylakoid membrane is 

represented as a set of four separate reactions, including light capture by photosystem II (PS II) 

and photosystem I (PS I), electron transfer between the two photosystems, and cyclic electron 

transfer around PS I. Similarly, respiratory electron transfer is represented by reactions catalyzed 

by terminal cytochrome c oxidase (COX), quinol oxidases (QOX, both bd- and bo-types), 

NADH dehydrogenases (NDH, type 1 and 2), and succinate dehydrogenase. In addition, two 

reactions (NADP+- and ferredoxin- requiring) for flavin-dependent reduction of O2 (i.e., Mehler 

reactions) were included. A simplified scheme of the photosynthetic and respiratory electron 

transfer reactions in iCce806 is shown in Figure 2.4. 
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Figure 2.4: Schematic representation of the electron transport and reductant partitioning pathways 
in the Cyanothece 51142 model 
Linear photosynthetic electron transfer: electrons from photosystem II (PS II) to photosystem I (PS I) are 
transferred through plastoquinone (Pq), cytochrome b6f complex (Cyt b6f), plastocyanin (Pc) and 
cytochrome c6 (Cyt c6). From PS I electrons can be transferred to ferredoxin (Fd) via ferredoxin:NADP+ 
reductase (FNR) and subsequently to generate reductant in the form of NADPH. Cyclic photosynthetic 
electron transport: electrons can flow from Fd to Pq (FdPq reaction). Respiratory electron transfer: 
includes two cytochrome oxidases (COX), two cytochrome-quinol oxidases (QOX), and two types of 
NADH dehydrogenases (NDH-1 and NDH-2). Alternative sinks for reductant beyond CO2 fixation: 
reduced Fd can be used by the nitrogenase (Nif) and by Mehler reactions to reduce O2. Bidirectional 
hydrogenase (Hox) can reversibly produce H2 using NAD(P)H as an electron donor, while the uptake 
hydrogenase (Hup) consumes H2 using Fd as an electron acceptor. Protons transferred across the 
thylakoid membrane are used by the ATPase to drive ATP synthesis. 
 
2.1.3.3 Constructing biomass equation 

 As mentioned earlier, the biomass formation equation of Cyanothece 51142 was 

constructed as a linear combination of macromolecules whose concentrations were determined 
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experimentally from two growth conditions, light-limited and ammonia limited chemostats 

(Figure 2.5).  

 

Figure 2.5: Biomass composition (in g/ g AFDW) of Cyanothece 51142 measured under light-limited 
and ammonia-limited chemostat conditions 
Cyanophycin concentration was not measured experimentally but estimated using a computational 
approach.  

 
Since cyanophycin concentration was not determined experimentally, we estimated the 

concentration using a computational approach. Firstly, the amino acid composition used in the 

protein synthesis equation (PROTSYN_CN) in the iCce806 model and total number of amino 

acids (except Cys, Met, and Trp) in protein (P) and cyanophycin (C) were obtained by first 

solving an optimization problem that minimizes the difference between the relative amino acid 
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composition in protein ൫ݔ௉
௜ ൯ and the theoretical amino acid composition from genomic data 

൫ݔ௉
௜,௧௛௘௢௥௘௧௜௖௔௟൯ excluding unmeasured amino acids (Cys, Met, and Trp) (Eq. 2.1). 

min 									∑ ൫ݔ௉
௜ െ ௉ݔ

௜,௧௛௘௢௥௘௧௜௖௔௟൯
ଶ

௜∈஺஺\ሼ஼௬௦,ெ௘௧,்௥௣ሽ     (Eq. 2.1) 

.ݏ .ܲ												ݐ ௉ݔ
௜ ൌ ,௜ܯ ݅ ∈ ,ݐ݁ܯ,ݏݕܥሼ\ܣܣ ,݌ݎܶ ,݃ݎܣ ,݊ݏܣ ,݌ݏܣ ,݈݊ܩ  ሽ (Eq. 2.2)ݑ݈ܩ
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஺௥௚ ൌ  ஺௥௚       (Eq. 2.3)ܯ
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஺௦௣ ൌ  ஺௦௡ା஺௦௣     (Eq. 2.4)ܯ

				ܲ. ൫ݔ௉
ீ௟௡ ൅ ௉ݔ

ீ௟௨൯ ൌ  ௟௡ାீ௟௨      (Eq. 2.5)ீܯ

				∑ ௉ݔ
௜

௜∈஺஺\ሼ஼௬௦,ெ௘௧,்௥௣ሽ ൌ 1       (Eq. 2.6) 

஼ݔ				
஺௦௣, ஼ݔ

஺௥௚ ൌ 0.5        (Eq. 2.7) 

௉ݔ				
௜ ൒ 0         (Eq. 2.8) 

 In this method, the experimentally measured amino acid compositions (ܯ௜, μmol/g 

AFDW) were used from our two chemostat experiments for light-limited (LL) and ammonia-

limited (AL) conditions to constrain the values of P, C and  , such that the estimated amounts 

of each type of amino acid in protein and cyanophycin equaled their measured values (Eq. 2.2 – 

2.5). The theoretical fractions ൫ݔ௉
௜,௧௛௘௢௥௘௧௜௖௔௟൯ and measured values ൫ܯ௜൯ used in the problem are 

listed in Table 2.2 below. Cyanophycin contains an equal amount of Asp and Arg, and therefore 

the fraction of these two amino acids in cyanophycin ൫ݔ஼
௜ ൯ is 0.5. 

 It should be noted that the compositions for Cys, Met, and Trp are missing from the table 

as these amino acids were not stable enough to be measured and hence were excluded from the 

optimization. Consequently, the amount P estimated by the above method represents the number 

of all amino acids except Cys, Met, and Trp contained in proteins. Additionally, Glu and Gln, as 

xp
i
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well as, Asn and Asp are measured as pooled metabolites, so the reported measured values in 

Table 2.2 for Asp and Glu are actually ܯ஺௦௡ା஺௦௣ and ீܯ௟௡ାீ௟௨ , respectively. 

Table 2.2: Experimental amino acid compositions of Cyanothece 51142 measured under light-
limited and ammonia-limited chemostats 

Conditions LL AL Theoretical  

Amino 
acids 

Mi 
(umol/gDW) 

Mi 

(umol/gDW) 

Fraction from 
protein 

sequences 

Adjusted fraction 
(exclude Cys, Met, 

Trp) 
ࡼ࢞
 ࢒ࢇࢉ࢏࢚ࢋ࢘࢕ࢋࢎ࢚,࢏

Molecular 
weight 
(g/mol) 

Asp 450.507 219.702 0.050 0.053 132.098 
Ser 122.154 116.098 0.063 0.066 105.096 
Glu 298.283 291.201 0.066 0.069 146.124 
Gly 177.042 181.462 0.065 0.068 75.07 
His 27.968 31.493 0.019 0.020 155.162 
Arg 307.891 108.699 0.045 0.047 175.22 
Thr 115.397 120.574 0.057 0.060 119.122 
Ala 214.011 201.620 0.066 0.069 89.096 
Pro 106.474 104.816 0.046 0.048 115.132 
Cys NA NA 0.010 Excluded 121.162 
Tyr 75.157 66.697 0.033 0.035 181.188 
Val 116.127 115.411 0.061 0.064 117.148 
Met NA NA 0.020 0.000 149.214 
Lys 96.985 102.871 0.055 0.058 147.2 
Ile 98.619 98.032 0.076 0.079 131.174 

Leu 164.729 165.450 0.111 0.116 131.174 
Phe 73.953 71.227 0.041 0.043 165.188 
Trp NA NA 0.014 Excluded 204.226 
Asn NA NA 0.049 0.051 132.124 
Gln NA NA 0.052 Excluded 146.15 

 

 Solving the above optimization problem, we obtained estimated amounts for P, C and 

mole fractions for all amino acids in protein, except Cys, Met and Trp. These mole fractions 

were then readjusted to account for these unmeasured amino acids. The mole fractions ൫ݕ௉∗
௜ ൯ for 

all 20 amino acids in protein (P*) were calculated using the three equations (Eq. 2.9 – 2.12) listed 

below, and the resulting values are reported in Table 2.3. 

∗௉ݕ
௜ ൌ ,݊݋݅ݐܿܽݎ݂	݈ܽܿ݅ݐ݁ݎ݋݄݁ݐ ∀݅ ∈ ሼݐ݁ܯ,ݏݕܥ,  ሽ    (Eq. 2.9)݌ݎܶ

ܲ∗ ൌ ௉

ଵି∑ ௬ು∗
೔

೔∈ሼ಴೤ೞ,ಾ೐೟,೅ೝ೛ሽ
        (Eq. 2.10) 

∗௉ݕ
௜ ൌ ௉.௫ು

೔

௉∗
, ∀݅ ∈ ,ݐ݁ܯ,ݏݕܥሼ\ܣܣ  ሽ      (Eq. 2.11)݌ݎܶ
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Table 2.3: Estimated amino acid compositions in the Cyanothece 51142 model 

Amino acids 
LL Conditon AL Condition 

    
Asp 0.059 0.056 0.054 0.052 
Ser 0.061 0.058 0.059 0.056 
Glu 0.080 0.076 0.080 0.076 
Gly 0.088 0.084 0.092 0.088 
His 0.014 0.013 0.016 0.015 
Arg 0.046 0.044 0.050 0.048 
Thr 0.057 0.054 0.061 0.058 
Ala 0.106 0.101 0.102 0.097 
Pro 0.053 0.051 0.053 0.051 
Cys Excluded 0.010 Excluded 0.010 
Tyr 0.037 0.035 0.034 0.032 
Val 0.058 0.055 0.058 0.055 
Met Excluded 0.020 Excluded 0.020 
Lys 0.048 0.046 0.052 0.050 
Ile 0.049 0.047 0.050 0.048 

Leu 0.082 0.078 0.084 0.080 
Phe 0.037 0.035 0.036 0.034 
Trp Excluded 0.014 Excluded 0.014 
Asn 0.058 0.055 0.053 0.051 
Gln 0.067 0.064 0.066 0.063 

P (umol AA 
/gDW) 2014.285  1976.969 

C (umol AA 
/gDW) 431.012 18.384 

P* (umol AA 
/gDW) 2108.126 2069.071 

 

 The mass ratio of the total protein to cyanophycin (g protein/g cyanophycin) was 

calculated using P* and C and the weighted average molecular weight for amino acids in each 

macromolecule. This mass ratio was then used to calculate the protein and cyanophycin 

concentrations, provided measured total protein concentration (Table 2.4). The concentration of 

soluble metabolites that are also part of the biomass equations were taken from [58] and [59]. 

Appendix 1 contains a more detailed description of the complete biomass equations constructed 

for Cyanothece 51142 metabolic model. The biomass compositions of macro molecules were 

adjusted for each condition so that the total biomass composition added up to 1 g AFDW. 

xP
i yP*

i xP
i yP*

i
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Table 2.4: Biomass compositions of Cyanothece 51142 measured under light-limited (LL) and 
ammonia-limited (AL) chemostats 

 LL Condition AL Condition 
Biomass 

components 
Raw 
data 

values 
(g/L) 

Raw data + 
computed data 
(g/gAFDW) 

Adjusted 
data 

(g/gAFDW) 

Raw data 
values 
(g/L) 

Raw data + 
computed data 
(g/gAFDW) 

Adjusted 
data 

(g/gAFDW) 

Protein 0.028 0.473 0.397 0.017 0.211 0.210 
Carbohydrates 0.012 0.197 0.165 0.040 0.502 0.502 

Lipids 0.010 0.161 0.135 0.011 0.142 0.142 
RNA 0.011 0.181 0.152 0.008 0.097 0.097 
DNA 0.002 0.040 0.034 0.003 0.033 0.033 

Cyanophycin a) NA 0.116 0.097 NA 0.002 0.002 
Chlorophyll b) 0.0014 0.024 0.020 0.001076 0.014 0.014 
Ash-free dry 

weight (g 
AFDW/L) 0.059   0.079   
Dry weight 

(gDW) 0.179   0.1814   
Total  1.191 1.000  1.000 1.000 

a) Cyanophycin concentration was not measured experimentally, but computed using macromolecular 
protein concentration measurements, and mass ratio of total protein (P*) to cyanophycin (C) obtained 
from solving the above optimization problem.  

b) Chlorophyll concentration was measured under both chemostat conditions, following methods 
described by Meeks et al. [60]. Since the total composition of biomass components in LL condition is 
not equal to 1, we rescaled the data so that the total fraction equals 1.  

2.1.4 Updating existing metabolic network for Synechococcus 7002 

We also updated the previously developed draft metabolic model (iSyp611) for 

Synechococcus 7002 [61] using updated genome annotations from a Pathway/Genome Database 

(provided by Margrethe Serres, personal communication) and new biochemical data [12, 62]. 

This involved expanding the metabolic network to include genes that were responsible for new 

metabolic reactions, as well as some existing reactions whose gene-protein-reaction (GPR) 

associations were missing in iSyp611. In addition, we constructed a biomass reaction for the new 

Synechococcus 7002 model based on experimentally-measured biomass composition data 

(normalized to ash-free dry weight (AFDW) obtained for Synechococcus 7002 grown in 

chemostats under light-limited, nitrogen-limited and carbon-limited conditions. The biomass 
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composition data was used to generate a biomass reaction, as described previously [53]. The 

resulting model is referred to as iSyp708. This model includes 708 genes and 599 metabolic 

reactions (Table 2.5). The contents of this model can also be found in [63] 

Table 2.5: Statistics of the previous (iSyp611) and the current (iSyp708) metabolic model of 
Synechococcus 7002 

Models iSyp611 iSyp708 
Genes 611 708 

Reactions (metabolic and transport)
GPR 517 568 
Non-GPR 35 34 

Exchange reactions 37 44 
Metabolites 544 581 

 

The addition of 99 new genes (Appendix 2) led to the introduction of 45 new reactions 

and modifications to previous GPRs (Appendix 3). About half of the newly-included genes were 

responsible for new metabolic functions, while the rest were added as either isozymes or 

subunits of existing enzymes in the previous model, iSyp611. There were a few cases, where 

genes were removed from GPRs of one reaction and assigned to another. For example, gene 

A2770, which was previously included as a subunit of acetolactate synthase (EC-2.2.1.6), has 

been assigned to a new reaction that converts α-ketoglutarate to succinyl aldehyde. This 

modification reflected a recent discovery of the enzymatic functions of two genes that are 

responsible for completing the TCA cycle in cyanobacteria [62]. The model was also updated to 

include a biomass reaction based on the average biomass composition that was measured under 

three different photoautotrophic growth conditions. Similar to what we previously observed for 

Cyanothece ATCC 51142 [53], the carbohydrate and protein fractions of biomass showed the 

greatest variability between light- and nitrogen-limited conditions (Figure 2.6, Appendix 4). The 

incorporation of this new biomass equation into the model will enable more accurate predictions 

of cellular phenotypes.   
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Figure 2.6: Biomass composition of Synechococcus 7002 measured under carbon-, nitrogen-, and 
light-limited chemostat conditions 
The biomass compositions of Synechococcus 7002 measured under carbon-, nitrogen-, and light-limited 
chemostat conditions. The biomass compositions used in the model were scaled so that the total 
composition equals 1 g AFDW.  
 

Cofactors were also included as part of the biomass requirement and their values were 

similar to those used in the metabolic model (iCce806) of Cyanothece 51142 [53]. While 

Synechococcus 7002 does not produce formate experimentally during photoautotrophic growth, 

the earlier iSyp611 model predicted that formate would be produced under this condition since 

enzymes degrading formate are missing from the genome. Therefore, in the new Synechococcus 

7002 (iSyp708) model, we removed 10-formyl-tetrahydrofolate (10fthf), flavin adenine 

dinucleotide (fad) and 5, 10-methylenetetrahydrofolate (mlthf) from the biomass reaction 

because their biosynthesis reactions produce formate as by-product during photoautotrophic 

growth. We expect that removing these metabolites would not affect our simulation results 
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significantly since these metabolites were only present in very small amounts (0.05-0.07 % g/ g 

AFDW). 

2.1.5 Reconstruction of the metabolic network for Shewanella W3181 

The genome-scale metabolic model of Shewanella W3181 was constructed based on 

genome comparison with the existing metabolic model of Shewanella MR1 iSO783 [64]. A list 

of orthologous genes between Shewanella MR1 and W3181 (provided by Margrethe Serres, 

personal communication) was used as the basis of genome comparison. Specifically, if a gene for 

which orthologous gene can be found in Shewanella MR1, corresponding protein and reaction 

associations would be copied from the iSO783 model. The genes for which no orthologous genes 

can be found in Shewanella were evaluated for additional metabolic functions. The 

reconstruction process involved the removal of some existing reactions in the iSO783 model, the 

modification of existing GPR due to the loss or gain of isozymes or protein subunits, and the 

addition of several new reactions that were not present in iSO783. The resulting model is 

referred to as iW3181_794. This model includes 794 metabolic genes, and 812 metabolic and 

transport reactions (Table 2.6). Of 794 genes included in the iW3181_794 model, there were 708 

orthologous genes included in the iSO783 model. Since biomass composition was not 

determined for Shewanella W3181, we used the same biomass equation that appeared in 

Shewanella MR1 model iSO783. Details of the reconstruction of Shewanella W3181 can be 

found in Appendix 5.  

Table 2.6: Statistics of the genome-scale metabolic models of Shewanella MR1 (iSO783) and 
Shewanella W3181 (iW3181_794) 

Models iSO783 iW3181_794 
Genes 783 794 
Reactions (metabolic and transport) 774 812 
Exchange reactions 85 106 
Metabolites 634 645 
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2.2 Constraint-based modeling 

Once the metabolic network is reconstructed, it is necessary to convert it to a 

mathematical model so that computational approaches can be developed and applied to analyze 

the model. A metabolic network can be visualized as a network flow composed of links 

(biochemical reactions) connecting nodes (metabolites) and this network can perform cellular 

functions such as growth, ATP production, and metabolite production. The links within such 

networks can be mathematically represented by a stoichiometric matrix ሺܵሻ with the rows are the 

metabolites ሺܫሻ and the columns are the reactions ሺܬሻ [65]. In this mathematical model, the 

variables ሺݒሻ are fluxes through reactions in the network. There are different modeling 

approaches that have been developed for biological networks including dynamic and constraint-

based modeling methods. While dynamic models, which are described by differential equations 

of metabolite concentrations and involve with reaction kinetics, can efficiently describe the 

dynamics of a system, it is almost impossible to obtain the kinetic parameters (e.g., rate 

constants) in vivo for every single reaction in the network due to the fact that these parameters 

often vary with organisms and time through evolution and this makes it difficult to obtain a 

complete set of kinetic parameters for a specific organism [65]. In addition, solving such large 

systems of differential equations is computational expensive and challenging task [66]. 

Therefore, instead of trying to find a single solution, which usually is the collection of flux 

values of reactions in the network at a given time, constraint-based models seek a solution space 

that satisfies all the constraints specified by modelers such as thermodynamics, material 

balances, and enzyme capacity (Eq. 2.13 – 2.15). The mass balance equation (Eq. 2.13) ensures 

the conservation of metabolites ሺܫሻ within the model based on steady-state assumption. 

Thermodynamic constraint (Eq. 2.14) is reflected through the reversibility of each reaction in the 
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network such that flux value of irreversible reactions (ሺܬ௜௥௥ሻ are non-negative while that of 

reversible reactions can be negative or positive. Enzyme capacity constraint (Eq. 2.15) is 

represented by applying lower ሺߙሻ and upper bounds ሺߚሻ to the flux values. The solution space 

is called a feasible region and it contains the flux values ሺݒሻ that satisfy all of the constraints.  

∑ ௜ܵ௝. ௝ݒ ൌ 0, ݅ ∈ ௝ܫ       (Eq. 2.13) 

௝ݒ ൒ 0, ݆ ∈  ௜௥௥      (Eq. 2.14)ܬ

ߙ ൑ ௝ݒ ൑  (Eq. 2.15)       ߚ

In order to identify single flux distributions from a solution space, a number of 

constraint-based methods have been developed such as flux balance analysis (FBA) [67], and 

minimization of metabolic adjustments (MOMA) [68]. Since FBA and MOMA are often used in 

later chapter, the mathematical formulations of these algorithms are shown in equations below 

(Eq. 2.16 – 2.18). FBA solves for flux distribution assuming that the metabolic network is at 

steady state and all of the fluxes through the network are balanced [67]. In addition, the solution 

is found by optimizing the network for certain objectives such as maximizing growth rate, ATP 

production, or metabolite production [67]. This optimization problem is often formulated as a 

linear programming problem because the objective functions as well as the constraints are often 

linear. MOMA seeks solutions (flux values) that minimize the change in fluxes between the 

unperturbed wildtype or a parental strain ሺݓሻ and mutant strain ሺݒሻ (i.e. knockout strain, for 

which some fluxes are set to zero. Eq. 2.18) [68]. Due to the nature of the objective functions, 

MOMA is formulated as a quadratic programming. Another useful constraint-based method for 

characterizing the metabolic networks is robustness analyses, which measures the change in the 

optimal value of objective function with respect to change in the values of fluxes through some 

specific reactions [69]. Similarly, flux variability analysis (FVA) can also be used to determine 
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the range of values each flux can take that are consistent with the applied constraints by 

maximizing and minimizing each flux individually [70]. The constraint-based methods 

mentioned above are widely used to analyze metabolic networks.   

ݔܽ݉/݊݅݉																	:ܣܤܨ 					்ܿ.  (Eq. 2.16)      	ݒ

.ݏ .ݍܧሺ																		.ݐ 2.13 െ 2.15ሻ 

݊݅݉												:ܣܯܱܯ 																	ሺݒ െ  ሻଶ    (Eq. 2.17)ݓ

.ݏ   .ݍܧሺ																			.ݐ 2.13 െ 2.15ሻ 

௝ݒ  ൌ 0, ݆ ∈  (Eq. 2.18)    ܣ
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Chapter 3 
 
Development and analyses of a genome-scale 

metabolic model for Cyanothece sp. ATCC 51142  

 Cyanothece spp. are unicellular, diazotrophic cyanobacteria that temporally separate 

light-dependent oxygenic photosynthesis and glycogen accumulation from N2 fixation at night 

[71]. When grown under nutrient excess, Cyanothece sp. strain ATCC 51142 (thereafter 

Cyanothece 51142) cells can accumulate significant amounts of storage polymers including 

glycogen, polyphosphates, and cyanophycin [72]. The inter-thylakoid glycogen granules are 

significantly larger in size than those found in other cyanobacteria, which points at an unusual 

branching pattern and packaging of this compound. From a biotechnological perspective, this 

presents an intriguing theoretical possibility to accumulate substantially higher amounts of 

polyglucose without any significant increase in the number of granules [73]. Cyanothece 51142 

is also of interest for bioenergy applications due to its ability to evolve large quantities of H2. 

Remarkably, H2 production in this organism can occur under light conditions in the presence of 

O2 and is mediated by nitrogenase [11, 74] 

Sequencing of the Cyanothece 51142 genome [54] has enabled application of high-

throughput genomic approaches to study the unique physiological and morphological features of 

this organism. Transcriptomic and proteomic studies have been conducted to analyze global gene 

expression patterns under a variety of environmental conditions and infer regulatory pathways 

that govern the organism’s diurnal growth [75, 76]. The availability of genomic information also 

provides means to construct genome-scale constraint-based models of metabolism, which are 

powerful tools for systems-level analysis and prediction of biological systems response to 
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environmental cues and genetic perturbations [77, 78]. Such models have been developed for a 

variety of biological systems [77] but only in a few studies has this approach been applied to 

photosynthetic microorganisms, including Synechocystis sp. PCC 6803 including Synechocystis 

sp. PCC 6803 [56, 79-82], Rhodobacter sphaeroides [83], and Chlamydomonas reinhardtii [84, 

85]. However, the modeling of metabolism in oxygenic photoautotrophs is an intriguing problem 

due to the complexity of photosynthetic and respiratory electron transport chains, and the 

potential effects of two distinct photosystems upon the generation and fate of reductant and 

energy that drives the remainder of metabolism. 

In chapter 2, we have reconstructed the first genome-scale metabolic network (iCce806) 

of Cyanothece 51142. In this chapter, we used a combination of computation and experimental 

approaches to investigate how photosynthetic and respiratory fluxes affect metabolism. Discrete 

representation of PS II and PS I and their integration with multiple respiratory pathways enabled 

modeling of photon fluxes and electron flux distributions under conditions of variable light 

quality and intensity. The predicted changes in growth rates of Cyanothece 51142 in response to 

changes in light input were experimentally tested using a photobioreactor with controlled sources 

of monochromatic 630 and 680 nm light. We also carried out computational and experimental 

analyses of light- and nitrogen-limited chemostat growth of Cyanothece 51142 and used mRNA 

and protein expression data to constrain model-predicted flux distributions. Both in silico and 

experimental data suggest that respiratory electron transfer plays a significant role in balancing 

the reductant (NADPH) and ATP pools in the cells during photoautotrophic growth. This study 

is a first step towards a systems-level analysis of cyanobacterial metabolism, as it integrates 

information into a genome-scale reconstruction to understand metabolism qualitatively and 
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quantitatively through a constraint-based analysis [77]. We also discuss strategies for improving 

internal flux distributions through integration of in silico simulations and data. 

3.1 Results 

3.1.1 Metabolic model prediction validation  

For initial testing, we examined the ability of the constraint-based model of iCce806 to 

predict growth under photoautotrophic (using light and fixing CO2), heterotrophic (using 

glycerol in the dark), and photoheterotrophic (using glycerol and light) conditions with different 

nitrogen sources. In silico calculated biomass yields, which simulated carbon or light- limited 

growth (Figure 3.1), qualitatively agreed with previously reported growth data for Cyanothece 

51142 [71, 72, 86]. Other non-growth conditions that were simulated with the model included 

nitrogen fixation as occurs during the dark phase of Cyanothece’s circadian cycle [71]. In this 

case, the oxidation of glycogen provides reductant and ATP for nitrogenase, and we examined 

the model’s ability to quantitatively predict the amount of nitrogen (N2) that could be fixed and 

stored in the dark, by maximizing cyanophycin production from glycogen. Although H2 is an 

obligate co-product of the nitrogenase reaction, no H2 was produced in the initial simulations 

under dark N2-fixing conditions, contradicting experimental observations. Model examination 

revealed that all of the nitrogenase-generated H2 was utilized by hydrogenases to reduce NAD(P) 

and ferredoxin, which ultimately increased cyanophycin production. When the three hydrogenase 

reactions (HDH_1, HDH_2, and UPHYDR) were eliminated from the model, the predicted ratio 

of fixed N2 to consumed glycogen depended on the non-growth associated ATP requirement 

(NGAR), and was estimated to be 0.3 (NGAR=2.8) or 0.67 (NGAR=0) mole N2/mole glycogen, 

which was in accordance with an experimentally measured value of 0.51 [72]. Under this 
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condition, the model predicted that H2 production would have same yields as fixed N2 (0.3 to 

0.67 mole H2/mole glycogen) due to the stoichiometry of the nitrogenase reaction.  

 

Figure 3.1: In silico predictions for Cyanothece 51142’s biomass yields under photoautotrophic, 
heterotrophic and photoheterotrophic conditions 
Comparison of maximal biomass yields per g of C substrate when different nitrogen sources are used.  
Under photoautotrophic conditions CO2 uptake flux was fixed at 1 mmol·g-1 AFDW·h-1 and photon 
uptake fluxes at PSI and PSII were fixed at 10 mmol·g-1 AFDW·h-1. In the heterotrophic simulations 
glycerol was the limiting nutrient. Glycerol uptake was fixed at 1 mmol·g-1 AFDW·h-1  and maximal 
biomass yields were calculated under dark conditions. In photoheterotrophic simulations both glycerol 
and light were limiting (so an increase in either would improve growth rates). In this case, glycerol uptake 
rate was fixed at 1 mmol·g-1 AFDW·h-1, while photon uptake fluxes for PSI and PSII were both fixed at 
10 mmol·g-1 AFDW·h-1. Since light was limiting in the photoheterotrophic condition CO2 was predicted 
to be secreted and not used as an additional carbon source.  

 
We also evaluated how fluxes through electron transfer reactions are affected by the 

nitrogenase flux under N2-fixing dark conditions. With glycogen being the sole source of 

reductant for both ATP-generating oxidative phosphorylation and N2 reduction, a balance 

between fluxes through respiratory pathways and nitrogenase reaction is needed. In the absence 
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of the hydrogenase reactions, the model predicted that O2 reduction via COX, QOX, or Mehler 

reactions are required to consume NADH resulting from glycogen catabolism (Figure 3.2).  

 

Figure 3.2: Effects of distribution of fluxes through electron transport chains (ETC) on nitrogenase 
flux in the Cyanothece 51142 model 
Nitrogen fixation (nitrogenase) flux was varied while fluxes through ETC reactions were maximized and 
minimized under dark N2-fixing condition with all hydrogenase reactions eliminated from the model. 
Under this condition the amount of H2 produced is equal to the nitrogenase flux. A glycogen demand 
reaction was added to the model ( Glycogen; allowing for glycogen consumption) and its flux was 
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limited to 0.171 mmol·g-1 AFDW·h-1. A) Effects of distribution of fluxes through cytochrome c oxidases 
(COX) and cytochrome-quinol oxidases (QOX) on nitrogenase flux. B) Effects of distribution of total 
flux through COX and QOX, and flux through Mehler reactions on nitrogenase flux. C) Effects of 
distribution of fluxes through NADH dehydrogenase reactions (NDH) and Fd-depdent cyclic reaction 
(FdPq) on nitrogenase flux. Shaded regions indicate ETC reactions can have multiple values for a 
particular nitrogenase flux.  
 

The model predicts that the COX reaction is required to achieve the maximum N2 

fixation rate since it generates more ATP than the QOX or Mehler pathways (~9 O2 are needed 

per N2 fixed). This is consistent with the results from recent proteomic studies showing the 

CoxB1 (cce_1977) subunit of COX is more predominant during the dark [87, 88]. These results 

suggest terminal oxidases are important under dark N2-fixing conditions not only to generate an 

intracellular anaerobic environment for nitrogenase, but also to provide ATP for nitrogenase 

activity.  

As photosynthesis and respiratory electron transport chains are interconnected in 

cyanobacteria [5], these pathways were allowed to interact in the iCce806 model. To perform 

model robustness analysis, we computationally explored the impact of key photosynthetic and 

respiratory pathways on growth rate and intracellular flux distributions under varying photon 

uptake flux for PS I, while the photon uptake flux for PS II was fixed at 20 mmol·g-1 AFDW·h-1 

(Figure 3.3). First, the model was evaluated assuming only linear photosynthetic electron 

transfer. In this case, all alternative reductant sinks including the proton and O2 reduction as well 

as cyclic photosynthetic reactions around PS I were eliminated from the model (Figure 3.3A). 

Under this condition, growth only occurred at one value of photon uptake flux for PS I and 

extracellular organic products (ethanol, lactate and/or alanine with trace amounts of formate) 

would have to be secreted in order to generate enough ATP to support biomass production. 

Second, when cyclic photosynthetic reactions were added back, the photon uptake flux for PS I 
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could vary with a fixed photon uptake flux for PS II, but significant amounts 

 

Figure 3.3: Analyses of the operation of electron transport pathways upon growth and metabolism 
of the Cyanothece 51142 model 
(A) Effects of removing cyclic photosynthesis (via NDH-1, NDH-2, FdPq, G3PD_PQ, and SUCD_PQ) 
and alternative reductant sinks (H2 production, COX, QOX, and Mehler reactions). (B) Effect of 
removing alternative reductant sinks but including all routes for cyclic photosynthesis. Shaded regions 
indicate that multiple flux values can achieve maximal growth rate. (C) All photosynthetic and respiratory 
electron flow routes operate, except H2 production.  
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of extracellular products were still formed until the photon uptake flux for PS I exceeded ~85 

mmol·g-1 AFDW·h-1 (Figure 3.3B). No growth occurred unless PS I photon uptake flux was 

greater than or equal to the photon uptake flux for PS II. Only when the model was allowed to 

use both cyclic photosynthesis and O2 reduction reactions were no extracellular products 

predicted and the photon uptake flux for PS I could be less than that for PS II (Figure 3.3C). 

Since experimental data does not indicate that any by-products including H2 or organic acids are 

produced by Cyanothece 51142 at a detectable level during photoautotrophic growth with excess 

ammonium, a plausible mechanism for balancing growth through the generation of additional 

ATP may involve activity of the cytochrome oxidases.  

3.1.2 Effect of light quality on cellular growth and pathway utilization 

The discrete representation of PS II- and PS I-mediated reactions and their interactions 

with multiple respiratory reactions in iCce806 enabled further in silico analysis of growth and 

electron flux distributions under photoautotrophic conditions of variable light quality and 

intensity. In this case, the complete model was used to explore which reactions would be used to 

support maximal photoautotrophic growth rates for different levels of PS II and PS I photon 

uptake fluxes. To predict the corresponding growth rates under light-limited conditions, we 

constrained the photon uptake fluxes (ranging from 0 to 60 mmol·g-1 AFDW·h-1) through each 

photosystem. The resulting phenotypic phase plane (PhPP) contained three distinct regions 

(Figure 3.4A): in two regions growth was limited only by fluxes through PS II (region 1) or PS I 

(region 3), while in region 2 growth was limited by both PS II and PS I photon uptake fluxes (i.e. 

increases in either flux would improve growth rate). By adding artificial ATP or NADPH 

generating reactions (ADP + HPO4 + H  ATP + H2O and NADP + H  NADPH) to the 

model and analyzing changes in predicted maximal growth rates, we were able to identify that in 
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regions 1 and 3 growth was NADPH/reductant-limited, while in region 2 it was limited by 

energy supply (Figure 3.4A). 

 
 
Figure 3.4: Predictions of the effects of varying photon uptake rates on growth and energy 
metabolism in the Cyanothece 51142 model 
(A) 2-D phenotypic phase plane (PhPP) displaying maximum growth rates for varying photon uptake 
rates. The PhPP has 3 distinct regions – in regions 1 and 3, flux through a single photosystem limit 
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growth rates, whereas in region 2 flux increases through either photosystem will increase growth rate. (B) 
Pathway maps of electron transfer reactions in different PhPP regions. PhPP flux variability analysis was 
performed to see which flux is always required (red arrows), optional (green arrows), and blocked (blue 
arrows) across each of the three PhPP regions. 

 
To analyze the effect of photon uptake rates on electron flux distributions, we calculated 

the flux ranges using flux variance analysis (FVA) for all photosynthetic and respiration 

reactions within each PhPP region (Figure 3.4B). In this instance, PhPP FVA was run with 

constraints that restrict the model to a given region and to the maximum growth for each point in 

the region (in contrast, standard FVA is used at a single point in a region). Using PhPP FVA, we 

identified active (both minimum and maximum flux values are positive or negative), 

inactive/blocked (minimum and maximum fluxes are both zero), and optional (which could have 

at least one zero and one non-zero flux value somewhere in the region) reactions leading to 

optimal solutions in each PhPP region. This new analysis technique allowed classification of 

reaction usage across entire regions of the PhPP and is not restricted to fixed points within a 

region. While linear photosynthesis was active and Mehler reactions were blocked across the 

entire PhPP, there were differences in the usage of photosynthetic and respiratory reactions 

observed within all three regions (Figure 3.4B). Surprisingly, while generation of NADPH from 

reduced ferredoxin via linear photosynthesis is the key source of reductant, ferredoxin-NADP+ 

oxidoreductase (FNR) was predicted to be active in region 2, but optional in regions 1 and 3. 

Closer examination of in silico calculated electron flux distributions revealed that, in addition to 

FNR, the model utilized a cycle involving glutamine synthetase, glutamate synthase and 

transhydrogenase, resulting in ATP-driven NADPH production. In regions 1 and 3, the model 

predicts there is excess ATP, and so this cycle can be used instead of FNR to move electrons 

from ferredoxin to NADPH. However, this cycle is unlikely to be of any physiological relevance 

since there has been no experimental data supporting this route for making NADPH, and FNR is 
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essential for photoautotrophic growth in unicellular cyanobacteria such as Synechococcus 7002 

[89]. Differences in the predicted usage of respiratory reactions were also found. In region 1, 

where growth is limited by the flux through PS I, at least one of the COX and QOX reactions 

must be active to oxidize excess electron carriers (Pc, Cyt c6, or Pq) generated from PS II. 

Similarly, in region 3 under PS II flux limitation, excess electron carriers (Pq, Fd) must be 

reduced via NDH-1 or –2 or ferredoxin-dependent cyclic electron transfer (FdPq). Conversely, 

due to ATP limitation in region 2, the model favored reactions with higher proton pumping 

capacities and so both the QOX and FdPq reactions were inactive. The usage of COX was 

optional in region 2 and depended on photon uptake rates (e.g.,, COX reaction was inactive at the 

boundary between regions 2 and 3).  

The model predictions (Figure 3.4A) were compared to batch growth experiments in the 

LED-photobioreactor which allowed instantaneous measurements of initial growth and photon 

uptake rates by Cyanothece 51142 cells exposed to different intensities and ratios of 630 and 680 

nm light (Table 3.1). When Cyanothece 51142 cultures were illuminated with both 630 nm and 

680 nm light, initial growth rates generally correlated with the total photon flux through PS II 

and PS I, with higher growth rates observed at 80 mmol·g-1 AFDW·h-1 total photon flux and 630 

nm:680 nm light ratio of 2:1. When cultures were exposed to only a single wavelength of light 

(batch experiments 6 - 10), i.e., either 630 or 680 nm, Cyanothece 51142 cells displayed a 

similar trend with higher growth rates observed at higher photon flux intensities. The predicted 

growth rates were within 7% of the experimentally measured values, except for the two cases 

where single 630 nm wavelength irradiances were used (Table 3.1). The reasons for this are 

unclear but may be due to other physiological and/or biochemical phenomena such as state 

transitions that are not contained within the model but are operating in vivo. 
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Table 3.1: Comparison of predicted growth rates and measured growth rates of Cyanothece 51142 
grown in batch cultures. 

Batch 
Photon uptake 
ratec) at 630 nm 

Photon uptake 
ratec) at 680 nm 

Total photon 
uptake ratec) 

Measured 
growth rated) 

Predicted 
growth rated) 

1a) 19.0 ± 1.1 15.5 ± 0.9 34.5 0.035 ± 0.0068 0.035 ± 0.0022

2a) 15.6 ± 1.1 26.0 ± 1.6 41.6 0.041 ± 0.0076 0.043 ± 0.0032

3a) 33.4 ± 1.0 13.6 ± 0.4 47.0 0.051 ± 0.0053 0.049± 0.0018

4a) 34.6 ± 1.4 35.0 ± 1.3 69.6 0.079 ± 0.0062 0.074 ± 0.0033

5a) 53.6 ± 2.8 26.4 ± 1.0 80.0 0.080 ± 0.0052 0.085 ± 0.0044

6b) 0 32.1 ± 2.0 32.1 0.032 ± 0.0012 0.032 ± 0.0025

7b) 0 33.0 ± 2.1 33.0 0.037 ± 0.00014 0.033 ± 0.0026

8b) 0 37.2 ± 1.5 37.2 0.040 ± 0.00032 0.038 ± 0.0017

9b) 21.1 ± 1.7 0 21.1 0.016 ± 0.010 0.020 ± 0.0021

10b) 28.0 ± 1.7 0 28.0 0.036 ± 0.014 0.028 ± 0.0021
a) Experimental photon uptake and growth rates from batches 1-5 were used to calculate ATP 

requirement parameters GAR and NGAR 
b) For computational predictions of the growth rate for batches 6 - 10, the total photon uptake flux 

measurements at 630 nm and 680 nm was used to constrain the total photon uptake flux in the model 
c) Average and standard deviation of the instantaneously measured photon uptake rates (in mmol·g-1 

AFDW·h-1) were calculated over the first 5 hours.  
d) Average and standard deviation of the instantaneously measured growth rate (in h-1) were calculated 

over the first 5 hours.  

Data from these batch experiments (batch experiments 1 – 5, Table 3.1) were also used to 

estimate the growth (GAR) and non-growth (NGAR) associated ATP requirements. NGAR is the 

amount of energy spent to maintain the cell (i.e., maintenance energy). GAR is defined as energy 

expenditures used on protein and mRNA turnover or repair, proton leakage, and maintenance of 

membrane integrity; it does not include ATP spent on polymerization reactions, which are 

already accounted for in the macromolecular synthesis pathways of the network. The time-

averaged growth and photon uptake rates were used to constrain the model and the maximal 

amount of ATP hydrolysis was calculated (Figure 3.5) for each batch experiment. A plot of 

growth rate versus maximum ATP hydrolysis flux was generated and a linear fit used to estimate 

the GAR and NGAR values [90]. Specifically, the slope of the fitted line is the GAR (544 

mmol·g-1 AFDW·h-1), and the y-intercept is NGAR (2.8 mmol·g-1 AFDW·h-1). 
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Figure 3.5: Estimating ATP requirements for the Cyanothece 51142 model using batch data 
Average growth rates and photon uptake fluxes from batch experiments were used to constrain the model. 
The maximum ATP hydrolysis flux (flux through the ATPM reaction) was calculated using these 
measurement constraints. The data points represent the calculated maximal ATP hydrolysis values for 
different batch experiments. The growth-associated ATP requirement (GAR, slope) and non-growth 
associated ATP requirement (NGAR, y-intercept) were estimated by linear regression of these data.  

 
The estimated GAR value is significantly higher than those reported from other bacteria 

[64]; however, these model estimates assume that all absorbed photons lead to photosynthetic 

fluxes (100% quantum efficiency) and that the overall efficiency of ATP production via all 

electron transfer reactions (photosynthetic and respiratory) are accurate. Depending on the 

growth condition the quantum yields can change, and for Cyanothece 51142 this value was 

reported to be between ~70-100% for photoautotrophic growth [86]. Upon further analysis, we 

found the estimated Cyanothece ATP requirements were most sensitive to reductions in quantum 

efficiency and the amount of ATP generated by photosynthesis and respiration (Table 3.2). Since 
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neither quantum efficiency nor combined photosynthetic and respiratory ATP production were 

experimentally measured for Cyanothece 51142, the original estimates, GAR=544 and 

NGAR=2.8 were used in all growth simulations.  

Table 3.2: Effects of changing simulation conditions on ATP requirement parameters of the 
Cyanothece 51142 model 

Simulation conditions 
Estimated 

GARa) 
Estimated 
NGARb) 

 
Complete iCce806 model (no changes to the model are made) 

 
544 

 
2.8 

 
Remove cytochrome c oxidase reactions (COX_PC, COX_CYC) 

 
514 

 
1.1 

 
Reduce quantum efficiency to 70% (only 70% of absorbed photons 
contributed to PS I and PS II fluxes) 

272 2 

 
Reduce ATP efficiency of photosynthesis and respiration by 50% 
(change H+/ATP ratio in ATPS4r reaction from 4H+/ATP to 8H+/ATP) 

200 1.4 

a) GAR – Growth-associated ATP requirement (mmol·g-1 AFDW)  
b) NGAR – Non-growth associated ATP requirement (mmol·g-1 AFDW·h-1) 

3.1.3 Using experimental measurements and in silico mutagenesis to restrict the range of 

predicted flux distributions  

Since there may be more than one flux distribution that is consistent with the 

experimentally measured rates of growth, photon uptake, and O2 production we used FVA to 

identify required (flux must be non-zero), optional (flux may or may not be zero), or inactive 

(flux must be zero) reactions under light- and ammonium-limited growth conditions. As our 

initial simulations (Table 3.3) produced a large number of optional reactions (170 out of 667 for 

both growth conditions), that represent uncertainty regarding usage, we subsequently used the 

transcriptome and proteome data (TPD) to further constrain the model. Using a modification to a 

previously developed approach [91], we obtained a flux distribution that was consistent with 

measured rates and TPD while reducing the overall flux magnitude.  
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Table 3.3: Flux variability analysis of the Cyanothece 51142 model in light-limited and ammonium-
limited chemostat conditions 
 

 Without protein and mRNA expression data 
With protein and mRNA 

expression data 

Light-limited NH4-limited 

Required reactions 287 364 366 
Optional reactions 170 74 76 
Inactive reactions 210 229 225 

 
In this analysis, flux was favored through reactions for which proteins were detected and 

disfavored through reactions associated with undetected proteins and transcriptome data less than 

a given threshold (e.g.,, log2 of mRNA expression level is less than 8). The model constrained by 

TPD predicted that the majority of reactions in central metabolism would be active under both 

chemostat conditions (Figure 3.6). In addition, we subsequently applied FVA employing 

additional constraints arising from the TPD. Comparison between FVA results with and without 

TPD constraints demonstrated a significant decrease in the number of ambiguities (the optional 

reaction set) when TPD is used (Table 3.3). 

While the number of optional reactions was reduced by incorporating TPD into the 

model, the flux spans (difference between maximum and minimum values) of individual fluxes 

was still large (>30 mmol·g-1 AFDW·h-1 for some central metabolic reactions). These large flux 

spans could arise from cycles or alternative pathways in the model, and deleting these features 

from the model could subsequently reduce the flux spans.  
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Figure 3.6: Predicted flux distributions in central metabolism of Cyanothece 51142 with 
transcriptome and proteome data (TPD) as constraints 
The flux values (mmol·g-1 AFDW·h-1) are those where the flux distribution best matches the TPD while 
also minimizing the magnitude of all fluxes in the network. The flux values in red and green represent 
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ammonia-limited (AL) and light-limited (LL) conditions, respectively. Arrow colors indicate relative flux 
ratios between AL and LL conditions. 
 

FVA was repeated using measured growth, photon uptake, and O2 release rates under 

light-limited conditions as constraints and with optional reactions were deleted (similar results 

were found for ammonia limited conditions, data not shown). Flux spans for reactions in central 

metabolism (Figure 3.6) were then calculated for a series of single or double reaction deletions in 

silico. The purpose of this analysis was to identify those reactions that exert the greatest impact 

on the flux span in central metabolism (Figure 3.8A).  

 

Figure 3.7: Effects of in silico reaction deletions on the span of fluxes of the Cyanothece 51142 
model under light-limited conditions 
(A) Effects of deletions are compared to the cases where no reactions were deleted (red bar), or TPD were 
used as constraints (green bar). The values represent the average flux span across all reactions in central 
metabolism. Only deletions which lower the flux span by at least > 1 mmol·g-1 AFDW·h-1 are presented.   
(B) Changes in flux spans for specific reactions catalyzed by ribulose bisphosphate carboxylase (RBC) 
and phosphoglucose isomerase (PGI) between simulations that (i) use TPD data as a constraint (green 
bars), (ii) delete single reactions (blue and purple bars), (iii) delete two reactions (yellow bar) or (iv) 
impose no additional constraints (red bars). Reaction abbreviations can be found online [53]. 

 
Single deletions of glyceraldehyde-3-phosphate dehydrogenase (GAPD or 

GAPD_NADP) or hydrogenase (HDH_1) reduced the average central metabolic flux span the 

most (from 74 to 22 mmol·g-1 AFDW·h-1). Other single deletions with significant effects 

included FNR and NDH-1, which are involved in photosynthesis and respiration. The reaction 
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deletions shown in Figure 3.7A all had a larger impact on reducing average central metabolic 

flux span than did imposition of constraints based on TPD. There were cases where single 

deletions had large effects on other specific reactions, but only modest effects on overall central 

metabolic flux spans. For example, a single deletion in phosphogluconate dehydrogenase 

(PGDHr) reduced the span for glucose-6-phosphate isomerase flux (PGI) to 0 (Figure 3.7B), but 

only reduced the average central metabolic flux span by ~ 0.7 mmol·g-1 AFDW·h-1. The in silico 

analysis of double reaction deletions did not yield any new double deletions that would reduce 

the average central metabolic flux span significantly. However, some double deletions strategies 

did reduce flux spans of individual reactions. 

3.2 Discussion 

Several cyanobacterial metabolic models (all for Synechocystis PCC 6803) have been 

published, which represented photosynthesis as two lumped reactions [56, 79] for linear (PSII, 

Cyt b6f, PSI, and FNR) and cyclic (PS I and Cyt b6f) pathways. In this study, we modeled 

photosynthesis as a larger set of separate reactions [80] as this structuring allowed analysis of the 

effects of different illumination on the production and partitioning of reductant through 

photosynthetic and respiratory reactions, as well as the contribution of different electron transfer 

pathways to growth. Our PhPP FVA results showed how different photosynthetic and respiratory 

electron transport chain components are used to maximize biomass production under different 

lighting regimes. It was not surprising that linear photosynthesis was active in all three regions 

because the cell needs photons from both PSI and PSII to grow under photoautotrophic 

conditions. However, the Mehler reactions were inactive in all three regions when we only 

consider maximal growth rate solutions. In regions 1 and 3, reducing equivalents (e.g.,, NADPH) 

limit growth and the Mehler reactions would lower the amount of reducing equivalents available 
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for growth. The Mehler reactions are less energetically efficient than NADH dehydrogenase and 

cytochrome oxidase so the model would not use them in region 2, where ATP is limiting. So 

while the Mehler reactions can carry flux in the model, using these reactions lowers the 

maximum growth rate making them inactive (blocked reactions) in our PhPP analysis. A recent 

study showed that the Mehler reactions are operational in Synechocystis sp. PCC 6803, serving 

as a sink for excess electrons [92]. These reactions are also likely to be active in Cyanothece 

51142, since the associated proteins were detected in the proteomic data [53]. As a result the 

model only predicted non-zero Mehler fluxes when the proteomic data were used to constrain the 

model [53]. 

In the absence of cyclic photosynthesis, other products including water (produced by 

COX, QOX or Mehler reactions), H2 (via hydrogenase), or small organic compounds (alanine, 

ethanol, lactate and formate) were predicted to be necessary in order to balance the electrons and 

ATP needed to support growth. In the presence of linear and cyclic photosynthesis reactions, 

these products must also be produced unless significant amounts of cyclic photosynthesis occurs 

(>3 times the amount of linear photosynthesis). Since H2 and small organic compounds are not 

generally produced under photoautotrophic conditions with excess ammonium, any additional 

energy is most likely supplied by cytochrome oxidase activities that reduce photosynthetically 

produced O2. Interestingly, in the absence of cytochrome oxidase activities in the model, the PS I 

fluxes must always be greater than or equal to the PS II fluxes. It was shown that the marine 

cyanobacteriium Synechococcus has a PS I/PS II protein ratio >1, which has been explained as a 

mechanism to protect PS II from photo-damage [93]. Under conditions with high levels of PS II 

activity, cytochrome oxidase activity may ensure an adequate supply of oxidized plastoquinone 

(needed for PS II) and reduce O2 concentrations to limit photorespiration.  
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Similarly, cyclic electron flow via NADH dehydrogenase- or ferredoxin-dependent routes 

have also been experimentally demonstrated to play important roles in balancing the amount of 

NADPH and ATP produced via photosynthesis. Synechocystis 6803 mutants lacking ndhD genes 

(encoding subunits of NDH-1) had significantly lower cyclic photosynthesis activity [94]. 

Although the mechanism of electron transfer from ferredoxin to the plastoquinone pool (without 

using NDH) is still unclear, its activity has been demonstrated in green algae [95] and higher 

plants [96]. Our computational simulations also showed that, under light-limited 

photoautotrophic conditions, cyclic electron transfer involving NADH dehydrogenase (NDH-1) 

is needed for maximal growth if ATP (rather than NADPH) is limiting. In an environment where 

PS I photon availability is high relative to PS II, cyclic electron transport is needed (Figure 2) to 

increase availability of PS I substrates (reduced PC or Cyt c6) and protect against photo-damage. 

Cyclic electron flow has been experimentally shown to help protect the photosynthetic apparatus 

from photo-damage [97-99] 

In addition to studying the interactions between components of the photosynthetic and 

respiratory components computationally, we also experimentally evaluated cells grown under 

continuous light conditions in light- and ammonia-limited chemostats. The measured 630 nm and 

680 nm photon uptake and O2 production rates suggests that reductant was being directed 

towards O2 via the Mehler, QOX, and/or COX reactions. In both chemostat conditions, the 

model predicted that steady-state growth rate could have been achieved using lower photon 

uptake rates by decreasing the amount of reductant generated by PS II that was predicted to 

reduce O2.  

A limitation to flux balance analysis is that a wide range of flux values may be consistent 

with the constraints in the computational model. An iterative application of computational and 
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experimental methods is an important strategy to improve the comprehensive understanding of 

cyanobacterial metabolism. We have begun to apply this iterative approach, by including mRNA 

and protein expression datasets as additional constraints beyond biomass composition and 

physiological rate measurements. Experimentally-measured TPD were successfully used to 

further constrain the model, and thereby reduce uncertainty and increase the number of required 

(that is, metabolically active) reactions (Table 3.3). However, there remained discrepancies in 

that the model did not predict flux through all reactions for which proteins were experimentally 

detected. Such discrepancies can be used to subsequently improve the model with previously 

developed approaches [100-102]. For example, an earlier version of the model did not predict 

flux through proline oxidase, even though proteome data demonstrated that proline oxidase was 

synthesized. This prediction arose because the model did not contain a reaction in which FADH2 

(a product of the proline oxidase reaction) could be reoxidized to FAD. After experimental 

confirmation that proline can be used as a nitrogen source (implying activity of proline oxidase) 

by Cyanothece 51142, a FADH2 recycling reaction was included in the final iCce806 model.  

Even with these additional TPD constraints, a wide range of flux values remained 

feasible (Figure 3.7). We should note that we did not take real enzymatic activities into account 

(which can be affected by post-translational modifications), as we did not have this type of data 

for the two conditions examined. Such data, if available, could be used as additional factors for 

determining whether to favor or disfavor fluxes through associated reactions (See Material and 

Methods). Other constraint-based methods for incorporating gene expression data use similar 

Boolean on/off type of constraints to restrict fluxes [91, 103, 104] and would be expected to 

yield results similar to those described herein. Thus, novel computational methods which can 

more quantitatively constrain the metabolic flux values are still needed. The strategy of 
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evaluating fluxes for reaction deletions in silico can be used to identify knockout mutants that 

can potentially improve the resolution of intracellular flux distributions. A flux that is well 

resolved would have a small span meaning we can more definitively state its value. If the 

mutants show no growth defects then the corresponding reactions may not be used under the 

conditions tested, or alternative pathways not included in the model may occur. Either way, this 

information could be used to better resolve the intracellular flux distribution or improve the 

metabolic model. For Cyanothece 51142, this would require development of a genetic system 

(such a system already exists for another Cyanothece strain [105]) as experiments with mutants 

would have the most potential to improve resolution of central metabolic fluxes during 

photoautotrophic growth. Also, as a complement to the in silico reaction knockouts that our 

simulations predict would reduce the flux spans associated with central metabolic reactions, the 

photobioreactor employed here provides a system whereby cultivation conditions can be 

rigorously controlled and some aspects of physiological state monitored continuously. In 

addition, cells from steady-state or perturbed cultures can be interrogated via physiological or 

biochemical analyses to experimentally test the predictions of the computational models for wild 

type or mutants. As the number of available cyanobacterial models continues to grow, cross-

species physiological, genomic, and metabolic comparisons will enable the identification of core 

networks and contribute towards improving our understanding of metabolic processes in 

cyanobacteria.  

3.3. Materials and methods 

In this study, all model simulations were performed in GAMS software (General 

Algebraic Modeling System, GAMS Development Corporation, Washington, D.C.). To further 

constrain the models based on mRNA or protein expression data, a modified version of the 
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method developed by Shlomi et al. [91] was used. Here, we identified a single flux distribution 

that best agreed with measured transcriptome and proteome data (TPD) and minimized flux 

usage. Reactions with experimentally measured fluxes belong to set ܴா (which included biomass 

production and exchange fluxes for oxygen, 630 nm and 680 nm photons) and were constrained 

to their measured values. Reactions associated with detected proteins were included in the high 

reaction setሺܴுሻ. Reactions associated with undetected proteins and genes with low mRNA 

expression levels (whose mRNA expression was less than the lowest mRNA expression of 

detected proteins) were included in the low reaction setሺܴ௅ሻ. The method finds a flux distribution 

that maximizes the number of active reactions ሺݒ ് 0ሻ and inactive reactions ሺݒ ൌ 0ሻ in reaction 

sets ܴு and ܴ௅ respectively. For reactions in setܴு, binary variables ݔ and ݕ indicate whether a 

reaction is active, meaning its flux is greater than a positive thresholdሺݔ ൌ 0, ݕ ൌ 1ሻ, or smaller 

than a negative threshold െߝ ሺݔ ൌ 1, ݕ ൌ 0ሻ for reversible reactions. If both ݔ and ݕ are zero 

then the reaction is inactive and its flux value is zero. Likewise, a binary variable ݖ is used for 

reactions in set ܴ௅ such that if ݖ ൌ 1 then the reaction is inactiveሺݒ ൌ 0ሻ. The original method 

[91] has alternate solutions, which can contain unrealistically high flux values due to the 

presence of cycles (e.g.,, futile cycles and circulations) in the network. To identify a solution that 

minimizes the use of these cycles, the objective function was modified to also minimize the sum 

of squared fluxes through the network.  

The mixed integer quadratic programming formulation to identify a flux distribution that 

best matches TPD while minimizing flux magnitude is given below (Eq. 3.1 – 3.8):   
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ଶ

௝∈ோ

 

.ݏ ܵ							.ݐ ∙ ݒ ൌ 0        (Eq. 3.1) 

௝ߙ ൑ ௝ݒ ൑ ݆																																									௝ߚ ∈ ܴ  (Eq. 3.2) 

௝ݒ ൌ ௝ݒ
௘௫௣																																															݆ ∈ ܴா  (Eq. 3.3) 

௝ݒ ൅ ௝ߚ௝൫ݔ ൅ ൯ߝ ൑ ݆																											௝ߚ ∈ ܴு  (Eq. 3.4) 

௝ݒ	 ൅ ௝ߙ௝൫ݕ െ ൯ߝ ൒ ݆																										௝ߙ ∈ ܴு  (Eq. 3.5) 

൫1 െ ௝ߙ௝൯ݖ ൑ ௝ݒ ൑ ൫1 െ ݆											௝ߚ௝൯ݖ ∈ ܴ௅  (Eq. 3.6) 

௝ݔ ൅ ௝ݕ ൑ 1																																													݆ ∈ ܴு  (Eq. 3.7) 

,௝ݔ ,௝ݕ ௝ݖ ∈ ሼ0,1ሽ     (Eq. 3.8) 

Additionally, to find the flux ranges consistent with the TPD, flux variability analysis (FVA) was 

performed by minimizing and maximizing the flux through each reaction in the network. In these 

FVA simulations, the same constraints described above were included (Eq. 3.1 – 3.8) and the 

binary variables ሺݔ, ,ݕ ,௢௣௧ݔሻ were further constrained by their optimal values ሺݖ ,௢௣௧ݕ  ௢௣௧ሻݖ

found in the original problem (Eq. 3.9 – 3.10).  

max	ሺor	minሻ					  ௝ݒ

.ݏ .Eq						.ݐ 3.1 െ 3.8 

௝ݔ ൅ ௝ݕ ൌ ௝ݔ
௢௣௧ ൅ ௝ݕ

௢௣௧					݆ ∈ ܴு    (Eq. 3.9) 

௝ݖ ൌ ௝ݖ
௢௣௧					݆ ∈ ܴ௅      (Eq. 3.10) 
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Chapter 4 
 
Computational evaluation of Synechococcus sp. PCC 

7002 metabolism for chemical production 

 
 

To date, almost all metabolic engineering efforts have focused on either Synechocystis sp. 

PCC 6803 or Synechococcus elongatus PCC 7942 [9]. These strains have been engineered to 

produce a variety of chemicals including lactic acid, ethanol, isobutanol, 1-butanol, isoprene, 

fatty acids, and ethylene [15, 16, 20, 21, 23, 26, 106, 107]. While Synechococcus 7002 has not 

been as extensively used in metabolic engineering, it has a number of attributes that make it a 

strong candidate for metabolic engineering. Compared to other cyanobacteria strains, it has a fast 

doubling time (~ 3.5 hours compared to ~12-24 hours) indicating a high inherent metabolic rate. 

Synechococcus 7002 also can grow under high light conditions (up to ~ 4.5 mE m-2 s-1 compared 

to its optimal light intensity of 250 μE m-2 s-1) [108], can grow in salt water (obviating a 

requirement for fresh water) [109] and can be genetically manipulated [110-112]. In addition, the 

strain’s genome has been sequenced and a variety of high-throughput experimental and 

computational tools have been used to evaluate it, including gene expression and genome-scale 

metabolic modeling [61, 113, 114]. 

For metabolic engineering purposes, a wide variety of computational approaches have 

been developed to calculate maximum theoretical yields or to predict the metabolic outcome of 

genetic perturbations. Example of such methods include flux balance analysis (FBA), 

minimization of metabolic adjustment (MOMA), regulatory on/off minimization (ROOM) and 

minimization of relative metabolic change (RELATCH [68, 115, 116] (See chapter 2 for the 
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formulation of FBA and MOMA). MOMA minimizes the sum of squared differences in flux 

distributions between mutant and parental strains [68], while ROOM minimizes the number of 

significant flux changes between mutant and parental strains [115]. On the other hand, 

RELATCH first limits increases in flux levels and then minimizes relative flux changes and 

latent pathway activation between mutant and parental strains. RELATCH has been shown to 

better predict flux distributions in unevolved and adaptively evolved strains of Escherichia coli 

for four different single-gene knockout mutants with higher accuracy than FBA, MOMA, and 

ROOM [116]. These methods can and have been used to predict how chemical production will 

be affected by the deletion of different genes in the host organism.  

For strain-design purposes,  a number of bi-level approaches have been developed which 

can identify what genetic manipulations are needed to improve chemical production by 

considering reaction deletions (OptKnock), gene deletions (OptORF, BiMOMA), reaction 

additions (OptStrain) or flux changes (OptForce) [117-121]. Most of these approaches try to 

couple biomass and chemical production so that adaptive evolution, where growth is used as a 

selection pressure, will improve both growth and chemical production rates. OptKnock has been 

successfully used to develop E. coli strains which produce lactate, succinate, and 1, 4 butanediol 

[122-124]. OptORF is similar to OptKnock but it identifies gene deletions (instead of reaction 

deletions) and regulatory changes needed to couple growth and chemical production [118]. 

In this chapter, we used the updated genome-scale metabolic model for Synechococcus 

7002 (iSyp708, Chapter 2) and apply various computational methods including MOMA, 

RELATCH, and OptORF to predict metabolic engineering strategies that improve production of 

both native and non-native chemicals that have been studied in other cyanobacteria. This study 
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provides a thorough assessment of the yields, requirements and genetic strategies for utilizing 

Synechococcus 7002 as a background strain for metabolic engineering. 

4.1 Results 

4.1.1 Maximum theoretical yields of native and non-native products  

The updated metabolic model was used to calculate the maximum theoretical yields for a variety 

of native and non-native products under photoautotrophic, dark anoxic, and dark oxic conditions. 

The maximum theoretical yields (mol product/ mol CO2) for all considered products produced 

under photoautotrophic conditions were predicted to be greater than or equal to the yields under 

dark conditions (Table 4.1).  

Table 4.1: Predicted theoretical yields (mol product/ mol CO2 or photon) of different chemicals 
produced by Synechococcus 7002 under different conditions 
 

Products 
Photoautotrophic 
(mol /mol photon) 

Photoautotrophic
(mol /mol CO2) 

Dark anoxic 
(mol /mol CO2) 

Dark oxic 
(mol /mol CO2) 

Acetatea) 0.063 0.50 0.50 0.50 
Alaninea) 0.042 0.33 0.33 0.33 
Lactatea) 0.042 0.33 0.33 0.33 
Succinatea, b) 0.031 0.25 0.19 0.24 
Hydrogena,c) -- -- 2 2 
Fatty acidd) 0.005 0.056 0.039 0.039 
Isobutanold) 0.021 0.25 0.17 0.17 
Isoprened) 0.018 0.20 0.12 0.14 
2-Methyl-1-butanold) 0.017 0.20 0.13 0.13 
1-Butanold) 0.021 0.25 0.17 0.17 
3-Methyl-1-butanold) 0.017 0.20 0.13 0.13 
1-Propanold) 0.028 0.33 0.22 0.22 
2-Phenylethanold) 0.013 0.13 0.096 0.099 
Ethylened) 0.022 0.40 0.00 0.18 
Ethanold) 0.042 0.50 0.33 0.33 
a) Products that can be produced via naturally occurred pathways in Synechococcus 7002 
b) Products whose production is limited by energy under dark anoxic conditions 
c) Products whose production is limited by reductant under dark anoxic conditions 
d) Products whose production is limited by both energy and reductant under dark anoxic conditions 
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           In addition, the photoautotrophic maximum theoretical yields of all products, except for 

ethylene, were equal to the inverse of the number of carbons in the products, indicating that the 

simulated conditions were carbon-limited. The predicted photoautotrophic maximum theoretical 

yield of ethylene (0.4 mol/mol CO2), however, was less than the expected value (0.5 mol/mol 

CO2). This was because the ethylene forming reaction that was added to our model produces 

succinate, guanidine, and 1-pyrroline-5-carboxylate in addition to ethylene. While succinate and 

1-pyrroline-5-carboxylate can be re-consumed by reactions in the network, enzymes 

metabolizing guanidine do not appear to be present in Synechococcus 7002, and so guanidine 

was co-produced with ethylene, lowering the maximum theoretical yield for ethylene to 0.4 mol 

ethylene/ mol CO2. Since the ethylene forming enzyme requires oxygen, ethylene could not be 

produced under dark anoxic conditions. It should be noted that under photoautotrophic and dark 

oxic conditions, we excluded hydrogen from the maximum theoretical yields calculations 

because hydrogenases are inhibited by oxygen [125].  

            Under photoautotrophic conditions, the model-predicted chemical production rates (and 

thus maximum theoretical yields) were limited by carbon; however, under dark conditions 

reductant and/or ATP limited most yields. The lower maximum theoretical yields for succinate, 

fatty acid, and other non-native products predicted under the two dark conditions imply that CO2 

was not the only factor limiting chemical production. While cells can use light energy to generate 

more energy and reductant (in the form of ATP and NADPH, respectively) under 

photoautotrophic conditions, they cannot do so under dark conditions. Therefore, besides CO2, 

energy and reductant can potentially limit the production of desired products in the absence of 

light. We determined whether energy and/or reductant further limited production under dark 

conditions by adding artificial ATP- or NADPH-generating reactions (ADP + HPO4 + H  ATP 
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+ H2O and NADP  NADPH + H) to the model and re-calculating the maximum theoretical 

yield for each product under the dark conditions. The resulting model predicted that under dark 

oxic and dark anoxic conditions, with unlimited amount of NADPH and ATP, the maximum 

theoretical yields increased to the values calculated under photoautotrophic conditions. Under the 

dark oxic condition, the presence of O2 enabled the production of ATP from NADPH using the 

respiratory enzymes allowing for ATP synthesis (Figure 4.1). Therefore, under the dark oxic 

condition, adding free NADPH alone was sufficient to increase the maximum theoretical yields 

of products to values obtained under photoautotrophic conditions. In contrast, under the dark 

anoxic condition, succinate was predicted to be the only product whose maximum theoretical 

yield was limited only by ATP. The maximum theoretical yields of other products (except for 

acetate, alanine and lactate) only increased to the values obtained under photoautotrophic 

conditions when both free ATP and NADPH sources were present. Moreover, the model 

predicted that under dark anoxic conditions, acetate would be produced as a co-product when 

maximizing the production of isoprene and 2-phenylethanol. This co-product was made to 

generate extra ATP via the acetyl-coA synthetase reaction; however, with free ATP production, 

acetate was no longer predicted to be a co-product with these two products under dark anoxic 

conditions. 

4.1.2 Predicted phenotypes of gene-deletion mutants under photoautotrophic and dark-

anoxic conditions 

The flux distributions obtained by fitting subsets of measured fluxes (from 13C MFA or 

external flux data [12, 126]) and gene expression data ([113]) provided a reference point for 

methods used to predict the effects of gene deletions (MOMA and RELATCH [68, 116]). These 

reference flux distributions through central metabolism for photoautotrophic and dark anoxic 

conditions are shown in Figure 4.2. Using these reference flux distributions, we predicted flux 
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distributions in single-gene knockout mutants using MOMA and RELATCH and evaluated 

which mutants were predicted to improve production of the chemicals listed in Table 4.1. 

 

Figure 4.1: Schematic presentation of electron transport in Synechococcus 7002 
In the presence of oxygen (O2), there is a coupling between cytochrome oxidase reaction (COX_CYC), 
and NADH dehydrogenase reaction (NADHPQ9) via plastoquinone-cytochrome c oxidoreductase 
(PQCYCOR), which leads to a proton gradient across the membrane that can drive ATP synthesis. The 
reduced and oxidized forms of electron donor and electron acceptors for COX_CYC, NADH_PQ9, and 
PQCYCOR are cyc6_rd/cyc6_ox, nadh/nad, and pq9h2/pq9, respectively.  
 

We identified mutants that improved product yields by at least 10% (if the products were 

already secreted by the wildtype strain), or enabled production of new products (if the products 

were not already secreted by the wildtype strain). Furthermore, for the photoautotrophic 

condition, we excluded gene deletions that were predicted to be lethal since the Synechococcus 

7002 mutants need to be able to grow photoautotrophically.  
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Figure 4.2: Predicted flux distributions of Synechococcus 7002 under photoautotrophic and dark 
anoxic conditions 
The flux map shows the reference flux distributions, which were estimated using the MFA data for 
Synechocystis 6803 (measured under photoautotrophic condition) or secretion rates for Synechococcus 
7002 (measured under dark anoxic condition) through central metabolic reactions. Flux values are 
reported in units of mmol·g-1 AFDW·h-1 for photoautotrophic and dark anoxic conditions. Reaction 
directions match those predicted for photoautotrophic condition. Negative flux values for the dark anoxic 
condition indicate the flux occurs in the opposite direction of the reaction. The dotted line represents the 
conversion of glucose-1P to glycogen via three sequential reactions that carry equal flux values (glucose-
1-phosphate adenylyltransferase, glycogen synthase, and glycogen branching enzyme). 

 
Our results show that under photoautotrophic conditions, MOMA was able to identify 

gene-knockout mutants with improved phenotypes for all 14 target products considered. On the 

other hand, RELATCH with tight parameter values, which predicts the behavior of unevolved 

mutants, only found unevolved mutants that were predicted to produce succinate, ethylene, fatty 

acids, isoprene, 2-methyl-1-butanol, 1-propanol, 2-phenylethanol, or 1-butanol (Figure 4.3A). 

When we used RELATCH with relaxed parameter values, which predicts the behavior of 

mutants that have been adaptively evolved, we were able to find mutants that were predicted to 

have improved production for almost all products, except for acetate and ethanol. Under dark 

anoxic conditions, both MOMA and RELATCH (with tight and relaxed parameters) methods 

were able to identify mutants with increased production for all of the target products (Figure 

4.3B). Except for fatty acids, there were surprisingly few mutants (<30) that were predicted by 

both methods to improve chemical production. For both photoautotrophic and dark anoxic 

conditions, RELATCH predicted that adaptive evolution of mutants could lead to formation of 

desired products that might not be observed in unevolved mutants. In addition, we expected that 

products would be formed by more mutants under dark anoxic conditions than under 

photoautotrophic conditions since lethal mutants under photoautotrophic conditions were 

excluded from consideration.  
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Figure 4.3: Number of Synechococcus 7002 mutants predicted by RELATCH and MOMA to 
produce different products under photoautotrophic and dark anoxic conditions 
The bar charts show the numbers of single-gene deletions predicted by MOMA (black bars), RELATCH 
with tight parameters (grey bars) and RELATCH with relaxed parameters (striped bars) to improve 
production of a given product. (A) For photoautotrophic conditions, only non-lethal mutants with at least 
a 10% increase over the wildtype production levels are included. (B) For dark anoxic conditions, only 
mutants with at least a 10% increase over the wildtype production levels are included. The * indicates the 
actual number of mutants with improved fatty acid production is 425 and 421 for RELATCH with tight 
and relaxed parameters respectively. 
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Both MOMA and RELATCH predicted, however, that most non-native products could be 

formed by more mutants under dark anoxic conditions than photoautotrophic conditions, while 

some native products could be formed by more mutants under photoautotrophic conditions than 

dark anoxic conditions. As shown in Figure 4.4 and Figure 4.5, the number of central metabolic 

genes that can be deleted to improve chemical production under photoautotrophic condition was 

higher than under dark anoxic conditions.  

4.1.3 Identifying adaptive evolutionary strategies for photoautotrophic chemical 

production 

The mutants predicted by MOMA and RELATCH to have improved chemical production 

only involved single-gene deletion mutants and they do not guarantee coupling between growth 

and production of target chemicals. This coupling allows for the selection of improved chemical 

production by using a growth rate selection pressure in adaptive evolutionary experiments [117, 

122]. We ran the OptORF algorithm to identify multiple gene-knockout mutants that would 

couple target chemical production to cellular growth. OptORF predicted that with a large number 

of gene deletions, coupling could be achieved, forcing Synechococcus 7002 to produce chemicals 

during optimal growth under photoautotrophic conditions (Figure 4.6). Using a maximum of 10 

gene deletions, OptORF was able to identify strategies for 9 out of the 14 target chemicals, 

including: acetate, alanine, succinate, 1-butanol, ethylene, ethanol, 2-methyl-1-butanol, 3-

methyl-1-butanol, and isoprene. Common strategies suggested by OptORF for all products 

involved blocking reactions or cycles that consume reducing power in the form of NAD(P)H 

(e.g.,, NADH dehydrogenase and transhydrogenase). Most of the strategies required 9 or 10 

deletions and resulted in predicted growth rates between 0.15 to 0.20 h-1 and product yields 

between 15 – 34 % of the maximum theoretical yield. Because 1-butanol can be synthesized via 

either the branched amino acid pathway or the engineered CoA-dependent pathway [31, 126], we 
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Figure 4.4: Gene deletions in the central metabolism of Synechococcus 7002 predicted to improve 
chemical production under photoautotrophic conditions 
Each table represents a mutant which was predicted to improve chemical production of different products 
under photoautotrophic conditions. The mutants were predicted by MOMA, RELATCH with tight 
parameters (RELATCH-t), or RELATCH with relaxed parameters (RELATCH-r). The products are 
abbreviated as  Ac – acetate, Ala – alanine, Lac – lactate, Suc – succinate, FaA - fatty acid, Ety – 
ethylene, Isp – isoprene, 2mb – 2-methyl-1-butanol, 3mb – 3-methyl-1-butanol, Prp – 1-propanol, Pet – 2-
phenylethanol, and But – 1-butanol. The following abbreviations were used for reactions with isozymes, 
FBA – fructose bisphosphate aldolase, PGM – phosphoglucomutase, and PRKIN – phosphoribulokinase. 
Each entry in the table represents the mutant identified by the corresponding method as either predicted 
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(black) or not predicted (white) to improve chemical production. The * indicates that the reaction has 
isozymes. The ** indicates that pyruvate dehydrogenase (PDH) has 4 subunits (A1126, A0353, A0655, 
and A0110). RELATCH with relaxed parameters predicted that deletion of A1126 did not produce 1-
propanol, while deletion of other subunits produced 1-propanol. 
 

 

Figure 4.5: Gene deletions in central metabolism of Synechococcus 7002 predicted to improve 
chemical production under dark anoxic conditions 
Each table represents a mutant which was predicted to improve chemical production of different products 
under dark anoxic conditions. The mutants were predicted by MOMA, RELATCH with tight parameters 
(RELATCH-t), or RELATCH with relaxed parameters (RELATCH-r). The abbreviations match those 
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used in Figure 3, with the addition of H2 – hydrogen, and Isb – isobutanol. Each entry in the table 
represents the mutant identified by the corresponding method as either predicted (black) or not predicted 
(white) to improve chemical production. The * indicates that the reaction has isozymes. 
 
ran OptORF separately for 1-butanol using the two different biosynthetic pathways. We found 

that the predicted yield for OptORF mutants using the CoA-dependent pathway (0.045 mol 1-

butanol/ mol CO2) was lower than the predicted yields for OptORF mutants using the branched 

amino acid pathway (0.085 mol 1-butanol/ mol CO2), even though the maximum theoretical 

yields using the two pathways are the same under CO2-limited photoautotrophic conditions. 

 

Figure 4.6: Predicted yields and growth rates for OptORF-designed Synechococcus 7002 mutants 
under photoautotrophic conditions 
Mutants (using up to 10 gene deletions) with coupling between chemical production and cellular growth 
rates were found. The predicted production yields are shown in (A) as a percent of the maximum 
theoretical yields (the latter of which are reported in Table 4.1). The predicted growth rates are shown in 
(B), where the experimental wildtype growth rate is 0.198 h-1.  



66 
 

4.2 Discussion 

In this chapter used the genome-scale metabolic model of Synechococcus 7002 (iSyp708) 

to systematically evaluate the organism’s potential for producing a range of biofuel precursors 

and chemicals. Since Synechococcus 7002 metabolism changes in response to the day-night 

cycle, we evaluated the model under both photoautotrophic, dark anoxic, and dark oxic 

conditions. We also estimated the maximum theoretical yields for a variety of products and 

identified single and multiple gene deletion strategies for improving chemical production rates 

and/or yields.  

The maximum theoretical yields calculated under photoautotrophic and dark conditions 

assume no biomass or co-product formation (except for isoprene, 2-phenylethanol, and ethylene). 

Therefore, it is expected that the actual yield of each target chemical obtained in vivo would 

always be lower under photoautotrophic growth conditions. The maximum theoretical yields 

calculated under photoautotrophic conditions assumed that carbon was limiting chemical 

production. Since light and CO2 uptake fluxes can affect chemical production rate, we also 

examined the maximum theoretical yield of several products including isobutanol, and lactate 

when varying both light and CO2 uptake fluxes (Figure 4.7). We found that for a given CO2 

uptake flux, there was an optimal photon uptake flux that would result in the maximum 

theoretical yields of products. If the photon uptake fluxes were lower than the optimal level for a 

fixed amount of CO2, the yield would be lower and byproducts (such as formate) were also 

secreted. In order to determine which products have the lowest light requirements, we also 

calculated the minimum amount of photons (in moles) required to produce one mole of target 

product and the corresponding water requirements (Table 4.2). Our results showed that the 

photon requirements generally increased as the number of carbons in the products increased.  
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Figure 4.7: Model-predicted maximum theoretical yields of isobutanol and lactate produced by 
Synechococcus 7002 at different photon and CO2 uptake fluxes 
2-D phase plane displaying maximum theoretical yields of A) isobutanol and B) lactate for different 
values of CO2 and photon uptake fluxes. The phase plane has 3 distinct regions: carbon-limitation region 
(CO2 is limiting the yield, photon is in excess), photon-limitation region (photon is limiting the yield, CO2 
is in excess) and infeasible regions (photon is too limited for a fixed amount of CO2).  
 

The model predicted that most products required 8 – 12 photons and 0.5 – 1.5 water 

molecules per carbon atom incorporated into the product, with the biofuel products requiring 

close to 12 photons per carbon atom. For ethylene, it was significantly higher and required ~22.4 

photons per carbon atom incorporated into ethylene. This was due to the co-production of 

guanidine since Synechococcus 7002 has no pathway to degrade this side product.  
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Table 4.2: Predicted photon and water requirements of Synechococcus 7002 grown under 
photoautotrophic conditions  

Products Photon required  a) H2O required b) 

Acetate 16 2 
Alanine 24 2 
Lactate 24 3 
Succinate 32.75 3 
Fattyacid  208 18 
Isobutanol 48 5 
Isoprene 56 4 
2-Methyl-1-butanol 60 6 
1-Butanol 48 5 
3-Methyl-1-Butanol 60 6 
1-Propanol 36 4 
2-Phenylethanol 80 5 
Ethylene 44.75 1 
Ethanol 24 3 

a) Number of moles of photons and water required to make 1 mole of product 
b) Number of electrons required to reduce 1 mole of carbon in product  

Even though acetate and ethanol both contain two carbon atoms and had equal maximum 

theoretical yields (Table 4.1), they have different photon (8 and 12 photons per carbon, 

respectively) and water requirements (1 and 1.5 water per carbon, respectively). The same was 

observed for 2-methyl-1-butanol and isoprene. The light and yield calculations were similar to 

recent estimates for some of these products in another cyanobacterium, Synechocystis 6803 

[127]. These yield calculations and assessment of light and water requirements are useful for 

identifying conditions to optimize biochemical production (e.g., dark anoxic versus dark oxic), 

and for conducting economic and life cycle analyses of biochemical production using 

cyanobacteria.  

Our predictions of single gene deletion mutant phenotypes using MOMA and RELATCH 

showed that for most products, MOMA tended to predict more mutants would have increased 

chemical production than RELATCH. Since MOMA’s objective is to minimize the total 
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difference between wildtype and mutant’s fluxes for all reactions in the network, the flux 

magnitude of each reaction in mutant strains will tend to be close to that in the wildtype strain 

[68]. When non-native pathways for a particular product were introduced into the model, 

MOMA tended to divert flux through reactions in these pathways in response to gene deletions, 

thereby leading to product formation. In contrast, RELATCH tries to minimize relative flux 

changes and latent pathway activation with limits on flux increases [116], and thus results in 

different secretion profiles. While RELATCH has been shown to make more accurate flux 

predictions for gene knockout mutants [116], it is not clear which method will be more accurate 

when non-native pathways are additionally incorporated into the mutants. In addition, the 

predictive ability of MOMA and RELATCH is sensitive to the reference flux distribution [68, 

116]. Since the photoautotrophic reference flux distribution of Synechococcus 7002 was 

estimated by fitting fluxes to 13C MFA data of Synechocystis sp. PCC 6803 [126], differences in 

photoautotrophic fluxes may exist between the two strains and could affect the accuracy of the 

reference flux distributions. Based on genome annotations, these two cyanobacteria share 

common genes encoding enzymes involved in central metabolism including glycolysis, pentose 

phosphate pathway, TCA cycle, carbon fixation, glycolate cycle, and photorespiration. This 

provides a basis for using the MFA data from Synechocystis 6803 to generate a reference flux 

distribution in this study. Nevertheless, a thorough genomic, metabolic, physiological, and 

ecological comparison of the two organisms, which is beyond the scope of this study, may reveal 

more significant differences in photoautotrophic fluxes between the two organisms. When more 

experimental data for Synechococcus 7002 mutant phenotypes and 13C MFA flux estimates 

become available, the predictions of both computational methods should be re-evaluated and 

compared to experimental results.  
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While RELATCH generally predicted that more adaptively-evolved mutants than 

unevolved mutants would produce the desired products, there were a few products for which this 

was not the case. For example, under the dark anoxic condition, RELATCH predicted that the 

unevolved A0246 mutant (missing a glutamine synthetase) would produce ethanol, while an 

evolved A0246 mutant would not produce this product. Further investigation revealed that 

Synechococcus 7002 has two genes encoding a glutamine synthetase, A0246 and A1630 with the 

former having higher gene expression and thus greater enzyme contribution to the glutamine 

synthetase flux [113]. RELATCH predicts that during evolution of the A0246 mutant, the 

glutamine synthetase flux will recover as A1630 compensates for the loss of A0246, thereby 

decreasing production of chemicals that were produced before adaptive evolution.  

MOMA and RELATCH predictions suggested that for non-native products (except for 

fatty acids), it was more likely to identify mutants with improved chemical production under 

dark anoxic conditions than under photoautotrophic conditions. As mentioned earlier, this was 

most likely due to the fact that some of the mutants predicted to produce chemicals under dark 

anoxic conditions were lethal under photoautotrophic conditions. As a result, these knockout 

mutants would be difficult to implement experimentally and would not be viable candidates for 

metabolic engineering. However, altering the regulation of these genes could enable cells to still 

grow photoautotrophically with down-regulation of the genes in response to dark anoxic 

conditions enabling chemical production.  

 While the gene deletions predicted by MOMA and RELATCH to increase chemical 

production under photoautotrophic conditions were product specific, the gene deletion strategies 

suggested by OptORF for different products appeared to share some common genes that encode 

enzymes involved in NAD(P)H consuming reactions (e.g.,, A0195, A0196, A0197, A0984, 
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A0985, and A0986). OptORF strategies suggest that in order to produce target chemicals, one 

needs to block pathways that produce byproducts and to preserve energy and reductant for 

producing desired compounds. For a particular product, the gene deletions predicted by MOMA, 

RELATCH and OptORF also had little overlap. For example, while MOMA and OptORF 

predicted that deleting one of the genes encoding NADH dehydrogenase (A0195, A0196, or 

A0197) would enable 1-butanol production, RELATCH (with tight parameters) identified a 

completely different set of non-intuitive single gene deletions (A0707, A1023, or A2508) that 

are involved in chlorophyll and heme biosynthesis. Therefore, it will be important to 

experimentally test the predictions from different approaches to evaluate their predictive power. 

The OptORF calculations suggested that it was generally difficult to couple growth to 

chemical production under CO2-limited photoautotrophic conditions. One reason for this is that 

light was not constrained in our simulations so there was never an excess of reductant, which is 

often the reason for product formation under anaerobic conditions in other microbes. For the 

products which had available OptORF strategies, at least 9 gene deletions were required in order 

to achieve significant coupling between growth and product formation. Interestingly, OptORF 

failed to identify any strategies for isobutanol production, which had been previously shown to 

be relatively easy to couple to growth in Escherichia coli [118]. In contrast, no 1-butanol 

strategies were found by OptORF for E. coli but strategies with production at ~ 34% of the 

maximum theoretical yield were found for Synechococcus 7002. These differences between E. 

coli and Synechococcus 7002 could be caused by differences in metabolism between the two 

organisms, differences in the number of gene deletions allowed, effects of transcriptional 

regulation (which was additionally used to constrain the E. coli model), and an unconstrained 
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source of ATP and reductant in the Synechococcus 7002 model under photoautotrophic 

conditions  

4.3 Materials and Methods 

4.3.1 Calculations for maximum theoretical yields for native and non-native products 

under different conditions 

Synechococcus 7002 produces a variety of autofermentation products, including lactate, 

succinate, acetate, alanine, and hydrogen [12]. Therefore, we added transport and exchange 

reactions for succinate, alanine, and lactate to the model (transport and exchange reactions for 

acetate and hydrogen were already in iSyp611 model). In addition, biosynthetic pathways for a 

range of biofuels and biofuel precursors were added to the model as needed to enable their 

production [20, 21, 31]. It should be noted that octadecanoic acid was chosen to represent a non-

native free fatty acid produced by Synechococcus 7002 in this study. Maximum theoretical yield 

calculations were carried out in photoautotrophic, dark anoxic (i.e., autofermentation), and dark 

oxic conditions. In the photoautotrophic simulations, the CO2 uptake flux was limited to 10 

mmol·g-1 AFDW·h-1 and photon uptake fluxes were not limited. FBA [67] (Chapter 2) was then 

used to maximize production of each of the desired products. We calculated the maximum 

theoretical yield of each product as the ratio of the maximum production flux to the CO2 

consumption rate.  

For the dark simulations, we performed FBA in two steps. In the first step, glycogen 

production flux was maximized with the same constraints as the photoautotrophic simulations. In 

the second step, we allowed glycogen to be the only carbon source (by setting the lower limits 

for CO2 and other carbon containing exchange fluxes to zero) and set the photon uptake fluxes to 

zero to simulate dark conditions. Because Synechococcus 7002 can grow in a 12/12 light/dark 
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cycle [28], we assumed that the amount of glycogen accumulated during the light period is equal 

to that degraded during the dark period. Therefore, the glycogen degradation rate was 

constrained to the maximum photoautotrophic glycogen production rate found in the first step, 

and the O2 exchange flux was either constrained to be zero (dark anoxic condition) or 

unconstrained (dark oxic condition). The maximum production flux of each desired product was 

then determined under dark conditions. The maximum theoretical yield under dark conditions 

was then calculated as the ratio of the maximum production flux to the CO2 consumption rate, 

the latter of which was obtained from the first step where glycogen production was maximized 

under photoautotrophic conditions.  

4.3.2 Predicting phenotypes of gene deletion mutants under photoautotrophic and dark-

anoxic conditions 

We used MOMA and RELATCH [68, 116] to predict flux distributions in single gene 

knockout mutants. Since both methods require a reference flux distribution, we first used 

expression data and either 13C metabolic flux analysis (MFA) data for photoautotrophic 

conditions, or measured external flux values (substrate uptake and product secretion fluxes) for 

dark anoxic conditions to estimate a reference flux distribution ሺ࢝ሻ [116]. We slightly modified 

the method described in [116] to obtain the reference flux distribution, in which the single 

optimization problem was broken into two optimization problems, which are shown below (Eq. 

4.1 – 4.8).  

Step 1:         min					 ∑ ൬
௪ೕ
೘೐ೌೞି௪ೕ
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೐ೝೝ ൰
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                              ௝ܹ,௡
௘௡௭ ൒ 0     ∀݆	 ∈ ܬீ ௉ோ, ݊ ∈ ܰሺ݆ሻ (Eq. 4.8) 

In the first optimization problem (Step 1), the sum of squared differences between the 

measured fluxes values ሺ࢙࢝ࢇࢋ࢓ሻ and the flux variables ሺ࢝ሻ	was minimized and weighted by the 

reciprocal of measured flux errors ሺ࣌࢘࢘ࢋሻ (Eq. 4.1). This objective function was defined for a 

subset of reactions ሺࡼࢄࡱࡶሻ where experimental data regarding flux values (13C MFA or external 

flux data) was available. Since 13C MFA data was not available for Synechococcus 7002 under 

photoautotrophic or dark anoxic conditions, we used 13C MFA data recently reported for 

Synechocystis sp. PCC 6803 grown under photoautotrophic conditions [126] to predict the 

reference flux distribution for Synechococcus 7002 under photoautotrophic conditions. For the 

dark anoxic condition, we used previously reported secretion rates for alanine, hydrogen, acetate, 

and lactate for Synechococcus 7002 obtained under a dark anoxic condition [12] to constrain the 

exchange fluxes for the secreted products (See 4.3.2). The first optimization problem included 

steady-state mass balance (Eq. 4.2) and reaction reversibility (Eq. 4.3) constraints to define a 

feasible solution space. The measured external flux values and errors were used to limit the flux 

variables for reactions ሺࢀࢄࡱࡶሻ whose external flux data were available (Eq. 4), and these 

constraints (Eq. 4.4) were only used to predict the reference flux for Synechococcus 7002 under 

dark anoxic condition.  
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4.3.2.1 Estimating MOMA’s and RELATCH’s reference flux distributions under 

photoautotrophic and dark anoxic conditions 

For the photoautotrophic condition, we used the 13C metabolic flux analysis (MFA) data 

for Synechocystis 6803 grown under photoautotrophic condition [126] to estimate a reference 

flux distribution for Synechococcus 7002 using the two-step optimization procedure above. The 

MFA flux distribution, which was normalized to a CO2 uptake flux of 100 mmol·g-1 AFDW· h-1, 

was scaled down to a CO2 uptake flux of 8.62 mmol·g-1 AFDW·h-1  so that the predicted growth 

rate would be ~ 0.20 h-1, which is equivalent to the physiological doubling time of 

Synechococcus 7002 (~ 3.5 h [113]). Some fluxes reported in the MFA dataset were not 

considered in the fitting procedure because the reactions were not present in the iSyp708 model. 

The MFA data that was used in our calculations were shown in Table 4.3 below.  

Table 4.3: 13C Metabolic flux analysis (MFA) data from Synechocystis 6803  

Reaction a) MFA data b) Scaled data c) Reaction a) MFA data b) Scaled data c)

PGI -19 ± 5 -1.64 TAL -1 ± 8 -0.09 

G6PDHy 16 ± 5 1.38 FBA3 -36 ± 8 -3.10 

FBP 60 ± 7 5.17 SBP 36 ± 7 3.10 

FBA -60 ± 7 -5.17 PDH 11.8 ± 0.3 1.02 

TPI -95 ± 5 -8.19 CS 3.2 ± 0.2 0.28 

GAPD -228 ± 9 -19.65 ACONT 3.2 ± 0.2 0.28 

PGM 23.2 ± 0.4 2.00 ICDHy 3 ± 0 0.26 

ENO 23.6 ± 0.2 2.03 SUCD1i 0.2 ± 0.2 0.02 

PYK 9.5 ± 1.6 0.82 FUMH 1.8 ± 0.2 0.16 
RPE -75.9 ± 0.4 -6.54 MDH -3.6 ± 1.7 -0.31 

RPI 35.6 ± 0.2 3.07 ME2 5.3 ± 1.6 0.46 

PRKIN 127 ± 5 10.95 PPC 11.6 ± 1.7 1.00 

RBC 127 ± 5 10.95 RBO 0.4 ± 0.4 0.03 

TKT2 -38.5 ± 0.2 -3.32 PGLYCP 0.4 ± 0.4 0.03 

TKT1 -37.3 ± 0.2 -3.22 GLYCTDH 0.4 ± 0.4 0.03 
a) Reactions’ abbreviations are the same as those used in iSyp611 [61]. 
b) Normalized MFA data (in mmol·g-1 AFDW·h-1) for Synechocystis 6803 [126] 
c) The scaled flux data was calculated by taking the normalized MFA data and multiplying it by 0.0862.  

 



76 
 

For dark anoxic conditions, we used measured secretion rates for Synechococcus 7002 

[12] to estimate the reference flux distribution. All measured fluxes except for glycogen 

degradation rate (DM_glycogen) shown below in Table 4.4 were used in the objective function 

of the first step (Eq. 4.1).  The measured glycogen degradation rate was not included in the 

objective function, but instead used to fix the glycogen uptakeflux (glycogen uptake flux was 

fixed to 0.118 mmol·g-1 AFDW·h-1). We also excluded the hydrogen data from the set of 

external fluxes ሺࢀࢄࡱࡶሻ (Eq. 4.4) to ensure the model’s feasibility, but the hydrogen data was still 

used in the objective function (Eq. 4.1). In addition, we converted the measured external rates 

and errors from the reported unit (mol·10-17 cells·day-1) to a unit compatible with the model 

(mmol·g-1 AFDW·h-1) using the reported cell weight (5 mg/ 1011 cells), assuming it was ash-free 

dry weight. The measured secretion rates and errors that were used to estimate the reference flux 

distribution under dark anoxic condition were shown in Table 4.4 below.  

Table 4.4: Measured external fluxes and errors for Synechococcus 7002 under dark anoxic 
condition 

External fluxes mol·10-17 cells·day-1 mmol·g-1 AFDW·h-1  
Ex_h2_e (*) 2.7 ± 0.4 0.023 ± 0.003 
Ex_ala-L_e 3.6 ± 1.2 0.03 ± 0.01 
Ex_lac-D_e 21.6 ± 12 0.18 ± 0.1 
Ex_ac_e 3.0 ± 3 0.025 ± 0.007 
DM_glycogen 14.1 ± 5 0.118 ± 0.04 

(*) Hydrogen was excluded from the set of measured external fluxes  ሺࢀࢄࡱࡶሻ in equation 4.4 
 

In the second optimization problem (Step 2), fluxes through experimentally measured 

reactions in set ሺࡼࢄࡱࡶሻ were fixed to the values found in Step 1 ቀ࢝࢐
 ૚ቁ while the sum of	࢖ࢋ࢚ࡿ

squared enzyme contribution variables ൫࢔,࢐ࢃ
 ൯, weighted by the reciprocal of enzyme expressionࢠ࢔ࢋ

values ሺ࢔ࡱሻ, was minimized (Eq. 4.5 – 4.6). The sum of the enzyme contribution variables over 

all isozymes (n) for a particular reaction was used to place limits on fluxes for reaction that have 

gene-protein-reaction (GPR) associations ሺࡾࡼࡳࡶሻ (Eq. 4.7). The gene expression value ሺ࢔ࡱሻ for 
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multi-component enzymes was determined by summing all the gene expression values for genes 

encoding enzyme subunits. The expression data for Synechococcus 7002 grown under 

photoautotrophic and dark anoxic conditions were used from previously reported RNA-seq 

experiments [113]. The reference flux distribution was the solution to the second optimization 

problem and was used for MOMA and RELATCH predictions of mutant fluxes [68, 116].  

For all native products, we simulated single-gene deletions by applying MOMA and 

RELATCH [68, 116] on the metabolic network of iSyp708. For each non-native product, we 

added the biosynthetic pathway to iSyp708 and applied MOMA and RELATCH [68, 116] on the 

modified model. For each single-gene deletion, we predicted the production of target chemicals 

under photoautotrophic and dark anoxic conditions. We used growth rates and production rates 

of different Synechococcus 7002 mutants to identify sets of tight and relaxed parameter values 

used by RELATCH. These tight and relaxed parameter values are used by RELATCH to predict 

the non-adapted (i.e., unevolved) and adapted (i.e., evolved) states, respectively, after genetic 

perturbations (See 4.3.3). 

4.3.2.2 Determining values of alpha ሺࢻሻ and gamma ሺࢽሻ for RELATCH 

We performed sensitivity analyses for the parameters ߙ and ߛ that were used in the 

RELATCH algorithm following the procedure described in [116] (See 4.3.4). Since MFA data 

were not available for Synechococcus 7002 mutants under either photoautotrophic or dark anoxic 

conditions, we used the predicted growth rate or product secretion rates to determine these 

parameter values. For the photoautotrophic condition, we identified 6 un-evolved mutant strains 

of Synechococcus 7002 whose growth rates have been reported either qualitatively or 

quantitatively to be similar to the wildtype strain [12, 28, 62, 128]. We ran RELATCH for these 

knockouts separately with [101x101] pairs of different ߙ and ߛ values, and evaluated the 
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predicted growth rates of each of these mutants. RELATCH predicted that growth variation was 

more sensitive to ߙ and ߛ for all tested mutants, where a lower  value corresponded to higher 

growth rate (Figure 4.8). From these results we chose ሺߙ ൌ 3.16, ߛ ൌ 10ሻ	and	ሺߙ ൌ 	0.316, ߛ ൌ

	∞ሻ		for the tight and relaxed parameters to predict the un-evolved and evolved states of 

Synechococcus 7002 mutants a under photoautotrophic condition.  

 For dark anoxic condition, we chose the parameters for which RELATCH’s predictions 

of product secretion fluxes of alanine, acetate, hydrogen and succinate in the lactate 

dehydrogenase mutant strain (ΔldhA) were most consistent with experimental data [12]. Since 

the wildtype Synechococcus 7002 does not produce succinate experimentally, we first looked at 

the effects of ߙ and ߛ on RELATCH’s prediction for succinate production in a ldhA knockout 

mutant (Figure 4.9). Our result showed that there was a region of ߙ and ߛ values for which 

succinate secretion flux was non-zero (Figure 4.9A). To evaluate the differences between model 

predictions and experimental data, we also calculated the sum of squared errors per flux (SSE) 

value for this mutant (Figure 4.9B). The SSE values were smallest in a similar region of ߙ and ߛ 

values, indicating that the predicted production rates of alanine, hydrogen, and acetate were 

closest to the experimental data. Based on these results we used ሺߙ ൌ 10, ߛ ൌ 1ሻ	and	ሺߙ ൌ

	1, ߛ ൌ 	∞ሻ		for the un-evolved and evolved states of Synechococcus 7002 mutants under a dark 

anoxic condition. 

 



79 
 

 

Figure 4.8: Sensitivity analyses of RELATCH parameters on predicted growth rates of 
Synechococcus 7002 mutants under photoautotrophic condition 
Each heat map plot shows the growth rate (in h-1) for a Synechococcus 7002 mutant predicted by 
RELATCH for different pairs of ߙ and ߛ values.  
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Figure 4.9: Sensitivity analyses of RELATCH parameters for succinate production rate and sum of 
squared errors per flux of Synechococcus 7002 ldhA mutant under dark anoxic conditions 
A) Heat map plot shows the predicted succinate production rate (in mmol·g-1 AFDW·h-1) for the ldhA 
mutant under dark anoxic conditions. B) Heat map plot shows the sum of squared error (SSE) per flux (in 
mmol2·g-2 AFDW·h-2) between measured and predicted rates for acetate, alanine, succinate, and lactate in 
ldhA mutant under dark anoxic conditions. 
 

4.3.3 Identifying strain design strategies for production of target chemicals during 

photoautotrophic growth using OptORF 

While MOMA and RELATCH predict a given mutants’ capability to secrete target 

chemicals, the predicted gene deletion strategies often result in production of other byproducts 

besides the chemicals of interest. In addition, to find strategies involving larger numbers of 

deletions all possible combinations of higher order knockouts would need to simulated using 

these approaches, which is computationally difficult [119]. We thus used the OptORF algorithm 

[118] without regulatory constraints (since these are not known for Synechococcus 7002) to 

identify gene knockout mutants with up to 10 gene deletions that can produce target chemicals 

while growing maximally under photoautotrophic conditions. Briefly OptORF is a bi-level 

programing algorithm that looks for gene deletions that would produce chemicals of interest if 

cells maximized their growth [118]. We ran OptORF to identify growth-coupled gene deletion 
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strategies for both native and non-native products under photoautotrophic conditions, since 

adaptive evolution under this condition would lead to improved production rates. 
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Chapter 5 
 
Development of a co-culture model for Synechoccoccus  

sp. PCC 7002 and Shewanella sp. W3-18-1 

 
Microorganisms in nature tend to live in a community where more than one species 

cohabitate the same environment, and therefore they interact with one another. The term 

‘symbiosis’ refers to the interaction between two different species living in proximity and the 

interaction can be beneficial for one or both organisms [129]. The interactions between pair of 

species living in the same microbial consortia can be classified based on the effects of metabolic 

exchange between the two species. Mutualisms refer to the bidirectional exchange of metabolites 

between pair of organisms such that the exchange is beneficial to both species [130]. 

Commensalism is the unidirectional exchange of metabolites such that only one organism 

benefits from the interaction [130]. If one species benefits from the interaction while the other is 

harm, the interaction is called parasitism [130]. In addition, an interaction can be neutralism if 

neither species benefits from the other [130].  

Organisms that can live symbiotically are very diverse with microorganism are the 

dominant species. A famous example of symbiotic relationship is the light-emitting symbiosis 

between the marine bacteria Vibrio fischeri and the Hawaiian bobtail squid Euprymna scolopes. 

In this relationship, the light emitted from the bacteria help the squid in several activities such as 

prey attraction, and predator evasion and in return, the squid provide nutrients for bacterial 

growth [131]. Another example of symbiosis occurs between plants and Rhizobia in which the 

bacteria Rhizobia induce the formation of a specialized organ called nodule on roots of the host 
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plant; the bacteria fix nitrogen in this organ and provide the plant with ammonia in return for 

starch and sugars [132]. The benefits that Rhizobia offer to the host plants have motivated studies 

on characterization and isolation of different Rhizobia strains that can tolerate different soil 

conditions and improve crop yield [133]. Symbiotic microorganisms are also subjects for 

studying the biosynthesis of secondary metabolites which are metabolites that are not essential 

for the growth of the microorganisms and can be pharmaceutically valuable; hence they often are 

potential candidates for the development and discovery of new drugs [134]. The associations 

between sponge and marine microorganisms have produced many natural products such as 

swindholide A (a cytotoxic agent), and mycalamide A (an antitumor compound) [135]. 

  Among symbiotic microorganisms, cyanobacteria are considered advantageous 

symbionts (organisms that are in symbiotic relationship) because of their ability to fix carbon 

dioxide and nitrogen, which can provide significant carbon and nitrogen sources in usable forms 

for the organisms that they are associated with [135]. In addition, cyanobacteria can naturally 

produce various secondary metabolites such as anatoxin-a (a neurotoxin produced by Anabaena 

flos-aquae), and borophycin (a cytotoxin produced by Nostoc linckia) [136], or can be 

engineered to produce various non-native or native chemicals (Chapter 1).  Moreover, 

cyanobacteria can form symbiotic associations with many organisms including plants, animals, 

and bacteria [137].  Although symbiosis has been studied for many years, the mechanisms of 

how metabolites are exchanged between symbiotic organisms are not fully understood. 

Therefore, it is desirable to develop a co-culture model that can represent a synthetic microbial 

interaction between cyanobacteria and other microorganism, and reflect such interactions and 

thus help fill in the knowledge gaps that have not been known before.  Such a model can also be 
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used to study the biosynthesis of valuable natural products produced from synthetic symbiotic 

association.  

This chapter reviews recent research development in modeling microorganism 

community from the literature. It also reports the development of a co-culture model for 

Synechococcus sp. PCC 7002 (Synechococcus 7002) and Shewanella sp. W3-18-1 (Shewanella 

W3181) using genome-scale metabolic models that have been developed for these organisms 

(Chapter 2). The co-culture was analyzed to study the metabolite exchange between the two 

organisms, and to see if the co-culture can sustain growth under different nutrients. The result of 

this study provides insights into microbial interactions and bacteria’s growth in a community.  

5.1 Literature survey of recent development in modeling community 

of microorganism 

The symbiotic relationship between Rhizhobia and host plant has been modeled to study 

the first step in the interaction between the two organisms which was the nitrogen fixation within 

the nodule of the host plants’roots [138]. This model was able to qualitatively predict the 

pathways being utilized during nitrogen fixation stage and the predictions were in good 

agreement with the literature. The relationship between a methanogen archae Methanococcus 

maripaludis and a hydrogen-producing bacteria Desulfovibrio vulgaris was also modeled as 

symbiotic association [139] and this model not only captured some of the physiological aspects 

of symbiotic growth between the two organisms but also determined that hydrogen was more 

essential as an electron carrier than formate, which cannot be easily determined using classical 

biochemical and genetic techniques. Modeling interactions among different cell types or tissues 

from the same organism (eukaryotes, brain tissues, human whole-body) also provided insights 

into methodology of modeling complex communities for which each cell type or species in the 



85 
 

community was treated as a separate compartments in the combined network [140-142]. 

Computational algorithms associated with multi-species models were also developed to analyze 

the models. Notably, Klitgord et. al., have developed an algorithms that search for metabolites 

that can be exchanged between pairs of microorganisms, and also for media that can induce 

specific types of interaction between two species [130]. The results of this work helped identify 

synthetic interactions among species through genetic and environmental perturbations, which can 

potentially be useful in metabolic engineering.  

Most of the methods discussed above involve a single optimization problem. In contrast, 

OptCom, a computational algorithm that has been developed to study microbial interactions, was 

formulated as a bilevel optimization problem extended from flux balance analysis (FBA) 

algorithm ([67], Chapter 2). In this formulation, it was assumed that the microbial community 

maximizes the total biomass while each species in the community also tries to maximize its own 

biomass [143]. Although OptCom predictions for the interaction between M. maripaludis and D. 

vulgaris agreed with experimental data, OptCom overpredicted the growth rate ratio between 

two species in a three-species photoautotrophic microbial community [143, 144]. In addition, 

OptCom assumes that the biomass concentration of each species in the community is equal, 

which might not be practical.  

5.2 Development and analysis of a co-culture model for 

Synechococcus 7002 and Shewanella W3181.  

Cyanobacteria often possess oxygen-sensitive hydrogenases which are responsible for the 

production of hydrogen [3]. In Synechococcus 7002, hydrogen was only produced via dark-

fermentation to avoid hydrogenases being inhibited by oxygen evolved during photosynthesis 
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[12] (Chapter 1). This issue in theory can be alleviated by coupling the oxygen evolution in 

Synechococcus 7002 with oxygen consumption in Shewanella W3181 (Figure 5.1).  

 

Figure 5.1: Schematic illustration of the metabolite exchanges between Synechococcus 7002 and 
Shewanella W3181 
Synechococcus 7002 (Syp702) can grow photoautotrophically using light energy and CO2, or 
photoheterotrophically with light and glycerol. Oxygen evolved from photosynthesis of Syp7002 can be 
consumed by Shewanella W3181 (ShewW3181) as an electron acceptor. ShewW3181 can grow on a 
number of carbon sources (e.g., lactate, acetate), and secreted CO2 as by product, which can be consumed 
by Syp7001 via carbon fixation. The metabolites (e.g., H2, CO2, lactate, O2) exchanged from each species 
in the co-culture model can be exchanged to the environment.   
 

As shown in Figure 5.1 oxygen and organic carbon compound (e.g., lactate) produced 

from Synechococcus 7002 grown photoautotrophically are consumed by Shewanella W3181. In 

return, Shewanella supplies carbon dioxide for Synechococcus 7002. Like other Shewanella 

species, this organism can utilize a wide range of carbon sources (Figure 5.2) and electron 

acceptors (such as oxygen, iron, etc) [145]. 

The co-culture was developed to model growth of Synechococcus 7002 and Shewanella 

W3181 in chemostats in which growth rates can be controlled by monitoring the dilution rate. To 

illustrate the reconstruction of the co-culture model from the genome-scale models of each 

species, a toy-network was constructed (Figure 5.3). In this model, the media and the two 
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organisms are treated as three separate compartments that are linked to each other via transport 

reactions.  

 

Figure 5.2: Example of intermediary carbon metabolism in Shewanella 
Carbon sources of different chain length that can be metabolized by Shewanella: C2 (ethanol, acetate), C3 
(lactate, propionate, pyruvate). Ethanol, acetate and lactate are known to be secreted by Synechococcus 
7002. Synechococcus does not produce propionate naturally but can produce its precursor 2-oxobutanoate 
which can be converted to propionate by Shewanella enzyme.    
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Figure 5.3: Toy network illustrating the co-culture model of two organisms in chemostat 
A, B, C, D, and E represent the metabolites in the metabolic network of each organism I and II. BMI and 
BMII represent the biomass of organism I, and II, respectively. A_e, B_e, D_e, and E_e are external 
metabolites, which can be transported in/out of the cells and of the reactor (dot lines) via Feed and Outlet 
streams. B and D can be exchanged between the two organisms, while A can only be consumed by 
organism I, and E can only be consumed by organism II.  
 

We then used constraint-based modeling (Chapter 2) to model the co-culture as an 

optimization problem, in which the objective is to maximize the total biomass concentration of 

the community instead of total growth rates as described in OptCom [143] (Eq. 5.1). In this 

formulation, ூܺ 	ܽ݊݀	 ூܺூ represent the biomass concentrations of organisms I and II, respectively 

while ூ݂ 	ܽ݊݀	 ூ݂ூ represent the exchange fluxes of external metabolites (e.g., A_e, B_e, D_e, E_e) 

that are exchanged between the media and organism I and II, respectively. Like FBA (Chapter 

2), we also used mass balance and flux limit to constrain the solution space (Eq. 5.2 – 5.7). In the 

chemostat, the growth rates of each organism are equal to the dilution rate D (Eq. 5.8). The last 

equation is the reactor balance equation in which Feed, Outlet, and Media are the flow rates of 

external metabolites in the feed, outlet and in the media. The variables in this optimization are 

the biomass concentrations and fluxes through all reactions in each metabolic network. 

	݊݅݉	or	ݔܽ݉ 		 ூܺ ൅ ூܺூ         (Eq. 5.1) 

.ݏ 							.ݐ ூܵ ∙ ூݒ ൌ 0, ∀	internal	metabolites	in	species	I     (Eq. 5.2) 

ூܵ ∙ ூݒ ൌ ூ݂, ∀external	metabolites in species I     (Eq. 5.3) 

ூܤܮ ൑ ூݒ ൑  ூ         (Eq. 5.4)ܤܷ

ூܵூ ∙ ூூݒ ൌ 0, ∀	internal	metabolites	in	species	II     (Eq. 5.5) 

ூܵூ ∙ ூூݒ ൌ ூ݂ூ, ∀external	metabolites in species II     (Eq. 5.6) 

ூூܤܮ ൑ ூூݒ ൑  ூூ         (Eq. 5.7)ܤܷ

ூߤ ൌ ூூߤ ൌ  (Eq. 5.8)          ܦ

݀݁݁ܨ െ ݐ݈݁ݐݑܱ ൅ ூ݂. ூܺ ൅ ூ݂ூ. ூܺூ ൅ ܽ݅݀݁ܯ ൌ 0, ∀external	metabolites  (Eq. 5.9) 



89 
 

We applied the above formulation to the genome-scale metabolic networks for 

Synechococcus 7002 (iSyp708), and Shewanella W3181 (iSW3181_794) that have been 

developed in Chapter 2. We solved the optimization problem for three chemostat scenarios with 

a dilution rate of 0.05h-1 and the flow rates of inorganic carbon or lactate were fixed to 10 

mmol·L-1·h-1.  Simulation results were shown in Table 5.1 below. The co-culture model was able 

to sustain growth in all three conditions. The total cell concentration was predicted to be 

increased with the supplement of organic carbon source (lactate). 

Table 5.1: Predicted maximum total cell concentration of the co-culture in different chemostat 
experiments 
 

Scenarios Maximum total cell concentration (g AFDW/L) 

Feed only inorganic C  5.14 

Feed only lactate 15.4 

Feed inorganic C and lactate 20.6 

 
 It should be noted that the above optimization is a non-linear programing (NLP) problem, 

and therefore the solution obtained is not guaranteed global. When solving this NLP optimization 

problem, it is often critical to have reasonable initial values for the variables. In this case, 

obtaining a set of proper initial values was challenging since there were too many unknowns in 

the models. We addressed this issue by first identifying a feasible solution to the problem and 

perturbed the variables from the current level of the feasible solution and resolving the problem. 

We found that in all cases, the total biomass concentration remained the same but only individual 

cell concentration changed. In addition, the biomass concentration of Synechococcus 7002 was 

predicted to be always higher than that of Shewanella W3181, which implied that to maintain the 

co-culture at a certain dilution rate, one would need to have more cyanobacteria cells in the co-

culture.  
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Chapter 6 

Conclusions and future directions 

In this work, we have focused on the development and genome-scale metabolic model for 

cyanobacteria. We have demonstrated the applications of genome-scale metabolic models in 

three main contexts. Firstly, Cyanothece 51142 metabolic model was analyzed in the context of 

understanding the production and partitioning of energy and reductant in the complex electron 

transport systems of the cyanobacteria. Secondly, we used the genome-scale metabolic model of 

Synechococcus 7002 to address the feasibility of the biochemical production of various 

compounds under different conditions, which we believe to be useful in strain-designing 

cyanobacteria for production of high-value products. Lastly, we have started to obtain initial 

results from analyzing the co-culture model of the cyanobacterium Synechococcus 7002 and the 

‘metal reducing’ bacterium Shewanella W3181 such that the co-culture can sustain growth under 

different nutrient conditions. The result of this work will contribute more knowledge to 

symbiotic relationship between microorganisms.   

6.1 Future directions 

6.1.1 Validate and further improve genome-scale models 

 Model building is an iterative process and therefore discrepancies between model 

predictions and experimental data can be used to refine and improve model predictions. The 

predictive power of the genome-scale metabolic models developed in this work need to be 

verified by comparing model predictions with experimental data. While the predictions of 

Cyanothece 51142 model have been qualitatively and quantitatively validated with growth 
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experiments (Chapter 3), we have not yet verified model predictions by Synechococcus 7002 and 

Shewanella W3181 due to the lack of experimental data available for these organisms. Looking 

forward, since the genetic modification tools have been developed for Synechococcus 7002, we 

can verify model prediction against gene essentiality data if available. In addition, advances in 

metabolic flux analysis have enabled the quantification of flux distribution in photoautotrophic 

bacteria, which would be helpful to verify our cyanobacteria model-predicted flux distribution 

under photoautotrophic conditions. The MFA data will not only allow us to verify the predicted 

flux distribution, but also to redo the calculations for the reference flux distributions that were 

used to predict mutant phenotypes in MOMA and RELATCH algorithms (Chapter 4). 

Additionally, since Shewanella W3181 can grow on various carbon sources we can test 

Shewanella W3181 model predictions on the ability to grow on different carbon source using 

carbon utilization experiments.  

 Similarly, the co-culture predictions also need to be verified with experimental data when 

they become available. In addition, alternative methods for solving non-linear programming 

problem efficiently and different objective functions in modeling the co-culture should be 

explored to analyze the co-culture.   

6.1.2 Validate predicted gene-deletion strategies 

In Chapter 4, we have used MOMA [68], RELATCH [116], and OptORF [118] 

algorithms to obtain the strain-designing predictions that are pertaining to metabolic engineering 

Synechococcus 7002 for producing chemicals. The strategies suggested by these algorithms are 

not always overlapped and therefore it would be interesting to verify these predictions in the 

laboratory. Since there are many equivalent predicted gene-deletions strategies, it is necessary to 

further manually examine each of these strategies to narrow down the list of candidates. As an 
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example, one may make use of additional data (if available) such as gene/protein expression data 

or thermodynamic data to evaluate the feasibility and enzymatic activity of the reactions and 

proteins associated with deleted genes to eliminate some of the candidates from the list of 

proposed strategies.  

Most of the engineering strategies suggested in the literature for improving productivity 

of non-native chemicals involved overexpression of non-native pathways instead of knocking out 

native genes. One can apply OptORF to identify metabolic engineering strategies that involved 

gene overexpression if a regulatory network is available [118]. Knowledge of transcriptional 

factor and regulatory interactions of genes in cyanobacteria is still limited and thus there is a 

need to develop regulatory networks from available expression data. In addition, it would be 

interesting to identify a set of reactions that can be added to the model that would improve 

chemical production.  

6.2 Concluding remarks 

Looking back over the years I spent learning how to develop metabolic models for 

cyanobacteria, I am convinced that models are useful as they provided us a systematic way to 

represent living organisms, and to see how materials are connected. As complicated as living 

organisms are, it is amazing how simple models such as the Cyanothece 51142 model that 

include only ~ 30% of the genome can make accurate growth predictions. Analyzing the 

metabolic network of photosynthetic bacteria (cyanobacteria) was more challenging than that of 

other microorganisms such as E. coli, or yeast for the cyanobacteria metabolic network is 

dependent on not only the carbon sources but also the energy from light. I also learned that 

models have limitations but these limitations open doors for many research areas in the fields of 
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systems biology and synthetic biology that together really make a significant improvement on 

quality of life.   
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