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Chapter 1

Cyanobacteria — a potential platform for production

of biochemicals

Energy crisis is one of the biggest problems the world is facing nowadays and in the
future. Over many years, energy production has heavily relied on the availability of fossil fuels
via chemical-based processes that are becoming increasingly limited and expensive. In addition,
these energy resources are not distributed uniformly throughout the world, resulting in political
and economic imbalances among nations [1]. Carbon dioxide emission from fossil fuel usage
also raises health and environmental concerns regarding pollution and global warming [2]. The
disadvantages of fossil fuels directly make renewable fuels stand out as a promising future
energy source for they are renewable and environmental friendly [2]. The limitations of the
traditional methods motivate researchers to develop new and “clean” processes to generate
renewable fuels and chemicals, among which biological processes receive a great deal of
research interests and investments. In this chapter, we reviewed the use of cyanobacteria as a
potential platform for production of bio-based chemicals. We discussed different bio-production
processes, as well as the issues and challenges associated with them. Recent advances in
metabolic engineering cyanobacteria for bio-chemicals together with some future perspectives
were also highlighted to provide some useful insights about the potential for this new and

exciting technology.



1.1 Advantages of cyanobacteria

Cyanobacteria, also known as blue-green algae, are oxygenic photosynthetic bacteria
found in most ecological niches from fresh water to marine, terrestrial and extreme environments
[3]. Cyanobacteria can possess 3 basic growth modes: photoautotrophy, photoheterotrophy and
heterotrophy. During photoautotrophic growth, cyanobacteria use energy from sunlight and
electrons donated from water to convert CO, to essential precursors via photosynthesis. While all
cyanobacteria can grow photoautotrophically, not all of them can grow heterotrophically (in the
absence of light and presence of some organic carbon sources other than CO; such as glycerol or
glucose), or photoheterotrophically (in the presence of light and presence of organic carbon
sources) [4].

Cyanobacteria are known to have similar photosynthesis mechanism to that of higher
plants but possess much simpler physiological structure and genetics, and therefore naturally
become the most suitable model to study oxygenic photosynthesis. The structure and physiology
of cyanobacterial cell resemble the chloroplast in plant cells and therefore cyanobacteria and
chloroplast are believed to be evolutionarily related [5]. In addition, cyanobacteria are the only
known prokaryotes that exhibit circadian rhythm and this behavior is believed to control
metabolic processes inside the cyanobacterial cells [6].

Cyanobacteria are considered important microorganisms on Earth for they play key roles
in the carbon and nitrogen cycles of ecosystems [7]. Compared to other terrestrial photosynthetic
systems such as plants and algae, cyanobacteria have faster growth rates and higher
photosynthetic conversion efficiency (10% compared to 1 - 5% in higher plants or algae [8]).
Due to their ability to growth in minimal environments (only require mineral, CO,, sunlight,

water) and to inhabit various environments, biofuel production in cyanobacteria does not



compete for arable lands like other processes that require plant-derived (e.g., sugar cane, starch,
switchgrass) biomass [9]. In addition, cyanobacteria are known to synthesize high-energy storage
components such as lipids, proteins, and carbohydrates, which can be converted to energy [9].
Genome sequences of 41 cyanobacteria strains have been published and genetic modification
tools have been developed for a few strains, forming the basis to apply synthetic and systems
biology tools for engineering cyanobacteria for biochemical production. The properties

mentioned above make cyanobacteria an attractive microbial system for biofuel research.

1.2 Biochemical production in cyanobacteria

There are two common processes that are often employed in engineering cyanobacteria to
produce various native or non-native chemicals. These processes can be categorized based on the
types of carbon sources (inorganic carbon or organic carbon sources) and the environmental
conditions (light or dark) in which the cyanobacteria grow (Table 1.1).

Table 1.1: Biochemical production processes in cyanobacteria

Carbon

Processes source Environment Example of engineered products
Photofermentation co Lioht 1-butanol, isobutanol, isoprene, ethylene, 2-
(photanol) : & methyl-1-butanol

Dark-fermentation Organic Dark hydrogen, lactate, succinate, formate, acetate,
(photofermentation)  carbon ethanol

Photo-fermentation (or photanol) refers to the direct conversion of CO, to end products
via photosynthesis and the addition of exogenous fermentative pathways to cyanobacteria
(Figure 1.1) [10]. In contrast, in a dark-fermentation process, fermentative products are generated
from degrading either exogenous organic carbon sources such as glucose, glycerol, or fructose or
endogenous carbohydrate such as glycogen accumulated during photoautotrophic growth (Figure
1.1) [11, 12] . Cyanobacteria hosts that are commonly used to study the biochemical production

are Synechocystis sp. PCC 6803 (Synechocystis 6803) and Synechococcus elongatus PCC 7942



(Synechococcus 7942) since the genetic manipulation tools have been developed for these strains

[13].

Dark-fermentation Photo-fermentation
. e gen

CO,
te-3P
te-2P
enolpyruvate
j Ethanol Propanol

KivD  yghD 1-Butanal
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Figure 1.1: Schematic illustration of biochemical production processes in cyanobacteria

Pyruvate and acetyl-CoA derived from fixed CO, are major precursors of the biosynthesis of various
native chemicals (e.g., lactate, acetate, succinate) and non-native chemicals (e.g., ethanol, 1-butanol,
isobutanol). Blue arrows represent the foreign genes of exogenous pathways introduced to the
cyanobacteria to convert the precursors to non-native chemicals. Dash-arrows represent multi-step
reactions. kivD — ketoacid decarboxylase from Lactobacillus lactis, yghD — alcohol dehydrogenases from
Escherichia coli; Genes from Clostridium acetobutylicum: thiL —acetyl-coA acetyltransferase, hbd — B-
hydroxybutyryl-CoA dehydrogenase, crt — crotonase, bcd — butyryl-CoA dehydrogenase, adhE2 —
bifunctional aldehyde/alcohol dehydrogenase; Genes from Zymomonas mobilis, pdc — pyruvate
decarboxylase, adhE — acohol dehydrogenase [13].



1.2.1 Biochemical production via photo-fermentation in cyanobacteria

Cyanobacteria have the ability to fix CO, using light energy, however they do not
normally produce biofuels and chemicals under this condition. In contrast, many fermentative
bacteria have developed biosynthesis machinery for a variety of compounds such as ethanol, 1-
butanol, and lactic acid. Fortunately, advances in genetic engineering and synthetic biology
allow the integration of exogenous pathways from other bacteria into cyanobacteria to realize the
full potential of the combined system (photofermenting bacteria). Photosynthesis provides
energy (in the form of ATP) and reductant (in the form of NADPH) for carbon fixation process.
As illustrated in Figure 1.1, CO; is transformed into glycerate-3-phosphate, which is eventually
converted to two major precursors (pyruvate and acetyl-CoA) for biosynthesis of various
chemicals. It should be noted that the term ‘photo-fermentation’ in cyanobacteria described here
is different from that used in the context of biological production of hydrogen in other
photosynthetic bacteria such as green sulfur or purple non-sulfur bacteria. In these other
photosynthetic bacteria, organic substrate is fermented to hydrogen and carbon dioxide, using
energy from sun light and electrons extracted from non-water sources such as sulfur or hydrogen
sulfide [14]. In addition, biochemical production via photo-fermentation is not necessary a true
fermentation process, i.e. process occurs in an anaerobic environment, because the production
occurs in the presence of light and oxygen constantly evolves from photosynthesis.

Cyanobacteria have been engineered to produce a number of high-value products via
photo-fermentation such as isobutyraldehyde, isobutanol, 1-butanol, 2-methyl-1-butanol, 1, 2-
propanediol, 2, 3-butanediol, isoprene, ethylene, lactic acid, ethanol, fatty acids, and fatty
alcohols [15-25]. Similar to engineering other microorganisms, the genetic modifications
involved in creating ‘photo-fermenting’ cyanobacteria require the homologous combination of

genes from one or several microorganisms that encode highly-efficient enzymes into the



cyanobacterial genome. For example, Synechococcus 7942 was engineered to produce 1-butanol
via a modified fermentative pathway derived from Clostridium acetobutylicum [16]. Instead of
introducing all 5 genes from C. acetobutylicum (Figure 1.1), genes thl and bcd were replaced
with atoB from E. coli and ter from Treponema denticola, respectively because the
corresponding enzymes of these genes have been shown to have higher specific activities [16].
In many cases, the biochemical production can be increased by improving CO, fixation activity
in the cyanobacteria as this is often a limiting step in generating biofuel precursors [15].
Overexpression of Rubisco, the enzyme responsible for carbon fixation, has led to an
improvement in isobutanol production by two fold in an engineered strain of Synechococcus
7942 [15]. Oxygen evolved during photosynthesis poses a potential problem for introducing
fermentative pathways into cyanobacteria because most often, the fermentative enzymes are
oxygen-sensitive and thus would not be functional under aerobic condition. Solutions to these
issues have been addressed in a number of engineered systems including inhibiting oxygen
evolution by treating the engineered cyanobacteria cell culture with a photosystem II activity
inhibitor [26], or searching for oxygen-insensitive enzymes [19]. Other engineering strategies
involve the replacement of enzymes such that the modified enzymes can use cofactors that are
more available to cyanobacteria. For example, the NADH-dependent enzymes involved in the
synthetic pathways of 1, 2-propanediol and 1-butanol have been replaced by the NADPH-
dependent enzymes to make use of the NADPH pool generated during photosynthesis [16, 18].
1.2.2 Biochemical production via dark-fermentation in cyanobacteria

Although cyanobacteria are oxygenic phototrophic bacteria, many of them live in habitats
in which absence of light creates an anoxic (no oxygen evolved from photosynthesis) dark

environment. Therefore, some cyanobacteria also develop the ability to generate energy from



organic substrates to survive in the dark [27]. Biochemical production via dark-fermentation
therefore refers to the break-down of organic carbon sources in the absence of light to precursors
of fermentative products [27] (Figure 1.1). The organic carbon sources can come from the uptake
of exogenous carbon such as glucose, fructose, glycerol, or from accumulated endogenous
carbon, such as glycogen (autofermentation). The fermentative products often are lactate,
formate, acetate, hydrogen, and ethanol [27]. Compared to photo-fermentation process, there are
fewer metabolic engineering studies on dark-fermentation in cyanobacteria. This is mainly due to
the limited numbers of dark-fermenting cyanobacteria strains, which often are not well-studied
and thus genetic modification systems have not yet been developed. In addition, the uptake rates
of exogenous carbon sources are relatively slow which results in a slow growth and product
formation [27]. Genetic engineering approaches reported thus far for biochemical production in
dark fermentation conditions involved redirecting reductant toward desired products by deleting
competing pathways [12, 28]. Recently, an engineered cyanobacteria strain Synechococcus 7002
lacking a lactate-dehydrogenase enzyme has been shown to produce hydrogen at a level 5 times
higher than that of the wildtype via autofermentation of glycogen [12]. In another study, a
Synechococcus 7002 strain lacking pyruvate:ferredoxin oxidoreductase secreted a ~ 2 fold

increase in lactate and succinate production compared to wildtype strain [28].

1.3 Challenges and prospects of biochemical production in

cyanobacteria

As a comparison, highest reported yields of selected chemicals produced in engineered
cyanobacteria are compared with those in the well-studied bacteria E. coli (Table 1.2). It was
also estimated that in most engineered cyanobacteria systems, only 5-6% of the captured carbon

dioxide were directed to the desired products [29], while the conversion of glucose to desired



products were at least 25% theoretical maximum efficiency in other microorganisms [29].
Clearly, efficiency of the chemical production in cyanobacteria is much less than that in other
engineered microorganisms. It should be noted that, however, the use of E. coli or yeast in
metabolic engineering have been studied for many years and the genetic modification systems
for these organisms are much more diverse and developed than for cyanobacteria. With the
advances in synthetic biology and molecular biology, more genetic tools will be developed for
cyanobacteria. In addition, systems biology approaches can be employed to improve our
understanding of cyanobacteria metabolism and regulation, which would be beneficial in
metabolic engineering cyanobacteria strains with enhanced photosynthesis and carbon fixation
efficiency, and optimized pathways for biochemical production of value products.

Table 1.2: Comparison of reported production yields for various chemicals produced in
cyanobacteria and in E. coli

Organisms Cyanobacteria E. coli

Products Titer Host/ References Titer References
Ethanol 550 mg/L (6 days)  Synechocystis 6803 [23] 36.33 g/L (3 days) [30]
Isobutanol 450 mg/L (6 days)  Synechococcus 7942 [15] 22 g/L (5 days) [31]
Isobutyraldehyde 1100 mg/L (8 days) Synechococcus 7942 [15] 35 g/L (5 days) [32]
1-Butanol 30 mg/L (18 days)  Synechococcus 7942 [16] 375 mg/L (1 day) [33]
2-Methyl-1-butanol 200 mg/L (12 days) Synechococcus 7942 [17] 1.25 g/L (1 day) [34]
Fatty acids 197 mg/L (17 days)  Synechocystis 6803 [24] 4.8 g/L (2 days) [24]

Hydrogen 3.26 g/L/h Cyanothece 51142 [11] 23.6 g/L/h [35]




Chapter 2

Metabolic network reconstruction and constraint-

based modeling

The importance of model development in different research areas has been realized for
many years as models are useful in testing hypotheses, making predictions, reducing significant
numbers of experiments, and contributing to knowledge discovery. Genome-scale metabolic
models are important in systems biology and metabolic engineering for many practical
applications such as generating testable hypotheses, identifying strain-design strategies, or
integrating high-throughput data. As more genome sequences become available, the need for
accurate metabolic models becomes more important. In this chapter, we report the reconstruction
of three genome-scale metabolic models that will be analyzed in later chapters, Cyanothece
51142 (iCce806), Synechococcus 7002 (iSyp708) and Shewanella W3181 (iW31818 794). The
analyses of the Cyanothece 51142 metabolic model are presented in chapter 3. Chapter 4
describes the computational evaluation of the Synechococcus 7002 model for chemical
production of various compounds. Chapter 5 describes the development of a co-culture model

using the metabolic models of Synechococcus 7002 and Shewanella W3181.

2.1 Metabolic network reconstruction

2.1.1 Databases and draft metabolic network reconstruction
A metabolic network is reconstructed on the basis of a genome annotation of a particular

organism combined with knowledge of enzymes and biochemical reactions. A reconstructed
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metabolic network is composed of a list of three entities, the genes whose annotations suggest
metabolic functions, the enzymatic proteins encoded by those genes, the biochemical reaction
equations that are catalyzed by those proteins, and the gene-protein-reaction (GPR) association
that connects those entities (Figure 2.1). Genome annotation databases for specific organisms
include EcoCyc (specific for Escherichia coli K12 MG1655) [36], SGD (Sacharomyces Genome
Database, specific for yeast) [37], CyanoBase (specific for cyanobacteria) [38]. Other databases
such as CMR (Comprehensive Microbial Resources) [39], SEED [40] or NCBI (National Center

for Biotechnology Information) [41] contain a collection of genome annotations for a variety of

$ 4

Single enzyme  Subunit Isozyme Enzyme complex

organisms.

Figure 2.1: Different presentations of Gene-Protein-Reaction (GPR) association

Gl, G2, ..., G7 represent genes. P1, P2, ..., P6 represent proteins. R1, R2, ..., R6 represent reactions.
Arrows connecting genes to proteins to reactions describe the GPR association. P1 is a single enzyme
which encoded by gene G1. P1 can catalyze 2 reactions R1 and R2. P2 is an enzyme that has two subunits
encoded by gene G2 and G3. P3 and P4 are isozymes for they can both catalyze the same reaction R4. P5
and P6 are enzyme complexes because they are both needed to create a functional enzyme that catalyzes
R6.

Reaction and enzyme databases such as KEGG (Kyoto Encyclopedia of Genes and
Genomes) [42], BRENDA (Braunschweig Enzyme Database ) [43], MetaCyc [44], TransportDB

(Transport Database) [45] provide information on reaction properties such as stoichiometry,
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products, substrates, and reaction directionality. Manual metabolic network reconstruction is a
laborious and time-consuming process. Fortunately, a number of semi-automatic approaches
have been developed to speed up the reconstruction process. These approaches include
SimPheny (Genomatica, San Diego, CA), Model SEED [46], and Pathway Tools [47]. Pathway
Tools creates model-organism databases for different organisms and allows users to graphically
visualize and data-mine the contents of the databases [47]. SimPheny and Model SEED provide
users draft metabolic models for which the GPR associations have already automatically
constructed [46].

2.1.2 Manual curation of draft reconstruction

The draft metabolic models need to be further curated by modelers to ensure accurate
presentations of the gene-protein-reactions, and proper functions of the network. Metabolic
network curation normally involves filling network gaps, correctly assigning GPR associations,
and constructing biomass equation.

Metabolic gaps are metabolites that are either only produced or consumed in the network,
which create holes in the network. The presence of these gaps is likely due to errors generated
during the reconstruction of draft model or incomplete knowledge of the organism’ metabolism
[48, 49]. An example of network gap and gap-filling solution in the reconstruction of the
Cyanothece 51142 metabolic model is shown in Figure 2.2. In this example, the draft model of
Cyanothece 51142 could not produce isoleucine due to a gap in producing the isoleucine
precursor (2-oxobutanoate, 2obut). Normally, 2obut is produced from threonine via a threonine
deaminase enzyme (EC-4.3.1.19), which is missing in the genome annotation of Cyanothece
51142. By genome comparison with Geobacter sulfureducens [50], a new pathway converting

pyruvate to 2obut was introduced to the draft model, and consequently the model can produce



12

isoleucine. This pathway was later confirmed experimentally in Cyanothece 51142 [51]. A
number of automatic gap-filling methods have been developed such as GapFind/ GapFill [48],
Model SEED [46], MetaFlux [52], and SMILEY [49]. These methods often suggest one of the
following gap-filling strategies: changing the directionalities of existing reactions, and adding
transport or metabolic reactions from reaction databases specific to the organism or from other
organisms [48, 52]. The suggested strategies need to be validated with experimental data before
adding to the metabolic models as it was reported that 50% of the gap-filling reaction candidates
suggested by MetaFlux have no experimental support and hence were disregarded [52]. Because
our knowledge of an organism’s metabolism is incomplete and limited, it is generally accepted
that genome-scale metabolic models can contain a number of metabolic gaps and these gaps may
not affect model predictions in most cases. Gap-filling is an iterative process for which when

new knowledge or experimental data become available, the number of gaps can be narrowed.

L-threonine
= Absent in genome
annotation
D Added based on
genome comparison
L-isoleucine
O-=-=-=-=--- EMMD ICOHL| cico
2obut emma
accoa
CIMAS _
pyr cima

Figure 2.2: Example of network gap and gap-filling solution in the Cyanothece 51142 model

Draft model of Cyanothece 51142 could not produce isoleucine due to the gap in producing its precursor
2-oxobutanoate (2obut). Threonine deaminase (reaction in red), which can convert threonine to 2obut is
missing in the genome annotation. A new pathway (reactions in green) converting pyruvate to 2obut was
introduced to the draft model based on genome comparison with Geobacter sulfureducens. Metabolites
and reactions abbreviations can be found online [53].
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Correct GPR associations in a metabolic network reconstruction allow for accurate
network modifications when simulating gene deletions. Only one gene can be associated with
one mRNA and one protein, based on central dogma. Any GPR associations that violate this rule
need to be fixed. An example of incorrect assigning GPR in the early draft model of Cyanothece
51142 produced by SimPheny and its corrected version in the published model iCce806 [53] are
shown in Figure 2.3 below. In this example, two genes (cce 2605 and cce 2693) were associated
with AspB which is an aspartate aminotransferase, an enzyme that involves in the transfer of
amine group from one amino acid to another. This enzyme catalyzes two reactions ASPTA1
(which interconverts aspartate and a-ketoglutarate to oxaloacetate and glutamate) and TYRTA
(which interconverts 3-(4-hydroxyphenyl)-pyruvate and glutamate to tyrosine and a-
ketoglutarate). This GPR association is incorrect because the protein AspB is encoded by two
genes that are not protein subunits (Figure 2.1). According to the genome annotation of
Cyanothece 51142 [54], gene cce 2605 encodes L,L-diaminopimelate aminotransferase, an
enzyme that converts L,L-diaminopimelate to glutamate. Therefore, this GPR association is
modified such that gene cce 2605 is dissociated from the draft GPR, and is associated with
enzyme L,L-diaminopimelate aminotransferase (Dapat), which catalyzes a new reaction DAPAT
(which interconverts glutamate to L,L-diaminopimelate). Consequently, gene cce 2693 is
associated with protein AspB1 which catalyzes both ASPTAI and TYRTA reactions. Further
examinations of the genome annotation and the draft model of Cyanothece 51142 reveal new
GPR associations for reactions ASPTA1 and TYRTA. The enzyme AspB2, which is encoded by
gene cce_ 1121, is an isozyme of AspB1 and therefore can also catalyze ASPTA1 and TYRTA.
The enzyme HisC, which is encoded by cce 3291 and was associated with histidinol phosphate

transaminase reaction (HISPT) in the draft model, can also catalyze TYRTA. All three enzymes
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AspB1, AspB2, and HisC can also interconvert glumate and phenylpyruvate to a-ketoglutarate

and phenylalanine via reaction PHETAI.

cce 2693 cce_1121 cce 3292

Figure 2.3: Example of incorrect and correct GPR associations

Left panel shows an incorrect GPR association. Protein AspB, which catalyzes reactions ASPTA1 and
TYRTA, is associated with two genes cce_2605 and cce 2693 which are not protein subunits. Right panel
shows correct and new GPR associations. Gene cce 2605 now encodes protein Dapat (an L,L-
diaminopimelate aminotransferase) which catalyzes DAPAT reaction. AspBl (now encoded by
cce_2693) and AspB2 (encoded by cce 1121) are isozymes and both catalyze ASPTA1, TYRTA, and
PHETAI reactions. HisC, which is a histidinol phosphate transaminase, and was originally only catalyzes
HISPT reaction, can also catalyze TYRTA and PHETAI reactions.

The biomass formation equation is crucial for growth simulations of genome-scale
models. Biomass compositions measured under different growth conditions and for different
organisms are different and will certainly affect the model-predicted flux distribution
quantitatively, and qualitatively. Therefore, an accurate representation of biomass formation
equation is also an important step in reconstructing a metabolic network. All genome-scale
models that have been developed consist of at least one biomass equation that represents the
production of 1 unit (in gram dry weight — g DW or ash-free gram dry weight g AFDW) of
biomass. In many genome-scale models such as early models of E. coli (iJE660) [55], or
Synechocystis 6803 [56], the biomass equation was represented as a linear combination of

various central metabolic precursors (such as glucose-6-phosphate, pyruvate, acetyl-coA) and
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cofactors (such as nadhp, nadh). This representation is less intuitive since it is difficult to
measure concentrations of these precursors. Therefore, the biomass formation equation has
recently been replaced by a more straight-forward representation, which is a linear combination
of easily quantified macromolecules such as protein, lipids, DNA, RNA, pigments,
carbohydrates, and cofactors. The three genome-scale models of Cyanothece 51142,
Synechococcus 7002, and Shewanella W3181 developed in this work have the biomass
composition constructed in this manner.
2.1.3 Reconstruction of metabolic network for Cyanothece 51142
2.1.3.1 Network reconstruction

A draft metabolic network of Cyanothece 51142 was reconstructed in SimPheny
(Genomatica, San Diego, CA) using a previously described automated model-building process
[57]. Metabolic reactions and gene- protein- reaction (GPR) associations from other models were
incorporated into the reconstruction if good BLAST hits could be found between genes in
Cyanothece 51142 and genes in other modeled organisms. Additional reactions were added as
necessary to produce known biomass constituents or utilize known nutrients; detailed literature,
database, and BLAST searches were then carried out to find genes encoding these reactions in
Cyanothece 51142 genome. This resulted in several new GPR associations that were
incorporated into the reconstruction. The resulting model is referred to as iCce806, and its
content can be found online [53]. The resulting iCce806 network contains 806 genes, 587
metabolites, and 667 metabolic and transport reactions (see Table 2.1 for network details). Most
of the 42 reactions without genes associated with them were added to complete metabolic
pathways needed for biomass production. The final reconstruction encompasses central

metabolic pathways such as the Calvin-Benson cycle, the pentose phosphate pathway (PPP),
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reactions within the tricarboxylic acid (TCA) cycle, as well as, the complete set of anabolic
pathways involved in biosynthesis of glycogen, cyanophycin, amino acids, lipids, nucleotides,
vitamins, and cofactors. Pathways for glycolate synthesis (via ribulose-1,5-bisphosphate
carboxylase/oxygenase, i.e., photorespiration), glycolate conversion to serine, and glycerol
catabolism are also included.

Table 2.1: Statistics of the Cyanothece 51142 genome-scale metabolic model (iCce806)

Included genes 806
With gene association 625
Reactions Without gene association 42
Exchange reactions 52
Metabolites 587
Network gaps 95

2.1.3.2 Photosynthetic and respiratory pathways

The heart of the metabolic network of Cyanothece 51142 lies at the photosynthetic and
respiratory pathways. Photosynthetic electron transfer associated with the thylakoid membrane is
represented as a set of four separate reactions, including light capture by photosystem II (PS II)
and photosystem I (PS I), electron transfer between the two photosystems, and cyclic electron
transfer around PS 1. Similarly, respiratory electron transfer is represented by reactions catalyzed
by terminal cytochrome ¢ oxidase (COX), quinol oxidases (QOX, both bd- and bo-types),
NADH dehydrogenases (NDH, type 1 and 2), and succinate dehydrogenase. In addition, two
reactions (NADP'- and ferredoxin- requiring) for flavin-dependent reduction of O, (i.e., Mehler
reactions) were included. A simplified scheme of the photosynthetic and respiratory electron

transfer reactions in iCce806 is shown in Figure 2.4.
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Figure 2.4: Schematic representation of the electron transport and reductant partitioning pathways
in the Cyanothece 51142 model

Linear photosynthetic electron transfer: electrons from photosystem II (PS II) to photosystem I (PS I) are
transferred through plastoquinone (Pq), cytochrome bef complex (Cyt b6f), plastocyanin (Pc) and
cytochrome Cg (Cyt c6). From PS I electrons can be transferred to ferredoxin (Fd) via ferredoxin:NADP"
reductase (FNR) and subsequently to generate reductant in the form of NADPH. Cyclic photosynthetic
electron transport: electrons can flow from Fd to Pq (FdPq reaction). Respiratory electron transfer:
includes two cytochrome oxidases (COX), two cytochrome-quinol oxidases (QOX), and two types of
NADH dehydrogenases (NDH-1 and NDH-2). Alternative sinks for reductant beyond CO, fixation:
reduced Fd can be used by the nitrogenase (Nif) and by Mehler reactions to reduce O,. Bidirectional
hydrogenase (Hox) can reversibly produce H, using NAD(P)H as an electron donor, while the uptake
hydrogenase (Hup) consumes H, using Fd as an electron acceptor. Protons transferred across the
thylakoid membrane are used by the ATPase to drive ATP synthesis.

2.1.3.3 Constructing biomass equation

As mentioned earlier, the biomass formation equation of Cyanothece 51142 was

constructed as a linear combination of macromolecules whose concentrations were determined
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experimentally from two growth conditions, light-limited and ammonia limited chemostats

(Figure 2.5).

2.0%

Light-limited chemostat condition Ammonia-limited chemostat condition
2 e _
— o -~
3 £ £
c < o 2
= o o
T 8 T c o)
P 2 = < << < o
o S o = = > c
U )

a - o ()]
Figure 2.5: Biomass composition (in g/ g AFDW) of Cyanothece 51142 measured under light-limited
and ammonia-limited chemostat conditions
Cyanophycin concentration was not measured experimentally but estimated using a computational
approach.

Since cyanophycin concentration was not determined experimentally, we estimated the
concentration using a computational approach. Firstly, the amino acid composition used in the
protein synthesis equation (PROTSYN_CN) in the iCce806 model and total number of amino

acids (except Cys, Met, and Trp) in protein (P) and cyanophycin (C) were obtained by first

solving an optimization problem that minimizes the difference between the relative amino acid
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composition in protein (xﬁ) and the theoretical amino acid composition from genomic data

(xgtheoretical) excluding unmeasured amino acids (Cys, Met, and Trp) (Eq. 2.1).

. i i,theoretical 2
min ZieAA\{Cys,Met,Trp}(x;’ — Xp ) (Eq- 2-1)

s.t P.xt = M',i € AA\{Cys, Met, Trp, Arg, Asn, Asp, GIn, Glu} (Eq. 2.2)

P.xf™ +C.x[™9 = MAT9 (Eq. 2.3)
P.(xfs" + x[°P) + C.x[°P = MAsn+Asp (Eq. 2.4)
p. (xgln + xglu) — MGin+Glu (Eq. 2.5)
ZiEAA\{Cys,Met,Trp} x}; =1 (Eq. 2.6)
x2P, xf9 = 0.5 (Eq. 2.7)
xb >0 (Eq. 2.8)

In this method, the experimentally measured amino acid compositions (M‘, pmol/g
AFDW) were used from our two chemostat experiments for light-limited (LL) and ammonia-
limited (AL) conditions to constrain the values of P, C and XL , such that the estimated amounts
of each type of amino acid in protein and cyanophycin equaled their measured values (Eq. 2.2 —
2.5). The theoretical fractions (x5t"¢°"*"*“*") and measured values (M) used in the problem are
listed in Table 2.2 below. Cyanophycin contains an equal amount of Asp and Arg, and therefore
the fraction of these two amino acids in cyanophycin (xé) s 0.5.

It should be noted that the compositions for Cys, Met, and Trp are missing from the table
as these amino acids were not stable enough to be measured and hence were excluded from the
optimization. Consequently, the amount P estimated by the above method represents the number

of all amino acids except Cys, Met, and Trp contained in proteins. Additionally, Glu and Gln, as
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well as, Asn and Asp are measured as pooled metabolites, so the reported measured values in

Table 2.2 for Asp and Glu are actually MASm+4SP and MGG regpectively.

Table 2.2: Experimental amino acid compositions of Cyanothece 51142 measured under light-
limited and ammonia-limited chemostats

Conditions LL AL Theoretical

Adjusted fraction

Amino M M Fraction from (exclude Cys, Met, Molecular
acids (umol/gDW)  (umol/gDW) protein Trp) weight
sequences x;’,)theoretical (g/mOI)
Asp 450.507 219.702 0.050 0.053 132.098
Ser 122.154 116.098 0.063 0.066 105.096
Glu 298.283 291.201 0.066 0.069 146.124
Gly 177.042 181.462 0.065 0.068 75.07
His 27.968 31.493 0.019 0.020 155.162
Arg 307.891 108.699 0.045 0.047 175.22
Thr 115.397 120.574 0.057 0.060 119.122
Ala 214.011 201.620 0.066 0.069 89.096
Pro 106.474 104.816 0.046 0.048 115.132
Cys NA NA 0.010 Excluded 121.162
Tyr 75.157 66.697 0.033 0.035 181.188
Val 116.127 115411 0.061 0.064 117.148
Met NA NA 0.020 0.000 149.214
Lys 96.985 102.871 0.055 0.058 147.2
lle 98.619 98.032 0.076 0.079 131.174
Leu 164.729 165.450 0.111 0.116 131.174
Phe 73.953 71.227 0.041 0.043 165.188
Trp NA NA 0.014 Excluded 204.226
Asn NA NA 0.049 0.051 132.124
Gln NA NA 0.052 Excluded 146.15

Solving the above optimization problem, we obtained estimated amounts for P, C and
mole fractions for all amino acids in protein, except Cys, Met and Trp. These mole fractions
were then readjusted to account for these unmeasured amino acids. The mole fractions (yp-) for
all 20 amino acids in protein (P*) were calculated using the three equations (Eq. 2.9 — 2.12) listed
below, and the resulting values are reported in Table 2.3.

yb. = theoretical fraction, Vi € {Cys, Met, Trp} (Eq. 2.9)
p* = i (Eq. 2.10)

- i
1 _Zie{Cys,Met,Trp} Yp*

ybe =22, vi € AA\(Cys, Met, Trp) (Eq. 2.11)
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Table 2.3: Estimated amino acid compositions in the Cyanothece 51142 model

. . LL Conditon AL Condition
Amino acids 7 i i i
Xp Ypx Xp Yp+
Asp 0.059 0.056 0.054 0.052
Ser 0.061 0.058 0.059 0.056
Glu 0.080 0.076 0.080 0.076
Gly 0.088 0.084 0.092 0.088
His 0.014 0.013 0.016 0.015
Arg 0.046 0.044 0.050 0.048
Thr 0.057 0.054 0.061 0.058
Ala 0.106 0.101 0.102 0.097
Pro 0.053 0.051 0.053 0.051
Cys Excluded 0.010 Excluded 0.010
Tyr 0.037 0.035 0.034 0.032
Val 0.058 0.055 0.058 0.055
Met Excluded 0.020 Excluded 0.020
Lys 0.048 0.046 0.052 0.050
lle 0.049 0.047 0.050 0.048
Leu 0.082 0.078 0.084 0.080
Phe 0.037 0.035 0.036 0.034
Trp Excluded 0.014 Excluded 0.014
Asn 0.058 0.055 0.053 0.051
GlIn 0.067 0.064 0.066 0.063
P (umol AA
/gDW) 2014.285 1976.969
C (umol AA
/gDW) 431.012 18.384
P* (umol AA
/gDW) 2108.126 2069.071

The mass ratio of the total protein to cyanophycin (g protein/g cyanophycin) was
calculated using P* and C and the weighted average molecular weight for amino acids in each
macromolecule. This mass ratio was then used to calculate the protein and cyanophycin
concentrations, provided measured total protein concentration (Table 2.4). The concentration of
soluble metabolites that are also part of the biomass equations were taken from [58] and [59].
Appendix 1 contains a more detailed description of the complete biomass equations constructed
for Cyanothece 51142 metabolic model. The biomass compositions of macro molecules were

adjusted for each condition so that the total biomass composition added up to 1 g AFDW.
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Table 2.4: Biomass compositions of Cyanothece 51142 measured under light-limited (LL) and
ammonia-limited (AL) chemostats

LL Condition AL Condition
Biomass Raw Raw data + Adjusted Raw data Raw data + Adjusted
components data computed data data values computed data data
values (g/gAFDW) (g/eAFDW) (g/L) (g/gAFDW) (g/gAFDW)
(g/'h)
Protein 0.028 0.473 0.397 0.017 0.211 0.210
Carbohydrates 0.012 0.197 0.165 0.040 0.502 0.502
Lipids 0.010 0.161 0.135 0.011 0.142 0.142
RNA 0.011 0.181 0.152 0.008 0.097 0.097
DNA 0.002 0.040 0.034 0.003 0.033 0.033
Cyanophycin ¥ NA 0.116 0.097 NA 0.002 0.002
Chlorophyll ® | 0.0014 0.024 0.020 0.001076 0.014 0.014
Ash-free dry
weight (g
AFDW/L) 0.059 0.079
Dry weight
(gDW) 0.179 0.1814
Total 1.191 1.000 1.000 1.000

a)

Cyanophycin concentration was not measured experimentally, but computed using macromolecular

protein concentration measurements, and mass ratio of total protein (P*) to cyanophycin (C) obtained
from solving the above optimization problem.

b)

Chlorophyll concentration was measured under both chemostat conditions, following methods

described by Meeks et al. [60]. Since the total composition of biomass components in LL condition is

not equal to 1, we rescaled the data so that the total fraction equals 1.

2.1.4 Updating existing metabolic network for Synechococcus 7002

We also updated the previously developed draft metabolic model (iSyp611) for

Synechococcus 7002 [61] using updated genome annotations from a Pathway/Genome Database

(provided by Margrethe Serres, personal communication) and new biochemical data [12, 62].

This involved expanding the metabolic network to include genes that were responsible for new

metabolic reactions, as well as some existing reactions whose gene-protein-reaction (GPR)

associations were missing in iSyp611. In addition, we constructed a biomass reaction for the new

Synechococcus 7002 model based on experimentally-measured biomass composition data

(normalized to ash-free dry weight (AFDW) obtained for Synechococcus 7002 grown in

chemostats under light-limited, nitrogen-limited and carbon-limited conditions. The biomass
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composition data was used to generate a biomass reaction, as described previously [53]. The
resulting model is referred to as iSyp708. This model includes 708 genes and 599 metabolic
reactions (Table 2.5). The contents of this model can also be found in [63]

Table 2.5: Statistics of the previous (iSyp611) and the current (iSyp708) metabolic model of
Synechococcus 7002

Models iISyp611 iSyp708
Genes 611 708
Reactions (metabolic and transport) Slgf_ GPR 53157 53648
Exchange reactions 37 44
Metabolites 544 581

The addition of 99 new genes (Appendix 2) led to the introduction of 45 new reactions
and modifications to previous GPRs (Appendix 3). About half of the newly-included genes were
responsible for new metabolic functions, while the rest were added as either isozymes or
subunits of existing enzymes in the previous model, iSyp611. There were a few cases, where
genes were removed from GPRs of one reaction and assigned to another. For example, gene
A2770, which was previously included as a subunit of acetolactate synthase (EC-2.2.1.6), has
been assigned to a new reaction that converts a-ketoglutarate to succinyl aldehyde. This
modification reflected a recent discovery of the enzymatic functions of two genes that are
responsible for completing the TCA cycle in cyanobacteria [62]. The model was also updated to
include a biomass reaction based on the average biomass composition that was measured under
three different photoautotrophic growth conditions. Similar to what we previously observed for
Cyanothece ATCC 51142 [53], the carbohydrate and protein fractions of biomass showed the
greatest variability between light- and nitrogen-limited conditions (Figure 2.6, Appendix 4). The
incorporation of this new biomass equation into the model will enable more accurate predictions

of cellular phenotypes.
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Figure 2.6: Biomass composition of Synechococcus 7002 measured under carbon-, nitrogen-, and
light-limited chemostat conditions

The biomass compositions of Synechococcus 7002 measured under carbon-, nitrogen-, and light-limited
chemostat conditions. The biomass compositions used in the model were scaled so that the total
composition equals 1 g AFDW.

Cofactors were also included as part of the biomass requirement and their values were
similar to those used in the metabolic model (iCce806) of Cyanothece 51142 [53]. While
Synechococcus 7002 does not produce formate experimentally during photoautotrophic growth,
the earlier iISyp611 model predicted that formate would be produced under this condition since
enzymes degrading formate are missing from the genome. Therefore, in the new Synechococcus
7002 (iSyp708) model, we removed 10-formyl-tetrahydrofolate (10fthf), flavin adenine
dinucleotide (fad) and 5, 10-methylenetetrahydrofolate (mlthf) from the biomass reaction
because their biosynthesis reactions produce formate as by-product during photoautotrophic

growth. We expect that removing these metabolites would not affect our simulation results
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significantly since these metabolites were only present in very small amounts (0.05-0.07 % g/ g
AFDW).

2.1.5 Reconstruction of the metabolic network for Shewanella W3181

The genome-scale metabolic model of Shewanella W3181 was constructed based on
genome comparison with the existing metabolic model of Shewanella MR1 iSO783 [64]. A list
of orthologous genes between Shewanella MR1 and W3181 (provided by Margrethe Serres,
personal communication) was used as the basis of genome comparison. Specifically, if a gene for
which orthologous gene can be found in Shewanella MR1, corresponding protein and reaction
associations would be copied from the iISO783 model. The genes for which no orthologous genes
can be found in Shewanella were evaluated for additional metabolic functions. The
reconstruction process involved the removal of some existing reactions in the iISO783 model, the
modification of existing GPR due to the loss or gain of isozymes or protein subunits, and the
addition of several new reactions that were not present in iSO783. The resulting model is
referred to as iW3181 794. This model includes 794 metabolic genes, and 812 metabolic and
transport reactions (Table 2.6). Of 794 genes included in the iW3181 794 model, there were 708
orthologous genes included in the iSO783 model. Since biomass composition was not
determined for Shewanella W3181, we used the same biomass equation that appeared in
Shewanella MR1 model iSO783. Details of the reconstruction of Shewanella W3181 can be
found in Appendix 5.

Table 2.6: Statistics of the genome-scale metabolic models of Shewanella MR1 (iSO783) and
Shewanella W3181 (iW3181_794)

Models iSO783 iW3181 794
Genes 783 794
Reactions (metabolic and transport) 774 812
Exchange reactions 85 106

Metabolites 634 645
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2.2 Constraint-based modeling

Once the metabolic network is reconstructed, it is necessary to convert it to a
mathematical model so that computational approaches can be developed and applied to analyze
the model. A metabolic network can be visualized as a network flow composed of links
(biochemical reactions) connecting nodes (metabolites) and this network can perform cellular
functions such as growth, ATP production, and metabolite production. The links within such
networks can be mathematically represented by a stoichiometric matrix (S) with the rows are the
metabolites (I) and the columns are the reactions (J) [65]. In this mathematical model, the
variables (v) are fluxes through reactions in the network. There are different modeling
approaches that have been developed for biological networks including dynamic and constraint-
based modeling methods. While dynamic models, which are described by differential equations
of metabolite concentrations and involve with reaction kinetics, can efficiently describe the
dynamics of a system, it is almost impossible to obtain the kinetic parameters (e.g., rate
constants) in vivo for every single reaction in the network due to the fact that these parameters
often vary with organisms and time through evolution and this makes it difficult to obtain a
complete set of kinetic parameters for a specific organism [65]. In addition, solving such large
systems of differential equations is computational expensive and challenging task [66].
Therefore, instead of trying to find a single solution, which usually is the collection of flux
values of reactions in the network at a given time, constraint-based models seek a solution space
that satisfies all the constraints specified by modelers such as thermodynamics, material
balances, and enzyme capacity (Eq. 2.13 — 2.15). The mass balance equation (Eq. 2.13) ensures
the conservation of metabolites (I) within the model based on steady-state assumption.

Thermodynamic constraint (Eq. 2.14) is reflected through the reversibility of each reaction in the
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network such that flux value of irreversible reactions ((J;-) are non-negative while that of
reversible reactions can be negative or positive. Enzyme capacity constraint (Eq. 2.15) is
represented by applying lower (a) and upper bounds (B) to the flux values. The solution space

is called a feasible region and it contains the flux values (v) that satisfy all of the constraints.

v 2 0,) € Jiyyr (Eq. 2.14)
a<v;<p (Eq. 2.15)

In order to identify single flux distributions from a solution space, a number of
constraint-based methods have been developed such as flux balance analysis (FBA) [67], and
minimization of metabolic adjustments (MOMA) [68]. Since FBA and MOMA are often used in
later chapter, the mathematical formulations of these algorithms are shown in equations below
(Eq. 2.16 — 2.18). FBA solves for flux distribution assuming that the metabolic network is at
steady state and all of the fluxes through the network are balanced [67]. In addition, the solution
is found by optimizing the network for certain objectives such as maximizing growth rate, ATP
production, or metabolite production [67]. This optimization problem is often formulated as a
linear programming problem because the objective functions as well as the constraints are often
linear. MOMA seeks solutions (flux values) that minimize the change in fluxes between the
unperturbed wildtype or a parental strain (w) and mutant strain (v) (i.e. knockout strain, for
which some fluxes are set to zero. Eq. 2.18) [68]. Due to the nature of the objective functions,
MOMA is formulated as a quadratic programming. Another useful constraint-based method for
characterizing the metabolic networks is robustness analyses, which measures the change in the
optimal value of objective function with respect to change in the values of fluxes through some

specific reactions [69]. Similarly, flux variability analysis (FVA) can also be used to determine
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the range of values each flux can take that are consistent with the applied constraints by
maximizing and minimizing each flux individually [70]. The constraint-based methods

mentioned above are widely used to analyze metabolic networks.

FBA: min/max cT.v (Eq. 2.16)
s.t. (Eq.2.13 — 2.15)

MOMA: min (v —w)? (Eq. 2.17)
s.t. (Eq.2.13 — 2.15)

v, =0,j€A (Eq. 2.18)
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Chapter 3

Development and analyses of a genome-scale
metabolic model for Cyanothece sp. ATCC 51142

Cyanothece spp. are unicellular, diazotrophic cyanobacteria that temporally separate
light-dependent oxygenic photosynthesis and glycogen accumulation from N, fixation at night
[71]. When grown under nutrient excess, Cyanothece sp. strain ATCC 51142 (thereafter
Cyanothece 51142) cells can accumulate significant amounts of storage polymers including
glycogen, polyphosphates, and cyanophycin [72]. The inter-thylakoid glycogen granules are
significantly larger in size than those found in other cyanobacteria, which points at an unusual
branching pattern and packaging of this compound. From a biotechnological perspective, this
presents an intriguing theoretical possibility to accumulate substantially higher amounts of
polyglucose without any significant increase in the number of granules [73]. Cyanothece 51142
is also of interest for bioenergy applications due to its ability to evolve large quantities of H,.
Remarkably, H, production in this organism can occur under light conditions in the presence of
O; and is mediated by nitrogenase [11, 74]

Sequencing of the Cyanothece 51142 genome [54] has enabled application of high-
throughput genomic approaches to study the unique physiological and morphological features of
this organism. Transcriptomic and proteomic studies have been conducted to analyze global gene
expression patterns under a variety of environmental conditions and infer regulatory pathways
that govern the organism’s diurnal growth [75, 76]. The availability of genomic information also
provides means to construct genome-scale constraint-based models of metabolism, which are

powerful tools for systems-level analysis and prediction of biological systems response to
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environmental cues and genetic perturbations [77, 78]. Such models have been developed for a
variety of biological systems [77] but only in a few studies has this approach been applied to
photosynthetic microorganisms, including Synechocystis sp. PCC 6803 including Synechocystis
sp. PCC 6803 [56, 79-82], Rhodobacter sphaeroides [83], and Chlamydomonas reinhardtii [84,
85]. However, the modeling of metabolism in oxygenic photoautotrophs is an intriguing problem
due to the complexity of photosynthetic and respiratory electron transport chains, and the
potential effects of two distinct photosystems upon the generation and fate of reductant and
energy that drives the remainder of metabolism.

In chapter 2, we have reconstructed the first genome-scale metabolic network (iICce806)
of Cyanothece 51142. In this chapter, we used a combination of computation and experimental
approaches to investigate how photosynthetic and respiratory fluxes affect metabolism. Discrete
representation of PS II and PS I and their integration with multiple respiratory pathways enabled
modeling of photon fluxes and electron flux distributions under conditions of variable light
quality and intensity. The predicted changes in growth rates of Cyanothece 51142 in response to
changes in light input were experimentally tested using a photobioreactor with controlled sources
of monochromatic 630 and 680 nm light. We also carried out computational and experimental
analyses of light- and nitrogen-limited chemostat growth of Cyanothece 51142 and used mRNA
and protein expression data to constrain model-predicted flux distributions. Both in silico and
experimental data suggest that respiratory electron transfer plays a significant role in balancing
the reductant (NADPH) and ATP pools in the cells during photoautotrophic growth. This study
is a first step towards a systems-level analysis of cyanobacterial metabolism, as it integrates

information into a genome-scale reconstruction to understand metabolism qualitatively and
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quantitatively through a constraint-based analysis [77]. We also discuss strategies for improving

internal flux distributions through integration of in silico simulations and data.

3.1 Results

3.1.1 Metabolic model prediction validation

For initial testing, we examined the ability of the constraint-based model of iCce806 to
predict growth under photoautotrophic (using light and fixing CO,;), heterotrophic (using
glycerol in the dark), and photoheterotrophic (using glycerol and light) conditions with different
nitrogen sources. In silico calculated biomass yields, which simulated carbon or light- limited
growth (Figure 3.1), qualitatively agreed with previously reported growth data for Cyanothece
51142 [71, 72, 86]. Other non-growth conditions that were simulated with the model included
nitrogen fixation as occurs during the dark phase of Cyanothece’s circadian cycle [71]. In this
case, the oxidation of glycogen provides reductant and ATP for nitrogenase, and we examined
the model’s ability to quantitatively predict the amount of nitrogen (N;) that could be fixed and
stored in the dark, by maximizing cyanophycin production from glycogen. Although H, is an
obligate co-product of the nitrogenase reaction, no H, was produced in the initial simulations
under dark N,-fixing conditions, contradicting experimental observations. Model examination
revealed that all of the nitrogenase-generated H, was utilized by hydrogenases to reduce NAD(P)
and ferredoxin, which ultimately increased cyanophycin production. When the three hydrogenase
reactions (HDH 1, HDH 2, and UPHYDR) were eliminated from the model, the predicted ratio
of fixed N; to consumed glycogen depended on the non-growth associated ATP requirement
(NGAR), and was estimated to be 0.3 (NGAR=2.8) or 0.67 (NGAR=0) mole N,/mole glycogen,

which was in accordance with an experimentally measured value of 0.51 [72]. Under this
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condition, the model predicted that H, production would have same yields as fixed N, (0.3 to

0.67 mole Hy/mole glycogen) due to the stoichiometry of the nitrogenase reaction.

0.6-

BINH, Mo,

BN,

CO,+ Light Glycerol Glycerol + Light
Photoautotrophic Heterotrophic Photoheterotrophic

Biomass yield (g AFDW/g Substrate)

Growth conditions

Figure 3.1: In silico predictions for Cyanothece 51142’s biomass yields under photoautotrophic,
heterotrophic and photoheterotrophic conditions

Comparison of maximal biomass yields per g of C substrate when different nitrogen sources are used.
Under photoautotrophic conditions CO, uptake flux was fixed at 1 mmol-g’ AFDW-h"' and photon
uptake fluxes at PSI and PSII were fixed at 10 mmol-g' AFDW-h". In the heterotrophic simulations
glycerol was the limiting nutrient. Glycerol uptake was fixed at 1 mmol-g' AFDW-h" and maximal
biomass yields were calculated under dark conditions. In photoheterotrophic simulations both glycerol
and light were limiting (so an increase in either would improve growth rates). In this case, glycerol uptake
rate was fixed at 1 mmol-g"' AFDW-h"', while photon uptake fluxes for PSI and PSII were both fixed at
10 mmol-g' AFDW-h™. Since light was limiting in the photoheterotrophic condition CO, was predicted
to be secreted and not used as an additional carbon source.

We also evaluated how fluxes through electron transfer reactions are affected by the
nitrogenase flux under N,-fixing dark conditions. With glycogen being the sole source of
reductant for both ATP-generating oxidative phosphorylation and N, reduction, a balance

between fluxes through respiratory pathways and nitrogenase reaction is needed. In the absence
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of the hydrogenase reactions, the model predicted that O, reduction via COX, QOX, or Mehler

reactions are required to consume NADH resulting from glycogen catabolism (Figure 3.2).
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Figure 3.2: Effects of distribution of fluxes through electron transport chains (ETC) on nitrogenase
flux in the Cyanothece 51142 model

Nitrogen fixation (nitrogenase) flux was varied while fluxes through ETC reactions were maximized and
minimized under dark N,-fixing condition with all hydrogenase reactions eliminated from the model.
Under this condition the amount of H, produced is equal to the nitrogenase flux. A glycogen demand
reaction was added to the model (= Glycogen; allowing for glycogen consumption) and its flux was
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limited to 0.171 mmol-g' AFDW-h™'. A) Effects of distribution of fluxes through cytochrome ¢ oxidases
(COX) and cytochrome-quinol oxidases (QOX) on nitrogenase flux. B) Effects of distribution of total
flux through COX and QOX, and flux through Mehler reactions on nitrogenase flux. C) Effects of
distribution of fluxes through NADH dehydrogenase reactions (NDH) and Fd-depdent cyclic reaction
(FdPq) on nitrogenase flux. Shaded regions indicate ETC reactions can have multiple values for a
particular nitrogenase flux.

The model predicts that the COX reaction is required to achieve the maximum N,
fixation rate since it generates more ATP than the QOX or Mehler pathways (~9 O, are needed
per Ny fixed). This is consistent with the results from recent proteomic studies showing the
CoxB1 (cce _1977) subunit of COX is more predominant during the dark [87, 88]. These results
suggest terminal oxidases are important under dark N,-fixing conditions not only to generate an
intracellular anaerobic environment for nitrogenase, but also to provide ATP for nitrogenase
activity.

As photosynthesis and respiratory electron transport chains are interconnected in
cyanobacteria [5], these pathways were allowed to interact in the iCce806 model. To perform
model robustness analysis, we computationally explored the impact of key photosynthetic and
respiratory pathways on growth rate and intracellular flux distributions under varying photon
uptake flux for PS I, while the photon uptake flux for PS II was fixed at 20 mmol-g' AFDW-h™'
(Figure 3.3). First, the model was evaluated assuming only linear photosynthetic electron
transfer. In this case, all alternative reductant sinks including the proton and O, reduction as well
as cyclic photosynthetic reactions around PS I were eliminated from the model (Figure 3.3A).
Under this condition, growth only occurred at one value of photon uptake flux for PS I and
extracellular organic products (ethanol, lactate and/or alanine with trace amounts of formate)
would have to be secreted in order to generate enough ATP to support biomass production.

Second, when cyclic photosynthetic reactions were added back, the photon uptake flux for PS I
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could vary with a fixed photon uptake flux for PS 1II, but significant amounts
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Figure 3.3: Analyses of the operation of electron transport pathways upon growth and metabolism
of the Cyanothece 51142 model

(A) Effects of removing cyclic photosynthesis (via NDH-1, NDH-2, FdPq, G3PD_PQ, and SUCD_PQ)
and alternative reductant sinks (H, production, COX, QOX, and Mehler reactions). (B) Effect of
removing alternative reductant sinks but including all routes for cyclic photosynthesis. Shaded regions
indicate that multiple flux values can achieve maximal growth rate. (C) All photosynthetic and respiratory
electron flow routes operate, except H, production.
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of extracellular products were still formed until the photon uptake flux for PS I exceeded ~85
mmol-g’ AFDW-h"' (Figure 3.3B). No growth occurred unless PS I photon uptake flux was
greater than or equal to the photon uptake flux for PS II. Only when the model was allowed to
use both cyclic photosynthesis and O, reduction reactions were no extracellular products
predicted and the photon uptake flux for PS I could be less than that for PS II (Figure 3.3C).
Since experimental data does not indicate that any by-products including H» or organic acids are
produced by Cyanothece 51142 at a detectable level during photoautotrophic growth with excess
ammonium, a plausible mechanism for balancing growth through the generation of additional
ATP may involve activity of the cytochrome oxidases.
3.1.2 Effect of light quality on cellular growth and pathway utilization

The discrete representation of PS II- and PS I-mediated reactions and their interactions
with multiple respiratory reactions in iCce806 enabled further in silico analysis of growth and
electron flux distributions under photoautotrophic conditions of variable light quality and
intensity. In this case, the complete model was used to explore which reactions would be used to
support maximal photoautotrophic growth rates for different levels of PS II and PS I photon
uptake fluxes. To predict the corresponding growth rates under light-limited conditions, we
constrained the photon uptake fluxes (ranging from 0 to 60 mmol-g’ AFDW-h") through each
photosystem. The resulting phenotypic phase plane (PhPP) contained three distinct regions
(Figure 3.4A): in two regions growth was limited only by fluxes through PS II (region 1) or PS I
(region 3), while in region 2 growth was limited by both PS II and PS I photon uptake fluxes (i.e.
increases in either flux would improve growth rate). By adding artificial ATP or NADPH
generating reactions (ADP + HPO4 + H = ATP + H,O and NADP + H = NADPH) to the

model and analyzing changes in predicted maximal growth rates, we were able to identify that in
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regions 1 and 3 growth was NADPH/reductant-limited, while in region 2 it was limited by

energy supply (Figure 3.4A).
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Figure 3.4: Predictions of the effects of varying photon uptake rates on growth and energy
metabolism in the Cyanothece 51142 model

(A) 2-D phenotypic phase plane (PhPP) displaying maximum growth rates for varying photon uptake
rates. The PhPP has 3 distinct regions — in regions 1 and 3, flux through a single photosystem limit
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growth rates, whereas in region 2 flux increases through either photosystem will increase growth rate. (B)
Pathway maps of electron transfer reactions in different PhPP regions. PhPP flux variability analysis was
performed to see which flux is always required (red arrows), optional (green arrows), and blocked (blue
arrows) across each of the three PhPP regions.

To analyze the effect of photon uptake rates on electron flux distributions, we calculated
the flux ranges using flux variance analysis (FVA) for all photosynthetic and respiration
reactions within each PhPP region (Figure 3.4B). In this instance, PhPP FVA was run with
constraints that restrict the model to a given region and to the maximum growth for each point in
the region (in contrast, standard FVA is used at a single point in a region). Using PhPP FVA, we
identified active (both minimum and maximum flux values are positive or negative),
inactive/blocked (minimum and maximum fluxes are both zero), and optional (which could have
at least one zero and one non-zero flux value somewhere in the region) reactions leading to
optimal solutions in each PhPP region. This new analysis technique allowed classification of
reaction usage across entire regions of the PhPP and is not restricted to fixed points within a
region. While linear photosynthesis was active and Mehler reactions were blocked across the
entire PhPP, there were differences in the usage of photosynthetic and respiratory reactions
observed within all three regions (Figure 3.4B). Surprisingly, while generation of NADPH from
reduced ferredoxin via linear photosynthesis is the key source of reductant, ferredoxin-NADP"
oxidoreductase (FNR) was predicted to be active in region 2, but optional in regions 1 and 3.
Closer examination of in silico calculated electron flux distributions revealed that, in addition to
FNR, the model utilized a cycle involving glutamine synthetase, glutamate synthase and
transhydrogenase, resulting in ATP-driven NADPH production. In regions 1 and 3, the model
predicts there is excess ATP, and so this cycle can be used instead of FNR to move electrons
from ferredoxin to NADPH. However, this cycle is unlikely to be of any physiological relevance

since there has been no experimental data supporting this route for making NADPH, and FNR is
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essential for photoautotrophic growth in unicellular cyanobacteria such as Synechococcus 7002
[89]. Differences in the predicted usage of respiratory reactions were also found. In region 1,
where growth is limited by the flux through PS I, at least one of the COX and QOX reactions
must be active to oxidize excess electron carriers (Pc, Cyt Cs, or Pq) generated from PS II.
Similarly, in region 3 under PS II flux limitation, excess electron carriers (Pq, Fd) must be
reduced via NDH-1 or -2 or ferredoxin-dependent cyclic electron transfer (FdPq). Conversely,
due to ATP limitation in region 2, the model favored reactions with higher proton pumping
capacities and so both the QOX and FdPq reactions were inactive. The usage of COX was
optional in region 2 and depended on photon uptake rates (e.g.,, COX reaction was inactive at the
boundary between regions 2 and 3).

The model predictions (Figure 3.4A) were compared to batch growth experiments in the
LED-photobioreactor which allowed instantaneous measurements of initial growth and photon
uptake rates by Cyanothece 51142 cells exposed to different intensities and ratios of 630 and 680
nm light (Table 3.1). When Cyanothece 51142 cultures were illuminated with both 630 nm and
680 nm light, initial growth rates generally correlated with the total photon flux through PS II
and PS I, with higher growth rates observed at 80 mmol-g" AFDW-h™' total photon flux and 630
nm:680 nm light ratio of 2:1. When cultures were exposed to only a single wavelength of light
(batch experiments 6 - 10), i.e., either 630 or 680 nm, Cyanothece 51142 cells displayed a
similar trend with higher growth rates observed at higher photon flux intensities. The predicted
growth rates were within 7% of the experimentally measured values, except for the two cases
where single 630 nm wavelength irradiances were used (Table 3.1). The reasons for this are
unclear but may be due to other physiological and/or biochemical phenomena such as state

transitions that are not contained within the model but are operating in vivo.
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Table 3.1: Comparison of predicted growth rates and measured growth rates of Cyanothece 51142
grown in batch cultures.

Batch Photon uptake Photon uptake Total photon Measured Predicted
rate” at 630 nm  rate® at 680 nm  uptake rate® growth rate? growth rate?
19 190+ 1.1 15.5+0.9 34.5 0.035 £ 0.0068 0.035 +£0.0022
2% 156+1.1 260+ 1.6 41.6 0.041 £ 0.0076 0.043 +£0.0032
3% 334+1.0 13.6+04 47.0 0.051 £0.0053 0.049+0.0018
49 346+14 350+ 1.3 69.6 0.079 £ 0.0062 0.074 £ 0.0033
5 53.6+2.8 26.4+1.0 80.0 0.080 + 0.0052 0.085 +0.0044
6” 0 32.1 2.0 32.1 0.032+0.0012  0.032 % 0.0025
7 0 33.0+2.1 33.0 0.037 £0.00014  0.033 = 0.0026
g® 0 37.2+1.5 37.2 0.040 £ 0.00032  0.038 +£0.0017
9®) 21.1+1.7 0 21.1 0.016 £0.010 0.020 +£ 0.0021
10” 280+1.7 0 28.0 0.036 £0.014 0.028 +0.0021

a)

b)

<)

d)

Experimental photon uptake and growth rates from batches 1-5 were used to calculate ATP
requirement parameters GAR and NGAR

For computational predictions of the growth rate for batches 6 - 10, the total photon uptake flux
measurements at 630 nm and 680 nm was used to constrain the total photon uptake flux in the model
Average and standard deviation of the instantaneously measured photon uptake rates (in mmol- g'1
AFDW-h™") were calculated over the first 5 hours.

Average and standard deviation of the instantaneously measured growth rate (in h™') were calculated
over the first 5 hours.

Data from these batch experiments (batch experiments 1 — 5, Table 3.1) were also used to

estimate the growth (GAR) and non-growth (NGAR) associated ATP requirements. NGAR is the

amount of energy spent to maintain the cell (i.e., maintenance energy). GAR is defined as energy

expenditures used on protein and mRNA turnover or repair, proton leakage, and maintenance of

membrane integrity; it does not include ATP spent on polymerization reactions, which are

already accounted for in the macromolecular synthesis pathways of the network. The time-

averaged growth and photon uptake rates were used to constrain the model and the maximal

amount of ATP hydrolysis was calculated (Figure 3.5) for each batch experiment. A plot of

growth rate versus maximum ATP hydrolysis flux was generated and a linear fit used to estimate

the GAR and NGAR values [90]. Specifically, the slope of the fitted line is the GAR (544

mmol-g”

AFDW-h"), and the y-intercept is NGAR (2.8 mmolg’ AFDW-h'),
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Figure 3.5: Estimating ATP requirements for the Cyanothece 51142 model using batch data
Average growth rates and photon uptake fluxes from batch experiments were used to constrain the model.
The maximum ATP hydrolysis flux (flux through the ATPM reaction) was calculated using these
measurement constraints. The data points represent the calculated maximal ATP hydrolysis values for
different batch experiments. The growth-associated ATP requirement (GAR, slope) and non-growth
associated ATP requirement (NGAR, y-intercept) were estimated by linear regression of these data.

The estimated GAR value is significantly higher than those reported from other bacteria
[64]; however, these model estimates assume that all absorbed photons lead to photosynthetic
fluxes (100% quantum efficiency) and that the overall efficiency of ATP production via all
electron transfer reactions (photosynthetic and respiratory) are accurate. Depending on the
growth condition the quantum yields can change, and for Cyanothece 51142 this value was
reported to be between ~70-100% for photoautotrophic growth [86]. Upon further analysis, we
found the estimated Cyanothece ATP requirements were most sensitive to reductions in quantum

efficiency and the amount of ATP generated by photosynthesis and respiration (Table 3.2). Since
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neither quantum efficiency nor combined photosynthetic and respiratory ATP production were
experimentally measured for Cyanothece 51142, the original estimates, GAR=544 and
NGAR=2.8 were used in all growth simulations.

Table 3.2: Effects of changing simulation conditions on ATP requirement parameters of the
Cyanothece 51142 model

Simulation conditions Estimated Estimated
GARY NGAR"

Complete iCce806 model (no changes to the model are made) 544 2.8

Remove cytochrome ¢ oxidase reactions (COX PC, COX CYC) 514 1.1

Reduce quantum efficiency to 70% (only 70% of absorbed photons 272 2

contributed to PS I and PS II fluxes)

Reduce ATP efficiency of photosynthesis and respiration by 50% 200 1.4

(change H'/ATP ratio in ATPS4r reaction from 4H'/ATP to 8H/ATP)

9 GAR — Growth-associated ATP requirement (mmol-g”' AFDW)
»  NGAR — Non-growth associated ATP requirement (mmol-g" AFDW-h™)

3.1.3 Using experimental measurements and in silico mutagenesis to restrict the range of

predicted flux distributions

Since there may be more than one flux distribution that is consistent with the
experimentally measured rates of growth, photon uptake, and O, production we used FVA to
identify required (flux must be non-zero), optional (flux may or may not be zero), or inactive
(flux must be zero) reactions under light- and ammonium-limited growth conditions. As our
initial simulations (Table 3.3) produced a large number of optional reactions (170 out of 667 for
both growth conditions), that represent uncertainty regarding usage, we subsequently used the
transcriptome and proteome data (TPD) to further constrain the model. Using a modification to a
previously developed approach [91], we obtained a flux distribution that was consistent with

measured rates and TPD while reducing the overall flux magnitude.
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Table 3.3: Flux variability analysis of the Cyanothece 51142 model in light-limited and ammonium-
limited chemostat conditions

With protein and mRNA
Without protein and mRNA expression data expression data
Light-limited NH;-limited
Required reactions 287 364 366
Optional reactions 170 74 76
Inactive reactions 210 229 225

In this analysis, flux was favored through reactions for which proteins were detected and
disfavored through reactions associated with undetected proteins and transcriptome data less than
a given threshold (e.g.,, log, of mRNA expression level is less than 8). The model constrained by
TPD predicted that the majority of reactions in central metabolism would be active under both
chemostat conditions (Figure 3.6). In addition, we subsequently applied FVA employing
additional constraints arising from the TPD. Comparison between FVA results with and without
TPD constraints demonstrated a significant decrease in the number of ambiguities (the optional
reaction set) when TPD is used (Table 3.3).

While the number of optional reactions was reduced by incorporating TPD into the
model, the flux spans (difference between maximum and minimum values) of individual fluxes
was still large (>30 mmol-g' AFDW-h™' for some central metabolic reactions). These large flux
spans could arise from cycles or alternative pathways in the model, and deleting these features

from the model could subsequently reduce the flux spans.
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Figure 3.6: Predicted flux distributions in central metabolism of Cyanothece 51142 with
transcriptome and proteome data (TPD) as constraints
The flux values (mmol-g" AFDW-h™) are those where the flux distribution best matches the TPD while
also minimizing the magnitude of all fluxes in the network. The flux values in red and green represent
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ammonia-limited (AL) and light-limited (LL) conditions, respectively. Arrow colors indicate relative flux
ratios between AL and LL conditions.

FVA was repeated using measured growth, photon uptake, and O, release rates under
light-limited conditions as constraints and with optional reactions were deleted (similar results
were found for ammonia limited conditions, data not shown). Flux spans for reactions in central
metabolism (Figure 3.6) were then calculated for a series of single or double reaction deletions in
silico. The purpose of this analysis was to identify those reactions that exert the greatest impact

on the flux span in central metabolism (Figure 3.8A).
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Figure 3.7: Effects of in silico reaction deletions on the span of fluxes of the Cyanothece 51142
model under light-limited conditions

(A) Effects of deletions are compared to the cases where no reactions were deleted (red bar), or TPD were
used as constraints (green bar). The values represent the average flux span across all reactions in central
metabolism. Only deletions which lower the flux span by at least > 1 mmol-g’ AFDW-h"' are presented.
(B) Changes in flux spans for specific reactions catalyzed by ribulose bisphosphate carboxylase (RBC)
and phosphoglucose isomerase (PGI) between simulations that (i) use TPD data as a constraint (green
bars), (ii) delete single reactions (blue and purple bars), (iii) delete two reactions (yellow bar) or (iv)
impose no additional constraints (red bars). Reaction abbreviations can be found online [53].

Single deletions of glyceraldehyde-3-phosphate  dehydrogenase (GAPD or
GAPD NADP) or hydrogenase (HDH 1) reduced the average central metabolic flux span the
most (from 74 to 22 mmol-g’ AFDW-h"). Other single deletions with significant effects

included FNR and NDH-1, which are involved in photosynthesis and respiration. The reaction
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deletions shown in Figure 3.7A all had a larger impact on reducing average central metabolic
flux span than did imposition of constraints based on TPD. There were cases where single
deletions had large effects on other specific reactions, but only modest effects on overall central
metabolic flux spans. For example, a single deletion in phosphogluconate dehydrogenase
(PGDHr) reduced the span for glucose-6-phosphate isomerase flux (PGI) to 0 (Figure 3.7B), but
only reduced the average central metabolic flux span by ~ 0.7 mmol-g”’ AFDW-h'. The in silico
analysis of double reaction deletions did not yield any new double deletions that would reduce
the average central metabolic flux span significantly. However, some double deletions strategies

did reduce flux spans of individual reactions.
3.2 Discussion

Several cyanobacterial metabolic models (all for Synechocystis PCC 6803) have been
published, which represented photosynthesis as two lumped reactions [56, 79] for linear (PSII,
Cyt bef, PSI, and FNR) and cyclic (PS T and Cyt bgf) pathways. In this study, we modeled
photosynthesis as a larger set of separate reactions [80] as this structuring allowed analysis of the
effects of different illumination on the production and partitioning of reductant through
photosynthetic and respiratory reactions, as well as the contribution of different electron transfer
pathways to growth. Our PhPP FV A results showed how different photosynthetic and respiratory
electron transport chain components are used to maximize biomass production under different
lighting regimes. It was not surprising that linear photosynthesis was active in all three regions
because the cell needs photons from both PSI and PSII to grow under photoautotrophic
conditions. However, the Mehler reactions were inactive in all three regions when we only
consider maximal growth rate solutions. In regions 1 and 3, reducing equivalents (e.g.,, NADPH)

limit growth and the Mehler reactions would lower the amount of reducing equivalents available
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for growth. The Mehler reactions are less energetically efficient than NADH dehydrogenase and
cytochrome oxidase so the model would not use them in region 2, where ATP is limiting. So
while the Mehler reactions can carry flux in the model, using these reactions lowers the
maximum growth rate making them inactive (blocked reactions) in our PhPP analysis. A recent
study showed that the Mehler reactions are operational in Synechocystis sp. PCC 6803, serving
as a sink for excess electrons [92]. These reactions are also likely to be active in Cyanothece
51142, since the associated proteins were detected in the proteomic data [53]. As a result the
model only predicted non-zero Mehler fluxes when the proteomic data were used to constrain the
model [53].

In the absence of cyclic photosynthesis, other products including water (produced by
COX, QOX or Mehler reactions), H, (via hydrogenase), or small organic compounds (alanine,
ethanol, lactate and formate) were predicted to be necessary in order to balance the electrons and
ATP needed to support growth. In the presence of linear and cyclic photosynthesis reactions,
these products must also be produced unless significant amounts of cyclic photosynthesis occurs
(>3 times the amount of linear photosynthesis). Since H, and small organic compounds are not
generally produced under photoautotrophic conditions with excess ammonium, any additional
energy is most likely supplied by cytochrome oxidase activities that reduce photosynthetically
produced O,. Interestingly, in the absence of cytochrome oxidase activities in the model, the PS I
fluxes must always be greater than or equal to the PS II fluxes. It was shown that the marine
cyanobacteriium Synechococcus has a PS I/PS II protein ratio >1, which has been explained as a
mechanism to protect PS II from photo-damage [93]. Under conditions with high levels of PS II
activity, cytochrome oxidase activity may ensure an adequate supply of oxidized plastoquinone

(needed for PS II) and reduce O, concentrations to limit photorespiration.
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Similarly, cyclic electron flow via NADH dehydrogenase- or ferredoxin-dependent routes
have also been experimentally demonstrated to play important roles in balancing the amount of
NADPH and ATP produced via photosynthesis. Synechocystis 6803 mutants lacking ndhD genes
(encoding subunits of NDH-1) had significantly lower cyclic photosynthesis activity [94].
Although the mechanism of electron transfer from ferredoxin to the plastoquinone pool (without
using NDH) is still unclear, its activity has been demonstrated in green algae [95] and higher
plants [96]. Our computational simulations also showed that, under light-limited
photoautotrophic conditions, cyclic electron transfer involving NADH dehydrogenase (NDH-1)
is needed for maximal growth if ATP (rather than NADPH) is limiting. In an environment where
PS I photon availability is high relative to PS II, cyclic electron transport is needed (Figure 2) to
increase availability of PS I substrates (reduced PC or Cyt Cs) and protect against photo-damage.
Cyclic electron flow has been experimentally shown to help protect the photosynthetic apparatus
from photo-damage [97-99]

In addition to studying the interactions between components of the photosynthetic and
respiratory components computationally, we also experimentally evaluated cells grown under
continuous light conditions in light- and ammonia-limited chemostats. The measured 630 nm and
680 nm photon uptake and O, production rates suggests that reductant was being directed
towards O, via the Mehler, QOX, and/or COX reactions. In both chemostat conditions, the
model predicted that steady-state growth rate could have been achieved using lower photon
uptake rates by decreasing the amount of reductant generated by PS II that was predicted to
reduce O,.

A limitation to flux balance analysis is that a wide range of flux values may be consistent

with the constraints in the computational model. An iterative application of computational and
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experimental methods is an important strategy to improve the comprehensive understanding of
cyanobacterial metabolism. We have begun to apply this iterative approach, by including mRNA
and protein expression datasets as additional constraints beyond biomass composition and
physiological rate measurements. Experimentally-measured TPD were successfully used to
further constrain the model, and thereby reduce uncertainty and increase the number of required
(that is, metabolically active) reactions (Table 3.3). However, there remained discrepancies in
that the model did not predict flux through all reactions for which proteins were experimentally
detected. Such discrepancies can be used to subsequently improve the model with previously
developed approaches [100-102]. For example, an earlier version of the model did not predict
flux through proline oxidase, even though proteome data demonstrated that proline oxidase was
synthesized. This prediction arose because the model did not contain a reaction in which FADH,
(a product of the proline oxidase reaction) could be reoxidized to FAD. After experimental
confirmation that proline can be used as a nitrogen source (implying activity of proline oxidase)
by Cyanothece 51142, a FADH, recycling reaction was included in the final iCce806 model.
Even with these additional TPD constraints, a wide range of flux values remained
feasible (Figure 3.7). We should note that we did not take real enzymatic activities into account
(which can be affected by post-translational modifications), as we did not have this type of data
for the two conditions examined. Such data, if available, could be used as additional factors for
determining whether to favor or disfavor fluxes through associated reactions (See Material and
Methods). Other constraint-based methods for incorporating gene expression data use similar
Boolean on/off type of constraints to restrict fluxes [91, 103, 104] and would be expected to
yield results similar to those described herein. Thus, novel computational methods which can

more quantitatively constrain the metabolic flux values are still needed. The strategy of
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evaluating fluxes for reaction deletions in silico can be used to identify knockout mutants that
can potentially improve the resolution of intracellular flux distributions. A flux that is well
resolved would have a small span meaning we can more definitively state its value. If the
mutants show no growth defects then the corresponding reactions may not be used under the
conditions tested, or alternative pathways not included in the model may occur. Either way, this
information could be used to better resolve the intracellular flux distribution or improve the
metabolic model. For Cyanothece 51142, this would require development of a genetic system
(such a system already exists for another Cyanothece strain [105]) as experiments with mutants
would have the most potential to improve resolution of central metabolic fluxes during
photoautotrophic growth. Also, as a complement to the in silico reaction knockouts that our
simulations predict would reduce the flux spans associated with central metabolic reactions, the
photobioreactor employed here provides a system whereby cultivation conditions can be
rigorously controlled and some aspects of physiological state monitored continuously. In
addition, cells from steady-state or perturbed cultures can be interrogated via physiological or
biochemical analyses to experimentally test the predictions of the computational models for wild
type or mutants. As the number of available cyanobacterial models continues to grow, cross-
species physiological, genomic, and metabolic comparisons will enable the identification of core
networks and contribute towards improving our understanding of metabolic processes in

cyanobacteria.

3.3. Materials and methods

In this study, all model simulations were performed in GAMS software (General
Algebraic Modeling System, GAMS Development Corporation, Washington, D.C.). To further

constrain the models based on mRNA or protein expression data, a modified version of the



51

method developed by Shlomi et al. [91] was used. Here, we identified a single flux distribution
that best agreed with measured transcriptome and proteome data (TPD) and minimized flux
usage. Reactions with experimentally measured fluxes belong to set Ry (which included biomass
production and exchange fluxes for oxygen, 630 nm and 680 nm photons) and were constrained
to their measured values. Reactions associated with detected proteins were included in the high
reaction set(Ry). Reactions associated with undetected proteins and genes with low mRNA
expression levels (whose mRNA expression was less than the lowest mRNA expression of
detected proteins) were included in the low reaction set(R;). The method finds a flux distribution
that maximizes the number of active reactions (v # 0) and inactive reactions (v = 0) in reaction
sets Ry and R;, respectively. For reactions in setRy, binary variables x and y indicate whether a
reaction is active, meaning its flux is greater than a positive threshold(x = 0,y = 1), or smaller
than a negative threshold —e (x = 1,y = 0) for reversible reactions. If both x and y are zero
then the reaction is inactive and its flux value is zero. Likewise, a binary variable z is used for
reactions in set R; such that if z = 1 then the reaction is inactive(v = 0). The original method
[91] has alternate solutions, which can contain unrealistically high flux values due to the
presence of cycles (e.g.,, futile cycles and circulations) in the network. To identify a solution that
minimizes the use of these cycles, the objective function was modified to also minimize the sum
of squared fluxes through the network.

The mixed integer quadratic programming formulation to identify a flux distribution that

best matches TPD while minimizing flux magnitude is given below (Eq. 3.1 —3.8):
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Additionally, to find the flux ranges consistent with the TPD, flux variability analysis (FVA) was
performed by minimizing and maximizing the flux through each reaction in the network. In these
FVA simulations, the same constraints described above were included (Eq. 3.1 — 3.8) and the

binary variables (x,y,z) were further constrained by their optimal values (x°P,y°Pt, zoPt)
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Chapter 4

Computational evaluation of Synechococcus sp. PCC

7002 metabolism for chemical production

To date, almost all metabolic engineering efforts have focused on either Synechocystis sp.
PCC 6803 or Synechococcus elongatus PCC 7942 [9]. These strains have been engineered to
produce a variety of chemicals including lactic acid, ethanol, isobutanol, 1-butanol, isoprene,
fatty acids, and ethylene [15, 16, 20, 21, 23, 26, 106, 107]. While Synechococcus 7002 has not
been as extensively used in metabolic engineering, it has a number of attributes that make it a
strong candidate for metabolic engineering. Compared to other cyanobacteria strains, it has a fast
doubling time (~ 3.5 hours compared to ~12-24 hours) indicating a high inherent metabolic rate.
Synechococcus 7002 also can grow under high light conditions (up to ~ 4.5 mE m™ s compared
to its optimal light intensity of 250 uE m™ s™') [108], can grow in salt water (obviating a
requirement for fresh water) [109] and can be genetically manipulated [110-112]. In addition, the
strain’s genome has been sequenced and a variety of high-throughput experimental and
computational tools have been used to evaluate it, including gene expression and genome-scale
metabolic modeling [61, 113, 114].

For metabolic engineering purposes, a wide variety of computational approaches have
been developed to calculate maximum theoretical yields or to predict the metabolic outcome of
genetic perturbations. Example of such methods include flux balance analysis (FBA),
minimization of metabolic adjustment (MOMA), regulatory on/off minimization (ROOM) and

minimization of relative metabolic change (RELATCH [68, 115, 116] (See chapter 2 for the
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formulation of FBA and MOMA). MOMA minimizes the sum of squared differences in flux
distributions between mutant and parental strains [68], while ROOM minimizes the number of
significant flux changes between mutant and parental strains [115]. On the other hand,
RELATCH first limits increases in flux levels and then minimizes relative flux changes and
latent pathway activation between mutant and parental strains. RELATCH has been shown to
better predict flux distributions in unevolved and adaptively evolved strains of Escherichia coli
for four different single-gene knockout mutants with higher accuracy than FBA, MOMA, and
ROOM [116]. These methods can and have been used to predict how chemical production will
be affected by the deletion of different genes in the host organism.

For strain-design purposes, a number of bi-level approaches have been developed which
can identify what genetic manipulations are needed to improve chemical production by
considering reaction deletions (OptKnock), gene deletions (OptORF, BiMOMA), reaction
additions (OptStrain) or flux changes (OptForce) [117-121]. Most of these approaches try to
couple biomass and chemical production so that adaptive evolution, where growth is used as a
selection pressure, will improve both growth and chemical production rates. OptKnock has been
successfully used to develop E. coli strains which produce lactate, succinate, and 1, 4 butanediol
[122-124]. OptOREF is similar to OptKnock but it identifies gene deletions (instead of reaction
deletions) and regulatory changes needed to couple growth and chemical production [118].

In this chapter, we used the updated genome-scale metabolic model for Synechococcus
7002 (iSyp708, Chapter 2) and apply various computational methods including MOMA,
RELATCH, and OptORF to predict metabolic engineering strategies that improve production of

both native and non-native chemicals that have been studied in other cyanobacteria. This study
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provides a thorough assessment of the yields, requirements and genetic strategies for utilizing

Synechococcus 7002 as a background strain for metabolic engineering.

4.1 Results

4.1.1 Maximum theoretical yields of native and non-native products

The updated metabolic model was used to calculate the maximum theoretical yields for a variety
of native and non-native products under photoautotrophic, dark anoxic, and dark oxic conditions.
The maximum theoretical yields (mol product/ mol CO,) for all considered products produced
under photoautotrophic conditions were predicted to be greater than or equal to the yields under
dark conditions (Table 4.1).

Table 4.1: Predicted theoretical yields (mol product/ mol CO,or photon) of different chemicals
produced by Synechococcus 7002 under different conditions

Products Photoautotrophic  Photoautotrophic ~ Dark anoxic Dark oxic
(mol /mol photon)  (mol /mol CO,;)  (mol /mol CO,) (mol /mol CO,)

Acetate” 0.063 0.50 0.50 0.50
Alanine” 0.042 0.33 0.33 0.33
Lactate” 0.042 0.33 0.33 0.33
Succinate™"” 0.031 0.25 0.19 0.24
Hydrogen™” - - 2 2
Fatty acid® 0.005 0.056 0.039 0.039
Isobutanol? 0.021 0.25 0.17 0.17
Isoprene” 0.018 0.20 0.12 0.14
2-Methyl-1-butanol?” 0.017 0.20 0.13 0.13
1-Butanol? 0.021 0.25 0.17 0.17
3-Methyl-1-butanol? 0.017 0.20 0.13 0.13
l-Propanold) 0.028 0.33 0.22 0.22
2-Phenylethanol? 0.013 0.13 0.096 0.099
Ethylene? 0.022 0.40 0.00 0.18
Ethanol? 0.042 0.50 0.33 0.33

9 Products that can be produced via naturally occurred pathways in Synechococcus 7002

Products whose production is limited by energy under dark anoxic conditions

Products whose production is limited by reductant under dark anoxic conditions

Products whose production is limited by both energy and reductant under dark anoxic conditions
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In addition, the photoautotrophic maximum theoretical yields of all products, except for
ethylene, were equal to the inverse of the number of carbons in the products, indicating that the
simulated conditions were carbon-limited. The predicted photoautotrophic maximum theoretical
yield of ethylene (0.4 mol/mol CO,), however, was less than the expected value (0.5 mol/mol
COy). This was because the ethylene forming reaction that was added to our model produces
succinate, guanidine, and 1-pyrroline-5-carboxylate in addition to ethylene. While succinate and
I-pyrroline-5-carboxylate can be re-consumed by reactions in the network, enzymes
metabolizing guanidine do not appear to be present in Synechococcus 7002, and so guanidine
was co-produced with ethylene, lowering the maximum theoretical yield for ethylene to 0.4 mol
ethylene/ mol CO,. Since the ethylene forming enzyme requires oxygen, ethylene could not be
produced under dark anoxic conditions. It should be noted that under photoautotrophic and dark
oxic conditions, we excluded hydrogen from the maximum theoretical yields calculations
because hydrogenases are inhibited by oxygen [125].

Under photoautotrophic conditions, the model-predicted chemical production rates (and
thus maximum theoretical yields) were limited by carbon; however, under dark conditions
reductant and/or ATP limited most yields. The lower maximum theoretical yields for succinate,
fatty acid, and other non-native products predicted under the two dark conditions imply that CO,
was not the only factor limiting chemical production. While cells can use light energy to generate
more energy and reductant (in the form of ATP and NADPH, respectively) under
photoautotrophic conditions, they cannot do so under dark conditions. Therefore, besides COs,
energy and reductant can potentially limit the production of desired products in the absence of
light. We determined whether energy and/or reductant further limited production under dark

conditions by adding artificial ATP- or NADPH-generating reactions (ADP + HPO4 + H = ATP
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+ H,0O and NADP - NADPH + H) to the model and re-calculating the maximum theoretical
yield for each product under the dark conditions. The resulting model predicted that under dark
oxic and dark anoxic conditions, with unlimited amount of NADPH and ATP, the maximum
theoretical yields increased to the values calculated under photoautotrophic conditions. Under the
dark oxic condition, the presence of O, enabled the production of ATP from NADPH using the
respiratory enzymes allowing for ATP synthesis (Figure 4.1). Therefore, under the dark oxic
condition, adding free NADPH alone was sufficient to increase the maximum theoretical yields
of products to values obtained under photoautotrophic conditions. In contrast, under the dark
anoxic condition, succinate was predicted to be the only product whose maximum theoretical
yield was limited only by ATP. The maximum theoretical yields of other products (except for
acetate, alanine and lactate) only increased to the values obtained under photoautotrophic
conditions when both free ATP and NADPH sources were present. Moreover, the model
predicted that under dark anoxic conditions, acetate would be produced as a co-product when
maximizing the production of isoprene and 2-phenylethanol. This co-product was made to
generate extra ATP via the acetyl-coA synthetase reaction; however, with free ATP production,
acetate was no longer predicted to be a co-product with these two products under dark anoxic
conditions.

4.1.2 Predicted phenotypes of gene-deletion mutants under photoautotrophic and dark-

anoxic conditions

The flux distributions obtained by fitting subsets of measured fluxes (from C MFA or
external flux data [12, 126]) and gene expression data ([113]) provided a reference point for
methods used to predict the effects of gene deletions (MOMA and RELATCH [68, 116]). These
reference flux distributions through central metabolism for photoautotrophic and dark anoxic

conditions are shown in Figure 4.2. Using these reference flux distributions, we predicted flux
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distributions in single-gene knockout mutants using MOMA and RELATCH and evaluated

which mutants were predicted to improve production of the chemicals listed in Table 4.1.

Cytoplasmic space Extracellular space

ycS rd

- H*

\_/pqth
- H*
\inad

\

nadh

Figure 4.1: Schematic presentation of electron transport in Synechococcus 7002

In the presence of oxygen (O,), there is a coupling between cytochrome oxidase reaction (COX CYC),
and NADH dehydrogenase reaction (NADHPQY) via plastoquinone-cytochrome c¢ oxidoreductase
(PQCYCOR), which leads to a proton gradient across the membrane that can drive ATP synthesis. The
reduced and oxidized forms of electron donor and electron acceptors for COX_CYC, NADH_PQ9, and
PQCYCOR are cyc6 rd/cyc6 ox, nadh/nad, and pq9h2/pq9, respectively.

We identified mutants that improved product yields by at least 10% (if the products were
already secreted by the wildtype strain), or enabled production of new products (if the products
were not already secreted by the wildtype strain). Furthermore, for the photoautotrophic
condition, we excluded gene deletions that were predicted to be lethal since the Synechococcus

7002 mutants need to be able to grow photoautotrophically.
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Figure 4.2: Predicted flux distributions of Synechococcus 7002 under photoautotrophic and dark
anoxic conditions

The flux map shows the reference flux distributions, which were estimated using the MFA data for
Synechocystis 6803 (measured under photoautotrophic condition) or secretion rates for Synechococcus
7002 (measured under dark anoxic condition) through central metabolic reactions. Flux values are
reported in units of mmol-g' AFDW-h" for photoautotrophic and dark anoxic conditions. Reaction
directions match those predicted for photoautotrophic condition. Negative flux values for the dark anoxic
condition indicate the flux occurs in the opposite direction of the reaction. The dotted line represents the
conversion of glucose-1P to glycogen via three sequential reactions that carry equal flux values (glucose-
1-phosphate adenylyltransferase, glycogen synthase, and glycogen branching enzyme).

Our results show that under photoautotrophic conditions, MOMA was able to identify
gene-knockout mutants with improved phenotypes for all 14 target products considered. On the
other hand, RELATCH with tight parameter values, which predicts the behavior of unevolved
mutants, only found unevolved mutants that were predicted to produce succinate, ethylene, fatty
acids, isoprene, 2-methyl-1-butanol, 1-propanol, 2-phenylethanol, or 1-butanol (Figure 4.3A).
When we used RELATCH with relaxed parameter values, which predicts the behavior of
mutants that have been adaptively evolved, we were able to find mutants that were predicted to
have improved production for almost all products, except for acetate and ethanol. Under dark
anoxic conditions, both MOMA and RELATCH (with tight and relaxed parameters) methods
were able to identify mutants with increased production for all of the target products (Figure
4.3B). Except for fatty acids, there were surprisingly few mutants (<30) that were predicted by
both methods to improve chemical production. For both photoautotrophic and dark anoxic
conditions, RELATCH predicted that adaptive evolution of mutants could lead to formation of
desired products that might not be observed in unevolved mutants. In addition, we expected that
products would be formed by more mutants under dark anoxic conditions than under
photoautotrophic conditions since lethal mutants under photoautotrophic conditions were

excluded from consideration.
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Figure 4.3: Number of Synechococcus 7002 mutants predicted by RELATCH and MOMA to
produce different products under photoautotrophic and dark anoxic conditions

The bar charts show the numbers of single-gene deletions predicted by MOMA (black bars), RELATCH
with tight parameters (grey bars) and RELATCH with relaxed parameters (striped bars) to improve
production of a given product. (A) For photoautotrophic conditions, only non-lethal mutants with at least
a 10% increase over the wildtype production levels are included. (B) For dark anoxic conditions, only
mutants with at least a 10% increase over the wildtype production levels are included. The * indicates the
actual number of mutants with improved fatty acid production is 425 and 421 for RELATCH with tight
and relaxed parameters respectively.
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Both MOMA and RELATCH predicted, however, that most non-native products could be
formed by more mutants under dark anoxic conditions than photoautotrophic conditions, while
some native products could be formed by more mutants under photoautotrophic conditions than
dark anoxic conditions. As shown in Figure 4.4 and Figure 4.5, the number of central metabolic
genes that can be deleted to improve chemical production under photoautotrophic condition was
higher than under dark anoxic conditions.

4.1.3 ldentifying adaptive evolutionary strategies for photoautotrophic chemical

production

The mutants predicted by MOMA and RELATCH to have improved chemical production
only involved single-gene deletion mutants and they do not guarantee coupling between growth
and production of target chemicals. This coupling allows for the selection of improved chemical
production by using a growth rate selection pressure in adaptive evolutionary experiments [117,
122]. We ran the OptORF algorithm to identify multiple gene-knockout mutants that would
couple target chemical production to cellular growth. OptORF predicted that with a large number
of gene deletions, coupling could be achieved, forcing Synechococcus 7002 to produce chemicals
during optimal growth under photoautotrophic conditions (Figure 4.6). Using a maximum of 10
gene deletions, OptORF was able to identify strategies for 9 out of the 14 target chemicals,
including: acetate, alanine, succinate, 1-butanol, ethylene, ethanol, 2-methyl-1-butanol, 3-
methyl-1-butanol, and isoprene. Common strategies suggested by OptORF for all products
involved blocking reactions or cycles that consume reducing power in the form of NAD(P)H
(e.g.,, NADH dehydrogenase and transhydrogenase). Most of the strategies required 9 or 10
deletions and resulted in predicted growth rates between 0.15 to 0.20 h™' and product yields
between 15 — 34 % of the maximum theoretical yield. Because 1-butanol can be synthesized via

either the branched amino acid pathway or the engineered CoA-dependent pathway [31, 126], we
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Figure 4.4: Gene deletions in the central metabolism of Synechococcus 7002 predicted to improve
chemical production under photoautotrophic conditions

Each table represents a mutant which was predicted to improve chemical production of different products
under photoautotrophic conditions. The mutants were predicted by MOMA, RELATCH with tight
parameters (RELATCH-t), or RELATCH with relaxed parameters (RELATCH-r). The products are
abbreviated as Ac — acetate, Ala — alanine, Lac — lactate, Suc — succinate, FaA - fatty acid, Ety —
ethylene, Isp — isoprene, 2mb — 2-methyl-1-butanol, 3mb — 3-methyl-1-butanol, Prp — 1-propanol, Pet — 2-
phenylethanol, and But — 1-butanol. The following abbreviations were used for reactions with isozymes,
FBA — fructose bisphosphate aldolase, PGM — phosphoglucomutase, and PRKIN — phosphoribulokinase.
Each entry in the table represents the mutant identified by the corresponding method as either predicted
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(black) or not predicted (white) to improve chemical production. The * indicates that the reaction has
isozymes. The ** indicates that pyruvate dehydrogenase (PDH) has 4 subunits (A1126, A0353, A0655,
and A0110). RELATCH with relaxed parameters predicted that deletion of A1126 did not produce 1-
propanol, while deletion of other subunits produced 1-propanol.
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Figure 4.5: Gene deletions in central metabolism of Synechococcus 7002 predicted to improve
chemical production under dark anoxic conditions

Each table represents a mutant which was predicted to improve chemical production of different products
under dark anoxic conditions. The mutants were predicted by MOMA, RELATCH with tight parameters
(RELATCH-t), or RELATCH with relaxed parameters (RELATCH-r). The abbreviations match those
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used in Figure 3, with the addition of H, — hydrogen, and Isb — isobutanol. Each entry in the table
represents the mutant identified by the corresponding method as either predicted (black) or not predicted
(white) to improve chemical production. The * indicates that the reaction has isozymes.

ran OptORF separately for 1-butanol using the two different biosynthetic pathways. We found
that the predicted yield for OptORF mutants using the CoA-dependent pathway (0.045 mol 1-
butanol/ mol CO,) was lower than the predicted yields for OptORF mutants using the branched
amino acid pathway (0.085 mol 1-butanol/ mol CO,), even though the maximum theoretical

yields using the two pathways are the same under CO,-limited photoautotrophic conditions.
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Figure 4.6: Predicted yields and growth rates for OptORF-designed Synechococcus 7002 mutants
under photoautotrophic conditions

Mutants (using up to 10 gene deletions) with coupling between chemical production and cellular growth
rates were found. The predicted production yields are shown in (A) as a percent of the maximum
theoretical yields (the latter of which are reported in Table 4.1). The predicted growth rates are shown in
(B), where the experimental wildtype growth rate is 0.198 h™".
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4.2 Discussion

In this chapter used the genome-scale metabolic model of Synechococcus 7002 (iSyp708)
to systematically evaluate the organism’s potential for producing a range of biofuel precursors
and chemicals. Since Synechococcus 7002 metabolism changes in response to the day-night
cycle, we evaluated the model under both photoautotrophic, dark anoxic, and dark oxic
conditions. We also estimated the maximum theoretical yields for a variety of products and
identified single and multiple gene deletion strategies for improving chemical production rates
and/or yields.

The maximum theoretical yields calculated under photoautotrophic and dark conditions
assume no biomass or co-product formation (except for isoprene, 2-phenylethanol, and ethylene).
Therefore, it is expected that the actual yield of each target chemical obtained in vivo would
always be lower under photoautotrophic growth conditions. The maximum theoretical yields
calculated under photoautotrophic conditions assumed that carbon was limiting chemical
production. Since light and CO; uptake fluxes can affect chemical production rate, we also
examined the maximum theoretical yield of several products including isobutanol, and lactate
when varying both light and CO, uptake fluxes (Figure 4.7). We found that for a given CO,
uptake flux, there was an optimal photon uptake flux that would result in the maximum
theoretical yields of products. If the photon uptake fluxes were lower than the optimal level for a
fixed amount of CO,, the yield would be lower and byproducts (such as formate) were also
secreted. In order to determine which products have the lowest light requirements, we also
calculated the minimum amount of photons (in moles) required to produce one mole of target
product and the corresponding water requirements (Table 4.2). Our results showed that the

photon requirements generally increased as the number of carbons in the products increased.
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Figure 4.7: Model-predicted maximum theoretical yields of isobutanol and lactate produced by
Synechococcus 7002 at different photon and CO, uptake fluxes
2-D phase plane displaying maximum theoretical yields of A) isobutanol and B) lactate for different
values of CO, and photon uptake fluxes. The phase plane has 3 distinct regions: carbon-limitation region
(CO; is limiting the yield, photon is in excess), photon-limitation region (photon is limiting the yield, CO,
is in excess) and infeasible regions (photon is too limited for a fixed amount of CO,).

The model predicted that most products required 8 — 12 photons and 0.5 — 1.5 water
molecules per carbon atom incorporated into the product, with the biofuel products requiring
close to 12 photons per carbon atom. For ethylene, it was significantly higher and required ~22.4

photons per carbon atom incorporated into ethylene. This was due to the co-production of

guanidine since Synechococcus 7002 has no pathway to degrade this side product.
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Table 4.2: Predicted photon and water requirements of Synechococcus 7002 grown under
photoautotrophic conditions

Products Photon required ® H,O required
Acetate 16 2
Alanine 24 2
Lactate 24 3
Succinate 32.75 3
Fattyacid 208 18
Isobutanol 48 5
Isoprene 56 4
2-Methyl-1-butanol 60 6
1-Butanol 48 5
3-Methyl-1-Butanol 60 6
1-Propanol 36 4
2-Phenylethanol 80 5
Ethylene 44.75 1
Ethanol 24 3

9 Number of moles of photons and water required to make 1 mole of product
®  Number of electrons required to reduce 1 mole of carbon in product

Even though acetate and ethanol both contain two carbon atoms and had equal maximum
theoretical yields (Table 4.1), they have different photon (8 and 12 photons per carbon,
respectively) and water requirements (1 and 1.5 water per carbon, respectively). The same was
observed for 2-methyl-1-butanol and isoprene. The light and yield calculations were similar to
recent estimates for some of these products in another cyanobacterium, Synechocystis 6803
[127]. These yield calculations and assessment of light and water requirements are useful for
identifying conditions to optimize biochemical production (e.g., dark anoxic versus dark oxic),
and for conducting economic and life cycle analyses of biochemical production using
cyanobacteria.

Our predictions of single gene deletion mutant phenotypes using MOMA and RELATCH
showed that for most products, MOMA tended to predict more mutants would have increased

chemical production than RELATCH. Since MOMA'’s objective is to minimize the total
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difference between wildtype and mutant’s fluxes for all reactions in the network, the flux
magnitude of each reaction in mutant strains will tend to be close to that in the wildtype strain
[68]. When non-native pathways for a particular product were introduced into the model,
MOMA tended to divert flux through reactions in these pathways in response to gene deletions,
thereby leading to product formation. In contrast, RELATCH tries to minimize relative flux
changes and latent pathway activation with limits on flux increases [116], and thus results in
different secretion profiles. While RELATCH has been shown to make more accurate flux
predictions for gene knockout mutants [116], it is not clear which method will be more accurate
when non-native pathways are additionally incorporated into the mutants. In addition, the
predictive ability of MOMA and RELATCH is sensitive to the reference flux distribution [68,
116]. Since the photoautotrophic reference flux distribution of Synechococcus 7002 was
estimated by fitting fluxes to *C MFA data of Synechocystis sp. PCC 6803 [126], differences in
photoautotrophic fluxes may exist between the two strains and could affect the accuracy of the
reference flux distributions. Based on genome annotations, these two cyanobacteria share
common genes encoding enzymes involved in central metabolism including glycolysis, pentose
phosphate pathway, TCA cycle, carbon fixation, glycolate cycle, and photorespiration. This
provides a basis for using the MFA data from Synechocystis 6803 to generate a reference flux
distribution in this study. Nevertheless, a thorough genomic, metabolic, physiological, and
ecological comparison of the two organisms, which is beyond the scope of this study, may reveal
more significant differences in photoautotrophic fluxes between the two organisms. When more
experimental data for Synechococcus 7002 mutant phenotypes and C MFA flux estimates
become available, the predictions of both computational methods should be re-evaluated and

compared to experimental results.
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While RELATCH generally predicted that more adaptively-evolved mutants than
unevolved mutants would produce the desired products, there were a few products for which this
was not the case. For example, under the dark anoxic condition, RELATCH predicted that the
unevolved AA0246 mutant (missing a glutamine synthetase) would produce ethanol, while an
evolved AA0246 mutant would not produce this product. Further investigation revealed that
Synechococcus 7002 has two genes encoding a glutamine synthetase, A0246 and A1630 with the
former having higher gene expression and thus greater enzyme contribution to the glutamine
synthetase flux [113]. RELATCH predicts that during evolution of the AA0246 mutant, the
glutamine synthetase flux will recover as A1630 compensates for the loss of A0246, thereby
decreasing production of chemicals that were produced before adaptive evolution.

MOMA and RELATCH predictions suggested that for non-native products (except for
fatty acids), it was more likely to identify mutants with improved chemical production under
dark anoxic conditions than under photoautotrophic conditions. As mentioned earlier, this was
most likely due to the fact that some of the mutants predicted to produce chemicals under dark
anoxic conditions were lethal under photoautotrophic conditions. As a result, these knockout
mutants would be difficult to implement experimentally and would not be viable candidates for
metabolic engineering. However, altering the regulation of these genes could enable cells to still
grow photoautotrophically with down-regulation of the genes in response to dark anoxic
conditions enabling chemical production.

While the gene deletions predicted by MOMA and RELATCH to increase chemical
production under photoautotrophic conditions were product specific, the gene deletion strategies
suggested by OptORF for different products appeared to share some common genes that encode

enzymes involved in NAD(P)H consuming reactions (e.g.,, A0195, A0196, A0197, A0984,
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A0985, and A0986). OptORF strategies suggest that in order to produce target chemicals, one
needs to block pathways that produce byproducts and to preserve energy and reductant for
producing desired compounds. For a particular product, the gene deletions predicted by MOMA,
RELATCH and OptORF also had little overlap. For example, while MOMA and OptORF
predicted that deleting one of the genes encoding NADH dehydrogenase (A0195, A0196, or
A0197) would enable 1-butanol production, RELATCH (with tight parameters) identified a
completely different set of non-intuitive single gene deletions (A0707, A1023, or A2508) that
are involved in chlorophyll and heme biosynthesis. Therefore, it will be important to
experimentally test the predictions from different approaches to evaluate their predictive power.
The OptORF calculations suggested that it was generally difficult to couple growth to
chemical production under CO,-limited photoautotrophic conditions. One reason for this is that
light was not constrained in our simulations so there was never an excess of reductant, which is
often the reason for product formation under anaerobic conditions in other microbes. For the
products which had available OptORF strategies, at least 9 gene deletions were required in order
to achieve significant coupling between growth and product formation. Interestingly, OptORF
failed to identify any strategies for isobutanol production, which had been previously shown to
be relatively easy to couple to growth in Escherichia coli [118]. In contrast, no I-butanol
strategies were found by OptORF for E. coli but strategies with production at ~ 34% of the
maximum theoretical yield were found for Synechococcus 7002. These differences between E.
coli and Synechococcus 7002 could be caused by differences in metabolism between the two
organisms, differences in the number of gene deletions allowed, effects of transcriptional

regulation (which was additionally used to constrain the E. coli model), and an unconstrained



72

source of ATP and reductant in the Synechococcus 7002 model under photoautotrophic

conditions

4.3 Materials and Methods

4.3.1 Calculations for maximum theoretical yields for native and non-native products

under different conditions

Synechococcus 7002 produces a variety of autofermentation products, including lactate,
succinate, acetate, alanine, and hydrogen [12]. Therefore, we added transport and exchange
reactions for succinate, alanine, and lactate to the model (transport and exchange reactions for
acetate and hydrogen were already in iSyp611 model). In addition, biosynthetic pathways for a
range of biofuels and biofuel precursors were added to the model as needed to enable their
production [20, 21, 31]. It should be noted that octadecanoic acid was chosen to represent a non-
native free fatty acid produced by Synechococcus 7002 in this study. Maximum theoretical yield
calculations were carried out in photoautotrophic, dark anoxic (i.e., autofermentation), and dark
oxic conditions. In the photoautotrophic simulations, the CO, uptake flux was limited to 10
mmol g’ AFDW-h"' and photon uptake fluxes were not limited. FBA [67] (Chapter 2) was then
used to maximize production of each of the desired products. We calculated the maximum
theoretical yield of each product as the ratio of the maximum production flux to the CO,
consumption rate.

For the dark simulations, we performed FBA in two steps. In the first step, glycogen
production flux was maximized with the same constraints as the photoautotrophic simulations. In
the second step, we allowed glycogen to be the only carbon source (by setting the lower limits
for CO; and other carbon containing exchange fluxes to zero) and set the photon uptake fluxes to

zero to simulate dark conditions. Because Synechococcus 7002 can grow in a 12/12 light/dark
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cycle [28], we assumed that the amount of glycogen accumulated during the light period is equal
to that degraded during the dark period. Therefore, the glycogen degradation rate was
constrained to the maximum photoautotrophic glycogen production rate found in the first step,
and the O, exchange flux was either constrained to be zero (dark anoxic condition) or
unconstrained (dark oxic condition). The maximum production flux of each desired product was
then determined under dark conditions. The maximum theoretical yield under dark conditions
was then calculated as the ratio of the maximum production flux to the CO, consumption rate,
the latter of which was obtained from the first step where glycogen production was maximized
under photoautotrophic conditions.

4.3.2 Predicting phenotypes of gene deletion mutants under photoautotrophic and dark-

anoxic conditions

We used MOMA and RELATCH [68, 116] to predict flux distributions in single gene
knockout mutants. Since both methods require a reference flux distribution, we first used
expression data and either ’C metabolic flux analysis (MFA) data for photoautotrophic
conditions, or measured external flux values (substrate uptake and product secretion fluxes) for
dark anoxic conditions to estimate a reference flux distribution (w) [116]. We slightly modified
the method described in [116] to obtain the reference flux distribution, in which the single

optimization problem was broken into two optimization problems, which are shown below (Eq.

4.1-4.28).
Step 1: min -~ Xjejpp (Q)z (Eq. 4.1)
s.t. X;Syw;=0 Vi €1 (Eq. 4.2)
wj =0 Vj € Jirr (Eq. 4.3)
wiee — " < w; S WS + 0" V) E Jxr (Eq. 4.4)
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enz 2
Step 2: min = Y ie;.pp Znen() (W]EZ ) (Eq. 4.5)
s.t. (Eq. 2) — (Eq. 4)
wy=w P Vj €Jrxp (Eq. 4.6)
—2nen(H) WinZ S wj < Ynen(p) Win”  VYJ € Jarr (Eq. 4.7)
Wer > 0 Vj € Jeprm € N(j) (Eq. 4.8)

In the first optimization problem (Step 1), the sum of squared differences between the
measured fluxes values (W™€%) and the flux variables (W) was minimized and weighted by the
reciprocal of measured flux errors (6¢™") (Eq. 4.1). This objective function was defined for a
subset of reactions (Jgxp) where experimental data regarding flux values (°C MFA or external
flux data) was available. Since *C MFA data was not available for Synechococcus 7002 under
photoautotrophic or dark anoxic conditions, we used °C MFA data recently reported for
Synechocystis sp. PCC 6803 grown under photoautotrophic conditions [126] to predict the
reference flux distribution for Synechococcus 7002 under photoautotrophic conditions. For the
dark anoxic condition, we used previously reported secretion rates for alanine, hydrogen, acetate,
and lactate for Synechococcus 7002 obtained under a dark anoxic condition [12] to constrain the
exchange fluxes for the secreted products (See 4.3.2). The first optimization problem included
steady-state mass balance (Eq. 4.2) and reaction reversibility (Eq. 4.3) constraints to define a
feasible solution space. The measured external flux values and errors were used to limit the flux
variables for reactions (Jgxr) whose external flux data were available (Eq. 4), and these
constraints (Eq. 4.4) were only used to predict the reference flux for Synechococcus 7002 under

dark anoxic condition.
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4.3.2.1 Estimating MOMA’s and RELATCH?’s reference flux distributions under

photoautotrophic and dark anoxic conditions

For the photoautotrophic condition, we used the >C metabolic flux analysis (MFA) data
for Synechocystis 6803 grown under photoautotrophic condition [126] to estimate a reference
flux distribution for Synechococcus 7002 using the two-step optimization procedure above. The
MFA flux distribution, which was normalized to a CO, uptake flux of 100 mmol-g' AFDW- h™,
was scaled down to a CO, uptake flux of 8.62 mmol-g' AFDW-h"' so that the predicted growth
rate would be ~ 0.20 h”', which is equivalent to the physiological doubling time of
Synechococcus 7002 (~ 3.5 h [113]). Some fluxes reported in the MFA dataset were not
considered in the fitting procedure because the reactions were not present in the iSyp708 model.
The MFA data that was used in our calculations were shown in Table 4.3 below.

Table 4.3: *C Metabolic flux analysis (MFA) data from Synechocystis 6803

Reaction” MFA data® Scaled data ® | Reaction® MFA data® Scaled data ©
PGI -19+5 -1.64 TAL -1+£8 -0.09
G6PDHy 16+5 1.38 FBA3 36+ 8 -3.10
FBP 607 5.17 SBP 36+7 3.10
FBA -60£7 -5.17 PDH 11.8+0.3 1.02
TPI 95+5 -8.19 CS 32+0.2 0.28
GAPD -228+9 -19.65 ACONT 32+0.2 0.28
PGM 232104 2.00 ICDHy 3+0 0.26
ENO 23.6+0.2 2.03 SUCD1i 02+0.2 0.02
PYK 95+1.6 0.82 FUMH 1.8+0.2 0.16
RPE -759+04 -6.54 MDH 36+1.7 -0.31
RPI 35.6+0.2 3.07 ME2 53+1.6 0.46
PRKIN 127+5 10.95 PPC 11.6+1.7 1.00
RBC 127+5 10.95 RBO 04+04 0.03
TKT2 -38.5+0.2 -3.32 PGLYCP 04+04 0.03
TKTI1 -37.3+£0.2 -3.22 GLYCTDH 04+04 0.03

9 Reactions’ abbreviations are the same as those used in iSyp611 [61].
®  Normalized MFA data (in mmol-g”' AFDW-h™") for Synechocystis 6803 [126]
9 The scaled flux data was calculated by taking the normalized MFA data and multiplying it by 0.0862.
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For dark anoxic conditions, we used measured secretion rates for Synechococcus 7002
[12] to estimate the reference flux distribution. All measured fluxes except for glycogen
degradation rate (DM_glycogen) shown below in Table 4.4 were used in the objective function
of the first step (Eq. 4.1). The measured glycogen degradation rate was not included in the
objective function, but instead used to fix the glycogen uptakeflux (glycogen uptake flux was
fixed to 0.118 mmol-g’ AFDW-h"). We also excluded the hydrogen data from the set of
external fluxes (Jgxr) (Eq. 4.4) to ensure the model’s feasibility, but the hydrogen data was still
used in the objective function (Eq. 4.1). In addition, we converted the measured external rates
and errors from the reported unit (mol-10™"7 cells-day™) to a unit compatible with the model
(mmol-g”' AFDW-h™") using the reported cell weight (5 mg/ 10" cells), assuming it was ash-free
dry weight. The measured secretion rates and errors that were used to estimate the reference flux
distribution under dark anoxic condition were shown in Table 4.4 below.

Table 4.4: Measured external fluxes and errors for Synechococcus 7002 under dark anoxic
condition

External fluxes mol-10" cells-day™ mmol-g' AFDW-h"'
Ex h2 ¢® 27+04 0.023 £ 0.003
Ex ala-L e 3612 0.03+0.01
Ex lac-D e 21.6+ 12 0.18+0.1
Ex ac e 3.0+£3 0.025 + 0.007
DM _glycogen 141+5 0.118 £ 0.04

) Hydrogen was excluded from the set of measured external fluxes (Jgxr) in equation 4.4

In the second optimization problem (Step 2), fluxes through experimentally measured

reactions in set (Jgxp) were fixed to the values found in Step 1 (wftep 1) while the sum of

squared enzyme contribution variables (Wfflz ), weighted by the reciprocal of enzyme expression

values (E,,), was minimized (Eq. 4.5 — 4.6). The sum of the enzyme contribution variables over
all isozymes (n) for a particular reaction was used to place limits on fluxes for reaction that have

gene-protein-reaction (GPR) associations (Jgpgr) (Eq. 4.7). The gene expression value (E,,) for
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multi-component enzymes was determined by summing all the gene expression values for genes
encoding enzyme subunits. The expression data for Synechococcus 7002 grown under
photoautotrophic and dark anoxic conditions were used from previously reported RNA-seq
experiments [113]. The reference flux distribution was the solution to the second optimization
problem and was used for MOMA and RELATCH predictions of mutant fluxes [68, 116].

For all native products, we simulated single-gene deletions by applying MOMA and
RELATCH [68, 116] on the metabolic network of iISyp708. For each non-native product, we
added the biosynthetic pathway to iSyp708 and applied MOMA and RELATCH [68, 116] on the
modified model. For each single-gene deletion, we predicted the production of target chemicals
under photoautotrophic and dark anoxic conditions. We used growth rates and production rates
of different Synechococcus 7002 mutants to identify sets of tight and relaxed parameter values
used by RELATCH. These tight and relaxed parameter values are used by RELATCH to predict
the non-adapted (i.e., unevolved) and adapted (i.e., evolved) states, respectively, after genetic
perturbations (See 4.3.3).
4.3.2.2 Determining values of alpha (a) and gamma (y) for RELATCH

We performed sensitivity analyses for the parameters ¢ and y that were used in the
RELATCH algorithm following the procedure described in [116] (See 4.3.4). Since MFA data
were not available for Synechococcus 7002 mutants under either photoautotrophic or dark anoxic
conditions, we used the predicted growth rate or product secretion rates to determine these
parameter values. For the photoautotrophic condition, we identified 6 un-evolved mutant strains
of Synechococcus 7002 whose growth rates have been reported either qualitatively or
quantitatively to be similar to the wildtype strain [12, 28, 62, 128]. We ran RELATCH for these

knockouts separately with [101x101] pairs of different @ and y values, and evaluated the
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predicted growth rates of each of these mutants. RELATCH predicted that growth variation was
more sensitive to a and y for all tested mutants, where a lower a value corresponded to higher
growth rate (Figure 4.8). From these results we chose (¢ = 3.16, y = 10) and (a = 0.316,y =
o) for the tight and relaxed parameters to predict the un-evolved and evolved states of
Synechococcus 7002 mutants a under photoautotrophic condition.

For dark anoxic condition, we chose the parameters for which RELATCH’s predictions
of product secretion fluxes of alanine, acetate, hydrogen and succinate in the lactate
dehydrogenase mutant strain (AldhA) were most consistent with experimental data [12]. Since
the wildtype Synechococcus 7002 does not produce succinate experimentally, we first looked at
the effects of @ and y on RELATCH’s prediction for succinate production in a IdhA knockout
mutant (Figure 4.9). Our result showed that there was a region of @ and y values for which
succinate secretion flux was non-zero (Figure 4.9A). To evaluate the differences between model
predictions and experimental data, we also calculated the sum of squared errors per flux (SSE)
value for this mutant (Figure 4.9B). The SSE values were smallest in a similar region of a and y
values, indicating that the predicted production rates of alanine, hydrogen, and acetate were
closest to the experimental data. Based on these results we used (¢ =10, y = 1) and (a =
1,y = oo) for the un-evolved and evolved states of Synechococcus 7002 mutants under a dark

anoxic condition.
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Figure 4.8: Sensitivity analyses of RELATCH parameters on predicted growth rates of

Synechococcus 7002 mutants under photoautotrophic condition
Each heat map plot shows the growth rate (in h™) for a Synechococcus 7002 mutant predicted by

RELATCH for different pairs of a and y values.
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Figure 4.9: Sensitivity analyses of RELATCH parameters for succinate production rate and sum of
squared errors per flux of Synechococcus 7002 IdhA mutant under dark anoxic conditions

A) Heat map plot shows the predicted succinate production rate (in mmol-g"' AFDW-h™) for the IdhA
mutant under dark anoxic conditions. B) Heat map plot shows the sum of squared error (SSE) per flux (in
mmol*-g* AFDW-h?) between measured and predicted rates for acetate, alanine, succinate, and lactate in
IdhA mutant under dark anoxic conditions.

4.3.3 ldentifying strain design strategies for production of target chemicals during

photoautotrophic growth using OptORF

While MOMA and RELATCH predict a given mutants’ capability to secrete target
chemicals, the predicted gene deletion strategies often result in production of other byproducts
besides the chemicals of interest. In addition, to find strategies involving larger numbers of
deletions all possible combinations of higher order knockouts would need to simulated using
these approaches, which is computationally difficult [119]. We thus used the OptORF algorithm
[118] without regulatory constraints (since these are not known for Synechococcus 7002) to
identify gene knockout mutants with up to 10 gene deletions that can produce target chemicals
while growing maximally under photoautotrophic conditions. Briefly OptORF is a bi-level
programing algorithm that looks for gene deletions that would produce chemicals of interest if

cells maximized their growth [118]. We ran OptORF to identify growth-coupled gene deletion
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strategies for both native and non-native products under photoautotrophic conditions, since

adaptive evolution under this condition would lead to improved production rates.
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Chapter 5

Development of a co-culture model for Synechoccoccus
sp. PCC 7002 and Shewanella sp. W3-18-1

Microorganisms in nature tend to live in a community where more than one species
cohabitate the same environment, and therefore they interact with one another. The term
‘symbiosis’ refers to the interaction between two different species living in proximity and the
interaction can be beneficial for one or both organisms [129]. The interactions between pair of
species living in the same microbial consortia can be classified based on the effects of metabolic
exchange between the two species. Mutualisms refer to the bidirectional exchange of metabolites
between pair of organisms such that the exchange is beneficial to both species [130].
Commensalism is the unidirectional exchange of metabolites such that only one organism
benefits from the interaction [130]. If one species benefits from the interaction while the other is
harm, the interaction is called parasitism [130]. In addition, an interaction can be neutralism if
neither species benefits from the other [130].

Organisms that can live symbiotically are very diverse with microorganism are the
dominant species. A famous example of symbiotic relationship is the light-emitting symbiosis
between the marine bacteria Vibrio fischeri and the Hawaiian bobtail squid Euprymna scolopes.
In this relationship, the light emitted from the bacteria help the squid in several activities such as
prey attraction, and predator evasion and in return, the squid provide nutrients for bacterial
growth [131]. Another example of symbiosis occurs between plants and Rhizobia in which the

bacteria Rhizobia induce the formation of a specialized organ called nodule on roots of the host



83

plant; the bacteria fix nitrogen in this organ and provide the plant with ammonia in return for
starch and sugars [132]. The benefits that Rhizobia offer to the host plants have motivated studies
on characterization and isolation of different Rhizobia strains that can tolerate different soil
conditions and improve crop yield [133]. Symbiotic microorganisms are also subjects for
studying the biosynthesis of secondary metabolites which are metabolites that are not essential
for the growth of the microorganisms and can be pharmaceutically valuable; hence they often are
potential candidates for the development and discovery of new drugs [134]. The associations
between sponge and marine microorganisms have produced many natural products such as
swindholide A (a cytotoxic agent), and mycalamide A (an antitumor compound) [135].

Among symbiotic microorganisms, cyanobacteria are considered advantageous
symbionts (organisms that are in symbiotic relationship) because of their ability to fix carbon
dioxide and nitrogen, which can provide significant carbon and nitrogen sources in usable forms
for the organisms that they are associated with [135]. In addition, cyanobacteria can naturally
produce various secondary metabolites such as anatoxin-a (a neurotoxin produced by Anabaena
flos-aquae), and borophycin (a cytotoxin produced by Nostoc linckia) [136], or can be
engineered to produce various non-native or native chemicals (Chapter 1). Moreover,
cyanobacteria can form symbiotic associations with many organisms including plants, animals,
and bacteria [137]. Although symbiosis has been studied for many years, the mechanisms of
how metabolites are exchanged between symbiotic organisms are not fully understood.
Therefore, it is desirable to develop a co-culture model that can represent a synthetic microbial
interaction between cyanobacteria and other microorganism, and reflect such interactions and

thus help fill in the knowledge gaps that have not been known before. Such a model can also be
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used to study the biosynthesis of valuable natural products produced from synthetic symbiotic
association.

This chapter reviews recent research development in modeling microorganism
community from the literature. It also reports the development of a co-culture model for
Synechococcus sp. PCC 7002 (Synechococcus 7002) and Shewanella sp. W3-18-1 (Shewanella
W3181) using genome-scale metabolic models that have been developed for these organisms
(Chapter 2). The co-culture was analyzed to study the metabolite exchange between the two
organisms, and to see if the co-culture can sustain growth under different nutrients. The result of

this study provides insights into microbial interactions and bacteria’s growth in a community.

5.1 Literature survey of recent development in modeling community

of microorganism

The symbiotic relationship between Rhizhobia and host plant has been modeled to study
the first step in the interaction between the two organisms which was the nitrogen fixation within
the nodule of the host plants’roots [138]. This model was able to qualitatively predict the
pathways being utilized during nitrogen fixation stage and the predictions were in good
agreement with the literature. The relationship between a methanogen archae Methanococcus
maripaludis and a hydrogen-producing bacteria Desulfovibrio vulgaris was also modeled as
symbiotic association [139] and this model not only captured some of the physiological aspects
of symbiotic growth between the two organisms but also determined that hydrogen was more
essential as an electron carrier than formate, which cannot be easily determined using classical
biochemical and genetic techniques. Modeling interactions among different cell types or tissues
from the same organism (eukaryotes, brain tissues, human whole-body) also provided insights

into methodology of modeling complex communities for which each cell type or species in the
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community was treated as a separate compartments in the combined network [140-142].
Computational algorithms associated with multi-species models were also developed to analyze
the models. Notably, Klitgord et. al., have developed an algorithms that search for metabolites
that can be exchanged between pairs of microorganisms, and also for media that can induce
specific types of interaction between two species [130]. The results of this work helped identify
synthetic interactions among species through genetic and environmental perturbations, which can
potentially be useful in metabolic engineering.

Most of the methods discussed above involve a single optimization problem. In contrast,
OptCom, a computational algorithm that has been developed to study microbial interactions, was
formulated as a bilevel optimization problem extended from flux balance analysis (FBA)
algorithm ([67], Chapter 2). In this formulation, it was assumed that the microbial community
maximizes the total biomass while each species in the community also tries to maximize its own
biomass [143]. Although OptCom predictions for the interaction between M. maripaludis and D.
vulgaris agreed with experimental data, OptCom overpredicted the growth rate ratio between
two species in a three-species photoautotrophic microbial community [143, 144]. In addition,
OptCom assumes that the biomass concentration of each species in the community is equal,

which might not be practical.

5.2 Development and analysis of a co-culture model for
Synechococcus 7002 and Shewanella W3181.

Cyanobacteria often possess oxygen-sensitive hydrogenases which are responsible for the
production of hydrogen [3]. In Synechococcus 7002, hydrogen was only produced via dark-

fermentation to avoid hydrogenases being inhibited by oxygen evolved during photosynthesis
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[12] (Chapter 1). This issue in theory can be alleviated by coupling the oxygen evolution in

Synechococcus 7002 with oxygen consumption in Shewanella W3181 (Figure 5.1).

glycerol

Co-culture |

Figure 5.1: Schematic illustration of the metabolite exchanges between Synechococcus 7002 and
Shewanella W3181

Synechococcus 7002 (Syp702) can grow photoautotrophically using light energy and CO,, or
photoheterotrophically with light and glycerol. Oxygen evolved from photosynthesis of Syp7002 can be
consumed by Shewanella W3181 (ShewW3181) as an electron acceptor. ShewW3181 can grow on a
number of carbon sources (e.g., lactate, acetate), and secreted CO, as by product, which can be consumed
by Syp7001 via carbon fixation. The metabolites (e.g., H,, CO,, lactate, O,) exchanged from each species
in the co-culture model can be exchanged to the environment.

As shown in Figure 5.1 oxygen and organic carbon compound (e.g., lactate) produced
from Synechococcus 7002 grown photoautotrophically are consumed by Shewanella W3181. In
return, Shewanella supplies carbon dioxide for Synechococcus 7002. Like other Shewanella
species, this organism can utilize a wide range of carbon sources (Figure 5.2) and electron
acceptors (such as oxygen, iron, etc) [145].

The co-culture was developed to model growth of Synechococcus 7002 and Shewanella
W3181 in chemostats in which growth rates can be controlled by monitoring the dilution rate. To
illustrate the reconstruction of the co-culture model from the genome-scale models of each

species, a toy-network was constructed (Figure 5.3). In this model, the media and the two
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organisms are treated as three separate compartments that are linked to each other via transport

reactions.
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Figure 5.2: Example of intermediary carbon metabolism in Shewanella

Carbon sources of different chain length that can be metabolized by Shewanella: C2 (ethanol, acetate), C3
(lactate, propionate, pyruvate). Ethanol, acetate and lactate are known to be secreted by Synechococcus
7002. Synechococcus does not produce propionate naturally but can produce its precursor 2-oxobutanoate
which can be converted to propionate by Shewanella enzyme.
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Figure 5.3: Toy network illustrating the co-culture model of two organisms in chemostat

A, B, C, D, and E represent the metabolites in the metabolic network of each organism I and II. BMI and
BMII represent the biomass of organism I, and II, respectively. A e, B e, D e, and E e are external
metabolites, which can be transported in/out of the cells and of the reactor (dot lines) via Feed and Outlet
streams. B and D can be exchanged between the two organisms, while A can only be consumed by
organism |, and E can only be consumed by organism II.

We then used constraint-based modeling (Chapter 2) to model the co-culture as an
optimization problem, in which the objective is to maximize the total biomass concentration of
the community instead of total growth rates as described in OptCom [143] (Eq. 5.1). In this
formulation, X; and X;; represent the biomass concentrations of organisms I and II, respectively
while f; and f;; represent the exchange fluxes of external metabolites (e.g., A e, B e, D ¢, E e)
that are exchanged between the media and organism I and II, respectively. Like FBA (Chapter
2), we also used mass balance and flux limit to constrain the solution space (Eq. 5.2 — 5.7). In the
chemostat, the growth rates of each organism are equal to the dilution rate D (Eq. 5.8). The last
equation is the reactor balance equation in which Feed, Outlet, and Media are the flow rates of
external metabolites in the feed, outlet and in the media. The variables in this optimization are

the biomass concentrations and fluxes through all reactions in each metabolic network.

max ormin X; + Xy (Eq. 5.1)
s.t. S;-v; =0,V internal metabolites in species I (Eq. 5.2)
S; - v; = f1, Vexternal metabolites in species | (Eq.5.3)
LB, <v; < UB, (Eq. 5.4)
S;; v = 0,V internal metabolites in species 11 (Eq.5.5)
S;1 " v = fi1, Vexternal metabolites in species 11 (Eq. 5.6)
LB <v; < UBy (Eq. 5.7)
M =py =D (Eq. 5.8)

Feed — Outlet + f;.X; + f;;. X;; + Media = 0, Vexternal metabolites (Eq. 5.9)
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We applied the above formulation to the genome-scale metabolic networks for
Synechococcus 7002 (iSyp708), and Shewanella W3181 (iISW3181 794) that have been
developed in Chapter 2. We solved the optimization problem for three chemostat scenarios with
a dilution rate of 0.05h™" and the flow rates of inorganic carbon or lactate were fixed to 10
mmol-L™"-h™". Simulation results were shown in Table 5.1 below. The co-culture model was able
to sustain growth in all three conditions. The total cell concentration was predicted to be
increased with the supplement of organic carbon source (lactate).

Table 5.1: Predicted maximum total cell concentration of the co-culture in different chemostat
experiments

Scenarios Maximum total cell concentration (g AFDW/L)
Feed only inorganic C 5.14
Feed only lactate 15.4
Feed inorganic C and lactate 20.6

It should be noted that the above optimization is a non-linear programing (NLP) problem,
and therefore the solution obtained is not guaranteed global. When solving this NLP optimization
problem, it is often critical to have reasonable initial values for the variables. In this case,
obtaining a set of proper initial values was challenging since there were too many unknowns in
the models. We addressed this issue by first identifying a feasible solution to the problem and
perturbed the variables from the current level of the feasible solution and resolving the problem.
We found that in all cases, the total biomass concentration remained the same but only individual
cell concentration changed. In addition, the biomass concentration of Synechococcus 7002 was
predicted to be always higher than that of Shewanella W3181, which implied that to maintain the
co-culture at a certain dilution rate, one would need to have more cyanobacteria cells in the co-

culture.
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Chapter 6

Conclusions and future directions

In this work, we have focused on the development and genome-scale metabolic model for
cyanobacteria. We have demonstrated the applications of genome-scale metabolic models in
three main contexts. Firstly, Cyanothece 51142 metabolic model was analyzed in the context of
understanding the production and partitioning of energy and reductant in the complex electron
transport systems of the cyanobacteria. Secondly, we used the genome-scale metabolic model of
Synechococcus 7002 to address the feasibility of the biochemical production of various
compounds under different conditions, which we believe to be useful in strain-designing
cyanobacteria for production of high-value products. Lastly, we have started to obtain initial
results from analyzing the co-culture model of the cyanobacterium Synechococcus 7002 and the
‘metal reducing’ bacterium Shewanella W3181 such that the co-culture can sustain growth under
different nutrient conditions. The result of this work will contribute more knowledge to

symbiotic relationship between microorganisms.

6.1 Future directions

6.1.1 Validate and further improve genome-scale models

Model building is an iterative process and therefore discrepancies between model
predictions and experimental data can be used to refine and improve model predictions. The
predictive power of the genome-scale metabolic models developed in this work need to be
verified by comparing model predictions with experimental data. While the predictions of

Cyanothece 51142 model have been qualitatively and quantitatively validated with growth
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experiments (Chapter 3), we have not yet verified model predictions by Synechococcus 7002 and
Shewanella W3181 due to the lack of experimental data available for these organisms. Looking
forward, since the genetic modification tools have been developed for Synechococcus 7002, we
can verify model prediction against gene essentiality data if available. In addition, advances in
metabolic flux analysis have enabled the quantification of flux distribution in photoautotrophic
bacteria, which would be helpful to verify our cyanobacteria model-predicted flux distribution
under photoautotrophic conditions. The MFA data will not only allow us to verify the predicted
flux distribution, but also to redo the calculations for the reference flux distributions that were
used to predict mutant phenotypes in MOMA and RELATCH algorithms (Chapter 4).
Additionally, since Shewanella W3181 can grow on various carbon sources we can test
Shewanella W3181 model predictions on the ability to grow on different carbon source using
carbon utilization experiments.

Similarly, the co-culture predictions also need to be verified with experimental data when
they become available. In addition, alternative methods for solving non-linear programming
problem efficiently and different objective functions in modeling the co-culture should be
explored to analyze the co-culture.

6.1.2 Validate predicted gene-deletion strategies

In Chapter 4, we have used MOMA [68], RELATCH [116], and OptORF [118]
algorithms to obtain the strain-designing predictions that are pertaining to metabolic engineering
Synechococcus 7002 for producing chemicals. The strategies suggested by these algorithms are
not always overlapped and therefore it would be interesting to verify these predictions in the
laboratory. Since there are many equivalent predicted gene-deletions strategies, it is necessary to

further manually examine each of these strategies to narrow down the list of candidates. As an
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example, one may make use of additional data (if available) such as gene/protein expression data
or thermodynamic data to evaluate the feasibility and enzymatic activity of the reactions and
proteins associated with deleted genes to eliminate some of the candidates from the list of
proposed strategies.

Most of the engineering strategies suggested in the literature for improving productivity
of non-native chemicals involved overexpression of non-native pathways instead of knocking out
native genes. One can apply OptORF to identify metabolic engineering strategies that involved
gene overexpression if a regulatory network is available [118]. Knowledge of transcriptional
factor and regulatory interactions of genes in cyanobacteria is still limited and thus there is a
need to develop regulatory networks from available expression data. In addition, it would be
interesting to identify a set of reactions that can be added to the model that would improve

chemical production.
6.2 Concluding remarks

Looking back over the years I spent learning how to develop metabolic models for
cyanobacteria, I am convinced that models are useful as they provided us a systematic way to
represent living organisms, and to see how materials are connected. As complicated as living
organisms are, it is amazing how simple models such as the Cyanothece 51142 model that
include only ~ 30% of the genome can make accurate growth predictions. Analyzing the
metabolic network of photosynthetic bacteria (cyanobacteria) was more challenging than that of
other microorganisms such as E. coli, or yeast for the cyanobacteria metabolic network is
dependent on not only the carbon sources but also the energy from light. I also learned that

models have limitations but these limitations open doors for many research areas in the fields of
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systems biology and synthetic biology that together really make a significant improvement on

quality of life.
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