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Abstract 

 

This Ph.D. dissertation presents a multifaceted study of the instability-induced pattern 

transformations in soft particulate composites undergoing large deformations, via various 

numerical approaches and considering different forms and dimensions of the composite 

configurations. This study also emphasizes the whole process study of the instability 

phenomenon in composite materials, from prior- to post-buckling regimes. 

Specifically, results are presented for different forms of particulate composites, including 

1) 2D rectangular cells with a single-sized inclusion, 2) 2D rectangular cells with two different-

sized inclusions, and 3) 3D cuboid cells with a single-sized sphere inclusion. Numerical results 

derived from various methods are shown and discussed, including those from i) Bloch-Floquet 

analysis, ii) Post-Buckling analysis, iii) Energy quasi-convexification analysis, and iv) a hybrid 

method that implements Bloch-Floquet analysis in the post-buckling regime.  

In addition to presenting the dependence of instability critical characteristics on the 

composite’s initial geometric configurations, the study also highlights key findings and novel 

insights, including i) the transition of buckling behavior as the composite’s manifestation of 

two soft particulate systems; ii) the divergence of linearized instability predictions in their post-

buckling regimes; iii) the unique “seemingly non-periodic” state of buckling modes; iv) the 

occurrence of secondary instability in the post-buckling regime of the particulate composite; v) 

the interplay of two different-sized inclusions in particulate composites; and vi) the differences 

in instability behaviors between 2D and 3D particulate composites. 

Additionally, a post-processing method based on the discrete Fourier transformation (DFT) 
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is developed for characterizing post-buckling development. This method enables accurate 

identification of critical characteristics compared to traditional visual inspection of repeating 

blocks. It also facilitates the future application of experimental identification of instability-

induced pattern transformations by circumventing test defects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

Table of Contents 

 

Acknowledgments ................................................................................................................................................... i 

Abstract .................................................................................................................................................................. ii 

Table of Contents ................................................................................................................................................... iv 

List of Figures ......................................................................................................................................................... v 

1. Introduction .................................................................................................................................................... 1 

1.1 Soft composites .................................................................................................................................. 1 

1.2 Elastic instabilities ............................................................................................................................. 2 

1.3 Instabilities in soft particulate composites ......................................................................................... 4 

1.4 Numerical analysis of instabilities in periodic composites. ............................................................... 5 

1.5 Outline of this dissertation ................................................................................................................. 7 

2. Theoretical background .................................................................................................................................. 9 

2.1 Nonlinear elasticity ............................................................................................................................ 9 

2.2 Analysis of macroscopic instability ................................................................................................... 9 

2.3 Analysis of microscopic instability .................................................................................................. 11 

2.4 Constitutive models ......................................................................................................................... 13 

3. Numerical modeling ..................................................................................................................................... 14 

3.1 Bloch-Floquet analysis .................................................................................................................... 14 

3.1.1 2D Analysis (single-sized inclusion) ...................................................................................... 14 

3.1.2 2D Analysis (two different-sized inclusions) ......................................................................... 17 

3.1.3 Bloch-Floquet analysis in post-buckling regime .................................................................... 18 

3.1.4 3D Analysis ............................................................................................................................ 20 

3.2 Energy quasi-convexification analysis ............................................................................................. 21 

3.3 Post-buckling analysis ..................................................................................................................... 24 

3.3.1 Geometric modeling ............................................................................................................... 24 

3.3.2 Characterization of post-buckling development ..................................................................... 29 

4. Numerical results .......................................................................................................................................... 30 

4.1 Composite(2D) with single-sized inclusions ................................................................................... 30 

4.1.1 Bloch-Floquet prediction ....................................................................................................... 30 

4.1.2 Energy landscapes .................................................................................................................. 44 

4.1.3 Post-buckling analysis ............................................................................................................ 47 

4.1.4 Secondary buckling development in post-buckling regime ................................................... 65 

4.2 Composite(2D) with two different-sized inclusions ........................................................................ 74 

4.2.1 Bloch-Floquet prediction ....................................................................................................... 74 

4.3 Composite(3D) with single-sized inclusions ................................................................................... 82 

4.3.1 Bloch-Floquet prediction ....................................................................................................... 82 

5. Conclusion .................................................................................................................................................... 86 

Appendix A  The influence of the number of unit cells in the RVE for post-buckling analysis ...................... 89 

Bibliography ......................................................................................................................................................... 90 

 

  



v 

List of Figures 

 

Fig. 1 Schematic composite microstructure with stiff circular inclusions periodically distributed in soft 

matrices. ................................................................................................................................................ 12 

Fig. 2 Schematic composite microstructure with stiff circular inclusions periodically distributed in soft 

matrices. ................................................................................................................................................ 15 

Fig. 3 Dispersion curves of the composite subjected to increasing levels of compressive strains. ................. 16 

Fig. 4 a) Schematic composite microstructure with two different-sized stiff circular inclusions periodically 

distributed in soft matrices; Schematic composite with inclusion diameter contrast ratio b) 𝑘𝑑 = 1, c) 

𝑘𝑑 = 0.2, d) 𝑘𝑑 ≈ 0. ............................................................................................................................ 18 

Fig. 5 Schematic representative volume element with two composite unit cells in a) the initial undeformed 

state and b) its post-buckling regime corresponding to its initial periodicity being exactly doubled. ... 19 

Fig. 6 Schematic 3d composite microstructure with stiff sphere inclusions periodically distributed in cuboid 

soft matrices. ......................................................................................................................................... 21 

Fig. 7 a) Landscape of the normalized stored-energy 𝑊 as a function of the compressive strain 𝜀 and shear 

strain 𝛾  (corresponding to 𝜉 = 0.7  and 𝜂 = 1)  b) Schematic composite cell subjected to 

simultaneously applied compressive strain and pure shear deformations ............................................. 24 

Fig. 8 Schematic composite microstructure with stiff circular inclusions periodically distributed in soft 

matrices. ................................................................................................................................................ 25 

Fig. 9 (a) Schematic composite cell without geometric imperfection. ............................................................ 27 

Fig. 10 The DFT results of the post-buckling development at compressive strain 𝜀 = 0.241  for numerical 

models with (a) various amplitudes of geometric imperfection (𝐾𝑖𝑚𝑝 = 10−2, 10−3, 10−4, 10−5, 10−6 , 

and10−7) ; (b) different realizations of random imperfection with the same amplitude of geometric 

imperfection 𝐾𝑖𝑚𝑝 = 10−5. .................................................................................................................. 28 

Fig. 11 The dependence of critical strain on periodicity aspect ratio with various spacing ratios. Dotted and 

continuous curves correspond to macroscopic and microscopic instabilities, respectively. .................. 31 

Fig. 12 Distribution of strain field, 𝜀22, in the composite with 𝜉 = 0.6 under the applied average compressive 

strain 𝜀 = 0.24 with various periodicity aspect ratios. ........................................................................ 34 

Fig. 13 The dependence of critical wavenumber on the periodicity aspect ratio with various spacing ratios. 

Dotted and continuous curves correspond to macroscopic and microscopic instabilities, respectively. 35 

Fig. 14 Schematics of instability patterns based on initial primitive cells and enlarged primitive cells. ........... 36 

Fig. 15 Eigenmodes of the composites at the critical strains with spacing ratio 𝜉 = 0.4 and various periodicity 

aspect ratios from 1.546 to 1.325. ......................................................................................................... 39 

Fig. 16 Surface of critical wavenumber in the space of periodicity and spacing ratio. ..................................... 41 

Fig. 17 Critical dispersion curves corresponding to the jump-transition mode. ................................................ 43 

Fig. 18 Critical dispersion curves corresponding to the limited-transition mode .............................................. 44 

Fig. 19 Critical dispersion curves corresponding to the full-transition mode. ................................................... 44 

Fig. 20 (a) Comparison of critical strains derived from quasi-convexification and Bloch-Floquet analyses for 

the composites with 𝜉 = 0.3, 𝜉 = 0.5, 𝜉 = 0.7 and  𝜉 < 𝜂 ≤ 5; ..................................................... 47 

Fig. 21 (a) The deformation sequence under compressive strain level 𝜀 = 0 , 0.233 , and 0.253 ; initial 

geometric parameters are 𝜉 = 0.6 and 𝜂 = 2.1; (b) The position of inclusion centers in the deformed 

RVE. ...................................................................................................................................................... 48 

Fig. 22 The DFT analysis results of the post-buckling development for the composite with spacing ratio 𝜉 =



vi 

0.6 and periodicity aspect ratio 𝜂 = 2.1 at compressive strain 𝜀 = 0.233, 𝜀 = 0.2339, 𝜀 = 0.234, 

𝜀 = 0.235, 𝜀 = 0.237, and 𝜀 = 0.24 with 𝑁 = 80 number of unit cells built in the RVE. ............. 51 

Fig. 23 Post-buckling patterns and the corresponding DFT results with fixed spacing ratio 𝜉 = 0.8 and various 

periodicity aspect ratios (compared with the critical wavenumber predicted from the Bloch-Floquet 

analysis). ............................................................................................................................................... 53 

Fig. 24 Post-buckling patterns and the corresponding DFT results with fixed spacing ratio 𝜉 = 0.3 and various 

periodicity aspect ratios (in comparison with the critical wavenumber predicted from Bloch-Floquet 

analysis). ............................................................................................................................................... 56 

Fig. 25 Post-buckling patterns and the corresponding DFT results with fixed spacing ratio 𝜉 = 0.45  and 

various periodicity aspect ratios (compared with the critical wavenumber predicted from Bloch-Floquet 

analysis). ............................................................................................................................................... 58 

Fig. 26 Post-buckling pattern mapping in the geometrical parameter space. .................................................... 61 

Fig. 27 Post-buckling patterns and the corresponding DFT results for the case with spacing ratio 𝜉 = 0.45 and 

periodicity aspect ratio 𝜂 = 1.5  under various compressive strain levels (1) 𝜀𝑐𝑟 = 0.338 , (2)𝜀𝑐𝑟 =

0.3386, (3)𝜀𝑐𝑟 = 0.34 and (4)𝜀𝑐𝑟 = 0.348. ....................................................................................... 63 

Fig. 28 The deformation sequence under compressive strain level 𝜀 = 0, 𝜀 = 0.343, 𝜀 = 0.368, 𝜀 = 0.555, 

and 𝜀 = 0.565; initial geometric parameters are 𝜉 = 0.45 and 𝜂 = 6. Only 80 unit cells of the RVE 

are displayed for a more compact illustration. ...................................................................................... 66 

Fig. 29 The DFT analysis results of the post-buckling development for the composite with spacing ratio 𝜉 =

0.45 and periodicity aspect ratio 𝜂 = 6 at compressive strain 𝜀 = 0, 𝜀 = 0.34, 𝜀 = 0.368, and 𝜀 =

0.557  with 𝑁 = 320  number of unit cells built in the RVE (the RVE view is zoomed so not all 

inclusion are displayed). ........................................................................................................................ 67 

Fig. 30 The dependence of secondary buckling critical strain on periodicity aspect ratio with various spacing 

ratios. The dotted and continuous curves correspond to longwave and microscopic buckling results (from 

the post-buckling analysis), respectively; the triangular scatters correspond to results from the Bloch-

Floquet analysis. .................................................................................................................................... 69 

Fig. 31 The dependence of critical wavenumber on the periodicity aspect ratio with various spacing ratios. 

Triangular scatters and continuous curves correspond to results from post-buckling analysis and Bloch 

Floquet analysis, respectively. ............................................................................................................... 72 

Fig. 32 The first and secondary buckling pattern mapping in the geometrical parameter space. The highlighted 

areas (bright and dark blue) represent the secondary buckling. ............................................................ 73 

Fig. 33 The dependence of critical strains on inclusion diameter contrast ratio with various spacing ratios in 

composite with two different-sized inclusions. ..................................................................................... 74 

Fig. 34 The dependence of critical wavenumber on inclusion diameter contrast ratio with spacing ratio 𝜉 = 0.4 

in composite with two different-sized inclusions. ................................................................................. 79 

Fig. 35 The dependence of critical wavenumber on inclusion diameter contrast ratio with spacing ratio 𝜉 = 0.6 

in composite with two different-sized inclusions. ................................................................................. 80 

Fig. 36 The dependence of critical wavenumber on inclusion diameter contrast ratio with spacing ratio 𝜉 = 0.8 

in composite with two different-sized inclusions. ................................................................................. 82 

Fig. 37 The dependence of critical strain on periodicity aspect ratio with various spacing ratios for 3D particulate 

composites. Dotted and continuous curves correspond to macroscopic and microscopic instabilities, 

respectively. ........................................................................................................................................... 83 

Fig. 38 Schematic microstructure of the 3D particulate composite and the 3D extrusion of the 2D particulate 

composite. ............................................................................................................................................. 84 



vii 

Fig. 39 The dependence of critical wavenumber on periodicity aspect ratio with various spacing ratios for 3D 

particulate composites. Dotted and continuous curves correspond to macroscopic and microscopic 

instabilities, respectively. ...................................................................................................................... 85 

Fig. 40 The DFT results of the post-buckling development for composite with spacing ratio 𝜉 = 0.6  and 

periodicity aspect ratio 𝜂 = 2.1 at compressive strain 𝜀 = 0.237, for various numbers of unit cells 

built in the RVE (𝑁 = 20,𝑁 = 40,𝑁 = 80,𝑁 = 120,𝑁 = 160, and 𝑁 = 200). .............................. 90 



1 

 

1. Introduction 

1.1 Soft composites 

Soft materials such as elastomers, gels, and biological tissues possess the capability to 

develop large deformations in response to diverse external stimuli, including mechanical 

loading (Shan et al., 2015), electrical (Acome et al., 2018; Kellaris et al., 2018; Su et al., 2020) 

and magnetic fields (Yu et al., 2018; Kim et al., 2018; Tipton et al., 2012), heat (Yuan et al., 

2017, 2018) and light (Zhao et al., 2017; Wang et al., 2018), thus providing rich opportunities 

for designing active materials with various distinctive and unconventional properties (Babaee, 

et al., 2016; Liu et al., 2016; Tang et al., 2015). The soft composite materials, constructed by 

reinforced matter embedded in the soft matrix, can achieve a wider range of special electronic, 

optical, and acoustic properties due to their precisely designed shape, geometry, orientation, 

and arrangement of microstructures (Bertoldi et al., 2008; Gao et al., 2018; Li & Rudykh, 

2019b; Li et al., 2018b). These properties can be further empowered via the instability-induced 

pattern transformation of their microstructures. Such transformations can enable the design of 

materials with tunable and switchable properties such as tunable bandgaps (Li et al., 2019c; 

Rudykh & Boyce, 2014; Shan et al., 2014; Wang et al., 2014; Gao et al., 2019; Pranno et al., 

2022), negative group velocity states (Slesarenko et al., 2018; Arora et al. 2022a) and negative 

Poisson's ratio and auxetic behavior (Bertoldi et al., 2008, 2010; Mullin et al., 2007; Li et al., 

2018b; Li & Rudykh, 2019b; Li et al., 2019c). Moreover, knowledge about the mechanical 

instability phenomenon can help elucidate the morphogenesis of organs during growth in 

various biological systems (Budday et al., 2014; Garcia et al., 2018; Du et al., 2020). 
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1.2 Elastic instabilities 

The elastic instabilities are often accompanied by a dramatic change in materials’ structure 

configurations and a sudden loss in their load capacities. Traditionally, the buckling 

phenomenon has been regarded as a failure mode in engineering. However, as discussed above, 

the recent new concept of using the rich instability-induced pattern transformations in soft 

materials has been put forward. In hyperelastic soft composites, instability can develop at 

microscopic and macroscopic(longwave) length scales (Geymonat et al., 1993). The 

macroscopic (or longwave) instability refers to the buckling wavelength being significantly 

larger than the characteristic size of the microstructure. In contrast, the buckling wavelength in 

microscopic instability is comparable with the characteristic size of the microstructure. To 

analyze the elastic instabilities, the framework of the linearized small motions superimposed 

on finitely deformed solids is frequently used (Ogden, 1997). The onset of macroscopic or 

longwave instabilities can be identified through the loss of ellipticity analysis. In composite 

materials, the loss of ellipticity analysis requires evaluations of the tensor of elastic moduli,  

which can be calculated through numerical (Bruno et al., 2010; Greco & Luciano, 2011; Greco 

et al., 2018, 2021; Pranno et al., 2022; De Maio et al., 2023; Aboudi & Gilat, 2023; Melnikov 

et al., 2021) or analytical (Rudykh & Debotton, 2012) homogenization approaches. 

Alternatively, the loss of the ellipticity condition can be determined directly through 

phenomenological models (Merodio & Ogden, 2002, 2003, 2005a, 2005b; Merodio & Pence, 

2001a, 2001b; Aboudi & Volokh, 2020; Ehret & Itskov, 2007; Volokh, 2017; Qiu & Pence, 

1997). However, the onset of the microscopic instabilities, which develops at finite 

wavelengths, may precede the occurrence of longwave instabilities (Geymonat et al., 1993). 
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To predict the onset of microscopic instabilities and to determine the critical level of 

deformation and wavelength, the Bloch-Floquet analysis is typically employed (Geymonat et 

al., 1993; Triantafyllidis et al. 2006; Bertoldi et al., 2008; Slesarenko & Rudykh, 2017). Note 

that the longwave limit in the Bloch-Floquet analysis is equivalent to the loss of ellipticity 

condition (Geymonat et al., 1993).  

These methods have been effectively applied in the theoretical prediction of instabilities 

in various soft systems and have also been realized via experimental investigations. For fiber 

composites (FCs), Galich et al. (2018) examined the influence of the periodic fiber distribution 

on instabilities and shear wave propagation in 3D fiber composites. Rudykh & Debotton (2012) 

employed micromechanics-based homogenization to predict the macroscopic instabilities in 

transversely isotropic fiber composites. Li et al. (2018a) experimentally observed the transition 

of elastic instabilities in 3D-printed fiber composites from small wavelength wavy patterns to 

longwave modes. Through both simulations and experiments, Arora et al. (2022b) examined 

the influence of constituent material properties on buckling orientation in fiber composites. For 

instabilities in soft laminates, Li et al. (2013) observed in experiments the microscopic and 

macroscopic instabilities in 3D-printed layered materials. Arora et al. (2019) considered the 

inhomogeneous interphases in 3D-printed soft laminates and examined their influence on 

composite stability. Slesarenko and Rudykh (2016) utilized the visco-hyperelastic behavior 

(Xiang et al., 2020a, 2020b) to achieve tunable wavy patterns through variable strain rates. Li 

et al. (2019d) analyzed the elastic instability in compressible laminates, where the stabilizing 

effect of phase compressibility was reported. Li et al. (2022) experimentally observed the 

formation of twinning microstructures in soft laminates driven by instabilities.  
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Wrinkling instabilities are also found to develop in the system of a thin stiff film on a 

compliant flat soft substrate under compression beyond a critical level (Cao et al., 2012; Chen 

et al., 2004; Huang et al., 2005; Jiang et al., 2007; Song et al., 2008; Cheng et al., 2014; Chen 

et al., 2014). This wrinkling may transit to more complex secondary patterns with further 

deformation (Sun et al., 2012; Pocivavsek et al., 2008; Brau al., 2011, 2013; Jin et al., 2015; Li 

et al., 2011; Auguste et al., 2018; Efimenko et al., 2005; Chung et al., 2011; Vella et al., 2009; 

Ebata et al., 2012; Mei et al., 2011). The “stiff film”-“soft substrate” system may produce rather 

different patterns when subjected to biaxial compressive deformations (Chen et al., 2004; Cai 

et al. 2011; Huang et al., 2005; Yin et al., 2012, 2018; Yin & Boyce, 2015; Choi et al., 2007; 

Bae et al., 2015; Kim et al., 2011; Lin et al., 2007). Moreover, structural instabilities have also 

been found in soft electro- (Rudykh et al., 2012), magneto- (Saxena et al., 2019; Reddy et al., 

2017, 2018), or electro-magneto-elastic membranes (Saxena et al., 2021; Liu et al., 2021). 

In addition to the instabilities in the soft layers under compressive deformation, various 

instability modes have also been observed under tensile deformation. For example, cavitation 

and fringe instabilities are observed in soft layers with perfect adhesion to a stiff substrate under 

a tensile deformation (Shull et al., 2000; Lin et al., 2016). 

 

1.3 Instabilities in soft particulate composites 

In contrast to continuous-phase composites like soft FCs and laminates, discrete-phase 

composites, such as particulate composites, present greater challenges in the analysis of their 

instabilities. This is primarily due to the highly inhomogeneous distribution of the deformation 

field and the complex interactions between particles. Constraining the equivalent 3D FC into 
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the in-plane setting, the stability of the 2D particulate system of fiber cross-section has been 

examined (Triantafyllidis et al., 2006). The re-examination of this problem under similar 

combined in-plane loadings was conducted by Michel et al. (2010), which compared the 

macroscopic stability of the composite with a random distribution of circular or elliptical 

inclusions. Li et al. (2019a) experimentally observed the formation of wavy chain patterns in 

soft particulate composites. Goshkoderia et al. (2020) reported that the pattern formation in 

soft particulate composites could be controlled via magnetic fields. Xiang et al., 2023 

investigated the interplay between viscoelasticity and instabilities in soft particulate composites 

undergoing finite deformation. However, there remains a significant shortage of 

comprehensive studies investigating the instabilities developing in soft particulate composites. 

Moreover, there is a lack of research focused on validating and enhancing conventional 

instability analysis methods, such as Bloch-Floquet and Post-buckling analysis for discrete-

phase particulate systems. 

We note that the Bloch-Floquet analysis and the alternatives, such as the refined 

eigenvalue analysis (Bertoldi et al., 2008), are linearized methods. The post-buckling analysis 

considers the nonlinearity in the post-buckling development, thus, providing additional 

information (potentially more accurate) about the development of instability patterns under 

large deformations. 

 

1.4 Numerical analysis of instabilities in periodic composites. 

The analytical prediction of elastic instabilities in heterogeneous materials, such as 

particulate composites, poses significant challenges due to the high inhomogeneous 
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distribution of the deformation field and intricate interactions between the embedded particles. 

Therefore, numerical methods, such as the finite element method (FEM), have been widely 

used as powerful tools for investigating and simulating instability behaviors. Furthermore, via 

advanced computational platforms, a reliable numerical model of instabilities is capable of 

providing robust databases of materials behaviors for advanced machine learning research in 

metamaterial design. 

Given the understanding of instability-induced pattern transformation as a break of the 

composite’s initial periodicity and followed by it attaining a new periodicity, different 

numerical approaches have been developed to investigate the bifurcations occurring in infinite 

periodic solids. By imposing traditional eigenvalue instability analyses on representative 

volume element (RVE) of increasing size and with general periodic boundary conditions, the 

so-called “Refined Eigen Analysis” has been employed to determine the critical loading and 

wavelength by a discrete convergence search (Laroussi et al., 2002; Bertoldi et al., 2008). 

However, the so-called Refined Eigen Analysis only works as a compromised approach to 

extend the traditional eigen analysis to an infinite space, and is limited by low precision, no 

consideration of prior instability stress field, and will face a nearly infeasible number of 

integrations when identifying longwave instability. As mentioned in Sec. 1.2, the advanced 

numerical Bloch-Floquet analysis (also known as the Bloch wave analysis) (Triantafyllidis and 

Schnaidt, 1993; Triantafyllidis and Schraad, 1998; Triantafyllidis et al., 2006) can not only 

achieve the detection of both microscopic and longwave instabilities for infinitely periodic 

composites in multiple directions, but also provide opportunities for investigating the wave 

propagation in soft composites. However, we also note that both the Bloch-Floquet analysis 
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and its alternatives, as well as the Refined Eigenvalue Analysis, are linearized methods, which 

only predict the linearized development of instability right at the critical loading. The further 

evolution of the buckled structure with deformation beyond the critical loading cannot be 

captured, especially in the situation when the initial buckling mode changes with the applied 

deformation(Chen et al., 2022, 2023). The post-buckling analysis, which considers the 

nonlinearity in deformation development and monitors the finite deformation of buckling 

evolution from prior- to post-buckling regimes, provides additional information (potentially 

more accurate) about the instability patterns under large deformations(Chen et al., 2023). 

Specifically for incompressible neo-Hookean hyperelastic materials, the numerical quasi-

convexification analysis can also be implemented to determine the critical loading of instability 

at prescribed wavelengths (Conti et al., 2008; Furer & Ponte Castañeda, 2018). Moreover, via 

the derived energy landscape, further information can be obtained for understanding the 

influence of geometrical and material parameters on critical instability characteristics.  

 

1.5 Outline of this dissertation 

In this Ph.D. dissertation research, we examine the instabilities in soft particulate 

composites and the associated pattern transformations via various numerical approaches and in 

different forms and dimensions. Specifically, the numerical approach includes the i) Bloch-

Floquet analysis; ii) Post-Buckling analysis; iii) Energy quasi-convexification analysis, and iv) 

Hybrid method combining the Post-Buckling and Bloch-Floquet analysis. We consider 

different forms of particulate composites, including a) 2D rectangular unit cells with single-

sized inclusion; and b) 2D rectangular unit cells with two different-sized inclusions. 
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Remarkedly, we emphasize the whole process study of the instability development in soft 

particulate composites, from prior- to post-buckling regimes, which helps to uncover a 

distinctive buckling phenomenon where a secondary instability occurs in the post-buckling 

regime of particulate composites. Finally, we also investigated the instabilities in 3D version 

of the single-sized inclusion composite (cuboid unit cell with sphere inclusions). The overall 

structure of this dissertation is described as follows:  

In section 2, we provide the theoretical background of instability analysis and the used 

constitutive models. In section 3, we present the numerical modeling methods for Bloch-

Floquet, Energy quasi-convexification, and post-buckling analysis conducted in this research. 

The corresponding geometric and material models, finite element models, and boundary 

conditions, as well as the post-processing methods, are also included. In section 4, we discussed 

the numerical results of 2D composites with single-sized inclusions and two different-sized 

inclusions and the results of 3D composites.  

We would like to highlight the discussion of i) transition of buckling behavior as the 

composite’s manifestation of two soft particulate systems [Sec. 4.1.1.1]; ii) the difference 

between post-buckling and Bloch-Floquet predictions [Sec. 4.1.3]; iii) the unique “seemingly 

non-periodic” state of buckling modes [Sec. 4.1.1.2]; iv) the secondary instability occurring in 

the post-buckling regime of particulate composites [Sec. 4.1.4]; v) the interplay of two 

different-sized inclusions in particulate composites on their instability behaviors [Sec. 4.2.1]; 

and vi) the difference between inabilities in corresponding 2D and 3D particulate composites 

[Sec. 4.3.1]. 
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2. Theoretical background 

2.1 Nonlinear elasticity 

Consider a continuum body where the position vector of each point is denoted by 𝑿 in 

the reference (or undeformed) and 𝒙 in the current (or deformed) configurations. The mapping 

function between the position vectors is expressed by 𝒙 = 𝝌(𝑿). The deformation gradient is 

defined as 𝑭 = 𝜕𝒙/𝜕𝑿,  and its determinant is defined as 𝐽 ≡ 𝑑𝑒𝑡 𝑭 > 0 . Consider a 

hyperelastic material and its constitutive behavior is defined by a strain energy density function, 

𝑊(𝑭), thus, the first Piola-Kirchhoff stress tensor is expressed as 

 𝑷 =
𝜕𝑊(𝑭)

𝜕𝑭
. (1) 

For an incompressible material, 𝐽 = 1, and Eq. (1) modifies as  

 𝑷 =
𝜕𝑊(𝑭)

𝜕𝑭
− 𝑝𝑭−𝑇, (2) 

where 𝑝 is an unknown Lagrange multiplier.  

The relationship between the Cauchy stress (𝝈) and the first Piola-Kirchhoff stress tensors 

is defined as 𝝈 =  𝐽−1𝑷𝑭𝑇. In the undeformed configuration, the equation of motion for quasi-

static deformation and without body forces is written as 

 𝐷𝑖𝑣 𝑷 = 𝟎. (3) 

 

2.2 Analysis of macroscopic instability 

To analyze the material stability, we consider incremental deformations superimposed on 

a finitely deformed state (Ogden, 1997). The corresponding linearized constitutive law is 

 �̇� = 𝔸: �̇�. (4) 

where �̇� is an incremental change in the deformation gradient, �̇� is the corresponding change 
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in the first Piola-Kirchhoff stress tensor, and 𝔸 is the tensor of elastic moduli, defined as 

 𝔸 =
𝜕2𝑊

𝜕𝑭𝜕𝑭
. (5) 

Under the assumption that 𝔸𝑖𝑗𝑘𝑙  is independent of 𝑿 , the incremental equilibrium 

equation can be written in the form,   

 𝔸𝑖𝛼𝑗𝛽

𝜕2𝑢𝑗

𝜕𝑋𝛼𝜕𝑋𝛽
= 0. (6) 

For incompressible materials, Eq. (6) takes the form,  

 𝔸𝑖𝑗𝑘𝑙

𝜕2𝑢𝑙

𝜕𝑋𝑖𝜕𝑋𝑘
+

𝜕�̇�

𝜕𝑥𝑗
= 0, (7) 

where 𝒖 is incremental displacement associated with �̇�, �̇� is an incremental variation in 𝑝.  

Recall that the incompressibility condition implies 

 𝛻 ∙ 𝒖 = 0. (8) 

By application of the chain rule, the incremental equilibrium Eq. (7) can be written in the 

deformed configuration as 

 𝔸𝑖𝑝𝑗𝑞
0 𝜕2𝑢𝑗

𝜕𝑥𝑝𝜕𝑥𝑞
+

𝜕�̇�

𝜕𝑥𝑖
= 0, (9) 

where 

 𝔸𝑖𝑝𝑗𝑞
0 = 𝐽−1𝐹𝑝𝛼𝐹𝑞𝛽𝔸𝑖𝛼𝑗𝛽, (10) 

We seek a solution for Eq. (10) in the form 

 𝒖 = �̂�𝑒𝑖𝑘𝒙∙�̂�, �̇� = �̂�𝑒𝑖𝑘𝒙∙�̂�, (11) 

where 𝑘 is a wavenumber, �̂� and �̂� are unit vectors. 

The incompressibility condition Eq. (8) leads to the requirement 

 �̂� ∙ �̂� = 0. (12) 

Substitution of Eq. (11) into Eq. (9) yields 
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 𝑸�̂� + 𝑖�̂��̂� = 𝟎, (13) 

where 𝑸 is the acoustic tensor with its components defined as 

 𝑄𝑖𝑗 = 𝔸𝑖𝑝𝑗𝑞
0 �̂�𝑝�̂�𝑞. (14) 

The associated strong ellipticity condition implies 

 𝑄𝑖𝑗�̂�𝑖�̂�𝑗 ≡ 𝔸𝑖𝑝𝑗𝑞
0 �̂�𝑝�̂�𝑞�̂�𝑖�̂�𝑗 > 0. (15) 

Thus, the loss of stability is associated with the condition 𝑄𝑖𝑗�̂�𝑖�̂�𝑗 = 0. In the context of 

the heterogeneous composites, the loss of ellipticity analysis requires the determination of the 

effective tensor of elastic moduli, and, thus, identifies the onset of longwave or macroscopic 

instabilities.  

 

2.3 Analysis of microscopic instability 

To predict the instabilities developing at the length scales comparable with the composite 

microstructures, the Bloch-Floquet analysis of small amplitude deformations (superimposed 

on finite deformation) can be employed. Consider a composite with 2D rectangular cells with 

single-sized stiff inclusion in the center of each cell, see Fig. 1. Taking 𝒀  as the smallest 

repeating unit of the periodic structure of the infinite structure, namely, the initial primitive cell. 

The initial primitive cell 𝒀 can be identified by a rectangular spanned by the vectors 𝐴𝐵⃗⃗⃗⃗  ⃗ =

𝑎𝒆1  and 𝐴𝐶⃗⃗⃗⃗  ⃗ = 𝑏𝒆2 , where 𝒆1  and 𝒆2  are Cartesian basis vectors; 𝑎  and 𝑏  denote the 

width and length of the primitive cell, respectively. The geometry can be parameterized through 

periodicity aspect ratio 𝜂 = 𝑎/𝑏  and inclusion spacing ratio 𝜉 = 𝑑/𝑏 , where 𝑑  is the 

diameter of the inclusion. However, once the bifurcation occurs, the initial primitive cell 𝒀 is 

no longer the smallest repeating unit of the periodic structure, namely, the initial 𝒀- periodicity 
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breaks, and the composite attains a new periodicity with an enlarged primitive cell as the 

smallest repeating unit, namely, 𝒑𝒀- periodicity, where vector 𝒑 = (𝑝1, 𝑝2) defines the size 

of the enlarged primitive cell. For example, see Fig. 1, the initial primitive cell can be 

characterized by 𝒑 = (1, 1) . After the bifurcation, the enlarged primitive cell can be 

characterized by 𝒑 = (2, 2). 

 

 

Fig. 1 Schematic composite microstructure with stiff circular inclusions periodically distributed in soft 

matrices. 

 

Thus, at bifurcation, the material space satisfies the periodic conditions 

 (𝑿 + 𝑝𝑗𝑙𝑗𝒂𝑗) = 𝜓(𝑿), 𝑗 = 1, 2. (16) 

for any point 𝑿 in space. The space should also satisfy the classical Bloch condition  

 (𝑿 + 𝑝𝑗𝑙𝑗𝒂𝑗) = 𝜓(𝑿)exp [𝑖𝒌0 ∙ (𝑝𝑗𝑙𝑗𝒂𝑗)], 𝑗 = 1, 2. (17) 

Therefore, we must have 

 exp[𝑖𝒌0 ∙ (𝑝𝑗𝑙𝑗𝒂𝑗)] = 1, 𝑗 = 1, 2. (18) 
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which can only be accomplished through 𝑘0 in the form 

 𝒌0 = 𝑘1𝒆1 + 𝑘2𝒆2, (19) 

where the wavenumbers 

 𝑘1 =
1

𝑝1
, 𝑘2 =

1

𝑝2
. (20) 

Therefore, the bifurcation mode of the instability can also be characterized by the 

wavenumber of the Bloch condition 𝒌0, namely, the critical wavenumber. Moreover, we can 

further identify two different types of bifurcation modes based on the magnitude of 𝒌0, while 

𝒌0 > 0 corresponds to a microscopic instability and 𝒌0 → 0 corresponds to a macroscopic 

or longwave instability. The latter case corresponds to the loss of ellipticity at the macroscopic 

scale, which is discussed in section 2.2. 

 

2.4 Constitutive models 

The behavior of the stiff inclusion and soft matrix materials in this study is described by 

the nearly incompressible neo-Hookean strain energy density function, namely, 

 W(r) =
𝜇(r)

2
(𝐼1 − 3) +

𝜅(r)

2
(𝐽 − 1)2, (21) 

where 𝜇(r) is the initial shear modulus, 𝜅(r) is the bulk modulus, and 𝐼1 = tr𝑪 is the first 

invariant of the right Cauchy-Green tensor 𝑪 = 𝑭T𝑭 . The superscript (r)  indicates the 

properties of different material phases; for example, (r) = (m)  denotes the stiff inclusion 

phases, and (r) = (i) denotes the soft matrix phases. We introduce the ratio 𝛬 = 𝜅(r)/𝜇(r) 

representing the material compressibility, and assign a high ratio, 𝛬 = 103,  to maintain a 

nearly incompressible behavior of the material. We select the inclusion-to-matrix ratio of shear 

moduli 𝜇(i)/𝜇(m) = 103 . Therefore, stiff inclusions almost do not deform, and the 
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deformation is mostly accommodated by the soft matrix. 

 

3. Numerical modeling 

3.1 Bloch-Floquet analysis 

We implement a 2-step Bloch-Floquet analysis to identify the onset of instability and 

corresponding critical wavenumber in the particulate composite.  

3.1.1 2D Analysis (single-sized inclusion) 

First, in-plane unidirectional compression is applied by imposing the periodic boundary 

conditions on boundary pair 𝐴𝐵 − 𝐶𝐷 and 𝐴𝐶 − 𝐵𝐷 as 

 𝒖𝑠𝑟𝑐 − 𝒖𝑑𝑠𝑡 = (�̅� − 𝑰)(𝑿|𝑠𝑟𝑐 − 𝑿|𝑑𝑠𝑡) = �̅�(𝑿|𝑠𝑟𝑐 − 𝑿|𝑑𝑠𝑡), (22) 

where 𝒖𝑠𝑟𝑐  and 𝒖𝑑𝑠𝑡  represents the displacement of an arbitrary pair of source and 

destination points periodically located on boundary pair 𝐴𝐵  and 𝐶𝐷 , respectively; �̅� 

denotes the average deformation gradient, and �̅� = �̅� − 𝑰 denotes the average displacement 

gradient. Thus, the applied uniaxial compression loading is defined as 

 �̅� = (𝜆1 − 1)𝒆1 ⊗ 𝒆1 + (𝜆2 − 1)𝒆2 ⊗ 𝒆2, (23) 

where 𝜆1 and 𝜆2 are the principal stretch ratios in the direction of 𝒆1 and 𝒆2, respectively. 

The compressive loading level is prescribed via the average compressive strain 𝜀 = 1 − 𝜆2. 

𝜆1 is defined via 𝜆1𝜆2 = 1 according to the incompressibility of materials. 

Second, we employ the Bloch–Floquet analysis superimposed on the deformed 

state(Bertoldi et al., 2008). The Floquet periodic conditions relate the incremental displacement 

fields 𝒖 via 

 𝒖(𝑿 + 𝑹) = 𝒖(𝑿)𝑒𝑖𝑲∙𝑹, (24) 



15 

where 𝑲 = 𝐾1𝒆1 + 𝐾2𝒆2 is the Bloch wave vector, and 𝑹 = 𝑅1𝑎𝒆1 + 𝑅2𝑏𝒆2 is a vector that 

denotes the initial periodicity of the composite with arbitrary integers 𝑅1, 𝑅2. In FEA, the 

Bloch–Floquet analysis is performed by solving the eigenvalue problem with Floquet boundary 

conditions imposed on the boundary pairs of the primitive unit cell read as 𝒖𝐴𝐵 =

𝒖𝐶𝐷𝑒−𝑖𝑲∙(𝑹𝐴𝐵−𝑹𝐶𝐷) and 𝒖𝐵𝐷 = 𝒖𝐴𝐶𝑒
−𝑖𝑲∙(𝑹𝐵𝐷−𝑹𝐴𝐶). Here, the normalized components of the 

wavenumber are 𝑘1 = 𝐾1𝑎/2𝜋  and 𝑘2 = 𝐾2𝑏/2𝜋  in the undeformed configuration. 

Through the numerical analysis, we determine the lowest critical loading level (critical strain 

𝜀𝑐𝑟) for which a zero eigenvalue occurs at the corresponding critical wavenumber 𝑘𝑐𝑟 (𝑘1
𝑐𝑟 or 

𝑘2
𝑐𝑟 ). We refer to the cases with 𝑘𝑐𝑟 → 0  as the longwave or macroscopic instability, and 

microscopic instabilities otherwise. We note that – throughout our calculations – the 

instabilities are found to develop only in the direction of compression (direction of 𝒆2) for all 

considered cases. Therefore, we report the corresponding critical wavenumber as 𝑘𝑐𝑟 = 𝑘2
𝑐𝑟. 

 

 

Fig. 2 Schematic composite microstructure with stiff circular inclusions periodically distributed in soft 

matrices. 

 

The numerical procedure illustrated in Fig. 3 shows a typical case of identifying 𝜀𝑐𝑟 and 

𝑘2
𝑐𝑟. For each geometric configuration (in this case, it is 𝜉 = 0.45 and 𝜂 = 1.75), in the first 
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step, we apply a compressive strain 𝜀. Next, we import the compressed solution to the second 

step, where the associated eigenvalue problem with Floquet conditions Eq. (24) is solved. By 

repeating step 1 and 2, we scan the normalized wavenumbers 𝑘2 in the range from 0 to 0.5, 

solve the lowest normalized eigenfrequency 𝑓𝑛 =
𝜔𝑑

2𝜋
√𝜌/𝜇(𝑚) (𝜔 is the angular frequency 

and 𝜌 = 𝜌(𝑚) = 𝜌(𝑖) is the mass density of the material), and finally get the dispersion relation 

𝑓𝑛(𝑘2) − 𝑘2 under given 𝜀, see continues curves in in Fig. 3. Through this procedure, we can 

observe that the curves corresponding to 𝜀 ≤ 0.34232 do not intersect with x-axis, except 

with the trivial point 𝑓𝑛(0) = 0 corresponding to the rigid body motion. However, an increase 

in the compressive strain level leads to the appearance of a zero-point at 𝑘2
𝑐𝑟 ≠ 0 . The 

corresponding values are identified as critical strain, 𝜀𝑐𝑟 , and critical wavenumber 𝑘2
𝑐𝑟 . Here, 

we distinguish the following cases: 𝑘2
𝑐𝑟 > 0 is identified as the microscopic instability, and 

𝑘2
𝑐𝑟 → 0 (𝑘2

𝑐𝑟 ≠ 0) is identified as the longwave or macroscopic instability.  

 

 

Fig. 3 Dispersion curves of the composite subjected to increasing levels of compressive strains. 
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3.1.2 2D Analysis (two different-sized inclusions) 

In this part, we consider a particulate composite with two different-sized inclusions 

vertically and periodically distributed in 2D rectangular primitive unit cell, as shown in Fig. 

4a. The primitive unit cell consists of an upper-part cell with the smaller inclusion (with 

diameter 𝑑2), and a lower-part cell with the larger inclusion (with diameter 𝑑1). The width of 

the primitive unit cell is denoted by 𝑎, and the length of the upper- and lower-part cells are 

denoted by 𝑏2 and 𝑏1, respectively. For this model, we specifically focus on the interaction 

between the vertically distributed inclusions with different sizes and try to minimize the 

interaction between neighboring inclusion columns. Therefore, we model the primitive cell 

with a large  enough aspect ratio defined by a constant ratio 𝑎/𝑏1 = 8, and modify the height 

of the upper-part cell and the diameter of the two different-sized inclusions to alter the diameter 

contrast ratio 𝑘𝑑 = 𝑑2/𝑑1, while keeping the same spacing ratio for both the upper- and lower-

part cell as 𝜉 = 𝑑1/𝑏1 = 𝑑2/𝑏2 . For example, with the same spacing ratio 𝜉 = 0.6 , the 

composites with two different-sized inclusions corresponding to the diameter contrast ratio 

𝑘𝑑 = 1, 𝑘𝑑 = 0.2 and 𝑘𝑑 → 0 are shown in Fig. 4b, c and d, respectively. We observe that, 

with 𝑘𝑑 = 1, the two inclusions have the same size, and the behavior of the composite should 

be identical to the single-sized inclusion model. With the diameter contrast ratio reduced to 

𝑘𝑑 = 0.2, the lower part keeps the same, while the diameter of the smaller inclusion, together 

with the height of the upper-part cell, is reduced to accommodate the reduced diameter contrast 

ratio. When the diameter contrast ratio 𝑘𝑑  decreases to nearly zero, the upper part-cell is 

consequently reduced to an ignorable part, and apparently, and this composite is identical to 

the single-sized inclusion model. 
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Fig. 4 a) Schematic composite microstructure with two different-sized stiff circular inclusions periodically 

distributed in soft matrices; Schematic composite with inclusion diameter contrast ratio b) 𝑘𝑑 = 1, c) 𝑘𝑑 =

0.2, d) 𝑘𝑑 ≈ 0. 

 

Next, we implement the Bloch-Floquet analysis based on the two different-sized inclusion 

model with the same two-step method described in Sec. 3.1.1. The Floquet periodic conditions 

applied on the two boundary pairs are the same as described in Eq. (24). Specifically for the 

model with two different-sized inclusions, we have 𝑹 = 𝑅1𝑎𝒆1 + 𝑅2(𝑏1 + 𝑏2)𝒆2 . 

Correspondingly, the normalization of the wavenumber is altered to 𝑘1 = 𝐾1𝑎/2𝜋 and 𝑘2 =

𝐾2(𝑏1 + 𝑏2)/4𝜋  to ensure that, for the model with two different-sized inclusions 

corresponding to 𝑘𝑑 = 1, the derived wavenumber is the same as that derived in the single-

sized inclusion model. Notice that, with this normalization, for the model with 𝑘𝑑 ≈ 0, the 

derived wavenumber should be exactly a half of the wavenumber derived in the single-sized 

inclusion model. 

 

3.1.3 Bloch-Floquet analysis in post-buckling regime 

In this part, we present an integrated analysis where the Bloch–Floquet analysis is 

superimposed on the post-buckling state of RVE (see Fig. 5b) corresponding to its initial 
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periodicity exactly being doubled. The procedure of this analysis is typically the same as the 

two-step Bloch-Floquet analysis described in Sec. 3.1.1. For the first step, the RVE is 

compressed to deform beyond its first buckling being triggered, namely, to deform in its post-

buckling regime. The in-plane unidirectional compression is imposed on the two boundary 

pairs 𝐴𝐵 − 𝐶𝐷 and 𝐴𝐶 − 𝐵𝐷 via the same definitions described in Eq. (22) and Eq.(23) in 

Sec. 3.1.1. In the second, step, the Floquet periodic conditions are applied on the two boundary 

pairs the same as described in Eq. (24). Specifically for the RVE with two different-sized 

inclusions, we have 𝑹 = 𝑅1𝑎𝒆1 + 𝑅2(2𝑏)𝒆2. Through the numerical analysis, we can identify 

the occurrence of the secondary buckling at the lowest strain level (namely, the critical strain 

𝜀𝐼𝐼
𝑐𝑟) while a zero eigenvalue emerges at a critical wavenumber 𝑘𝐼𝐼

𝑐𝑟. We refer to the cases with 

𝑘𝐼𝐼
𝑐𝑟 → 0 as the longwave or macroscopic instability, and cases with 𝑘𝐼𝐼

𝑐𝑟 > 0 as microscopic 

instabilities. Throughout our calculation, we observe that the secondary buckling is found to 

develop only in the direction of compression (the direction of 𝒆2) for all considered cases. 

Here and thereafter, the subscript “𝐼𝐼 ” denotes the critical characteristics of the secondary 

buckling, and “𝐼” denotes those of the first stage buckling. 

 

 

Fig. 5 Schematic representative volume element with two composite unit cells in a) the initial undeformed 

state and b) its post-buckling regime corresponding to its initial periodicity being exactly doubled. 
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3.1.4 3D Analysis 

To perform the 3D analysis, we construct a composite with a single sphere inclusion 

embedded in a cuboid primitive unit cell, as shown in Fig. 6. The width and length of the cell 

are defined as the same 𝑎；the height is defined by 𝑏 and 𝑑 is the diameter of the inclusion. 

The geometry can be parameterized through periodicity aspect ratio 𝜂 = 𝑎/𝑏 and inclusion 

spacing ratio 𝜉 = 𝑑/𝑏. The procedure of this analysis is typically the same as the two-step 

Bloch-Floquet analysis described in Sec. 3.1.1. For the first step, the uniaxial compression is 

applied via periodic boundary conditions imposed on the top-bottom surface pair as described 

in Eq. (22). For the 3D case, the displacement gradient is defined as 

 �̅� = (𝜆1 − 1)𝒆1 ⊗ 𝒆1 + (𝜆2 − 1)𝒆2 ⊗ 𝒆2 + (𝜆3 − 1)𝒆3 ⊗ 𝒆3, (25) 

where 𝜆1 , 𝜆2 and 𝜆3  are the principal stretch ratios in the direction of 𝒆1 , 𝒆2  and 𝒆3 

respectively. The loading level is prescribed via the average compressive strain in the direction 

of compression (the direction of 𝒆1), defined as 𝜀 = 1 − 𝜆1, where 𝜆2 and 𝜆3 are defined 

via 𝜆2 = 𝜆3 and 𝜆1𝜆2𝜆3 = 1 according to the incompressibility of materials. For the second 

step, the Bloch–Floquet analysis is performed by solving the eigenvalue problem with Floquet 

boundary conditions imposed on the three surface pairs of the primitive unit cell read as 

𝒖𝑡𝑜𝑝 = 𝒖𝑏𝑜𝑡𝑡𝑜𝑚𝑒−𝑖𝑲∙(𝑹𝑡𝑜𝑝−𝑹𝑏𝑜𝑡𝑡𝑜𝑚), 

𝒖𝑟𝑖𝑔ℎ𝑡 = 𝒖𝑙𝑒𝑓𝑡𝑒
−𝑖𝑲∙(𝑹𝑟𝑖𝑔ℎ𝑡−𝑹𝑙𝑒𝑓𝑡), 

𝒖𝑓𝑟𝑜𝑛𝑡 = 𝒖𝑏𝑎𝑐𝑘𝑒
−𝑖𝑲∙(𝑹𝑓𝑟𝑜𝑛𝑡−𝑹𝑏𝑎𝑐𝑘). 

Here, the normalized components of the wavenumber are 𝑘1 = 𝐾1𝑏/2𝜋, 𝑘2 = 𝐾2𝑎/2𝜋 and 

𝑘3 = 𝐾3𝑎/2𝜋 in the undeformed configuration. Throughout our calculation, we observe that 

the buckling in the 3D particulate composite is found to develop only in the direction of 
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compression (the direction of 𝒆2) for all considered cases. Therefore, here and thereafter in 

this paper, we report the corresponding critical wavenumber of the 3D particulate composite 

as 𝑘𝑐𝑟 = 𝑘1
𝑐𝑟.  

 

  

Fig. 6 Schematic 3d composite microstructure with stiff sphere inclusions periodically distributed in 

cuboid soft matrices. 

 

3.2 Energy quasi-convexification analysis 

In this part, we illustrate the so-called energy landscapes of the finitely deformed 

particulate composite. In the analysis, we calculate the macroscopic response of a single unit 

cell deformed beyond the possible instability point (similar to the standard post-buckling 

regime simulations (Li et al., 2019b; Bertoldi et al., 2008)). Then, the quasi-convexification of 
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the calculated elastic strain energy function 𝑊(𝑭) in the applied deformation gradient 𝑭 is 

examined.  

A strain energy function 𝑊(𝑭) is said to be quasi-convex (Morrey, 1952) if 

 𝑊(𝑭) ≤
1

|𝐷|
∫ 𝑊(𝑭 + 𝐺𝑟𝑎𝑑 𝒖 (𝑿))𝑑𝑿

D

 (26) 

for every bounded region 𝐷 and for every smooth function with compact support 𝒖 (𝑿). Note 

that the quasi-convexification of the energy with the volumetric constraints (such as 

incompressibility constraint) is rank-one convexification (Conti et al., 2008). In the following 

study, we identify the critical conditions for the loss of quasi-convexity or ‘relaxation’ in the 

strain energy function.  

We consider the composites subjected to simultaneously applied compressive strain and 

pure shear deformations (see Fig. 7b). The corresponding macroscopic deformation gradient 

�̅� is 

 �̅� = 𝐻11𝒆1 ⊗ 𝒆1 + 𝜀𝒆2 ⊗ 𝒆2 ± 𝛾𝒆1 ⊗ 𝒆2 + 𝑰, (27) 

where 𝜀 and 𝛾 are the compressive strain measure and amount of shear, respectively. Note 

that 𝐻11 is determined by the corresponding traction-free boundary condition. The effective 

(or homogenized) strain energy 𝑊 stored in the unit cell under prescribed deformations is 

computed and normalized via 

 �̃�(�̅�) =
1

𝜇(𝑚)

1

Ω0
∫ 𝑊(𝑿, 𝑭)𝑑𝑉𝑿

Ω0

. (28) 

Next, we compute the energy landscape of the composite cell based on �̃�(𝜀, 𝛾)  as a 

function of the compressive strain 𝜀 and amount of shear 𝛾. According to the condition of 

quasi-convexity in Eq. (26), the ‘relaxation’ or loss of quasi-convexity of the effective energy 
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function is associated with the condition 

 �̃�(𝜀, 𝛾) = �̃�(𝜀, 𝛾 = 0) (29) 

for any non-zero amount of shear 𝛾. Finally, the lowest compressive strain 𝜀, corresponding 

to the ‘relaxation’ of the effective energy function �̃�, is identified as the critical strain level. 

Fig. 7a shows an example of the energy landscape corresponding to geometrical 

parameters 𝜉 = 0.7 and 𝜂 = 1, where the normalized energy �̃� is plotted as a function of 

𝛾 and 𝜀. Fig. 7c shows the curves of �̃� as a function of 𝛾, which are derived from the energy 

landscape in Fig. 7a through making cross-sections at given 𝜀 (see, for example, the curve 

corresponding to 𝜀 = 0.18 in Fig. 7c is derived from the cut curve �̃�(𝜀 = 0.18, 𝛾) in Fig. 

7a). We observe that, for curves corresponding to a small 𝜀  (see, for example, the curve 

corresponding to 𝜀 = 0.05 in Fig. 7c), the stored-energy increases with an increase in 𝛾. This 

implies that the shearing mode is not energetically favorable under this level of compression. 

Thus, the composite is considered in a stable state. For curves corresponding to a large 𝜀 (see, 

for example, the curve corresponding to 𝜀 = 0.19  in Fig. 7c), we observe that the stored 

energy decreases with an increase in 𝛾. This, however, implies that the shearing mode now 

becomes an energetically favorable mode. Thus, the composite is considered in an unstable 

state. In this state, the composite will run into a bifurcation with a slight disturbance, that is, 

the loss of stability. Finally, as shown in Fig. 7d, the onset of instability is identified at the 

critical strain 𝜀𝑐𝑟 where a numerically determined relaxation, �̃�𝛾
0(𝜀) = �̃�(𝜀, 𝛾 = 0.001) −

�̃�(𝜀, 𝛾 = 0) = 0 is detected. (see, for example, in Fig. 7b, the critical strain is identified as 

𝜀𝑐𝑟 = 0.1407).  
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Fig. 7 a) Landscape of the normalized stored-energy �̃� as a function of the compressive strain 𝜀 and 

shear strain 𝛾 (corresponding to 𝜉 = 0.7 and 𝜂 = 1) b) Schematic composite cell subjected to 

simultaneously applied compressive strain and pure shear deformations  

c) The curves of normalized stored-energy with various 𝛾 and fixed 𝜀  

d) The curve for numerical determination of relaxation 

 

3.3 Post-buckling analysis 

3.3.1 Geometric modeling 

To perform the post-buckling analysis, we construct a representative volume element 

(RVE) (Bertoldi et al., 2008) with a large number (𝑁 = 80) of unit cells. The RVE is enclosed 

by four boundaries (𝐴𝐵, 𝐶𝐷, 𝐴𝐶, and 𝐵𝐷), defined by nodes 𝐴, 𝐵, 𝐶, and 𝐷 (see Fig. 8). 

We apply uniaxial compression quasi-statically via periodic boundary conditions imposed on 

the boundary pair 𝐴𝐵 − 𝐶𝐷 and 𝐴𝐶 − 𝐵𝐷 as 



25 

 𝒖𝑠𝑟𝑐 − 𝒖𝑑𝑠𝑡 = (�̅� − 𝑰)(𝑿|𝑠𝑟𝑐 − 𝑿|𝑑𝑠𝑡) = �̅�(𝑿|𝑠𝑟𝑐 − 𝑿|𝑑𝑠𝑡), (30) 

where 𝒖𝑠𝑟𝑐 and 𝒖𝑑𝑠𝑡 represent the displacement of an arbitrary pair of points periodically 

located on the source and destination boundary of the boundary pair, respectively; �̅� denotes 

the average deformation gradient, 𝑰 denotes the identity tensor and �̅� = �̅� − 𝑰 denotes the 

average displacement gradient. We apply the in-plane unidirectional compression to the RVE 

in the direction of 𝒆2 via the displacement gradient defined ass 

 �̅� = (𝜆1 − 1)𝒆1 ⊗ 𝒆1 + (𝜆2 − 1)𝒆2 ⊗ 𝒆2, (31) 

where 𝜆1 and 𝜆2 are the principal stretch ratios in the direction of 𝒆1 and 𝒆2, respectively. 

The compressive loading level is prescribed via the average compressive strain 𝜀 = 1 − 𝜆2. 

𝜆1 is defined via 𝜆1𝜆2 = 1 according to the incompressibility of materials.  

 

 

Fig. 8 Schematic composite microstructure with stiff circular inclusions periodically distributed in soft 

matrices. 

 

As a perturbation to trigger instabilities, geometrical imperfection is introduced in terms 

of a slight alternation of the shape and position of the stiff inclusions. Specifically, as shown in 

Fig. 9, the inclusions are modeled as nearly-circular ellipses, where the geometrical differences 
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are introduced independently onto the major diameter 𝐿𝑛, minor diameter 𝑆𝑛 and the position 

𝑋𝑛 of the center of the 𝑛th inclusion, namely,  

𝐿𝑛 = 𝑑 + ∆𝐿𝑛,  

𝑆𝑛 = 𝑑 + ∆𝑆𝑛,  

𝑋𝑛 = 𝑋 + ∆𝑋𝑛,  

where 𝑑  is the diameter of the perfect circular inclusion and 𝑋𝑛  is the acuate horizontal 

position of the center of the 𝑛th inclusion; ∆𝐿𝑛, ∆𝑆𝑛, and ∆𝑋𝑛 are random deviations. Note 

that the imperfections shown in Fig. 9b are significantly scaled for better illustration, since the 

original imperfection is too small to be visually discernible. Next, we generated three sets of 

random deviations,  

{∆𝐿𝑛} ∶= ∆𝐿1, ∆𝐿2, ∆𝐿3 … , ∆𝐿𝑁,  

{∆𝑆𝑛} ∶= ∆𝑆1, ∆𝑆2, ∆𝑆3 … , ∆𝑆𝑁, 

{∆𝑋𝑛} ∶= ∆𝑋1, ∆𝑋2, ∆𝑋3 … , ∆𝑋𝑁,  

and use them to alter the inclusions in the numerical model (where 𝑁 is the total number of 

inclusions modeled in an RVE). Moreover, the distribution of the random set is symmetric to 

zero and is arranged to stay within 𝐾𝑖𝑚𝑝 ∙ 𝑑, where 𝐾𝑖𝑚𝑝 is the amplitude of deviation.  

 



27 

 

Fig. 9 (a) Schematic composite cell without geometric imperfection.  

(b) Schematic composite cell with geometric imperfections (the imperfections are significantly scaled in the 

figure for better illustration since the original imperfection is too small to be visually discernible) 

 

To find the proper value of 𝐾𝑖𝑚𝑝  (with which the instabilities can be successfully 

triggered and the results are insensitive enough to the imperfections), we compare the results 

from numerical models with different 𝐾𝑖𝑚𝑝 (in particular, 𝐾𝑖𝑚𝑝 = 10−2, 10−3, 10−4, 10−5, 

10−6 and 10−7). The corresponding DFT results are shown in Fig. 10a at the compressive 

strain level 𝜀 = 0.241 (after the Bloch-Floquet critical strain 𝜀𝑐𝑟 = 0.2338). We observe that, 

for a large enough amplitude of deviation (for example, 𝐾𝑖𝑚𝑝 = 10−2, 10−3, 10−4 ), the 

instability was successfully trigged. However, the inclusion chains (the post-buckling pattern) 

are found to be frustrated because of overwhelming imperfections, resulting in jagged DFT 

curves. For small enough amplitudes of deviation (for example, 𝐾𝑖𝑚𝑝 = 10−6 and 10−7), the 

imperfection is too small that it fails to trigger the instability in numerical computation; thus, 

we find the DFT results maintain a zero line.  
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Fig. 10 The DFT results of the post-buckling development at compressive strain 𝜀 = 0.241 for numerical 

models with (a) various amplitudes of geometric imperfection (𝐾𝑖𝑚𝑝 = 10−2, 10−3, 10−4, 10−5, 10−5, and 

10−7); (b) different realizations of random imperfection with the same amplitude of geometric imperfection 

𝐾𝑖𝑚𝑝 = 10−5. 

 

Our results indicate that, with an intermediate amplitude of deviation, 𝐾𝑖𝑚𝑝 = 10−5, the 

instability pattern can be successfully triggered without being overwhelmed by the 

imperfections (see the red curve shown in Fig. 10a corresponding to 𝐾𝑖𝑚𝑝 = 10−5). Moreover, 

to verify the insensitivity of the FEA results to specific realizations of the random imperfection, 

we compared five numerical models with independent realizations. The corresponding DFT 

results (where the peak corresponds to the critical wavenumber) are shown in Fig. 10b. 

Moreover, the derived critical strains corresponding to realizations 1 to 5 are found at 𝜀𝑐𝑟 =

0.23377 , 0.23374 , 0.23375 , 0.23377,  and 0.23378 . These results demonstrate that, with 

an amplitude of deviation at 𝐾𝑖𝑚𝑝 = 10−5, the critical strains and wavenumbers are insensitive 

enough to specific realizations of the random imperfection.  

It should be noted that the imperfections introduced in our study are designed to trigger 

the instability without impacting the prediction of the composite's buckling behavior. However, 

they may not accurately reflect the imperfections in natural materials resulting from 

geometrical (Chen et al., 2019; Ding et al., 2019; Yu et al., 2022) or material (Hauseux et al., 
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2017, 2018; Rappel et al., 2019) uncertainties. The prediction of the composite's buckling 

behavior may be affected by those uncertainties. Additionally, interphases between the 

composite constituents, which may occur during the material manufacturing processes, can 

potentially affect the instability characteristics (Arora et al., 2019). To quantify the influence 

of these uncertainties, multi-field coupled stochastic analyses can be employed (Elouneg et al., 

2021; Mazier et al., 2022). 

 

3.3.2 Characterization of post-buckling development 

To correctly capture the onset of secondary buckling, and to analyze the critical 

wavenumber, we utilized a standard post-processing method that characterizes the post-

buckling structure obtained from FEA via discrete Fourier transformation (DFT). Specifically, 

we track the position displacement of the inclusion centers throughout the first and the 

secondary buckling. This procedure starts with building a representation of the stiff inclusions 

by a discrete wavy curve that connects their centers. Note that we only consider the horizontal 

displacement of the inclusion centers (in 𝒆1  direction), and the deformations of the stiff 

inclusions themselves are neglected. Next, we apply a discrete Fourier transform (DFT) on the 

obtained inclusion center connecting curve to find its wavenumber components and 

corresponding Fourier coefficient. Given a discrete curve being defined by the positions of 

inclusions, namely, {𝑥𝑛} ∶=  𝑥1, 𝑥2, 𝑥3 … , 𝑥𝑁  in 𝒆1  direction, the DFT utilizes a set of 

discrete harmonic curves based on a fundamental wavenumber 1/𝑁 to reassemble the discrete 

curve {𝑥𝑛} , where 𝑁  is the number of inclusions in the RVE, and the corresponding 

wavenumber of the 𝐾th harmonic curve is 𝐾/𝑁. Through the discrete Fourier transformation, 
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we obtain the dependence of the Fourier coefficient 𝑓𝐾  on the corresponding component 

wavenumber 𝑘 = 𝐾/𝑁 by solving the linear equation system  

 𝑥𝑛 = ∑ 𝑓𝐾 ∙ 𝑒𝑖2𝜋
𝐾
𝑁

𝑛

𝑁−1

𝐾=0

. (32) 

Next, the DFT result is represented as a wavenumber spectrum 𝑓𝐾 = 𝐹(𝑘), where 𝑓𝐾 is 

Fourier coefficient and 𝑘 is the component wavenumber (𝑘 = 1/𝑁, 2/𝑁, ..., (𝑁 − 1)/𝑁, 1). 

Finally, we identify the peak point in the DFT spectrum 𝑓𝐾 = 𝐹(𝑘)  (corresponding to the 

harmonic curve that dominates the post-buckling pattern) as the critical wavenumber. This 

results from the buckling wavelength being significantly larger than the size of RVE. Note that, 

with a finite-sized RVE, the DFT analysis will identify the longwave instabilities at the 

fundamental wavenumber 1/320, corresponding to a single period of buckling pattern with 

the wavelength equal to the height of the RVE. If we use a larger number of unit cells in the 

RVE (for example, 640 cells), the longwave buckling will be identified with a critical 

wavenumber shifting down to 𝑘 = 1/640. 

 

4. Numerical results  

4.1 Composite(2D) with single-sized inclusions 

4.1.1 Bloch-Floquet prediction 

4.1.1.1 Dependence of critical strain on geometric parameters 

We start by examining the influence of the instability characteristics, such as critical strain 

and wavenumber, on the initial geometrical parameters of the periodic microstructure. Fig. 11 

shows the dependence of the critical strain on the periodicity aspect ratio 𝜂 for various fixed 

values of the inclusion spacing ratios 𝜉 from 0.1 to 0.9. Note that, the admissible geometries 
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are restricted by 𝑑 < 𝑏  and 𝑑 < 𝑎 , thus, limited the parameter space as 𝜂 > 𝜉 . Here and 

thereafter, the dotted and continuous curves correspond to longwave (or macroscopic) and 

microscopic instabilities, respectively.  

 

 

Fig. 11 The dependence of critical strain on periodicity aspect ratio with various spacing ratios. Dotted and 

continuous curves correspond to macroscopic and microscopic instabilities, respectively. 

 

We observe that the composites with higher spacing ratios experience instabilities at lower 

compressive strains. In these composites, the inclusions are placed more closely in the 

compressive direction. Thus, the stiff inclusions are brought into their strong interactions at 

lower strain levels leading to earlier instability development. Interestingly, the dependence of 

the critical strain on the spacing periodicity ratio alters with a change in the inclusion spacing 

ratio. For composites with small spacing ratios, the critical strain 𝜀𝑐𝑟 increases monotonically 

with an increase in 𝜂 (see, for example, the black curve corresponding to 𝜉 = 0.1 in Fig. 11). 

This behavior, however, changes to a non-monotonic one in the composite with low-to-

moderate spacing ratios. Their curves decrease initially; however, after reaching their local 

minima, the critical strain increases with a further increase in the periodicity aspect ratio and 



32 

finally converges to a plateau. For example, for the composite with 𝜉 = 0.3 (the blue curve in  

Fig. 11), 𝜀𝑐𝑟 decrease initially, after reaching its local minimum 𝜀𝑐𝑟 = 0.426 at 𝜂 = 0.45, 

the curve starts to increase and eventually converges to a plateau after 𝜂 > 1.035 . The 

asymptotic values of the plateaus correspond to those initial configurations with an isolated or 

single column of inclusions embedded in the soft matrix.  

This non-monotonic dependence is the manifestation of two different dominating 

buckling behaviors in the soft particulate systems. In particular, the composites with high 

periodicity aspect ratios exhibit laminate-like behavior (with the stiffer layers reinforced by the 

stiff inclusions); in these composites, the critical strain decreases as the periodicity aspect ratio 

decreases (corresponding to an increase in the effective volume fraction of the analogous 

reinforced layer). However, as the periodicity aspect ratio is decreased further, the buckling 

behavior changes as the inclusions are introduced into additional horizontal interactions. The 

introduced horizontal frustration forces the soft particulate system to seek a different buckling 

mechanism requiring higher strain levels. The transition in the buckling behavior can be 

illustrated by considering the soft composites with 𝜉 = 0.6 (see the orange curve in Fig. 11). 

For the configurations with higher periodicity aspect ratios (𝜂 ≿ 0.85), the composites exhibit 

the laminate-like buckling behavior, and the critical strain decreases with a decrease in the 

inclusions spacing ratio. The behavior starts changing in the configurations with 𝜂 ≈ 0.85, and 

the critical strain increases with a decrease in 𝜂 . For the composites with 𝜉 = 0.6,  the 

transition point corresponding to the local minimum of the curve is 𝜂 ≈ 0.85. The composites 

with large inclusion spacing ratios (larger inclusions) are characterized by a wider range of the 

periodicity aspect ratios, where they exhibit laminate-like buckling behavior (accompanied by 
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a decrease in the critical strain with a decrease in the periodicity aspect ratio). This is due to 

the fact that the additional horizontal particle interactions are more likely to be introduced in 

the composites with larger stiff inclusions. Correspondingly, the transition point shifts towards 

the large periodicity aspect ratio values with an increase in 𝜉. For example, the composites 

with 𝜉 = 0.3 and 0.9 have their transition points at 𝜂 ≈ 0.45 and 𝜂 ≈ 1.5, respectively.  

We further illustrate the transition between these two different system behaviors in Fig. 

12 for the soft composites with 𝜉 = 0.6  and 𝜂 = 0.62, 0.85, 1.5,  and 2. Fig. 12 shows the 

deformation field distribution with the vertical strain component 𝜀22. When the compressive 

deformation is high enough, the inclusions are pushed close to each other in the compressive 

direction. The composite with higher periodicity aspect ratios (for example, the composite with 

𝜂 = 2  in Fig. 12) forms the columns of compactly lined up inclusions in the deformed 

configuration. The deformed system creates the analogous “effective stiffer layers” and “softer 

matrix layers” (see the deformed composite with 𝜂 = 2 in Fig. 12). The particulate composite 

is observed to exhibit laminate-like buckling behavior. When the periodicity aspect ratio is 

decreased (compare the composite cells with 𝜂 = 2 and 1.5 in Fig. 12), the effective stiffer 

layers are placed closer to each other, resulting in an increase in the analogous volume fraction 

of the effective stiffer phase. Similar to the laminate buckling behavior (J. Li, Slesarenko, et 

al., 2019c; Y. Li et al., 2013), the composites are characterized by a decrease in the critical 

strain as the periodicity ratio is decreased. In particular, the critical strain decreases from 𝜀𝑐𝑟 =

0.231 to 𝜀𝑐𝑟 = 0.217 in the composites with 𝜂 decreased from 2 to 1.5.  
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Fig. 12 Distribution of strain field, 𝜀22, in the composite with 𝜉 = 0.6 under the applied average 

compressive strain 𝜀 = 0.24 with various periodicity aspect ratios. 

 

As the periodicity aspect ratio further decreases, the composite configurations enter into 

the transition buckling behavior. Such configuration is illustrated in Fig. 12 for the composite 

with the periodicity aspect ratio 𝜂 = 0.85. The columns of stiff inclusions are placed close to 

each other so that the inclusions are introduced into additional horizontal interactions. This is 

illustrated by the deformation distribution field showing the strong interaction of the stiff 

inclusions in both vertical and horizontal directions. The proximity of the stiff inclusions 

columns hinders the buckling development and makes the structure more stable. This 

mechanism manifests in the increase of the critical strain when the periodicity aspect ratio is 

decreased further (beyond the transition minimum point). Thus, for example, the critical strain 

increases from 0.201 to 0.211 in the soft composites with 𝜂 = 0.85 and 𝜂 = 0.62 (shown 

in Fig. 12). 

 

4.1.1.2 Dependence of critical wavenumber on geometric parameters 

Next, we recall the essential feature of the failure curves, namely, the existence of a 

transition from macroscopic (or longwave) to microscopic instability mode occurring at a 

critical threshold value 𝜂𝑡ℎ . For example, the composite with 𝜉 = 0.6  transits from 
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macroscopic to microscopic instability at the threshold value is 𝜂𝑡ℎ ≈ 1.975, and the threshold 

values gradually increase with an increase in the spacing ratio. This transition of instability 

modes is characterized by the corresponding change in the critical wavenumber.  

 

 

  Fig. 13 The dependence of critical wavenumber on the periodicity aspect ratio with various spacing 

ratios. Dotted and continuous curves correspond to macroscopic and microscopic instabilities, respectively. 

 

Fig. 13 shows the dependence of the critical wavenumber 𝑘𝑐𝑟 on the periodicity aspect 

ratio 𝜂, for various fixed values of the inclusion spacing ratios 𝜉 from 0.1 to 0.9. We observe 

in Fig. 13 that the curves are characterized by the existence of macroscopic or longwave 

instability (𝑘𝑐𝑟 → 0 ) in the initial ranges of their periodicity aspect ratio lower than their 

threshold values 𝜂𝑡ℎ . The threshold value – after which a switch from macroscopic to 

microscopic buckling mode happens – is dictated by the initial spacing ratio value 𝜉. This 

transition from macro- to micro-instability modes happens rather rapidly in the composites 

with small initial spacing ratios. For example, in the composite with 𝜉 = 0.2   (see the red 
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curve in Fig. 13), the wavenumber suddenly switches from 𝑘𝑐𝑟 = 0 to 0.5 at the threshold 

value 𝜂𝑡ℎ ≈ 0.8 . In the composites with higher periodicity aspect ratios, however, gradual 

transitions are observed; the corresponding critical wavenumbers continuously increase from 

zero until reaching the plateau value at the corresponding threshold value. For instance, in the 

composites with 𝜉 = 0.45 (see the violet curve in Fig. 13), the wave number 𝑘𝑐𝑟 increases 

after the threshold value 𝜂𝑡ℎ = 1.45, and it reaches the maximum bound level of 0.5 at 𝜂 =

2.18 . After reaching the threshold value, the critical wavenumber does not change with a 

further increase in the periodicity aspect ratio 𝜂. For the composites with even higher spacing 

ratios, the critical wavenumber 𝑘𝑐𝑟 does not reach the upper bound value of 0.5; instead, the 

wavenumber approaches a lower-level plateau for a high enough 𝜂 . For example, in the 

composites with 𝜉 = 0.6, the critical wavenumber increases after the threshold value 𝜂𝑡ℎ =

1.975, followed by the curve flattening and asymptotically reaching the plateau value with 

𝑘𝑐𝑟 → 0.31.  

 

 

Fig. 14 Schematics of instability patterns based on initial primitive cells and enlarged primitive cells. 

 

We schematically illustrate the corresponding instability patterns in Fig. 14. Prior to the 

onset of instabilities, the composite’s periodicity is defined by the initial primitive cell (shown 

in the left part in Fig. 14) with the initial periodicity 𝑙1
0 = 𝑏 and 𝑙2

0 = 𝑎. Once the bifurcation 

occurs, the initial periodicity may break, and the composite attains a new periodicity with an 
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enlarged primitive cell characterized by critical wavelength 𝑙1
𝑐𝑟  and 𝑙2

𝑐𝑟  (defined in the 

undeformed configuration). Recall that our calculations indicate that the onset of instabilities 

develops along the compressive direction, and the horizontal periodicity does not change upon 

buckling, namely, 𝑙1
𝑐𝑟 ≡ 𝑙1

0; the vertical periodicity, however, does change with the onset of 

instability; therefore, here and thereafter, we only consider 𝑙2
𝑐𝑟  component of the critical 

wavelength and report 𝑙2
𝑐𝑟 as 𝑙𝑐𝑟 and 𝑙2

0 as 𝑙0 for simplification. For instability patterns, the 

following cases can occur. First, the enlarged primitive cell consists of an integer number of 

initial primitive cells. In this case, the critical wavelength is 𝑙𝑐𝑟 = 𝑝𝑙0 where 𝑝 is an integer 

defining the number of initial primitive cells included in the enlarged primitive cell; the unit 

cell number can be obtained as 𝑝 = 1/𝑘𝑐𝑟. For example, for the composite with 𝜉 = 0.45 

and 𝜂 = 1.6 , 𝑘𝑐𝑟 = 0.25 , so that the enlarged primitive cell consists of 𝑝 = 4  with an 

expected wavy pattern, including four inclusions in the period (see the right part in Fig. 14). A 

similar case with 𝑘𝑐𝑟 = 0.5  (for example, the cases with 𝜉 = 0.45  and 𝜂 > 2.18 ) is also 

illustrated in Fig. 14. In this case, a wavy pattern with two inclusions in the period is expected 

to develop upon the onset of instability. Similar to the above examples, the composites with 

their critical wavenumbers corresponding to 𝑝 = 𝑁 (where 𝑁 = 1, 2, 3 . . . ) may develop a 

wavy pattern with critical wavelength 𝑙𝑐𝑟 = 𝑝𝑙0, including 𝑁 incisions in its period. We note, 

however, that the critical wavenumbers can be continuous functions of 𝜂 (see, for example, 

the curves for the composites with 𝜉 = 0.45  in Fig. 13). Therefore, an infinite number of 

instability configurations with non-integer values of 1/𝑘𝑐𝑟 are admissible through tuning the 

initial periodicity parameters. Fig. 14 schematically illustrates such a case of the composite 

with 𝜉 = 0.4 , 𝜂 = 1.546 , the corresponding critical wavenumber is 𝑘𝑐𝑟 ≈ 0.49 . However, 
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1/𝑘𝑐𝑟 ≈ 2.04  is indeed not an integer number, which we denote as 𝑝′ = 1/𝑘𝑐𝑟  (to 

distinguish it from the cases with an integer number of unit cells). The corresponding enlarged 

primitive cell (consisting of an integer number of initial primitive cells) may be constructed, if 

there exists a large enough integer number 𝑛  such that 𝑝 = 𝑛𝑝′  is an integer. We note, 

however, that consideration may be sensitive to the accuracy of the results of the Bloch-Floquet 

analysis, namely, the accuracy of the critical wavenumber 𝑘𝑐𝑟 (and, hence, of 𝑝′). Thus, the 

composites (that are characterized by their critical wavenumber in the range 0 < 𝑘𝑐𝑟 < 0.5) 

exhibit seemingly non-periodic instability patterns. 

Next, we examine the seemingly non-periodic instability patterns via corresponding 

eigenmodes of the composites at the critical strains. Fig. 15 shows the eigenmodes of the 

composites at the critical strains with fixed spacing ratio 𝜉 = 0.4  and various periodicity 

aspect ratios 𝜂 =1.546, 1.544, 1.54, 1.5, 1.4, and 1.325 corresponding to eigenmodes (1) – (6). 

For each eigenmode, the colored map shows the relative lateral displacement (𝑢2) distribution. 

Note that, while the numerical analysis is performed on the single unit cell, the eigenmodes are 

reconstructed via the corresponding Floquet conditions to include a large number of unit cells 

in each domain (in particular, 50-unit cells are used).  
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Fig. 15 Eigenmodes of the composites at the critical strains with spacing ratio 𝜉 = 0.4 and various 

periodicity aspect ratios from 1.546 to 1.325. 

 

For the composites characterized by smaller critical wavenumbers (see, for example, case 

(6) with 𝑘𝑐𝑟 ≈ 0.134 corresponding to 𝑝′ ≈ 7.463 in Fig. 15), the eigenmodes exhibit wavy 

shapes with seemingly constant wavelengths. However, the wavelength of the overall wavy 

mode does not match the periodicity of the inclusion distribution. This mismatch – stemming 

from the fact that the smallest repeating unit must contain an integer number of inclusions – is 

illustrated in the schematics for case (6) in the right part of Fig. 15. The wavelength in case (6) 

is 7.463𝑙0; thus, the seemingly full period does not contain an integer number of inclusions; 

therefore, the actual wavelength may be significantly higher, and its estimate depends on the 

accuracy of the critical wavenumber determined from the Bloch-Floquet analysis. 

Consider the composites developing instabilities with the critical wavenumbers 𝑘𝑐𝑟 

close to 0.5, such as, for example, cases (1)-(3) in Fig. 15. Their eigenmodes exhibit a beat-like 

phenomenon (Ferrari & Gatti, 1999). For example, case (1), characterized by 𝑘𝑐𝑟 ≈ 0.491 
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(𝑝 ≈ 2.04) in Fig. 15, shows a wave packet with variable magnitudes; the wavelength of the 

envelope is approximated as 50𝑙0 . This eigenmode shows the features characterized by a 

superposition of two wavelets with very close wavelengths: 2.04𝑙0 (defined by the critical 

wavenumber 𝑘𝑐𝑟) and 2𝑙0 (dictated by the closest integer number of inclusions within the 

updated primitive cells). This situation is reminiscent of the beat phenomenon with the 

superposition of two waves with slightly different wavenumbers, resulting in a wavy pattern 

with variable magnitudes (Ferrari & Gatti, 1999). The envelope of the maxima and minima in 

the superposed wave can be characterized by the estimated wavenumber 𝑘𝑒𝑛𝑣 ≈ 0.5 − 𝑘𝑐𝑟. 

However, we observe that the composite included in one period of the envelope is still not a 

smallest repeating unit (see, for example, case (2), characterized by 𝑘𝑐𝑟 ≈ 0.479 in Fig. 15, 

the distribution of the inclusions in one period of envelope curve does not exactly match that 

in the neighboring periods), and the strict smallest repeating unit should be constructed in a 

much higher scale. 

 

4.1.1.3 Instability mode transitions via initial microstructure geometric parameters 

Next, we summarize the results of critical wavenumbers as a surface in the geometrical 

parameter space of 𝜂 and  𝜉 in Fig. 16.  
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Fig. 16 Surface of critical wavenumber in the space of periodicity and spacing ratio. 

 

In particular, the surface is divided into three sub-domains: (i) the pure red surface on the 

bottom – labeled as the “longwave” – denotes the geometries for which longwave instabilities 

develop (with 𝑘𝑐𝑟 → 0); (ii) the pure blue surface – labeled as the “periodicity doubling” – on 

the top denotes the microscopic instabilities with constant critical wavenumber 𝑘𝑐𝑟 = 0.5 

corresponding to the cases with the initial periodicity being (exactly) doubled upon bifurcation; 

(iii) the gradient surface – labeled with “transition” – in-between denotes the microscopic 

instabilities with various 𝑘𝑐𝑟  from 0 to 0.5, governed by the initial geometric parameters. 

Moreover, in the transition surface, we can further identify three different transition modes 

dictated by the periodicity aspect ratio 𝜂. First, for the composites with 𝜉 ≾ 0.3, only binary 

values of the critical wavenumber are possible, namely, either 𝑘𝑐𝑟 → 0  or 𝑘𝑐𝑟 = 0.5, 

without any intermediate wavenumber (see, for example, the blue curve corresponding to 𝜉 =

0.2 in Fig. 16; the wavenumber jumps from 0 to 0.5 at threshold value 𝜂 = 0.85). Thus, we 

refer to this transition as the jump-transition mode. Second, for the composites with 0.3 ≾ 𝜉 ≾
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0.464, the transition develops gradually, with the wavenumbers changing from 0 to 0.5. This 

transition case is illustrated by the yellow curve corresponding to 𝜉 = 0.4  in Fig. 16; the 

critical wavenumber increases continuously after the threshold value 𝜂𝑡ℎ = 1.325   and 

reaches the maximum level of 0.5 at 𝜂 = 1.548. We denote this transition as the full-transition 

mode. Third, in the composites with 0.464 ≾ 𝜉 ≾ 1, the transition is somewhat similar to the 

previous case. The important difference, however, is that those composites are limited by their 

corresponding values of critical wavenumbers and do not attain 𝑘𝑐𝑟 = 0.5. For example, see 

the red curve corresponding to 𝜉 = 0.7 in Fig. 16 here, the curve flattens (after the gradual 

increase range) and eventually reaches the plateau with 𝑘𝑐𝑟 → 0.248 . We refer to this 

transition as the limited-transition mode. As discussed above, the beat-like eigenmodes are 

observed for the composites developing instabilities with 𝑘𝑐𝑟 close but not equal to 0.5. Since 

in jump-transition mode we can only find 𝑘𝑐𝑟 = 0 or 𝑘𝑐𝑟 = 0.5, the beat-like eigenmodes 

are only expected to be found in full-transition and limited-transmission mode, such like 𝑘𝑐𝑟 ≈

0.491  corresponding to 𝜉 = 0.4  and 𝜂 = 1.546  in the full-transition mode and 𝑘𝑐𝑟 ≈

0.454 corresponding to 𝜉 = 0.47 and 𝜂 = 3 in the limited-transmission mode.  

To further shed light on the mechanisms of these three transition modes, we analyze the 

variation of dispersion curves during each transition, see results for the jump-transition mode 

(including 𝜉 = 0.1 and 𝜉 = 0.3) in Fig. 17, the limited-transition mode (including 𝜉 = 0.7 

and 𝜉 = 0.9) in Fig. 18 and full-transition mode (including 𝜉 = 0.4 and 𝜉 = 0.45) in Fig. 

19. In each figure, the dotted and continuous curves correspond to the dispersion relation at the 

onset of macroscopic and microscopic instabilities, respectively. The trivial zero-point at 𝑘2 ≠

0  indicates the critical wavenumber 𝑘2
𝑐𝑟 . First, see Fig. 17, we observe that the zero-point 
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never shifts along 𝑘2 axis with an increase in 𝜂, and the transition develops via a drop of the 

normalized eigenfrequency 𝑓𝑛 at 𝑘2 = 0.5 gradually down to 0. This reveals why there is no 

intermediate wavenumber found in jump-transition mode. Second, see Fig. 18, we observe that 

the zero-point smoothly shifts from 0 along 𝑘2 axis with an increase in 𝜂 and is then limited 

to a finite value smaller than 0.5. Therefore, the limited-transition can give parts of intermediate 

wavenumbers under 0.5. Finally, see Fig. 19, the zero-point also shifts smoothly from 0 but 

eventually reaches 0.5. Therefore, we can find all intermediate wavenumbers from 0 to 0.5 in 

the full-transition mode. Moreover, the analysis of dispersion curves at critical points can not 

only help to understand the transition buckling modes but also provide opportunities for 

discussing the acoustic properties of this composite via instability.  

 

 

Fig. 17 Critical dispersion curves corresponding to the jump-transition mode. 
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Fig. 18 Critical dispersion curves corresponding to the limited-transition mode 

 

 

Fig. 19 Critical dispersion curves corresponding to the full-transition mode. 

 

4.1.2 Energy landscapes 

Fig. 20a shows a comparison of the critical strains identified from the energy landscapes 

(black curves) and that from the Bloch-Floquet analysis (colored curves), where the 

dependence of the critical strain on the periodicity aspect ratio 𝜂 is plotted for composites with 

various fixed values of the spacing ratios 𝜉 = 0.3, 𝜉 = 0.5 and 𝜉 = 0.7. We observe that, the 

onset of the longwave instability identified by the energy landscape analysis coincides with the 

one predicted by the Bloch-Floquet analysis (see, for example, the overlapped continuous and 

dotted curves in Fig. 20a corresponding to 𝜉 = 0.5 within 0.5 < 𝜂 < 1.65). The predictions, 
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however, diverge from each other at the region where microscopic instability occurs first. The 

threshold values 𝜂𝑡ℎ corresponds to the transition from longwave to microscopic instability. 

Fig. 20b illustrates the transition of the energy landscapes corresponding to the composite 

configurations (1) – (6) in Fig. 20a. The illustrated energy landscapes (1), (4), and (7) 

correspond to the lowest values of 𝜂 , in particular, 𝜂 = 0.32 , 𝜂 = 0.55  and 𝜂 = 0.75 , 

respectively; the energy landscapes (2), (5) and (8) correspond to 𝜂 = 0.4, 𝜂 = 0.65 and 𝜂 =

1.0, respectively, at which the curves have their local minima. The energy landscapes (3), (6), 

and (9) illustrate the composite behavior in the region of increasing 𝜀𝑐𝑟; in particular, 𝜂 = 1, 

𝜂 = 1.5  and 𝜂 = 1.5 , respectively. In the unstable region, the energy function becomes 

nonconvex, exhibiting a negative energy change rate (with a change in 𝛾), 𝜕�̃�/𝜕𝛾 < 0. We 

note that the composites with a higher rate of energy decrease (at the same level of deformation) 

are characterized by lower critical strains. This is illustrated in Fig. 20b by the comparison of 

the composite configurations (4), (5), and (6) having the same spacing ratio 𝜉 = 0.5 with all 

configurations subjected to the same compressive strain level, 𝜀 = 0.4 . We note that the 

magnitude of the global energy decrease may also serve as an indicator of the composite 

stability similar to the local rate of energy change. For example, let us define the global 

decrease in energy as [�̃�(𝛾 = 0) − �̃�(𝛾 = 0.3)]/�̃�(𝛾 = 0) at the compressive strain level 

𝜀 = 0.4. For all considered cases, a higher rate of energy decrease corresponds to a higher ratio 

of global decrease of energy under a small enough increase in 𝛾. In composite configuration 

(5), we find a 0.135 decrease of energy with 𝛾 increased from 0 to 0.3, while those identified 

from configurations (4) and (5) are 0.108 and 0.0915, respectively. Composite configuration 

(5) exhibits the highest rate of energy decrease in the non-convex part of the energy landscape. 
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At the same time, composite configuration (5) has the critical strain 𝜀𝑐𝑟 = 0.265, which is in 

the vicinity of the local minimum of the curve corresponding to 𝜉 = 0.5  in Fig. 20a. The 

critical strains of the composite configuration (4) and (6) are 𝜀𝑐𝑟 = 0.272 and 𝜀𝑐𝑟 = 0.296, 

respectively. Similarly, we also compare other composite configurations with the same spacing 

ratio in Fig. 20b. For example, for the considered configurations (1), (2), (3) (having the same 

spacing ratio 𝜉 = 0.3) the highest global decrease of energy is found for configuration (2), 

which is characterized by 𝜂 = 0.7. The corresponding periodicity ratio of configuration (2) is 

found to be in the vicinity of the local minimum (at 𝜂 ≈ 0.7) of the critical strain curve (see 

the curve for 𝜉 = 0.3 in Fig. 20a). Moreover, if we recall the two particulate system behaviors 

discussed in Sec. 4.1.1.1, configurations (3), (6), (9) also correspond to the soft particulate 

systems with laminate-like behaviors, configurations (1), (4), (7) correspond to the soft 

particulate system with additional horizontal interactions, and configurations (2), (5), (7) 

correspond to the vicinity of the transition point between these two particulate system behaviors. 
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Fig. 20 (a) Comparison of critical strains derived from quasi-convexification and Bloch-Floquet analyses 

for the composites with 𝜉 = 0.3, 𝜉 = 0.5, 𝜉 = 0.7 and  𝜉 < 𝜂 ≤ 5; 

(b) The energy landscapes of the composites with different geometric parameters (𝜉 = 0.3 with 𝜉 = 0.32, 

𝜉 = 0.4, 𝜉 = 1; 𝜉 = 0.5 with 𝜉 = 0.55, 𝜉 = 0.65, 𝜉 = 1.5; 𝜉 = 0.7 with 𝜉 = 0.75, 𝜉 = 1, 𝜉 = 1.5). 

 

4.1.3 Post-buckling analysis   

4.1.3.1 Result of post-buckling development 

This section presents the post-buckling numerical calculation results and analysis. We start 

with an example of the particulate composite with the spacing ratio 𝜉 = 0.6 and periodicity 

aspect ratio 𝜂 = 2.1 . Fig. 21a shows the corresponding initial RVE at 𝜀 = 0 . For a more 

compact illustration, only 40-unit cells of the RVE are displayed here and thereafter. We 

observe that the composite material maintains a straight column of inclusions until a critical 

strain level of 𝜀𝑐𝑟 = 0.233 is reached. At this point the inclusion column experiences a sudden 

collapse and transforms into a wavy chain of inclusions. This can be observed in the deformed 
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RVE shown in Fig. 21a, corresponding to 𝜀 = 0.253. 

 

 

Fig. 21 (a) The deformation sequence under compressive strain level 𝜀 = 0, 0.233, and 0.253; initial 

geometric parameters are 𝜉 = 0.6 and 𝜂 = 2.1; (b) The position of inclusion centers in the deformed RVE. 

 

The corresponding critical strain identified through the post-buckling DFT analysis is 

𝜀𝑐𝑟 = 0.233 (for the composite with 𝜉 = 0.6 and 𝜂 = 2.1); this value is in good agreement 

with the prediction of the Bloch-Floquet analysis, namely, 𝜀𝑐𝑟 = 0.2338 (Chen et al., 2022). 

In experiments, Li et al. (2019a) also observed the formation of the "wavy chain" pattern of 

inclusions. This pattern transformation, induced by elastic instabilities, is a result of the 

breaking of the composite's initial periodicity, characterized by the initial wavelength 𝐿0 = 𝑏, 

and the emergence of a new periodicity, characterized by the critical wavelength 𝐿𝑐𝑟 =

[𝑘𝑐𝑟]−1𝑏 , where 𝑘𝑐𝑟  is the normalized critical wavenumber and 𝑙𝑐𝑟 = [𝑘𝑐𝑟]−1  is the 

corresponding normalized critical wavelength. For simplicity, in this study, we illustrate the 
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results in terms of the normalized critical values, such as 𝑘𝑐𝑟 and 𝑙𝑐𝑟, and refer to them as the 

critical wavenumber and critical strain, respectively. It is worth noting that the critical 

wavelength 𝐿𝑐𝑟 also represents the height of the smallest repeating unit of the post-buckling 

configuration, referred to as the "enlarged primitive cell" (Chen et al., 2022; Bertoldi et al., 

2008). Let us examine the instability-induced pattern in the composite in the post-buckling 

regime, in particular, at a strain level exceeding the critical value, namely, 𝜀 = 0.253. First, 

repeating blocks of seven inclusions may be observed; that would correspond to the critical 

wavelength of 𝑙𝑐𝑟 ≈ 7. However, a further inspection of the distribution of inclusions shows 

that the position (phase) of the corresponding inclusion within different blocks is slightly 

shifted. For example, the fourth inclusion (from the left) in blocks (3) and (4) shift slightly 

downward in comparison to that in blocks (1) and (2). This deviation stems from the fact that 

the critical wavelength of the instability mode does not correspond to an integer number of 

initial primitive cells. In particular, according to our Bloch-Floquet analysis, the critical 

wavelength of this numerical case is predicted to be 𝑙𝑐𝑟 ≈ 6.89 . Therefore, in the post-

buckling regime, the composite is unable to form a strictly periodic structure matching by 

critical wavelength, and is then forced to adapt a configuration with an integer wavelength 

𝑙𝑐𝑟 = 7 . This forced adaption, however, results in a somewhat frustrated distribution of 

inclusions and thus leads to the mismatch of inclusion centers in different inclusion blocks.  

However, with the DFT analysis discussed in 3.3.2, we can not only correctly capture the 

onset of instability in post-buckling, but also correctly identify the critical wavenumber 

eliminating the interference of mismatch of inclusion centers. For example, we illustrate the 

results of the DFT analysis in Fig. 22, showing the dependence of the Fourier coefficient 𝑓 on 
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component wavenumber 𝑘 = 0.0125, 0.025, ... 0.4875 and 0.5, for fixed compressive strain 

levels (from 0.23 to 0.24). We observe that, below the critical strain level 𝜀𝑐𝑟 = 0.2338, the 

composite maintains a straight column of inclusions, and correspondingly, we observe that all 

component wavenumbers are characterized by nearly zero Fourier coefficients. For example, 

in the green curve with circular markers corresponding to 𝜀 = 0.233 in Fig. 22, we observe a 

straight chain of inclusions in the composite; the corresponding DFT result is a horizontal line 

at zero values. However, after reaching the critical strain level (𝜀𝑐𝑟 = 0.2338), the inclusion 

column suddenly collapses and transforms into a wavy chain. Correspondingly, a peak of the 

Fourier coefficient emerges at 𝑘 = 0.145. This is illustrated by the yellow curve with square 

markers corresponding to 𝜀 = 0.235 in Fig. 22. We observe a peak in the curve at 𝑘 = 0.145 

as the corresponding post-buckling pattern develops a wavy chain. Next, with an increase in 

the compressive strain level, the post-buckling deformation develops further, and the amplitude 

of the wavy-chain pattern increases. Correspondingly, we observe that the peak Fourier 

coefficient (at 𝑘 = 0.145) becomes more prominent. This is also reflected in the increase in 

the amplitude of the wavy-chain pattern (see, for example, the DFT results corresponding to 

the compressive strain increased from 𝜀 = 0.2339  to 𝜀 = 0.24 ). The peak point in DFT 

results corresponds to a component harmonic curve that dominates the post-buckling wavy 

chain pattern, and the corresponding wavenumber of this peak point (𝑘𝑐𝑟 = 0.145) is then 

identified as the critical wavenumber. This identification method may be applied for post-

buckling analysis of particulate composites to identify the critical wavenumber, including the 

scenario with the frustrating distribution of inclusions (without identifying the enlarged 

primitive cell). We note that the precision of the DFT analysis depends on the number of 
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component wavenumbers scanned, which is also identical to the number of unit cells built in 

the RVE. Increasing the number of unit cells in the RVE can improve the accuracy of the 

wavenumber identification process. Our numerical results indicate that 80 unit cells are 

sufficient for obtaining the critical wavenumber accurately. The corresponding comparison of 

the DFT results obtained with different numbers of unit cells (from 20 to 200) in the RVE is 

given in Appendix A. 

 

 

Fig. 22 The DFT analysis results of the post-buckling development for the composite with spacing ratio 𝜉 =

0.6 and periodicity aspect ratio 𝜂 = 2.1 at compressive strain 𝜀 = 0.233, 𝜀 = 0.2339, 𝜀 = 0.234, 𝜀 =

0.235, 𝜀 = 0.237, and 𝜀 = 0.24 with 𝑁 = 80 number of unit cells built in the RVE. 

 

4.1.3.2 Transition of post-buckling patterns with periodicity aspect ratios 

We start by examining the post-buckling development with various initial geometrical 

parameters of the periodic microstructure. Specifically, the periodicity aspect and spacing ratios 

are altered by modifying the width of the unit cell and the diameter of the inclusion, respectively, 

while the height of the unit cell keeps constant. First, we examine the composites with a high 

spacing ratio 𝜉 = 0. 8  (the inclusions are placed relatively close in the direction of 
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compression) and various periodicity aspect ratios. In the upper part of Fig. 23, the red curve 

shows the dependence of the critical wavenumber 𝑘𝑐𝑟  on the periodicity aspect ratio 𝜂 

predicted by Bloch-Floquet analysis (from 𝜂 = 2.5  to 𝜂 = 8.0 ) for the fixed spacing ratio 

𝜉 = 0. 8. The corresponding DFT analysis results of the post-buckling pattern are overlayed on 

the curve plot for the composites with periodicity aspect ratio 𝜂 = 2.7, 3.0, 3.25, 3.5, 4.0, 4.75, 

6.0, and 7.5, where the vertical axis is the wavenumber, and the horizontal value is the 

corresponding Fourier coefficient. The lower part of Fig. 23 includes the corresponding post-

buckling patterns, showing inclusion center positions at higher strain levels (after the onset of 

instability). The criterion for selecting these strain levels is based on the relative displacement 

of the inclusion centers; specifically, the post-buckling structures attain the same value of the 

so-called average amount of shear. Appendix A describes the details of how this criterion is 

defined and applied.  
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Fig. 23 Post-buckling patterns and the corresponding DFT results with fixed spacing ratio 𝜉 = 0.8 and 

various periodicity aspect ratios (compared with the critical wavenumber predicted from the Bloch-Floquet 

analysis). 

 

In Fig. 23, we included the Bloch-Floquet prediction of 𝑘𝑐𝑟  (red curve); the Bloch-

Floquet curve starts with the longwave instability (𝑘𝑐𝑟 → 0 ) and transits to a microscopic 

instability (𝑘𝑐𝑟 > 0) as the periodicity aspect ratio increases (corresponding to the inclusion 

columns placed farther away from each other) beyond a threshold value 𝜂𝑡ℎ ≈ 2.95. For the 

corresponding post-buckling patterns, we observe a single period of the zigzag chain pattern 

for every longwave instability mode (see, for example, the pattern in the lower part of Fig. 23 
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corresponding to 𝜂 = 2.7 ), with the DFT analysis identifying a single peak of Fourier 

coefficient at 𝑘𝑐𝑟 = 0.0125 (corresponding to the critical wavelength 𝑙𝑐𝑟 = 80, the height of 

the entire RVE). This is a result of the buckling wavelength being significantly larger than the 

characteristic size of the microstructure. Specifically, when a finite-sized RVE is used, only a 

single period of pattern with a critical wavelength corresponding to the height of the RVE will 

be observed in the cases of longwave instabilities; the peak of the DFT result will be found at 

the smallest wavenumber scanned, namely, the fundamental wavenumber 𝑘 = 1/𝑁. Similarly, 

if a larger number of unit cells in the RVE is used (for example, 200 cells), the critical 

wavelength will increase to 𝑙𝑐𝑟 = 200  and the corresponding critical wavenumber shifts 

down to 𝑘 = 1/200. 

For the microscopic instability modes (𝑘𝑐𝑟 > 0), the corresponding critical wavelength is 

smaller than the height of RVE; hence, the wavy chain pattern emerges in the post-buckling 

regime. For example, for the patterns corresponding to 𝜂 = 3.0, and 𝜂 = 3.25 in the lower 

part of Fig. 23, the inclusion centers are observed in overall wavy distribution. The 

corresponding DFT results show a single peak emerging after the onset of instability, and the 

corresponding wavenumber values are close to those predicted via the Bloch-Floquet analysis. 

For instance, in the DFT result corresponding to 𝜂 = 3.0 (in the upper part of Fig. 23), we 

observe a single peak of the Fourier coefficient at the wavenumber 𝑘 = 0.075 , and the 

corresponding Bloch-Floquet analysis prediction is 𝑘𝑐𝑟 = 0.077. 

Next, we examine the post-buckling development in the composite with a relatively low 

spacing ratio 𝜉 = 0. 3  (the inclusions are placed relatively far away in the direction of 

compression) for various periodicity aspect ratios. In the upper part of Fig. 24, the Bloch-
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Floquet curve shows the dependence of the critical wavenumber 𝑘𝑐𝑟 on the periodicity aspect 

ratio 𝜂 for a fixed inclusion spacing ratio 𝜉 = 0. 3. The corresponding DFT results of the post-

buckling pattern are also overlayed on the curve for the composite with periodicity aspect ratios 

𝜂 =  0.8, 0.9, 1.0, 1.04, 1.06, 1.1, 1.2, and 1.3. The lower part of Fig. 24 shows the 

corresponding post-buckling patterns. For this composite configuration, the Bloch-Floquet 

predicts the critical wavenumber with only binary values, namely, either 𝑘𝑐𝑟 → 0 or 𝑘𝑐𝑟 =

0.5. The wavenumber starts with 𝑘𝑐𝑟 → 0 in the initial ranges of the periodicity aspect ratio, 

and it jumps from 𝑘𝑐𝑟 → 0  to 𝑘𝑐𝑟 → 0.5  after a threshold value 𝜂𝑡ℎ ≈ 1.05 , without any 

intermediate wavenumber during the transition. In the post-buckling analysis, the zigzag chain 

pattern for the longwave instability mode develops (see, for example, the pattern in the lower 

part of Fig. 24 corresponding to 𝜂 = 1.0), with single peak of Fourier coefficient at 𝑘𝑐𝑟 =

0.0125 in the DFT analysis. For the microscopic instability mode with 𝑘𝑐𝑟 = 0.5, the initial 

periodicity doubles (exactly) upon buckling, and we observe a repeating two-inclusion period 

in the post-buckling pattern, namely, the periodicity-doubling pattern (see, for example, the 

patterns in the lower part of Fig. 24 corresponding to 𝜂 = 1.2). The DFT analysis also shows 

a single peak of the Fourier coefficient at the wavenumber 𝑘 = 0.5 , corresponding to the 

critical wavelength 𝑙𝑐𝑟 = 2 . In our numerical results, only the “zigzag chain” and the 

periodicity doubling patterns were found for composites with 𝜉 = 0. 3. This binary result holds 

true even in cases that are close to the threshold value of 𝜂𝑡ℎ ≈ 1.05. For example, as shown 

in the lower part of Fig. 24, the post-buckling patterns for 𝜂 = 1.04 and 𝜂 = 1.06 exhibit 

zigzag chain and periodicity doubling patterns, correspondingly; no wavy chain patterns are 

observed.  
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Fig. 24 Post-buckling patterns and the corresponding DFT results with fixed spacing ratio 𝜉 = 0.3 and 

various periodicity aspect ratios (in comparison with the critical wavenumber predicted from Bloch-Floquet 

analysis). 

 

Finally, we examine the post-buckling development of the composite with a moderate 

spacing ratio, namely, 𝜉 = 0. 45  and various periodicity aspect ratios. These composite 

configurations are characterized by a full evolution of critical wavenumber from the longwave 

(𝑘𝑐𝑟 → 0)  to the periodicity-doubling mode (𝑘𝑐𝑟 = 0.5)  with an increase in the periodic 

aspect ratio (corresponding to an increasing distance between inclusion columns). This is 
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illustrated by the red curve in the upper part of Fig. 25, showing the dependence of (the Bloch-

Floquet predicted) critical wavenumber 𝑘𝑐𝑟  on the periodicity aspect ratio 𝜂  for fixed 

inclusion spacing ratio 𝜉 = 0. 45. The lower part of the figure shows the corresponding post-

buckling patterns. In the lower part of Fig. 25, we observe an overall transition of the post-

buckling patterns from a zigzag chain (for example, the pattern corresponding to 𝜂 < 1.46) to 

the periodicity doubling pattern (for example, the pattern corresponding to 𝜂 > 2.18). During 

the transition range (from 𝜂 = 1.46 to 𝜂 = 2.18), the post-buckling development starts with 

the wavy chain pattern corresponding to a relatively small critical wavenumber (see, for 

example, the cases corresponding to 𝑘𝑐𝑟 = 1.5 and 𝑘𝑐𝑟 = 1.6 in Fig. 25). However, as the 

critical wavenumber increases beyond 𝑘𝑐𝑟 ≈ 0.25 , we observe a significant change in the 

post-buckling shapes (see the patterns corresponding to 𝜂 = 1.7  and 𝜂 = 1.8  in Fig. 25). 

These patterns exhibit a superposition of two modes with different wavelengths. This is also 

identified in the corresponding DFT analysis results. In particular, we observe that the post-

buckling pattern corresponding to 𝜂 = 1.7  in Fig. 25 is not a typical wavy chain, but is 

composed of wavelets of small length scales (see the blue inclusion chains) enveloped in longer 

waves (see the red envelope curves). Correspondingly, we observe two peaks emerging in the 

DFT result after the onset of instability. The first peak locates at 𝑘 = 0.0625 (representing 

the wavenumber of the envelope waves in large length scales), and the second peak locates at 

𝑘 = 0.3125 (representing the wavenumber of the wavelets in small length scales). Compared 

with the Bloch-Floquet prediction, 𝑘𝑐𝑟 = 0.31 , the second peak in the post-buckling DFT 

analysis (𝑘 = 0.3125) represents the initial instability mode, and the first peak (𝑘 = 0.0625) 

represents an inclusion set in large length scales combined with the initial one for adaption of 
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the composite configuration as the initial instability mode does not correspond to an integer 

number of initial primitive cells.  

 

 

Fig. 25 Post-buckling patterns and the corresponding DFT results with fixed spacing ratio 𝜉 = 0.45 and 

various periodicity aspect ratios (compared with the critical wavenumber predicted from Bloch-Floquet 

analysis). 

 

A further increase in the periodicity aspect ratio (see the pattern corresponding to 𝜂 = 1.9 

in Fig. 25) leads to the formation of seemingly disordered and lacking periodicity 
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microstructures in the post-buckling regime. In the DFT results, a single peak is observed at 

𝑘 = 0.4125. However, this wavenumber is found to be larger than the prediction from the 

Bloch-Floquet analysis (𝑘𝑐𝑟 = 0.343). This discrepancy results from the limited number of 

inclusions that need to be accommodated (between 2 and 3, given 𝑙𝑐𝑟 ≈ 2.91) in an enlarged 

primitive cell. The frustrated composite cannot transform into a periodic structure within the 

instability-dictated length scale, and hence, it is forced to conform with a combination of 

inclusion sets in different length scales. This adaptation in post-buckling development leads to 

the critical wavenumber diverging from its Bloch-Floquet prediction. The frustrated patterns, 

however, become more regulated as the periodicity aspect ratio further increases (see the 

pattern corresponding to 𝜂 = 2.0 and  𝜂 = 2.1in Fig. 25). These composites start developing 

the periodicity doubling post-buckling structure (corresponding to a major peak at 𝑘 = 0.5 in 

the DFT analysis) even though their critical wavenumber is not exactly 0.5. For example, the 

DFT analysis for the composite with 𝜂 = 2.0 (see Fig. 25), shows the peak at 𝑘 = 0.5, while 

the Bloch-Floquet prediction is 𝑘𝑐𝑟 = 0.423. Interestingly, for those composites attaining the 

periodicity-doubling mode, a single localized defect emerges (see Fig. 25 corresponding to 

𝜂 = 2.0). The DFT analysis also detects certain signals near the peak at 𝑘 = 0.5. For instance, 

the DFT result corresponding to 𝜂 = 2.0 in Fig. 25 detects multiple “minor signals” appears 

near the major peak at 𝑘 = 0.5. These defects, however, disappear as the critical wavenumber 

is further increased. For example, the composite with 𝜂 = 2.1  (corresponding to 𝑘𝑐𝑟 =

0.455  in the Bloch-Floquet analysis) exhibits a perfect periodicity doubling without 

developing the defects in the post-buckling regime. Finally, after the periodicity aspect ratio 

reaches 𝜂 = 2.18, the post-buckling pattern does not change with a further increase in the 
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periodicity aspect ratio 𝜂, and the composite develops the exact periodicity-doubling in the 

post-buckling regime. 

Next, we summarize the results of the post-buckling pattern developments as a map in the 

geometrical parameter space of 𝜂 and 𝜉 in Fig. 26. The map is divided into five sub-domains: 

(i) the red surface with diagonal strips – labeled as the “zigzag chain” – denotes the geometries 

for which longwave instabilities develop (with 𝑘𝑐𝑟 → 0), where the post-buckling pattern is a 

single zigzag chain of inclusions; (ii) the blue surface with diagonal strips – labeled as the 

“periodicity doubling” – denotes the microscopic instabilities with constant critical 

wavenumber 𝑘𝑐𝑟 = 0.5, and the post-buckling pattern is the initial inclusion column being 

(exactly) doubled upon bifurcation; (iii) the solid pink surface – labeled with “Wavy chain” – 

denotes the microscopic instabilities with relatively low 𝑘𝑐𝑟 from 0 to the vicinity of 0.25, 

where the post-buckling pattern is a “wavy chain” of inclusions; (iv) the pure purple surface – 

labeled with “Superposed” – denotes the microscopic instabilities with relatively high 𝑘𝑐𝑟 

from approximately 0.25 to 0.4, where the post-buckling pattern exhibits a superposition of 

wavelets (in small length scales) in between envelopes in large length scales; (v) the pure blue 

surface – labeled with “adapted periodicity doubling” – denotes the microscopic instabilities 

with 𝑘𝑐𝑟 close but not equal to 0.5; these composites adapt the “periodicity-doubling” post-

buckling structure even though their critical wavenumber is not exactly 0.5.  

While the post-buckling patterns demonstrate a good agreement with the Bloch-Floquet 

predictions (Chen et al., 2022) for small critical wavenumbers (typically, 𝑘𝑐𝑟 ≤ 0.5 ), the 

difference appears when the critical wavenumber increases beyond 𝑘𝑐𝑟 = 0.25 (but not yet 

reached 0.5). The reason is that the composite configuration cannot transform into a periodic 
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structure dedicated by the critical instability wavelength; the pattern is then forced to adapt a 

structure in nearby length scales, or a combination of inclusion sets in different length scales 

in the post-buckling regime. The formation of those adapted patterns necessitates a large 

enough finite deformation after the onset of instability; thus, it was not able to be shown in the 

Bloch-Floquet analysis that considers linearized incremental deformations (superimposed upon 

the deformed state at the onset of instability). The post-buckling computations, together with 

the DFT analysis, capture those adapted post-buckling patterns with combined instability 

modes, enriching the understanding of the buckling behavior of particulate composites.  

 

 

Fig. 26 Post-buckling pattern mapping in the geometrical parameter space. 

 

4.1.3.3 Evolution of post-buckling patterns upon further deformations 

Finally, we examine the evolution of the post-buckling development with deformation 

beyond the critical loading. Here, we are specifically interested in the situation when the initial 

buckling mode changes with the applied deformation. Recall that the composites that develop 
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relatively short-wave instability (𝑙𝑐𝑟 ≲ 4) are characterized by the adaptation of a combination 

of inclusion sets in different length scales in the post-buckling regime. Interestingly, in the post-

buckling regime, we find the composite with a critical wavenumber lower than 0.25 (which 

initially forms a wavy-chain pattern) may also transform into a “superposed pattern” as the 

applied deformation forces the initial wavy buckling pattern to evolve. In Fig. 27, we illustrate 

this phenomenon via an example case for the composite with spacing ratio 𝜉 = 0.45  and 

periodicity aspect ratio 𝜂 = 1.5. The lower part of Fig. 27 shows the post-buckling pattern of 

the composite (illustrated by the inclusion center positions) right after the critical strain 𝜀𝑐𝑟 =

0.338, and further after the buckling at 𝜀 = 0.3386, 𝜀 = 0.34 and 𝜀 = 0.348. The upper part 

of Fig. 27 shows the DFT analysis results corresponding to the above four deformation levels.  

After the onset of instability at 𝜀𝑐𝑟 = 0.338 , the initial straight column of inclusions 

collapses and then transforms into a wavy chain as the compression continues to increase in a 

relatively small range. This is illustrated by the pattern in Fig. 27-2 showing the configuration 

at 𝜀 = 0.3386 ; the inclusions are located on a wavy curve with seemingly constraint 

amplitudes. The corresponding DFT results show a single peak at 𝑘𝐼
𝑐𝑟 = 0.15. However, the 

corresponding wavelength 𝑙𝐼
𝑐𝑟 ≈ 6.67  is a non-integer value (see the DFT results 

corresponding to Fig. 27-2). 
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Fig. 27 Post-buckling patterns and the corresponding DFT results for the case with spacing ratio 𝜉 =

0.45 and periodicity aspect ratio 𝜂 = 1.5 under various compressive strain levels (1) 𝜀𝑐𝑟 = 0.338, (2)𝜀 =

0.3386, (3)𝜀 = 0.34 and (4)𝜀 = 0.348.   

 

A further increase in the compressive strain leads to the transformation of the initial wavy 

chain pattern into a zigzag chain pattern. This emerging zigzag chain pattern appears to be 

enveloped between wavy curves in large length scales corresponding to the height of 

approximately 20 unit cells (see, for example, the area enveloped by the red dash curves in Fig. 

27-4 corresponding to 𝜀 = 0.34). Interestingly, at the same time, we observe that there is a 
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second peak in the Fourier coefficient emerging at 𝑘𝐼𝐼
𝑐𝑟 = 0.338, indicating the existence of 

the envelope in large length scales. This two-peak DFT result was also observed in the post-

buckling pattern shown in Fig. 25, corresponding to high wavenumbers (𝑘𝑐𝑟 > 0.25). However, 

the case shown in Fig. 27 has a lower wavenumber 𝑘𝐼
𝑐𝑟 = 0.15, and the first and second peak 

of the DFT results do not emerge simultaneously upon the onset of instability (the secondary 

peak emerges only after certain additional compression is applied, while the first peak appears 

right after buckling). This is due to the fact that the initial wavy chain pattern (corresponding 

to the “first” wavenumber 𝑘𝐼
𝑐𝑟 = 0.15, and the “first” critical wavelength 𝑙𝐼

𝑐𝑟 ≈ 6.67) does 

not have an integer number of inclusions in a wave period. For example, the inclusion blocks 

shown on the left of Fig. 25-3 exhibit seemingly incomplete wave periods with a non-integer 

number of inclusions between 5 and 6. Under relatively small increases in deformation after 

buckling, the inclusion chain can still maintain the overall wavy shape. However, as the post-

buckling deformations become even higher, the composite can no longer maintain a non-

integer number of inclusions in a wave period. It finally accommodates a combination of 

inclusion sets in different length scales. For example, the inclusion blocks shown on the right 

side of Fig. 27-4 have exactly 20 inclusions corresponding to the secondary critical wavelength 

𝑙𝐼𝐼
𝑐𝑟 ≈ 20; and in each inclusion block we observe three small wavelets, the average length is 

20/3 ≈ 6.67 , which corresponds to the first critical wavelength 𝑙𝐼
𝑐𝑟 ≈ 6.67 . The results 

discussed above indicate that the post-buckling pattern continues to evolve with further 

deformation after its initial formation. Remarkably, the evolution may be rather complex 

beyond a simple amplification of the initial pattern. Specifically, the post-buckling pattern can 

evolve from a single wavy chain into distinct configurations characterized by a combination of 
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inclusion sets with different length scales.  

 

4.1.4 Secondary buckling development in post-buckling regime  

4.1.4.1 Analysis of post-buckling results for secondary buckling 

In this section, we present the results of an example case of the post-buckling analysis. 

We illustrate the result with an example of the particulate composite with the spacing ratio 𝜉 =

0.45 and periodicity aspect ratio 𝜂 = 6. The corresponding initial RVE at 𝜀 = 0 is shown in 

Fig. 28. Note that, only 80 unit cells of the RVE are displayed for a more compact illustration 

here and thereafter. We observe that the composite maintains a straight column of inclusions 

until it reaches the onset of the first stage buckling at the corresponding critical strain level of 

𝜀𝐼
𝑐𝑟 = 0.233 . At this point, the inclusion column experiences a sudden local collapse, with 

adjacent inclusions moving to the opposite side of each other. For example, as shown in Fig. 

28, corresponding to 𝜀 = 0.368 , the odd-numbered inclusions from the bottom move 

horizontally to the right side, while the even-numbered inclusions move to the left. As the 

compression continues to increase despite the buckling already being triggered, the composite 

structure quickly forms a seemingly “two straight columns of inclusions” near the middle line 

of the RVE (see, for example, in Fig. 28, corresponding to 𝜀 = 0.555). This post-buckling 

buckling pattern, however, provides highly ordered and compact arrangement of inclusions 

with strong interconnections. Therefore, we observe that the buckled composite, however, 

recovers its stability by forming an effective “particle-reinforced layer” in the center area of 

the composite, which includes the two columns of inclusions (see, for example, the composite 

structure corresponding to 𝜀𝐼𝐼
𝑐𝑟 = 0.555 in Fig. 28). Given this analogy, we observed that, this 
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reinforced layer experiences a wrinkling after a critical strain level of 𝜀𝐼𝐼
𝑐𝑟 = 0.555 is reached. 

At this point, the two “straight columns” of inclusions transform into two “wavy chain” of 

inclusions. This pattern transformation can be observed in the deformed RVE shown in Fig. 28, 

corresponding to 𝜀 = 0.565. We call This distinctive buckling phenomenon the “secondary 

buckling” that occurs in the post-buckling regime of the first(initial) buckling.  

 

 

Fig. 28 The deformation sequence under compressive strain level 𝜀 = 0, 𝜀 = 0.343, 𝜀 = 0.368, 𝜀 =

0.555, and 𝜀 = 0.565; initial geometric parameters are 𝜉 = 0.45 and 𝜂 = 6. Only 80 unit cells of the RVE 

are displayed for a more compact illustration. 

 

Next, in Fig. 29, we illustrate the results of the DFT analysis for the composite with 𝜉 =

0.45  and 𝜂 = 6 , showing the dependence of the Fourier coefficient 𝑓  on component 



67 

wavenumbers, for fixed compressive strain levels from 0 to 0.557. Until the critical strain level 

𝜀𝑐𝑟 = 0.343, the composite maintains a straight column of inclusions, and correspondingly, 

all component wavenumbers are characterized by nearly zero Fourier coefficients. However, 

after reaching the first critical strain level (𝜀𝐼
𝑐𝑟 = 0.343 ), the inclusion column suddenly 

collapses into a periodicity doubling pattern. Correspondingly, a peak Fourier coefficient 

emerges at 𝑘 = 0.5, representing the doubled periodicity and the critical wavenumber of the 

first buckling 𝑘𝐼
𝑐𝑟 = 0.5 . This is illustrated by the green curve with triangular markers 

corresponding to 𝜀 = 0.368 in Fig. 29.  

 

 

Fig. 29 The DFT analysis results of the post-buckling development for the composite with spacing ratio 

𝜉 = 0.45 and periodicity aspect ratio 𝜂 = 6 at compressive strain 𝜀 = 0, 𝜀 = 0.34, 𝜀 = 0.368, and 𝜀 =

0.557 with 𝑁 = 320 number of unit cells built in the RVE (the RVE view is zoomed so not all inclusion are 

displayed). 

 

Next, with an increase in the compressive strain level, the post-buckling pattern evolves, 

and the thickness of the “particle-reinforced layer” increases. After the critical strain of the 

secondary buckling 𝜀𝐼𝐼
𝑐𝑟 = 0.55, we observe a second peak emerging in the Fourier spectrum 

at 𝑘𝐼𝐼
𝑐𝑟 = 0.042 , representing a wavy buckling mode of the “reinforced layer.” Therefore, 
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𝑘𝐼𝐼
𝑐𝑟 = 0.042  is identified as the critical wavenumber of the secondary buckling. 

Correspondingly, the critical strain of the secondary buckling 𝜀𝐼𝐼
𝑐𝑟 is identified at the lowest 

strain level, where a peak in the Fourier spectrum is detected to exceed the threshold coefficient 

10−2 at a wavenumber other than 𝑘𝐼
𝑐𝑟 = 0.5. 

 

4.1.4.2 Dependence of critical strain on geometric parameters 

We start by examining the secondary buckling development via the dependence of critical 

strains on the composite’s initial geometrical parameters. Fig. 30 shows the dependence of the 

critical strain on the periodicity aspect ratio 𝜂 for various fixed values of the inclusion spacing 

ratios 𝜉 = 0.3, 0.35, 0.4  and 0.45 , where the dotted and continuous curves correspond to 

longwave (𝑘𝐼𝐼
𝑐𝑟 → 0 ) and microscopic (𝑘𝐼𝐼

𝑐𝑟 > 0 ) buckling derived from the Bloch Floquet 

analysis, respectively; the triangular scatters correspond to the results from the post-buckling 

analysis. It should be emphasized that secondary buckling has only been found in composites 

with “periodicity doubling” buckling mode in their first buckling stage. It has been shown in 

recent research (Chen et al., 2022, 2023) that those “periodicity doubling” patterns form in 

composites with small enough spacing ratios (𝜉 ≲ 0.45) and large enough periodicity aspect 

ratios (for composites with 𝜉 = 0.45, the “periodicity doubling” pattern is found when 𝜂 ≳ 2). 

Moreover, the admissible geometries are restricted by 𝑑 < 𝑏  and 𝑑 < 𝑎 , thus, limiting the 

parameter space as 𝜂 > 𝜉.  
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Fig. 30 The dependence of secondary buckling critical strain on periodicity aspect ratio with various 

spacing ratios. The dotted and continuous curves correspond to longwave and microscopic buckling results 

(from the post-buckling analysis), respectively; the triangular scatters correspond to results from the Bloch-

Floquet analysis. 

 

We observe that the secondary buckling critical strain derived from post-buckling analysis 

agrees well with the predictions of the Bloch-Floquet analysis. The composites with higher 

spacing ratios experience secondary buckling at lower compressive strains. For example, as 

shown in Fig. 30, in the composites with the same periodicity aspect ratio 𝜂 = 7 , with an 

increase in the spacing ratio from 𝜉 = 0.3 to 𝜉 = 0.45, the onset of secondary buckling shifts 

from 𝜀𝐼𝐼
𝑐𝑟 = 0.6685 to 0.5611. This stems from the fact that the large-sized inclusions (that 

are large in the composites with larger spacing ratios) provide a high volume fraction of the 

stiff inclusions in the effective “particle-reinforced layer,” thus increasing the effective stiffness 

contrast between the soft matrix and the particle-reinforced layer, eventually leading to an 

earlier onset of the secondary buckling. We also observed that the critical strain 𝜀𝐼𝐼
𝑐𝑟 increases 

monotonically with an increase in 𝜂 for all considered spacing ratios. Moreover, we observe 

that the secondary buckling develops in the longwave modes (𝑘𝐼𝐼
𝑐𝑟 → 0) in the composites with 



70 

small enough periodicity aspect ratios. However, the buckling mode switches from longwave 

to microscopic one in composites with a periodicity aspect ratio large than a threshold value 

𝜂𝑡ℎ, dictated by the initial spacing ratio value 𝜉 (specifically, larger spacing ratios lead to an 

earlier transition from micro- to longwave secondary buckling). For example, for the composite 

with 𝜉 = 0.35 (the red curve in Fig. 30), the buckling develops in a longwave mode with 

small enough periodicity aspect ratios such as 𝜂 = 3. With an increase in 𝜂, the critical strain 

increases monotonically. After the threshold value 𝜂𝑡ℎ ≈ 5.68 is reached, a switch from the 

longwave to microscopic buckling mode occurs, followed by the continuous increase of the 

critical strain with an increase in the periodicity aspect ratio.  

 

4.1.4.3 Dependence of critical wavenumber on geometric parameters 

Let us examine the dependence of the secondary buckling critical wavenumber on the 

periodicity aspect ratio 𝜂 . In Fig. 31, we plot the prediction of 𝑘𝐼𝐼
𝑐𝑟  from Bloch-Floquet 

analysis (red dotted and continuous curves, corresponding to longwave and microscopic 

buckling, respectively) and the post-buckling results (triangular scatters). We observe that the 

Bloch-Floquet and the post-buckling predictions agree well with each other. Specifically, for 

microscopic instabilities, they predict critical wavenumbers at a finite value 𝑘𝐼𝐼
𝑐𝑟 > 0  ; for 

longwave instabilities, they predict critical wavenumbers corresponding to their longwave limit 

𝑘𝐼𝐼
𝑐𝑟 → 0 and 𝑘𝐼𝐼

𝑐𝑟 = 1/320, respectively.  

Next, when the periodicity aspect ratio increases beyond a threshold value 𝜂𝑡ℎ 

(corresponding to the initial inclusion columns placed farther away enough from each other), 

we find a transition from longwave instability to microscopic instability (corresponding to 
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𝑘𝐼𝐼
𝑐𝑟 > 0  in Bloch-Floquet analysis and 𝑘𝐼𝐼

𝑐𝑟 > 1/320  in post-buckling analysis) beyond a 

threshold value 𝜂𝑡ℎ. We also observe that the composites with larger spacing ratios experience 

an earlier transition from longwave to microscopic instabilities, but is followed by a relatively 

lower increasing rate of the critical wavenumber, but is followed by a relatively lower 

increasing rate of the critical wavenumber. For example, comparing the composites with 𝜉 =

0.3 and 𝜉 = 0.4, the switch from longwave to microscopic mode occurs at 𝜂𝑡ℎ ≈ 6.18 and 

𝜂𝑡ℎ ≈ 5.65, respectively. After those switches, the wavenumber starts to increase. However, at 

a higher critical wavenumber, such as 𝜂 = 10, the composite with 𝜉 = 0.3 reaches a lower 

critical wavenumber 𝑘𝐼𝐼
𝑐𝑟 = 0.074  while the composite with 𝜉 = 0.4  reaches a higher 

critical wavenumber 𝑘𝐼𝐼
𝑐𝑟 = 0.069. However, for composites with a larger spacing ratio, such 

as 𝜉 = 0.45 , the corresponding threshold value shifts down to 𝜂𝑡ℎ ≈ 5.65 ; the critical 

wavenumber number reduces to 𝑘𝐼𝐼
𝑐𝑟 = 0.137 at 𝜂 = 10. 
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Fig. 31 The dependence of critical wavenumber on the periodicity aspect ratio with various spacing 

ratios. Triangular scatters and continuous curves correspond to results from post-buckling analysis and Bloch 

Floquet analysis, respectively. 

 

Finally, we summarize the results of the first and secondary buckling patterns as a map in 

the geometrical parameter space of the periodicity aspect ratio 𝜂 and the spacing ratio 𝜉, as 

shown in Fig. 32. In the map, the first stage buckling patterns are divided into six sub-domains. 

Among them, four grey sub-domains represent composite geometries that will only develop 

the first stage buckling (Chen et al., 2023): (i) the domain labeled as the “zigzag chain” 

corresponds to the critical wavenumber of the first stage buckling 𝑘𝐼
𝑐𝑟 → 0, where buckling 

pattern is a single zigzag chain of inclusions; (ii) the domain labeled with “Wavy chain” 
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corresponds to relatively low 𝑘𝐼
𝑐𝑟 from 0 to the vicinity of 0.25, where the buckling pattern is 

a “wavy chain” of inclusions; (iv) the domain labeled with “Superposed” corresponds to a 

relatively high 𝑘𝐼
𝑐𝑟  from approximately 0.25 to 0.4, where the buckling pattern exhibits a 

superposition of wavelets (in small length scales) in between envelopes in large length scales. 

The highlighted two sub-domains represent composite geometries that can develop the 

secondary buckling, based on their formation of a “periodicity doubling” or “adapted 

periodicity doubling” pattern in the first stage buckling. The bright blue domain – labeled with 

“longwave” – represents the geometries that will develop longwave secondary buckling, 

corresponding to 𝑘𝐼𝐼
𝑐𝑟 → 0; the dark blue domain – labeled as “microscopic,” represents the 

composite geometries that will develop secondary buckling in the microscopic modes, 

corresponding to 𝑘𝐼𝐼
𝑐𝑟 > 0 . Our results have shown that secondary buckling occurs in 

composites with small aspect ratios and large periodicity aspect ratios, in which longwave 

secondary buckling occurs with relatively small periodicity aspect ratios, and microscopic 

secondary buckling occurs with relatively large spacing ratios.  

 

 

Fig. 32 The first and secondary buckling pattern mapping in the geometrical parameter space. The 

highlighted areas (bright and dark blue) represent the secondary buckling. 
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4.2 Composite(2D) with two different-sized inclusions 

4.2.1 Bloch-Floquet prediction 

4.2.1.1 Dependence of critical strain on geometric parameters 

In this section, we examine the influence of the instability characteristics, such as critical 

strain and wavenumber, on the diameter contrast ratio of the particulate composite with two 

different-sized inclusions. The blue curves in Fig. 33 show the dependence of the critical strain 

on the diameter contrast ratio 𝑘𝑑 for various fixed values of the inclusion spacing ratios 𝜉 =

0.4, 𝜉 = 0.6 and 𝜉 = 0.8. The black dash line shows the corresponding critical strain of the 

single-sized inclusion composite.  

 

Fig. 33 The dependence of critical strains on inclusion diameter contrast ratio with various spacing ratios in 

composite with two different-sized inclusions. 
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In Fig. 33, we observe only microscopic instabilities for all considered diameter contrast 

ratios in composites with fixed spacing ratios 𝜉 = 0.4, 𝜉 = 0.6 and 𝜉 = 0.8. This stems from 

the high periodicity aspect ratio 𝜂 = 8  used in those cases, where the composites can be 

considered as nearly a single column of inclusions embedded in the pure soft matrix. Next, we 

find that, interestingly, with the same spacing ratio, the composites with the diameter contrast 

ratio 𝑘𝑑 → 0  and 𝑘𝑑 = 1  always have identical critical strains. For example, with spacing 

ratio 𝜉 = 0.6, the composite with 𝑘𝑑 → 0 has 𝜀𝑐𝑟 → 0.2403 while the composite with 𝑘𝑑 =

1 has the identical critical strain 𝜀𝑐𝑟 = 0.2403. We realize that, in the composites with 𝑘𝑑 =

1 , the two inclusions have actually the same size; thus, the behavior of the composite is 

identical to the composite consisting of unit cells with single-sized inclusions. However, for 

the composites with 𝑘𝑑 → 0, the smaller inclusion(between the two) has a diameter of nearly 

zero, which takes a nearly ignorable effect in the particulate system; thus, the behavior of the 

composites with two different-sized inclusions is infinitely close to those with single-sized 

inclusions. We checked the single-inclusion results discussed in Sec. 4.1.1.1 and found that 

they agree well with the results corresponding to two different-sized inclusions at 𝑘𝑑 → 0 and 

𝑘𝑑 = 1. For example, see the black dash line shown in Fig. 33 corresponding to 𝜉 = 0.6, the 

corresponding composite with single-sized inclusions has the critical strain 𝜀𝑐𝑟 = 0.2402. 

Finally, we notice that, for spacing ratios 𝜉 = 0.4 , 𝜉 = 0.6,  and 𝜉 = 0.8 , the critical 

strain has obviously non-monotonic dependence on the diameter contrast ratio. For large 

enough spacing ratios, such as 𝜉 = 0.6 and 𝜉 = 0.8, the critical strain decreases initially with 

a decrease in the diameter contrast ratio from 𝑘𝑑 = 1. Consequently, in those composites, there 

exists a range of diameter contrast ratios where the composites with two different-sized 
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inclusions buckle earlier than those with single-sized ones corresponding to the same spacing 

ratio. With a continuous decrease in the diameter contrast ratio, after 𝑘𝑑  reaching a local 

minimum, the critical strain turns to increase with a further decrease in the diameter contrast 

ratio. Then it surpasses the critical strain of the composite with single-sized inclusion (the black 

dash line shown in Fig. 33). Therefore, for large enough spacing ratios, there exists another 

range of diameter contrast ratio where the composites with two different-sized inclusions 

buckle later than those with single-sized ones. Finally, after reaching a local maximum at a low 

enough diameter contrast ratio, the critical strain turns back to decreasing with a decrease of 

the diameter contrast ratio towards zero and eventually reaches the critical strain of the 

composite with single-sized inclusions.  

For small enough spacing ratios, such as 𝜉 = 0.4 , we observe that the critical strain 

increases initially with a decrease in the diameter contrast ratio from 𝑘𝑑 = 1. Therefore, the 

composites with two different-sized inclusions always buckle later than those with single-sized 

ones corresponding to the same spacing ratio. Finally, after reaching a local maximum at a low 

enough 𝑘𝑑, the critical strain switch to decreasing and eventually reach back to the critical 

strain of the composite with single-sized inclusions.  

 

4.2.1.2 Dependence of critical wavenumber on geometric parameters 

Next, we examine the dependence of the critical wavenumber on the diameter contrast 

ratio of the particulate composite with two different-sized inclusions. Fig. 34, Fig. 35, and Fig. 

36 plot the dependence of the critical wavenumber on the diameter contrast ratio 𝑘𝑑  for 

various fixed values of spacing ratios 𝜉 = 0.4, 𝜉 = 0.6 and 𝜉 = 0.8, respectively. First, we 
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discuss the results with relatively low spacing ratios, such as 𝜉 = 0.4. In Fig. 34, we observed 

that, for a low enough diameter contrast ratio, the instability develops in a microscopic mode 

with the critical wavenumber 𝑘𝑐𝑟 = 0.25 . The corresponding buckling pattern is a zigzag 

chain of inclusions with exactly four inclusions (two large and two small inclusions) in one 

wave period (see, for example, the buckling pattern illustrated in Fig. 34(1) corresponding to 

𝑘𝑑 = 0.2). The critical wavenumber, however, starts to increase after a threshold value of the 

diameter contrast ratio at 𝑘𝑑
𝑡ℎ ≈ 0.3  and finally reaches a plateau of 𝑘𝑐𝑟 = 0.5  after 𝑘𝑑 ≈

0.45 . The buckling mode corresponding to 𝑘𝑐𝑟 = 0.5  is called the “periodicity doubling” 

mode that has been discussed in Sec. 4.1.1.2. However, due to different sizes of the inclusions, 

the formed “periodicity doubling” pattern is not geometrically balanced with respect to the 

unit-cell’s central axis, namely, not having the same volume fraction of stiff inclusions on the 

right and left side of the composite (see the buckling pattern illustrated in Fig. 34(3) 

corresponding to 𝑘𝑑 = 0.6). Nevertheless, the buckling pattern finally maintains an overall 

straight “two columns of inclusions” despite the imbalance. This is due to the fact that the 

materials in between inclusions are strengthened under compression; thus, via the highly 

nonlinear stress field, the structure finally accommodates balanced stiffness on the two sides. 

Finally, when we go back to look at the intermediate critical wavenumber in-between 𝑘𝑐𝑟 =

0.25 and 𝑘𝑐𝑟 = 0.5, such as 𝑘𝑐𝑟 = 0.365 (see the buckling pattern illustrated in Fig. 34(2) 

corresponding to 𝑘𝑑 = 0.4), we observe the formation of “seemingly chaotic” arrangement of 

inclusions in the buckling mode. This stems from the fact that the critical wavelength 

corresponds to a non-integer number of inclusions (including the large and the small ones), and 

the composite fails to accommodate an ordered structure in the critical length scales (refer to 
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Sec. 4.1.1.2 for detailed discussions).  

We also notice that the composite corresponding to 𝑘𝑑 = 1  has seemingly the same 

buckling pattern as that corresponding to 𝑘𝑑 → 0, while the value of the critical wavenumber 

is halved (for example, 𝑘𝑐𝑟 = 0.5 with 𝑘𝑑 = 1, while 𝑘𝑐𝑟 = 0.25 with 𝑘𝑑 → 0). We realize 

that, with 𝑘𝑑 → 0, in a wave period of the “zigzag chain” pattern, two of the four inclusions  

are now infinitely small and can be ignored in both visual inspection and physical effects.  

Therefore, the corresponding buckling pattern is observed the same as a “periodicity doubling” 

mode. This agrees with our discussion in Sec. 4.2.1.1, where we consider the composites with 

the diameter contrast ratio 𝑘𝑑 → 0  and 𝑘𝑑 = 1  having the same buckling behavior as the 

composite with single-sized inclusions. Nevertheless, the infinitely small inclusions with 𝑘𝑑 →

0 are still counted for the calculation and normalization of the critical wavenumber, resulting 

in the critical wavenumber with 𝑘𝑑 → 0 exactly a half of that with 𝑘𝑑 = 1. 
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Fig. 34 The dependence of critical wavenumber on inclusion diameter contrast ratio with spacing ratio 𝜉 =

0.4 in composite with two different-sized inclusions. 

 

Next, we discuss the results with a moderate spacing ratio, such as 𝜉 = 0.6. In Fig. 35, 

we observe that the critical wavenumber stays in a platform value at 𝑘𝑐𝑟 = 0.25  for a 

moderate diameter contrast ratio 0.2 ≲ 𝑘𝑑 ≲ 0.9, corresponding to the “zigzag chain” pattern 

with four inclusions in a wave period (see, for example, the buckling pattern illustrated in Fig. 

35(2) corresponding to 𝑘𝑑 = 0.4). However, when the diameter contrast ratio increases beyond 

𝑘𝑑 ≈ 0.9 , the critical wavenumber starts increasing from 𝑘𝑐𝑟 = 0.25  and finally reaches 

𝑘𝑐𝑟 = 0.30 at 𝑘𝑑 = 1, identical to the critical wavenumber of the composite with single-sized 
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inclusions. We observe that, for those critical wavenumbers between 𝑘𝑐𝑟 = 0.25 and 𝑘𝑐𝑟 =

0.30 (such as 𝑘𝑐𝑟 = 0.285), the buckling pattern exhibits a beat-like phenomenon, showing 

short waves with variable magnitudes (see the buckling pattern shown in Fig. 35(2)), which is 

similar to some special results of the single-sized inclusion model discussed in Sec. 4.1.1.2. To 

the contrary, when the diameter contrast ratio decreases bellow 𝑘𝑑 ≈ 0.2 , the critical 

wavenumber starts decreasing from 𝑘𝑐𝑟 = 0.25  and finally reaches 𝑘𝑐𝑟 = 0.15 , which is 

exactly identical to a half of the critical wavenumber of the composite with single-sized 

inclusions.  

 

Fig. 35 The dependence of critical wavenumber on inclusion diameter contrast ratio with spacing ratio 𝜉 =

0.6 in composite with two different-sized inclusions. 
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Finally, we discuss the results with a relatively large spacing ratio, such as 𝜉 = 0.8. In 

Fig. 36, we observe the critical wavenumber staying at a platform value 𝑘𝑐𝑟 = 0.25 for a 

moderate diameter contrast ratio 0.2 ≲ 𝑘𝑑 ≲ 0.92 , where the buckling mode exhibits the 

“zigzag chain” pattern with four inclusions in a wave period (see, for example, the buckling 

pattern illustrated in Fig. 36(2) corresponding to 𝑘𝑑 = 0.6). However, the critical wavenumber 

starts decreasing from 𝑘𝑐𝑟 = 0.25 when the diameter contrast ratio either increases beyond 

𝑘𝑑 ≈ 0.92 or decreases bellow 𝑘𝑑 ≈ 0.2. Eventually, the critical wavenumber reaches 𝑘𝑐𝑟 =

0.219 (identical to the result with single-sized inclusions) at 𝑘𝑑 = 1  or approach 𝑘𝑐𝑟 →

0.1095 (half of the result with single-sized inclusions) at 𝑘𝑑 → 0. Interestingly, the buckling 

pattern exhibits a beat-like phenomenon with 𝑘𝑑 ≳ 0.92  (see, for example, the buckling 

pattern illustrated in Fig. 36(3) corresponding to 𝑘𝑑 = 0.95 ) and a “seemingly chaotic” 

arrangement of inclusions with 𝑘𝑑 ≲ 0.2 (see, for example, the buckling pattern illustrated in 

Fig. 36(1) corresponding to 𝑘𝑑 = 0.1).  
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Fig. 36 The dependence of critical wavenumber on inclusion diameter contrast ratio with spacing ratio 𝜉 =

0.8 in composite with two different-sized inclusions. 

 

4.3 Composite(3D) with single-sized inclusions 

4.3.1 Bloch-Floquet prediction 

4.3.1.1 Dependence of strain on geometric parameters 

In this section, we examine the dependence of the critical strain on the initial geometrical 

parameters of the 3D particulate composites. Fig. 37 shows the dependence of the critical strain 

on the periodicity aspect ratio 𝜂 for various fixed values of the inclusion spacing ratios 𝜉 from 

0.2 to 0.9. Note that, similar to that in the 2D composites, the admissible geometries are 
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restricted by inclusions not exceeding the cell’s boundaries by 𝑑 < 𝑏 and 𝑑 < 𝑎. Therefore, 

the parameter space is limited to 𝜂 > 𝜉. Also similar to our illustration of 2D results in Sec. 

4.1, the dotted and continuous curves correspond to longwave (or macroscopic) and 

microscopic instabilities, respectively.  

 

 

Fig. 37 The dependence of critical strain on periodicity aspect ratio with various spacing ratios for 3D 

particulate composites. Dotted and continuous curves correspond to macroscopic and microscopic instabilities, 

respectively. 

 

For 3D results, we observe earlier buckling in the composites with higher spacing ratios, 

which agrees with the similar trends in 2D results. For both 2D and 3D inclusions, a higher 

spacing ratio will result in the inclusions being placed more closely in the compressive 

direction, bringing stronger inter-inclusion interactions and leading to earlier instability 

development. Interestingly, in 3D particulate composites, the dependence of the critical strain 

on the periodicity aspect ratio is observed as monotonic for all our numerical cases. Recall that 

we observed non-monotonic dependence for 2D composites with large enough spacing ratios, 

considered as the manifestation of two different dominating buckling behaviors in two soft 



84 

particulate systems (see the discussion in Sec. 4.1.1.1 for details). However, the 3D particles 

actually possess smaller volume fractions than 2D particles at the same spacing ratio, since the 

2D inclusions occupy a column space in their 3D extrusion while the 3D particle is a sphere 

enclosed in the column (see the illustration shown in Fig. 38). Therefore, the behavior of 3D 

composites is corresponding to 2D composites with lower spacing ratio, thus, exhibits 

monotonic dependence of the critical strain on the initial geometrical parameters. This 

understanding is also reflected by our results showing that the 3D composites always buckle 

latter than the 2D composites with the same initial geometrical parameters (see the comparison 

between 2D and 3D results in Fig. 11 and Fig. 37, respectively).  

 

Fig. 38 Schematic microstructure of the 3D particulate composite and the 3D extrusion of the 2D particulate 

composite. 

 

4.3.1.2 Dependence of critical wavenumber on geometric parameters 

Next, we examine the dependence of the critical wavenumber on the periodicity aspect 

ratio 𝜂 for various fixed values of the inclusion spacing ratios 𝜉 from 0.2 to 0.9. The results 

are plotted in Fig. 39. We observe that the 3D composites experience macroscopic or longwave 

instability (𝑘𝑐𝑟 → 0 ) for small enough periodicity aspect ratios. After reaching a threshold 

value 𝜂𝑡ℎ  (dictated by the initial spacing ratio value 𝜉 ), the buckling mode switches from 

macroscopic to microscopic ones. Similar to the 2D results, the transition from macro- to 
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micro-instability modes exhibits a binary switch from 𝑘𝑐𝑟 → 0 to 𝑘𝑐𝑟 = 0.5 for small enough 

spacing ratios such as 𝜉 = 0.2 and 𝜉 = 0.3, namely, the “jump-transition”. In 3D composites 

with modest periodicity aspect ratios, the corresponding critical wavenumber continuously 

increases from 𝑘𝑐𝑟 → 0 to 𝑘𝑐𝑟 = 0.5. For the composites with high enough spacing ratios, 

such as 𝜉 = 0.9 , the critical wavenumber continuously increases from 𝑘𝑐𝑟 → 0  but never 

reaches 𝑘𝑐𝑟 = 0.5. However, by comparing the 2D and 3D results with the same spacing and 

periodicity aspect ratios, we find the 3D composites behave similarly to 2D composites with 

lower spacing ratios. For example, 3D composites with 𝜉 = 0.8 exhibits a “full-transition” 

mode from macro- to microscopic insanities, while this transition mode typically occurs in 2D 

composites with 𝜉 ≾ 0.465; the critical wavenumber corresponding to 3D composites with 

𝜉 = 0.9 finally converges to 𝑘𝑐𝑟 → 0.321 with large enough 𝜂, which is similar to that in the 

2D composite with 𝜉 = 0.6, where the critical wavenumber finally converges to 𝑘𝑐𝑟 → 0.3. 

 

 

Fig. 39 The dependence of critical wavenumber on periodicity aspect ratio with various spacing ratios 

for 3D particulate composites. Dotted and continuous curves correspond to macroscopic and microscopic 

instabilities, respectively. 
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5. Conclusion 

In this dissertation research, I have examined the instabilities in soft particulate 

composites and the corresponding pattern transformations via various numerical approaches 

and in different forms and dimensions of composite microstructures.  

Overall, I have conducted numerical studies including the i) Bloch-Floquet analysis; ii) 

the Post-Buckling analysis; iii) the Energy quasi-convexification analysis, and iv) a Hybrid 

method that implements Bloch-Floquet analysis in the Post-Buckling regime. I have also 

developed a post-processing method based on the discrete Fourier transformation (DFT) for 

characterizing post-buckling development. I have also considered different forms of particulate 

composites, including a) 2D rectangular unit cells with single-sized inclusions, b) 2D 

rectangular unit cells with two different-sized inclusions, and c) 3D cuboid unit cells with 

single-sized sphere inclusions. More importantly, I have been focusing on the whole process 

study of the instability development in soft particulate composites, from prior- to post-buckling 

regimes, which helped to uncover a distinctive buckling phenomenon where a secondary 

instability occurs in the post-buckling regime. The results and findings in the dissertation can 

be concluded as follows:  

1) For 2D particulate composites with single-sized inclusions. It has been shown that the 

instabilities are accompanied by the collapse of the initial straight columns of inclusions 

beyond the critical strain level and are followed by the formation of various buckling 

patterns. The buckling patterns predicted by Bloch-Floquet analysis are characterized by 

the corresponding instability eigenmodes. In particular, those eigenmodes exhibit (i) strictly 

doubled periodicity, (ii) seemingly non-periodic state, or (iii) longwave pattern, determined 
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by the initial geometric parameters. The seemingly non-periodic eigenmode occurs with a 

finite critical wavenumber lower than 0.5, indicating a non-integer number of periods. 

However, the post-buckling analysis, which considers the nonlinearity in the post-buckling 

development, predicted buckling patterns with additional and more accurate details. 

Specifically, the formation of various post-buckling patterns has been observed: i) the 

“wavy-chain” of inclusions, ii) the “zigzag-chain” of inclusions, ii) the “periodicity 

doubling” patterns, and iv) the “superposed” patterns (a combination of inclusion sets in 

different length scales), determined by the composite’s initial geometry. Nevertheless, the 

critical strains predicted by the Bloch-Floquet and the post-buckling analysis exhibit good 

agreement. Moreover, the dependence of critical strains on the composite’s initial 

geometric parameters reflects a transition of buckling behavior as the composite’s 

manifestation of two soft particulate systems. The transition between these two different 

soft particulate systems has also been illustrated via the corresponding transition of energy 

landscapes. In particular, by further examination of the development of buckling patterns 

in their post-buckling regime, a distinctive phenomenon – the development of a secondary 

buckling in soft particulate composites – has been numerically discovered, providing a new 

array of instability patterns and opening a new area of interest in buckling analysis.  

2) For 2D particulate composites with two different-sized inclusions. I have shown the 

influence of the diameter contrast ratio (between the two different-sized inclusion) on the 

instability characteristics of the composite. Specifically, with small enough inclusion 

spacing ratios, the composites with two different-sized inclusions buckle latter than those 

with single-sized inclusions, with whatever diameter contrast ratios; while having large 
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enough inclusion spacing ratios, the composites with two different-sized inclusions may 

buckle latter or earlier than those with single-sized ones, determined on the diameter 

contrast ratios. Finally, the buckling patterns of the composites with two different-sized 

inclusions have been found to transit between a) the “zigzag chain” pattern with four 

inclusions in a wave period, b) the “periodicity doubling pattern” and c) the buckling 

pattern corresponding to the composite with single-sized inclusions. 

3) For 3D particulate composites, the results have shown that their buckling behavior is 

similar to the corresponding 2D composites with a lower spacing ratio, which is attributed 

to the fact that the 3D particles always possess a smaller volume fraction than the extrusion 

of 2D particles at the same spacing ratio. 

Based on the obtained results, it can also be realized that the accuracy of predictions using 

various numerical approaches depends upon the form of stiff phases present in the composites. 

Specifically, in composites with continuous stiff phases like stiff fibers and layers, the Bloch-

Floquet analysis proves to be both accurate and efficient. However, when dealing with 

composites containing discretely distributed stiff phases, such as 2D and 3D particles, the post-

buckling analysis (combined with the DFT characterization) yields better accuracy and 

provides more details into the pattern transformations. More interestingly, the Bloch-Floquet 

and post-buckling analyses demonstrate a good agreement for analyzing the secondary 

buckling phenomenon in the post-buckling regime. This behavior stems from the formation of 

the effective "particle-reinforced layer," which exhibits characteristics of both continuous and 

discrete stiff phases. 

It should be noted that, in this study, the composite has been modeled with neo-Hookean 
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energy, which helped minimize the number of material parameters and focus on the interplay 

between the composite’s micro-geometry and its instabilities. However, the high-level 

deformations met in our study could cause stiffening behavior (Arruda et al., 1993; Davidson 

et al., 2013; Gent, 1996; Xiang et al., 2022b) of the polymeric materials, which the neo-

Hookean model is unable to capture accurately. Moreover, many soft materials, such as 

polymers and hydrogels, frequently exhibit strong nonlinear viscoelastic behavior (Naik et al., 

2018; Wu et al., 2018; Mao et al., 2017; Xiang et al., 2020b; Hong et al., 2011; Kumar et al., 

2016). The interplay between viscoelasticity and instabilities in soft particulate composites 

undergoing finite deformation has also been reported (Xiang et al., 2023). Therefore, for future 

work, more complicated material models, such as those considering stiffening or viscoelastic 

behaviors, will be introduced into the numeral models. Their influence on critical loadings and 

critical instability modes, as well as their post-buckling development, will be further 

investigated. 

 

Appendix A  The influence of the number of unit cells in the RVE for post-buckling 

analysis 

In this section, we show the influence of the number of unit cells (built in the RVE) on the 

DFT analysis results of the post-buckling development. We build multiple numerical models 

with different numbers of unit cells in the RVE (in particular, 𝑁 = 20,𝑁 = 40,𝑁 = 80,𝑁 =

120,𝑁 = 160, and 𝑁 = 200). The corresponding DFT results at the compressive strain level 

𝜀 = 0.237 are shown in Fig. 40, where the Fourier coefficient of each curve is scaled so that 

their Fourier peak coefficients are all equal to one. We observe that as the number of unit cells 
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𝑁 increases, the peak point of the curve slightly shifts and finally converges to 𝑘𝑐𝑟 = 0.145. 

A larger 𝑁  can increase the precision of identifying the critical wavenumber since more 

wavenumbers are scanned. The results also show that 𝑁 = 80 provides enough precision for 

the numerical simulation. For all post-buckling analyses using DFT characterization, we use 

the number of unit cells in the RVE no less than 𝑁 = 80 . For post-buckling analysis of 

secondary buckling, we use even 𝑁 = 320 unit cells in the RVE, which ensures the precision 

of both FE simulation and the RVE characterization. 

 

 

Fig. 40 The DFT results of the post-buckling development for composite with spacing ratio 𝜉 = 0.6 

and periodicity aspect ratio 𝜂 = 2.1 at compressive strain 𝜀 = 0.237, for various numbers of unit cells built in 

the RVE (𝑁 = 20,𝑁 = 40,𝑁 = 80,𝑁 = 120,𝑁 = 160, and 𝑁 = 200). 
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