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Abstract	

Many	children	learn	about	fractions	and	ratios	as	topics	in	the	math	classroom,	but	

even	before	we	learn	to	count	we	are	constantly	encountering	these	numerical	

relationships	in	the	things	we	see,	hear,	and	feel	(e.g.	a	third	of	a	cookie,	the	varying	

intensity	and	rhythm	of	a	drum).	Educational	researchers	have	proposed	that	the	ways	we	

understand	fractions	and	ratios	in	these	two	contexts	may	be	fundamentally	intertwined.	

However,	little	research	has	explored	the	specific	question	of	how	our	access	to	the	

meaning	of	a	symbolic	fractions	(e.g.	1/2)	is	related	to	our	perception	of	nonsymbolic	

visual	ratios.	Using	an	educational	neuroscience	approach,	this	dissertation	connects	three	

separate	empirical	approaches	to	compare	symbolic	and	nonsymbolic	magnitude	

processing	from	the	perspectives	of	cognitive	psychology,	neuroscience,	and	educational	

digital	media	research.	First,	analyses	of	magnitude	comparison	performance	(speed	and	

accuracy)	in	computer-based	tasks,	reveal	how	adults	can	rapidly	access	a	sense	of	

magnitude	from	symbolic	and	nonsymbolic	stimuli	within	and	across	formats.	Second,	

analyses	of	neural	activity	during	symbolic,	nonsymbolic	and	cross	format	comparisons,	

indicate	adults	show	considerable	overlap	in	the	regions	the	brain	sensitive	to	changes	in	

fraction	magnitude.	Third,	analyses	of	magnitude	comparison	performance	in	the	context	

of	and	educational	math	game	(Fractions	War)	shows	how	many	effects	of	Study	1	and	2	

observed	in	the	lab	do	and	do	not	extend	to	data	observed	in	digital	informal	learning	

contexts.	Based	on	this	work,	I	argue	that	there	remains	a	great	potential	for	using	

interactive	media	experiences	as	interventions	to	test	the	generalizability	of	numerical	

cognition	theories	and	increase	collaboration	between	neuroscience,	psychology,	and	

educational	researchers.	
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Chapter	1 –	General	Introduction	and	Background	

	

The	Importance	and	Difficulty	of	Fractions	

Among	all	the	topics,	concepts,	and	procedures	that	students	will	learn	in	the	math	

classroom,	the	acquisition	of	fraction	knowledge	may	be	one	of	the	most	important.	

Fractions	introduce	students	to	fundamental	properties	and	concepts	of	numbers	that	

extend	beyond	natural	number	knowledge,	such	as	part-whole	relationships	and	rational	

number	magnitudes	(Siegler	&	Lortie-Forgues,	2014).	Previous	studies	have	demonstrated	

that	fractions	knowledge	can	predict	future	mathematics	achievement	(Bailey	et	al.,	2012;	

Siegler	et	al.,	2012),	and	is	implicated	in	the	formation	of	early	algebraic	reasoning	(Booth	

et	al.,	2014;	Booth	&	Newton,	2012;	DeWolf	et	al.,	2015).		Thus,	fractions	knowledge	has	

been	referred	to	as	a	critical	competency	within	math	education	(National	Math	Advisory	

Panel,	2008).	

Unfortunately,	many	people	face	great	difficulties	with	mastering	fraction	

knowledge	(Siegler,	Fazio,	Bailey,	&	Zhou,	2013;	National	Math	Advisory	Panel,	2008).	One	

way	that	difficulties	with	fractions	manifest	is	when	students	misapply	inappropriate	

whole	number	knowledge	and	strategies	to	support	their	reasoning	with	fractions	(Ni	&	

Zhou,	2005).	This	phenomenon,	often	referred	to	has	whole-number	bias	(Bonato	et	al.,	

2007;	Rinne	et	al.,	2017)	or	the	natural	number	bias	(Gómez	&	Dartnell,	2019;	

Vamvakoussi,	2015),	can	be	described	as	a	preference	or	tendency	to	rely	on	whole-

number	knowledge,	when	rational	number	representations	are	not	as	strong,	precise,	or	

efficient	(Alibali	&	Sidney,	2015).		
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The	question	of	why	fraction	knowledge	is	so	difficult	to	master	is	a	matter	of	

current	debate	among	numerical	cognition	and	math	education	researchers	(Berch,	2017;	

Lewis	et	al.,	2015;	Möhring	et	al.,	2016).	Some	researchers	propose	that	whole-number	

biases	can	be	explained	by	innate	constraints	of	the	cognitive	capacities	that	humans	share.	

Proponents	of	innate	constraints	theories	argue	that	the	foundational	cognitive	systems	for	

understanding	numbers	have	evolved	to	understand	natural	numbers	but	not	necessarily	

the	meaning	of	ratios	and	proportions	(Feigenson	et	al.,	2004;	Geary,	1995).	Innate	number	

systems,	namely	the	Approximate	Number	System	(ANS),	are	described	as	perceptual	

systems	that	enable	a	sense	of	discrete	quantities,	and	in	turn	provide	an	intuitive	basis	

upon	which	people	can	come	to	understand	the	meaning	of	whole	numbers	(Piazza,	2010).	

The	argument	follows	when	we	“push	number	representations	further	to	embrace	

fractions,	square	roots,	negative	numbers	and	complex	numbers,	they	move	even	further	

from	the	intuitive	sense	of	number	provided	by	the	core	systems”	(Feigenson	et	al.,	2004,	p.	

313).		

Other	researchers	suggest	that	difficulties	with	fractions	emerge	as	a	consequence	

of	educational	conventions	and	the	sequencing	of	math	topics	through	development	(Post	

et	al.,	1993).	For	instance,	early	math	education	places	a	much	larger	emphasis	on	whole	

number	concepts	prior	to	introduction	of	fractions.	Given	fractions	are	composed	of	whole	

number	components,	students	may	struggle	to	understand	how	a	new	set	of	rational	

number	rules	applies	to	numbers	symbols	that	they	already	have	a	strong	whole-number	

intuitions	about	(Gelman,	2015;	Ni	&	Zhou,	2005).		

Other	researchers	point	to	the	role	of	education	in	a	different	way.	Citing	the	

emerging	evidence	that	humans	do	have	an	innate	capacity	beginning	early	in	life	to	
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perceive	ratio	relationships	(Jacob,	Vallentin,	&	Nieder,	2012;	Duffy,	Huttenlocher,	&	

Levine,	2005;	McCrink	&	Wynn,	2007),	some	researchers	have	argued	that	this	intuitive	

sense	of	rational	numbers	has	not	been	fully	realized	as	a	powerful	educational	foundation	

(Lewis,	Matthews,	&	Hubbard,	2015).	In	other	words,	difficulties	learning	fractions	may	be	

partially	addressed	by	emphasizing	educational	approaches	that	leverage	this	intuitive	and	

perceptual	sense	of	ratio.	Thus,	this	ratio	processing	system	(RPS),	may,	like	the	ANS	for	

whole	numbers,	provide	a	neurocognitive	startup	tool	upon	which	a	grounded	

understanding	of	fractions	can	be	built.	Overreliance	on	educational	approaches	that	

emphasize	an	interpretation	of	fractions	as	discrete	and	countable	parts	may	bolster	the	

tendency	of	students	to	rely	on	whole	number	background	knowledge,	rather	than	forming	

new	conceptions	of	relationally	defined	magnitudes	(Matthews	&	Ellis,	2018).	This	leads	to	

the	critical	question	of	whether	educators	and	instructional	designers	can	create	learning	

experiences	that	encourage	a	deeper	understanding	of	what	these	otherwise	meaningless	

and	complex	number	symbols	mean.		

In	this	dissertation,	I	examine	and	discuss	a	fundamental	piece	of	ratio	processing	

theory	and	how	it	applies	to	the	understanding	of	fractions.	Specifically,	the	theory	

proposes	than	an	intuitive	perceptual	understanding	of	ratios	can	provide	a	foundation	

upon	which	education	can	ground	a	stronger	understanding	of	fractions	(even	when	

presented	as	number	symbols).	Yet	before	we	can	address	this	theoretical	relationship	as	a	

mechanism	for	fractions	learning,	we	must	evaluate	more	basic	questions	regarding	how	

similarly	or	differently	people	understand	the	meaning	of	perceptually	defined	ratios	and	

fractions	represented	as	number	symbols.	Are	the	internal	representations	of	magnitude	

that	people	access	from	these	different	external	fraction	and	ratio	representations	
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compatible,	the	same,	or	completely	distinct?	How	easily	can	people	find	shared	meaning	

across	these	formats?	In	this	dissertation	I	aim	to	address	these	questions	using	an	

interdisciplinary	approach,	which	tests	hypotheses	of	RPS	theory	with	traditional	

psychological	and	neuroscience	methods	and	evaluates	a	model	of	using	educational	games	

to	provide	critical	tests	of	how	lab-based	results	correspond	to	real-life	educational	

contexts.	

Representational	Fluency	with	Fraction	and	Ratios		

One	way	of	studying	the	cognitive	mechanisms	involved	in	fractions	knowledge,	and	

the	sources	of	difficulties	acquiring	this	knowledge,	is	to	consider	broader	theoretical	

questions	about	how	humans	encode	the	meaning	of	otherwise	meaningless	symbols	

(Harnad,	1990;	Leibovich	&	Ansari,	2016;	Reynvoet	&	Sasanguie,	2016).	A	central	cognitive	

construct	that	connects	the	three	studies	in	this	dissertation	is	representational	fluency	

with	fractions,	which	I	define	as	the	ability	to	quickly	and	effortlessly	translate	between	

different	(external)	representations	of	fractions	and	ratios	by	accessing	a	common	internal	

representation	of	their	meaning.	Perceptual	fluency	has	been	previously	described	as	

having	the	ability	to	rapidly	identify	common	concepts	across	different	external	

representations	(e.g.	numerical	visualizations	and	graphs)	(Kellman	et	al.,	2008)	and	

having	readily	accessible	perceptual	knowledge	resulting	from	experience	with	these	visual	

representations	(Rau	et	al.,	2015).	Thus,	the	concept	of	representational	fluency	describes	

the	critical	capacity	to	connect	knowledge	of	fractions	as	a	symbolic	representation	to	a	

sense	of	ratio	magnitude	understood	via	the	perceptions	of	nonsymbolic	ratios.		

In	this	dissertation	I	will	use	the	term	representation	to	refer	either	to	an	external	

representation	of	fractions	and	ratios	or	an	internal	mental	representations	of	the	meaning	
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these	external	representations	refer	to	(G.	A.	Goldin	&	Kaput,	1996).	In	studying	how	

people	understand	these	external	representations,	this	dissertation	will	generally	examine	

the	processing	of	two	distinct	formats:	symbolic	fractions	(e.g.	1/2)	and	nonsymbolic	ratios	

(e.g.	a	line	half	as	long	as	another).	In	comparing	how	individuals	understand	these	two	

external	representations,	the	aim	will	be	to	gain	insight	into	the	relationship	between	the	

internal	representations	of	meaning	that	people	access	from	symbolic	and	nonsymbolic	

stimuli.	Furthermore,	this	dissertation	attempts	to	gain	additional	insight	into	the	nature	of	

internal	representations	by	observing	neural	representations	of	magnitude	processing	from	

these	external	forms.	Specifically,	I	will	explore	how	neural	activations	represent	biological	

manifestations	of	processing	symbolic	and	nonsymbolic	stimuli	and	activating	an	internal	

sense	of	the	magnitudes	they	represent.	

In	regard	to	the	internal	representation	of	fractions	meaning,	it	is	important	to	note	

that	there	is	no	one	singular	meaning	that	fractions	must	refer	to	(Kieren,	1976).	Fractions	

can	represent	multiple	rational	number	concepts	such	as	part	whole	relationships,	ratios,	

division,	discrete	quantities	and	continuous	quantities	(Behr	et	al.,	1983).	In	this	

dissertation	I	focus	on	how	fractions	represent	ratio	relationships	and	in	doing	so	

represent	rational	number	magnitudes	that	are	relationally	defined,	meaning	a	sense	of	

magnitude	that	emerges	from	the	relationship	between	two	values	(Kalra,	Matthews,	et	al.,	

2020;	Matthews	&	Ellis,	2018).	Therefore,	in	my	analysis	of	perceptual	fluency	with	

fractions,	I	will	be	exploring	the	extent	to	which	people	can	quickly	and	accurately	access	a	

sense	of	relationally	defined	magnitudes,	be	they	presented	as	a	symbolic	(numerical)	

numerator	and	a	denominator,	a	ratio	of	two	line	lengths,	a	ratio	of	circle	areas,	or	even	as	

the	relationship	between	the	value	of	two	playing	cards.	In	the	three	empirical	studies	
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presented	in	the	following	chapters,	I	operationalize	the	construct	of	representational	

fluency	in	the	context	of	magnitude	comparison	performance.	

This	dissertation	evaluates	the	relationship	between	external,	internal,	and	neural	

representations	of	fractions	and	ratios	with	the	goal	of	describing	mechanisms	of	

numerical	cognition	which	may	generalize	to	adult	educated	populations.	Some	theories	of	

math	education	take	strong	stances	against	the	assumption	that	there	are	internal	mental	

representations	of	mathematical	concepts	which	we	as	humans	necessarily	share	(Steffe	&	

Kieren,	1994;	von	Glassersfeld,	1995).	From	this	perspective	external	representations	of	

fractions	and	ratios	do	not	contain	meaning	that	people	can	access,	but	rather	these	

external	forms	can	only	elicit	the	meaning	that	individuals	construct	from	their	own	unique	

existing	knowledge	(R	Lesh	&	Doerr,	2003).	These	perspectives	offer	valuable	lenses	for	

appreciating	the	individualistic	nature	of	math	knowledge,	and	emphasize	how	attempts	to	

describe	internal	representations	of	math	knowledge	in	general	terms	will	inevitably	be	

imperfect	and	incomplete	(G.	A.	Goldin	&	Kaput,	1996).	Nevertheless,	I	argue	that	it	is	still	

valuable	to	study	whether	there	are	common	foundations	of	knowledge	that	we	can	

generalize	across	individuals	despite	the	individualistic	manifestations	of	that	knowledge	

across	people.	Adopting	the	assumption	that	there	are	internal	representations	of	

knowledge	at	this	general	level,	affords	the	study	of	how	commonalities	emerge	because	of	

shared	educational	experiences	or	even	by	our	nature	of	sharing	the	same	human	bodies	

and	nervous	systems.		

This	dissertation	aims	to	draw	inferences	about	human	numerical	processing	with	

fractions	and	ratios	by	first	testing	this	assumption	that	there	are	meaningful	

commonalities	in	neural	and	cognitive	processing,	which	we	as	humans	typically	share.	
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From	this	premise,	we	can	then	study	how	factors	such	as	educational	experiences,	

biological	development,	and	specific	expertise	build	from	these	common	cognitive	

structures	to	create	the	richness	of	individual	differences	in	understanding	fractions	and	

ratios.		

Mathematical	Cognition	across	Contexts	

	 Most	numerical	cognition	research	into	the	topic	of	fractions	knowledge	and	its	

development	has	been	performed	within	the	context	of	the	research	lab	via	controlled	

experimental	tasks.	This	can	be	a	serious	limitation	to	the	ecological	validity	of	research	

when	the	goal	is	to	discover	empirical	knowledge	that	has	the	potential	to	impact	math	

instruction	or	help	teachers	gain	greater	insights	into	the	minds	of	their	students.	The	

question	then	becomes	how	to	connect	the	scientific	rigor	of	the	controlled	lab	study	with	

the	access	to	learners	while	they	are	in	their	true	learning	environments	(Han	et	al.,	2019).	

One	key	to	forging	this	connection	is	reflecting	on	how	expressions	of	human	cognition	are	

shaped	by	the	context	in	which	we	as	researchers	observe	and	measure	them.	In	the	

traditional	controlled	lab	setting,	features	of	the	environment	and	the	stimuli	are	carefully	

designed	to	strip	away	extraneous	details	in	order	to	test	specific	hypotheses,	yet	as	a	

consequence	the	researcher	creates	a	very	unique	context	for	studying	behavior	relative	to	

how	that	behavior	exists	in	the	world.	Thus	efforts	to	ask	the	same	research	questions	

across	contexts	of	the	lab	and	real-life	contexts	are	critical	for	testing	of	numerical	

cognition	theories	aimed	at	explaining	mechanisms	of	math	learning	(Ansari	&	Coch,	2006;	

Han	et	al.,	2019;	Rosenberg-Lee,	2018;	Varma	et	al.,	2008).		

In	this	dissertation,	I	will	discuss	how	collaboration	between	cognitive	researchers	

and	educational	game	designers	can	be	one	impactful	way	to	achieve	this	goal	(Chapter	4).	
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The	notion	that	video	games	and	the	behaviors	within	these	virtual	experiences	represent	a	

contexts	of	learning	in	real-life	may	be	controversial,	especially	when	we	consider	the	ways	

that	these	experiences	can	be	designed	so	players	can	roleplay	as	a	make-believe	persona	

or	use	the	game	as	an	outlet	to	escape	from	reality	(Molesworth,	2009).	Nevertheless,	these	

virtual	designed	experiences	are	gaining	a	real	presence	in	the	lives	of	adults	and	children	

in	industrialized	societies	as	forms	of	entertainment	and	increasingly	as	forms	of	

education.	As	of	a	2016	survey,	teens	and	tweens	(8-	to12-year-olds)	spend	about	9	hours	

and	6	hours	respectively	in	front	of	screens,	to	access	social	media,	watch	TV	and	play	

video	games	(Rideout,	2016).	Furthermore,	the	presence	of	commercial	or	educational	

games	in	classrooms,	homes	and	informal	learning	settings	continues	to	grow	(Brom	et	al.,	

2010;	Hainey	et	al.,	2016).	In	situations	where	education	must	rely	largely	on	virtual	and	

digital	media	to	engage	students	with	the	learning	content	(such	as	the	2020	COVID-19	

pandemic),	there	is	a	critical	need	for	empirical	knowledge	about	how	the	design	of	these	

experiences	affects	learning	and	the	assessment	of	student	knowledge.	Collaborations	

between	cognitive	science	researchers	and	educational	game	designers	create	the	

possibility	to	both	observe	constructs	of	numerical	cognition	in	these	virtual	real-life	

experiences	and	in	turn	deepen	our	understanding	of	effective	educational	game	design.	

Educational	Video	Games	as	Research	Tools	

To	discuss	the	effects	of	the	educational	video	game	context	on	fraction	knowledge,	

it	is	important	to	define	what	this	context	entails,	in	reference	to	both	the	specific	game	

used	in	this	dissertation	and	to	educational	video	games	in	general.	Generating	a	definition	

of	educational	games	is	not	straightforward.	In	the	past,	different	researchers	have	tried	to	

identify	different	key	features	which	all	games	share	(Garris,	Ahlers,	Driskell,	et	al.,	2002;	
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Gee,	2007).	Other	researchers	deny	the	idea	that	there	is	a	definitive	list	of	attributes	which	

separate	games	from	other	activities	and	state	that	games	fit	in	the	same	semantic	category	

because	they	bear	a	family-resemblance	to	one	another	(Arjoranta,	2014;	Wittgenstein,	

1953).		

In	this	dissertation,	the	goal	in	defining	an	educational	video	game	context	is	to	

enable	research	which	can	begin	to	identify	specific	mechanisms	unique	to	games,	which	

may	create	a	different	psychological	experiences	than	cognitive	tasks	designed	for	

controlled	laboratory-based	research.	Features	common	among	games	can	be	applied	to	

the	design	of	experimental	tasks	and	educational	activities	(e.g.	simulations),	yet	the	

inclusion	of	these	features	does	not	necessarily	make	them	games(Crookall	et	al.,	1987).	In	

a	complementary	way,	games	can	be	implemented	in	ways	that	can	make	the	player	feel	

more	like	they	are	completing	an	obligatory	task.		

Therefore,	when	I	describe	the	experimental	manipulation	of	task	vs	game	in	Study	

3	(Chapter	5),		I	outline	several	features	common	to	many	(but	not	all)	educational	games	

(Wittgenstein,	1953)	and	hypothesize	how	the	manipulation	of	these	features	across	

contexts	lead	to	psychological	changes.	For	instances,	there	are	differences	in	the	goal	of	

these	designed	experiences.	While	both	math	games	and	math	tasks	are	designed	to	have	

individuals	interact	with	some	math	content,	the	primary	goal	of	the	task	is	to	assess	and	

observe	abilities	while	the	primary	goal	of	the	educational	game	is	to	instruct	and	engage	

players	in	a	fun	activity.	Furthermore,	there	are	differences	in	the	aesthetic	design	of	these	

activities.	The	design	of	experimental	tasks	often	includes	the	stripping	away	of	extraneous	

details	that	may	create	distractions	or	introduce	confounds	that	obscure	the	interpretation	

of	results	(Han	et	al.,	2019);	the	design	of	educational	games	often	includes	more	visual	
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detail	and	artistic	expression	to	create	an	experiences	which	is	aesthetically	pleasing.	There	

are	also	differences	in	ways	that	performance	is	motivated	to	express	the	extent	of	an	

individual’s	abilities	and	knowledge.	In	experimental	tasks,	we	instruct	participants	to	give	

their	best	effort,	provide	simple	feedback,	and	rely	on	the	participants’	desire	to	provide	

valid	data.	In	educational	games,	motivation	is	encouraged	by	design	features	such	as	

competitions,	reward	systems,	and	increasing	challenges	which	rely	on	players	desire	to	

win	and	experience	the	success	of	overcoming	challenges.	Additional	distinctions	between	

tasks	and	games	are	discussed	in	following	chapters	with	further	elaboration	on	how	these	

distinctions	do	not	always	create	clear	and	separate	theoretical	contexts.	Nevertheless,	I	

argue	that	attention	to	these	distinctions	and	the	cooccurrence	of	more	game-like	or	task-

like	attributes	can	help	identify	the	family	resemblance	of	activities	which	we	can	group	

into	either	category.	

Visual	Representations	of	Math	in	Games	

In	a	math	game,	players	are	presented	with	visual	representations	of	the	

educational	content	(e.g.	fractions	and	ratios),	which	must	also	fit	the	game’s	theme,	

narrative,	or	genre.	The	effectiveness	of	visual	representations	in	video	games	as	tools	to	

help	players	learn	requires	the	player	to	have	some	knowledge	of	the	educational	concepts	

and	representational	competencies	to	accurately	and	fluently	understand	how	those	visuals	

correspond	to	the	educational	concepts	(Gilbert,	2005;	Rau	&	Matthews,	2017).	For	

example,	slices	of	pizza	could	be	used	in	a	game	to	teach	now	fractions	represent	parts	of	a	

whole,	but	the	educational	effectiveness	of	this	approach	depends	on	the	student’s	ability	

to	see	and	understand	this	correspondence	between	the	visuals	and	formal	math	concepts.		
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In	this	dissertation,	I	explore	a	specific	case	of	using	visual	representations	in	games	

when	those	visual	representations	are	made	from	repurposing	traditional	playing	cards.	

Playing	cards	are	a	cultural	artifact	which	can	be	adaptively	used	to	play	a	countless	

number	of	different	games,	and	across	an	adult	population	there	may	be	a	wide	variety	of	

expertise	with	playing	cards	and	their	visual	form.	In	my	analysis	of	gameplay	data,	I	

investigate	whether	this	prior	expertise	with	playing	cards	outside	of	the	educational	game	

context	leads	to	measurable	differences	in	how	fluently	and	accurately	adults	access	a	

sense	of	fraction	magnitude	from	playing	cards	in	a	game.	In	other	words,	can	individual	

differences	in	playing	card	expertise	and	fluency	mediate	gameplay	performance	in	

Fractions	War?	Addressing	this	question	has	the	potential	to	elucidate	ways	that	applying	

general	theories	of	magnitude	processing	with	visual	ratios	to	the	design	of	real-life	

learning	experiences	requires	specific	attention	to	the	nature	of	visual	representations	and	

learners’	previous	experiences	with	these	visual	representations.	

Summary	of	Studies	

From	brains	to	games,	this	dissertation	explores	the	question	of	how	people	

understand	rational	number	magnitudes	when	they	are	presented	with	different	formats	

and	in	different	contexts.	In	Chapters	2	and	3,	I	examine	neurocognitive	theories	regarding	

the	nature	of	internal	representations	underlying	ratio	processing	and	fraction	knowledge	

within	the	controlled	experimental	environment	of	the	research	lab	and	the	fMRI	scanner	

In	Chapter	4,	I	review	arguments	for	why	educational	games	can	play	a	powerful	role	in	

educational	and	neuroscience	research	as	tools	for	testing	specific	interventions	and	

assessing	players	knowledge	though	the	analysis	of	gameplay	data.	In	Chapter	5,	I	put	this	

argument	to	the	test	by	using	an	educational	game,	Fractions	War,	to	observe	if	visual	
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representations	of	content	in	games	and	broader	gameplay	context	shape	the	players	

abilities	to	fluently	reason	with	fraction	and	ratio	magnitudes.	Through	this	

interdisciplinary	approach,	I	aim	to	identify	and	connect	theories	of	learning	across	fields	

of	research	to	observe	where	these	perspectives	converge	and	where	they	each	elucidate	

unique	can	critical	aspects	of	developing	fractions	knowledge.	

In	Chapter	2,	I	explore	the	question	of	whether	perceiving	the	magnitude	a	visual	

ratio	and	accessing	the	magnitude	of	a	fraction	rely	on	a	similar	internal	representations	of	

rational	number	magnitude.	I	approach	this	question	by	examining	the	similarities	and	

differences	in	speed	and	accuracy	of	magnitude	judgements	made	with	pairs	of	symbolic	

fractions,	nonsymbolic	ratios,	and	symbolic-nonsymbolic	cross-format	stimuli.	Specifically,	

the	goals	of	this	study	were	to	evaluate	(a)	whether	adults	show	evidence	of	holistic	

magnitude	processing	in	all	formats	(including	cross-format	judgements),	(b)	whether	

cross-format	processing	is	more	difficult	than	within	symbolic	or	nonsymbolic	formats,	and	

(c)	whether	adults	show	evidence	of	efficient	nonsymbolic	ratio	processing	abilities.	Across	

two	experiments	I	evaluate	these	research	questions	and	additionally	explore	how	the	

complexities	of	these	symbolic	and	nonsymbolic	forms	interact	with	holistic	magnitude	

processing.	

	 In	Chapter	3,	I	utilize	functional	magnetic	resonance	imaging	(fMRI)	to	further	

explore	the	question	of	whether	similar	regions	of	the	brain	support	the	understanding	of	

rational	number	magnitudes	when	those	magnitudes	are	presented	as	visual	ratios	or	

symbolic	fractions.	Using	whole-brain	analyses,	I	evaluated	the	localization	of	brain	regions	

sensitive	to	magnitude	processing	within	each	of	formats	and	identified	shared	and	non-

shared	areas	supporting	an	understanding	of	these	two	external	formats.	Moreover,	we	



	 	

	

13	

13	
13  

examined	whether	brain	regions	sensitive	to	holistic	magnitude	converged	within	specific	

regions	of	the	parietal	cortex	associated	with	magnitude	processing.		

	 In	Chapter	4,	I	present	a	review	of	educational	games	research	and	theory	to	discuss	

the	potential	of	utilizing	educational	games	as	a	tool	to	extend	numerical	cognition	and	

math	education	research.	First,	I	address	how	the	dynamic	and	visual	nature	of	video	

games	may	be	used	to	study	how	learners	develop	representational	competencies	with	

visual	representations	in	digital	learning	contexts.	Second,	I	discuss	how	researchers	thus	

far	have	assessed	the	generally	accepted	assumption	that	situating	learning	content	in	

games	should	improve	engagement	and	positive	emotional	associations	with	educational	

content.	Lastly,	I	describe	how	games	have	been	put	forth	as	a	means	of	stealth	assessment	

where	gameplay	and	associated	data	can	serve	as	formal	assessment	to	support	learning	in	

the	game.	

	 In	Chapter	5,	I	present	a	series	of	experiments	that	embody	these	arguments	for	the	

use	of	games	in	numerical	cognition	research.	In	doing	so,	I	evaluate	the	viability	of	this	

empirical	approach	and	examine	whether	the	behaviors	observed	in	Studies	1	and	2	

replicate	in	an	educational	game	context.	By	contrasting	adult	performance	in	analogous	

magnitude	comparison	activities	contextualized	within	either	an	assessment-based	

comparison	task	or	an	educational	math	game	I	evaluate	the	effect	of	context	on	

magnitudes	processing	with	symbolic	and	nonsymbolic	ratios.	Specifically,	I	evaluate	the	

effect	of	repurposing	known	visual	forms	(playing	cards),	as	visual	representations	of	

fractions	and	ratios,	and	how	these	effects	interact	with	prior	expertise	and	fluency	with	

these	visual	forms.	
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	 In	Chapter	6,	I	conclude	with	a	summary	of	the	findings	observed	across	the	three	

studies	to	illustrate	how	neurocognitive,	learning	science,	and	multimedia	theories	of	

learning	can	work	together	to	bridge	an	understanding	of	how	people	access	the	meaning	

of	fractions	and	ratios	in	applied	settings.	The	studies	in	this	dissertation	progress	from	

detailed	analyses	of	seemingly	simple	line	ratios	and	fractions,	to	more	complex	forms	of	

circle	ratios	and	double-digit	fractions,	and	onto	representations	of	these	symbolic	and	

nonsymbolic	forms	embedded	in	an	educational	video	game.	Through	this	progression,	I	

describe	how	neurocognitive	theories	regarding	the	perceptual	foundations	of	fractions	

knowledge	work	together	with	perceptual	learning	theories	to	articulate	how	people	may	

construct	understandings	and	fluencies	of	visual	representations	upon	these	foundational	

systems.	Moreover,	perceptual	learning	theories	work	together	with	multimedia	learning	

theories	to	explain	how	expertise	and	representational	competencies	interact	with	the	

cognitive	load	of	rich	digital	environments.	Lastly,	the	use	of	educational	games	as	research	

tools	to	test	applied	theories	of	learning	can	serve	as	a	catalyst	for	these	rich	

interdisciplinary	projects,	and	in	turn	may	build	applied	knowledge	about	how	these	

powerful	educational	can	be	optimized	in	design	and	application.	

	 	



	 	

	

15	

15	
15  

Chapter	2 –Evidence	for	an	Association	Between	Fractions	and	the	Ratios	They	
Represent	

Introduction	

A	fundamental	question	in	numerical	cognition	research	is	how	people	come	to	

understand	the	meaning	of	number	symbols	(e.g.	2,	“ten”,	¾).	This	question,	often	posed	as	

the	symbol	grounding	problem	for	numbers,	asks	how	people	can	interpret	symbolic	tokens,	

such	as	Arabic	numerals,	as	the	magnitudes	they	refer	to	and	understand	their	meaning	in	

a	way	external	to	the	arbitrary	symbolic	shapes	of	numerical	notation	(Harnad,	1990).		One	

debated	solution	to	this	question	is	that	sensory	experiences	with	nonsymbolic	quantities	

and	magnitudes	develop	internal	representations	of	number	meaning,	which	then	may	

ground	the	meaning	of	number	symbols	(for	review	see	Leibovich	&	Ansari,	2016;	

Reynvoet	&	Sasanguie,	2016).	Previous	research	has	largely	focused	on	whole	number	

processing,	but	more	recently	this	work	has	extended	to	study	rational	number	processing	

with	fractions	and	ratios	(Ischebeck	et	al.,	2009;	Siegler	et	al.,	2011).		

Studying	fractions	as	symbolic	representations	of	magnitudes	presents	new	

perspectives	on	the	symbol	grounding	problem	with	numbers	relative	to	previous	research	

with	whole	number	processing.		The	symbol	grounding	problem	with	fractions	involves	

asking	how	the	mind	represents	forms	of	numerical	meaning	beyond	whole	number	

concepts,	such	as	non-integer	magnitudes,	proportions,	and	ratios.	Whereas	a	single	whole	

number	corresponds	to	a	specific	magnitude,	infinitely	many	equivalent	fractions	can	refer	

the	same	rational	number	magnitude	using	a	more	complex	syntactical	structure.	Thus,	

studying	fractions	also	involves	identifying	how	the	mind	parses	meaning	from	a	fraction’s	

bi-partite	structure	(numerator	over	denominator).	Specifically,	how	do	people	integrate	
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the	relationship	between	numbers	to	access	a	sense	of	relatively	defined	magnitudes	

(Matthews	&	Ellis,	2018)?	Previous	studies	indicate	that	adults	and	children	can	perform	

this	integrative	process	to	access	a	fraction’s	holistic	magnitude	(Binzak	&	Hubbard,	2020;	

Schneider	&	Siegler,	2010).	However,	further	research	is	necessary	to	understand	the	

nature	of	this	integration	process.	In	the	current	study,	we	aimed	to	address	this	by	directly	

comparing	how	magnitude	processing	with	symbolic	fractions	relates	to	the	processing	of	

nonsymbolic	ratios,	instantiated	in	the	relative	size	of	two	visually	defined	magnitudes.		

In	this	study,	we	also	examined	how	adults	access	a	common	sense	of	magnitude	

when	judgements	of	rational	number	magnitude	are	made	across	symbolic	and	

nonsymbolic	formats.	There	are	many	features	that	distinguish	symbolic	fractions	and	

nonsymbolic	ratios	including	their	visual	form	and	the	contexts	in	which	we	interact	with	

them.	Symbolic	fractions	are	rational	numbers	represented	by	two	numeric	components	

vertically	separated	by	a	vinculum	line.	Using	this	bipartite	structure,	fractions	can	

symbolically	represent	a	multitude	of	rational	number	concepts	such	as	proportions,	parts	

of	a	whole,	and	ratios	(Behr	et	al.,	1983).	On	the	other	hand,	nonsymbolic	fractions	are	the	

instantiations	of	proportions,	ratios,	and	parts	of	a	whole	in	the	world.	They	can	be	

observed	in	multiple	modalities	(e.g.	sound,	shape,	time)	and	in	naturally	occurring	

phenomena	or	human-made	percepts,	such	as	visual	examples	made	for	educational	

purposes.		

We	are	specifically	interested	in	how	people	understand	the	magnitude	of	rational	

numbers	when	they	are	represented	symbolically	by	common	fractions	or	instantiated	

visually	in	a	nonsymbolic	part-part	relationship.	By	directly	contrasting	magnitude	

processing	with	these	formats,	we	explored	the	ways	processing	these	formats	are	similar	
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and	unique.	Specifically,	evidence	that	magnitude	comparison	behaviors	are	modulated	by	

the	magnitudes	of	these	numbers	irrespective	of	their	external	form	would	support	the	

existence	of	abstract	mental	representations	of	rational	numbers		(Dehaene	et	al.,	1998).	To	

further	test	this	idea,	we	examined	whether	adults	could	access	a	common	magnitude	code	

across	formats.	Evidence	for	a	common	magnitude	code,	which	can	enable	cross-format	

reasoning,	would	support	the	possibility	that	prior	experiences	with	nonsymbolic	

perceptual	ratios	may	help	ground	an	understanding	of	symbolic	fractions.			

Symbolic	Fraction	Representations	of	Magnitude	

	 Research	into	how	people	learn	the	meaning	of	symbolic	fractions	has	practical	

educational	implications	and	stands	to	expand	the	empirical	understanding	of	human	

numerical	cognition	more	broadly.	Knowledge	about	rational	number	concepts	provides	a	

foundation	for	many	advanced	mathematical	ideas	integral	to	occupations	and	everyday	

life.	For	example,	rational	number	knowledge	can	be	applied	to	understand	the	scale	of	an	

architect’s	model,	the	ratio	of	ingredients	in	a	recipe,	or	the	acceleration	of	a	new	car.		In	

the	U.S.	educational	system,	fractions	are	introduced	years	after	students	are	introduced	to	

natural	numbers	(Common	Core	Standards	Initiative,	2015).	Therefore,	learning	about	

fractions	often	involves	introducing	new	number	properties,	like	how	numbers	are	not	

always	countable	entities	and	infinite	numerical	magnitudes	exist	between	integer	

values(Siegler	et	al.,	2011;	Siegler	&	Lortie-Forgues,	2014).	Sometimes	these	new	features	

of	fractions	may	seem	in	conflict	with	their	whole-number	experiences,	such	as	how	the	

multiplication	of	a	number	by	a	proper	fraction	can	make	a	smaller	product	or	dividing	a	

number	by	a	fraction	can	make	a	larger	quotient.	Furthermore,	students	must	learn	about	

fractions’	symbolic	structure	and	develop	an	understanding	of	how	two	numerical	
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components	can	represent	one	magnitude,	i.e.,	how	the	magnitude	of	a	number	can	be	

understood	as	the	size	of	one	value	relative	to	another.		

Multiple	studies	have	highlighted	how	learning	about	fractions	is	difficult,	especially	

relative	to	whole	number	learning	(Lortie-Forgues	et	al.,	2015;	Ni	&	Zhou,	2005),	which	has	

spurred	multiple	theories	regarding	how	fraction	knowledge	develops	and	whether	

rational	number	concepts	are	compatible	with	human’s	numerical	intuitions.	Evolutionary	

theories	regarding	the	core	systems	for	numerical	cognition	suggest	that	fractions	are	

difficult	to	learn	because	there	are	no	pre-existing	cognitive	structures	to	support	an	

intuitive	sense	of	rational	number	meaning	in	the	ways	that	there	are	systems	to	support	

whole	number	understanding	(Feigenson	et	al.,	2004).	Other	theories	focus	on	how	

children’s	predispositions	to	think	of	numbers	like	whole	numbers,	as	countable	entities	

with	unique	successors,	may	hinder	the	acquisition	of	fractions	knowledge	(Gelman	&	

Williams,	1998).	From	these	perspectives	fraction	knowledge	may	be	seen	as	necessarily	

an	extension	of	symbolic	whole	number	knowledge.	This	may	explain	why	fraction	

instruction	is	often	delayed	until	multiple	years	after	whole	number	instruction.	However,	

others	have	pointed	out	that	delaying	fractions	instruction	in	the	sequence	of	formal	math	

learning	may	make	the	issue	of	introducing	new	rational	number	concepts	and	syntax	more	

difficult,	because	students	first	establish	whole	number-based	assumptions	then	rearrange	

them	to	build	up	new	fractions	knowledge	(Gelman,	2015).	Furthermore,	some	reject	the	

assumption	that	fraction	knowledge	must	necessarily	be	taught	as	an	extension	of	whole	

number	knowledge	and	suggest	that	perceptual	abilities	people	have	about	nonsymbolic	

ratios	and	proportions	could	provide	a	more	intuitive	foundation	for	fractions	knowledge	if	

utilized	effectively	in	early	education	(Lewis	et	al.,	2015).		
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Previous	studies	examining	how	individuals	understand	the	magnitudes	of	symbolic	

fractions	have	focused	on	whether	people	are	biased	towards	componential	processing	of	a	

fraction’s	individual	whole	number	parts	or	whether	people	can	integrate	the	relationship	

between	the	components	to	access	a	fraction’s	holistic	magnitude	(Meert	et	al.,	2009;	

Schneider	&	Siegler,	2010;	Zhang	et	al.,	2014).	Mixed	evidence	for	componential	and	

holistic	processing	across	studies	indicates	that	adults	tend	to	process	fractions	differently	

given	the	task	demands	(Fazio	et	al.,	2016;	Toomarian	&	Hubbard,	2018).	For	instance	

evidence	for	componential	processing	in	magnitude	comparison	tasks	emerge	when	

numerators	or	denominators	carry	sufficient	information	for	success	on	a	task	(e.g.	judging	

1/7	is	larger	than	1/9	because	numerators	are	constant	and	7	is	smaller	than	9)	(Bonato	et	

al.,	2007;	Toomarian	&	Hubbard,	2018).	However,	evidence	that	people	can	access	a	

holistic	sense	of	a	fractions	magnitude	emerges	in	tasks	where	numerators	and	

denominators	are	unique	in	the	fractions	being	compared	(Meert	et	al.,	2010).		

Evidence	for	holistic	magnitude	processing	is	often	inferred	from	the	presence	of	

significant	numerical	distance	effects	(NDE)	in	response	times	and	accuracy.	Specifically,	

numerous	studies	using	symbolic	fraction	magnitude	comparison	tasks	have	observed	

NDEs	with	response	times	and	error	rates	decreasing	as	the	differences	between	

magnitudes	comparison	pairs	increase	(Binzak	&	Hubbard,	2020;	DeWolf	et	al.,	2014;	

Schneider	&	Siegler,	2010).	Crucially,	these	distance	effects	were	significantly	related	to	

holistic	fraction/ratio	magnitudes	above	and	beyond	the	influence	of	the	fraction’s	specific	

components	(Ischebeck	et	al.,	2009).	NDEs	observed	with	symbolic	numbers	have	long	

been	interpreted	as	a	response	function	resembling	how	individuals	would	discriminate	

physical	stimuli,	such	as	the	length	of	lines	(Moyer	&	Landauer,	1967),	yet	direct	and	
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careful	comparison	between	symbolic	and	nonsymbolic	stimuli	is	necessary	to	test	this	

interpretation.	

Nonsymbolic	Instantiations	of	Ratio	Magnitudes	

In	addition	to	evaluating	a	magnitude	or	a	quantity	as	how	many	and	how	much	of	an	

absolute	value	(e.g.	items	in	a	set,	or	height	of	figure),	people	can	also	evaluate	a	magnitude	

as	how	much	more	or	less	the	magnitude	is	relative	to	a	standard.	These	perceivable	

relationships	between	magnitudes,	hereafter	referred	to	as	nonsymbolic	ratios,	can	take	

multiple	forms.	For	example,	a	tree	half	as	tall	as	another	or	a	sound	half	as	loud	as	another	

are	nonsymbolic	ratios	that	people	may	quantify	with	the	symbolic	label	1/2,	but	also	may	

perceive	without	any	symbolic	associations.	Nonsymbolic	ratios	may	also	be	human-made	

iconic	representations	of	rational	number	concepts,	such	as	visualizations	in	education	and	

data	visualization	(e.g.	pie	charts)	which	strip	away	detailed	surface	features	to	help	

individuals	see	the	rational	number	concepts	and	magnitudes.		

Researchers	in	the	past	several	years	have	proposed	that	a	fundamental	aspect	of	

human	numerical	cognition	is	the	ability	to	automatically	perceive	these	nonsymbolic	

ratios	in	the	world	and	integrate	ratio	magnitude	information	into	decision	making	(Jacob	

et	al.,	2012).	Lewis,	Matthews,	&	Hubbard	(2015)	proposed	that	ratio	processing	may	be	

supported	by	a	set	of	neurocognitive	architectures	referred	to	as	the	Ratio	Processing	

System	(Lewis	et	al.,	2015).	Similarly,	others	have	proposed	that	ratio	sensitivity	across	

different	modalities	is	evidence	for	a	fundamental	ratio	code,	and	that	such	a	code	may	

support	different	domains	of	numerical	cognition	under	a	common	generalized	magnitude	

code	(Bonn	&	Cantlon,	2017).		
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Outside	of	the	math	classroom	there	are	multiple	examples	of	ratio	processing	

guiding	human	and	nonhuman	decision	making,	which	suggest	that	these	forms	of	

nonsymbolic	reasoning	are	evolutionarily	adaptive	traits	(Jacob	et	al.,	2012).	For	example,	

studies	on	human	attractiveness	indicate	that	preferences	are	influenced	by	the	

proportions	of	human	features	(e.g.	waist-to-hip	ratios	in	women	or	waist-chest	ratios	in	

men)	more	so	than	overall	size	or	weight	(Gangestad	&	Scheyd,	2005;	Singh,	1993).	Studies	

of	lion	and	chimpanzee	behavior	show	that	decisions	about	whether	to	attack	or	retreat	

from	a	rival	group	of	animals	are	based	on	the	proportional	size	of	their	group	relative	to	

the	other(McComb	et	al.,	1994;	M.	L.	Wilson	et	al.,	2002).	These	examples	describe	how	

nonsymbolic	ratio	processing	may	occur	via	an	implicit	integration	of	perceptual	cues	in	

the	environment	to	guide	actions	without	explicit	enumeration	or	formal	instruction.		

Formal	definitions	of	rational	number	concepts,	such	as	ratio	and	proportion	can	be	used	to	

describe	ratio	processing,	but	the	ability	to	perceive	these	numeric	properties	in	the	world	

appears	to	emerge	independent	of	formal	mathematical	knowledge.		Multiple	studies	have	

presented	evidence	that	young	children,	including	infants,	have	abilities	to	perceive	

proportionally	defined	magnitudes	far	before	any	formal	math	instruction,	let	alone	

instruction	with	rational	numbers.	Using	a	habituation	paradigm	measuring	looking	

preference,	5-	to	7-month-old	infants	were	able	to	detect	differences	in	visually	presented	

ratios	when	the	magnitudes	of	the	ratios	deviated	by	a	factor	of	2	(McCrink	&	Wynn,	2007).	

When	asked	to	match	lengths	of	a	stimulus	across	contexts,	4-	year-old’s	ability	to	encode	

the	extent	of	the	stimulus	was	reliant	on	the	proportional	relationship	of	the	length	and	a	

given	standard	(Duffy	et	al.,	2005).		
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Studies	of	proportional	reasoning	with	children	also	indicate	that	nonsymbolic	

processing	abilities	are	influenced	by	the	form	in	which	these	proportions	are	presented	in.	

In	a	study	with	6-,		8-	and	10-	year-olds,	children	at	all	ages	were	able	to	successfully	

perform	a	proportional	reasoning	game	when	the	proportions	were	presented	as	two	

continuous	entities	but	failed	when	the	same	proportions	were	presented	as	two	entities	

with	discrete	equally-sized	parts	(Jeong	et	al.,	2007).	Although	visual	ratios	with	discrete	

parts	may	allow	observers	to	more	precisely	enumerate	the	values	presented	in	each	

entity,	the	authors	conclude	that	visualizations	with	discrete	parts	may	prompts	erroneous	

counting	strategies	and	a	fixation	on	the	whole	number	parts.	Ratios	composed	of	

continuous	entities,	on	the	other	hand,	are	not	countable	and	thus	may	prompt	observers	

to	focus	their	attention	to	the	proportional	relationship.	These	examples	of	ratio	processing	

among	young	children	illustrate	both	the	capacities	humans	have	to	perceive	ratio	

relationships	without	formal	instruction	and	the	ways	that	these	abilities	may	be	

influenced	by	surface	features	of	the	ratios,	which	may	support	or	distract	from	accurate	

performance.	Furthermore,	these	observations	open	new	and	interesting	questions	

regarding	the	similarities	and	differences	between	sensory-based	ratio	processing	and	

formal	ratio	and	fraction	knowledge,	as	well	as	the	educational	potential	to	use	

nonsymbolic	ratios	during	the	development	of	fraction	knowledge.			

Associations	between	Symbolic	and	Nonsymbolic	Fraction	Knowledge		

Evidence	for	the	commonalities	in	symbolic	fraction	and	nonsymbolic	ratio	

processing	have	largely	come	from	studies	examining	how	these	abilities	covary	in	adult	

and	child	populations.		For	example,	performance	on	perceptually-based	ratio	tasks	has	

been	shown	to	be	a	unique	predictor	of	fraction	knowledge	in	adults,	even	when	
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controlling	for	multiple	cognitive	processes	that	may	support	fraction	knowledge,	such	

cognitive	control	and	whole	number	processing	(ANS	acuity)		(Matthews	et	al.,	2016).	

Likewise,	individual	differences	in	nonsymbolic	ratio	magnitude	processing	also	predict	

variation	in	fractions	knowledge	among	elementary	school	aged	children	(Möhring	et	al.,	

2016).	Furthermore,	studies	with	children	have	examined	the	relationship	between	

fractions	knowledge	and			precision	with	number	line	estimation	tasks	(NLE),	which	may	

rely	on	proportional	reasoning	to	mapping	number	symbols	onto	continuous	spatial	

referents	(Newcombe	et	al.,	2015).	These	studies	reveal	that	NLE	performance	measured	in	

3rd	and	5th	grade,	is	a	significant	unique	predictor	of	fractions	knowledge	measured	one	

year	later	(Hansen	et	al.,	2015;	Jordan	et	al.,	2013).	These	studies	suggest	that	differences	

in	nonsymbolic	magnitude	acuity	across	individuals	may	relate	to	current	and	future	

understanding	of	symbolic	fractions,	however	the	precise	degree	and	nature	of	these	links	

remain	largely	unknown.	

Few	studies	have	directly	explored	relationship	between	symbolic	and	nonsymbolic	

fraction	magnitude	processing.	Some	previous	studies	have	observed	ways	that	

manipulating	the	nonsymbolic	font	size	of	numerical	components	in	a	symbolic	fraction	can	

directly	influence	the	precision	with	which	individuals	can	accurately	compare	symbolic	

fractions’	holistic	magnitude	value	(Matthews	&	Lewis,	2017;	c.f.	Kallai	&	Tzelgov,	2009).	

These	ratio	congruity	effects	illustrate	the	automaticity	of	nonsymbolic	ratio	processing	

and	how	nonsymbolic	ratio	processing	may	compete	with	symbolic	fraction	processing	for	

shared	cognitive.	In	a	series	of	studies,	Matthews	and	Chesney	(2015),	examined	

magnitude	comparison	performance	across	symbolic	fractions	and	nonsymbolic	ratios,	

instantiated	in	the	form	of	uncountable	dot	ratios	and	circle	area	ratios.	The	authors	also	
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observed	that	adults	can	make	quick	and	accurate	cross-format	judgements	and	that	these	

judgements	produce	numerical	distance	effects,	suggesting	that	adults	can	access	a	sense	of	

rational	number	magnitudes	in	ways	that	are	not	dependent	on	enumeration	or	estimation	

of	natural	number	values.	However,	in	this	study	the	authors	also	observed	that	adults	

exhibit	a	consistent	bias	in	how	they	judged	the	point	of	subjective	equality	between	

nonsymbolic	ratios	and	symbolic	fractions.	Specifically,	adults	consistently	evaluated	

nonsymbolic	ratios	as	larger	than	their	true	value,	relative	to	symbolic	fractions.	These	

studies	present	evidence	that	magnitude	processing	with	symbolic	fractions	and	

nonsymbolic	ratios	can	converge	on	compatible	representations	of	rational	number	

magnitude	(if	not	the	same),	but	the	calibration	of	accessing	specific	number	magnitudes	

from	visually	defined	nonsymbolic	ratios	and	symbolic	fractions	can	be	imprecise.	Further	

experimentation	is	necessary	to	more	fully	understand	how	people	access	a	common	sense	

of	magnitude	between	separate	symbolic	or	nonsymbolic	formats,	and	how	this	process	

differs	from	comparing	magnitudes	within	format.			

Current	Study	

In	this	study,	we	conducted	two	experiments	to	explore	how	adults	access	the	

magnitudes	of	symbolic	and	nonsymbolic	fractions	within	and	across	formats.	In	both	

experiments	participants	completed	the	same	magnitude	comparison	task.	We	asked	

participants	to	choose	the	larger	of	two	fractions	presented	simultaneously	in	the	form	of	

symbolic	fractions,	nonsymbolic	ratios,	or	mixed	symbolic-nonsymbolic	pairs.	In	

Experiment	1,	symbolic	fraction	pairs	were	composed	of	two	single-digit	irreducible	

fractions	(e.g.	2/7),	nonsymbolic	ratios	were	presented	as	part-to-part	ratios	of	two	line	

lengths,	and	mixed	pairs	included	one	symbolic	fraction	and	one	nonsymbolic	line	ratio.	In	



	 	

	

25	

25	
25  

Experiment	2,	we	expanded	the	list	of	possible	comparisons.	In	addition	to	the	three	

comparison	conditions	in	Experiment	1,	symbolic	fraction	pairs	were	presented	with	

double-digit	components,	nonsymbolic	ratios	were	presented	as	the	area	of	two	circles,	and	

mixed	pairs	included	one	symbolic	fraction	(single	digit)	and	one	nonsymbolic	circle	ratio.	

We	chose	to	use	to	use	part-to-part	ratios	of	line	lengths	and	circle	areas	in	the	

current	study	to	specifically	observe	ratio	processing	as	accessing	a	sense	of	rational	

number	magnitude	by	evaluating	the	magnitude	of	one	entity	relative	to	another.	

Specifically,	we	chose	to	present	ratios	as	two	continuously	defined	entities	without	

discrete	parts.	As	shown	in	studies	with	children,	ratios	that	are	presented	as	entities	with	

discrete	parts	may	prompt	additional	strategies,	such	as	counting	the	whole	number	values	

of	the	entities,	and	thus	distract	participants	from	focusing	on	the	relative	magnitude	of	

one	entity	compared	to	the	other	(Jeong	et	al.,	2007).	By	comparing	magnitude	processing	

with	symbolic	fractions	to	this	part-to-part	integration	of	nonsymbolic	ratios	within	the	

same	task	and	using	the	same	magnitudes,	we	aimed	to	observe	the	similarities	and	

differences	in	this	integration	process	across	formats.	

Our	study	of	magnitude	processing	within	and	across	symbolic	and	nonsymbolic	

formats	was	guided	by	the	following	research	questions.	First,	do	people	show	evidence	of	

holistic	magnitude	processing,	in	the	form	of	significant	NDEs,	during	comparisons	of	

symbolic	fractions,	nonsymbolic	ratios	and	mixed	pairs?	If	so,	how	do	these	NDEs	differ	

when	comparisons	are	made	with	symbolic	fractions	relative	nonsymbolic	ratios?		Second,	

is	the	process	of	comparing	magnitudes	across	formats	more	difficult	than	comparing	

fractions	or	ratios	within	the	same	format?	Third,	do	people	show	biases	in	the	point	of	
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subjective	equality	when	making	cross-format	comparisons,	as	has	been	observed	in	

previous	studies	(Matthews	&	Chesney,	2015)?		

Experiment	1	

Introduction	

In	Experiment	1,	we	examined	magnitude	processing	of	symbolic	fractions	and	

nonsymbolic	ratios	using	a	speeded	magnitude	comparison	paradigm.	Specifically,	

participants	were	asked	to	indicate	the	larger	of	two	fractions	in	three	different	conditions:	

paired	symbolic	fractions	(FF),	paired	nonsymbolic	line	ratios	(LL)	and	mixed	(MX)	

symbolic/nonsymbolic	cross-format	pairs	(Figure	2.1).	The	nonsymbolic	ratios	used	in	this	

experiment,	were	composed	of	two	line	lengths.	Thus,	we	specifically	compared	magnitude	

processing	between	symbolic	fractions	and	nonsymbolic	ratios,	where	elements	of	those	

ratios	were	uncountable	and	continuous	line	lengths.	In	our	analyses	of	magnitude	

processing	in	these	three	conditions	we	tested	four	hypotheses.	

• Hypothesis	1:	If	adults	accessing	the	holistic	magnitude	of	each	symbolic	fraction	or	
nonsymbolic	ratio,	then	numerical	distance	effects	should	be	significant	in	all	
conditions.	

• Hypothesis	2:	If	magnitude	processing	with	nonsymbolic	ratios	occurs	via	sensory-
based	processes	without	explicit	enumeration	then	line	ratio	performance	should	be	
faster	than	symbolic	fraction	processing.			

• Hypothesis	3:	If	symbolic	and	nonsymbolic	processing	rely	on	separate	magnitude	
codes,	then	cross-format	comparisons	should	require	more	processing	time	than	
within=format	judgements	translate	meaning	across	format-specific	magnitude	
codes.	

• Hypothesis	4:	If	subjective	magnitudes	accessed	from	symbolic	or	nonsymbolic	
stimuli	lead	individuals	to	the	true	magnitudes	represent,	then	the	point	of	
subjective	equality	during	cross-format	judgements	should	equal	the	true	point	of	
equality	
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First,	we	tested	whether	adults	show	evidence	of	holistic	magnitude	processing	in	all	

three	conditions.	If	people	make	magnitude	decisions	by	accessing	the	holistic	magnitude	

of	each	symbolic	fraction	or	nonsymbolic	ratio,	then	NDEs	should	be	significant	in	all	

conditions	(H1).	Furthermore,	effects	based	on	holistic	magnitude	distances	should	be	

significant	even	when	controlling	for	componential	characteristics	of	the	fraction	pairs,	

which	may	facilitate	magnitude	comparison	strategies	in	parallel	with	or	in	place	of	holistic	

magnitude	processing	(e.g.	comparing	only	numerator	values).		

Second,	we	tested	whether	magnitude	processing	is	more	efficient	with	nonsymbolic	

ratios	than	symbolic	fraction	representations.	If	magnitude	processing	with	nonsymbolic	

can	occur	via	sensory-based	processes,	then	this	processing	may	occur	without	explicit	

enumeration	or	translation	to	a	symbolic	fraction	form.	In	contrast,	the	symbolic	

orthography	of	fractions	offers	no	direct	perceptual	cues	to	the	magnitudes	they	represent.	

Therefore,	accessing	a	representation	of	rational	number	meaning	with	fractions	may	

require	additional	processing	steps	to	encode	the	fractions	symbolic	form.	In	the	current	

experiment,	evidence	for	more	efficient	nonsymbolic	ratio	processing	should	be	seen	in	

lower	error	rates	and	faster	RTs	during	within-format	comparisons	of	nonsymbolic	ratios	

than	comparisons	of	symbolic	fractions	(H2).		

Third,	we	tested	whether	additional	processing	stages,	or	translation	costs,	are	

necessary	to	compare	the	magnitudes	of	across	distinct	external	representations.	

Specifically,	we	examined	whether	cross-format	comparisons	are	more	difficult	than	

comparisons	between	fractions	with	the	same	format.	If	understanding	symbolic	and	

nonsymbolic	fractions	depends	on	accessing	separate	magnitude	codes,	then	comparisons	

between	a	nonsymbolic	ratio	and	a	symbolic	fraction	should	require	additional	processing	
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stages	to	access	unique	magnitude	codes	for	each	format	and	then	translate	meaning	

across	these	magnitude	codes	(H3).	In	this	study,	evidence	for	additional	translation	

processing	in	magnitude	comparisons	with	mixed	fractions	should	be	seen	in	higher	

response	times	and	error	rates	relative	to	within	format	comparisons.	Alternatively,	if	an	

understanding	of	both	formats	can	be	supported	by	a	common	magnitude	code,	then	

comparing	a	symbolic	fraction	and	a	nonsymbolic	ratio	should	require	accessing	this	code	

via	similar	processes	and	without	cross-format	translation	steps.	Thus,	performance	(RT	

and	ER)	with	mixed	pairs	resembling	a	mixture	of	symbolic	and	nonsymbolic	processing,	

which	is	no	worse	or	no	better	than	performance	within	either	format,	would	be	evidence	

in	support	of	the	hypothesis	that	symbolic	and	nonsymbolic	processing	can	be	supported	

by	a	common	magnitude	code	or	highly	compatible	magnitude	codes.		

Fourth,	we	tested	for	the	presence	of	cross-format	biases	in	the	point	of	subjective	

equality	within	the	magnitude	comparisons,	whereby	the	magnitude	of	nonsymbolic	ratios	

appear	to	be	perceived	as	slightly	larger	relative	to	the	magnitude	of	symbolic	fractions	

(H4).	Previous	findings	using	dot	ratios	and	circle	ratios	(Matthews	&	Chesney,	2015),	have	

shown	a	bias	whereby	the	point	at	which	adults	judge	a	fraction	to	be	of	equal	magnitude	

to	a	nonsymbolic	ratio	occurs	when	the	symbolic	fraction	is	actually	slightly	larger	(or	vice	

versa,	when	the	nonsymbolic	ratio	is	slightly	smaller).	Here	we	tested	whether	the	mixed	

comparison	format	bias	replicate	when	adults	made	mixed	comparisons	with	line	ratios.	

Methods		

Participants		

24	undergraduate	students	(20	females,	Mage	=	20.1	years,	range	=	18-28)	

participated	for	course	credit.	All	participants	were	right-handed	native	English	speakers.	



	 	

	

29	

29	
29  

All	participants’	accuracies	in	each	format	were	above	our	inclusion	cutoff	of	70%.	We	

chose	a	sample	size	of	24	assuming	effects	of	similar	size	to	previous	research	(Binzak	&	

Hubbard,	2020),	and	to	fully	counterbalance	experimental	blocks.		

Procedure	and	design		

Participants	completed	six	blocks	of	36	trials.	Each	block	contained	an	equal	

number	of	trials	from	the	three	format	conditions	(12	trials	per	format),	and	the	order	of	

trials	was	randomized	for	each	participant.	We	manipulated	comparison	difficulty	via	

numerical	distance,	operationalized	as	the	absolute	value	of	distance	between	magnitudes	

in	a	given	pair	(i.e.,	|Fraction1	-	Fraction2|).		We	presented	36	unique	pairs	within	each	block	

with	numerical	distances	ranging	from	near	(min	=	0.048)	to	far	(max	=	0.75).	Block	order	

was	counterbalanced	across	participants,	and	through	all	six	blocks	participants	compared	

all	36	unique	pairs	in	each	format	twice	(n	=	216	trials).	We	instructed	that	participants	

make	their	as	quickly	and	accurately	as	possible.	

	
Figure	2.1:The	cross-format	fraction	comparison	paradigm	for	Experiment	1	presented	three	
format	conditions	randomly	ordered	within	blocks.	The	three	conditions	included	(a)	symbolic	
fractions	(FF),	(b)	mixed	comparisons	(MX),	and	(c)	nonsymbolic	line	ratio	comparisons	(LL).	
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Symbolic	Fraction	Stimuli		

The	symbolic	fractions	used	in	the	FF	and	MX	conditions	were	made	up	of	the	27	

single-digit	irreducible	proper	fractions.	To	minimize	participants’	reliance	on	strategies	

based	on	symbolic	fractions’	component	parts	during	FF	comparisons,	we	selected	36	

fraction	pairs	that	contained	a	mixture	of	relationships	between	the	fractions’	holistic	

distances	and	component	distances	(Fazio	et	al.,	2016;	Meert	et	al.,	2010).	We	included	four	

categories	of	fraction	pairs	defined	by	how	the	numerator	or	denominator	component	

values	may	be	seen	as	congruent	or	incongruent	with	holistic	magnitude	judgements	

(Table	2.1),	to	investigate	the	influence	component	congruencies.	See	Appendix	A	for	a	full	

list	of	symbolic	fraction	pairs	within	each	component	congruence	category.	

Table	2.1		

Categories	of	component	congruency	

Component	Congruency	 Description	
Symbolic	
Example	

Nonsymbolic	Example	
(pixel	length)	

Same*	Denominator		
(+	N	/	=D)	

Pairs	have	the	same	
denominator.	

7/9	–	8/9	 85:154	–	121:162+	

Congruent	Numerator	&	
Denominator	(+N/+D)	

The	larger	fraction	has	a	larger	
numerator	value	and	a	larger	

denominator	value	

1/5	–	3/4+	 34:302	–	114:183	

Incongruent	Denominator	
(+N	/	-D)	

The	larger	fraction	has	a	larger	
numerator	but	a	smaller	

denominator.	

1/6	–	6/7	 16:144	–	85:154	

	Incongruent	Numerator	
(-N/	+D)	

The	larger	fraction	has	a	
smaller	numerator	value	

2/7	–	1/3	 36:40	–	60:241	

Note	*There	were	no	nonsymbolic	ratio	pairs	with	the	exact	same	denominator	line	length,	
therefore	coded	line	ratio	comparisons	as	having	similar	denominator	lengths	if	the	differences	
between	denominator	lines	was	less	than	10	pixels.	+	Since	the	lengths	of	line	ratios	were	randomly	
generated,	the	same	pairs	when	presented	as	symbolic	fractions	and	nonsymbolic	line	ratios	were	
not	necessarily	assigned	to	the	same	component	congruency	category	within	each	format.	



	 	

	

31	

31	
31  

Nonsymbolic	line	ratio	stimuli	

Using	the	27	single-digit	irreducible	fractions	used	to	create	the	symbolic	stimuli,	

line	ratio	images	were	created	to	instantiate	the	exact	same	rational	number	magnitudes.	

Line	ratios	were	composed	of	two	vertical	lines	side	by	side,	with	the	line	length	on	the	left	

representing	the	same	value	as	a	symbolic	fraction’s	numerator	and	the	line	on	the	right	

representing	the	same	value	as	a	symbolic	fraction’s	denominator.	The	vertical	position	of	

the	smaller	(numerator)	line	on	the	left	was	randomized	across	each	nonsymbolic	ratio	

image	so	that	it	was	presented	within	the	bounds	of	the	larger	(denominator	line)	on	the	

right	and	without	aligning	to	either	edge	of	the	line	on	the	right.		Two	sets	of	line	ratio	

images	were	created	for	this	experiment	to	account	for	correlations	that	can	emerge	

between	a	line	ratio’s	numerator	or	denominator	line	length	and	the	ratio’s	holistic	

magnitude.	For	three	of	the	six	experimental	blocks,	one	set	of	line	ratio	images	was	

constructed	to	minimize	the	numerator-to-holistic	magnitude	correlation,	and	another	set	

minimizing	the	denominator-to-holistic	magnitude	correlation	was	constructed	for	the	

other	three	blocks.		

The	numerator-controlled	set	of	27	line	ratio	images	(one	for	each	of	the	27	single-

digit	irreducible	fractions)	was	created	by	randomly	generating	a	numerator	length	

between	30-200	pixels	for	each	image	and	then	constructing	the	proportional	denominator	

length	to	create	the	proper	line	ratio.	In	instances	where	the	corresponding	denominator	

value	was	larger	than	350	pixels,	the	image	was	discarded,	and	the	process	was	repeated	

with	a	new	randomly	generated	numerator	value.	This	procedure	was	conducted	three	

times,	creating	3	sets	of	27	images,	and	the	set	of	line	ratios	with	the	lowest	correlation	

between	numerator	line	lengths	and	ratio	magnitude	within	the	set	was	used	in	the	
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experiment.	The	final	set	of	numerator-controlled	line	ratios	had	a	numerator	length	to	

holistic	magnitude	correlation	of	0.340,	a	denominator	length	to	holistic	magnitude	

correlation	of	-0.682,	and	summed	numerator-denominator	length	to	holistic	magnitude	

correlation	of	-0.416.	

The	denominator-controlled	set	of	27	line	ratio	images	(one	for	each	of	the	27	

single-digit	irreducible	fractions)	was	created	by	generating	a	denominator	length	between	

130-300	pixels	for	each	image,	and	then	constructing	proportional	the	numerator	length	to	

create	the	proper	line	ratio.	After	three	iterations	this	process,	the	set	of	line	ratios	with	the	

lowest	within-set	correlation	between	denominator	line	lengths	and	ratio	magnitudes	was	

used	in	the	experiment.		The	final	set	of	denominator-controlled	line	ratios	had	a	

numerator	length	to	holistic	magnitude	correlation	of	0.834,	a	denominator	length	to	

holistic	magnitude	correlation	of	-0.220,	and	summed	numerator-denominator	length	to	

holistic	magnitude	correlation	of	0.380.	

Analysis	

Effects	of	format	and	numerical	distance		

To	evaluate	if	adults	show	evidence	of	holistic	magnitude	processing	and	to	

compare	efficiency	of	processing	across	formats	we	modeled	response	times	and	error	

rates	with	linear	mixed	models	using	the	lme4	(Bates	et	al.,	2015)	and	afex	(Singmann	et	al.,	

2015)	packages	in	R	(R	Development	Core	Team,	2016).	First,	we	tested	for	the	presence	of	

numeric	distance	effect	slopes	in	the	response	time	(RT)	and	error	rate	(ER)	data.		

Specifically,	we	tested	whether	the	distance	between	the	pairs	holistic	magnitudes	was	a	

significant	negative	predictor	of	RT	and	ER	in	each	of	the	three	formats	(H1).	In	our	models,	

we	began	with	the	assumption	that	the	magnitude	of	distance	effect	slopes	may	differ	
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across	formats	and	tested	whether	models	accounting	for	interactions	between	distance	

and	format	accounted	for	significantly	more	variance	than	models	assuming	no	differences.		

Next,	we	tested	for	format	effects	on	performance,	to	compare	the	efficiency	of	

magnitude	processing	with	each	format	(H2,	H3).	We	chose	to	use	the	absolute	value	of	the	

pairs’	holistic	numeric	distances	(hear	after	referred	to	as	simply	distance)	as	our	

continuous	predictor	in	the	model.	Using	the	emmeans	package	(Lenth,	2020)	in	R,	we	

estimated	the	marginal	mean	RT	and	ER	at	specific	numeric	distances	and	conducted	

pairwise	comparisons	between	formats	(H2).	For,	most	analyses	we	tested	for	differences	

in	mean	RT	and	ER	assuming	the	distance	between	the	pairs	was	equal	to	0.366	(the	mean	

of	all	distances	presented	in	the	stimuli).		

In	our	mixed	models	we	tested	for	fixed	effects	of	varying	the	format	(categorical	

predictor:	symbolic,	nonsymbolic,	&	mixed),	numerical	distance	(as	a	continuous	predictor),	

and	interactions	between	these	predictors,	while	accounting	for	the	within-subjects	

structure	of	our	data	by	estimating	the	crossed	random	effects	for	each	participant.	This	

constituted	the	maximal	model	justified	by	our	experimental	design	(Barr	et	al.,	2013),	and	

allowed	us	to	properly	estimate	the	standard	errors	of	coefficients	based	on	the	number	of	

participants	in	the	sample	and	not	on	every	single	observation.	When	fitting	the	maximal	

model	resulted	in	convergence	errors	or	singular	fits,	we	verified	parameter	estimates	and	

the	significance	of	effects	by	rerunning	the	models	with	a	simplified	random	effects	

structure.	These	follow	up	results	are	presented	only	in	instances	where	the	simplified	

model	did	not	support	the	maximal	model.			



	 	

	

34	

34	
34  

Within	Format	Analyses		

Additional	follow	up	analyses	were	conducted	within	each	format	condition	to	

check	whether	format	specific	features	of	symbolic	fractions	and	nonsymbolic	ratios	may	

have	impacted	holistic	magnitude	processing.	First,	we	tested	for	the	presence	of	

component	congruency	effects	whereby	comparisons	of	holistic	magnitude	may	have	been	

influenced	by	the	magnitudes	of	numerator	and	denominator	components.	Second,	we	

tested	for	evidence	that	participants	may	have	relied	on	a	strategy	of	judging	magnitude	

based	on	the	gaps	between	numerators	and	denominators.	Specifically,	within	symbolic	

fractions	and	nonsymbolic	ratio	comparison	participants	may	in	some	part	base	

judgements	of	which	stimulus	is	larger,	on	an	evaluation	of	which	stimuli	has	the	smaller	

gap	between	numerator	and	denominator	components,	regardless	of	how	large	those	

components	are.		To	test	for	these	effects,	we	added	predictors	of	component	congruency	

and	numerator-denominator	gaps	(separately)	separately	to	our	mixed	models	of	absolute	

distance	predicting	RT	and	tested	whether	these	features	predict	differences	in	RT	and	

whether	NDEs	based	on	holistic	magnitude	distances	remain	significant	when	controlling	

for	these	features.	

To	test	for	evidence	of	cross-format	biases	in	the	point	of	subjective	equality	during	

symbolic-nonsymbolic	mixed	comparisons	(H4),	we	fit	a	logistic	model	to	estimate	

probability	of	adults	selecting	symbolic	fractions	as	larger	across	the	range	of	mixed	format	

distances	(symbolic	magnitude	–	nonsymbolic	magnitude).	Using	the	resulting	logistic	

function,	we	were	able	to	calculate	the	point	(the	differences	in	magnitudes	across	formats)	

at	which	adults	would	be	equally	likely	chose	the	symbolic	fraction	or	nonsymbolic	ratio	as	

larger.	Finally,	using	the	random	effects	parameters	specific	to	each	participant,	we	
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determined	if	the	group	mean	point	of	subjective	equality	was	significantly	shifted	from	

zero.	

Drift	diffusion	model	analysis	of	comparisons	across	formats	

We	conducted	follow-up	analyses	using	a	drift	diffusion	model	(DDM)	approach	to	

further	evaluate	how	format	effects	manifest	in	multiple	stages	of	the	magnitude	

comparison	process.	The	DDM	approach	incorporates	RTs	and	ERs	into	a	single	analysis	

that	estimates	three	key	decision-making	parameters:	the	rate	participants	accumulate	

evidence	(drift	rate),	the	carefulness	with	which	participants	make	judgments	(decision	

boundaries),	and	the	time	to	encode	a	stimulus	and	time	to	make	a	physical	response	(non-

decision	time)	(Ratcliff	&	McKoon,	2008).	We	estimated	these	three	parameters	using	the	

Fast-DM	program	(Voss	&	Voss,	2007).	

Results	

Missing	Data	Points	and	Erroneous	Responses	

	 Prior	to	data	analysis,	erroneous	anticipation	responses	(less	than	250ms)	and	

missed	trials	(no	response	entered)	were	cleaned	from	the	data.	Our	anticipation	cutoff	of	

250ms	was	based	on	previous	research	using	diffusion	models	to	examine	performance	on	

numerical	tasks	(Ratcliff	et	al.,	2015).		No	participants	missed	more	than	two	responses	

within	any	of	the	format	condition	blocks.	Across	all	participants	and	format	conditions,	

cleaning	missed	responses	removed	0.3%	of	the	total	data.	No	additional	anticipation	trials	

needed	to	be	removed.			

Response	Times	Across	Formats	

On	average,	participants	made	magnitude	comparisons	with	all	conditions	in	less	

than	1300ms.	Results	of	the	linear	mixed	model	analysis	are	presented	in	Table	2.2.	
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Consistent	with	Hypothesis	1,	responses	in	all	formats	demonstrated	significant	numeric	

distance	effects	(NDEs),	with	RTs	decreasing	as	the	distance	between	pairs	increased	

Figure	2.2.	NDE	Slopes	for	FF	and	MX	comparisons	did	not	differ	but	NDE	slope	for	

nonsymbolic	(LL)	comparisons	was	slightly	flatter	(less	negative)	than	symbolic	fraction	

(FF)	and	mixed	pair	comparison	slopes	(MX).			

	

Figure	2.2	Linear	predictions	of	conditional	mean	response	times	show	that	line	ratio	comparisons	
(LL	in	red)	are	fastest	across	all	numerical	distances	relative	to	fraction-fraction	(FF	in	blue)	and	
mixed	comparisons	(MX	in	purple)	across	the	.	Shaded	bands	depict	95%	confidence	intervals	of	
the	linear	predicted	mean	response	time.	

Consistent	with	Hypothesis	2,	the	linear	mixed	model	analysis	revealed	evidence	for	

more	efficient	magnitude	processing	with	nonsymbolic	line	ratios	than	symbolic	fractions	

and	mixed	pairs.	LL	response	times	(RT)	were	266ms	faster	than	FF,	and	220ms	faster	than	

MX	comparisons	(Table	2.2).	Follow	up	analyses	necessary	to	address	the	significant	

interaction	between	format	and	NDE	slopes	confirmed	that	LL	comparisons	were	

associated	with	significantly	faster	responses	than	FF	or	MX	comparisons	at	both	near	(dist	

=	0.1;	LL	-	FF:	β	=	-334.8,	t	=	-8.62,	p	<	0.001;	LL	–	LF:	β	=	-273.8,	t	=	-7.050,	p	<	0.001)		and	
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far	distances,	(dist	=	0.7;	LL	-	FF:	β	=	-180.4,	t	=-5.66,	p	<	0.001;	LL	–	LF:	β	=	-153.3,	t	=	-

5.221,	p	<	0.001).	

Table	2.2	

Estimated	marginal	mean	response	times	and	distance	effect	slopes		

Fixed	Effect	Estimates	 	 Pairwise	Comparisons	

Format	
EMM			
RT	 SE	 df	 95%	CI	 	 LL	 MX	

			LL	 1019	 35.7	 23	 [945,	1093]	 	 	 	

			MX	 1240	 44.9	 23	 [1147,	1332]	 	 t=10.6,	p<.001,	dr=.522	 	

			FF	 1286	 51.0	 23	 [1180,	1391]	 	 t=9.83,	p<.001,	dr=.632	 t=1.75,	p=.208,	dr=.110	

Format	×	
Distance	

NDE	
Slope	

SE	 df	 95%	CI	
	

LL	 MX	

			LL	 -762	 66.4	 23	 [-899,	-624]	 	 	 	

			MX	 -963	 89.3	 23	 [-1148,	-778]	 	 t=2.09,	p=.114,	dr=.477	 	

			FF	 -1020	 77.4	 23	 [-1180,	-860]	 	 t=3.13,	p=.013,	dr=.612	 t=0.63,	p=.806,	dr=.135	

Note:	Estimated	marginal	means	(EMM)	indicate	the	predicted	mean	response	time	in	milliseconds	
within	each	format	where	absolute	distance	=	0.3.	Numerical	distance	effect	slope	estimates	(NDE)	
were	significant	and	negative	in	all	instances,	as	the	range	of	the	95%	confidence	interval	(CI)	does	
not	include	zero.	Degrees	of	freedom	were	estimated	using	the	Kenward-Rodger	approximation	

We	did	not	observe	any	strong	evidence	to	support	Hypothesis	3,	and	the	prediction	

that	cross-format	comparison	would	require	additional	processing	to	translate	between	

symbolic	and	nonsymbolic	representations	of	magnitude.	Specifically,	average	RTs	were	no	

slower	for	MX	responses	than	for	FF	responses.	In	fact,	the	mean	RT	difference	trended	in	

the	opposite	direction:	FF	judgments	required	slightly	more	processing	time	than	MX	

judgments	in	this	sample.	The	nonsignificant	difference	between	FF	and	MX	RTs	suggests	a	

few	interesting	possible	interpretations.	First,	magnitude	processing	with	mixed	pairs	may	

not	be	a	straightforward	combination	of	fast	line	ratio	processing	and	slow	symbolic	

fraction	processing.	Mean	MX	RTs	were	86.9ms	greater	than	the	average	of	FF	and	LL	RTs	

(1152.65ms),	which	may	correspond	to	either	a	rapid	cross-format	translation	process	or	
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an	alternative	processing	step	all	together.		For	instance,	if	processing	the	magnitude	of	a	

line	ratio	within	format	is	a	rapid	visual	processes	but	processing	line	ratio	magnitude	in	

the	mixed	format	involves	mapping	the	visual	stimuli	onto	a	magnitude	code	shared	with	

symbolic	fraction	stimuli,	then	some	additional	processing	may	occur	in	the	mixed	format	

that	is	not	translating	nonsymbolic	representations	to	symbolic	representations	or	vice	

versa.		

Error	rates	across	formats	

Participants	made	few	errors,	with	a	total	group	mean	ER	of	5.9%	(SD	=	2.8%).	

Consistent	with	results	in	RTs,	ERs	showed	distance	effects	in	all	three	conditions	(Figure	

2.3),	with	error	rates	dropping	off	rapidly	as	distances	increased	from	0	to	0.1	and	

approached	errorless	performance	once	distances	reached	0.6	(H1).	The	full	logistic	model	

indicated	no	significant	interactions	between	numerical	distance	effects	and	format.	We	

therefore	dropped	this	interaction	when	evaluating	format	effects.	

As	seen	in	Table	2.3	analyses	of	error	rates	across	formats	revealed	no	evidence	of	

more	efficient	line	ratio	processing	(H2)	or	cross-format	translation	costs	(H3).	First,	

average	error	rates	were	not	significantly	lower	for	LL	comparisons	relative	to	MX	(BF	=	

0.100)	or	FF	(BF	=	0.053).	Second,	error	rates	among	MX	comparisons	were	not	higher	than	

FF	comparisons	(BF	=	0.018).	Although	these	results	do	not	add	additional	support	

Hypothesis	2	or	3,	the	lack	of	format	effects	on	ER	does	suggests	that	format	effects	on	RT	

were	not	compromised	by	speed-accuracy	tradeoffs.		
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Figure	2.3:	Logistic	predictions	of	conditional	error	rate	show	that	errors	increased	as	numerical	
distances	approach	zero.	Shaded	bands	depicting	95%	confidence	intervals	overlap	between	
fraction-fraction	(FF),	cross-format	(MX),	and	line-line	(LL)	conditions	illustrating	that	the	distance	
x	format	interaction	and	main	effects	among	formats	were	not	significant.	

Table	2.3	

Logistic	Mixed	Model	Regression	Results	for	Error	Rate		

Fixed	Effect	Estimates	 	 Pairwise	Comparisons	

	 Estimate	

log	odds	

SE	 95%	CI	

(log	odds)	

Odds	

Ratio	

	 LL	 MX	

Format	 	 	 	 	 	 	 	

			LL	 -5.06	 0.360	 [-5.49,	-4.08]	 0.006	 	 	 	

			MX	 -4.34	 0.334	 [-4.98,	-3.67]	 0.013	 	 z=1.94,	p=.129,	OR=1.58	 	

			FF	 -4.08	 0.312	 [-5.02,	-3.80]	 0.017	 	 z=1.52,	p=.293,	OR=1.45	 z=0.43,	p=.903,	OR=	0.917	

Distance	 -10.7	 1.05	 [-12.8,	-8.63]	 2.3E-4	 	 	 	

Note:	Higher	likelihood	of	errors	correspond	to	greater	estimated	marginal	means	of	format	on	the	
log	odds	scale.	Odds	ratio	transformation	of	these	estimates	indicates	the	probability	of	making	an	
error	relative	to	the	probability	of	making	an	accurate	judgement.	Estimated	means	and	pairwise	
comparisons	are	evaluated	where	absolute	distance	=	0.366,	which	is	the	mean	of	distances	
presented	in	the	stimuli.	Pairwise	contrasts	are	performed	on	the	log	odds	ratio	scale,	and	
corresponding	odd	ratios	(OR)	indicate	the	probability	of	an	error	in	the	condition	along	the	row	
relative	to	condition	in	the	column	header.		
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Cross-format	point	of	subjective	equality	bias	

Previous	studies	have	observed	that	when	people	compare	magnitudes	across	

mixed	symbolic-nonsymbolic	pairs,	patterns	of	RT	and	ERs	indicate	that	people	

overestimate	the	size	of	nonsymbolic	fractions	relative	to	symbolic	fractions(Matthews	&	

Chesney,	2015).	In	this	experiment,	we	aimed	to	determine	if	this	subjective	equality	bias	

was	also	present	in	line-ratio	to	single	digit	fraction	comparisons	and	to	assess	how	big	the	

bias	is.	To	determine	the	magnitude	of	the	bias,	we	fit	a	logistic	function	on	the	data	

predicting	the	probability	of	picking	a	symbolic	fraction	as	a	function	of	the	distance	

between	the	symbolic	and	nonsymbolic	fraction.	Unlike	our	analysis	of	error	rates	that	

examined	performance	across	the	absolute	value	of	pair	distances,	cross-format	distance	

was	entered	into	the	model	as	the	symbolic	fraction	magnitude	minus	the	nonsymbolic	

fraction	magnitude	(range	=	-.75	-	.75).	We	then	fit	a	logistic	mixed	model,	estimating	the	

likelihood	of	individuals	judging	the	symbolic	fraction	as	larger	across	this	range	of	cross-

format	distances,	while	accounting	for	random	variation	across	participants.	We	used	this	

model	to	estimate	the	point	of	subjective	equality	(PSE),	as	the	numeric	distance	between	

symbolic	and	nonsymbolic	stimuli	at	which	the	probability	of	picking	a	symbolic	fraction	

was	.5.	Finally,	we	tested	whether	group	mean	PSE	was	significantly	different	from	zero	(no	

PSE	bias),	using	a	one-sample	t-tests	on	PSEs	calculated	individually	for	each	participant.	

Consistent	with	previous	analysis	of	cross-format	comparisons	with	fractions	

(Matthews	&	Chesney,	2015),	the	pattern	of	responses	to	mixed	pairs	indicates	that	the	

participants’	point	of	subjective	equality	(PSE)	was	biased	towards	seeing	line	ratios	as	a	

larger	magnitude	relative	to	equivalent	symbolic	fractions.	Model	results,	shown	in	Figure	

2.4,	indicated	that	the	point	at	which	adults	are	equally	as	likely	to	judge	a	symbolic	
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fraction	as	larger	or	a	nonsymbolic	fraction	as	larger	is	when	the	magnitude	of	a	symbolic	

fractions	is	0.043	larger	than	a	nonsymbolic	fraction,	and	mean	PSE	across	all	subjects	was	

greater	than	zero,	t(23)	=	3.04,	p	=	.006.	

	Similar	to	the	approach	used	by	(Matthews	&	Chesney,	2015),	we	evaluated	

whether	this	PSE	bias	should	be	used	to	correct	our	identification	of	correct	and	incorrect	

responses.	We	identified	that	adjusting	the	distance	between	symbolic	and	nonsymbolic	

pairs	based	on	the	PSE	bias	would	not	change	our	coding	of	response	accuracy.	This	is	

because	the	trial	with	the	closest	numerical	distance	(0.047),	1/3	vs	2/7,	still	has	a	larger	

distance	than	the	PSE.		

	

Figure	2.4.	Logistic	mixed	model	estimates	of	ER	probability	in	cross-notation	pairs.	Light	purple	
logistic	curves	depict	random	effect	estimates	of	individual	participants,	and	dark	purple	logistic	
curves	depict	the	group	level	fixed	effects	model.	Points	where	these	lines	cross	the	.5	probability	
line	(grey)	indicate	points	of	subjective	equality	(PSE),	or	the	distance	between	symbolic	fractions	
and	nonsymbolic	ratios	where	individuals	would	judge	the	stimuli	as	equal.	The	group	mean	point	
of	subjective	equality	is	rendered	in	green.	

Drift	diffusion	model	parameters	

Effects	of	Format	on	Drift	Rates.		Average	drift	rates,	representing	the	rate	of	

evidence	accumulation,	were	significantly	different	across	the	three	format	conditions,	
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F(2,46)=14.1,	p	<	.005	(see	Figure	2.5.).	Specifically,	adults	made	magnitude	comparisons	

more	efficiently	in	the	line-line	condition	(M	=	2.94,	SD	=	1.41)	than	the	line-fraction	(M	=	

2.10,	SD	=	1.04)	and	fraction-fraction	conditions	(M	=	1.95,	SD	=	0.67).		Mean	differences	

between	the	line-fraction	and	fraction-fraction	conditions	were	not	significant,	and	thus	no	

evidence	was	found	to	suggest	that	the	rate	of	evidence	accumulation	for	mixed	line-

fraction	comparisons	was	any	less	efficient	than	fraction-fraction	comparisons.		

	

Figure	2.5.	Group	mean	drift	rates	across	formats.	Error	bars	depict	95%	confidence	intervals	
around	the	mean.	Higher	values	of	drift	rate	correspond	to	more	efficient	evidence	accumulation.	

Effects	of	Format	on	Decision	Boundaries.			As	seen	in	Figure	2.6	below,	we	

observed	no	statistical	differences	between	decision	boundaries	estimated	for	each	format	

condition,	F(2,46)	=	1.21,	p	=	0.25.	Therefore,	diffusion	model	estimates	do	not	indicate	that	

differences	in	mean	response	times	observed	in	this	study	were	due	to	speed	accuracy	

tradeoffs	or	approaching	trials	with	fractions	any	more	carefully	than	trials	without.		



	 	

	

43	

43	
43  

	

Figure	2.6.Group	mean	decision	boundaries	across	formats.	Error	bars	depict	95%	confidence	
intervals	around	the	mean.	Higher	decision	boundary	values	correspond	to	more	careful	
performance.	

Effects	of	format	on	non-decision	time.	As	seen	in	Figure	2.7,	within-subjects	

comparisons	of	non-decision	time	(sum	of	stimulus	encoding	and	the	motor	response),	

show	significant	differences	between	formats,	F(2,46)	=	9.34,	.	Specifically,	longer	times	

were	estimated	for	fraction-fraction	comparisons	(M	=	0.62,	SD	=	0.13)	than	line-line	(M	=	

0.54,	SD	=	0.10)	and	mixed	line-fraction	comparisons	(M	=	0.57,	SD	=	0.09),	however	

differences	were	not	observed	between	line-fraction	and	line-line	conditions.	
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Figure	2.7.	Group	mean	non-decision	times	for	each	format	condition.	Error	bars	depict	95%	
confidence	intervals	around	the	mean.	Higher	values	correspond	to	more	encoding	processing	and	
time	to	generate	a	physical	response	time.	

Within-notation	follow-up	analyses	

In	the	analyses	of	RT	presented	above	we	observed	a	significant	negative	numerical	

distance	effect	slope	for	the	Fraction-Fraction	and	Line-Line	comparison	conditions,	

indicating	that	the	holistic	magnitude	of	fractions	and	ratios,	and	specifically	the	numerical	

distance	between	these	magnitudes,	is	a	significant	predictor	of	processing	time.	

Nevertheless,	there	are	component-based	features	of	symbolic	fractions	which	may	

influence	task	performance	(Pearn	&	Stephens,	2004).	Here	we	evaluated	the	possibilities	

that	strategies	focusing	on	component	congruency	and	numerator-denominator	gaps	may	

have	influenced	holistic	magnitude	processing.	

Symbolic	Fraction	Component	Congruency	Effects.	Previous	studies	have	

indicated	that	features	of	numerator	and	denominator	components	can	influences	how	

people	make	holistic	fraction	comparisons.	Specifically,	when	comparing	two	symbolic	

fractions,	the	relative	magnitude	of	the	two	fraction’s	numerators	or	denominators	may	
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bias	the	evaluation	of	each	fraction’s	holistic	magnitude.	Here	we	refer	to	these	

relationships	between	components	of	fraction	pairs	and	holistic	distances	of	fraction	pairs	

as	component	congruency	relationships	(Meert	et	al.,	2009).	We	identified	four	possible	

component	congruency	relationships	(Table	2.1).	We	coded	the	component	congruency	of	

our	FF	pairs	based	on	whether	a	comparison	of	the	components	(numerator	to	numerator	

or	denominator	to	denominator)	would	lead	to	a	response	congruent	with	the	overall	

magnitude.	Specifically,	if	the	larger	fraction	in	the	pair	had	a	larger	numerator,	then	the	

pair	would	be	coded	as	numerator	congruent.	Likewise,	if	the	larger	fraction	in	the	pair	had	

a	larger	denominator,	the	pair	would	be	coded	as	denominator	congruent.	Previous	studies	

examining	holistic	and	componential	processing	of	fractions	denominator	congruence	in	

the	opposite	direction	conventions	to	define	denominator	congruence	in	magnitude	

comparison	tasks,	(Ischebeck	et	al.,	2009)	based	on	the	fact	that	when	numerator	value	is	

held	constant	the	size	of	a	denominator	is	inversely	related	to		Conversely,	since	

denominator	size	and	holistic	magnitude	are	indirectly	related	(increasing	denominators	

decreases	fraction	magnitude),	denominators	were	congruent	when	the	larger	fraction	had	

the	smaller	denominator.		

	
Figure	2.8.	Linear	predictions	of	distance	effects	on	RT	across	FF	and	LL	pairs	with	different	
component	congruency	relationships.	
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As	seen	in	Table	2.4,	results	of	the	mixed	effects	model	indicated	that	NDE	slopes	

were	significant	and	negative	for	FF	pairs	with	each	of	the	four	component	congruency	

relationships.	These	findings	do	not	rule	out	the	influence	component	congruency	features	

may	have	on	magnitude	comparison	performance,	but	they	also	show	that	our	

observations	of	holistic	distance	effects	are	not	driven	by	these	componential	features.		As	

seen	in	Figure	2.8,	the	range	of	numerical	distances	for	each	section	of	FF	pairs	with	

different	component	congruency	relationships	was	not	equivalent.	Of	note,	pairs	with	

incongruent	numerators	in	this	experiment	have	a	maximum	numerical	distance	of	0.31.	

Thus,	we	compared	the	estimated	mean	RTs	between	FF	pairs	with	different	component	

congruency	relationships	at	a	numeric	distance	of	0.3,	where	all	types	of	pairs	overlap.		

Pairwise	comparisons	of	mean	RTs	revealed	that	pairs	with	common	denominators	

had	the	fastest	RTs,	which	were	197ms	faster	than	pairs	with	congruent	numerators	and	

denominators,	114ms	faster	than	pairs	with	congruent	numerators	and	incongruent	

denominators,	and	252ms	less	than	pairs	with	incongruent	numerators.	FF	comparisons	

with	incongruent	numerators	had	the	slowest	mean	RTs	in	the	sample,	but	it	was	not	

significantly	higher	than	pairs	with	congruent	numerators	and	denominators,	or	pairs	with	

congruent	numerators	and	incongruent	denominators.	Among	pairs	with	congruent	

numerators,	the	differences	in	RT	between	pairs	with	congruent	denominators	and	pairs	

with	incongruent	denominators	was	not	significant.	

.
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Table	2.4	

Mean	response	times	and	distance	effect	slopes	in	symbolic	comparison	pairs	across	component	congruency	

	 Fixed	Effect	Estimates	 	 Pairwise	contrasts	

Component	
Congruency	

EMM	
RT	 SE	 df	 95%	CI	 	 +N	/=D	 +N	/+D	 +N	/	-D	

+N	/=D	 1216	 54.1	 23.0	 [1104,	1328]	 	 	 	 	

+N	/+D	 1330	 67.2	 23.0	 [1191,	1469]	 	 t=-2.93,	p=.036,	dr=-.271	 	 	

+N	/	-D	 1413	 63.6	 23.0	 [1294,	1532]	 	 t=-5.93,	p<.001,	dr=-469	 t=-2.11,	p=.182,	dr=-.198	 	

-	N	/+D	 1468	 57.5	 22.9	 [1336,	1599]	 	 t=-5.35,	p<.001,	dr=-.599	 t=-2.40,	p=105,	dr=-.328	 t=-1.20,	p=.632,	dr=-.131	

Component	
Congruency	
×	Distance	

NDE	
Slope	 SE	 df	 95%	CI	 	 +N	/=D	 +N	/+D	 +N	/	-D	

+N	/=D	 -650	 100	 23.0	 [-858,	-442]	 	 	 	 	

+N	/+D	 -987	 115	 22.5	 [-1225,	-748]	 	 t=2.38,	p=.109,	dr=0.80	 	 	

+N	/	-D	 -1084	 139	 23.0	 [-1370,	-797]	 	 t=2.80,	p=.047,	dr=1.03	 t=0.59,	p=.933,	dr=0.230	 	

-	N	/+D	 -1376	 396	 22.2	 [-2197,	-554]	 	 t=1.86,	p=.272,	dr=1.73	 t=0.93,	p=.787,	dr=0.926	 t=0.74,	p=.879,	dr=0.696	

Note:	Estimated	marginal	means	(EMM)	indicate	the	predicted	mean	response	time	in	milliseconds	within	each	
category	of	component	congruency	where	absolute	distance	=	0.3.	Numerical	distance	effect	slope	estimates	
(NDE)	were	significant	and	negative	in	all	instances,	as	the	range	of	the	95%	confidence	interval	(CI)	does	not	
include	zero.	Degrees	of	freedom	were	estimated	using	the	Kenward-Rodger	approximation	
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Table	2.5	

Mean	response	times	and	distance	effect	slopes	in	nonsymbolic	comparison	pairs	across	component	congruency	

	 Fixed	Effect	Estimates	 	 Pairwise	contrasts	

Component	
Congruency	

EMM	
RT	 SE	 df	 95%	CI	 	 +N	/=D	 +N	/+D	 +N	/	-D	

+N	/=D	 937	 44.7	 23	 [845,	1030]	 	 	 	 	

+N	/+D	 1004	 43.0	 23	 [916,	1093]	 	 t=-1.79,	p=.304,	dr=.186	 	 	

+N	/	-D	 1099	 42.3	 23	 [1011,	1186]	 	 t=-4.27,	p=.002,	dr=.449	 t=-2.39,	p=.108,	dr=.262	 	

-	N	/+D	 1161	 47.7	 23	 [1062,	1260]	 	 t=	-5.12,	p<.001,	dr=.623	 t=-3.38,	p=.013,	dr=.437	 t=-2.21,	p=1.52,	dr=.174	

Component	
Congruency	
×	Distance	

NDE	
Slope	 SE	 df	 95%	CI	

	
+N	/=D	 +N	/+D	 +N	/	-D	

+N	/=D	 -833	 257.5	 23	 [-1366,	-300]	 	 	 	 	

+N	/+D	 -795	 82.9	 23	 [-967,	-624]	 	 t=0.14,	p=.999,	dr=0.105	 	 	

+N	/	-D	 -769	 133.3	 23	 [-1044,	-493]	 	 t=0.23,	p=0.996,	dr=0.179	 t=0.18,	p=0.998,	dr=0.074	 	

-	N	/+D	 -818	 139.1	 23	 [-1106,	-530]	 	 t=0.05,	p=.999,	dr=0.043	 t=0.15,	p=.999,	dr=0.063	 t=0.27,	p=.993,	dr=0.137	

Note:	Estimated	marginal	means	(EMM)	indicate	the	predicted	mean	response	time	within	each	category	of	component	
congruency	where	absolute	distance	=	0.3.	Numerical	distance	effect	slope	estimates	(NDE)	were	significant	and	negative	
in	all	instances,	as	the	range	of	the	95%	confidence	interval	(CI)	does	not	include	zero.	Degrees	of	freedom	were	estimated	
using	the	Kenward-Rodger	approximation	
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Nonsymbolic	Component	Congruency	Effects.	Nonsymbolic	line	ratios	were	

presented	as	two	continuous	lines,	and	analogous	to	how	symbolic	fractions	may	have	

numerator	or	denominator	components	with	congruent	or	incongruent	relationships	to	the	

holistic	magnitudes	of	a	pair,	the	length	of	the	lines	in	the	ratio	may	provide	cues	that	bias	

participants	to	compare	magnitudes	congruent	with	or	incongruent	to	the	holistic	

magnitudes.	We	assigned	nonsymbolic	comparison	pairs	to	the	same	categories	of	

component	congruency	as	the	symbolic	fractions	as	seen	in	Table	2.1	

Gap	Strategy	effects	of	symbolic	fraction	comparisons	An	additional	strategy	

that	participants	may	have	applied	while	making	their	magnitude	comparison	judgements	

is	a	gap	strategy.	The	gap	strategy	relies	on	the	assumption	that	smaller	(proper)	fractions	

have	a	larger	gap	between	their	numerator	and	denominator	(Denominator	-	Numerator	=	

Gap)	(Morales	et	al.,	2020).	If	individuals	use	this	strategy,	they	would	be	biased	to	respond	

that	the	larger	fraction	is	the	one	with	the	smaller	gap.		This	strategy	will	often	result	in	an	

accurate	response.		For	instance,	8/10	has	a	gap	of	2	and	6/10	has	a	gap	of	4.	However,	

there	are	cases	where	this	strategy	is	an	invalid,	such	as	how	2/5	has	a	smaller	gap	and	also	

is	a	smaller	fraction	than	6/10.		

It	is	important	to	rule	out	the	possibility	of	confounding	gap	strategy	effects	when	

evaluating	NDEs	as	evidence	of	holistic	magnitude	processing.	Making	an	estimate	of	a	

fraction’s	size	relative	to	another	via	the	gap	strategy	and	evaluating	a	fraction’s	magnitude	

via	a	proportional	judgement	of	magnitude	between	numerator	and	denominator	both	

involve	an	integration	of	information	from	a	fractions	bipartite	structure,	yet	only	the	later	

may	result	in	access	to	a	holistic	sense	of	magnitude.	To	evaluate	the	extent	to	which	gap	
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strategy	use	may	have	influenced	our	observation	of	significant	NDEs,	we	calculated	the	

gap	distances	between	each	FF	pair	(fraction	1	gap	–	fraction	2	gap),	and	using	a	mixed	

effects	model	evaluated	whether	RT	NDEs	based	on	magnitude	distances	remained	

significant	while	controlling	for	variance	in	RTs	explained	by	gap	distances.	

	

Figure	2.9:	Distance	effect	slopes	across	gap	distances	for	symbolic	fractions	and	nonsymbolic	
ratios.	(a)	Linear	estimates	of	distance	effects	when	fraction	pairs	had	no	gap	differences	(0	Diff),	a	
small	gap	difference	(1-3),	and	a	large	gap	difference	(4-6),	show	significant	negative	NDE	slopes	in	
each	subsection	and	how	larger	gap	differences	are	associated	with	slightly	greater	mean	RTs.	(b)	
Linear	estimates	of	distance	effects	when	line	ratio	pairs	had	incongruent	gap	distances,	gap	
distances	less	than	75	pixels	(near),	gap	distances	between	75	and	125	pixels	(medium),	and	gap	
distances	greater	than	125	pixels	(far)	

Results	of	the	mixed	model	depicted	in	Figure	2.9	indicated	that	both	holistic	

distance,	F(1,22.7)	=	86.8,	p	<	.001,	and	gap	distances,	F(1,23.0)	=	6.23,	p	=	.02,	were	

significant	predictors	of	variance	in	FF	RTs,	but	the	interaction	between	these	factors	was	

not	significant,	F(1,22.8)	=	0.22,	p	=	.646.	Specifically,	when	controlling	for	effects	of	gap	

distances,	we	still	observed	that	RTs	decrease	as	the	distance	between	fraction	magnitudes	

increase,	b	=	-1095.4,	t	=	-9.4,	p	<	.001.	Furthermore,	we	observed	that	increasing	gap	

distances	among	FF	pairs	gap	is	associated	with	a	slight	increase	in	RTs,	b	=	27.4,	t	=	2.5,	p	=	

0.019.		

Symbolic Nonsymbolic 
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Nonsymbolic	Gap	Strategy	Effects.	We	further	explored	whether	a	strategy	

focusing	on	the	gaps	between	the	two	lines	in	the	nonsymbolic	ratios	could	explain	

significant	variance	in	how	adults	make	magnitude	judgements.	To	assess	the	effect	of	gap	

strategies	in	a	way	parallel	to	our	analysis	of	FF	comparisons,	we	calculated	the	difference	

in	line	length	of	each	ratio	in	pixels	(gaps)	and	then	calculated	the	gap	difference	for	each	

LL	pair.	In	our	stimuli	this	included	a	few	incongruent	gap	distance	pairs	(n	=	3),	where	

ratio	in	the	pair	also	had	the	larger	gap,	but	for	all	other	trials	the	larger	fraction	had	the	

sampler	gap	(n	=	69).	Thus,	gap	distances	in	our	stimuli	ranged	from	negative	

(incongruent)	gap	distances	of	-33	to	positive	gap	distances	of	275	pixels.			

	 Results	of	the	mixed	model	indicated	that	both	holistic	distance,	F(1,23.0)	=	84.1,	p	<	

.001,	and	gap	distances,	F(1,23.0)	=	8.21,	p	=	.009,	and	the	interaction	between	these	

factors,	F(1,23.0)	=	5.01,	p	=	.035	were	significant	predictors	of	variance	in	FF	RTs.	As	seen	

in	Figure	2.9,	distance	effect	slopes	varied	across	different	gap	distances,	b	=	2.15,	t(22.8)	=	

2.24,	p	=	0.035,	with	predicted	slopes	being	significantly	negative	at	a	gap	distance	of	zero,	

b	=	-1256,	t(8.6)	=	-9.2,	p	<	.001,	and	becoming	flatter	as	gap	distances	increase.	When	we	

analyzed	incongruent	gap	trials	separately	(Figure	2.9)	we	observed	that	adults	were	

relatively	fast	to	make	these	comparison,		slope	estimates	were	flatter	and	not	statistically	

significant,	b	=	-723.9,	t(25.7)	=	-1.05,	p	=	.304.	When	controlling	for	variation	explained	by	

distance,	the	model	indicated	that	RTs	increase	as	gap	distances	increase,	b	=	0.923,	t(23.3)	

=	2.87,	p	=	.009.		
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Experiment	1	Discussion	

	 To	further	understand	how	magnitude	processing	with	symbolic	fractions	relates	to	

the	processing	on	nonsymbolic	ratios,	we	directly	compared	holistic	magnitude	processing	

when	adults	compared	magnitudes	within	and	across	these	stimuli.	We	tested	four	key	

hypotheses	relevant	to	observe	the	similarities	and	differences	in	processing	across	these	

formats.	First,	we	observed	that	response	time	and	error	rates	varied	as	a	function	of	the	

differences	between	symbolic	and	nonsymbolic	fractions	rational	number	magnitudes	

(NDEs).	Second,	faster	performance	in	the	nonsymbolic	relative	to	symbolic	condition	was	

consistent	with	the	hypothesis	that	accessing	an	underlying	representation	of	rational	

number	magnitude	is	more	efficient	with	nonsymbolic	line	ratio	stimuli	than	symbolic	

fractions	(H2).	Third,	we	observed	that	comparing	mixed	pairs,	and	the	processing	

magnitude	across	formats,	is	no	more	difficult	than	the	comparison	of	two	symbolic	

fractions	(H3).		In	these	mixed	pairs	we	also	observed	that	the	representation	of	holistic	

magnitude	accessed	via	these	different	formats	is	not	equivalent.	Judgements	were	made	

such	that	the	magnitudes	accessed	via	nonsymbolic	ratios	were	slightly	larger	than	the	

magnitudes	accessed	via	equivalent	symbolic	fractions.	

Experiment	2	

Introduction	

In	Experiment	1,	we	examined	the	similarities	and	differences	between	accessing	

magnitudes	of	single-digit	fractions	and	analogous	forms	of	magnitude	processing	with	

nonsymbolic	line	ratios.	These	two	forms	of	stimuli	represent	a	limited	range	the	kinds	of	

symbolic	fractions	and	nonsymbolic	ratios	that	people	may	interact	with.	In	Experiment	2,	
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we	examined	how	the	different	forms	of	symbolic	and	nonsymbolic	stimuli	effect	holistic	

magnitude	processing	using	the	same	magnitude	comparison	task.	Specifically,	in	

Experiment	2,	participants	were	asked	to	indicate	the	larger	of	two	magnitudes	in	six	

different	conditions:	fraction	pairs	with	single-digit	components	(e.g.,	4/5	FFS),	fraction	

pairs	with	double-digit	components	(e.g.,	44/55	FFL),	pairs	of	nonsymbolic	line	ratios	(LL),	

pairs	of	nonsymbolic	circle	ratios	(CC),	mixed	line	ratio	and	fraction	pairs	(LF)	and	mixed	

circle	ratio	and	fraction	pairs	(CF).	

Consistent	with	Experiment	1,	we	tested	whether	adults	show	evidence	of	holistic	

magnitude	processing	in	all	six	conditions.		If	accessing	the	magnitude	of	symbolic	fractions	

and	nonsymbolic	ratios	of	all	forms	involves	and	integration	of	parts	to	access	a	relationally	

defined	sense	of	holistic	magnitude,	then	RT	and	ER	patterns	in	all	conditions	should	

resemble	classic	NDEs	as	seen	in	Experiment	1	(H1).	Additionally,	we	assessed	whether	

componential	features	of	fraction	pairs	significantly	interact	with	these	processes.	

The	line	ratios	used	in	Experiment	1	use	variation	along	one	dimension	(length)	to	

instantiate	part-to-part	ratios,	and	this	may	be	seen	as	one	of	the	simplest	forms	a	

nonsymbolic	ratio	may	take.	In	Experiment	2,	we	added	nonsymbolic	circle	ratios	to	the	

stimulus	set	in	addition	to	line	ratios.	With	circle	ratios,	identifying	the	holistic	magnitude	

involves	understanding	the	magnitude	of	a	two-dimensional	area	of	one	circle	relative	to	

another.	By	comparing	line-ratio	and	circle	ratio	performance	to	symbolic	fraction	

performance	(FFS),	we	further	tested	the	prediction	that	magnitude	processing	with	

visually	defined	ratios	is	more	efficient	than	processing	symbolic	formats	(H2.1).	This	

allowed	us	to	test	if	the	efficient	nonsymbolic	line	ratio	processing	we	observed	in	
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Experiment	1	would	replicate,	and	if	it	would	generalize	to	the	nonsymbolic	processing	of	

circle	ratios.	Furthermore,	by	comparing	RT	and	ER	patterns	of	different	nonsymbolic	ratio	

forms	we	tested	the	prediction	that	processing	a	more	visually	complex	two-dimensional	

circle	area	ratio	would	not	be	as	efficient	as	processing	one-dimensional	line	length	ratios	

(H2.2).	

Cross-format	comparisons	in	Experiment	1	indicated	that	accessing	a	common	

sense	of	magnitude	across	formats	was	no	more	difficult	than	processing	the	magnitude	of	

two	fractions.	Specifically,	cross-format	comparisons	were	neither	slower	nor	more	error	

prone	than	symbolic	fraction	comparisons.	These	findings	were	consistent	with	the	

hypothesis	that	symbolic	and	nonsymbolic	processing	may	involve	the	same	or	highly	

compatible	mental	representations	of	magnitude	(H3).	In	Experiment	2,	we	tested	whether	

these	findings	replicate	with	cross-format	line	ratio	and	nonsymbolic	pairs	and	we	

explored	whether	this	pattern	would	generalize	to	the	processing	of	cross-format	pairs	

with	circle	ratios.		

Adding	the	circle-ratio	to	the	symbolic	fraction	condition	also	allowed	us	to	further	

explore	questions	regarding	the	presence	of	biases	in	the	point	of	subjective	equality	

during	cross-format	judgements.	First,	we	tested	whether	we	could	replicate	the	PSE	bias	

findings	observed	with	line-ratios	and	symbolic	fractions	in	Experiment	1.	Second,	we	were	

able	to	investigate	whether	an	overestimation	of	nonsymbolic	ratios	relative	to	symbolic	

fractions	would	extend	to	cross	format	comparisons	with	circle	ratios	and	symbolic	

fractions,	which	would	replicate	the	findings	observed	by	(Matthews	&	Chesney,	2015).	

Third,	Matthews	and	Chesney	(2015)	observed	a	relatively	smaller	PSE	bias	during	
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symbolic-nonsymbolic	comparisons	with	circle	ratios	relative	to	when	the	nonsymbolic	

ratio	was	a	dot	ratio.	One	plausible	factor	of	nonsymbolic	ratios	which	may	influence	these	

shifts	in	PSE	bias	may	be	their	visual	complexity.	To	further	explore	the	presence	of	these	

biases	and	why	they	occur,	we	aimed	to	determine	if	the	visual	complexity	of	a	

nonsymbolic	ratio	may	directly	relate	to	the	magnitude	of	these	biases.	Specifically,	we	

predicted	that	more	complex	circle	ratios	relative	to	line	ratios	may	lead	to	larger	PSE	

biases	of	judging	nonsymbolic	stimuli	as	larger	magnitudes	relative	to	symbolic	fractions	

(H4).	

Similar	to	how	we	may	characterize	line	ratios	a	simple	nonsymbolic	representation	

of	magnitude,	the	fractions	in	Experiment	1	were	composed	of	only	single	digit	irreducible	

fractions.	These	fractions	may	also	represent	a	relatively	simple	symbolic	representation	of	

magnitude.		In	Experiment	2,	we	introduced	a	condition	where	symbolic	fractions	would	be	

presented	as	double-digit	fractions	(equivalent	to	the	single-digit	fraction	stimuli).	By	

comparing	single-digit	(FFS)	and	double-digit	fractions	(FFL),	we	tested	the	effect	of	

increasing	the	complexity	of	symbolic	representations	of	magnitude	and	whether	adults	

access	to	holistic	magnitudes	from	symbolic	fractions	is	differentially	affected	by	

componential	features	when	those	components	are	increased	to	larger	values.	We	

hypothesized	that	increased	symbolic	fraction	complexity	in	the	form	of	larger	component	

values	would	be	directly	related	to	RT	and	ER	(H5).	

Furthermore,	in	Experiment	1	participants	saw	comparisons	of	symbolic,	

nonsymbolic,	and	mixed	pairs	randomly	intermixed	within	each	block.	In	Experiment	2,	we	



56	

	

	

56	
56  

were	tested	whether	the	effects	observed	in	Experiment	1	would	replicate	when	

participants	saw	comparisons	blocked	into	separate	format	conditions.		

Methods	

Participants	

	 44	undergraduate	students	(36	females,	Mage	=	20.3	years,	range	=	19-27)	

participated	for	course	credit.	All	participants	were	right-handed	native	English	speakers	

and	naïve	to	our	research	questions.	Consistent	with	Experiment	1,	we	used	the	same	

inclusion	criterion	that	accuracy	in	all	conditions	must	be	greater	than	70%.	Data	from	four	

participants	were	excluded	from	our	analyses	due	to	accuracy	that	did	not	satisfy	this	

criterion.	As	a	result,	data	from	40	undergraduate	students	(32	females,	Mage	=	20.4,	range	

=	19-27)	were	included	in	our	analyses.	

Procedure	and	Design	

Participants	completed	six	blocks	of	the	same	magnitude	comparison	task	used	in	

Experiment	1.	Each	block	contained	trials	from	one	of	the	six	format	conditions,	and	the	six	

condition	blocks	were	presented	in	the	same	order	across	all	participants.		Similar	to	

Experiment	1,	comparison	difficulty	was	manipulated	as	numerical	distance,	and	again	each	

block	contained	36	unique	pairs,	and	participants	viewed	each	pair	once	within	each	

condition	(n	=	216	trials).	A	break	screen	appeared	in	the	middle	of	a	block.	We	instructed	

that	participants	make	their	responses	as	quickly	and	accurately	as	possible.	

Symbolic	Fraction	Stimuli	Similar	to	Experiment	1,	stimuli	for	each	of	the	six	

format	conditions	were	based	on	36	single-digit	irreducible	fraction	pairs.	These	fraction	

pairs	and	their	magnitudes	were	nearly	identical	to	the	pairs	used	in	Experiment	1,	except	
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for	two	substitutions	necessary	to	improve	the	balance	of	pairs	with	different	component	

congruency	relationships	(see	Appendix	A).	To	support	a	deeper	analysis	of	component	

congruency	and	gap	strategies,	we	created	fraction	stimuli	with	double-digit	components,	

by	scaling	up	our	single-digit	fraction	by	a	random	number	between	3	and	10.	The	resulting	

components	of	this	scaling	were	then	randomly	adjusted	so	the	magnitudes	of	the	resulting	

fractions’	magnitudes	were	close	to	single	digit	stimuli	but	could	simply	be	reduced	to	this	

simplified	form.	

Nonsymbolic	Ratio	Stimuli	We	used	the	same	sets	of	line	ratio	stimuli	in	

Experiment	2	as	Experiment	1.	In	the	block	of	within-format	line	ratio	comparisons,	the	

first	half	of	the	trials	used	line	ratio	images	from	the	set	created	to	minimize	the	numerator	

to	holistic	magnitude	correlation,	and	the	second	half	of	the	trials	used	images	from	the	set	

created	to	minimize	the	denominator	to	holistic	magnitude	correlation.			

	 Circle	ratio	images	were	created	using	the	same	approach	as	the	line	ratios	in	

Experiment	1	but	were	defined	as	the	ratio	of	one	circle	area	relative	to	the	other	circle	

area.	Furthermore,	to	properly	display	these	circle	ratios	on	the	screen,	these	ratios	were	

vertically	aligned	with	the	“numerator”	circle	above	the	“denominator”	circle.	

Analyses	

	 Analyses	of	distance	effects	(H2),	format	affects	(H2,	H3,	H5),	and	cross-format	PSE	

(H4)	were	conducted	using	mixed	effects	models	(linear	for	RT	and	logarithmic	for	ER),	

with	the	same	approach	as	Experiment	1.	Tests	of	our	primary	hypotheses	were	conducted	

after	applying	our	inclusion	criteria	for	the	data.	Subject	level	inclusion	criteria	were	the	

same	as	Experiment	1.		
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	 To	identify	features	of	ratios	and	fractions	that	may	bias	magnitude	comparison	

performance	or	interact	the	holistic	magnitude	processing	of	the	stimuli,	we	examined	the	

data	for	specific	fraction	pairs	that	had	error	rates	higher	than	chance	performance.	In	the	

case	of	cross-format	pairs,	identification	of	items	with	more	incorrect	responses	than	

correct	responses	across	the	experimental	group	were	further	analyzed	for	biases	in	the	

symbolic	to	nonsymbolic	point	of	subjective	equality.	Pairs	with	high	error	rates	in	

symbolic	and	nonsymbolic	pairs	where	further	analyzed	for	component	congruency	and	

component	gap	distance	effects.		

Results	

Missing	data	points	and	erroneous	responses	

	 Prior	to	data	analysis,	erroneous	anticipation	responses	(less	than	250ms)	and	

missed	trials	(no	response	entered)	were	cleaned	from	the	data.	Our	anticipation	cutoff	of	

250ms	was	based	on	previous	research	using	diffusion	models	to	examine	performance	on	

numerical	tasks	(Ratcliff	et	al.,	2015).		No	participants	missed	more	than	two	responses	

within	any	of	the	format	condition	blocks.	Across	all	participants	and	format	conditions,	

cleaning	missed	responses	removed	0.3%	of	the	total	data.	Erroneous	anticipation	

responses	were	only	observed	in	the	data	of	two	participants	and	removing	these	

responses	excluded	6.9%	of	one	participant’s	data	and	0.9%	of	the	others.	Neither	

participant	was	excluded	from	our	analyses.	

Response	times	

Numerical	distance	effects		Replicating	Experiment	1,	responses	in	the	LL,	LF	and	

FFS	formats	demonstrated	significant	distance	effects	with	RTs	decreasing	as	the	distance	
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between	pairs	increased	(Figure	2.10).	Furthermore,	these	significant	distance	effects	were	

also	observed	in	CC,	CF,	and	FFL	response	times	(Figure	2.10).	These	results	support	our	

hypothesis	(H1)	that	magnitude	processing	with	symbolic	fractions	and	nonsymbolic	ratios	

is	sensitive	to	the	holistic	magnitude	of	the	stimuli,	both	within	the	same	format	and	across	

formats.	

Results	of	the	linear	mixed	model	analysis	are	presented	in	Table	2.6.	Pairwise	

comparisons	of	NDE	slope	magnitudes	across	all	six	formats,	identified	multiple	instances	

where	distance	and	format	effects	interacted,	and	other	instances	where	no	difference	was	

observed.	Symbolic	fraction	comparisons	with	large	components	(FFL)	and	small	

components	(FFS),	as	well	line-fraction	cross-format	comparisons	(LF)	showed	the	steepest	

distance	effects,	which	were	all	significantly	more	negative	than	LL,	CC,	and	CF	

comparisons,	but	did	not	significantly	differ	from	one	another.	These	shallower,	yet	

significantly	negative,	slopes	observed	in	LL,	CC,	and	CF	responses	were	not	significantly	

different	from	one	another.	

	

Figure	2.10:	Linear	predictions	of	conditional	mean	response	times	show	that	(a)	line	ratio	
comparisons	(LL)	are	fastest	across	all	numerical	distances	relative	to	fraction-fraction	(FF)	and	
mixed	comparisons	(MX).	Furthermore,	(b)	circle	ratio	comparisons	(cc)	were	faster	than	circle	
ratio-fraction	(CF)	and	FF	comparisons.	Shaded	bands	depict	95%	confidence	intervals	of	the	linear	
predicted	mean	response	time.	

a b 



60	

	

	

60	
60  

Table	2.6	

Estimated	marginal	means	(EMM)	and	slopes		

	 Fixed	Effect	Estimates	 	 Pairwise	contrasts	

Format	
EMM	
RT	 SE	 df	 95%	CI	 	 LL	 CC	 LF	 CF	 FFS	

			LL	 1069	 47.0	 39	 [974,	1164]	 	 	
	

	 	 	 	

			CC	 1145	 48.5	 39	 [1047,	1243]	 	 t=-2.67,	
p=.052,	
dr=-0.17	

	 	 	 	

			LF	 1383	 61.0	 39	 [1259,	1506]	 	 t=-7.70,	
p<.001,	
dr=-0.61	

t=-5.57,	
p<.001,	
dr=-0.52	

	 	 	

			CF	 1328	 61.5	 39	 [1204,	1453]	 	 t=-5.95,	
p<.001,	
dr=-0.57	

t=-4.41,	
p<.001,	
dr=-0.36	

t=-1.85,	
p=.265,	
dr=-0.12	

	 	

			FFS	 1473	 59.1	 39	 [1354,	1593]	 	 t=-10.57,		
p<.001,	
dr=-0.78	

t=-8.89,	
p<.001,	
dr=-0.64	

t=-2.25,	
p=.128,	
dr=-0.18	

t=-3.41,	
p=.008,	
dr=-0.28	

	

			FFL	 1776	 78.8	 39	 [1617,	1935]	 	 t=-14.28,	
p<.001,	
dr=-1.39	

t=-12.25,	
p<.001,	
dr=-1.23	

t=-9.80,	
p<.001,	
dr=0.76	

t=-8.61,	
p<.001,	
dr=-0.87	

t=7.38,	
p<.001,	
dr=0.59	

Format		×	
Distance	

NDE	
Slope	 SE	 df	 95%	CI	 	 LL	 CC	 LF	 CF	 FFS	

			LL	 -891	 100.1	 38.9	 [-1093,	-688]	 	 	
	

	 	 	 	

			CC	 -884	 96.6	 39.0	 [-1079,	-689]	 	 t=0.07,	
p=.999,	
dr=-0.02	

	 	 	 	

			LF	 -1250	 107.6	 38.9	 [-1467,	-1032]	 	 t=2.92,	
p=.029,	
dr=0.70	

t=3.15,	
p=.016,	
dr=0.80	

	 	 	

			CF	 -841	 101.2	 38.9	 [-1046,	-637]	 	 t=0.44,	
p=.971,	
dr=0.11	

t=-0.36,	
p=.984,	
dr=0.08	

t=-3.39,	
p=.008,	
dr=-0.89	

	 	

			FFS	 -1157	 96.6	 39.0	 [-1352,	-961]	 	 t=2.31,	
p=.113,	
dr=0.52	

t=2.38,	
p=.098,	
dr=0.53	

t=-0.81,	
p=.849,	
dr=-0.18	

t=2.74,	
p=.044,	
dr=0.61	

	

			FFL	 -1385	 102.3	 38.9	 [-1592,	-1178]	 	 t=4.03,	
p=.001,	
dr=0.96	

t=4.07,	
p=.001,	
dr=0.98	

t=1.12,	
p=.0.681,	
dr=0.26	

t=4.08,	
p=.001,	
dr=1.06	

t=1.91,	
p=.240,	
dr=0.44	

Note.	Model	estimates	of	mean	RT	were	evaluated	at	the	mean	numerical	distance	among	the	
stimuli	(distance	=	0.375).		
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Nonsymbolic	ratio	processing		Consistent	with	Hypothesis	2.1,	the	linear	mixed	

model	analysis	(Table	2.6)	revealed	evidence	for	more	efficient	nonsymbolic	ratio	

processing	relative	to	performances	with	symbolic	fractions	and	mixed	pairs.	These	

findings	replicated	those	observed	in	Experiment	1	with	line	ratios	and	extend	to	

analogous	nonsymbolic	processing	of	circle	areas.	Specifically,	LL	response	times	(RT)	

were	313ms	faster	than	LF	comparisons,	404ms	faster	than	FFs	comparisons,	and	711ms	

faster	than	FFL	comparisons.	CC	RTs	were	183ms	faster	than	CF	comparisons,	327ms	faster	

than	FFs	comparisons,	and	635ms	faster	than	FFL	comparisons.	

The	pairwise	comparison	of	nonsymbolic	ratio	processing	between	line	ratios	and	

circle	ratios	revealed	that	adults	made	accurate	line	ratio	judgements	76ms	faster	than	

circle	ratios,	however	this	difference	did	not	reach	statistical	significance.	Therefore,	we	did	

not	observe	strong	support	for	our	hypothesis	(2.2)	that	the	processing	of	circle	ratios,	

defined	by	their	relative	areas,	would	be	less	efficient	than	the	processing	of	line	ratios	

defined	the	relative	lengths	of	one-dimensional	lines.	

Cross-Format	Magnitude	Processing		Consistent	with	the	hypothesis	that	

symbolic	and	nonsymbolic	processing	may	involve	the	same	or	highly	compatible	mental	

representations	of	magnitude	(H3),	we	observed	that	cross-format	LF	magnitude	

processing	was	neither	slower	or	more	error	prone	than	within-format	processing	of	FFs	

pairs	and	cross-format	CF	magnitude	processing	was	in	fact	more	efficient	than	symbolic	

processing	of	FFs	pairs.	These	differences	in	processing	cross-format	and	response	times	

resemble	a	pattern	where	cross	format	comparisons	a	mixture	of	fast	circle	ratio	

processing	and	slower	symbolic	fraction	processing.	Furthermore,	the	pattern	of	these	
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cross-format	effects	does	not	provide	positive	evidence	to	indicate	that	these	cross-format	

comparisons	required	difficult	steps	to	translate	between	highly	dissimilar	representations	

of	magnitude	for	each	format.			

Effects	of	symbolic	fraction	complexity	on	RT		Consistent	with	the	hypothesis	that	

encoding	of	symbolic	fraction	stimuli	should	require	additional	forms	of	processing	when	

the	complexity	of	the	symbolic	form	increases	(H5),	we	observed	that	FFL	pairs	with	double	

digit	denominators	and	reducible	terms	required	307ms	more	time	to	compare	than	FFS	

pairs	with	single	digit	irreducible	fractions.	

Error	Rates	

Cross-format	point	of	subjective	equality	bias		As	seen	in	Figure	2.11,	item	level	

analysis	of	error	rates,	indicated	that	there	were	a	number	of	cross-format	pairs	with	group	

mean	error	rates	higher	that	chance	performance.	In	both	LF	and	CF	comparisons,	trials	

with	high	error	rates	were	composed	of	pairs	where	distances	approached	zero	and	the	

correct	answer	was	to	choose	the	symbolic	fraction	as	larger.	This	pattern	of	error	rates	

highly	resembles	that	observed	by	Matthews	and	Chesney	(2015).	Analysis	of	participant’s	

cross-format	point	of	subjective	equality	bias	was	necessary	to	observe	why	group	mean	

ER	on	some	comparison	pairs	was	far	above	this	value	representing	chance	performance.	

Results	of	the	PSE	analysis	with	cross-format	pairs	are	presented	in	Figure	2.12.	We	

observed	a	pattern	of	responses	to	mixed	pairs	indicating	that	the	participants’	PSE	was	

biased	towards	seeing	line	ratios	and	circle	ratios	as	larger	magnitudes	relative	to	

equivalent	symbolic	fractions.	These	results	replicate	the	PSE	bias	observed	in	Experiment	

1,	indicating	that	participants’	PSE	was	reached	when	the	magnitudes	of	symbolic	fractions	
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were	0.056	larger	than	the	magnitude	of	the	visual	nonsymbolic	line	ratios.	Individual	

model	estimates	indicated	that	on	average	PSEs	with	LF	pairs	were	significantly	greater	

than	zero,	t(39)	=	4.52,	p	<	.001.	Cross-format	judgements	between	circle	ratios	and	

fractions,	indicated	that	participants’	PSE	occurred	when	the	magnitude	of	symbolic	

fractions	was	0.163	larger	than	the	magnitude	of	circle	ratios.	Individual	model	estimates	

indicated	that	on	average	PSEs	with	CF	pairs	were	significantly	greater	than	zero,	t(39)	=	

13.55,	p	<	.001.	Using	a	paired	t-test,	we	further	confirmed	that	on	average	the	PSE	bias	

during	CF	comparisons	was	significantly	greater	than	the	PSE	bias	observed	during	LF	

comparisons.			

Similar	to	the	approach	used	by	(Matthews	&	Chesney,	2015),	we	evaluated	whether	

the	PSE	biases	should	be	used	to	correct	our	identification	of	correct	and	incorrect	

responses	in	LF	pairs.	Specifically,	with	the	knowledge	that	on	average	participants	PSE	is	

biased,	we	can	adjust	the	numeric	distances	between	cross-format	pairs	using	the	

magnitude	of	biases	specific	to	LF	and	CF	pairs.	Furthermore,	this	process	can	potentially	

recode	comparison	pairs	with	very	close	numeric	distances	as	having	a	different	correct	

answer	than	defined	by	our	experimental	design.	Specifically,	this	occurs	when	a	smaller	

nonsymbolic	ratio	in	the	pair	is	redefined	by	PSE	adjustment	as	being	perceived	as	a	

magnitude	larger	than	the	symbolic	stimuli.	

In	the	line-fraction	cross	format	condition,	performing	PSE	adjustment	to	the	

distance	between	symbolic	and	nonsymbolic	pairs	did	not	change	the	correct	answer	

coding	of	any	trials	(Figure	2.11)	This	is	due	to	the	fact	that	the	trial	with	the	closest	

numerical	distance	(0.047),	1/3	nonsymbolic	vs	2/7	symbolic,	has	a	larger	nonsymbolic	
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fraction	and	a	smaller	symbolic	fraction.	Adjusting	for	the	bias	in	this	case	increases	the	

numerical	distance	between	the	pairs	rather	than	flipping	what	is	subjectively	correct.	The	

second	closest	numerical	distance	in	the	stimuli	(distance	=	0.057)	was	slightly	larger	than	

the	Line-Fraction	bias	in	PSE	(0.056).	In	this	case	the	symbolic	fraction	6/7	is	larger	than	

the	nonsymbolic	4/5,	but	the	distance	is	just	far	enough	that	the	PSE	adjustment	does	not	

change	which	of	the	two	stimuli	would	be	viewed	as	subjectively	larger.	Thus,	the	group	

mean	error	rate	for	the	6/7-4/5	cross-format	pair	is	greater	than	.5	(M	=	0.75,	SD	=	0.44),	

even	after	bias	adjustment,	and	is	therefore	this	trial	was	excluded	from	our	subsequent	

analysis	of	distance	effects	on	error	rate.	

	

Figure	2.11.	Group	mean	error	rates	for	each	cross-format	comparison	pair.	Error	bars	indicate	
95%	confidence	intervals	of	the	group	mean.	Dotted	line	indicates	the	veridical	point	of	subjective	
equality	defined	by	the	stimuli’s	true	magnitudes.	Note:	Distances	are	presented	as	equally	spaced	
across	the	x-axis	for	illustrative	purposes,	and	do	not	precisely	reflect	the	differences	in	cross-
format	distances	between	items.	
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Figure	2.12.	Logistic	model	estimates	of	individual	(random	effects)	and	group	level	(fixed	effects)	
probability	to	judge	a	symbolic	fraction	as	larger	than	the	nonsymbolic	ratio	across	varying	
distances	between	stimuli.	Model	estimates	of	LF	and	CF	comparisons	are	show	in	purple	and	
green,	respectively,	and	group	level	estimates	are	shown	in	darker	trend	line.	Points	where	these	
lines	cross	the	.5	probability	line	(grey)	indicate	points	of	subjective	equality	(PSEs),	or	the	distance	
between	symbolic	fractions	and	nonsymbolic	ratios	where	individuals	would	judge	the	stimuli	as	
equal.	Vertical	dashed	black	lines	indicate	group	mean	points	of	subjective	for	each	format.		

	 Within	the	circle-fraction	trials	the	PSE	bias	was	0.162,	which	was	greater	than	the	

absolute	distance	of	7	mixed	pairs.	As	was	seen	with	the	line-fraction	trials,	the	accuracy	

coding	of	some	trials	was	not	affected	by	the	PSE	adjustment	because	the	nonsymbolic	

circle	ratio	already	had	the	larger	magnitude	and	thus	made	the	bias	adjusted	distances	

larger	than	the	distances	design	by	our	stimulus	design.	In	3	of	these	7	pairs	(e.g.	4/5	

nonsymbolic	vs	6/7	symbolic),	adjusting	the	numeric	distance	between	pairs	to	correct	for	

PSE	bias,	inverted	the	correctness	coding	to	indicate	that	the	smaller	nonsymbolic	ratio	in	

the	pair	could	be	subjectively	seen	as	the	larger	stimuli	Figure	2.11.	However,	the	group	

mean	error	rate	for	the	pair	4/9	nonsymbolic	vs	5/8	symbolic	was	worse	that	chance	

performances	(M	=	0.70,	SD	=	0.46),	even	after	PSE	bias	adjustment.	Therefore,	this	trial	

was	excluded	from	our	subsequent	analyses	of	distance	effects	on	ER.	
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Format	and	distance	effects	on	ER		All	analyses	of	format	effects	on	the	

probability	of	ER	across	numeric	distances	were	conducted	using	PSE	adjusted	distances,	

and	specific	comparisons	pairs	with	ERs	above	chance	performance	were	excluded	prior	to	

model	fitting.	As	was	done	with	mixed	pairs,	we	calculated	the	group	mean	accuracy	at	the	

item	level,	to	determine	which	pairs	participants	were	more	likely	to	incorrectly	judge	the	

smaller	stimulus	as	larger.	We	observed	only	two	trials	with	mean	error	rates	above	chance	

performance	(.5),	and	both	were	found	in	the	symbolic	fraction	condition	with	larger	

components	(FFL).	These	two	trials,	10/16	vs	39/55	and	22/27	vs	50/58	had	group	mean	

error	rates	of	0.625	and	0.615,	respectively.	These	trials	were	excluded	from	our	logistic	

models	of	ER	over	numeric	distances	but	are	further	discussed	in	our	analyses	of	

component	congruency	and	gap	distances	below.		

		

Figure	2.13.	Logistic	model	estimates	of	error	rate	probability	across	absolute	numerical	distances	
adjusted	for	PSE	biases.	(a)	Results	replicate	findings	of	Experiment	1,	indicating	that	among	
nonsymbolic	line	ratio	(LL),	cross-format	line	ratio-fraction	(LF),	and	symbolic	fraction	pairs	with	
single	digit	components	(FFS)	error	rates	increased	as	distances	approached	zero,	but	these	
distance	effects	did	not	interact	between	formats.	(b)	Results	from	nonsymbolic	circle	ratio	(CC),	
cross-format	circle	ratio-fraction	(CF)	and	symbolic	fraction	pairs	with	larger	components	(FFL),	
show	a	similar	pattern	of	distance	effects	in	all	conditions,	with	no	significant	format	by	distance	
interactions.	Shaded	bands	depict	95%	confidence	intervals		
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Among	all	included	comparison	pairs	across	the	six	format	conditions	participants	

on	average	made	a	low	percentage	of	errors	(5.8%,	SD	=	2.7%).	Consistent	with	RT	results,	

the	logistic	mixed	models	of	ERs	showed	a	significant	effect	of	distance,	F(1,90)=102.3,	p	<	

.001.	As	seen	in				

Figure	2.13,	distance	effects	were	observed	in	all	six	format	conditions,	with	error	

rates	dropping	off	rapidly	as	distances	increased	from	0	to	0.2	and	approached	errorless	

performance	once	distances	reached	0.4	(H1).	The	full	logistic	model	indicated	no	

significant	interactions	between	numerical	distance	effects	and	format,	F(5,90)=4.28,	p	=	

0.51.	We	therefore	dropped	this	interaction	when	evaluating	format	effects.	

As	seen	in	Table	2.7,	analyses	of	error	rates	across	formats	revealed	no	significant	

differences	in	ER	across	the	six	format	conditions.	Therefore,	we	did	not	observe	evidence	

in	ER	to	support	the	hypotheses	that	adults	should	be	more	efficient	at	nonsymbolic	than	

symbolic	magnitude	processing	(H2.1),	adults	should	be	more	efficient	at	line	ratio	

processing	than	circle	ratio	processing	(H2.2),	that	cross-format	processing	should	be	more	

difficult	than	within	format	processing	(H3),	or	that	single-digit	FF	processing	should	be	

more	efficient	than	double-digit	FF	processing	(H5).	Although	this	the	lack	of	format	effects	

on	ER	does	not	provide	positive	evidence	in	support	of	our	hypotheses,	it	does	provide	

greater	assurance	that	the	format	effects	observed	in	RTs	were	not	compromised	by	speed-

accuracy	tradeoffs.	
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Table	2.7	

Logistic	Mixed	Model	Regression	Results	for	Error	Rate	and	pairwise	comparisons	

	 Fixed	Effect	Results	 	 Pairwise	comparisons	

Format	 Estimate	 SE	 95%	CI	

Odds	

Ratio	 	 LL	 CC	 LF	 CF	 FFS	

			LL	 -4.82	 0.269	 [-5.35,	-4.30]	 0.006	 	 	

	

	

	 	 	 	

			CC	 -4.45	 0.256	 [-4.95,	-3.95]	 	 	 z=-1.716,	

p=.521,	

OR=0.69	

	 	 	 	

			LF	 -4.61	 0.263	 [-5.13,	-4.10]	 0.013	 	 z=-0.924,	

p=.941,	

OR=0.81	

z=0.903,	

p=.976,	

OR=1.17	

	 	 	

			CF	 -4.32	 0.260	 [-4.83,	-3.81]	 	 	 z=-2.379,	

p=.164,	

OR=0.60	

z=-0.702,	

p=.982,	

OR=0.88	

z=-1.414,	

p=.718,	

OR=	0.75	

	 	

			FFS	 -4.64	 0.274	 [-5.18,	-4.10]	 	 	 z=-0.780,	

p=.970,	

OR=0.83	

z=0.903,	

p=.946,	

OR=1.21	

z=0.123,	

p=.999,	

OR=1.03	

z=1.630,	

p=.579,	

OR=1.38	

	

			FFL	 -4.64	 0.278	 [-5.19,	-4.10]	 0.017	 	 z=-0.794,	

p=.969,	

OR=0.83	

z=	0.849,	
p=	.958,	
OR=1.21	

z=-0.119,	

p=.999,	

OR=0.97	

z=1.447,	

p=.698,	

OR=1.38	

z=0.00,	

p=.999,	

OR=1.00	

Distance	 -11.2	 0.774	 [-12.7,	-9.7]	 2.9E-6	 	 	 	 	 	 	

Note:	Higher	likelihood	of	errors	corresponds	to	greater	estimated	marginal	means	of	format	on	the	
log	odds	scale.	Odds	ratio	transformation	of	these	estimates	indicates	the	probability	of	making	an	
error	relative	to	the	probability	of	making	an	accurate	judgement.	Estimated	means	and	pairwise	
comparisons	are	evaluated	where	absolute	numerical	distance	=	0.371,	the	mean	of	distances	
presented	in	the	stimuli.	Pairwise	contrasts	are	performed	on	the	log	odds	ratio	scale,	and	
corresponding	odd	ratios	(OR)	indicate	the	probability	of	an	error	in	the	condition	along	the	
column	relative	to	condition	in	the	row	header.		
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Within-notation	follow-up	analyses	

	 Consistent	with	the	analyses	conducted	in	Experiment	1,	we	further	evaluated	

whether	our	identification	of	holistic	distance	effects	may	occur	in	parallel	or	are	disrupted	

by	additional	features	of	symbolic	fractions	and	nonsymbolic	ratios.	

Symbolic	Fraction	Component	Congruency	Effects		Results	of	the	mixed	effects	

model,	presented	in	Table	2.8,	indicated	that	NDE	slopes	were	significant	and	negative	for	

single-digit	FF	pairs	within	each	of	the	four	component	congruency	relationships.	Pairwise	

comparisons	of	mean	RT	between	FF	pairs	with	different	component	congruency	

relationships	were	evaluated	at	an	absolute	distance	of	0.3,	where	all	types	of	pairs	overlap.	

Pairwise	comparisons	of	mean	RTs	revealed	that	pairs	with	common	denominators	had	the	

fastest	RTs,	which	were	296ms	faster	than	pairs	with	congruent	numerators	and	

denominators,	414ms	faster	than	pairs	with	congruent	numerators	and	incongruent	

denominators,	and	442ms	less	than	pairs	with	incongruent	numerators.	FF	comparisons	

with	incongruent	numerators	had	the	slowest	mean	RTs	in	the	sample,	but	it	was	not	

significantly	higher	than	pairs	with	congruent	numerators	and	denominators,	or	pairs	with	

congruent	numerators	and	incongruent	denominators.	Among	pairs	with	congruent	

numerators,	the	differences	in	RT	between	pairs	with	congruent	denominators	and	pairs	

with	incongruent	denominators	did	not	reach	statistical	significance.	
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Figure	2.14:	Linear	predictions	of	distance	effects	on	RT	across	symbolic	fraction	pairs	with	single	
digit	components	(sml)	and	double	digit	components	(lrg)	and	nonsymbolic	line	ratio	and	circle	
ratio	pairs	with	different	component	congruency	relationships.	
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Table	2.8	

Mean	RTs	and	distance	effect	slopes	in	FF	(small)	pairs	across	component	congruency	

	 Fixed	Effect	Estimates	 	 Pairwise	contrasts	

Component	
Congruency	

EMM	
RT	 SE	 df	 95%	CI	 	 +N	/=D	 +N	/+D	 +N	/	-D	

+N	/=D	 1287	 49.2	 39	 [1187,	1386]		 	 	 	 	

+N	/+D	 1583	 84.9	 39	 [1412,	1755]	 	 t=-4.33,	p<.001,	dr=-0.64	 	 	

+N	/	-D	 1701	 81.6	 39	 [1536,	1866]	 	 t=--6.20,	p<.001,	dr=-0.89	 t=-2.64,	p=.055,	dr=-0.25	 	

-	N	/+D	 1729	 86.9	 39	 [1553,	1905]	 	 t=--5.61,	p<.001,	dr=0.95	 t=-1.89,	p=.250,	dr=0.31	 t=0.41,	p=.976,	dr=0.06	

Component	
Congruency
×	Distance	

NDE			
β	 SE	 df	 95%	CI	 	 +N	/=D	 +N	/+D	 +N	/	-D	

+N	/=D	 -592	 115	 39	 [-825,	-359]	 	 	 	 	

+N	/+D	 -1186	 181	 39	 [-1553,	-819]	 	 t=2.72,	p=.047,	dr=1.27	 	 	

+N	/	-D	 -1496	 179	 39	 [-1859,	-1133]	 	 t=4.23,	p<.001,	dr=1.94	 t=1.62,	p=0.382,	dr=0.67	 	

-	N	/+D	 -848	 396	 39	 [-1652,	-43.3]	 	 t=0.63,	p=.923,	dr=0.55	 t=-0.82,	p=.844,	dr=-0.73	 t=1.54,	p=.428,	dr=-1.39	

Note:	Estimated	marginal	means	(EMM)	indicate	the	predicted	mean	response	time	within	each	category	of	component	congruency	
where	absolute	distance	=	0.3.	Numerical	distance	effect	slope	estimates	(NDE)	were	significant	and	negative	in	all	instances,	as	the	
range	of	the	95%	confidence	interval	(CI)	does	not	include	zero.	Degrees	of	freedom	were	estimated	using	the	Kenward-Rodger	
approximation.	
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Results	of	the	mixed	effects	model	with	fraction-fraction	comparisons	and	large	

components,	shown	in	Table	2.9,	indicated	that	NDE	slopes	were	significant	and	negative	

within	each	of	the	four	component	congruency	relationships.	Pairwise	comparisons	of	

mean	RTs	revealed	that	pairs	with	congruent	numerators	and	denominators	had	the	fastest	

RTs,	which	were	on	average	(at	a	distance	of	0.3)	265ms	faster	than	pairs	with	congruent	

numerators	and	incongruent	denominators	and168ms	faster	than	pairs	with	congruent	

numerators	and	incongruent	denominators.	FFL	comparisons	with	congruent	numerator	

and	incongruent	denominators	had	the	slowest	mean	RTs	in	the	sample,	but	they	were	not	

significantly	slower	than	pairs	with	incongruent	numerators	and	congruent	denominators.		

Table	2.9	

Mean	RTs	and	distance	effect	slopes	in	FF	(large)	pairs	across	component	congruency	

	 Fixed	Effect	Estimates	 	 Pairwise	contrasts	

Component	
Congruency	

EMM	
RT	 SE	 df	 95%	CI	 	 +N	/+D	 +N	/	-D	

+N	/+D	 1786	 86	 39	 [1612,	1960]	 	 	 	

+N	/	-D	 2051	 100	 39	 [1848,	2254]	 	 t=-411,	p<.001,	dr=-0.45	 	

-	N	/+D	 1954	 93.6	 39	 [1765,	2143]	 	 t=-2.56,	p=.038,	dr=-0.28	 t=1.37,	p=.367,	dr=0.16	

Component	
Congruency
×	Distance	

NDE			
β	 SE	 df	 95%	CI	 	 +N	/+D	 +N	/	-D	

+N	/+D	 -936	 128	 38.3	 [-1194,	-678]	 	 	 	

+N	/	-D	 -2098	 220	 38.8	 [-2543,	-1653]	 	 t=4.69,	p<.001,	dr=2.49	 	

-	N	/+D	 -1490	 411	 37.2	 [-2323,	-657]	 	 t=1.30,	p=.403,	dr=1.19	 t=-1.44,	p=.331,	dr=-1.31	

Note:	Estimated	marginal	means	(EMM)	indicate	the	predicted	mean	response	time	within	each	
category	of	component	congruency	where	absolute	distance	=	0.3.	Numerical	distance	effect	slope	
estimates	(NDE)	were	significant	and	negative	in	all	instances,	as	the	range	of	the	95%	confidence	
interval	(CI)	does	not	include	zero.	Degrees	of	freedom	were	estimated	using	the	Kenward-Rodger	
approximation	
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Nonsymbolic	Component	Congruency	Effects			Nonsymbolic	line	ratios	in	

Experiment	2	were	presented	as	the	ratio	two	continuous	lines	and	the	ratio	of	two	circle	

areas.	We	conducted	analogous	analyses	of	component	congruency	effects	as	symbolic	

fractions	based	on	the	visual	extent	of	the	ratio	components.	There	were	not	enough	pairs	

within	the	LL	and	CC	conditions,	where	the	lengths	of	the	denominator	line	lengths	and	

circle	areas	were	equivalent	or	close	to	equivalent	to	include	the	same	denominator	

category	in	our	analysis	of	nonsymbolic	congruency	effects.	

Table	2.10	

Mean	RTs	and	distance	effect	slopes	in	LL	pairs	across	component	congruency	

	 Fixed	Effect	Estimates	 	 Pairwise	contrasts	

Component	
Congruency	

EMM	
RT	 SE	 df	 95%	CI	 	 +N	/+D	 +N	/	-D	

+N	/+D	 1184	 70.4	 39	 [1039,	1324]	 	 	 	

+N	/	-D	 1109	 50.8	 39	 [1006,	1212]	 	 t=1.67,	p=.230,	dr=.170	 	

-	N	/+D	 1125	 56.1	 39	 [1012,	1239]	 	 t=0.96,	p=.603,	dr=.132	 t=-0.411,	p=0.911,	dr=-0.04	

Component	
Congruency
×	Distance	

NDE	
(b)	 SE	 df	 95%	CI	 	 +N	/+D	 +N	/	-D	

+N	/+D	 -922	 255.6	 38.7	 [-1439,	-405]	 	 	 	

+N	/	-D	 -815	 99.9	 38.9	 [-1017,	-613]	 	 t=-0.43,	p=.904,	dr=0.25	 	

-	N	/+D	 -1025	 160.3	 38.6	 [-1349,	-701]	 	 t=0.37,	p=.928,	dr=0.24	 t=1.26,	p=.428,	dr=0.50	

Note:	Estimated	marginal	means	(EMM)	indicate	the	predicted	mean	response	time	within	each	
category	of	component	congruency	where	absolute	distance	=	0.3.	Numerical	distance	effect	slope	
estimates	(NDE)	were	significant	and	negative	in	all	instances,	as	the	range	of	the	95%	confidence	
interval	(CI)	does	not	include	zero.	Degrees	of	freedom	were	estimated	using	the	Kenward-Rodger	
approximation	

	 Results	of	the	mixed	effects	model	with	LL	comparisons,	shown	in	Table	2.10,	

revealed	that	NDE	slopes	were	significant	and	negative	within	each	of	the	three	component	

congruency	subsets	of	the	LL	pairs.	We	did	not	observe	a	significant	interaction	between	



	 	 	 	

	

74	

distance	and	component	congruency,	F(2,37.7)	=	0.80,	p	=	.458,	which	can	be	seen	in	Figure	

2.14	where	distance	effect	slopes	regardless	of	component	congruency	are	parallel.	

Consistent	with	our	analysis	of	mean	RTs	in	the	Symbolic	Fraction	condition,	we	tested	for	

differences	at	the	absolute	distance	of	0.3.	Results	of	the	mixed	model	revealed	no	

significant	main	effect	of	component	congruency	on	mean	RTs,	F(2,37.7)	=	0.89,	p	=	.458.		

Table	2.11	

Mean	RTs	and	distance	effect	slopes	in	CC	pairs	across	component	congruency	

	 Fixed	Effect	Estimates	 	 Pairwise	contrasts	

Component	
Congruency	

EMM	
RT	 SE	 df	 95%	CI	 	 +N	/+D	 +N	/	-D	

+N	/+D	 1223	 67.8	 39	 [1086,	1360]	 	 	 	

+N	/	-D	 1130	 49.4	 39	 [1030,	1230]	 	 t=2.32,	p=.065,	dr=.237	 	

-	N	/+D	 1242	 54.7	 39	 [1132,	1353]	 	 t=-0.48,	p=.882,	dr=0.05	 t=-3.46,	p=1.52,	dr=0.29	

Component	
Congruency
×	Distance	

NDE	
(b)	 SE	 df	 95%	CI	 	 +N	/+D	 +N	/	-D	

+N	/+D	 -1050	 180	 38.6	 [-1414,	-687]	 	 	 	

+N	/	-D	 -627	 113	 39.0	 [-856,	-397]	 	 t=2.25,	p=.075,	dr=-1.08	 	

-	N	/+D	 -919	 102	 38.8	 [-1125,	-713]	 	 t=-0.74,	p=.741,	dr=-0.33	 t=2.23,	p=.078,	dr=0.74	

Note:	Estimated	marginal	means	(EMM)	indicate	the	predicted	mean	response	time	within	each	
category	of	component	congruency	where	absolute	distance	=	0.3.	Numerical	distance	effect	slope	
estimates	(NDE)	were	significant	and	negative	in	all	instances,	as	the	range	of	the	95%	confidence	
interval	(CI)	does	not	include	zero.	Degrees	of	freedom	were	estimated	using	the	Kenward-Rodger	
approximation	

Results	of	the	mixed	effects	model	with	CC	comparisons	are	presented	in	Table	2.11.	

Similar	to	the	line	ratio	comparison	results,	we	saw	a	significant	main	effect	of	holistic	

distance,	F(2,37.7)	=	81.6,	p	<	.001,	with	significant	negative	NDE	slopes	in	each	of	the	

component	congruency	categories	of	CC	comparisons.	Results	also	revealed	a	main	effect	of	

component	congruency,	F(37.7)	=	5.85,	p	=	.006,	and	a	significant	interaction	between	
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distances	and	component	congruency	effects,	F(2,	37.78)	=	3.43,	p	=	.043.	Pairwise	

comparisons	of	NDE	slopes	between	component	congruency	categories	indicated	these	

differences	did	not	reach	statistical	significance,	and	likewise	pairwise	comparisons	of	

estimated	mean	RT	did	not	reveal	significant	differences.	

Symbolic	Fraction	Gap	Strategy	Effects		We	conducted	the	same	gap	strategy	

analysis	of	FFS	pairs	and	adapted	this	analysis	to	examine	if	gap	strategy	effects	with	FFL	

pairs.	As	we	observed	in	Experiment	1,	the	FFS	comparison	stimuli	contained	pairs	with	

zero	gap	distance,	and	gap	distances	as	large	as	6.	The	FFL	comparison	stimuli	included	4	

pairs	where	gap	distances	were	incongruent	(the	larger	fraction	had	a	larger	gap	between	

numerator	and	denominator	values),	only	one	pair	with	no	gap	difference,	and	congruent	

gap	differences	as	larger	as	59.	

Results	of	the	mixed	models	with	single	digit	symbolic	fractions	indicated	that	both	

holistic	distance,	F(1,38.7)	=	43.9,	p	<	.001,	and	gap	distances,	F(1,38.8)	=	7.63,	p	=	.009,	

were	significant	predictors	of	variance	in	FF	RTs,	but	the	interaction	between	these	factors	

was	not	significant,	F(1,38.7)	=	0.05,	p	=	.832.	As	seen	in	Figure	2.15,	these	results	were	

consistent	with	symbolic	comparison	in	Experiment	1	indicating	that	we	still	see	significant	

distance	effects	,	b	=	-1284.6,	t	=	-12.4,	p	<	.001,	when	controlling	for	effects	of	gap	

distances.	Furthermore,	we	observed	that	when	controlling	for	distance	effects,	increases	

in	gap	distances	was	associated	with	a	slight	increase	in	RTs,	b	=	10.0,	t	=	2.8,	p	=	0.007.		

Results	of	the	mixed	model	among	symbolic	fractions	with	large	components	

revealed	a	significant	interaction	between	distance	and	gap	effects,	F(1,38.6)	=	13.2,	p	<	

.001.	We	explored	the	nature	of	this	interaction	by	evaluating	the	direction	and	significance	

of	distance	effect	slopes	within	subsections	of	the	data	with	varying	gap	distances.	As	seen	
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in	Figure	2.15,	this	follow	up	analysis	revealed	that	the	significant	main	effect	of	distance,	

F(1,38.8)	=	184.1,	p	<	.001	can	be	observed	across	all	gap	distances	when	the	gaps	within	

the	larger	fraction	were	smaller	than	gaps	of	the	smaller	fraction.	However,	estimated	

distance	effects	among	responses	to	pairs	with	incongruent	gap	distances	were	neither	

significant	nor	negative,	among	these	pairs	(n	=	4	trials),	b	=	460,	t	=	0.82,	p	=	0.419.	

Therefore,	we	see	that	among	fractions	with	large	components,	gap	distances	have	minimal	

to	no	effect	on	distance	effect	slopes	when	these	gap	distances	are	consistent	with	a	gap	

strategy,	however	holistic	magnitude	processing	may	be	interrupted	or	effected	when	

larger	fractions	also	have	larger	gaps.	

Nonsymbolic	Ratio	Gap	Strategy	effects		Analyses	of	gaps	and	gap	distances	

among	nonsymbolic	ratio	stimuli	used	the	same	approach	as	Experiment	1,	with	the	

addition	of	calculating	gap	distances	among	circle	ratios	(CC).	We	defined	circle	ratio	gaps	

as	the	difference	in	visual	area	between	the	circles	in	pixels,	and	gap	distance	as	the	

difference	between	the	two	circle	ratios’	gaps.	Given	the	extremely	large	difference	in	the	

scale	of	line	ratio	gap	distances	(LLrange=	[-33,	266])	in	pixel	length	and	circle	ratio	gap	

distances	CCrange=[-8176,	42276]	in	pixel	area,	all	predictors	were	scaled	and	centered	

when	evaluating	the	significance	and	interaction	of	distance	and	gap	effects		

Results	of	the	mixed	model	with	LL	comparisons	indicated	that	when	controlling	for	

effects	of	gap	distances,	holistic	distance	predicted	significant	variance	in	RTs,	F(1,38.9)	=	

7.79,	p	=	.005.	However,	when	controlling	for	holistic	distances,	the	effect	of	gap	distances	

did	not	reach	significance,	F(1,38.9)	=	3.05,	p	=	.088.	Furthermore,	the	interaction	between	

these	factors,	F(1,38.7)	=	8.17,	p	=	.007	was	a	significant	predictor	of	variance	in	RTs.	The	

nature	of	this	interaction,	presented	in	Figure	2.15,	shows	that	distance	effect	slopes	varied	
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across	different	gap	distances,	b	=	50.3,	t	=	2.86,	p	=	0.006,	with	negative	distance	effect	

slopes	at	small	gap	distances	becoming	flatter	as	gap	distances	increase.	When	analyzed	

separately	(Figure	2.15),	slope	estimates	for	incongruent	gap	trials	were	not	significantly	

negative,	b	=	-1033.8,	t(38.2)	=	-1.08,	p	=	.284,	however	this	result	is	based	on	a	small	

number	of	trials	in	the	LL	condition	(n	=	3).	When	controlling	for	variation	explained	by	

distance,	the	model	indicated	that	RTs	decrease	as	gap	distances	increase,	b	=	-41.3,	t	=	-

1.75,	p	=	.089.	

	

	
Figure	2.15.	Distance	effect	slopes	across	gap	distances	for	symbolic	fractions	and	nonsymbolic	
ratios.	Binned	gap	differences	in	symbolic	fractions	(a/b)	indicate	the	difference	in	the	symbolic	
magnitude	value	between	gaps	in	each	fraction.	Gap	differences	with	nonsymbolic	ratios	indicate	
the	differences	in	pixel	length	(c)	or	pixel	area	(d).	
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Results	of	the	mixed	model	with	CC	comparisons	indicated	that	holistic	distance,	

F(1,39.0)	=	-81.3,	p	<	.001,	gap	distances,	F(1,38.9)	=	5.69,	p	=	.022,	and	the	interaction	

between	these	factors,	F(1,39.0)	=	9.02,	p	=	.005,	were	significant	predictors	of	variance	in	

RTs.	This	interaction,	where	distances	effect	slopes	were	modulated	by	varying	gap	

distances	is	shown	in		Figure	2.15.	Specifically,	predicted	slopes	were	negative	at	a	gap	

distance	of	zero	and	became	flatter	as	gap	distances	increased.	When	we	analyzed	

incongruent	gap	trials	separately		we	observed	that	slope	estimates	were	not	statistically	

significant,	b	=	-1239,	t	=	-1.47,	p	=	.15	(Figure	2.15),	however	these	results	are	based	on	a	

small	number	of	incongruent	gap	trials	(n	=	4)	that	participants	completed	in	the	CC	

condition.	When	controlling	for	variation	explained	by	distance,	the	model	indicated	that	

RTs	decrease	as	gap	distances	increase,	b	=	-34.3,	t	=	-2.39,	p	=	.019.	

Discussion	

Across	two	experiments,	we	tested	five	hypotheses	to	explore	the	similarities	and	

differences	between	magnitude	processing	with	symbolic	fractions	and	nonsymbolic	

visually	defined	ratios.	First,	we	consistently	observed	numerical	distance	effects	(NDEs)	in	

all	symbolic	and	nonsymbolic	conditions,	indicating	that	response	times	and	error	rates	

varied	as	a	function	of	the	stimuli’s	holistic	rational	number	magnitudes	(H1).	Second,	we	

observed	more	efficient	nonsymbolic	processing	relative	to	symbolic	conditions	and	

identified	how	nonsymbolic	ratio	processing	may	become	slightly	less	efficient	when	

presented	in	a	more	complex	visual	form.	(H2).	Third,	we	observed	that	adults	can	

compare	magnitudes	of	cross-format	pairs	as	efficiently	as	comparing	pairs	within	

symbolic	notation	(H3),	however	biases	exist	in	point	of	subjective	equality	adults	see	
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when	comparing	cross-format	pairs	(H4).	Lastly,	we	observed	that	the	complexity	symbolic	

fraction	stimuli	can	slow	the	speed	of	comparison	performance.		

Evidence	for	holistic	magnitude	processing	

	 In	the	current	experiments	we	aimed	to	evaluate	the	presence	and	nature	of	holistic	

magnitude	processing	across	symbolic	and	nonsymbolic	formats	via	an	analysis	NDEs.	In	

both	experiments	we	observed	significant	and	negative	NDE	slopes	in	all	symbolic,	

nonsymbolic	and	cross	format	conditions.	Previous	studies	with	adults	and	children	have	

similarly	observed	holistic	magnitude	processing	in	the	form	of	NDEs	with	symbolic	

fractions	(Binzak	&	Hubbard,	2020;	DeWolf	et	al.,	2014;	Meert	et	al.,	2010).	However,	only	a	

few	studies	have	directly	compared	response	patterns	with	symbolic	fractions	to	those	for	

nonsymbolic	ratio	processing	within	the	same	subjects	and	using	the	same	comparison	

magnitudes	(Kalra,	Binzak,	et	al.,	2020;	Mock	et	al.,	2018).	The	present	study	presents	the	

first	comparison	of	NDEs	across	formats	with	adults	using	a	continuous	and	large	range	of	

numerical	distances	to	provide	more	detailed	insights	into	the	nature	of	these	response	

functions.	

Results	of	the	present	experiments	indicate	that	NDEs	in	RT	were	not	equivalent	

across	stimuli,	pointing	to	differences	in	how	efficiently	and	precisely	people	can	access	a	

holistic	sense	of	magnitude	from	symbolic	fractions	and	nonsymbolic	ratios.	Specifically,	

we	observed	that	nonsymbolic	magnitude	processing	can	occur	more	efficiently	than	

symbolic	or	cross-format	processing	and	that	cross-format	processing	is	no	less	efficient	

that	within-format	symbolic	processing	(discussed	in	greater	details	in	Sections	4.2	and	4.3	

below).	We	further	explored	these	differences,	by	examining	ways	that	magnitude	

comparison	with	fractions	may	involve	adaptive	strategy	use	when	there	are	multiple	cues	
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that	people	can	use	to	make	decisions	(Fazio	et	al.,	2016;	Huber	et	al.,	2014).	For	instance,	

the	magnitude	of	fractions’	and	ratios’	components	as	separate	entities	may	provide	

information	to	bias	magnitude	comparison	judgements	in	ways	that	reinforce	or	contradict	

information	based	solely	on	holistic	magnitude	processing	(Bonato	et	al.,	2007;	Meert	et	al.,	

2009;	Obersteiner	&	Tumpek,	2016;	Toomarian	&	Hubbard,	2018).		

Critically,	follow	up	analyses	of	componential	effects	on	within-format	comparisons	

revealed	that	in	almost	all	cases	NDEs	remained	significant	and	negative	even	when	

controlling	for	component-based	effects.	Relative	to	nonsymbolic	ratio	processing,	we	

observed	that	magnitude	processing	speed	and	NDE	slopes	were	modulated	by	symbolic	

fraction	component	features	to	a	greater	degree.	The	strongest	example	of	this	was	

observed	in	Experiment	2,	when	multi-digit	symbolic	fraction	comparisons	did	not	show	a	

significant	NDE	among	pairs	with	incongruent	gap	distances.	However,	this	observation	

was	based	on	only	four	pairs	in	the	current	sample,	which	may	explain	the	large	standard	

errors	observed	around	this	slope	estimate.	Given	the	exploratory	nature	of	these	follow	up	

analyses	of	componential	effects,	it	is	a	matter	of	future	research	to	disentangle	how	the	

difference	in	componential	effects	between	symbolic	and	nonsymbolic	processing	stem	

from	phenomena	such	as	less	confidence	with	fractions,	less	precise	representation	of	

holistic	magnitude	with	fractions,	or	other	entrenched	whole-number	biases.	The	presence	

of	componential	effects	in	the	current	data	present	further	support	for	the	arguments	that	

multiple	forms	of	magnitude	processing	with	fractions	and	ratios	may	occur	in	concert	with	

one	another	(Faulkenberry	&	Pierce,	2011;	Fazio	et	al.,	2016;	Huber	et	al.,	2014).	

Nevertheless,	even	when	we	account	for	the	alternative	effects	of	component	congruency	
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and	gap	distances,	we	observe	that	patterns	processing	time	and	accuracy	are	still	

associated	with	holistic	magnitude	processing.	

Evidence	for	Efficient	Ratio	Processing	

Proponents	of	the	ratio	processing	system	theory	argue	that	human	cognition	is	

supported	by	an	innate	and	biologically	ancient	perceptual	system	sensitive	to	the	

magnitudes	of	nonsymbolic	ratios	(Jacob	et	al.,	2012;	Lewis	et	al.,	2015).	Ratio	processing	

can	be	described	as	a	largely	perceptual	process	by	which	estimates	of	relative	magnitude	

can	be	made	quickly	and	accurately,	and	without	conversion	to	alternative	(e.g.	symbolic)	

representations	(Matthews	&	Chesney,	2015).	The	results	of	the	current	experiments	

support	the	hypothesis	that	nonsymbolic	ratio	processing	with	visual	stimuli	is	more	

efficient	than	analogous	magnitude	processing	with	symbolic	fraction	stimuli.	Specifically,	

adults	made	accurate	comparisons	of	line	ratios	and	circle	ratios	faster	than	comparisons	

of	symbolic	fractions,	and	models	of	these	effects	based	on	the	current	data	indicate	that	

this	efficiency	holds	whether	the	numeric	value	of	stimuli	are	close	or	very	distant.	

One	alternative	explanation	of	efficient	magnitude	processing	with	nonsymbolic	

stimuli	relative	to	symbolic	fractions,	is	that	continuously	defined	part-to-part	ratios	are	

visually	more	simplistic	than	symbolic	fractions.	Regarding	how	visual	complexity	may	

influence	ratio	processing,	we	observed	in	Experiment	2	that	line	ratio	comparisons	(LL)	

were	made	more	quickly	than	circle	ratio	comparisons	(CC).	If	we	characterize	circle	ratios,	

defined	by	the	relative	size	of	their	two-dimensional	areas,	as	more	complex	than	line	

ratios,	defined	by	their	one-dimensional	line	lengths,	then	these	results	support	the	

hypothesis	that	nonsymbolic	ratio	processing	is	directly	related	to	visual	complexity.	

Future	research	is	necessary	specify	the	how	features	of	visual	complexity	may	affect	the	
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efficiency	of	nonsymbolic	processing	and	how	these	effects	manifest	with	different	

nonsymbolic	stimuli	(e.g.	dot	ratios).		

Differences	between	nonsymbolic	ratios	and	symbolic	fractions	may	also	be	

explained	by	the	varying	familiarity	and	experiences	participants	had	with	the	stimuli.	For	

instance,	symbolic	fractions	may	be	more	visually	complex,	but	they	are	also	

representations	of	rational	number	magnitude	which	participants	(college-aged	adults)	in	

this	study	have	likely	seen	before.	On	the	other	hand,	the	nonsymbolic	ratios	used	in	these	

experiments	were	novel	visual	representations.	Furthermore,	these	stimuli	were	carefully	

designed	so	that	judgments	needed	to	be	based	on	intensive	holistic	ratio	magnitudes	

rather	than	the	extensive	lengths	of	either	component.	Thus,	it	is	interesting	to	see	that	

adults	still	exhibited	more	efficient	holistic	magnitude	processing	with	nonsymbolic	

stimuli.	When	we	also	consider	the	presence	of	component	congruity	and	gap	distance	

effects	specific	to	symbolic	fraction	processing,	it	is	possible	that	familiarity	with	symbolic	

fractions	may	bring	addition	prior	knowledge	and	biases	which	may	make	holistic	

magnitude	processing	less	efficient.		

Processing	of	magnitude	across	representations	

Beyond	a	comparison	of	symbolic	fraction	and	nonsymbolic	ratio	processing	within	

the	same	format,	the	current	study	observed	ways	that	holistic	magnitudes	can	be	

compared	across	these	formats.	Based	on	research	observing	comparisons	of	whole	

numbers	in	symbolic	and	nonsymbolic	forms,	some	researchers	have	proposed	that	the	

underlying	magnitude	representations	accessed	from	these	separate	external	formats	may	

become	estranged	(Lyons	et	al.,	2012).	Evidence	supporting	this	conclusion	came	from	the	

observation	of	translation	costs,	where	additional	cognitive	processing	to	map	between	
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these	separate	formats	may	have	made	the	processing	time	significantly	greater	than	the	

time	to	compare	magnitudes	within	the	same	format	(400ms).	Interestingly,	the	current	

experiments	did	not	observe	analogous	translation	costs	when	magnitude	comparisons	

were	made	between	symbolic	fractions	and	nonsymbolic	ratios.	In	fact,	performance	

during	to	cross-format	comparisons	relative	to	within-format	symbolic	fraction	

comparison	in	Experiment	1	and	Experiment	2	trended	towards	the	opposite	effect,	where	

mixed	comparisons	were	made	faster	on	average	than	within-format	symbolic	

comparisons.	Consistent	with	previous	arguments,	these	results	indicate	that	the	internal	

representations	of	magnitude	accessed	from	these	two	distinct	symbolic	and	nonsymbolic	

representations	are	not	estranged	but	rather	highly	compatible	or	even	convergent	on	a	

common	magnitude	code	(Bonn	&	Cantlon,	2017;	Matthews	&	Chesney,	2015).	

	 The	analyses	of	cross-format	comparison	in	the	present	experiments	also	extends	

previous	findings	showing	that	the	point	of	subjective	equality	(PSE)	during	these	

judgements	is	not	symmetrical	(Matthews	&	Chesney,	2015).	Specifically,	we	observed	

biases	in	response	patterns	showing	that	participants	on	average	made	comparison	

judgements	as	if	the	magnitude	of	nonsymbolic	stimuli	was	larger	than	the	true	visually	

defined	magnitude.	Furthermore,	we	observed	that	these	PSE	biases	are	stronger	among	

cross-format	comparisons	with	circle	ratios	than	with	line	ratios.	Further	research	focused	

specifically	on	these	effects	is	necessary	to	disentangle	how	the	magnitude	of	PSE	biases	

can	be	explained	by	the	visual	complexity	of	nonsymbolic	stimuli	(e.g.	2D	areas	vs	1D	

lengths),	the	overall	size	of	stimuli	(e.g.	narrow	lines	vs	larger	surfaces).	Based	on	our	

findings,	we	argue	that	either	visual	attribute	may	introduce	additional	cues	during	visual	

processing	to	create	biases	of	over	estimation	within	nonsymbolic	ratios.	
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Conclusion	&	Future	Directions	

The	findings	of	this	study	illustrate	multiple	ways	that	symbolic	fraction	and	

nonsymbolic	ratio	processing	are	both	similar	and	distinct.	The	observations	of	significant	

NDEs	in	symbolic,	nonsymbolic,	and	cross-format	comparisons	suggests	that	adults	can	

engage	in	analogous	forms	of	holistic	magnitude	processing	based	on	the	relationship	

between	fractions’	and	ratios’	component	parts.	Furthermore,	observations	of	successful	

magnitude	processing	across	symbolic	and	nonsymbolic	formats	provides	further	evidence	

that	format	specific	processes	can	converge	on	highly	compatible	magnitude	

representations	or	even	a	common	magnitude	code.	The	findings	of	this	study	are	

consistent	with	arguments	that	the	ability	to	represent	one	magnitude	relative	to	others	

creates	a	generalizable	ratio	code	that	supports	magnitude	processing	across	different	

dimensions	and	sensory	modalities	(Bonn	&	Cantlon,	2017).		

Beyond	questions	of	if	symbolic	and	nonsymbolic	processing	are	associated,	further	

research	is	necessary	to	address	how	these	abilities	develop	over	time	and	experience.	

Previous	findings	indicate	that	nonsymbolic	ratio	processing	abilities	emerge	prior	to	

formal	fractions	instruction	(Duffy	et	al.,	2005;	McCrink	&	Wynn,	2007)	and	can	predict	

individual	differences	in	future	fraction	knowledge	(Hansen	et	al.,	2015;	Jordan	et	al.,	

2013).	Thus,	we	have	argued	that	perceptual	experience	with	nonsymbolic	ratios	may	

develop	foundational	systems	upon	which	educational	approaches	may	ground	students’	

sense	of	symbolic	fraction	magnitudes	(Kalra,	Binzak,	et	al.,	2020;	Lewis	et	al.,	2015).	The	

current	findings	are	compatible	with	this	developmental	theory,	but	further	research	is	

necessary	to	fully	understand	the	developmental	and	educational	implications	our	results.	

Specifically,	training	studies	and	longitudinal	approaches	are	necessary	to	observe	how	
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forms	of	symbolic	and	nonsymbolic	magnitude	processing	develop	over	time	and	in	

response	to	response	to	educational	experiences.	If	active	experiences	with	perceptual	

representations	of	ratio	relationships	can	ground	a	conceptual	understanding	of	fraction	

magnitudes	(Lewis	et	al.,	2015;	Matthews	et	al.,	2016;	Sidney	et	al.,	2017),	then	continued	

research	may	identify	novel	instructional	approaches	to	advance	this	knowledge.	Working	

towards	this	goal	stands	to	advance	the	theories	of	numerical	cognition	with	rational	

numbers	and	human	abilities	to	understand	complex	numerical	symbols.	
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Chapter	3 –	Neural	Associations	of	Magnitude	Processing	with	Fractions	and	Ratios	

	

Introduction	

Fractions	are	an	important	topic	for	developing	higher	order	mathematical	

understanding	(Booth	et	al.,	2014;	Siegler	et	al.,	2013),	yet	much	remains	unknown	about	

how	the	mind	represents	the	meaning	of	fractions.	Efforts	to	explain	how	people	encode	

the	meaning	of	symbolic	fractions	have	led	to	several	formally	articulated	theories	

regarding	how	this	meaning	is	accessed	and	represented	in	the	brain.	In	this	study,	we	

aimed	to	explore	predictions	of	Ratio	Processing	System	(RPS)	theory	(Jacob	et	al.,	2012;	

Lewis	et	al.,	2015).	This	theory	proposes	that	humans	develop	intuitive	abilities	to	perceive	

and	distinguish	ratios	in	the	world	(e.g.	the	relative	height	of	two	trees,	the	proportion	of	

green	marbles	in	a	jar,	etc.),	and	the	neurocognitive	systems	supporting	ratio	processing	

support	this	sense	for	ratios.	Furthermore,	this	theory	proposes	that	perceptual	and	

embodied	experiences	with	ratios	over	time	(and	the	corresponding	neural	systems)	are	

foundational	for	understanding	the	symbolic	ratio	magnitudes	that	are	commonly	

encountered	in	formal	school	environments	and	daily	adult	life	(e.g.	common	fractions	½,	

¼	).	One	major	prediction	of	this	theory	is	that	an	understanding	of	fractions	as	holistic	

(relationally	defined)	can	be	grounded	in	a	perceptually	based	sense	of	nonsymbolic	ratio	

processing	

In	support	of	this	theorized	relationship	between	symbolic	fraction	and	

nonsymbolic	ratio	processing,	previous	research	as	observed	that	individual	differences	in	

ability	to	compare	nonsymbolic	ratios	can	be	a	significant	predicter	of		performance	on	a	

(predominantly	symbolic)	fractions	tests	and	even	algebra	achievement	(Matthews	et	al.,	
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2016).	In	the	previous	chapter	of	the	dissertation,	we	observed	that	adults	can	compare	

holistic	magnitudes	between	symbolic	and	nonsymbolic	cross-format	stimuli	and	can	do	so	

as	efficiently	as	comparing	fractions	within	the	same	format.	However,	measures	of	

magnitude	comparison	behavior,	such	as	response	time	(RT)	and	error	rate	(ER),	are	not	

sufficient	to	make	strong	claims	about	the	internal	representations	of	magnitude	meaning	

that	people	access	from	symbolic	and	nonsymbolic	stimuli.			

Relatively	few	studies	have	examined	the	neural	basis	of	rational	number	

processing	in	humans	(DeWolf	et	al.,	2016;	Ischebeck	et	al.,	2009;	Jacob	&	Nieder,	2009b,	

2009a;	Mock	et	al.,	2018).		Ischebeck	et	al.	(2009)	used	a	symbolic	fraction	comparison	task	

to	demonstrate	that	holistic	distance	between	fractions	inversely	modulated	activation	in	

the	right	intraparietal	sulcus	(IPS),	a	region	often	implicated	in	numerical	processing	

(Arsalidou	&	Taylor,	2011).	Using	an	fMRI	adaptation	paradigm,	Jacob	and	Nieder	(2009a)	

observed	that	regions	of	the	IPS	were	sensitive	to	magnitude	changes	in	fractions	

regardless	of	whether	deviant	magnitudes	were	presented	as	symbolic	fractions	or	fraction	

words	(German).	Using	a	similar	paradigm,	the	same	research	group	also	observed	

evidence	for	neural	adaptation	and	recovery	in	response	to	the	magnitude	of	nonsymbolic	

visual	part-to-part	ratios	in	bilateral	parietal	and	frontal	cortex	(Jacob	&	Nieder,	2009b).	

These	results	suggest	that	regions	of	the	IPS	are	important	for	an	understanding	of	fraction	

magnitudes	and	may	encode	this	meaning	in	an	amodal	magnitude	code	underlying	forms	

of	magnitude	understanding	with	various	external	representations	including	nonsymbolic	

visual	ratios		

The	hypothesized	format-independent	ratio	magnitude	representation	suggested	by	

Jacob	and	Nieder	(2009a)	was	further	tested	by	DeWolf	et	al.	(2016),	in	which	they	used	
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fMRI	during	a	magnitude	comparison	task	with	three	different	stimulus	types	(integers,	

symbolic	fractions,	and	decimals).	The	inclusion	of	decimals	in	addition	to	fractions	and	

integers	allowed	for	a	distinction	to	be	made	between	number	representation	(base-10	

numbers	vs.	fractions)	and	number	type	(natural	vs.	rational).	By	using	both	univariate	and	

multivariate	analysis	approaches,	the	authors	found	that	numerical	distances	in	all	formats	

modulated	activity	in	the	IPS.	These	findings	implicate	the	IPS	as	a	common	neural	

substrate	for	both	rational	and	natural	numbers,	though	there	may	be	some	

representational	differences	between	base-10	numbers	and	symbolic	fractions.	 	

Notably,	none	of	the	studies	described	thus	far	have	simultaneously	investigated	

nonsymbolic	and	symbolic	ratios.	To	address	this	limitation,	a	recent	investigation	by	

Mock,	Huber	et	al.	(2018)	looked	neural	representations	of	rational	number	processing	

with	symbolic	(fractions	and	decimals)	and	nonsymbolic	representations	(pie	charts	and	

dot	ratios)	in	the	same	group	of	participants.	Among	the	widespread	activation	patterns	

observed	for	each	format,	they	found	overlap	in	the	IPS	for	both	symbolic	and	nonsymbolic	

ratio	magnitudes.	In	characterizing	this	more	widespread	activation,	the	authors	attribute	

activation	in	frontal	areas	to	greater	executive	function/strategy	use,	and	occipital	regions	

as	visual	attention/encoding,	implying	an	extended	ratio	processing	network.	However,	the	

nonsymbolic	stimuli	used	by	Mock	et	al.	(2018)	included	only	two	forms	of	nonsymbolic	

ratios:	pie	charts	that	show	part	whole	relationships	and	integrated	dot	arrays	that	show	

discrete	part-part	relationships.	Testing	whether	brain	encodes	format-independent	ratio	

magnitude	representations	requires	further	investigation	with	different	nonsymbolic	

stimuli.		
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Current	Study	

Previous	studies	have	examined	symbolic	(DeWolf	et	al.,	2016;	Ischebeck	et	al.,	

2009;	Jacob	&	Nieder,	2009a)	and	nonsymbolic	(Jacob	&	Nieder,	2009b)	separately.	

Notably,	the	only	study	to	examine	neural	representations	of	symbolic	and	nonsymbolic	

ratios	in	the	same	participants	have	examined	employed	block	designs	to	study	the	

processing	of	magnitude	comparisons	within	the	same	format	(Mock	et	al.,	2018).	

However,	comparing	symbolic	and	nonsymbolic	processing	as	separate	processes	does	not	

directly	explore	hypotheses	regarding	whether	a	common	magnitude	code	is	accessed	or	

can	be	accessed	across	both	external	representations.	In	the	current	investigation,	we	

specifically	aimed	to	address	this	limitation	by	examining	both	magnitude	comparison	of	

symbolic	and	nonsymbolic	fractions	within	format	and	the	comparison	of	symbolic	and	

nonsymbolic	mixed	pairs.	Specifically,	we	employed	a	novel	cross-format	magnitude	

comparison	task	and	functional	neuroimaging	to	specifically	test	the	RPS	theory	that	the	

perception	of	nonsymbolic	ratios	and	an	understanding	of	a	symbolic	fraction’s	magnitude	

converges	on	common	or	compatible	representations	of	magnitude	meaning	

psychologically	and	physically	in	the	brain.	

Furthermore,	we	sought	to	explore	the	neural	representations	of	nonsymbolic	ratio	

processing	with	part-to-part	ratios	that	are	continuously	defined	(see	Figure	3.1).	

Processing	of	this	ratio	form	has	been	studied	using	an	adaptation	paradigm	(Jacob	&	

Nieder,	2009b)	but	not	in	studies	using	a	magnitude	comparison	task.	To	examine	how	

adults	connect	the	meaning	of	nonsymbolic	ratios	to	symbolic	fractions,	we	included	trials	

with	cross-format	magnitude	comparisons.	Whereas	Mock	et	al.	employed	a	blocked	fMRI	

design,	our	event-related	design	allowed	for	direct	comparison	of	cross-format	ratio	
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representations	(i.e.	a	symbolic	fraction	directly	compared	to	a	line	ratio).	Using	this	

approach,	we	conducted	the	first	investigation	of	the	neural	representations	of	symbolic	

fraction	and	continuous	nonsymbolic	ratio	magnitude	processing	within	and	across	

formats.	

Methods	

Participants	

Twenty-six	young	adults	from	the	University	of	Wisconsin-Madison	community	

participated	in	the	experiment.	All	participants	were	right-handed,	native	English-speaking	

adults	with	normal	or	corrected	vision	and	no	history	of	psychiatric,	neurological,	or	

developmental	disorders.	Participants	gave	written	consent	to	complete	the	experimental	

procedure	approved	by	the	biomedical	research	ethics	committee	of	the	University	of	

Wisconsin	–	Madison	(IRB	#	2013-1607)	and	received	compensation	for	their	participation	

($50).	One	participant	was	excluded	from	analysis	due	to	excessive	scanner	movement	

(movements	between	functional	images	greater	than	1.75mm	in	more	than	half	of	the	

functional	scans)	and	another	due	to	a	technical	difficulty	with	the	scanner.		The	average	

age	of	the	remaining	24	participants	(16	female)	was	22	years	old	(SD	=	3	years	and	2	

months).	

Design	and	Procedure	

	 The	study	consisted	of	one	fMRI	session.	After	providing	consent	and	completing	an	

MRI	safety	screening,	participants	received	instructions	on	the	experimental	task	and	

completed	12	practice	trials	(different	from	the	experimental	trials)	outside	of	the	scanner.	

Participants	were	given	the	instructions	again	and	a	second	attempt	at	the	practice	trials	if	

they	made	5	or	more	errors	on	their	first	attempt.	No	participants	failed	to	meet	this	
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criterion	after	the	second	attempt.	Participants	then	proceeded	to	the	MRI	scan	room	to	

begin	the	experiment.	MRI	scanning	began	with	the	acquisition	of	a	high-resolution	

anatomical	image	of	the	whole	brain,	followed	by	the	acquisition	of	fMRI	data	during	the	

experimental	task.	

Experimental	Task	

	 To	investigate	the	neural	activity	associated	with	how	adults	process	magnitude	

meaning	within	and	across	symbolic	fractions	(e.g.	½)	and	nonsymbolic	ratios	(e.g.	the	

relative	length	of	two	lines),	participants	completed	a	cross-format	magnitude	comparison	

task	in	MRI	scanner.	This	cross-format	magnitude	comparison	task	was	directly	adapted	

from	the	paradigm	used	in	Experiment	1	of	Chapter	2.	Specifically,	we	measured	response	

times,	accuracy,	and	neural	data	while	participants	made	magnitude	comparison	

judgements	in	three	different	comparison	formats	(shown	in	Figure	3.1):	symbolic	fraction	

(FF),	nonsymbolic	line	ratio	(LL),	and	cross-format	fraction-line	(FL).		

	

Figure	3.1.	Cross-format	magnitude	comparison	task	stimuli.	Three	format	conditions	of	symbolic	
fractions,	nonsymbolic	line	ratios,	and	cross-format	comparisons	were	intermixed	and	presented	
sequentially.		
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In	order	to	observe	the	effect	of	magnitude	processing	on	performance	and	

associated	brain	activity,	the	36	trials	presented	in	each	run	also	varied	in	terms	of	their	

numerical	distance,	or	the	absolute	value	of	the	difference	between	magnitudes	of	the	

comparison	pair	stimuli.	The	magnitudes	of	numerical	distances	across	the	36	pairs	ranged	

from	near	(min	=	2/7	vs.	1/3	=	0.048)	to	far	comparisons	(max	=	1/8	vs	7/8	=	0.75).	To	

facilitate	our	analysis	of	neural	activity	associated	magnitude	processing,	the	36	numerical	

distances	presented	in	our	fraction	pairs	were	evenly	split	into	three	bins:	near,	medium,	

and	far	comparisons.	(See	Table	3.1).		

Table	3.1	

Distribution	of	absolute	numerical	distances	among	comparison	pairs		

	 Trials/Block	 Min	 Max	 Mean	

Near	 12	 0.048	 0.233	 0.144	

Medium	 12	 0.262	 0.446	 0.341	

Far	 12	 0.514	 0.750	 0.613	

	

Functional	data	associated	with	the	magnitude	comparison	task	in	each	format	and	

distance	bin	was	acquired	using	a	3	x	3	event-related	design.	Specifically,	six	experimental	

runs	presented	trials	with	the	same	36	numerical	distances	presented	in	one	of	the	three	

comparison	formats	(symbolic,	nonsymbolic,	or	mixed).	Across	the	whole	experiment	(six	

blocks)	each	participant	completed	each	of	the	36	comparisons	twice	in	each	format,	once	

with	the	larger	fraction	on	the	right	and	the	other	on	the	left.	Since	cross-format	trials	can	

be	presented	in	four	possible	combinations	of	larger-smaller	and	symbolic-nonsymbolic	

orientations,	half	of	the	participants	completed	blocks	with	two	of	the	possible	
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combinations	(e.g.	1/5Nonsymbolic	p	3/4Symbolic		&	3/4Symbolic		p	1/5Nonsymbolic)	and	the	other	half	

completed	blocks	of	the	other	two	possible	combinations	(e.g.	1/5Symbolic	p	3/4Nonsymbolic		&	

3/4Nonsymbolic		p	1/5Symbolic).	The	order	of	the	blocks,	which	varied	the	format	and	orientation	

of	each	comparison	pair,	was	counterbalanced	across	participants.	

Fraction	Stimuli		

Symbolic	fraction	stimuli	in	the	study	included	all	27	unique	single-digit	irreducible	

fractions.	From	all	possible	paired	comparisons	of	these	fractions,	a	sample	of	36	pairs	was	

selected	to	maximize	the	diversity	of	unique	fractions	sampled	in	each	distance	bin	and	to	

minimize	the	participant’s	reliance	on	any	one	componential	comparison	strategy.	

Specifically,	comparison	pairs	included	a	balanced	selection	of	fraction	pairs	that	shared	

the	same	denominator	(common	denominator),	pairs	where	the	larger	fraction	had	a	larger	

numerator	and	a	smaller	denominator	than	the	smaller	fraction	(congruent	numerator	and	

incongruent	denominator),	the	larger	fraction	had	a	larger	numerator	and	denominator	

than	the	smaller	fraction	(congruent	numerator	and	denominator),	and	the	larger	fraction	

had	a	smaller	numerator	and	denominator	than	the	smaller	fraction	(incongruent	

numerator).	Comparison	pairs	at	far	distances,	however,	did	not	include	any	numerator	

incongruent	trials	because	no	such	pairs	exist	at	distances	greater	than	.306.	

Line	Ratio	Stimuli	

Line	ratios	were	composed	of	two	vertical	lines	representing	a	part-part	ratio	of	the	

line	length	on	the	left	relative	to	the	line	length	on	the	right	(See	Figure	3.1).	Using	the	list	

of	36	unique	comparison	pairs	chosen	for	the	symbolic	stimuli,	two	sets	of	line	ratio	stimuli	

were	generated	for	all	single	digit	irreducible	fraction	values	using	the	same	procedure	as	

described	Chapter	1.	Two	sets	of	stimuli	were	created	to	minimize	the	correlations	
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between	numerator	line	lengths	and	holistic	magnitude	in	one	set	and	denominator-

holistic	magnitude	correlations	in	the	other	set.	For	each	participant,	blocks	used	

numerator-controlled	and	denominator	controlled	nonsymbolic	stimuli	in	alternating	

order.		

Task	timing	parameters	

Each	participant’s	full	set	of	functional	data	was	acquired	over	six	sequential	scans	

(blocks)	lasting	3	minutes	and	40	seconds.	The	start	of	each	functional	block	was	synched	

to	first	TR	of	the	fMRI	sequence	via	a	TTL	pulse.	Each	block	began	with	10	seconds	(5	TRs)	

of	a	waiting	screen,	to	allow	the	magnetic	field	to	stabilize	prior	to	data	collection	

	Trials	were	presented	for	4000ms	and	participants	could	enter	their	responses	

during	that	time.	In	between	each	trial	a	light	grey	fixation	box	was	presented	in	the	center	

of	the	screen.	Intertrial-intervals	(ITI)	were	jittered	around	a	mean	duration	of	1500ms	

(range	=	1250	–	1750ms).	

Apparatus	

Experimental	stimuli	were	presented	in	light	gray	text	on	a	black	screen	mounted	at	

the	end	of	the	MRI	machine	bore.	Participants	were	able	to	see	the	screen	using	a	mirror	

mounted	on	the	scanner’s	head	coil	above	the	participant.	The	presentation	of	stimuli	was	

controlled	from	outside	of	the	scanner	room	using	on	a	Windows	8	PC	to	run	E-prime	

2.0.8.90a	(Psychology	Software	Tools,	Shapsburg,	PA).	Participants	laid	in	the	supine	

position	in	the	MRI	scanner	bore	and	were	given	a	button	box	to	respond	to	the	stimuli	

using	index	and	middle	finger	button	presses.	Participants	were	instructed	to	indicate	as	

quickly	and	as	accurately	as	possible	whether	the	larger	of	two	fractions	presented	side-by-
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side	appeared	on	the	left	(index	finger	press)	or	the	right	(middle	finger	press)	side	of	the	

screen.		

MRI	Data	Acquisition	

Brain	imaging	was	conducted	using	a	General	Electric	3-Tesla	MRI	scanner	(GE	Medical	

Systems,	Waukesha,	WI)	equipped	with	a	32-channel	array	head	coil	(Nova	Medical).	First,	

the	brain	anatomy	of	each	participant	was	collected	with	high-resolution	T1-weighted	

anatomical	images	(3-D	T1-weighted	inversion	recovery	fast	gradient-echo;	256	x	256	in-

plane	resolution;	256mm	FOV;	176	axial	slices,	1mm	thickness).	Next,	whole-brain	

functional	images	of	the	BOLD	signal	were	acquired	using	a	T2-weighted	echo	planar	

imaging	sequence	(38	sagittal	slices,	3mm	thickness;	128x128	matrix;	224x224	mm	field	of	

view	(FOV);	repetition	time	(TR)/echo	time	(TE)/Flip,	2000ms/22ms/75°;	voxel	size	of	

1.75x1.75x3mm).	Images	were	collected	in	ascending-interleaved	order.	Acquisition	

resulted	in	120	volumes	(full	brain	images)	for	each	functional	run.		

Imaging	analysis	

MRI	Preprocessing.	Structural	and	functional	brain	imaging	analysis	was	

conducted	using	Brain	Voyager	QX	2.8	(Brain	Innovation,	Mastrich,	The	Netherlands).	Each	

individuals	imaging	data	underwent	the	following	preprocessing	procedure.	The	first	5	

volumes	of	each	functional	run,	during	which	participants	waited	for	the	task	to	begin,	

were	excluded	to	account	for	the	stabilization	of	magnetic	saturation.	Functional	images	

were	then	corrected	for	differences	in	slice	time	acquisition	using	a	sinc	interpolation	

algorithm	(ascending-interleaved),	adjusted	for	head	motion	using	trilinear	sinc	

interpolation,	and	images	were	cleaned	of	low-frequency	noise	using	a	high-pass	temporal	

filter	(GLM-Fourier)	with	a	cut	off	of	2	sines/cosines	cycles.	Functional	images	were	then	
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coregistered	with	the	T1-anatomical	anatomical	image,	smoothed	with	an	8mm	full	width	

at	half	maximum	Gaussian	smoothing	kernel,	and	transformed	into	Talairach	Space	

(Talairach	&	Tournoux,	1988).	fMRI	runs	were	excluded	from	a	participant’s	dataset	if	the	

run	included	a	head	movement	greater	than	1.75mm	between	functional	volumes,	and	

participants	were	excluded	if	this	occurred	in	3	or	more	of	the	6	functional	runs.		

Analysis	Contrasts	

Neural	distance	effects	across	formats.	An	initial	whole-brain	analysis	was	

conducted	to	explore	the	regions	of	the	brain	sensitive	to	changes	in	the	holistic	

magnitudes	of	the	comparison	pairs.	We	conducted	a	random	effects	analysis	on	the	whole-

brain	BOLD	signal	to	identify	regions	of	the	brain	showing	greater	activity	during	

comparisons	of	near	distances	relative	to	far	distances.	This	pattern	of	activation	is	

referred	to	as	the	neural	distance	effect.		Next,	we	conducted	the	same	contrast	within	each	

format	separately	to	identify	regions	of	the	brain	where	neural	distance	effects	are	

observed	specific	to	each	format	and	where	significant	regions	overlap	across	formats.	We	

then	conducted	two	conjunction	analyses	to	statistically	confirm	which	regions	were	

recruited	similarly	across	formats.	

Format-specific	neural	distance	effects.	We	conducted	a	series	of	contrasts	

between	formats	to	characterize	the	difference	in	magnitude	processing	between	

conditions.	First,	we	examined	regions	where	distance	effects	during	symbolic	fraction	

comparison	were	greater	than	nonsymbolic	line	ratio	comparison,	and	regions	where	

distance	effects	during	nonsymbolic	comparison	was	greater	than	symbolic.	Second,	we	

examined	regions	where	cross-format	comparisons	evoked	stronger	neural	distance	effects	

than	within-format	comparisons	(Fraction-Fraction	and	Line-Line).	
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Cluster	threshold	corrections	for	multiple	comparisons.	All	contrast	analyses	

were	initially	run	with	a	statistical	threshold	of	a	=	0.001.	All	resulting	statistical	maps	

were	further	corrected	for	multiple	comparisons	using	Brain	Voyager’s	cluster	level	

statistical	threshold	estimator	(Goebel	et	al.,	2006)	to	avoid	false	positive	results	and	

invalid	cluster	inferences	(Eklund	et	al.,	2016).	Based	on	the	assumption	that	areas	of	true	

neural	activity	will	be	observed	in	signal	changes	within	contiguous	voxels	(Forman	et	al.,	

1995),	we	ran	Monte	Carlo	simulations	of	whole-brain	neural	activity	to	estimate	cluster-

level	false	positive	rates.	After	1000	iterations,	we	identified	the	minimum	cluster	size	with	

a	false	positive	rate	(a)	below	0.05	and	applied	this	cluster	threshold	to	our	contrast	and	

conjunction	analyses.	Specifically,	significant	clusters	of	neural	activation	composed	of	

fewer	voxels	than	the	cluster	level	threshold	were	excluded	from	our	final	results.	

ROI	Analysis	

	 Two	regions	of	the	brain	commonly	implicated	in	the	processing	of	number	

magnitudes	are	the	right	and	left	the	intraparietal	sulci	(IPS)	(Ashkenazi	et	al.,	2008;	

Dehaene	et	al.,	2003;	Piazza	et	al.,	2004).	In	a	meta-analysis	of	neural	imaging	studies	

Arsalidou	and	Taylor	(2011)	identified	regions	of	the	brain	which	were	the	most	commonly	

associated	with	numerical	processing	and	mental	calculation.	Results	of	this	meta-analysis	

showed	that	the	left	and	right	inferior	parietal	lobe,	specifically	within	the	IPS,	were	among	

the	regions	with	the	highest	activation	likelihood	estimation.	The	studies	included	in	this	

meta-analysis	were	largely	focused	on	whole	number	processing,	and	in	our	analyses	we	

tested	whether	the	IPS	regions	identified	by	Arsalidou	and	Taylor	(2011)	were	also	

sensitive	to	numerical	processing	with	fractions	and	ratios.	
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	 To	measure	the	neural	activity	from	these	two	a	priori	regions	of	interest,	we	

centered	two	10mm	x	10mm	x	10mm	cubes	around	the	two	IPS	coordinates	identified	by	

Arsalidou	and	Taylor	(2011).	From	these	regions	we	extracted	the	average	BOLD	signal	for	

each	participant	at	each	cross	section	of	the	experiment’s	3	format	(Fraction-Fraction,	Line-

Line,	Cross-format)	x	3	distance	bin	(Near,	Medium,	Far)	design.	Using	these	numeric	

values,	we	conducted	a	3	x	3	within-subjects	ANOVA	and	planned	pairwise	comparisons	to	

evaluate	if	the	neural	signal	within	these	ROI	regions	increased	as	comparison	distances	

became	smaller	for	all	three	formats.	 	

Results	

Behavioral	Results	

Effect	of	Format	and	Distance	on	Reaction	Times		

We	analyzed	the	effect	of	format	and	distance	on	response	times	using	a	3	format	x	

3	distance	bin	within-subjects	ANOVA	(Type	3)1.	Results	revealed	a	significant	main	effect	

of	format,	F(2,46)	=	72.4,	p	<	.001,	hp2	=	.86.	a	significant	main	effect	of	distance,	F(2,46)	=	

147.0,	p	<	.001,	hp2	=	.76,	and	a	significant	interaction	between	these	effects,	F(4,92)	=	8.30,	

p	<	.001,	hp2	=	.27.	Group	mean	RTs	of	each	format	and	distance	are	presented	in	Figure	3.2.	

Pairwise	comparisons	within	each	format	revealed	that	RTs	showed	a	significant	numerical	

distance	effect,	in	which	RTs	became	significantly	longer	at	medium	distances	than	far	

distances,	and	significantly	longer	at	near	distances	than	medium	distances.	Pairwise	

comparisons	within	each	distance	bin	revealed	that	participants	were	always	fastest	to	

	

1	Distance	effects	were	analyzed	using	an	ANOVA	approach	with	binned	data	to	be	consistent	with	the	planned	fMRI	analyses.		 
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respond	to	nonsymbolic	line	ratios.	No	differences	were	observed	between	RTs	during	

symbolic	and	cross-format	comparisons	and	near	and	far	distances,	but	at	medium	

distances	cross-format	comparisons	were	slightly	faster	on	average	than	symbolic	

comparisons.	

Effect	of	Format	and	Distance	on	Error	Rates.		

We	analyzed	the	effect	of	format	and	distance	on	average	error	rates	using	a	3	

format	x	3	distance	bin	within-subjects	ANOVA	(Type	3).	Results	revealed	error	rates	

varied	across	distance	bins,	F(2,46)	=	76.7,	p	<	.001,	hp2	=	.77,	but	no	differences	were	

observed	formats,	F(4,92)	=	1.38,	p	=	.262,	hp2	=	.06.	Group	mean	RTs	of	each	format	and	

distance	are	presented	in	Figure	3.2..	Pairwise	comparisons	within	each	format	revealed	

significant	numerical	distance	effect	in	mean	ERs,	in	which	errors	were	significantly	lower	

at	medium	distances	than	near	distances.	ERs	and	medium	and	far	distances	were	very	low,	

and	no	significant	differences	were	observed	between	these	distance	bins	in	any	of	the	

comparison	formats.		

	

Figure	3.2.	Group	mean	response	times	(a)	and	error	rates	(b)	for	symbolic	fraction	(blue),	
nonsymbolic	ratio	(red)	and	mixed	comparisons	(magenta).	Means	are	binned	at	near,	medium,	and	
far	numerical	distances	and	centered	over	the	mean	distances	within	each	bin.	
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Imaging	Results	

Whole	brain	near	vs	far	contrasts.		

In	our	first	analysis	we	analyzed	the	regions	of	the	brain	which	were	modulated	by	

holistic	magnitude	distances	of	the	comparison	pairs	without	differentiating	regions	

specific	to	each	of	the	three	formats.	Specifically,	we	conducted	a	whole-brain	voxel-wise	t-

test	to	examine	which	areas	of	the	brain	were	significantly	modulated	by	the	manipulation	

of	numerical	distances,	as	seen	in	the	contrast	of	activity	associated	with	near	and	far	

magnitude	comparisons.		

	

Figure	3.3.	Regions	showing	significant	neural	distance	effects	(near	activation	>	far	activation)	
using	all	formats	on	an	inflated	brain.		

	 Results	of	this	analysis	revealed	several	large	regions	across	the	parietal,	frontal	and	

occipital	lobes	which	showed	significantly	greater	activity	during	near	comparisons	

relative	to	far	comparisons.	All	regions	where	significant	clusters	of	activation	were	

observed	and	the	location	of	peak	near-far	differences	within	these	regions	are	presented	

in	the	Appendix	C.	These	significant	regions	included	large	regions	of	bilateral	activation	
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along	the	intraparietal	sulci,	bilateral	frontal	lobe	activation	of	the	anterior	insula,	lateral	

and	inferior	regions	of	the	occipital	lobe	(bilateral)	including	the	left	fusiform	gyrus,	and	

the	premotor	area.	

Conjunction	of	neural	distance	effects	across	formats.		

Analysis	of	neural	distance	effects	observed	within	each	comparison	format	

revealed	multiple	regions	specific	to	each	format	showing	greater	activity	during	near	

comparisons	relative	to	far	comparisons.	As	seen	in	Figure	3.4,	patterns	of	significant	

neural	distance	effects	within	each	format	have	unique	regions	sensitive	to	changes	in	

comparison	magnitudes	and	regions	where	effects	overlap	across	formats.		

		

Figure	3.4.	Regions	showing	significant	neural	distance	effects	(near	activation	>	far	activation)	
during	symbolic	(blue),	nonsymbolic	(red)	and	cross-format	(magenta)	comparisons	visualized	on	
an	inflated	brain.	(a)	Canted	view	from	the	posterior	right	side	of	the	brain	shows	regions	of	
significant	distance	effects	at	a	=	0.05,	to	illustrate	the	broad	extent	of	regions	sensitive	to	changes	
in	magnitude.	(b/c)	Lateral	views	of	the	left	and	right	hemisphere	show	regions	of	significant	
distance	effects	at	a	=	0.001,	highlight	regions	showing	where	effects	survived	strict	statistical	
cutoffs	to	correct	for	multiple	comparisons.		
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Conjunction	analyses	of	neural	distances	effects	in	within-format	symbolic	and	

nonsymbolic	conditions	revealed	seven	neural	regions	where	activity	was	significantly	

modulated	by	the	magnitude	of	comparison	pairs	in	both	conditions.	These	regions	

included	the	left	and	right	superior	parietal	lobule,	right	anterior	insula,	right	inferior	

frontal	gyrus,	left	ventrolateral	PFC,	and	bilateral	supplementary	motor	area.	When	cross-

format	comparisons	were	added	to	the	conjunction	analysis,	four	neural	regions	showed	

shared	significant	distance	effects	in	all	three	conditions.	Specifically,	these	regions	

included	the	right	superior	parietal	lobule,	right	anterior	insula,	and	bilateral	

supplementary	motor	area.	

Table	3.2	

Regions	modulated	by	neural	distances	across	formats	

	 	 FF	+	LL	 	 FF	+	LL	+	FL	

Hem.	 Region	 BA	 x	 y	 z	 t	 	 x	 y	 z	 t	

R	 (IPS)	superior	parietal	lobule	 7	 29	 -56	 36	 4.57	 	 29	 -56	 36	 4.57	

L	 (IPS)	superior	parietal	lobule	 7	 -28	 -62	 39	 4.49	 	 	 	 	 	

R	 inferior	frontal	gyrus	 44	 50	 19	 33	 4.69	 	 	 	 	 	

R	 Anterior	Insula	 13	 32	 16	 6	 5.30	 	 32	 16	 6	 5.30	

L	 ventrolateral	PFC	 46	 -40	 40	 6	 5.24	 	 	 	 	 	

R	 supplementary	motor	area	 8	 5	 16	 48	 5.92	 	 5	 16	 48	 5.92	

	

Neural	Localization	of	Contrasts	across	Format	

We	conducted	whole-brain	voxel-wise	t-tests	to	examine	which	areas	of	the	brain	

activated	to	a	greater	degree	during	symbolic	fraction	comparison	than	nonsymbolic	

fraction	comparison,	and	which	regions	showed	the	opposite	effect	(Figure	3.5a).	Results	of	

this	contrast	analysis	revealed	several	regions	where	neural	activity	was	greater	during	
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symbolic	magnitude	comparisons	than	nonsymbolic	magnitude	comparison.	Specifically,	

greater	activation	was	observed	during	symbolic	fraction	comparisons	in	the	right	anterior	

insula,	left	inferior	frontal	gyrus,	left	fusiform	gyrus	(fusiform	face	area),	left	intraparietal	

sulcus,	and	the	supplementary	motor	area.	Results	of	this	contrast	also	revealed	several	

regions	where	neural	activity	was	greater	during	nonsymbolic	magnitude	comparisons	

than	symbolic	magnitude	comparisons.	Specifically,	greater	activation	was	observed	during	

nonsymbolic	comparisons	in	the	right	inferior	parietal	lobule,	right	visual	association	area,	

parahippocampus,	and	superior	occipital	gyrus.	

	

Figure	3.5	Regions	showing	different	levels	activity	across	format	conditions.		(a)	Clusters	of	
activation	shown	in	blue	depict	regions	of	the	brain	with	significantly	greater	activity	during	the	
comparison	of	symbolic	fractions	than	activity	during	nonsymbolic	ratios.	Clusters	shown	in	red	
depict	regions	showing	significantly	greater	activation	in	the	nonsymbolic	comparison	condition.	
(b)	Clusters	of	activation	shown	in	magenta	depict	regions	of	the	brain	with	significantly	greater	
activity	during	cross-format	comparisons	than	within	format	comparisons.		All	regions	are	
significant	at	a	=	0.001.	

a b 
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Neural	Localization	of	Cross-Format	Processing	

We	also	conducted	a	whole-brain	voxel	wise	t-test	to	examine	which	areas	of	the	

brain	showed	greater	levels	of	activity	during	cross-format	magnitude	comparisons	than	

when	magnitudes	were	presented	in	the	same	format.	This	contrast	revealed	clusters	

across	the	brain	which	remain	significant	after	corrections	for	multiple	comparisons.	

Specifically,	bilateral	regions	of	the	fusiform	gyrus,	left	intraparietal	sulcus,	right	inferior	

frontal	gyrus,	and	bilateral	primary	motor	cortex	showed	significantly	greater	activity	

during	cross-format	comparisons	than	within-format	comparisons.	

ROI	Analysis	of	Neural	Distance	Effects	in	Bilateral	IPS	

To	test	whether	a	priori	regions	of	the	IPS	showed	sensitivity	to	changes	in	

comparison	pair	magnitudes,	we	tested	for	the	presence	of	distance	effects	across	bins	of	

near,	medium,	and	far	magnitude	comparisons	using	a	within-subjects	ANOVA	(Type	3).	

We	conducted	this	analysis	of	distances	bins	within	each	format	condition	separately	and	

included	the	hemisphere	of	the	ROI	as	a	within-subjects	factor	(left	and	right)	in	the	ANOVA	

to	examine	whether	distance	effects	differed	in	the	left	or	right	IPS.	Locations	of	our	a	

priori	ROIs	and	mean	beta	weights	(activation)	extracted	from	these	regions	during	

magnitude	comparisons	across	format	and	distance	are	presented	in	Figure	3.6.	

ROI	Distance	Effects	with	Nonsymbolic	Ratios.		

Average	IPS	activation	during	nonsymbolic	line	ratio	comparisons	showed	

significant	differences	across	distance	bins,	F(2,46)	=	15.7,	p	<	.001,	hp2	=	.41,	but	activation	

across	hemispheres	was	not	significantly	different,	F(1,23)	=	0.36,	p	=	.556,	hp2	=	.02.	The	

interaction	between	distance	and	hemisphere	was	also	not	significant,	F(2,46)	=	1.40,	p	=	

.256,	hp2	=	.06.		
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Pairwise	comparisons	of	bins	revealed	that	in	the	left	IPS	ROI,	activity	was	

significantly	greater	during	near	comparisons	(M	=	0.29,	SD	=	0.21)	than	during	medium	

comparisons	(M	=	0.17,	SD	=	0.15),	t(46)	=	3.84,	p	=	.001,	and	far	comparisons	(M	=	0.12,	SD	

=	0.18),	t(46)	=	5.20,	p	<	.001.	Activity	in	medium	and	far	comparisons	was	not	significantly	

different,	t(46)	=	1.36,	p	=	.369.		

The	same	pattern	of	distance	effects	was	observed	in	the	right	IPS	ROI.	Activity	was	

significantly	greater	during	near	comparisons	(M	=	0.29,	SD	=	0.23)	than	during	medium	

comparisons	(M	=	0.14,	SD	=	0.18),	t(54.5)	=	4.41,	p	<	.001,	and	far	comparisons	(M	=	0.10,	

SD	=	0.21),	t(54.5)	=	5.48,	p	<	.001.	Activity	in	medium	and	far	comparisons	was	not	

significantly	different,	t(54.5)	=	1.07,	p	=	.892.	

ROI	Distance	Effects	with	Symbolic	Fractions.		

Average	IPS	activation	during	symbolic	fraction	comparisons	also	showed	

significant	differences	across	distance	bins,	F(2,46)	=	4.06,	p	=	.024,	hp2	=	.15,	and	a	

significant	difference	across	hemispheres,	F(1,23)	=	4.73,	p	=	.040,	hp2	=	.17.	The	interaction	

between	distance	and	hemisphere	was	not	significant,	F(2,46)	=	1.07,	p	=	.353,	hp2	=	.04.		

Pairwise	comparisons	of	bins	revealed	that	in	the	left	IPS	ROI,	activity	was	not	

significantly	greater	during	near	comparisons	(M	=	0.21,	SD	=	0.17)	than	during	medium	

comparisons	(M	=	0.17,	SD	=	0.16),	t(46)	=	1.48,	p	=	.311	or	during	far	comparisons	(M	=	

0.14,	SD	=	0.18),	t(46)	=	2.32,	p	=	.063.	Activity	in	medium	and	far	comparisons	was	not	

significantly	different,	t(46)	=	0.84,	p	=	.680.	The	lack	of	distance	effects	in	the	left	IPS	

cannot	be	attributed	to	a	lack	of	neural	activation	in	this	regions,	as	activation	during	

symbolic	comparisons	(collapsed	across	bins)	was	in	fact	greater	in	the	left	IPS	ROI	than	in	
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the	right	ROI,	t(23)	=	2.17,	p	=	0.043,	but	not	modulated	by	the	magnitudes	of	the	

comparison	pairs.	

Pairwise	comparisons	of	bins	revealed	a	different	pattern	of	significant	distance	

effects	in	the	right	IPS	ROI.	Activity	was	significantly	greater	during	near	comparisons	(M	=	

0.17,	SD	=	0.19)	than	during	medium	comparisons	(M	=	0.10,	SD	=	0.15),	t(46)	=	2.4,	p	=	

.049,	and	far	comparisons	(M	=	0.09,	SD	=	0.20),	t(46)	=	2.74,	p	=	.023.	Activity	in	medium	

and	far	comparisons	was	not	significantly	different,	t(46)	=	0.30,	p	=	.951.		

ROI	Distance	Effects	with	Cross-Format	Comparisons.		

Average	IPS	activation	during	cross-format	comparisons	showed	a	pattern	of	results	

similar	to	nonsymbolic	ratio	comparisons,	with	significant	differences	across	distance	bins,	

F(2,46)	=	30.9,	p	<	.001,	hp2	=	.57,	and	no	significant	difference	across	hemispheres,	F(1,23)	

=	1.61,	p	=	.217,	hp2	=	.07.	The	interaction	between	distance	and	hemisphere	was	also	not	

significant,	F(2,46)	=	2.94,	p	=	.063,	hp2	=	.11.	Pairwise	comparisons	of	bins	revealed	that	in	

the	left	IPS	ROI,	activity	was	significantly	greater	during	near	comparisons	(M	=	0.32,	SD	=	

0.18)	than	during	medium	comparisons	(M	=	0.23,	SD	=	0.15),	t(46)	=	3.63,	p	=	.002,	and	far	

comparisons	(M	=	0.15,	SD	=	0.17),	t(46)	=	6.29,	p	<	.001.	Activity	curing	medium	

comparisons	was	also	greater	than	during	far	comparisons,	t(46)	=	2.66,	p	=	.029.	In	the	

right	IPS	ROI,	activity	also	varied	across	all	three	distance	bins	in	the	form	of	typical	

distance	effects.	Activity	was	significantly	greater	during	near	comparisons	(M	=	0.31,	SD	=	

0.22)	than	during	medium	comparisons	(M	=	0.19,	SD	=	0.18),	t(67.7)	=	4.50,	p	<	.001,	and	

far	comparisons	(M	=	0.10,	SD	=	0.18),	t(67.7)	=	7.65,	p	<	.001.	Activity	during	medium	

comparisons	was	significantly	greater	than	far	comparisons,	t(67.7)	=	3.15,	p	=	.008.	
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Figure	3.6.	Mean	beta	weights	observed	within	a	priori	regions	of	interest	centered	on	IPS	
coordinates	identified	by	(Arsalidou	&	Taylor,	2011).	Different	patterns	of	activation	are	shown	for	
nonsymbolic	(red),	symbolic	(blue),	and	cross-format	comparisons	(magenta).			

Discussion	

	 In	this	study	we	examined	the	neural	representation	of	magnitude	processing	with	

symbolic	fractions,	nonsymbolic	ratios,	and	cross-format	pairs,	to	further	explore	theories	

that	specific	regions	of	the	brain	support	magnitude	processing	independent	of	the	

external	format.	Few	studies	have	previously	explored	the	neural	representations	symbolic	

fraction	magnitudes	(DeWolf	et	al.,	2016;	Ischebeck	et	al.,	2009;	Jacob	&	Nieder,	2009a)	and	

nonsymbolic	ratio	magnitudes	(Jacob	&	Nieder,	2009b).	These	investigations	using	varying	

paradigms	across	separate	populations	consistently	implicated	a	frontoparietal	network	of	
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brain	regions	sensitive	to	the	magnitudes	of	symbolic	and	nonsymbolic	stimuli.	Only	one	

previous	study	has	directly	tested	the	argument	that	symbolic	and	nonsymbolic	forms	of	

rational	numbers	share	common	neural	representations	of	magnitude	within	the	same	

participants	(Mock	et	al.,	2018).	The	present	experiment	presents	a	novel	extension	of	this	

research.	Specifically,	this	is	the	first	study	to	compare	the	neural	representations	of	

symbolic	fraction	to	nonsymbolic	ratio	processing,	when	those	ratios	are	presented	as	

continuously	defined	part-to-part	line	ratios.	Furthermore,	this	is	the	first	study	to	examine	

the	nature	of	neural	representations	supporting	magnitude	process	across	symbolic	and	

nonsymbolic	formats.	Our	findings	are	largely	consistent	with	these	previous	

investigations,	and	further	implicate	frontoparietal	regions	of	the	brain	as	locations	where	

format-independent	representations	rational	number	meaning	may	reside.		

Behavioral	results	showed	significant	response	time	and	error	rate	distance	effects	

in	all	three	formats,	replicating	previous	behavioral	findings	presented	in	Study	1	of	this	

dissertation.	These	findings	suggest	that	responses	to	magnitude	comparisons	made	by	

participants	in	this	study	involved	holistic	magnitude	processing	of	symbolic,	nonsymbolic	

and	cross-format	stimuli.	These	findings	provide	additional	evidence	that	our	observed	

neural	effects	correspond	to	the	underlying	subprocesses	of	involved	in	accurately	

mapping	external	symbolic	and	nonsymbolic	stimuli	to	corresponding	representations	of	

holistic	magnitude.		

In	comparing	the	neural	localization	of	distance	effects	specific	to	processing	

symbolic	and	nonsymbolic	(excluding	cross-format	comparisons)	we	identified	a	set	of	

regions	similarly	modulated	by	magnitudes	in	both	formats.	Specifically,	this	included	

bilateral	regions	of	the	IPS	in	the	superior	parietal	lobule	and	frontal	regions	of	the	right	
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inferior	frontal	gyrus,	right	anterior	insula,	and	the	left	ventrolateral	PFC.	All	of	these	

regions,	with	the	exception	of	the	left	ventrolateral	PFC,	are	included	in	the	regions	

Ischebeck	et	al.	(2009)	describes	as	the	fraction	comparison	network.	Furthermore,	DeWolf	

et	al.	(2016)	observed	that	these	regions	show	greater	activation	to	symbolic	fractions	

relative	to	symbolic	whole	numbers.	The	current	finding	that	these	regions	are	also	

activated	during	magnitude	processing	of	nonsymbolic	ratios	provides	new	evidence	that	

aspects	of	magnitude	processing	localized	in	these	regions	may	be	format	independent.		

Interestingly,	we	identified	regions	showing	common	distance	effects	in	our	

conjunction	analysis	in	the	frontal	cortex,	which	previous	studies	of	symbolic	and	

nonsymbolic	fractions	did	not	observe.		Conversely,	we	did	not	observe	common	distance	

effects	among	occipital	regions	which	had	been	previously	observed	(Mock	et	al.,	2018).	

What	remained	consistent	across	these	studies	was	the	identification	of	the	right	

intraparietal	sulcus	as	a	region	sensitive	to	changes	in	magnitude	independent	of	the	

format	presented.	The	IPS	has	often	been	implicated	magnitude	processing	with	symbolic	

whole	numbers	and	nonsymbolic	quantities	(Ashkenazi	et	al.,	2008;	Dehaene	et	al.,	2003;	

Fias	et	al.,	2003;	Holloway	&	Ansari,	2009;	Piazza	et	al.,	2004).	Furthermore,	the	co-

localization	of	regions	supporting	numerical	and	spatial	processing	in	the	IPS	have	spurred	

to	arguments	that	the	two	processes	share	a	common	amodal	(generalized)	magnitude	

code	(Hubbard	et	al.,	2005;	Walsh,	2003).	Findings	of	the	current	study	present	new	

evidence	that	these	theories	specific	to	whole	number	magnitude	processing	should	

expand	to	the	explain	an	understanding	of	rational	number	magnitude	represented	in	

symbolic	or	nonsymbolic	forms	(Bonn	&	Cantlon,	2017;	Jacob	et	al.,	2012;	Lewis	et	al.,	

2015).	
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Our	a	priori	regions	of	interest,	based	on	IPS	coordinates	commonly	associated	with	

numerical	processing	with	whole	numbers	(Arsalidou	&	Taylor,	2011),	were	located	at	

slightly	more	anterior	regions	of	the	IPS	than	the	regions	identified	by	our	whole-brain	

conjunction	analysis.	Our	analyses	of	distance	effects	within	these	a	priori	ROIs	in	the	IPS	

revealed	a	pattern	of	activation	consistent	with	our	whole-brain	contrasts.	Specifically,	

when	we	examined	differences	in	activity	across	bins	within	each	format,	we	observed	

distance	effects	in	left	and	right	IPS	ROIs	during	nonsymbolic	line	ratio	comparison	and	

cross-format	comparisons.	However,	during	symbolic	fraction	comparisons,	distance	

effects	were	only	observed	in	the	right	IPS	ROI.	The	nonsignificant	neural	modulation	of	

activity	in	left	IPS	during	symbolic	fraction	comparison	at	the	whole-brain	level	(significant	

only	at	liberal	thresholds,	see	Figure	3.4)	and	within	the	a	priori	ROI,	does	not	necessarily	

mean	that	this	region	was	not	activated	during	these	comparisons.	In	fact,	relative	to	

activity	during	nonsymbolic	line	ratio	comparisons,	our	whole	brain	contrast	revealed	a	

cluster	of	parietal	activation	near	the	ROI	where	the	left	IPS	showed	greater	activation	

during	symbolic	comparisons.		

Results	of	our	conjunction	and	ROI	analyses	implicate	regions	of	shared	magnitude	

processing	and	support	the	theory	that	representations	of	magnitude	in	these	regions	may	

not	be	format	specific.	However,	conducting	these	group-level	contrasts	included	spatial	

smoothing	to	account	for	individual	differences	in	neural	anatomy.	This	approach,	

however,	cannot	rule	out	the	possibility	that	distinct	format	specific	populations	of	neurons	

may	coexist	within	similar	regions	of	the	cortex	(Dehaene	et	al.,	1998).		Future	

investigations	exploring	hypotheses	of	format-independent	representations	of	magnitude	

and	corresponding	mechanisms	supporting	magnitude	processing	will	benefit	from	
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methods	which	assess	the	similarity	of	neural	signals	at	the	level	of	neural	patterns,	rather	

than	the	coarse	localization	of	voxel-wise	contrasts.	Additional	analysis	at	the	subject	level	

with	unsmoothed	fMRI	day	may	also	allow	us	to	examine	these	representations	and	their	

convergence	across	individuals	at	a	higher	resolution.	

Beyond	theories	that	magnitude	processing	with	fractions	may	share	common	or	

compatible	magnitude	representations	as	nonsymbolic	ratio	processing,	proponents	of	the	

Ratio	Processing	System	argue	that	such	compatibility	may	support	fractions	learning.	

Future	studies	using	the	same	magnitude	comparison	paradigm	may	be	able	to	test	the	

developmental	and	educational	validity	of	this	theory	through	the	use	of	longitudinal	and	

intervention	experiments.	By	tracking	the	development	of	neural	regions	sensitive	to	

magnitude	processing	in	symbolic	and	nonsymbolic	formats	across	years	of	primary	

education,	these	studies	may	test	the	assumption	that	magnitude	knowledge	with	symbolic	

fractions	builds	upon	regions	specialized	for	the	processing	of	nonsymbolic	ratios.	

Furthermore,	intervention	studies	will	be	necessary	to	determine	how	neural	

specialization	may	be	driven	by	specific	educational	experiences.	
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Chapter	4 –The	potential	role	of	video	games	as	tools	to	study	math	cognition	

	

Introduction	

Video	games	have	permeated	our	culture	and	drawn	the	attention	of	many	children	

and	adults	around	the	world.	The	ways	that	video	games	engage	players’	interest,	attention,	

and	resilience	in	the	face	of	extraordinary	challenges	has	inspired	educators	and	

researchers	to	see	the	potential	for	video	games	to	be	valuable	learning	tools.	In	studying	

whether	and	how	educational	game	experiences	achieve	learning	goals,	there	also	lies	a	

potential	for	video	games	to	be	used	as	the	tools	with	which	educational	and	cognitive	

psychology	researchers	can	test	hypotheses	in	settings	beyond	the	research	lab.	In	the	

following,	I	present	a	review	of	educational	research	with	video	games,	with	a	specific	focus	

on	games	designed	for	math	learning.	The	goal	of	this	review	is	to	explore	the	idea	that	

these	designed	experiences	have	specific	value	as	a	research	tools	to	better	understand	the	

mechanisms	of	numerical	cognition	and	math	learning.		

A	large	contingent	of	research	on	video	games	has	focused	on	negative	effects	these	

experiences,	such	as	whether	violent	games	encouraged	violent	behavior	(Anderson,	2004;	

Gentile	et	al.,	2004),	how	sedentary	behavior	was	related	to	incidence	of	obesity	(Gordon-

Larsen	et	al.,	2000;	Marshall	et	al.,	2004),	or	how	excessive	gameplay	habits	can	be	

detrimental	to	academic	progress	(Rideout	et	al.,	2005)	or	become	addictive	behavior	

(Andreassen	et	al.,	2016).	However,	some	have	argued	that	this	focus	on	negative	

consequences	of	video	games	has	shifted	empirical	discourse	too	far	towards	

overgeneralizing	the	negative	consequences	playing	video	games	(Ferguson	et	al.,	2011).	

Critical	reviews	of	the	literature	on	violent	video	games	have	revealed	inconsistent	
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evidence	for	the	commonly	assumed	negative	consequences,	but	have	more	consistently	

revealed	positive	cognitive	effects,	such	as	improved	spatial	attention	and	visual	acuity	

(Bejjanki	et	al.,	2014;	Ferguson,	2007;	Green	&	Bavelier,	2003).	In	efforts	to	get	more	

players	out	of	their	gaming	chairs,	more	video	games	are	utilizing	artificial	reality	(AR)	and	

motion	capture	mechanics	to	make	video	game	play	an	active	full	body	experiences	(e.g.	

PokemonGo,	Ring	Fit	Adventure,	Beat	Saber).		Others	researchers	have	identified	many	

ways	that	video	games	are	in	fact	excellent	learning	contexts,	and	effective	theories	of	

learning	in	video	games	closely	demonstrate	the	theories	of	learning	upheld	by	researchers	

in	the	field	of	cognitive	science	(Gee,	2003a).		

Video	game	designers	and	educators	alike	have	also	taken	notice	of	how	video	game	

players	become	engaged	by	the	gaming	experience	and	asked	if	it	is	possible	for	students	to	

be	as	engaged	with	formal	educational	content	presented	in	the	form	of	an	educational	

game	(Gee,	2007).	This	has	led	to	the	use	of	commercial	games	in	formal	education	

contexts	(Squire,	2005)	and	the	design	of	novel	educational	games	with	the	intention	for	

players	to	encounter	specific	educational	content	in	play-based,	entertaining,	and	

interactive	ways.	With	the	proliferation	of	video	games	developed	and	utilized	for	formal	

and	informal	educational	settings,	has	come	an	abundance	of	research	studying	the	

cognitive	and	affective	effects	of	these	experiences	(Connolly	et	al.,	2012;	Hainey	et	al.,	

2016).	From	this	work,	some	researchers	have	argued	that	educational	games	are	not	only	

phenomena	to	be	studied,	but	also	powerful	tools	for	studying	the	psychological	

phenomena	which	occur	when	they	are	played.	By	advancing	methods	to	interpret	game	

data	as	markers	for	learning,	games	can	be	utilized	as	both	interventions	and	assessments	

(Halverson	&	Owen,	2014).	The	potential	to	utilize	educational	games	in	learning	science	
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and	cognitive	science	research	extends	across	academic	content	areas,	age	groups	and	

learning	contexts	(Shute	&	Rahimi,	2017).	The	current	review	explores	how	educational	

games	have	been	utilized	mathematical	cognition	research	thus	far	and	identifies	valuable	

directions	for	future	investigations.	

	 In	evaluating	how	video	games	can	be	used	as	tools	for	studying	math	cognition,	this	

review		explores	three	arguments	in	favor	of	this	methodological	approach.	First,	video	

game	technology	introduces	possibilities	for	stealth	assessment	where	gameplay	data	can	

unobtrusively	be	collected	without	breaking	players	engagement	with	the	game	or	

introducing	pressures	associated	with	being	in	a	traditional	context	of	cognitive	

assessment	(Shute,	2011;	Wideman	et	al.,	2007).	Second,	the	flexibility	of	math	games	as	an	

audiovisual	medium	can	help	researchers	to	study	the	role	of	using	concrete	visual	

representations	in	supporting	a	deeper	understanding	of	mathematics	(S.	A.	Barab	et	al.,	

2010;	Fey,	1989).	Third,	engaging	math	games	create	a	learning	context	to	study	the	role	of	

informal	play-based	experiences	in	the	formation	of	affective	dispositions	towards	

mathematics	(Hoffman	&	Nadelson,	2010;	Ke,	2008).	In	addressing	these	three	arguments,	

this	review	will	describe	how	“research-based	recommendations”	for	the	design	of	

educational	media	may	be	better	reframed	as	causal	hypotheses	which	can	be	critically	

tested	by	observing	their	efficacy	function	in	real	educational	environments	(A.	P.	Goldin	et	

al.,	2014;	Han	et	al.,	2019;	Rosenberg-Lee,	2018)	

Math	games	as	a	means	of	stealth	assessment	

	 In	support	of	empirical	goals	to	understanding	the	cognitive	and	emotional	

mechanisms	of	learning	math,	the	flexibility	of	the	digital	video	game	medium	presents	a	

wide	diversity	of	opportunities	to	observe	learning	in	contexts	outside	of	the	research	lab.	
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Relative	to	traditional	psychology	experiments	where	participants	come	into	the	lab,	video	

game	data	can	be	collected	portably	and	at	the	participant’s	convenience.	Furthermore,	the	

development	of	data	aggregators	built	within	the	programing	of	games	can	support	the	

collection	of	data	during	the	course	of	gameplay	(Owen	et	al.,	2014).	Shute	(2011)	defines	

the	term	stealth	assessment	as	a	process	of	gathering	data	during	the	course	of	learning	to	

not	only	measure	abilities	but	also	provide	formative	knowledge	for	the	digital	

environment	to	maintain	the	learners	state	of	being	full	engaged	and	absorbed	in	an	

ongoing	activity,	referred	to	as	flow.			Shute,	Hanson,	&	Almond	(2008)	argue	this	approach	

increases	assessment	reliability	and	validity	by	minimizing	potential	effects	of	test	anxiety	

the	learner	would	normally	experience	if	they	knew	they	were	being	assessed.	Owen	and	

Halverson	(2014)	argue	that	these	approaches	can	provide	key	indices	of	basic	

achievements	learners	accomplish	in	the	game,	and	also	generate	rich	data	to	assess	how	

players	responded	to	failure,	use	learning	supports	within	the	game,	and	improve	

performance	over	time.	From	a	design	perspective	this	data	can	allows	researchers	and	

game	developers	measure	the	effectiveness	of	game	play	features,	across	players	and	then	

use	that	knowledge	to	design	better	versions	of	the	game	design.	Furthermore,	by	

continuously	updating	models	of	the	learner’s	knowledge,	these	forms	of	computer-based	

assessment	can	provide	real	time	feedback	and	adapt	content	to	varying	states	of	the	

learner’s	knowledge	(Shute	&	Rahimi,	2017).		

	 In-game	data	that	tracks	player	actions	and	progress	through	the	game	takes	a	much	

more	massive	form	when	data	is	collected	across	large	populations	of	players	playing	the	

same	game	on	online	platforms.	For	example,	Math	Garden	is	an	online	platform	for	

practicing	math	skills	that	allows	players	to	track	their	progress	and	receive	appropriately	
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difficult	activities	based	on	adaptive	game	mechanics	maintain	a	level	of	difficulty	following	

the	player’s	skill	development	(Maas	&	Nyamsuren,	2017).	From	this	immense	database	of	

over	20	million	player	responses,	the	authors	performed	detailed	analyses	on	separate	

items	to	draw	strongly	powered	inferences	about	the	human	capacities	to	reason	with	

number.	Such	datasets	represent	an	attractive	option	for	advancing	the	ways	in	which	

theories	of	numerical	cognition	can	be	tested	across	wide	populations.	

	 The	strengths	of	these	data	collection	approaches	to	measure	behaviors	and	virtual	

actions	provide	exciting	avenues	to	test	theories	of	learning	based	on	the	implementation	

of	adaptive	learning	algorithms	(Torrente	et	al.,	2009),	manipulating	gameplay	variables,	

and	collecting	in-time	data	from	players	actively	engaged	in	the	learning	context	(Shute	et	

al.,	2017).	Through	programmatic	changes	in	gameplay	features	such	as	the	presence	of	a	

narrative	context	(Swart	et	al.,	2017),	the	ordering	of	gameplay	levels		(Kim	&	Shute,	2015)	

or	the	form	of	in-game	feedback	(Tsai	et	al.,	2015)	researchers	can	test	specific	causal	

predictions	of	learning	while	developing	formative	knowledge	to	inform	future	game	

design.	

Video	games	as	audiovisual	representations	of	math	concepts	in	informal	contexts	

Beneath	the	artful	design	that	makes	video	games	enjoyable	to	play,	video	games	

are	programs	executing	the	presentation	of	visuals	and	sounds,	detecting	player’s	actions,	

and	responding	to	those	actions	with	specific	feedback.	By	this	very	nature,	digital	math	

games	present	unique	methodological	advantages	for	studying	how	people	interpret	visual	

and	audio	representations	designed	to	convey	and	teach	mathematical	ideas.	The	notion	of	

creating	educational	math	games	to	research	learning	in	these	contexts	has	existed	for	

many	years		(Bright	et	al.,	2017;	Ernest,	1986),	yet	modern	advancements	in	technology	
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continue	to	change	the	landscape	of	what	kinds	of	games	are	possible	and	how	people	

interact	with	these	experiences.	What	has	remained	consistent	over	the	years	is	the	

argument	that	math	games	can	support	a	deeper	understanding	of	mathematics	through	

audio-visual	representations	of	mathematical	concepts.	Learning	theories	in	math	

education	have	long	emphasized	the	use	of	tangible	and	perceptual	manipulatives	to	help	

students	grasp	(metaphorically	and	literally)	novel	concepts	(Bruer,	2001;	Dienes,	1960)	

and	math	games	have	been	put	forth	as	a	way	to	instantiate	this	concept	digitally	in	video	

games	and	physically	in	board	games.	Testing	the	viability	of	math	games	as	a	means	to	

help	students	gain	a	deeper	understanding	of	math	concepts	typically	presented	in	the	

math	classroom	as	formal	definitions	and	symbolic	notations,	can	also	be	a	test	of	these	

broader	learning	theories	of	perceptual	learning,	multimedia	learning	and	grounded	

cognition.		

Using	Math	Games	to	Reify	Mathematics	

	 Goals	to	inspire	interest	in	mathematics	using	computer	games	are	intertwined	with	

goals	of	math	games	to	provide	experiences	and	simulations	that	put	mathematical	abilities	

into	practice.	Towards	this	end,	video	game	researchers	have	argued	that	that	a	specific	

strength	of	interactive	digital	media	is	in	the	ability	to	design	experiences	that	reify	

abstract	concepts	and	simulate	phenomena	in	the	world	that	are	otherwise	difficult	to	

perceive	(Corredor	et	al.,	2014).	While	some	educational	games,	such	as	scientific	

simulations,	present	specific	facts	and	phenomena	for	learners	to	observe	and	appreciate,	

topics	of	mathematics	and	number	knowledge	are	more	abstract.	Mathematical	operations	

and	concepts	can	be	exemplified	by	audiovisual	instantiations	but	are	not	defined	by	any	

one	example.	Math	educators	must	help	their	students	develop	both	procedural	knowledge,	
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in	the	form	of	abilities	to	carry	out	specific	action	sequences	(e.g.	counting	or	arithmetic	

operations),	and	conceptual	knowledge,	meaning	the	implicit	and	explicit	understanding	of	

mathematical	ideas	and	why	they	hold	true	across	multiple	contexts	(Rittle-Johnson	et	al.,	

2001).	Learning	goals	of	math	games	may	focus	on	either	procedural	or	conceptual	

knowledge,	yet	the	audio-visual	experience	afforded	by	math	games	may	create	greater	

opportunities	for	deepening	conceptual	knowledge.		

Whereas,	game	features	can	motivate	learners	to	drill	math	facts	and	improve	

fluency	with	mathematical	procedures,	these	experiences	do	not	directly	help	learners	

understand	how	to	apply	those	operations	in	external	contexts	(Goldstone	et	al.,	2008).	

Conversely,	it	has	been	argued	that	a	key	opportunity	for	math	games	to	promote	learning	

is	in	the	ability	for	learners	to	experience	and	interact	with	multimedia	representations	of	

mathematical	concepts	through	play	and	in	doing	so	to	gain	a	grounded	or	intuitive	

understanding	(Fey,	1989;	Hanna,	2000).	In	the	following	section,	I	present	cognitive	

theories	of	numerical	and	mathematical	development,	and	review	how	educational	games	

have	been	used	in	the	empirical	study	of	these	theories.	Furthermore,	I	put	forth	arguments	

for	how	advances	in	video	game	technology	can	be	leveraged	to	address	these	theories	in	

the	future.		

Using	games	to	study	theories	of	grounded	cognition	

	 According	to	grounded	theories	of	cognition,	mathematical	knowledge,	such	as	the	

meaning	of	number	symbols	and	the	understanding	of	mathematical	operations,	is	based	

on	human	perceptual	and	active	experience	situated	in	the	physical	world	(Barsalou,	2008)	

Some	researchers	have	proposed	that	an	abstract	understanding	in	language	and	

mathematics	depends	on	drawing	metaphorical	connections	to	our	bodily	states	and	their	
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situated	knowledge	(Lakoff	&	Johnson,	1999).	For	example,	we	can	describe	the	number	2	

as	smaller	than	7,	and	the	distance	between	these	magnitudes	as	further	apart	than	3	and	5	

to	convey	the	abstract	meaning	of	relative	numerical	magnitude.	Grounded	theories	argue	

against	the	notion	that	math	and	number	knowledge	is	encoded	in	memory	independent	of	

the	perceptual	and	affective	context	in	which	the	knowledge	is	learned	and	used.	Thus,	

conceptual	understanding	of	mathematics	and	constructing	strong	representations	of	

meaning	relies	on	partial	simulations	of	perceptual	components	(Barsalou,	1999)	and	

embodied	referents		(Hauk	et	al.,	2004)	of	past	experience	relevant	to	the	mathematical	

concepts	and	procedures	at	hand.		

	 Grounded	theories	of	math	learning	closely	align	with	longstanding	theories	in	

mathematics	education	about	the	use	of	concrete	experiences	to	introduce	abstract	

mathematical	concepts.	Dienes	(1960)	argued	that	by	having	students	interact	with	

multiple	concrete	examples	of	quantity	and	magnitude,	skillfully	crafted	to	demonstrate	the	

structures	of	mathematics,	they	can	then	extract	the	information	necessary	to	support	

conceptual	knowledge	and	abilities	(Dienes,	1960).	Drawing	from	the	writings	of	Bruner	

(1966),	Resnik	&	Ford	(1981)	present	the	argument	that	instruction	should	follow	the	

learner’s	natural	progression	of	enactive	experiences	to	graphical	representations	to	

symbolic	representations	of	knowledge,	known	formally	as	concreteness	fading.		Thus	each	

step	in	this	process	is	seen	as	prerequisite	for	successful	understanding	in	the	subsequent	

stage,	and	recent	research	in	perceptual	learning	have	shown	that	there	may	be	unique	

benefits	to	sequencing	learning	experiences	in	this	order	(Fyfe	et	al.,	2014;	McNeil	&	Fyfe,	

2012).	In	other	words,	developing	the	proper	understanding	that	(3	+	2)2	≠	32	+	22	needs	to	

begin	before	students	ever	see	the	equations	written	out.	
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	 One	way	in	which	the	predictions	of	grounded	cognition	can	be	explored	in	the	

video	game	context	is	in	studies	that	examine	the	effectiveness	of	games	as	anchoring	

activities	that	illustrate	numerical	properties	and	mathematical	concepts	in	graphical	

representations.	Beyond	math	games	that	automate	drill	and	kill	practice	with	mental	

calculations,	some	strategy	games	present	mathematical	concepts	in	visuo-spatial	puzzles.	

For	example,	in	the	game	Refraction	(2013)	players	must	place	devices	to	divide	a	power	

source	into	the	correct	fraction	of	power	to	properly	fuel	rocket	ships,	calling	upon	players	

to	conceive	of	fraction	magnitudes	and	the	operation	of	division.		In	the	game	Treefrog	

Treasure	(2011)	players	are	introduced	to	a	series	of	barriers	in	the	form	of	number	lines	

and	must	direct	a	frog	character	to	break	through	at	specific	numerical	values.	These	games	

exemplify	educational	experiences	that	allow	players	to	enact	up	on	visual	representations	

of	mathematics	and	offer	multiple	opportunities	to	test	theories	of	grounded	cognition.	For	

example,	randomized	control	studies	with	games	like	these	prior	to	formal	instruction	

compared	to	the	opposite	order	could	test	theories	that	learning	new	mathematical	topics	

should	begin	with	interactive	experiences.	Furthermore,	through	a	manipulation	of	

graphics	in	these	games,	artistic	game	features	such	as	narrative,	animation,	or	naturalistic	

renderings	(Swart	et	al.,	2017),	intervention	studies	could	further	test	theories	of	

concreteness	fading	that	argue	for	the	transition	of	instruction	from	concrete	to	abstract.	

Using	games	to	test	fundamental	theories	of	numerical	development	

	 Grounded	theories	have	been	widely	proposed	and	supported	by	cognitive	science	

and	neuroscience	researchers	studying	the	mechanisms	underlying	how	humans	come	to	

understand	the	meaning	of	number	symbols	and	form	abstract	conceptions	of	whole-

numbers	(Butterworth,	1999;	Dehaene,	2011;	Nieder	&	Dehaene,	2009)	and	fraction	values	
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(Jacob	et	al.,	2012;	Lewis	et	al.,	2015).	For	example,	neuroscientists	have	observed	that	

neural	activation	in	a	common	brain	region	(intraparietal	sulcus,	IPS)	is	sensitive	to	

changes	in	perceived	magnitude,	irrespective	of	the	magnitude’s	symbolic	or	nonsymbolic	

form	(Nieder,	2013;	Piazza	et	al.,	2007).	These	findings	support	the	hypothesis	that	IPS	

may	represent	an	abstract	and	common	magnitude	code	for	meaning	of	distinct	entities	

and	number	symbols	alike	(Dehaene	et	al.,	1998;	Fias	et	al.,	2003;	Piazza	et	al.,	2004).	These	

findings	have	laid	the	foundation	for	causal	claims	that	early	childhood	experiences	and	

intuitions	within	nonsymbolic	numerical	instantiations	are	fundamental	to	the	

development	of	symbolic	whole	number	understanding	(Dehaene,	2011)	and	higher-order	

mathematical	reasoning	(Izard	et	al.,	2011).	While	correlational	and	longitudinal	studies	in	

this	field	have	largely	supported	this	claim,	Bugden	et	al.	(2017)	argue	that	training	studies	

that	directly	test	the	use	of	nonsymbolic	number	experiences	using	pre-post	assessments	

and	neuroimaging	techniques	are	necessary	to	understand	how	these	theories	can	be	

applied	in	educational	techniques.	Towards	this	goal,	research	has	shown	that	training	

approximate	calculation	with	non-symbolic	representation	of	quantities	can	have	a	causal	

benefit	for	arithmetic	performance	with	symbolic	numeral	(Park	et	al.,	2016).	Other	studies	

suggest	that	manipulating	nonverbal	spatial	representations	of	number	are	the	key	

mechanism	by	which	stronger	understandings	of	number	are	forged	(Park	&	Brannon,	

2014).	

	 In	a	limited	number	of	studies,	math	games	have	been	used	to	situate	nonsymbolic	

to	symbolic	mapping	experiences	in	a	naturalistic	learning	environment.	In	a	study	by	

(Whyte	&	Bull,	2008),	experience	playing	board	games	that	represent	numbers	along	a	

linear	depiction	of	magnitude	improved	preschoolers’	numerical	abilities	including	
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symbolic	to	nonsymbolic	number	estimation.	Likewise,	Wilson	and	collegues	(2009)	

observed	that	playing	The	Number	Race,	a	digital	game	that	requires	the	comparison	of	

symbolic	and	non-symbolic	quantities	improved	numerical	abilities,	especially	among	

those	who	struggled	with	math	and	number.	Kucian	and	colleagues	(2011)	observed	using	

a	pre-post	fMRI	design	that	experience	playing,	Rescue	Calcularis,	a	number	line	estimation-

based	game,	led	to	improvements	in	numerical	estimation	for	students	with	and	without	

specific	math	disabilities.	Participants	with	math	disability	in	this	study	also	showed	

positive	changes	in	the	recruitment	of	neural	systems	associated	with	the	processing	of	

numerical	tasks.	These	findings	further	support	the	argument	that	educational	games	that	

ground	numerical	concepts	(such	as	magnitude	and	ordinality)	may	provide	important	

grounding	to	support	an	understanding	of	these	concepts	when	present	in	symbolic	form.	

Moreover,	these	studies	provide	examples	of	how	video	games	can	bridge	cognitive	

theories	of	psychology	and	neuroscience	with	learning	experiences	designed	for	actual	

educational	applications.		

Game	Contexts	to	Study	Perceptual	Learning	and	Transfer	

	 An	additional	interpretation	of	how	the	integration	of	concrete	experiences	in	math	

education	supports	the	transfer	of	mathematical	understanding	across	contexts,	is	put	

forth	by	theories	of	perceptual	learning.	Specifically,	Goldstone	and	colleagues	(2010)	claim	

that	the	development	of	expertise	involves	updating	perceptual	interpretations	of	math	

experiences	to	fluently	recognize	relevant	details	and	patterns	across	varied	learning	

situations.	Privileging	the	education	of	symbolic	formalisms	prior	to	or	in	absence	of	

concrete	referents	ingrains	a	narrow	understanding	of	the	content	and	limits	opportunities	

for	learners	to	understand	how	math	equations	apply	to	problems	outside	of	the	math	
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textbook	(Braithwaite	et	al.,	2016;	Goldstone	et	al.,	2010).	

	 Situated	cognition	theories	argue	that	knowledge	is	strongly	linked	to	the	context	

and	goals	of	the	learning	experience	(Lave	&	Wenger,	2012;	Strauss	&	Lave,	1990),	and	

from	this	perspective	there	is	little	to	support	the	notion	that	knowledge	transfers	to	new	

learning	contexts.	The	issue	of	whether	learning	in	educational	games	can	transfer	

knowledge	to	new	contexts,	has	been	put	forth	as	a	major	limitation	in	the	use	of	

educational	games	(Schroeder	&	Kirkorian,	2016).	Gladstone,	Landy,	and	Son	(2005)	offer	

the	possibility	that	in	“grounding”	knowledge,	the	mechanisms	underlying	the	ways	we	

transform	concrete	knowledge	into	abstract	representations	work	to	allow	people	to	

recognize	how	the	concrete	forms	math	concepts	can	be	observed.	

Using	Math	Games	to	Foster	Math	Interest	

	 Helping	students	thrive	in	the	fields	of	science,	technology,	engineering,	and	

mathematics	requires	providing	educational	opportunities	that	foster	the	development	of	

knowledge	as	well	as	inspire	motivation	to	persist	in	the	field.	Likewise,	performance	in	

mathematics	and	the	pursuit	of	opportunities	to	learn	math	are	ultimately	influenced	by	

the	beliefs,	attitudes,	emotions,	and	values	students	hold	towards	the	content	(Hidi	et	al.,	

2004).	The	study	of	learning	in	math	games	may	provide	powerful	insights	into	how	

emotional	dispositions	towards	mathematics	form,	how	they	are	related	to	math	

achievement,	and	the	role	of	learning	experiences	in	forming	these	relationships.	In	this	

section,	I	present	three	perspectives	on	the	hypothesized	roles	math	games	may	play	in	

development	of	personal	interest	in	mathematics	and	the	affective	effects	of	gameplay	on	

the	learning	experience.		First,	I	review	theories	of	interest	development,	and	discuss	how	

math	games	have	been	used	to	test	their	hypothesized	role	in	initiating	interest	through	
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entertaining	experiences.	Second,	I	discuss	evidence	regarding	the	experiences	of	flow	and	

engagement	during	gameplay,	and	how	game	features	such	as	narrative	framing,	adaptive	

challenges,	and	social	interaction	relate	to	this	experience.	Third,	I	discuss	the	nature	of	

video	games	as	external	motivators	of	effort	and	theories	regarding	how	players	respond	to	

and	persist	through	challenges	in	the	game	context	

Affective	Experience	in	the	Development	of	Math	Knowledge	

	 In	a	description	of	the	traditional	state	of	mathematics	education,	Lockhart	(2009)	

laments	the	unfortunate	disservice	our	schools	systems	do	to	students	by	teaching	

mathematics	only	as	strict	facts	to	memorize	and	precise	procedures	to	follow	for	the	vast	

majority	of	primary	education	while	withholding	applied,	creative,	and	theoretical	

conceptions	of	mathematics	for	STEM	majors	in	college.	Such	conventions,	Lockhart	argues,	

are	analogous	to	teaching	music	to	students	without	letting	them	perform	or	teaching	art	

principles	for	years	before	letting	children	create	a	painting.	The	argument	follows	that	

conventional	structures	of	math	education	fail	to	give	students	insights	into	why	

mathematics	is	interesting	and	useful.	In	line	with	this	argument,	cognitive	researchers	

have	also	argued	that	instruction	of	facts,	algorithms,	and	operations	without	providing	

operable	contexts	to	apply	this	learning	may	in	fact	be	contributing	to	the	prevalence	of	

math	anxiety	and	a	lack	of	overall	engagement	(Brown	et	al.,	1989).	

	 A	large	amount	of	research	pertaining	to	the	relationship	between	affective	

dispositions	towards	mathematics	and	mathematical	abilities	has	actually	focused	on	the	

ways	that	math	anxiety	constricts	math	abilities	and	encourages	the	avoidance	of	math	

activities	(Ashcraft,	2002).	For	example,	neuroscience	research	into	the	neural	mechanisms	

of	affective	experience	during	math	performance	has	explored	how	individuals	experience	
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math	anxiety.	Specifically,	high	levels	of	anxiety	in	anticipation	of	doing	math	is	associated	

with	higher	activation	of	brain	regions	related	the	experience	of	physical	pain	(Lyons	&	

Beilock,	2012a,	2012b).	While	neuroscience	research	has	examined	the	mechanisms	of	

positive	reinforcement	in	decision-making	contexts,	much	is	still	unknown	about	the	role	of	

engagement	in	the	development	of	math	abilities	and	knowledge.	

	 Models	of	how	math	interests	develop	stem	from	general	theories	of	interest	

development,	which	describe	the	role	of	emotional	reactions	during	early	math	

experiences	(Hidi	&	Renninger,	2006)	as	well	as	the	relationship	between	affective	

dispositions	and	mathematical	abilities	(Fisher	et	al.,	2012).	Here	I	adopt	a	dual	definition	

of	interest	outlined	by	Hidi	and	colleagues	(2004),	as	both	situational	interest,	meaning	an	

emotional	state	induced	by	external	factors	of	an	experience	(Knogler	et	al.,	2015)	and	

individual	interest,	meaning	an	individual’s	personal	relationship	with	topic	or	domain-

specific	activity	and	their	propensity	to	reengage	with	those	activities.	Thus,	the	

development	of	math	interests	can	be	described	broadly	as	the	establishment	of	sustained	

individual	interests	as	driven	by	the	accumulation	of	math	experiences	inciting	situated	

interest.	Other	theories	of	academic	motivation	focus	more	so	on	metacognitive	factors,	

such	as	self-efficacy	beliefs	(Bandura,	1977),	personal	goals	to	achieve	mastery	of	

mathematics	(Ames,	1992),	and	perceived	value	of	acquiring	skills	or	content	knowledge	

(Eccles,	1983).	These	primarily	cognitive-based	theories	remain	useful	for	conceptualizing	

the	relationship	between	motivation	and	math	abilities.	However,	they	do	not	account	for	

subconscious	aspects	of	motivation	that	are	initiated	by	emotional	experiences	in	learning	

contexts	(Hidi,	1990;	Krapp,	2002).	



	 	 	 	

	

126	

	 Empirical	investigations	into	the	early	development	of	math	interest	and	how	it	

relates	to	the	foundations	of	math	and	number	knowledge	have	revealed	some	indication	

that	affective	dispositions	form	early	and	in	nonacademic	contexts.	In	a	study	with	low-

income	preschoolers,	Fisher	and	colleagues	(2012)	identified	that	early	math	abilities	

significantly	related	to	engagement	in	a	free	play	numerical	task.	Furthermore,	they	

observed	that	over	the	course	of	6	months,	early	levels	of	engagement	in	situated	contents	

predict	future	levels	of	math	achievement	and	signs	of	competency	predict	higher	amounts	

of	goal-directed	play.	Similarly,	Yang	and	colleauges	(2014)	observed	that	efforts	to	

provide	remedial	support	for	1st	grade	students	with	low-SES	backgrounds	not	only	

improved	abilities	but	also	led	to	increases	in	measures	of	interest	in	mathematics	and	

confidence.	Fisher	and	colleagues	(2012)	argue	that	such	findings	support	Ma	and	Kishor's	

(1997)	model	of	math	development	as	a	reciprocal	relationship	between	the	interest	and	

abilities,	whereby	early	interests	motivate	greater	engagement	with	math	content	and	

stronger	understanding	from	this	engagement	promotes	more	enjoyable	learning.		

	 Studies	with	early	elementary	school	students	have	observed	that	students	exposed	

to	higher	occurrences	of	informal	number	and	math	related	activities	at	home,	such	as	

board	games,	card	games,	cooking,	and	shopping,	showed	significantly	higher	levels	of	

mathematical	skills	in	kindergarten	and	early	elementary	years	(Lefevre	et	al.,	2009;	

Purpura	et	al.,	2017).	Similarly,	in	an	intervention	study	utilizing	a	digital	aid	to	situate	

early	number	and	math	concepts	in	entertaining	stories,	the	amount	of	use	at	home	was	

associated	with	greater	math	learning	across	first	grade,	especially	among	students	whose	

parents	experience	significant	anxiety	with	math	(Berkowitz	et	al.,	2015).		
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Video	Games	as	Triggers	for	Situated	Interest	

	 Video	games	are	receiving	attention	in	education	for	their	potential	to	engage	

players	in	fun	interactive	experiences	with	rich	educational	content	(Mayo,	2009).	

Furthermore,	the	success	of	an	educational	game,	in	the	form	of	players	mastering	the	

educational	content,	relies	on	creating	engaging	challenges	and	experiences	that	players	

want	spend	time	completing.	Garris,	Ahlers,	and	Driskell	(2002)	describe	an	input	-	output	

model	of	learning	in	math	games	that	emphasizes	a	cyclical	process	of	user	actions,	game	

feedback,	and	user	reflections	on	the	experience,	to	argue	that	this	cycle	is	the	source	of	

engagement	and	the	user’s	judgments	are	critical	to	whether	this	cycle	persists.		

Specifically,	video	games	are	designed	to	elicit	emotional	reactions	from	the	player,	

through	the	use	of	game	elements	such	as	rewards,	obstacles,	and	game	narrative	(Squire,	

2003).	Games	can	also	provide	immediate	feedback,	unlimited	chances	to	try	again,	and	

options	for	the	student	to	scale	difficulty	based	on	his	or	her	needs.	Through	these	features,	

math	games	are	intended	to	reframe	homework	and	drill	exercises	as	fun	competitions	or	

goal	directed	challenges.		

Many	game	features	included	to	create	entertaining	experiences	overlap	with	

psychological	theories	of	reward-based	learning.	Specifically,	learning	can	be	stimulus-

driven,	when	rewards	are	paired	with	the	delivery	of	the	information,	feedback-driven,	

when	rewards	follow	the	stimulus,	or	motivationally	driven	by	the	anticipation	of	the	

reward	to	come	(Adcock	et	al.,	2006).	Furthermore,	the	use	of	games	for	learning	builds	on	

the	theory	that	the	pursuit	of	winning	and	the	excitement	of	competition	invite	learners	to	

develop	emotional	associations	with	the	content	that	extend	to	different	learning	domains	

(Immordino-Yang	&	Damasio,	2007).	
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	 Studies	comparing	the	differences	between	math	learning	in	game-based	and	paper	

and	pencil	contexts	with	5th	grade	children	have	shown	that	games	have	positive	effects	in	

task	engagement	(Ke,	2008).	Studies	with	middle	school	students	have	shown	that	having	

the	ability	to	choose	math	examples	and	personalize	the	learning	context	significantly	

increased	the	experience	of	situated	interest	and	task	effort,	especially	among	students	

with	lower	individual	interests	(Høgheim	&	Reber,	2015).		Similarly,	with	high	school	

students,	Squire	recognized	that	students	who	normally	struggle	in	academic	contexts	

showed	great	enthusiasms	and	engagement	learning	through	a	complex	strategy	game,	yet	

high	achieving	students	were	more	vocal	about	labeling	the	games	as	a	waste	of	time	

(Squire,	2005).	Likewise,	studies	with	college-aged	adults	demonstrated	that	the	main	

reasons	for	players	to	seek	out	and	play	video	games	is	to	feel	entertained	and	relaxed,	

even	when	challenging	forms	of	gameplay	lead	to	failure,	however	self-reported	reasons	to	

play	games	adults	never	mention	an	intention	to	learn	(Hoffman	&	Nadelson,	2010).	One	

observation	regarding	the	potential	for	educational	games	to	initiate	situated	interest	in	

formal	educational	settings	is	that,	across	studies	and	ages,	games	appear	to	have	a	more	

positive	effect	on	young	students	relative	to	older	students,	whose	level	of	interest	may	be	

more	established.	For	those	who	do	find	greater	excitement	from	game-based	learning	

relative	to	traditional	learning	contexts	(Squire,	2005),	these	positive	effects	further	

emphasize	the	critical	role	that	informal	learning	experiences	have	in	enabling	learners	to	

pursue	their	personal	learning	goals	on	their	own	and	with	peers	(Barron,	2006).	

Furthermore,	these	studies	provide	additional	evidence	for	the	conclusion	that	informal	

math	experiences	prior	to	formal	math	education	are	directly	related	to	the	dispositions	

that	learners	bring	to	the	math	classroom.	
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Using	Games	to	Promote	Engagement	

Flow	and	Situated	Interest	in	Math	

	 One	goal	of	educational	video	games	is	to	deeply	engage	with	the	learning	content	

(Mayo,	2009).	Research	on	the	effect	of	playing	video	games	has	also	advanced	the	

conceptualization	of	what	the	construct	of	engagement	means.	Congruent	with	the	notion	

that	engagement	is	a	psychological	experience,	video	game	researchers	refer	to	the	positive	

mental	state	where	the	player	perceives	an	ideal	fit	between	his	or	her	skills	and	the	task	

demands	as	flow.	Through	an	appreciation	of	flow	states	in	games,	neuroscience	

researchers	have	begun	to	understand	the	neural	mechanisms	underlying	engagement.	By	

giving	adults	appropriately	challenging	math	problems	and	comparing	neural	activity	

during	this	task	to	conditions	of	induced	boredom	and	overload,	Ulrich	and	colleagues		

(2014)	induced	flow	states.		Results	showed	that	flow	states	were	associated	with	

increases	in	activation	in	regions	of	the	brain	associated	with	cognitive	control	(left	

anterior	IFG)	and	decreased	activation	in	regions	associated	with	processing	negative	

arousal	(amygdala).	Additional	studies	are	necessary	to	replicate	the	manifestation	of	flow	

states	with	video	games	in	the	MRI	scanner,	yet	these	findings	do	present	exciting	evidence	

regarding	the	flow	states.	One	possible	mechanism	by	which	games	induce	a	productive	

learning	context	is	by	situating	players	in	appropriately	challenging	experiences	that	are	

enjoyable	and	engage	capacities	to	fixate	on	a	task	and	suppresses	negative	affect	in	the	

pursuit	of	accomplishing	a	goal.	Furthermore,	the	study	of	flow	in	games	has	provided	

evidence	for	the	importance	of	peers	and	the	social	context	in	engagement.	Direct	

comparisons	of	human	versus	computer-controlled	opponents	while	playing	games	has	

shown	that	playing	against	humans	can	be	associated	with	greater	self-reported	feelings	of	
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flow,	enjoyment,	and	presence	in	the	game	experience	(Weibel	et	al.,	2008).	These	findings	

have	been	replicated	in	neural	investigations	of	video	game	play,	with	results	showing	that	

playing	games	against	human	opponents	is	associated	with	greater	activation	in	reward	

processing	areas	of	the	brain	compared	to	when	the	opponent	was	a	computer	(Kätsyri	et	

al.,	2013).			

Using	Games	to	Encourage	Persistence	through	Failure	

	 One	hope	in	designing	educational	games	is	to	frame	learning	in	a	context	that	

encourages	players	to	persist	through	increasing	challenges.	An	activity	central	to	most	

video	game	designs	is	the	notion	of	leveling	up.	When	players	level	up	in	video	games,	they	

are	introduced	to	new	abilities,	more	complex	scenarios,	and	even	harder	challenges	to	

overcome.		Despite	these	challenges,	leveling	up	is	not	designed	to	discourage	players	but	

rather	it	becomes	an	achievement	that	players	get	to	enjoy.	In	mathematics	education,	

course	sequences	and	the	units	within	also	present	a	structure	of	increasing	challenges,	but	

failure	in	these	contexts	is	greatly	discouraged	and	comes	with	real	consequences	to	career	

and	academic	aspirations.	Theories	of	motivation	from	a	cognitive	perspective	have	

focused	on	how	motivational	goals	are	related	to	academic	achievement	(Ames,	1992),	and	

how	beliefs	about	self-efficacy	guide	one’s	motivations	to	excel	(Bandura,	1977).		Findings	

showing	that	video	game	players	enjoy	the	challenge	of	games	and	persist	even	in	the	face	

of	failure	(Malone,	1981;	Przybylski	et	al.,	2010),	have	motivated	the	hypothesis	that	

educational	games	could	inspire	the	same	joy,	resilience,	and	intrinsic	motivation	with	

educational	content	(Gee,	2003a).		

	 Math	video	games	that	fall	under	the	category	of	drill	and	practice	games	are	

generally	welcomed	into	the	classroom	as	reward	activities	or	homework	since	they	align	
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closely	to	the	exercises	normally	assigned	on	a	worksheet.		Despite	the	close	resemblance	

to	more	traditional	math	homework,	the	game	interface	has	been	shown	to	encourage	

students	to	complete	more	examples	and	practice	for	longer	stretches	of	time	than	paper-

based	activities	(J.	Lee	et	al.,	2004).		Additionally,	controlled	comparisons	between	

arithmetic	fact	practice	in	a	game	setting	and	on	paper	show	some	evidence	that	gameplay	

was	more	enjoyable	and	associated	with	improvements	in	working	memory	capacity	

(Núñez	Castellar	et	al.,	2014).	

An	Argument	for	the	Use	of	Video	Games	as	Research	Tools	

	 Math	games	are	increasingly	incorporated	into	the	math	classroom	following	two	

primary	hypotheses.	First,	math	games	provide	rich	audio-visual	experiences	and	goal-

based	scenarios	for	learners	to	interact	with	mathematical	concepts	and	form	richer	

understanding	of	mathematical	structures.	Second,	math	games	create	enjoyable	situations	

to	initiate	interest	in	mathematics,	inspire	deeper	engagement,	and	motivate	players	to	

persist	through	difficult	mathematical	concepts.	This	review	explored	how	games	research	

has	tested	these	hypotheses	thus	far	and	presented	a	vision	of	how	this	work	can	advance	

in	the	future.	

Advancing	the	empirical	understanding	of	how	learning	experiences	develop	both	

cognitive	capacities	and	affective	associations	is	specifically	important	as	digital	

multimedia	become	continually	more	present	in	schools	and	the	workplace.	The	field	of	

educational	research	on	video	games	continues	to	grow	(Connolly	et	al.,	2012;	Hainey	et	al.,	

2016),	yet	there	is	still	much	to	be	learned	as	digital	technology	continues	to	advance	and	

enable	new	and	exciting	educational	games.	Moreover,	it	is	important	that	the	growing	

presence	of	educational	games	in	the	math	classroom	be	met	by	research	that	elucidates	



	 	 	 	

	

132	

the	efficacy	of	these	learning	experiences.	Studying	these	effects	not	only	provides	insight	

into	the	formative	evaluation	of	educational	games,	but	also	offers	an	opportunity	to	test	

theories	of	numerical	cognition,	memory,	interest,	and	motivation	that	are	proposed	to	

support	learning	and	mathematical	knowledge.	

	 Furthermore,	educational	games	offer	particularly	powerful	methods	for	measuring	

players’	interaction	with	mathematical	content	through	authentic	learning	situations.	

Specifically,	these	games	offer	opportunities	to	observe	learning	through	play	using	

methods	that	do	not	interrupt	the	experience	of	flow	in	gameplay	at	home	or	in	labs.	Here,	I	

agree	with	the	descriptions	of	stealth	assessment	put	forth	by	Shute	and	colleges	(Dicerbo	

et	al.,	2017;	Shute,	2011),	that	measuring	learning	in	unobtrusive	ways	can	critically	

increase	the	validity	and	reliability	of	performance	measures	by	taking	pressure	off	of	the	

learning	experiences	and	engaging	learners	in	an	immersive	experience.	Furthermore,	I	

argue	through	creative	manipulations	of	the	video	game	environment,	future	researchers	

may	full	take	advantage	of	the	video	game	medium	to	directly	test	predictions	about	the	

roles	that	different	game	features	play	in	the	learning	process.	Such	manipulations	can	be	

made	to	test	specific	causal	claims	of	mathematical	development.		

	 In	research	aimed	to	uncover	the	fundamental	mechanisms	by	which	symbolic	

knowledge	of	mathematics	is	tied	to	grounded	experiences,	we	see	clear	examples	of	how	

video	games	can	be	utilized	in	testing	the	causal	predictions	of	long-standing	theory.	

Specifically,	theories	about	the	fundamental	role	of	nonsymbolic	number	abilities	in	

supporting	symbolic	number	knowledge	have	been	translated	into	actual	learning	

interventions,	and	the	effects	of	these	interventions	have	been	tested	through	behavioral	

and	neuroimaging	measures	(A.	J.	Wilson	&	Dehaene,	2009).	Furthermore,	new	educational	
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technologies	inspired	by	embodied	theories	of	learning	offer	new	opportunities	to	test	

causal	assumptions	of	those	theories	(V.	R.	Lee,	2014).	Nathan	&	Walkington	(2017)	argue	

that	this	research	also	must	extend	to	articulating	how	commercial	games	conceived	upon	

or	marketed	as	incorporating	movement	into	mathematics	instruction,	do	or	do	not	

represent	valid	instantiations	of	embodied	theory.	Advancing	these	fields	of	research	

stands	to	provide	critical	real-life	tests	of	numerical	and	mathematical	cognition	theories	

while	generating	usable	knowledge	about	how	these	theories	can	inform	the	development	

of	effective	number	games.		

	 In	addition	to	their	value	as	a	research	tool,	teachers	can	use	math	video	games	to	

support	or	supplement	their	current	instruction	and	assess	knowledge.	Among	the	genre	of	

math	games,	titles	vary	across	whether	the	design	experience	aims	to	reify	math	concepts	

in	graphical	and	interactive	representations	or	encourage	the	practice	of	math	facts	and	

operations.	A	discussion	of	how	learning	occurs	in	these	game-based	contexts	raises	

interesting	questions	regarding	how	players	perceive	mathematical	meaning	from	

graphical	representations	embedded	in	games	and	the	extent	to	which	practice	in	games	

transfers	to	the	formation	of	mathematical	knowledge	outside	of	the	game.	The	theories	

and	empirical	studies	presented	in	this	review	generally	support	the	theory	that	there	is	a	

great	potential	for	math	games	to	provide	formative	learning	experiences	for	

understanding	math	in	deeper	ways.	This	stance,	of	course,	comes	with	the	recognition	that	

video	games	do	not	have	a	single	specific	form,	and	the	abilities	to	improve	the	design	of	

math	games	are	only	limited	by	the	current	state	of	technology	and	the	imagination	of	

game	designers.	Yet	even	among	simple	forms	of	math	games,	their	educational	utility	is	

perhaps	best	defined	by	their	relative	strengths	compared	to	traditional	forms	of	
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instruction.	Relative	to	math	textbooks	with	static	images,	textual	descriptions,	and	

practice	problems,	educational	games	may	provide	a	more	dynamic,	visual	driven,	and	

engaging	teaching	tool	to	supplement	formal	math	instruction.		

	 As	described	in	this	paper,	studying	learning	in	the	context	of	games	can	provide	

unique	insights	into	the	development	of	mathematical	abilities	and	interests.	In	turn,	these	

insights	will	hopefully	lead	to	theories	and	frameworks	for	the	design	of	effective	

educational	video	games.		The	translation	from	research	to	development	is	difficult	and	

requires	an	iterative	process	some	researchers	have	suggested	mirrors	engineering	more	

so	than	science	(Nathan	&	Sawyer,	2014).	These	efforts	will	be	strengthened	by	existing	

guidance	established	by	fields	of	design-based	research	to	apply	empirical	results	to	the	

formative	design	of	new	and	better	technologies	and	learning	environments	(S.	Barab	&	

Squire,	2004).		

	 The	second	hypothesis	explored	in	this	review	states	that	educational	games	should	

be	used	in	math	education	to	promote	the	development	of	positive	emotional	dispositions	

towards	mathematics.	Research	examining	the	role	of	early	math	experiences	on	abilities	

and	interest	in	math	shows	that	engaging	in	more	informal	numerical	experiences	before	

attending	school,	such	as	card	games	and	linear	board	games,	is	positively	associated	with	

higher	levels	of	math	interest	and	abilities	(Siegler	&	Ramani,	2008).	According	to	the	

studies	reviewed	in	this	chapter,	it	appears	that	as	children	grow	older	their	new	

experiences	with	math	are	less	likely	to	change	established	dispositions	towards	the	utility	

and	form	of	mathematics.	For	example,	when	high	school	students	were	introduced	to	a	

complex	strategy	game,	Squire	(2005)	observed	that	students	who	do	well	in	in	traditional	

education	contexts,	where	knowledge	is	composed	of	concrete	facts	and	ideas	to	memorize,	
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tended	to	shy	away	from	strategy	games	that	require	active	learning	approaches	including	

exploration,	failure,	and	hypothetical	scenarios.	Such	a	stance	suggests	that	an	important	

goal	of	early	education	is	not	merely	to	excite	learners	but	to	help	learners	become	

comfortable	with	learning	through	goal-oriented	scenarios	and	applying	critical	thinking	

skills.	In	this	review,	the	role	of	math	games	in	creating	goal-oriented	scenarios	was	

primarily	discussed	as	a	way	to	enhance	learners’	knowledge	of	mathematics	and	how	to	

apply	this	knowledge.	Moreover,	the	idea	of	giving	young	learners	the	chance	to	see	how	

useful	and	interesting	mathematics	is	when	applied	to	relevant	problems	may	be	a	primary	

mechanisms	by	which	learners	develop	sustained	individual	interest	in	mathematics	and	

pursue	opportunities	to	use	math	academically	and	in	future	careers.	

	 In	addition	to	cognitive	and	affective	hypotheses	regarding	the	benefits	of	math	

games	on	the	development	of	math	knowledge	discussed	in	this	review,	there	are	

additional	perspectives	for	research	in	this	field	to	pursue	going	forward.		For	instance,	

attention	to	the	role	of	the	social	context	in	math	learning	has	led	to	insights	about	the	

multiple	ways	that	parents	actions	and	dispositions	towards	math	and	science	can	

influence	student’s	self-perceptions	and	values	about	these	academic	topics	(Bleeker	&	

Jacobs,	2004).	For	instance,	introducing	technology	supports	that	motivate	caregivers	to	

spend	more	time	with	children	talking	about	mathematics	can	have	positive	benefits	in	

math	achievement	(Berkowitz	et	al.,	2015;	Levine	et	al.,	2011),	and	especially	for	parents	

who	experience	math	anxiety.	The	study	of	learning	in	the	context	of	math	games	may	

provide	additional	valuable	avenues	to	explore	these	social	aspects	of	learning	through	

games.	For	example,	games	can	frame	learning	in	scenarios	with	interesting	social	

dynamics	such	as	cooperative	and	competitive	play.	Questions	about	whether	math	games	
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can	bolster	engagement	via	competition,	or	spark	productive	collaborative	meaning	

making	with	peers	have	yet	to	be	fully	explored.	Furthermore,	questions	about	the	social	

nature	of	games	extend	to	the	study	of	how	learners	engage	differently	with	real	or	virtual	

agents	in	the	game	play	environment.	These	questions	present	important	avenues	to	better	

understand	how	math	games	can	and	should	be	incorporated	into	the	classroom	while	also	

elucidating	the	role	of	social	interaction	in	the	development	of	mathematical	knowledge.	

		 Among	all	of	the	positive	results	and	perceived	potential	for	educational	games	to	

have	a	great	impact	on	the	future	of	education,	it	remains	important	to	balance	enthusiasm	

with	limitations	of	this	research	and	recommendations	for	appropriate	amounts	of	screen	

time	for	young	children	(Radesky	et	al.,	2015).	Conducting	research	on	the	role	of	math	

games	in	the	development	of	knowledge	and	interest	can	also	rely	on	assumptions	that	

video	games	are	clear	in	their	presentation	of	the	learning	materials	and	effective	in	

presenting	a	fun	game	that	children	want	to	play.	If	players	are	bored	or	dislike	the	

experience,	poor	engagement	with	the	educational	intervention	will	obscure	any	cognitive	

or	affective	effects.	Furthermore,	more	research	is	necessary	to	appreciate	the	role	of	math	

teachers	in	helping	students	draw	valuable	connections	across	formal	math	instruction	and	

the	representations	of	mathematics	in	video	game	contexts.	

	 As	audio-visual,	cellular,	and	computer	technologies	continue	to	develop	so	too	will	

opportunities	to	express	the	structures	of	mathematics	in	creative	and	engaging	ways.	

Educational	math	games	are	a	relevant,	valuable,	and	interesting	context	for	understanding	

the	mechanisms	of	numerical	and	mathematical	cognition.	Continued	incorporation	of	

math	games	into	programs	of	cognitive,	social,	and	neuroscience	research	has	the	potential	
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to	generate	valuable	insights	to	push	these	fields	of	research	and	the	digital	design	of	math	

instruction	forward	(Howard-Jones	et	al.,	2011).		
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Chapter	5 –	Accessing	the	Magnitudes	of	Fractions	and	Ratios	though	Playing	Cards.	

	

Introduction	

Video	games	are	receiving	attention	in	education	for	their	potential	to	engage	

players	in	fun	interactive	experiences	with	rich	educational	content	(Mayo,	2009).	Video	

games	are	designed	to	elicit	emotional	reactions	from	the	player	using	game	elements	such	

as	rewards,	obstacles,	and	game	narrative	(Squire,	2003).	Through	this	design	educational	

video	games	can	portray	educational	content	in	unique	audio-visual	representations.		One	

question	around	the	implementation	of	educational	video	games	is	whether	the	creative	

and	artistic	depictions	of	learning	content	fosters	deeper	engagement	with	the	content	or	

makes	the	content	less	accessible.		In	the	current	study	we	investigated	this	question	as	it	

pertains	to	accessing	the	meaning	of	fractions	and	ratios	in	an	educational	math	game	

called	Fractions	War.	

Visual	Complexity	in	Educational	Materials	

One	aspect	of	designing	good	educational	games,	is	crafting	visual	representations	

that	depict	the	educational	content	in	ways	that	the	learner	can	understand	and	develop	

new	knowledge.	(Plass	et	al.,	2009).	This	requires	attention	to	the	ways	visuals	may	test	the	

limits	of	visual	attention	and	perception	(Desimone	&	Duncan,	1995)	In	multimedia	

research,	Cognitive	Load	Theory	outlines	three	different	ways	that	learning	experiences	

draw	on	the	limited	resources	of	working	memory	(Sweller,	1999).	Specifically,	the	theory	

describes	three	different	types	of	cognitive	load.	Intrinsic	load	is	inherent	complexity	of	the	
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learning	content.	Extraneous	load	pertains	to	the	processing	of	additional,	unnecessary,	or	

nonessential	information.	And	germane	load	corresponds	to	the	mental	effort	the	learner	

invests	into	the	activity.	In	regard	to	the	current	study,	efficient	representations	of	fractions	

and	ratios	follow	the	coherence	principal	(Mayer,	2002)	and	eliminate	extraneous	details	

so	individuals	to	focus	solely	on	the	relation	between	values.		Likewise,	controlled	

experimental	stimuli	in	traditional	cognitive	tasks	follow	this	coherence	principal	to	purely	

observe	performance	with	the	specific	construct	of	interest.	However,	video	games	and	

educational	materials	often	use	naturalistic	or	complex	visual	representations	that	carry	

additional	extraneous	load	for	people	to	grapple	with	or	inhibit.	It	is	through	repeated	

experiences	with	these	complex	visual	representations	that	individuals	can	fluently	extract	

meaningful	information	amidst	their	extraneous	details	(Green	&	Bavelier,	2003;	Kellman	

et	al.,	2008;	Kellman	&	Massey,	2013;	Rau	et	al.,	2017).	

Previous	studies	observing	the	ways	that	people	understand	and	misunderstand	

fractions	reveal	that	the	whole	number	parts	of	fraction	components	can	distract	from	the	

holistic	magnitude	that	emerges	from	the	parts	relation	to	one	another	(Bonato	et	al.,	2007;	

Obersteiner	&	Tumpek,	2016;	Toomarian	&	Hubbard,	2018;	Zhang	et	al.,	2014).	However,	

in	Chapter	2	we	observed	that	influences	of	these	componential	features	do	not	appear	to	

have	an	analogous	effect	when	these	components	are	visual	parts	of	nonsymbolic	ratios.	

Specifically,	the	use	of	visual	ratios	broken	into	discrete	parts	can	actually	be	a	less	efficient	

way	convey	a	proportion	than	if	the	parts	of	the	ratio	were	continuous	extends,	because	the	

discrete	parts	invite	extraneous	and	misleading	whole	number	counting	strategies.	

However,	these	simplified	controlled	stimuli	of	cognitive	research	tasks,	does	not	

necessarily	reflect	how	symbolic	and	nonsymbolic	processing	occurs	in	authentic	learning	
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environments.	Educational	math	games	offer	a	new	context	in	which	we	can	observe	

magnitude	processing	with	these	external	formats.	

Cognitive	and	Affective	Learning	Goals	

According	to	the	cognitive	affective	theory	of	multimedia	learning	(CATLM)	

proposed	by	(Mayer	&	Moreno,	2010)	learning	is	mediated	by	motivational	factors	directly	

effecting	engagement,	and	these	metacognitive	factors	effect	learning	by	directly	

influencing	the	levels	of	cognitive	processing	and	affect.	Theoretical	arguments	for	the	

relationship	between	emotion	and	cognition	lay	out	a	spectrum	from	these	two	phenomena	

being	separate	and	interactive	(Ames,	1992;	Bandura,	1977)	to	inseparable	and	

codependent	(Immordino-Yang	&	Damasio,	2007).	In	a	review	of	educational	video	games	

across	multiple	educational	topics,	Connolly	and	colleagues	observed	mixed	evidence	for	

the	argument	that	these	games	lead	to	positive	cognitive	effects	(e.g.	academic	

achievement),	but	more	consistent	evidence	that	these	games	created	a	more	enjoyable	

learning	context.	To	this,	Connolly	and	colleagues	(2012)	argue	that	with	so	many	people	

playing	and	enjoying	video	games,	the	actual	state	of	enjoyment	is	forgotten	as	a	benefit	of	

game	play.	Similarly	Mayer	(2014)	observed	that	as	long	as	additional	decorative	elements	

of	a	learning	environments	do	not	overload	learners	with	high	amounts	of	extraneous	load,	

these	approaches	can	lead	to	higher	levels	of	personal	interest	and	motivation.	

Furthermore,	these	affective	effects	may	in	turn	have	positive	cognitive	effects	in	the	

future.	

One	goal	in	the	audio-visual	design	of	games	is	to	create	an	aesthetically	pleasing	

form.	What	qualifies	as	aesthetically	pleasing	is	a	matter	of	subjective	preferences	and	

conventions	of	a	game’s	genre,	but	unlike	researchers	designing	an	experimental	task	game	
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designers	are	encouraged	to	use	their	artistic	expression	in	service	of	creating	the	

appropriate	visual	experiences.	Video	games	can	be	immensely	complex	3D	worlds	(e.g.	

BioShock	Infinite,	2013)	or	a	minimalist	2D	scrollers	(e.g.	Limbo,	2010),	yet	the	goal	is	to	

create	a	visual	aesthetic	which	invites	the	player	to	feel	a	part	of	a	digital	context.	In	

educational	games,	visual	design	goals	are	not	necessarily	in	direct	service	of	learning	

goals,	especially	when	educational	content	is	embedded	into	fictional	stories	(e.g.	role-

playing	games)	or	designed	into	adaptations	of	established	game	genres	(e.g.	card	games).	

Nevertheless,	these	decisions	can	be	made	to	evoke	positive	emotions	during	the	learning	

experiences	(Plass	et	al.,	2014),	which	may	in	turn	mediate	the	effectiveness	of	the	learning	

experiences.		

Fractions	War	

Fractions	War	is	a	digital	educational	game	(for	iOS	tablet	devices)	adapted	from	the	

classic	card	game,	War.	In	the	game	Fractions	War	depicts	fractions	and	ratios	as	the	

relationship	between	two	card	values.	To	play	the	game,	a	deck	of	playing	cards	is	split	

evenly	between	two	players	and	one	hand	at	a	time	the	players	flip	over	their	top	two	cards	

and	arrange	them	vertically	to	form	fractions.	For	example,	the	2	of	hearts	and	the	5	of	

clubs	would	be	arranged	into	the	fraction	2/5	and	have	a	holistic	magnitude	of	0.4.	The	

player	whose	fraction	has	the	higher	magnitude	wins	the	hand	and	it	is	each	player’s	goal	

to	be	the	first	to	identify	who	the	winner	is	and	swipe	all	four	cards	on	the	table	into	the	

winner’s	deck.	When	the	two	fractions	have	the	same	magnitude,	players	must	try	to	be	the	

first	to	“Declare	War”	prompting	a	high	stakes	comparison	of	another	pair	of	fractions	with	

the	potential	to	win	more	cards.	The	game	ends	when	one	of	the	two	players	has	collected	
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all	of	the	cards	into	their	deck,	but	the	winner	of	the	game	is	the	player	who	earned	the	

most	points	from	making	the	fastest	and	most	accurate	judgements	of	magnitudes.		

The	core	game	mechanic	of	fractions	war	is	the	comparison	of	fraction	and	ratio	

magnitudes.	This	magnitude	comparison	activity	is	commonly	employed	in	numerical	

cognition	research	to	observe	how	quickly	and	accurately	participants	process	the	

magnitudes	of	two	values	and	determine	which	value	is	larger,	which	value	is	smaller,	or	if	

they	are	the	same	(e.g.	Binzak	&	Hubbard,	2020;	DeWolf	et	al.,	2014;	Holloway	&	Ansari,	

2009;	Matthews	&	Chesney,	2015).	In	addition	to	the	specific	learning	goals	of	Fractions	

War	(See	Appendix	D),	the	game	was	designed	to	be	an	assessment	tool	for	teachers	or	

researchers	to	observe	how	players	understand	these	quantities	in	an	informal	context.	By	

embedding	data	collection	features	into	the	game,	Fractions	War	can	be	used	as	a	form	a	

stealth	assessment,	where	records	of	player	performances	can	be	gathered	without	

interrupting	the	educational	game	experiences	(Shute,	2011).	In	the	current	study,	we	

tested	the	viability	of	using	Fractions	War	as	a	tool	of	studying	magnitude	processing	by	

comparing	performance	in	the	game	to	more	traditional	magnitude	comparison	tasks.	

Games	vs	Tasks	

	 In	defining	Fractions	War	as	a	digital	educational	game	which	can	be	used	as	a	

research	tool,	it	is	necessary	to	distinguish	how	games	like	Fractions	War	are	a	qualitatively	

different	experiences	to	the	more	common	cognitive	lab	task.	Some	researchers	argue	that	

the	immense	variety	of	video	games	makes	it	so	that	they	cannot	be	defined	by	rigid	

boundaries.	Rather,	there	are	ways	in	which	games	resemble	one	another	by	the	features	

they	share	even	when	any	two	games	are	rarely	composed	of	entirely	the	same	features	

(Arjoranta,	2014;	Wittgenstein,	1953).	Therefore,	our	goals	in	defining	games	and	a	game-
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based	context	are	to	highlight	general	features	of	tablet-based	digital	games	and	make	key	

distinctions	of	how	these	features	differ	from	general	features	of	controlled	research	tasks.	

	 First,	the	goals	of	educational	video	games	are	to	be	experiences	in	which	learners	

can	interact	with	and	learn	from	educational	content,	and	to	be	an	entertaining	and	fun	

environment	to	play	with.	The	goals	of	tasks	are	to	observe	valid	and	reliable	human	

performance,	to	test	specific	cognitive	theories	and	hypotheses.	Second,	educational	video	

games	are	typically	very	creative	and	aesthetically	pleasing	digital	environments	to	learn	

in.	Cognitive	tasks	purposely	exclude	the	use	extraneous	features	that	may	bias	or	cofound	

the	results.	Third,	educational	video	games	are	activities	that	people	get	to	play,	whereas	

tasks	are	things	that	people	are	obligated	to	do.		

Experiment	1	

Current	Experiment	

A	primary	goal	of	this	experiment	is	to	first	validate	the	use	of	Fractions	War	as	an	

effective	method	of	stealth	assessment,	which	can	engage	a	player	in	a	learning	experiences	

and	measure	magnitude	comparison	performances.	Before	we	can	draw	comparisons	of	

symbolic	and	nonsymbolic	magnitude	processing	across	game	and	task	contexts,	it	is	

important	to	first	determine	how	reasonable	this	comparison	is.	The	numerical	distance	

effect	is	a	robust	effect	that	is	consistently	observed	with	numeric	and	nonsymbolic	

comparison	tasks,	and	thus	we	are	interested	in	whether	this	effect	can	be	detected	within	

Fractions	War’s	game	data.	Specifically,	we	predicted	that	the	time	for	players	to	make	

magnitude	judgements	in	the	game	would	be	inversely	related	to	the	numerical	distance	

between	the	fractions	and	ratios	presented	in	the	cards.	
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Next,	we	explored	the	extent	to	which	the	game	context	impacted	magnitude	

comparison	performances	and	format	effects.	In	previous	comparisons	of	symbolic	and	

nonsymbolic	magnitude	comparison	discussed	in	Chapter	2,	we	observed	that	adults	can	

more	efficiently	compare	the	magnitudes	of	nonsymbolic	ratios	than	symbolic	fractions.	

Here	we	explored	whether	this	format	effect	generalizes	to	the	game	context,	where	

symbolic	fractions	(numerals)	and	nonsymbolic	ratios	(relative	quantity	of	pips)	are	

presented	on	playing	cards.		

Furthermore,	we	aim	to	evaluate	the	effect	of	the	game	context	within	symbolic	and	

nonsymbolic	comparison.	If	the	game	environment,	through	its	mechanics	of	competition,	

aesthetic	appeal,	and	play-based	learning,	lead	to	greater	engagement	or	focus	during	

magnitude	comparisons,	then	performance	in	the	game	group	may	be	greater	than	the	task	

group.	On	the	other	hand,	if	playing	cards	are	an	inefficient	visual	representation,	aesthetic	

design	becomes	distracting	extraneous	detail,	or	the	play-based	nature	of	the	game	

encourage	people	to	more	freely	make	mistakes,	then	performance	in	the	game	group	may	

be	worse	than	the	task	group.	In	our	comparison	of	context	effects	on	performance	within	

symbolic	and	nonsymbolic	formats,	our	primary	metric	of	performance	is	error	rates.	

Third	we	aimed	to	explore	the	potential	for	a	game	like	Fractions	War	to	be	a	helpful	

predictive	measure	for	evaluating	fraction	knowledge	more	broadly.	Knowledge	of	how	

symbolic	fractions	and	nonsymbolic	ratios	represent	magnitudes	has	been	identified	as	a	

significant	predictor	of	external	measures	of	fractions	knowledge	(Matthews	et	al.,	2016),	

therefore	we	aimed	to	determine	if	these	abilities	measured	in	Fractions	War	game	are	also	

associated	with	performance	on	a	paper	and	pencil-	based	fraction	knowledge	assessment.		
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Lastly,	we	explored	the	causal	hypothesis	that	interacting	with	math	content	within	a	fun	

educational	game	may	prompt	players	to	form	positive	affective	associations	with	that	

content.	Specifically,	we	examined	whether	playing	Fraction	War	lead	to	measurable	

differences	in	self-reported	attitudes	towards	math	in	general	or	fractions	specifically.	

Methods	

Participants	

Game	group.	35	undergraduates	(28	females,	Mage	=	19.9,	range	=	18-24)	

completed	the	experiment	in	the	game	group.	After	applying	the	inclusion	criterion	that	

accuracy	in	all	conditions	must	be	greater	than	70%,	data	from	three	participants	were	

excluded	from	our	analyses.	As	a	result,	data	from	32	undergraduate	students	(25	females,	

Mage	=	19.8,	range	=	18-24)	were	included	in	our	analyses.	

Task	group.	44	undergraduate	students	(36	females,	Mage	=	20.3	years,	range	=	19-

27)	completed	the	experiment	in	the	task	group.	After	applying	the	inclusion	criterion	that	

accuracy	in	all	conditions	must	be	greater	than	70%,	data	from	four	participants	were	

excluded	from	our	analyses.	As	a	result,	data	from	4	undergraduate	students	(32	females,	

Mage	=	20.4,	range	=	19-27)	were	included	in	our	analyses.	

Procedure	

	 Before	arriving	at	the	study,	participants	were	assigned	to	either	the	game	or	the	

task	group.	Participants	in	both	groups	first	completed	a	number	line	estimation	task.	Next,	

they	completed	one	of	two	magnitude	comparison	activities:	a	computer-based	magnitude	

comparison	task	or	a	magnitude	comparison	game	on	a	tablet	device.	Immediately	

following	the	game,	all	participants	completed	a	fraction	knowledge	assessment,	and	a	self-
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report	survey	assessing	their	video	game	habits,	and	affective	dispositions	towards	math	

and	fractions.	Participants	received	partial	course	credit	for	completing	the	study.	

Between-Group	Magnitude	Comparison	Activities	

Magnitude	Comparison	Game.	The	game	group	played	the	game	Fractions	War	

(described	above)	under	three	different	game	modes.	Specifically	participants	played	the	

game	with	(a)	traditional	playing	cards	containing	both	Arabic	numerals	in	the	corners	and	

a	nonsymbolic	array	of	pips	(e.g.	diamonds,	hearts,	spades,	clubs),	(b)	symbolic	cards	

containing	only	1	large	Arabic	numeral	in	the	center	of	the	card,	and	(c)	nonsymbolic	cards	

containing	only	the	nonsymbolic	array	of	pips.	Participant’s	played	the	game	with	these	

three	card	types	in	8-minute	blocks	with	the	same	order:	nonsymbolic,	symbolic,	and	

traditional	cards.		

	

Figure	5.1.	Gameplay	screen	of	Fractions	War	showing	the	two	fractions	revealed	form	the	player’s	
deck	(left)	and	the	computer’s	deck	(right).	Players	have	a	set	amount	of	time	to	identify	that	the	
computer’s	fraction	is	larger	and	swipe	the	cards	to	the	right	towards	the	computer’s	deck	before	
the	computer	makes	that	correct	decision.		
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Comparison	pairs	were	generated	randomly	by	taking	two	cards	from	the	player’s	

and	computer’s	decks	and	arranging	them	vertically	with	the	smaller	fraction	on	top.	Card	

values	included	in	the	game	ranged	from	1-10,	which	excluded	Jacks,	Queens,	and	Kings	

normally	within	a	52	card	deck.	The	game	allowed	for	fractions	to	have	a	magnitude	equal	

to	1,	when	the	two	cards	flipped	over	had	the	same	magnitude	(e.g.	2	of	hearts	over	the	2	of	

diamonds).		

The	magnitude	comparison	game,	Fractions	War,	was	administered	on	an	Apple	

iPad.	The	computer	difficulty	was	set	to	medium,	which	made	it	so	participants	had	5	

seconds	to	make	a	response	before	the	computer	would	make	the	correct	response.	Unlike	

the	task	group,	participants	were	not	directly	instructed	to	provide	their	response	as	

quickly	and	as	accurately	as	possible.	Instead,	participants	were	told	that	the	goal	is	to	earn	

as	many	points	as	possible,	and	the	way	to	do	so	is	to	identify	the	larger	fraction	before	the	

computer.	Consistent	with	the	task,	if	participants	did	not	respond	within	the	5	seconds	

(before	the	computer	response),	the	trial	was	marked	as	a	miss;	if	participants	responded	

within	the	allotted	time,	their	response	time	latency	from	stimulus	onset	was	recorded.	

Participants	initiated	each	trial	by	tapping	on	their	deck	of	cards.		

Magnitude	comparison	Task	The	task	group	completed	magnitude	comparisons	

between	symbolic	fractions	and	nonsymbolic	ratios	in	6	conditions	(Described	in	Chapter	

2:	Experiment	2).	Only	three	of	these	conditions	were	included	in	our	analyses	of	the	

current	experiment.	The	three	critical	conditions	included	in	our	analyses	were	two	

nonsymbolic	ratio	comparison	conditions	containing	either	line	ratios	(LL)	or	circle	ratios	

(CC)	and	single-digit	symbolic	fraction	comparison	condition	(FF).	These	three	conditions	

were	blocked	and	presented	in	the	same	order:	LL,	CC,	FF.	Each	block	included	36	unique	
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pairs,	which	varied	the	numerical	distance	between	the	stimuli	(range	=	0.023	–	0.75).	

Symbolic	fraction	stimuli	had	a	maximum	denominator	size	of	9,	and	all	fractions	were	

proper	fractions	with	values	between	0	–	1.	

The	magnitude	comparison	task	was	administered	on	a	PC	using	E-prime	2.0.	In	the	

task	stimuli	were	rendered	in	white	and	presented	on	a	black	background.	Comparison	

pairs	were	presented	on	the	screen	for	a	maximum	of	5	seconds,	and	participants	were	

instructed	to	provide	their	response	as	quickly	and	as	accurately	as	possible.	If	participants	

did	not	respond	within	the	5	seconds	that	the	stimuli	were	present	on	the	screen,	the	trial	

was	marked	as	an	incorrect	miss;	if	participants	responded	within	the	allotted	time,	their	

response	time	latency	from	stimulus	onset	was	recorded	and	task	proceeded	immediately	

to	the	next	trial.	In	between	all	trials	a	small	fixation	square	was	presented	for	a	variable	

duration	jittered	around	a	mean	duration	of	1500ms	(range	=	1250	–	1750ms).	

Measures	of	Math	knowledge	and	attitudes	

Number	line	Estimation.	Prior	to	participants	completing	either	the	game-based	or	

task-based	comparison	activity,	the	number	line	estimation	task	was	administered	on	a	PC	

using	E-prime	2.0.	In	the	task	stimuli	were	rendered	in	white	and	presented	on	a	black	

background.	27	different	single-digit	irreducible	fractions	and	27	fractions	representing	

the	same	magnitudes	with	double-digit	components	were	presented	one	at	a	time,	centered	

on	the	top	of	the	screen.	Along	the	bottom	of	a	screen	a	number	line	was	presented	with	

the	values	0	and	1	labeling	each	end	of	line.	Participants	were	instructed	to	use	the	

computer	mouse	and	click	the	location	on	the	number	line	which	corresponded	to	the	

magnitude	of	the	fraction	presented	on	the	top	of	the	screen.		
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	 Performances	on	the	number	line	task	was	measured	via	a	calculation	of	percent	

absolute	error	(PAE)	Specifically,	the	absolute	magnitude	of	difference	between	the	target	

magnitude	corresponding	to	the	presented	fraction	and	the	estimated	magnitude	

corresponding	to	the	location	participant’s	response	was	divided	by	the	magnitude	of	the	

number	line’s	scale	(1).	Average	PAEsmall	and	PAElarge	was	calculated	for	each	participant	by	

averaging	the	PAE	of	all	items	within	the	single-digit	and	double-digit	fractions,	

respectively.	Smaller	PAE	values	represent	a	more	precise	estimate	of	the	fractions	true	

value	on	the	number	line.	

Fraction	Knowledge	Assessment.	Immediately	following	participants	completion	

of	the	game-based	or	task-based	comparison	activity,	participants	completed	a	paper	and	

pencil-based	fraction	knowledge	assessment	(FKA).	The	FKA	is	a	38-item	assessment	

measuring	conceptual	and	procedural	aspects	of	fractions	knowledge.	The	first	half	of	the	

assessment	measured	participants’	conceptual	knowledge	of	fractions,	operationalized	as	

accuracy	completing	multiple	choice	and	open	response	items	evaluating	abilities	to	order	

fraction	magnitudes,	solve	word	problems	with	fractions,	and	explain	their	reasoning.	The	

second	half	of	the	assessment,	measured	participants’	procedural	knowledge	of	fractions,	

operationalized	as	accuracy	solving	arithmetic	(addition,	subtraction,	multiplication	&	

division)	problems	with	fractions.	This	assessment	was	constructed	using	items	taken	from	

national	and	international	assessments	such	as	the	National	Assessment	of	Educational	

Progress	and	the	Trends	in	International	Mathematics	and	Science	study	(Carpenter,	1981;	

Hallett	et	al.,	2012).		

Self-Report	Survey.	Immediately	following	the	completion	of	the	FKA,	participants	

completed	a	self-report	survey	with	four	components.	The	first	component	of	the	survey	
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was	designed	to	measure	an	individual’s	video	game	habits.	This	included	questions	

inquiring	how	much	time	individuals	spend	playing	video	games,	what	kinds	of	games	and	

platforms	individuals	play,	and	what	reasons	people	report	for	play	video	games	or	not.	

The	second	component	of	the	survey	assessed	attitudes	towards	mathematics.	

These	attitudes	were	further	broken	down	into	separate	constructs	of	interest	in	the	topics	

of	mathematics,	interest	in	math	behaviors,	confidence	in	math,	seeing	the	utility	value	of	

math,	and	seeing	the	attainment	of	math	knowledge	as	part	of	one’s	identity.	Each	construct	

was	measured	using	7-point	Likert	items,	where	individuals	indicated	how	much	

statements	about	mathematics	were	very	true	(7)	or	not	true	at	all	(1).	All	items	in	the	

math	attitudes	measure	were	adapted	from	items	previously	developed	and	validated	to	

assess	attitudes	towards	academic	topics	(Harackiewicz	et	al.,	2016)	

The	third	component	of	the	survey	assessed	attitudes	towards	fractions	specifically.	

These	attitudes	were	further	broken	down	to	three	separate	constructs	of	interest	in	the	

topic	of	fractions,	confidence	in	fractions	and	seeing	the	utility	value	of	fractions.	Each	

construct	was	measured	using	7-point	Likert	items,	via	the	same	method	as	the	math	

general	survey.	

The	fourth	component	of	the	survey	was	a	shorted	version	of	the	revised	Math	

Anxiety	Rating	Scale	(Hopko,	2003).	Items	in	this	scale	are	designed	to	two	aspects	of	math	

anxiety:	perceived	level	of	anxiety	while	learning	mathematics	and	anxiety	when	being	

evaluated	on	math	knowledge.		

Data	preparation		

Data	preparation	steps	were	completed	to	minimize	variation	between	groups	

evaluate	the	differences	between	contexts	without.	First,	we	removed	remove	all	hands	
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(trials)	in	the	game	data	where	the	accurate	response	involved	identifying	equivalent	

fractions,	since	these	judgements	of	equivalence	were	not	present	in	the	task	group.	

Second,	in	the	game	data	we	removed	all	hands	where	the	denominator	of	the	symbolic	

fraction	was	10	since	the	value	of	denominators	in	the	comparison	task	did	not	exceed	9.	

Third,	we	removed	all	hands	in	the	game	data	where	the	value	of	either	fraction	presented	

was	equal	to	1	(e.g.	9/9),	as	all	fractions	in	the	task	group	had	magnitudes	less	than	1.	

Results	

Distance	and	format	Effects	

Response	times.	In	support	of	our	use	of	Fractions	War	as	a	research	tool	to	

measure	magnitude	processing	performance,	we	observed	the	presence	of	distance	effects	

in	gameplay	data	with	all	card	types	Figure	5.2.	Specifically,	we	evaluated	we	evaluated	the	

significance	of	these	effects	by	fitting	a	mixed	effects	linear	model	on	response	times	using	

the	format	of	the	comparison	and	the	absolute	numerical	distance	of	the	pairs	as	fixed	

effect	predictors.	We	also	accounted	for	the	within-group	structure	of	the	game	data	by	

modeling	the	random	effects	slopes	of	these	distance	effects	and	format	differences	for	

each	participant.	In	order	to	compare	the	similarity	of	format	effects	across	contexts,	we	

conducted	the	same	analysis	separately	with	the	task	data.	

Results	of	mixed	model	of	gameplay	data	confirmed	that	response	time	patterns	

showed	a	significant	negative	relationship	between	RTs	and	numeric	distances	when	

comparisons	were	made	with	traditional	playing	cards	b	=	-1319,	t(29.2)	=	-10.9,	p	<	.001,	

and	that	the	magnitude	of	this	slope	did	not	differ	from	those	observed	in	comparison	of	

symbolic	cards,	b	=	-24.8,	t(29.8)	=	-0.15,	p	=	0.988,	or	nonsymbolic	cards,	b	=	-240,	t(30.1)	

=	-1.10,	p	=	0.523.		
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Figure	5.2.	(Top)	Linear	mixed	model	estimations	show	group	mean	response	times	across	varying	
numerical	distances	and	demonstrate	the	presents	of	negative	distance	effect	slopes	in	all	format	
conditions	of	the	(a)	game	and	(d)	task	contexts.	(Bottom)	Logistic	mixed	model	estimates	show	the	
mean	probability	of	error	across	varying	distances	for	the	(c)	game	and	(d)	task	contexts.	Shaded	
regions	indicated	95%	confidence	intervals	around	the	predicted	means.	

In	our	comparison	of	format	effects	on	response	time	across	contexts,	we	observed	a	

unique	pattern	in	the	game	context	relative	to	the	comparison	made	within	the	task,	as	

seen	in	Figure	5.2.	Specifically,	across	all	comparison	distances,	accurate	comparisons	of	

nonsymbolic	cards	in	the	game	took	about	a	half	of	a	second	longer	than	symbolic	card	

comparisons,	b	=	574,	t(30.9)	=	8.39,	p	<	.001.	This	effect	is	directly	the	opposite	of	what	

was	observed	in	the	task	group,	where	the	time	to	make	accurate	comparison	of	symbolic	
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fractions	took	significantly	longer	than	the	comparison	of	nonsymbolic	line	ratios,	b	=	

404.8,	t(39)	=	10.6,	p	<	.001.,	and	circle	ratios,	b	=	328.1,	t(39)	=	8.91,	p	<	.001.	

Symbolic	Fraction	Context	Effects	on	Error	Rates	

	 Overall	mean	error	rates	in	the	game	group,	M	=	0.077	SD	=	0.057,	and	task	group,	M	

=	0.060,	SD	=	0.053,	were	low,	and	the	difference	in	ER	across	contexts	did	not	reach	

statistical	significance,	t(55.8)	=	1.87,	p	=	0.067.	Mixed	model	fits	of	FF	comparisons	in	

game	and	task	data,	shown	in	Figure	5.2	illustrate	that	the	low	incidence	of	errors	was	

more	likely	at	when	the	numerical	distance	was	very	small,	characteristic	of	distance	

effects.	Mixed	model	results2	confirmed	this	significant	distance	effect,	b	=	-12.7,	SE	=	1.48,	

p	<	.001.	These	results	show	how	distance	effects	on	error	rates	emerge	in	both	contexts	

and	we	do	not	observe	any	evidence	to	claim	that	the	game	context	influenced	magnitude	

comparison	accuracy	with	fractions.	

Magnitude	comparison	and	fractions	knowledge	

	 We	observed	no	group	differences	in	FKA	performances	between	the	game,	M	=	

32.2,	SD	=	3.98,	and	task	group,	M	=	31.9,	SD	=	4.37.	This	exploratory	analysis	did	not	reveal	

any	evidence	to	suggest	that	immediate	performance	on	the	FKA	was	in	anyway	influenced	

by	the	different	comparison	activities.		

Previous	studies	have	observed	that	individual	differences	in	magnitude	

comparison	performance	are	associated	with	broader	assessments	of	fractions	knowledge	

(Matthews	et	al.,	2016).	To	determine	if	performance	in	Fractions	War	or	our	magnitude	

	

2	The full mixed models indicated that the interaction term between distance and group effects was not significant, b = -
1.20, SE = 1.89, p = .525, therefore this term was excluded in our tests of format and distance effects.	
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comparison	tasks	also	predicts	fraction	knowledge,	we	evaluated	the	significance	of	

correlations	between	mean	error	rates	in	each	format	condition	and	overall	FKA	scores.		

	 FKA	scores	were	not	significantly	correlated	with	Mean	ERs	in	FF	comparison	made	

in	either	the	game,	r(30)	=	0.01,	p	=	.952	or	the	task,	r(38)	=	-1.22,	p	=	.230.	Similarly,	FKA	

scores	were	not	significantly	correlated	with	line	ratio,	r(38)	=	-0.032,	p	=.847	or	circle	

ratio	comparisons,	r(38)	=	0.021,	p	=	.897,	in	the	task.	There	was	a	modest	correlation	

between	FKA	and	pip	ratio	comparison	in	the	game,	r(30)	=	-0.314,	p	=	.079,	but	with	this	

sample	size	it	was	not	significant.		

Between	group	effects	of	math	and	fraction	attitudes	

	 Our	analysis	of	self-reported	attitudes	towards	math	between	groups	revealed	no	

significant	differences	in	interest,	t(56.5)	=	0.17,	p	=	0.864,	confidence,	t(59.8)	=	0.16,	p	=	

0.875,	perceived	utility	value,	t(59.0)	=	0.946,	p	=	0.348,	math	identity,	t(64.1)	=	0.867,	p	=	

0.390,	or	interested	in	doing	math	activities,	t(62.4)	=	0.11,	p	=	0.912.	

Experiment	1	Discussion	

In	this	experiment	we	explored	how	magnitude	comparison	performance	with	

symbolic	fractions	and	nonsymbolic	ratios	is	impacted	when	it	is	situated	within	an	

educational	card	game.	First,	we	confirmed	that	Fractions	War	is	a	viable	research	tool	to	

collect	response	time	and	error	rate	data	of	magnitude	comparisons.	Furthermore,	we	

observed	that	response	times	and	error	rates	in	the	game	show	significant	numerical	

distance	effects	similar	to	the	comparison	task.	These	NDEs	observed	in	gameplay	were	

present	regardless	of	whether	participants	played	with	the	symbolic,	nonsymbolic	or	

traditional	playing	cards.	Error	rates	within	the	symbolic	fraction	condition	were	also	

consistent	across	the	game	and	task	contexts,	indicating	that	the	game	context	had	no	
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observable	positive	or	negative	consequence	on	magnitude	processing	performance	with	

fractions.	

Interestingly,	we	observed	that	in	the	game	context,	participants	required	more	

processing	time	to	make	magnitude	judgments	with	the	nonsymbolic	playing	cards	than	

when	the	cards	presented	fractions	and	in	symbolic	form.	Whereas	in	the	task	group,	this	

effect	was	reversed.	Thus,	we	observed	that	the	relative	efficiency	of	nonsymbolic	

processing	observed	in	the	previous	studies	(Chapters	2	and	3),	does	not	generalize	to	the	

context	of	Fractions	War	where	nonsymbolic	ratios	are	presented	as	the	relative	magnitude	

of	two	pip	arrays.	Due	to	the	multiple	ways	in	which	these	two	contexts	differed	in	their	

use	of	nonsymbolic	visual	ratios	and	the	additional	of	gameplay	features,	it	is	unclear	what	

drove	the	differences	that	we	observed	between	groups.	One	possible	explanation	is	the	

that	pip	arrays	presented	on	the	cards	are	a	fundamentally	different	nonsymbolic	ratio	

form	than	the	continuously	defined	part-to-part	ratios	of	lines	or	circles.	The	pips	of	

playing	cards	present	ratio	components	as	discrete	quantities,	which	may	cue	participants	

to	count	the	values	on	each	card.	Thus,	it	may	be	the	form	of	discrete	nonsymbolic	arrays	

within	a	small	number	range	that	slows	nonsymbolic	ratio	processing.	Alternatively,	this	

could	be	driven	by	features	of	playing	cards	and	the	consequences	of	remove	the	symbolic	

numeral	cues	from	cards	that	people	may	come	to	rely	on.	While	traditional	cards	show	

both	the	numeral	and	the	nonsymbolic	array	of	pips,	people	may	prefer	the	symbolic	

numeral	for	quickly	identifying	the	cards	value.	By	removing	this	numeral	from	the	cards,	

we	may	have	taken	away	a	critical	feature	of	cards,	which	people	come	to	expect	and	

develop	fluency	with.	Furthermore,	differences	between	groups	may	be	explained	by	

differences	in	extraneous	load	between	contexts.	Fractions	War	has	an	artful	design	with	
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elements	of	competition	and	other	unnecessary	features	that	players	are	exposed	to	while	

interacting	with	fractions	and	ratios	in	the	game,	which	are	absent	in	the	task.	However,	

the	results	of	study	1	did	not	present	any	clear	evidence	that	these	features	had	a	negative	

effect	overall.	

As	described	in	the	methods	section	above,	a	number	of	fraction	comparisons	

present	in	the	game	needed	to	be	removed	before	a	fair	comparison	between	groups	could	

be	conducted.	While	manipulating	the	data	after	collection	allowed	us	to	compare	

performance	between	groups	according	to	similar	magnitude	comparison	trials,	this	means	

of	data	manipulation	cannot	remove	the	potential	psychological	impacts	that	some	trials	

may	have	had	on	task	performance	as	a	whole.		Therefore,	these	features	were	more	

carefully	controlled	in	Experiment	2	

Lastly,	we	did	not	observe	evidence	that	playing	Fractions	War	had	a	unique	or	

immediate	effects	conceptual	or	procedural	forms	of	fraction	knowledge	or	on	attitudes	

towards	math.	It	is	hard	to	draw	any	strong	inferences	from	regarding	why	we	observed	no	

effect	given	the	learning	activity	was	very	short	and	participants	were	adults	who	may	

have	come	into	the	study	with	established	math	knowledge	and	dispositions.	Thus,	fraction	

knowledge	and	math	attitudes	may	be	better	characterized	as	measures	of	individual	

differences	rather	than	a	direct	outcome	of	gameplay.	

Experiment	2	

Introduction	

Experiment	1	tested	questions	regarding	whether	two	different	magnitude	

comparison	activities	lead	to	measurable	differences	symbolic	fraction	and	nonsymbolic	

ratio	processing.	However,	there	were	so	many	features	of	the	game	context	which	differed	
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from	the	traditional	experimental	task,	that	it	was	difficult	to	draw	any	strong	inferences	

about	which	features	lead	to	differences	across	contexts	and	why.	By	recognizing	these	key	

limitations,	multiple	steps	were	taken	to	match	the	two	activities,	and	thus	more	directly	

examine	the	effect	of	specific	game	features.	A	summary	of	these	changes	is	presented	in	in	

Appendix	D.	

Current	study	

First,	we	aimed	to	better	understand	why	nonsymbolic	processing	with	pip	ratios	in	

the	game	was	so	much	slower	that	symbolic	fraction	processing.	As	described	above,	

varying	forms	of	nonsymbolic	ratios	across	the	game	and	task	contexts	in	Experient	1	made	

it	difficult	to	know	why	ratio	processing	with	pip	ratios	processing	was	so	much	slower.	By	

contrasting	gameplay	with	nonsymbolic	cards	to	a	well-matched	dot-ratio	comparison	task,	

we	aimed	to	rule	out	nonsymbolic	form	as	a	confounding	variable,	and	more	carefully	test	

the	effect	using	playing	cards	as	informal	representations	of	magnitudes.	If	higher	errors	

and	response	time	are	due	to	features	specific	to	the	pips	on	a	playing	card,	then	we	should	

replicate	this	finding	in	the	game	group,	but	not	the	task	group.	If,	however,	it	is	the	case	

that	nonsymbolic	ratios	with	discrete	and	countable	items	hinder	performance	in	general,	

then	we	should	see	higher	errors	and	response	time	in	both	nonsymbolic	conditions	

regardless	of	context.		

Next,	we	considered	how	playing	cards	are	physical	(and	digital)	artifacts	which	

some	people	have	extensive	experience	with,	and	others	have	little	exposure.	Given	that	the	

visual	design	of	typical	playing	cards	has	been	very	consistent	for	over	the	past	100	years	

(Hargrave,	2000),	it	is	possible	that	some	people	develop	specific	representational	

competencies	with	playing	cards	(Rau,	2017;	Gilbert	2005;	NRC,	2006),	such	as	the	ability	
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to	see	a	pattern	of	pips	and	know	the	value	it	represents	without	counting	or	additional	

effort.	This	fluency	may	allow	card	players	to	focus	less	on	deciphering	a	cards	value	and	

more	on	the	goals	and	strategies	of	a	game.	Here	we	tested	this	hypothesis,	that	if	

individuals	with	higher	levels	of	card	playing	expertise	may	exhibit	more	efficient	

magnitude	comparison	performances	in	Fractions	War,	if	their	expertise	allows	them	to	

mitigate	the	extraneous	features	of	the	game	context.	Conversely,	players	with	little	to	no	

card	playing	experiences	may	take	longer	to	make	magnitude	judgements	and	make	more	

errors,	if	their	abilities	to	see	the	value	of	the	cards	are	obscured	by	playing	cards	

nontraditional	form.	Lastly,	if	card	playing	expertise	is	specifically	beneficial	to	card	games,	

then	differences	in	expertise	should	have	no	effect	on	magnitude	comparison	performance	

outside	of	the	game.	

Next,	we	examined	whether	there	are	differences	in	how	people	judge	their	

experience	playing	a	comparison	game	relative	to	completing	a	comparison	task?	

Educational	games	are	suggested	to	be	a	context	wherein	interactions	with	content	is	

associated	with	fun,	play,	and	opportunities	for	low	stakes	failure.	Whereas	in	the	previous	

study	we	explored	the	possibilities	that	gameplay	may	lead	to	differences	in	self-reported	

attitudes	towards	math,	here	we	investigated	participants	immediate	reactions	specific	to	

the	context	of	comparison	activities.	Therefore,	we	predicted	that	participants	in	the	game	

group	would	report	higher	ratings	of	enjoyment	completing	the	comparisons	and	would	

report	a	higher	interest	in	reengaging	with	the	experiences,	than	the	task	group.			

Lastly,	we	explored	the	idea	of	engagement	in	games,	and	the	idea	that	game	

features	of	competition,	rewards,	and	aesthetically	pleasing	visuals	can	draw	the	learner’s	

attention	in	ways	that	typical	assessments	and	tasks	do	not.	Specifically,	after	participants	
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rated	their	experiences	with	the	game	and	the	task,	they	completed	a	symbolic	fraction	

magnitude	comparison	task	on	the	computer,	with	a	mixture	of	novel	fraction	pairs	and	

pairs	participants	saw	during	the	comparison	activity.	If	the	experiences	of	comparing	

fractions	in	a	game	context,	encourage	more	attention	to	the	content	or	makes	errors	in	the	

game	more	salient	than	the	task,	this	may	lead	to	better	performances	on	the	follow-up	

task.		

Methods	

Participants	

Game	Group.	45	undergraduates3	completed	the	study	in	the	game	group.	Two	

participants	were	excluded	because	they	did	not	complete	the	game	play	portions	of	the	

study	in	full.	After	applying	the	inclusion	criterion	that	accuracy	in	all	game	conditions	

must	be	greater	than	60%,	data	from	four	participants	were	excluded	from	our	analyses.	As	

a	result,	data	from	39	undergraduate	students	(33	females)	were	included	in	our	analyses.	

Task	Group.	51	undergraduates	completed	the	study	in	the	task	group.	After	

applying	the	inclusion	criterion	that	accuracy	in	all	game	conditions	must	be	greater	than	

60%,	data	from	three	participants	were	excluded	from	our	analyses.	As	a	result,	data	from	

48	undergraduate	students	(38	females)	were	included	in	our	analyses.	

Procedure	

	 Prior	to	arrival,	participants	were	assigned	to	either	the	game	or	the	task	group.	All	

participants	first	completed	two	tasks	to	assess	their	expertise	and	fluency	with	playing	

	

3	Need	to	access	paper	documents	on	campus	to	obtain	age	related	data.	
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cards.	Next,	all	participants	completed	a	self-report	questionnaire,	very	similar	to	the	one	

used	in	Experiment	1.	Then,	all	participants	completed	the	Fraction	Knowledge	

Assessment.	Participants	then	completed	either	three	comparison	tasks	on	the	computer	or	

three	Fractions	War	games	on	an	iPad	depending	on	their	group	assignment.	Immediately	

following	the	comparison	activities	all	participants	completed	an	activity	rating	to	express	

their	experience	completing	the	games	or	the	tasks.	Next,	participants	completed	a	

symbolic	fraction	comparison	task	containing	trials	that	participants	had	completed	in	the	

comparison	games	and	tasks,	and	novel	comparison	pairs.	Lastly,	participants	completed	a	

demographic	survey	and	received	partial	course	credit	for	completing	the	study.	

Between-Group	Magnitude	Comparison	Activities	

Magnitude	comparison	game.	Consistent	with	Experiment	1,	participants	in	the	

game	group	played	three	games	of	Fractions	War,	using	the	three	different	cards	types:	

traditional	cards	with	numerals	and	pips,	nonsymbolic	cards	with	only	pips,	and	symbolic	

cards	with	large	numerals.	]	For	this	experiment,	we	picked	80	fractions	culled	from	all	

fraction	pairs	randomly	presented	to	the	game	group	in	Experiment	1,	with	a	mixture	of	

component	congruencies.	We	then	imported	our	custom	decks	into	Fractions	War,	so	that	

the	game	would	present	these	fraction	pairs	in	the	same	order	for	all	participants.	We	

randomly	rearranged	the	order	to	create	the	lists	for	each	of	the	three	conditions		

Magnitude	Comparison	task.	We	developed	a	new	magnitude	comparison	task	to	

complement	the	experience	of	playing	Fractions	Far,	without	game-base	features.	We	

evaluated	how	the	game	and	task	in	Experiment	1,	differed	in	unnecessary	or	confounding	

ways,	and	built	features	into	the	tasks	to	address	these	gaps.	this	task	to	address	those	

differences.	Frist,	this	included	matching	the	conditions	of	the	magnitude	comparisons	in	
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the	game,	with	a	symbolic	dot	ratio	comparison,	a	symbolic	comparison,	and	an	integrated	

comparison	form	where	dot	arrays	and	the	corresponding	numeral	were	presented	

together.			

Card	Playing	Expertise		

Sorting	Task.	The	sorting	task	was	created	to	evaluate	participants’	expertise	with	

the	visual	form	of	playing	cards.	Participants	were	presented	with	a	list	of	ten	playing	

cards.	Five	of	the	10	cards	were	presented	with	the	traditional	arrangement	of	pips	(e.g.	

diamonds),	and	the	other	five	were	presented	with	pip	arrangements	that	had	been	

modified	to	nontraditional	arrangements.	Cards	were	presented	on	a	computer	screen	via	

an	online	program,	Qualtrics.	Participants	were	instructed	to	sort	the	10	cards	with	a	drag	

and	drop	function	to	either	the	traditional	or	nontraditional	category.		Participants	could	

get	a	total	of	10	points	in	the	sorting	task	for	correctly	soring	all	cards	into	the	proper	

category.	

Matching	Task.	The	matching	task	was	created	to	measure	participant’s	fluency	

with	recognizing	the	value	of	playing	cards.	In	the	task	two	numbers	were	presented	on	the	

screen	side	by	side.	On	the	left	side	of	the	screen,	participants	saw	1-10	diamonds	

presented	on	playing	card.	On	the	right	they	saw	an	Arabic	numeral,	1-10.		In	half	of	the	

trials,	the	number	of	diamonds	on	the	card	matched	the	numeral,	and	in	the	other	half	the	

two	values	did	not	match.	Participants	were	told	to	indicate	if	the	values	matched	as	

quickly	and	as	accurately	as	possible	Card	fluency	scores	were	calculated	by	taking	the	

average	response	time	to	trials	where	the	magnitude	of	the	match	was	greater	than	3.	
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Self-Report	Survey.	We	used	same	self-report	survey	as	Experiment	1,	except	for	

one	section	of	the	video	game	habit	section,	in	which	we	added	items	specifically	asking	

about	prior	experience	with	playing	cards.	

	 Fraction	Knowledge	Assessment.	We	used	the	same	FKA	as	experiment	1,	with	no	

changes	to	its	form	or	administration.			

Activity	Rating.	A	brief	rating	survey	was	created	to	capture	participants	

immediate	reactions	to	the	magnitude	comparison	activities.	Using	Likert-scale	items,	

participants	indicated	how	much	they	enjoyed	the	comparison	activity,	how	challenging	

they	found	it	to	be	and	how	confident	they	were	in	their	performance.	In	reflecting	on	all	

three	conditions,	participants	were	asked	to	rate	their	overall	enjoyment	and	their	desire	

to	complete	the	task	again.	

Results	

Distance	and	format	effects	

	 Response	time.	We	fit	linear	mixed	models	predicting	response	times	across	

varying	numeric	distances	and	across	formats	(with	the	same	specifications	as	Experiment	

1).	The	mixed	model	of	gameplay	data	confirmed	that	response	time	patterns	showed	a	

significant	negative	relationship	between	RTs	and	numeric	distances	when	comparisons	

were	made	with	traditional	playing	cards	b	=	-1027,	t(37.9)	=	-11.4,	p	<	.001,	and	that	the	

magnitude	of	this	slope	did	not	differ	from	those	observed	in	comparison	of	symbolic	cards,	

b	=	-135.2,	t(61.2)	=	-0.96,	p	=	0.338,	or	nonsymbolic	cards,	b	=	-255,	t(61.3)	=	-1.76,	p	=	

0.083.	

Results	of	this	analysis	replicated	the	finding	Experiment	1	findings	of	game	data	

showing	that	participants	took	longer	to	make	nonsymbolic	magnitude	judgements	
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between	pip	ratios	in	the	game	than	judgements	between	two	symbolic	fractions	b	=	317,	

t(38)	=	2.46,	p	=	.047.	The	difference	between	nonsymbolic	and	symbolic	comparisons	in	

the	in	the	task	group	did	not	reach	statistical	significance	but	trended	in	the	same	direction	

as	the	game	group	b	=	125,	t(47)	=	2.23,	p	=	.077,	dr	=	0.215.	The	significant	difference	

observed	between	formats	in	the	game	group	and	not	in	the	task	group	may	indicate	that	

these	nonsymbolic	representations	in	the	game	were	less	efficient,	however	it	is	hard	to	

draw	strong	inferences	from	these	modest	effects	in	both	groups.	Key	comparison	of	

nonsymbolic	performance	across	task	will	be	assessed	in	error	rates	below.		

Error	Rates.	We	fit	logistic	mixed	models	on	error	rates	across	numerical	distances	

and	formats	using	the	same	specifications	as	the	models	used	in	Experiment	1.	Our	initial	

model	revealed	a	peculiar	fit	of	error	rates	to	the	nonsymbolic	comparisons	in	both	

conditions,	where	estimates	of	error	exceeded	beyond	a	chance	performance	(probability	>	

0.5).	Follow-up	analyses	of	group	error	rates	for	each	nonsymbolic	comparison	pair	

revealed	8	pairs	from	the	game	and	9	pairs	from	the	task	(5	pairs	in	common)	with	group	

mean	error	rates	above	.5,	meaning	that	participants	at	the	group	level	were	more	likely	to	

decide	the	fraction	with	the	smaller	magnitude	is	actually	the	larger.	Examining	these	up	

these	high	error	trials,	revealed	that	they	were	all	comparisons	of	small	numerical	

distances	(range	=	0.014-0.194),	and	composed	of	ratio	pairs	where	either	the	smaller	pair	

was	composed	of	less	total	dots	(e.g.	2/7–1/3,	3/4–5/9)	or	the	larger	pair	had	larger	gap	

distances	(e.g.	2/9-1/5).	These	problematic	trials	were	specific	to	the	nonsymbolic	

condition.		
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Figure	5.3.	Linear	mixed	model	estimates	of	response	time	in	Fractions	War	gameplay	(a)	and	in	the	
comparison	task	(b)	Logistic	mixed	model	estimates	of	error	rate	probability	in	the	Fractions	War	
gameplay	(c/e)	and	in	the	comparison	task.	(d/f).	Shared	regions	indicated	95%	confidence	
intervals	around	the	predicted	means.	
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After	fitting	the	models	again	with	these	problematic	trials	removed	from	all	

conditions,	we	still	observed	significant	format	effects	in	both	the	game	and	task	groups.	

Specifically,	error	rates	in	the	game	group	were	higher	during	nonsymbolic	pip	ratio	

comparisons	than	symbolic	fraction,	b	=	0.603,	SE	=	0.09,	p	<	.001,	OR	=	1.83,	and	integrated	

comparisons,	b	=	0.586,	SE	=	0.10,	p	<	.001,	OR	=	1.80.	Likewise,	error	rates	in	the	task	

group	were	higher	during	nonsymbolic	dot	ratio	comparisons	than	symbolic	fraction,	b	=	

0.950,	SE	=	0.09,	p	<	.001,	OR	=	2.59,	and	integrated	comparisons,	b	=	0.991,	SE	=	0.09,	p	<	

.001,	OR	=	2.70.	These	results	show	how	magnitude	processing	with	nonsymbolic	ratios	

that	use	only	a	small	number	of	dots	(1-10)	to	represent	their	component	magnitudes	is	

less	efficient	that	symbolic	fraction	processing	regardless	of	the	specific	context	or	form.	

Between	group	comparisons	of	error	rates.		

Across	groups	we	compared	the	mean	error	rates	predicted	by	these	models	at	near	

distances	(distance	=	0.2)	for	each	format.		These	comparisons	revealed	that	there	was	no	

difference	error	rates	during	symbolic	fraction	comparison	between	the	game,	M	=	0.18,	SE	

=	0.01,	and	task,	M	=	0.17,	SE	=	0.02	groups,	p	=	0.582,	OR	=	1.07.		Likewise,	we	observed	no	

difference	in	error	rates	with	traditional	cards	in	the	game,	M	=	0.05,	SE	=	0.01,	and	

integrated	forms	of	the	task,	M	=	0.05,	SE	=	0.01	groups,	p	=	0.274,	OR	=	1.16.		However,	we	

did	observe	that	in	mean	error	rates	during	nonsymbolic	fraction	comparison	in	the	game,	

M	=	0.08,	SE	=	0.01,	were	significantly	lower	than	in	the	task,	M	=	0.11,	SE	=	0.01	group,	p	=	

0.004,	OR	=	0.78.		Therefore,	despite	the	additional	complexity	of	the	game	context	and	the	

playing	cards	relative	to	the	dot	ratio	stimuli,	(variable	suits	of	red	and	black	vs	black	dots),	

participants	were	able	to	make	more	accurate	judgments	in	the	game	among	these	more	

difficult	near	comparisons.		
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Effect	of	Card	Playing	Expertise	

	 Performance	in	the	playing	card	sorting	task	provides	insights	into	how	well	

individuals	can	recognize	the	traditional	arrangement	of	pips	representing	cards	values	on	

a	playing	card	and	when	these	arrangements	are	altered.	On	average	participants	in	the	

game	group,	M	=	-0.80,	SD	=	0.12,	and	the	task	group,	M	=	0.78,	SD	=	0.17,	sorted	a	high	

proportion	of	the	cards	into	the	proper	categories.	We	identified	seven	game	group	

participants	and	eight	task	group	participants	who	sorted	all	cards	perfectly,	but	to	make	

comparisons	of	high	expertise	and	nonexperts	with	similar	numbers	between	these	

subgroups,	we	defined	high	expertise	as	having	a	one	or	fewer	errors	on	the	sorting	task	

(ngame	=	13,	ntask	=	18)	and	nonexperts	as	having	two	or	more	error	on	the	sorting	task,	

(ngame	=	24,	ntask	=	30).		

	 First,	we	examined	if	there	were	differences	in	fraction	knowledge	(FKA	score)	

across	groups	to	confirm	that	differences	in	card	expertise	were	not	confounded	by	

differences	in	math	abilities.	Indeed,	we	found	no	mean	differences	in	FKA	performances	

across	groups,	F(1,81)	=	0.316,	p	=	.576,	expertise,	F(1,81)	=	0.053,	p	=	.818,	or	the	group	X	

expertise	interaction,	F(1,81)	=	0.108,	p	=	.744.		

	 Next,	we	tested	whether	differences	in	card	playing	expertise	were	associated	with	

performance	in	the	varying	formats	of	the	magnitude	comparison	activity.	Specifically,	we	

focused	on	effects	of	error	rate	given	the	differences	in	the	RT	scale	between	touch	screen	

responses	in	the	game	and	keyboard	responses	in	the	task.	Consistent	with	our	predictions,	

participants	with	playing	card	expertise	had	a	specific	advantage	when	making	

nonsymbolic	judgements	in	the	game,	but	not	in	the	task.	Specifically,	we	observed	a	that	

significant	group	×	expertise	interaction,	F(1,81)	=	7.37,	p	=	.008,	and	significant	different	
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between	groups,	F(1,81)	=	13.9,	p	<	.001,	but	the	main	effect	of	expertise	was	not	

significant,	F(1,81)	=	1.80,	p	=	0.184.		Overall	participants	completing	the	comparison	task	

made	more	errors	with	dot	ratio	comparisons	than	participants	comparing	pip	ratios	in	the	

game,	t(74.6)	=	3.54,	p	<	.001.	In	the	comparison	task,	playing	card	expertise	had	no	

advantage	for	nonsymbolic	dot	ratio	comparison,	t(26.4)	=	0.68,	p	=	0.500.	but	within	the	

game	participants	with	playing	card	expertise	significantly	outperformed	their	nonexpert	

peers,	t(23.7)	=	-2.94,	p	=	0.001.		Interestingly,	we	did	not	observe	any	main	effects	of	

expertise	when	comparisons	were	made	with	symbolic	fractions,	F(1,81)	=	0.062,	p	=	.805,	

or	intermixed	representations,	F(1,81)	=	0.074,	p	=	.785.	

	 	

	

Figure	5.4.	Mean	error	rates	for	participants	with	high	levels	of	playing	card	expertise	relative	to	
nonexperts	during	comparisons	of	nonsymbolic	(red),	integrated	(purple)	and	symbolic	(blue)	
representations	of	fractions	and	ratios	in	the	game	and	in	the	task.	Error	bars	show	95%	confidence	
intervals,	therefore	significant	differences	can	be	seen	with	error	bars	do	not	include	the	mean	of	
another	condition.	 	

Discussion	

In	these	experiments,	we	demonstrated	ways	that	an	educational	math	game,	
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with	fractions	and	ratios.	First,	the	game	provided	an	engaging	interface	where	participants	

could	play	the	game	without	data	collection	intruding	their	gameplay	experiences.	Second,	

we	observed	that	gameplay	responses	followed	traditional	numerical	distance	effect	

patters	seen	also	in	the	task	group	data.		Third,	we	were	able	to	examine	magnitude	

comparison	performances	across	three	different	card	types	and	reveal	different	aspects	of	

symbolic	and	nonsymbolic	magnitude	processing.	Though	our	comparisons	of	magnitude	

processing	data	across	groups	we	observed	that	using	playing	cards	in	games	to	represent	

these	magnitudes	does	not	lead	to	worse	performances.	Furthermore,	by	comparing	the	

performances	of	playing	cards	experts	to	nonexpert	peers	we	observed	that	prior	

knowledge	with	informal	play-based	representations	of	numbers,	playing	cards,	can	

actually	drive	significantly	more	accurate	magnitude	processing	of	nonsymbolic	ratio	

arrays.	

On	primary	question	of	Study	2,	was	whether	inefficient	magnitude	processing	with	

pip-only	playing	cards	was	due	to	features	of	playing	cards	specifically	or	due	to	the	

processing	their	nonsymbolic	form.	Specifically,	nonsymbolic	ratios	made	with	two	playing	

cards	contain	two	juxtaposed	pips	patterns	(or	arrays),	and	these	arrays	are	presented	as	

countable	(1-10)	and	discrete	quantities.	By	evaluating	the	performance	of	magnitude	

comparison	with	these	pip	arrays	to	analogous	forms	dot	ratio	comparison,	we	did	not	

observe	evidence	that	playing	cards	specifically	made	magnitude	processing	any	harder.	

On	the	contrary,	participants	in	the	game	condition	were	more	accurate	when	making	

these	ratio	comparisons	than	participants	reasoning	with	the	controlled	stimuli.		Therefore,	

it	appears	that	inefficient	processing	with	discrete	arrays	of	small	quantities	is	not	specific	

to	playing	cards	but	may	be	due	to	the	ways	these	nonsymbolic	forms	invite	inefficient	
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strategies	to	enumerate	these	nonsymbolic	quantities.	This	finding	is	consistent	with	

previous	studies	showing	that	children	have	more	difficulties	discerning	the	magnitudes	of	

nonsymbolic	ratios	when	presented	in	discretized	forms	than	with	continuous	forms	

(Abreu-Mendoza	et	al.,	2020;	Boyer	&	Levine,	2015).			

The	results	of	these	studies	lead	to	the	conclusion	that	representing	rational	

number	magnitudes	as	the	relationship	between	the	pips	of	two	cards	is	neither	intuitive	

nor	efficient,	but	it	is	a	representation	that	people	can	become	fluent	with.	Indeed,	we	

observed	that	participants	took	the	longest	time	to	judge	these	ratios	and	still	made	the	

most	errors.	Specifically,	item	analyses	in	Study	2	identified	instances	where	adults	may	

have	conflated	the	total	number	of	dots	in	a	ratio	with	its	holistic	magnitude	and	as	a	group	

made	errors	more	than	half	of	the	time.	However,	this	does	not	rule	out	the	potential	for	

these	representations	to	be	effective	learning	tools	in	Fractions	War.		Knowledge	included	

in	the	learning	goals	of	educational	games	are	often	the	means	by	which	players	are	able	

win	the	game,	and	failure	states	are	designed	into	the	gameplay	experience	in	order	to	

highlight	misconceptions	the	player	needs	to	realize.	The	single	study	design	of	these	

experiments	allowed	us	to	explore	how	adults	reason	with	these	game-based	

representations	of	magnitude.	However,	future	research	observing	performance	across	

multiple	games	is	necessary	to	observe	whether	performance	in	these	difficult	

nonsymbolic	trials	improve,	and	if	improvements	coincide	with	insights	into	why	their	

initial	biases	where	incorrect.			

Critically,	not	all	participants	in	our	study	had	specific	difficulties	with	these	

nonsymbolic	ratios	in	playing	cards.	Participants	with	visual	expertise	in	the	pip	patterns	

that	represent	the	cards	numeric	values	appeared	to	be	better	at	nonsymbolic	magnitude	
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comparisons	than	their	nonexpert	peers.	It	is	interesting	to	consider	the	multiple	

mechanisms	which	may	have	driven	this	effect.	Base	on	previous	research	on	the	use	of	

symbolic,	iconic,	and	naturalistic	visual	representations	some	digital	design	researchers	

explain	that	the	cognitive	load	of	iconic	representations	is	largely	affected	by	prior	

knowledge	of	the	learner	(Lee	et	al,	2006;	Plass	et	al.,	2009).	These	improvements	may	

come	from	developing	“top-down”	conscious	methods	to	suppress	extraneous	details	a	

selectively	focus	on	key	features	(Desimone	&	Duncan,	1995).	Alternatively,	this	may	come	

from	repeated	experience	with	these	representations	that	reasoning	with	them	becomes	

automatic	or	in	ways	unconscious.	And	additional	feature	of	playing	cards	relevant	to	the	

characterization	of	their	pip	patterns	as	nonsymbolic	representations,	is	the	fact	that	

traditional	playing	card	patterns	have	remained	constant	for	hundreds	of	years	(Hargrave,	

2000).	Playing	cards	are	artifacts	of	culture,	and	individual	who	play	games	with	cards	may	

even	generate	preferences	for	particular	card	values	or	suites	(Olson	et	al.,	2012).	The	

patterns	of	card’s	pips	may	for	some	become	so	familiar	that	they	perceive	these	arrays	as	

more	of	a	symbolic	representation	that	directly	cues	the	number	it	refers	to	rather	than	a	

collection	of	entities	which	add	up	to	that	magnitude.	Support	for	this	notion	may	be	seen	

in	the	results	of	Study	2,	which	showed	that	the	inclusion	of	symbolic	numerals	on	cards	

lead	to	faster	and	more	accurate	magnitude	comparison	performance,	any	of	the	purely	

nonsymbolic	conditions.	Thus,	if	experts	can	parse	the	patterns	of	pips	on	a	cards	as	in	

ways	similar	to	symbolic	mappings	between	whole	numbers	and	their	value,	then	this	may	

explain	why	they	exhibited	these	specific	advantages	in	the	game	when	others	specifically	

struggled.	
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	In	this	study	we	did	not	observe	the	predicted	increases	in	enjoyment	with	the	

game	relative	to	task	condition.	To	understand	why	this	game	did	not	elicit	a	stronger	or	

more	positive	response	in	this	population,	it	may	be	important	to	consider	the	age	of	the	

participants	and	aspects	of	the	experimental	environment.	The	participants	in	these	

experiments	were	college	aged	students,	and	the	target	age	range	for	this	game	is	children	

in	elementary	and	middle	school.		Furthermore,	aspects	of	the	experimental	conditions	

may	not	be	optimal	for	supporting	a	true	gameplay	experience.	In	attempting	to	define	

what	games	are,	scholars	have	emphasized	that	these	experiences	are	to	be	contexts	

separate	from	the	real	world	(Garris,	Ahlers,	&	Driskell,	2002),	that	they	are	fundamentally	

voluntary	in	nature	(Granic	et	al.,	2014).	The	context	of	playing	a	game	in	a	research	study,	

although	significantly	different	from	traditional	lab	tasks,	requires	a	strict	administration	

of	gameplay	to	ensure	the	data	reflects	a	specific	research	design.	Thus,	playing	games	in	

these	contexts	may	break	a	fundamental	feature	of	fun	games,	which	is	the	freedom	to	

choose	to	play	and	explore	the	possibilities	of	the	experiences	through	play.	Future,	studies	

with	Fractions	War	and	other	educational	math	games	hold	the	potential	to	further	

elucidate	the	relationship	between	affect	and	cognition	in	math	education,	especially	in	

studying	the	effects	of	fostering	positive	associations.	These	investigations	stand	to	

broaden	our	understanding	of	mathematical	cognition	theories,	while	also	developing	

applied	knowledge	about	how	to	leverage	intuitive	and	peculiar	representations	of	learning	

in	digital	learning	environments.	
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Chapter	6 –	Conclusion	

	

Summary	of	Findings	

	 The	work	in	this	dissertation	applies	an	educational	neuroscience	approach	to	the	

question	of	how	people	access	the	meaning	of	symbolic	fractions	and	nonsymbolic	ratios.	

Ratio	Processing	System	(RPS)	theory	proposes	that	knowledge	of	rational	number	

concepts,	which	are	typically	associated	with	formal	math	education,	actually	have	

fundamental	roots	in	our	perception	of	proportions	and	ratios	in	the	world	(Jacob	et	al.,	

2012;	Lewis	et	al.,	2015).	Indeed	research	with	young	children	indicates	that	the	ability	to	

discriminate	visual	ratios	appears	to	emerge	prior	to	any	formal	schooling	(Duffy	et	al.,	

2005;	Jeong	et	al.,	2007;	Newcombe	et	al.,	2015).	These	findings	indicate	how	systems	in	

the	brain	may	develop	to	support	a	sense	of	ratios	that	underlies	spatial	and	numerical	

decision	making	in	implicit	ways.	It	has	been	proposed	that	these	very	systems	may	

provide	a	foundation	upon	which	fraction	knowledge	can	be	built	(Jacob	et	al.,	2012;	Lewis	

et	al.,	2015),	yet	there	is	much	to	learn	about	nature	of	this	theorized	relationship	between	

symbolic	and	nonsymbolic	ratio	processing.	Using	three	separate	empirical	approaches,	the	

studies	presented	in	this	dissertation	addressed	unique	facets	of	symbolic	and	nonsymbolic	

magnitude	processing	and	revealed	three	complementary	forms	of	evidence	that	could	not	

be	revealed	through	any	one	approach.	

	 One	outstanding	question	about	the	relationship	between	symbolic	fraction	and	

nonsymbolic	ratio	processing	is	whether	an	internal	representation	of	rational	number	

magnitudes	can	be	described	as	abstract.	Just	as	a	fractions	can	represent	multiple	forms	of	

meaning	(Behr	et	al.,	1983;	Kieren,	1979),	our	semantic	representation	of	rational	number	
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magnitudes	may	be	similarly	independent	to	the	modality	and	representational	form	with	

which	that	meaning	is	conveyed	(Dehaene	et	al.,	1998).	In	line	with	this	theory,	Bonn	and	

Cantlon	(	2017)	proposed	that	ratios	are	a	ubiquitous	and	naturally	dimensionless	

phenomena	that	can	be	seen	across	modalities	and	forms,	and	our	abilities	to	represent	

these	relationships	fluidly	may	constitute	a	generalized	magnitude	system	in	the	mind.	A	

similar	perspective	on	the	connection	between	abstract	symbol	knowledge	and	perceptual	

experiences	comes	from	proponents	of	grounded	and	embodied	cognition	theory	

(Barsalou,	2008;	Goldstone	&	Barsalou,	1998).	Such	theories	argue	that	understanding	the	

meaning	of	abstract	concepts,	such	as	numbers	and	fractions,	is	reliant	on	perceptual	and	

motor	systems	to	ground	their	meaning,	and	it	is	through	that	simulation	and	activation	of	

these	systems	that	we	represent	the	meaning	of	these	concepts	(Barsalou,	2008).	In	the	

first	two	studies	of	this	dissertation,	we	examined	the	nature	of	understanding	magnitudes	

with	symbolic	fractions	and	nonsymbolic	ratios	through	these	perspectives.	

	 One	criterion	for	identifying	abstract	representations	of	number	proposed	by	

Dehaene	and	colleagues	(1998),	states	that	behaviors	and	neural	activity	should	be	

modulated	by	the	magnitudes	of	these	numbers	independent	of	the	format	with	which	

numbers	are	depicted.	In	the	three	studies	of	this	dissertation	we	tested	for	evidence	that	

meets	these	criteria.	Study	1	tested	for	the	presence	of	similar	numerical	distance	effects	in	

response	times	and	error	rates	during	rational	number	comparison	with	symbolic	fractions	

and	nonsymbolic	ratios.	Results	of	this	study	indicated	that	behavior	in	these	cases	was	

indeed	significantly	modulated	by	the	relative	magnitudes	of	the	stimuli	regardless	of	the	

presented	format.	Study	2	introduced	a	neuroscience	approach	to	test	for	the	presence	of	

analogous	modulation	of	neural	activity	based	on	changes	in	the	magnitudes	of	symbolic	
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fractions	and	nonsymbolic	ratios.	Results	of	whole-brain	and	region	of	interest	analyses	

revealed	regions	of	the	brain	that	showed	specific	responses	to	relative	magnitude	

differences	for	both	symbolic	and	nonsymbolic	processing.	The	results	of	both	studies	

support	the	RPS	view	that	the	meaning	of	rational	number	magnitudes	can	be	represented	

in	abstract	ways	which	generalize	across	formats.	Nevertheless,	nuances	in	the	shape	of	

these	effects	persist	across	formats,	which	may	reflect	how	the	external	features	of	these	

two	formats	cue	other	strategies	and	biases	during	holistic	magnitude	processing		

	 In	Study	3,	we	continued	to	test	for	shared	representations	across	formats.	

Furthermore,	we	explored	how	features	of	fractions’	and	ratios’	visual	form	influenced	

magnitude	processing.	We	used	three	different	playing	card	formats	in	the	game	to	present	

learners	with	symbolic,	nonsymbolic,	and	intermixed	representations	of	fractions	and	

ratios.	Gameplay	data	from	these	decisions	provided	further	evidence	that	numerical	

distance	effects	emerge	in	performance	similarly	regardless	of	the	cards’	format.	

Interestingly,	we	observed	the	slowest	performance	with	the	most	errors	in	games	with	the	

nonsymbolic	pip-only	cards.	In	Studies	1	and	2,	efficient	nonsymbolic	ratio	processing	with	

continuously	defined	line	ratios	and	circle	ratios	was	taken	as	evidence	that	magnitude	

processing	of	visual	ratios	is	an	efficient	perceptual	process	that	can	occur	without	

enumeration	or	complex	strategies.	However,	explaining	the	inefficient	nonsymbolic	

processing	of	pip	ratios	(e.g.	5	diamonds	over	6	clubs),	required	additional	theoretical	

perspectives	beyond	Ratio	Processing	Theory	and	theories	of	grounded	cognition.			

Here	perceptual	learning	theories	(Kellman	et	al.,	2008;	Rau	et	al.,	2017)	and	

cognitive	load	theory	(Mayer,	2002;	Moreno	&	Mayer,	2009)	provided	perspectives	to	test	

why	participants	were	not	able	to	fluently	connect	visual	representations	of	pip	ratios	in	
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the	game	to	rational	number	meaning.		We	observed	that	it	was	not	the	specific	nature	of	

playing	cards	or	their	use	in	a	gameplay	context	that	made	the	discrimination	of	pip	arrays	

less	efficient.	Analogous	and	simplified	dot	ratios	presented	outside	of	the	game	context	

were	just	as	slow	and	error	prone.	Thus,	these	results	are	consistent	with	arguments	that	

visual	ratios	with	discretized	parts,	are	less	efficient	than	ratios	with	continuous	parts,	

because	they	cue	participants	to	fixate	on	the	discrete	countable	parts	rather	than	the	

overall	proportional	relationships	(Jeong	et	al.,	2007).	Study	3,	therefore,	provided	further	

evidence	that	response	times	and	errors	were	modulated	by	the	magnitudes	of	these	

stimuli	regardless	of	format,	but	a	visual	features	specific	to	these	formats	may	compete	for	

cognitive	resources	during	magnitude	processing	(Desimone	&	Duncan,	1995).	

Visual	Complexity	and	Magnitude	Processing.	

One	common	finding	that	emerged	across	the	controlled	experimental	studies	

(Study	1	and	2)	and	game-based	studies	(Study	3)	of	this	dissertation	is	that	as	the	

complexity	of	external	representations	made	it	harder	for	adults	to	attend	solely	to	the	

holistic	magnitude	of	fractions	and	ratios.	In	Study	1,	we	observed	that	adults	can	process	

two	continuously	defined	nonsymbolic	ratios—line	ratios	and	circle	ratios—faster	than	

symbolic	fractions.	Furthermore,	between	these	two	continuously	defined	nonsymbolic	

ratio	forms,	circle	ratios	took	significantly	longer	to	discriminate.	Multiple	features	of	

circles,	such	as	their	circumference	and	diameter	may	compete	for	perceptual	and	

attentional	resources	even	when	participants	are	instructed	to	attend	to	the	circle’s	area.	

On	the	other	hand,	these	additional	dimensions	may	not	enter	the	minds	of	people	

observing	the	simple	lengths	of	a	line	ratio.	Likewise,	we	observed	that	among	symbolic	

fractions,	increasing	the	values	of	the	components	lead	not	only	to	slower	responses,	but	
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also	stronger	effects	of	component	congruity	and	gap	distances.		Thus,	the	complexity	of	

symbolic	fraction’s	orthographic	form	may	also	distract	adults	from	focusing	on	the	

fractions’	holistic	magnitude.	In	the	first	experiment	of	Study	3,	comparisons	between	

nonsymbolic	processing	of	pip	ratios	in	Fractions	War	and	processing	of	continuously	

defined	line	and	circle	ratios	indicated	that	fluency	with	pip	ratios	from	informal	playing	

card	representations	was	hindered	by	extraneous	features	of	their	complex	visual	forms.	

Results	of	the	second	experiment	of	Study	3	indicated	that	representations	of	ratios	with	

discretized	parts,	especially	with	nearly	countable	quantities,	may	not	facilitate	an	efficient	

perceptually	based	discrimination	of	magnitudes.	Therefore,	across	these	three	studies,	we	

observed	that	holistic	magnitude	processing	can	occur	for	line	ratios,	circle	ratios,	dot	

ratios,	pip	ratios	and	symbolic	fractions,	but	also	that	increasing	visual	complexity	of	these	

external	representations	may	obscure	an	efficient	and	more	purely	perceptual	form	of	

relational	reasoning	that	was	observed	with	simple	line	ratios.	Further	research	aimed	at	

identifying	how	visual	features	of	ratios	and	fractions	can	support	or	distract	from	learning	

is	necessary	to	further	understand	these	affects	and	their	implications	for	instruction.		

Learning	about	fractions	and	ratios	from	creative	visual	representations	is	part	of	our	

current	math	education	system	and	understanding	the	ways	that	students	misinterpret	

these	external	representations	may	be	important	for	supporting	the	learning	goals	of	

educators	and	instructional	designers.		

	 Comparisons	of	magnitude	processing	with	fractions	and	ratios	between	an	

educational	game	and	a	traditional	lab	task	revealed	ways	that	prior	knowledge	can	

influence	magnitude	processing	with	symbolic	fractions	and	nonsymbolic	ratios.	

Specifically,	analyses	of	playing	card	expertise	and	the	representational	fluency	which	
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comes	from	this	this	expertise	(Kellman	et	al.,	2010),	revealed	how	influential	background	

experiences	can	be	in	the	digital	learning	environment.	Beyond	Fractions	War	these	results	

highlight	how	the	choice	of	novel	representations	used	to	convey	educational	material	in	

the	games	may	be	more	or	less	successful	across	individuals	depending	on	their	prior	

content	knowledge	and	fluency	with	those	visual	forms.	The	potential	for	players’	

gameplay	experiences	to	vary	with	background	knowledge	is	an	important	consideration	

both	for	the	design	of	new	educational	games	and	in	applications	stealth	assessment.	From	

a	design	perspective,	efficient	understanding	of	educational	content	in	video	games	will	

require	the	formation	new	representational	fluencies	with	novel	and	complex	visual	

representations	(Rau	&	Matthews,	2017),	and	it	is	the	job	of	instructional	designers	to	

guide	learners	to	develop	these	fluencies.	Furthermore,	if	knowledge	is	being	assessed	

through	gameplay,	it	becomes	important	to	consider	whether	improved	performance	

reflects	true	mastery	of	content	knowledge	or	specific	expertise	in	the	representations	

used	in	the	game	to	convey	the	content.	Attempting	to	dissociate	mastery	of	content	

knowledge	from	in	gameplay	from	expertise	specific	to	game	design	is	tricky	but	may	be	

addressed	in	multiple	ways.	For	instance,	identifying	expertise	with	specific	gameplay	

representations	via	external	measurement	is	an	initial	step	that	may	explain	significant	

variance	in	gameplay	performance	(consistent	with	the	approach	applied	in	Study	3).		

Furthermore,	games	for	stealth	assessment	may	be	designed	to	integrate	multiple	

gameplay	scenarios	aimed	to	assess	different	facets	of	content	knowledge	in	unique	ways	

that	are	not	reliant	any	one	representation	of	educational	content.		
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Training	the	Ratio	Processing	System	

	 A	key	argument	of	RPS	theory	is	that	nonsymbolic	ratio	processing	abilities	can	

provide	a	grounding	for	the	development	of	richer	symbolic	fraction	knowledge	(Lewis	et	

al.,	2015).	This	argument	should	be	tested	with	learning	interventions	which	directly	apply	

forms	of	cross-format	sense	making	aimed	at	building	up	representational	fluencies	across	

various	visual	forms.	It	may	be	that	traditional	conventions	of	teaching	fractions,	whether	

that	be	introducing	the	topic	years	after	whole-number	instruction	or	relying	largely	on	the	

drilling	of	symbolic	fraction	operations,	are	contributing	to	the	prevalence	of	whole	

number	biases	and	overgeneralization	of	component-based	strategies	when	reasoning	with	

fractions.	Thus,	it	may	be	that	learned	“rules”	of	fractions	or	“tricks”	to	reason	with	

fractions	may	be	getting	in	the	way	of	a	deeper	understanding	of	how	these	symbols	

represent	real	magnitudes	(Lewis	et	al.,	2015;	Siegler	et	al.,	2011).	Therefore,	there	may	be	

approaches	to	learning	about	fractions	that	educators	and	students	may	think	are	

unobtainable,	and	therefore,	never	attempt	to	attain.	This	elusive	form	of	knowledge	can	be	

described	as	having	an	intuitive	feel	for	numbers	and	magnitudes	which	comes	from	

appreciating	the	relative	magnitude	of	one	value	to	another.	Building	this	intuitive	and	

grounded	fluency	with	symbolic	fractions	may	not	be	a	critical	skill	for	interacting	with	

numbers	in	daily	activities,	but	it	may	be	a	skill	that	when	acquired	enables	fluency	

between	a	fractions	symbolic	form	and	a	more	automatic	sense	of	the	meaning	these	

symbols	represent.		

	 Furthermore,	investigations	into	fluency-based	interventions	of	fraction	and	ratio	

processing	may	be	strengthened	by	perspectives	that	consider	the	role	of	sense-making	

activities	in	conjunction	in	improving	fluency	and	transfer	(Rau	et	al.,	2017).	On	one	hand,	
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repetitive	and	rapid	practice	in	conditions	which	push	individuals	to	practice	and	refine	

their	intuitions	with	symbolic	fractions	and	nonsymbolic	ratios	may	help	people	break	

from	rehearsed	tricks	and	strategies	with	fractions.	On	the	other	hand,	explicit	instruction	

and	deliberate	reflection	on	the	commonalities	and	differences	between	symbolic	fractions	

and	nonsymbolic	ratios	may	be	necessary	for	building	deeper	conceptual	understandings	

which	may	support	the	transfer	of	this	knowledge	across	contexts.	Critically,	these	applied	

theories	of	fractions	instruction	should	be	validated	by	testing	them	within	authentic	

learning	interventions	such	as	cognitive	tutors	and	educational	games	both	inside	and	

outside	the	research	lab.	

Future	applications	of	math	games	in	educational	neuroscience	research	

Games	leave	traces	in	the	mind	and	in	data.		

One	way	to	advance	the	field	of	educational	neuroscience,	is	to	embrace	educational	

video	games	as	an	important	context	for	testing	cognitive	neuroscience	theories	of	learning	

(Bugden	et	al.,	2017;	Rosenberg-Lee,	2018).	At	the	heart	of	this	argument	is	the	idea	that	

these	digital	experiences	leave	traces	in	the	mind	and	in	data.	Theories	about	the	benefits	

of	playing	video	games		and	specifically	educational	games	(Granic	et	al.,	2014;	Green	&	

Bavelier,	2003),	indicate	how	these	digital	interactions	leave	traces	in	the	mind.	For	

instance,	games	allow	players	to	improve	their	hand	eye	coordination,	practice	strategic	

decision	making,	and	encounter	multiple	instances	of	failure	and	success.	Moreover,	

educational	video	games	have	the	potential	to	help	players	acquire	new	content	knowledge	

or	skills.	In	a	complementary	way,	methodological	arguments	for	the	use	of	educational	

games	in	education	and	in	research	emphasize	how	cognitive	effort	put	forth	to	engage	

with	these	digital	experiences	leaves	traces	in	forms	of	gameplay	data	(Halverson	&	Owen,	
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2014;	Shute,	2011).	For	game	developers,	this	game	data	is	typically	used	to	track	bugs	in	

software	code	and	determine	if	their	original	designs	are	resulting	in	an	enjoyable	game	

experience.	However,	from	an	educational	or	psychological	research	perspective,	these	

data	traces	provide	a	digital	reflection	of	knowledge	and	abilities.	With	this	knowledge,	the	

careful	crafting	of	digital	educational	games	can	create	powerful	tools	to	observe	and	

assess	cognitive	abilities	and	knowledge	for	educational	and	research	purposes.			

	 The	game-based	research	in	this	dissertation	exemplifies	how	a	video	games	can	be	

utilized	to	test	specific	hypotheses	of	cognitive	processing.	Video	games	as	programed	

audio-visual	experiences	provide	a	medium	that	can	be	designed	and	manipulated	to	

assess	the	educational	efficacy	of	contrasting	cases	(Wideman	et	al.,	2007).	In	this	

dissertation,	several	design	features	of	Fractions	War	were	utilized	to	examine	how	the	

visual	complexity	of	educational	representations	influences	players’	fluency	connecting	

these	visuals	to	the	magnitudes	they	represent.	For	instance,	the	ability	to	switch	gameplay	

between	different	cards	types	enables	a	direct	comparison	of	magnitude	processing	across	

formats	while	keeping	the	rest	of	the	gameplay	experience	constant.	Furthermore,	the	

ability	to	design	and	load	custom	decks	allows	control	over	which	magnitudes	and	formats	

players	interact	with	in	the	game.	Beyond	Fractions	War,	similar	approaches	may	be	

applied	to	the	visual	and	aesthetic	design	of	new	video	games	with	cognitive	and	affective	

goals.	By	programmatically	studying	the	specific	influence	of	gameplay	features,	such	as	the	

design	of	visual	representations	for	learning,	this	approach	stands	to	identify	not	only	

effective	design	principals	but	also	insights	into	why	these	design	choices	matter.	

Furthermore,	future	research	focused	on	the	design	of	effective,	intuitive,	and	engaging	

educational	games	stands	to	unravel	the	critical	relationship	between	affective	goals	to	
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increase	enjoyment	and	engagement	and	cognitive	goals	to	support	the	development	of	

new	knowledge	and	skills.	

Studying	affective	and	cognitive	effects	of	game-based	learning.		

	 In	real	world	learning	contexts,	factors	impacting	individuals'	abilities	to	learn	math	

and	express	their	knowledge	may	be	tied	to	their	affective	dispositions	towards	

mathematics.	While	situational	interest	in	mathematics	may	be	triggered	by	specific	

experiences,	developing	a	deep	personal	interests	in	math	topics	may	be	built	up	over	time	

and	across	multiple	learning	experiences	(Hidi	&	Renninger,	2006).	In	educational	game	

design	and	research,	a	common	question	regards	what	the	role	of	educational	games	could	

be	in	the	developing	positive	emotional	associations	with	math	content	(Plass	et	al.,	2013,	

2014)?		Within	a	specific	learning	experience,	the	context	that	educational	content	is	

situated	within	may	have	a	significant	impact	on	the	emotional	response	that	individuals	

experience	with	that	content.		Educational	games	are	suggested	to	be	a	context	wherein	

interactions	with	content	is	associated	with	fun,	play,	and	opportunities	for	low	stakes	

failure	(Gee,	2003b,	2007).	One	crucial	factor	in	studying	this	phenomenon	is	that	the	

assumption	that	educational	games	are	a	fun	and	engaging	context	to	play	with	educational	

content	is	only	as	true	as	the	player’s	subjective	perspective.	Therefore,	future	studies	

aimed	at	exploring	the	affective	effects	of	games	require	an	appropriate	fit	between	the	

subject	matter	of	the	game	and	the	interests	of	the	learners	engaging	in	these	activities.	

		 In	this	dissertation’s	exploration	of	whether	playing	a	fractions	game	may	affect	

math	attitudes,	we	did	not	observe	any	large	positive	effects.	However,	these	findings	are	

not	necessarily	surprising	given	the	short	duration	of	gameplay	in	our	studies	(24	minutes)	

and	the	age	of	our	adult	participants.	It	is	possible	that	for	undergraduate-aged	adults,	
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small	bouts	of	gameplay	have	minimal	to	no	effect	on	math	attitudes	when	these	attitudes	

are	the	product	of	many	years	of	formal	and	informal	education.	Thus,	critical	tests	of	

whether	games	like	Fractions	War	may	influence	players’	affective	associations	with	

fractions,	ratios,	and	math	more	generally	should	be	done	in	younger	populations	and	with	

longer	intervention	programs.	Furthermore,	one	of	the	most	powerful	attributes	of	using	

games	to	conduct	this	research	is	the	potential	for	these	games	to	be	implemented	within	

authentic	learning	contexts	of	schools	and	home	learning	environments.	Further	research	

is	necessary	to	better	understand	how	gameplay	situated	within	traditional	research	lab	

contexts	relates	to	more	self-directed	forms	of	gameplay	in	school	and	casual	gaming	

contexts,	especially	in	terms	of	the	player’s	enjoyment	and	motivation	to	play.	

In	defense	of	an	educational	neuroscience	approach	

	 Advancing	educational	neuroscience	research	involves	not	only	conducting	

interdisciplinary	research	but	also	advocating	for	taking	an	interdisciplinary	approach.	The	

educational	neuroscientist	sees	an	exciting	potential	to	integrate	empirical	knowledge	of	

the	human	central	nervous	system	with	educational	researcher’s	and	practitioner’s	

knowledge	of	learning	and	teaching.	This	potential	can	be	simplified	to	the	fact	that	our	

nervous	systems	are	the	biological	material	with	which	we	learn.	Learning	creates	mental	

changes	in	what	we	can	know	or	do,	and	that	necessarily	corresponds	with	biological	

changes	in	our	brains	and	our	brain’s	connection	to	our	body.	Thus,	neuroscience	can	offer	

a	unique	window	into	the	mind	to	observe	mechanisms	of	human	learning	that	

complement	methods	of	observing	changes	in	behaviors	and	abilities.	If	the	pursuit	of	

studying	the	developing	mind	can	help	us	enhance	teacher	training,	support	students	with	

learning	disabilities,	or	make	better	educational	resources,	then	there	is	an	exciting	
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potential	for	researchers	studying	the	brain	to	advance	these	goals	in	new	ways.	Moreover,	

it	is	in	our	attempts	to	translate	theories	of	learning	from	cognitive	neuroscience	research	

to	real	life	applications	that	we	are	able	to	test	the	ecological	validity	of	these	theories.	

Thus,	while	academic	silos	may	separate	neuroscience	and	educational	researchers	for	

epistemological	or	methodological	reasons,	there	remains	a	great	potential	that	once	

separate	fields	can	symbiotically	advance	through	interdisciplinary	collaboration	with	each	

other.	
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Appendix	A:	Symbolic	Fraction	Pair	Stimuli	Lists	of	Study	1	

Table	A1	

Symbolic	fraction	pairs	used	in	Study	1	Experiment	1	and	Study	2	

Component	Congruence	 Pair	 Distance	
Common	Denominator	 7/9_8/9	 0.111	
	 3/7_4/7	 0.143	
	 2/5_3/5	 0.2	
	 3/7_5/7	 0.286	
	 2/5_4/5	 0.4	
	 1/9_5/9	 0.444	
	 2/7_6/7	 0.571	
	 1/5_4/5	 0.6	
	 1/6_5/6	 0.667	
	 1/8_7/8	 0.75	
Congruent	Numerator	&	Denominator	 4/5_6/7	 0.057	
	 3/5_5/7	 0.114	
	 2/3_5/6	 0.167	
	 1/7_4/9	 0.302	
	 1/4_5/8	 0.375	
	 1/3_5/7	 0.381	
	 1/4_7/9	 0.528	
	 1/3_8/9	 0.556	
	 1/7_7/9	 0.635	
	 1/4_8/9	 0.639	
	 1/6_6/7*	 0.690	
Congruent	numerator	&	incongruent	denominator	 1/8_2/7	 0.161	
	 4/9_5/8	 0.181	
	 1/6_2/5	 0.233	
	 4/7_5/6*	 0.262	
	 5/9_7/8	 0.319	
	 1/8_4/7	 0.446	
	 1/9_5/8	 0.514	
	 1/5_3/4	 0.55	
	 2/9_7/8*	 0.652778	
Incongruent	Numerator	&	congruent	denominator		 2/7_1/3	 0.047619	
	 3/8_1/2	 0.125	
	 5/9_3/4	 0.194444	
	 2/9_1/2	 0.277778	
	 3/8_2/3	 0.291667	
	 4/9_3/4	 0.305556	
Note:	Distance	is	given	as	the	absolute	numerical	distance	between	the	magnitudes	of	the	two	
symbolic	fractions	in	a	pair	rounded	to	the	thousandths	place.	Some	pairs	included	in	Experiment	
1*	were	replaced	in	Experiment	2.	
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Table	A2	
	
Symbolic	fraction	pairs	used	in	Study	1	Experiment	2	and	Study	3	Experiment	1	

Component	Congruence	 Distance	 Single	Digit	
Common	Denominator	 7/9_8/9	 0.111	
	 3/7_4/7	 0.143	
	 2/5_3/5	 0.2	
	 3/7_5/7	 0.286	
	 2/5_4/5	 0.4	
	 1/9_5/9	 0.444	
	 2/7_6/7	 0.571	
	 1/5_4/5	 0.6	
	 1/6_5/6	 0.667	
	 1/8_7/8	 0.75	
Congruent	Numerator	&	Denominator	 4/5_6/7	 0.057	
	 3/5_5/7	 0.114	
	 2/3_5/6	 0.167	
	 1/7_4/9	 0.302	
	 1/4_5/8	 0.375	
	 1/3_5/7	 0.381	
	 1/4_7/9	 0.528	
	 1/3_8/9	 0.556	
	 1/4_8/9	 0.639	
	 1/7_7/8	 0.732	
Congruent	numerator	&	incongruent	denominator	 1/8_2/7	 0.161	
	 4/9_5/8	 0.181	
	 1/6_2/5	 0.233	
	 5/9_7/8	 0.319	
	 2/9_3/5*	 0.378	
	 1/8_4/7	 0.446	
	 1/9_5/8	 0.514	
	 1/5_3/4	 0.55	
	 2/9_6/7*	 0.635	
	 1/7_5/6*	 0.69	
Incongruent	Numerator	&	congruent	denominator		 2/7_1/3	 0.048	
	 3/8_1/2	 0.125	
	 5/9_3/4	 0.194	
	 2/9_1/2	 0.278	
	 3/8_2/3	 0.292	
	 4/9_3/4	 0.306	
Note:	Distance	is	given	as	the	absolute	numerical	distance	between	the	magnitudes	of	the	two	
symbolic	fractions	in	a	pair	rounded	to	the	thousandths	place.	Some	pairs	included	in	Experiment	2	
replaced	pairs	from	Experiment	1.	
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Appendix	B:	Drift	Diffusion	Model	Analysis	of	Study	1	Experiment	1	

Effects	of	Numerical	Distance	

Drift	Rate	Analysis		

As	seen	Figure	B1	below,	the	numerical	distance	between	fractions	being	compared	

had	a	main	effect	on	the	efficiency	adults	can	make	accurate	magnitude	judgements,	F(2,	

46)	=	60.8,	p	<	.001.	Specifically,	drift	rates	estimated	for	comparisons	at	far	distances	(M	=	

4.3,	SD	=	1.62)	were	greater	than	medium	distances	and	medium	distances	(M	=	2.45,	SD	=	

1.04)	were	greater	than	near	distances	(M	=	1.22,	SD	=	0.37).	Consistent	with	numerical	

distance	effects	it	becomes	easier	to	make	accurate	judgments	as	the	numerical	distance	

increases	between	the	magnitudes	in	the	comparison	pair.	

	

Figure	B1:	Group	mean	drift	rates	at	near,	medium,	and	far	distances.	Error	bars	depict	one	
standard	error	of	the	mean.	Higher	values	of	drift	rate	correspond	to	more	efficient	evidence	
accumulation.	
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Decision	Boundary	Analysis		

Within-subjects	comparisons	of	estimated	decision	boundaries	indicate	that	the	

manipulation	of	numerical	distance	had	an	effect	on	how	carefully	adults	made	accurate	

responses	F(2,46)	=	5.86,	p	=	0.005.	As	seen	in	Figure	B2	below,	pairwise	comparisons	of	

mean	decision	boundaries	reveal	that	this	main	effect	is	driven	by	significantly	wider	

decision	boundaries	(more	careful	responses)	in	far	comparisons	(M	=	2.89,	SD	=	0.94)	than	

near	comparisons	(M	=	2.23,	SD	=	0.42).	Mean	estimated	decisions	boundaries	for	

comparisons	with	a	medium	distance	(M	=	2.63,	SD	=	1.04)	were	numerically	between	near	

and	far	comparisons,	but	not	significantly	different	than	either.	

	

Figure	B2:	Group	mean	decision	boundaries	at	near,	medium,	and	far	distances.	Error	bars	depict	
one	standard	error	of	the	mean.	Higher	decision	boundary	values	correspond	to	more	careful	
performance.	

Non-Decision	Time	Analysis	

Within-subjects	comparison	of	mean	estimated	non-decision	times	show	that	

numerical	distance	has	a	main	effect	on	time	to	encoding	the	stimulus	(and	generate	motor	

response),	F(2,46)	=	11.1,	p	<	.001.	Specifically,	higher	non-decision	times	were	estimated	
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for	near	comparisons	(M	=	0.65,	SD	=	0.13)	than	for	medium	(M	=	0.59,	SD	=	0.12)	and	far	

comparisons	(M	=	0.58,	SD	=	0.12),	but	results	do	not	indicate	that	there	are	differences	

between	non-decision	times	in	medium	and	far	comparisons.	

	

Figure	B3:	Group	mean	non-decision	times	at	near,	medium,	and	far	distances.	Error	bars	depict	
one	standard	error	of	the	mean.	Higher	values	correspond	to	more	encoding	processing	and	time	to	
generate	a	physical	response	time.	
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Appendix	C:	Study	2	Supplementary	Tables	

Table	C1	

Group	mean	response	times	across	formats	and	distance	bins	

 Near  Medium  Far  

Format M SD M SD M SD 

LL 1305 562 989 328 880 304 

LF 1516 559 1253 441 1030 302 

FF 1579 607 1347 476 1059 357 

Note:	Means	(M)	and	standard	deviations	(SD)	of	response	times	are	rounded	to	the	nearest	
millisecond.	Values	aggregated	from	subject	mean	RT	during	comparisons	with	nonsymbolic	line	
ratios	(LL),	symbolic	fractions	(FF),	and	cross-format	pairs	(LF)	across	increasing	numerical	
distance	(near,	medium,	and	far).		

Table	C2	

Group	mean	error	rates	across	formats	and	distance	bins	

 Near  Medium  Far  

Format M SD M SD M SD 

LL 0.0971 0.059 0.017 0.027 0.007 0.020 

LF 0.086  0.081  0.023  0.025  0.000  0.000  

FF 0.103  0.064  0.038  0.064  0.004  0.012  

Note:	Means	(M)	and	standard	deviations	(SD)	of	error	rates	were	aggregated	from	subject	mean	
error	rates	recorded	during	comparisons	with	nonsymbolic	line	ratios	(LL),	symbolic	fractions	(FF),	
and	cross-format	pairs	(LF)	across	increasing	numerical	distance	(near,	medium	and	far).		
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Table	C3	

Regions	showing	significant	distance	effects	(all	conditions)	

Hem. Location x y z t 

R IPS 29 -56 39 7.47 

R lateral occipital 29 -86 -9 6.05 

R anterior insula 32 16 6 7.71 

R supplementary motor area 5 16 45 9.65 

R caudate 8 4 12 5.64 

L IPS -28 -65 39 6.18 

L lateral occipital -43 -86 -6 5.40 

L anterior insula -31 19 9 7.62 

L premotor area -46 4 33 5.41 

L fusiform gyrus -49 -56 -15 5.35 

L middle frontal area -43 40 6 6.40 

L caudate -16 7 12 4.99 

Note:	Coordinates	indicate	the	peak	voxel	within	a	cluster	of	significant	activation	showing	the	
greatest	difference	between	near	and	far	distances.	
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Appendix	D:	Fractions	War	Specifications	

Learning	Goals	of	Fractions	War	

The	primary	learning	goal	of	Fractions	War	is	for	players	to	develop	their	

understanding	of	how	fractions	represent	magnitudes.	Specifically,	this	game	aims	to	help	

players	recognize	ways	that	fraction	magnitudes	are	defined	by	the	relative	size	of	their	

component	parts,	and	not	the	overall	size	of	their	component	parts.		Multiple	studies,	

including	those	presented	in	Chapter	2,	have	exemplified	how	common	it	is	for	people	to	

fixate	on	the	magnitudes	of	a	fraction’s	components,	overgeneralizing	gap	strategies,	or	

apply	forms	of	calculation	when	the	goal	is	to	fluently	understand	a	fractions	magnitude	

(Bonato	et	al.,	2007;	DeWolf	et	al.,	2014;	Fazio	et	al.,	2016;	Morales	et	al.,	2020).	Through	

repetitive	play,	Fractions	War	creates	multiple	instances	to	receive	immediate	feedback	

when	responses	based	on	incorrect	assumptions	lead	to	incorrect	responses	giving	points	

to	the	opponent	(e.g.	assuming	2	of	clubs	/	2	of	diamonds	is	smaller	than	the	9	of	spades/	

10	of	clubs).	

Lastly,	Fractions	War	takes	advantage	of	a	design	common	to	playing	cards.	On	a	

traditional	playing	card,	you	will	find	both	a	symbolic	numeral	indicating	the	value	of	the	

card	in	addition	to	a	number	of	pips,	or	icons	representing	the	cards	suit,	that	visually	

instantiate	the	card’s	number	value.	In	the	game	we	have	created	options	to	separate	these	

two	numerical	cues	in	order	to	allow	gameplay	with	cards	that	only	contain	the	numeral	

(symbolic),	only	show	the	pip	arrays	(nonsymbolic),	or	are	presented	in	their	traditional	

form.	By	allowing	players	to	engage	in	the	same	game	structure	and	see	how	both	symbolic	

and	nonsymbolic	cards	can	represent	the	same	relationally	defined	magnitudes,	we	
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hypothesize	that	players	will	come	to	be	fluent	in	accessing	a	sense	of	rational	number	

magnitudes	in	both	stimuli.	

By	asking	participants	to	engage	in	this	extremely	fast	magnitude	judgement,	we	

aim	to	have	players	rely	on,	refine,	and	become	confident	in	their	intuitions	towards	ratios	

and	symbolic	fractions.	If	a	major	problem	that	students	have	with	fractions	is	the	

misapplication	of	whole	number	concepts	or	an	inaccurate	execution	of	symbol-based	

calculation	strategies,	then	perhaps	what	is	lacking	in	traditional	educational	approaches	

are	conditions	where	we	explicitly	force	students	to	rule	out	these	costly	and	inaccurate	

strategies.
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Figure	D1:	Differences	between	task	and	game	group	of	Study	3	Experiment	1	and	how	these	differences	were	resolved	in	Experiment	2,	
to	control	for	confounding	group	differences	and	emphasize	critical	group	differences.
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Appendix	E:	Playing	Card	Expertise	Tasks	

Matching	Task:	Speeded	Number	to	Pip	Pattern	Recognition	

In	the	matching	task	participants	were	presented	with	two	numbers	on	the	screen.	

On	the	left	side	of	the	screen,	participants	saw	a	number	of	diamonds	presented	on	playing	

card.	On	the	left	they	saw	and	Arabic	numeral.		In	half	of	the	trials,	the	number	of	diamonds	

on	the	card	matched	the	numeral,	and	in	the	other	half	the	two	values	did	not	match.	

Participants	were	told	to	indicate	if	the	values	matched	as	quickly	and	as	accurately	as	

possible			

Nonmatching	pairs	in	the	matching	task	were	created	so	that	the	numerical	distance	

between	the	number	of	diamonds	on	the	card	and	the	mismatched	numeral	was	2.	A	

distance	of	two	was	used	so	that	mismatch	values	were	similarly	even	or	odd	relative	to	the	

card	value.	For	card	values,	3,	4,	7,	8,	the	mismatch	numeral	was	two	integer	values	higher.	

For	Card	values	5,	6,	9,	10,	the	mismatch	numeral	was	two	integer	values	lower.	For	card	

values	1	and	2,	the	mismatched	numeral	was	2	and	1,	respectively.	Values	1-3	were	not	

included	in	a	participants’	mean	RTs	or	ERs	for	the	task,	in	order	to	avoid	responses	where	

decisions	were	made	with	numbers	that	fall	within	a	range	of	numbers,	termed	the	

subitizing	range,	which	very	easily	identified	visually.		
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Figure	E1.	Images	of	playing	cards	with	traditional	and	nontraditional	pip	arrangements	used	in	the	
matching	task	and	the	sorting	task	to	measure	playing	card	expertise.	
 

Traditional	

Non	-Traditional	


