
Explainable Artificial Intelligence for Better Design of
Very Large Scale Integrated Circuits

by

Wei Zeng

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering)

at the
UNIVERSITY OF WISCONSIN–MADISON

2021

Date of final oral examination: 08/12/2021

The dissertation is approved by the following members of the Final Oral Committee:
Azadeh Davoodi, Professor, Electrical and Computer Engineering
Yu Hen Hu, Professor, Electrical and Computer Engineering
Mikko Lipasti, Professor, Electrical and Computer Engineering
Dan Negrut, Professor, Mechanical Engineering

i

abstract

With the advance of Very Large Scale Integration (VLSI) technology, the
design process of VLSI circuits becomes more complex, challenging, and
time-consuming. Recent years have seen a rising trend of machine learning
(ML) incorporated in VLSI design flow for better and more efficient design
and implementation of integrated circuits.

Explainable Artificial Intelligence (XAI) is an emerging technique that
aims to perform prediction tasks while providing explanations for the
predictions. XAI adds transparency and trustworthiness to ML models,
leading to better human understanding and exploitation of the models.
With ML being applied in VLSI design, it is desirable to adopt ideas from
XAI for even better and more trustworthy outcomes of VLSI design.

This dissertation explores the usage of Shapley Additive Explanation
(SHAP)—a recent development in XAI, on different aspects and stages
of VLSI design flow. Specifically, we propose three techniques that adopt
SHAP in front-end and back-end design flows, including (a) SHAP-guided
layout obfuscation for enhanced hardware security in split manufacturing,
(b) explainable routability prediction, which accelerates the physical de-
sign flow and provides hints for improving the design, and (c) explainable-
ML-guided approximate logic synthesis for area-efficient computing in
error-tolerant applications. These are the first works that incorporate XAI
into VLSI design methodology. All of them achieve better results than
their conventional counterparts or existing works in similar settings.

ii

acknowledgments

First and foremost, I would like to thank Prof. Azadeh Davoodi, whom
I am so fortunate to have as my PhD advisor. She has been very helpful
and supportive not only academically but also mentally, as well as in my
post-graduate career. She is a nice advisor who really cares about her
students in all aspects, to an extent far beyond my expectations.

I am very grateful to all my family members, colleagues and friends for
their kind supports during my PhD study, especially during the hard times
of COVID-19 pandemic. A special gratitude goes to my dearest parents
and grandparents for their generous, continuous and unconditional love
for decades and counting.

I would like to appreciate Dr. Rasit O. Topaloglu, one of the co-authors
of most of my research papers adapted in this dissertation, for his com-
mitment to our regular discussions and constructive suggestions and
comments during my course of PhD research.

Also, thanks to all final oral committee members for their valuable
feedback on my research proposal and this dissertation.

Last but never the least, I would like to acknowledge Prof. Xuan Zeng,
Prof. Xin Li, and Dr. Hengliang Zhu, who had guided me through my very
first research in this field even before I started this great PhD journey.

iii

contents

Abstract i

Acknowledgments ii

1 Introduction and Motivation 1

2 Related Works 4
2.1 ML Applications in VLSI Design 4
2.2 Studies on Explaining ML Models 5

3 Summary of Contributions 8

4 Preliminaries 11
4.1 Shapley Value and SHAP 11
4.2 SHAP Tree Explainer for Tree-Based ML Models 12
4.3 Examples of SHAP Analysis 13

5 Routing Obfuscation Guided by Explanatory Analysis of a ML
Attack 15
5.1 Related Works on Layout Obfuscation 15
5.2 Overview of SHAP-Guided Routing Obfuscation 17
5.3 ML Attack Model for Split Manufacturing 19
5.4 SHAP Analysis for One V-pin Pair 21
5.5 Details of SHAP-Guided Routing Obfuscation 23
5.6 Experimental Results 31
5.7 Conclusion 36

6 Explainable Prediction of DRC Violation Hotspots 37
6.1 Related Works on DRC Hotspot Prediction 37
6.2 Overview of Explainable DRC Hotspot Prediction 39

iv

6.3 Details of Explainable DRC Hotspot Prediction 42
6.4 Experimental Results 47
6.5 Conclusion 54

7 Approximate Logic Synthesis Guided by Explainable ML 56
7.1 Preliminaries on Sampling-Based ALS 58
7.2 Related Works on Sampling-Based ALS 59
7.3 Overview of SHAP-Guided Logic Approximation 61
7.4 Implementation Details 73
7.5 Experimental Results 76
7.6 Conclusion 83

8 Conclusion and Future Directions 84

Bibliography 86

v

list of tables

5.1 Results of via perturbation on five ISPD’11 benchmark designs 32
5.2 Results of wire lifting on six ISCAS’85 benchmark designs . . 34

6.1 The Profile and Grouping of Designs 41
6.2 Comparison of Performances of RF and Different ML Models

Used in Prior Works . 49

7.1 Comparison of different metrics as splitting criteria 71
7.2 Approximation errors, relative area (unitless) and runtimes

(in seconds) with different models and an error bound of 0.5% 80

vi

list of figures

1.1 Tradeoff of predictive performance and explainability of differ-
ent ML models (not to scale). 2

4.1 An example of force plot from SHAP analysis. Six out of nine
features (that contribute the most to the final prediction) are
labeled. 13

5.1 Flow chart of ObfusX. 18
5.2 Illustration of public/private layers and v-pins in split manu-

facturing. The split layer is M4. 19
5.3 SHAP force plots of two actually-connected v-pin pairs. The

pink/blue bars quantify to what extent each layout feature pos-
itively/negatively contributes to the ML attack that predicts
their connectivity. The top contributing features (longest pink
bars) may vary from one v-pin pair to another. For example,
diffVpinY is the most contributing feature in predicting (a)
(longest pink bar) while it is actually the most negatively con-
tributing feature to predicting (b) (longest blue bar). 22

5.4 Contributions of top two features diffVpinY and manhattanVpin,
shown as a distribution for all connected v-pin pairs, before
(blue) and after (red) obfuscation. ObfusX flattens the distri-
bution and decreases the top contributions. 24

vii

5.5 (a) Illustration of terminology. (b–d) Rip up and reroute for
v-pin pair (v, v′) when v is perturbed. The horizontal lines in
the illustration correspond to wires (which can be in x- or y-
direction) and the vertical lines correspond to vias. The dashed
lines separate the EOL and BEOL. (b) Original wires and vias
of the net containing v and v′; the gray segments are to be
removed. (c) The new location of v after perturbation is iden-
tified. The unconnected parts (including both endpoints of v
and rerouting goals) are identified in the public layers (shown
in black wires and dots) and private layers (shown in black
circles). (d) The unconnected parts are reconnected (in blue)
using public and private layers respectively, with A* search
algorithm in 3D grids. 26

5.6 Comparison of tradeoff in HR vs WL in superblue1. 34

6.1 Workflow of explainable DRC hotspot prediction. 40
6.2 A 3 × 3 g-cell window with standard cells, wires (different

colors indicate different metal layers), vias, congestion map
borders, blockage/macro. 42

6.3 Example DRC hotspots to be explained. (a) A hotspot in highly
congested area from des_perf_1. (b) A hotspot with moder-
ate edge congestion from des_perf_1. (c) A hotspot near a
macro from matrix_mult_a. (d) The naming convention for
GR congestion features. 52

6.4 (a)–(c) Most contributing features for predicting DRC hotspots
in Figure 6.3(a)–(c), evaluated by the SHAP tree explainer.
(The blue regions on the right contain many features that are
not visible as the pink bars dominate.) 53

viii

7.1 Illustration of building an ADT for ALS using SHAP impor-
tance. Steps taken to process a node are illustrated which could
be to further split the tree, reach a leaf, or build a subtree at
one shot. 63

7.2 Logic synthesis flows compared: (a) Exact functionality with-
out constraint in input space (baseline), (b) exact functionality
with constraints in input space, and (c) approximated func-
tionality with constraints in input space (proposed). Other
synthesis techniques may be applied thereafter to the produced
AIGs. 64

7.3 XOR bit assertion in ADT for f = x1 ⊕ ((¬x2 ∧ f1) ∨ (x2 ∧ f2))
where f1 and f2 are Boolean functions independent of both
x1 and x2. Dash lines are 0 assignments and solid lines are 1
assignments. (a) Not asserting x1 as an XOR bit and instead
splitting on x1 would result in two subtrees with opposite po-
larities. (b) Asserting x1 as an XOR bit, we only need to develop
one subtree and take the XOR of x1 and the resulting function f ′. 67

7.4 Comparison of tradeoffs (a) between error and area, and (b)
between error and runtime for ADT models with different split-
ting criteria: impurity, MC SHAP, and Tree SHAP. Values are
averaged over all functions. Points on each curve are generated
by varying r in {128, 256, 512, 1024, 2048}. 81

7.5 Comparison of tradeoffs (a) between error and area, and (b) be-
tween error and runtime, with MC SHAP and different thresh-
olds for the number of free bits in a node to trigger sample
enumeration. Error, area and runtime values are averaged over
all functions. Points on each curve are generated by varying r
in {128, 256, 512, 1024, 2048}. 83

ix

list of algorithms

1 Via Perturbation . 30

1

1 introduction and motivation

With the advance of Very Large Scale Integration (VLSI) technology, the
design of VLSI circuits becomes more complex, challenging, and time-
consuming. Recent years have seen a rising trend of machine learning
(ML) applied in different aspects of VLSI design and manufacturing,
including accelerating the design flows of logic synthesis, optimization
and verification [49, 25, 24], physical design and verification [37, 64, 9], as
well as in the fabrication stage, such as yield analysis and improvement [31]
and lithographic hotspot detection [71], and also in hardware security,
including logic locking [7] and split manufacturing [72]. Overall, the
incorporation of ML is making the designs more efficient, robust and
secure, thus helping reduce the time-to-market, improve reliability, and
protect the intellectual property of the products.

Generally speaking, ML performs prediction tasks based on a trained
model, which is derived with a set of training data by a specific algorithm.
Depending on the problem, different learning paradigms (e.g., super-
vised learning, reinforcement learning) and types of models (e.g. logistic
regression, decision tree, neural network) may be adopted.

On one hand, due to the high complexity of VLSI design tasks, the
adopted ML models usually need to be complex enough to achieve good
accuracy. On the other hand, in practice, it is always desirable for designers
and managers to understand what happens behind the ML model. They
may raise questions like, why the model predicts a design failure with a
specific parameter set, why the model predicts a lithographic hotspot at
a specific location, why the design is predicted as not secure at a specific
gate, etc. Therefore, problems of root causing and trustworthy may arise
when a ML model is too complex to understand why it predicts a specific
data point as such.

In general, the predictive performance of a model is positively corre-

2

Figure 1.1: Tradeoff of predictive performance and explainability of differ-
ent ML models (not to scale).

lated to its complexity, which in turn is negatively correlated to its explain-
ability. This results in a negative correlation of predictive performance vs
explainability, as notationally illustrated in Figure 1.1.

Different from pure ML, Explainable Artificial Intelligence (XAI) is an
emerging technique that aims to perform predicting tasks and provide
explanations for the predictions simultaneously. In other words, XAI tries
to move the points in Figure 1.1 upwards for a better tradeoff of predictive
performance vs explainability.

Besides providing better human understanding and attribution, XAI
also enables better exploitation of the model. For example, with the un-
derstanding of why a design is predicted not secure at a certain location,
designers know how to enhance the security in the most effective manner,
whereas a pure ML prediction may not provide such insights.

Based on this idea, we propose three novel techniques from different
aspects of VLSI computer-aided design (CAD) that utilize XAI, includ-
ing routing obfuscation for enhanced security for split manufacturing,

3

explainable prediction of design rule check (DRC) violation hotspots in
early stages of physical design flow, and a sampling-based approximate
logic synthesis technique powered by explainable ML.

In the remainder of this dissertation, we first give an overview of the
related works in Chapter 2. Chapter 3 summarizes the contributions of
this dissertation. Chapter 4 introduces Shapley Additive Explanations
(SHAP)—the technical basis of explanatory analysis adopted throughout
this dissertation. In Chapters 5 through 7, we show the three proposed
techniques as applications of XAI in VLSI design, focusing on hardware
security, layout routability, and approximate logic synthesis, respectively.1

Finally, in Chapter 8, we conclude this dissertation and discuss future
directions.

1These chapters are slightly modified versions of works [74, 73, 75] published or to
be published in conference proceedings, and have been reproduced here in accordance
with the permission of the copyright holders.

4

2 related works

In this chapter, we first give an overview of related work on applying
ML in the VLSI design flow. We note, none of these existing works uti-
lize explainability. Next, we give an overview of existing techniques on
explaining ML models in general (and not in the field of VLSI design).

2.1 ML Applications in VLSI Design
ML has been applied in different aspects of VLSI design: to accelerate
the design flows, to analyze and improve the robustness in design and
manufacturing, and to analyze and enhance the design security against
reverse engineering and intellectual property theft.

2.1.1 For Efficient Design Flows

ML plays a role in almost every stage of the VLSI design flow in both
front end and back end [28], including logic synthesis, technology map-
ping, logic optimization, logic verification, placement, and routing. One
common usage of ML is to predict the results of a design stage and/or its
downstream stages in the design flow, thus reducing the overall runtime
of the design flow.

In logic synthesis and optimization, Rokach et al. proposed a decision-
tree-based circuit decomposition engine for logic synthesis [49]. Pasandi
et al. proposed a technology mapping approach for approximate logic
synthesis based on deep reinforcement learning [41]. Deep reinforcement
learning has also been adopted for logic optimization [25, 79]. In logic
verification, techniques that accelerate functional coverage closure have
been proposed using multiple ML models [24]. Different types of neural
networks have been adopted for analyses of testability [35], power [76],

5

signal integrity [15]. In physical design, deep learning and reinforcement
learning have been applied to chip placement and legalization [37, 39].
There are works on predicting the routability, in particular, design rule
violations, before the detailed routing stage using different ML models
[9, 55, 54, 12, 64]. Besides, ML has been used to automate the design space
exploration [32] and tuning of flow parameters [63], which helps reduce
the design turnaround time.

2.1.2 For Robust Fabrication

For chip fabrication, ML has been applied in VLSI testing [65], yield
analysis and optimization of integrated circuits (ICs) [31, 1, 11, 30]. For
VLSI in particular, recent focuses are on lithographic modeling and hotspot
detection [71, 67, 47], and mask optimization [69, 68].

2.1.3 For Hardware Security

ML has also been applied in the community of hardware security [22],
especially in the analysis of spectre attacks [77], IC counterfeit [29], IC
reverse engineering [3], logic encryption [7, 53], and split manufacturing
[72], etc.

2.2 Studies on Explaining ML Models
There are different methods of explaining the prediction of a ML model
to humans [2, 38]. Given a specific prediction/decision from the model,
one way to explain it is to analyze important features that contributes
most to a specific prediction [48, 34]. Other methods include training
an approximated model that has higher explainability [18], learning a
separate explanatory model from human-provided explanations [27], etc.

6

In this proposal, we will focus on the first method, i.e., the attribution
of features in predicting a specific data sample. LIME [48] and SHAP
[34] are among the most famous explanatory frameworks in this category.
They explain individual predictions by evaluating the effects of different
features in inferring on each specific data sample. Next, we give a brief
overview of these methods.

2.2.1 Local Interpretable Model-Agnostic Explanations
(LIME)

LIME [48] is the first work in this category. It finds a local linear ap-
proximation of the prediction, such that the most important features for
predicting a specific data sample can be identified by observing the coeffi-
cients of the linear approximation. In other words, it estimates how much
the prediction will change if a feature value changes in its vicinity.

However, LIME is based on local linearity of the ML model, and as-
sumes no interactions among different features. Therefore, it may be
inaccurate where the model is complex and/or some features are corre-
lated, as is often the case in practice. To address these, Lundberg et al.
proposed another additive explanation method named SHAP [34], which
does not rely on these assumptions.

2.2.2 Shapley Additive Explanations (SHAP)

SHAP [34] is based on the concept of Shapley value in game theory. It seeks
a linear decomposition of contributions made by each feature in predicting
a specific data sample. By exploiting the definition of Shapley value, SHAP
is reported to be more accurate and more consistent with human intuition,
though computationally expensive to calculate exactly. To alleviate the
runtime while preserving the accuracy, SHAP tree explainer [33] is later
proposed as an extension specifically for tree-based ML models.

7

This dissertation will be utilizing SHAP analysis in later chapters. More
details on SHAP analysis will be provided in Chapter 4.

8

3 summary of contributions

In this dissertation, we propose three techniques where XAI is applied
in different aspects of VLSI CAD, including logic synthesis, physical de-
sign, and hardware security for higher efficiency and effectiveness. To
date, the idea of incorporating XAI into VLSI CAD is novel and of great
interest to both academia and industry. Specifically, our contributions are
summarized as follows.

Routing Obfuscation Guided by Explanatory Analysis of a ML Attack
Split manufacturing is a technique to protect the intellectual property
related to a design from being stolen by an untrusted foundry, where only
a partial layout (e.g., patterns in lower layers) is revealed to an untrusted
foundry. Given a lower part of the layout (up to a predefined split level),
the ML attack model in [72] tries to find whether a pair of broken vias at
the split level are connected in higher metal and via layers that are not
available to the attacker.

To thwart this attack, we propose a routing obfuscator that incorporates
explanatory analysis on a recent attack powered by a tree-based ML model
[72]. The proposed routing obfuscator is to thwart this kind of attack.
While the ML attack model reveals that routing features like Manhattan
distance of two broken vias are the most important features overall in the
attack, it may not be the case for the entire layout of the design. With XAI
on the attack model, we can obfuscate the layout and thwart the attack
in a more precise and effective manner — we can not only identify and
focus on the most vulnerable pairs of vias, but also obfuscate them by just
the necessary amount, thereby reducing the overhead while having better
performance of obfuscation. Specifically, we propose to adopt SHAP tree
explainer [33] to evaluate the feature importance of each pair of vias at or
one level below the split level. This explanatory result can guide us not

9

only to identify the most vulnerable ones to the attack, but also to derive
the most “efficient” amount to alternate the location or layer of the vias
for obfuscation purposes.

Explainable Prediction of DRC Violation Hotspots In VLSI physical
design, detail routing is the most time-consuming step, which could take
up to days for each run. Several works address this issue by predicting
DRC violation hotspots in early design stages. However, they mainly
focused on the predictive performance, without providing the reason why
it is predicted as a DRC violation hotspot and how to possibly fix it. In
fact, from the perspective of designers and project managers in practice,
the reason behind a potential violation hotspot is more important than the
prediction itself, which pure ML cannot provide.

As one of the applications of XAI, we propose to combine random
forest and SHAP tree explainer to build an explainable predictor of DRC
violation hotspots in VLSI physical design, based on information from early
design stages (e.g. placement and global routing). With XAI powered by
SHAP tree explainer, we can figure out the most important features, which
can be interpreted as specific key factors for each predicted DRC violation
hotspots, such as the overflow of a certain edge in the congestion map, high
pin density at a specific location, etc. Designers can use this information
to make local adjustments in placement and routing that help alleviate
the violations if they are fixable. Since all of these happen before the most
time-consuming step of detailed routing, both the length and numbers of
design iterations could be reduced, which potentially translates to much
faster time-to-market.

Approximate Logic Synthesis Guided by Explainable ML Approxi-
mate logic synthesis (ALS) is the process of generating a Boolean circuit
that approximates the functionality of an original circuit within a tolerance
of error, in trade of better quality of results (usually a smaller area, power

10

and/or delay). Many ALS techniques have been proposed in the past
decades [51].

A specific subset of ALS techniques (e.g., [40]) construct an approx-
imate circuit only based on samples of input-output pairs (i.e., entries
in a truth table), which are generally achieved by learning a function
that generalizes these samples. We refer to this subset of techniques as
sampling-based ALS in this dissertation. Sampling-based ALS is drawing
increasing research interest, as many promising studies and interesting
contests are conducted in recent years [10, 13, 4, 52, 45].

As one of the applications of XAI in this field, we proposed a novel
sampling-based ALS framework with focus on utilizing explainable ML.
We formulate the approximation of a Boolean function as a supervised ML
problem, and propose to use explainable ML to guide the model training.
Specifically, we measure the importance of each individual primary input
bit with respect to the function output based on the SHAP values, which we
further utilize to achieve an efficient implementation of Boolean function
approximation with minimal loss in accuracy.

11

4 preliminaries

In this dissertation, we adopt SHAP [34], a recently proposed explanatory
model that explains predictions from a ML model. This chapter introduces
the technical basis of SHAP.

4.1 Shapley Value and SHAP
SHAP [34] is a recent advance in ML community. It is based on Shapley
value—a concept from game theory.

Shapley value was originally proposed to quantify the contribution of a
player in a cooperative game of n players. Let v(S) be the value generated
by the cooperation of players in set S ⊆ N = {1, 2, . . . , n}with v(∅) = 0,
then the Shapley value (contribution) of player j is defined as

s(v, j) =
∑

S⊆N\{j}

|S|!(n− |S| − 1)!
n! · [v(S ∪ {j})− v(S)]. (4.1)

Shapley value has many desirable properties. One of them is that the
sum of all Shapley values of individual players equals the value generated
by the cooperation of all players, formally

n∑
j=1

s(v, j) = v(N). (4.2)

Based on this property, SHAP was proposed as an additive explanation of
a ML prediction. Let f(x∗) be the ML prediction output for a data instance
x∗ ∈ Rn. In SHAP, the cooperation value v(S) is defined as the expected
change in prediction output conditioned on feature values indexed by S.

v(S) ≡ E[f(x) | x∗S]− E[f(x)], (4.3)

12

where we denote E[f(x) | x∗S] = E[f(x) | x∗j ,∀j ∈ S] for simplicity.
The SHAP value of a feature j in predicting x∗ is defined by substituting

(4.3) in (4.1),

c(x∗, j) =
∑

S⊆N\{j}

|S|!(n− |S| − 1)!
n! ·

{
E[f(x) | x∗S∪{j}]− E[f(x) | x∗S]

}
.

(4.4)
Substituting (4.3) in (4.2), we have

f(x∗) = E[f(x)] +
n∑

j=1
c(x∗, j). (4.5)

The above equation reveals the essential idea of SHAP—decomposing the
prediction output f(x∗) as the sum of a base value and contributions from
each individual feature. Specifically, the base value E[f(x)] is the expected
prediction based on all training data, and c(x∗, j) is the contribution of
feature j of instance x∗. Each contribution c(x∗, j) can be positive, nega-
tive, or zero, which indicates how (and how much) feature j makes the
prediction of this specific instance deviate from the average.

4.2 SHAP Tree Explainer for Tree-Based ML
Models

Derived from Shapley values, SHAP values in (4.4) have unique proper-
ties that lead to consistent explanations [34]. However, exact evaluation
of SHAP values is computationally expensive in general due to the expo-
nential time complexity. Therefore, estimations are generally needed in
practical use. A recent extension [33], referred to as SHAP tree explainer,
shows that the exact evaluation of SHAP values can be done in polynomial
time exclusively for tree-based models (e.g., decision tree, random forest).
The SHAP tree explainer does not assume feature independence, as feature

13

Figure 4.1: An example of force plot from SHAP analysis. Six out of nine
features (that contribute the most to the final prediction) are labeled.

interactions are already captured in the underlying trees.

4.3 Examples of SHAP Analysis
In this section, we use an example to show how SHAP analysis works.
It can work in different modes. We demonstrate two usages that will be
applied in this dissertation.

4.3.1 Explaining a Single Prediction

Suppose in a classification problem, each data instance includes 9 features
x1, . . . , x9 and the output class y ∈ {0, 1}. In the training data set, a half of
the instances are of class y = 1. A ML model is trained with the training
data set and is being used to predict a specific data instance. In this
situation, we can gather the base value (the average prediction) and the
SHAP values of each feature as defined in (4.4), and visualize them as a
force plot in Figure 4.1.

In this example, the base value is 0.5 (the same value throughout
all data instances), and the prediction of this specific data instance is
0.82. The pink (resp. blue) bars correspond to features that positively
(resp. negatively) contribute to this prediction. The lengths of the bars
indicate the absolute values of such contributions (i.e. SHAP values). For
example, Feature 4 is the most positively contributing feature, indicated

14

by the longest pink bar; Feature 1 is the most negatively contributing
feature, indicated by the longest blue bar. Three features that have the
smallest contributions (i.e., with the shortest bar lengths on both sides)
are not labeled due to space limit. Per (4.5), all bar lengths of positive
contributions minus those of negative contributions should equal d =
0.82 − 0.5 = 0.32, i.e., the difference of this prediction and the average
prediction. The name “force” comes after the metaphor that each feature
“pushes” the final prediction from the base value, in the direction indicated
by the sign of its SHAP value, by the amount of the magnitude of its SHAP
value. The total effect of these “forces” is to push its prediction result from
the (common) base value 0.5 to the (instance-specific) output value 0.82.

4.3.2 Comparing Feature Importance

Besides individual explanation, when SHAP is applied to a batch of M
instances, we can estimate the SHAP importance of each feature. This is
done by examining the mean absolute value of SHAP values of a feature
implied by the instances. Specifically, the SHAP importance of feature j is
defined as

Q(j) = Ex |c(x, j)| ≈
1
M

M∑
i=1

∣∣∣c(x(i), j)
∣∣∣ , (4.6)

where x(i) is the i-th instance. Studies have shown that conventional (e.g.,
impurity-based) feature importance metrics can be biased and not reliable
[50], and that SHAP importance is more consistent [33] owing to the
properties of Shapley values it bases on.

15

5 routing obfuscation guided by explanatory
analysis of a ml attack

While recent advances in VLSI manufacturing technology keep pushing
the performance boundaries of integrated circuits, the cost of fabricating
high-end chips also surges. Consequently, manufacturing outsourcing of
VLSI has become more common than ever before. As a result, security
issues including design piracy and hardware Trojans injection may arise
when an untrusted foundry is involved in manufacturing. To alleviate
these problems, split manufacturing is proposed as a technique where
the untrusted foundry only receives and fabricates a partial layout up to a
metal layer (called a “split layer”). However, this may still not prevent an
attacker to extract the full design, if the layout is not obfuscated or if the
split layer is too high, as suggested by [46, 59, 36, 72, 58, 66].

5.1 Related Works on Layout Obfuscation
Existing techniques on layout obfuscation may be classified as two cate-
gories: placement-based and routing-based. Placement-based techniques
include pin swapping [46], cell insertion [62], and cell location perturba-
tion [59]. Routing-based techniques include routing blockage insertion
[36], routing perturbation [60], and wire lifting [43]. The two techniques
may also been combined, as in [42].

The key idea of design obfuscation for split manufacturing is to make an
attack model fail to identify correct connections above the split layer. As for
the attack models for split manufacturing, Rajendran et al. first proposed
the proximity attack [46]. Wang et al. proposed a more advanced network-
flow-based proximity attack [59], which employs the network flow model
that considers more heuristics for better attack performance. Magaña et
al. proposed a congestion based attack [36], which redefined proximity

16

measures based on the observation that placement and routing congestions
are better indicators in large commercial designs. Recently, a ML-based
attack model [72] is proposed, which is trained with empirically-selected
layout features that reflect the hints from routing conventions.

In this chapter, we present a novel way to build an obfuscator for
split manufacturing based on XAI. We adopt SHAP to analyze the ML
attack model in [72]. This ML attack model is especially suitable for large
commercial designs while other attack models (e.g. [59]) would take
prohibitively long attack time.

The SHAP-based analysis reveals to what extent each layout feature
contributes to correctly predicting each individual unknown connection as
seen by an untrusted foundry. We then exploit this information to design
a SHAP-guided obfuscator against the ML attack model where only truly
vulnerable connections are identified and each is obfuscated by just the
necessary amount. This results in minimal perturbation to the layout as
measured by increase in wirelength and number of perturbed nets. Our
obfuscator (named ObfusX) is routing-based and is performed by utilizing
via perturbation and wire lifting schemes. (Placement-based obfuscation
was not found to be as effective by our SHAP-based analysis.)

ObfusX sets an example of how XAI can be used to obfuscate a design;
while we focus on routing obfuscation for a ML-based split manufacturing
attack, our approach is generalizable to build any obfuscator as long as
a ML attack model is available. We demonstrate the benefits of ObfusX
in identifying and focusing on the most vulnerable candidates and obfus-
cating each by just the right amount, thereby reducing the obfuscation
overhead, while having better performance. Our results are compared
with two prominent prior works, using not only the ML attack [72], but
also an independent network flow-based attack from a recent work [59].

17

5.2 Overview of SHAP-Guided Routing
Obfuscation

The core idea of a SHAP-guided obfuscation is to perturb the design,
such that a ML attack model would perform worse. As we will show in
experiments, such obfuscation also performs well under an independent,
non-ML attack model [59]. A flow chart of the overall process of ObfusX
is shown in Figure 5.1.

The upper panel shows how the ML model is developed. To generate
the training set and testing set for a design to obfuscate (i.e., “target de-
sign”), we generate data samples by extracting layout features from routed
designs, with the same split layer applied as will be used in manufacturing.
All data samples from the target design are allocated in the testing set,
which we will use to monitor the progress and performance of obfuscation.
Other designs in the same benchmark suite as the target design are used
to generate the training set that will be used to train the attack model.
ObfusX uses the ML predictor in [72], whose details will be summarized
later in Section 5.3. With a trained attack model, it predicts how likely
each pair of (two) v-pins in the target design could be a match (i.e., are
actually connected), which can be interpreted as the vulnerability of the
pair to the ML attack.

To develop ObfusX, as shown in the lower panel, the ML prediction
for a v-pin pair is fed to the SHAP tree explainer, which generates a set of
SHAP values to explain the prediction.

Each SHAP value corresponds to an extracted feature and quantifies
to what extent that feature contributes to the ML predictor for that spe-
cific v-pin pair. These SHAP values are next analyzed across all actually-
connected v-pin pairs to identify the most vulnerable ones to the ML attack,
along with the layout features that contribute the most to their individual
vulnerabilities.

18

Input: Routed

benchmark designs

Design

to obfuscate
Other

designs

Training setTesting set

Machine learning

attack model

(Bagging of REPTrees)

Model output &

SHAP values

of v-pin pairs

Input:

Split layer

Extract Extract

Train

Predict

Explain

Obfuscate the best v-pin

with via perturbation

or wire lifting

Idenify vulnerable

v-pin pairs & their

top explaining features

Update feature values

Next vulnerable

 v-pin pair?

WL budget

reached?

Re-evaluate

Yes

Yes

Output:

Obfuscated design

Development of

machine learning

attack model

SHAP-guided

routing obfuscation

Guide

No

No

Figure 5.1: Flow chart of ObfusX.

19

M1

M2

M3

M4: Split layer

M5

M6

Public layers

V-pins

Private layers

Figure 5.2: Illustration of public/private layers and v-pins in split manu-
facturing. The split layer is M4.

Next, the output of SHAP analysis guides the actual obfuscation which
is done iteratively. ObfusX utilizes two layout perturbation techniques–via
perturbation and wire lifting–each of which effectively change the routing
and locations of a vulnerable v-pin pair. At each iteration, the most vul-
nerable v-pin pair is obfuscated if its obfuscation does not violate routing
feasibility. Next, the feature vector of the obfuscated pair is updated and
consequently its vulnerability is re-evaluated by the attack model (given
that the layout has been slightly perturbed). ObfusX then proceeds to
obfuscate the next vulnerable pair, until there is no more vulnerable pair,
or a budget of wirelength (WL) overhead is reached.

5.3 ML Attack Model for Split Manufacturing
To build an obfuscator, we use SHAP explanatory analysis to break a
ML-based attack. Here, we review the ML attack model used by our work.

Given a metal layer as the split layer, the layout is partitioned into
public layers, v-pins (as termed in [72]) and private layers from low to
high levels. Specifically, as illustrated in Figure 5.2, a split layer refers to the
topmost metal layer available to the attacker; public layers refer to all metal
on or below the split layer and via layers in between; private layers are all
metal layers above the split layer and the via layers in between; v-pins are
vias connecting public and private layers. The attacker has access to the

20

layout (cells, pins, wires, vias) in public layers and all v-pins. The goal
of the split manufacturing attack is to predict the connectivity on private
layers based on the available layout on public layers.

Recently, a ML-based attack model was proposed for split manufac-
turing in [72]. To build the ML model, for each pair of v-pins in a design,
first a vector of layout “features” was extracted from the public layers.
Using these features, the ML model was built based on Bagging of 10
reduced error pruning trees (REPTrees) in Weka [23]. The ML model
mapped each v-pin pair with feature vector x to a probability f(x) ∈ [0, 1],
indicating how likely the v-pin pair is a “match” (i.e. actually connected
to each other on private layers).

For each v-pin v, we record the the v-pin’s coordinates on the split layer,
denoted by (vx, vy). We compute wirelength W for the route fragment
that connects v to one or more pins of standard cells on the underneath
placement layer. We also calculate the location where the v-pin connects
on the placement layer, which we denote by (px, py). If the connection
is to multiple pins on the placement layer, the location is computed by
averaging the coordinates of pins of the standard cells that connect to v. We
also record the areas of its driving cells and its loads in the placement layer
that connects to the v-pin, denoted OutArea and InArea, respectively.

Then for a pair of v-pins, we consider the following features extracted
in [72]. These features are used to train the ML attack model.

• DiffPinX = |px1 − px2|: This feature records the difference in the
x-coordinates of the pins on the placement layer which connect to
the two v-pins.

• DiffPinY = |py1−py2|: Same as the previous feature except calculated
using the y-coordinates.

• ManhattanPin = |px1−px2|+|py1−py2|: Same as the previous feature
except it is calculated based on the pin locations on the placement

21

layer.

• DiffVpinX = |vx1 − vx2|: This feature records the difference in the
x-coordinates of the two v-pins.

• DiffVpinY = |vy1 − vy2|: Same as the previous feature except calcu-
lated using the y-coordinates.

• ManhattanVpin = |vx1 − vx2|+ |vy1 − vy2|: This feature records the
Manhattan distance between two v-pins.

• TotalWirelength = W1 +W2: This is the known wirelength connect-
ing the v-pin pair below the split layer.

• TotalArea = InArea1+InArea2+OutArea1+OutArea2: This records
the sum of cell areas connecting to the two v-pins.

• DiffArea = (OutArea1 + OutArea2) − (InArea1 + InArea2): This
feature calculates the area difference of the driving cells from its
loads.

In this application, we will use SHAP tree explainer on this ML model
to analyze the vulnerability of individual v-pin pairs to the attack, and use
it to guide the obfuscation.

5.4 SHAP Analysis for One V-pin Pair
Before discussing the details of ObfusX, we first explain how SHAP-based
analysis is performed for a single pair of connected v-pins. This helps us
to illustrate the true benefits of such analysis in building ObfusX.

Consider two connected v-pins from the design superblue1 with split
layer M6. The ML attack model, predicts the first pair to be connected with
probability 0.96 (which is a relatively high prediction indicating a success-
ful attack if there is no obfuscation). Figure 5.3(a) shows the force plot

22

(a)

(b)

Figure 5.3: SHAP force plots of two actually-connected v-pin pairs. The
pink/blue bars quantify to what extent each layout feature positively/neg-
atively contributes to the ML attack that predicts their connectivity. The
top contributing features (longest pink bars) may vary from one v-pin
pair to another. For example, diffVpinY is the most contributing feature
in predicting (a) (longest pink bar) while it is actually the most negatively
contributing feature to predicting (b) (longest blue bar).

generated by SHAP analysis performed on the ML prediction for this pair.
The color and length of pink/blue bars show the signs and magnitudes
of each contribution c(x, j) in Equation (4.5), respectively. For the pair in
Figure 5.3(a), the analysis breaks down the prediction output of 0.96 as
sum of a base value of 0.5 and a total deviation of +0.46. The pink/blue
bars correspond to the features which positively/negatively contribute to
the model output (i.e., with a positive/negative “force” pushing towards
this 0.96 prediction). The length of the bars indicate the degree of contri-
bution such that the sum of the lengths of pink bars (with positive sign)
and blue bars (with negative sign) adds up to +0.46.

More specifically, for pair (a), among all its features, diffVpinY has
the highest SHAP value of around +0.4 (corresponding to the length of
its pink bar). Figure 5.3(b) shows the force plot for a second pair (b). For
pair (b), we observe a different feature, i.e., manhattanVpin is dominant.
Moreover, diffVpinY, which was the top feature in (a), has a negative

23

SHAP value in (b), indicating it actually contributes negatively to the
prediction of pair (b).

In fact, for pair (a), if we were to increase the values of diffVpinY
and manhattanVpin by the size of one routing grid (which simulates a via
perturbation in y direction), the output (i.e., the probability of matching)
from the ML attack model would drop significantly from 0.96 to 0.37.
However, if the same were done for pair (b), the model output would only
have a small drop from 0.82 to 0.64. It confirms that diffVpinY is a useful
feature from an obfuscation perspective for pair (a), but is less useful for
pair (b).

The above example yields the following two key observations to illus-
trate the unique benefits of SHAP analysis for obfuscation:

1. The vulnerable v-pin pairs can be identified as the ones which have
few features with large positive SHAP values.

2. The top feature may vary across individual pairs, implying a different
degree or scheme of obfuscation is needed for each.

These observations motivate us to develop ObfusX, a SHAP-based
obfuscator which decides, precisely, how much each v-pin pair should be
uniquely obfuscated for most efficiency.

5.5 Details of SHAP-Guided Routing
Obfuscation

The goal of SHAP-guided obfuscation is to alter the SHAP values such
that there will not be any dominant feature with a high positive SHAP. It
could mean that obfuscation makes originally dominant features to have
a lower positive SHAP value or a negative one.

24

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

SHAP(diffVpinY) + SHAP(manhattanVpin)

0

500

1000

1500

2000

C
o

u
n

t

Figure 5.4: Contributions of top two features diffVpinY and
manhattanVpin, shown as a distribution for all connected v-pin
pairs, before (blue) and after (red) obfuscation. ObfusX flattens the
distribution and decreases the top contributions.

Our SHAP analysis of design superblue1 with split layer M6 shows
that, for about half of the connected v-pin pairs, the SHAP value of
diffVpinY is consistently dominant (followed by that of manhattanVpin).
However, for the other half of pairs, the distribution of SHAP values over
features becomes fuzzy, which suggests that no single feature dominates
the model. Such pairs (which do not have any dominant feature) do not
need to be obfuscated.

For the two dominant features (diffVpinY and manhattanVpin) in
the above example, Figure 5.4 shows the distribution of the combined
contribution (i.e., sum of SHAP values) of these two top features, before
and after obfuscation. This is when using ObfusX with via perturbation
(which will be discussed in detail in Section 5.5.1). The before-obfuscation
distribution is shown in blue and the after-obfuscation one is shown in
red. As can be seen, ObfusX flattens the distribution and shifts it to the
left (so it decreases the top contributions, making some less positive and
some even negative).

25

Similar to the example of superblue1 with split layer M6, SHAP-based
analysis with the rest of the designs showed that diffVpinY and manhattanVpin
are always the top two contributing features for many of the vulnerable
nets when the split layer is even. (For odd split layers, diffVpinY should
be replaced by diffVpinX because wires are preferred to route vertically
on even layers and horizontally on odd layers.) The nets which did not
have a dominant feature simply will not need to be obfuscated with SHAP-
guided analysis. Therefore, these two features are the only ones utilized
by ObfusX.

We note, these two dominant features are related to routing which
explains our choice to obfuscate the design with routing-based techniques,
i.e., via perturbation and wire lifting. However, we note, our general
approach is not restricted to routing.

Next, we explain the two routing-based techniques used by ObfusX.

5.5.1 ObfusX with Via Perturbation

The procedure for via perturbation only considers perturbing v-pin pairs
which are determined to be “essential”. Essential v-pin pairs are a subset
of all connected v-pin pairs, after disregarding trivial cases, e.g., when
some v-pins connect to each other using the public layer, which are easily
identifiable by the attacker. ObfusX also ensures feasibility of the routing
throughout the process without any area overhead. We first introduce the
following which will be used when explaining the algorithm.

5.5.1.1 Terminology

We introduce the following terminology as shown in Figure 5.5(a), where
the split layer is M4, public layers are M1 through M4, and private layers
are M5 and M6. Wires in all metal layers are shown as horizontal lines
and vias as vertical lines.

26

M1

M2

M3

M4

M5

M6

v1 v2 v3 v4

Driving
pin

Pin

All non-driving v-pin groups: {v1}, {v4}
The only driving v-pin group: {v2, v3}
All essential v-pin pairs: (v1, v2), (v4, v3)

(a)

M1

M2

M3

M4

M5

M6

Original v v'

Driving
pin

(b)

M1

M2

M3

M4

M5

Moved v

public goals

private goal

v'

public endpoint

private endpoint

(c)
M1

M2

M3

M4

M5
Rerouted wires & vias

(d)

Figure 5.5: (a) Illustration of terminology. (b–d) Rip up and reroute for v-
pin pair (v, v′) when v is perturbed. The horizontal lines in the illustration
correspond to wires (which can be in x- or y-direction) and the vertical
lines correspond to vias. The dashed lines separate the EOL and BEOL. (b)
Original wires and vias of the net containing v and v′; the gray segments
are to be removed. (c) The new location of v after perturbation is identified.
The unconnected parts (including both endpoints of v and rerouting goals)
are identified in the public layers (shown in black wires and dots) and
private layers (shown in black circles). (d) The unconnected parts are
reconnected (in blue) using public and private layers respectively, with
A* search algorithm in 3D grids.

27

A driving pin is a pin that drives other components in the net. It can be
the output pin of a logic cell or that of a primary input. Note that there
is exactly one driving pin in each net, unless in rare cases where tri-state
logic is involved.

A v-pin group consists of v-pins in the same net that connect to each
other using public layers. The v-pins in the same group can be easily
identified by an attacker because they are connected in public layers that
are available to the attacker.

A driving v-pin group is a v-pin group that connects to a driving pin
using public layers. In general, since each net has exactly one driving pin,
there is exactly one driving v-pin group in each net.

A non-driving v-pin group is a v-pin group that does not connect to any
driving pin in public layers.

An essential v-pin pair (v, v′) consists of a pair of v-pins, where v is in a
non-driving v-pin group G, and v′ is in a driving v-pin group G′. If G′ has
more than one v-pin, v′ is the closest v-pin to v in G′.

5.5.1.2 Algorithm

We propose an algorithm that perturbs the locations of v-pins based on
SHAP values of the top features manhattanVpin and diffVpinR where R
is X for odd split layers and Y for even split layers. This is done iteratively,
one v-pin at a time. We first calculate the SHAP values S(i, j) for all
essential v-pin pairs i and all features j. Then for each essential v-pin
pair i, we take the maximum of the SHAP values over all features j, i.e.,
Smax(i) = maxj S(i, j).

For efficiency considerations, we only perturb “eligible” v-pins, which
satisfy all of the following criteria:

• The v-pin belongs to an essential v-pin pair p = (v, v′), with v and v′

in the same net. This is to avoid duplicated or invalid perturbations,

28

e.g. perturbing the same v-pin later when a different v-pin pair is
being considered.

• Smax(p) = S(p, manhattanVpin) or Smax(p) = S(p, diffVpinR). This
ensures the essential v-pin pair p is vulnerable, i.e., likely predictable
with the top features.

• S(p, diffVpinR) ≥ S(p, diffVpinR’), where R’ ∈ {X,Y} is the rout-
ing direction other than R. This condition ensures the effectiveness
of perturbing v or v′ in R direction.

• If there are more than one non-driving v-pin group in the net of v and
v′, then v′ in the driving v-pin group is not eligible for perturbation
and only v may be perturbed. Otherwise, perturbing v′ may affect
multiple essential v-pin pairs at the same time.

The procedures of SHAP-guided via perturbation are summarized in
Algorithm 1. We maintain a list L of essential v-pin pairs p = (v, v′) sorted
in decreasing order of Smax(p). As shown in Algorithm 1 (lines 7–8), in
each iteration, we select p from the top of the list, and apply trial perturbing
moves (a series of “dry runs” that do not actually perturb) to each eligible
v-pin in pair p within a predefined small radius r (detailed in lines 23–36)
to find the most efficient move (v∗, δ∗) which means to move v-pin v∗ by
amount δ∗. Efficiency of a move is defined in terms of the decrease in the
model output−∆f(x) and the extra WL ∆WL (as an integer). Specifically,
to quantify the efficiency of a move, we define its gain as

gain =


−∆f(x)/∆WL, if ∆f(x) < 0 and ∆WL ≥ 1

1−∆f(x), if ∆f(x) < 0 and ∆WL ≤ 0

0, if ∆f(x) ≥ 0 or not feasible

, (5.1)

which prioritizes moves that lead to a decrease in model output at no or
low extra cost of WL.

29

The trial perturbing is necessary as it would be difficult to estimate the
routing feasibility and extra WL without any trials due to complex layout
congestion. After the trial perturbing, if there is no feasible move1, we
remove pair p from L (line 19), and proceed to the next v-pin pair in L;
if there is any feasible move (lines 10–18), we take the actual move that
has the highest gain, update the feature vector and the SHAP values (as
in Figure 5.1), re-check the v-pin eligibility, and go to the next iteration.

5.5.1.3 Rip-up and Reroute Procedure

To apply a perturbing move to a v-pin v, we rip up and reroute the wires
connecting v to the other components. To facilitate the rerouting proce-
dure, we rip up v and all wires connecting to v that do not result in more
than two connected components, while not touching any other v-pins, as
shown in Figure 5.5(b). Then we move v to the new location and identify
the unconnected parts (i.e. both endpoints of v and the other connected
components of the net, referred to as “rerouting goals”) in the public and
private portions, respectively, as in Figure 5.5(c). Finally, we use A* search
algorithm [26] to reconnect the unconnected parts of the net in the public
portion using public layers, and then reconnect for the private portion
using private layers, as shown in Figure 5.5(d). Specifically, the routing
graph G(V,E) for A* search is built in three dimensions. The vertices
are valid routing grids in all metal layers, and the edges are in x, y and z

directions, corresponding to potential wires (in x and y directions) and
vias (in z direction) where the routing resources permit. The edge set E
changes dynamically as the routing resources are occupied or released in
rip-up and reroute. This rip-up and reroute procedure ensures a feasible
route (if possible) and optimizes the WL. Also, for via perturbation, the
number of v-pins is not changed after rip-up and reroute, as we reconnect

1We say a move is feasible if it does not violate routing resources, i.e., does not cause
any congestion overflow in global routing, or any short in detailed routing.

30

Algorithm 1 Via Perturbation
1: procedure Via-Perturbation(L, R, r, N)
2: Input: L: list of all essential v-pin pairs, R: perturbing direction, which is X for

odd split layer and Y for even split layer, r: radius for trial perturbing, N : maximum
number of iterations.

3: for iter ← 1 to N do
4: if L is empty then
5: break
6: end if
7: for p in L in descending order of Smax(p) do
8: (v∗, δ∗)← Trial-Perturbing (p, R, r)
9: if v∗ 6= null then . take the actual move

10: Ripup-and-Reroute (v∗, R, δ∗)
11: Update the feature vector and SHAP values of p
12: Re-check the eligibility of both v-pins in p
13: if neither v-pin is eligible then
14: Remove p from L
15: end if
16: Re-sort L by Smax
17: break . only move one v-pin at a time
18: end if
19: Remove p from L
20: end for
21: end for
22: end procedure
23: procedure Trial-Perturbing(p, R, r)
24: v∗ ← null, δ∗ ← null
25: maxGain← 0
26: for eligible v in v-pin pair p do
27: for δ ← −r to r do
28: gain← Ripup-and-Reroute (v, R, δ) . move v in R-dir by δ
29: if gain > maxGain then
30: v∗ ← v, δ∗ ← δ
31: maxGain← gain
32: end if
33: end for
34: end for
35: return (v∗, δ∗) . Best v-pin to move & the amount
36: end procedure
37: procedure Ripup-and-Reroute(v, R, δ)
38: Rip up v and any wire connecting to v that does not result in more than two

connected components or touch other v-pins. (Figure 5.5(b))
39: Move v in R direction by amount δ
40: Identify unconnected parts for rerouting (Figure 5.5(c))
41: Build/update the routing graph and reroute using A* search algorithm (Fig-

ure 5.5(d))
42: Calculate gain according to (5.1)
43: return gain
44: end procedure

31

the net using public and private layers separately.

5.5.2 ObfusX with Wire Lifting

Wire lifting is the second routing-based technique in ObfusX. It moves
wires from the public layers to private layers, and therefore creates more
v-pins, which can make the attack more difficult.

Here, the same flow in Figure 5.1 is followed. However, instead of
going through the v-pins connecting public and private layers as in via
perturbation, we now consider the vias one layer below (i.e. the vias con-
necting the topmost public metal layer and the metal layer immediately
below it). The goal of wire lifting is to make it most difficult for the attack
model to identify the created v-pin pairs as connected, after lifting. To
this end, ObfusX iteratively selects the via v on this layer which, when
lifted above the split layer, would create an essential v-pin pair p whose
maximal SHAP value Smax(p), is the lowest among all options of v.

After we select the v-pin v at each iteration, we perform the wire lifting
by applying the same rip up and reroute procedure to v as in Section 5.5.1.3,
except that,

(a) we do not move the location of v after ripping up for saving WL, and

(b) when rerouting with A* search, we put a higher weight on wires in
public layers, so that the use of public wires is discouraged and thus
extra v-pins are created.

5.6 Experimental Results
We obtained the source code of the ML attack from [72], used the shap
library for Python for SHAP analysis, and implemented all procedures of
ObfusX in C++. Experiments were done on a Linux workstation with an
Intel 16-core 3.60 GHz CPU and 64 GB memory.

32

Table 5.1: Results of via perturbation on five ISPD’11 benchmark designs

Design No obfuscation [72] ObfusX
(#v-pins) HR: 0.01%/0.1% HR ∆WL% PN% PV% tCPU HR ∆WL% PN% PV% tCPU

Split layer: M6
sb1 (44486) 23.79 / 63.33 2.19 / 11.58 3.03 99.83 99.58 3.86 0.52 / 6.12 0.55 66.57 36.01 3.28
sb5 (60034) 29.47 / 63.96 5.75 / 20.38 4.09 96.81 91.75 7.13 4.34 / 15.46 0.67 55.62 30.08 5.30

sb10 (89846) 31.84 / 64.34 10.24 / 28.31 4.52 92.45 79.77 7.75 9.37 / 23.93 0.71 46.49 23.96 8.05
sb12 (80816) 33.01 / 75.58 8.23 / 24.78 3.31 97.70 90.12 6.46 4.32 / 11.67 0.64 73.87 37.12 5.45
sb18 (36026) 20.06 / 66.11 4.27 / 16.55 2.64 98.91 94.35 2.88 2.16 / 8.68 0.67 63.02 34.27 2.06

Average 27.63 / 66.66 6.14 / 20.32 3.52 97.14 91.11 5.62 4.14 / 13.17 0.65 61.11 32.29 4.83

Split layer: M4
sb1 (150510) 49.82 / 68.33 6.46 / 25.37 9.50 99.79 93.91 9.00 1.70 / 24.08 2.14 65.23 35.26 18.90
sb5 (179844) 38.78 / 60.40 7.54 / 23.84 9.86 96.94 87.87 11.48 3.03 / 23.35 1.87 51.43 28.09 18.41

sb10 (200896) 33.50 / 60.21 13.16 / 37.36 8.53 91.38 73.21 15.05 9.81 / 36.54 1.31 38.81 19.55 17.19
sb12 (173294) 47.07 / 71.52 9.01 / 22.40 7.61 98.61 92.32 13.48 4.42 / 17.39 1.12 65.32 32.81 18.09

sb18 (86658) 29.83 / 59.89 5.15 / 17.89 6.43 99.37 95.29 4.26 1.87 / 10.95 1.53 57.00 30.80 7.18

Average 39.80 / 64.07 8.26 / 25.37 8.39 97.22 88.52 10.65 4.17 / 22.46 1.59 55.56 29.30 15.95

5.6.1 Via Perturbation with ObfusX

We first show in Table 5.1 the performance of via perturbation with ObfusX
using five designs in ISPD’11 benchmark suite that are also used in [36,
43, 72]. We obtain routed overflow-free designs from [72], to which we
apply the proposed SHAP-based via perturbation, with parameter r = 3×
routing grid size. We compare the performance and the cost of obfuscation
with the via perturbation technique proposed in [72]. This is based on the
same ML attack model2.

We use the following metrics to evaluate the performance and the cost
of an obfuscation3.

• Hit rate (HR) at X%: For a v-pin v, we first identify the top X% of
other v-pins u which have the highest ML model output for essential
v-pin pair (v, u). These v-pins are predicted by ML to most likely

2Note that the popular network flow attack model [59] takes prohibitively long time
to run on these designs and hence is not applicable here.

3Note that the functions of standard cells are not available in ISPD’11 benchmark.
Therefore metrics related to circuit outputs (e.g. Hamming distance (HD), output error
rate (OER)) are not applicable.

33

be the match for v. We call it a “hit” of v if its real matching v-pin
is among the v-pins identified above. We then report the average
percentage of hits of all v-pins v in the design.

For each design, we report two HR values with X = 0.01 and 0.1,
respectively. (As a point of reference, X = 0.1 results in up to 89
v-pins identified on split layer M6, or up to 200 v-pins on split layer
M4 in these designs. The total number of v-pins is quite large as
reported in the first column of the table.) A lower HR means better
obfuscation.

• WL overhead (∆WL%): percentage of increase in WL after the ob-
fuscation. Lower is better.

• Perturbed nets (PN%): number of perturbed nets divided by total
number of nets that contain any v-pin. Lower is better.

• Perturbed v-pins (PV%): number of perturbed v-pins divided by
the number of v-pins in the design. Lower is better.

• Total CPU time (tCPU, in hours) for running ObfusX.

Several observations can be made from the results in Table 5.1. First,
the HR of the ML model for 0.01% and 0.1% v-pin lists drops drastically
after obfuscation; for ObfusX it drops from 28% and 67% to 4% and 13%,
respectively, better than the HR reductions with in [72]. Second, the WL
overhead of ObfusX is less than 1/5 of that with [72]. Third, with ObfusX,
only around 30% of v-pins and 60% of nets (that contain v-pins) are finally
perturbed, compared to nearly-all nets and v-pins when perturbed with
[72].

To observe the tradeoff between performance and cost of obfuscation,
we plot in Figure 5.6 the curves of HR and WL overhead with ObfusX and
[72], respectively. Compared to [72], ObfusX achieves 87% and 97% lower
HR in 0.1% and 0.01% v-pin lists, respectively, for the same WL overhead

34

Wirelength overhead (%)

H
it

 r
at

e
(%

)

ObfusX 0.01%

[4] 0.01%

ObfusX 0.1%

[4] 0.1%

5X
87%
lower

97%
lower

Figure 5.6: Comparison of tradeoff in HR vs WL in superblue1.

Table 5.2: Results of wire lifting on six ISCAS’85 benchmark designs

Design #Nets No obfuscation [60] ObfusX
PNR% OER% HD% PNR% OER% HD% ∆WL% PNR% OER% HD% ∆WL% tCPU (min)

c880 252 100.0 0.0 0.0 91.7 99.9 18.0 4.3 85.3 100.0 23.3 3.4 2.4
c2670 607 95.8 99.9 7.0 87.1 100.0 14.0 4.4 77.8 100.0 23.5 3.2 7.0
c3540 638 97.2 95.4 18.2 93.5 100.0 33.4 2.5 84.5 100.0 38.2 2.5 18.4
c5315 997 98.7 98.7 4.3 95.0 100.0 18.1 1.7 88.9 100.0 23.2 1.7 13.6
c6288 1921 99.8 36.8 3.0 98.6 100.0 42.1 1.8 95.3 100.0 45.3 1.8 14.1
c7552 1041 99.6 69.5 1.6 95.3 100.0 20.3 2.2 87.5 100.0 27.2 2.2 12.7

Avg. 98.5 66.7 5.7 93.5 100.0 24.3 2.8 86.5 100.0 30.1 2.5 11.4
(↓5.0) (↑18.6) (↓12.0) (↑24.4)

of 0.5%, or is 3–5×more efficient in WL overhead for the same reduction
of HR.

5.6.2 Wire Lifting with ObfusX

We show in Table 5.2 the performance and cost of wire lifting with ObfusX
(r = 5 µm) on ISCAS’85 benchmark designs, which are often used in
related work, and compare them with [60]. The layouts are obtained from
the authors of [60].

For this benchmark, we use the network flow attack model [59] which
is obtained from the authors. Note that this is not a ML-based attack

35

model and is not used to build ObfusX. Since the split layer for each
design is not explicitly reported in [60], we tried to identify it by matching
the number of nets on private layers with the number reported in [60].
ObfusX was applied on six designs for which we were able to identify
the split layer, with WL budget equal to the reported WL overhead in
[60]. The obfuscated layouts are converted to Verilog and their functional
equivalency with original designs is verified with Synopsys Formality. For
these designs, we use the following metrics to evaluate the performance
and cost of an obfuscation.

• Percentage of netlist recovery (PNR) given in [43]: percentage of
correctly reconstructed nets. This quantifies how well the attack can
recover the whole design. Lower is better.

• Output error rate (OER): probability that there is any error bit in
outputs of the reconstructed circuit. Higher is better.

• Hamming distance (HD) between outputs of the original and the
reconstructed circuits. Closer to 50% is better.

• WL overhead (∆WL%): percentage of increase in WL after the ob-
fuscation. Lower is better.

• Total CPU time (tCPU, in minutes) for running ObfusX.

We derive OER and HD from 100,000 runs of Monte Carlo simulations
with ModelSim. OER and HD of the original design and [60], and the
WL overhead of [60] are quoted from [60]. PNR of the original design
and [60] are derived by definition, based on the design layouts and the
reported numbers in [60].

As can be seen in Table 5.2, with reasonable computing time of 11
minutes on average, ObfusX reaches 100% for OER, and achieves better
obfuscation in the reduction of PNR (12% vs 5% on average, or 2.4× better)

36

and the increase in HD (24.4% vs 18.6% on average, or 31% better), with the
same or less WL overhead compared to [60]. Note that the reported results
of [60] come from a (best) combination of three obfuscation techniques
including wire lifting and via perturbation for matching and non-matching
v-pins, whereas in our results wire lifting is applied alone. In fact, our
wire lifting and via perturbation techniques are orthogonal to each other.
Therefore, they may be combined for potentially better performance.

We were not able to make a fair comparison with another related work
[43] because the original layouts of [43] are likely to be very different from
ours and were not made available. (The layouts in [43] are generated
using all 10 metal layers, whereas our layouts from [60] only occupy 5–9
lower metal layers.)

In summary, for obfuscation with via perturbation, ObfusX is able to
achieve a lower hit rate (indicating better obfuscation) while perturbing
significantly fewer nets and vias in the design, with significantly lower
wirelength. When the same wirelength limit is imposed during wire
lifting, ObfusX performs significantly better in performance metrics (PNR
and HD with equally good OER).

5.7 Conclusion
We presented ObfusX, a routing obfuscator for split manufacturing which
incorporated SHAP-based analysis to explain a ML attack to the same
problem. The unique benefits of ObfusX were in its ability to identify the
best candidate nets for obfuscation, together with the layout features that
make them most vulnerable when subjected to an attack. As a result, it
achieved better performance than prior work while perturbing significantly
fewer nets and with significantly lower wirelength during via perturbation.
It also achieved significantly better performance than prior work if the
same wirelength limit was imposed during wire lifting.

37

6 explainable prediction of drc violation
hotspots

Today’s VLSI fabrication technologies require satisfying many complex
design rules to ensure manufacturability. Creating a layout that is clean
of design rule violations is now a cumbersome task, which may require
many iterations in the design flow. Within the design flow, Design Rule
Check (DRC) is typically applied after detailed routing. However, the
process of detailed routing can be rather tedious and expensive, which
typically takes several hours, if not days, to finish. Hence it is highly
desirable that an inexpensive DRC predictor is developed so that DRC
hotspots on the layout may be predicted accurately at the earlier stages in
the design flow. In addition, it is beneficial if predictions for individual
DRC hotspots can be properly explained in order to point to the root cause
behind each individual violation. In this way, designers may leverage this
early feedback without going through detailed routing and DRC phases
each time.

6.1 Related Works on DRC Hotspot Prediction
Recent researches have focused on predicting routability and DRC hotspots
[78, 8, 9, 54, 12, 55, 64] with ML. They have identified various features at
the placement and/or global routing stages which can contribute to DRC
violations. Several researchers [8, 9, 12] adopted support vector machines
(SVMs) with radial basis function (RBF) kernels, Tabrizi et al. used a
boosting ensemble model in [54] and a feedforward neural network (NN)
in [55]. Xie et al. proposed RouteNet [64], a convolutional neural network
(CNN) with transfer learning.

It is worth noting that, these works mainly focused on the predictive
performance, without much consideration on other important aspects in

38

practice, such as the model development cost and model explainability
as well as data availability. Specifically, with a large number of features
and samples, the SVM model with RBF kernel is expensive to train and
the predictions are difficult to explain. As for data availability, some
researches [54, 55] assumed that the accurate DRC results are partially
available for random regions of the layouts; they split samples in the same
design into training and testing sets based on this optimistic assumption.
Moreover, unlike most other works, where each data sample contains
layout information in a small region, RouteNet [64] used features in the
entire layout as a single input to the model, and thus it requires hundreds of
different placements from each design and the corresponding DRC results
(after detailed routing each placement) for model training, assuming all
macros are movable in placement. For this reason, data acquisition in [64]
may be computationally expensive. Finally, no prior work provided model
explainability to analyze each individual violations.

To address these issues, in this chapter, we propose to use the random
forest (RF) classifier [5] as an ideal candidate to predict DRC hotspots,
considering predictive performance and computational cost for model
development. For the first time, we also provide consistent explanations
for individual DRC hotspot predictions with SHAP [33], which works well
with the RF classifier. Each explanation identifies top-ranked features and
their amounts of contribution to a predicted DRC hotspot, which suggest
the root causes behind each violation. Our contributions are summarized
below.

• We propose model evaluation metrics that are tailored for DRC
hotspot prediction where the number of DRC violations may be
relatively very small, including area under the precision-recall curve
for predictive performance, and number of predictive operations for
model complexity.

• With these metrics, we carry out a comparative study on RF and ML

39

models from recent works on DRC hotspot prediction with similar
settings [8, 9, 55, 12, 54], with standard procedures of cross valida-
tion and hyperparameter tuning, where data availability is carefully
considered.

• By exploiting recent advances in explanatory analysis, we provide
reasonable explanations for individual DRC hotspots predicted by
RF, validated with real examples.

6.2 Overview of Explainable DRC Hotspot
Prediction

In the DRC hotspot prediction problem, given a global routing (GR) out-
come, we predict whether a global routing cell (g-cell), after detailed
routing, will contain at least one DRC violation. The prediction is made
based on other routed designs with the same technology and same design
flow.

We show the overall workflow in Figure 6.1. Our approach is to for-
mulate this problem as a supervised classification problem. We extract
features from placement and GR (shown in the left panel of Figure 6.1) to
form a feature vector (a.k.a. data sample) for each g-cell, and then feed it
to a ML model, which accepts this feature vector as input and produces
an output indicating how likely the g-cell is a DRC hotspot.

The data acquisition process is shown in the middle panel in Figure 6.1.
We use 14 designs in 65 nm technology with five routing layers from the
ISPD 2015 contest benchmark suite [6]1. Each design is first fed into
Eh?Placer [17], which produces a placed .def file. Then with Olympus-

1Design edit_dist_a is excluded from our experiments since it took more than
10 days to detail route and is therefore considered unroutable. superblue designs are
excluded because the technology is different. We include two hidden designs mult_2
and mult_c available at the contest website, which were released after the contest.

40

Floorplanning

Initial Placement

(w/ Eh?Placer)

Placement

Legalization

Clock

Routing

Signal

Global Routing

Signal

Detailed Routing

Design Rule

Check

..
.

Feature

Extraction

Label

Extraction

Sample

Generation

Physical Design Flow using Olympus-SoC

Data Set Generation Model Training /

Testing / Explanation

Training

Samples

Prediction

Machine Learning Model

(Random Forest)

Testing

Samples

Input: Netlist,

Library, ...

Individual

Explanation

SHAP

Figure 6.1: Workflow of explainable DRC hotspot prediction.

SoC, we follow a standard SoC flow with the steps shown in the figure.
After GR of signal nets, the intermediate results are used to generate the
feature vectors, and the DRC errors reported in the last step are used to
determine whether they are actual DRC hotspots. Refer to Section 6.3.2
for details.

Model training and testing work as follows. The 14 designs are ran-
domly divided into five groups with roughly equal number of samples, as
shown in Table 6.1. For predicting the DRC hotspots in a specific design,
we exclude the group that contains the design (i.e. testing group) and
use all designs in the other four groups (i.e. training groups) for model
training and tuning. The aforementioned procedure respects data avail-
ability by guaranteeing the entire design under test is never foreseen in the
training stage. It avoids potential optimism in evaluation as in [54, 55],
and better matches the practice in physical design, where the actual DRC
errors become available after a design is detail-routed in its entirety.

41

Table 6.1: The Profile and Grouping of Designs

Design # G-cells # DRC hotspots # Macros # Cells (k) Layout size (µm)

Group 1 29994 364 — — —
des_perf_b 10000 0 0 112.6 600×600
fft_2 3249 17 0 32.3 265×265
mult_1 8281 154 0 155.3 550×550
mult_2 8464 193 0 155.3 555×555

Group 2 28263 547 — — —
fft_b 6506 534 6 30.6 800×800
mult_a 21757 13 5 149.7 1500×1500

Group 3 27826 669 — — —
mult_b 24257 613 7 146.4 1500×1500
bridge32_a 3569 56 4 29.5 400×400

Group 4 29689 738 — — —
des_perf_1 5476 676 0 112.6 445×445
mult_c 24213 62 7 146.4 1500×1500

Group 5 30318 298 — — —
des_perf_a 11498 246 4 108.3 900×900
fft_1 1936 50 0 32.3 265×265
fft_a 6491 2 6 30.6 800×800
bridge32_b 10393 0 6 28.9 800×800

In the training stage of our workflow, we use grid search with 4-fold
cross validation to find the best hyperparameters. This process consists
of four passes. For each pass, designs in one of the four training groups
are held out for validation and the designs in the remaining three groups
are used for training. The performances from the four passes of cross
validation are averaged. Then we compare and select the hyperparameter
set with the best performance, and retrain the final model with the whole
training set (i.e. all 4 training groups) before testing. As such, no designs
(rather than samples) for validation is foreseen in the training process,
which resembles the training-testing split and thus avoids the optimism
bias in validation.

With predictions from the trained model, we explain them by inspect-
ing the feature contributions to individual DRC hotspots with SHAP [33],
as will be described in Section 6.3.4.

42

Wires in a horizontal metal layer

Vias
Standard cell

Blockage /
 macro

Congesion map borders

(horizontal metal layer)

Congesion map borders

(vertical metal layer)

Wire in a vertical

metal layer

Figure 6.2: A 3 × 3 g-cell window with standard cells, wires (different
colors indicate different metal layers), vias, congestion map borders, block-
age/macro.

6.3 Details of Explainable DRC Hotspot
Prediction

In this section, we elaborate our approaches to modeling predictions with
Random Forest, defining features, labels, and metrics for evaluation, and
providing explainability for individual predictions.

6.3.1 Random Forest and Its Benefits for DRC Hotspot
Prediction

Random Forest (RF) classifier [5] is a well-known ensemble learning
model based on decision trees, which typically trains hundreds of ran-
domized decision trees and aggregates their outputs to generate a final
prediction.

Compared to other classifiers with similar problem formulation for
DRC hotspot prediction [8, 9, 54, 12, 55], RF has good and robust per-
formance in prediction, owing to the ensemble mechanism. Moreover,
because of the randomization in choosing the features to split, RF is robust

43

in the presence of uninformative and redundant features. This property is
especially good for our problem with a large number of features whose
relative importance is not known beforehand.

It has relatively low computational cost because the training and test-
ing of underlying decision trees are much more straightforward than
optimization-based models like neural network, support vector machine,
etc., as used in [55, 8, 12, 9]. Furthermore, the aggregation process is nat-
urally good for parallelism, which further reduces the computational time
where multiple computing cores are available. The low computational
cost also makes it feasible to perform extensive searching for the optimal
hyperparameters. Last but not least, the tree-based structure of RF makes
it transparent in making decisions, providing good explainability, which
we utilize to explain individual predictions, as elaborated in Section 6.3.4.

6.3.2 Feature and Label Extraction

Now we show the features and label as used in our predicting model.
Figure 6.2 illustrates the types of layout information available after the
placement and GR stages. Using these, prior works have defined different
types of features related to routability and thus the DRC hotspot prediction,
including

• Location of g-cells in the layout[54, 55],

• Density-related information (e.g., cell density [54, 55, 57, 9, 12], pin
density [54, 57, 9, 12, 61, 78, 8], pin spacing/distribution [55, 9, 8]),

• Special pins and cells, which may have constraints in routing (e.g.,
clock pins [55], pins in nets with non-default rules (NDRs) [55, 57],
and multi-height cells [9]),

44

• Connectivity, where complex connections around the g-cells may
complicate routing (e.g., local nets [57, 9, 12, 78, 8], and cross-border
nets [55, 8, 9, 12]),

• Congestion map [55, 57, 9, 12, 78], which indicates supply and de-
mand of routing resources,

• Blockages for placement and/or routing [54, 55, 78], which further
limit the routing resources.

Recent works [54, 55, 9, 12] also extract features in a window including
neighboring g-cells to consider their contributions to DRC error due to
potential routing detours.

Inspired by these prior works, in this chapter, we extract the following
features in the designs, from the placed cells and the congestion map
after signal GR, which are explained in Figure 6.2. Each data sample
corresponds to a g-cell in the layout, which is expanded to a 3× 3 window
consisting of this g-cell (referred to as “central g-cell”) and its 8 neighbors2.

• For each of the nine g-cells in the window, we extract

– The center x- and y-coordinates, normalized to [0, 1].

– The numbers of standard cells, pins, and clock pins that are
fully inside the g-cell.

– The number of local nets, defined as nets whose all pins are
inside the same g-cell.

– The number of pins that belong to any local net.

– The number of pins that have NDRs, as defined in the ISPD
2015 contest benchmarks in our experiments.

2If the central g-cell is on the boundary of the layout, neighbors outside the layout
are padded with blank g-cells.

45

– The pin spacing, defined as the arithmetic mean of pair-wise
Manhattan distances of pins inside g-cell.

– The percentage of area occupied by blockages.

– The percentage of area occupied by standard cells.

• For each of 12 congestion border edges (i.e., segments with blue/red
dots in Figure 6.2) on each metal layer, and for each of 9 g-cells inside
the window on each via layer,

– The capacity C, defined as the maximum allowed number of
wires/vias across the edge.

– The load L, defined as the number of wires that are already
across the edge (for metal layers) / the number of vias inside
the g-cell (for via layers).

– The resource margin, i.e., the difference of C and L.

We include almost all applicable features from prior works. This results
in 387 features in total. To determine the labels, we examine the bounding
boxes of DRC errors as reported by Olympus-SoC. A g-cell is a DRC hotspot
if and only if the g-cell overlaps with any DRC error bounding box. A
sample is positive if and only if the central g-cell is a DRC hotspot.

6.3.3 Metrics for Model Evaluation in DRC Hotspot
Prediction

We propose several metrics for evaluating the predictive performance,
complexity and computational cost of a model.

As can been seen in Table 6.1, DRC-violated g-cells are much fewer
than DRC-free g-cells. Therefore, accuracy (i.e. the percentage of correctly
predicted samples) is not a good indicator of model performance [19] for

46

DRC hotspot prediction. To address this, the following metrics are used
in prior works.

• True positive rate TPR = TP/(TP + FN), a.k.a. recall,

• False positive rate FPR = FP/(TN + FP),

• Precision Prec = TP/(TP + FP),

where TP and FP are the numbers of samples that are correctly and
incorrectly predicted as positive, respectively; TN and FN are the num-
bers of samples that are correctly and incorrectly predicted as negative,
respectively.

Although these metrics are better alternatives to accuracy, all of them
can change when different thresholds of classification are applied [19].
Most works in DRC hotspot prediction [8, 9, 12, 55] used TPR and FPR

only at a single threshold. In practice, however, the designer is free to
adjust the threshold to get different prediction results with the same model.
With this consideration, threshold-independent metrics, such as the areas
under the receiver operating characteristic (ROC) curve and the precision-
vs-recall (P-R) curve [19], are better indicators of overall model quality.

For the problem of DRC hotspot prediction in particular, one usually
cares more about the performance when FPR is low (as the number of
negative samples is typically large, a moderate FPR can imply a large
number of undesired false alarms). For this reason, the area under ROC
curveAroc, which weights TPR over all FPRs equally, may not be effective
enough. Therefore, we use the area under P-R curve (AUPRC) as the main
performance metric, since it focuses more on the positive samples (both
actual and predicted ones). For the same reason, AUPRC is used when we
tune hyperparameters with cross validation. To understand how different
models perform at a low FPR, we also report TPR and Prec values at the
classification threshold when FPR = 0.5%. A similar FPR is seen in prior
works [9, 64]. In summary, we use the following metrics for evaluation.

47

• TPR∗: true positive rate (a.k.a. recall) at the classification threshold
such that FPR = 0.5%.

• Prec∗: the precision at the same threshold as above.

• Aprc: the area under the precision-vs-recall curve.

6.3.4 Individual Explanations for Predicted DRC
Hotspots

We use SHAP to analyze individual hotspot samples predicted by the RF
model. With the help of SHAP values, we estimate how much each of the
387 features contributes to the DRC errors found at individual predicted
DRC hotspots. Therefore, the designer is empowered to both predict and
root cause individual DRC hotspots at an early design stage.

More specifically, the RF model maps each sample with feature vector
x ∈ Rn, n being the number of features, to a probability f(x) ∈ [0, 1]
indicating how likely the sample is a DRC hotspot. We adopt the SHAP
tree explainer [33] to explain individual predictions made from RF, by
looking into the most contributing features in specific DRC hotspots. We
validate these explanations by comparing with actual DRC errors and
detailed-routed layouts.

6.4 Experimental Results
We run experiments in a Linux desktop with an Intel 6-core 2.93 GHz CPU,
an Nvidia 1080Ti GPU, and 24 GB memory.

6.4.1 Performance of DRC Hotspot Prediction

We compare the predictive performance of RF with all ML models ap-
plied in previous works that have similar problem formulations to ours

48

[8, 54, 9, 12, 55], including SVM with RBF kernel (SVM-RBF), random
undersampling boosting (RUSBoost) with decision trees as base learners,
and feedforward NNs. The inputs to all ML models are the 387 normal-
ized features described in Section 6.3.2. Since we have no access to the
exact post-route designs used in prior works, it is not possible to take
their results directly. Instead, we implement each ML model with avail-
able information in these papers, train and tune the models with our best
effort with cross validation, and evaluate with our dataset. All models
are implemented using Python with scikit-learn (except for NNs: with
Keras, backed by TensorFlow and GPU acceleration). We do not compare
our work with [64] because the performances cannot be compared fairly
due to different assumptions on macro movability in placement, as well
as significant differences in the amount, scope, and acquisition cost of
training data.

The performance is reported in Table 6.2 for 12 designs3 in terms of
TPR∗, Prec∗ and Aprc, as defined in Section 6.3.3. For example, the RF
model shows an average TPR∗ of 50.6%, meaning that RF predicts 50.6% of
positive samples correctly on average while guaranteeing that 1− 0.5% =
99.5% of negative samples are also predicted correctly.

Comparing the average performance in Table 6.2, we can find that RF
is the best among all models in terms of all three performance metrics.
Specifically, it is 21% better in Aprc than the popular SVM-RBF model on
average and up to 60% better than other models. We highlight in bold the
best performances among compared models for each design in Table 6.2.
Then for each model and performance metric, we count the number of
“winning designs” where the model performs the best among all models.
Results show that RF wins the most designs in all three metrics, especially
in the main performance metric Aprc.

Although the SVM-RBF model performs well in some designs, this
3Two other designs (des_perf_b and pci_bridge_b) are not included because there

is no DRC errors and thus these metrics are undefined.

49

Table 6.2: Comparison of Performances of RF and Different ML Models Used in Prior Works

Design SVM-RBF [8, 9, 12] RUSBoost [54] NN-1 [55] NN-2 RF (this work)
TPR∗ Prec∗ Aprc TPR∗ Prec∗ Aprc TPR∗ Prec∗ Aprc TPR∗ Prec∗ Aprc TPR∗ Prec∗ Aprc

fft_2 0.0588 0.0588 0.1358 0.0000 0.0000 0.0183 0.0000 0.0000 0.0058 0.0000 0.0000 0.0062 0.0000 0.0000 0.0177
mult_1 0.3961 0.5980 0.5248 0.2143 0.4459 0.2944 0.2143 0.4459 0.3551 0.2857 0.5176 0.4132 0.3442 0.5638 0.4570
mult_2 0.4767 0.6917 0.5828 0.4041 0.6555 0.4798 0.1865 0.4675 0.3319 0.1658 0.4384 0.2930 0.4352 0.6720 0.5845

fft_b 0.1199 0.6809 0.4095 0.0206 0.2683 0.2816 0.0430 0.4340 0.1781 0.0375 0.4000 0.1752 0.2416 0.8113 0.4404
mult_a 0.6923 0.0763 0.2439 0.7692 0.0840 0.4435 0.1538 0.0180 0.0302 0.2308 0.0268 0.0259 0.8462 0.0917 0.7445

mult_b 0.5498 0.7407 0.6861 0.4633 0.7065 0.6324 0.4274 0.6895 0.5922 0.4356 0.6935 0.6134 0.5269 0.7324 0.7025
bridge32_a 0.8393 0.7231 0.8703 0.8393 0.7231 0.8418 0.7321 0.6949 0.7420 0.6786 0.6786 0.7246 0.7321 0.6949 0.8537

des_perf_1 0.5207 0.9362 0.8947 0.4127 0.9208 0.8129 0.3802 0.9146 0.8427 0.3846 0.9155 0.8488 0.5459 0.9389 0.8954
mult_c 0.5484 0.2194 0.1797 0.7258 0.2711 0.2929 0.6613 0.2531 0.3581 0.7903 0.2882 0.2792 0.9032 0.3164 0.7180

des_perf_a 0.5407 0.7037 0.7313 0.5366 0.7021 0.6740 0.5122 0.6923 0.6957 0.4878 0.6818 0.6309 0.6748 0.7477 0.7797
fft_1 0.1600 0.4706 0.3601 0.0600 0.2500 0.1261 0.0200 0.1000 0.1345 0.0800 0.3077 0.2016 0.3200 0.6400 0.5348
fft_a 0.5000 0.0303 0.0201 0.0000 0.0000 0.0050 0.0000 0.0000 0.0044 0.0000 0.0000 0.0098 0.5000 0.0303 0.1009

Average 0.4502 0.4941 0.4699 0.3705 0.4189 0.4086 0.2776 0.3925 0.3559 0.2981 0.4123 0.3519 0.5058 0.5200 0.5691
Win. designs 6 6 3 1 1 0 0 0 0 0 0 0 7 7 9

Model param. 1252.2k / model 318.5k / model 15.6k / model 15.9k / model 4269.7k / model
Prediction op. 3759.7k / sample 24.9k / sample 31.1k / sample 31.8k / sample 34.3k / sample
Train. CPU time 65.7 min / model 6.9 min / model 24.4 min / model 13.1 min / model 8.9 min / model
Pred. CPU time 0.24 min / design 0.03 min / design 0.01 min / design 0.01 min / design 0.04 min / design

50

model has a fairly large number of parameters, the longest training time
(7× more than RF), and the largest number of operations for a single
prediction (110×more than RF). This is due to its high model complexity
from the RBF kernel, hence the need to store many high dimensional sup-
port vectors as parameters and the complex calculations in both training
and predicting. These facts also make it difficult to provide explainability
with the SVM-RBF model.

The RUSBoost model has 100 iterations of boosting. It has the shortest
training time and the fewest operations at prediction time owing to the
simplicity of underlying decision trees. However, it is not very powerful
in prediction, nor easy to parallelize due to sequential updates of model
parameters.

We report two feedforward NN models with different number of hid-
den layers. NN-1 has a single hidden layer, which is the same architecture
as in [55], except that 40 hidden neurons are used in our work as per cross
validation. NN-2 has two hidden layers with 40 and 10 neurons, respec-
tively. We use ReLU and sigmoid activations for hidden layers and the
output, respectively. They are the simplest but also the least performing
models among the five. In fact, we tried feedforwards NNs with more
hidden layers with varying number of neurons and found that the predic-
tive performance of feedforward NNs can hardly be improved further by
adding more hidden layers beyond two. More complex and deeper NNs
like convolutional NNs are not applicable to our dataset. Their complexity
could also compromise explainability.

The reported RF model consists of 500 unpruned decision trees. That is
why it has the most parameters among compared models. However, owing
to the simplicity of decision trees, it does not require many operations
in prediction with a negligible predicting runtime. The training time
is also fairly short. Furthermore, unlike boosting methods, RF is easy
to parallelize for training with more trees, which would not hurt the

51

predicting performance as our cross validation suggests.

6.4.2 Explaining Individual Predictions

With the SHAP tree explainer in Python package shap, we measure fea-
ture contributions to individual RF predictions for hotspots and explain
accordingly. Three typical DRC-violated g-cells in two designs are taken
as examples in this experiment.

Figure 6.3(a)–(c) show the layouts of these example g-cells along with
their neighboring cells, with red marks indicating the actual DRC errors
(which are not available at prediction and explanation time). The cells,
wires and vias are not shown. The colored edges show the GR edge
congestion in layers M5 and M4 (a color closer to red indicates higher
congestion). The via congestion is not visible. The gray box in (c) indicates
a macro, where all wires and vias are blocked. The naming convention,
which specifies the type, layer and location of GR congestion, is shown
in Figure 6.3(d) to relate the feature names and the explanations below.
As an example, feature edM4_4V is from the edge congestion map. It is
the difference of capacity and load in layer M4, on the edge labeled 4V.
Figure 6.3(d) shows more examples with corresponding colors.

Based on the RF model, the feature contributions to each hotspot pre-
diction are evaluated and visualized with SHAP in Figure 6.4. Recall that
the prediction output from the RF model is the probability that the sample
is a DRC hotspot, and the threshold of classification is adjustable. There-
fore a prediction output is not meaningful unless compared with that of
other samples or the base value (i.e. the average). The pink/blue bars
represent the positive/negative SHAP values of features, sorted by the
absolute value. In other words, the pink/blue bars show how much each
feature “pushes” the prediction output higher/lower (i.e. more/less likely
to be DRC-violated) from the base value. Since these examples are actual
DRC hotspots, the pink bars dominate the prediction and the blue bars

52

(a) (b) (c)

o E

N

S

W

SE

NENW

e?M4_4V

e?M5_7H

v?V2_NE

? = c/l/d

Naming convention for congestion features:

 e(dge)/v(ia) congestion

 c(apacity)/l(oad)/d(ifference)

 Layer name (M1/V1/.../M5)

 _Edge/cell name (see at right)

Examples:
1H1H 2H 3H 4H

5H 6H

SW

7H 8H

9H 10H 11H 12H

1V

2V

3V

4V

5V

6V

7V

8V

9V

10V

11V

12V(d)

Figure 6.3: Example DRC hotspots to be explained. (a) A hotspot in highly
congested area from des_perf_1. (b) A hotspot with moderate edge con-
gestion from des_perf_1. (c) A hotspot near a macro from matrix_mult_a.
(d) The naming convention for GR congestion features.

can hardly be seen. Referencing the naming convention in Figure 6.3(d),
we can translate Figure 6.4 to the following explanations.

Figure 6.4(a) (corresponding to hotspot (a)) shows a lot of features
pushing the prediction output from the base value 0.016 to 0.56, making
hotspot (a) 35×more likely to be a DRC hotspot than average. The most
influential features are the GR edge overflows in layer M5. For example,
the fact that edM5_7H=-4 (i.e. the capacity of edge 7H in layer M5 is 4 tracks
less than the load) pushes the output to the positive side by around 0.05,
as indicated by the length of the rightmost pink bar. Similar overflows can
be found at six other edges, which are all shown in red in Figure 6.3(a).

53

(a)

(b)

(c)

Figure 6.4: (a)–(c) Most contributing features for predicting DRC hotspots
in Figure 6.3(a)–(c), evaluated by the SHAP tree explainer. (The blue
regions on the right contain many features that are not visible as the pink
bars dominate.)

Feature value vlV2_E=35 is also shown in Figure 6.4(a), meaning the large
load in layer V2 in the east neighboring cell also contributes to the DRC
errors.

Hotspot (b) is mainly affected by the high via congestion in the north
and the central cell in layers V2, as indicated by vlV2_N=37 and vlV2_o=29
in Figure 6.4(b), and in the northeast cell in layer V3 (vlV3_NE=24). The full
loads in M4 on edges 6V and 11V (indicated by edM4_6V=0 and edM4_11V=0,
corresponding to the two horizontal orange edges in Figure 6.3(b)) have
secondary contributions.

Hotspot (c) is primarily due to the three edge overflows in M4 (at edges
2V and 3V, the two horizontal red edges in Figure 6.3(c)) and M3 (at edge
2H). Other visible elements in the congestion map in Figure 6.3(c), such
as the blockage of the macro and the overflow in M5 (indicated by the
vertical red edge), are not the main reasons for this DRC hotspot.

These explanations are available individually on demand with runtime
overhead of 1.4 sec/sample, without requiring actual detailed routing. To

54

verify their validity, we compare them with the actual DRC errors of each
example hotspot in Figure 6.3(a)–(c) after detailed routing, which are
listed below.

(a) 60 errors of different types across metal layers M2 through M5 and
via layers V2 through V4.

(b) Two shorts in M2, five end-of-line space errors (EOLs) in M3, two
EOLs and a different-net space error in M4.

(c) One short in M3 and one short in M4.

All three explanations are consistent with the actual outcomes. For hotspot (a),
a large number of overflows in the neighborhood pose extreme difficulty
in routing. For hotspot (c), the explanation perfectly matches the layers
where the errors are located. A closer look at the detailed wire and vias of
hotspot (b) reveals that the main errors—EOLs in M3—arise due to the
dense presence of vias in V2 and V3, which suggests the explanation to
hotspot (b) also makes sense.

Notice that hotspots (a) and (b) have totally different explanations
despite being from the same design and predicted by the same RF model.
For hotspot (c), there is a GR edge overflow in M5 (vertical red edge in
Figure 6.3(c)) that looks equally important as other overflows, but it is
(correctly) not reported as a primary contributing feature. These facts
suggest that the RF-based explainer does give reasonable, case-by-case
explanations which can be beneficial at an early design stage.

6.5 Conclusion
We used RF to predict DRC hotspots at the global routing stage. In terms
of AUPRC, a metric tailored for this purpose, RF showed up to 60% better
predictive performance on average than ML models applied in similar

55

works, with low computational cost. Owing to the transparency of RF
and the adoption of SHAP, we can further make reasonable and consistent
explanations to root cause individual DRC hotspots in an efficient manner.
These facts make RF ideal for DRC hotspot prediction.

56

7 approximate logic synthesis guided by
explainable ml

Approximate logic synthesis (ALS) is the process of generating a Boolean
circuit that approximates the functionality of an original circuit within a
tolerance of error, in trade of better quality of results (usually a smaller
area, power and/or delay). Many ALS techniques have been proposed
in the past decades [51]. Depending on the abstract level the approxi-
mation is performed, these techniques can be broadly classified into two
categories. Some techniques are based on manipulating the circuit struc-
ture/netlist (e.g., [56]). The other category of ALS techniques are based
on relaxation of the functionality, essentially by altering entries in the truth
table, regardless of the circuit structure.

As a specific subset of the latter category, some ALS techniques (e.g.,
[40]) construct an approximate circuit only based on samples of input-
output pairs (i.e., entries in a truth table), which are generally achieved by
learning a function that generalizes these samples. We refer to this subset
of techniques as sampling-based ALS in this dissertation. Sampling-based
ALS is drawing increasing research interest, as many promising studies
and interesting contests are conducted in recent years [10, 13, 4, 52, 45].

Sampling-based ALS techniques are natural fits for synthesis of ML ap-
plications, where only samples corresponding to a training set are known
and trading accuracy with the implementation cost is acceptable [16].
However, they can also be useful in other application domains, and may
be integrated with conventional logic synthesis and optimization tech-
niques. For example, an approximated circuit may first be constructed
from the provided samples using sampling-based ALS, and serve as a
starting point to apply conventional synthesis and optimization techniques
to further optimize it.

Moreover, sampling-based ALS is also a natural fit when the input space

57

is known to be a constrained version of all possible inputs. For example,
if a designer knows in advance that some combinations of input bits
cannot happen in their specific modes of operation, then these constraints
can be easily incorporated in sampling-based ALS; if a set of samples
representing all modes of operation is given, then one can easily prune
the undesired samples and only use the ones corresponding to specific
modes of operation, keeping the sampling-based ALS process intact.

Recent CAD contests (ICCAD 2019 and IWLS 2020) have introduced
related problems on synthesis only based on samples of input-output pairs.
The ICCAD 2019 contest [52] required an almost-perfect accuracy from
synthesis and it did not target ALS specifically. The IWLS 2020 contest [45]
looked at a rather restricted sampling-based ALS problem where the size
of the training set was very small and a limit of 5000 gates was imposed
for synthesis of all functions regardless of number of their primary inputs.

This chapter studies sampling-based ALS problem using adaptive
decision trees (ADTs) with specific focus on utilizing explainable ML.
We formulate the approximation of a Boolean function as a supervised
ML problem, and propose to use explainable ML to guide the training of
ADTs. This is based on a feature importance metric derived from SHAP
[34]. With SHAP-powered explainability, we measure the importance
of each individual primary input bit with respect to the function output,
which we further utilize to achieve an efficient ADT-based implementation
of Boolean function approximation with minimal loss in accuracy. We also
include approximation techniques for ADT which are specifically designed
for ALS, including don’t-care (DC) bit assertion and instantiation.

ADT learns a generalized sum-of-product (SoP) expression of the
underlying Boolean function from sample input-output pairs. It is based
on recursively applying Shannon expansion of the underlying function
with splits on a series of primary input bits. The selection of these input
bits are guided by a SHAP-based bit importance metric, which is more

58

consistent and beneficial for ALS purposes than other previously adopted
metrics, such as the decrease in impurity and in entropy (aka. information
gain) [40, 4].

In our experiments, we use classic synthesis tools (espresso and abc)
to achieve a baseline and accurate implementation (i.e., no error). We
further restrict the input space and show the same synthesis flow only
results in 4% reduction in area on average when no approximation is
applied. However, applying approximation with the proposed SHAP-
guided ADT techniques results in 39%–42% reduction in area with 0.20%–
0.22% error on average.

In the remainder of the chapter, we review some preliminaries in Sec-
tion 7.1 and related work in Section 7.2. We discuss our approximation
techniques in Sections 7.3 and 7.4, followed by presentation of experimen-
tal results in Section 7.5 and conclusions.

7.1 Preliminaries on Sampling-Based ALS
In this section, we briefly introduce the technical backgrounds of sampling-
based ALS, reformulated as a supervised ML problem.

7.1.1 Binary Decision Tree for Learning Boolean
Functions

A decision tree classifier [21, 44] is a ML model that iteratively splits
training samples into subsets (branches) based on the value of a selected
feature, forming a tree-like structure that is used to classify any other
samples. The selection of splitting features is typically based on Gini
impurity or entropy. Specifically, in the context of Boolean functions, a
training sample corresponds to an input vector and its corresponding
output. Each feature corresponds to an input bit (which means the feature

59

can only take a value of either 0 or 1) and the class label of a sample is
determined by the output bit (0 or 1).1 This binarized classifier is called
a binary decision tree (BDT). Prior studies have shown its efficacy on
learning Boolean functions [45, 13]. The tree structure, which resembles a
binary decision diagram (BDD), makes it straightforward to convert the
learned function to a truth table for logic synthesis.

7.1.2 Adaptive Decision Tree

A conventional decision tree algorithm accepts a single batch of training
samples, which are split into new branches as the tree develops. As the
tree grows deeper, the number of samples in each branch becomes expo-
nentially smaller. Therefore, it is likely to overfit locally. To address this,
each time a tree node is split into two nodes, a new batch of samples (of
the original size) are used for each new node for further tree development
[13]. In this chapter, we refer to this method as Adaptive Decision Tree
(ADT) since new samples are generated and consumed “adaptively” on
the fly as the tree grows. While not very common in conventional ML
problems due to limited data availability, ADT is feasible in the context of
ALS since we can sample the input space and get as many input-output
pairs as needed. Details of ADT will be discussed in Section 7.3.2.

7.2 Related Works on Sampling-Based ALS
The study of learning functions from sample input-output pairs remains
active in recent research and contests [10, 45, 52, 13, 4, 20]. Chatterjee [10]
explore an interesting idea of learning a Boolean function and synthesize
it as a network of lookup tables (LUTs) by simply memorizing the samples.
Boroumand et al. [4] generate Boolean networks by building LUTs that

1We use “feature” and “(input) bit” interchangeably in this chapter.

60

are most informative in terms of decrease in entropy (aka. information
gain). Targeting the same problem as in this chapter, the technique of
these two papers is specific to building the approximated circuit with LUTs.
In contrast, our approach provides the approximated AIG, which offers
more flexibility in later synthesis steps (logic optimization, technology
mapping, etc.).

Recent contests suggest research interest in related topics. Specifically,
ICCAD 2019 contest [52] focuses on reconstructing the logic function in-
side a black-box circuit given full access to the circuit. IWLS 2020 contest
[45] explores the possibility of learning Boolean functions with a very
small number of samples and synthesizes them as AIG within a gate count
limit. Both contests did not specifically target ALS; the ICCAD contest
problem targeted an extremely high accuracy of 99.99% for application
domains when such high accuracy is needed such as security. The IWLS
contest defined a restricted problem where a limit of 5000 gates was im-
posed for synthesis of all the functions regardless of the size of primary
inputs, with the objective to maximize accuracy.

The closest related works to ours were [13] and [20]. The idea of ADT
was adopted in [13] as part of techniques to tackle the ICCAD 2019 contest
problem. However, our work distinguishes from [13] in three aspects.
First, [13] focused on solving the ICCAD contest problem and not ALS; it
focused on synthesis with an extremely high accuracy of 99.99%. Second,
the splitting criterion of ADT in our work is different and is based on ML
explainability. Third, we further analyzed the error bound and addressed
the importance of DC/XOR bit assertion and sample enumeration, which
are specially designed for ALS. In [20], the authors used a conventional
DT to perform logic optimization. They compared the learned SOP ex-
pression with the output of espresso, and conclude that a DT with limited
depth is able to learn expressions that can be synthesized to more size-
efficient circuits. However, they only targeted functions with less than 16

61

primary inputs. Our experiments will show that conventional DTs, either
regularized or not, is not suitable for functions with a larger number of
primary inputs. Finally, neither [13] or [20] addressed the tree complexity
introduced by possible XOR gates and therefore could take a long time to
build the tree in case of a large tree size.

7.3 Overview of SHAP-Guided Logic
Approximation

In this chapter, we consider the following sampling-based ALS problem.
Given a Boolean function f : {0, 1}n → {0, 1,−} that is specified by a
truth table with unknown circuit structure, where − denotes a don’t-
care (DC) output, the goal is to find an approximate circuit that imple-
ments f ′ : {0, 1}n → {0, 1}with a small area, where the output error rate
Probx∈{0,1}n(f(x) 6= f ′(x) | f(x) ∈ {0, 1}) does not exceed an error bound
ε. In this work, the circuit is implemented as an And-Inverter Graph (AIG)
according to the flow that will be explained next. Other synthesis and
optimization techniques, such as logic rewriting and technology mapping,
may be applied thereafter to the produced AIG.

7.3.1 Overall Workflow

We first discuss the overall flow of ALS. Figure 7.2 shows three cases cor-
responding to different target requirements. The baseline flow shown in
Figure 7.2(a) is an example of synthesizing from a truth table (in PLA for-
mat) without approximation, and when the input space is not constrained
(i.e., all combinations of values of primary inputs are feasible in the target
application). The truth table is first fed into espresso, a two-level logic
minimizer. Then the minimized PLA is provided to abc for synthesis.
The output of the flow is an AIG, which is used in further synthesis steps

62

such as technology mapping. As shown in Figure 7.2(b), when the input
space is constrained, the constraints can be added in PLA as DC cubes.
Note that as a two-level logic minimizer, espresso is not optimized for
multi-level logic synthesis. This means adding DC cubes may or may
not result in smaller area in AIG processed with it. Therefore, as shown
in Figure 7.2(b), we accept the constrained-input-space version only if
the area is improved, hence the “choose one” step. However, this issue
is beyond the scope of this work. Figure 7.2(c) includes the proposed
module of ADT-based approximation (highlighted in red), which is the
core idea that will be discussed next.

7.3.2 Adaptive Decision Tree for ALS

Since we have complete information on the original function, but no infor-
mation on the circuit structure, our approach to sampling-based ALS is to
formulate it as a supervised learning problem, where an approximated
Boolean function is learned based on input-output pairs sampled from the
function. We adopt adaptive decision tree (ADT) as our learning model
as reviewed in Sections 7.1.1 and 7.1.2. It accepts the truth table as input,
and outputs an approximated truth table.

ADT learns an approximated function by dividing the input space
{0, 1}n iteratively based on the following formula known as Shannon ex-
pansion.

f(x1, . . . , xi, . . . , xn) = (xi ∧ f |xi=1) ∨ (¬xi ∧ f |xi=0), (7.1)

where f |xi=1 = f(x1, . . . , 1, . . . , xn) is a subfunction of f with xi assigned
to 1, and f |xi=0 is similarly defined. They are referred to as the cofactors of
f .

When building an ADT, we maintain a list of bit states in each tree
node. Each bit has one of the five states:

63

From root/parent node

Generate samples

in associated

subspace

For each free bit, use the samples to check

whether it can be asserted as DC or XOR

All bits

are assigned or

asserted?
Leaf

Number of free bits

is small?

Build subtree by

by enumerating

input vectors

Select the best bit xj

based on SHAP importance

Assign xj = 0 To left child node

Assign xj = 1 To right child node

Estimate SHAP importance

of each free bit

(Sections 7.4.2, 7.4.3)

(Section 7.3.3)

(Section 7.3.4)

Yes

Yes

No

No

Figure 7.1: Illustration of building an ADT for ALS using SHAP impor-
tance. Steps taken to process a node are illustrated which could be to
further split the tree, reach a leaf, or build a subtree at one shot.

64

Truth table

(.pla)

Minimize logic

with espresso
PLA

(exact, min)

Synthesize

with abc

Final

AIG

(a)

Truth table

(.pla)
Minimize logic

with espresso
PLA

(exact, min)

Contrain

input space
Synthesize

with abc

Synthesize

with abc

Choose one:

smaller area

Final

AIG

espresso

(b)

Truth table

(.pla)

Approximate

with ADT

PLA

(approx.)

Minimize logic

with espresso
PLA

(approx, min)

Contrain

input space
Synthesize

with abc

Synthesize

with abc

Choose one:

smaller area

Final

AIG

espresso

(c)

Figure 7.2: Logic synthesis flows compared: (a) Exact functionality without constraint in input space
(baseline), (b) exact functionality with constraints in input space, and (c) approximated functionality
with constraints in input space (proposed). Other synthesis techniques may be applied thereafter to the
produced AIGs.

65

0 : assigned to 0,

1 : assigned to 1,

− : asserted (approximated) as DC bit, details in Section 7.3.3,

× : asserted (approximated) as XOR bit, details in Section 7.3.3,

? : free, i.e. yet to explore.

The building of ADT begins with the root node, where all bits are
initially in free state. At each node, as illustrated in Figure 7.1, we first
generate samples that are consistent to the states of input bits: bits which
are already set to 0-state (resp. 1-state) must be set to 0 (resp. 1). Then
we visit each free bit and use the generated samples to evaluate if that bit
can be asserted (i.e., approximated) as a DC or XOR bit2. A bit will be
asserted if found to be feasible after evaluation, and otherwise will remain
free. Once all bits are visited, we select a free bit indexed j as the next
node to split. (This selection of the next bit is SHAP-guided to choose the
most suitable bit to split on.)

We split the node into two child nodes with assignments xj = 0 and
xj = 1 respectively. The state of bit xj in the two child nodes is respectively
set to 0 and 1. This means when we proceed to the left (resp. right) child
node and generate samples, xj has to be fixed to 0 (resp. 1). The child
nodes represent its two cofactors f |xj=0 and f |xj=1 in (7.1) respectively.
Equivalently, each child node focus on the output of f in an input subspace
where an input bit is fixed. We will find these cofactors in corresponding
child node and do it recursively, until each node in the tree either splits or
is a leaf. The ADT can be built in either depth-first or breadth-first order.
We opt for breadth-first order for more balanced development in each
branch.

2XOR bit is opposite of a DC bit and defined in Section 7.3.3

66

As illustrated in Figure 7.1, when building an ADT, each tree node has
one of three outcomes: (a) it is a leaf node, making no further split on this
branch, (b) it splits into two child nodes with assignments on an input
bit xj , or (c) it builds a subtree at one shot if the number of free bits is
small (details in Section 7.4.2). The outcome depends on a groups of input
vectors sampled in the associated subspace.

Recall that building an ADT is essentially recursive Shannon expan-
sions with (7.1). When the building process concludes, we will get a sum
of product (SoP) expression of f .

The reason why ADT yields an approximated version of f is that we
assert DC and XOR bits only based on samples. For example, if the output
is the same for all samples in an input subspace, we assert that the function
output is constant in this subspace. In this case, all free bits will be set to
DC (“−”) state. Note that due to statistical sampling error, a bit may be
asserted DC/XOR when it is actually not, but very close. This is the core
that we base our sampling-based ALS approach on, which is discussed in
detail next.

7.3.3 Assertion of DC Bits and XOR Bits

For combinational circuits built with logic gates, it is possible that an
output bit does not depend on certain primary inputs, especially in an
input subspace. These input bits are referred to as don’t care (DC) bits.
For example, for function f(x1, x2, . . . , xn) = x1 ∨ g(x2, . . . , xn), f does not
depend on x2, x3, . . . in the subspace where x1 = 1. Therefore, it is desired
to assert them as DC in this subspace.

An XOR bit is the opposite of a DC bit. When an XOR bit flips and
other bits remains the same, the output flips regardless of other input bits.
For example, in function f(x1, x2, . . . , xn) = x1⊕ g(x2, ..., xn) where g is an
arbitrary function, x1 is an XOR bit of f .

67

The assertion of XOR bits in ADT is important. Generally, we want to
avoid splitting the tree on any XOR bit, as it would create two identical
subtrees with opposite polarities. As illustrated in Figure 7.3, splits only
happen on free (not-assigned/asserted) bits. Preliminary experiments
showed this strategy can save about 50% of the runtime to build the tree
when the circuit includes many XOR gates.

x

xx

(f) (f) (¬f) (¬f)

f =

(a)

x

(f) (f)

f ’ =
f = x ⊕ f ’

(b)

Figure 7.3: XOR bit assertion in ADT for f = x1 ⊕ ((¬x2 ∧ f1) ∨ (x2 ∧ f2))
where f1 and f2 are Boolean functions independent of both x1 and x2.
Dash lines are 0 assignments and solid lines are 1 assignments. (a) Not
asserting x1 as an XOR bit and instead splitting on x1 would result in two
subtrees with opposite polarities. (b) Asserting x1 as an XOR bit, we only
need to develop one subtree and take the XOR of x1 and the resulting
function f ′.

7.3.3.1 Asserting DC and XOR bits by sampling

As shown in Figure 7.1, we use generated samples at each node and visit
each free bit to determine if it can be asserted to DC or XOR. To determine
if a bit xj can be asserted to DC in a subspace, we generate 2r samples
as r pairs. Each pair consists of two random samples in the subspace
which only differs in xj . We compare the two outputs of each pair of input
samples. The DC assertion fails if any pair has different outputs, otherwise
xj is asserted as DC after comparing all r pairs of outputs.

The assertion of an XOR bit is similar. When we compare the output
in pairs, the outputs of each pair are expected to be different. The XOR

68

assertion fails if any pair has the same outputs, otherwise xj is asserted
as an XOR bit after comparing all r pairs of outputs. The assertion step
is repeated for every free bit in a node. A total of 2rm samples will be
generated, where m is the number of free bits.

7.3.3.2 Expected error rate of a fully developed ADT

Now we analyze the error of our ADT-based ALS. Consider the assertion
on bit xj in the root node of an ADT. Assume for p-fraction of input vectors
x ∈ {0, 1}n, a single flip in bit xj results in a change in the output. With
r pairs of random samples of x generated as previously described, the
probability of a bit being incorrectly asserted as DC or XOR is

P (p, r) = pr + (1− p)r ≈ (1− p)r. (7.2)

The above approximation holds when p is close to 0. If p is not close to 0 or
1, P (p, r) becomes exponentially small with growing r and is negligible.
If p is close to 1, a similar conclusion can be drawn by symmetry. Without
loss of generality, we assume p is very close to 0, meaning for most x in
the input subspace, a flip in bit xj will not change the output. In case of
incorrectly asserting xj as a DC bit, the error rate caused by this assertion
will be p/2 because it is considered an error only when the function outputs
differently for xj = 0 and xj = 1, and only one of them causes the error.
Therefore the expected error rate due to incorrectly asserting a bit is

ε0 ≈
p(1− p)r

2 ≤ 1
2(r + 1)

(
1− 1

r + 1

)r

≈ e−1

2r .

This bound for the expected error also holds for any other nodes, except
that nodes in level k (i.e., k levels below the root, where k variables have
been assigned) would cause an expected error rate of p/2k+1 in case of
incorrect assertion, since each node in level k only represent 1/2k of the

69

input space. Correspondingly, there are at most 2k nodes in level k, which
cancels out the factor of 1/2k at each node. Therefore, the total expected
error rate is bounded by e−1/2r for each incorrect bit assertion in a specific
level of ADT.3 Since each bit can be asserted at most once along any path
from the root to a leaf, the expected error is

ε ≤ nε0 ≤
e−1n

2r (7.3)

for the entire ADT. For n = 50, r = 1000, this bound evaluates to 0.9%.
Note that is the bound for the expected error and is not guaranteed due

to randomness. However, it can be useful as a quick estimate and as a
guideline to determine the number of samples r for bit assertion given a
target error rate.

7.3.4 SHAP-Importance-Based Splits

The next question to consider is, if there are free bits in a tree node, how
to select the best free bit to split at each node of ADT. Conventionally in a
decision tree algorithm, samples in a node is split on a feature that will
maximally reduce the impurity [21] or entropy [44] of the node. However,
in the context of ALS, either impurity or entropy is not always a good
metric. Alternatively, we propose to split based on the SHAP importance,
as defined in (4.6), which can be interpreted as an overall importance of
an input bit with respect to the output bit.

In the context of ALS, SHAP importance of a primary input bit mea-
sures its contribution to the primary output in the approximated circuit.
In other words, how much a change in the output of a Boolean function
can be attributed to each input bit. The SHAP importance relates to the
nature of Boolean functions with the following propositions.

3This bound is likely to be very loose because the number of nodes is usually far less
than 2k as we go deep in the tree.

70

Proposition 7.1. The SHAP importance of any input bit xj in a Boolean function
f is in the range of [0, 0.5].

Proposition 7.2. The SHAP importance of bit xj in f is 0 if and only if f is
independent of xj .

Proposition 7.3. The SHAP importance of bit xj in f is 0.5 if and only if f
solely depends on xj , i.e., f = xj or f = ¬xj .

We show with minimal examples why SHAP-importance-based splits is
good for ALS, especially superior to impurity- or entropy-based splits. Con-
sider function f0(x1, x2, x3) = x1 ⊕ x2, where ⊕ is XOR. Intuitively, x1 and
x2 should be more important than x3 because flipping either x1 or x2 would
always change the output while x3 is irrelevant. However, an impurity- or
entropy-based decision tree makes no split (or a completely random split,
depending on training options) because splitting on any input bit would
not change the impurity/entropy. In fact, the above conclusion can be
generalized for any function f ∗(x1, x2, x3, . . . , xn) = x1⊕ x2⊕ g(x3, . . . , xn)
where g is an arbitrary Boolean function. In this case, we refer to x1 and
x2 as XOR bits. Table 7.1 shows the change of impurity and entropy when
splitting on different input bits and the SHAP importance of each variable.
For each metric, the bit with the maximum value in the table will be se-
lected for the split. From Table 7.1, impurity- or entropy-based decision
trees would make no split or completely random splits for any function f ∗,
whereas SHAP importance can differentiate the XOR bits x1 and x2 from
other input bits.

In [13] where ADT is adopted for logic reconstruction, the authors
propose another bit importance metric—the absolute difference of its two
cofactors

Q′j = E(f |xj=0 ⊕ f |xj=1). (7.4)

We notice that although computationally more efficient, it is inferior to
SHAP importance. Consider function f = x1 ∧ (x2 ⊕ x3), where x1 is

71

Table 7.1: Comparison of different metrics as splitting criteria

Metric x1 or x2 x3 in f0 xj, j ≥ 3 in any f ∗

Decrease in impurity 0 0 0
Decrease in entropy 0 0 0
SHAP importance Qj ∈ [0, 0.5] 0 0 ≤ Qj ≤ Q1 = Q2

intuitively more important than the other two, while x2 and x3 are equally
important. However, the proposed metric in [13]Q′ = (1

2 ,
1
2 ,

1
2) suggests all

three bits are equally important, whereas SHAP importance Q = (1
4 ,

1
8 ,

1
8)

indicates that x1 is more important than x2 and x3, which matches well
with intuition.

These examples motivate us to explore ADTs with splits based on
SHAP importance. We propose to split on the bit with maximum SHAP
importance. This is done after asserting any XOR bits.

Recall that exact evaluation of SHAP importance is not efficient. In
fact, it is not necessary since we are only interested in one input bit with
the maximum SHAP importance. Therefore, we use the following two
methods to estimate the SHAP importance.

7.3.4.1 Monte Carlo estimation

By extending and rearranging the formula of SHAP value in (4.4) in the
context of Boolean function f , we can rewrite it as

c(x, j) =
∑

z∈{0,1}n

w(z,x, j)
[
f(z|zj=xj

)− f(z|zj=¬xj
)
]
, (7.5)

where z|zj=xj
is vector z whose j-th bit is substituted by xj . w(z,x, j) is

the weighting factor given by

w(z,x, j) = 1
2n

n−1∑
k=d

1
2k

(
k

d

)
, where d =

∑
i 6=j

1(zi 6= xi). (7.6)

72

Note that the weight only depends on d, the number of different bits in
z and x excluding bit j. The maximum weight occur when d = 0, and
as d increases the weight decays exponentially. Exploiting this fact, we
can efficiently estimate the SHAP importance of bit j by its first-order
approximation (i.e., only consider the term with d = 0) from a group of
carefully generated samples according to (7.5).

Since the weight is constant when d = 0, we drop it for simplicity; we
also have z = x with possible exception for bit xj . The SHAP importance
is therefore approximated as

Qj ≈ Ex

∣∣∣f(x|xj=1)− f(x|xj=0)
∣∣∣ , (7.7)

Equation (7.7) can be estimated by Monte Carlo (MC) simulation.
Recall that we generated samples in the step of DC/XOR bit assertion.
These samples can actually be reused to estimate (7.7) owing to the same
pattern of sample generation for both tasks.

7.3.4.2 Tree SHAP estimation

Although the first-order approximation of SHAP importance (7.7) is com-
putationally efficient, its formulation coincides with (7.4), the bit impor-
tance metric adopted in [13]. As discussed in Section 7.3.4, it is not as
good as the original metric and sometime may deviate much from (4.6). A
more accurate method of estimating (4.6) is to adopt the exact evaluation
of SHAP values specifically optimized for tree-based models, known as
Tree SHAP [33]. To utilize it, we train a temporary decision tree by reusing
all samples generated in DC/XOR bit assertion step in Section 7.3.3 (i.e.,
based on a total of 2rm samples, where m is the number of free bits in
the node before the assertion step). This temporary tree is only used for
Tree SHAP evaluation and is discarded thereafter. For each free bit j, we
use Tree SHAP to evaluate its SHAP value c(x∗, j) based on one of 2rm

73

samples x∗, and average the absolute value of SHAP value over these
samples to get the SHAP importance Qj with (4.6).

7.4 Implementation Details

7.4.1 Number of Samples for Each Split

As discussed in Section 7.3.3, the expected error decreases with r, therefore
it is good to control the number of samples for the trade off between error
and runtime. Each function is different and therefore the tightness of the
bound in (7.3) may vary. Empirically, a value of r should be tried first,
and if the error is not satisfying and runtime permits, we can try larger
r values for potentially better error and/or area. Empirically, the error
drops by half when r is doubled, which is consistent with (7.3). In our
experiments, we begin with r = 128, which yields an error rate up to 3%,
and we keep doubling the r values up to r = 2048.

7.4.2 Sample Enumeration

As discussed in Section 7.3.3, at each node of the tree, we generate 2rm
random samples to check whether any of the m free bits can be asserted.
We notice that, when m is small, it is more efficient to enumerate all 2m

input samples than sampling. This happens when 2m ≤ 2rm. When
r = 2048, for example, this inequality solves to m ≤ 16. In that case, we
do not use the SHAP based bit importance to split the node one bit at a
time. Instead, we build a subtree for the node at one shot, based on all 2m

samples.
To build a subtree, we use (7.7) to determine the splits for its simplicity.

However, we do not generate new samples as in the generate flow. The
building of subtree concludes when each leaf node contains only one input
sample, or multiple samples sharing the the same output.

74

7.4.3 Instantiation of DC Bits

As discussed above, when building the subtree with sample enumeration,
we will generate 2m samples where m is the number free bits. When we
enumerate these samples, each previously asserted DC bits has to take a
value of either 0 or 1; we call this process the instantiation of DC bits.

At first thought, it should not matter which value to take for DC bits
because, by definition, the output will be the same. However, it is not the
case because we may have asserted some DC bits incorrectly. In that case, if
we instantiate DC bits randomly, the outputs could be mixed and random,
and therefore the resulting subtree can be complex and the synthesized
area could be large. This is essentially the same overfitting issue as training
with a conventional DT, as we will see with the experiments in Section 7.5.

To address this issue, we propose to select a fixed default vector x(0) ∈
{0, 1}n throughout the entire ADT building process. Each time a subtree
needs to be built, the DC bits in any enumerated sample x are instantiated
with corresponding bits in the default vector, i.e.,

xj = x
(0)
j for each DC bit j.

For example, if the default vector is set to all zeros, all DC bits should
be set to zero when enumerating samples. Note that this is applied only
in sample enumeration for subtree building (the blue block in Figure 7.1),
which is different from sample generation (the green block in Figure 7.1)
where previously asserted DC bits can take either value. In our experi-
ments, we set a random default vector x(0) for each function.

7.4.4 Constraints in Input Space

A unique feature of sampling-based ALS is that it decouples the approxi-
mation and synthesis parts of the flow, making the approximation models
(e.g., ADT) orthogonal to logic synthesis and optimization methods (e.g.,

75

espresso, abc) and potentially other ALS techniques. As a result, it can
straightforwardly handle the function with a non-empty DC set, or equiva-
lently, the case where the input space is constrained by Boolean conditions
(e.g., x1∨x2∨x3 = 1). This is useful when, for example, a designer knows
in advance that some combinations of input bits cannot happen in their
specific mode of operation and want to take advantage of this fact. De-
pending on the complexity of the constraints, it may not be straightforward
to otherwise incorporate the constraints without redesigning the logic.

To exploit this feature, we impose constraints in input space as follows.
For each function, we generate a random constraint in the input space.
The constraint is expressed in conjunctive normal form (CNF), since it is
straightforward to be converted into product terms in the DC set. Further-
more, we ask that each clause be the disjunction of at least two literals,
since any single-literal clause in the constraint (e.g., ¬xi) can be trivially
implemented by assigning a variable to a constant (xi = 0 for the above
example) in the original circuit.

An example of the imposed constraint in a 4-input Boolean function
f(x1, x2, x3, x4) is

(x1 ∨ x2) ∧ (¬x2 ∨ x3 ∨ ¬x4) = 1,

which, according to De Morgan’s laws, can be converted into the following
DC set in PLA format.

00-- -
-101 -

where the first four characters in each line shows an input combination
that cannot happen, and the rightmost - indicates the output is DC.

We use an exponentially delaying probability distribution to control the
complexity of the constraint while guaranteeing any constraint is possible
to occur in our experiments. Specifically, the constraint has c clauses with
probability 1/2c (c ≥ 1). In clause i, the number of literals is vi with

76

probability 1/2vi−1 (vi ≥ 2). In the above example, c = 2, v1 = 2, v2 = 3.
On average, such a constraint contains 2 clauses with 3 literals in each
clause, and invalidates 2/7 of the original input space.

The constraint in input space is totally optional, without which our
proposed framework still works with no compromise in performance.

7.5 Experimental Results
We use 15 random logic functions from the IWLS 2020 benchmark suite
[45] which are part of MCNC benchmarks. (Other functions in IWLS 2020
benchmark suite are either special/arithmetic functions—which are not
the focus of this chapter, or those of which the truth table is undefined
(ML/computer vision problems), or from a commercial design (PicoJava
I) that is not publicly available.) Since the IWLS 2020 benchmark contains
only a very small part of truth table for each function, we extract the full
truth table with abc from the MCNC source [70] so that we can simulate
any input vector. Each function is the extracted logic cone of a primary
output of a circuit in the benchmark. (See [45] for details.) For each
function we report the number of primary inputs (of the logic cone) in
column 1 of Table II. All experiments are performed on a computer with
Linux OS, 3.60 GHz CPU, and 64 GB memory. All programs are imple-
mented in C++. All DTs are implemented with XGBoost library [14] with
parameters n_estimators=1, max_depth=1000, tree_method='exact' and
random_state=0. Unless otherwise specified, each model is set with the
above parameters. Other XGBoost parameters are set to default.

We compare the following approximate models in our experiments:

• Unregularized DT: This is a DT implementation where we addition-
ally set min_child_weight=0 and lambda=0 to disable the default
regularization in XGBoost, so that the tree grows until all leaf nodes

77

are pure, i.e., input vectors in the same leaf node have the same
output.

• Regularized DT: This is a DT implementation with regularization
by imposing penalties on tree complexity (the default behavior
in XGBoost library). The default values min_child_weight=1 and
lambda=1 are set to regularize the tree.

• ADT (impurity): This is an ADT implementation with conventional
impurity-based splitting criterion. We set max_depth=1 to save run-
time, as each split is determined only by the first split from a tempo-
rary tree trained by XGBoost.

• ADT (MC SHAP): This is our proposed ADT model guided by the
MC estimation of SHAP importance. This model does not rely on
XGBoost.

• ADT (Tree SHAP): This is our proposed ADT model based on tree
estimation of SHAP importance. For each split, a temporary tree is
trained by XGBoost specifically for estimating the SHAP importance,
and is discarded thereafter.

For simplicity, we refer to the last three ADT models as “impurity model,”
“MC SHAP model” and “Tree SHAP model,” respectively.

Following the logic synthesis flow in Figure 7.2(c), we pass the truth
table into the ADT module, feed the resulting approximated PLA to
espresso, apply DC terms as described in Section 7.4.4, and run abc with
read_pla; fraig; ps; write_aiger to get the reported area and the syn-
thesized AIG. The abc synthesis flow is performed for two PLAs before
and after adding constraints; the AIG with smaller area will be taken as
final.

78

7.5.1 Error, Area and Runtime of Different Models

We present the experimental results in Table 7.2. For each function, we first
convert the exact version (i.e., 100% accurate) of the function into PLA,
and feed it to the synthesis flow (i.e., espresso followed by abc) to create
a baseline AIG4. This is denoted in the table by “exact full” because the
exact synthesis is performed over the full input space. Next we constrain
the input space using the process described in Section 7.4.4, and run the
same synthesis flow again. This variation is denoted by “exact constrained”
in the table. Column 3 in the table reports the fraction of valid input space
compared to the full after constraining it. We report the area of synthesis
with exact constrained method relative to the exact full as the ratio of their
PLA gate counts in column 5. The error of the exact constrained case is 0
as reported in column 4 because no approximation is used and only the
input space is constrained. As shown in column 5, constraining the input
space results in a relative area of 0.965, or only 3.5% smaller on average
compared to not constraining it, when no approximation is used.

Next, with the same constraints applied in the input space, we run each
approximate model with varying parameters that control the number of
samples used for approximation/training, followed by the same synthesis
flow. For ADT models, the threshold of the number of free bits for sample
enumeration is set to 16. (This parameter is not applicable to other models.)
We set up an error bound of 0.5%, and report the error rate (in percentage),
relative area (see below), and runtime (in seconds) for each function in the
following manner. For each model, we report the variation of the model
with the parameter that yields the smallest area and an error within the
error bound. In case of tie in area, the parameter with the smallest error

4Our approximation techniques are compatible with and orthogonal to other logic
synthesis and optimization techniques (e.g., resyn in abc). Once an approximated AIG
has been created, any other logic synthesis and optimization techniques may be used to
further optimize it. For this reason, we use the AIG before optimization as the baseline
in this work.

79

is preferred. If no parameter yields an error within the error bound, we
report with the parameter that yields the smallest error. Similar to the
exact constrained case, we report the area relative to the exact full case
as the ratio of the gate count from each model (as reported by abc) to
the gate count of the baseline (GC PLA given in column 1) and is thus
unitless. In other words, an area of 1 means the resulting AIG has the
same gate count as in the baseline. The error rate is evaluated with 640K
random samples from the constrained input space. The runtimes include
all components in the flow, performed with a single CPU core. For the
approximate models, all experiments are repeated 10 times with different
random seeds to generate the constraints and the results are averaged.

Table 7.2 shows that Unregularized DT, although with a small average
error, yields a larger area than the baseline for 12 out of 15 functions, and is
85× larger than the baseline on average. Regularized DT results in smaller
areas than Unregularized DT for most functions. However, the areas are
still much larger than the baseline on average. This behavior is due to
overfitting in the deeper part of the tree, where the number of samples
in a node can be very small (1 in the worst case), which is no longer
representative of the subfunction. As a result, the learned subfunctions
tend to be random at each leaf node that is deep in the tree, the hence
overall function becomes very complex. Therefore, they are not suitable
for ALS where area is the main focus.

The three ADT models yield much smaller areas than Regularized DT
in general. Among the three ADT models, ADT with impurity achieves
28% area reduction with 0.21% error rate. The two ADT models that adopt
SHAP importance as the splitting criterion achieve even better area and
runtime. They are effective to reduce 39%–42% of the original area on
average with an average error rate of 0.20%–0.22%. Specifically, MC SHAP
model reduces the area by 39% with 0.22% output error rate on average;
Tree SHAP model reduces the area by 42% with 0.20% output error rate.

80

Table 7.2: Approximation errors, relative area (unitless) and runtimes (in seconds) with different models
and an error bound of 0.5%
Function Exact full Input Exact constrained Unregularized DT Regularized DT ADT (impurity) ADT (MC SHAP) ADT (Tree SHAP)
(#inputs) GC PLA space% Err% Area Time Err% Area Time Err% Area Time Err% Area Time Err% Area Time Err% Area Time

ex60 (43) 296 71.3 0 0.970 <1 0.279 7.23 18 0.442 1.99 16 0.326 0.627 17 0.482 0.598 8 0.324 0.525 23
ex61 (37) 40 72.0 0 1.000 <1 0.276 1.47 4 0.022 0.33 6 0.485 0.173 2 0.485 0.173 3 0.485 0.173 2
ex62 (52) 875 74.2 0 0.997 2 0.048 6.22 24 0.366 1.35 23 0.338 0.753 24 0.364 0.451 18 0.358 0.608 30
ex63 (38) 136 67.9 0 0.982 <1 0.445 1.13 6 0.427 0.41 7 0.075 0.296 4 0.151 0.289 4 0.076 0.296 4
ex64 (47) 147 73.9 0 0.808 <1 0.001 0.05 7 0.001 0.05 7 0.001 0.048 4 0.394 0.034 4 0.001 0.048 4
ex65 (19) 35 71.0 0 0.903 <1 0.000 1.48 5 0.079 0.37 4 0.079 0.371 2 0.455 0.511 2 0.079 0.371 2
ex66 (47) 635 73.9 0 0.949 <1 0.275 4.17 33 0.423 1.47 22 0.243 0.528 31 0.161 0.557 16 0.345 0.572 37
ex67 (46) 769 75.7 0 0.921 1 0.259 3.41 28 0.398 1.16 23 0.191 0.546 27 0.368 0.336 10 0.203 0.520 37
ex68 (33) 97 67.8 0 0.987 86 0.249 307.95 36 1.024 90.36 30 0.588 1.915 1594 0.233 0.808 708 0.134 0.886 941
ex69 (16) 30 83.0 0 0.973 <1 0.000 0.97 5 0.427 3.45 3 0.000 0.973 1 0.000 0.973 1 0.000 0.973 1
ex70 (23) 60 65.3 0 0.995 <1 0.277 169.50 33 0.645 0.11 4 0.348 0.868 4 0.000 1.013 9 0.400 0.890 5
ex71 (23) 51 65.3 0 0.994 <1 0.052 417.21 37 0.812 108.62 11 0.416 0.994 6 0.000 0.994 9 0.460 0.182 13
ex72 (35) 96 76.6 0 1.000 <1 0.318 10.84 11 0.394 4.98 8 0.095 0.593 7 0.217 0.478 8 0.095 0.593 9
ex73 (16) 94 83.0 0 1.000 <1 0.000 1.00 130 0.000 1.00 158 0.000 1.000 66 0.000 1.000 65 0.000 1.000 68
ex74 (16) 45 83.0 0 0.993 16 0.259 340.56 88 3.431 1060.2 196 0.000 0.993 37 0.000 0.993 55 0.000 0.993 39

Mean 227 73.6 0 0.965 7 0.182 84.88 31 0.593 85.06 35 0.212 0.712 122 0.221 0.614 61 0.199 0.575 81

81

All three ADT models consume a runtime up to minutes for each function,
and MC SHAP consumes generally shorter runtime than the other two.

Note that ex68 consumes much longer runtime than others due to its
function complexity, especially the large number of XOR functions for
this primary output. As a result, much more product terms are generated
in the resulting PLA before minimization. This prolongs both the ADT
development and logic minimization.

To better observe the tradeoffs among error, area and runtime, we vary
the parameters in three ADT models with different splitting criteria, and
plot the curves of error vs area, and error vs runtime in Figure 7.4. In
both plots, a curve closer to the left-bottom corner has a better tradeoff.
Unregularized DT and Regularized DT models are excluded due to much
larger area.

(a) (b)

Figure 7.4: Comparison of tradeoffs (a) between error and area, and (b)
between error and runtime for ADT models with different splitting criteria:
impurity, MC SHAP, and Tree SHAP. Values are averaged over all functions.
Points on each curve are generated by varying r in {128, 256, 512, 1024,
2048}.

Figure 7.4(a) shows that Tree SHAP has the best tradeoff among the
three models. ADT with impurity has the worse trade-off compared to
other two models that are guided by SHAP importance. This observation

82

means that in the context of ALS, SHAP importance is a better metric to
determine the splits than the impurity-based metric used in ADT. Tree
SHAP model has a superior tradeoff curve to MC SHAP model, owing to
the more accurate estimation of SHAP values and the default behavior
of tree regularization in XGBoost library. However, MC SHAP can reach
smaller error than Tree SHAP when more area budget is allowed, where
the error of other two models may not go to zero due to tree regularization.
Therefore, it is suggested to prioritize the usage of Tree SHAP model when
the error budget is higher (> 0.2%) and MC SHAP otherwise.

Figure 7.4(b) shows that ADT models with impurity and Tree SHAP
can take longer time to run if a small error is desired. And ADT with
impurity is the least runtime-efficient model. In contrast, the MC SHAP
model consumes shorter runtime even with small errors.

7.5.2 Impact of threshold for sample enumeration in
ADTs

We further explore the impact of threshold of nFreeBits in MC SHAP
model, which controls when to stop splitting the tree and begin enumerat-
ing samples, as detailed in Section 7.4.2. The results are only shown for
MC SHAP but a similar trend is observed for other ADT methods (Tree
SHAP and ADT with impurity). We run the experiments with thresholds
of 12, 14, 16, 18 and 20, respectively, and plot the tradeoffs among error,
area, and runtime with different thresholds in Figure 7.5.

From Figure 7.5(a), we can observe similar tradeoff curves for thresh-
olds of 16, 18 and 20, where the thresholds of 18 and 20 yield slightly
better tradeoffs. Thresholds of 12 and 14 yield suboptimal results due to
overfitting for a few functions, observed as the excessive area in some error
range. In addition, Figure 7.5(b) shows that thresholds that are too large
(18 and 20) can lead to suboptimal tradeoff between error and runtime,
especially for complex functions that consume longer runtime (e.g., ex68).

83

(a) (b)

Figure 7.5: Comparison of tradeoffs (a) between error and area, and (b)
between error and runtime, with MC SHAP and different thresholds for
the number of free bits in a node to trigger sample enumeration. Error,
area and runtime values are averaged over all functions. Points on each
curve are generated by varying r in {128, 256, 512, 1024, 2048}.

Therefore, a threshold around 16 is recommended, which is aligned with
our discussion in Section 7.4.2.

7.6 Conclusion
In this chapter, we proposed adaptive decision trees (ADTs) with empha-
sis on variations guided by SHAP explainability from ML as a promising
technique for sampling-based approximate logic synthesis. Specific ap-
proximation techniques for ADT were proposed to achieve an efficient
and effective implementation including approximation of don’t-care and
XOR bits. Comprehensive experiments showed the effectiveness of SHAP-
guided ADT in significantly reducing the area with a small tradeoff with
accuracy.

84

8 conclusion and future directions

In this dissertation, we presented three techniques where SHAP—a recent
development in XAI—was incorporated in different aspects and stages
of VLSI design, including logic synthesis, physical design, and hardware
security. All of these XAI-powered techniques achieved better results in
efficiency and effectiveness than conventional techniques or existing works
in similar settings, being ML-based or not. These techniques set examples
of how XAI, or more specifically, explainable ML can be incorporated into
VLSI design to achieve better design outcomes. With the same idea, some
techniques presented in this dissertation can be extended. For example, in
Chapter 5, we obfuscated the layout by altering the routing. However, as
the explanatory analysis can be generalized for any ML attack, its usage
is not limited to routing obfuscation. It is possible to incorporate it into
other defense techniques (e.g. placement obfuscation) and/or a mix of
multiple techniques in the future.

This dissertation mainly focused on the usage of SHAP—a specific
tool that is actively being developed in XAI community. Although not
demonstrated in this dissertation, SHAP is also compatible with some deep
NN architectures, such as feed-forward NNs, CNNs, and Recurrent NNs.
However, with current development, SHAP is still computationally expen-
sive, except for tree-based ML models, with special assumptions, or with
compromised accuracy. As complex models like CNN become increasingly
popular in various applications including VLSI design techniques, it would
be very interesting and demanding to explore computationally-efficient
ways to utilize the explainability of these models.

In addition, there is a gap between the development of ML algorithms
and the XAI counterparts. For example, SHAP is not yet compatible with
the paradigm of reinforcement learning, which has been applied in logic
synthesis, optimization, and physical design. Supporting for newer NN

85

architecture (e.g., Graph NN) is also yet to be developed, whereas GNN
already has applications in testability, power, and signal integrity analysis,
and is promising on logic synthesis and optimization owing to the natural
similarity between graphs and netlists. Therefore, it is highly desirable
for researchers to develop explanatory analysis techniques that support
these new models, so that more ML-based techniques in VLSI designs
may benefit from the added explainability of corresponding ML models.

Last but not least, there is a need for verification of the explanations
generated by XAI techniques. In the field of VLSI design, it may require
participation of both the academia and the industry, due to the extremely
high complexity of real-world circuits and therefore the heavy develop-
ment efforts on electronic design automation (EDA) tools. For example,
for explainable routability prediction in Chapter 6, support from EDA tool
vendors will be needed to incorporate the explanations for DRC violation
hotspots and the corresponding actions into the EDA tools, in order to com-
prehensively verify the accuracy and effectiveness of such explanations in
real practice.

86

bibliography

[1] M. B. Alawieh, W. Ye, and D. Z. Pan, “Re-examining VLSI manufac-
turing and yield through the lens of deep learning,” in Proceedings of
the 2020 IEEE/ACM International Conference On Computer Aided Design
(ICCAD), 2020, 8 pages.

[2] V. Arya, R. K. E. Bellamy, P.-Y. Chen, A. Dhurandhar, M. Hind, S. C.
Hoffman et al., “One explanation does not fit all: A toolkit and taxon-
omy of AI explainability techniques,” 2019, arXiv:1909.03012.

[3] J. Baehr, A. Bernardini, G. Sigl, and U. Schlichtmann, “Machine learn-
ing and structural characteristics for reverse engineering,” in Proceed-
ings of the 24th Asia and South Pacific Design Automation Conference
(ASPDAC), 2019, pp. 96–103.

[4] S. Boroumand, C.-S. Bouganis, and G. A. Constantinides, “Learning
Boolean circuits from examples for approximate logic synthesis,”
in Proceedings of the 26th Asia and South Pacific Design Automation
Conference (ASPDAC), 2021, pp. 524–529.

[5] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, October 2001.

[6] I. S. Bustany, D. Chinnery, J. R. Shinnerl, and V. Yutsis, “ISPD 2015
benchmarks with fence regions and routing blockages for detailed-
routing-driven placement,” in Proceedings of the 2015 ACM Interna-
tional Symposium on Physical Design (ISPD), 2015, pp. 157–164.

[7] P. Chakraborty, J. Cruz, and S. Bhunia, “SAIL: Machine learning
guided structural analysis attack on hardware obfuscation,” in Pro-
ceedings of the 2018 Asian Hardware Oriented Security and Trust Sympo-
sium (AsianHOST), 2018, pp. 56–61.

87

[8] W.-T. J. Chan, Y. Du, A. B. Kahng, S. Nath, and K. Samadi, “BEOL
stack-aware routability prediction from placement using data min-
ing techniques,” in Proceedings of the 2016 IEEE 34th International
Conference on Computer Design (ICCD), 2016, pp. 41–48.

[9] W.-T. J. Chan, P.-H. Ho, A. B. Kahng, and P. Saxena, “Routability
optimization for industrial designs at sub-14nm process nodes us-
ing machine learning,” in Proceedings of the 2017 ACM International
Symposium on Physical Design (ISPD), 2017, pp. 15–21.

[10] S. Chatterjee, “Learning and memorization,” in Proceedings of the 35th
International Conference on Machine Learning (ICML), vol. 80, 2018, pp.
755–763.

[11] H. Chen and D. S. Boning, “Machine learning approaches for IC
manufacturing yield enhancement,” in Machine Learning in VLSI
Computer-Aided Design, I. A. M. Elfadel, D. S. Boning, and X. Li, Eds.
Springer International Publishing, 2019, pp. 175–199.

[12] L.-C. Chen, C.-C. Huang, Y.-L. Chang, and H.-M. Chen, “A learning-
based methodology for routability prediction in placement,” in Pro-
ceedings of the 2018 International Symposium on VLSI Design, Automation
and Test (VLSI-DAT), 2018, 4 pages.

[13] P.-W. Chen, Y.-C. Huang, C.-L. Lee, and J.-H. R. Jiang, “Circuit learn-
ing for logic regression on high dimensional Boolean space,” in Pro-
ceedings of the 57th Design Automation Conference (DAC), 2020, Art. no.
15.

[14] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proceedings of ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD), 2016, pp. 785–794.

[15] V. A. Chhabria, V. Ahuja, A. Prabhu, N. Patil, P. Jain, and S. S. Sapat-
nekar, “Thermal and IR drop analysis using convolutional encoder-
decoder networks,” in Proceedings of the 26th Asia and South Pacific
Design Automation Conference (ASPDAC), 2021, pp. 690–696.

88

[16] C.-C. Chi and J.-H. R. Jiang, “Logic synthesis of binarized neural
networks for efficient circuit implementation,” in Proceedings of the
International Conference on Computer-Aided Design (ICCAD), 2018, Art.
no. 84.

[17] N. K. Darav, A. Kennings, A. F. Tabrizi, D. Westwick, and L. Behjat,
“Eh?placer: a high-performance modern technology-driven placer,”
ACM Transactions on Design Automation of Electronic Systems, vol. 21,
no. 3, July 2016, Art. no. 37.

[18] S. Dash, O. Gunluk, and D. Wei, “Boolean decision rules via column
generation,” in Advances in Neural Information Processing Systems 31
(NeurIPS), 2018, pp. 4655–4665.

[19] J. Davis and M. Goadrich, “The relationship between precision-recall
and roc curves,” in Proceedings of the 23rd International Conference on
Machine learning (ICML), 2006, pp. 233–240.

[20] B. A. de Abreu, A. Berndt, I. S. Campos, C. Meinhardt, J. T. Carvalho,
M. Grellert et al., “Fast logic optimization using decision trees,” in
Proceedings of International Symposium on Circuits and Systems (ISCAS),
2021, 5 pages.

[21] G. De’ath and K. E. Fabricius, “Classification and regression trees: a
powerful yet simple technique for ecological data analysis,” Ecology,
vol. 81, no. 11, pp. 3178–3192, November 2000.

[22] R. Elnaggar and K. Chakrabarty, “Machine learning for hardware
security: Opportunities and risks,” Journal of Electronic Testing, vol. 34,
no. 2, pp. 183–201, April 2018.

[23] E. Frank, M. A. Hall, and I. H. Witten, The WEKA Workbench. On-
line Appendix for “Data Mining: Practical Machine Learning Tools and
Techniques”, 4th ed. Morgan Kaufmann, 2016.

[24] S. Gogri, J. Hu, A. Tyagi, M. Quinn, S. Ramachandran, F. Batool et al.,
“Machine learning-guided stimulus generation for functional verifi-
cation,” in Proceedings of the 2020 Design and Verification Conference
(DVCon), 2020, 10 pages.

89

[25] W. Haaswijk, E. Collins, B. Seguin, M. Soeken, F. Kaplan, S. Süsstrunk
et al., “Deep learning for logic optimization algorithms,” in Proceed-
ings of the 2018 IEEE International Symposium on Circuits and Systems
(ISCAS), 2018, 4 pages.

[26] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, July 1968.

[27] M. Hind, D. Wei, M. Campbell, N. C. F. Codella, A. Dhurandhar,
A. Mojsilović et al., “TED: Teaching AI to explain its decisions,” in
Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society
(AIES), 2019, pp. 123–129.

[28] G. Huang, J. Hu, Y. He, J. Liu, M. Ma, Z. Shen et al., “Machine learning
for electronic design automation: A survey,” ACM Transactions on
Design Automation of Electronic Systems, vol. 26, no. 5, June 2021, Art.
no. 40.

[29] K. Huang, J. M. Carulli, and Y. Makris, “Parametric counterfeit ic
detection via support vector machines,” in Proceedings of the 2012
IEEE International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), 2012, pp. 7–12.

[30] H. Lin and P. Li, “Classifying circuit performance using active-
learning guided support vector machines,” in Proceedings of the 2012
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), 2012, pp. 187–194.

[31] Y. Lin, M. B. Alawieh, W. Ye, and D. Z. Pan, “Machine learning for
yield learning and optimization,” in Proceedings of the 2018 IEEE
International Test Conference (ITC), 2018, 10 pages.

[32] H.-Y. Liu and L. P. Carloni, “On learning-based methods for design-
space exploration with high-level synthesis,” in Proceedings of the
50th ACM/EDAC/IEEE Design Automation Conference (DAC), 2013, 7
pages.

90

[33] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair
et al., “From local explanations to global understanding with explain-
able AI for trees,” Nature Machine Intelligence, vol. 2, no. 1, pp. 56–67,
January 2020.

[34] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting
model predictions,” in Advances in Neural Information Processing Sys-
tems (NIPS) 30, 2017, pp. 4765–4774.

[35] Y. Ma, H. Ren, B. Khailany, H. Sikka, L. Luo, K. Natarajan et al.,
“High performance graph convolutional networks with applications
in testability analysis,” in Proceedings of the 56th ACM/IEEE Design
Automation Conference (DAC), 2019, 6 pages.

[36] J. Magaña, D. Shi, J. Melchert, and A. Davoodi, “Are proximity attacks
a threat to the security of split manufacturing of integrated circuits?”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,
no. 12, pp. 3406–3419, December 2017.

[37] A. Mirhoseini, A. Goldie, M. Yazgan, J. Jiang, E. Songhori, S. Wang
et al., “Chip placement with deep reinforcement learning,” 2020,
arXiv:2004.10746.

[38] C. Molnar, Interpretable Machine Learning. Lulu Press, 2020. [Online].
Available: https://christophm.github.io/interpretable-ml-book/

[39] R. Netto, S. Fabre, T. A. Fontana, V. Livramento, L. L. Pilla, L. Behjat
et al., “Algorithm selection framework for legalization using deep
convolutional neural networks and transfer learning,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, 2021,
14 pages, to be published.

[40] A. L. Oliveira and A. Sangiovanni-Vincentelli, “Learning complex
Boolean functions: Algorithms and applications,” in Advances in
Neural Information Processing Systems 6 (NIPS), 1993, pp. 911–918.

[41] G. Pasandi, S. Nazarian, and M. Pedram, “Approximate logic synthe-
sis: A reinforcement learning-based technology mapping approach,”
in Proceedings of the 20th International Symposium on Quality Electronic
Design (ISQED), 2019, pp. 26–32.

https://christophm.github.io/interpretable-ml-book/

91

[42] S. Patnaik, M. Ashraf, J. Knechtel, and O. Sinanoglu, “Raise your
game for split manufacturing: Restoring the true functionality
through BEOL,” in Proceedings of the 55th Annual Design Automation
Conference (DAC), 2018, Art. no. 140.

[43] S. Patnaik, J. Knechtel, M. Ashraf, and O. Sinanoglu, “Concerted
wire lifting: Enabling secure and cost-effective split manufacturing,”
in Proceedings of the 23rd Asia and South Pacific Design Automation
Conference (ASPDAC), 2018, pp. 251–258.

[44] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1,
no. 1, pp. 81–106, March 1986.

[45] S. Rai, W. L. Neto, Y. Miyasaka, X. Zhang, M. Yu, Q. Yi et al., “Logic
synthesis meets machine learning: Trading exactness for generaliza-
tion,” in Proceedings of Design, Automation Test in Europe Conference
and Exhibition (DATE), 2021, pp. 1026–1031.

[46] J. Rajendran, O. Sinanoglu, and R. Karri, “Is split manufacturing
secure?” in Proceedings of the Conference on Design, Automation and
Test in Europe (DATE), 2013, pp. 1259–1264.

[47] G. R. Reddy, K. Madkour, and Y. Makris, “Machine learning-based
hotspot detection: Fallacies, pitfalls and marching orders,” in Proceed-
ings of the 2019 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2019, 8 pages.

[48] M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why should I trust you?’:
Explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD), 2016, pp. 1135–1144.

[49] L. Rokach, M. Kalech, G. Provan, and A. Feldman, “Machine-
learning-based circuit synthesis,” in Proceedings of the 23rd Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), 2013, pp. 1635–
1641.

[50] M. Sandri and P. Zuccolotto, “Analysis and correction of bias in
total decrease in node impurity measures for tree-based algorithms,”
Statistics and Computing, vol. 20, no. 4, pp. 393–407, October 2010.

92

[51] I. Scarabottolo, G. Ansaloni, G. A. Constantinides, L. Pozzi, and
S. Reda, “Approximate logic synthesis: A survey,” Proceedings of the
IEEE, vol. 108, no. 12, pp. 2195–2213, December 2020.

[52] U. Schlichtmann, S. Das, I. Lin, and M. P. Lin, “Overview of 2019 CAD
contest at ICCAD,” in Proceedings of the 2019 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2019, 2 pages.

[53] K. Shamsi, D. Z. Pan, and Y. Jin, “On the impossibility of
approximation-resilient circuit locking,” in Proceedings of the 2019
IEEE International Symposium on Hardware Oriented Security and Trust
(HOST), 2019, pp. 161–170.

[54] A. F. Tabrizi, N. K. Darav, L. Rakai, A. Kennings, and L. Behjat, “De-
tailed routing violation prediction during placement using machine
learning,” in Proceedings of the 2017 International Symposium on VLSI
Design, Automation and Test (VLSI-DAT), 2017, 4 pages.

[55] A. F. Tabrizi, N. K. Darav, S. Xu, L. Rakai, I. Bustany, A. Kennings et al.,
“A machine learning framework to identify detailed routing short
violations from a placed netlist,” in Proceedings of the 55th Annual
Design Automation Conference (DAC), 2018, Art. no. 48.

[56] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghu-
nathan, “SALSA: Systematic logic synthesis of approximate circuits,”
in Proceedings of the 49th Annual Design Automation Conference (DAC),
2012, pp. 796–801.

[57] C.-K. Wang, C.-C. Huang, S. S.-Y. Liu, C.-Y. Chin, S.-T. Hu, W.-C.
Wu et al., “Closing the gap between global and detailed placement:
Techniques for improving routability,” in Proceedings of the 2015 ACM
International Symposium on Physical Design (ISPD), 2015, pp. 149–156.

[58] Y. Wang, T. Cao, J. Hu, and J. Rajendran, “Front-end-of-line attacks
in split manufacturing,” in Proceedings of the 36th IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD), 2017, 8 pages.

[59] Y. Wang, P. Chen, J. Hu, G. Li, and J. Rajendran, “The cat and mouse in
split manufacturing,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 26, no. 5, pp. 805–817, May 2018.

93

[60] Y. Wang, P. Chen, J. Hu, and J. Rajendran, “Routing perturbation for
enhanced security in split manufacturing,” in Proceedings of the 2017
22nd Asia and South Pacific Design Automation Conference (ASPDAC),
2017, pp. 605–610.

[61] Y. Wei, C. Sze, N. Viswanathan, Z. Li, C. J. Alpert, L. Reddy et al.,
“GLARE: Global and local wiring aware routability evaluation,” in
Proceedings of the 49th Annual Design Automation Conference (DAC),
2012, pp. 768–773.

[62] K. Xiao, D. Forte, and M. M. Tehranipoor, “Efficient and secure split
manufacturing via obfuscated built-in self-authentication,” in Pro-
ceedings of the 2015 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), 2015, pp. 14–19.

[63] Z. Xie, G.-Q. Fang, Y.-H. Huang, H. Ren, Y. Zhang, B. Khailany et al.,
“FIST: A feature-importance sampling and tree-based method for
automatic design flow parameter tuning,” in Proceedings of the 2020
25th Asia and South Pacific Design Automation Conference (ASPDAC),
2020, pp. 19–25.

[64] Z. Xie, Y. Huang, G. Fang, H. Ren, S. Fang, Y. Chen et al., “RouteNet:
routability prediction for mixed-size designs using convolutional neu-
ral network,” in Proceedings of the International Conference on Computer-
Aided Design (ICCAD), 2018, Art. no. 80.

[65] J. Xiong, Y. Zhu, and J. He, “Machine learning for VLSI chip testing
and semiconductor manufacturing process monitoring and improve-
ment,” in Machine Learning in VLSI Computer-Aided Design, I. A. M.
Elfadel, D. S. Boning, and X. Li, Eds. Springer International Pub-
lishing, 2019, pp. 233–263.

[66] W. Xu, L. Feng, J. Rajendran, and J. Hu, “Layout recognition attacks
on split manufacturing,” in Proceedings of the 24th Asia and South Pacific
Design Automation Conference (ASPDAC), 2019, pp. 45–50.

[67] H. Yang, Y. Lin, B. Yu, and E. F. Y. Young, “Lithography hotspot
detection: From shallow to deep learning,” in Proceedings of the 30th
IEEE International System-on-Chip Conference (SOCC), 2017, pp. 233–
238.

94

[68] H. Yang, W. Zhong, Y. Ma, H. Geng, R. Chen, W. Chen et al., “VLSI
mask optimization: From shallow to deep learning,” in Proceedings of
the 25th Asia and South Pacific Design Automation Conference (ASPDAC),
2020, pp. 434–439.

[69] H. Yang, S. Li, Y. Ma, B. Yu, and E. F. Y. Young, “GAN-OPC: Mask
optimization with lithography-guided generative adversarial nets,”
in Proceedings of the 55th Annual Design Automation Conference (DAC),
2018, Art. no. 131.

[70] S. Yang, Logic Synthesis and Optimization Benchmarks User Guide: Ver-
sion 3.0. Microelectronics Center of North Carolina (MCNC), 1991.

[71] W. Ye, M. B. Alawieh, Y. Lin, and D. Z. Pan, “LithoGAN: End-to-
end lithography modeling with generative adversarial networks,” in
Proceedings of the 56th Annual Design Automation Conference (DAC),
2019, Art. no. 107.

[72] W. Zeng, B. Zhang, and A. Davoodi, “Analysis of security of split
manufacturing using machine learning,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 27, no. 12, pp. 2767–2780,
December 2019.

[73] W. Zeng, A. Davoodi, and R. O. Topaloglu, “Explainable DRC
hotspot prediction with random forest and SHAP tree ex-
plainer,” in Proceedings of the 2020 Design, Automation Test in
Europe Conference Exhibition (DATE), 2020, pp. 1151–1156, doi:
10.23919/DATE48585.2020.9116488.

[74] ——, “ObfusX: Routing obfuscation with explanatory analysis of a
machine learning attack,” in Proceedings of the 26th Asia and South
Pacific Design Automation Conference (ASPDAC), 2021, pp. 548–554,
doi: 10.1145/3394885.3431600.

[75] ——, “Sampling-based approximate logic synthesis: An explainable
machine learning approach,” in Proceedings of the 2021 IEEE/ACM
International Conference on Computr-Aided Design (ICCAD), 2021, to
be published.

95

[76] Y. Zhang, H. Ren, and B. Khailany, “GRANNITE: Graph neural net-
work inference for transferable power estimation,” in Proceedings
of the 57th Design Automation Conference (DAC), 2020, Art. no. 60, 6
pages.

[77] Y. Zhang and Y. Makris, “Hardware-based detection of spectre at-
tacks: A machine learning approach,” in Proceedings of the 2020 Asian
Hardware Oriented Security and Trust Symposium (AsianHOST), 2020,
6 pages.

[78] Q. Zhou, X. Wang, Z. Qi, Z. Chen, Q. Zhou, and Y. Cai, “An ac-
curate detailed routing routability prediction model in placement,”
in Proceedings of the 6th Asia Symposium on Quality Electronic Design
(ASQED), 2015, pp. 119–122.

[79] K. Zhu, M. Liu, H. Chen, Z. Zhao, and D. Z. Pan, “Exploring logic
optimizations with reinforcement learning and graph convolutional
network,” in Proceedings of the 2020 ACM/IEEE 2nd Workshop on Ma-
chine Learning for CAD (MLCAD), 2020, pp. 145–150.

	Abstract
	Acknowledgments
	Introduction and Motivation
	Related Works
	ML Applications in VLSI Design
	Studies on Explaining ML Models

	Summary of Contributions
	Preliminaries
	Shapley Value and SHAP
	SHAP Tree Explainer for Tree-Based ML Models
	Examples of SHAP Analysis

	Routing Obfuscation Guided by Explanatory Analysis of a ML Attack
	Related Works on Layout Obfuscation
	Overview of SHAP-Guided Routing Obfuscation
	ML Attack Model for Split Manufacturing
	SHAP Analysis for One V-pin Pair
	Details of SHAP-Guided Routing Obfuscation
	Experimental Results
	Conclusion

	Explainable Prediction of DRC Violation Hotspots
	Related Works on DRC Hotspot Prediction
	Overview of Explainable DRC Hotspot Prediction
	Details of Explainable DRC Hotspot Prediction
	Experimental Results
	Conclusion

	Approximate Logic Synthesis Guided by Explainable ML
	Preliminaries on Sampling-Based ALS
	Related Works on Sampling-Based ALS
	Overview of SHAP-Guided Logic Approximation
	Implementation Details
	Experimental Results
	Conclusion

	Conclusion and Future Directions
	Bibliography

