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abstract

Deep learning has achieved significant success in various applications, includ-
ing image classification, image segmentation, natural language processing, and
more. However, traditional deep learning models assume that the input data can
be represented as Euclidean vectors. This assumption limits their applicability to
structured data that do not conform to Euclidean space, such as symmetric positive
definite matrices and distribution functions. When dealing with such structured
data, omitting the geometric information and applying traditional deep learning
models often leads to suboptimal performance. In this thesis, our focus is to bridge
the gap between available deep learning models and structured data of the form de-
scribed above by incorporating the inherent geometric structures of the data. First,
we study how to model fiber bundles in brain images when each voxel along the
trajectory is manifold-valued. We show that doing so allows statistical analysis with
improved power. We then describe a method to transform one manifold to another,
allowing the generation of Orientation Distribution Functions (ODF) images with
higher angular information based on a given Diffusion Tensor Imaging (DTI) while
preserving meaningful group-wise differences. We also study a problem setting
which allows effectively tracking the covariance matrix along a neural network,
which is useful when training a certified robust network. Finally, we discuss the use
of distance correlation to evaluate the correlation between two different random
vectors. This approach offers multiple benefits such as robustness against trans-
ferred attack, disentanglement of a generative model, and evaluation of similarity
between two neural networks. In summary, our modifications to traditional deep
learning models allow for effective utilization of manifold information, resulting in
improved performance in terms of speed, efficiency, and robustness across various
applications.
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1 introduction

Machine learning is a field of study that focuses on developing algorithms that
can learn patterns and relationships in data. The goal of these algorithms is to
make classifications or predictions on unseen data. To achieve this goal, one often
simplifies the setting by first deciding on a feasible set of models (also known as
the hypothesis class), and then estimating the "best" model, which is specified by
the estimated parameters, for the given data. Thus, the design and implementation
of machine learning algorithms are heavily influenced by the selection of a feasible
model class (or type)Θ, denoted byΘ, and the data types, denoted by X. These
two fundamental components play a crucial role in determining the type of machine
learning model that is best suited for a particular application.

The model typesΘ can consist of a variety of different models, including non-
parametric models such as kernel density estimation Terrell and Scott (1992), kernel
SVM Amari and Wu (1999), and KNN Peterson (2009), as well as parametric models,
such as distribution families like Poisson and normal distributions DeGroot and
Schervish (2002), and the increasingly popular deep neural networks (DNN).
Similarly, the data X can also consist of different types of data, including documents
Devlin et al. (2019), images Deng et al. (2009), videos Mao et al. (2018), and more.
Based on the specific data type X ∈ X and the assumption of specific feasible
model class Θj ∈ Θ, when given the data samples {xi}

n
i=1 ⊂ X, one normally

tries to find the optimal model θ ∈ Θj. This process is referred to as the learning
problem Bottou and Bousquet (2007); Kingma and Ba (2015). For instance, in a
regression problem, the goal is to minimize the mean square error between the
model’s prediction and the actual labels. Given the data samples (xi,yi)ni=1 ⊂ X,
where yi represents the labels, the learning algorithm attempts to find the solution
to the optimization problem arg min θ ∈ Θj

∑n
i=1(fθ(xi) − yi)

2. In other words, it
tries to find the optimal model θ ∈ Θj that minimizes the difference between the
prediction and the actual labels.

In order to make the design and analysis of machine learning algorithms more
manageable, it is common to represent the data as high-dimensional feature vectors
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and to collect all parameters of the model as a vector. By doing so, an assumption
is made that both the model and data exist in high-dimensional Euclidean spaces.
This simplifies the mathematical formulation of the learning problem, making it
easier to analyze various models.

If the model spaces are known to be Euclidean (e.g., weights and biases in
Alexnet Krizhevsky et al. (2012), Resnet He et al. (2016a), etc.), we can use standard
learning algorithms (rather optimization solvers), such as gradient descent or
stochastic gradient descent (SGD), to learn the model. However, in many cases,
the model spaces are not Euclidean, which means that the standard schemes are
not directly applicable. For instance, the exponential family and other parametric
families do not correspond to Euclidean spaces, so a different approach must be
taken in these spaces.

Example 1.1. The exponential family distribution does not correspond to an Euclidean
space, for example, a standard normal distribution for high dimensional data, f(x) =

1√
(2π)k|Σ|

e−
1
2 (x−µ)

TΣ−1(x−µ), where µ is the mean of the distribution and Σ is the covariance
matrix. One can easily notice that the parameters of the model, µ,Σ, do not lie in the
Euclidean space, due to the fact that Σ should be a symmetric positive definite matrix.

In neural networks, we can assume that the weight w (of one specific layer)
is in Rp. Based on this assumption, we can apply SGD to update the weight w.
However, if there is a constraint on the weight, such as ‖w‖ = 1, the space is no
longer Euclidean, and other learning algorithms are required to update the weight.

Example 1.2. For a simple one-layer neural network without the bias term, we have f(x) =
wTx. But there is another constraint on w such that ‖w‖ = 1. After one iteration of
gradient decent, we have w ′ = w− η∇wf(x), where η is the predefined step size. We have
no information on w ′, that is, whether ‖w ′‖ is still 1.

In such cases, it is necessary to introduce the geometric information of the
models (regarding what is permissible versus not) during the training process.
This can be achieved through the use of Riemannian geometry and other math-
ematical tools that capture the geometry of the model spaces. This is not a new
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idea. Lebanon (2005) introduced the idea of geodesic distances between different
models in spaces of probability models, while Lebanon and Lafferty (2001) showed
how the AdaBoost optimizer can be used in the dual space of exponential models.
Other works, such as Lafferty (1988); Lee (2003), have discussed incorporating
Riemannian geometry and other tools to ensure that the geometry of the models is
properly accounted for during the training process, which can lead to improved
model learning.

On the other hand, for data spaces Θ, there are many different data types like
images, videos, documents and so on. Although we can usually pretend that the
data lies in the Euclidean space, for example, we can treat different channels of
color images to be independent so that we can assume that one pixel of a given
image lies in R3, it is obvious that there are many other types of data objects which
cannot be expressed as Euclidean vectors easily. Let us take the same color image. If
we are not looking at the RGB channels, but instead we use the HSV representation,
we can immediately notice that H ∈ [0, 2π],S ∈ [0, 1],V ∈ [0, 1] is not a Euclidean
space. There are some other examples of data types that are common in machine
learning such as graphs David et al. (2020), trees Ahmed et al. (2019), covariance
matrices Louizos and Welling (2016), spheres Cohen et al. (2018), and distribution
functions Carrazza and Cruz-Martinez (2019), etc. Those data naturally come with
constraints or structures. For example, all the covariance matrices must satisfy the
constraint that they should be symmetric positive semidefinite matrices. This means
that the eigenvalues must be positive or equal to zero and that the matrix should
be symmetrical. Moreover, for all the distribution functions, every component in
the distribution function should be > 0, and the summation of all the components
should be 1. Such structured data are becoming more and more common in several
problem settings, including medical imaging Yang et al. (2020), social sciences
Lazer et al. (2009), and physics Toth et al. (2020). For example, graphs and trees are
commonly used in social science Fan et al. (2019); Guo and Wang (2021), particle
physics Shlomi et al. (2021), molecular fingerprints Duvenaud et al. (2015), and
medical imaging Wu et al. (2019); Yang et al. (2020). Covariance matrices are
used in state estimation Liu et al. (2018), stock market analysis Lin et al. (2021),
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molecular physics Anderson et al. (2019), and independence testing Terranova
et al. (2015). In neuroimaging, diffusion-weighted imaging (DWI) measures the
diffusion ability of the water molecules within tissues Basser et al. (1994); Leow
et al. (2008); Hua et al. (2008), while the most widely used technique to quantify
the diffusion signal, called diffusion tensor imaging (DTI), models the direction
and intensity with an SPD(3) matrix at each voxel Le Bihan et al. (2001); Alger
(2012). Some more examples are described in Section 1.1.

We can notice that the data in the examples above are not in the Euclidean space
(or cannot be trivially expressed by Euclidean vectors). Therefore, the core math-
ematical operations used by the traditional machine learning algorithms such as
addition, subtraction, and multiplication cannot be easily carried out for structured
data. For example, adding two points in the unit disk might cause the results to go
outside of the unit disk (discussion in the Example 1.3), and multiplying a given
unit vector by any scalar (except the trivial case “1”) might cause it to leave the
unit sphere. There are other cases where defining addition and multiplication are
non-trivial, such as addition of two graphs with different number of nodes and
edges (as shown in the Figure 1.2).

Figure 1.1: Addition in the unit disk space might end up outside of the space.
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Example 1.3. As shown in the Figure 1.1, we have a unit disk space defined as D = {Q :

‖Q − O‖ 6 1} where O is the origin of the unit disk. For a given two points x1, x2, the
addition x1 + x2 might go outside of the unit disk (in some cases, ‖x1 + x2 −O‖ > 1).

Figure 1.2: For two graphs, the definition of addition is non-trival.

Figure 1.2 illustrates two graphs, G1 = (V1,E1) and G2 = (V2,E2). Depending
on the application, different options may exist for defining the addition of G1 +G2.
However, this definition can be difficult to express using Euclidean operators.

Since many traditional machine learning methods heavily rely on these op-
erations (fully connected layers are defined with multiplication and addition
y = Wx + b), it can be problematic to apply them to such structured data di-
rectly. One possible solution is to project the structured data from the original
non-Euclidean space into the Euclidean space and perform the operations in the
new Euclidean space Huang et al. (2019); Brehmer and Cranmer (2020). However,
this approach is not a universal solution. The computational burden of mapping the
structured data into a new space can be significant, and it can also lead to decreased
accuracy due to the loss of information during the mapping process. Additionally,
some projection methods may simply not work, as they may fail to capture the
underlying structure of the data. For example, if we are dealing with spaces with
non-zero curvature like spheres, there is no simple one-to-one map from a such
space to the Euclidean space that can preserve the distances between all pairs of
points.

Inspired by the need to explore the inherent structure of data spaces, there is a
growing body of research that broadens conventional techniques from Euclidean
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spaces to manifolds. This thesis provides several approaches to tackle the inherent
structure by utilizing chart maps, redefining required operations such as group
operators, etc. We shortly highlight why the geometry of the data space plays a
crucial role in constructing more effective and accurate neural networks.

1.1 Some Examples of Structured Data
As the discussion above suggests, we have introduced the intuition that simply using
Euclidean structure to represent the data space might lead to some inaccuracies.
Here, we would like to give some examples of real-world use cases where the types
of structures described above play an important role in the data space.

Graphs

One of the most commonly used data structure is a graph. A graph can be defined
as a collection of vertices and edges where vertices represent objects and edges
represent relationships between those objects. Graphs are good representations to
describe the interconnected structures within the data space.

Example 1.4. Molecules. Reiser et al. (2022); Jørgensen and Bhowmik (2022) In chemistry,
a molecule is made up of atoms that are connected by chemical bonds, such as ionic bonds
and covalent bonds etc. These bonds can be represented as edges in a graph, where the atoms
are vertices, as shown in Figure 1.3 (a).

Example 1.5. Social networks. Fan (2012); Akhtar and Ahamad (2021) Similarly, social
networks can also be represented as graphs, where the individuals in the network are the
vertices and the relationship between individuals are the edges. The graph representation of
social networks can be used to analyze the dynamics of a network and provide a straight
forward way to cluster individuals inside.
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Figure 1.3: Some examples of the structured data.

Symmetric Positive Definite (SPD) Matrices

Matrices (or tensors in high-dimensional space) are another common data type.
We can always convert a matrix into a vector and apply operators within this vector
space if there are no inherent constraints in the matrix. However, most matrices
do have inherent constraints. The most prevalent constraint is that the matrix
A should be a symmetric positive definite matrix, as defined mathematically by
A = AT ; ∀x 6= 0, xTAx > 0. SPD matrices appear as covariance matrices Ma et al.
(2010); Xu et al. (2021), in diffusion tensor imaging, and so on.
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Figure 1.4: A visualization of the diffusion tensor imaging (DTI), where each voxel
is a 3× 3 SPD matrix.

Example 1.6. Diffusion tensor imaging (DTI). Alexander et al. (2007) With diffusion
MRI, one can measure the ability of the diffusion ability of water molecules in a specific
location. If we use the Gaussian model to approximate the distribution, it will turn out to
be a 3× 3 SPD matrix at that location, as shown in the Figure 1.4. We can use these SPD
matrices of the entire brain to analysis the connectivity of the brain or the structure changes
of the white matters.

Hyperbolic Spaces

The hyperbolic space, also known as negatively curved space, is a non-Euclidean
geometry. There are several models that are used to describe a hyperbolic space,
such as Poincaré half plane model {(x1, ..., xn) ∈ Rn : xn > 0}, Poincaré disc model
{(x1, ..., xn) ∈ Rn :

∑n
i=1 x

2
i 6 1}, and so on. The key difference between hyperbolic

space and Euclidean space is the negative curvature, which can offer significant
advantages in many use cases, such as efficient embedding of hierarchical structures
Chami et al. (2020b), better clustering, and improved scalability in machine learning
and data analysis Fan et al. (2022).

Example 1.7. Embedding of trees. The embedding of trees can be done efficiently using
hyperbolic space, as shown by Sonthalia and Gilbert (2020) and Chami et al. (2020a).
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These studies demonstrate that hyperbolic embeddings can better capture the hierarchical
structure of trees, and that clustering in hyperbolic space is much simpler than in the
original tree structure or in high-dimensional Euclidean space.

1.2 Why the Geometry of Data Space Is Important
As previously discussed, many types of data cannot be accurately represented
as Euclidean vectors. While one can treat them as such, ignoring their inherent
structure can lead to suboptimal results. On the other hand, if we take the structure
of the data into consideration and adjust the model architecture based on the
geometry and specifics of the data, improvements in the performance of the learning
algorithms can be achieved. This has been demonstrated in studies such as Cohen
et al. (2018); Kondor and Trivedi (2018); Huang et al. (2019); Chakraborty et al.
(2022). An example of this can be seen in in computer vision where we try to detect
the local patterns regardless of the actual position in the 2D image. Thus, due to
the nature of the convolution, convolutional networks can offer equivariance to
translation Kauderer-Abrams (2018). However, suppose we extend the 2D planar
image to the sphere. In this case, the invariance to translation in the sphere should
be updated to seek invariance to the 3D rotation. In Spherical CNNs by Cohen et al.
(2018), the authors deploy SO(3) group correlation of the object within the layers of
Spherical CNN, with techniques from Chirikjian et al. (2001) and a generalization
of the Fourier transform. Such a method considers the geometry of the sphere and
thus shows improvement.
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Figure 1.5: A demonstration of the difference between 2D CNN and Spherical CNN.

Example 1.8. As shown in the Figure 1.5, kernels in 2D convolution are equivariant to
translation. However, when dealing with spherical data, translation needs to be replaced
with rotation. Therefore, Spherical CNNs are designed to achieve invariance to 3D rotation.

Now if we consider scientific applications beyond the simple synthetic computer
vision tasks mentioned above, in neuroimaging, we encounter manifold-valued
data often. For example, an imaging procedure known as diffusion-weighted imag-
ing (DWI), as discussed above, focuses on microstructure detection. The DWI
acquisition attempts to measure the ability of the water molecules to diffuse at a
specific location , e.g., 3D location/ voxel in the brain. While there are many varieties
of diffusion weighted imaging methods, most try to measure the microstructural
architecture of the brain and use the manifold-valued data to represent such infor-
mation. In recent years, there has been a growing body of research exploring the
use of deep learning in neuroimaging with explicit or implicit consideration of the
structure of this manifold-valued data. Elsaid and Wu (2019); Son et al. (2019);
Chakraborty et al. (2018c); Huang et al. (2019) are just a few examples of studies
that have made important contributions in this field exploring the benefits and the
limitations of manifold-valued data in deep learning algorithms. These studies
show that by considering the structure of the data and developing algorithms that



11

are tailored to its geometry, we can significantly enhance the performance of deep
learning models in terms of runtime, number of parameters, and even accuracy.

In this thesis, we aim to bridge the gap between the currently available deep
learning models and the various types of structured data described above. We will
focus on several special cases of structured data, and will modify the required oper-
ations accordingly. We will start by studying the geometric distance corresponding
to the field of SPD(3) and Sn−1. Then, we will apply deep neural networks on the
fiber bundles of the brain, which are sequences of SPD(3) or Sn−1 manifold-valued
voxels. Additionally, we will derive the tangent space and the chart maps to enable
manifold-to-manifold modality transformation using invertible deep generative
models. Later, we will explore covariance matrices and their advantages in training
robust neural networks. We will then delve into a more general property shared
between manifolds and Euclidean space, namely, the distance. We will demon-
strate that the distance, whether defined on smooth manifolds with geometry or
the traditional Euclidean distances, can enable evaluating statistical independence
within deep learning models and offer various benefits. Finally, we will explore the
hyperbolic space, where hierarchical structures of images can be well-embedded.
We will show that hyperbolic space can provide benefits that Euclidean space is
unable to provide.

1.3 Contribution and Scope of Thesis
This thesis explores the interface between differential geometry and deep learning
for both manifold-valued data and Euclidean data and applies the ideas to neu-
roimaging and natural images commonly in vision. First, we show the overall scope
of the thesis along two axes, as shown in the Figure 1.6.
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Figure 1.6: The overall scope of the thesis. The differential geometry in deep
learning can be divided into four types according to the data structure and the
application.

Dilated Convolutional Neural Networks for Sequential
Manifold-valued Data

As discussed above, sizable empirical improvements are possible when the ge-
ometry of data spaces, such as structured data (e.g., graphs) or manifold-valued
data (e.g., unit vectors or special matrices), are incorporated into the design of the
model, architecture, and the algorithms. Motivated by neuroimaging applications,
we propose to study formulations where the data are sequential manifold-valued mea-
surements. This case is common in brain imaging, where the samples correspond to
symmetric positive definite matrices or orientation distribution functions. Instead
of a recurrent model which poses computational/technical issues, and inspired by
results showing the viability of dilated convolutional models for sequence predic-
tion, we describe a dilated convolutional neural network architecture for this task.
On the technical side, our results show how the modules needed in our network
can be derived while explicitly taking the Riemannian manifold structure into ac-
count. Our work also shows how the operations needed can leverage known results
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for calculating the weighted Fréchet Mean (wFM). We present scientific results
for group difference analysis in Alzheimer’s disease (AD) where the groups are
derived using AD pathology load: here the model finds several brain fiber bundles
that are related to AD even when the subjects are all still cognitively healthy.

Flow-based Generative Models for Learning Manifold to
Manifold Mappings

While recent proposals (like spherical CNN Cohen et al. (2018)) have extended a
number of deep neural network architectures to manifold-valued data, and this has
often provided strong improvements in performance, the literature on generative
models for manifold data is quite sparse. Partly due to this gap, there are limited
modality transfer/translation models for manifold-valued data whereas numerous
such methods based on generative models are available for natural images. In
this chapter, we will address this gap, motivated by a need in brain imaging – in
doing so, we will expand the operating range of certain generative models (as well
as generative models for modality transfer) from natural images to images with
manifold-valued measurements. Our main result is a two-stream version of GLOW
(flow-based invertible generative models) that can synthesize information of a field
of one type of manifold-valued measurements given another. On the theoretical
side, our formulation introduces three kinds of invertible layers for manifold-valued
data, which are not only analogous to their functionality in flow-based generative
models (e.g., GLOW) but also preserve the key benefits (determinants of the
Jacobian are easy to calculate). For experiments, on a large dataset from the Human
Connectome Project (HCP), we have obtained promising results where we can
reliably and accurately reconstruct brain images of a field of orientation distribution
functions (ODF) from diffusion tensor images (DTI), where the latter has a 5×
faster acquisition time but at the expense of worse angular resolution.
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Simpler Certified Radius Maximization by Propagating
Covariances

In both scientific and other missions with AI applications, robustness and calibration
of models are important. One known strategy for adversarially training a robust
model is to maximize its certified radius – the neighborhood around a given training
sample for which the model’s prediction remains unchanged. The scheme typically
involves analyzing a “smoothed” classifier where one estimates the prediction
corresponding to Gaussian samples in the neighborhood of each sample in the
mini-batch, accomplished in practice by Monte Carlo sampling. In this chapter,
we will investigate the hypothesis that this sampling bottleneck can potentially be
mitigated by identifying ways to directly propagate the covariance matrix of the
smoothed distribution through the network. To this end, our work finds that other
than certain adjustments to the network, propagating the covariances must also be
accompanied by additional accounting that keeps track of how the distributional
moments transform and interact at each stage in the network. Our results show
how satisfying these criteria yields an algorithm for maximizing the certified radius
on datasets including Cifar-10, ImageNet, and Places365 while offering runtime
savings on networks with moderate depth, with a small compromise in overall
accuracy. In this thesis, we describe the details of the key modifications that enable
practical use. Via various experiments, we have evaluated when our simplifications
are sensible, and what the key benefits and limitations are.

On the Versatile Uses of Partial Distance Correlation in Deep
Learning

Comparing the functional behavior of neural network models – whether it is a
single network over time or two (or more networks) during or post-training – is an
essential step in understanding what they are learning (and what they are not), and
for identifying strategies for regularization or efficiency improvements. Despite
recent progress, e.g., comparing vision transformers to CNNs, systematic compar-
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ison of function, especially across different networks remains difficult. Classical
statistical concepts such as canonical correlation analysis (CCA) are applicable in
principle, but have been sparingly used due to efficiency issues. In this chapter, we
propose to revisit a rigorous statistical concept, called distance correlation (and its
partial variant), designed to evaluate correlation between feature spaces of different
dimensions. Our work shows that its use opens the door to numerous immediate
applications ranging from conditioning one model w.r.t. another, learning disen-
tangled representations as well as learning diverse models that would immediately
be more robust to adversarial attacks. Notice that, distance can be well defined
in both an Euclidean space and a Riemannian manifold, we can easily extend the
current formulation onto a Riemannian manifold if the geometry is known. Our
experiments suggest a versatile regularizer (or constraint) with significant advan-
tages, which avoids the drawbacks and limitations of CCA and divergence based
measures respectively.

1.4 Outline
In Chapters 3 - 6, we describe our results on four problems and the proposed
solutions in detail. We start with modifying the operation in the convolutional layer
and the fully connected layer to work on SPD(3) and Sn−1 manifold. And then, we
describe results of applying the modified neural network to several well-known
fiber bundles in Chapter 3 to perform statistical analysis of preclinical AD datasets.
We show that the proposed method is beneficial when utilizing the covariance
matrices (SPD(n)) for video classification with better accuracy and faster speed.
Motivated by the richer information availability (higher angular resolution) in ODF
than DTI, knowing the limitation that ODF requires more scanning time than DTI,
in Chapter 4, we discuss using an invertible generative model on manifold-valued
data to generate ODF given DTI while preserving regions that are significantly
different between groups. To further explore the benefit of covariance matrices
(SPD(n)), in Chapter 5, we explore whether with the use of covariance matrices and
modifying the flow of the covariance matrices layer-by-layer with an upper bound
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simplification, we can train a robust smoothed-network with some guarantees. All
the above methods are based on the known structure of manifold spaces. Another
important domain of manifold is the data-dependent manifold. Chapter 6 starts
with one of the essential properties of differential geometry, the existence of distance.
We introduce distance correlation into deep learning models to show benefits in
three major applications: robustness, similarity and dis-similarity measurement
between neural networks, and disentanglement in generative models.
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2 preliminary

In this chapter, our aim is to provide a brief overview of key concepts from Rieman-
nian geometry that are extensively utilized in most of the relevant applications in
this thesis. We will also provide an overview of important background information,
including statistical concepts and deep neural networks, for readers who are not
familiar with these topics. The concepts and notations presented here will serve as
a reference for subsequent chapters. However, we will introduce other concepts
that are only relevant to specific chapters as needed. Due to the vastness of concepts
within Riemannian geometry, we will focus on an abridged version to understand
the steps in our algorithms. We suggest referring to textbooks such as Carmo
(1992); Jost (2017) for a more detailed treatment. To complement our discussion,
we will also introduce some statistical tools to clarify certain concepts that are useful
in several chapters. Furthermore, we will discuss some related models in deep
learning that demonstrate efficiency in various types of Euclidean data, including
sequential data, image data, and more.

2.1 Riemannian Geometry
There are three types of structure in a Riemannian manifold: topological struc-
ture, differentiable structure, and Riemannian metric. The topological structure
deals with topological concepts like continuity and convergence. The differentiable
structure extends differentiability to the manifold and allows for the generalization
of calculus by ensuring that the charts of the smooth manifolds are adequately
compatible, with differentiability maintained during transitions between charts.
Lastly, the Riemannian metric determines geometrical quantities such as curvature,
distances, and angles on the manifold. This section will present these concepts in
the appropriate order.
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Topological Structure

As mentioned above, a Riemannian manifold is a topological manifold. In this
section, we will delve deeper into the concept of topological structure. Topology
can be defined as the branch of mathematics concerned with the properties of space
that are preserved under continuous transformations, such as stretching or bending
Munkres (1984). To start with, let us consider a set X.

Definition 2.1. Let X be a set and T be a collection of subsets of X, called open sets. The
topological space (X,T) on the set X should satisfy the following axioms:

1. The empty set φ and X itself belong to T

2. Any arbitrary (finite or infinite) union of members of T belongs to T

3. The intersection of any finite number of members of T belongs to T

Definition 2.2. A topological space X is said to be Hausdorff if for any x,y ∈ X with
x 6= y, there exist open set U,V such that x ∈ U,y ∈ V , and U ∩ V = φ

Definition 2.3. A base for a topological space (X,T) is a collection of sets B ⊆ T, such
that every open set in the space can be written as a union of sets in the base.

Definition 2.4. A topological space X is called second-countable if it has a countable base
for its topology T, which means it can be listed in a sequence.

Definition 2.5. A function f : X→ Y between two topological space X, Y is a homeomor-
phism if the following properties are met:

1. f is bijection

2. f is continuous

3. the inverse function f−1 is continuous

Using the definitions presented earlier, we can define an n-dimensional topo-
logical manifold. By employing the concept of homeomorphism, we can locally
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map the topological space to Euclidean space and vice versa. As a result, we can
transfer concepts from Euclidean space to the manifold space. We call a topological
manifold M n-dimensional if it is locally equivalent to Rn.

Definition 2.6. An n-dimensional topological manifold M is a topological space that
is Hausdorff, second-countable, and locally Euclidean of dimension n. For any point
x ∈M, there is a neighborhood U ⊂M containing x that is homeomorphic to Rn. These
homeomorphisms are typically called charts and denoted as ϕU : U ⊂M→ Rn.

There is also a special type of topological manifold M, called a manifold with
boundary, which contains a boundary ∂M. A manifold with boundary is a topolog-
ical space that is Hausdorff, second-countable, and locally Euclidean of dimension
n, except for points on the boundary which are only locally Euclidean of dimension
n − 1. A detailed discussion of manifolds with boundary can be found in Lee
(2011).

Differentiable Manifold

We introduce differentiable manifolds in this section. As we introduced above, the
chart maps φU : U ⊂M→ Rn are defined on the local neighborhood U.

Definition 2.7. For every pair of chartsϕU andϕV defined onU and V ⊂M, respectively,
with U ∩ V 6= ∅, the transition function ψ : ϕU(U ∩ V) ⊂ Rn → ϕV(U ∩ V) ⊂ Rn is
defined by ψ = ϕV ◦ϕ−1

U . If the transition function is infinitely differentiable, meaning it
has continuous partial derivatives of all orders, for every pair of charts ϕU and ϕV , then
we call M an n-dimensional differentiable manifold.

As we will discuss in later chapters, we extend the definition of differentiable
maps for various use cases, such as real-valued functions on a manifold f : M→ R,
vector-valued functions f : M → Rm, and even from one manifold to another f :
M→ N. Here we will only present the two most useful definitions of differentiable
maps.
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Definition 2.8. f : M → R is called C∞(M,R) differentiable if for every chart ϕU, the
function f ◦ϕ−1

U is differentiable.

Definition 2.9. The map from one manifold to another f : M → N is called C∞(M,N)

differentiable if ∀r ∈ C∞(N,R), r ◦ f ∈ C∞(M,R).

With the definition of a differentiable structure, we can introduce tangent vectors
and tangent spaces for a given manifold M. For every point p ∈M, we define an
n-dimensional real vector space TpM that is isomorphic to Rn. Each element of
the tangent space v ∈ TpM is a tangent vector of a smooth curve on M that passes
through the point p.

Definition 2.10. First define a chart ϕU : U → Rn where p ∈ U and U is a open set.
And let γ : [−1, 1]→M,γ(0) = p. The tangent vector to the curve γ at t = 0 is defined
as v = (ϕU ◦ γ) ′(0) which maps function ϕU to its directional derivative.

Definition 2.11. Further, the collection of all tangent vectors at p ∈ M is the tangent
space denoted by TpM.

Definition 2.12. The tangent bundle of M is defined as the disjoint union of tangent
spaces at all points of M, denoted by TM =

∐
p∈M TpM.

Riemannian Manifold

Finally, we will define Riemannian manifolds in this section.

Definition 2.13. A Riemannian manifold (M,g) is a differentiable manifoldM equipped
with a Riemannian metric g. The Riemannian metric g is defined by a local inner product
on tangent vectors

gp(·, ·) : TpM× TpM→ R,p ∈M

which satisfies the following properties:

1. gp(u, v) = gp(v,u) for all u, v ∈ TpM
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2. gp
(∑n

i=1 ui,
∑n
j=1 vi

)
=
∑n
i=1
∑n
j=1 gp(ui, vj)

3. gp(u,u) > 0

4. gp(u,u) = 0⇔ u = 0

With the definition of a Riemannian metric, we can define the length of a tangent
vector v ∈ TpM as

√
gp(v, v). More importantly, we can define the length of a curve

connecting two points p and q in M.

Definition 2.14. For a given curve γ : [a,b]→M, the length of γ is defined by L(γ) =∫b
a

√
gγ(t)(γ̇(t), γ̇(t))dt. γ̇(t) is the tangent vector of γ at t.

And the distance between any two points p and q in M is defined as the infimum
of the lengths of all possible piecewise smooth curves connecting p and q.

Definition 2.15. The geodesic distance between two points p,q ∈M is defined as

d(p,q) = inf
γ∈Γ(p,q)

∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t))dt

where Γ(p,q) is a set of all possible piecewise smooth curves that γ(0) = p and γ(1) = q.

If the infimum is achievable by a smooth curve, we call it geodesic.

Exponential Map and Logarithm Map

Here, we will discuss two commonly used maps when dealing with geodesics: the
exponential map and the logarithm map.

Theorem 2.1. Let M be a differentiable manifold. Then for each p ∈ M and v ∈ TpM,
there exists ε > 0 and a geodesic γ : (−ε, ε)→M such that γ(0) = p and γ̇(0) = v. γ̇(t)
is the tangent vector of γ at t, as defined in Definition 2.14. Furthermore any two such
geodesics agree wherever both are defined.
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The existence and uniqueness of the geodesic connecting two points in a Rie-
mannian manifold can be proved using the existence and uniqueness of ordinary
differential equations (ODEs). The reader can refer to Theorem 4.27 in the textbook
by Lee (2018). We will denote this unique geodesic as γv, where γ̇(0) = v.

Lemma 2.2. (Rescaling Lemma). For every p ∈M, v ∈ TpM, and c, t ∈ R,

γcv(t) = γv(ct)

whenever either side is defined.

Using the rescaling lemma, we can establish a mapping from a subset of the
tangent bundle to M. This mapping assigns a geodesic to each line passing through
the origin in TpM. We will now introduce the exponential map.

Definition 2.16. Let a subset E ⊆ TM be the domain of the exponential map, that

E = {v ∈ TM : γv is defined on an interval containing [0,1]}

and the exponential map exp : E→M by

exp(v) = γv(1)

This is a very general definition of the exponential map. However, in this thesis,
we will use the restricted exponential map at p, denoted by expp, which is the
restriction of exp to the set Ep = E ∩ TpM. We will use the term “exponential map”
in the thesis to refer specifically to the restricted exponential map at p.

We would like to point out that the exponential map is only locally defined
in most cases due to the fact that the existence and uniqueness of ODEs are only
locally preserved. Since the exponential map is a local diffeomorphism, there is an
inverse map within a small neighborhood. We call the inverse map the logarithm
map.
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Definition 2.17. Given two points p,q ∈M, if there exists v ∈ TpM and expp(v) = q,
we define the logarithm map as:

logp(q) = v

2.2 Statistical Background
In this thesis, we will discuss several applications where we also need to consider
the statistical performance of the given model. Therefore, we will cover some basic
knowledge of correlation and statistical testing, which play an essential role in the
following chapters.

Correlation

For two given random variables X and Y that are real-valued X, Y ∈ R, we can
analyze their statistical dependence. One common method for measuring the
dependence is through the use of a correlation coefficient ρX,Y . The concept of
independence between two random variables X and Y can be defined as the absence
of any influence of one variable on the other. This concept of independence leads
to the following theorem.

Theorem 2.3. If X and Y are independent, then ρX,Y = 0.

In general, the converse of the theorem is not true. However, there are some
special cases where zero correlation does imply independence. For example, if
X and Y are jointly normally distributed, then zero correlation between X and Y
implies that X and Y are independent.

To compute the correlation coefficient ρX,Y , a first attempt may be to detect linear
dependence between these two variables using the Pearson correlation coefficient,
also known as the product moment correlation coefficient Pearson (1895).
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Definition 2.18. (Pearson correlation). For a given pair of random variables X, Y ∈ R,
the Pearson’s correlation coefficient, when applied to a population, is computed as following:

ρX,Y =
cov(X, Y)
σXσY

=
E[(X− µX)(Y − µY)]

σXσY

where, µX,µY are the means of X, Y, and σX,σY are the corresponding standard deviations.
We have σ2

X = E[(X− µX)
2].

The Pearson correlation coefficient, denoted by ρ, measures the linear depen-
dence between two random variables, X and Y. Its value ranges from −1 to 1, where
ρ = ±1 indicates a perfect positive or negative linear correlation, respectively. In
other words, when ρ = ±1, there exists a linear function of the form Y = wX + r

with w, r ∈ R,w 6= 0. When ρ = 0, there is no linear association between X and Y,
and the two random variables are said to be linearly independent.

Pearson correlation is a useful tool for measuring the linear dependence between
two scalar random variables. However, when dealing with high-dimensional data,
where the variables are vectors of length greater than one, the concept of Pearson
correlation becomes more complex. In this case, the covariance matrix ΣX = E[(X−

µX)(X−µX)
T ] is no longer a scalar but a matrix. So the Pearson correlation coefficient

is not a scalar, but a matrix in high dimensional data, which is harder to interpret.
Therefore, other correlation measures may be more suitable in high-dimensional
settings. Canonical-correlation analysis (CCA) Hotelling (1936); Hardoon et al.
(2004) is indeed a useful tool for analyzing the correlation between two sets of
high-dimensional random variables X, Y even if they are in different dimensions.

Given two random variables X ∈ Rn and Y ∈ Rm, we may want to find an index
that describes any possible dependence between them. One approach to finding
such an index is through the use of canonical correlation analysis (CCA), which is
based on linear combinations of the variables, i.e. aTX and bTY, where a ∈ Rn and
b ∈ Rm. Canonical correlation analysis tries to find two vectors a ∈ Rn and b ∈ Rm

such that the random variables U = aTX and V = bTY maximize their Pearson
correlation ρ = corr(U,V). We call U and V the first pair of canonical variables. We
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may also estimate another pair of projection vectors that is uncorrelated with the
first pair. This can be repeated until we reach the minimum ofm and n.

Definition 2.19. (Canonical-correlation analysis (CCA)). Let ΣXY be the cross-
correlation matrix between random vectors X, Y. We have

ρ = max
a,b

aTΣXYb√
aTΣXXa

√
bTΣYYb

In equation 16.5-16.8 of Härdle and Simar (2015), the solution of the above equation is

U = cTΣ
− 1

2
XXX = aTX

V = dTΣ
− 1

2
YYY = bTY

where c is the eigenvector associated with the largest eigenvalue of Σ− 1
2

XXΣXYΣ
− 1

2
YYΣYXΣ

− 1
2

XX,
and d is proportional toΣ− 1

2
YYΣYXΣ

− 1
2

XXc. The subsequent pairs are found by using eigenvalues
of decreasing magnitudes.

The CCA method is effective because it can be applied to high-dimensional data.
However, there are two major drawbacks of CCA. The first is that CCA evaluates
linear dependency, similar to Pearson correlation. The second drawback is related
to the computation of a and b, which requires an estimation of ΣXX, ΣXY , and ΣYY .
In real-world use cases, these covariance matrices may change dynamically. For
instance, when training two networks with parameters ΘX and ΘY and wanting to
analyze the correlation of their representations, CCA may be used. However, this
can be difficult because the networks are updated at each training step, resulting in
dynamic changes to X and Y. To use the CCA method, we would need to estimate
the covariance matrices ΣXX, ΣXY , and ΣYY accordingly. However, this estimation
may be challenging due to the dynamic changes in X and Y during the training
process, although some solutions have recently been proposed Meng et al. (2021a).

There is another correlation concept that is well defined in high dimensional data
and can measure the non-linear dependence. This is called distance correlation.



26

For an observed random sample (x,y) = {(Xi, Yi) : i = 1, · · · ,n} from the joint
distribution of random vectors X in Rm and Y in Rn, compute the following:

ak,l = ‖Xk − Xl‖, āk,· =
1
n

n∑
l=1

ak,l, ā·,l =
1
n

n∑
k=1

ak,l,

ā·,· =
1
n2

n∑
k,l=1

ak,l, Ak,l = ak,l − āk,· − ā·,l + ā·,·

where k, l ∈ {1, · · · ,n}. Similarly, we can define bk,l = ‖Yk − Yl‖, and Bk,l =

bk,l − b̄k,· − b̄·,l + b̄·,·. Then we can define:

Definition 2.20. (Distance correlation). Székely et al. (2007) The empirical distance
correlation Rn(x,y) is the square root of

R2
n(x,y) =


V2
n(x,y)√

V2
n(x,x)V2

n(y,y)
,V2
n(x, x)V2

n(y,y) > 0

0 ,V2
n(x, x)V2

n(y,y) = 0

where the empirical distance covariance (variance) Vn(x,y),Vn(x, x) are defined as
V2
n(x,y) = 1

n2

∑n
k,l=1Ak,lBk,l,V2

n(x, x) = 1
n2

∑n
k,l=1A

2
k,l.

We will discuss this idea in more detail in the Chapter 6.

Permutation Test

When conducting experiments or observational studies, data is typically gathered
with multiple observations on a particular parameter of interest within a popula-
tion. In order to draw any conclusions about this parameter, a hypothesis test is
formulated based on the sample data Casella and Berger (2002) as follows:

H0 : θ ∈ Θ0, versus H1 : θ ∈ Θc0

where θ denotes a population parameter, Θ0 is some subset of the parameter space,
and Θc0 is its complement.
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Definition 2.21. The two hypothesesH0,H1 are complementary hypotheses in a hypothesis
test. H0 is called the null hypothesis and H1 is called the alternative hypothesis.

After observing the samples, the experimenter must decide either to accept the
null hypothesis H0 as true or to reject H0 as false.

Definition 2.22. A hypothesis testing procedure (hypothesis test) is a rule that specifies:

1. For which sample values the decision to accept H0 is true

2. For which sample values H0 is rejected and H1 is accepted as true

There are different methods of finding test procedures. We will discuss permu-
tation test here. Readers who are interested in other methods can refer to the book
Casella and Berger (2002) for more information.

A permutation test is a type of nonparametric statistical test used to assess the
significance of a parameter or a difference between parameters Good (2000). The
permutation test first requires that the data to be exchangeable under H0.

Definition 2.23. The data X1, · · · ,Xn are said to be exchangeable if any new data
Xi(1), · · · ,Xi(n), where their labels i(1), · · · , i(n) are generated by rearranging the labels
of original data 1, · · · ,n, produces the same joint probability distribution as the original
one.

We consider the following scenario: we are given two groups, A and B, and
the null hypothesis is that A and B have the same distribution. In order to test this
hypothesis, we collect two random variables, XA and XB, from groups A and B,
respectively.

Definition 2.24. (Permutation test). The permutation test is performed in the following
way:

1. Compute the test statistic T∗ for XA,XB, such as the difference between the means of
XA,XB.
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2. (Permutations). In step i, pool the observation XA,XB and divide the pooled values
into two groups of the same size of XA,XB. Compute and record the new test statistic
Ti.

3. Repeat the above processm times to form the distribution

The one-side p-value is calculated as the proportion of sampled permutations
where the difference in means was greater than the original difference.

p-value =
1
m

m∑
i=1

I{Ti > T
∗}

where I{·} is an indicator function. And the two-side p-value of the test is calculated
as the proportion of sampled permutations where the absolute value of difference
in means was greater than the absolute value of original difference.

p-value =
1
m

m∑
i=1

I{|Ti| > |T∗|}

2.3 Deep Learning Models
This thesis deals with deep learning for manifold-valued data. In this section, we
will introduce some well-known deep learning models for Euclidean data, which
will serve as a basis for proposing modifications to enable these models to operate
on manifold-valued data.

Convolutional Neural Network

To begin with, we will introduce the convolutional neural network (CNN). CNNs
LeCun et al. (1989); Krizhevsky et al. (2012); Simonyan and Zisserman (2015) use
the convolution operation (2D convolution in most natural image applications)
within many layers of the network. For the convolution layer, one must define the
kernels K, which mathematically define the receptive field of the filter. Normally,



29

the spatial size of the kernel is k× k. To make the following discussion easier, we
assume that k is an odd number k = 2τ+ 1. Assume that we are given a gray-scale
image I with size 224× 224. Let us omit handling the boundary of the image aside
for the moment. Then, the convolution operator at location i, j is:

out(i, j) =
k−1∑
p,q=0

I(i− τ+ p, j− τ+ q)K(p,q)

One can notice that this operation is slightly different from the textbook definition
of convolution since the convolution requires the flip of K. But since K is normally
trainable, the flip is not critically relevant for practical purposes, and this allows us
to simplify the discussion.

When the input image is not a gray-scale image, for example, an RGB color
image, there will be an extra dimension to store the color information, referred to
as channels. When considering the channel dimension, the convolution kernel K
should be k× k× cin, where cin is the channel size. The convolution will be:

out(i, j) =
k−1∑
p,q=0

cin−1∑
r=0

I(i− τ+ p, j− τ+ q, r)K(p,q, r)

Then if we concatenate cout number of different kernels with the same window
size k, we obtain the final convolution layer, which takes the input with channel
cin and the output with channel cout.

The key benefit of CNNs is that the kernel is shared at every location of the
image. Thus, the features extracted by these kernels should have the property that
they are invariant to location translation. Since objects can appear at any location
within the image, CNNs are naturally suitable to problems or applications involving
natural images.
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Residual Neural Network

In early experiments with CNNs, researchers realized that, in general, the deeper
networks yield better final performance. The assumption is that if the network
ΘA is deeper than ΘB and the initial layers of ΘA share the same structure as
ΘB, then ΘA can finally learn the same weights as ΘB in the initial layers and the
remaining layers can learn the identity map. Then, the performance of ΘA is at
least similar to ΘB. But the experimental results show that if the CNN is too deep,
the performance will be lower than a shallower CNN. The analysis shows that the
network experiences the gradient vanishing/ explosion during training when it
becomes very deep Glorot and Bengio (2010).

This led to the design of the Residual Neural Network (Resnet) He et al. (2016a).
Let us call each layer of the neural network fi. Then, the normal CNN will be
f = fn ◦ fn−1 ◦ · · · f0. The Resnet brings the skip connection into the design, such
that the input of the next layer is not only the network output but also the input
data x itself.

gi(x) = fi(x) + x

g = gn ◦ gn−1 ◦ · · ·g0

The above equation shows the skip connection for every single layer. In real-
world implementations, Resnet models are implemented with double- or triple-layer
skips with nonlinear activation layers in between. An example figure is shown in
the Figure 2.1.

The key benefit is that the training of a deeper network can be stable, and
gradient vanishing/ explosion problems are minimized or eliminated. Another
benefit is that the network layers gi can be learned to be identical maps if fi is
all-zero. Thus, the deeper network has the potential to be “at least” as good as a
shallower network.
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Figure 2.1: A demonstration of Resnet. (a) the skip connection for every single
layer. (b) skip connection for every two layers with an activation layer in between.

Dilated Convolutional Neural Network

If the input data is a long sequence of 1D data, x = (x0, x1, · · · xt−1), using CNNs
poses some challenges. The main drawback is the receptive field size. If we do not
consider the pooling layer, and the kernel size is k = 2τ+ 1 at every layer, then we
can notice that in the second layer, each pixel output can view k = 2τ + 1 pixels
in the first layer. For the third layer, each pixel output can view k = 2τ+ 1 pixels
in the second layer. However, since the kernels are shared, and the stride is 1 by
default, each pixel output in the third layer can only cover 2τ + 1 + 2τ = 4τ + 1
pixels in the first layer. And we can continue this trend where in the nth layer, each
pixel can view 2(n− 1)τ+ 1 pixels in the first layer. This will cause some problems
as the receptive field is linearly dependent on the number of layers. Thus, to cover
the entire t steps of the input data, the network would need O(t) number of layers,
which will be too deep in most applications.

On the other hand, if there are some holes between consecutive elements of
kernels of a CNN model, it can increase the receptive field significantly. This idea
is called dilated CNN.

Definition 2.25. (Dilated Convolutions). Bai et al. (2018). Given a 1-D input se-
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quence x : N→ Rt and a kernel K : {0, · · · ,k− 1}→ R, the dilated convolution function
(x?dK) : N→ R is defined:

(x?dK)(s) =

k−1∑
i=0

K(i)x(s− id)

When d = 1, this is equivalent to the standard convolution operator. In a dilated
CNN, the receptive field size will depend on the network’s depth and the choice of
k and d. And if d expands exponentially as the network goes deeper, the receptive
field of the network will also increase exponentially. This operation automatically
handles the problem that the network will be too deep if the input data is too long.
Actually, the depth of the network will be O(log(t)) in this setup, which is much
shallower than O(t) for the normal CNN.

Normalizing Flow Models

The network structures discussed above are the basic components of designing a
neural network. For example, we can apply a CNN on the image dataset with class
labels to perform classification, or we can use a similar structure as a CNN on the
image dataset with a pixel-wise label to perform segmentation.

We can notice that the CNN (or Resnet) is not invertible in most cases. For
example, for a convolutional layer with kernel Kwith no channel information, we
write the convolution operation as xout = f(xin,K) where xin is the input, and xout
is the output. We know that

xout(i, j) =
k−1∑
p,q=0

xin(i− τ+ p, j− τ+ q)K(p,q)

But there is no trivial solution to solve xin when given xout and K. For example, if K
is a 2D Gaussian kernel, fwill be a blurring function, and f−1 will be an unblurring
function, which is an underdetermined problem.

In this section, we will introduce a specific network structure, where both f and
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f−1 are well defined. This is called normalizing flow Rezende and Mohamed (2015);
Kingma and Dhariwal (2018). This type of architecture is often used to estimate
the distribution of the given input data or generate new data as a generative model.

Flow-based generative models aim to optimize the log-likelihood of input data
from an unknown distribution by using an invertible function to map the unknown
distribution in the input space to a known distribution in the latent space. By
doing so, the invertible function attempts to simplify the sampling process from the
input space distribution, as sampling from a known distribution is generally more
straightforward. This approach has been used in several studies, such as those by
Rezende and Mohamed (2015); Kingma and Dhariwal (2018); Yang et al. (2019)
using techniques like variational inference, Glow, and PointFlow.

The GLOW model Kingma and Dhariwal (2018) considers a scenario where
{xi} is a set of i.i.d. samples drawn from an unknown distribution p∗(x) that is
parameterized by θ. In the rest of this section, the distribution pθ(x) is used as a
substitute for p∗(x). The objective is to learn θ based on a dataset D by maximizing
the likelihood of the model given the dataset. This is achieved by minimizing the
equivalent form of the negative log-likelihood.

`(θ|D) =
1
N

N∑
i=1

−logpθ(xi)

To minimize the expression above, knowledge of pθ is required. However, one
way to overcome this limitation is to use a mapping from a known distribution in
the latent space. The latent space is represented as z, and the generative step is
formulated as z ∼ p(z), x = g(z). A Gaussian distribution N (z; 0, I) can be used as
p(z) in this approach.

From the above discussion, we know that f is the inverse of g (as a feed-forward
network). For normalizing flow Rezende and Mohamed (2015), f is composed as a
sequence of invertible functions f = fK ◦ fK−1 ◦ . . . ◦ f1. Hence, we have
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x f1←→ h1
f2←→ h2 . . . fK←→ z

where ht is the hidden representation at layer t. Using h0 = x and hK = z, the
log-likelihood of pθ(x) is

logpθ(x) = logp(z) + log|det(dz/dx)|

= logpθ(z) +
K∑
j=0

log|det(dhj/dhj−1)|

The GLOW model proposed in Kingma and Dhariwal (2018) consists of three
layers, each with a Jacobian dhj/dhj−1 that is a triangular matrix. This choice of
a triangular Jacobian matrix simplifies the log-determinant computation in the
model.

log|det(dhj/dhj−1)| =
∑

(log|diag(dhj/dhj−1)|)

The GLOW block is composed of three types of layers: (a) Actnorm, (b) In-
vertible 1× 1 convolution, and (c) Affine Coupling layers. The input data is first
squeezed before being fed into the block. The data is then split in a manner similar
to the method proposed in Dinh et al. (2017).
(a) Actnorm. normalizes the input to be a zero-mean and identity standard devia-
tion.

Y =
1
σ
� (X− µ)

µ,σ are initialized from the data and then trained independently.
(b) 1× 1 convolution. applies the invertible matrix R on the channel dimension.

R× X
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X ∈ Rsr×cr and R ∈ Rcr×cr where sr is the resolution of the input variables while
cr is the number of channels.
(c) Affine Coupling. uses the idea of split+concatenation.

S, T = NN (Xa)

Yb = S� Xb + T

Ya = Xa

To obtain the final output Y, the input variable X is split along the channel into Xa
and Xb. Then, Ya and Yb are concatenated. The matrices S and T are real-valued
and have the same dimension as Xb, and are used for element-wise scaling and
translation, respectively.

The layers mentioned above all have a closed-form inverse, which can be utilized
during the generation phase.
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3 dilated convolutional neural networks for
sequential manifold-valued data

In this chapter, motivated by neuroimaging applications, we study formulations
where the data are sequential manifold-valued measurements. This case is common in
brain imaging, as we discussed in Chapter 2. We will analyze fiber bundles that
connect different gray matter regions in the brain. We will consider the fiber bundle,
estimated via tractography, as a path and measurements along this path will pro-
vide information regarding anisotropy/diffusivity at each spatial location. These
measurements correspond to symmetric positive definite matrices or orientation
distribution functions. Instead of a recurrent model which poses computation-
al/technical issues, and inspired by recent results showing the viability of dilated
convolutional models for sequence prediction, we develop a dilated convolutional
neural network architecture for this task. In Section 3.2, we show how the mod-
ules needed in our network can be derived while explicitly taking the Riemannian
manifold structure into account. We show how the operations needed can leverage
known results for calculating the weighted Fréchet Mean (wFM). Finally, in Section
3.4, we present results for group difference analysis in Alzheimer’s disease (AD)
where the groups are derived using AD pathology load Wasserthal et al. (2018):
here the model finds several brain fiber bundles that are related to AD even when
the subjects are all still cognitively healthy. The work presented in this chapter
appeared as a conference paper in ICCV 2019 Zhen et al. (2019).

3.1 Introduction
The reader may recall that the classical definition of convolution assumes that the
data are scalar or vector-valued and lie on discrete equally spaced intervals. This
assumption is ideal for natural images and central to how we use convolutional
filters in deep neural networks but is far less appropriate for other domains where
the data are structured, such as meshes, graphs or measurements on a manifold.
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As we discussed in Section 1.2, in computer vision and machine learning, such
problems that need deep learning models for structured data, are studied under
a topic called geometric deep learning Bronstein et al. (2017), which has led to a
number of elegant approaches including convolutional neural networks (CNN)
on non-Euclidean data Cohen et al. (2018); Kondor et al. (2018). The reason this
is important is that mathematically, non-Euclidean data violates a number of key
properties of Euclidean spaces such as a global linear structure and coordinate
system, as well as shift invariance/equivariance. As a result, the core operations
we use in classical statistics and machine learning as well as within deep neural
network architectures often need to be tailored based on the geometry and specifics
of the data at hand, as discussed in Chapter 2. When such adjustments are made in
modern deep learning architectures, a number of authors have reported sizable
improvements in the performance of the learning algorithms Chakraborty et al.
(2022, 2018b); Kondor and Trivedi (2018); Cohen et al. (2018); Huang et al. (2018);
Huang and Gool (2017); Cohen and Welling (2016b).

We should note that specializing learning methods to better respect or exploit the
structure (or geometry) of the data is not a new development. Time series data are
common in finance Tsay (2005), and as a result, has been analyzed using specialized
methods in statistics for decades. Surface normal vectors on the unit sphere have
been widely used in graphics Straub et al. (2015), and probability density functions,
as well as covariance matrices, are common in both machine learning and computer
vision Srivastava et al. (2007); Dominici (2002). In neuroimaging, which is a key
focus of this chapter, the structured measurement at a voxel of an image may
capture water diffusion Basser et al. (1994); Wang and Vemuri (2005); Lenglet et al.
(2006); Jian et al. (2007); Aganj et al. (2009); Cheng et al. (2012) or local structural
change Hua et al. (2008); Zacur et al. (2014); Kim et al. (2017). The latter example
is commonly known as the Cauchy deformation tensor (CDT) Kim et al. (2017)
and has been utilized to achieve improvements over brain imaging methods such
as tensor-based morphometry Leporé et al. (2006); Ridgway (2009); Ashburner
and Friston (2000). When the mathematical properties of such data are exploited,
one often needs new loss functions and specialized optimization schemes. This
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step often involves first defining an intrinsic metric for the underlying geometry
(structure) of the data. It is important to note that within geometric deep learning
for manifolds, two types of settings are often considered. The first case is where
the data are functions on a manifold. The second case corresponds to the setting
where data are sample points on a manifold, such as a Riemannian manifold. In this
chapter, we study the second setting, which is not covered in the form described
here in existing works including Bronstein et al. (2017).

When the structure or geometry of the data informs the formulation of the
learning task (or algorithm), we obtain differential geometry inspired algorithms
where the role of the extrinsic or intrinsic metric induced by the data is explicit.
Many datasets do not have a temporal or sequential component associated with
each sample. However, the analysis of temporal (or sequential) data is an important
area of machine learning and vision, e.g., within action recognition Afsari et al.
(2012); Bissacco et al. (2001); Turaga et al. (2008) and video segmentation He et al.
(2012), the study of analogous geometric ideas in this regime, especially within
deep learning, is limited. Specifically, there are few existing proposals describing
deep neural network models for structured (or manifold-valued) sequential data.
Recently in Chakraborty et al. (2018c), we proposed a recurrent model for the mani-
fold of symmetric positive definite (SPD) matrices. This work replaces a number of
blocks within a recurrent model with “statistical recurrent units”. But it is known
that training recurrent models is more involved than convolutional architectures –
shortly, our experiments will show that a 2× speed-up (by using a convolutional
instead of a recurrent model) can be achieved (in Section 3.4). While the current
consensus, within the community, is that sequential data should involve a recurrent
network Elman (1990), as noted by Bai et al. (2018), emerging results indicate
that convolutional architectures often perform superior to recurrent networks on
“sequential” applications such as audio synthesis. In fact, even historically, convolu-
tional models were used for 1-D sequential data Hinton (1989); LeCun et al. (1995).
Now, given that most use-cases of learning sequential models on manifold-valued
data will not require the infinite memory capabilities offered by a recurrent model,
it seems natural to investigate the extent to which convolutional models may suffice.



39

Notice that in order to get the long effective memory from a CNN model, one
needs to increase the depth and/or increase the receptive field: this is provided by
extensions such as dilated convolutions. We find that the two key ingredients in
Bai et al. (2018) to achieve similar or better performance than a recurrent model
for sequential tasks involves (a) using dilations to increase the receptive field of
each convolution and (b) using residual connections to design a deeper but stable
network. It seems logical that these developments should be an ideal starting point
in designing models and algorithms for sequential manifold-valued data – the
goal of this work. Our key contribution is the design of a Dilated CNN model
for sequential manifold-valued data and showing its applicability in performing
statistical analysis of brain images, specifically, diffusion-weighted MR images.
To do so, we (a) define dilation for the convolution operator on the manifold of
interest (b) define residual connections for our architecture (c) define weight nor-
malization/dropout to add regularization/stability for the deeper network. We
show that this yields an efficient formulation for sequential manifold-valued data,
where few exist in the literature at this time. On the scientific side, we show that
such a construction gives us the ability to identify structural connectivity changes
in asymptomatic individuals who are at risk for developing Alzheimer’s disease
(AD) but are otherwise cognitively healthy.

3.2 Preliminaries
The motivation of this work is the analysis of sequential manifold-valued data, using
deep neural network architectures. As described above, our architecture utilizes
ideas presented earlier in the context of dilated convolutional neural networks
(DCNN) on Euclidean spaces Bai et al. (2018). We have reviewed the basic idea
of DCNN in Section 2.3. Here, we will review the standard DCNN formulation in
detail and then describe our proposed manifold-valued DCNN framework.
Dilated convolutions Bai et al. (2018). Given a 1-D input sequence x : N→ Rn and
a kernelw : {0, · · · ,k− 1}→ R, the dilated convolution function (x ?d w) : N→ Rn
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is:

(x ?d w) (s) =

k−1∑
i=0

w(i)x(s− id), (3.1)

where N is the set of natural numbers, and k and d are the kernel size and the
dilation factor respectively. Notice that with d = 1, we get the normal convolution
operator. In a dilated CNN, the receptive field size will depend on the depth of
the network as well as on the choice of k and d. Thus, the authors in Bai et al.
(2018) suggested the use of residual connections He et al. (2016a) – this was found
to provide stability for deeper networks. Notice that, unlike the standard residual
network connection, here the authors used a 1 × 1 convolution layer in order to
match the width of the input and the output. Additionally, in order to regularize
the network, the authors used weight normalization Salimans and Kingma (2016)
and dropout Srivastava et al. (2014). The weight normalization was applied to the
kernel of the dilated convolution layer. The dropout was implemented by randomly
zeroing out an entire output channel of a dilated convolution layer. Finally, as an
activation function, the authors used ReLU non-linearity. A schematic diagram of
a standard dilated CNN is given in Figure 3.1.

Next, we discuss generalizing the operations needed within a DCNN so that
they can operate on manifold-valued data. Specifically, we will generalize the
following operations: (a) Dilated convolution (b) Residual connection (c) Weight
Normalization (d) ReLU and (e) Dropout, to the setting where data are manifold-
valued.

Some time ago, in Chakraborty et al. (2022), we proposed a CNN architecture
for manifolds and/or manifold-valued data. We can utilize some of these ideas
towards deriving the dilated convolution operation. Before discussing the details of
the definition of dilated CNN for manifold-valued data, we will first introduce some
notations, concepts, and terminology. Readers can find more detailed notation and
definition in Section 2.1.
Assumptions. We follow the same notation as Section 2.1. We use (M,g) to denote
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Figure 3.1: Schematic diagram of dilated CNN and causal CNN (see Bai et al. (2018)
for definition and additional description).

a Riemannian manifold M with the Riemannian metric g and dM : M×M→ [0,∞)

denotes the distance induced by the metric g. We assume that the samples on M

lie inside a regular geodesic ball of radius r centered at p, Br(p), for some p ∈M

and r = min
{
rcvx (M) , rinj (M)

}
. Here, rcvx and rinj are the convexity and injectivity

radius of M, see Groisser (2004).
Weighted Fréchet mean (wFM). Let {Xi}Ni=1 be samples on M. In Chakraborty
et al. (2022) we define the convolution operation using the weighted Fréchet mean
(wFM) Maurice Fréchet (1948) of {Xi}. Consider a one dimensional kernel {w(i)}Ni=1

satisfying the convexity constraint, i.e.,

(1) ∀i,w(i) > 0

(2)
∑
iw(i) = 1

Then, the wFM (uniqueness is guaranteed by the statement above) is defined
as:

wFM ({Xi} , {w}) = arg min
M

N∑
i=1

w(i)d2
M(Xi,M), (3.2)
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Note that the distance metric dM(Xi,M) follows the Definition 2.15.
Group of isometries. The set I(M) of all isometries of M forms a group with respect
to function composition. We will use G to denote this group and for g ∈ G, and
X ∈M, let g.X denote the result of applying the isometry g to point X (‘.’ simply
denotes the group action).
Key application focus. Diffusion-weighted imaging (DWI) is a magnetic resonance
imaging (MRI) technique that measures the diffusion of water molecules to gener-
ate contrast in MRI, and has been widely applied to measure the loss of structural
connectivity in the brain. At each voxel in the image, water diffusion can be vari-
ously represented: two common options are using an elliptical approximation (see
Figure 3.2(a)) where a 3× 3 covariance matrix expresses the diffusivity properties
or an orientation distribution function where one represents the probability den-
sities of water diffusion over different orientations. We discussed this acquisition
briefly in Example 1.6. Here, we will introduce more about what we can do with
the DTI images. We can first divide the 3D image into anatomically meaningful
parcels in Figure 3.2(b) and then run standard tractography routines to estimate
the strength of connectivity between each pair of anatomical parcels Raamana and
Strother (2018). The fiber bundles, hence estimated, are shown in Figure 3.2(c). For
analysis, one often focuses on certain important fiber bundles instead of analyzing
the full set of fibers. Notice that if we specify a starting and ending anatomical
region for a fiber bundle, we can consider the corresponding covariance matrices
encountered on this “path” as multi-variate manifold-valued measurements of this
function. This is precisely the type of sequential manifold-valued data that we will
seek to model in this chapter.

3.3 Dilated Convolutions for Manifold-valued
Measurements

We now describe how to obtain the specific components needed in our architecture
for manifold-valued data.
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Figure 3.2: (Left-Right) (a) Diffusion MRI visualizes each voxel as an ellipsoid,
measuring the water molecule’s ability to diffuse. (b) Parcels are specific locations
within the brain that share similarity in one or more properties and are also referred
to as regions. (c) Fiber bundles display the connectivity between different brain
regions.

Dilated convolution operator. Given a 1-D input sequenceX : N→M and a kernel
w : {0, · · · ,k− 1}→ R satisfying the convexity constraint, the dilated convolution
function (X ?d w) : N→M is defined as:

(X ?d w) (s) = arg min
M

k−1∑
i=0

w(i)d2
M(X(s− id),M), (3.3)

where as before, k and d are the kernel size and dilation factor respectively.
Observe that the convexity constraint on the kernel is merely to ensure that the
result also lies on the manifold. We will use the weighted Fréchet mean (wFM) as
a dilated convolution operator. This choice is mathematically justified because

(1) (3.1) is the minimizer of the weighted variance which is wFM, if the choice of
distance is the `2 distance.

(2) We will show in Proposition 3.1 that the dilated convolution operator is equiv-
ariant to the action of G

This is a direct analog of its Euclidean counterpart. Notice that the dilated convolu-
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tion operator defined in (3.1) is equivariant to translations, i.e., if x is translated
by some amount t, so is the result (x ?d w). On the manifold M, the analog of
translation is the action of G, hence the equivariance of (X ?d w) with respect to G
is a desirable property.

Proposition 3.1. Using notations in (3.3) and givenw satisfying the convexity constraint,
let F : X 7→ (X ?d w). Then, F is G-equivariant, i.e., F is equivariant to the action of G.

Proof. Observe that, if g ∈ G acts on X, then, X(s − id) 7→ g.X(s − id), for all
s,d, i. Since g is an element of isometry group, therefore, dM(g.X(s− id),g.M) =

dM(X(s − id),M), for all M ∈ M. So, g.M = (g.X ?d w) (s) iff M = (X ?d w) (s),
which concludes our proof.

In (3.3), since (X ?d w) is a M valued function, we will use M as a manifold-
valued function, i.e., M(s) = (X ?d w) (s). Similar to the Euclidean dilated con-
volution layer, we learn multiple dilated kernels (given by the number of output
channels) for a dilated convolutional layer.
Residual connection. LetX and F be the input and output of a dilated convolutional
layer where the numbers of channels are cin and cout. Then, analogous to the
Euclidean residual connection, we define the residual connection using two steps:

(1) First, concatenate X and F(X) to get (cin + cout) number of channels.

(2) Use wFM to extract cout number of outputs.

More formally, let R(X, FX) be the output of the residual connection, then the kth

channel of the residual connection, Rk(X, F(X)) is given by:

Rk(X, F(X))(s) def≡ arg min
M

(
cin∑
i=1

wk(i)d
2
M(Xi(s),M) +

cout∑
j=1

wk(j+ cin)d
2
M(Fj(s),M)

)
,

s.t.
∑

i
wk(i) = 1,∀wk(i) > 0, (3.4)

where, k ∈ {1, · · · , cout} and Xi and Fj denotes the ith and jth channel of X and
F respectively.
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Weight normalization, ReLU, and dropout. The weight normalization in the stan-
dard Euclidean convolutional network is not needed here since we impose a convex-
ity constraint on the kernel. We argue that since Dropout is a regularizer, we will
not use dropout for our manifold-valued DCNN implementation because of the
implicit regularization due to the convexity constraint. As argued in Chakraborty
et al. (2022), wFM is both

(1) a contraction mapping Chakraborty et al. (2022) and

(2) a nonlinear mapping

and hence ReLU or any other non-linearity is not strictly necessary. Here, similar
reasoning explains why a ReLU is not strictly needed (since the contraction and
non-linear mapping are provided directly by wFM).
Equivariance and invariance. A few reasons why convolutional networks are so
powerful are

(1) translational equivariance of a convolution layer and so, weights can be shared
across an image

(2) translational invariance property of the entire convolutional network which is
the property of the fully connected last layer.

As we showed above, the way we defined our dilated convolution operator leads to
equivariance to the action of G. But we still have not shown that the last layer can
be designed in a way that the output of the network does not change with respect
to the action of G. So, we still need an analogous G-invariant last layer.
Invariant last layer. Analogous to the Euclidean recurrent model/ dilated CNN, in
the last layer we will only consider the output of the last time point of a sequence, i.e.,
if X is the output of the last dilated convolutional layer with c number of channels,
then the input of our last layer is {Xi(N)}

c
i=1, where X(N) ∈M is the value of the last

time point. We know already that {Xi(N)} are G-equivariant. So, in order to make
the entire dilated convolutional networkG invariant, we need an invariant last layer.
This is analogous to the translational invariant property of a fully connected (FC)
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layer in the traditional (Euclidean) dilated CNN. We design our last invariant layer
as follows: (a) We will first learn nC number of wFM (let denoted by {µi}

nC
i=1) of

{Xi(N)}
c
i=1 using (3.2), where nC is a hyperparameter. (b) For all i ∈ {1, · · · , c},

and for all j ∈ {1, · · · ,nC}, we compute the distance between Xi(N) and µj, denoted
by dij. (c) Thus, for each Xi(N), we get nC number of feature representations.
(d) We will use a standard fully connected (FC) layer with c×nC features as input
and the desired number of outputs.

Proposition 3.2. The last layer is G-invariant.

Proof. Observe that dij = dM (Xi(N),µj). From Proposition 3.1, we know that µj
is G-equivariant, hence, µj 7→ g.µj, for some g ∈ G if ∀i,Xi(N) 7→ g.Xi(N). But,
dM (Xi(N),µj) = dM (g.Xi(N),g.µj), which concludes the proof.

In order to reduce the number of parameters in the last layer, we propose a pa-
rameter efficient last layer which is defined as using a FC layer on the tangent space,
i.e., input {Log (Xi(N))}

c
i=1 as input to the FC layer, where Log is the Riemannian

inverse exponential map.
Now, we have all components of our dilated CNN on manifold-valued data. A

schematic of our model is shown in Figure 3.3. The building block for a 2-layer
manifold DCNN is shown in Algorithm 3.1. Note that the network parameters
are scalar-valued, with a convexity constraint. In order to enforce the convexity
constraint, i.e., {w(i)} > 0 and

∑
iw(i) = 1, we will learn

{√
w(i)
}

, which can be
any real value. We will enforce the sum constraint by normalization. Thus we will
use SGD to learn

{√
w(i)
}

.

3.4 Experiments
In this section, we apply the manifold DCNN to answer the following questions:

(1) By replacing a RNN with our DCNN with a manifold constraint, what im-
provement in terms of the number of parameters/time can we achieve, without
sacrificing performance?
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Algorithm 3.1: A basic ith DCNN building block with two convolution
layers

Input: N, c1
in, c1

out, c2
out, cres,k1,d1,k2,d2,nC, c

Output: yo
1: xi−1 ← Input(c1

in,N)
2: y1 ← Dilated_Conv(xi−1, c1

in, c1
out,k1,d1)

3: y1 ← Dilated_Conv(y1, c1
out, c2

out,k2,d2)
4: xi ← Residual(xi−1,y1, c1

in, c2
out, cres)

5: yo ← Inv(xi,nC, c) (For last DCNN block)

(2) For computer vision applications, how much improvement can we get?

(3) When using our method for scientific analysis of neuroimaging data, can we
obtain promising results that show that such models can enable discoveries
beyond current capabilities?

Next, we will answer the questions above by analyzing the comparative perfor-
mance of manifold DCNN via four experiments:

Res-wFM

DCNN

DCNN

�
i�1 = �xi�1

�
; ���; x

i�1

�
)

�
i = �xi

�
; ���; xi

�
) Residual block k = 2; d = 2

Figure 3.3: Schematic diagram of the residual block of manifold DCNN. There are
two DCNN blocks and one residual connection in one block. wFM is used to extract
the cout = 3 channels from the concatenation.
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(1) two computer vision applications of classifying videos and

(2) two neuroimaging experiments for scientific discoveries related to Alzheimer’s
disease.

Improvement in Terms of Parameters/Time on Synthetic and
Real Computer Vision Datasets

In this section, we organize two sets of experiments:

(1) Classification of different moving patterns on the Moving MNIST data

(2) Classification of 11 actions on the UCF-11 data.

Both these experiments serve as empirical evidence of the efficiency of manifold
DCNN in terms of the number of parameters and time per epoch. We compared our
method with five state-of-the-art sequential models: SPD-SRU Chakraborty et al.
(2018c), LSTM Hochreiter and Schmidhuber (1997), SRU Oliva et al. (2017), TT-
GRU and TT-LSTM Yang et al. (2017). For all methods except TT-GRU and TT-LSTM,
before the sequence process module, we used a convolution block. For manifold
DCNN and SPD-SRU (also for manifold-valued data), between the convolution
block and the sequence process unit, we include a covariance block analogous
to Yu and Salzmann (2017). The architecture of this experiment is shown in the
Figure 3.4.

As one of the key operations of DCNN is wFM, below we will use an efficient
recursive provably consistent estimator of wFM on the space of covariance matrices
(SPD with some added small noise along diagonal). Let X(s) be an SPD matrix for
all s ∈ N, and then the nth recursive wFM estimator,Mn is given as:

M0 = X(s) Mn = Γ
X(s−n∗d)
Mn−1

(
w(n)∑n
j=0w(j)

)
, (3.5)
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Figure 3.4: Schematic diagram of the network architecture for vision datasets. We
use two CNNs to extract the features. And we calculate the covariance between
feature channels to get the SPD matrices. In the last layer, we use a G-invariant and
a fully connected layer to do the classification.

where Γ is the shortest geodesic on the manifold of SPD matrices equipped with
the canonical affine invariant Riemannian metric Ho et al. (2013).

Moving MNIST: Moving pattern classification

We generated the Moving MNIST data according to the algorithm proposed in
Srivastava et al. (2015). In this experiment, we classify the moving patterns of
different digits. For each moving pattern, we generated 1000 sequences with length
20 showing 2 digits moving in the same pattern in a 64×64 frame. The moving speed
and the direction are fixed inside each class, but the digits are chosen randomly.
In this experiment, the difference in the moving angle from two sequences across
different classes is at least 5◦.
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Results: In the Table 3.1, the results show that our method not only achieves the
best test accuracy with the smallest number of parameters but is also 1.5 times
faster than the SPD-SRU which has the second smallest # of parameters. The kernel
of CNN we use has size 5× 5 with the input channel and output channel set to 5
and 10 respectively. All parameters are chosen in a way to use the fewest number
of parameters without deteriorating the test accuracy.
Scalability. We assess the running time (training and testing) of manifold DCNN
with respect to the SPD matrix size. From Figure 3.5(a), we can see that as the matrix
size increases, the training time increases, while the testing time remains almost
the same. This is a desirable property as it indicates that inference time does not
depend on matrix size. Also, for different orientations differences, manifold DCNN
gives almost perfect classification accuracy with very small standard deviation, as
shown in the Figure 3.5(b).

UCF-11: Action classification

The UCF-11 dataset Liu et al. (2009) contains 1600 video clips of 11 different classes,
such as basketball shooting, diving, etc. The video lengths (frame sequences) vary
from 204 to 1492, with the resolution of each frame being 320 × 240. We sample
every 3 frames, resize each frame to 160× 120, and clip the frame sequences to have
the length of 50. For our method, we chose two convolution layers with kernels
7 × 7 and output channels 4 and 6 before the DCNN block. Hence, the dimension
of the covariance matrices is 7 × 7. For the manifold DCNN block, we use three

Table 3.1: Comparative results on Moving MNIST. Our model achieves the highest
accuracy (in blue) with the least # of parameters in all setups.

time (s) Test acc.Model # params. / epoch 30◦versus 60◦ 10◦versus 15◦ 10◦versus 15◦versus 20◦
DCNN 1517 ∼ 4.3 1.00± 0.00 1.00± 0.01 0.95± 0.01

SPD-SRU 1559 ∼ 6.2 1.00± 0.00 0.96± 0.02 0.94± 0.02
TT-GRU 2240 ∼ 2.0 1.00± 0.00 0.52± 0.04 0.47 ± 0.03

TT-LSTM 2304 ∼ 2.0 1.00± 0.00 0.51± 0.04 0.37 ± 0.02
SRU 159862 ∼ 3.5 1.00± 0.00 0.75± 0.19 0.73± 0.14

LSTM 252342 ∼ 4.5 0.97 ± 0.01 0.71± 0.07 0.57 ± 0.13
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Figure 3.5: Left: time versus matrix size. As the matrix size increases, the training
time inevitably increases but the testing time consistently remains extremely small.
Right: accuracy versus degree difference of orientation in the dataset. Beyond the
degree difference as small as 15◦, the error bar becomes negligible implying our
model quickly becomes very robust.

residual blocks, with channels set to be [1, 3, 3]; [3, 3, 4] and [4, 4, 4] respectively. The
kernel size is 5 for each residual block with the initial dilation number being 1 (if not
specified, the initial dilated number is always 1 in this chapter.). For TT-GRU and
TT-LSTM, we follow the same setting as given in Yang et al. (2017). For SPD-SRU,
SRU, and LSTM, we use the same parameters as in Chakraborty et al. (2018c). All
models achieve > 90% training accuracy.
Results. Test accuracy with the number of parameters and time per epoch is shown
in Table 3.2. We can see the number of parameters for our method is comparable
with SPD-SRU with higher test accuracy (≈ 4% improvement) and much faster
runtime (≈ 2.5×). Note that without residual connections, the accuracy drops to
0.809± 0.044: in other words, residual connections are useful.
Take-home message. With the above two experiments, we can conclude that manifold
DCNN (a) is faster, (b) uses fewer parameters and (c) gives better or comparable classifi-
cation accuracy compared to the state-of-the-art.
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Group Effects in Preclinical Alzheimer’s Disease

Cardinal features of Alzheimer’s disease (AD) include the development of beta-
amyloid plaques (amyloid), neurofibrillary tangles (tau), and progressive neu-
rodegeneration (characterized by MRI) Jack et al. (2018). Autopsy studies among
individuals with AD dementia indicate that degeneration of myelinated axons in
the context of amyloid and tau pathology is a defining feature of dementia sta-
tus Perez-Nievas et al. (2013). Techniques for measuring axonal degeneration in
vivo include analysis of cerebrospinal fluid, as well as diffusion-weighted imaging;
however, few studies have tested the extent to which early amyloid accumulation
may be associated with neural injury. Our goal is to utilize our method to identify
white matter fiber bundles that are affected early in the preclinical disease pro-
cess. Positron emission tomography (PET) imaging with Pittsburgh compound
B (PiB), which identifies amyloid deposition, can be used as an indicator of AD
pathology Ikonomovic et al. (2008). Thus, we compared healthy individuals who
were positive for AD pathology (PiB+) to healthy individuals who were negative
for pathology (PiB-). Additionally, we compared individuals who carried a risk
gene for AD (APOE+) to non-carriers (APOE-).

Diffusion-weighted imaging (DWI)

Data acquisition. Diffusion-weighted imaging was completed on a General Electric
(GE) 3 Tesla scanner with a 32-channel head coil and a spin-echo echo-planar
imaging pulse sequence among participants who are asymptomatic. Multi-shell

Table 3.2: Comparative results on UCF-11 data. Our model achieves the best
accuracy and the fastest speed with a small number of parameters.

Model # params. time (s)/ epoch Test acc.
manifold DCNN 3393 ∼ 33 0.823± 0.018

SPD-SRU 3337 ∼ 76 0.784± 0.014
TT-GRU 6048 ∼ 42 0.78

TT-LSTM 6176 ∼ 33 0.78
SRU 2535630 ∼ 50 0.75

LSTM 14626425 ∼ 57 0.70
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DWI data were collected using b-values b = 0, b = 500, b = 800, b = 2000, with
2×2×2mm resolution. The signal was corrected using MRTrix3 Veraart et al. (2016)
and FSL’s ‘eddy’ Andersson and Sotiropoulos (2016). Diffusion tensor imaging
(DTI) and the orientation distribution functions (ODF), which were used as the
representative of the DWI, were performed using the Diffusion Imaging in Python
(DIPY) toolbox Garyfallidis et al. (2014). To generate fiber bundles of interest, the
data was processed using TRACULA Yendiki et al. (2011, 2014, 2016). With this
pipeline, we generated 18 major fiber bundles Wakana et al. (2007), as shown in
the Figure 3.2(c). Regions of interest (ROI) in the template space, were inversely
warped back to the subject space to generate the fiber bundles and each data point
used in the analysis for each participant.
Analysis. From the previous experiments, we can see that manifold DCNN per-
forms well on classification problems with faster computation speed and fewer
parameters. Due to the fast runtime and the small number of parameters, we can use
permutation testing to perform group analysis. The statistical testing is performed
on each fiber bundle between the two groups, to determine if the DCNN model
between the two groups is different. To summarize, the setup is:

(1) Group 1 (PiB+) versus Group 2 (PiB-),

(2) Group 1 (APOE+) versus Group 2 (APOE-).

Now, we will give some details of the DCNN models for DTI and ODF representa-
tions before the statistical analysis.
(i) Diffusion tensor imaging (DTI). Since all of the data samples lie on the SPD
manifold, the model is similar to the classification model above. The only difference
between classification model and this group analysis model is that instead of the
prediction of the classes, we are fitting the two groups of data into two trainable
models, θ1 and θ2 and assessing if the distributions of θ1 and θ2 are statistically
different.
(ii) Orientation distribution function (ODF). Orientation distribution function
(ODF) represents the probability densities of water diffusion over different ori-
entations. In order to perform the statistical analysis, we discretized the space of
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orientations, i.e., S2. We sampled 724 equally spaced points on the sphere S2 to
represent the ODF. Let the ODF be denoted by xt, then after the discretization, we
have

∑724
i=1 xit = 1. As ODF is a probability density function, we use square root

parameterization Brody and Hughston (1998); Srivastava et al. (2007) to repre-
sent ODF. Using the square root parameterization, we map xt onto the positive
orthant of the unit hypersphere of dimension 723, i.e., S723. As in Section 3.3, a key
component of DCNN is the definition of wFM, which we can define on Sn−1:

y(s) = wFM ({w(i)} , {x(s− d ∗ (k− 1) : d : s)})

= arg min
M

k−1∑
i=0

w(i)d2
S (x(s− d ∗ i),M) , (3.6)

Here dS is the rotation invariant geodesic distance on S723 and x(s) is a sample
on S723 for s ∈ N. Analogous to the SPD manifold, we can define a recursive wFM
estimator mn:

m0 = x(s) mn = Γ x(s−n∗d)
mn−1

(
w(n)∑n
j=0w(j)

)
, (3.7)

where Γ is the shortest geodesic on S723. Using the above-defined estimator of
wFM, we can define DCNN on S723 as in Section 3.3.
Note. Our baseline model, SPD-SRU cannot deal with the Sn manifold as we do
here.

Statistical analysis: permutation testing

As briefly discussed in Section 2.2, we review how permutation testing will be used
here. Suppose we train our model for each of the two groups for each fiber bundle
fb we provided, with parameters θfb1 and θfb2 . Our goal is to test whether the fiber
bundle fb is statistically different between the two groups. Thus, we model the
manifold-valued data and perform statistical analysis in the parameters space. Since
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Table 3.3: Description of data/participant demographics used in the study.
PiB APOEExperiments Total Positive Negative Total Positive Negative

Number 196 29 167 669 247 422
Age (years ) (mean (SD)) 62.40 (6.33) 66.29 (4.95) 61.75 (6.30) 65.61 (8.68) 64.55 (7.99) 66.23 (9.00)

Sex (female; %) 134 (68%) 21 (72%) 113 (68%) 426 (64%) 159 (64%) 267 (63%)

the models for each group lie in the same parameter space, the statistical analysis
can be performed in the parameter space by bootstrapping. We can measure the
distance between two models as σfb = ||θfb1 −θfb2 || to represent the distance between
the group-wise fitted models’ distributions in parameter space. Then, we need
to evaluate how statistically significant the distance is – and if the value is large
enough, it is unlikely to happen by chance. A simple way to perform the test for
statistical significance is via permutation testing. If we randomly shuffle (via a
random permutation) the group information for all our samples (i.e., subjects) and
run our model for both “random” groups, we will get new parameters θ̂fb1 and θ̂fb2 .
We define σ̂fb = ||θ̂fb1 − θ̂fb2 || as a random variable. After permuting 5000 times, we
can estimate the distribution of the σ̂fb – this is the Null distribution (See Figure 3.6
as examples). The p-value is defined as the ranking of the σfb within the empirical
distribution of σ̂fb. If the p-value is less than the significance threshold α = 0.05,
we can conclude that this is not likely to happen by chance.

Since the length of different fiber bundles varies from 11 to 73, we construct a
DCNN model with 3 layers of residual units, with channels being 1, 3, 3; 3, 3, 5 and
5, 8, 10 respectively. The 1-D kernel size is 3. We use all the data we have to pre-train
the model. After pre-training, we fine tune the model during the permutation
testing.

Result 1: Group analysis: PiB+ versus PiB-

The study included imaging data acquired from 196 cognitively unimpaired (healthy)
participants acquired in a local cohort at the University of Wisconsin. We provide
demographic information from participants with PiB and APOE measures in Ta-
ble 3.3. Initial analyses were performed using single-shell data, where the model
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was run on all 18 fiber bundles, one by one, with the parameters mentioned above.
We performed permutation tests for each fiber bundle individually.

Results for the 18 fibers are shown in Table 3.4 (column 2). We find that two
of the 18 fibers satisfied the threshold of 0.05, which means that statistically these
fiber bundles are different across the two groups. Since the sample sizes were small,
the results presented are uncorrected p-values (multiple testing correction was not
performed).

Fiber bundles evaluated in this analysis included those which are known to
be affected in AD, including the superior longitudinal fasciculus and cingulum
bundle, as well as control tracts that are not likely to be affected by AD, such as
the corticospinal tract. We found significant differences between PiB+ and PiB-
groups in fiber bundles that are likely to be affected by AD, including the superior
longitudinal fasciculus and Corpus callosum - forceps minor.

When compared with the SPD-SRU model, which also reported brain imaging
experiments, the results show only one out of 18 fibers survives. Also, we find that
our model runs much faster (about 5×), which is very important when running
permutation testing thousands of times. It takes 3.5 days to run permutation testing
5000 times using DCNN, while the SPD-SRU takes 18 days. When we keep the
number of GPUs fixed, the difference between 3.5 and 18 will be even more sizable
if we expand the number of permutation testing to 10000 or more.

Result 2: Group analysis: APOE+ versus APOE-

The APOE analysis was performed using data from 669 subjects with APOE infor-
mation, with 247 of them being positive for APOE4 (a risk factor for AD). Analyses
were also conducted using the multi-shell dMRI to generate ODF information.
Similar to the preceding group difference analysis, the model was run on all 18
fiber bundles with the parameters described previously on both DTI and ODF.

The results for 18 fibers are shown in Table 3.4 in column 3. It is noteworthy
that SPD-SRU can only deal with the SPD manifold. So for ODF, which lies on Sn,
we can only run our DCNN model to do the group analysis.
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Figure 3.6: The Null distribution for one fiber bundle with α = 0.05. If the real
distance (black line) lies in the threshold (red area), that test is believed to not
happen by chance.

Here, we found that four of the 18 fiber bundles met the significance threshold of
0.05 with DTI, while SPD-SRU only captured one. Five fiber bundles were identified
when using ODF. We found differences by APOE genotype in the forceps minor,
cingulum projecting to parietal cortex, anterior thalamic projections, superior longi-
tudinal fasciculus projecting to parietal cortex and inferior longitudinal fasciculus.
We did not find differences in fiber bundles unlikely to be affected by AD, such as
the corticospinal tract in both experiments. Fiber bundles that were consistently
identified in both the DTI and ODF analyses included the inferior longitudinal
fasciculus and the anterior thalamic projections.

Discussion of preclinical AD analysis results

While amyloid and tau pathology are defining features of AD, methods are also
needed to detect AD-associated neurodegeneration Jack et al. (2018). Neurode-
generation may signal future cognitive decline. However, methods for detecting
early and subtle neurodegeneration, particularly of myelinated axons, are not yet
available, especially in preclinical AD. This is why our results here seem promising.

The results suggest significant differences in underlying fiber bundle microstruc-
ture among individuals who meet biological criteria for AD (based on PiB status) as
well as differences by APOE genotype. Of note, our algorithm identified significant
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differences in the cingulum bundle by PiB status; this white matter fiber bundle
connects medial temporal lobe and parietal cortices as part of a memory network
that is impacted by AD, and is vulnerable to degeneration in the early stages of
AD. Differences in the cingulum bundle were also apparent among carriers of the
APOE4 allele, a genetic risk factor for sporadic AD. Likewise, superior longitudi-
nal fasciculus differed by AD biomarker status and APOE genotype. Projections
identified as being significantly different included fiber bundles projecting to pari-
etal cortices. Parietal cortices are significantly impacted by AD pathology and are
among the first to show amyloid accumulation. The results presented here may
suggest that amyloid accumulation negatively impacts adjacent white matter fiber
bundles. It may also be possible that degeneration of fiber bundles is a function of
AD pathology spreading to anatomically linked brain regions via white matter fiber
bundles, although further longitudinal evaluation is needed to test the hypothesis.
In summary, statistical analysis enabled by our proposed algorithm was capable of
identifying differences in biologically meaningful brain regions.
Take-home message. Our DCNN model was able to capture more fiber differences with
significant effects compared to the SPD-SRU. It is also noteworthy that our model is much
more efficient: only 60s for one realization of the permutation test (×# of realizations),
while the SPD-SRU model > 5× times slower. Compared with the SPD-SRU, which can
only handle DTI (SPD), our method is more general: handles both DTI (SPD) and ODF
(Sn) data.

3.5 Conclusions
We present a new Dilated CNN formulation to model sequential and spatio-temporal
manifold data, where few alternatives are available at that time. Compared with the
standard sequential model (RNN), our method can improve the performance when
evaluated on the number of parameters and runtime. We show that when using
wFM, Weight normalization, ReLU, and Dropout are no longer needed in this for-
mulation. On the experimental side, for video analysis, we show that improvements
can be obtained with fewer parameters and shorter running time. Importantly, we
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Table 3.4: p-values (uncorrected) for all fibers in different groups. The highlights
are the fiber bundles that satisfy the significance threshold. Runtime for DCNN is
5× times faster than SPD-SRU (not included here).

p-value
Fiber Name Experiment 1 Experiment 2

PiB+ versus PiB- APOE+ versus APOE-
DCNN SPD-SRU DCNN SPD-SRU DCNN
on DTI on DTI on ODF

fmajor_PP 0.443 0.923 0.207 0.600 0.778
fminor_PP 0.008 0.158 0.035 0.025 N/A
lh.atr_PP 0.323 0.632 0.30 0.991 0.028
rh.atr_PP 0.295 0.143 0.86 0.271 0.563
lh.cab_PP 0.276 0.363 0.76 0.644 0.500
rh.cab_PP 0.311 0.263 0.78 0.848 0.444
lh.ccg_PP 0.230 0.267 0.042 0.609 0.043
rh.ccg_PP 0.093 0.087 0.048 0.532 0.048
lh.cst_AS 0.561 0.143 0.58 0.350 0.800
rh.cst_AS 0.629 0.278 0.35 0.667 0.769
lh.ilf_AS 0.309 0.895 0.47 0.977 0.042
rh.ilf_AS 0.405 0.889 0.46 0.563 0.857

lh.slfp_PP 0.482 0.615 0.68 0.107 0.192
rh.slfp_PP 0.571 0.941 0.047 0.154 0.050
lh.slft_PP 0.005 0.041 0.92 0.649 0.556
rh.slft_PP 0.790 0.462 0.53 0.947 0.333
lh.unc_AS 0.623 0.158 0.23 0.860 0.933
rh.unc_AS 0.298 0.895 0.34 0.324 0.182
* N/A: This ODF fiber bundle did not pass Quality Check (QC) after pre-

processing. Therefore, we left it out of the analysis to avoid inconsistencies in
the parameters used for pre-processing the full set of fiber bundles.

show that our algorithmic contributions facilitate scientific discovery relevant to
AD, and may facilitate early disease detection at the preclinical stage. The analysis
enabled by our formulation revealed subtle neurodegeneration of white matter
fiber bundles affected by AD pathology, in brain regions implicated in prior studies
of AD. We applied our proposed DCNN model to another dataset from the Dom-
inantly Inherited Alzheimer Network at Washington University at St. Louis that
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focuses on Dominantly Inherited Alzheimer’s Disease (DIAD). In this dataset, par-
ticipants are grouped into specific gene mutation carriers who will develop DIAD,
and non-carriers. We extracted 50 major fiber bundles using TractSeg Wasserthal
et al. (2018). To make a meaningful comparison, we also re-ran our method on
the dataset discussed in this chapter using the TractSeg method. We identified
14 fibers within the 50 fibers that differed by amyloid status and 16 fibers that
differed by mutation status. Across the two datasets, 9 fibers (including arcuate
fasciculus and cingulum) were found to be altered in both sporadic AD and DIAD.
Additional longitudinal studies are needed to determine the temporal relationship
between the accumulation of amyloid and neurodegeneration in the development
of dementia. The code for the algorithms described in this chapter is available at
https://github.com/zhenxingjian/DCNN.

https://github.com/zhenxingjian/DCNN
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4 flow-based generative models for learning
manifold to manifold mappings

In Chapter 3, we discussed how to extend a DCNN model to SPD matrices and
distribution functions. There are also many other proposals (like spherical CNN)
that have extended a number of deep neural network architectures to manifold-
valued data, and this has often provided strong improvements in performance.
However, the literature on generative models for manifold data is quite sparse.
Partly due to this gap, there are also relatively few modality transfer/translation
models for manifold-valued data whereas numerous such methods based on gen-
erative models are available for natural images. This chapter addresses this gap,
motivated by a need in brain imaging (similar as Chapter 3) – in doing so, we
expand the operating range of certain generative models (as well as generative
models for modality transfer) from natural images to images with manifold-valued
measurements. Our main result is the design of a two-stream version of GLOW
(flow-based invertible generative models) that can synthesize information of a field
of one type of manifold-valued measurements given another. On the theoretical
side, we introduce three kinds of invertible layers for manifold-valued data in
Section 4.3, which are not only analogous to their functionality in flow-based gener-
ative models (e.g., GLOW) but also preserve the key benefits (determinants of the
Jacobian are easy to calculate). For experiments, in Section 4.4, on a large dataset
from the Human Connectome Project (HCP), we show promising results where
we can reliably and accurately reconstruct brain images of a field of orientation
distribution functions (ODF) from diffusion tensor images (DTI), where the latter
has a 5× faster acquisition time but at the expense of worse angular resolution. The
work presented in this chapter appeared as a conference paper in AAAI 2021 Zhen
et al. (2021b).
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4.1 Introduction
The results of most methods in the literature dealing with differential geometry
in deep learning, focus on harnessing the power of DNNs for better analysis of
manifold or structured data, and the results are impressive. But most approaches are
discriminative in nature. In other words, the goal is to characterize the conditional
distribution P(Y|φ(X)) based on the predictor variables or features X, here X is
manifold-valued and the responses or labels Y are Euclidean. The technical thrust
is on the design of mechanisms to specify φ(·) so that it respects the geometry
of the data space. In contrast, work on the generative side is very sparse, and
to our knowledge, only a couple of methods for a few specific manifolds have
been proposed thus far Brehmer and Cranmer (2020); Rey et al. (2020); Miolane
and Holmes (2020); Huang et al. (2019). As a result, the numerous application
settings where generative models have shown tremendous promise, namely, semi-
supervised learning, data augmentation Antoniou et al. (2017); Radford et al. (2016)
and synthesis of new image samples by modifying a latent variable Kingma and
Dhariwal (2018); Sun et al. (2019) as well as numerous others, currently cannot be
easily evaluated for domains with data-types that are not Euclidean.
GANs for Manifold data: what is challenging? There are some reasons why
generative models have been applied to manifold data sparingly. A practical con-
sideration is that many application areas where manifold data are common, such
as shape analysis and medical imaging, we cannot often provide the sample sizes
needed to train off-the-shelf generative models such as Generative adversarial net-
works (GANs) Goodfellow et al. (2014) and Variational auto-encoders (VAEs)
Kingma and Welling (2014); Doersch (2016). There are also several issues on the
technical side. Consider the case where a data sample corresponds to an image
where each pixel is a manifold variable (such as a covariance matrix). This means
that each sample lives on a product space of the manifold of covariance matrices.
Attempting to leverage state of the art methods for GANs such as Wasserstein GANs
(WGANs) Arjovsky et al. (2017) will involve, as a first step, defining appropriate
generators that take uniformly distributed samples on a product space of manifolds
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and transforming it into “realistic” samples which are also samples on a product
space of manifolds. In principle, this can be attempted via recent developments by
extending spherical CNNs or other architectures for manifold data Chakraborty
et al. (2018a). Next, one would not only need to define optimal transport Fathi and
Figalli (2010) or Wasserstein distances Huang et al. (2019) in complicated spaces,
but also develop new algorithms to approximate such distances (e.g., Sinkhorn
iterations) to make the overall procedure computationally feasible. An interesting
attempt to do so was described in Huang et al. (2019). In that paper, Huang et al.
introduced a WGAN-based generative model that can generate low-resolution low-
dimension manifold-valued images. On the other hand, VAEs are mathematically
more convenient in comparison for such data, and as a result, a few recent works
show how they can be used for dealing with manifold-valued data Miolane and
Holmes (2020). Other VAE style approaches Huang et al. (2022) that have appeared
after the initial publication of this work may also be extended to manifolds but
this has not been attempted so far. While these methods inherit VAE’s advantages
such as ease of synthesis, VAEs are known to suffer from optimization challenges
as well as a tendency to generate smoothed samples. In general, it is not clear how
the numerical issues, in particular, will be amplified once we move to manifold
data where the core operations of calculating geodesics and distances, evaluating
derivatives, and so on, must also invoke numerical optimization routines.
Contributions. Instead of GANs or VAEs, the use of flow-based generative models
Rezende and Mohamed (2015); Kingma and Dhariwal (2018), will enable latent
variable inference and log-likelihood evaluation. It turns out, as we will show in our
development shortly, that the key components (and layers) needed in flow-based
generative models with certain mathematical/procedural adjustments, extends
nicely to the manifold setting. The goal of this work is to describe our theoretical
developments and show promising experiments in brain imaging applications
involving manifold-valued data.
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4.2 Preliminaries
This subsection briefly summarizes some differential geometric concepts/notations
we will use in this chapter. Readers will find a more comprehensive treatment in
Chapter 2 and in Boothby (1986).

Definition 4.1. (We will use Definitions 2.13 and 2.15 from Chapter 2 here. We re-state
such definitions as a quick reference for readers.) Let (M,g) be an orientable complete
Riemannian manifold with a Riemannian metric g, i.e., ∀p ∈M : gp : TpM× TpM→ R
is a bi-linear symmetric positive definite map, where TpM is the tangent space of M at
p ∈M. Let d : M×M→ [0,∞) be the distance induced from the Riemannian metric g.

Definition 4.2. Let p ∈ M, r > 0. Define Br(p) = {q ∈M|d(p,q) < r} to be an open
ball at p of radius r.

Definition 4.3 (Local injectivity radius Groisser (2004)). The local injectivity radius
is defined as rinj(p) = sup

{
r|Expp : (Br(0) ⊂ TpM)→M

}
where Expp is defined and

is a diffeomorphism onto its image at p ∈M. The injectivity radius Manton (2004) of M
is defined as rinj(M) = infp∈M

{
rinj(p)

}
.

WithinBr(p), where r 6 rinj(M), the mapping Exp−1
p : Br(p)→ U ⊂ TpM ⊂ Rm,

is called the inverse Exponential/Log map,m is the dimension of M. For each point
p ∈ M, there exists an open ball U = Br(q) for some q ∈ M such that p ∈ U,
where r = rinj(M). Thus, we can cover M by an indexed (possibly infinite) cover

Figure 4.1: Schematic description of an exemplar manifold (Sn) and the corre-
sponding tangent space at a “pole”.
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{(
Br(q), Exp−1

q

)}
q∈I

. This set is an example of a chart on M; for an example, see
Krauskopf et al. (2007) and also Figure 4.1.

For notational simplicity, we will denote a chart covering p ∈M by Φp, since in
general, we can use an arbitrary chart instead of an inverse Exponential map. Note
that the domain for two chart maps may not necessarily be disjoint.

Given a differentiable function F : M → M defined as x 7→ Ψ−1
(
F̃ (Φ(x))

)
,

whereΦ and Ψ are the functions in the chart covering x and F(x) respectively and
for some differentiable F̃ : Rm → Rm, the Jacobian of F (denoted by dy

dx
≈

) is defined
as:

dy
dx
≈

:=
∂Ψ ◦Φ−1

∂Φ(x)

dF̃

dx̃

∣∣∣
Φ(x)

(4.1)

The reason for the peculiar notation is that the derivative cannot be defined on
manifold-valued data, so dy

dx
is not meaningful: we use the notation ·

≈
to acknowledge

this difference. Also note that Ψ,Φ are the same only when

(1) using the global charts for space X and F(X)

(2) X and F(X) are on the same manifold.

Definition 4.4 (Group of isometries of M (I (M))). A diffeomorphism ι : M→M is
an isometry if it preserves distance, i.e., d (ι (x) , ι (y)) = d (x,y). The set I(M) forms a
group with respect to function composition.

Rather than writing an isometry as a function ι, we will write it as a group action.
Henceforth, let G denote the group I(M), and for g ∈ G, x ∈ M, let g · x denote
the result of applying the isometry g to point x. Similar to the terminologies in
Chakraborty et al. (2018c), we will use the term “translation” to denote the group
action ι. This is due to the distance preserving property and is inspired by the
analogy from the Euclidean space.
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4.3 Flow-based Generative Models
In Section 2.3, we briefly introduced the flow-based generative models for Eu-
clidean data. Here in this section, we will introduce flow-based generative models
for manifold-valued data in detail. To start with, we will recall the Euclidean for-
mulation and specify which components need to be generalized to get the manifold-
valued formulation.

Flow-based Models: Euclidean Case

Recall that flow-based generative models Rezende and Mohamed (2015); Kingma
and Dhariwal (2018); Yang et al. (2019) aim to maximize the log-likelihood of
the input data from an unknown distribution. The idea involves mapping the
unknown distribution in the input space to a known distribution in the latent space using
an invertible function, f. At a high level, sampling from a known distribution is
simpler, so an invertible f can help draw samples from the input space distribution.

Let {xi} be i.i.d. samples drawn from an unknown distribution p∗ (x). Let this
unknown distribution be parameterized by θ. In the rest of this chapter, we use
pθ(x) as a proxy for p∗ (x). We learn θ over a dataset D. We maximize the likelihood
of the model θ given the dataset D by minimizing the equivalent formulation of
negative log-likelihood as:

`(θ|D) =
1
N

N∑
i=1

−logpθ(xi) (4.2)

But to minimize the above expression, we need to know pθ. One way to bypass
this problem is to learn a mapping from a known distribution in the latent space.
Let the latent space be z. Then, the generative step is given by z ∼ p(z), x = g(z).
Here p(z) can be a Gaussian distribution N (z; 0, I).

Let f be the inverse of g. For normalizing flow Rezende and Mohamed (2015), f
is composed as a sequence of invertible functions f = f1 ◦ f2 ◦ . . . ◦ fK. Hence, we
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have

x f1←→ h1
f2←→ h2 . . . fK←→ z

where ht is the hidden representation at layer t. Using h0 = x and hK = z, the
log-likelihood of pθ(x) is

logpθ(x) = logp(z) + log|det(dz/dx)| (4.3)

= logpθ(z) +
K∑
j=0

log|det(dhj/dhj−1)| (4.4)

where det(·) is determinant of a square matrix ·.
In Kingma and Dhariwal (2018), the GLOW model is composed of three dif-

ferent layers whose Jacobian dhj/dhj−1 is a triangular matrix, simplifying the
log-determinant:

log|det(dhj/dhj−1)| =
∑

(log|diag(dhj/dhj−1)|) (4.5)

where diag(·) is the vector of diagnose elements of a matrix ·.
The three layers in the basic GLOW block (shown in Figure 4.2), summarized

in Table 4.1 are all invertible functions. These are (a) Actnorm, (b) Invertible 1× 1
convolution, and (c) Affine Coupling layers. Note that the data is squeezed before
it is fed into the block. Then, the data is split as in Dinh et al. (2017).
(a) Actnorm. normalizes the input to be a zero-mean and identity standard devia-
tion. In (4.6), µ,σ are initialized from the data and then trained independently.
(b) 1× 1 convolution. applies the invertible matrix R on the channel dimension.
In (4.7), X ∈ Rsr×cr and R ∈ Rcr×cr where sr is the resolution of the input variables
while cr is the number of channels.
(c) Affine coupling. uses the idea of split+concatenation. In (4.8), the input
variable X is split along the channel to Xa,Xb, and then Ya, Yb are concatenated to get
the final output Y. Here, S (and T) are real-valued matrices of the same dimension
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as Xb for element-wise scaling (and translation).
In Kingma and Dhariwal (2018), authors use a closed form for the inverse of

these layers. Notice that calculating the determinant of the Jacobian is simple for
all these layers except the affine coupling layer in (4.8) (Table 4.1).

Since dYa
dXb

= 0, dYa
dXa

= I, the Jacobian determinant is det(S).

det
(
dY

dX

)
= det

([
dYa
dXa

dYa
dXb

dYb
dXa

dYb
dXb

])
= det

([
I 0
dYb
dXa

S

])
= det (S) (4.9)

Next steps. With the description above, we can now list the key operational compo-

Figure 4.2: The basic block of GLOW Kingma and Dhariwal (2018). The color
represents the mean while the shape represents the standard deviation. The target
distribution on the latent space is the “Grape” rounded rectangles. Actnorm nor-
malizes the data to almost “Grape” rounded rectangles, while the disturbance part
is “Lavender”. 1× 1 convolution organizes the channels. Affine Coupling operates on
half of the channels to fit the target distribution. The “·” here is the element-wise
multiplication, while “×” is the matrix multiplication. “+/−” are of the normal
definition.
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Table 4.1: Definition of Actnorm, 1× 1 convolution and Affine Coupling layers in basic
GLOW block. � is the elementwise multiplication. The function NN() is a nonlinear
mapping.

Actnorm 1× 1 convolution Affine Coupling

Y =
1
σ
� (X− µ) (4.6) Y = R× X (4.7)

S, T = NN (Xa)

Yb = S� Xb + T
Ya = Xa

(4.8)

nents in (4.6)-(4.9), which we need to modify for our manifold-valued extension.
Key ingredients. In (4.6) and (4.8), the operators are

(1) elementwise multiplication for σ,S

(2) the addition of bias for µ, T

(3) In (4.7), we require invertible matrices

(4) Finally, to compute the log-likelihood, we need the calculation of derivative in
(4.9)

Thus we can verify that the key ingredients to define the model in GLOW are

(1) elementwise multiplication

(2) addition of bias

(3) invertible matrix

(4) derivative calculation.

In theory, if we can modify those components from Euclidean space to manifolds,
we will obtain a flow-based generative model on a Riemannian manifold. Observe
that (1) and (3) are matrix multiplications, which are non-trivial to define on a
manifold. In Definition 4.3, we can use the chart map to map the manifold to a
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Table 4.2: Definition of Actnorm, 1× 1 convolution and Affine Coupling layers in our
manifold GLOW block, with forward function on the top and reverse function in
the bottom. Here Φ and Ψ−1 are the Chart Map and its inverse. S is a diagonal
matrix, so S−1 can be computed elementwise. T−1 represents the inverse of the
group action. The R is chosen as the rotation matrix. Thus, R−1 = RT .

Actnorm 1× 1 convolution Affine Coupling

Y = Ψ−1 (S×Φ (X)) · T (4.10) Y = Ψ−1 (R×Φ (X)) (4.11)
S, T = NN (Φ(Xa))

Yb = Ψ−1 (S×Φ (Xb)) · T
Ya = Xa

(4.12)

X = Φ−1 (S−1 × Ψ
(
Y · T−1)) (4.13) X = Φ−1 (R−1 × Ψ (Y)

)
(4.14)

S, T = NN (Φ(Ya))

Xb = Φ−1 (S−1 × Ψ
(
Yb · T−1)

))
Xa = Ya

(4.15)

subspace of Rm where a matrix multiplication can be used. This also provides a
way to solve item (4) based on the chart map. In (4.1), we show how to compute
the Jacobian of a differentiable function F from one manifold to another, respecting
the charts of the manifolds. For the item (2), adding a bias can be viewed as a
“translation” in the Euclidean space, while in Definition 4.4 we define the translation
on manifold-valued data using the group action. With these in hand, we are ready
to present our proposed manifold version of these layers next.

Flow-based Models: Riemannian Manifold Case

We will now introduce the manifold counterpart of the key operations. See Table 4.2
for a summary of functions.
(a) Actnorm. Let sr be the spatial resolution and cr be the channel size, X ∈Msr×cr .
We modify (4.6) to manifold-valued data using the operators we mentioned above
in Key ingredients. The bias term is replaced by the group operators T while the
multiplication 1/σ is replaced by the diagonal matrix S of sizem×m in the space
after the chart mappingΦ(·). The layer function is defined as in (4.10).
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Determinant of the Jacobian can be computed as shown below in (4.16). In general,
sr can be a tuple, i.e., for 3D data, it is a 3 dimensional tuple.

det
(
dY
dX
≈

)
=
∏
sr×cr

(∏
si

)
det
(
Ψ ◦Φ−1) (4.16)

(b) 1 × 1 convolution. We define a 1 × 1 convolution to offer the flexibility of
interaction between channels. Here R is a cr×cr matrix applied after chart mapping
Φ(·). In general, we can learn any R ∈ GL(cr), i.e., a full rank matrix like in (4.7). But
in practice, maintaining full rank is a hard constraint and may become unbounded.
As a regularization, we choose R to be a rotation matrix. This layer function is
defined as in (4.11) using the same notation as in (4.7).
Determinant of the Jacobian can be computed as shown below in (4.17). Notice that
for R to be a rotation matrix, the contribution from det(R) is ±1.

det
(
dY
dX
≈

)
=
∏
sr

det(R)det
(
Ψ ◦Φ−1) (4.17)

(c) Affine coupling. For manifold-valued data, given X ∈ Msr×cr (where sr and
cr are spatial and channel resolutions), we first split the data along the channel
dimension, i.e., partition cr into two parts denoted by Xa ∈ Msr×ca and Xb ∈
Msr×cb , where cr = ca + cb. From (4.8), we need to modify the scaling and
translation. Here, S ∈ (Rm×m)sr×ca and T ∈ Gsr×ca . These two operators play the
same roles as in (4.8), scaling and translation. We need S to be full rank. If needed,
one may use constraints like orthogonality or bounded matrix for numerical stability.
After performing the coupling, we simply combine Ya and Yb to get Y ∈Msr×cr as
our output. This function is defined in (4.12).
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Determinant of the Jacobian can be computed as:dYadXa
≈

dYa
dXb
≈

dYb
dXa
≈

dYb
dXb
≈

 (4.18)

Similar to (4.9), observe that dYb
dXa
≈

involves taking the gradient of a neural net-
work! But fortunately, we only require the determinant of the Jacobian matrix, and
the independence of Ya on Xb saves the calculation of dYb

dXa
≈

since dYa
dXb
≈

= 0. Thus,

given X, Y ∈Msr×cr , the Jacobian determinant is given as

det
(
dY
dX
≈

)
=
∏
sr×cr

det (S)det
(
Ψ ◦Φ−1) (4.19)

Distribution on the latent space. After the cascaded functional transformations
described above, we transform X to the latent space Z ∈Msh×ch . We define a Gaus-
sian distribution on Z, namely P (Z;M,Σ), by inducing a multi-variate Gaussian
distribution from Rm as

exp
(
−
(Φ(Z) −Φ(M))

T
Σ−1 (Φ(Z) −Φ(M))

2

)/
C(Σ) (4.20)

whereM ∈ Msh×ch and Σ ∈ SPD(m)sh×ch (SPD denotes a symmetric positive
definite matrix, similar to our use in Chapter 2 and 3). C(Σ) is the normalization
constant to make the total probability to be 1.

Learning Mappings between Manifolds

We can now ask the question: can we draw manifold-valued data conditioned on another
manifold-valued sample? Due to the nature of the invertibility of our generative
model, this seems to be possible since all we need to develop, in addition to what
has been covered, is a scheme to sample data from Euclidean space conditioned on
a vector-valued input.
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Recently, extensions of the GLOW model (in a Euclidean setup) have been used
to generate samples from space X conditioned on space Y, see Sun et al. (2019).
In this section, we roughly follow Sun et al. (2019) by using connections in a
latent space but in a manifold setting to generate a sample from a manifold M,
conditioned on a sample on manifold N. The underlying assumption is that there
exists a (smooth) function from N to M. The generation steps are as follows.

(1): Given variables X ∈Msx×cx and Y ∈ Nsy×cy with the dimension of the man-
ifolds M and N to be m and n respectively, we use the two parallel GLOW
models (as discussed above) to get the corresponding latent space. Let it be
denoted by Zm and Zn respectively.

(2): After getting the respective latent spaces, we need to fit a distribution on it.
Since we wish to generate samples from M, the distribution on the respective
latent space Zm must be induced from the variables in Zn, i.e., the latent space
for N. We do not have any constraint on the distribution parameters for Zn, so,
we use a Gaussian distribution with a fixedM and Σ on Zn. The parameters
for the Gaussian distribution on Zm are defined as functions of Zn. Formally,
we define P (Zm;Mm,Σm) using (4.20), where,Mm = Ψ−1

M (FM(ΦN(Zn)) and
Σm = FS(ΦN(Zn)). Here, the two functions FM and FS are modeled using a
neural network. The scheme is shown in Figure 4.3.

Specific examples of manifolds. Finally, in order to implement (4.10), (4.11) and
(4.12) mentioned in the previous sections, basic operations specific to a manifold
are

(1) the choice of distance, d

(2) the isometry group, G

(3) the chart mapΦ and its inverse, Φ−1

We use three types of non-Euclidean Riemannian manifolds in the experiments
presented in this work, they are
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Figure 4.3: Transfer from the source manifold N to the target manifold M with the
generative model. The detail of blocks of our model. The meanings of colors and
shapes are the same as Figure 4.2, while all variables lie on the manifold instead of
Euclidean space. The major difference between our manifold-valued GLOW and
the original GLOW model is that we use a tangent space transformation before
and after every operation. Different from Figure 4.2, there is no element-wise
multiplication. The “·” here is the group operation on the manifold-valued data.
The “×” is also the matrix multiplication in the tangent space.

(1) hypersphere, Sn−1

(2) space of positive real numbers, R+

(3) space of n× n symmetric positive definite matrices (SPD(n)).

We give the explicit formulation for the operations in Table 4.3.

4.4 Experiments
We demonstrate the experimental results of our model using two setups. First, we
generate texture images based on the local covariances, which serves as a sanity
check evaluation relative to another generative model for manifold-valued data
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Table 4.3: The explicit formulation for the basic operations. Here P is an anchor
point for chart map, which can be one of the poles. θ = d(P,X), and SO(m) is
the group of m×m special orthogonal matrices. v ∈ Rn−1. Chol is the Cholesky
decomposition.

Sn−1 R+ SPD(n)

d(X, Y) arccos
(
XTY

)
| log(X/Y)| ‖logmX−1Y‖

G SO(n− 1) R \ {0} SO(m)

Φ(X) θ
sin(θ) (X− P cos(θ)) log(X) Chol(X)

Φ−1(v) P cos(‖v‖) + v
‖v‖ sin(‖v‖) exp(v) vvT

available at this time. The second experiment, which is our main scientific focus,
generates orientation distribution function (ODF) images Hess et al. (2006) using
diffusion tensor imaging (DTI) Basser et al. (1994); Alexander et al. (2007). Note
that, in this setting we construct the DTI scans from under-sampled diffusion directions.
Baseline. Very recently, the Me-flow Brehmer and Cranmer (2020) was introduced,
which provides a generative model for manifold-valued data. Me-flow uses an
encoder to encode the manifold-valued data in the high-dimensional space into
a low-dimensional Euclidean space. During generation, the model will generate
the low-dimensional Euclidean data and warp it back to the manifold in the high-
dimensional space. The benefit of this method is that it can learn the dimension of
the unknown manifold, including natural images like ImageNet Deng et al. (2009).
But for a known Riemannian manifold, the dimension d of the manifold is fixed. For
example, SPD(n) is of dimension d = n(n+ 1)/2, while Sm is of dimension d = m.
Thus, for a known Riemannian manifold, Me-flow learns the chart using an encoder
neural network and applies all the operations in the learned space with (known)
dimension d. Another interesting recent proposal, manifoldWGAN, Huang et al.
(2019) showed that it is possible to generate 32 × 32 resolution SPD(3) matrices
using WGAN. Due to the involved calculations needed by WGAN, extending it
into high-dimension manifold-valued data including ODF (Sm) will require non-
trivial changes. Further, manifoldWGAN in its current form does not deal with
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conditioning the generated images based on another manifold-valued data but is
an interesting future direction to explore.

Now, we present experiments for generating texture images before moving to
the more challenging ODF generation task.

Generating Texture Images

The earth texture images dataset was introduced in Yu et al. (2019). The train (and
test) set have 896 (and 98) images. All images are augmented by random transfor-
mations and cropped to size 64× 64. Our goal here is to generate texture images
based on the local covariances of the three (R, G, B) channels. So the two manifolds
are SPD(3) (for covariance matrix) and R3

+ (for texture images). Since Me-flow can
only take the Euclidean data as the “conditioning variable”, we vectorize the local
covariances as the condition variable for Me-flow. The dimension of the learned
space for Me-flow is chosen as 64 (default configuration from StyleGAN Karras
et al. (2020)). For our case, we build two parallel manifold-GLOW with 8 blocks
on each side. After every 2 blocks, the spatial resolution is reduced to half. In
the latent space, we train a residual network with 3 residual blocks to map the
distribution of the SPD(3) to R3

+. Example results are shown in Figure 4.4. Even in
this simple setting, due to the encoder in the Me-flow, the generated images lose
sharpness. Our model uses the information of the local covariances to generate
superior texture images.

Main Focus: Diffusion MRI Dataset

Our main focus is the conditional synthesis of structural brain image data. We
discussed the diffusion-weighted magnetic resonance imaging (dMRI) in Section
3.2. The main difference here is that we symmetrically/equally sampling 362 points
(compared to 724 in Section 3.2) on the continuous ODF Garyfallidis et al. (2014).
Each measurement is a 362D vector (non-negative entries; sum to 1). Using the
square root parameterization Brody and Hughston (1998); Srivastava et al. (2007),
the data at each voxel lies on the positive part of S361 manifold.
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Figure 4.4: Generated images from (a) Me-flow, (b) ours, and (c) the ground truth.
The condition is the local covariances of the RGB channels.

Here in this section, we seek to generate a 3D brain image where each voxel
is a ODF from the corresponding DTI image (each voxel is a 3 × 3 SPD matrix).
To make the setup more challenging (and scientifically interesting), we generate
the DTI images only from randomly under-sampled diffusion directions. We now
explain the following:

(1) rationale for the application

(2) data description

(3) model setup

(4) evaluations

Note that in the experiment, since we draw samples from the distribution on the latent
space, conditioned on DTI, to get the target representation, we call it generation rather than
reconstruction.
Why generating ODF from DTI is important? For dMRI, different types of acqui-
sitions involve longer/shorter acquisition times. DTI can be acquired quickly, using
diffusion-weighted imaging sequences that can be less than 5 mins. In contrast,
to calculate ODF, longer imaging sequences with more diffusion directions and
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often multi-shell sequences are needed, requiring longer scan times. To shorten the
acquisition time with minimal compromise in the image quality, we require mecha-
nisms to transform data acquired from shorter acquisitions (DTI) to a higher spatial
resolution image: a field (or image) of ODFs. This serves as our main motivation.

However, there are some problems when attempting to do so.

(1) the per voxel degrees of freedom for ODF representation is 361 (lies on S361)
while for DTI is 6 (lies on SPD(3)). Hence, it is an ill-posed problem.

(2) requires mathematical tools to “transform” from one manifold (DTI representa-
tion) to another (ODF representation) while preserving structural information.

Now, we describe some details of the data, models and present the results.
Dataset. The dataset we choose for our experiments is the Human Connectome
Project (HCP) Essen et al. (2013). The total number of subjects with diffusion
measurements available is 1065: 852 were used as training and 213 as the test set.
Demographic details are reported in Table 4.4 (please see Essen et al. (2013) for
more details of the dataset). All raw dMRI images are pre-processed with the HCP
diffusion pipeline with FSL’s ‘eddy’ Andersson and Sotiropoulos (2016). After
correction, ODF and DTI pairs were obtained using the Diffusion Imaging in Python
(DIPY) toolbox Garyfallidis et al. (2014). Due to the memory requirements of the
model and 3D nature of medical data, generation of an ODF image of the entire
brain at once remains out of reach at this point, hence we resize the original data
into 32× 32× 32 but the process can proceed in a sliding window fashion as well.

Table 4.4: The demographics used in the study.

Dataset Age Gender
22-25 26-30 31-35 36+ Female Male

All 224 467 364 10 575(54.0%) 490(46.0%)
Train 178 370 295 9 463(54.3%) 389(45.7%)
Test 46 97 69 1 112(52.6%) 101(47.4%)
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Reduction in the memory costs. Since the entire 3D models for brain images are
still too large to fit into the GPU memory, we need to further simplify the model
without sacrificing the performance too much. Recently, NanoFlow Lee et al. (2020)
was introduced to reduce the number of parameters for sequential data processing.
The assumption of NanoFlow is that the Affine Coupling layer, if fully trained, can
estimate the distribution for any parts of the input data in a fixed order. There will be
some performance drop compared with training different Affine Coupling layers for
different parts of the data. But the gain from reducing the parameters is significant.
Thus, in our setup, due to the large 3D input, we apply the NanoFlow trick for DTI
and ODF separately. For example, for the DTI data, we first split the entire data into
2τ slices called {X1,X2, ...,X2τ}, τ > 1. Then we can share the two neural networks
S and T in the Affine Coupling layer among these slices. The input of two neural
networks S and T in Affine Coupling layer would be X2k−1,k = 1, 2, ..., τ, while the
output will be the estimated mean and variance of X2k,k = 1, 2, ..., τ respectively.
Due to sharing weights, the number of parameters reduces and becomes feasible
for training our 3D DTI and ODF setups.
Model Setup. In order to set up our model, we first build two flow-based streams
for DTI and ODF separately. Then, in the latent space, we train a transformation
operating between the Gaussian distribution variable on the manifold S361 and
the Gaussian distribution variable on the manifold SPD(3). This architecture with
two flow-based models and the transformation module can be jointly trained as
shown in Figure 4.5. We use 6 basic blocks of our manifold GLOW, and after every
2 blocks, reduce the resolution by half. This setup is the same for both DTI and
ODF. We use 3 residual network blocks to map the latent space from DTI to ODF.
The samples are presented to the model in paired form, i.e., a DTI image (field
of SPD matrices) and a corresponding ODF image (a field of ODFs). To reduce
the number of parameters for this 3D data, we use a similar idea as NanoFlow
Lee et al. (2020) that shares the Affine Coupling layer for DTI and ODF separately,
with setting τ = 32. As a comparison, for the baseline model Me-flow, the learned
dimension will be 32 × 32 × 32 × d where d = 6 for DTI and d = 361 for ODF.
While Me-flow could be trained for our texture experiments, here, the memory
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Figure 4.5: The transformation from DTI to ODF. Both are generated from dMRI.
But there might not be dMRI available in some situations. Thus, we want to train
the network to transfer DTI to ODF. The latent space is the Gaussian distribution
variable.

requirements are quite large, quantitatively the number of parameters required
for Me-flow and our model are 1.3e18 and 2.1e8 respectively. A similar situation
arises in the Euclidean space version of GLOW which also does not leverage the
intrinsic Riemannian metric: therefore, the memory cost will be 6000×more than
the natural images which have dimension 224× 224× 3. This is infeasible even on
clusters and therefore, results from these baselines are very difficult to obtain.
Choice of metrics. We will use “reconstruction error” using the distance in Table 4.3.
Although the task here is generation, measuring reconstruction error assesses how
“similar” the original ODF is to the generated ODF, generated directly from the
corresponding DTI representation. We also perform a group difference analysis to
identify statistically different regions across groups (grouped by a dichotomous
variable). Since HCP only includes healthy subjects (HCP aging is smaller), we can
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perform a group difference test based on gender, i.e., male vs. female. We evaluate
overlap: how/whether group-wise different regions on the generated/reconstructed
data agrees with those on the actual ODF images.
Generation results. We present quantitative and qualitative results for generation
of ODF from its DTI representation. In Figure 4.6(a), we show a few example slices
from the given DTI and the generated ODF. Overall, the reconstruction error was
4.0(±0.45)× 1e-4. Since perceptually comparing fidelity between generated and
ground truth images is difficult, we perform the following quantitative analysis:
(a) a histogram of the reconstruction error over all 213 test subjects (shown in
Figure 4.6(b)) (b) an error matrix showing how similar the generated ODF image
is with the other “incorrect” samples of the population. The goal is to assess if the
generated ODF is distinctive across different samples (shown in Figure 4.6(c)) .
From the histogram presented in Figure 4.6(b), we can see that the reconstruction
error is consistently low over the entire test population. Now, we generate Fig-
ure 4.6(c) as follows. For each subject in the test population, we randomly select 29
samples (subjects) from the population and compute the reconstruction error with
the generated ODF. This gives us a 30× 30 matrix (similar to the confusion matrix).
Figure 4.6(c) shows the average of 10 runs: lighter shades mean a larger recon-
struction error. So, we should ideally see a dark diagonal, which is approximately
depicted in the plot. This suggests that for the test population, the generation is
meaningful (preserves structures) and distinctive (maintains variability across
subjects). There are only few experiments described in the literature on generation
of dMRI data Huang et al. (2019); Anctil-Robitaille et al. (2020). While Huang et al.
(2019) shows the ability to generate 2D (32 × 32) DTI, the techniques described
here can operate on 3D ODF (S361) data and should offer improvements.
Group difference analysis. We now quantitatively measure if the reconstruction
is good enough so that the generated samples can be a good proxy for downstream
statistical analysis and yield improvements over the same analysis performed on
DTI. We run permutation testing with 10000 independent runs and compute the per-
voxel p-value to see which voxels were statistically different between the groups for
the following settings (a) original ODF (b) generated ODF (c) DTI (d) functional
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Figure 4.6: (a) Generated ODF from corresponding DTI. Each pair here contains
the input DTI (top) and the generated ODF (bottom) (b) The distribution of re-
construction error over the testing population. (c) Reconstruction error over the
test population shows that the generated image is closest to its own corresponding
image (diagonal dominance))

anisotropy (FA) representation (commonly used summary of DTI). Both DTI
and FA are commonly used for assessing statistically significant differences across
genders Menzler et al. (2011); Kanaan et al. (2012). But since ODF contains more
structural information than either the FA or DTI, our generated ODF should be able
to pick up more statistically significant regions over DTI or FA. We evaluate the
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Figure 4.7: Thep-value of one of the ROIs of the entire brain scan with full-resolution.
We show that our proposed method can generate meaningful ODF with respect to
the group level differences.

intersection of significant regions with the original ODF (the original ODF contains
the most information). We compute the intersection over union (IoU) measure. For
the whole brain, FA will have IoU 0.04, while DTI has IoU 0.16. The generated
ODF has IoU 0.22. We see that the generated ODF has a larger intersection in the
statistically significant regions with the original ODF and offers improvements over
DTI. This provides some evidence that the generated ODF preserves the signal that
is different across the male/female groups. We also show a zoomed in example
of a ROI for the full-resolution images in Figure 4.7. The p-values for different
ROIs are all < 0.001 in both the original ODF and our generated ODF, indicating
consistency of our results, at least in terms of regions identified in downstream
statistical analysis. Note that the analysis on the real ODF images serves as the
ground truth.
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4.5 Conclusions
A number of deep neural network formulations have been extended to manifold-
valued data in the last two years. While most of these developments are based on
models such as CNNs or RNNs, in this work, we study the generative regime: we
introduce a flow-based generative model on the Riemannian manifold. We show
that the three types of layers, Actnorm, Invertible 1 × 1 convolution, and Affine
Coupling layers in such models, can be generalized/ adapted for manifold-valued
data in a way that preserves invertibility. We also show that with the transformation
in the latent space between the two manifolds, we can generate manifold-valued
data based on the information from another manifold. We demonstrate good gen-
eration results in the representation of ODF given DTI on the Human Connectome
dataset. While the current formulation shows mathematical feasibility and promis-
ing results, additional work on the methodological and the implementation side
is needed to reduce the runtime to a level where the tools can be deployed in sci-
entific labs. The code for the algorithms described in this chapter is available at
https://github.com/zhenxingjian/Dual_Manifold_GLOW.

https://github.com/zhenxingjian/Dual_Manifold_GLOW
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5 simpler certified radius maximization by
propagating covariances

In previous chapters, we mainly discussed how manifold-valued data (both SPD
matrices and distribution functions) can be used to measure the micro-structural
information in dMRI and how the presented methods can facilitate improved
analysis of such data. In this chapter, we will continue to focus on SPD matrices
but we will switch the application focus. Instead of neuroimaging problems, here
we will see how directly working with SPD matrices (derived in a specific way) can
help improve the robustness of a given neural network.

Before we get into the details, recall that one strategy for adversarially training a
robust model is to maximize its certified radius – the neighborhood around a given
training sample for which the model’s prediction remains unchanged (assuming we
are interested in classification problems). The scheme typically involves analyzing a
“smoothed” classifier where one estimates the prediction corresponding to Gaussian
samples in the neighborhood of each sample in the mini-batch, accomplished in
practice by Monte Carlo sampling. We will discuss why such method can be
problematic in Section 5.2. Further, we investigate the hypothesis that this sampling
bottleneck can potentially be mitigated by identifying ways to directly propagate
the covariance matrix of the smoothed distribution through the network. To this
end, we find that other than certain adjustments to the network, propagating the
covariances must also be accompanied by additional accounting that keeps track of
how the distributional moments transform and interact at each stage in the network
which we will discuss in Section 5.3. We show how satisfying these criteria yields
an algorithm for maximizing the certified radius on datasets including Cifar-10,
ImageNet, and Places365 while offering runtime savings on networks with moderate
depth, with a small compromise in overall accuracy. The experimental results are
presented in Section 5.4. We describe the details of the key modifications that enable
practical use. Via various experiments, we evaluate when our simplifications are
sensible, and what the key benefits and limitations are. The work described in this
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chapter appeared as a conference paper in CVPR 2021 Zhen et al. (2021a).

5.1 Introduction
The prevailing approach for evaluating the performance of a deep learning model
involved assessing its overall accuracy profile on one or more benchmarks of in-
terest. But the realization that many models were not robust to even negligible
adversarially-chosen perturbations of the input data Szegedy et al. (2014); Biggio
et al. (2013); Ilyas et al. (2018); Carlini and Wagner (2017b), and may exhibit highly
unstable behavior Bojarski et al. (2016); Lécuyer et al. (2019); Mansour (2018) has
led to the emergence of robust training methods (or robust models) that offer, to
varying degrees, immunity to such adversarial perturbations. Adversarial training
has emerged as a popular mechanism to train a given deep model robustly Papernot
et al. (2016); Tramèr et al. (2018). Each mini-batch of training examples shown to
the model is supplemented with adversarial samples. It makes sense that if the
model parameter updates are based on seeing enough adversarial samples which
cover the perturbation space well, the model is more robust to such adversarial
examples at test time Goodfellow et al. (2015); Huang et al. (2015); Madry et al.
(2018). The approach is effective although it often involves paying a premium in
terms of training time due to multiple gradient calculations Shafahi et al. (2019).
However, many empirical defenses can fail when the attack is stronger Carlini and
Wagner (2017a); Uesato et al. (2018); Athalye and Carlini (2018).

While ideas to improve the efficiency of adversarial training continue to evolve
in the literature, a complementary line of work seeks to avoid adversarial sample
generation entirely. One instead derives a certifiable robustness guarantee for a given
model Weng et al. (2018); Wong and Kolter (2018); Zhang et al. (2018); Mirman
et al. (2018); Zhang et al. (2019); Singh et al. (2018); Balunovic et al. (2019). The
overall goal is to provide guarantees that no perturbation within a certain range
will change the prediction of the network. An earlier proposal, interval bound
propagation (IBP) Gowal et al. (2018), used convex relaxations at different layers
of the network to derive the guarantees. Unfortunately, the bounds tend to get very
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loose as the network depth increases, see Figure 5.1. Thus, the applicability to large
high resolution datasets remains under-explored at this time.
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Figure 5.1: Example of three methods for certifiable robustness on a two layers MLP.
We show results of the input layer, hidden layer, and the output layer here. Black
boxes based on using IBP Gowal et al. (2018). Red dots come from the sampling
idea from Zhai et al. (2020). Ovals are covariance matrices if they are tracked
exactly while considering interactions.

Recently, following the idea in Li et al. (2019); Lécuyer et al. (2019) at a high level,
Cohen et al. (2019) introduced an interesting randomized smoothing technique,
which can be used to certify the robust radius CR. Assume that we have a base
network fθ(·) for classification. On a training image x ∈ Rd, the output fθ(x) ∈ Y is
the predicted label of the image x. Using fθ(·), we can build a “smoothed” neural
network gθ(·).

gθ(x) = arg max
c∈Y

P(fθ(x + ε) = c), where ε ∼ N(0,σ2I)

Here, σ can be thought of as a trade-off between the robustness and the accuracy
of the smoothed classifier gθ(·). One can obtain a theoretical certified radius CR
which states that when ||δ||2 6 CR, the classifier gθ(x + δ) will have same label y as
gθ(x). MACER Zhai et al. (2020) nicely extended these ideas and also presented a
differentiable form of randomized smoothing showing how it enables maximizing
the radius. Internally, a sampling scheme is used, where empirically, the number
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of samples to get an accurate estimation could be large. As Figure 5.2 shows, one
needs 100 samples for a good estimation of the distribution of ImageNet.
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Figure 5.2: Example of Monte Carlo estimation on a different dataset. If the
distributions of the correct and wrong labels are farther, the network is more robust.
As the size of images grows, the number of samples for a good estimate also
increases.

Main intuition. MACER Zhai et al. (2020) showed that by sampling from a Gaus-
sian distribution and softening the estimation of the distribution in the last layer,
maximizing the certified radius is feasible. It is interesting to ask if tracking the
“maximally perturbed” distribution directly – in the style of IBP – is possible without
sampling. Results in Xiao et al. (2018) showed that the pre-activation vectors are
i.i.d. Gaussian when the channel size goes to infinity. While unrealistic, it provides
us a starting point. Since a Gaussian distribution can be fully characterized by the
mean and the covariance matrix, we can represent the Gaussian distribution by
a product manifold structure (Rn × SPD(n)), where the mean is in Rn and the
covariance matrix is in SPD(n). Then, we can track these two quantities as it passes
through the network until the final layer, where the radius is calculated. If imple-
mented directly, this scheme must involve keeping track of how pixel correlations
influence the entries of the covariances from one layer to the next, and the book-
keeping needs grow rapidly. Alternatively, Xiao et al. (2018) uses the fixed point of
the covariance matrix to characterize it while it passes through the network, but
this idea is not adaptable for maximizing the radius task in Zhai et al. (2020). We
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will use other convenient approximations of the covariance to make direct tracking
of the distribution of the perturbation feasible.
Other applications of certified radius maximization. Training a robust network is
also useful when training in the presence of noisy labels Angluin and Laird (1987);
Goldberger and Ben-Reuven (2017); Patrini et al. (2017). Normally, both crowd-
sourcing from non-experts and web annotations, common strategies for curating
large datasets introduce noisy labels. It can be difficult to train the model directly
with the noisy labels without additional care Zhang et al. (2017). Current methods
either try to model the noise transition matrix Goldberger and Ben-Reuven (2017);
Patrini et al. (2017), or filter “correct” labels from the noisy dataset by collecting
a consensus over different neural networks Han et al. (2018); Jiang et al. (2018);
Malach and Shalev-Shwartz (2017); Ren et al. (2018). This leads us to consider
whether we can train the network from noisy labels without training any auxiliary network?
A key observation here is that the margin of clean labels should be smoother than
the noisy labels (as shown in Figure 5.3).
Contributions. This chapter shows how several known results characterizing the
behavior of (and upper bounds on) covariance matrices (SPD matrices) that arise
from interactions between random variables with known covariance structure
can be leveraged to obtain a simple scheme that can propagate the distribution
(perturbation applied to the training samples) through the network. While SPD
matrices in the previous chapter directly encoded the measurements, here the SPD
matrices are artificially obtained from the data and pertain to an approximation
of its perturbations. The approach leads to a sampling-free method that performs
favorably when compared to Zhai et al. (2020) and other similar approaches when
the network depth is moderate. We show that our method is 5× faster on Cifar-10
dataset and 1.5× faster on larger datasets including ImageNet and Places365 relative
to the current state-of-the-art without sacrificing much of the performance. Also,
we show that the idea is applicable for training with noisy labels.
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Figure 5.3: When directly training with noisy labels, the margin will resemble the
red line. Using a robust network, the margin will resemble the green line.

5.2 Robust Radius via Randomized Smoothing
We will briefly review the relevant background on robust radius calculation using
Monte-Carlo (MC) sampling.
What is the robust radius? In order to measure the robustness of a neural network,
the robust radius has been shown to be a sensible measure Weng et al. (2018); Cohen
et al. (2019). Given a trained neural network fθ, the `2-robustness at data point (x,y)
is defined as the largest radius R of the ball centered at x such that all samples
within the ball will be classified as y by the neural network fθ. Analogously, the `2-
robustness of fθ is defined as the minimum `2-robustness at data point (x,y) over the
dataset. But calculating the robust radius for the neural network can be hard; Weng
et al. (2018) provides a hardness result for the `1-robust radius. In order to make
computing `2-robustness tractable, the idea in Cohen et al. (2019) suggests working
with a tight lower bound, called the “Certified Radius”, denoted by 0 6 CR 6 R.
Let us now briefly review the ideas in Cohen et al. (2019) in the context of a given
base classifier fθ(·).

Note that we want to certify that there will be no adversarial samples within a
radius of CR. By smoothing out the perturbations ε around the input image/data
x for the base classifier fθ(·), intuitively it will be harder to find an adversarial
sample, since it will actually require finding a “region” of adversarial samples. If
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we can estimate a lower bound on the probability of the base classifier to correctly
classify the perturbed data x + ε, denoted as pcx , as well as an upper bound of the
probability of an incorrect classification pc̃ 6 1 − pcx , where cx is the true label
of x and c̃ is the “most likely to be confused” incorrect label, a nice result for the
smoothed classifier gθ(·) is available,

Theorem 5.1. Cohen et al. (2019) Let fθ : Rd → Y be any deterministic or random
function, and let ε ∼ N(0,σ2I). Let gθ be the randomized smoothing classifier defined as
gθ(x) = arg maxc∈Y p(fθ(x + ε) = cx). Suppose cx, c̃ ∈ Y and pcx ,pc̃ ∈ [0, 1] satisfy
p(fθ(x + ε) = cx) > pcx > pc̃ > maxc̃6=cx p(fθ(x + ε) = c̃). Then gθ(x + δ) = cx for
all ‖δ‖2 < CR, where CR = σ

2 (Φ
−1(pcx) −Φ

−1(pc̃)).

The symbol Φ denotes the CDF of the standard Normal distribution. Φ and
Φ−1 are involved because of smoothing the Gaussian perturbation ε. The proof of
this theorem can be found in Cohen et al. (2019).
How to compute the robust radius? Using Theorem 5.1, we will need to compute
the lower bound pcx , the main ingredient to compute CR. In Cohen et al. (2019), the
authors introduced a sampling-based method to compute the lower bound of pcx in
the test phase. The procedure first samples n0 noisy samples around x and passes it
through the base classifier fθ to estimate the classified label after smoothing. Then,
we sample n noisy samples, where n� n0, to estimate the lower bound of pcx for
a certain confidence level α.

5.3 Track Distribution Approximately
In the last section, we discussed how to calculate pcx in a sampling (Monte Carlo)
based setting. However, this method is based on counting the number of correctly
classified samples, which is not differentiable during training. In order to tackle this
problem, Zhai et al. (2020) introduced an alternative – soft randomized smoothing
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– to calculate the lower bound

pcx = Eε∼N(0,σ2I)

[
eβu

cx
θ (x+ε)∑

c ′∈Y e
βuc

′
θ (x+ε)

]
(5.1)

where uθ is the network fθ without the last softmax layer, i.e.,

fθ = arg max softmax(uθ)

while β is a hyperparameter.
From Figure 5.2, observe that if we have enough MC samples, we can reliably

estimate pcx effectively by counting the number of correctly classified samples. If
we can bypass MC sampling to estimate the final distribution, the gains in run-
time can be significant. However, directly computing the joint distribution of the
perturbations of all the pixels is infeasible: we need simplifying assumptions.
Gaussian pre-activation vectors. The first assumption is to use a Gaussian distri-
bution to fit the pre-activation vectors. As briefly mentioned before, this is true
when the channel size goes to infinity by the central limit theorem. In practice,
when the channel size is large enough, e.g., a Resnet-based architecture He et al.
(2016a), this assumption may be acceptable with a small error (evaluated later in
experiments). Therefore, we will only consider the first two moments, which is
reasonable for Gaussian perturbation Wishart (1928).
Second moments. Our second assumption is that in each layer of a convolution
network, the second moments are identical for the perturbation of all pixels. That is
the input pixels share identical second moments from a fixed Gaussian perturbation
ε. Due to weight sharing and the linearity of the convolution operators, the second
moments will only depend on the kernel matrix without the position information.
A more detailed discussion is in Observation 5.2.
Notations and setup. LetN be the number of channels. We use Σ as the covariance
matrices of the distribution of the pixel after the perturbation in the input layer.
Here, we define each pixel as a random vector with dimension of N (number of
channels). That is to say, Σ ∈ SPD(N). The input perturbation comes from Gaussian
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perturbation ε where Σ = σ2I. As the image passes through the network, the input
perturbation directly influences the output at each pixel as a function of the network
parameters. We use Σi ∈ RN×N, shorthand for Σxi , to denote the covariance of the
perturbation distribution associated with pixel i of image x denoted as xi. We call
Σ[i, j] as the (i, j)-entry of Σ. Notice that the N changes from one layer to the other
as the number of channels are different. So, the size of Σwill change. LetMq be the
number of pixels in the qth layer input, i.e., for q = 1,M1 is the number of pixels in
the 1st hidden layer of the network.

Similarly, µxi or µi ∈ RN is the mean of the distribution of the pixel xi intensity
after the perturbation. In the input layer, since the perturbation ε ∼ N(0,σ2I),
µi = xi. At the uθ layer, the number of channels is the number of classes, with the
number of pixels being 1. We use µ[cx] and Σ[cx, cx] to denote the cx component of
µ and (cx, cx)-entry of Σ respectively. To denote the cross-correlation between two
pixels xi, xj, we use Exixj or Eij ∈ RN×N. Note that this cross-correlation is across
channels. For the special case where channel size N = 1, we will use σ(i) ∈ R to
represent the variance in the ith layer. Let us define,

cx = arg max
c∈Y

µ[c], c̃ = arg max
c∈Y,c6=cx

µ[c] (5.2)

Let the number of classes C = |Y|. Then, we can state the following.

Observation 5.1. Using uθ, the prediction of the model can be written as fθ(x) =

arg maxc∈Y softmax(uθ(x)). Assume uθ(x) ∼ N(µ,Σ), where x ∼ N(µx,Σx), µ ∈ RC

and Σ ∈ RC×C. Then the estimation of pcx is

pcx = Φ(
µ[cx] − µ[c̃]√

Σ[cx, cx] + Σ[c̃, c̃] − 2Σ[cx, c̃]
) (5.3)

Notice that propagatingµ through the network is simple, since tracking the mean
is the same as directly passing it through the network when there is no nonlinear
activation, and requires no cross-correlation between pixels. But tracking Σ at each
step of the network can be challenging and some approximation techniques have
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been used in literature for simple networks Scaglione et al. (2008). To see this, let
us consider a simple 1-D example.
Bookkeeping problem. Consider a simple 1-D convolution with a kernel size k.
By Observation 5.1, we will need the distribution of uθ(x) of the ith layer (i.e., the
network without the softmax layer). Directly, this will involve taking into account
k1 pixels in the (i− 1)th layer, and k2 pixels in the (i− 2)th layer. We must calculate
the covariance Σ and also calculate the cross-correlation E between all kq pixels
in (i − q)th layer. This trend stops when we hit kq > Mi−q, where Mi−q is the
number of pixels at (i− q) layer, but it is impractical anyway.

If we temporarily assume that the network involves no activation functions, and
if the input perturbation is identical for all pixels, then the variance of all pixels
after perturbation is also identical. Thus, the variance of each pixel only relies on
the variance of the perturbation and not on the pixel intensity. This may allow us
to track one covariance matrix instead ofM for allM pixels.

Observation 5.2. With the input perturbation ε set to be identical along the spatial
dimension and without nonlinear activation function, for the qth hidden convolution layer
with {hi}Mq

i=1 output pixels, we have Σ(q)
hi = Σ

(q)
hj ,∀i, j ∈ {1, · · · ,Mq}.

Observation 5.2 only reduces the cost marginally: instead of computing all
the covariances of the perturbation for all pixels, Σ(i−q)

1 ,Σ(i−q)
2 , · · · ,Σ(i−q)

k , we only
need to compute a singleΣ(i−q). Unfortunately, we still need to compute all different
E
(i−2)
ij that will contribute to uθ(x). Thus, due to these cross-correlation terms Eij,

the overall computation is still not feasible. In any case, the assumption itself is
unrealistic: we do need to take nonlinear activations into account which will break
the identity assumption of the second moments. For this reason, we explore a
useful approximation which we discuss next.

How to Make Distribution Tracking Feasible

From the previous discussion, we observe that a key bottleneck of tracking distri-
bution across layers is to track the interaction between pairs of pixels, i.e., cross-



95

correlations. Thus, we need an estimate of the cross-correlations between pixels. In
Hanebeck et al. (2001), the authors provide an upper-bound on the joint distribu-
tion of two multivariate Gaussian random variables such that the upper bounding
distribution contains no cross-correlations. This result will be crucial for us.

Formally, let x1, x2 ∈ RN be two random vectors representing two pixels with
N channels. Without any loss of generalization, assume that x1 ∼ N(0,Σ1), and
x2 ∼ N(0,Σ2) (if the mean is not 0, we can subtract the mean without affecting
the covariance matrix). Also, assume that we do not know the cross-correlation
between x1 and x2, i.e., E12. Instead, the correlation coefficient r is bounded by rmax,
i.e., |r| 6 rmax.

With the above assumptions, we can bound the covariance matrix of the joint dis-
tribution of two N-dimensional random vectors x1, x2 by two independent random
vectors x̂1, x̂2. We will use the notation “ ·̂ ” to denote the upper bound estimation
of “·”. The upper bound here means that [Σ̂− Σ] is a positive semi-definite matrix,
where Σ̂ is the joint distribution of the two independent random vectors x̂1 and x̂2.
Here, Σ is the joint distribution of x1, x2 with correlation. Formally,

Theorem 5.2. Hanebeck et al. (2001) When x̂1 ∼ N(0, Σ̂1 = τ1Σ1), and x̂2 ∼ N(0, Σ̂2 =

τ2Σ2), the covariance matrix B = Σ̂ =

[
τ1Σ1 0

0 τ2Σ2

]
bounds the joint distribution of x1

and x2, i.e., B � Σ =

[
Σ1 E12

E21 Σ2

]
, where τ1 = 1

η−κ
, τ2 = 1

η+κ
, κ2 6 1−2η

1−r2
max

+ η2, and

0.5 6 η 6 1
1+rmax .

With this result in hand, we now discuss how to use it to makes the tracking of
moments across layers feasible.
How to use Theorem 5.2? By Observation 5.2, we can store one covariance matrix
over the convolved output pixels at each layer. Notice that due to the presence of
the cross-correlation between output pixels, we also need to store cross-correlation
matrices, which was our bottleneck! But with the help of Theorem 5.2, we can
essentially construct independent convolved outputs, called

{
ĥi
}

, that bound the
covariance of the original convolved outputs, {hi}. To apply this theorem, we need
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to estimate the bounding covariance matrix B, which can be achieved with the
following simple steps (the notations are consistent with Theorem 5.2)

(1) We estimate the bound on correlation coefficient rmax

(2) Assign η = 1
1+rmax

(3) Assign κ = 0 which essentially implies τ1 = τ2

Remark: When computing the varianceΣ[cx, cx] in the ith layer, we need only k upper
bound of covariances Σ̂1

(i−1)
, Σ̂2

(i−1)
, · · · , Σ̂k

(i−1)
from the (i−1)th layer. Moreover,

using the assumption that the covariance matrices of the (i − 1)th layers to be
identical across pixels when the input perturbation is identical, we only compute
Σ̂(i−1), which in turn requires computing only one upper bound of covariance.
Hence, the computational cost reduces to linear in terms of the depth of the network.
Ansatz: The assumption of identical pixels (when removing the mean) is sensible
when the network is linear. But the assumption is undesirable. So, we will need a
mechanism to deal with the nonlinear activation function setting. Further, we will
need to design the mechanics of how to track the mean and covariance for different
type of layers. We will describe the details next.

Robust Training by Propagating Covariances

Overview. We described simplifying the computation cost by tracking the upper
bounds on the perturbation of the independent pixels. We introduce details of an
efficient technique to track the covariance of the distribution across different types
of layers in a CNN. We will also describe how to deal with nonlinear activation
functions.

We treat the ith pixel, after perturbation, as drawn from a Gaussian distribution
xi ∼ N(µi,Σ), where µi ∈ RN and Σ is the covariance matrix across the channels
(note thatΣ is the same across pixels for the same layer). We may remove the indices
to simplify the formulation and avoid clutter. A schematic showing propagating
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Figure 5.4: The LeNet with tracking the bounding box or the covariance matrices
over each layer. The covariance matrices are denoted as the ovals. Since bounding
boxes are proportional to ||W||1, while covariance matrices are proportional to ||W||2,
the covariance-based upper bound will be tighter than the box-base one.

the distribution across LeNet Bengio et al. (2007) model, for simplicity, is shown in
Figure 5.4 denoted by the colored ovals.

To propagate the distribution through the whole network, we need a way to
propagate the moments through the layers, including commonly used network
modules, such as convolution and fully connected layers. Since the batch normal-
ization layer normally has a large Lipschitz constant, we do not include the batch
normalization layer in the network. We will introduce the high-level idea, while
the low-level details are in the Appendix A.1.
Convolution layer. Since the convolution layer is a linear operator, the covariance
of an output pixel Σh ∈ RNout×Nout is defined as Σh =WT Σ̃W. Here, let x̃ ∈ RNink2

be the vector consisting of all the independent variables inside a k× k kernel {xi},
Σ̃ ∈ RNink2×Nink2 is the covariance of the concatenated x̃. W is the reshaped weight
matrix of the shape Nink2 ×Nout.

We need to apply Theorem 5.2 to compute the upper bound of Σh as Σ̂h =

(1 + rmax)W
T Σ̃W to avoid the computational costs of the dependency from cross-

correlations. A pictorial description of propagating moments through the convolu-
tion layer is shown in Figure 5.5.
First (and other) linear layers. The first linear layer can be viewed as a special case
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Figure 5.5: The yellow blocks are the kernel of convolution, while the blue blocks
are the data. After computing the distribution, we use an upper bound to remove
the dependency of two pixels h1,h2.

of convolution with kernel size equal to the input spatial dimension. Since there
will only be one output neuron h (with channels), there is no need to break the
cross-correlation between neurons. Thus, Σh =WTΣx̃W and takes a form similar
to the convolution layer.
Special case: From Observation 5.1, we only need the largest two intensities to
estimate the pcx in the uθ(x) layer. Thus, if there is only one linear layer as the last
layer in the uθ(x), as in most of Resnet like models, this can be further simplified.
We only need to consider the covariance matrix between cx and c̃ index of uθ(x).
Thus, this will need calculating a 2× 2 covariance matrix instead of a C×Cmatrix.

On the other hand, if the network consists of multiple linear layers, calculating
the moments of the subsequent linear layers must be handled differently. Let
x ∼ N

(
µ
(i)
x ,Σ(i)

x

)
∈ RNi be the input of the ith linear layer given by h =WT

i x + bi,
then

h ∼ N
(
WT
i µ

(i)
x + bi,WT

i Σ
(i)
x Wi

)
.

Here,Wi ∈ RNi×Ni+1 , bi ∈ RNi+1 , and h ∈ RNi+1 .
Pooling layer. Recall that the input of a max pooling layer is {xi} where each
xi ∈ RNin and the index i varies over the spatial dimension. Observe that as we
identify each xi by the respective distribution N (µi,Σ), applying max pooling over
xi essentially requires computing the maximum over {N (µi,Σ)}, which is not a
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well-defined operation. Thus, we restrict ourselves to average pooling. This can be
viewed as a special case of the convolution layer with no overlapping and the fixed
kernel: h ∼ N

( 1
k2

∑
xi∈W µi,

Σ
k2

)
, W is the kernel window.

Normalization layer. For the normalization layer, given by h = (x−µ ′)/σ ′, where
µ ′,σ ′ can be computed in different ways Ioffe and Szegedy (2015); Ba et al. (2016);
Ulyanov et al. (2016), we have h ∼ N

(
(µ

(i)
x − µ ′)/σ ′,Σ(i)

x /σ ′2
)

. However, as the
normalization layers often have large Lipschitz constant Awais et al. (2020), we
omit these layers in this work.
Activation layer. This is the final missing piece in efficiently tracking the moments.
The overall goal is to find an identical upper bound of the second moments after
the activation layer when the input vectors share identical second moments. Also,
the first moments should be easier to compute, and ideally, will have a closed form.
In Bibi et al. (2018); Lee et al. (2019), the authors introduced a scheme to compute
the mean and variance after a ReLU operation. Since ReLU is an element-wise
operation, for each element (a scalar), assume x ∼ N(µ,σ2). After ReLU activation,
the first and second moments of the output are given by:

E(ReLU(x)) =
1
2µ−

1
2µ erf( −µ√

2σ
) +

1√
2π
σ exp(− µ2

2σ2 ),

var(ReLU(x)) < var(x)

Here, erf is the Error function. Since we want an identical upper bound of the
covariance matrix after ReLU, as well as the closed form of the mean, we use
ReLU(x) ∼ N (µa,Σa) where,

µa =
1
2µ−

1
2µ erf( −µ√

2σ
) +

1√
2π
σ exp(− µ

2

2σ2 ),

Σa � Σ

σ is the square root of the diagonal elements of Σ, µ is the mean of the input vector.
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Figure 5.6: In the last layer, we first find the indexes of the largest two intensity cx, c̃.
Then compute the pcx .

All the operators in the first equation are element-wise operators.
Last layer/prediction. The last layer is the layer before softmax layer, which repre-
sents the “strength” of the model for a specific class (as shown in Figure 5.6). By
Observation 5.1, we have the estimate

pcx = pcx = Φ

(
µ[cx] − µ[c̃]√

Σ[cx, cx] + Σ[c̃, c̃] − 2Σ[cx, c̃]

)

and pc̃ = pc̃ = 1 − pcx as an upper bound estimation. By Theorem 5.1, the certified
radius is

CR =
σ

2 (Φ
−1(pcx) −Φ

−1(pc̃)) (5.4)

=σ
µ[c] − µ[c̃]√

Σ[cx, cx] + Σ[c̃, c̃] − 2Σ[cx, c̃]
. (5.5)

Network structures used. In the experiment, we applied two types of network on
different dataset, LeNet Bengio et al. (2007) and PreActResnet 18 He et al. (2016b).
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Table 5.1: A review of different layers. Here, µi,Σi is the mean and covariance
matrix of the input channels, while µo,Σo is the mean and covariance after that
layer.

Convolution Linear Pooling Activation
µo conv(µi,W) + b WTµi + b

1
k2

∑
µi

1
2µi −

1
2µi erf(−µi√

2σ)

+ 1√
2πσ exp(− µ2

i

2σ2 )

Σo (1 + rmax)W
T Σ̃iW WTΣiW

1
k2Σi Σi

LeNet requires convolution layer, average pooling layer, activation layer, and
linear layer. We build the network with three convolution layers with activation
and pooling after each layer, and two linear layers.

The structure of PreActResnet 18 is similar with two major differences – the
residual connection and it involves only one linear layer. For the residual connec-
tion, it can be viewed as a special type of linear layer. Due to the assumption of
independence, the final covariance is the addition of two inputs. Also, there is only
one linear layer as the final layer. Thus, we can reduce the cost of computing the
whole covariance matrix to only computing the covariance matrix of the largest
two intensities.

As discussed above, we removed all batch normalization layers within the
network as well as replaced all max pooling operations with the average pooling
layer in the network structure. Our experiments suggest that there is minimal
impact on performance.

Training Loss

In the spirit of Zhai et al. (2020), the training loss consists of two parts: the clas-
sification loss and the robustness loss, i.e., the total loss l(gθ; x,y) = lC(gθ; x,y) +
λlCR(gθ; x,y). Similar to the literature, we use the softmax layer on the expectation
to compute the cross-entropy of the prediction and the true label, given by

lC(gθ; x,y) = y log(softmax(E[uθ(x)]))
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Here, lCR(gθ; x,y = cx) is

max(0, Γ − σ µ[cx] − µ[c̃]√
Σ[cx, cx] + Σ[c̃, c̃] − 2Σ[cx, c̃]

)

Thus, minimizing the loss of lCR is equivalent to maximizing CR. Γ is the offset to
control the certified radius.

5.4 Experiments
In this section, we discuss the applicability and usefulness of our proposed model
in two applications namely

(1) image classification tasks to show the performance of our proposed model
both in terms of performance and speed

(2) trainability of our model on data with noisy labels

Robust Training

Similar to Cohen et al. (2019), we use the approximate certified test set accuracy
as our metric, which is defined as the percentage of test set whose CR 6 r. For
a fair comparison, we use the Monte Carlo method introduced in Cohen et al.
(2019) Section 3.2 to compute CR here just as our baseline model does. Recall that
CR = 0 if the classification is wrong. Otherwise, CR = σΦ−1(pA) (please refer to
the pseudocode in Cohen et al. (2019)). In order to run certification, we used the
code provided by Cohen et al. (2019). We also report the average certified radius
(ACR), which is defined as 1

m

∑m
i=1CR(xi) over the test set.

Datasets and baselines. We evaluate our proposed model on five vision datasets:
MNIST LeCun (1998), SVHN Netzer et al. (2011), Cifar-10 Krizhevsky and Hinton
(2009), ImageNet Deng et al. (2009), and Places365 Zhou et al. (2018). We modify
LeNet for MNIST dataset and PreActResnet 18 He et al. (2016b) for SVHN, Cifar-10,
ImageNet, and Places365 datasets similarly as in Cohen et al. (2019). Our baseline



103

model is based on Monte Carlo samples, which requires a large number of samples
to make an accurate estimation. In the rest of the section, we will observe that our model
can be at best 5× faster than the baseline model. For the larger dataset, since MACER Zhai
et al. (2020) uses a reduced number of MC samples, our model is 1.5× faster.
Model hyperparameters. During training, we use a similar strategy as our baseline
model. We train the base classifier first and then fine-tune our model considering
the aforementioned robust error. We train a total of 200 epochs with the initial
learning rate to be 0.01 for MNIST, SVHN, and Cifar-10. The learning rate decays
at 100, 150 epochs respectively. The parameter λ is set to be 0 in the initial training
step, and changes to 4.0 at epoch 100 for MNIST, SVHN, and Cifar-10. For ImageNet
and Places365 dataset, we train 120 epochs with λ being 0.5 after 30 epochs. The
initial learning rate is 0.01 and decays linearly at 30, 60, 90 epochs.
Results. We report the numerical results in Table 5.3, where, the number reported
in each column represents the ratio of the test set with the certified radius larger
than the header of that column. Thus, the larger the number is, the better the
performance of different models. The ACR is the average of all the certified radius
on the test set. Note that the certified radius is 0 when the classification result
is wrong. It is noticeable that our model strikes a balance of robustness and the
training speed. We achieve 5× speed-up over Zhai et al. (2020), which uses the
Monte Carlo method during the training phase, as shown in Figure 5.7. On the other
hand, compared with Cohen et al. (2019), our model achieves competitive accuracy
and certified radius. We like to point out that although SmoothAdv Salman et al.
(2019) is a powerful model, we did not compare with SmoothAdv because MACER
Zhai et al. (2020) performs better than SmoothAdv Salman et al. (2019) in terms of
ACR and training speed.

Separate from the quantitative performance measures, we also evaluate the
validity of Gaussian assumption on the pre-activation vectors within the network.
Here, we choose PreActResnet 18 on ImageNet to visualize the first two channels
across different layers. The detailed results are shown in Figure 5.8 and Table 5.2.
These results not only show that the assumption is reasonable along the neural
network, but also demonstrates that our method can estimate the covariance matrix
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Figure 5.7: The training speed for three models on Cifar-10 and ImageNet dataset,
including Cohen et al. (2019), MACER Zhai et al. (2020), and ours.

Table 5.2: Statistics for different layers of MC sampling and our upper bound
tracking method.

Layer number 1 5 9 13 17
MC (1000 samples) 0.243 0.913 2.740 2.999 0.712

Upper bound 0.256 1.126 4.069 5.367 1.208

well when the depth of network is moderate.
Ablation study. We perform an ablation study on the choice of the hyperparameters
for Places365 dataset. We fixσ of the perturbation to be 0.5. We first test the influence
of λ which is the balance between the accuracy (first moments) and the robustness
(second moments). Also, to verify the estimation of rmax, we tried different rmax
estimates while fixing λ = 0.5. Detailed results are shown in Table 5.4.
Discussion. A key benefit of our method is the training time. As shown in Figure 5.7,
our method can be 5× faster on Cifar-10, dataset, with a comparable ACR as MACER.
For larger datasets, since MACER reduces the number of MC samples in their
algorithm, our method is only 1.5× faster with a slightly better ACR than MACER.
Hence, our method is a cheaper substitute of the SOTA with a marginal performance
compromise.
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Limitations. There are some limitations due to the simplifications incorporated in
our model. When the network is extremely deep, e.g., Resnet 101, the estimation of
the second moments tends to be looser as the network grows deeper. Another minor
issue is when the input perturbation is large. As observed from Table 5.3, the ACR
drops for σ = 1.0 from σ = 0.5. The main reason is the assumption that samples
are Gaussian distributed. Hence, as the perturbation grows larger, the number of
channels, by the central limit theorem, should be much larger to satisfy the Gaussian
distribution. Thus, given a fixed network, there is an inherent limitation imposed
on the input perturbation. We provide a more detailed discussion in Appendix A.2.

Training with Noisy Labels

As we discussed in Section 5.1, training a robust network has a side effect on
smoothing the margin of the decision boundary, which enables training with noisy
labels.
Problem statement. Here, we consider a challenging noise setup called “pair
flipping”, which can be described as follows. When noise rate is p fraction, it means
p fraction of the ith labels are flipped to the (i + 1)th. In this work, we test our
method for a high noise rate 0.45.
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Figure 5.8: A visualization of the first two channels within the neural network
across different layers. The dots are the actual MC samples and the color represents
the density at that point. The blue oval is generated from the covariance matrices
we are tracking.
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Table 5.3: Results on MNIST, SVHN, Cifar-10, ImageNet, and Places365 with the
certified robustness. The number reported in each column represents the ratio of
the test set with the certified radius larger than the header of that column under
the perturbation σ. ACR is the average certified radius of all the test samples. A
larger value is better for all the numbers reported.

Dataset σ Method 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 ACR

MNIST

0.25
Cohen Cohen et al. (2019) 0.99 0.97 0.94 0.89 0 0 0 0 0.887
MACER Zhai et al. (2020) 0.99 0.99 0.97 0.95 0 0 0 0 0.918

Ours 0.99 0.98 0.96 0.92 0 0 0 0 0.904

0.50
Cohen Cohen et al. (2019) 0.99 0.97 0.94 0.91 0.84 0.75 0.57 0.33 1.453
MACER Zhai et al. (2020) 0.99 0.98 0.96 0.94 0.90 0.83 0.73 0.50 1.583

Ours 0.98 0.98 0.95 0.91 0.87 0.77 0.62 0.37 1.485

SVHN

0.25
Cohen Cohen et al. (2019) 0.90 0.70 0.44 0.26 0 0 0 0 0.469
MACER Zhai et al. (2020) 0.86 0.72 0.56 0.39 0 0 0 0 0.540

Ours 0.89 0.68 0.48 0.36 0 0 0 0 0.509

0.50
Cohen Cohen et al. (2019) 0.67 0.48 0.37 0.24 0.14 0.08 0.06 0.03 0.434
MACER Zhai et al. (2020) 0.61 0.53 0.44 0.35 0.24 0.15 0.09 0.04 0.538

Ours 0.67 0.53 0.36 0.29 0.19 0.12 0.07 0.03 0.475

Cifar-10

0.25
Cohen Cohen et al. (2019) 0.75 0.60 0.43 0.26 0 0 0 0 0.416
MACER Zhai et al. (2020) 0.81 0.71 0.59 0.43 0 0 0 0 0.556

Ours 0.80 0.72 0.55 0.37 0 0 0 0 0.518

0.50
Cohen Cohen et al. (2019) 0.65 0.54 0.41 0.32 0.23 0.15 0.09 0.04 0.491
MACER Zhai et al. (2020) 0.66 0.60 0.53 0.46 0.38 0.29 0.19 0.12 0.726

Ours 0.58 0.56 0.43 0.36 0.27 0.15 0.08 0.01 0.543

ImageNet

0.25
Cohen Cohen et al. (2019) 0.58 0.49 0.40 0.29 0 0 0 0 0.379
MACERZhai et al. (2020) 0.59 0.52 0.43 0.34 0 0 0 0 0.418

Ours 0.64 0.55 0.44 0.33 0 0 0 0 0.425

0.50
Cohen Cohen et al. (2019) 0.43 0.38 0.34 0.29 0.26 0.22 0.17 0.12 0.494
MACER Zhai et al. (2020) 0.54 0.47 0.39 0.32 0.29 0.21 0.17 0.11 0.553

Ours 0.52 0.47 0.39 0.32 0.28 0.23 0.18 0.13 0.560

1.00
Cohen Cohen et al. (2019) 0.21 0.19 0.18 0.16 0.15 0.13 0.11 0.09 0.345
MACER Zhai et al. (2020) 0.37 0.33 0.30 0.26 0.22 0.19 0.15 0.12 0.517

Ours 0.38 0.33 0.29 0.26 0.22 0.19 0.15 0.11 0.519

Places365

0.25
Cohen Cohen et al. (2019) 0.45 0.42 0.36 0.29 0 0 0 0 0.340
MACERZhai et al. (2020) 0.46 0.44 0.39 0.30 0 0 0 0 0.359

Ours 0.50 0.46 0.40 0.33 0 0 0 0 0.380

0.50
Cohen Cohen et al. (2019) 0.43 0.38 0.35 0.28 0.23 0.19 0.17 0.12 0.484
MACER Zhai et al. (2020) 0.45 0.42 0.37 0.31 0.26 0.22 0.18 0.13 0.533

Ours 0.46 0.43 0.39 0.35 0.31 0.28 0.23 0.16 0.597

1.00
Cohen Cohen et al. (2019) 0.20 0.18 0.16 0.15 0.13 0.12 0.11 0.10 0.357
MACER Zhai et al. (2020) 0.31 0.29 0.28 0.25 0.22 0.21 0.19 0.17 0.615

Ours 0.32 0.30 0.29 0.26 0.24 0.21 0.19 0.16 0.622

Dataset. The dataset we considered for this analysis is Cifar-10. To generate noisy
labels from the clean labels of the dataset, we stochastically changed p fraction of the
labels using the source code provided by Han et al. (2018). We perform a compara-
tive analysis of our method with Bootstrap Reed et al. (2015), S-model Goldberger
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Table 5.4: Ablation experiment on Places365 with σ = 0.5. We perform the choice
of λ and rmax as the hyper-parameters.

Parameters Value 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 ACR

λ

0.0 0.43 0.38 0.35 0.28 0.23 0.19 0.17 0.12 0.484
0.5 0.47 0.44 0.39 0.34 0.29 0.23 0.19 0.14 0.565
1.0 0.44 0.41 0.34 0.30 0.28 0.23 0.20 0.14 0.530

rmax

0.0 0.43 0.38 0.36 0.31 0.27 0.21 0.16 0.13 0.509
0.1 0.47 0.44 0.39 0.34 0.29 0.23 0.19 0.14 0.565
0.2 0.46 0.43 0.39 0.35 0.31 0.28 0.23 0.16 0.597
0.3 0.46 0.44 0.41 0.35 0.29 0.23 0.19 0.15 0.573
0.4 0.44 0.40 0.36 0.31 0.27 0.23 0.17 0.12 0.520

and Ben-Reuven (2017), Decoupling Malach and Shalev-Shwartz (2017), Mentor-
Net Jiang et al. (2018), Co-teaching Han et al. (2018), and Trunc LqZhang and
Sabuncu (2018).
Model hyperparameters. Similar to training robust network with the clean labels,
we first treat the noisy labels as “clean” to train our model. After 60 epochs, we
remove the classification loss for the data with top 10% CR to fine-tune the network.
The initial learning rate is set to 0.01 and decays at 30, 60, 90 epochs, respectively.
Results. The results are shown in Table 5.5, where, it is noticeable that even under
this strong label corruption, our model outperforms most baseline results as well
as stays stable over different epochs.

Table 5.5: Average test accuracy on pair-flipping with noise rate 45% for last
10 epochs. Results of BootstrapReed et al. (2015), S-modelGoldberger and Ben-
Reuven (2017), DecouplingMalach and Shalev-Shwartz (2017), MentorNetJiang
et al. (2018), Co-teachingHan et al. (2018), Trunc LqZhang and Sabuncu (2018),
and Ours.

Method Bootstrap S-model Decoupling MentorNet Co-teaching Trunc Lq Ours
mean 0.501 0.482 0.488 0.581 0.726 0.828 0.808

std 3.0e− 3 5.5e− 3 0.4e− 3 3.8e− 3 1.5e− 3 6.7e− 3 0.2e− 3
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5.5 Conclusions
Developing mechanisms that enable training certifiably robust neural networks
nicely complements the rapidly evolving body of literature on adversarial training.
While certification schemes, in general, have typically been limited to small sized net-
works, recent proposals related to randomized smoothing have led to a significant
expansion of the type of models where these ideas can be used. Our proposal here
takes this line of work forward and shows that, with extension from Euclidean data
representation to manifold-valued data representation, bound propagation ideas
together with some meaningful approximations can provide an efficient method to
maximize the certified radius – a measure of robustness of the model. We show that
the strategy achieves competitive results to other baselines with faster training speed.
We also investigate a potential use case for training with noisy labels where the be-
havior of such ideas has not been investigated, but appears to be promising. While
this work uses maximum perturbation at the input layer, these ideas may have some
use within formulations where perturbations are the feature-level internal to the net-
work, see Meng et al. (2021b). The code for the algorithms described in this chapter
is available at https://github.com/zhenxingjian/Propagating_Covariance.

https://github.com/zhenxingjian/Propagating_Covariance
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6 on the versatile uses of partial distance
correlation in deep learning

In Chapters 3 to 5, we mainly operated with manifold-valued data such as SPD
matrices. We discussed why the metric (distance) induced by the geometric infor-
mation of such space is important, and how the manifold operations such as wFM
help. In this chapter, we will study the concept of distance. The description builds
upon the brief introduction in Section 2.2.

Comparing the functional behavior of neural network models, whether it is
a single network over time or two (or more networks) during or post-training,
is an essential step in understanding what they are learning (and what they are
not), and for identifying strategies for regularization or efficiency improvements.
Despite recent progress, e.g., comparing vision transformers to CNNs, systematic
comparison of function, especially across different networks, remains difficult and
is often carried out layer by layer. Approaches such as canonical correlation analy-
sis (CCA) are applicable in principle, but have been sparingly used so far. In this
chapter, we revisit a (less widely known) from statistics in Section 6.2, called dis-
tance correlation (and its partial variant), designed to evaluate correlation between
feature spaces of different dimensions. We describe the steps necessary to carry out
its deployment for large scale models – this opens the door to a surprising array
of applications ranging from optimizing diverse models that would directly be
more robust to adversarial attacks, learning disentangled representations as well
as conditioning one deep model w.r.t. another. We will discuss each application in
detail in Sections 6.4, 6.5, and 6.6 respectively. Our experiments suggest a versatile
regularizer (or constraint) with many advantages, which avoids some of the com-
mon difficulties one faces in such analyses. While distance correlation has also been
shown to work for manifold-valued data Pan et al. (2017), this general setting will
not be immediately needed for the tasks tackled here, but could be interesting to
pursue in the future. The work presented in this chapter appeared as a conference
paper in ECCV 2022 Zhen et al. (2022).
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6.1 Introduction
Consider the following hypothetical scenario. Let us say that a fully functional
computational model of the visual system – perhaps a modern version of the Neocog-
nitron Fukushima et al. (1983) – was somehow provided to us. And we wished
to “compare” its behavior to modern CNN models Iandola et al. (2014); He et al.
(2016a). To do so, two options appear sensible. The first – inspired by analogies
between computational vision and biological vision – would draw a correspondence
between how simple/complex cells in the visual cortex process scenes and their
induced receptive fields with those of activations of units/blocks in a modern deep
neural network architecture Selvaraju et al. (2017). While this process is often diffi-
cult to carry out systematically, it is powerful and, in some ways, has contributed to
interest in biologically inspired deep learning, see Wozniak et al. (2020). Updated
forms of this intuition – associating different subsets of cells (or neural network
units) to different semantic/visual concepts – remains the default approach we use
in debugging and interpretation. The second option for tackling the hypothetical
setting above is to pose it in an information theoretic setting. That is, for two models
ΘX and ΘY , we ask the following question: what has ΘX learned that ΘY has not?
Or vice versa. The asymmetry is intentional because if we consider two random
variables (r.v.) X, Y, the question simply takes the form of “conditioning”, i.e.,
compare P(X) versus P(X|Y). This form suffices if our interest is restricted to the
predictions of the two models. If we instead wish to capture the model’s behavior
more globally – when X and Y denote the full set of feature responses – we can use
divergence measures on high dimensional probability measures given by the two
models (ΘX and ΘY) responses on the training samples. Importantly, notice that
our description assumes that, at least, the probability measures are defined on the
same domain.
More general use cases. While the above discussion was cast as comparing two
networks, it is representative of a broad basket of tasks in deep learning. (a)
Consider the problem of learning fair representations Zemel et al. (2013); Feldman
et al. (2015); Zafar et al. (2017); Lokhande et al. (2020a) where the model must
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be invariant to one (or more) sensitive attributes. We seek latent representations,
say Ψpred(X) for the prediction task, which minimizes mutual information w.r.t.
the latent representation relevant for predicting the sensitive attribute Ψsens(X).
Indeed, if information regarding the sensitive attribute is partially preserved or
leaks into Ψpred(X), the relative entropy will be low Moyer et al. (2018). Observe
that this calculation is possible partly because the latent space specifies the same
probability space for the two distributions. (b) The setting is identical in common
approaches for learning disentangled representations, where disentanglement is
measured via various information theoretic measures Chen et al. (2018); Achille
and Soatto (2018); Gabbay et al. (2021); Shu et al. (2020). If we now segue back
to comparing two different networks, but without the convenience of a common
coordinate system to measure divergence, the options turn out to be limited. (c)
Recently, in trying to understand whether vision Transformers “see” similar to
convolutional neural networks Raghu et al. (2021), one option utilized recently was
a kernel-based representation similarity, in a layer-by-layer manner. What we may
actually want is a mechanism for conditioning – for example, if one of the models
is thought of a “nuisance variable”, we wish to check the residual in the other after
the first has been controlled for (or marginalized out). Importantly, this should be
possible without assuming that the probability distributions live in the same space
(or networks ΘX and ΘY are the same).
A direct application of CCA? As we discussed in Section 2.2, CCA is able to deal
with the different dimensionality of two random variables. Consider two different
feature spaces (X and Y), say in dimensions Rn and Rm, pertaining to feature
activations from two different models. Comparison of these two feature spaces
is possible. One natural choice is canonical correlation analysis (CCA) Bach and
Jordan (2005), a generalization of correlation, specifically suited when n 6= m.
The idea has been utilized for studying representation similarity in deep neural
network models Morcos et al. (2018), albeit in a post-training setting for reasons
that will be clear shortly, as well as for identifying more efficient training regimes
(i.e., can lower layers be sequentially frozen after a certain number of timesteps).
CCA has also been shown to be implementable within DNN pipelines for multi-
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view training, called DeepCCA Andrew et al. (2013), although efficiency can be a
bottleneck limiting its broader deployment. A stochastic version of CCA suitable
for DNN training with mini-batches has been proposed very recently, and strong
experimental evidence was presented Meng et al. (2021a), also see Gemp et al.
(2022). Given that a stochastic CCA is now available, its extensions to the partial
CCA setting are not yet available. If successful, this may eventually provide a
scheme, suitable for deep learning, for controlling the influence of one model (or a
set of variables) with respect to another model.
This work. The starting point of this work is a less widely used statistical concept
to measure the correlation between two different feature spaces (X,Y) of different di-
mensions, called distance correlation (and the method of dissimilarities). In shallow
settings, CCA and distance correlation offers very similar functionality – for the
most part, they can be used interchangeably although distance correlation would
also need specification of distances (or dissimilarities). In other words, CCA may
be easier to deploy. On the other hand, deep variants of CCA involve specialized
algorithms Andrew et al. (2013); Meng et al. (2021a). Further, deep versions of
partial CCA have not been reported. In contrast, as long as feature distances can be
calculated, the differences between the shallow and the deep versions of distance
correlation are minimal at best, and adjustments needed are quite minor. These
advantages carry over to partial distance correlation, directly enabling condition-
ing one model w.r.t. another (or using such a term as a regularizer). The main
contribution of this chapter is to study distance correlation (and partial distance
correlation) as a powerful measure in a broad suite of tasks in vision. We review the
relevant technical steps which enable its instantiation in deep learning settings and
show its broad applications ranging from learning disentangled representations to
understanding the differences between what two (or more) networks are learning to
training “mutually distinct” deep models (akin to earlier works onM best solutions
to MAP estimation in graphical models Fromer and Globerson (2009); Batra et al.
(2012)) or trainingM diverse models for foreground-background segmentation as
well as other tasks Guzmán-Rivera et al. (2014).
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Related Works

Four distinct lines of work are related to our development, which we review next.
Similarity between networks. Understanding the similarity between different
networks is an active topic Kornblith et al. (2019b); Geirhos et al. (2019); Neyshabur
et al. (2020) also relevant in adversarial models Demontis et al. (2019); Cheng et al.
(2019). Early attempts to compare neural network representations were approached
via linear regression Ramsay et al. (1984), whose applicability to nonlinear models
is limited. As noted above, canonical correlation analysis (CCA) Anderson (1958);
Hotelling (1936) is a suitable off-the-shelf method for model comparisons. To this
end, singular vector CCA (SVCCA) Raghu et al. (2017), Projection-Weighted CCA
Morcos et al. (2018), DeepCCA Andrew et al. (2013), and stochastic CCA Gao
et al. (2019) are all potentially useful. Recently, Kornblith et al. (2019a) studied the
invariance properties for a good similarity measurement and proposed the centered
kernel alignment (CKA). CKA offers invariance to invertible linear transformations,
orthogonal transformations, and isotropic scaling. Separately, Nguyen et al. (2021);
Raghu et al. (2021) used CKA to study similarities between deep and wide neural
networks and also between different network structures.
Information theoretic divergence measures. Another body of related work per-
tains to approximately measuring the mutual information Cover and Thomas (2012)
to remove this information, mainly in the context of fair representation learning.
Here, mutual information (MI) is measured between features and the sensitive
attribute Moyer et al. (2018). In Song et al. (2019), another information theoretic
bound for learning maximally expressive representations subject to the given at-
tributes is presented. In Cho et al. (2020), MI between prediction and the sensitive
attributes is used to train a fair classifier whereas Akash et al. (2021) describes
the use of inverse contrastive loss. Group-theoretic approaches have also been
described in Cohen and Welling (2016a); Lokhande et al. (2022). The work in
Lample et al. (2017) gives an empirical solution to remove specific visual features
from the latent variables using adversarial training.
Repulsion/diversity. If we consider the ensemble of neural networks, there are
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several different strategies to maintain functional diversity between ensemble mem-
bers – we acknowledge these results here because they are loosely related to one of
the use cases we evaluate later. SVGD D’Angelo et al. (2021) shows the benefits
of choosing the kernel to measure the similarity between ensemble members. In
D’Angelo and Fortuin (2021), the authors introduce a kernelized repulsive term
in the training loss, which endows deep ensembles with Bayesian convergence
properties. The so-called quality diversity (QD) is interesting: Pugh et al. (2016)
tries to maximize a given objective function with diversity to a set of pre-defined
measure functions Gaier et al. (2020); Rakicevic et al. (2021). When both the ob-
jective and measure functions in QD are differentiable, Fontaine and Nikolaidis
(2021) offers an efficient way to explore the latent space of the objective w.r.t. the
measure functions.
Distance correlation (DC). The central idea of this chapter is distance correlation,
which was introduced in Székely et al. (2007) and has been used to analyze non-
linear dependence in time-series Zhou (2012) and ultra high-dimensional data
analysis tasks Li et al. (2012). Recent research has proposed new measures, such as
conditional local distance correlation (cLDC) Pan et al. (2017) and distance covari-
ance analysis (DCA) Cowley et al. (2017), that capture both linear and nonlinear
dependencies and consider the local structure of the data. Additionally, Liu et al.
(2021) applies distance correlation to measure the disentanglement of content and
style in natural language text using deep learning models. A detailed review of the
concept of distance correlation will be presented later in this chapter.

6.2 Review: Distance (and Partial Distance)
Correlation

We discussed different types of correlation, especially distance correlation in Sec-
tion 2.2. In this section, we will introduce the partial distance correlation which
can be useful when computing the correlation between two random variables
with consideration of the third random variable. To start, let us review distance
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correlation.
Given two random variablesX, Y ∈ R (in the same domain), correlation (say, the

Pearson correlation) helps measure their association. One can derive meaningful
conclusions by statistical testing. As noted in Section 6.1, one generalization of
correlation to a higher dimension is CCA, which seeks to find projection matrices
such that correlation among the projected data is maximized, see Bach and Jordan
(2005).
Benefits of distance correlation. In many applications, the notion of distances
or dissimilarities appears quite naturally. Motivated by the need for a scheme
that can capture both linear and non-linear correlations when provided with such
dissimilarity information, in Székely et al. (2007), the authors proposed a new
measure of dependence between random vectors, called distance correlation. The
key benefits of distance correlation are:

(1) The distance correlation R satisfies 0 6 R 6 1, and R = 0 if and only if X, Y are
independent.

(2) R(X, Y) is defined for X and Y in arbitrary dimensions, e.g., R(X, Y) is well-
defined when X is of dimension p while Y is of dimension q for p 6= q.

We focus on empirical distance correlation for n samples drawn from the un-
known joint distribution, and review its calculation.

For an observed random sample (x,y) = {(Xi, Yi) : i = 1, · · · ,n} from the joint
distribution of random vectors X in Rp and Y in Rq, define:

ak,l = ‖Xk − Xl‖, āk,· =
1
n

n∑
l=1

ak,l, ā·,l =
1
n

n∑
k=1

ak,l,

ā·,· =
1
n2

n∑
k,l=1

ak,l, Ak,l = ak,l − āk,· − ā·,l + ā·,· (6.1)

where k, l ∈ {1, · · · ,n}. Similarly, we can define bk,l = ‖Yk − Yl‖, and Bk,l =

bk,l − b̄k,· − b̄·,l + b̄·,·, and based on these quantities we have.



116

Definition 6.1. (Distance correlation) Székely et al. (2007). The empirical distance
correlation Rn(x,y) is the square root of

R2
n(x,y) =


V2
n(x,y)√

V2
n(x,x)V2

n(y,y)
,V2
n(x, x)V2

n(y,y) > 0

0 ,V2
n(x, x)V2

n(y,y) = 0
(6.2)

where the empirical distance covariance (variance)Vn(x,y),Vn(x, x) are defined asV2
n(x,y) =

1
n2

∑n
k,l=1Ak,lBk,l,V2

n(x, x) = 1
n2

∑n
k,l=1A

2
k,l, with A in (6.1).

Examples. We show a few simple 2D examples to contrast Pearson Correlation and
Distance Correlation in Figure 6.1. Notice that if the relationship between the two
random variables is not linear, Pearson Correlation might be small while Distance
Correlation remains meaningful.
Extensions to conditioning. Given three random variables X, Y, and Z, we want
to measure the correlation between X and Y but “controlling for” Z (thinking of it
as a nuisance variable), i.e., we want to estimate R(X|Z, Y|Z) = R∗(X, Y;Z). Such a
quantity is key in existing approaches in disentangled learning, deriving invariant
representations and understanding what one or more networks are learning after
concepts learned by another network have been accounted for. Consider how this
task would be accomplished in linear regression. We would project X and Y into
the space of Z, and only use the residuals to measure the correlation. Nonetheless,

Figure 6.1: Examples of Pearson Correlation and Distance Correlation in different
settings. (a): y = 0.5x2+0.75n,n ∼ N(0, 1); (b): y = 0.15x3+0.75n+2.5,n ∼ N(0, 1);

(c):
[
x

y

]
∼ N

([
0

2.5

]
,
[

1 0.75
0.75 1.25

])
; (d):

[
x

y

]
∼ N

([
0

2.5

]
,
[

1 0
0 1.25

])



117

defining partial distance correlation is more involved – in Székely and Rizzo (2014),
the authors introduced a new Hilbert space where we can define the projection of
distance matrix. To do so, the authors calculate a U-centered matrix Ã from the
distance matrix (ak,l) so that the inner product of the U-centered matrices will be
the distance covariance.

Definition 6.2. Let A = (ak,l) be a symmetric, real valued n× n matrix (n > 2) with
zero diagonal. Define the U-centered matrix Ã = (ãk,l) as follows.

ãk,l =

 ak,l −
1

n− 2

n∑
i=1

ai,l −
1

n− 2

n∑
j=1

ak,j +
1

(n− 1)(n− 2)

n∑
i,j=1

ai,j ,k 6= l

0 ,k = l

(6.3)

Further, the inner product between Ã, B̃ is defined as (Ã · B̃) := 1
n(n−3)

∑
k6=l Ãk,lB̃k,l,

and is an unbiased estimator of squared population distance covariance V2(x,y).

Before defining partial distance covariance formally, we recall the definition of
orthogonal projection on these matrices.

Definition 6.3. Let Ã, B̃, C̃ corresponding to samples x,y, z respectively, and let

Pz⊥(x) = Ã−
(Ã · C̃)
(C̃ · C̃)

C̃

Pz⊥(y) = B̃−
(B̃ · C̃)
(C̃ · C̃)

C̃

denote the orthogonal projection of Ã(x) onto (C̃(z))⊥ and the orthogonal projection of
B̃(y) onto (C̃(z))⊥.

Now, we are ready to define the partial distance covariance and the partial
distance correlation.
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Definition 6.4. Let (x,y,z) be a random sample observed from the joint distribution of
(X, Y,Z). The sample partial distance covariance is defined by:

pdCov(x,y; z) = (Pz⊥(x) · Pz⊥(y)) =
1

n(n− 3)
∑
i 6=j

(Pz⊥(x))i,j (Pz⊥(y))i,j (6.4)

And the partial distance correlation is defined as:

R∗2(x,y; z) := (Pz⊥(x) · Pz⊥(y))
‖Pz⊥(x)‖‖Pz⊥(y)‖

where ‖Pz⊥(x)‖ = (Pz⊥(x) · Pz⊥(x))1/2 is the norm.

Partial distance correlation enables asking various interesting questions. By
projecting the original U-centered matrix Ã onto C̃, the correlation between the
residual and B̃will be a measure of what does X learn that Z does not.

6.3 Optimizing Distance Correlation in Neural
Networks

While distance correlation can be implemented in a differentiable way, and thereby
used as an appropriate loss function in a neural network, we must take efficiency
into account. For two p dimensional random variables, let the number of samples
for the empirical estimate of DC be n. Observe that the total cost for computing
(ak,l) is O(n2p), and the memory to store the intermediate matrices is also O(n2).
So, we use a stochastic estimate of DC by averaging over minibatches, with each
minibatch containingm samples. We describe why this approximation is sensible.
Notation. We useΘX,ΘY to denote the parameters of the neural networks, andX, Y
as features extracted by the respective neural networks. Let the minibatch size bem,
and the dataset D = (DX,DY) be of size n. We use (xt,yt)Tt=1, xt ⊂ DX,yt ⊂ DY to
represent the data samples at step t, T is the total number of training steps. The
distance matrices At,Bt are computed when given Xt, Yt using (6.1), which is of
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dimensionm×m for each minibatch. Further, we use (Xt)k to represent the kth

element in Xt. And (At)k,l is the kth row and lth column element in the matrix At.
The inner-product between two matricesA,B is defined as 〈A,B〉 =

∑m
i,j(A)i,j(B)i,j.

Objective function. Consider the case where we minimize DC between two net-
works ΘX,ΘY . Since the parameters between ΘX,ΘY are separable, we can use
the block stochastic gradient iteration in Xu and Yin (2015) with some simple
modifications.

To minimize the distance correlation, we need to solve the following problem

min
ΘX,ΘY

〈A(ΘX; x),B(ΘY ;y)〉√
〈A(ΘX; x),A(ΘX; x)〉〈B(ΘY ;y),B(ΘY ;y)〉

(6.5)

(A)k,l =||(X)k − (X)l||2, X = ΘX(x), (B)k,l = ||(Y)k − (Y)l||2, Y = ΘY(y)

We slightly abuse the notation of ΘX(x) as applying the network ΘX onto data x,
and reuse A to simplify the notation A(ΘX; x) and the distance matrix. We can
rewrite the expression (with A, B defined above) using:

min
ΘX,ΘY

〈A,B〉 s.t. max
x⊂DX

〈A,A〉 6 m; max
y⊂DY

〈B,B〉 6 m (6.6)

where (x,y) are the minibatch of samples from the data space (DX,DY).
We can rewrite the above into the following equation similar to (1) in Xu and

Yin (2015).

min
ΘX,ΘY

Φ(ΘX,ΘY) = Ex,yf(ΘX,ΘY ; x,y) + γ(ΘX) + γ(ΘY) (6.7)

where f(ΘX,ΘY ; x,y) is 〈A,B〉 and γ(ΘX) encodes the convex constraint of net-
work ΘX: maxx⊂DX

〈A,A〉 6 m. Similarly, γ(ΘY) encodes maxy⊂DY
〈B,B〉 6 m.

Φ(ΘX,ΘY) is the constrained objective function to be optimized.
Block stochastic gradient iteration. We adjust Algorithm 1 from Xu and Yin (2015)
to our case in Algorithm 6.1. Since we will need the entire minibatch (xt,yt) to
compute the objective function, there will be no mean term when computing the
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sample gradient g̃tX. Further, since both blocks (ΘX,ΘY) are constrained, line 3, 5 will
use (5) from Xu and Yin (2015). The detailed algorithm is presented in Algorithm
6.1.

Algorithm 6.1: Block Stochastic Gradient for Updating Distance Correla-
tion

Input: Two neural network with starting point Θ1
X,Θ1

Y . Training data {(xt,yt)}Tt=1,
step size ηX,ηY , and batch sizem.

Output: Θ̃TX, Θ̃TY
1: for t = 1, · · · , T do
2: Compute sample gradient for ΘX

g̃tX = ∇ΘXf(ΘtX,ΘtY ; xt,yt)
3: Θt+1

X = arg minΘX〈g̃
t
X + ∇̃γX(ΘtX),ΘX −ΘtX〉+ 1

2ηX‖ΘX −ΘtX‖2

4: Compute sample gradient for ΘY
g̃tY = ∇ΘYf(Θt+1

X ,ΘtY ; xt,yt)
5: Θt+1

Y = arg minΘY〈g̃
t
Y + ∇̃γY(ΘtY),ΘY −ΘtY〉+ 1

2ηY ‖ΘY −Θ
t
Y‖2

6: end for
7: Θ̃TX = 1

T

∑T
t=1Θ

t
X

8: Θ̃TY = 1
T

∑T
t=1Θ

t
Y

Proposition 6.5. After T iterations of Algorithm 6.1 with step size ηX = ηY = η√
T
< 1
L

,
for some positive constant η < 1

L
, where L is the Lipschitz constant of the partial gradient

of f, by Theorem 6 in Xu and Yin (2015), we know there exists an index subsequence T
such that:

lim
t→∞,t∈T

E[dist(0,∇Φ(ΘtX,ΘtY))] = 0 (6.8)

where dist(y,X) = minx∈X ‖x − y‖.

But empirically, we find that simply applying Stochastic Gradient Decent (SGD)
is sufficient, but this choice is available to the user.
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6.4 Independent Features Help Robustness
Goal. We show how distance correlation can help us train multiple deep networks
that learn mutually independent features, roughly similar to finding diverse M-
best solutions in structured SVM models Schiegg et al. (2016). We describe how
such an approach can lead to better robustness against adversarial attacks.
Rationale. Recently, several efforts have explored generating of adversarial ex-
amples that can transfer to different networks and how to defend against such
attacks Demontis et al. (2019); Shumailov et al. (2019); Chan et al. (2020). It is often
observed that an adversarial sample for one trained network is relatively easy to
transfer to another network with the same architecture Demontis et al. (2019). Here,
we show that even for as few as two networks (same architecture; trained on the
same data), we can, to some extent, prevent adversarial examples from transferring
between them by seeking independent features. Xu et al. (2022) shows a similar
discussion that the use of the orthogonal classifier leads to various benefits, such
as controlled style transfer, enhanced alignment methods for domain adaptation,
and a reduced degree of unfairness.
Setup. We formulate the problem considering a classification task as an example.
Given two deep neural networks with the same architecture denoted as f1(·), f2(·),
we train them using image-label pairs (x,y) using the cross-entropy loss LossCE.
If we train f1 and f2 using only the cross-entropy loss, the adversarial examples
generated on f1 can relatively easily transfer to f2 (see the performance of “Baseline”
in Table 6.1). To enforce f1 and f2 to learn independent features, let the extracted
feature of x in some intermediate layer of f be given as g(x) (in this section we use
the feature before the last fully connected layer as an example). We can still train f1

using LossCE, and then, we train f2 using,

Losstotal = LossCE(f2(x),y) + α · LossDC(g1(x),g2(x)) (6.9)

where α is a constant scalar and LossDC is the distance correlation from Definition
6.1. Note that we do not require g1(x) and g2(x) to be in the same dimension, so in
principle we could easily use features from different layers for these two networks.
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Experimental settings. We first conduct experiments on Cifar-10 Krizhevsky and
Hinton (2009) using Resnet 18 He et al. (2016a). We then use four different architec-
tures (mobilenet-v3-small Howard et al. (2019), efficientnet-B0 Tan and Le (2019),
Resnet 34, and Resnet 152) and train them on ImageNet Krizhevsky et al. (2012).
For each network architecture, we first train two networks using only LossCE. Next,
we train a network using only LossCE before training a second network using the loss
in (6.9). On Cifar-10, we utilize the SGD optimizer with momentum 0.9 and train
for 200 epochs using an initial learning rate 0.1 with a cosine learning rate scheduler
Paszke et al. (2019). The mini-batch size is set to 128. On ImageNet Krizhevsky
et al. (2012), we train for 40 epochs using an initial learning rate 0.1, which decays
by 0.1 every 10 epochs. The mini-batch size is 512. Our α in (6.9) is set to 0.05 for
all cases. For each combination of the dataset and the network architecture, we
train two networks f1 and f2, after which we generate adversarial examples on f1

and use them to attack f2 and measure its classification accuracy. We construct a
baseline by training f1 and f2Baseline without constraints. And train f2Our using
(6.9) to learn independent features w.r.t. f1. We report performance under two
widely used attack methods: fast gradient sign method (FGM) Goodfellow et al.
(2015) and projected gradient descent method (PGD) Madry et al. (2018), where
the latter is considered among the strongest attacks. The scale ε of the adversarial
perturbation is chosen from {0.03, 0.05, 0.1} and the maximum number of iterations
of PGD is set to 40.
Results. The results are shown in Table 6.1. We see that we get significant improve-
ment in accuracy over the baseline under adversarial attacks, with comparable per-
formance on clean inputs. Notably, our method achieves more than 10% absolute
improvement in accuracy under PGD attack on Resnet 18 and Mobilenet-v3-small.
This provides evidence supporting the benefits of enforcing the networks to learn
independent features using our distance correlation loss.

In Figure 6.2, we show correlation results using Picasso Henderson and Rothe
(2017); Chari and Pachter (2022) to lower the dimension of features for each net-
work. The embedding dimension is 2 for visualization. In Figure 6.2(a), we show
the embedding of different networks. f1 represents the network to generate the
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Table 6.1: The test accuracy (%) of a model f2 on the adversarial examples generated
using f1 with the same architecture. “Baseline”: train without constraint. “Ours”:
f2 is independent to f1. “Clean”: test accuracy without adversarial examples.

Dataset Network Method Clean FGMε=0.03 PGDε=0.03 FGMε=0.05 PGDε=0.05 FGMε=0.1 PGDε=0.1
Cifar-10 Resnet 18 Baseline 89.14 72.10 66.34 62.00 49.42 48.23 27.41
Cifar-10 Resnet 18 Ours 87.61 74.76 72.85 65.56 59.33 50.24 36.11

ImageNet Mobilenet-v3-small Baseline 47.16 29.64 30.00 23.52 24.81 13.90 17.15
ImageNet Mobilenet-v3-small Ours 42.34 34.47 36.98 29.53 33.77 19.53 28.04
ImageNet Efficientnet-B0 Baseline 57.85 26.72 28.22 18.96 19.45 12.04 11.17
ImageNet Efficientnet-B0 Ours 55.82 30.42 35.99 22.05 27.56 14.16 17.62
ImageNet Resnet 34 Baseline 64.01 52.62 56.61 45.45 51.11 33.75 41.70
ImageNet Resnet 34 Ours 63.77 53.19 57.18 46.50 52.28 35.00 43.35
ImageNet Resnet 152 Baseline 66.88 56.56 59.19 50.61 53.49 40.50 44.49
ImageNet Resnet 152 Ours 68.04 58.34 61.33 52.59 56.05 42.61 47.17

adversarial examples. f2Baseline denotes the baseline network, trained without
distance correlation constraint. Also, f2Ours is the same network trained to be
independent to f1. In Figure 6.2(b), we visualize the correlation between f1 and
f2Baseline for each dimension, and the correlation between f1 and f2Ours. If the
scatter plot looks circle-like, we can infer that the two models are independent. We
see that in different networks, the use of DC shows stronger independence. From
Figure 6.2/Table 6.1, we also see that the more independent the models are, the
better is the gain for transferred attack robustness.

Figure 6.2: Picasso visualization of features space and the correlation between
different models. (a) Feature space distribution. (b) Cross-correlation between the
feature space of f1 and f2 trained with/without DC. We get better independence. (c)
By increasing the balance parameter α of DC loss, Mobilenet is more independent
to f1.
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6.5 Informative Comparisons between Networks
Overview. As discussed in Section 6.1, there is much interest in understanding
whether two different models learn similar concepts from the data – for example,
whether vision Transformers “see” similar to convolutional neural networks Raghu
et al. (2021). Here, we first follow Raghu et al. (2021) and discuss similarities
between different layers of ViT and Resnets using distance correlation. Next, we
investigate that after taking out the influence of Resnets from ViT (or vice versa),
what are the residual learned concepts remaining in the network.

Measure Similarity between Neural Networks

Goal. We first want to understand whether ViTs represent features across all layers
differently from CNNs (such as Resnets). However, analyzing the features in the
hidden layers can be challenging, because the features are spread across neurons.
Also, different layers have different numbers of neurons. Recently, Raghu et al.
(2021) applied the Centered Kernel Alignment (CKA) for this task. CKA is effective
because it involves no constraint on the number of neurons. It is also independent to
the orthogonal transformations of representations. Here, we want to demonstrate
that distance correlation is a reasonable alternative for CKA in these settings.
Experimental settings. First, as described in Raghu et al. (2021), we show that
similarity between layers within a single neural network can be assessed using
distance correlation (see Figure 6.3 ). We pick ViT Base with patch 16, and three
commonly used Resnets. All networks are pretrained on ImageNet. For ViT, we
pick the embedding layer and all the normalization, attention, and fully connected
layers within each block. The total number of layers is 63. For Resnets, we use all
convolutional layers and the last fully connected layer. The total number of layers
is the depth of the given Resnet.
Results (a). Our findings add to those from Raghu et al. (2021). Using distance
correlation, we find that the ViT layers can be split into small blocks and the simi-
larity between different blocks from shallow layers to the deeper layers is higher.
For most Resnets, the feature similarity shows that there are a few large blocks in
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Figure 6.3: Similarity between layers within one single model. ViT can be split into
small blocks and the similarity from shallow layers to the deeper layers is higher.
Most Resnet models show few large blocks in the network, and the last few layers
share minimal similarity with the shallow layers.

the network, which contains more than 30 layers each, and the last few layers share
minimal similarity with the shallow layers.
Results (b). After within-model distance correlation, we perform across-model
distance correlation comparisons between ViT and Resnets, see Figure 6.4. We
notice that in the initial 1/6 layers, the two networks share high similarities. But
later on, the similarity spreads across all different layers between ViT and Resnets.
Notably, the last few layers share the least similarity between two networks.

By using the distance correlation to calculate the heatmap of the similarity
matrices, we can qualitatively describe the difference between the patterns of the

Figure 6.4: Similarity between layers across ViT and Resnets. In the initial 1/6
layers (highlighted in green), the two networks share high similarity. And the last
few layers share the least similarity
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features in different layers from different networks. What is even more interesting
is to quantitatively show the difference, for example, to answer which network
contains more information for the ground truth classes. We discuss this next.

What Remains When “Taking out” Y from X

Goal. Even measuring information contained in one neural network is challenging,
and often tackled by measuring the accuracy on the test dataset. But the association
between accuracy and the information contained in a network may be weak. Based
on existing literature, conditioning one network w.r.t. another remains unresolved.
Despite the above challenges, we can indeed measure the similarity between the
features of the network X and the ground truth labels. If the similarity is higher, we
can say that the feature space of X contains more information regarding the true
labels. Distance correlation enables this. Interestingly, partial distance correlation
extends this idea to multiple networks allowing us to approach the “conditioning”
question posed above.
Rationale/setup. Here, we choose the last layer before the final fully-connected
layer as the feature layer similar to the setup in Section 6.4. Our first attempt
involved directly applying the distance correlation measurement to feature X and
the one-hot ground truth embedding. However, the one-hot embedding for the
label contains very little information, e.g., it does not show the difference between
“cat” vs. “dog” and “cat” vs. “airplane”. So, we use the pretrained BERT Devlin
et al. (2019) to linguistically embed the class labels into the hidden space. We then
measure the distance correlation between the feature space of X and the pretrained
hidden space GT . R2(X,GT) = m

n

∑n/m
t=1 dCor(xt,gtt) where xt is the feature for

one minibatch, and gtt is the BERT embedding vector of the corresponding label.
To further extend this metric to measure the “remaining” or residual information,
we apply the partial distance correlation calculation by removing Y out of X, or say
X conditioned on Y. Then, we have R2 ((X|Y),GT) = m

n

∑n/m
t=1 dCor ((xt|yt),gtt)

using (6.4). This capability has not been shown before.
Experimental settings. In order to measure the information remaining when con-
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Table 6.2: Partial DC between the network ΘX conditioned on the network ΘY ,
and the ImageNet class name embedding. The higher value indicates the more
information.

Network ΘX Network ΘY R2(X,GT) R2(Y,GT) R2((X|Y),GT) R2((Y|X),GT)
ViT1 Resnet 182 0.042 0.025 0.035 0.007
ViT Resnet 503 0.043 0.036 0.028 0.017
ViT Resnet 1524 0.044 0.020 0.040 0.009
ViT VGG 19 BN5 0.042 0.037 0.026 0.015
ViT Densenet1216 0.043 0.026 0.035 0.007

ViT large7 Resnet 18 0.046 0.027 0.038 0.007
ViT large Resnet 50 0.046 0.037 0.031 0.016
ViT large Resnet 152 0.046 0.021 0.042 0.010
ViT large ViT 0.045 0.043 0.019 0.013

ViT+Resnet 508 Resnet 18 0.044 0.024 0.037 0.005
Resnet 152 Resnet 18 0.019 0.025 0.013 0.020
Resnet 152 Resnet 50 0.021 0.037 0.003 0.030
Resnet 50 Resnet 18 0.036 0.025 0.027 0.008
Resnet 50 VGG 19 BN 0.036 0.036 0.020 0.019

Accuracy: 1. 84.40%; 2. 69.76%; 3. 79.02%; 4. 82.54%;
5. 74.22%; 6. 75.57%; 7. 85.68%; 8. 84.13%

ditioning network ΘY out of ΘX, we first use pretrained networks on ImageNet.
We use the validation set of the ImageNet for evaluation. We want to evaluate
which network contains the richest information regarding linguistic embedding.
Interestingly, we can go beyond such an evaluation, instead, asking the network ΘX
to learn concepts above and beyond what the network ΘY has learned. To do so, we in-
clude the partial distance correlation into the loss. Unlike the experiment discussed
above (minimizing distance correlation), in this setup, we seek to maximize partial
distance correlation. The Losstotal is

LossCE(f1(x),y) − α · LossPDC ((g1(x)|g2(x)),gt) (6.10)

We take pretrained networks ΘX,ΘY and then finetune ΘX using (6.10). The
learning rate is set to be 1e − 5 and α in the loss term is 1. To check the benefits
of partial DC, we use Grad-CAM Selvaraju et al. (2017) to highlight the areas that
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each network is looking at, together with what ΘX conditioned on ΘY sees then.
Results (a). We first show information comparison between two networks. The
details of DC and partial DC are shown in Table 6.2. The reader will notice that
since ViT achieves the best test accuracy, it also contains the most information. Ad-
ditionally, although better test accuracy normally coincides with more information,
this is not always true. Resnet 50 contains more linguistic information than the
much deeper Resnet 152, perhaps a compensation mechanism. For Resnet 152, the
network is deep enough to focus on local structures that overwhelm the linguistic
information (or this information is unnecessary). This experiment suggests a new
strategy to compare two networks beyond test accuracy.
Results (b). After using a pretrained network, we can also check that by including
the partial distance correlation in the loss, which regions does the model pay
attention to, using Grad-CAM. We replace the loss term of Grad-CAM with the
partial distance correlation. The results are shown in Figure 6.5. We see that the
pretrained ViT sees across the whole image in different locations, while the Resnet
(VGG) tends to focus on only one area of the image. After training, ViT (conditioned
on Resnet) pays more attention to the subjects, especially locations outside the
Resnet focus. Such experiments help understand how ViT learns beyond Resnets
(CNNs).

6.6 Disentanglement
Overview. This experiment studies disentanglement Higgins et al. (2017); Kim
and Mnih (2018); Chen et al. (2018); Locatello et al. (2020); Gabbay et al. (2021). It
is believed that the image data are generated from low dimensional latent variables
– but isolating and disentangling the latent variables is challenging. A key in
disentangled latent variable learning is to make the factors in the latent variables
independent Akash et al. (2021). Distance correlation fits perfectly and can handle
a variety of dimensions for the latent variables. When the distance correlation is 0,
we know that the two variables are independent.
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Figure 6.5: Grad-CAM results on ImageNet using ViT, Resnet 18 and VGG 16.
After using Partial DC to remove the information learned by another network, ViT
can focus on detail places and Resnet can only look in major spots. Similar issue
happens to VGG.

Experimental settings. We follow Gabbay et al. (2021) which focuses on semi-
supervised disentanglement to generate high-resolution images. In Gabbay et al.
(2021), one divides the latent variables into two categories: (a) attributes of interest
– a set of semantic and interpretable attributes, e.g. hair color and age; (b) residual
attributes – the remaining information. Formally, xi = G(f1

i, ..., fki , ri), where G is
the generator that uses the factors of interest fli and the residual to generate image
xi.

In order to enforce the condition that the information regarding the attributes
of interest is not leaking into the residual representations, the authors of Gabbay
et al. (2021) introduced the loss Lres =

∑n
i=1 ||ri||

2 to limit the residual information.
This is sub-optimal as there can be cases where ri is not 0 but still independent to
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the factors of interest (fli)kl=1. Thus, we use distance correlation to replace this loss:

Lres = dCor([f
1; f2; ...; fk], r) (6.11)

We use the same structure proposed in Gabbay et al. (2021), while the generator
architecture is adopted from StyleGAN2 Karras et al. (2020). The dataset is the
human face dataset FFHQ Karras et al. (2019), and the attributes are: age, gender,
etc. We use CLIP Radford et al. (2021) to partially label the attributes to generate
the semi-supervised dataset for training. All losses from Gabbay et al. (2021)
are used, except that Lres is replaced by (6.11). Liu et al. (2021) also discusses a
nice demonstration of distance correlation in terms of how it helps content style
disentanglement.
Results. (Shown in Figure 6.6) Our model shows the ability to change specific

Figure 6.6: Representative generated images using our training on FFHQ. Note that
these results only use semi-supervised dataset by CLIP. Our methods shows the
ability to disentangle the attributes of interest and the remaining information.
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attributes without affecting residual features, such as posture.

6.7 Conclusions
In this chapter, we studied how distance correlation (and partial distance corre-
lation) has a wide variety of uses in deep learning tasks in vision. The measure
offers various properties that are often enforced using alternative means, that are
often far more involved. Further, it is extremely simple to incorporate in con-
trast to various divergence-based measures often used in invariant representation
learning. Notably, the use of partial distance correlation offers the ability of con-
ditioning, which is under-explored in the community. We showcase three very
different settings, ranging from network comparison to training distinct/different
models to disentanglement where the idea is immediately beneficial, and expect
that numerous other applications will emerge in short order. The code for the algo-
rithms described in this chapter is available at https://github.com/zhenxingjian/
Partial_Distance_Correlation.

https://github.com/zhenxingjian/Partial_Distance_Correlation
https://github.com/zhenxingjian/Partial_Distance_Correlation
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7 conclusions

In this thesis, we explored various types of modifications required for deep learning
models to operate on Riemannian manifold-valued data and structured matrices.
We demonstrated that with these modifications, several applications can benefit,
including analysis of 1D sequential SPD matrices along brain fiber bundles, 3D
SPD/Sn−1 valued voxels in brain images, and covariance matrices that represent the
pixel distribution after perturbation. We also studied the use of distance correlation
in various settings in deep learning. We showed that in these different applications,
the models can leverage inherent geometric information of the data to improve
efficiency, test accuracy, generative quality, and more. Specifically,

1. In Chapter 3, we modified the convolutional operators and residual con-
nections using a weighted Fréchet mean (wFM) on manifold-valued data.
Additionally, we replaced the bias term with a group operation. With these
modifications, we showed that our model can more accurately detect pre-AD
signals in dMRI scans. Furthermore, our modified model also demonstrated
improved efficiency on vision datasets.

2. In Chapter 4, we incorporated the exponential map and logarithm map of
SPD(3) and Sn−1 into an invertible generative model called GLOW. We demon-
strated that by using two manifold GLOW models in parallel, we can generate
an ODF based on a given DTI while preserving meaningful statistical differ-
ences across different groups.

3. In Chapter 5, we introduced a tracking-based method to estimate the distri-
bution of every pixel in each layer when given a random perturbation. We
demonstrated that the distribution can be expressed as a normal distribution,
while the covariance can be estimated using SPD matrices with some addi-
tional adjustment. Our experimental results showed that this approach can
improve the robustness of a given model and enable more efficient training
compared to sampling methods.
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4. In Chapter 6, we demonstrated how geometric information, specifically dis-
tances, can be used to estimate the correlation between two random vectors.
We showed that this simple idea, called distance correlation, can offer several
benefits in different deep learning applications. For example, it can improve
robustness against transferable attacks, facilitate disentanglement in genera-
tive models, and enable quantitative comparison of information between two
different structured neural networks.

7.1 Future Direction and Ongoing Projects
We now discuss some ongoing and future research directions building off of our
work described in Chapters 3 - 6.

Hyperbolic Space Embedding for Patches with Hierarchy in 3D
Brain Scan Images

Throughout Chapters 3 to 6, we focused on a small subset of structured data, treat-
ing each pixel or patch or fiber in the image as equivalent without considering
its hierarchical structure. However, real-world visual data often exhibits inherent
hierarchies, such as the relationship between a cat, its ears, and its eyes in an image.
Representing such structures effectively requires hyperbolic spaces, as demon-
strated by recent work on hyperbolic neural networks Chami et al. (2020b); Fan
et al. (2022). Yet, implementing these networks often demands extensive knowl-
edge of hyperbolic spaces and careful design and implementation of operations,
limiting generalization and deployment of rapidly developed formulations. In this
ongoing collaborative project, we aim to explore the use of hyperbolic spaces while
only imposing some basic constraints and using distances induced by given hy-
perbolic spaces. Our preliminary experiments show that this method can provide
a meaningful hyperbolic embedding for learning representations from 3D brain
imaging data and improved rotation invariance without requiring extensive design.
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Rationale for Hierarchy in Representation Learning

In machine learning, accurately representing and manipulating data is becoming
increasingly important as models become more complex and datasets grow larger.
Traditionally, Euclidean geometry has been the default choice for representing
data due to its intuitive vector space and stable closed-form formulas Bdeir et al.
(2023). However, recent research by Dhingra et al. (2018); Lensink et al. (2019)
has demonstrated that hyperbolic geometry may be better suited for capturing
hierarchical structures in images. This is because the negative curvature of hyper-
bolic manifolds allows distances to scale exponentially with respect to the radius,
which matches the exponential scaling of tree distances between graph nodes Sarkar
(2011). Consequently, hyperbolic geometry can better retain graph information
while preventing spatial distortion.

The tree structure (or hierarchical structure), is prevalent in Natural Language
Processing (NLP) tasks Peng et al. (2022), where multiple words form a sentence,
multiple sentences form a paragraph, and multiple paragraphs form a document.
As such, documents should be at a higher level of hierarchy than paragraphs, while
words should be at the lowest. However, it is important to note that hierarchical
structures are not only limited to textual data, but also appear in images. The
concept of part-whole relationships within object representations and classes estab-
lishes a clear notion of hierarchy in images Khrulkov et al. (2020). Recent works
have incorporated hyperbolic geometry into neural network architectures for vision
in response to the hierarchical structures in vision data Liu et al. (2020); Bdeir
et al. (2023). Specifically, they utilize the Poincaré ball to describe hyperbolic space
and formalize hyperbolic translations of Euclidean machine learning operations
Mishne et al. (2022). However, at present, most Hyperbolic Neural Network (HNN)
components are only available in the Poincaré ball setup due to its support for gy-
rovector space and basic vector operations Hsu et al. (2021). However, the Poincaré
ball is known to be numerically unstable Yu and Sa (2019). Additionally, the high
computational cost has limited HNNs in computer vision to a mixture of Euclidean
backbones and hyperbolic task heads Ganea et al. (2018).
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Another limitation of existing methods involving hyperbolic neural networks is
that it requires extensive knowledge of the geometry of different types of hyperbolic
spaces. This can pose a challenge for practitioners who may want to adapt an
existing method to their specific use case. However, since such spaces can be
captured by an appropriate metric, which only requires minimal knowledge of
the geometry of hyperbolic spaces, it may be possible to utilize only the distance
information in hyperbolic spaces and extend neural network architectures from
Euclidean space to hyperbolic spaces and assess if empirical behavior is satisfactory.

In this section, we investigate the feasibility of such a method, which involves
a contrastive learning setup where representations from the same hierarchical
branch have smaller distances in the embedding space, while those from different
branches have larger distances. To meaningfully evaluate this idea, we utilize 3D
brain scan images due to the lack of mature auto-encoder models for 3D brain
scan reconstruction where this idea can provide improvements. We demonstrate
that our method can embed various patches of different sizes and hierarchies from
the same brain scan image into a hyperbolic space in almost linear time during
training while the brute force way would be O(N2) where N is the number of
patches. Our experiments show that this method effectively reconstructs the brain
scan and maintains a more rotation-invariant embedding space compared to the
normal Euclidean auto-encoder model. This property is advantageous in various
vision tasks and highlights the robustness of our proposed method in the context
of medical imaging.

Efficiently Finding Hyperbolic Embedding with Metric

Hyperbolic formulation. In Example 1.7, we discussed some use cases. In this
section, we will delve deeper into the mathematical background of hyperbolic
spaces.

The hyperbolic space, also known as a negatively curved space, is non-Euclidean
similar to examples discussed in previous chapters. There are several models used
to describe a hyperbolic space. One such model is the Poincaré ball model, which is
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commonly used in many deep learning model setups, as seen in Hsu et al. (2021).
The Poincaré ball model (of curvature c = −1) is defined as the open ball of radius
1 centered at the origin, equipped with the metric tensor gp = (λx)

2ge, where the
conformal factor λx = 2

1−|x|2 and ge is the Euclidean tensor. The distance between
two points in this model is given by:

d(x1, x2) = arcosh
(

1 + 2 ‖x1 − x2‖2

(1 − ‖x1‖2)(1 − ‖x2‖2)

)
It should be noted that this model may not be numerically stable when the magni-
tudes of ‖x1‖ and ‖x2‖ approach 1.

On the other hand, another type of hyperbolic space is the Poincaré half-plane
model Tung (2018), where features can be represented as (x,y) with x ∈ Rn and
y ∈ R+. In this model, the distance between two points is defined as:

d((x1,y1), (x2,y2)) = arsinh
(
|(x1,y1) − (x2,y2)|

2√y1y2

)
(7.1)

It is worth noting that when features are extracted using neural networks, the
Poincaré half-plane model is more numerically stable than the Poincaré ball model
from the experimental results. This is because we can easily ensure that y is away
from zero using a nonlinear function, while modifications to the Poincaré ball model
would require greater care to push x away from the boundary. Additionally, the
Poincaré half-plane model is easier to extend from Euclidean spaces; we can use
a nonlinear function to project the last dimension to R+ to create an embedding
that resembles a Poincaré half-plane embedding. Therefore, in this section, we will
focus on the Poincaré half-plane model and explore its capabilities.
Unsupervised hyperbolic representation learning. We introduce a hyperbolic
auto-encoder that utilizes a 3D convolutional encoder and decoder to handle 3D
input. Our encoder maps a sampled patch from a given 3D brain scan image to a
Euclidean vector space. Next, we apply a simple projection to the last dimension
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Figure 7.1: We show the random generated patches in (a). The corresponding tree
structures are shown in (b). The potential goal of the unsupervised learning is that
the embeddings of the same branch are close to each other, while different branches
are far apart, see (c).

to convert it to a positive value, resulting in features embedded in a Poincaré half-
plane model. In the preliminary experiments we tried, the projection function is
set as SoftPlus function:

SoftPlus(x) = log(1 + exp(x))

The decoder then reconstructs the input patch from this embedded feature, without
any hyperbolic operations such as Gyrovector operations. It is important to note
that the entire neural network is optimized similar to a Euclidean neural network,
except the simple projection layer. We aim to minimize the computational cost
associated with handling a hyperbolic neural network.

To capture the hierarchical structures present in an image in an unsupervised
manner, we randomly sample patches of different sizes at different locations. We
define the hierarchical structure based on the containment relationship between
the patches. Specifically, if one patch P1 is contained within another patch P2, we
consider P1 to be under P2 in the same branch of the tree generated by our random
sampling method. Conversely, if two patches P1 and P3 have little overlap or are far
apart, we consider them to be in different branches and do not know their hierarchy.
An example is shown in Figure 7.1.
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For all the patches of the given image, we try to optimize the following equation:

`H =
∑
i

∑
j,s.t.(xi,xj)∈Tk

d((x1,y1), (x2,y2)) (7.2)

where Tk is the kth tree, (xi,yi) is the hyperbolic embedding of Pi, d(·, ·) is the
distance metric of the space, and in the this section, we apply (7.1). Thus, the
embedding of the patches from the same branch will be close to each other, (see
Figure 7.1(c) as an example).
Efficiency using a Hash function on a hyperbolic space. One can notice that in
the loss function described in (7.2), the major difficulty is to identify all the nodes
in the same tree. Assume that we haveN patches in the entire image, and we do not
contain an explicit expression of the tree structures inherent in these patches. The
brute force way to find the hierarchical information is by computing the distances
(either among the physical locations or among the embeddings), which would
require a time cost of O(N2). One possible approach to addressing this challenge
is to use hash functions to efficiently identify nodes or embeddings that belong to
the same tree with a time cost of O(N). This can be achieved by extending locality-
sensitive hashing (LSH) Chen et al. (2020); Jafari et al. (2021) from Euclidean space
into hyperbolic space with some modifications. LSH has been shown to be useful
in nearest neighbor search.

To better understand LSH in the Euclidean setting, let us briefly review it.

Definition 7.1 (Locality-sensitive hashing (LSH)). A familyH is called (S0, cS0,p1,p2)-
sensitive if for any two points x1, x2 ∈ RD and h chosen uniformly from H satisfies the
following:

• if Sim(x1, x2) > S0 then Pr(h(x1) = h(x2)) > p1

• if Sim(x1, x2) 6 cS0 then Pr(h(x1) = h(x2)) 6 p2

For approximate nearest neighbor search, we need p1 > p2 and c < 1 to hold.
There are multiple choices for LSH families, such as p-stable distributions Datar

et al. (2004), random projections Charikar (2002), and E2 LSH Zhang et al. (2014).



139

In this work, we propose to use the random projection method, which has been
used in deep learning in the context of hashing Zeng et al. (2021); Chen et al. (2021)
and easy to extend to hyperbolic spaces.

Definition 7.2 (Random Projections). Given an input vector x ∈ Rn and a hyperplane
defined by r = (r1, r2, · · · , rn) with each ri ∼ N(0, 1), the hash function is defined as
h(x) = r · x. To further quantize h(x) into a set of hash buckets, we have the following hash
function

hr,b(x) = b
x · r+ b
w

c

where w is the length of each quantization bucket and b is a random variable b ∼ N(0, 1).

By performing a projection on K random directions in parallel, we obtain h(x) =
[h1(x),h2(x), · · ·hK(x)] ∈ RK. hK here are the hash functions defined in Definition
7.2. We say that x1 and x2 are candidates for neighbors if ∀i, hi(x1) = hi(x2).

In Euclidean random projection, the key component is the hyperplane, which
cannot be directly extended into hyperbolic spaces. Thus we will need to make
some modification in hyperbolic spaces to enable the LSH model to operate well.
We know that LSH explores the relationship between similarity (induced by the
distance) and the collision probability. So if we can modify the setup such that
we can use, from a computational perspective, hyperbolic distances similar to how
we work with Euclidean distances, we may be able to apply LSH in our setup.
We can notice that the major difference between the distance in the Poincaré half-
plane model and the distance in the Euclidean space is that the Poincaré half-plane
distance is scaled by y. If we can remove the dependency of y, we can extend the
LSH from Euclidean space to Hyperbolic spaces.

Therefore, we first divide the entire Poincaré half-plane space into multiple
stripes along the y-axis, see Figure 7.2. We say that two points (x1,y1) and (x2,y2)

are candidates for neighbors if they fall into the same stripe and have the same hash
code within the stripe. In this setting,√y1y2 is bounded, so that d((x1,y1), (x2,y2))
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Figure 7.2: We divide the entire Poincaré half-plane space into multiple stripes
along the y-axis. We only consider points within the same strip being potential
near neighbor candidates and apply Euclidean LSH inside each strip.

can be rewritten as arsinh(C‖(x1,y1) − (x2,y2)‖), which is a monotonic function of
the Euclidean distance.

Note that for different hyperbolic embeddings, the hash function h is shared.
We only sample ri and bi once.

We empirically verify that Definition 7.1 can be satisfied with the hyperbolic
hash function defined in Algorithm 7.1. The results are shown in Figure 7.3.

Algorithm 7.1: Hyperbolic Hash Code
Input: Hyperbolic embedding (x,y), y axis stripe scale αy, number of hash code

N, and the length of each quantization bucket w.
Output: Hash code of h(x,y)

1: Compute the stripe index of y, hy(y) = bαy log(y)c
2: for i = 1, · · · ,N do
3: Sample hyperplane ri ∼ N(0, I) and bias bi ∼ N(0, 1)
4: hi(x,y) = b (x,y)·ri+bi

w
c

5: end for
6: Hash code for (x,y) is h(x,y) = [hy(y),h1(x,y), · · · ,hN(x,y)]

Preliminary Experimental Results

As discussed above, the main focus of this work is to find meaningful hyperbolic
embeddings for different patches inside 3D brain scan data using autoencoder-
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Figure 7.3: We empirically verify that the hyperbolic hash function satisfies the
requirement in Definition 7.1. x axis shows the similarity between two given points,
which is defined as e−d((x1,y1),(x2,y2)) and y axis shows the collision probability. We
can notice that c < 1 and p1 > p2. cS0 here serves as the lower threshold that if the
similarity is lower than cS0, it is very unlikely to collide (in terms of hashing). S0
shows that if the similarity is higher than S0, it is more likely to collide.

based models. We first apply the proposed method to the Alzheimer’s Disease
Neuroimaging Initiative 3 (ADNI3) dataset. Detailed demographics can be found
in Table 7.1.
Experimental setup. The encoder in this experiment consists of multiple layers
of 3D convolution with ReLU activation functions in between. We further utilize
an average pooling layer and two linear layers to embed the features of the given
input. To project these features into the Poincaré half-plane model, we apply the

Table 7.1: The demographics used in the study.

Age Gender (male) AD MCI CN
71.42 (6.92) 300 (46.2%) 39 270 340
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softplus activation function on the last dimension to make it a positive scalar value
(as required for y). For the decoder model, we use the inverse structure of the
encoder model.

During the training phase, for each 3D brain scan image, we randomly crop
1000 patches with 3 different sizes ranging from 8 to 16. In the testing phase, we fix
the patch size to evaluate the performance of our model. We train two models: one
with hyperbolic loss (our method) and the other without hyperbolic loss (which
serves as the baseline model). We first evaluate the reconstruction error on the
hold-out test dataset of our method and the baseline method. The reconstruction
error ranges between 5.0e − 3 to 6.4e − 3 for different patch sizes, which shows
the ability of the proposed autoencoder model to meaningfully extract features in
the latent space. Some examples of the reconstruction results for both the baseline
model and our model can be found in Figure 7.4. Also, we would like to point
out that our model takes only slightly longer to train per epoch compared to the
baseline model. Specifically, it takes 4.77 minutes to train one epoch, while the
baseline model takes 4.71 minutes.

We then further evaluate the invariance of rotation even if we do not provide
rotation data samples during the training phase. Since our method works on the
inherent structural relationship between patches, we hypothesize that the features
extracted by our method can be more invariant to rotation. This property indicates
the robustness of our method. The results are shown in Figure 7.5.

To visualize the hyperbolic embedding space of our proposed method, we show
patches of a fixed size of 8. Since the dimension of x is relatively high (127 in this
experiment), we apply a random projection vector v ∼ N(0, I) onto the x axis and
show the projected x alongside the original y in Figure 7.6. To demonstrate the
hierarchical information inside this hyperbolic space, we also present features of
patches with different sizes in Figure 7.7.
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Figure 7.4: Some examples of the reconstruction results are shown on the left.
Due to the fact that our proposed model deals with patches, the images shown
here are different patches instead of the entire brain. On the right, we show the
reconstruction error range for both the baseline model and our model. We can see
that the reconstruction is comparable for our method and the baseline model.

Figure 7.5: We evaluated the invariance of rotation of our method and the base-
line method. The left figure shows the distance between feature representations
before and after rotation. Our method shows much smaller distance in the latent
embedding space. The right figure shows the ratio between the distance of different
rotation angles and the distance of a 10◦ rotation. Our method outperforms the
baseline model in terms of invariance to rotation.
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Figure 7.6: We visualize the embedding space of our proposed method, where the
color indicates the patch location in the 3D brain scan image. Similar colors indicate
similar spatial locations. This indicates that our method can preserve similarities
in the patches, i.e., patches from a similar location tend to be together because we
see that patches from the same branch tend to be together in the embedding space.

Figure 7.7: We present the features in the hyperbolic space with different patch
sizes. We can observe that patches with size 4 generally exhibit lower hierarchy
than those with size 8.

Distance Correlation for Self Supervised Learning

In Chapter 6, we explored three distinct use cases for distance correlation and
partial distance correlation. Now, we will examine the potential advantages of
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using distance correlation within a self-supervised learning framework.
In recent years, there has been significant progress in the field of computer

vision with regards to unsupervised and self-supervised learning Jaiswal et al.
(2020). Notable works include Grill et al. (2020); Chen and He (2021), which are
based on the concept of Siamese networks Bromley et al. (1993), which are weight
sharing networks for two or more inputs.

For instance, BYOL Grill et al. (2020) generates two augmented views v = t(x)
and v ′ = t ′(x) from the same image x, and trains an online network fθ. During
training, the parameters θ are smoothed using an exponential moving average to
form the target network parameters ξ, which are not trained through back propa-
gation. The objective is to maximize the similarity between the projected online
network feature hζ ◦ fθ(v) and the target network feature fξ(v ′). The projection
network, or predictor hζ, serves as an alignment method and typically involves the
use of a multilayer perceptron (MLP). Another example is SimSiam Chen and He
(2021), which simplifies the network structure of the BYOL model by removing
the momentum encoder fξ. In SimSiam, a single network fθ and predictor hζ are
trained. The network fθ is applied to both v and v ′, and the objective is to maximize
the similarity between hζ ◦ fθ(v) and fθ(v ′). It is worth noting that the loss does
not back propagate through the v ′ branch. A diagram of this process is illustrated
in Figure 7.8(a).

One of the major benefits of BYOL and SimSiam is that they do not require hard
assignment of negative pairs, which can be difficult to define when there is no label
information available. Instead, positive pairs are defined as the different views v
and v ′ of the same image x, and the similarity between the two views is defined as
the cosine similarity between the corresponding feature vectors:

〈hζ ◦ fθ(v), fθ(v ′)〉
‖hζ ◦ fθ(v)‖‖fθ(v ′)‖

The similarity function measures the agreement between the projections of the two
views in this latent space. The cosine similarity is commonly used in these methods
because it is a normalized measure of similarity, and it is invariant to scaling and
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Figure 7.8: (a) SimSiam architecture. Two augmented views of one image passing
through the same encode network fθ and try to align the latent representation via a
prediction network hζ. To measure the alignment, it uses the cosine similarity. (b)
Our architecture. Our model takes the entire batch into consideration and try to
maximize the distance correlation between the two views of the same batch images.

translation of the feature vectors.
However, using correlation instead of cosine similarity can provide additional

benefits by considering all the samples from the same batch (both positive and
negative pairs) even without label information. Correlation is also invariant to
scaling and translation, and can be used to incorporate information not only from
the positive pairs defined by multiple augmentations of the same input sample, but
also from other samples in the batch.

To achieve this, we can apply the distance correlation to this setup by replacing
the cosine similarity. Unlike other self-supervised learning methods, such as Wu
et al. (2018); Caron et al. (2020), which treat all different input samples as negative
pairs, our approach does not require hard assignment of positive and negative pairs
in the batch. In this setting, the loss function is defined as:

`(x) = −R(hζ(z), z ′)

z = fθ(v)

z ′ = fθ(v ′)

where bold symbols represent a batch of input samples, R is the distance correlation
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Table 7.2: The test accuracy on Cifar-10 dataset with different training epochs using
SimSiam-based network with cosine similarity and our distance correlation.

Training Epochs 100 800
Backbone Network Resnet 18 Resnet 34 Resnet 50 Resnet 18
Cosine Similarity 42.08% 40.60% 42.90% 83.78%

Distance Correlation 45.89% 44.45% 43.97% 80.68%

function defined in (6.2), and v and v ′ are two different augmentations of the same
input image x. A diagram of this process is illustrated in Figure 7.8(b).

Our proposed method was evaluated on the Cifar-10 dataset as a preliminary
test of the idea. To assess the quality of the learned latent representation, we
trained a linear classification model using the features extracted by fθ and the
true labels. Preliminary results show that our method achieved 45.89% accuracy
on Cifar-10, outperforming SimSiam, which achieved 42.08% accuracy after 100
epochs of training. After a total of 800 epochs of training, our method achieved
80.68% accuracy, while SimSiam showed 83.78% accuracy. The training time is
comparable between our method and SimSiam. We would like to note that the
reported accuracy here is slightly lower than that of the original SimSiam model
due to the unavailability of detailed training code for the Cifar-10 dataset in the
original paper. But as a fair comparison, we use the exactly same structure and
training strategy for both SimSiam and our distance correlation method. We use
batch size 512, initial learning rate 0.05, and a cosine decay schedule for 100 epochs
(or 800 epochs). The results for different structures can be found in Table 7.2.
These results suggest that our method could be a promising warm-up strategy for
different self-supervised learning methods and architectures.
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a simpler certified radius maximization by
propagating covariances: appendix

A.1 Tracking Distributions through Layers
In Section 5.3, we briefly described the different layers used in our model. Here, we
will provide more details about the layers.

We consider the ith pixel, after perturbation, to be drawn from a Gaussian
distribution xi ∼ N(µi,Σ), where µi ∈ RN and Σ is the covariance matrix across
the N channels (note that Σ is same for a layer across all pixels). In the following
sections, we will remove the indices to simplify the formulation.

Several commonly-used basic blocks such as convolution and fully connected
layers are used to setup our network architecture. In order to propagate the dis-
tribution through the entire network, we need a way to propagate the moments
through these layers.

Convolution Layer

Let the pixels {xi} inside a k× k convolution kernel window be independent. Let
x̃ ∈ RNink2 be the vector which consists of {xi}, where Nin is the number of input
channels. Let Σ ∈ RNin×Nin be the covariance matrix of each pixel within the k× k
window. LetW be the weight matrix of the convolution layer, which is of the shape
Nin × k× k×Nout. With a slight abuse of notation, letW be the reshaped weight
matrix of the shape Nink2 ×Nout. Further, concatenate Σ from each {xi} inside the
k×kwindow to get a block diagonal Σ̃ ∈ RNink2×Nink2 . Then, we get the covariance
of an output pixel to be Σh ∈ RNout×Nout defined as

Σh =WT Σ̃W

We need to apply Theorem 5.2 to compute the upper bound of Σh. We get the
upper bound covariance matrix (covariance matrix of independent random variable
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x̂ used in Theorem 5.2) as

Σ̂h = (1 + rmax)W
T Σ̃W

Summary: Given each input pixel, xi ∈ RNin following N(µi,Σ) and convolution
kernel matrixW, the output distribution of each pixel is N(µhi , (1 + rmax)W

T Σ̃W),
where, Σ̃ is the block diagonal covariance matrix as mentioned before.

First Linear Layer

For the first linear layer, we reshape the input in a vector by flattening both the
channel and spatial dimensions. Similar to the convolution layer, we concatenate
{xi} to be x̃, whose covariance matrix has a block-diagonal structure. Thus, the
covariance matrix of the output pixel is

Σh =WTΣx̃W

whereW is the learnable parameter and Σx̃ is the block-diagonal covariance matrix
of x̃ similar to the convolution layer.
Special case: From Observation 5.1, we only need the largest two intensities to
estimate the pcx . Thus if there is only one linear layer as the last layer in the entire
network (as in most Resnet like models), this can be further simplified: it needs
computing a 2× 2 covariance matrix instead of the C× C covariance matrix.

Linear Layer

If the network consists of multiple linear layers, calculating the moments of the
subsequent linear layers is performed differently. Since it contains only 1-D inputs,
we can either treat it spatially or channel-wise. In our setup, we consider it as along
the channels.

Let x ∈ RNi be the input of the ith linear layer, where i > 1. Assume, x ∼

N
(
µ
(i)
x ,Σ(i)

x

)
. Given the ith linear layer with parameter (Wi, bi), with the output
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given by
h =WT

i x + bi

h ∼ N
(
WT
i µ

(i)
x + bi,WT

i Σ
(i)
x Wi

)
Here,Wi ∈ RNi×Ni+1 and bi ∈ RNi+1 and h ∈ RNi+1 .

Pooling Layer

Recall that the input of a max pooling layer is {xi} where each xi ∈ RNin and the
index i varies over the spatial dimension. Observe that as we identify each xi by the
respective distribution N (µi,Σ), applying max pooling over xi essentially requires
computing the maximum over {N (µi,Σ)}. Thus, we restrict ourselves to average
pooling. To be precise, with a kernel window W of size k× kwith stride k used for
average pooling, the output of average pooling, denoted by

h ∼ N

(
1
k2

∑
xi∈W

µi,
Σ

k2

)

Normalization Layer

For the normalization layer, given by h = (x − µ)/σ, where µ,σ can be computed
in different ways Ioffe and Szegedy (2015); Ba et al. (2016); Ulyanov et al. (2016),
we have

h ∼ N

(
µ
(i)
x − µ

σ
, Σ

(i)
x

σ2

)
However, as the normalization layers often have large Lipschitz constant Awais
et al. (2020), we remove those layers in this work.
Batch normalization. For the batch normalization, the mean and variance are
computed within each mini-batch Ioffe and Szegedy (2015).

µ =
1
m

m∑
i=1

xi,σ2 =
1
m

m∑
i=1

(xi − µ)
2
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where m is the size of the mini-batch. One thing to notice that µ,σ ∈ RN when
xi ∈ RN, N is the channel size. In this setting, the way to compute the bounded
distribution of output will need to be modified as following:

h ∼ N

(
µ
(i)
x − µ

σ
, Σ

(i)
x

σσT

)

where “/” is the element-wise divide. σσT ∈ RN×N. And µ,σ will be computed
dynamically as the new data being fed into the network.
Act normalization. As the performance for batch normalization being different
between training and testing period, there are several other types of normalization
layers. Kingma and Dhariwal (2018) proposed an act normalization layer where
µ,σ are trainable parameters. These two parameters are initialized during warm-up
period to compute the mean and variance of the training dataset. After initialization,
these parameters are trained freely.

In this case, the update rule is the same as above. The only difference is that
µ,σ do not depend on the data being fed into the network.

Activation Layer

ReLU. In Bibi et al. (2018); Lee et al. (2019), the authors introduced a way to com-
pute the mean and variance after ReLU. Since ReLU is an element-wise operation,
assume x ∼ N(µ,σ2). After ReLU activation, the first and second moments of the
output are given by:

E(ReLU(x)) =
1
2µ−

1
2µ erf( −µ√

2σ
) +

1√
2π
σ exp(− µ2

2σ2 )

var(ReLU(x)) < var(x)
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Here, erf is the Error function. We need to track an upper bound of the covariance
matrix, so we use ReLU(x) ∼ N (µa,Σa), where,

µa =
1
2µ−

1
2µ erf( −µ√

2σ
) +

1√
2π
σ exp(− µ2

2σ2 ),

Σa � Σ

Last layer/prediction: Here, the last layer is the layer before softmax layer, which
represents the “strength” of the model for the label l. By Observation 5.1, we have
the estimation of

pcx = pcx = Φ(
µ[cx] − µ[c̃]√

Σ[cx, cx] + Σ[c̃, c̃] − 2Σ[cx, c̃]
)

and
pc̃ = pc̃ = 1 − pcx

By Theorem 1, the certified radius is

CR =
σ

2 (Φ
−1(pcx) −Φ

−1(pc̃))

= σ
µ[c] − µ[c̃]√

Σ[cx, cx] + Σ[c̃, c̃] − 2Σ[cx, c̃]

Other activation functions. Other than ReLU, there is no closed form to compute
the mean after the activation function. One simplification can be: use the local
linear function to approximate the activation function, as Gowal et al. (2018) did.
The good piece of this approximation is that the output covariance matrix Σa can
be bounded by α2Σ, where α is the largest slope of the linear function.

Another direction is to apply the Hermite expansion Lokhande et al. (2020b)
which will add more parameters but is theoretically sound.

As ReLU is the most well-used activation function as well as the elegant closed
form mean after the activation function, in this paper, we only focus on the ReLU
layer and hold other activation functions into future work.
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A.2 Strengths and Limitations of Our Method
The biggest benefit of our method is the training time, which is also the main
focus of Chapter 5. As in Section 5.4, we have shown that our methods can be 5×
faster on Cifar-10, etc. dataset, with a comparable ACR as MACER. In real-world
applications, training speed is an important consideration. Thus, our method is a
cheaper substitute of MACER with a marginal performance compromise.

On the other hand, we also need to discuss that under which circumstances
our method does not perform well. The first case is when the network is extremely
deep, e.g., Resnet 101. Due to the nature of upper bound, the estimation of the
second moments tends to become looser as the network grows deeper. Thus, this
will lead to a looser estimation of the distribution of the last layer and the robustness
estimation would be less meaningful. Another minor weakness is when the input
perturbation is large, for example σ = 1.0. As shown in the main paper, the ACR
drops from 0.56 to 0.52 on ImageNet when the noise perturbation increases from
σ = 0.5 to σ = 1.0. The main reason relates to the assumption of a Gaussian
distribution. As the perturbation grows larger, the number of channels, by the
central limit theorem, should also be larger to satisfy the Gaussian distribution.
Thus, when the network structure is fixed, there is an inherent limit on the input
perturbation.

We note that to perform a fair comparison, we run Cohen et al. (2019), MACER
Zhai et al. (2020), and our method based on the PreActResnet 18 for Table 5.3. Since
the network is shallower than the original MACER paper, the performance numbers
reported here are lower. As described above, a large perturbation σ = 1.0 leads to
small drop in performance. Thus, almost for all three methods, the ACR for σ = 1.0
is worse than the one for σ = 0.5 on ImageNet. For Places365 dataset, the results
are slightly better on σ = 1.0 than σ = 0.5.

Also, similar as Chapter 5, we statistically test the variance based on MC sam-
pling and our upper bound tracking method. The results are shown in Table A.1. As
one can see that when the network gets deeper, the upper bound tends to be looser.
But in most case, the upper bound is around 3 times higher than the sample-based
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variance, which is affordable in the real-world application.

Table A.1: Statistics for different layers of MC sampling and our upper bound
tracking method for deeper network.

Layer number 1 9 17 25 33
MC (1000 samples) 0.595 0.782 2.751 7.692 0.712

Upper bound 0.685 3.231 5.583 22.546 3.960
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