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Abstract	

The	development	of	automated	vehicle	(AV)	technology	is	suggesting	a	promising	

future	of	safer	and	more	efficient	transportation.	However,	there	are	still	many	challenges	

in	ensuring	the	operational	safety	of	AVs	before	their	deployment.	Scenario-based	testing	

of	AVs	is	an	essential	part	of	the	safety	verification	of	this	technology,	and	generating	

challenging	scenarios	is	critical	for	scenario-based	testing	of	AVs.	Research	presented	in	

this	dissertation	focuses	on	developing	a	methodology	for	crash	sequence	analysis	which	is	

used	to	generate	scenarios	for	AV	safety	testing.	AVs	with	SAE	Driving	Automation	Levels	3	

and	4	are	expected	to	share	the	roads	and	handle	conflicts	with	human	drivers.	Building	a	

scenario	library	based	on	comprehensive	samples	of	historical	crash	data	would	be	the	

most	efficient	way	to	set	up	the	foundation	of	a	scenario-based	AV	verification	system.	

Crash	scenarios	are	temporally	ordered	scenes	that	consist	of	1)	participants’	actions	and	

interactions,	and	2)	the	relatively	static	surrounding	environment.	To	incorporate	both	

elements,	this	dissertation’s	scenario-generating	procedure	included	two	steps	–	1)	

characterization	of	crashes	based	on	sequences	of	events,	and	2)	specification	of	

interrelationships	between	crash	sequences	and	other	crash	attributes	that	depict	the	

surrounding	environment.	Research	tasks	developed	and	demonstrated	the	crash-

sequence-based	scenario-generating	procedure	with	three	studies.	

In	the	first	study,	a	first-of-its-kind	crash	sequence	analysis	methodology	was	

developed	to	serve	as	the	foundation	of	this	dissertation	research.	The	methodology	was	

designed	to	select	the	most	appropriate	sequence	encoding	schemes	and	dissimilarity	
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measures	for	crash	sequence	analysis,	and	be	applicable	to	various	use	cases	of	crash	

analysis.		

In	the	second	study,	crash	sequence	analysis	methods	were	applied	to	California	AV	

collision	data	to	query	and	identify	representative	crash	sequence	types.	Seven	sequence	

types	were	found	to	be	significantly	associated	with	crash	outcomes	and	environmental	

conditions.	Based	on	the	findings,	the	research	proposed	a	scenario-based	AV	testing	

framework	with	crash	sequences	as	the	core	component.	

In	the	third	study,	the	scenario-generating	procedure	incorporates	a	sequence	

analysis	and	a	Bayesian	network	analysis.	The	procedure	was	demonstrated	by	specifying	

intersection	two-vehicle	crash	scenarios.	Fifty-five	crash	sequence	types	were	identified.	

The	interrelationships	among	sequence	types,	crash	outcomes,	and	operational	design	

domain	(ODD)	variables	were	depicted	by	a	Bayesian	network.	Based	on	the	network,	

scenarios	could	be	specified	as	combinations	of	crash	sequences	and	ODDs.	

This	dissertation	contributes	to	the	understanding	of	traffic	crashes	and	efficient	

testing	of	AVs	by	developing	a	first-of-its-kind	crash	sequence	analysis	methodology	and	a	

novel	test	scenario	generating	procedure.	This	dissertation	laid	the	foundation	for	traffic	

crash	sequence	analysis	and	the	use	of	crash	data	for	AV	test	scenario	generation.	As	future	

crashes	happen,	new	data	can	be	added	to	the	database	to	add	greater	depth	and	further	

understanding	to	the	critically	important	topic	of	scenario-based	AV	safety	evaluation.	

Findings	from	this	dissertation	will	have	further	influences	in	improving	transportation	

safety	and	supporting	the	transition	into	automated	transportation.	Knowledge	of	crash	
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sequences	will	help	future	research	in	analyzing	crash	causations.	A	comprehensive	test	

scenario	library	will	speed	up	large-scale	AV	safety	testing	with	the	help	of	simulation.	

	 	



	

	

vii 

	

	

	

	

To	my	wife	C.	J.	Zhang	

	 	



	

	

viii 

Acknowledgements	

I	would	like	to	extend	my	deepest	gratitude	to	my	advisor	and	dissertation	

committee	chair,	Dr.	David	Noyce,	for	his	guidance	and	support	through	my	Ph.D.	training,	

as	well	as	his	profound	belief	in	my	abilities	and	work.	I’m	also	extremely	grateful	to	my	

dissertation	committee	members,	Dr.	Sue	Ahn,	Dr.	Bin	Ran,	Dr.	Madhav	Chitturi,	and	Dr.	

Sam	Younkin	for	all	their	help	to	me	in	finishing	this	dissertation.	Especially,	I	would	like	to	

thank	Madhav	for	sharing	his	knowledge	and	giving	invaluable	suggestions	on	my	research.	

Thanks	also	go	to	the	SAFER-SIM	University	Transportation	Center	for	sponsoring	part	of	

my	dissertation	research.	Throughout	my	four	and	a	half	years	at	UW-Madison,	I	have	

enjoyed	working	with	TOPS	Lab	colleagues	and	have	frequently	received	their	help.	

Specially,	I	would	like	to	thank	Hiba,	Beau,	Lingqiao,	Boris,	Kelvin,	Andi,	Steve,	Bill,	Adam,	

and	Jon.	Finally,	I	would	like	to	express	my	appreciation	and	gratitude	to	my	wife,	my	

parents,	and	my	in-laws	for	their	endless	support.	

	

	 	



	

	

ix 

List	of	Figures	

Figure	1		Conceptual	framework	.......................................................................................................................	6 

Figure	2		Dissertation	outline	.............................................................................................................................	8 

Figure	3		Trend	in	AAA	survey	results	(22)	................................................................................................	13 

Figure	4		Cartoon	by	Saint	Louis	Star	(November	6,	1923,	p.	14)	(23)	...........................................	14 

Figure	5		Trends	in	annual	U.S.	motor	vehicle	fatalities	(1921–2017)	(31)	.................................	16 

Figure	6		Generalized	function/event	sequence	(87)	.............................................................................	26 

Figure	7		Illustration	of	causal	pattern	“dart-out	first	half”	(87)	.......................................................	27 

Figure	8		Conceptual	model	of	the	crash	generation	process	(88)	...................................................	28 

Figure	9		Illustration	of	a	type	of	motor	vehicle-bicycle	crash,	“bicycle	rideout	–	intersection	

controlled	by	sign”	(88)	.......................................................................................................................................	29 

Figure	10		Levels	of	scenarios	(92)	.................................................................................................................	32 

Figure	11		Example	of	three	levels	of	scenarios	(92)	.............................................................................	32 

Figure	12		Layered	model	of	variables	describing	an	AV	test	scenario	(93)	................................	33 

Figure	13		Procedure	of	crash	sequence	analysis	....................................................................................	44 

Figure	14		Linkage	structure	of	the	CRSS	data	files	(144)	....................................................................	46 

Figure	15		Tree-structured	subsetting	of	crash	data	..............................................................................	48 

Figure	16		Sequence	lengths	..............................................................................................................................	65 

Figure	17		Process	of	developing	encoding	schemes	.............................................................................	67 

Figure	18		Clustering	quality	of	the	OMlev	measure	..............................................................................	72 

Figure	19		ARI	sensitivity	to	the	LOM	parameter	e	.................................................................................	75 

Figure	20		Alluvial	diagram	of	clustering	results	with	the	OMlev	measure	.................................	78 

Figure	21		Form	of	transition	matrix	P	(64)	............................................................................................	105 

Figure	22		Silhouette	widths	..........................................................................................................................	110 

Figure	23		Transition	rates	from	preceding	events	to	disengagement	and	from	

disengagement	to	succeeding	events	.........................................................................................................	113 

Figure	24		Graph	illustrations	of	AV	crash	sequence	patterns	........................................................	117 

Figure	25		Crash	severity	distribution	by	sequence	group	...............................................................	119 

Figure	26		Manner	of	collision	distribution	by	sequence	group	.....................................................	120 

Figure	27		Sequence	group	distribution	by	facility	type	....................................................................	121 



	

	

x 

Figure	28		Sequence	group	distribution	by	time	of	day	.....................................................................	121 

Figure	29		Sequence	group	distribution	by	year	...................................................................................	122 

Figure	30		AV	safety	testing	framework	with	sequence	of	events	embedded	..........................	124 

Figure	31		CRSS	two-vehicle	crash	types	(144)	.....................................................................................	135 

Figure	32		Sequence	structure	.......................................................................................................................	137 

Figure	33		Clustering	quality	indices	for	CC	D	(rear	end)	sequences	...........................................	146 

Figure	34		Bayesian	network	generated	from	hill	climbing	learning	...........................................	153 

Figure	35		Alternative	Bayesian	network	.................................................................................................	155 

Figure	36		Bayesian	network	of	sequence	types	and	crash	outcomes	.........................................	156 

Figure	37		Bayesian	network	of	sequence	types,	human	factors,	and	environmental	

conditions	...............................................................................................................................................................	156 

Figure	38		Distribution	of	sequence	types	resulting	in	fatalities	...................................................	158 

	

	 	



	

	

xi 

List	of	Tables	

Table	1		SAE	levels	of	driving	automation	(2)	.............................................................................................	2 

Table	2		U.S.	government	automated	vehicle	technology	principles	(18)	.....................................	12 

Table	3		Example	of	an	NHTSA	ADS	scenario	descriptor	(95)	............................................................	34 

Table	4		Sequence	alignment	costs	.................................................................................................................	55 

Table	5		Dissimilarity	measures	......................................................................................................................	61 

Table	6		Sensitivity	of	dissimilarity	measures	to	sequence	attributes	...........................................	62 

Table	7		Conditions	for	obtaining	data	for	case	study	from	CRSS	.....................................................	64 

Table	8		Example	of	encoding	schemes	........................................................................................................	68 

Table	9		Mantel	test	results	................................................................................................................................	70 

Table	10		Comparison	of	ARIs	..........................................................................................................................	76 

Table	11		Sequence	clustering	results	with	the	OMlev	measure	.......................................................	80 

Table	12		Detailed	interpretation	of	sequence	clustering	results	with	OE	...................................	83 

Table	13		Summary	of	data	from	California	AV	collision	reports	.....................................................	97 

Table	14		2015-2019	AV	test	mileages	and	crash	rates	by	organization	.......................................	99 

Table	15		Causes	of	disengagements	involved	in	AV	crashes	..........................................................	100 

Table	16		Event	encodings	..............................................................................................................................	102 

Table	17		Example	of	crash	event	sequences	..........................................................................................	103 

Table	18		Example	of	ways	to	align	two	sequences	.............................................................................	107 

Table	19		Cluster	size	and	cluster	average	silhouette	width	............................................................	111 

Table	20		Top	15	most	frequent	subsequences	.....................................................................................	112 

Table	21		Clusters	of	AV	crash	sequences	................................................................................................	115 

Table	22		Subsetting	criteria	..........................................................................................................................	133 

Table	23		Vehicle	renumbering	.....................................................................................................................	136 

Table	24		Sequence	lengths	.............................................................................................................................	138 

Table	25		Crash	outcomes	...............................................................................................................................	139 

Table	26		Human	factors	and	environmental	conditions	..................................................................	140 

Table	27		Sequence	alignment	.......................................................................................................................	142 

Table	28		Distribution	of	CRSS	intersection	two-vehicle	crash	configurations	.......................	143 

Table	29		Sequence	clustering	results	........................................................................................................	148 



	

	

xii 

Table	30		Interpretation	of	representative	sequences	.......................................................................	150 

Table	31		Arc	strengths	.....................................................................................................................................	154 

Table	32		Distribution	of	intersection	type	and	TCD	in	k3	crashes	...............................................	159 

Table	33		Distribution	of	speeding	behavior	and	time	of	day	in	k3	crashes	.............................	159 

Table	34		Distribution	of	sequence	types	at	signal-controlled	intersections	...........................	160 
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Chapter	1 Introduction	

1.1	Background	and	Motivation	

Transportation	is	moving	toward	a	connected	and	automated	future.	Automated	

vehicle1	(AV)	technology	is	one	of	the	many	advanced	transportation	technologies	acting	as	

both	a	promoter	and	a	disrupter	in	future	transportation	(1).	The	Society	of	Automotive	

Engineers	(SAE)	defines	6	levels	of	driving	automation,	as	shown	in	Table	1	(2).	From	

Driving	Automation	Level	0	to	Level	5,	the	involvement	of	driving	automation	technology	

increases,	and	the	involvement	of	human	driver	decreases.	Levels	0	to	2	require	a	human	

driver	to	be	actively	engaged	in	driving	tasks.	Starting	from	Level	3,	driving	automation	

technology	takes	care	of	most	driving	tasks.	Level	3	automation	requires	a	human	driver	to	

be	present	and	prepared	to	take	over	control	of	the	vehicle	at	any	time	and	especially	when	

in	an	emergency,	and	vehicle	automation	can	only	operate	under	limited	conditions	(i.e.,	

operational	design	domains,	or	ODDs).	Level	4	automation	does	not	need	a	human	driver	to	

take	over	control	but	only	enables	the	vehicle	to	operate	in	limited	ODDs.	Vehicles	with	

Level	5	automation	do	not	need	human	drivers	to	take	over	control	and	can	operate	in	

unlimited	ODDs.	The	AVs	discussed	in	this	dissertation	are	assumed	to	have	or	are	aimed	to	

have	SAE	Driving	Automation	Levels	3	and	4.	

	 	

	
1	“Automated	vehicle”,	“autonomous	vehicle”,	“self-driving	vehicle”,	and	“driverless	vehicle”	are	terms	
commonly	seen	used	to	describe	a	vehicle	with	a	high	level	of	driving	automation.	There	is	not	a	universally	
agreed	term	to	describe	this	new	technology.	In	the	“AV	4.0”	document,	USDOT	used	the	term	“automated	
vehicle”,	which	is	also	used	throughout	this	research.	
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Table	1		SAE	levels	of	driving	automation	(2)	

	
Note: DDT: Dynamic Driving Task; ODD: Operational Design Domain;  

OEDR: Object and Event Detection and Response; ADS: Automated Driving System. 
The DDT does not include strategic aspects of the driving task, such as determining destination(s) and 
deciding when to travel. 

	

 
Level Narrative Definition  DDT DDT 

Fallback 
ODD 

Sustained 
Lateral and 
Longitudinal 
Vehicle Motion 
Control  

OEDR 

Driver Performs Part or All of the DDT  

 
0 –  
No 
Driving 
Automation 

The performance by the driver of the 
entire DDT, even when enhanced by 
active safety systems. 

Driver Driver Driver n/a 

Dr
ive

r S
up

po
rt 

1 –  
Driver 
Assistance 

The sustained and ODD-specific 
execution by a driving automation 
system of either the lateral or the 
longitudinal vehicle motion control 
subtask of the DDT (but not both 
simultaneously) with the expectation 
that the driver performs the remainder 
of the DDT. 

Driver and 
System  

Driver Driver Limited 

2 –  
Partial 
Driving 
Automation 

The sustained and ODD-specific 
execution by a driving automation 
system of both the lateral and 
longitudinal vehicle motion control 
subtasks of the DDT with the 
expectation that the driver completes 
the OEDR subtask and supervises the 
driving automation system. 

System Driver Driver Limited 

ADS (“System”) Performs the Entire DDT (While Engaged)  

Au
to

m
at

ed
 D

riv
in

g 

3 –  
Conditional 
Driving 
Automation 

The sustained and ODD-specific 
performance by an ADS of the entire 
DDT with the expectation that the DDT 
fallback-ready user is receptive to 
ADS-issued requests to intervene, as 
well as to DDT performance-relevant 
system failures in other vehicle 
systems, and will respond 
appropriately. 

System System Fallback-
ready user 
(becomes 
the driver 
during 
fallback)  

Limited 

4 –  
High 
Driving 
Automation 

The sustained and ODD-specific 
performance by an ADS of the entire 
DDT and DDT fallback without any 
expectation that a user will need to 
intervene. 

System System System Limited 

5 –  
Full 
Driving 
Automation 

The sustained and unconditional (i.e., 
not ODD-specific) performance by an 
ADS of the entire DDT and DDT 
fallback without any expectation that a 
user will need to intervene. 

System System System Unlimited 
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Organizations	developing	AVs	are	promoting	the	idea	of	automated	vehicles	saving	

lives	as	they	are	expected	to	partially	and	eventually	fully	replace	human	drivers,	who	are	

blamed	(i.e.,	driver	error)	for	causing	94%	of	the	motor	vehicle	crashes	in	the	United	States	

(3–5).	At	the	same	time,	AV	developing	organizations	are	testing	the	performance	of	AVs	

intensively,	on	public	roads,	closed-course	tracks,	and	in	simulations	(6).	The	goal	is	to	

ensure	an	efficient	and	safe	deployment	of	this	technology.	

One	of	the	challenges	with	simulation-based	testing	of	AVs	is	developing	scenarios.	

Scenarios	need	to	reflect	real-world	challenges	existing	in	a	variety	of	ODDs	(7,	8).	AVs	with	

Level	3	and	Level	4	automation	are	expected	to	be	operating	in	a	mix	of	AVs	and	human-

driven	vehicles	(HDVs),	thus	developing	scenarios	incorporating	human	driver	behavior	is	

essential	for	validating	Level	3	and	Level	4	AVs	(9).	National-level	historical	crash	data	

offers	a	comprehensive	sample	of	crashes	covering	different	ODDs,	thus	is	an	excellent	data	

source	for	developing	challenging	scenarios	for	AV	safety	evaluation.	

Scenario	is	defined	as	a	sequence	of	scenes	that	consist	of	actions,	events,	goals,	and	

values	(10).	Prior	efforts	developed	AV	test	scenarios	by	characterizing	crashes	based	on	

multiple	dimensions	of	crash	contributing	factors	and	attributes	(11–13).	Without	

incorporating	the	sequential	connections	among	events	and	actions	in	crashes,	the	

generated	crash	scenarios	lack	specificity	(14).	There	is	a	gap	between	the	crash	scenarios	

developed	by	prior	efforts	and	crash	scenarios	ready	to	be	implemented	in	simulation-

based	tests.	Characterizing	crashes	based	on	crash	sequences	can	generate	more	detailed,	

comprehensive,	and	realistic	scenarios	to	narrow	this	gap.	
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Crash	sequences	are	sets	of	chronologically	ordered	pre-crash	and	crash	events.	In	a	

prior	study	by	Wu	et	al.,	crash	sequences	were	found	to	directly	affect	injury	severity,	and	

crash	sequence	analysis	to	be	useful	for	understanding	the	dynamics	and	causations	of	

crashes	(15).	Sequence	analysis	is	widely	applied	in	biological	and	social	sciences	but	has	

not	been	explored	extensively	in	traffic	safety	research.	The	purpose	of	sequence	analysis	

in	traffic	safety	research	is	similar	with	that	in	biological	and	social	sciences,	focusing	on	

identifying	representative	components	of	sequences,	analyzing	sequence	similarities	and	

differences,	and	evaluating	the	relationships	between	sequences	and	potential	outcomes	

(15).	However,	as	there	are	numerous	theories	and	techniques	involved	in	sequence	

analysis,	a	methodology	needs	to	be	developed	to	appropriately	apply	the	theories	and	

techniques	to	crash	sequences.	Questions	to	be	addressed	concern	specific	aspects	of	crash	

sequence	analysis	including	sequence	data	processing,	sequence	encoding,	comparison,	

clustering,	and	interpretation.	Further	questions	to	be	addressed	include:	How	are	crash	

sequence	types	associated	with	other	attributes	of	crashes	such	as	human	factors,	

environmental	conditions,	and	crash	outcomes?	Also,	how	to	identify	statistically	

significant	scenarios	for	specific	ODDs	for	AV	testing?	Association	and	causal	analysis	

would	help	answer	those	questions.	

Another	concern	in	crash-sequence-based	test	scenario	generation	is	what	data	to	

use.	As	this	research	focuses	on	Level	3	and	Level	4	AVs,	which	are	expected	to	share	the	

roads	with	HDVs,	historical	crash	data	can	be	used	to	generate	test	scenarios.	An	

assumption	is	that	HDV	crash	cases	are	challenging	for	AVs,	as	they	reflect	the	dynamics	of	

human	driver	behaviors	and	environmental	conditions	that	would	be	encountered	by	AVs.	

Some	vehicle	interaction	challenges	will	not	be	covered	by	scenarios	generated	from	
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historical	HDV	crash	data.	Fortunately,	as	open-road	tests	are	being	carried	out,	new	data	

from	those	tests	can	provide	us	insights	in	unique	scenarios	of	AV	crashes	(6,	16).	However,	

unusual	scenarios	or	edge	cases	need	to	be	addressed	from	the	AV	system	safety	design	

perspective	(17).		

In	this	research,	some	HDV	scenarios	were	developed	using	data	from	a	national	

crash	database	–	the	National	Highway	Traffic	Safety	Administration	(NHTSA)	Crash	

Report	Sampling	System	(CRSS),	and	unique	AV	crash	scenarios	were	developed	using	data	

from	the	California	Department	of	Motor	Vehicles	(DMV)	AV	collision	reports.	The	CRSS	

databases	provide	a	comprehensive	sample	of	crashes	covering	various	ODDs,	and	

chronologically	ordered	crash	sequences	of	events.	The	California	AV	collision	reports	offer	

detailed	narratives	for	extraction	of	crash	sequence	data.	

	

1.2	Conceptual	Framework	and	Research	Focus	

A	conceptual	framework	of	scenario	generation	for	AV	safety	evaluation	was	

developed	for	this	research,	as	illustrated	in	Figure	1.	The	framework	consists	of	four	

components,	and	this	research	focuses	on	three	of	them.	Crash	sequence	analysis	and	

clustering	generate	an	array	of	representative	sequence	types.	Analysis	of	associations	

and	causations	specify	the	relationships	between	crash	sequence	types	and	other	crash	

attributes	including	human	factors,	environmental	conditions,	and	crash	outcomes.	Test	

scenarios	that	are	statistically	significant	for	specific	ODDs	are	identified	through	that	

procedure.	Included	in	the	framework	for	completeness	but	not	a	focus	of	this	dissertation,	

rubrics	(including	metrics	and	benchmarks)	can	be	developed	for	AV	evaluation,	as	a	
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further	study	of	crash	causal	analysis.	Test	scenarios	and	rubrics	are	expected	to	affect	and	

strengthen	each	other	in	the	process	of	scenario-based	testing	of	AVs.	

	
Image sources: lucidworks.com; management.ind.in; sc.edu 

Figure	1		Conceptual	framework	

	

1.3	Objective,	Research	Questions,	and	Study	Design	

The	objective	of	this	dissertation	is	to	develop	a	methodology	of	crash	sequence	

analysis	and	apply	a	sequence-analysis-based	procedure	to	generate	test	scenarios	for	AV	

safety	evaluation.	Specifically,	the	following	four	research	questions	are	addressed:	

• How	to	analyze	HDV	and	AV	(Level	3	and	4)	crash	sequences?	

• What	can	we	know	from	analyzing	crash	sequences	of	events?	
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• What	unique	scenarios	can	be	developed	using	available	AV	crash	data?	

• What	scenarios	can	be	developed	using	HDV	crash	data?	

To	address	the	four	research	questions,	this	research	focuses	on	two	tasks:	1)	

Developing	and	demonstrating	a	methodology	of	crash	sequence	analysis,	focusing	on	

selecting	the	most	appropriate	encodings	and	dissimilarity	measures	for	specific	use	cases	

of	crash	analysis.	2)	Developing	and	demonstrating	a	procedure	to	generate	crash	

scenarios	for	AV	testing,	which	include	two	steps:	crash	characterization	based	on	

sequence	analysis,	and	specifying	relationships	between	crash	dynamics	(i.e.,	sequences)	

and	ODD	depictions	(e.g.,	environmental	conditions,	human	factors).	

The	two	tasks	were	performed	in	three	separate	studies.	The	first	study	developed	a	

crash	sequence	analysis	methodology,	and	used	the	NHTSA	CRSS	data	to	demonstrate	its	

effectiveness	and	usefulness.	The	second	task	was	performed	with	two	studies,	one	

applying	the	scenario	generating	procedure	on	data	from	California	AV	collision	reports,	

and	the	other	applying	the	procedure	on	NHTSA	CRSS	crashes.	

The	analytical	methods	applied	in	this	dissertation	research	can	be	classified	into	

two	categories	–	analysis	of	sequence	patterns,	and	analysis	of	variable	relationships.	

Sequences	were	studied	at	the	levels	of	element,	subsequence,	and	whole	sequence,	using	

methods	such	as	transition	matrix	analysis,	optimal	matching,	and	clustering.	The	

relationships	between	sequence	types	and	ODD	variables	were	studied	using	methods	of	

cross-tabulation	and	graphical	modeling.	Detailed	descriptions	of	methods	are	provided	in	

each	of	Chapters	3,	4,	and	5.	

To	summarize,	this	dissertation	research:	
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• Developed	a	novel	methodology	of	crash	sequence	analysis	(data	processing,	

encoding,	comparison,	and	clustering).	

• Innovatively	applied	sequence	analysis	to	California	AV	crash	data,	developed	

unique	AV	crash	scenarios,	and	proposed	a	framework	of	scenario-based	AV	

safety	evaluation.	

• Designed	and	applied	the	test	scenario	generating	procedure	based	on	crash	

sequence	analysis	using	historical	HDV	crash	data.	

• This	research	showed	that	crash	sequence	analysis	is	effective	in	characterizing	

HDV	and	AV	crashes,	and	useful	in	generating	statistically	significant	scenarios	

for	AV	safety	evaluation.	

1.4	Dissertation	Outline	

The	dissertation	outline	is	illustrated	in	Figure	2.	

	

Figure	2		Dissertation	outline	
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This	dissertation	is	organized	as	follows:	

Chapter	1	introduces	the	background,	motivation,	conceptual	framework,	focus,	

objective,	and	contribution	of	this	dissertation.	

Chapter	2	gives	a	detailed	background	of	automated	transportation	and	AV	safety,	

and	reviews	literature	related	to	crash	sequences	and	AV	test	scenarios.	

Chapter	3	develops	a	methodology	of	crash	sequence	analysis.	A	procedure	of	crash	

sequence	data	processing,	sequence	encoding,	dissimilarity	measuring,	and	clustering	was	

introduced.	Using	data	from	the	NHTSA	CRSS	database,	different	sequence	encoding	

schemes	and	dissimilarity	measures	were	compared.	The	optimal	dissimilarity	measures	

were	identified	for	each	encoding	schemes	based	on	the	agreements	with	a	benchmark	

crash	typology.	Apart	from	developing	AV	test	scenarios,	the	crash	sequence	analysis	

methodology	is	applicable	to	the	modeling	of	crash	injury	severity	and	analysis	of	crash	

causations.	

Chapter	4	applies	sequence	analysis	to	California	AV	crash	data.	The	sequence	

analysis	characterized	AV	crashes	into	seven	distinctive	types	based	on	patterns	in	

sequences	of	events.	The	seven	types	showed	unique	scenarios	of	AV	crashes,	including	

AVs’	hesitant	driving	style	and	the	involvement	of	disengagements.	Based	on	an	analysis	of	

associations	between	AV	crash	sequence	types	and	other	crash	attributes,	a	preliminary	

framework	of	scenario-based	AV	testing	was	proposed.		

Chapter	5	applies	sequence	analysis	to	the	CRSS	data	and	generated	scenarios	for	

intersection	two-vehicle	crashes.	Sequence	encodings	were	specifically	designed	for	the	

purpose	of	test	scenario	developing,	and	best	performing	dissimilarity	measure	was	used	
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to	compare	and	cluster	crash	sequences.	Fifty-five	sequence	types	were	developed	as	

representative	scenarios.	A	Bayesian	network	(BN)	was	developed	to	analyze	the	causal	

relationships	among	sequence	types,	human	factors,	environmental	conditions,	and	crash	

outcomes.	BN	analysis	can	identify	statistically	significant	scenarios	for	specific	ODDs.	

Chapter	6	concludes	the	dissertation	with	a	discussion	of	the	dissertation’s	major	

findings,	contributions,	limitations,	and	several	directions	for	future	work.	

Chapters	3	to	5	are	organized	in	the	format	of	manuscript.	Chapter	3	is	a	slightly	

modified	version	of	a	submitted	paper	(under	review).	Chapter	4	is	a	slightly	modified	

version	of	a	published	paper.	Chapter	5	is	a	working	paper	to	be	submitted.	List	of	

references	for	the	original	papers:	

• Chapter	3:	Song,	Y.,	M.V.	Chitturi,	&	D.A.	Noyce.	A	Methodology	for	Traffic	Crash	

Sequence	Analysis:	Impact	of	Event	Encoding	and	Dissimilarity	Measures.	

Submitted	to	Accident	Analysis	&	Prevention	(Under	Review).	

• Chapter	4:	Song,	Y.,	M.V.	Chitturi,	&	D.A.	Noyce.	Automated	Vehicle	Crash	

Sequences:	Patterns	and	Potential	Uses	in	Safety	Testing.	Accident	Analysis	&	

Prevention,	153,	2021.	

• Chapter	5:	Song,	Y.,	M.V.	Chitturi,	&	D.A.	Noyce.	“Intersection	Two-Vehicle	Crash	

Scenario	Specification	for	Automated	Vehicle	Safety	Evaluation	Using	Sequence	

Analysis	and	Bayesian	Networks”.	(To	Be	Submitted	to	the	Journal	of	Safety	

Research).	
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Chapter	2 Background	

2.1	Future	of	Transportation	and	Safe	Automation	

2.1.1	Future	of	Transportation	

There	is	not	a	clear	understanding	of	what	the	transportation	system	will	look	like	

in	terms	of	operations	and	safety	when	most	or	all	vehicles	are	automated.	Some	potential	

benefits	of	AVs,	as	frequently	mentioned	in	government	documents	and	media	coverages,	

may	include	but	not	limited	to:	improved	safety,	improved	mobility,	improved	accessibility,	

improved	supply	chain	management,	improved	land	use,	and	improved	energy	efficiency	

(1,	18–20).	Similarly,	some	potential	negative	effects	of	AVs	include	but	not	limited	to:	

increased	vehicle-miles-traveled	(VMT),	induced	congestion	(due	to	“empty”	AV	miles	or	

new	patterns	for	land	use	and	development),	increased	urban	sprawl,	and	increased	cyber-

security	risks	for	transportation	systems	(19,	20).	Although	a	significant	research	effort	

could	be	initiated	on	each	of	the	potential	improvements	and	impacts	of	the	

implementation	of	AVs,	this	research	effort	is	focused	on	safety.	Specifically,	how	AVs	will	

affect	road	safety	and	how	to	quantifiably	determine	if	and	how	AVs	achieve	their	proposed	

goal	of	maximizing	safety	benefits	and	minimizing	safety	risks.	Improving	traffic	safety	is	

one	of	the	primary	motivations	for	developing	AVs,	and	is	also	prioritized	as	one	of	the	U.S.	

Government	Automated	Vehicle	Technology	Principles,	as	listed	in	Table	2	(18).	
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Table	2		U.S.	government	automated	vehicle	technology	principles	(18)	

Core Interest Sub-Area 

I. Protect Users and Communities 1. Prioritize Safety 
2. Emphasize Security and Cybersecurity 
3. Ensure Privacy and Data Security 
4. Enhance Mobility and Accessibility 

II. Promote Efficient Markets 5. Remain Technology Neutral 
6. Protect American Innovation and Creativity 
7. Modernize Regulations 

III. Facilitate Coordinated Efforts 8. Promote Consistent Standards and Policies 
9. Ensure a Consistent Federal Approach 
10. Improve Transportation System-Level Effects 

	

Currently,	public	attitudes	toward	AVs	are	mixed,	with	safety	being	the	most	

significant	topic	of	concern.	Based	on	the	2020	American	Automobile	Association	(AAA)	

surveys	of	consumer	sentiment	on	AVs,	only	12%	of	the	surveyed	drivers	trust	a	fully	

automated	vehicle	to	drive	itself,	28%	do	not	know	how	they	feel	about	the	technology,	and	

the	remaining	60%	would	be	afraid	to	ride	a	fully	automated	vehicle.	The	results	also	

showed	that	72%	of	surveyed	drivers	would	feel	safer	riding	in	an	AV	permitting	drivers	to	

take	over	control,	and	47%	would	feel	safer	knowing	the	AV	has	passed	rigorous	testing	

and	inspections	(21).	Before	2020,	AAA	had	conducted	5	automated	vehicle	surveys	in	4	

years,	with	results	showing	a	trend	in	percentage	of	drivers	afraid	to	ride	in	a	fully	

automated	vehicle	changing	as	illustrated	in	Figure	3.	Anecdotal	evidence	based	on	

University	of	Wisconsin-Madison	AV	experiences	provided	to	the	public	suggest	that	

experience	with	automated	vehicles	and	transport	in	general	tends	to	reduce	the	anxiety	of	

AV	transportation.		
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Figure	3		Trend	in	AAA	survey	results	(22)	

	

Will	people	ever	build	trust	in	AVs?	One	might	assume	that	the	answer	is	“yes”	when	

AV	technology	becomes	well	established	and	ubiquitous.	Nevertheless,	a	short-term	

answer	may	be	found	from	the	history	of	the	occurrence	and	reception	of	disruptive	

transportation	technologies.	When	bicycles	were	first	appearing	on	streets	in	the	U.S.	in	the	

1880s,	people	had	mixed	opinions,	with	some	people	viewing	it	as	a	dangerous	machine	

(23).	Not	long	into	the	1900s,	the	introduction	of	motor	vehicles	destabilized	the	U.S.	urban	

street	norm	again	(23).	Motor	vehicles	were	viewed	as	“juggernauts”,	“needless	and	

inherently	dangerous	machines”,	and	were	portrayed	by	the	media	then	(see	Figure	4)	as	a	

“machine	age	Moloch	to	which	motorists	sacrificed	generous	offerings	of	child	victims”	

(23).	More	than	a	century	has	passed	since	the	first	chaos	brought	by	motor	vehicles	to	the	
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streets,	people	seem	to	have	well-accepted	the	co-existence	of	people	walking	and	bicycling	

with	motor	vehicles,	varying	in	type,	size,	and	the	fuel	burned.	Once	a	disruptive	

technology,	motor	vehicles	are	a	necessary	part	of	society	and	the	primary	variable	in	new	

land	development.	In	2018,	there	were	269,424,328	registered	motor	vehicles	in	the	U.S.,	in	

which	111,242,132	were	automobiles	(private	or	commercial),	with	about	338	automobiles	

per	1,000	people	(24).	According	to	National	Household	Travel	Survey,	the	average	number	

of	motor	vehicles	owned	per	U.S.	household	has	grown	significantly,	from	1.16	(1969),	to	

1.77	(1990),	to	1.89	(2001),	and	to	2.27	(2017)	(25,	26).	

	
Figure	4		Cartoon	by	Saint	Louis	Star	(November	6,	1923,	p.	14)	(23)	

	

Data	showing	trends	in	vehicle	crash	fatalities,	as	plotted	in	Figure	5,	offers	insights	

into	the	safety	record	of	motor	vehicles.	The	fatalities	per	capita	(million	people)	measure	
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shows	the	significant	impact	and	cost	to	public	safety	and	health	brought	by	motor	

vehicles,	and	the	fatalities	per	billion	vehicle-miles-traveled	(VMT)	shows	the	safety	effects	

of	motor	vehicles	on	a	usage	basis.	Fatalities	per	capita	trended	higher	in	the	1920s,	the	

dawn	of	motor	vehicle	transportation	in	the	U.S.,	and	peaked	in	the	1930s.	World	War	II	

brought	the	number	down,	which	picked	up	an	immediate	increase	after	the	war	and	

reached	another	peak	in	the	1960s	and	1970s.	Since	the	1970s	energy	crisis,	fatalities	per	

capita	has	generally	trended	down.	Fatalities	per	VMT,	however,	since	the	beginning	of	the	

motor	vehicle	age,	has	decreased	steadily.	Automobiles	did	not	start	with	a	well-accepted	

safety	record,	which	raised	great	social	concerns.	However,	with	the	advancement	of	

vehicle	and	traffic	safety	technologies,	as	well	as	enhanced	understanding	and	education	of	

traffic	safety,	motor	vehicles	started	receiving	more	social	acceptance.	That	does	not	mean	

that	motor	vehicles	have	reached	a	satisfactory	safety	record.	There	were	still	36,560	

people	killed	from	motor	vehicle	crashes	on	U.S.	roads	in	2018	(27).	According	to	the	

Centers	for	Disease	Control	and	Prevention	(CDC)	data,	in	the	same	2018,	655,381	deaths	

in	the	U.S.	were	attributed	to	heart	disease,	599,274	deaths	to	cancer,	159,486	deaths	to	

chronic	lower	respiratory	diseases,	147,810	deaths	to	stroke,	and	122,019	deaths	to	

Alzheimer’s	disease	(28,	29).	Motor	vehicle	traveling	is	one	of	the	leading	causes	of	death	in	

the	U.S.,	especially	for	younger	age	groups	(27,	30).	Yet	few	people	think	about	concern	for	

their	safety	when	getting	into	their	vehicles	each	day.	
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Figure	5		Trends	in	annual	U.S.	motor	vehicle	fatalities	(1921–2017)	(31)	

	

It	is	fully	expected	that	AV	technology	will	lead	to	a	significant	reduction	in	the	

number	of	transportation-related	fatalities	each	year.	However,	this	belief	is	not	

universally	accepted.	Potentially,	AVs	will	be	part	of	a	solution	to	bring	the	traffic	fatality	

number	down,	but	it	is	necessary	to	make	sure	these	new	technologies	operate	the	way	as	

we	expected,	including	but	not	limited	to	following	traffic	rules,	cooperating	with	

surrounding	road	users,	and	properly	reacting	to	emergency	situations.	Automobiles	took	a	

long	time	and	too	many	lives	to	be	finally	accepted,	but	still	pose	safety	risks	to	the	public	

today.	AVs	should	not	go	on	the	old	path	of	the	1920s’	automobiles,	they	should	be	proved	

safe	before	being	deployed	to	accomplish	their	goal	of	making	transportation	safer	and	

more	efficient.	
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2.1.2	Safe	Automation	

For	a	considerably	long	period	of	time,	AVs	will	share	the	existing	infrastructure	and	

follow	the	same	traffic	rules	with	human-driven	vehicles	(HDVs)	(1,	32,	33).	It	is	impossible	

to	predict	how	long	such	a	period	will	be,	but	data	may	give	us	some	idea.	According	to	data	

from	the	Bureau	of	Transportation	Statistics,	the	average	age	of	cars	and	light	trucks	on	U.S.	

roads	was	11.8	years	in	2019	(34).	Typically,	people	in	the	U.S.	do	not	replace	their	vehicles	

frequently	(35).	Not	to	say	that	there	is	yet	any	certified	fully	automated	vehicle	rolling	out	

of	an	assembly	line	for	customers	to	purchase.	Also,	there	will	be	people	that	would	like	to	

stick	with	conventional	vehicles.	Passenger	vehicles	with	automatic	transmissions	were	

firstly	being	sold	in	the	1930s,	but	till	now	vehicles	with	manual	transmissions	are	still	

being	sold	(35,	36).	The	presumably	long	co-existence	of	AVs	and	HDVs	is	also	implied	by	

the	fact	that	AVs	currently	being	tested	(e.g.,	Waymo	deployments)	were	designed	to	drive	

on	existing	roadways,	recognize	existing	traffic	control	devices,	and	even	mimic	human	

driving	behaviors	(37,	38).	Although	AVs	are	expected	to	reduce	some	errors	and	overcome	

some	difficulties	in	driving	tasks	by	minimizing	the	involvement	of	human	factors,	with	a	

mixture	of	AVs	and	HDVs,	AVs	will	still	face	most	safety	challenges	that	human	drivers	are	

facing	now	on	our	roadways.	In	addition	to	that,	AVs	may	encounter	even	more	various	

challenges	which	have	not	been	encountered	by	human	drivers,	due	to	uncertainties	in	

AVs’	automated	driving	systems	(ADS)	and	AVs’	unique	driving	styles.	Uncertainties	in	

complex	automated	systems	come	with	possible	hardware	failures,	software	bugs,	

algorithmic	errors,	or	cyber-safety	issues.	Efforts	could	be	put	into	minimizing	each	

uncertainty,	but	no	system	is	100%	bullet-proof.	AVs’	unique	driving	styles	include	overly	

paranoid	reactions	(e.g.,	hesitation	when	making	turns	or	merging	into	traffic,	sudden	
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acceleration	or	braking)	and	incapability	of	socially	communicate	with	other	road	users	

(33,	39–42).	AVs’	unique	driving	styles	may	not	be	a	significant	issue	when	all	vehicles	are	

automated	and	all	road	users	are	connected	in	our	transportation	system,	but	before	such	a	

system	is	in	place,	AVs’	overly	paranoid	and	uncooperative	driving	styles	may	lead	to	

violations	of	other	road	users’	expectancy,	which	potentially	increase	safety	risks.	

What	does	AVs’	safety	record	look	like	now?	Although	there	is	not	a	wide	

deployment	of	any	AVs	on	public	roads,	field	tests	are	being	carried	out.	In	California,	

crashes	happened	to	AVs	being	tested	on	public	roads	have	been	reported	to	the	state	

Department	of	Motor	Vehicles	(DMV)	since	2014	(43).	AVs	tested	in	California	are	or	aimed	

at	SAE	driving	automation	Levels	3	and	4.	As	of	November	3,	2020,	274	AV	crashes	have	

been	reported	to	California	DMV	(44).	Earlier	comparisons	between	crash	records	of	AVs	

from	California	and	those	of	HDVs	from	national	crash	databases	showed	that	it	is	still	

difficult	to	tell	if	AVs	performed	better	than	conventional	vehicles	(45–47).	One	study	by	

Banerjee	et	al.	did	claim	that	current	AVs	are	15	to	4,000	times	worse	than	human	drivers	

in	safety	performance	measured	by	crashes	per	cumulative	mile	driven	(48).	All	California	

AV	crashes	during	testing	have	caused	property	damage	only	or	minor	injuries	with	no	

fatal	crashes	reported.	Nationwide,	there	have	been	4	reported	fatal	crashes	in	the	U.S.	led	

by	motor	vehicles	with	different	levels	of	driving	automation	in	or	before	November	2020.	

Three	fatal	crashes	occurred	with	Tesla	vehicles	on	“Autopilot”	(a	Level	2	automation	

feature)	during	customer	use,	with	drivers	killed.	One	fatal	crash	occurred	with	an	Uber	

vehicle	(with	Level	3	automation)	in	automatic	driving	mode	during	testing,	killing	a	

pedestrian.	The	three	Tesla	crashes	and	one	Uber	crash	were	investigated	by	the	National	

Transportation	Safety	Board	(NTSB)	(49–52).	Investigations	concluded	that	the	Tesla	and	
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Uber	crashes	were	all	primarily	caused	by	some	vehicle	control	system	functioning	or	

design	issues.	In	other	words,	some	part	of	the	vehicle’s	operating	system	failed.	More	

needs	to	be	done	to	prove	the	safety	of	AVs	as	they	are	being	developed.	

What	does	“safe”	mean	for	AVs?	Carnegie	Mellon	University	AV	safety	expert,	

Koopman,	gives	the	following	definition	(9):	

“Safe”	means	at	least	correctly	implementing	vehicle-level	behaviors	such	as	obeying	

traffic	laws	(which	can	vary	depending	upon	location)	and	dealing	with	non-routine	

road	hazards	such	as	downed	power	lines	and	flooding.	But	it	also	means	things	such	

as	fail-over	mission	planning,	finding	a	way	to	validate	inductive-based	learning	

strategies,	providing	resilience	in	the	face	of	likely	gaps	in	early-deployed	system	

requirements,	and	having	an	appropriate	safety	certification	strategy	to	demonstrate	

that	a	sufficient	level	of	safety	has	actually	been	achieved.	

Testing	is	an	essential	part	of	the	interdisciplinary	efforts	to	ensure	AV	safety	(9).	

Private	and	public	organizations	are	testing	their	AVs	extensively	on	both	closed	courses	

and	public	roads	(53,	54).	In	2019,	more	than	1,400	automated	vehicles	were	tested	by	

more	than	80	companies	across	36	U.S.	states	and	Washington,	D.C.	(55).	

Field	testing	of	AVs	is	a	time-consuming	process.	Currently,	there	is	no	government	

requirements	on	how	many	miles	AVs	should	be	tested	on	road	to	prove	their	safety.	The	

National	Highway	Traffic	Safety	Administration	(NHTSA)	issues	Federal	Motor	Vehicle	

Safety	Standards	(FMVSS)	for	conventional	vehicle	safety	regulation,	but	the	standards	do	

not	cover	much	about	advanced	driver-assistance	systems	or	automated	driving	systems,	

nor	do	the	standards	mention	requirements	about	miles	for	conventional	or	automated	
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vehicle	safety	testing	(56,	57).	A	RAND	Corporation	study	estimated	that	with	only	field	

tests,	AVs	need	to	drive	hundreds	of	millions	of	miles	to	ensure	desirable	safety	

performance,	and	extra	millions	of	miles	to	verify	changes	in	performance	as	the	vehicles	

are	improved	over	time	(58).	A	significant	amount	of	time	is	needed	to	design	and	prepare	

AV	field	tests.	Also,	AVs	need	to	be	tested	under	a	variety	of	scenarios	to	ensure	their	

capability	in	handling	different	situations.	To	speed	up	the	AV	evaluation	process,	

simulation-based	testing	is	also	performed,	and	is	regarded	as	essential	as	field	testing.	

Waymo	has	run	their	AVs	for	10	billion	miles	in	simulation	to	train	their	vehicles,	in	

complement	to	field	tests,	which,	on	the	other	hand,	help	improve	their	simulation	

scenarios	(59).	In	Europe,	projects	such	as	PEGASUS	(Germany)	and	HumanDrive	(UK)	are	

developing	simulation-based	AV	safety	evaluation	frameworks	(60,	61).	

For	simulation-based	AV	safety	evaluation,	defining	test	scenarios	is	important	and	

challenging.	Simulation	scenarios	need	to	provide	a	reliable	estimate	of	real-life	

performance	(12).	Test	scenario	design	needs	to	be	supported	by	a	good	understanding	of	

traffic	crashes.	Crashes	are	complex,	with	certain	unique	features	in	each	case,	but	it	is	not	

possible	to	use	each	individual	case	as	a	scenario	for	AV	testing.	Similar	with	developing	a	

set	of	standardized	test	problems	to	examine	students’	academic	capability,	a	set	of	

representative	test	scenarios	must	be	designed	for	AV	safety	evaluation.	Previous	studies	

have	attempted	to	develop	test	scenarios	for	simulation-based	AV	safety	evaluation,	

through	clustering	historical	human-driven	vehicle	crash	data	and	finding	representative	

cases	(11–13,	62,	63).	For	example,	Nitsche	et	al.	developed	pre-crash	scenarios	for	testing	

ADS	in	intersection	environments,	by	clustering	historical	crash	data	from	a	U.K.	database,	

based	on	crash	attributes	(11).	Sander	and	Lubbe	also	examined	the	potential	of	using	
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clustering	methods	in	defining	intersection	test	scenarios	for	automated	emergency	

braking	(AEB)	system,	using	historical	crash	data	from	a	German	database	(12).	Sui	et	al.	

developed	pre-crash	scenarios	for	vehicle	AEB	testing,	applying	the	same	methods	used	by	

Sander	and	Lubbe,	on	a	Chinese	data	set	of	car-to-two-wheeler	crashes	(13).	Clustering	was	

proved	to	be	a	suitable	method	for	developing	representative	pre-crash	scenarios,	but	

scenarios	developed	from	previous	studies	are	far	from	comprehensive	and	detailed.	Crash	

dynamic	information,	as	pointed	out	by	Sander	and	Lubbe,	can	potentially	improve	

representative	scenarios	developed	using	historical	crash	data	(12).	

2.2	Crash	Sequences	and	Scenarios	

Interdisciplinary	efforts	have	been	implemented	in	defining	test	scenarios	for	AV	

safety	evaluation.	Many	of	these	efforts	agreed	that	scenario-based	tests	are	essential	for	

AV	safety	evaluation.	AV	testing	frameworks	proposed	by	programs	such	as	PEGASUS	and	

HumanDrive	have	included	scenario-based	testing	modules	(60,	61).	Defining	a	set	of	

representative	test	scenarios	needs	a	strong	support	from	a	comprehensive	understanding	

of	historical	traffic	crashes,	which	not	only	includes	static	crash	features,	but	also	dynamic	

features	and	causations.	

2.2.1	Crash	Sequences	

Sequence	of	Events	

An	example	of	a	crash	sequence	of	events	from	the	National	Highway	Traffic	Safety	

Administration	(NHTSA)	Fatality	Analysis	Reporting	System	(FARS)	database	is	as	follows:	
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2017 Crash #390629 
Encoded sequence:  [v1/64]-[v1/59]-[v1/69]-[v1/12]-[v2/63]-[v2/59] 
Short description:  [v1 ran off road – left]-[v1 hit traffic sign]-[v1 re-entering highway] 

-[v1 in transport]-[v2 ran off road – right]-[v2 hit traffic sign] 

	

It	describes	a	crash	case	involving	two	vehicles.	One	vehicle	(v1)	run	off	road	from	the	left	

side	(crossed	median),	hit	a	traffic	sign,	and	re-entered	the	roadway	to	continue	driving.	

The	other	vehicle	(v2)	ran	off	road	from	the	right	side	and	hit	a	traffic	sign.	Compared	with	

crash	contributing	factors,	crash	sequence	of	events	presents	a	more	complete	picture	of	a	

crash	with	additional	temporal	and	spatial	information.	Compared	with	surrogate	safety	

measures	(e.g.,	from	vehicle	video	or	sensor	records),	crash	sequence	of	events	describes	

crash	dynamics	in	a	more	natural	and	concise	manner.	

The	concepts	and	analytical	methods	of	sequence	have	been	developed	and	applied	

in	fields	such	as	bioinformatics	and	sociology,	with	the	sequence	of	events	concepts	and	

analyses	especially	widely	applied	in	sociology	(64–69).	In	sociology,	sequences	of	events	

are	used	to	study	the	effects	of	change	and	development	in	people’s	lifetime	on	the	societal	

outcomes	(64).	In	social	sequence	analysis,	two	structural	assumptions	about	sequence	are	

applied	(64):	

• Certain	social	elements	are	stochastically	related	to	each	other,	such	that	they	

appear	in	similar	positions	vis-à-vis	each	other,	even	across	unrelated	actors.	

• Even	though	different	actors	may	experience	social	elements	in	a	different	order,	

similar	types	of	sequence	patterns	emerge.	

Similar	assumptions	are	applicable	to	traffic	crash	sequence	of	events,	but	maybe	more	

limited	than	social	sequence,	which	has	wider	possible	outcome	than	crash	sequences.	For	
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crash	sequence	of	events,	the	order	of	events	(actions)	may	weigh	heavier	in	defining	the	

outcome,	compared	with	social	sequence.	In	this	research,	the	assumptions	for	crash	

sequence	of	events	are:	

• Certain	pre-crash	events	(actions)	are	stochastically	related	to	each	other,	such	

that	they	appear	in	similar	positions	vis-à-vis	each	other,	even	across	unrelated	

actors.	

• Similar	types	of	sequence	patterns	emerge	from	different	actors’	experience	of	

traffic	crashes,	although	differences	between	specific	sequences	exist.	

The	importance	of	finding	causes	to	crashes	through	investigating	the	progression	

of	crash	events	has	been	long	advocated	by	traffic	safety	researchers	(70–75).	The	1979	

Tri-Level	Study	of	the	Causes	of	Traffic	Accidents	found	that	50%	of	the	2,000	crashes	

studied	were	caused	by	more	than	one	factor	(76).	Sequence	of	events	is	important	

information	for	traffic	crash	investigation.	However,	there	are	few	studies	applying	

sequence	analysis	methods	on	traffic	crashes,	partially	due	to	the	insufficiency	in	crash	

sequence	of	events	data,	and	partially	due	to	traffic	safety	researchers’	unfamiliarity	with	

sequence	analysis	methods.	In	2011,	the	National	Transportation	Safety	Board	(NTSB)	

recommended	that	sequence	of	events	to	be	included	in	national	crash	databases	(77).	

Since	then,	with	several	updates,	more	crash	sequence	of	events	data	was	included	in	the	

NHTSA	crash	databases.	However,	at	state,	regional,	or	municipal-level	crash	databases,	

crash	sequence	of	events	data	is	not	widely	available	yet.	

Analysis	of	crash	sequences	can	be	used	to	develop	sophisticated	characterization	of	

crashes.	Such	a	crash	characterization	considers	dynamics	in	crashes,	rather	than	
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categorizing	crashes	into	broad	groups	(e.g.,	head-on,	rear-end,	sideswipe,	angle,	and	hit	

fixed-object)	through	conventional	crash	characterization	(15).	Complicated	crash	

causations	can	also	be	disentangled	through	investigation	of	crash	sequence	of	events,	

which	is	also	helpful	in	identifying	effective	prevention	strategies	(70).	

Prior	studies	putting	an	emphasis	on	crash	sequence	of	events	analysis	were	mostly	

carried	out	by	Kun-Feng	Wu	and	colleagues	(15,	70,	78–80).	Before	Wu,	Krull	et	al.	

published	a	study	in	2000,	investigating	the	effects	of	rollovers	and	events	sequence	on	

single	vehicle	crash	injury	(81).	Krull	et	al.	used	a	brief	description	to	summarize	the	

sequence	of	rollover	and	another	(preceding	or	succussing)	hit	object	event.	Wu	started	

their	crash	sequence	of	events	research	with	screening	naturalistic	driving	study	(NDS)	

video	and	vehicle	kinematic	data	(70,	78,	79).	Crashes	and	near	crashes	were	identified	for	

precursor	event	analysis.	In	a	2016	study,	Wu	et	al.	used	sequence	analysis	methods,	

including	optimal	matching	and	clustering,	on	FARS	data	to	group	similar	crashes	and	

model	crash	severity	outcomes	(15).	In	a	2018	study,	Wu	et	al.	identified	groups	of	

motorcycle	crashes	with	high	crash	risks,	based	on	harmful	event,	crash	type,	and	crash	

sequence	of	events	data	from	the	National	Automotive	Sampling	System	–	General	

Estimates	System	(NASS-GES)	and	FARS	databases	(80).	These	previous	studies	proved	

that	crashes	can	be	grouped	based	on	their	similarities	in	sequence	of	events,	and	that	

different	groups	of	sequences	did	lead	to	significant	differences	in	crash	outcomes.	

Causations	

Causations	in	traffic	crashes	(or	“accidents”	as	a	preferred	term	in	other	disciplines)	

have	long	been	pursued	by	safety	researchers,	with	multiple	causation	theories	developed	

since	the	1940s	(73–75,	82).	These	theories	of	causations	are	not	limited	to	traffic	crashes.	
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As	traffic	crashes	and	other	fields’	accidents	(e.g.,	industrial,	chemical,	or	nuclear	

engineering)	have	similarities,	some	theories	are	also	applicable	to	traffic	crashes.	Major	

theories	of	accident	causation	include	(83,	84):	

• The	Domino	Theory	Developed	by	H.W.	Heinrich	

• Human	Factors	Theory	

• Accident/Incident	Theory	

• Epidemiological	Theory	

• Systems	Theory	

• The	Energy	Release	Theory	by	Dr.	William	Haddon,	Jr.	

• Behavior	Theory	

Accident	causation	theories	developed	from	attribution	to	mechanical	and	structural	

failures	in	the	first	technological	age;	to	human	behaviors	and	errors	in	the	second	age;	to	a	

socio-technical	systemic	view	in	the	third	age;	to	a	recognition	of	organizational	and	

cultural	factors	in	the	fourth	age,	and	to	the	fifth	age’s	focus	on	complexity	and	uncertainty,	

aiming	at	create	safety	well	before	the	occurrence	of	failures	and	harms	(85).	

Sequence	of	events	has	been	used	to	study	traffic	crash	causations	since	as	early	as	

the	1970s	(86).	Snyder	and	Knoblauch	set	up	a	framework	of	behavioral	sequence	to	model	

the	progression	of	actions	in	motor	vehicle-pedestrian	crashes,	as	shown	in	Figure	6	(87).	

The	model	has	two	main	components:		

• The	function/event	sequence:	search,	detection,	evaluation,	decision,	and	action.	

• The	influencing/predisposing	factors:	driver,	pedestrian,	vehicle,	and	

environmental	factors.	
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Figure	6		Generalized	function/event	sequence	(87)	

	

To	understand	crash	causations	with	the	Snyder	and	Knoblauch	model,	the	

mechanism	and	magnitude	effects	of	influencing/predisposing	factors	on	the	

function/events	need	to	be	understood	(87).	Crash	reports	were	reviewed	in	Snyder	and	

Knoblauch’s	study.	Combinations	of	factors	were	identified,	with	their	frequencies	

calculated.	Several	causal	patterns	of	motor	vehicle-pedestrian	crashes	were	then	

summarized	and	illustrated	using	a	flowchart-type	visualization,	as	shown	in	Figure	7.	
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Figure	7		Illustration	of	causal	pattern	“dart-out	first	half”	(87)	

	

Cross	and	Fisher	also	pointed	out	that	crashes	are	caused	by	multiple	factors	and	

events.	With	that	assumption,	a	conceptual	model	as	shown	in	Figure	8	was	proposed	(88).	

Three	types	of	factors:	operator,	vehicle,	and	environmental	factors	are	considered	

potential	causal	factors.	Combinations	of	factors	lead	to	some	function	failures,	and	with	

critical	actions,	affecting	the	terminal	event.		

In	addition	to	proposing	a	framework	to	model	crash	causations,	Cross	and	Fisher	

also	suggested	that	a	structured	representation	of	crash	causations	should	be	developed	

and	used	as	a	basis	for	crash	classification	(88).	Rather	than	using	arbitrarily	chosen	
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descriptive	variables,	a	way	that	can	capture	similarities	in	crash-generation	process	

should	be	applied	to	classify	crashes	(88).	Cross	and	Fisher	reviewed	crashes	reports	of	

motor	vehicle-bicycle	crashes,	and	carried	out	interviews	of	motor	vehicle	operators	and	

bicyclists.	Motor	vehicle-bicycle	crashes	were	classified	into	6	classes	including	a	total	of	36	

mutually	exclusive	types.	Each	type	of	crashes	has	subtypes,	with	frequencies	calculated,	

and	illustrated	as	an	example	shown	in	Figure	9.	

	

Figure	8		Conceptual	model	of	the	crash	generation	process	(88)	
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Figure	9		Illustration	of	a	type	of	motor	vehicle-bicycle	crash,	“bicycle	rideout	–	

intersection	controlled	by	sign”	(88)	

	

More	crash	sequence	of	events	data	is	becoming	available	from	police-report-based	

crash	databases	and	multi-media	and	sensor	data	sources	such	as	naturalistic	driving	

studies	(NDS)	databases.	With	abundant	data,	more	in-depth	quantitative	crash	causal	

analysis	can	be	done.	Davis	pointed	out	the	necessity	of	crash	causal	analysis	in	making	

engineering	decisions,	and	discussed	forensic	inference,	statistical	and	Bayesian	

probabilistic	methods	for	crash	causal	analysis,	with	possible	support	from	simulation	(89,	

90).	Davis	et	al.	later	developed	a	framework	for	modeling	causations	in	traffic	conflicts	and	

crashes	(91).	However,	from	a	theoretical	framework	to	a	practical	application	requires	a	
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further	understanding	of	the	mechanism	in	evasive	actions’	progression	transferring	to	

conflicts,	and	the	probability	of	certain	conflicts	can	transfer	into	crashes	with	different	

severity	levels(91).		

2.2.2	Scenarios	for	Automated	Vehicle	Testing	

Definition	

Ulbrich	et	al.	provided	definitions	for	the	terms	of	“scene”,	“situation”,	and	

“scenario”,	in	the	context	of	automated	driving	(10).	The	definitions	are	as	follows:	

• Scene:	A	scene	describes	a	snapshot	of	the	environment	including	the	scenery	and	

dynamic	elements,	as	well	as	all	actors’	and	observers’	self-representations,	and	the	

relationships	among	those	entities.	Only	a	scene	representation	in	a	simulated	

world	can	be	all-encompassing	(objective	scene,	ground	truth).	In	the	real	world	it	

is	incomplete,	incorrect,	uncertain,	and	from	one	or	several	observers’	points	of	

view	(subjective	scene).	

• Situation:	A	situation	is	the	entirety	of	circumstances,	which	are	to	be	considered	

for	the	selection	of	an	appropriate	behavior	pattern	at	a	particular	point	of	time.	It	

entails	all	relevant	conditions,	options	and	determinants	for	behavior.	A	situation	

is	derived	from	the	scene	by	an	information	selection	and	augmentation	process	

based	on	transient	(e.g.	mission-specific)	as	well	as	permanent	goals	and	values.	

Hence,	a	situation	is	always	subjective	by	representing	an	element’s	point	of	view.	

• Scenario:	A	scenario	describes	the	temporal	development	between	several	scenes	in	

a	sequence	of	scenes.	Every	scenario	starts	with	an	initial	scene.	Actions	&	events	as	
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well	as	goals	&	values	may	be	specified	to	characterize	this	temporal	development	

in	a	scenario.	Other	than	a	scene,	a	scenario	spans	a	certain	amount	of	time.	

Traffic	crash	sequence	of	events	describes	the	order	of	actions	in	time,	thus	fits	into	the	

definition	of	scenario.	

Frameworks	

The	PEGASUS	project	defines	three	levels	of	AV	test	scenarios	corresponding	to	

three	phases	of	the	ISO	26262	standard	“Road	Vehicles	–	Functional	Safety”	(92).	As	shown	

in	Figure	10,	for	the	concept	phase,	functional	(descriptive)	scenarios	are	needed;	for	the	

system	development	phase,	logical	scenarios	are	needed;	and	for	the	test	phase,	concrete	

scenarios	should	be	defined.	Traffic	crash	sequence	of	events	fits	into	all	three	stages	of	

scenario	design,	depending	on	the	granularity	of	event	data.	As	the	data	sources	for	crash	

sequence	of	events	in	this	research	will	be	historical	crash	databases	and	reports,	analyses	

done	in	this	research	will	support	the	development	of	descriptive	scenarios.	Logical	and	

concrete	scenarios	should	be	derived	from	descriptive	scenarios,	but	would	require	

granular	vehicle	video,	GPS,	and	sensor	data,	from	sources	such	as	NDS.	Menzel	et	al.	gave	

an	example	of	three	levels	of	scenarios	of	a	car	following	a	truck,	as	shown	in	Figure	11.	
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Figure	10		Levels	of	scenarios	(92)	

	

	
Figure	11		Example	of	three	levels	of	scenarios	(92)	

	

To	categorize	the	variables	needed	for	scenario	development,	PEGASUS	proposed	a	

layered	model,	as	shown	in	Figure	12.	The	original	layered	model	consists	of	5	layers,	

including	road	geometry,	road	furniture	and	rules,	temporal	modifications	and	events,	
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moving	objects,	and	environmental	conditions.	A	6th	layer,	digital	information,	was	later	

added	to	the	PEGASUS	layered	model,	to	capture	the	connectivity	features	of	future	

transportation	systems	(93).	There	are	also	other	types	of	layered	model	describing	the	

hierarchy	of	variables	for	scenario	design.	An	example	is	a	model	used	by	Xia	et	al.,	which	

had	3	layers	of	“influence	factors”	(94).	Influence	factors	were	first	categorized	as	

environmental,	road,	traffic,	and	vehicle	dynamics.	Further,	the	environmental	factors	were	

categorized	into	weather,	time,	and	light	change.	Under	the	weather	factor,	detailed	

measures	of	weather	type	and	extent	were	included.	

	

Figure	12		Layered	model	of	variables	describing	an	AV	test	scenario	(93)	

	

NHTSA	proposed	a	framework	for	ADS	testable	scenarios	(95).	However,	based	on	

Ulbrich’s	definition	of	“scene”,	“situation”,	and	“scenario”,	the	NHTSA	framework	is	more	
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focused	on	the	capabilities	of	ADS	to	handle	“situations”	rather	than	“scenarios”	(10).	The	

NHTSA	framework	of	testable	scenarios	consists	of	four	components:	

• Tactical	maneuver	behaviors	

• ODD	elements	

• OEDR	capabilities	

• Failure	mode	behaviors	

An	example	of	such	a	scenario	was	provided	by	NHTSA,	as	shown	in	Table	3.	This	

framework	was	built	on	the	assumption	that,	given	a	situation,	an	AV	knows	which	tactical	

maneuver	to	take	to	appropriately	handle	the	situation.	A	test	would	then	be	focused	on	

examining	whether	the	AV	can	efficiently	carry	out	the	maneuver	under	such	a	situation.	

Table	3		Example	of	an	NHTSA	ADS	scenario	descriptor	(95)	

	

	

Descriptive	Scenarios	

To	identify	descriptive	(or	semantic-level)	scenarios	for	evaluation	of	AV	or	driving	

assistance	systems,	previous	studies	have	been	applying	various	categorization	methods	to	
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crash	databases.	An	effort	to	develop	a	library	of	descriptive	crash	scenarios	was	a	crash	

typology	developed	by	the	NHTSA	in	2007,	for	crash	avoidance	research	(14).	The	NHTSA	

pre-crash	scenarios	typology	was	developed	using	the	2004	NASS-GES	data.	Thirty-seven	

pre-crash	scenarios	were	developed	to	form	the	typology,	through	reviewing	the	GES	

variables	and	codes,	summarizing	frequencies,	and	estimating	crash	costs.	The	2007	

NHTSA	pre-crash	scenarios	typology	provides	a	highly	abstract	set	of	functional	scenarios,	

which	describes	the	major	events,	contributing	factors,	and	limited	information	about	

traffic	control/facility	type,	prior	to	the	occurrence	of	crashes	involving	at	least	one	light	

vehicle.	Based	on	crash	frequency,	economic	cost,	and	functional	years	loss	measures,	the	

top	scenarios	were	defined	as:	

• Control	loss	without	prior	vehicle	action	

• Lead	vehicle	stopped	

• Road	edge	departure	without	prior	vehicle	maneuver	

• Vehicle(s)	turning	at	non-signalized	junctions	

• Straight	crossing	paths	at	non-signalized	junctions	

• Lead	vehicle	decelerating	

• Vehicles(s)	not	making	a	maneuver	–	opposite	direction	

The	NHTSA	pre-crash	scenario	topology	was	updated	and	applied	in	later	NHTSA	research	

on	crash	avoidance	systems	and	safety	applications	based	on	vehicle-to-vehicle	

communications	(96–98).	Except	for	the	NHTSA	NASS-GES,	other	national	crash	databases	

such	as	the	Crashworthiness	Data	System	(CDS),	FARS,	and	National	Motor	Vehicle	Crash	

Causation	Survey	(NMVCCS)	have	been	used	to	obtain	historical	crash	data	to	develop	
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scenarios	of	specific	crash	types	(e.g.,	lane	departure,	opposite-direction	road	departure,	

pedestrian,	and	cyclist)	for	field	or	simulation-based	testing	of	corresponding	crash-

avoidance	systems	(99–104).	

A	few	recent	studies	applied	clustering	techniques	on	historical	crash	data	to	

develop	crash	scenarios	for	the	testing	of	vehicle	technologies	such	as	automatic	

emergency	braking	(AEB)	systems	(11–13,	62,	63).	Conventional	approaches	to	obtain	

scenarios	for	vehicle	safety	testing,	such	as	the	NHTSA	2007	pre-crash	scenario	approach,	

is	to	classify	crashes	into	homogeneous	groups,	usually	by	summarizing	crash	frequencies	

based	on	individual	variables	such	as	contributing	factors,	pre-crash	conditions,	and	

manner	of	collision	(e.g.,	rear-end,	sideswipe).	The	most	frequent	crash	groups	were	then	

selected	as	representative	scenarios.	However,	real-life	vehicle	safety	performance	is	

usually	overlooked	when	using	scenarios	developed	using	such	a	method,	which	ignores	

crash	dynamics,	progression,	and	causations	(12).	Crash	reports	and	databases	provide	

rich	information	of	crash	dynamics,	progression,	and	causation,	which	can	be	extracted	

using	advanced	data	mining	methods.	

Lenard	et	al.	used	clustering	to	identify	typical	pedestrian	crash	scenarios	for	the	

testing	of	AEB	systems,	with	data	of	9,360	motor	vehicle	–	pedestrian	crashes	from	the	UK’s	

“On-The-Spot”	(OTS)	project	database	(62).	Crashes	clustered	into	22	groups	as	

representative	scenarios.	Nitsche	et	al.	developed	pre-crash	scenarios	for	road	

intersections,	with	a	data	set	of	1,056	HDV	intersection	crashes	from	the	OTS	database	

(11).	Thirteen	clusters	were	found	for	three-legged	intersections,	and	six	clusters	were	

found	for	four-legged	intersections.	Sander	and	Lubbe	also	used	clustering	to	find	

representative	intersection	pre-crash	scenarios	for	AEB	testing,	and	evaluated	the	
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performance	of	clustering-identified	scenarios	in	terms	of	predicting	the	AEB	effectiveness,	

compared	with	that	of	randomly-sampled	crash	cases	(12).	Sander	and	Lubbe	concluded	

that	the	clustering-identified	scenarios	may	not	appropriately	represent	intersection	

crashes,	which	are	highly	diverse	due	to	variation	in	features	such	as	vehicle	kinematics.	In	

a	later	collaborative	study	by	Sui	et	al.,	Sander’s	methodology	was	applied	again	to	develop	

car-to-two-wheeler	scenarios	for	AEB	testing,	but	with	kinematics	variables	added	(13).	

Although	the	kinematics	variables	only	provide	one	movement	state	of	the	vehicles	(e.g.,	go	

straight,	turn	left,	turn	right,	or	others)	and	a	first	contact	point	on	the	car.	

These	previous	studies	show	that	clustering	is	suitable	for	characterizing	historical	

HDV	crash	data	and	develop	descriptive	scenarios,	but	more	details	about	crash	dynamics,	

progression,	and	causations	are	needed	for	a	better	crash	characterization	that	reflect	

different	pre-crash	patterns	to	be	useful	in	guiding	the	setup	of	simulated	scenarios	for	AV	

testing.	A	prior	effort	made	by	Aust	attempted	to	define	crash	scenarios	based	on	detailed	

pre-crash	information	(105).	Aust	proposed	a	nested	model	consisting	of	a	macroscopic	

layer	of	pre-crash	scenarios	and	a	layer	of	driver	self-reported	crash	causation	data	(from	

questionnaire	surveys).	Nested	model	is	a	useful	tool	to	map	causations	to	crash	

characteristics,	but	driver	survey	data	tends	to	have	issues	in	validity	and	accuracy.	

Detailing	of	Scenarios	and	Implementation	in	Simulation	

With	a	well-defined	set	of	functional	scenarios,	to	develop	more	concrete	scenarios	

for	simulation-based	AV	testing,	NDS	and	Field	Operational	Tests	(FOTs)	are	essential	data	

sources.	A	number	of	previous	studies	have	carried	out	case	studies	to	identify	safety-

critical	events	and	scenarios	using	NDS	data	(106–108)	and	FOT	data	(109,	110).	Several	

studies	are	more	methodological,	focusing	on	approaches	to	mine	real-life	driving	data	to	
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obtain	scenarios	for	AV	testing	(111–113).	Some	studies	proposed	methods	for	selection	of	

logical	and	concrete	scenarios	based	on	criteria	such	as	criticality,	complexity,	or	some	

form	of	cost	(114–117).	For	implementation	of	developed	scenarios	in	simulation-based	

testing,	several	previous	studies	have	proposed	automatic	test	scenario	generation	

frameworks	(118–125).	These	proposed	frameworks	apply	techniques	such	as	stochastic	

sampling,	optimization,	and	neural	networks,	with	a	goal	to	generate	a	variety	of	scenarios	

that	are	challenging	for	AVs	(e.g.,	difficult	for	AVs’	motion	planning).	The	automatically	

generated	scenarios	are	vehicle-trajectory-based,	with	safety	performance	described	by	

surrogate	measures	such	as	time-to-collision	(TTC).	
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Chapter	3 A	Methodology	for	Traffic	Crash	Sequence	Analysis:	Impact	of	

Event	Encoding	and	Dissimilarity	Measures	

3.1	Introduction	

Characterization	of	traffic	crashes	has	been	emphasized	by	traffic	safety	researchers	

for	studying	crash	patterns	and	identifying	safety	countermeasures,	with	the	objectives	of	

mitigating	crash	injury	severity	and	ultimately	preventing	crashes	(15,	80,	126–128).	Early	

and	recent	studies	have	stressed	the	importance	of	considering	pre-crash	information	in	

crash	characterization	for	better	insights	about	crash	progression	and	causations	(15,	80,	

81,	86–88,	100,	101).	The	use	of	crash	sequence	data	has	been	proved	to	be	effective	in	

developing	a	crash	typology	that	reflects	the	progression	of	crashes	and	correlates	with	

crash	injury	severity	outcomes	(15,	80).	Crash	sequences	are	sets	of	chronologically	

ordered	pre-crash	and	crash	events,	which	are	usually	extracted	from	police	crash	reports	

and	are	available	in	United	States’	national-level	crash	databases	such	as	the	Crash	Report	

Sampling	System	(CRSS)	and	Fatality	Analysis	Reporting	System	(FARS)	of	the	National	

Highway	Traffic	Safety	Administration	(NHTSA).	

Large	sets	of	crash	sequences	can	be	analyzed	using	sequence	analysis	methods	

adapted	from	fields	such	as	bioinformatics	and	sociology	(15).	The	fundamental	task	of	

sequence-based	crash	characterization	is	to	compare	and	differentiate	sequences,	which	

involves	a	variety	of	measures	and	techniques.	In	biological	and	social	sciences,	sequence	

analysis	methods	have	been	developed,	studied,	and	applied	for	more	than	40	years	(64,	65,	

129,	130).	Domain	knowledge	is	needed	for	sequence	analysis	because	the	definition	and	

formation	of	sequences	are	domain-specific.	Adaptation	of	sequence	analysis	to	traffic	
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crash	study	is	still	very	recent,	so	there	are	no	existing	guidelines	for	processing	sequence	

data	or	analyzing	sequences.	

Sequence	analysis	follows	a	procedure	of	data	processing,	measuring	sequence	

dissimilarity,	and	clustering	(15,	64).	The	data	processing	step,	which	includes	

interpretation	of	source	information	and	encoding	of	sequences,	is	highly	dependent	on	

domain	knowledge.	However,	few	studies	have	discussed	techniques	of	transferring	crash	

report	information	into	sequences,	and	none	has	compared	different	sequence	encoding	

schemes	for	crash	sequence	analysis	(16).	The	core	of	sequence	analysis	is	measuring	

sequence	dissimilarity,	which	is	also	the	basis	of	sequence	clustering.	Various	sequence	

dissimilarity	measures	have	been	developed	for	application	in	biological,	computer,	and	

social	sciences	(64,	65,	130–133).	A	comparison	of	dissimilarity	measures	is	needed	to	

adapt	the	most	appropriate	ones	to	crash	sequence	analysis,	but	no	study	has	made	such	an	

effort	yet.	

The	objective	of	this	chapter	is	to	fill	the	gap	in	crash	sequence	analysis	by	

introducing	a	methodology	for	crash	sequence	analysis.	This	chapter	demonstrates	and	

compares	the	application	of	crash	sequence	analysis	for	various	use	cases	through	different	

sequence	encoding	schemes	and	dissimilarity	measures	with	a	case	study	using	data	from	

the	NHTSA	CRSS	database.	

The	rest	of	this	chapter	is	organized	as	follows.	A	literature	review	follows	this	

section	and	introduces	the	basics,	needs	and	the	few	prior	applications	of	sequence	

analysis	in	the	study	of	traffic	crashes.	The	techniques	of	crash	sequence	data	processing	

and	dissimilarity	measuring	are	then	introduced,	followed	by	a	case	study	of	single-vehicle	
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interstate	highway	crash	sequences.	The	case	study	demonstrates	how	different	sequence	

encoding	schemes	and	dissimilarities	were	compared	to	adapt	to	a	specific	crash	sequence	

data	set	and	multiple	use	cases.	The	chapter	is	concluded	with	summaries	of	key	findings,	

contributions,	limitations,	and	directions	for	future	work.	

3.2	Literature	Review	

The	importance	of	characterizing	crashes	through	investigating	the	progression	of	

crash	events	has	been	advocated	by	early	traffic	safety	researchers	(74,	87,	88).	For	the	

purpose	of	systematic	investigation	of	crash	loss-reduction	options,	Haddon	Jr.	proposed	a	

model	that	described	traffic	crashes	as	a	chronological	chain	of	precrash,	crash,	and	post-

crash	stages,	with	human,	vehicle,	and	environmental	factors	coded	into	each	stage	(74).	In	

Snyder	and	Knoblauch’s	study	on	motor	vehicle-pedestrian	crashes	and	in	Cross	and	

Fisher’s	study	on	motor	vehicle-bicycle	crashes,	sequences	of	crash	participants’	actions	

were	embedded	into	conceptual	models	describing	crash	generation	processes	(87,	88).	

Characterization	of	crashes	in	the	early	studies	were	completed	by	manually	summarizing	

crash	report	information,	which	was	not	capable	enough	to	analyze	long	and	complicated	

sequence	of	events.	

Sequence	analysis	methods	such	as	sequence	alignment	were	developed	and	

applied	for	purposes	such	as	protein	or	DNA	sequence	characterization,	codes	and	error	

control,	text	and	speech	processing,	and	the	study	of	social	phenomena	(65,	133).	Early	

foundations	of	sequence	comparison	methods	were	set	up	by	researchers	such	as	

Hamming	and	Levenshtein	who	proposed	measures	of	sequence	dissimilarity,	as	well	as	

Needleman	and	Wunsch	who	developed	the	Optimal	Matching	(OM)	algorithm	to	efficiently	
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find	sequence	dissimilarity	(129,	131,	132).	Promoted	by	Abbot	in	the	1980s,	sequence	

analysis	based	on	the	OM	methods	started	to	gain	popularity	in	the	sociology	field	(65,	66,	

68).	Ever	since,	variants	of	OM	and	new	sequence	analysis	methods	have	been	developed	to	

address	various	data	conditions	and	study	needs	(134–139).	Sequence	dissimilarity	

measures	have	been	compared,	using	real	or	simulated	data,	for	applications	in	biological	

and	social	science	research	(130,	140–143).	

Kun-feng	Wu	and	colleagues	were	the	first	to	apply	sequence	analysis	methods	in	

traffic	crash	study	(15,	80).	In	their	study	to	identify	the	relationship	between	crash	

sequences	and	crash	injury	outcomes,	Wu	et	al.	introduced	the	basics	of	sequence	analysis	

to	the	traffic	safety	community,	and	applied	OM	and	clustering	to	characterize	a	set	of	fatal	

single-vehicle	run-off-road	crash	sequences	from	the	NHTSA	FARS	database	(15).	The	

characterization	of	crash	sequences	was	validated	by	estimating	the	agreement	between	

the	sequence	clustering	results	and	a	benchmark	crash	typology	provided	by	FARS.	The	

sequence	clustering	results	were	then	used	as	a	variable	in	crash	injury	severity	estimation,	

which	showed	significant	correlations	between	sequence-derived	crash	types	and	crash	

injury	outcomes.	Wu	et	al.’s	study	confirmed	that	informative	and	meaningful	crash	

characterization	could	be	derived	from	crash	sequence	analysis,	and	safety	

countermeasures	could	be	identified	to	target	crashes	and	injuries	from	a	crash	sequence	

perspective.	In	another	study	by	Wu	et	al.,	built	a	risk	matrix	based	on	motorcycle	crash	

sequences	and	identified	sequences	leading	to	the	highest	injury	risks	(80).	

Sequence	analysis	methods	have	been	applied	to	study	patterns	in	automated	

vehicle	(AV)	crashes	(16).	Sequences	of	events	were	extracted	from	the	original	crash	

reports	and	were	encoded	using	self-developed	encoding	scheme	and	procedure.	
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Subsequence	frequencies	and	event	transition	rates	were	analyzed	to	explore	

subsequence-level	patterns.	OM	method	was	applied	to	characterize	the	AV	crash	

sequences	into	seven	types.	Based	on	the	associations	of	sequence	types	with	

environmental	conditions	and	crash	outcomes,	a	scenario-based	AV	safety	evaluation	

framework	was	proposed	to	embed	crash-sequence-derived	test	scenarios.	Through	

investigating	AV	crash	sequences,	a	preliminary	procedure	for	crash	sequence	analysis	was	

proposed.	However,	more	efforts	are	needed	to	develop	a	comprehensive	methodology	for	

crash	sequence	research.	As	Wu	et	al.	pointed	out,	further	investigations	are	needed	for	

crash	sequence	encoding,	dissimilarity	measuring	and	clustering	techniques,	which	is	the	

focus	of	this	chapter.	

3.3	Crash	Sequence	Analysis	Methodology	

A	methodology	of	crash	sequence	analysis	is	proposed	here.	The	methodology	

consists	of	three	steps	–	data	processing,	sequence	encoding,	and	sequence	comparison.	

Common	sources	of	crash	sequence	data	are	crash	databases	and	crash	reports.	Other	data	

sources	such	as	traffic	surveillance	videos	or	naturalistic	driving	study	(NDS)	data	also	

offer	granular	information	that	can	be	transferred	to	sequence	of	events	but	would	require	

the	help	from	techniques	such	as	video	processing.	This	chapter	focuses	on	developing	a	

methodology	for	text-based	crash	sequence	data	obtained	from	crash	databases	and	crash	

reports.	The	crash	sequence	analysis	methodology	is	illustrated	in	Figure	13	and	briefly	

described	as	follows.	A	detailed	demonstration	of	the	methodology	is	provided	in	Section	

3.7	Case	Study.	
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Figure	13		Procedure	of	crash	sequence	analysis	

	

Data	processing:	Depending	on	the	purpose	and	focus	of	an	analysis,	crash	

attributes	other	than	sequence	of	events	(e.g.,	time	of	day,	facility	type,	demographics	of	

persons	involved	in	crash)	are	used	as	criteria	for	subsetting	the	crash	data.	

Sequence	encoding:	Pre-crash	and	collision	events	are	extracted	from	crash	

reports	or	obtained	from	databases.	Events	are	encoded	into	simple	representations	based	

on	their	meanings.	Events	considered	similar	in	nature	can	be	consolidated	and	encoded	

with	the	same	representation.	For	example,	in	some	analysis,	“hitting	a	utility	pole”	and	

“hitting	a	tree”	can	both	be	classified	as	“hitting	a	fixed	object”	and	encoded	as	“HFO”.	

Depending	on	the	use	cases,	the	same	sequence	can	be	encoded	differently.	Events	are	

assembled	into	sequences	following	a	specific	order,	usually	chronologically.	

Sequence	comparison:	A	sequence	is	compared	with	all	the	other	sequences	in	the	

sequence	space	using	a	dissimilarity	measure.	There	are	multiple	ways	to	define	the	

dissimilarity	measure	and	the	different	measures	can	be	compared	to	select	the	optimal	

one	for	specific	analysis.		
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Sequence	clustering:	Sequences	are	characterized	through	clustering	based	on	

their	dissimilarities.	Clustering	techniques	such	as	hierarchical	and	k-medoids	clustering	

are	widely	used.	

3.4	Data	Processing	

To	demonstrate	the	crash	sequence	analysis	methodology,	the	2016-2018	NHTSA	

CRSS	data	were	used	in	this	chapter’s	research.	The	CRSS	is	a	United	States	national-level	

database	archiving	a	sample	of	police-reported	crashes	involving	all	types	of	road	users,	

with	all	levels	of	severity	(144).	Each	year,	the	CRSS	gathers	a	sample	of	about	50,000	

crashes,	representing	about	more	than	six	million	police-reported	crashes.	Each	sample	is	

assigned	a	weight	showing	how	many	crashes	are	represented	and	need	to	be	accounted	

for	in	statistical	estimations.	

There	are	four	levels	of	data	in	CRSS,	the	crash	level,	vehicle	level,	person	level,	and	

event	level.	Data	files	can	be	linked	through	case,	vehicle,	and	person	identification	

numbers,	as	shown	in	Figure	14.	The	crash	level	data	files	include	crash	characteristics	and	

environmental	conditions.	Multiple	data	files	at	the	vehicle	level	consist	of	information	

about	motor	vehicles	(in-transport,	parked	or	working)	involved	in	the	crashes,	drivers	of	

motor	vehicle	in-transport,	and	pre-crash	vehicle	and	environmental	conditions.	The	

person	level	data	files	provide	information	about	drivers,	passengers	in	motor	vehicles,	as	

well	as	non-motorists	(e.g.,	pedestrians	and	bicyclists)	involved	in	the	crashes.	The	event	

level	data	files	archive	non-harmful	and	harmful	events	that	occurred	in	the	crashes	in	the	

form	of	sequences.	For	each	crash,	a	sequence	of	events	is	recorded	based	on	the	police	

crash	report	narratives	and	diagrams.	A	corresponding	vehicle	number	is	provided	for	each	
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event,	but	across	different	crash	cases,	the	consistency	of	vehicle	numbering	is	not	ensured.	

The	CRSS	User	Guide	states	that	“all	vehicles	(motor	vehicles	in-transport	as	well	as	

parked/working	vehicles)	are	sequentially	ordered	starting	with	1”,	but	no	detailed	

information	is	provided	about	the	rules	for	vehicle	numbering.	However,	vehicle	

numbering	is	not	a	concern	for	single-vehicle	crash	sequences.	

	

Figure	14		Linkage	structure	of	the	CRSS	data	files	(144)	

	

The	CRSS	database	(and	many	other	national	or	state-level	crash	databases)	

consists	of	a	large	and	comprehensive	sample	of	crashes.	Analyzing	sequences	using	an	

entire	database	regardless	of	the	basic	characteristics	of	crashes	would	likely	generate	
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results	that	are	complex	and	difficult	to	interpret,	or	lose	important,	detailed	information	if	

the	data	was	overly	summarized.	Breaking	down	a	database	into	smaller	subsets	and	

focusing	only	on	crashes	relevant	to	specific	analysis	purpose	is	recommended.	

Many	variables	can	be	used	to	subset	crashes	for	sequence	analysis.	Depending	on	

the	purpose	of	analysis	and	the	amount	of	available	data,	fewer	or	more	variables	can	be	

used	to	categorize	crashes	in	simpler	or	more	detailed	ways.	For	example,	using	

combinations	of	the	following	four	variables,	different	subsets	of	crash	data	can	be	

obtained	to	satisfy	different	analysis	purposes.		

• Facility	type:	intersections,	interchanges,	or	road	segments	

• Functional	classification	(or	related	factors):	principal	arterial,	minor	arterial,	

collector,	or	local	(related	factors	include	number	of	travel	lanes,	speed	limit,	

and	others)	

• Area	type:	rural	or	urban/suburban	

• Number	of	participants	involved	in	a	crash:	single-vehicle	or	multi-vehicle	

Figure	15	illustrates	a	tree	structure	formed	by	the	above-mentioned	four	variables	for	

crash	data	subsetting.	
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Figure	15		Tree-structured	subsetting	of	crash	data	

	

3.5	Crash	Sequence	Encoding	

Before	crash	sequences	can	be	analyzed,	they	should	be	encoded.	The	raw	

information	of	crash	sequences	in	crash	reports	is	usually	in	the	form	of	text	narratives.	

Encoding	is	converting	the	text	narratives	of	pre-crash	and	crash	events	into	a	series	of	

event	labels	ordered	by	time.	Event	labels	should	be	consistent,	with	very	similar	events	

(depending	on	semantic	similarities	and	domain	knowledge)	encoded	with	the	same	label.	

Temporal	information	in	the	text	narratives	should	also	be	analyzed	to	determine	the	order	

of	events	in	sequences.	When	only	raw	crash	reports	are	available,	the	text	narratives	can	

be	processed	by	using	natural	language	processing	(NLP)	tools,	or	manually	by	following	a	
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procedure	of	“text	narratives	→	short	phrases	→	labels”	to	ensure	consistency	in	the	

encoding	(16).	

CRSS	(and	similar	national-level	crash	databases	like	FARS)	has	developed	a	set	of	

sequence	encodings,	but	alternative	encodings	may	be	needed	to	accommodate	the	needs	

of	different	use	cases.	Four	cases	where	crash	sequence	of	events	may	be	of	use	are:	

• To	use	as	an	intermediate	variable	or	base	structure	in	the	analysis	of	crash	

causations	(86,	88).	

• To	use	as	a	basis	for	the	generation	of	scenarios	for	safety	testing	of	automated	

vehicles	(AVs)	and	advanced	driver	assistance	system	(ADAS)	(16).	

• To	use	as	an	explanatory	variable	in	the	modeling	of	crash	injury	severity	(15,	

80).	

• To	estimate	frequencies	of	different	types	of	crashes.	

Crash	causation	analysis,	in	transportation	engineering,	is	conducted	primarily	for	

the	purpose	of	identifying	proper	countermeasures	to	prevent	crashes	or	mitigate	crash	

loss.	When	encoding	crash	sequences	for	causation	analysis,	emphasis	should	be	given	to	

the	actions	and	interactions	involved	in	the	pre-crash	phase,	with	as	much	detail	included	

as	possible,	rather	than	the	objects	or	road	users	involved	in	the	crash.		

For	developing	test	scenarios	for	the	safety	evaluation	of	AVs	or	ADAS,	the	role	of	

crash	sequences	is	to	support	crash	characterization	and	development	of	typology.	

Sequence-supported	crash	typology,	compared	with	characterization	of	crashes	by	manner	

of	collision,	provides	more	information	about	chronological	orders	of	events	and	relative	

locations	of	parties	involved,	which	are	essential	for	recreating	(real-world	or	simulated)	
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scenarios	for	vehicle	testing.	Encoding	crash	sequences	for	the	purpose	of	test	scenario	

generation	requires	a	clear	definition	of	participating	vehicles’	initial	states.	Each	multi-

vehicle	crash	can	be	used	to	generate	multiple	scenarios	by	placing	the	ego	vehicle	(i.e.,	the	

vehicle	being	tested)	in	the	positions	of	multiple	participating	vehicles.	When	encoding	

multi-vehicle	crashes,	the	assignment	of	vehicle	IDs	should	be	based	on	the	pre-crash	roles	

of	vehicles.	Participating	vehicles	are	classified	as	either	an	initiator	or	responder	in	a	crash	

(145).	For	single-vehicle	crash	scenarios,	the	ego	vehicle	is	placed	in	the	position	of	the	

only	participating	vehicle.		

For	crash	injury	severity	modeling,	more	information	about	collisions	with	other	

road	users,	animals,	or	objects	are	required	than	for	other	use	cases.	Take	fixed-object	

collisions	as	an	example,	both	the	physical	characteristics	and	the	number	of	fixed	objects	a	

vehicle	collided	with	are	important	information	for	modeling	crash	severity	outcomes.	As	

previous	studies	have	shown,	differences	in	road	user	and	object	characteristics	such	as	

dimensions,	weight,	and	hardness	affect	crash	injury	severity	differently	(81,	146–151).	

Also,	a	vehicle	colliding	with	multiple	fixed	objects	is	expected	to	sustain	higher	risk	of	

severe	damage	than	a	vehicle	colliding	with	a	single	object.	When	encoding	sequences	for	

the	modeling	of	crash	injury	severity,	fixed	objects	should	be	categorized	to	differentiate	

their	potential	injury	risks	based	on	physical	characteristics.	Fixed	objects	should	also	be	

differentiated	from	live	animal,	pedestrians,	bicyclists,	and	other	road	users.	

3.6	Crash	Sequence	Dissimilarity	Measures	

There	are	many	ways	to	measure	dissimilarities	between	sequences,	which	are	used	

as	the	basis	to	compare	sequences	and	characterize	them	into	distinctive	groups.	Studer	



	

	

51 

and	Ritschard	reviewed,	proposed,	and	compared	more	than	20	sequence	dissimilarity	

measures	for	sociological	study	of	life	course	sequences	(130,	142).	Not	all	dissimilarity	

measures	used	in	social	sequence	analysis	are	adaptable	to	traffic	crash	sequences,	due	to	

the	following	characteristics	of	crash	sequences:	

• Different	crashes	have	different	sequence	lengths,	so	dissimilarity	measures	

requiring	same	sequence	lengths	(e.g.,	Hamming	distance)	are	not	applicable.	

• Crash	sequences	consist	of	events	or	actions	that	usually	do	not	repeat	

consecutively.	Therefore,	spell	duration	(the	length	of	a	consecutively	repeated	

element),	although	considered	in	some	social	sequence	dissimilarity	measures,	is	

not	applicable	to	the	measuring	of	crash	sequence	dissimilarity.	

• The	structures	of	crash	sequences	differ	as	the	number	of	participants	in	crashes	

differ.	Therefore,	the	analyses	of	single-vehicle	crash	sequences	and	multi-vehicle	

crash	sequences	may	require	different	types	of	dissimilarity	measures.	

In	this	chapter,	two	rounds	of	selection	were	carried	out	to	compare	the	

dissimilarity	measures.	In	the	first	round,	nine	dissimilarity	measures	considered	

potentially	suitable	for	crash	sequence	analysis	were	selected	from	a	list	of	measures	

introduced	in	the	Studer	and	Ritschard	study	(130,	142).	The	nine	dissimilarity	measures	

were	then	compared,	with	five	selected	as	the	most	suitable	ones	for	crash	sequence	

analysis.	The	five	selected	dissimilarity	measures	were	used	to	demonstrate	the	crash	

sequence	analysis	methodology	in	a	case	study	of	interstate	highway	single-vehicle	crashes.	

According	to	Studer	and	Ritschard.	sequence	dissimilarity	can	be	measured	based	

on	element	distributions,	counts	of	common	attributes,	or	edit	distances	(130,	142).	The	
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nine	candidate	dissimilarity	measures	for	crash	sequence	analysis	are	organized	by	those	

three	categories	and	are	described	below.	

3.6.1	Distances	between	element	distributions	

The	frequency	of	element	occurrence	can	be	used	to	describe	a	sequence,	as	

proposed	by	Deville	and	Saporta	(130,	142,	152).	If	a	sequence,	x,	with	the	alphabet	{A,	B,	C,	

D},	is	“ABCADD”,	it	can	be	described	as	a	vector	of	the	four	elements’	occurrence	

frequencies:	(2/6,	1/6,	1/6,	2/6).	The	dissimilarity	between	a	pair	of	sequences	x,	y,	is	then	

calculated	as	a	Euclidean	(EUCLID)	distance,	dE,	or	a	Chi-square	(CHI2)	distance,	dC.	

𝑑!(𝑥, 𝑦) = (∑ *𝑝"|$ − 𝑝"|%-
&'

"() 	 	 	 	 	 [1]	

𝑑*(𝑥, 𝑦) = .∑ +,!|#-,!|$.
%

,!
'
"() 	 	 	 	 	 	 [2]	

where	pi|x	denotes	the	occurrence	frequency	of	element	i	in	sequence	x,	and	pi	the	overall	

frequency	of	element	i	in	the	entire	sequence	space.	Element-distribution-based	Euclidean	

and	Chi-square	distances	are	sensitive	to	element	frequency	and	sequence	length	but	are	

not	sensitive	to	the	order	of	elements.	Comparing	the	EUCLID	and	the	CHI2	measures,	CHI2	

gives	more	weight	to	rare	cases	than	common	cases	because	it	divides	the	squared	

frequency	difference	by	the	overall	proportion	of	occurrence	rate	of	an	element	(130).	An	

occurrence	of	a	rare	element	would	likely	increase	the	distance	significantly.	
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3.6.2	Measures	based	on	counts	of	common	attributes	

Length	of	longest	common	subsequences	

The	length	of	longest	common	subsequence	(LCS)	is	the	number	of	elements	in	the	

LCS	of	a	pair	of	sequences.	A	subsequence	is	a	set	of	elements	following	the	order	in	the	

parent	sequence	but	are	not	necessarily	adjacent	(64).	For	example,	the	two	sequences,	

“ABCD”	and	“ACB”,	have	common	subsequences:	“A”,	“B”,	“C”,	“AB”,	and	“AC”.	The	LCS	are	

“AB”	and	“AC”,	both	with	a	length	of	2.	An	LCS-based	dissimilarity	is	measured	as:	

𝑑/*0(𝑥, 𝑦) = |𝑥| + |𝑦| − 2𝑙/*0(𝑥, 𝑦)		 	 	 	 [3]	

where	|x|	and	|y|	are	the	lengths	of	sequences	x	and	y,	and	lLCS(x,y)	is	the	length	of	the	LCS	

between	x	and	y.	Therefore,	the	LCS-based	dissimilarity	between	“ABCD”	and	“ACB”	is	(4	-	

2)	+	(3	-	2)	=	3.		

LCS	between	long	sequences	are	more	difficult	to	identify	than	that	between	the	

example	sequences.	Finding	LCS	is	a	classic	computer	science	problem	and	is	usually	

achieved	by	using	dynamic	programming	algorithms	(153).	LCS-based	dissimilarity	

measure	tends	to	be	sensitive	to	the	order	of	the	most	frequent	elements	and	the	frequency	

of	those	elements	in	sequences.	

Number	of	matching	subsequences	

Another	dissimilarity	measure	in	this	category	is	based	on	the	number	of	matching	

subsequences	(NMS)	(130,	134,	135,	142).	The	NMS	between	a	pair	of	sequences,	x	and	y,	is	

represented	by:	

𝐴120(𝑥, 𝑦) = ∑ 𝑒𝑚𝑏$(𝑢)	𝑒𝑚𝑏%(𝑢)3∈0($,%) 	 	 	 	 [4]	
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where	u	is	a	subsequence	in	the	set	of	distinct	common	subsequences	S(x,y),	embx(u)	is	the	

count	of	times	that	u	is	embedded	in	x,	and	similarly	for	emby(u).	The	NMS-based	

dissimilarity	is	measured	as:	

𝑑120(𝑥, 𝑦) = 9𝑆&(𝑥) + 𝑆&(𝑦) − 2𝐴120(𝑥, 𝑦)	 	 	 [5]	

where	S(x)	is	the	count	of	subsequences	of	x,	and	similarly	for	S(y).	

The	NMS-based	dissimilarity	measure	is	Euclidean,	and	is	moderately	sensitive	to	

sequencing	(130,	142).	This	measure	is	also	expected	to	be	sensitive	to	sequence	lengths,	as	

in	the	case	of	crash	sequences	with	unequal	lengths.	

3.6.3	Edit	distances	

Optimal	matching	

Unlike	the	abovementioned	dissimilarity	measures,	edit	distances	of	dissimilarity	

are	ad	hoc	and	based	on	specific	aspects	of	sequence	differences	(130,	142).	Edit	distances	

define	several	operations	that	can	be	used	to	transform	one	sequence	to	another,	with	

costs	assigned	to	the	operations.	The	dissimilarity	between	the	two	sequences	is	then	

calculated	as	the	smallest	transformation	cost	needed,	using	optimal	matching	(OM)	

methods	(64–66,	130,	133,	142).	

OM	is	a	widely	used	method	for	sequence	alignment	in	computer	science,	

bioinformatics,	and	social	science,	for	uses	such	as	speech/text	comparisons,	DNA	

sequence	alignments,	and	life	course	studies	(64,	65,	68,	130,	133,	142).	Multiple	types	of	

operations	can	be	applied	in	OM,	including	substitutions,	deletions	and	insertions	(or	

indels),	compression	and	expansions,	and	transpositions	(or	swaps)	(130,	133,	142).	

Substitutions	and	indels	are	the	most	commonly	used	operations.	
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A	formal	mathematical	expression	of	OM	dissimilarity	between	a	pair	of	sequences,	

x	and	y,	is	(130,	136,	142):	

𝑑82(𝑥, 𝑦) = min
9
∑ 𝛾*𝑇"

9-ℓ&
"(" 	 	 	 	 	 	 [6]	

where	ℓ9 	denotes	the	transformations	needed	to	turn	sequence	x	into	y;	𝛾*𝑇"
9-	is	the	cost	of	

each	elementary	transformation	𝑇"
9 	(e.g.,	indel	or	substitution).	

Here,	an	example	of	two	sequences	“ABCD”	and	“ACB”	is	used	to	illustrate	the	

principles	of	transformation	operation	costs	and	OM.	Table	4	shows	two	ways	to	align	the	

two	sequences,	with	different	combinations	of	operations.	An	indel	costs	d	and	a	

substitution	costs	s.	Alignment	1	used	1	deletion	and	2	insertions,	costing	3d.	Alignment	2	

used	1	deletion	and	1	substitution,	costing	d	+	s.	There	are	many	other	ways	to	align	

“ABCD”	and	“ACB”,	with	different	costs.	The	OM	method	applies	the	Needleman-Wunsch	

algorithm	and	returns	the	minimum	alignment	cost	as	the	dissimilarity	between	the	two	

sequences	(129).		

Table	4		Sequence	alignment	costs	
Sequence 1 A B C D 

  

Sequence 2 A C B 
   

Alignment 1 
      

Sequence 1 A 
 

B C D 
 

Sequence 2 A C/ B ø ø 
 

Cost 
 

d 
 

d d = 3d 
Alignment 2 

      

Sequence 1 A B C D 
  

Sequence 2 A ø C B 
  

Cost 
 

d 
 

s 
 

= d+s 
Note: Insertion is marked with ø, 

Deletion is marked with slash/, 
Substitution is marked with underline 
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Basic	optimal	matching	costs.	

Basic	OM	cost	scheme	assigns	constant	costs	to	indels	and	substitutions.	Measures	

such	as	Levenshtein,	Levenshtein	II,	and	Hamming	use	constant	costs	but	allow	operations	

differently	(64,	131,	132).	

• Levenshtein	distance	allows	indels	and	substitutions.	

• Levenshtein	II	distance	allows	only	indels	(equivalent	to	LCS).	

• Hamming	distance	allows	only	substitutions	and	is	only	applicable	to	sequences	

with	the	same	length.	

There	have	been	criticisms	of	OM	on	the	transformation	operations’	lack	of	real-

world	meanings	(64,	68,	69,	130,	142,	154,	155).	However,	more	recent	research	has	

developed	methods	to	define	substitution	and	indel	costs	that	sophisticatedly	consider	the	

real-world	contexts	of	sequences	(130,	137,	142).	

Studer	and	Ritschard	summarized	that	for	social	sequence	of	events,	indels	in	OM	

represent	time	shifts	and	substitutions	represent	mismatches	remaining	after	the	time	

shifts	(130,	142).	However,	for	traffic	crash	sequences,	indels	are	more	of	a	representation	

of	addition	or	removal	of	certain	actions/events/objects,	and	substitutions	represent	

replacement	of	certain	actions/events/objects	with	others.	Under	this	general	principle	of	

OM	for	crash	sequences,	the	choice	of	indel	and	substitution	costs	should	reflect	real-world	

meanings	and	difficulties	of	conducting	operations	of	additions,	removals,	and	

replacements.	In	this	chapter,	three	cost	schemes	(Levenshtein,	data-driven	substitution	

costs,	and	localized	indel	costs)	were	compared.	
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The	basic	Levenshtein	distance	uses	a	substitution	cost	of	2	and	an	indel	cost	of	1.	

Replacements	are	not	treated	differently,	so	a	replacement	(A	→	B)	costs	the	same	with	(A	

→	C).	

Data-driven	optimal	matching	costs.	

A	commonly	used	data-driven	method	is	to	set	up	substitution	cost	based	on	the	

element	transition	rates	(TRATE)	observed	from	the	sequence	data	set.	The	transition	rate	

between	two	elements,	A	and	B,	is	calculated	as	the	probability	of	element	A	followed	by	

element	B	in	all	cases	that	element	A	appears	in	the	observed	element	space	(64,	130):	

𝑃(𝐴𝐵) = 𝑃*𝐵,;)C𝐴,- =
<(=>)
<(=)

	 	 	 	 	 [7]	

where	n(AB)	is	the	count	of	times	that	AB	appears	at	consecutive	positions	(p	and	p+1)	

following	that	order;	and	n(A)	is	the	count	of	times	A	appears	in	the	element	space.	The	

TRATE-based	symmetrical	substitution	cost	is	calculated	as	(130):	

𝛾?@(𝐴, 𝐵) = 2 − 𝑃(𝐴𝐵) − 𝑃(𝐵𝐴)	 	 	 	 	 [8]	

By	subtracting	the	transition	rates	from	the	basic	Levenshtein	substitution	cost	of	2,	the	

TRATE-based	substitution	cost	considers	easier	substitutions	between	elements	appear	

adjacent	in	observed	sequences,	compared	with	those	that	do	not	appear	adjacent.	

Although	commonly	used,	the	TRATE-based	substitution	cost	is	considered	

questionable	due	to	its	equating	of	high	transition	to	high	similarity	(130).	In	the	case	of	

crash	sequences,	it	is	common	for	an	event	of	a	certain	type	followed	by	another	event	of	a	

very	different	type.	For	example,	a	driver’s	maneuver	(e.g.,	steering,	braking)	may	be	

followed	by	a	collision	event	by	a	high	chance,	and	the	TRATE	between	such	maneuver	and	
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collision	events	may	be	high.	However,	treating	the	maneuver	and	the	collision	event	as	

similar	events	is	contrary	to	common	sense.	Therefore,	a	TRATE-based	substitution	cost	

may	not	suit	the	analysis	of	crash	sequences.	Based	on	the	work	by	Rousset	et	al.,	Studer	

and	Ritschard	proposed	a	substitution	cost	based	on	the	probability	of	events	sharing	a	

common	future	(130,	156).	The	idea	is	that	if	the	data	shows	a	high	probability	of	two	

events,	A	and	B,	sharing	a	same	event,	C,	over	a	(user	defined)	position	lag	of	q,	then	the	A	

and	B	is	considered	highly	similar	and	the	substitution	cost	between	A	and	B	should	be	low.	

A	mathematical	expression	of	such	a	substitution	cost	is:	

𝛾AB(𝐴, 𝐵) = ∑
CDE𝐶;FG𝐴H-DE𝐶;FG𝐵HI

%

∑ DE𝐶;FG𝐹H'∈)
*∈K 	 	 	 	 [9]	

where	Σ	is	the	space	of	all	possible	elements,	and	𝑃*𝐶;FC𝐹-	is	the	probability	of	F	followed	

by	C	over	q	positions.	For	crash	sequences,	this	data-driven	substitution	cost	based	on	

shared	future	is	more	suitable	compared	with	the	TRATE-based	substitution	cost.	

Localized	optimal	matching	

Hollister	developed	a	Localized	OM	(LOM)	that	calculates	indel	costs	based	on	

whether	the	element	being	inserted	or	deleted	is	the	same	with	its	adjacent	elements	(130,	

137).	An	indel	of	an	element	different	(or	more	dissimilar)	to	its	adjacent	elements	is	

considered	more	difficult	and	should	be	of	a	higher	cost.	In	OMloc,	the	indel	cost	of	

inserting	an	element	U	between	elements	A	and	B	is	calculated	as:	

𝑐'(𝑈|𝐴, 𝐵) = 𝑒𝛾LMN + 𝑔
O(=,P);O(>,P)

&
		 	 	 	 [10]	

where	γ	indicates	the	substitution	cost,	with	γmax	being	the	maximum	substitution	cost,	

γ(A,U)	being	the	substitution	cost	between	A	and	U,	and	γ(B,U)	between	B	and	U.	The	
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parameters,	e	and	g,	control	the	weights	assigned	to	the	two	components	of	the	function,	1)	

the	maximum	substitution	cost	and	2)	the	average	of	distances	between	the	element	to	be	

inserted	and	its	neighbors.	The	first	component	is	a	global	cost	for	conducting	an	indel,	and	

the	second	component	is	a	local	cost	considering	the	difficulty	of	transition	from	adjacent	

actions/events/objects	to	the	inserted	one	(or	vice	versa).	The	e	and	g	parameters	are	set	

by	researchers	based	on	their	domain	knowledge	and	research	needs.	One	of	the	goals	of	

using	OMloc	is	to	avoid	using	a	pair	of	indels	in	lieu	of	a	substitution	(violating	the	triangle	

inequality)	(137).	Therefore,	the	values	of	e	and	g	should	satisfy	2𝑒 + 𝑔 ≥ 1.	

3.6.4	Summary	of	dissimilarity	measures	

Properties	

Nine	dissimilarity	measures	were	selected	for	a	first	round	of	comparison	for	

compatibility	with	crash	sequence	analysis.	The	measures,	cost	schemes,	and	properties	

are	summarized	in	Table	5.	Cost	schemes	are	specific	to	OM	dissimilarity	measures	and	

were	used	in	the	case	study.	The	summary	of	measure	properties	was	based	on	findings	

from	Studer	and	Ritschard	(130,	142).	Four	properties	are	introduced	here	–	metric,	

Euclidean,	element	dependency,	and	context.	

Metric	property.	

The	metric	property	means	that	the	measured	dissimilarities	satisfy	mathematical	

conditions	of	distances:	

• Minimality:	d(x,	y)	≥	d(x,	x)	=	0	

• Non-negativity:	d(x,	y)	>	0	

• Symmetry:	d(x,	y)	=	d(y,	x)	



	

	

60 

• Triangle	inequality:	d(x,	z)	≤	d(x,	y)	+	d(y,	z).	

These	mathematical	conditions	form	a	concept	of	distance	in	the	physical	world,	such	as	in	

a	road	network	where	there	is	no	one-way	road	and	detours	cannot	be	considered	as	

shortcuts.	The	metric	property	is	important	also	because	it	is	required	for	many	

calculations	and	applications	(130,	139).	TRATE-based	OM	and	LOM	measures	do	not	

ensure	the	triangle	inequality,	but	all	the	other	seven	dissimilarity	measures	in	Table	5	

satisfy	all	mathematical	conditions	of	metrics.	With	triangle	inequality	not	satisfied,	there	

would	possibly	be	some	substitution	cost	replaceable	by	two	other	substitutions	with	a	

lower	total	cost,	which	makes	a	detour	equivalent	to	a	shortcut.	

Euclidean	property.	

The	Euclidean	property	is	the	prototypical	example	of	metric	property,	and	it	

ensures	dissimilarity	measures	satisfy	all	the	metric	mathematical	conditions.	With	the	

Euclidean	property,	data	objects	can	be	plotted	in	an	Euclidean	space,	and	the	distances	

between	them	can	be	visualized	using	multidimensional	scaling	(130).	Since	the	Euclidean	

property	requires	position-wise	element	matching,	LCS	and	OM-based	measures	do	not	

satisfy	this	property.	Euclidean	property	is	not	necessary	for	use	in	crash	sequence	

analysis,	especially	with	sequences	obtained	from	crash	reports	and	crash	databases,	which	

cannot	guarantee	position-wise	correspondence	(i.e.,	the	timing	and	duration	of	events	are	

not	given,	only	the	order).	

Element	dependency	property.	

The	element	dependency	property	means	that	different	elements	in	sequences	are	

allowed	to	be	treated	differently	when	calculating	dissimilarities	(130).	Rules	of	element	
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dependency	are	defined	based	on	domain	knowledge	or	using	data-driven	approaches.	OM	

measures	using	variable	substitution	and/or	indel	costs	are	element	dependent.	

Context	property.	

The	context	property	means	that	the	relationships	between	elements	(rather	than	

only	the	individual	elements)	are	considered	when	calculating	sequence	dissimilarities.	

The	NMS,	shared-future-based	OM,	and	LOM	measures	consider	context	in	sequences.	

TRATE-based	OM	does	not	have	the	context	property	because,	although	TRATE	is	used	to	

estimate	the	ease	of	substitution,	only	individual	elements	are	considered	and	compared	in	

the	OM	process.	

Table	5		Dissimilarity	measures	
Dissimilarity Measure Cost Scheme Properties 

Metric Euclidean Element 
Dependent 

Context 

Euclidean “EUCLID” n/a ✓ ✓   

Chi-square “CHI2” n/a ✓ ✓   

Longest Common 
Subsequence 

“LCS” n/a ✓    

Number of Matching 
Subsequences 

“NMS” n/a ✓ ✓  ✓ 

Optimal Matching “OMlev” Levenshtein (substitution cost 
= 2, indel = 1) 

✓    

“OMtr” TRATE-based substitution 
cost, indel = 1 

  ✓  

“OMsf” Shared-future-based 
substitution cost, indel = 1 

✓  ✓ ✓ 

Localized Optimal 
Matching 

“LOMtr” TRATE-based substitution 
cost, indel cost parameters: e 
= 0.0~0.4, g = 0.8~0.2 

  ✓ ✓ 

“LOMsf” Shared-future-based 
substitution cost, indel cost 
parameters: e = 0.0~0.4, g = 
0.8~0.2 

✓  ✓ ✓ 

	



	

	

62 

Sensitivities	

Intuitively,	for	the	comparison	of	crash	sequences,	the	most	important	attributes	

determining	dissimilarities	are	the	distinct	elements	and	the	order	of	elements	(i.e.,	what	

happened	and	what	happened	first).	Depending	on	the	encodings,	events	sometimes	repeat	

in	crash	sequences	(e.g.,	hitting	multiple	fixed	objects),	so	event	frequency	is	another	

potential	attribute	contributing	to	the	dissimilarity	between	crash	sequences.	Table	6	

shows	the	sensitivity	of	dissimilarity	measures	to	the	distinct	elements,	order,	and	

frequency	attributes	of	sequences,	based	on	Studer	and	Ritschard’s	findings	(130,	142).	

Table	6		Sensitivity	of	dissimilarity	measures	to	sequence	attributes	
Dissimilarity Measure Sensitive to Attributes 

Distinct elements Order Frequency 

Euclidean “EUCLID” H L H 

Chi-square “CHI2” H L H 

Longest Common Subsequence “LCS” H M M 

Number of Matching Subsequences “NMS” H M M 

Optimal Matching “OMlev” H M M 

“OMtr” H H M 

“OMsf” H H M 

Localized Optimal Matching “LOMtr” H H M 

“LOMsf” H H M 

Note: “L” = Low sensitivity, “M“ = Moderate sensitivity, “H” = High sensitivity 

	

All	measures	listed	in	Table	6	are	sensitive	to	distinct	elements.	OM	measures	based	

on	TRATE,	shared	future,	and	LOM	measures	are	the	most	sensitive	to	element	order	in	

sequences	than	the	other	measures.	LCS,	NMS,	and	OM	with	Levenshtein	costs	are	

moderately	sensitive	to	element	order.	Euclidean	and	Chi-square	measures	are	the	most	

sensitive	to	element	frequency	as	those	measures	are	solely	based	on	element	frequencies.	
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LCS,	OM	measures	with	Levenshtein	costs	or	TRATE-based	costs,	and	LOM	measures	are	

moderately	sensitive	to	element	frequency.	

Since	the	EUCLID	and	CHI2	measures	are	not	sensitive	to	the	order	of	elements,	

these	two	measures	are	not	suitable	for	crash	sequence	analysis.	Being	not	widely	

applicable,	the	EUCLID	and	CHI2	measures	were	not	included	in	the	case	study.	As	LCS	is	

equivalent	to	OM	with	Levenshtein	II	costs,	its	performance	was	proved	to	be	very	similar	

to	OM	dissimilarity	measures	(130).	NMS	has	been	shown	to	perform	very	differently	to	

EUCLID,	CHI2,	LSC,	and	OM-based	measures,	with	near-zero	correlations	(141).	Also,	NMS	

was	found	to	generate	results	that	were	difficult	to	interpret	due	to	its	limited	applicability	

to	some	specific	cases	(141).	For	example,	the	NMS	dissimilarity	between	two	sequences	

“ABC”	and	“FGH”	(9.9)	is	smaller	than	that	between	“ABC”	and	“AFBC”	(16.1),	even	though	

the	latter	pair	shares	some	subsequences,	and	the	former	pair	does	not	share	any	element.	

OM	dissimilarity	measures	are	widely	applicable	and	easily	interpretable.	Therefore,	the	

case	study	focused	on	comparing	the	five	OM-based	dissimilarity	measures	using	the	CRSS	

crash	sequence	data.	

Sequence	analysis	in	the	case	study	was	carried	out	using	R	(157).	All	OM-based	

dissimilarity	measures	listed	in	Table	5	were	available	in	the	R	sequence	analysis	package,	

“TraMineR”,	which	was	used	as	the	primary	tool	for	crash	sequence	analysis	in	this	chapter	

(158).	Other	major	R	packages	used	in	the	analysis	include	“ade4”	(for	Mantel	test),	

“WeightedCluster”	(for	weighted	k-medoids	clustering),	and	“mclust”	(for	adjusted	Rand	

index	calculation)	(159–161).	
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3.7	Case	Study:	Single-Vehicle	Crashes	on	Interstate	Highways	

This	case	study	demonstrates	the	techniques	and	procedure	for	analyzing	

sequences	of	single-vehicle	crashes	on	the	United	States’	interstate	highways.	CRSS	data	

files	ACCIDENT	(crash-level	data),	VEHICLE	(vehicle-level	data),	and	CEVENT	(event-level	

data)	from	2016-2018	were	used	to	form	a	combined	crash-level	data	set	consisting	of	

event	sequences	and	all	the	needed	variables.	The	three	data	files	are	linked	using	crash	

case	identification	numbers	and	vehicle	numbers.	

Single-vehicle	crashes	on	interstate	highways	were	filtered	from	the	parent	2016-

2018	CRSS	data	set,	using	conditions	(variables	and	values)	listed	in	Table	7.	The	resulting	

data	set	consists	of	2,676	observations,	representing	a	weighted	total	of	385,484	crashes	

during	the	2016-2018	period.	

Table	7		Conditions	for	obtaining	data	for	case	study	from	CRSS	
Variable (Data Level) Value Description of Condition 

VE_FORMS (Crash) = 1 Only one vehicle-in-transport involved in crash. 

INT_HWY (Crash) = 1 Crash occurred on interstate highway. 

PVH_INVL (Crash) = 0 No parked/working vehicles involved. 

WRK_ZONE (Crash) = 0 No work zone at crash location. 

ALCHL_IM (Crash) ≠ 1 No alcohol-related crash. 

BDYTYP_IM (Vehicle) < 50 Only automobile, utility vehicles or light trucks* involved. 

TOW_VEH (Vehicle) = 0 No vehicle trailing involved. 

BUS_USE (Vehicle) = 0 No bus involved. 

SPEC_USE (Vehicle) = 0 No special use vehicles involved. 

EMER_USE (Vehicle) = 0 No emergency use vehicles involved. 

Note: * Light trucks with Gross Vehicle Weight Rating (GVWR) ≤ 10,000 LBS 

	

CRSS	provides	pre-crash	event	data	in	the	VEHICLE	data	file	via	variables	PCRASH1	

(pre-event	movement),	PCRASH2	(critical	event	pre-crash),	and	PCRASH3	(attempted	
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avoidance	maneuver).	The	CEVENT	data	file	provides	a	series	of	harmful	and	non-harmful	

events	that	occurred	in	the	crashes,	through	the	SOE	(sequence	of	events)	variable,	ordered	

chronologically.	Sequences	analyzed	in	this	case	study	were	formed	by	combining	the	

PCRASH1~3	variables	and	the	SOE	variable.	Based	on	the	CRSS	definitions,	PCRASH1~3	

described	“what	a	vehicle	was	doing	just	prior	to	the	critical	precrash	event”,	“what	made	

the	vehicle's	situation	critical”,	and	“what	was	the	corrective	action	made,	if	any,	to	this	

critical	situation”,	happened	before	the	vehicle’s	SOE	events.	As	single-vehicle	crashes	only	

had	one	vehicle-in-transport	involved,	the	final	sequence	structure	was	formed	as:	

(PCRASH1	event)	–	(PCRASH2	event)	–	(PCRASH3	event)	–	(SOE	events)	

Lengths	(number	of	elements)	of	the	2,676	crash	sequences	ranged	from	4	to	12,	as	shown	

in	Figure	16.	The	average	length	was	5.6.	

	

Figure	16		Sequence	lengths	
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3.7.1	Encoding	schemes	

Encoding	schemes	serve	the	intended	uses	of	crash	sequence	analysis.	In	this	case	

study,	three	different	encoding	schemes	were	compared.	In	the	single-vehicle	interstate	

crash	data	set,	the	original	CRSS	encoding	scheme	(OE)	had	123	distinct	event	types.	Two	

other	encoding	schemes	(named	Encoding	Schemes	1	and	2,	or	ES1	and	ES2)	were	

developed.	The	process	of	developing	encoding	schemes	is	illustrated	in	Figure	17.	Events	

of	similar	nature	were	classified	into	higher-level	categories	(applicable	to	PCRASH2	and	

SOE	in	CRSS),	and	were	consolidated	into	the	same	types.	ES1	consisted	of	59	event	types	

and	ES2	consisted	of	30	types.	Following	the	order	of	OE	→	ES1	→	ES2,	the	level	of	details	

decreased,	and	the	level	of	abstraction	increased.	As	a	result	of	applying	different	sequence	

encoding	schemes	on	the	single-vehicle	interstate	crash	data	set,	the	OE	formed	1,535	

distinct	sequences,	ES1	formed	1,105	distinct	sequences,	and	ES2	formed	550	distinct	

sequences.	

Details	of	the	encoding	schemes	are	presented	in	Table	A	-	1	in	the	Appendix.	The	

example	in	Table	8	shows	the	logic	of	event	consolidation.	Roadside	fixed	object	collision	

events	were	encoded	in	the	three	schemes,	providing	different	levels	of	details	about	the	

collision	events.	In	the	original	CRSS	encoding	scheme,	there	were	30	types	of	fixed	object	

collisions	(XF).	In	Scheme	1,	the	30	fixed	object	collision	types	were	grouped	into	three	

categories	based	on	their	propensities	toward	injury	risks	(ranked	XFA,	XFB,	and	XFC,	from	

low	to	high,	based	on	object	hardness	and	potential	contact	area).	In	Scheme	2,	the	3	fixed	

object	collision	types	were	all	grouped	into	one	category	of	collision	with	a	roadside	object	

(XF).	
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Figure	17		Process	of	developing	encoding	schemes	

	

These	three	encoding	schemes	can	be	selected	to	meet	the	needs	of	the	four	use	

cases:		1)	crash	causation	analysis,	2)	test	scenario	generation,	3)	crash	injury	severity	

modeling,	and	4)	crash	frequency	estimation.	For	crash	causation	analysis,	we	consider	the	

OE	to	be	the	most	appropriate	encoding	scheme,	as	it	offers	the	most	detailed	information	

of	pre-crash	events	and	driver	actions,	which	are	essential	for	analyzing	crash	causes.	For	

test	scenario	generation,	OE	and	ES1	are	both	appropriate	because	they	provide	enough	

details	of	the	pre-crash	events	for	recreating	pre-crash	scenarios.	For	crash	injury	severity	

modeling,	ES1	is	considered	to	be	more	appropriate	than	the	other	two	encoding	schemes.	

In	OE,	there	are	55	types	of	SOE	events,	with	30	different	fixed	object	collision	types.	Too	

many	types	of	SOE	events	would	increase	the	difficulty	for	the	sequence	comparison	

process	to	identify	patterns.	Also,	in	the	OE,	the	SOE	events	are	not	categorized	based	on	
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their	potential	risks	in	causing	injuries.	ES2	consolidated	collision	events	into	five	types	

and	is	more	suitable	for	estimating	crash	frequencies.	

Table	8		Example	of	encoding	schemes	
Original Scheme 1 Scheme 2 CRSS Description 

1v23 XFB XF 23 Bridge Rail (Includes Parapet) 

1v24 XFA XF 24 Guardrail Face 

1v25 XFB XF 25 Concrete Traffic Barrier 

1v26 XFB XF 26 Other Traffic Barrier 

1v30 XFC XF 30 Utility Pole/Light Support 

	

3.7.2	Comparison	of	dissimilarity	measures	

As	mentioned,	different	dissimilarity	measures	have	different	properties	and	

sensitivities,	to	analyze	a	specific	set	of	sequences,	the	most	appropriate	dissimilarity	

measure	should	be	used.	By	comparing	the	dissimilarity	measures,	we	can	understand	the	

measures’	correlations	and	their	performance	in	clustering	the	sequences.	In	this	section,	

all	five	OM	based	dissimilarity	measures	were	used	on	the	three	encoding	schemes	and	

compared.	The	comparison	consisted	of	two	parts:	

• A	Mantel	test	of	correlations	between	dissimilarity	matrices	

• A	comparison	of	agreement	between	clustering	results	to	a	benchmark	crash	

typology	using	Adjusted	Rand	Index	(ARI)	

The	purposes	of	these	two	analyses	were	to	demonstrate	how	the	most	appropriate	

dissimilarity	measures	were	selected	for	the	clustering	of	interstate	single-vehicle	crash	

sequences.	
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Mantel	tests	

Mantel	test	is	a	correlation	test	for	distance	matrices,	first	developed	by	Nathan	

Mantel	(141,	143,	162,	163).	Using	each	dissimilarity	measure,	we	obtained	an	n-by-n	

dissimilarity	matrix	of	crash	sequences,	with	n	equals	to	the	sample	size	of	2,676.	Each	

dissimilarity	matrix	had	n(n	–	1)/2	elements.	Five	dissimilarity	matrices	were	obtained	

from	applying	the	five	dissimilarity	measures.	For	LOM	measures,	the	e	and	g	parameters	

generating	the	optimal	Adjusted	Rand	Index	(ARI)	were	used.	ARI	is	introduced	in	detail	in	

Section	7.2.2.	The	Mantel	test	was	then	used	to	calculate	the	correlation	between	each	pair	

of	dissimilarity	matrices	by	calculating	the	correlation	between	the	two	sets	of	n(n	–	1)/2	

matrix	elements.	The	correlation	was	calculated	multiple	times,	with	random	permutations	

on	one	of	the	two	matrices’	columns	and	rows,	to	estimate	a	significance	for	the	Mantel	test	

result.		

The	Mantel	test	result	ranges	from	-1	to	1,	with	a	higher	absolute	value	meaning	a	

higher	correlation	between	the	two	dissimilarity	matrices.	The	results	of	Mantel	

correlation	among	the	five	OM	dissimilarity	measures,	with	three	encoding	schemes,	are	

shown	in	Table	9.	The	results	were	also	color	coded	with	white	being	the	average	

correlation,	darker	red	meaning	a	higher	above-average	correlation,	and	darker	blue	

meaning	a	lower	below-average	correlation.	
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Table	9		Mantel	test	results	

(a) Original Encoding 

  OMlev OMtr OMsf LOMtr LOMsf 

OMlev   0.98 0.63 0.98 0.78 
OMtr 0.98   0.66 0.98 0.81 
OMsf 0.63 0.66   0.74 0.90 
LOMtr 0.98 0.98 0.74   0.83 
LOMsf 0.78 0.81 0.90 0.83   

(b) Encoding Scheme 1 

  OMlev OMtr OMsf LOMtr LOMsf 

OMlev   0.98 0.64 0.97 0.77 
OMtr 0.98   0.65 0.98 0.78 
OMsf 0.64 0.65   0.73 0.91 
LOMtr 0.97 0.98 0.73   0.80 
LOMsf 0.77 0.78 0.91 0.8   

(c) Encoding Scheme 2 

  OMlev OMtr OMsf LOMtr LOMsf 

OMlev   0.98 0.68 0.98 0.80 
OMtr 0.98   0.70 0.98 0.81 
OMsf 0.68 0.70   0.68 0.86 
LOMtr 0.98 0.98 0.68   0.81 
LOMsf 0.80 0.81 0.86 0.81   

	

Mantel	correlation	matrices	presented	very	similar	patterns	across	the	three	

encoding	schemes.	The	results	showed	that	OMlev,	OMtr,	and	LOMtr	generated	highly	

positively	correlated	dissimilarity	matrices.	OMsf	and	LOMsf	were	highly	correlated.	LOMsf	

also	had	moderately	high	correlations	with	OMlev,	OMtr,	and	LOMtr.	Therefore,	based	on	

the	Mantel	correlations,	the	five	dissimilarity	measures	could	be	categorized	as	the	

following	two	groups:	Group	1:	OMlev,	OMtr,	and	LOMtr;	Group	2:	OMsf	and	LOMsf.	



	

	

71 

Adjusted	Rand	Index	

Clustering	is	commonly	used	to	identify	patterns	and	characterize	sequences	(64).	

The	dissimilarity	matrices	are	the	basis	of	sequence	clustering.	For	demonstration,	the	k-

medoids	clustering	was	used	in	this	case	study.	K-medoids	is	a	widely	used	technique	for	

clustering	with	categorical	data	(such	as	sequences)	(16).	Because	the	CRSS	crash	cases	

were	weighted	to	represent	the	population,	a	weighted	k-medoids	algorithm	was	applied	to	

consider	sequence	weights	(160).	

To	compare	the	performance	of	dissimilarity	measures	in	clustering,	identical	

clustering	settings	were	used	on	all	five	OM	dissimilarity	matrices	to	generate	clustering	

results,	which	were	compared	with	the	same	benchmark.	The	CRSS	crash	typology	(derived	

from	the	variable	“ACC_TYPE”)	was	used	as	a	benchmark	in	this	chapter.	As	defined	by	

CRSS,	the	ACC_TYPE	variable	“identifies	the	attribute	that	best	describes	the	type	of	crash	

this	vehicle	was	involved	in	based	on	the	First	Harmful	Event	and	the	precrash	

circumstances”.	Although	crash	sequences	conveyed	more	information	than	the	First	

Harmful	Event	and	precrash	circumstances,	the	ACC_TYPE	typology	was	considered	

feasible	as	a	benchmark	for	dissimilarity	measure	comparison	because	this	typology	could	

partially	reflect	the	sequence	patterns.	

The	ACC_TYPE	was	recoded	into	15	types	(see	Table	A	-	2	and	Table	A	-	3	in	the	

Appendix	for	details).	To	match	that	number,	the	target	cluster	number,	k,	was	also	set	to	

15	for	the	weighted	k-medoids	clustering.	To	confirm	that	k=15	was	an	appropriate	value,	

for	each	combination	of	encoding	scheme	and	dissimilarity	measure,	a	range	of	k	values	

were	tested	with	clustering	quality	indices	plotted.	An	example	of	clustering	quality	

measures	for	the	OMlev	measure	under	three	encoding	schemes	are	shown	in	Figure	18.	
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(a) Original Encoding 

 
(b) Encoding Scheme 1 

 
(c) Encoding Scheme 2 

Figure	18		Clustering	quality	of	the	OMlev	measure	
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Four	clustering	quality	indices	were	used	for	evaluation,	the	Weighted	Average	

Silhouette	Width	(ASWw),	Hubert’s	Gamma	(HG),	Point	Biserial	Correlation	(PBC),	and	

Hubert’s	C	(HC)	(160).	An	optimal	k	value	would	generate	maximum	ASWw,	HG,	and	PBC	

(all	range	from	-1	to	1),	and	minimum	HC	(ranges	from	0	to	1).	The	charts	in	Figure	18	

present	standardized	values	of	clustering	quality	indices	for	easier	identification	of	good	k	

values,	and	k=15	was	shown	to	ensure	satisfactory	clustering	quality.	

To	measure	the	agreement	between	clustering	results	and	the	benchmark	(CRSS	

crash	type),	the	Adjusted	Rand	Index	(ARI)	was	used	(143,	164).	With	a	set	of	clustering	

results,	Y,	and	the	crash	type	grouping	benchmark,	X,	a	contingency	table	could	be	written	

as:	

 Y1 Y2 ... Ys Sum 

X1 n11 n12 ... n1s a1 

X2 n21 n22 ... n2s a2 
... ... ... ... ... ... 
Xr nr1 nr2 ... nrs ar 

Sum b1 b2 ... bs  

The	ARI	was	then	calculated	as:	

𝐴𝑅𝐼 =
∑ E*!&

%
H!& -Q∑ ++!% .! ∑ E,&

%
H& R/+*%.

-
%Q∑ ++!% .;! ∑ E,&% H& R-[∑ ++!% .! ∑ E,&% H& ]/+*%.

	 	 	 	 [11]	

where	nij	=	the	number	of	sequences	assigned	to	both	groups	Xi	and	Yj,	with	1	≤	i	≤	r	and	1	≤	

j	≤	s;	𝑎" = ∑ 𝑛"9A
9() ;	and	𝑏9 = ∑ 𝑛"9@

"() .	The	ARI	ranges	from	-1	to	1.	An	ARI	of	0	means	a	

random	agreement	and	the	two	groupings	can	be	treated	as	independent.	An	ARI	of	1	

means	the	two	groupings	are	identical	(143,	165).		
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For	LOM	measures	(LOMtr	and	LOMsf)	with	parameters	to	adjust	indel	costs	(see	

Equation	10),	a	sensitivity	analysis	was	conducted	to	identify	changes	in	ARI	with	changes	

in	indel	cost	parameters	and	find	the	parameter	values	for	the	optimal	ARIs.	The	results	of	

sensitivity	analysis	were	plotted	as	shown	in	Figure	19.	Indel	cost	parameter	e	(the	weight	

on	the	maximum	substitution	cost)	values	ranging	from	0	to	0.4	with	an	increment	of	0.01	

were	tested.	The	corresponding	parameter	g	(the	weight	on	the	average	of	substitution	

costs	between	inserted	element	and	its	adjacent	elements)	values	were	set	based	on	the	

relationship	𝑔 = 1 − 2𝑒.	Based	on	the	plots,	we	found	that	in	general,	a	very	small	e	value	

(e.g.,	around	0.1)	would	lead	to	a	good	ARI	value.	However,	a	sensitivity	test	would	be	

helpful	to	identify	the	optimal	parameter	settings	for	specific	combination	of	sequence	

encoding	scheme	and	dissimilarity	measure.	
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LOMtr LOMsf 

  
(a) Original Encoding 

  
(b) Encoding Scheme 1 

  
(c) Encoding Scheme 2 

Figure	19		ARI	sensitivity	to	the	LOM	parameter	e	
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Comparing	all	combinations	of	sequence	encoding	schemes	and	dissimilarity	

measures,	ES1	and	LOMtr	measure	obtained	the	largest	ARI,	as	shown	in	Table	10.	Under	

each	encoding	scheme,	the	best	performing	dissimilarity	measures	were	LOMtr	for	the	OE	

and	ES1,	and	OMlev	for	ES2.	We	also	observed	that	the	simple	OMlev	measure	performed	

generally	well	across	all	encoding	schemes.	

Table	10		Comparison	of	ARIs	

Measure ARI 

Original Encoding Encoding Scheme 1 Encoding Scheme 2 

OMlev 0.313 0.355 0.265 
OMtr 0.313 0.316 0.248 
OMsf 0.193 0.171 0.184 
LOMtr* 0.319 0.359 0.249 
LOMsf* 0.218 0.223 0.194 

Note: * Showing best results from sensitivity analysis. 

	

In	the	study	of	single-vehicle	roadside	departure	crash	sequences	by	Wu	et	al.,	a	

Cohen’s	Kappa	statistic	was	used	to	measure	the	agreement	between	clustering	results	and	

the	original	crash	typology	in	FARS,	and	a	0.28	Kappa	value	was	deemed	satisfactory	(15).	

The	ARI	is	equivalent	to	Cohen’s	Kappa	(166).	Therefore,	an	ARI	about	0.28	or	larger	was	

considered	satisfactory	in	this	case	study.	Regardless	of	the	absolute	values	of	ARI,	for	the	

purpose	of	comparison,	emphasis	was	given	to	the	relative	values	of	ARI	obtained	using	

different	dissimilarity	measures	under	different	encoding	schemes.	

Results	from	the	Mantel	tests	and	clustering	performance	evaluation	together	

showed	that	highly	correlated	dissimilarity	measures	performed	similarly	in	clustering.	In	

this	interstate	single-vehicle	case	study,	Group	1	dissimilarity	measures	performed	better	
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and	yielded	higher	ARIs	than	Group	2	measures.	In	Group	1,	OMlev	is	the	simplest	

dissimilarity	measure	that	needs	the	least	effort	(i.e.,	lowest	computational	cost)	for	

sequence	comparison	and	clustering.	With	similar	performances,	OMlev	is	considered	

preferable	for	this	case	study.	

3.7.3	Sequence	clustering	results	

Using	the	OMlev	dissimilarity	measure,	a	clustering	on	a	sample	of	2,676	interstate	

highway	single-vehicle	crash	sequences	was	carried	out,	with	three	encoding	schemes	(the	

OE,	ES1,	and	ES2).	The	sequences,	under	each	encoding	scheme,	were	divided	into	15	

clusters.	To	examine	the	characteristics	of	the	clusters,	compare	the	results	from	sequence	

clustering	to	the	crash	typologies	provided	by	CRSS	(see	Table	A	-	2	and	Table	A	-	3	in	the	

Appendix	for	details),	and	understand	what	the	clusters	convey,	the	results	were	visualized	

using	an	alluvial	diagram,	as	shown	in	Figure	20.	

The	diagram	shows	how	the	crashes	were	characterized	by	1)	the	CRSS	crash	

configuration	(CC),	2)	CRSS	crash	type	(CT),	3)	sequence	clustering	with	original	encodings	

(OE),	4)	sequence	clustering	with	Encoding	Scheme	1	(ES1),	and	5)	sequence	clustering	

with	Encoding	Scheme	2	(ES2).	In	the	diagram,	crashes	were	illustrated	as	alluvia	and	

color-coded	based	on	the	CRSS	crash	configuration,	the	“flows”	of	the	alluvia	show	how	the	

crashes	were	re-grouped	as	we	switch	from	one	characterization	method	to	another.	For	

each	characterization	method,	the	grouping	of	crashes	was	shown	as	a	stack	of	boxes,	with	

the	height	of	box	indicating	the	proportion	of	that	group	in	the	total	sample.	To	identify	

crash	groups,	in	the	CT	and	CC	stacks,	boxes	were	labeled	with	IDs	of	crash	categories.	In	
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the	clustering	generated	stacks	–	OE,	ES1,	and	ES2,	boxes	were	labeled	with	IDs	of	cluster	

medoids.	

	
Note: Labels in CC and CT indicate the categories. Please see the Appendix for details.  

Numbers in OE, ES1, and ES2 indicate the IDs of cluster medoids (sequences numbered from #1 to #2676). 

Figure	20		Alluvial	diagram	of	clustering	results	with	the	OMlev	measure	

	

The	alluvial	diagram	shows	that	the	A	type	(classified	as	right	roadside	departure	in	

CC)	and	the	B	type	(classified	as	left	roadside	departure	in	CC)	crashes	were	re-grouped	

extensively	when	sequence	clustering	was	applied,	and	mixed	into	different	clusters.	

However,	the	C	type	(forward	impact	in	CC)	were	not	mixed	with	the	other	types	as	much	

in	the	sequence	clustering	process.	The	study	by	Wu	et	al.	on	roadside	departure	crashes	

explained	the	reason	for	such	an	observation	(15).	Roadside	departure	crashes	in	CRSS	
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were	classified	based	on	pre-crash	conditions	and	the	first	harmful	event,	thus,	many	

details	in	crash	progression	were	not	considered.	For	example,	a	crash	classified	as	a	right	

roadside	departure	may	include	events	of	a	left	roadside	departure,	returning	to	roadway,	

a	right	roadside	departure,	and	hitting	roadside	objects.	Sequences	of	events	record	such	

detailed	stories	of	crashes,	and	the	characterization	based	on	sequence	of	events	is	

expected	to	generate	different	results	from	the	CRSS	crash	typology.	

In	addition	to	showing	how	the	original	CC	and	CT	were	regrouped,	the	alluvial	

diagram	also	shows	how	the	different	encoding	schemes	affect	the	clustering	results.	

Regrouping	of	sequences	happened	from	OE	to	ES1,	and	was	more	extensive	from	ES1	to	

ES2.	To	further	present	the	differences,	more	detailed	sequence	clustering	results	with	the	

three	encoding	schemes	are	shown	in	Table	11.	Each	sub-table	shows	the	clusters,	their	

medoids,	and	the	percentages	of	crashes	they	represent.	For	each	cluster,	a	description	of	

the	representative	sequence	is	provided.	A	representative	sequence	is	the	dominant	

sequence	in	a	cluster,	making	up	the	largest	proportion.	Representative	sequences	were	

extracted	by	sorting	sequences	in	each	cluster.	Note	that	a	representative	sequence	does	

not	cover	all	sequences	in	a	cluster	but	is	the	vast	majority	of	them.	
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Table	11		Sequence	clustering	results	with	the	OMlev	measure	

(a) Original Encoding 

Cluster 
# 

% Representative Sequence Description 
Pre-crash Events Avoidance 

Maneuver 
Collision Events 

2506 11 Moving Straight-RORR Avoidance Unknown Hit Fixed Object and/or Rollover 
2372 5 Negotiating Curve-RORR Avoidance Unknown Hit Fixed Object and/or Rollover 
1075 2 Moving Straight-RORR No Avoidance Hit Fixed Object and/or Rollover 
95 4 Moving Straight-RORR Steering R Hit Fixed Object and/or Rollover 
220 4 Moving Straight-Speeding-RORR Avoidance Unknown Hit Fixed Object and/or Rollover 
1207 9 Negotiating Curve-Speeding-RORL Avoidance Unknown Hit Fixed Object and/or Rollover 
2462 3 Moving Straight-Poor Surface-ROR Avoidance Unknown Hit Fixed Object and/or Rollover 
2418 3 Moving Straight-Tire Issue-ROR Avoidance Unknown Hit Fixed Object and/or Rollover 
2538 14 Moving Straight-RORL Avoidance Unknown Hit Fixed Object and/or Rollover 
2074 6 Negotiating Curve-RORL Avoidance Unknown Hit Fixed Object and/or Rollover 
2598 5 Moving Straight-RORL No Avoidance Hit Fixed Object and/or Rollover 
2568 8 Moving Straight-Speeding-RORL Avoidance Unknown Hit Fixed Object and/or Rollover 
243 4 Moving Straight-Other in Lane-ROR Steering L Hit Fixed Object and/or Rollover 
2552 5 Moving Straight-Object in Lane Avoidance Unknown Hit Object 
2671 14 Moving Straight-Animal/Ped/Bike in Lane Avoidance Unknown Hit Animal/Ped/Bike 

Note: % of weighted sample total of 385,484 crashes. 
RORR = run-off-road right; RORL = run-off-road left; ROR = run-off-road (right or left). 
Steering R = steering right; Steering L = steering left. 

	
(b) Encoding Scheme 1 

Cluster 
# 

% Representative Sequence Description 
Pre-crash Events Avoidance 

Maneuver 
Collision Events 

2674 13 Moving Straight-RORR Avoidance N Hit Fixed Object and/or Rollover 
306 5 Negotiating Curve-RORR Avoidance N Hit Fixed Object and/or Rollover 
2580 4 Moving Straight-Other Vehicle in Lane Steering R Hit Fixed Object and/or Rollover 
2640 4 Moving Straight-Speeding-RORR Avoidance N Hit Fixed Object and/or Rollover 
2421 3 Moving Straight-Control Loss Other-ROR Avoidance N Hit Fixed Object and/or Rollover 
225 9 Negotiating Curve-Speeding-ROR Avoidance N Hit Fixed Object and/or Rollover 
2660 3 Moving Straight-Control Loss-ROR Avoidance N Hit Fixed Object and/or Rollover 
2672 4 Moving Straight-Equip Failure-ROR Avoidance N Hit Fixed Object and/or Rollover 
2667 15 Moving Straight-RORL Avoidance N Hit Fixed Object and/or Rollover 
2536 7 Negotiating Curve-RORL Avoidance N Hit Fixed Object and/or Rollover 
2568 8 Moving Straight-Speeding-RORL Avoidance N Hit Fixed Object and/or Rollover 
117 5 Moving Straight-Speeding-Other Vehicle in Lane-RORL Steering L Hit Fixed Object and/or Rollover 
2552 5 Moving Straight-Object in Lane Avoidance N Hit Object 
2671 13 Moving Straight-Animal/Ped/Bike in Lane Avoidance N Hit Animal/Ped/Bike 
2485 2 Moving Straight-Other/Unknown Event Avoidance N Hit Fixed Object and/or Rollover 
Note: % of weighted sample total of 385,484 crashes; Avoidance N = avoidance unknown / no avoidance. 
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(c) Encoding Scheme 2 

Cluster 
# 

% Representative Sequence Description 
Pre-crash Events Avoidance 

Maneuver 
Collision Events 

2674 23 Moving Straight-Event to This Vehicle Avoidance N Hit Fixed Object and/or 
NCH 

2669 9 Negotiating Curve-Event to This Vehicle Avoidance N Hit Fixed Object and/or 
NCH 

1502 3 Moving Straight/Negotiating Curve-Event to This 
Vehicle 

Steering R Hit Fixed Object and/or 
NCH 

801 2 Moving Straight-Control Loss Brake Hit Fixed Object and/or 
NCH 

2630 2 Changing Lanes/Merging-Event to This Vehicle Avoidance N Hit Fixed Object and/or 
NCH 

2615 2 Changing Lanes/Merging-Control Loss Avoidance N Hit Fixed Object 
2580 3 Moving Straight/Negotiating Curve-Vehicle/Animal/ 

Ped in Lane 
Steering R Hit Fixed Object 

2661 10 Negotiating Curve-Control Loss Avoidance N Hit Fixed Object and/or 
NCH 

2660 20 Moving Straight-Control Loss Avoidance N Hit Fixed Object and/or 
NCH 

2666 2 Moving Straight/Changing Lanes-Event to This Vehicle Steering L NH-Hit Fixed Object 
2675 4 Moving Straight-Vehicle/Animal in Lane Steering L NH-Hit Fixed Object 
2552 5 Moving Straight/Negotiating Curve-Object in Lane Avoidance N Hit Object 
2658 1 Negotiating Curve-Animal/Ped/Bike in Lane Avoidance N Hit Animal/Ped/Bike 
2671 12 Moving Straight-Animal/Ped/Bike in Lane Avoidance N Hit Animal/Ped/Bike 
2485 2 Moving Straight-Other/Unknown Event Avoidance N NCH-Hit Fixed Object 
Note: % of weighted sample total of 385,484 crashes. 

NCH = Non-collision harmful event; NH = Non-harmful event; Avoidance N = avoidance unknown / no avoidance. 
	

With	the	original	CRSS	encoding	scheme,	crash	sequences	were	characterized	based	

on	detailed	pre-crash	events,	generating	sequence	types	that	are	suitable	for	crash	

causation	analysis	and	scenario	generation	for	AV	and	ADAS	testing.	With	ES1,	sequences	

were	characterized	based	on	consolidated	event	categories,	keeping	enough	details	in	pre-

crash	events	to	differentiate	actions	and	collision	events	to	reflect	potential	injury	risks.	

Sequence	types	generated	with	ES1	are	suitable	for	scenario	generation	and	crash	injury	

severity	modeling.	With	ES2,	sequences	were	categorized	based	on	further	consolidated	

event	categories,	generating	sequence	types	suitable	for	analyzing	crash	frequencies.	

To	further	interpret	the	sequence	clustering	results	and	demonstrate	the	

effectiveness	of	the	sequence	analysis	methodology,	the	sequences	assigned	to	each	cluster	
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under	OE	was	reviewed	manually	with	details	summarized	as	shown	in	Table	12.	The	15	

sequence	clusters	were	further	categorized	into	three	types,	1)	the	run-off-road	(ROR)	

crashes	(13	clusters),	2)	crashes	with	objects	on	the	road	(1	cluster),	and	3)	crashes	with	

animals,	non-motorized	road	users,	or	non-collision	harmful	events	(1	cluster).	For	each	

type,	sequence	clusters	were	summarized	in	a	sub-table	of	Table	12.	In	each	sub-table,	

clusters	are	labeled	with	corresponding	medoid	IDs	and	simplified	representative	

sequences.	Each	sub-table	also	shows	the	number	of	sequences	in	each	cluster,	major	crash	

categories	(based	on	interpretation	of	sequences),	a	mis-match	ratio	calculated	as	the	

percentage	of	sequences	assigned	to	the	clusters	but	did	not	belong	to	any	of	the	major	

crash	categories,	and	other	information	such	as	the	percentage	of	crashes	happened	on	

curve	roads	and	the	percentage	of	crashes	involving	rollovers.	

For	each	ROR	crash	sequence	cluster,	a	mismatch	ratio	was	calculated	as	the	

proportion	of	non-ROR	crash	sequences	in	the	cluster.	The	sequence	analysis	was	able	to	

correctly	differentiate	the	directions	of	ROR.	For	crash	sequences	with	both	ROR	to	the	

right	and	ROR	to	the	left,	the	sequence	analysis	was	able	to	sort	out	the	order	of	events	and	

assign	sequences	to	correct	clusters	by	putting	more	weight	to	the	direction	of	the	first	

happened	ROR	event.	Sequences	with	rollover	events	occurred	in	all	the	ROR	clusters,	with	

different	percentages.	Twelve	out	of	13	ROR	crash	sequence	clusters	of	the	sequence	

clusters	yielded	a	mismatch	ratio	in	the	range	of	0%	and	4.7%.	The	only	cluster	with	a	

mismatch	ratio	of	15%	was	Cluster	#2598.	The	mismatched	sequences	in	Cluster	#2598	

were	crashes	with	non-motorized	road	users	or	non-collision	harmful	events	(e.g.,	fell	out	

of	vehicle,	fire	or	explosion)	where	the	driver	did	not	make	any	avoidance	maneuver.		
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Table	12		Detailed	interpretation	of	sequence	clustering	results	with	OE	
(a) Run-Off-Road (ROR) Crashes 

Cluster Total ROR Category Mismatch (Non-ROR) Sequences with Rollover 

R L R+L L+R Count % Count % 

2506-ST-RORR 366 310 1 28 15 7 1.9 138 37.7 
2372-C-RORR 135 114 1 12 6 2 1.5 23 17.0 
1075-ST-RORR-NA 76 69 0 4 3 0 0.0 22 28.9 
95-ST-RORR-SR 109 89 8 8 3 1 0.9 19 17.4 
220-ST-SPD-RORR 111 107 0 1 2 1 0.9 35 31.5 
2462-ST-PoorSurf-ROR 75 39 26 2 5 1 1.3 8 10.7 
2418-ST-FlatTire-ROR 85 26 53 2 3 0 0.0 27 31.8 
2538-ST-RORL 398 0 318 7 67 0 0.0 118 29.6 
2074-C-RORL 169 1 143 0 25 0 0.0 44 26.0 
1207-C-SPD-RORL 236 65 127 12 13 11 4.7 48 20.3 
2598-ST-RORL-NA 133 0 102 2 7 20 15.0 20 15.0 
2568-ST-SPD-RORL 204 7 178 2 12 2 1.0 30 14.7 
243-ST-OtherInRd-SL 134 9 108 3 10 4 3.0 32 23.9 
Note: ST = Moving straight; C = Negotiating curve; SPD = Speeding. 

NA = No avoidance; SR = Steering right; SL = Steering left. 
PoorSurf = Poor road surface; FlatTire = Flat tire; OtherInRd = Other vehicle encroached into road. 
In ROR Category: R = Right; L = Left; R+L = First right then left; L+R = First left then right. 

	
(b) Crashes with Objects 

Cluster Total Category Mismatch Curve Road With Rollover 
Object Object-Related Count % Count % Count % 

2552-Object 112 106 5 1 0.9% 10 8.9 7 6.3 

	
(c) Crashes with Animals/Non-motorized Road Users/Non-collision Harmful (NCH) Events 

Cluster Total Category Mismatch Curve Road 
Animal Animal-Related Pedestrian Pedalcyclist NCH Count % Count % 

2671-Animal 333 263 2 31 15 16 6 1.8 19 5.7 

	

For	the	two	non-ROR	crash	clusters,	Cluster	#2552	(crashes	with	objects)	and	

Cluster	#2671	(crashes	with	animals	or	others),	the	mismatch	ratios	were	calculated,	

respectively,	as	the	proportion	of	non-object	(or	object-related)	crash	sequences	and	the	

proportion	of	crash	sequences	that	did	not	fall	into	the	categories	of	animal,	animal-related,	

non-motorized	road	user,	or	non-collision	harmful	events.	For	both	clusters,	the	mismatch	
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ratios	were	lower	than	2%.	Crashes	with	objects	had	6.3%	sequences	with	rollover	events,	

but	no	rollover	occurred	in	crashes	with	animals	or	others.	

The	detailed	interpretation	of	sequence	clustering	results	showed	that	the	sequence	

analysis	methodology	was	effective	in	identifying	patterns	in	crash	sequences,	with	low	

mismatch	ratios.	Also,	with	OE,	the	comparison	and	clustering	of	sequences	were	based	

more	on	crash	causes	rather	than	the	outcomes,	confirming	that	OE	is	more	appropriate	for	

the	analysis	of	crash	causations	than	the	other	two	encoding	schemes.	For	example,	some	

crashes	originally	classified	as	ROR	were	caused	by	objects	on	the	road	or	animal	on	the	

road,	were	assigned	into	clusters	of	object	or	animal-related	crashes	rather	than	ROR	

crashes.	Also,	by	using	OE	to	characterize	crashes	based	on	detailed	pre-crash	events	and	

clearly	identify	crash	causes,	we	can	accurately	recreate	pre-crash	scenarios	for	the	testing	

of	AVs	and	ADAS.	

3.8	Conclusions	

Crash	sequence	analysis	supports	crash	characterization,	which	has	importance	in	

enhancing	understanding	of	crashes	and	identifying	safety	countermeasures	(15,	74,	77,	87,	

88).	Sequence	analysis	methods	have	recently	been	adapted	to	traffic	crash	study	and	

proved	to	be	effective	in	characterizing	crashes	and	providing	new	insights	(15,	16,	80).	

However,	there	are	various	techniques	and	details	in	adapting	sequence	analysis	to	traffic	

crash	study,	which	have	not	been	systematically	presented	or	studied.	

In	this	chapter,	a	methodology	for	crash	sequence	analysis	was	introduced.	The	

methodology	consists	of	steps	including	data	processing,	sequence	encoding	of	crashes,	

dissimilarity	measuring,	and	clustering.	Crash	sequence	encoding	and	sequence	
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dissimilarity	measures	are	emphasized	in	this	chapter,	because	encodings	are	highly	

domain	specific	and	dissimilarity	measures	are	the	foundations	of	sequence	clustering.	

Through	a	case	study	using	real-world	crash	sequence	data,	this	chapter	presented	the	

effects	of	different	encoding	schemes	and	dissimilarity	measures	on	crash	characterization.	

Also,	the	procedure	of	selecting	appropriate	encoding	schemes	and	dissimilarity	measures	

for	different	use	cases	was	demonstrated.	

The	findings	from	the	case	study	suggest	that	the	choice	of	encoding	schemes	and	

dissimilarity	measures	depends	on	the	purpose	of	crash	analysis.	As	a	contribution,	this	

chapter	developed	and	demonstrated	a	methodology	that	is	ready	to	be	applied	to	select	

the	most	appropriate	technique	for	future	crash	sequence	studies.	The	findings	also	

suggest	that	encoding	schemes	can	be	developed	to	be	more	or	less	abstract	to	

accommodate	different	use	cases	of	crash	sequence	analysis.	Dissimilarity	measures	

considered	feasible	for	crash	sequence	analysis	were	introduced	and	compared.	To	select	

the	most	appropriate	dissimilarity	measures,	the	differences	in	measure	properties	and	

sensitivities	should	be	considered	in	addition	to	clustering	performances.	

The	findings	were	supported	by	a	case	study	of	single-vehicle	crashes	on	United	

States’	interstate	highways.	Three	encoding	schemes	were	used	to	match	the	needs	of	crash	

causation	analysis,	scenario	generation	for	AV	and	ADAS	safety	testing,	and	crash	

frequency/injury	severity	modeling.	The	properties	of	nine	dissimilarity	measures	were	

compared	to	select	five	OM	measures	for	further	comparison	in	the	numerical	analysis	with	

a	sample	of	2,676	crashes	(representing	a	weighted	total	of	385,484	crashes)	from	the	

2016-2018	NHTSA	CRSS	database.	The	case	study	results	showed	that	for	the	sequence	

analysis	of	interstate	single-vehicle	crashes,	the	OMlev	(i.e.,	Levenshtein	Distance)	was	the	
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preferable	dissimilarity	measure	due	to	its	overall	good	clustering	performance	and	low	

computational	cost.	The	original	CRSS	sequence	encoding	scheme	was	suitable	for	crash	

causation	analysis	and	scenario	generation	for	testing	of	AVs	and	ADAS,	the	more	abstract	

Encoding	Scheme	1	was	suitable	for	crash	scenario	generation	and	crash	injury	severity	

modeling,	and	the	most	abstract	Encoding	Scheme	2	was	suitable	for	analyzing	collision	

frequencies.	Detailed	interpretation	of	sequence	clustering	results	validated	the	

effectiveness	of	the	proposed	sequence	analysis	methodology.	

The	purpose	of	this	chapter	was	to	develop	and	demonstrate	a	crash	sequence	

analysis	methodology	that	is	applicable	to	various	sources	of	crash	sequence	data.	The	

range	of	dissimilarity	measures	compared	in	this	chapter	could	also	serve	as	a	general	list	

of	candidates	for	crash	sequence	analysis.	Considering	that	the	case	study	was	carried	out	

on	a	specific	subset	of	a	national-level	crash	database,	the	specific	Mantel	test	and	

clustering	performance	(i.e.,	ARI)	results	may	not	be	necessarily	generalizable.	Apart	from	

using	an	existing	crash	typology,	clustering	benchmarks	can	be	obtained	in	multiple	other	

ways.	Two	examples	are	1)	expert-opinion-based	clustering	and	2)	crash	classifications	

using	criteria	other	than	sequences	(e.g.,	most	harmful	events,	manner	of	collision,	and	

injury	severity)	(167).	Decisions	on	the	choice	of	dissimilarity	measures	and	evaluation	

benchmarks	should	be	made	according	to	data	availability	and	specific	analytical	needs.	
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Chapter	4 Automated	Vehicle	Crash	Sequences:	Patterns	and	Potential	

Uses	in	Safety	Testing	

4.1	Introduction	

Improving	traffic	safety	is	one	of	the	primary	motivations	for	developing	automated	

vehicles	(AVs).	Apart	from	safer	roads,	AVs	are	predicted	to	bring	other	potential	benefits	

such	as	improved	mobility,	better	accessibility,	lower	energy	consumption,	and	more	

efficient	supply	chains	(18).	Safety	is	prioritized	as	the	top	U.S.	Government	Automated	

Vehicle	Technology	Principle	(18).	Private	and	public	organizations	are	taking	efforts	to	

ensure	AV	safety	by	extensively	testing	the	vehicles	on	both	closed	courses	and	public	

roads	(53,	54).	In	2019,	more	than	1,400	automated	vehicles	were	tested	by	more	than	80	

organizations	across	36	U.S.	states	and	Washington,	D.C.	(55).	

Since	2014,	the	California	Department	of	Motor	Vehicles	(DMV)	has	required	all	

permit-holding	organizations	that	test	AVs	on	California	public	roads	to	submit	AV	collision	

reports	(43).	Prior	to	January	2020,	two	hundred	and	thirty-three	(233)	AV	crashes	were	

reported.	In	168	of	the	reported	cases,	the	AV	was	in	automatic	driving	mode	before	

disengagement	or	collision.	

AV	crash	reports	are	a	valuable	data	source	for	research	to	understand	AV	crash	

patterns.	Prior	explorations	of	California	AV	crashes	provided	some	insights	in:	

• AV	crash	distribution	by	features	such	as	manner	of	collision,	AV-testing	

organization,	year,	and	time	of	day	

• Contributing	factors	of	AV	crashes	and	disengagements	
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• AV	safety	performance,	measured	by	crash	frequency	per	unit	distance,	

compared	with	conventional	(human-driven)	vehicles	

Crash	information	reported	from	AV	field	testing	is	useful	in	AV	test	scenario	design.	For	

example,	Waymo	is	using	data	from	field	testing	in	developing	challenging	scenarios	for	

closed-course	and	simulation-based	AV	testing	(168).	

AV	collision	reports	provide	much	more	information	than	what	has	been	used	in	

previous	studies.	Sequence	of	events,	which	can	be	extracted	from	the	crash	report	

narratives,	consists	of	information	of	chronologically	ordered	events	happened	in	the	

crash.	Many	analytical	methods	commonly	used	in	studying	genome	sequences	can	be	used	

to	characterize	crash	sequences.	Compared	with	summarizing	crashes	with	manners	of	

collision	or	contributing	factors,	a	crash	characterization	based	on	sequence	of	events	

better	captures	the	crash	progression	characteristics.	Differences	in	events	or	actions,	and	

the	order	of	events	or	actions	can	lead	to	different	crash	outcomes	(15,	70).	

The	primary	objective	of	this	chapter	is	to	investigate	the	patterns	in	sequence	of	

events	in	AV	crashes.	The	secondary	objective	of	this	chapter	is	to	discuss	potential	uses	of	

crash	sequences	in	scenario	design	for	AV	safety	testing.	Sequences	of	events	were	

extracted	from	168	AV	collision	reports’	text	narratives	and	analyzed	using	sequence	

analysis	methods.	Crash	sequences,	in	combination	with	variables	describing	crash	

outcomes	and	variables	describing	the	environment,	can	be	used	to	design	abstract	

semantic	scenarios	(11–13).	A	scenario-based	AV	testing	framework,	with	crash	sequence	

embedded	as	a	core	component,	is	proposed	at	the	end	of	this	study.	
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The	contributions	of	this	chapter	are	two-fold.	This	chapter	adds	to	existing	

literature	on	California	AV	crashes	and	provides	new	insights	by	investigating	AV	crashes	

using	sequence	of	events	analysis.	Beyond	empirical	findings,	this	chapter	points	out	the	

practical	application	of	crash	sequences	with	a	discussion	on	their	potential	uses	in	AV	test	

scenario	design.	

4.2	Literature	Review	

Previous	explorations	of	California	AV	crashes	and	disengagements	started	from	

2015,	when	only	limited	data	was	available	for	aggregated	statistical	analyses.	With	

increased	AV	road	tests	in	recent	years,	more	crashes	and	disengagements	were	reported	

to	the	California	DMV.	More	recent	studies	were	able	to	provide	insights	into	the	

relationship	among	crashes,	disengagements,	and	contributing	factors	by	finding	patterns	

in	AV	crashes	and	disengagements.	Various	analytical	methods	were	used	in	previous	

studies.	Some	examples	are	statistical	summary	and	tests,	regression,	classification	trees,	

hierarchical	Bayesian	modeling,	text	mining,	and	clustering.	

4.2.1	Patterns	in	AV	Crashes	

AVs	crashes	occurred	mostly	in	the	counties	of	Santa	Clara	and	San	Francisco,	since	

the	major	AV	testing	organizations	Waymo	and	Cruise	carry	out	their	AV	testing	in	those	

two	counties,	respectively	(169–171).	AVs	are	tested	on	various	types	of	roads	including	

freeways/expressways,	arterials,	collectors,	and	local	roads.	AV	crashes	occurred	on	all	

roadway	functional	classes,	with	most	crashes	(60%)	on	arterial	roads	(171).	Intersections	

are	hotspots	for	AV	crashes	(48,	169,	171–173).	Rear-end	crashes	were	found	to	be	the	

most	common	(60%)	type	of	AV	crashes	(169–175).	Most	(60%-80%)	AV	crashes	occurred	
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at	a	low	relative	speed	between	the	AV	and	a	second-party	vehicle,	usually	below	10	mph	

(48,	169).	The	number	of	AV	crashes	is	positively	correlated	with	testing	mileage,	both	

periodically	and	cumulatively	(169,	174).	

Two	studies	used	clustering	techniques	to	group	AV	crashes	(170,	172).	Alambeigi	et	

al.	grouped	167	AV	crashes	based	on	themes	in	the	description	section	of	AV	collision	

reports	(172).	Alambeigi	et	al.	identified	five	themes:		

• Driver-initiated	transition	crashes	

• Sideswipe	crashes	during	left-side	overtaking	

• Rear-end	crashes	with	vehicle	stopped	at	an	intersection	

• Rear-end	crashes	with	vehicle	in	a	turn	lane	

• Crashes	with	oncoming	traffic	

Das	et	al.	grouped	151	AV	crashes	into	six	clusters,	based	on	crash	attributes	provided	

directly	by	the	collision	reports	(170).	These	clusters	are:	

• Two-vehicle	non-injury	crashes	with	unknown	values	in	multiple	attributes	

• Single-vehicle	non-injury	crashes	with	unknown	values	in	multiple	attributes	

• Injury	crashes	under	poor	lighting	conditions	during	turning	maneuvers	or	

straight	movement	

• Single-case	outlier	cluster	

• Two	and	multi-vehicle	crashes	with	unknown	values	in	multiple	attributes	

• Crashes	with	AV	stopped	and	adverse	weather	conditions	
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4.2.2	Patterns	in	AV	Disengagements	

AV	disengagements	and	test	mileage	data	were	aggregated	and	analyzed	in	previous	

studies.	The	cumulative	disengagement	number	was	positively	correlated	with	cumulative	

test	mileage	(48,	176).	Based	on	the	mode	of	initiation,	disengagements	were	classified	into	

three	types:	automated,	manual,	and	planned.	Disengagement	types	were	based	on	

whether	the	disengagement	was	initiated	by	AVs,	test	operators,	or	as	a	part	of	a	planned	

fault	injection	campaign	(48,	169,	174).	Before	2018,	not	all	AV	testing	organizations	

reported	disengagements	with	a	clear	differentiation	between	initiation	modes.	In	a	2014-

2016	sample	of	Waymo	reported	disengagements,	about	half	were	manually	initiated,	and	

the	other	half	were	automatically	initiated	(48).	In	the	most	recent	study	of	California	AV	

disengagements	by	Boggs	et	al.,	25%	of	the	sampled	disengagements	were	initiated	by	

human	safety	operators	(177).	The	monthly	automatic	disengagement	number	was	highly	

correlated	with	the	monthly	manual	disengagement	number,	indicating	test	operators'	

trust	in	the	AVs'	capability	to	navigate	through	risks	(174).		

In	terms	of	factors	causing	disengagement,	the	California	DMV	does	not	provide	

predefined	categories,	so	different	categorizations	were	used	in	previous	studies	to	analyze	

the	data	(48,	173,	174,	176–178).	Overall,	system	issues,	including	AVs'	perception,	

planning,	and	decision-making,	caused	over	half	of	the	disengagements.	In	the	Boggs	et	al.	

study,	system	issues	were	reported	to	have	caused	89%	of	the	disengagements,	with	a	

breakdown	into	control	discrepancy	(7%),	hardware	and	software	discrepancy	(26%),	

perception	discrepancy	(21%),	and	planning	discrepancy	(35%)	(177).		
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Disengagement	reaction	time	was	available	in	the	2015-2017	disengagement	

reports,	and	was	another	important	information	studied	in	past	literature	(48,	174,	179).	

The	California	DMV	defined	disengagement	reaction	time	as	"the	period	of	time	elapsed	

from	when	the	autonomous	vehicle	test	driver	was	alerted	of	the	technology	failure,	and	

the	driver	assumed	manual	control	of	the	vehicle"	(48).	The	average	disengagement	

reaction	time	was	estimated	to	be	0.83	s	–	0.87	s	(48,	174,	179).	The	average	

disengagement	reaction	time	is	between	the	average	automobile	brake	reaction	time	of	

1.13	s	and	the	average	motorcycle	brake	reaction	time	of	0.60	s	(179).	Disengagement	

reaction	time	is	expected	to	increase	with	test	operators	becoming	more	comfortable	and	

gaining	trust	in	the	AV’s	handling	of	risky	situations	on	roads	(48,	179).	

4.2.3	Relationship	Among	AV	Crashes,	Disengagements,	and	Contributing	Factors	

Many	more	disengagements	than	AV	crashes	have	occurred	with	some	

disengagements	followed	by	crashes.	Banerjee	et	al.	found	in	the	2014-2016	data	that	23%	

of	AV	crashes	involved	disengagements,	but	a	very	small	fraction	(0.8%)	of	AV	

disengagements	led	to	crashes	(48).	Favarò	et	al.,	using	the	2014-2017	data,	found	that	1	in	

every	178	(0.5%)	disengagements	led	to	a	crash	(176).		

Previous	studies	used	various	statistical	modeling	methods	to	evaluate	the	

relationship	between	contributing	factors	and	AV	crash	outcomes	described	by	crash	type,	

manner	of	collision,	and	severity	(171,	175,	180).	Leilabadi	and	Schmidt	found	that	adverse	

road	surface	conditions	were	significantly	associated	with	a	higher	severity	of	AV	damage.	

Also,	80%	of	the	crashes	when	AV	was	in	automated	driving	mode	were	identified	as	hit-

and-run	crashes,	in	which	40%	were	rear-end	and	40%	were	sideswipe	crashes.	Wang	and	
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Li	explored	the	mechanism	of	contributing	factors	affecting	AV	crash	severity	and	manner	

of	collision,	and	found	that:	

• Injury	crashes	(study	included	cases	from	outside	California)	happened	when	an	

AV	was	in	automated	driving	mode	and	was	responsible	for	the	crashes	

• All	intersection	crashes	were	rear-end,	while	roadway	segment	crashes	with	AVs	

in	automated	driving	mode	were	angle	or	sideswipe	

Boggs	et	al.	focused	on	the	factors	affecting	rear-end	AV	crashes	and	injury	AV	crashes,	and	

found	that:	

• AVs	in	automated	driving	mode	were	more	likely	to	get	involved	in	rear-end	

crashes	(without	specifying	if	AVs	were	rear-ended	or	AVs	rear-ended	others)	

than	AVs	in	manual	driving	mode	or	were	disengaged	from	automatic	driving	

mode	

• In	a	mixed	land	use	environment,	AV	crashes	were	more	likely	to	be	rear-end	

• Higher	speeds	of	second-party	vehicles,	no	marked	centerline,	and	non-clear	

weather	were	more	likely	to	be	associated	with	injury	AV	crashes	

Two	studies	evaluated	the	relationship	between	various	contributing	factors	and	

features	of	AV	disengagements	(173,	177).	Wang	and	Li	explored	factors	leading	to	

disengagements	in	different	stages	of	an	AV’s	operation	(perception,	planning,	and	control	

phases)	and	disengagements	with	different	take-over	time	(divided	into	two	groups	with	a	

threshold	of	0.5	s).	Major	findings	of	Wang	and	Li	were:		

• For	an	AV,	a	larger	number	(>	5)	of	radar	sensors	and	a	more	appropriate	

number	(3-4)	of	LiDAR	sensors	would	lead	to	fewer	disengagements	
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• Disengagements	on	local	roads	and	freeways	were	associated	with	a	shorter	

take-over	time	

Boggs	et	al.	focused	on	factors	affecting	the	mode	of	disengagement	initiation	(manual	or	

automatic),	and	found	that:		

• Planning	discrepancy,	software/hardware	issues,	and	environmental/other	road	

user	issues	all	significantly	increased	the	probability	of	an	automatic	initiation	to	

different	extents	

• More	automatic	initiations	occurred	as	time	progressed	month	by	month	

4.2.4	Safety	Performance	of	AVs	Compared	with	Conventional	Vehicles	

AV	crash	records	were	compared	with	conventional	vehicle	(human-driven	vehicle)	

crash	records,	by	evaluating	crash	rates	(in	crashes	per	mile	driven),	injury	rates	(injuries	

per	mile	driven),	crash	types,	and	crash	severity	(45–48).	Conventional	vehicle	crash	

records	were	obtained	from	databases	such	as	the	National	Highway	Traffic	Safety	

Administration	(NHTSA)	Fatality	Analysis	Reporting	System	(FARS),	National	Automotive	

Sampling	System-General	Estimates	System	(NASS-GES),	and	the	Federal	Highway	

Administration	(FHWA)	Strategic	Highway	Research	Program	Naturalistic	Driving	Study	

(SHRP2	NDS)	database.	With	a	small	sample	size	of	AV	crashes	(fewer	than	20	cases),	

comparative	studies	could	not	reach	an	agreement	nor	a	definite	conclusion	on	whether	

AVs	perform	better	than	conventional	vehicles	in	terms	of	safety	(45–47).	In	a	more	recent	

study	by	Banerjee	et	al.	California	AV	collision	reports	from	2014-2016	(42	crashes)	and	

NHTSA	2015	motor	vehicle	crash	data	were	used	for	an	AV-human	driver	performance	

comparison.	Banerjee	et	al.	claimed	that	current	AVs	are	15	to	4,000	times	worse	than	
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human	drivers	in	terms	of	safety	performance	measured	by	crashes	per	cumulative	mile	

driven	(48).	

4.2.5	Sequence	of	Events	in	Traffic	Crashes	

The	Tri-Level	Study	of	the	Causes	of	Traffic	Accidents	found	that	50%	of	the	2,000	

crashes	studied	were	caused	by	more	than	one	factor	(76).	Sequence	of	events	is	important	

information	for	traffic	crash	investigation,	and	was	recommended	by	the	National	

Transportation	Safety	Board	(NTSB)	to	be	included	in	national	crash	databases	(77).	Crash	

progression	patterns	can	be	discovered	through	crash	sequence	analysis	and	are	helpful	in	

identifying	effective	prevention	strategies	(70).	Sequence	analysis	was	developed	in	

bioinformatics	to	analyze	genome	sequences,	and	is	also	applied	in	social	sciences	(64,	66).	

Genome	sequence	analysis	methods	is	applicable	to	sequence	of	events	to	study	traffic	

crash	patterns	(15,	64).	Wu	et	al.	used	sequence	analysis	on	Fatality	Analysis	Reporting	

System	(FARS)	data	to	group	similar	crashes	and	model	crash	severity	outcomes	(15,	80).	A	

similar	type	of	crash	sequence	data	can	be	extracted	from	the	California	AV	collision	

reports	and	analyzed	using	sequence	analysis	methods.	Through	sequence	analysis,	

frequent	pre-collision	events	can	be	identified,	the	stochastic	relationships	between	events	

can	be	evaluated,	and	whole	sequences	can	be	classified	into	types	that	represent	

distinctive	crash	progression	characteristics.	Sequence	pattern	information,	together	with	

other	crash	attributes	and	environmental	(both	man-made	and	natural)	condition	

variables,	can	be	used	in	designing	representative	AV	test	scenarios.	
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4.3	Data	

4.3.1	AV	Crashes	

AV	collision	reports	from	2014	to	2019	were	obtained	from	the	California	DMV.	

“Report	of	Traffic	Accident	Involving	an	Autonomous	Vehicle	(OL	316)”	was	the	required	

form	for	AV	testing	organizations	to	submit.	The	form	was	updated	in	2017,	adding	

information	such	as	weather,	lighting,	and	road	surface	conditions.	All	AV	collision	reports	

were	archived	by	the	California	DMV	and	are	publicly	available	online.	A	total	of	233	

reports	were	gathered	and	manually	reviewed,	with	key	information	transferred	into	a	

spreadsheet.	The	168	reports	of	crashes	where	the	AV	was	in	automatic	driving	mode	

before	disengagement	or	collision	were	used	for	analysis	in	this	study.	Table	13	presents	a	

summary	of	several	data	elements	of	those	reports.	

AV	crashes	in	California	increased	each	year	during	2015-2019.	Data	show	that	43%	

of	AV	crashes	occurred	in	2019,	due	to	the	fact	that	43%	(2.58	million)	of	AV	testing	miles	

were	driven	in	2019	during	the	five-year	period.	Over	76%	of	AV	crashes	happened	during	

the	months	of	May-November.	Also,	71%	of	AV	crashes	happened	during	daytime	(7:00	am	

–	6:00	pm).	Ninety-five	percent	of	the	AV	crashes	took	place	in	San	Francisco,	Mountain	

View,	and	Palo	Alto,	where	most	AV	testing	was	carried	out	in	California.	

Most	(98%)	of	the	168	AV	crashes	occurred	between	AVs	and	other	road	users,	and	

2%	were	single-vehicle	crashes.	AV	crashes	involving	bicyclists,	e-scooters,	pedestrians,	

and	skateboarders	were	8%	of	all	crashes.	AV	crashes	involving	motorcycles	were	5%	of	all	

crashes.	AV	crashes	mostly	(73%)	took	place	at	intersections	(including	ramp	terminals),	
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followed	by	roadway	segment	(26%)	or	in	a	parking	lot	(2%).	Intersections	where	AV	

crashes	occurred	were	primarily	signal	controlled,	as	stated	in	51%	of	AV	collision	reports.	

Table	13		Summary	of	data	from	California	AV	collision	reports	
Field Count Percentage Field Count Percentage 
Year 

  
Month 

  

2015 9 5% 1 5 3% 
2016 12 7% 2 10 6% 
2017 24 14% 3 9 5% 
2018 50 30% 4 8 5% 
2019 73 43% 5 16 10% 

City 
  

6 19 11% 
Fremont 1 1% 7 19 11% 
Los Altos 5 3% 8 19 11% 
Milpitas 1 1% 9 14 8% 
Mountain View 42 25% 10 25 15% 
Palo Alto 17 10% 11 17 10% 
San Francisco 100 60% 12 7 4% 
Sunnyvale 2 1% Time of Day 

  

AV Testing Organization 
  

Day 119 71% 
Apple 1 1% n/a 6 4% 
Cruise 95 57% Night 43 26% 
Google Auto (Waymo) 22 13% Second Party Type 

  

Jingchi (WeRide) 1 1% Bike 6 4% 
Lyft 1 1% Bus 3 2% 
Pony.AI 2 1% Car 139 83% 
UATC (Uber) 1 1% E-scooter 3 2% 
Waymo 41 24% Motorcycle 8 5% 
Zoox 4 2% n/a 4 2% 

Facility Type 
  

Pedestrian 2 1% 
Road Segment 43 26% Skateboarder 1 1% 
Intersection 122 73% Truck 1 1% 
Parking lot 3 2% Van 1 1% 
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(Table 13 continued) 

Field Count Percentage Field Count Percentage 
Traffic Control 

  
AV Mode 

  

AWSC 11 7% Automatic 127 76% 
Crosswalk Sign 1 1% Automatic-Manual 41 24% 
n/a 52 31% AV Yielding 

  

Signal 86 51% No 109 65% 
Stop Sign 10 6% Yes 59 35% 
TWSC 1 1% Severity 

  

Xwalk Flashing Light 1 1% Injury 20 12% 
Yield Sign 6 4% Non-Injury 148 88% 

Manner of Collision 
  

Second Party Movement 
  

Broadside 12 7% Backing 3 2% 
Hit Object 3 2% Changing Lanes 16 10% 
Other 3 2% Entering Traffic 2 1% 
Rear End 112 67% Making Left Turn 10 6% 
Sideswipe 37 22% Making Right Turn 15 9% 
Vehicle/Pedestrian 1 1% Merging 5 3% 

AV Movement 
  

n/a 6 4% 
Changing Lanes 8 5% Other 2 1% 
Making Left Turn 11 7% Other Unsafe Turning 2 1% 
Making Right Turn 8 5% Parked 1 1% 
Merging 1 1% Passing Other Vehicle 8 5% 
Passing Other Vehicle 1 1% Proceeding Straight 92 55% 
Proceeding Straight 53 32% Slowing/Stopping 6 4% 
Slowing/Stopping 17 10% 

   

Stopped 69 41% 
   

	

Rear-end	(62%)	and	sideswipe	(21%)	were	the	two	most	common	manners	of	

collision	in	AV	crashes.	Injuries,	without	differentiating	between	minor	or	serious,	were	

reported	in	12%	of	the	crashes.	Disengagements	were	reported	in	24%	of	the	crashes.	In	

35%	of	the	cases,	AVs	were	yielding	to	another	road	user	before	a	collision	took	place.	In	

more	than	half	of	the	crash	cases,	AVs	were	stopped	(41%)	or	slowing	down	(10%).	AVs	
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were	proceeding	straight	in	32%	and	turning	in	12%	of	the	crashes.	Second-party	road	

users	were	proceeding	straight	in	55%	and	turning	in	15%	of	the	crashes.	

Of	the	168	AV	crashes,	37%	and	57%	were	reported	by	Waymo	and	Cruise,	

respectively.	During	2015-2019,	Waymo	and	Cruise	ran	the	most	(4.1	million)	and	second	

most	(1.4	million)	public-road	AV	testing	miles	(in	automatic	driving	mode),	respectively.	

Waymo	and	Cruise’s	AV	mileages	accounted	for	67%	and	23%	of	the	total	mileage	(6.2	

million)	reported	by	all	AV-testing	organizations	that	reported	AV	crashes	in	2015-2019.	

Table	14	lists	AV	test	mileages	and	crash	rates	(per	million	miles)	by	organization,	sorted	

by	mileage	in	ascending	order.		

Table	14		2015-2019	AV	test	mileages	and	crash	rates	by	organization	
Organization Test Mileage Mileage Share Crashes Crashes per Million Miles 
Waymo 4,122,878  68.6% 63 15 
Cruise 1,420,360  23.6% 95 67 
Pony.AI 192,642  3.2% 2 10 
Zoox 100,023  1.7% 4 40 
Apple 88,283  1.5% 1 11 
Lyft 42,931  0.7% 1 23 
UATC (Uber) 26,899  0.4% 1 37 
Jingchi (WeRide) 19,067  0.3% 1 52 

All 6,013,083  100.0% 168  28 
	

Waymo	and	Cruise	yielded	crash	rates	of	15	and	67	crashes	per	million	miles	tested.	

Comparatively,	the	2018	passenger	car	crash	rate	in	United	States	was	approximately	4.4	

crashes	per	million	vehicle	miles	traveled	(27).	Note	that	the	AV	crash	rates	are	not	reflective	

of	automatic	driving	systems’	true	safety	performance,	as	there	were	still	human	operator	

interventions	involved	in	the	studied	AV	crashes.	Without	complete	information	from	testing	

automatic	driving	systems	without	human	intervention,	we	cannot	make	a	true	comparison	
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between	 automatic	 driving	 systems	 and	 human	 drivers.	 However,	 the	 information	 from	

currently	available	AV	crash	reports	is	to	some	extent	useful	in	measuring	the	evolution	of	

AV	technology.	

4.3.2	AV	Disengagements	in	Crashes	

AV	disengagement	reports	from	2015	to	2019	were	obtained	from	California	DMV.	

“Annual	Report	of	Autonomous	Vehicle	Disengagement	(OL	311R)”	was	the	required	form	

for	AV-testing	organizations	to	submit.	The	form	was	updated	in	2017,	before	which	no	

uniform	format	for	disengagement	reporting	existed.	Disengagement	reports	provide	

information	such	as	a	summary	of	AV	test	mileages,	number	of	disengagements,	dates,	

locations	(highway	or	street),	and	a	description	of	disengagement	causes.	

Information	from	the	disengagement	reports	were	matched	to	the	AV	crash	records	

which	involved	disengagements.	A	breakdown	of	different	causes	for	AV	disengagements	

followed	by	a	crash	is	shown	in	Table	15.	Categories	of	causes	were	created	based	on	

descriptions	provided	by	different	AV	testing	organizations’	reports,	as	uniform	terms	for	

describing	disengagement	causes	were	not	provided	and	are	not	required	by	the	California	

DMV.	Not	all	disengagements	in	AV	collision	reports	were	in	AV	disengagement	reports.	

For	such	cases,	causes	were	summarized	based	on	the	collision	report	descriptions.	

Table	15		Causes	of	disengagements	involved	in	AV	crashes	
Disengagement Cause Count Percentage 
Operator precaution 19 46% 
Reckless road user 16 39% 
Unwanted movement 3 7% 
Planned 2 5% 
Operator error 1 2% 

Total 41 100% 
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Of	the	41	disengagements	in	AV	crashes,	19	(46%)	were	initiated	by	an	operator	out	

of	precaution,	and	16	(39%)	were	a	reaction	to	a	nearby	reckless	road	user.	The	rest	of	the	

disengagements	were	initiated	due	to	unwanted	AV	movements	(3,	7%),	operator	error	(1,	

2%),	or	were	planned	tasks	for	tests	(2,	5%).	None	of	the	41	disengagements	were	caused	

by	vehicle	system	(perception,	hardware	or	software)	problems.	It	could	not	be	determined	

whether	or	not	all	reckless-road-user-caused	disengagements	were	initiated	by	an	

operator	or	an	AV	itself,	as	the	information	was	not	clearly	stated	in	all	AV	disengagement	

and	collision	reports.	

4.3.3	AV	Crash	Sequences	

An	AV	crash	sequence	consists	of	events	such	as	actions	or	collisions.	A	collision	can	

happen	between	an	AV	and	an	object,	or	between	an	AV	and	another	road	user.	In	some	

crash	cases,	multiple	road	users	were	involved.	For	crash	sequences	used	in	this	study,	AV	

was	denoted	as	“v1”;	a	second-party	road	user	(vehicle,	bicyclist,	pedestrian,	or	others)	that	

collided	with	the	AVs,	was	denoted	as	“v2”;	and	a	third-party	road	user	that	interacted	(but	

may	or	may	not	have	collided)	with	the	AVs	or	second-party	road	users,	was	denoted	as	

“v3”.	

Events	were	extracted	from	text	narratives	in	the	AV	collision	reports,	which	were	

reviewed	and	summarized	manually.	AV	crash	sequence	lengths	ranged	from	2	to	5	events,	

with	an	average	of	2.8.	Events	were	first	recorded	using	short	phrases	such	as	“v1	stop”	

and	“v2	pass	v1	on	right”.	Ordering	of	events	in	sequences	was	based	on	temporal	

information	provided	by	the	text.	When	recording	events,	consistency	was	maintained	in	

the	use	of	short	phrases.	Each	short	phrase	went	through	a	second	round	of	review	and	
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was	encoded	with	a	label,	which	was	a	combination	of	English	alphabet	letters	and/or	

Arabic	numerals.	To	further	enhance	consistency,	phrases	describing	similar	events	(based	

on	our	understanding	of	traffic	crashes	and	judgement)	were	encoded	with	the	same	label.	

For	example,	“v2	run	stop	sign”	and	“v2	run	red	light”	were	encoded	with	the	same	label,	

“V2”,	since	both	phrases	describe	a	second-party	road	user’s	violation	of	traffic	control	at	

an	intersection.	Following	this	procedure	of	“text	narratives	→	short	phrases	→	labels”,	we	

converged	to	a	set	of	35	labels	for	the	encoding	of	497	events,	which	made	up	the	168	AV	

crash	sequences.	Of	the	35	different	labels,	14	denoted	actions	initiated	by	AVs;	14	denoted	

actions	initiated	by	second-party	road	users/objects;	and	7	denoted	actions	initiated	by	

third-party	road	users.	Detailed	encodings	are	listed	in	Table	16.		

Table	16		Event	encodings	
Label Short Phrase Count Label Short Phrase Count 
A1 v1 accelerate/proceed 39 PL1 v1 pass v3 on left 1 
A2 v2 accelerate/proceed 2 PL2 v2 pass v1 on left 13 
B1 v1 back up 1 PL3 v3 pass v1 on left 1 
B2 v2 back up 1 PR2 v2 pass v1 on right 7 
D1 v1 decelerate 32 PR3 v3 pass v1 on right 1 
D2 v2 decelerate 1 R1 v1 make right turn 9 
D3 v3 decelerate 1 R2 v2 make right turn 2 
DG v1 disengage 41 S1 v1 stop 76 
DT v1 detect v2 2 S2 v2 stop 2 
L1 v1 make left turn 11 SA2 v2 stop and proceed 2 
L2 v2 make left turn 9 V2 v2 run stop sign/red light 5 
L3 v3 make left turn 1 X12 v1 contact v2 7 
ML1 v1 merge left 6 X1O v1 hit object 3 
ML2 v2 merge left 16 X21 v2 contact v1 155 
ML3 v3 merge left 6 X32 v3 contact v2 1 
MR1 v1 merge right 7 XO1 object/person contact v1 3 
MR2 v2 merge right 12 Y v1 yield 15 
MR3 v3 merge right 6 

   

	



	

	

103 

Table	17	gives	an	example	of	two	crash	event	sequences.	A	sequence	consists	of	one	

or	more	elements,	each	of	which	represents	a	pre-collision	or	collision	event.	A	

subsequence	is	a	set	of	chronologically	ordered	elements	(following	the	order	in	sequence	

but	not	necessarily	adjacent)	that	appears	in	a	larger	sequence	(64).	A	subsequence	that	

consists	of	consecutive	elements	is	called	a	substring,	or	an	n-gram,	with	n	referring	to	the	

number	of	elements	in	the	subsequence.	For	example,	Sequence	1	and	Sequence	2	in	Table	

17	both	have	a	subsequence	“S1-X21”,	with	two	elements,	“S1”	and	“X21”.	Sequence	1	and	

Sequence	2	both	have	a	substring,	or	2-gram,	“PR2-X21”,	with	two	elements,	“PR2”	and	

“X21”.	Elements,	subsequences,	and	whole	sequences	were	all	analyzed	in	this	study	to	

understand	patterns	in	AV	crashes.	

Table	17		Example	of	crash	event	sequences	
Sequence Element 1 Element 2 Element 3 Element 4 
Sequence 1 S1 PR2 X21 

 

Sequence 2 S1 A1 PR2 X21 
	

4.4	Methodology	

As	mentioned,	the	primary	objective	of	this	chapter	was	to	identify	AV	crash	

sequence	patterns.	Sequences	were	analyzed	at	three	levels:	the	element	level,	

subsequence	level,	and	whole	sequence	level.	Element-level	analysis	investigated	the	basic	

components	of	the	sequence	and	the	components’	weight	in	the	entire	element	space.	

Subsequence-level	analysis	investigated	the	stochastic	relationships	between	elements.	

Whole-sequence-level	analysis	investigated	the	similarities	and	dissimilarities	between	

sequences,	which	were	used	to	identify	groups	or	classes	of	sequences.	In	the	context	of	a	

traffic	crash	sequence	study,	we	were	interested	in	identifying	frequently	occurring	events,	
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quantifying	the	interconnections	between	events,	as	well	as	classifying	crash	progressions.	

In	this	study,	AV	crash	sequence	analysis	focused	on	identifying	patterns	from	these	three	

aspects:	1)	most	frequent	events	and	event	transitions;	2)	disengagements’	role	in	AV	crash	

sequences;	and	3)	characterization	of	AV	crash	sequences.	

Descriptive	analysis	was	used	to	summarize	frequencies	of	events	and	

subsequences	in	AV	crash	sequences.	Stochastic	patterns	in	event	transitions	were	

presented	by	a	transition	matrix.	To	characterize	crash	sequences,	a	cluster	analysis	was	

carried	out.	

Following	the	sequence	analysis,	a	discussion	is	presented	at	the	end	of	this	chapter,	

about	potential	uses	of	AV	crash	sequences	in	scenario-based	AV	safety	testing.	In	the	

discussion,	a	cross-tabulation	analysis	was	used	between	crash	sequence	groups,	other	AV	

crash	attributes,	and	environmental	condition	variables.	In	this	section,	concepts	and	

methods	used	in	AV	crash	sequence	analysis	are	introduced	in	detail.	

4.4.1	Transition	Matrix	

A	transition	matrix	shows	the	probability	of	transition	between	every	pair	of	

adjacent	positions	in	all	sequences	(64).	The	size	of	a	transition	matrix	is	k	´	k,	where	k	is	

the	number	of	elements	in	the	element	universe.	The	rows	of	a	transition	matrix	indicate	

elements	where	transitions	are	from,	and	the	columns	indicate	elements	where	transitions	

are	to.	A	transition	matrix,	denoted	as	P,	has	the	form	shown	in	Figure	21.	Cell	PAB	contains	

the	probability,	p(AB),	that	element	A	is	followed	by	element	B	in	all	cases	that	element	A	

appears	in	the	element	universe,	which	is	calculated	as:	

𝑝(𝐴𝐵) = 𝑝(𝐵!|𝐴!"#) =
$(&')
$(&)

	 	 	 	 	 	 [12]	
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where	n(AB)	=	number	of	times	that	2-gram	AB	appears;	and	

n(A)	=	number	of	times	that	element	A	appears.	

	

Figure	21		Form	of	transition	matrix	P	(64)	

	

The	sum	of	probabilities	in	each	row	is	1.	Note	that	p(AB)	does	not	capture	both	the	

probability	p(Bp|Ap-1)	(the	conditional	probability	that	B	appears	given	that	A	has	just	

appeared)	and	p(Ap-1|Bp)	(the	conditional	probability	that	A	appeared	just	before	given	that	

B	appears)	(64).	Transition	matrix	P	does	not	show	p(Ap-1|Bp),	which	should	be	calculated	

as:	

𝑝(𝐴!"#|𝐵!) =
$(&')
$(')

	 	 	 	 	 	 	 [13]	

where	n(B)	=	number	of	times	that	element	B	appears.	

4.4.2	Measuring	Sequence	Dissimilarity	and	Optimal	Matching	

To	compare	and	group	AV	crashes	based	on	sequences,	the	dissimilarity	(or	

distance)	between	sequences	needs	to	be	measured.	A	common	approach	for	sequence	

comparison	is	optimal	matching	(OM),	which	is	widely	used	in	genome	sequence	and	social	

sequence	analysis	(64,	133).	

When	comparing	two	sequences,	the	distance	between	them	is	defined	by	the	“cost”	

to	transform	a	sequence	to	the	other.	This	transformation	is	called	“alignment”,	and	“cost”	

  Element at position p 
  A B C 

Element at position p-1 
A p(AA) p(AB) p(AC) 
B p(BA) p(BB) p(BC) 
C p(CA) p(CB) p(CC) 
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is	measured	by	the	number	of	different	operations	needed	to	complete	the	alignment.	

There	are	multiple	ways	to	align	two	sequences.	For	example,	Table	18	shows	two	of	the	

multiple	ways	that	can	be	taken	to	align	the	two	sequences	in	Table	17.	The	operations	

applied	include	insertion,	deletion,	and	substitution.	The	cost	of	insertion	or	deletion	is	

denoted	by	“d”	and	is	called	“indel”	cost.	The	cost	of	substitution	is	denoted	by	“s”.	There	

are	other	more	intricate	operations	for	sequence	alignment,	but	indels	and	substitutions	

are	commonly	used	and	have	been	previously	used	for	traffic	crash	sequence	analysis	(15).	

The	sum	of	cost	for	sequence	alignment	is	a	measure	of	dissimilarity	(or	distance)	between	

two	sequences.	In	our	Table	18	example,	the	first	alignment	method	uses	both	indels	and	

substitutions	and	costs	2s+d,	while	the	second	alignment	method	only	uses	indels	and	costs	

d.	Depending	on	the	selection	of	operations	and	setting	of	operation	costs,	there	are	

different	sequence	distance	metrics	(64).	Three	basic	and	commonly	used	ones	are:	

• Levenshtein	distance	that	uses	both	indels	and	substitutions	

• Levenshtein	II	distance	that	uses	only	indels	

• Hamming	distance	that	only	considers	substitutions	

Operation	costs	can	also	be	set	based	on	the	needs	of	analysis	and	the	properties	of	

sequences.	In	previous	analysis	of	traffic	crash	sequences,	the	Levenshtein	distance	was	

used	as	the	measure	of	dissimilarity	(15).	In	this	analysis	of	AV	crash	sequences	also,	the	

Levenshtein	distance	was	used.	
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Table	18		Example	of	ways	to	align	two	sequences	
Sequence 1 S1 PR2 X21   
Sequence 2 S1 A1 PR2 X21  

Alignment 1 
Sequence 1 S1 PR2 X21 ø  
Sequence 2 S1 A1 PR2 X21  
Cost 0 s s d = 2s+d 

Alignment 2 
Sequence 1 S1  PR2 X21  
Sequence 2 S1 A1 PR2 X21  
Cost 0 d 0 0 = d 
Note: Insertion is marked with ø;  

Deletion is marked with strikethrough; and 
Substitution is marked with underline. 

	

As	there	can	be	multiple	ways	of	aligning	a	pair	of	sequences	which	generate	

different	distance	values,	the	alignment	that	generates	the	smallest	distance	value	should	

be	found,	and	the	smallest	distance	should	be	used	as	the	measure	of	dissimilarity	between	

that	pair	of	sequences	(15,	64).	An	OM	procedure	finds	the	dissimilarity	between	every	pair	

of	sequences	in	a	sequence	space.	The	Needleman-Wunsch	algorithm	is	a	classic	OM	

algorithm	which	is	widely	used	in	bioinformatics	to	align	sequences	and	find	sequence	

dissimilarities	(129).	For	two	sequences,	A	and	B,	an	empty	matrix	L,	of	size	length(A)+1	by	

length(B)+1	is	created.	Based	on	a	set	of	indel	and	substitution	costs	(e.g.,	for	Levenshtein	

distance,	indel	and	substitution	costs	are	both	1),	the	Needleman-Wunsch	algorithm	fills	

matrix	L	and	returns	the	smallest	alignment	cost	(distance)	between	sequences	A	and	B.	

Pseudocode	of	the	Needleman-Wunsch	algorithm	is	as	follows	(15,	129).	
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Algorithm Needleman-Wunsch(A, B) 
# initialize 
L <- matrix of size length(A)+1 * length(B)+1 
d <- indel cost 
s <- substitution cost 
# fill the cells of L 
for i = 0 to length(A) 

L(i,0) <- d*i 
for j = 0 to length(B) 

L(0, j) <- d*j 
for i = 1 to length(A) 

for j = 1 to length(B) { 
insert <- L(i, j−1) + d 
delete <- L(i−1, j) + d 
substitute <- L(i−1, j−1) + s 
L(i, j) <- max(insert, delete, substitute) 
} 

# smallest alignment cost (distance) 
return L(length(A), length(B)) 

The	dissimilarity	between	every	pair	of	sequences	in	the	studied	sample	was	

calculated	using	the	Needleman-Wunsch	algorithm.	A	dissimilarity	matrix	was	formed	and	

used	in	cluster	analysis	as	the	basis	for	clustering	similar	sequences.	

4.4.3	Cluster	Analysis	

There	are	various	cluster	analysis	methods	and	different	ones	can	produce	different	

clustering	results.	The	k-medoids	method	was	selected	for	this	sequence	clustering	because	

the	k-medoids	method	works	well	with	categorical	data	(such	as	sequences)	and	is	robust	

against	outliers	(11).	Most	commonly,	the	k-medoids	method	is	implemented	by	the	

partitioning	around	medoids	(PAM)	algorithm	developed	by	Kaufmann	and	Rousseeuw	

(181).	The	PAM	algorithm	asks	for	the	number	of	demanded	clusters,	k	(k	≤	sample	size),	

and	greedily	finds	k	points	from	the	sample	set	(denoted	as	X)	as	medoids	(denoted	as	M)	

to	form	clusters.	In	this	analysis,	X	is	in	the	form	of	a	dissimilarity	matrix.	The	objective	of	

the	algorithm	is	to	minimize	a	cost	measured	by	the	sum	of	distances	between	each	x	(∈	X)	
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to	its	assigned	cluster	medoid	m	(∈	M).	Pseudocode	of	PAM	algorithm	is	as	follows	(11,	181,	

182).	

Algorithm PAM(X, k) 
# build 
choose k points M ⊂ X 
for all x ∈ X 

assign x to Xi if x is closest to mi 
calculate cost 
# swap 
repeat 
for all m ∈ M 

for all x ∈ X and ∉ M { 
swap x with m; calculate cost 
if (cost decreases) keep x and m 
else do not swap 
} 

until (cost does not change) 
	

The	PAM	algorithm	was	applied	to	the	168	AV	crash	sequences,	with	the	k	value	

ranging	from	2	to	10.	A	measure	for	evaluating	quality	of	clustering	used	for	this	analysis	is	

called	the	“silhouette”,	which	describes	how	well	a	data	point	lies	within	its	own	cluster	

compared	to	other	clusters	(183).	Silhouette	width	is	calculated	as	(183):	

𝑠" =
V!-W!

LMN	{W!,V!}
	 	 	 	 	 	 	 	 [14]	

where	s[	=	silhouette	width;	

a[	=	average	dissimilarity	of	object	i	to	all	other	objects	of	A	(the	cluster	that	i	is	

assigned	to);	and	

b[ = min
\]^

d[,\,	with	d[,\	=	average	dissimilarity	of	i	to	all	objects	of	C	(any	cluster	that	i	

is	not	assigned	to).	
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Silhouette	width	is	between	-1	and	1,	with	a	higher	value	meaning	a	better	clustering.	

When	there	is	only	one	object	in	a	cluster,	the	object’s	silhouette	width	is	0.	

The	average	silhouette	widths	from	sequence	clustering	with	different	k	values	are	

plotted	in	Figure	22(a).	The	most	appropriate	k	values	were	selected	based	on	an	

evaluation	of	both	overall	and	cluster-wise	average	silhouette	widths.	The	overall	average	

silhouette	width	should	be	as	close	to	1	as	possible,	with	each	cluster’s	silhouette	width	

being	larger	than	0.1.	Also,	k	should	be	preferably	small,	for	easy	cluster	interpretation	and	

to	avoid	“overfitting”.	Changes	in	cluster	size	and	cluster	average	silhouette	width	are	

shown	in	Table	19.	When	k	=	7,	we	could	obtain	a	relatively	small	number	of	clusters,	with	

a	large	enough	average	silhouette	width	and	better	cluster	average	silhouette	widths	than	

obtained	using	other	k	values.	Therefore,	k	=	7	was	used.	Detailed	silhouette	plot	for	

clustering	with	k	=	7	is	shown	in	Figure	22(b).	

  
(a) Average silhouette widths, k = 2 to 10 (b) Silhouette widths, k = 7 

Figure	22		Silhouette	widths	
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Table	19		Cluster	size	and	cluster	average	silhouette	width	
Number of Clusters: 
“k” 

Cluster Size Cluster Avg. 
Silhouette Width 

Avg. Silhouette Width 

Min Max Min Max 
2 51 117 0.14 0.45 0.36 
3 48 63 -0.05 0.74 0.26 
4 15 57 -0.03 0.74 0.32 
5 8 57 0.02 0.73 0.36 
6 8 57 0.04 0.62 0.4 
7 8 57 0.14 0.67 0.42 
8 7 55 0.11 0.7 0.42 
9 7 55 0.16 0.69 0.43 
10 5 53 0.11 0.73 0.45 

	

4.5	Results	

4.5.1	Most	Frequent	Subsequences	

To	grasp	overall	patterns	in	crash	sequences,	the	15	most	representative	

subsequences,	as	listed	in	Table	20,	were	investigated.	The	results	showed	that	92%	of	AV	

crash	sequences	ended	with	AV	hit	by	a	second-party	road	user.	In	40%	of	the	crash	

sequences,	the	AV	stopped	and	was	hit	by	a	second-party	road	user.	Disengagement	was	an	

event	in	24%	of	the	AV	crash	sequences.	AV	hit	by	a	second-party	road	user	following	

disengagement	appeared	in	19%	of	the	crash	sequences.	Colliding	right	after	the	AV	started	

moving	(21%)	or	the	AV	started	decelerating	(19%)	are	two	other	common	subsequences,	

which	indicates	crash	cases	where	AVs	were	possibly	violating	expectancies	of	other	road	

users.	Other	top-15	subsequences	include	AVs’	yielding	and	second-party	road	users’	

merging	actions.	
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Table	20		Top	15	most	frequent	subsequences	
Rank Subsequence Description Count % 

1 (X21) (AV hit by 2nd party) 155 92% 
2 (S1) (AV stops) 71 42% 
3 (S1)-(X21) (AV stops) then (AV hit by 2nd party) 68 40% 
4 (DG) (AV disengaged) 41 24% 
5 (A1) (AV accelerates/proceeds) 38 23% 
6 (A1)-(X21) (AV accelerates/proceeds) then (AV hit by 2nd party) 36 21% 
7 (D1) (AV decelerates) 32 19% 
8 (D1)-(X21) (AV decelerates) then (AV hit by 2nd party) 32 19% 
9 (DG)-(X21) (AV disengaged) then (AV hit by 2nd party) 32 19% 
10 (D1)-(DG) (AV decelerates) then (AV disengaged) 16 10% 
11 (D1)-(DG)-(X21) (AV decelerates) then (AV disengaged) then (AV hit by 2nd 

party) 
16 10% 

12 (ML2) (2nd party merges left) 16 10% 
13 (ML2)-(X21) (2nd party merges left) then (AV hit by 2nd party) 15 9% 
14 (Y) (AV yields) 15 9% 
15 (Y)-(X21) (AV yields) then (AV hit by 2nd party) 15 9% 

	

4.5.2	Transitions	to	and	from	Disengagement	

A	35	by	35	transition	matrix	was	obtained.	Since	transitions	to	and	from	

disengagements	(DG)	were	of	the	most	interest,	relevant	results	are	illustrated	in	Figure	

23.	Note	that	transition	rates	in	the	left	column	do	not	add	up	to	100%,	but	the	ones	in	the	

right	column	add	up	to	100%,	because	of	the	reason	explained	previously	in	the	Transition	

Matrix	part	of	the	Methodology	section.	Figure	23	helps	identify	the	preceding	and	

succeeding	events	of	AV	disengagements.	Disengagements	were	initiated	generally	in	two	

types	of	situations:	

• AVs	or	human	operators	detected	reckless	actions	of	second	or	third-party	road	

users	

• Human	operator	felt	uncomfortable	with	some	driving	maneuvers	made	by	AVs	
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Examples	of	possible	reactions	to	reckless	actions	are	that	100%	of	“second-party	road	

user	decelerates”	(D2)	events	were	followed	by	AV	disengagements	(DG),	and	50%	of	

“third-party	road	user	merging	right”	(MR3)	events	were	followed	by	AV	disengagements	

(DG).	Possibly	out	of	operators’	discomfort	with	AV’s	actions,	44%	of	“AV	deceleration”	

(D1)	events	and	43%	of	“AV	merging	right”	(MR1)	events	were	followed	by	

disengagements.	

While	none	of	the	studied	disengagements	were	able	to	help	avoid	collisions	(as	

these	disengagements	were	all	in	crash	sequences),	68%	of	them	were	followed	by	an	

immediate	collision	rather	than	being	followed	by	certain	other	actions	before	collisions.	

Immediately	after	51%	of	disengagement	events,	second-party	road	users	hit	the	AVs.	

Following	10%	and	7%	of	disengagement	events,	the	AVs	hit	second-party	vehicles	or	

objects,	respectively.	In	the	other	32%	of	cases,	there	was	still	time	for	AVs	or	second-party	

road	users	to	take	some	actions	before	the	collision.	

	
Figure	23		Transition	rates	from	preceding	events	to	disengagement	and	from	

disengagement	to	succeeding	events	
	

 AV disengaged   
[-> DG] [DG ->] 

 

AV decelerates [D1 ->] 44% 51% [-> X21] 2nd party hits AV 
2nd party decelerates [D2 ->] 100% 10% [-> X12] AV hits 2nd party 

2nd party makes left turn [ML2 ->] 31% 7% [-> X1O] AV hits objects 
3rd party makes left turn [ML3 ->] 33% 7% [-> MR1] AV merges right 

AV merges right [MR1 ->] 43% 5% [-> D1] AV decelerates 
2nd party merges right [MR2 ->] 17% 5% [-> ML2] 2nd party merges left 
3rd party merges right [MR3 ->] 50% 5% [-> V2] 2nd party runs stop sign/red light 

2nd party passes AV from left [PL2 ->] 15% 2% [-> B1] AV backs up 
AV stops [S1 ->] 1% 2% [-> L2] 2nd party makes left turn 

2nd party runs stop sign/red light [V2 ->] 20% 2% [-> ML1] AV merges left 
AV yields [Y ->] 27% 2% [-> MR2] 2nd party merges right 
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4.5.3	Sequence	Characterization	

Cluster	analysis	resulted	in	crash	sequences	being	clustered	into	7	groups,	as	shown	

in	Table	21.	Patterns	in	crash	sequences	within	each	group	and	differences	between	groups	

were	easily	identified.	Characteristics	of	each	sequence	group	were	summarized	as	follows.	

• Group	1	as	“Disengage-Deceleration”,	with	a	representative	subsequence	of	“D1-

DG”	(AV	deceleration	followed	by	disengagement)	

• Group	2	as	“Hesitation”,	with	a	representative	subsequence	of	“S1-A1-S1”	(AV	

stops,	proceeds,	and	stops	again)	

• Group	3	as	“Stop”,	with	a	representative	subsequence	of	“S1-X21”	(AV	hit	by	a	

second	party	after	it	stops)	

• Group	4	as	“Yield”,	with	a	representative	subsequence	of	“Y-X21”	(AV	hit	by	a	

second	party	after	it	yields	to	the	second	party	or	a	third	party)	

• Group	5	as	“Hit	Others”,	with	representative	subsequences	of	“DG-X1O”	and	“DG-

X12”	(AV	disengagement	followed	by	AV	hitting	a	second	party)	

• Group	6	as	“Left	Turn”,	with	a	representative	subsequence	of	“L1-X21”	(AV	was	

hit	while	making	left	turn)	

• Group	7	as	“Moving-Unexpected”,	with	a	representative	subsequence	of	“A1-

X21”	(AV	was	hit	while	proceeding/accelerating)	
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Table	21		Clusters	of	AV	crash	sequences	
"Disengage-Deceleration" "Hesitation" "Stop" 
Group 1 Count Group 2 Count Group 3 Count 
D1-DG-X21 6 S1-A1-S1-X21 4 S1-X21 38 
D1-X21 4 S1-A1-X21 4 S1-PR2-X21 5 
ML2-DG-X21 3 S1-A1-D1-X21 1 S1-ML2-X21 3 
DT-D1-DG-V2-X21 2 S1-A1-S1-A1-X21 1 D1-S1-L2-X21 1 
ML3-D1-DG-X21 2 S1-A1-S2-A2-X21 1 D1-S1-X21 1 
MR3-D1-X21 2 S1-A1-SA2-X32-X21 1 PL1-PL2-S1-X21 1 
D1-DG-L2-X21 1 S1-S2-A1-A2-X21 1 R1-S1-XO1 1 
D1-ML2-X21 1 Total 13 (8%) S1-DG-X21 1 
D1-MR1-DG-X21 1 

  
S1-L1-X21 1 

D1-PL2-DG-X21 1 
  

S1-ML1-X12 1 
D1-PL2-X21 1 

  
S1-PL2-X21 1 

DG-B1-B2-SA2-X21 1 
  

S1-R1-X21 1 
L1-D1-DG-X21 1 

  
S1-R2-X21 1 

ML1-D1-DG-ML2-X21 1 
  

S1-XO1 1 
ML1-MR3-DG-MR1-X21 1 

  
Total 57 (34%) 

ML3-D1-X21 1 
    

ML3-DG-X21 1 
    

MR2-DG-D1-X21 1 
    

MR3-DG-MR1-ML2-X21 1 
    

PL2-MR2-DG-X21 1 
    

PL3-D1-X21 1 
    

V2-D1-DG-X21 1 
    

Total 35 (21%) 
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(Table 21 continued) 

"Yield" "Hit Others" "Moving-Unexpected" 
Group 4 Count Group 5 Count Group 7 Count 
Y-X21 8 DG-X1O 2 A1-X21 6 
R1-Y-X21 2 A1-V2-DG-X12 1 A1-MR2-X21 3 
Y-DG-X21 2 ML1-MR1-DG-X12 1 R1-X21 3 
Y-DG-D1-MR2-X21 1 ML2-DG-X12 1 A1-L2-X21 2 
Y-DG-ML2-X21 1 ML3-DG-ML1-X12 1 A1-ML2-X21 2 
Y-PL2-X21 1 MR2-MR1-DG-X1O 1 A1-PL2-X21 2 
Total 15 (9%) MR3-DG-MR1-X12 1 R1-ML2-X21 2 
  

PL2-MR2-D2-DG-X12 1 A1-ML2-DG-MR2-X21 1 
  

Total 9 (5%) A1-PL2-DG-X21 1 
    

A1-PL2-MR2-X21 1 
  

  A1-PR2-X21 1 
  

"Left Turn" A1-PR3-ML3-S1-X21 1 
  

Group 6 Count A1-R2-X21 1 
  

L1-L2-X21 4 A1-V2-X21 1 
  

L1-X21 2 A1-XO1 1 
  

L1-L2-PL2-MR2-X21 1 L1-A1-X21 1 
  

L1-L3-MR3-D1-X21 1 ML1-D3-MR1-PR2-X21 1 
  

Total 8 (5%) PL2-MR2-X21 1 
  

  Total 31 (18%) 

	

Comparing	the	sizes,	Group	1	consists	of	35	sequences	(21%	of	all	168	sequences),	

Group	2	has	13	(8%),	Group	3	has	57	(34%),	Group	4	has	15	(9%),	Group	5	has	9	(5%),	

Group	6	has	8	(5%),	and	Group	7	has	31	(18%)	sequences.	Disengagements	appeared	

concentratedly	in	Groups	1,	4,	and	5.	In	Group	1’s	35	crash	sequences,	disengagement	

appeared	in	25	sequences.	All	disengagements	following	AV’s	yielding	action	were	

clustered	in	Group	4.	All	Group	5	sequences	consisted	of	a	disengagement	event	before	AV	

colliding	into	an	object	or	a	second-party	road	user.	In	terms	of	other	types	of	actions	or	

maneuvers,	stopping	was	mostly	seen	in	Groups	2	and	3;	yielding	was	seen	in	Group	4;	

merging	and	passing	actions	were	mostly	seen	in	Groups	1,	5,	and	7;	and	left	turning	action	
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was	mostly	seen	in	Group	6.	Graph	illustrations	of	the	seven	sequence	patterns	are	shown	

in	Figure	24.	There	were	multiple	different	types	of	second-party	road	users	involved	in	the	

168	crash	sequences,	but	to	compactly	present	the	sequence	patterns,	a	motor	vehicle	was	

used	in	the	illustrations	to	represent	all	types	of	second-party	road	users.	For	each	

sequence	pattern,	three	panels	of	figures	(from	left	to	right)	were	used	to	illustrate	the	

chronologically	ordered	events.	

	

Figure	24		Graph	illustrations	of	AV	crash	sequence	patterns	

	

(1) (2) (3)

(4) (5) (6)

(7)

= AV (automatic mode)

= Second-Party Vehicle

= AV (disengaged)
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4.5.4	Cross-tabulation	between	Sequence	Group	and	Other	Variables	

A	crash	event	sequence	presents	the	progression	of	scenes	with	interactions	

between	an	AV	and	its	surrounding	moving	objects	(10).	In	addition	to	moving	object	

dynamics	provided	by	crash	sequences,	multiple	variables	such	as	weather,	lighting,	road	

surface,	road	geometries,	traffic	control,	and	traffic	conditions,	need	to	be	considered	in	

developing	test	scenarios	for	AVs	(11,	12).	Cross-tabulation	analysis	and	Chi-square	tests	

were	carried	out	between	sequence	groups	and	several	other	variables	that	describe	crash	

outcomes	and	environmental	conditions.	The	purpose	of	cross-tabulation	analysis	is	to	

evaluate	the	association	between	sequence	groups	and	those	other	variables.	

Figure	25	and	Figure	26	illustrate	results	from	a	cross-tabulation	between	sequence	

group	and	two	crash	outcome	measures,	crash	severity	and	manner	of	collision,	

respectively.	The	results	showed	that	some	Group	1,	2,	3,	6,	and	7	sequences	led	to	injuries.	

Comparing	the	distribution	of	crash	severity	in	sequence	groups,	we	found	that	Group	1	

had	the	highest	proportion	(20%)	of	crash	sequences	that	ended	with	injuries.	Groups	6	

and	7	both	had	13%	of	crash	sequences	that	ended	with	injuries.	Group	3	had	12%	of	crash	

sequences	that	ended	with	injuries.	The	Chi-square	test	result	(Chi-squared	=	5.69,	p-value	

=	0.47)	showed	that	there	is	no	significant	association	between	sequence	group	and	crash	

severity.	However,	after	regrouping	the	sequence	groups,	with	Groups	1,	2,	3,	6,	and	7	in	a	

new	group,	and	Groups	4	and	5	in	another	new	group,	the	Chi-square	test	result	(Chi-

squared	=	3.78,	p-value	=	0.08)	showed	that	there	is	a	more	significant	association	between	

new	sequence	groups	and	crash	severity.	
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Figure	25		Crash	severity	distribution	by	sequence	group	

	

Manners	of	collision	distributed	differently	across	different	sequence	groups.	Rear	

end,	sideswipe,	and	broadside	are	the	three	most	frequent	manners	of	collision.	Sequences	

in	Groups	1,	3,	5,	and	7	led	to	a	larger	variety	of	manners	of	collision,	with	4-5	types	in	each	

group.	A	Chi-square	test	between	manners	of	collision	and	sequence	groups	showed	a	

significant	association	(Chi-squared	=	83.73,	p-value	=	0.00).	Different	sequence	groups	led	

to	different	compositions	of	collision	manners.	
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Figure	26		Manner	of	collision	distribution	by	sequence	group	

	

Figure	27	and	Figure	28	illustrate	results	from	cross-tabulations	between	crash	

sequence	groups	and	variables	describing	environmental	conditions	including	facility	type	

and	time	of	day.	Crash	sequence	groups	distributed	differently	across	facility	types.	The	

intersections	(including	ramp	terminals)	category	had	the	largest	variety	of	sequence	

groups.	Groups	2	and	6	sequences	only	took	place	at	intersections.	The	Chi-square	test	

result	(Chi-squared	=	43.86,	p-value	=	0.00)	confirmed	that	there	is	a	significant	difference	

in	sequence	group	distribution	across	facility	type.	
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Figure	27		Sequence	group	distribution	by	facility	type	

	

Time	of	day	is	a	variable	closely	related	to	weather,	lighting,	and	traffic	conditions.	

Based	on	a	visual	check,	the	three	most	frequently	observed	AV	crash	sequence	groups	

were	Groups	1,	3,	and	7	for	both	daytime	and	nighttime.	Group	2	crash	sequences	were	

only	observed	during	daytime	but	not	nighttime.	A	Chi-square	test	result	(Chi-squared	=	

9.22,	p-value	=	0.16)	did	not	show	a	significant	difference	in	sequence	group	distributions	

between	daytime	and	nighttime.	

	
Figure	28		Sequence	group	distribution	by	time	of	day	
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As	AV	technology	is	rapidly	developing,	AV	crash	sequence	patterns	are	expected	to	

change	over	the	years.	Therefore,	for	the	consideration	of	designing	AV	test	scenarios,	a	

cross-tabulation	was	carried	out	between	sequence	groups	and	the	years,	with	results	

illustrated	in	Figure	29.	Based	on	a	visual	check,	the	distributions	of	sequence	groups	

varied	across	the	years	from	2015	to	2019.	A	Chi-square	test	result	(Chi-squared	=	42.40,	

p-value	=	0.01)	showed	a	significant	difference	of	sequence	group	distribution	across	the	

years.	

	
Figure	29		Sequence	group	distribution	by	year	

	

4.6	Discussion	

With	an	analysis	of	California	AV	crash	sequences,	this	chapter	summarized	the	

most	frequent	events	and	subsequences,	estimated	transition	probabilities	between	events,	

identified	cohort	groups	of	sequences,	and	evaluated	the	association	between	sequence	
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groups	and	variables	measuring	crash	outcome	and	environmental	conditions.	The	analysis	

results	led	to	the	following	findings:	

• The	most	representative	subsequence	of	California	AV	crashes	was	“collision	

following	AV	stop”.	

• Disengagements	were	observed	in	24%	of	AV	crash	sequences.	Disengagements	

were	mostly	initiated	due	to	operator	precaution	and	detection	of	other	road	users’	

reckless	behavior.	Disengagements	in	the	studied	AV	crash	sequences	were	mostly	

followed	by	an	immediate	collision	with	other	road	users	or	objects,	not	leaving	

enough	time	for	the	human	operator	to	take	further	actions.	

• AV	crash	sequences	were	clustered	into	seven	groups.	Each	sequence	group	has	a	

representative	subsequence,	presenting	unique	characteristics	of	AV	crash	

progression.	

• AV	crash	sequence	groups	were	significantly	associated	with	variables	measuring	

crash	outcomes	and	describing	environmental	conditions,	indicating	that	scenarios	

described	by	combinations	of	event	sequences	and	environmental	condition	

variables	can	lead	to	various	crash	outcomes.	

The	sequence	analysis	results	revealed	patterns	in	AV	crash	sequences,	which	

provided	information	about	AV	crash	progression	and	form	distinctive	cohort	groups.	

Sequence	groups	were	shown	to	lead	to	different	crash	outcomes	and	were	associated	with	

environmental	condition	variables.	Events	such	as	disengagement,	with	its	preceding	and	

succeeding	events,	are	unique	to	AV	operations	and	worthy	of	consideration	in	designing	

AV	test	scenarios.	Also,	AV	crash	sequence	patterns	changed	across	the	years.	As	AV	

technology	develops,	new	crash	sequence	patterns	should	be	accommodated	in	AV	testing.	
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A	scenario-based	AV	safety	testing	framework	was	developed	with	sequence	of	

events	embedded	as	a	core	component.	Figure	30	provides	a	simplified	illustration	of	the	

framework.	A	more	comprehensive	framework	can	be	built	based	on	this	one	with	

additional	details.	This	framework	consists	of	a	test	scenario	setup	module	and	a	

performance	evaluation	module,	which	are	both	built	around	sequence	of	events.	

According	to	Koopman	and	Fratrik,	AV	safety	evaluation	should	be	able	to	validate	factors	

from	a	four-dimensional	validation	space	with	the	axes	of	{Operational	design	domain	

(ODD),	Object	and	event	detection	and	response	(OEDR),	Maneuvers,	Fault	Management}	

(8).	Our	proposed	framework	captures	all	these	factors	through	modeling	actions	and	

interactions	with	sequence	of	events.	

	

Figure	30		AV	safety	testing	framework	with	sequence	of	events	embedded	
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An	ODD	describes	the	specific	domain	in	which	an	automated	driving	system	is	

designed	to	properly	operate.	With	a	determined	ODD,	variables	such	as	types	of	roadways,	

ranges	of	speed,	time	of	day,	and	limits	of	weather	are	determined	(184).	Within	the	limits	

of	a	certain	ODD,	AV	test	scenarios	can	be	developed.	A	scenario	is	described	by	variables	

including	road	geometries,	roadside	objects	and	rules,	temporary	modifications	and	events,	

moving	objects,	natural	environmental	conditions,	and	digital	information	(93).	Crash	

sequences	can	be	used	to	encode	interactions	between	moving	objects.	The	crash	sequence	

patterns	generated	from	this	study	provide	a	semantic-level	description	of	moving	object	

interactions.	Together	with	the	roadway	features	and	environmental	condition	variables,	

crash	sequence	patterns	form	the	basic	structure	of	a	test	scenario.	On	the	foundation	of	

semantic-level	scenarios,	concrete	scenarios	can	be	generated	by	defining	parameter	

ranges	and	specific	values	for	each	event	and	action	in	the	sequences,	as	well	as	for	each	

roadway	and	environmental	condition	variables	(92,	185).	Such	a	process	requires	

additional	microscopic	AV	operations	and	incidents	data,	which	can	be	collected	from	AV	

field	operational	tests	or	NDS	databases.	To	ensure	efficient	data	collection,	crash	sequence	

patterns	such	as	the	set	found	in	this	study,	can	also	be	used	as	a	guideline	to	identify	

frequent	and	rare	crash	cases	for	data	collection.	

The	following	is	a	procedure	to	set	up	test	scenarios	and	evaluate	AV	safety	

performance	using	the	proposed	framework:	

• Based	on	a	determined	ODD,	a	type	of	facility	of	interest	is	selected	as	the	base	

environment	of	a	test	scenario.	As	many	design	characteristics	of	the	facility	

should	be	considered	as	possible.		
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• Environmental	condition	factors	such	as	time	of	day,	lighting,	and	weather,	are	

set	up	on	the	basis	of	the	selected	facility,	to	create	various	conditions	for	testing.	

• Moving	objects	(AVs	and	other	road	users)	are	deployed	in	the	test	environment.	

Representative	sequence	patterns	obtained	from	sequence	analysis	of	historical	

crashes	can	be	used	to	guide	the	setup	of	where	and	when	the	moving	objects	

appear	in	the	test	environment,	as	well	as	the	interactions	between	moving	

objects.	

• The	moving	objects	then	interact	in	the	test	environment	and	generate	crash	

outcomes,	measured	by	variables	such	as	crash	rate,	manner	of	collision,	or	

injury	severity.	Surrogate	safety	measures	for	conflicts	are	alternative	options	to	

describe	outcomes.	After	repeated	tests,	AVs’	safety	performance	is	evaluated	

based	on	the	test-generated	crash/safety	outcomes.	

4.7	Conclusions	

As	AV	development	and	testing	expand,	safety	evaluation	of	such	vehicles	needs	to	

catch	up.	Through	the	analysis	of	168	AV	crash	sequences,	this	chapter	identified	patterns	

in	AV	crash	sequences,	which	led	to	a	discussion	on	potential	uses	of	crash	sequences	in	AV	

safety	testing.	The	conclusion	is	that	crash	sequence	patterns	capture	the	characteristics	of	

AV	crash	progression	and	should	be	useful	in	generating	AV	test	scenarios.	

Compared	with	previous	studies	exploring	California	AV	crash	and	disengagement	

patterns,	this	chapter’s	research	investigated	AV	crashes	and	disengagements	from	a	

different	perspective,	sequence	of	events	leading	to	a	crash.	Patterns	in	crash	sequences	

were	identified,	with	AV	crash	sequences	clustering	into	seven	distinctive	cohort	groups.	
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Cross-tabulation	analysis	showed	that	sequence	groups	are	significantly	associated	with	

variables	measuring	crash	outcomes	and	describing	environmental	conditions.	AV	crash	

sequences	can	be	used	in	generating	semantic-level	AV	test	scenarios.	Based	on	the	

findings,	an	AV	safety	testing	framework	was	proposed	with	sequence	of	events	embedded	

as	a	core	component.	

In	addition	to	the	contribution	in	discovering	AV	crash	sequence	patterns,	this	

chapter	showed	the	value	of	crash	sequence	analysis,	and	reemphasized	the	importance	of	

collecting	crash	sequence	data.	Although	the	importance	of	crash	sequence	of	events	was	

stressed	by	NTSB,	reporting	such	information	was	not	required	by	the	California	DMV,	nor	

were	any	guidelines	provided	for	including	crash	sequence	information	in	text	narratives	

(43,	77).	Crash	sequence	information	was	buried	in	the	narratives	of	AV	crash	reports.	In	

addition	to	descriptive	summary	of	crash	report	data,	this	chapter	carried	out	a	more	in-

depth	analysis,	which	helped	us	discover	more	informative	patterns	in	AV	crashes	than	two	

very	recent	studies	using	the	same	data	source	of	crash	report	text	narratives	(170,	172).	

With	crash	sequences,	we	were	also	able	to	further	analyze	the	relationship	between	AV	

disengagements	and	crashes,	and	better	understand	the	role	of	disengagement	in	crashes	

that	happened	during	AV	field	tests.	Recent	studies	of	AV	disengagements	focused	on	

finding	contributing	factors	to	disengagements	rather	than	evaluating	the	connection	

between	disengagements	and	crashes	(173,	177).	

Limitations	of	this	chapter’s	research	are	primarily	in	the	use	of	crash	reports	filled	

out	by	different	AV-testing	organizations	and	submitted	to	the	California	DMV.	The	events	

were	classified,	with	event	sequences	developed	manually	by	one	researcher	to	maintain	

consistency.	The	recording	of	events	in	crash	sequences	was	based	on	crash	text	narratives	
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and	the	researcher’s	comprehension	of	such	narratives.	Consistency	in	crash	sequences	

was	enhanced	through	a	two-phase	encoding	process	and	by	having	one	researcher	

perform	this	task.	

For	future	work,	a	similar	analysis	can	be	carried	out	using	more	AV	crash	data	as	

they	become	available.	Improved	encoding	and	sequence	analysis	methods	will	also	be	

used.	With	crash	sequence	data	available	in	historical	human-driven	vehicle	crash	

databases,	a	comparative	study	can	be	carried	out	between	patterns	in	AV	crash	sequences	

and	human-driven	vehicle	crash	sequences.	It	is	strongly	recommended	that	federal	and	

state	transportation	agencies	require	AV	testing	organizations	to	share	microscopic,	event-

level	data	of	AV	disengagements	and	crashes	that	occur	during	public-road	tests	and	make	

the	data	available	to	safety	researchers.	Detailed	data	would	enable	a	much	more	informed	

AV	testing	and	evaluation	process,	bring	transparency	to	public-road	AV	testing,	and	

enhance	public	trust	in	AVs.	
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Chapter	5 Intersection	Two-Vehicle	Crash	Scenario	Specification	for	

Automated	Vehicle	Safety	Evaluation	Using	Sequence	Analysis	and	

Bayesian	Networks	

5.1	Introduction	

Scenario-based	testing	is	an	essential	part	of	automated	vehicle	(AV)	safety	

evaluation,	and	generating	challenging	scenarios	is	critical	for	scenario-based	testing	(7,	

186).	Historical	crash	data	consists	of	challenging	scenarios	faced	by	human	drivers	and	is	

a	good	data	source	for	developing	test	scenarios	that	may	also	be	challenging	for	AVs	(11,	

14,	145).	As	advanced	driver	assistance	systems	(ADAS)	and	automated	driving	systems	

(ADS)	are	developed	to	replace	human	drivers	partially	or	fully,	it	is	reasonable	to	expect	

AVs	to	have	capabilities	of	handling	human-driver-faced	challenging	scenarios	and	

mitigating	crash	outcomes.	

Prior	efforts	in	developing	test	scenarios	using	historical	crash	data	have	developed	

characterization	of	crashes	to	be	used	as	representative	scenarios	for	the	evaluation	of	

ADAS	or	ADS,	based	on	summarizing	and	mining	patterns	in	crash	attributes	(11–14,	187).	

The	end	products	from	prior	efforts	–	representative	scenarios	–	lack	considerations	of	

crash	progression,	dynamics,	and	mechanisms,	which	are	important	information	to	

distinguish	crashes	and	their	outcomes	(15,	16).	

The	objective	of	this	chapter	is	to	propose	a	crash-data-based	scenario	generating	

procedure	that	improves	crash	characterization	and	scenario	specification	by	employing	

crash	sequence	analysis	and	Bayesian	network	modeling.	Crash	sequence	analysis	

generates	informative	crash	sequence	types	that	describe	crash	dynamics	and	progression.	
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Bayesian	network	modeling	provides	a	model	of	crash	mechanisms.	The	two	analyses	

together	enable	the	specification	of	crash	scenarios	depicted	by	the	actions	and	

interactions	of	moving	participants,	human	factors,	physical	environmental	conditions,	and	

crash	outcomes.	

In	this	chapter,	the	scenario	generating	procedure	was	used	to	develop	scenarios	of	

intersection	two-vehicle	crashes,	based	on	2016-2018	crash	data	from	the	Crash	Report	

Sampling	System	(CRSS)	of	the	United	States	National	Highway	Traffic	Safety	

Administration	(NHTSA).	Following	this	section,	the	rest	of	this	chapter	is	organized	as:	

Section	5.2.	A	literature	review	summarizing	key	literature	in	scenario	generation	using	

historical	crash	data,	crash	sequence	analysis,	and	application	of	Bayesian	networks	in	

crash	analysis.	Section	5.3.	Description	of	the	CRSS	data,	special	data	preparation	for	

scenario	development,	crash	sequence	data	processing	techniques,	and	other	crash	

attributes	used	in	modeling.	Section	5.4.	Explanation	of	methods	employed	in	the	scenario	

generating	procedure.	Section	5.5.	Results	of	crash	characterization	based	on	sequences,	

Bayesian	network	modeling	of	variable	dependencies,	and	a	demonstration	of	scenario	

specification	process.	Section	5.6.	Discussion	and	conclusions.	

5.2	Literature	Review	

5.2.1	Scenario	Generation	Using	Historical	Crash	Data	

Historical	crash	data	has	been	used	to	generate	scenarios	for	different	purposes,	

such	as	general	vehicle	safety	testing,	evaluation	of	crash	avoidance	systems,	ADAS,	and	

ADS	(14,	99,	100,	62,	105,	104,	11–13,	187,	145).	Some	prior	research	developed	a	

comprehensive	set	of	scenarios	that	cover	as	many	crashes	and	operational	design	domains	
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(ODDs)	as	possible,	using	a	national-level	crash	database	and	summarizing	crash	attributes	

(14).	Most	prior	studies	focused	on	some	specific	types	of	crashes	and	extracted	or	

characterized	crash	scenarios	using	national-level	crash	databases	(11–13,	62,	99,	100,	

104).	Several	studies	proposed	systematic	methodologies	to	characterize	crashes	and	

specify	representative	scenarios	(11,	105,	187).	A	most	recent	Waymo	LLC	study	used	

municipal-level	crash	report	census	data	to	reconstruct	crash	scenarios	in	simulations	for	

AV	safety	evaluation	(145).	

5.2.2	Crash	Sequence	Analysis	

Crash	sequences	are	chronologically	ordered	events	happened	during	the	pre-crash	

and	crash	periods.	Crash	sequence	analysis	has	a	similar	purpose	with	sequence	analysis	in	

biological	and	sociological	research,	focusing	on	identifying	representative	components	of	

sequences,	the	similarity	(or	dissimilarity)	between	sequences,	and	the	relationship	

between	sequences	and	potential	outcomes	(15).		

Prior	studies	on	crash	sequence	analysis	are	limited.	Krull	et	al.	found	significant	

relationships	between	the	order	of	rollover	and	fixed-object	collision	events	and	single-

vehicle	crash	injury	severity	outcomes	(81).	Wu	et	al.	adapted	sequence	analysis	methods	

from	biological	and	sociological	research	on	fatal	single-vehicle	run-off-road	crash	data,	

characterized	crashes	and	found	significant	relationship	between	crash	sequence	types	and	

crash	injury	severity	outcomes	(15).	In	Chapter	3,	a	methodology	for	crash	sequence	

analysis	was	developed	to	help	select	the	most	appropriate	sequence	analysis	techniques	

(e.g.,	sequence	encodings,	dissimilarity	measures)	for	different	use	cases	in	studying	

crashes.	A	case	study	of	interstate	single-vehicle	crash	characterization	was	used	to	



	

	

132 

demonstrate	the	effectiveness	and	usefulness	of	the	proposed	methodology.	In	Chapter	4	

and	its	related	journal	paper,	sequence	analysis	was	used	to	characterize	California	AV	

crash	sequences,	found	significant	association	between	crash	sequence	types	and	multiple	

crash	attributes,	and	proposed	a	scenario-based	AV	evaluation	framework	with	crash	

sequences	as	the	core	component	(16).	

5.2.3	Bayesian	Networks	for	Crash	Analysis	

Bayesian	networks	are	graphical	models	known	for	their	use	in	revealing	variable	

dependencies	and	causal	relationships,	and	are	widely	applied	in	artificial	intelligence,	

medical,	and	genetic	research	(188).	Prior	applications	of	Bayesian	networks	in	traffic	

crash	research	focused	on	crash	forensics,	estimating	effects	of	contributing	factors	on	

crash	outcomes,	and	predicting	crash	outcomes	(89–91,	189–194).	With	large	samples	of	

crash	data,	Bayesian	networks	were	proved	to	be	effective	in	identifying	complex	

interrelationships	among	multiple	crash	attributes	and	crash	outcomes	(193,	194).	

5.3	Data	

Historical	crash	data	(2016-2018)	from	the	NHTSA	CRSS	database	was	used	in	this	

study.	The	CRSS	is	a	United	States	crash	database	with	crash	data	extracted	from	nationally	

sampled	crash	reports	(144).	A	total	of	about	150,000	crash	observations	were	included	in	

the	2016-2018	CRSS	crash	data	sets,	representing	more	than	18	million	police-reported	

crashes.	

The	CRSS	database	organizes	data	into	crash,	vehicle,	person,	and	event	levels.	The	

four	levels	of	data	can	be	linked	through	unique	IDs	for	crashes,	vehicles,	and	persons.	
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Details	about	the	CRSS	database	has	been	discussed	in	Chapter	3.	In	this	chapter,	the	crash,	

vehicle,	and	event	level	data	sets	were	used.		

5.3.1	Subsetting	

Since	intersection	two-vehicle	crashes	were	the	focus	of	this	chapter,	a	subset	of	

crashes	of	the	2016-2018	CRSS	data	was	obtained	by	applying	the	criteria	listed	in	Table	

22.	The	criteria	ensured	a	data	set	consisting	of	only	the	“common”	intersection	two-

vehicle	crashes,	with	“special”	crashes	(e.g.,	with	emergency	vehicles,	alcohol-related)	or	

crashes	at	locations	with	special	configurations	(e.g.,	work	zone)	excluded.	It	was	

concerned	that	the	nature	of	those	“special”	crashes	could	lead	to	drastically	different	

sequences	of	events	and	outcomes	from	the	“common”	crashes,	and	a	separate	analysis	

would	be	needed	develop	relevant	scenarios	for	“special”	crashes.	In	this	chapter,	the	focus	

was	on	generating	scenarios	for	the	“common”	crashes.	By	applying	the	criteria,	a	data	set	

consisting	of	39,850	observations	was	obtained,	representing	about	5.9	million	crashes.	

Table	22		Subsetting	criteria	

Variable (Data Level) Value Description of Criterion 
VE_TOTAL (Crash) = 2 Exactly two vehicles involved in crash. 
VE_FORMS (Crash) =2 Exactly two vehicle-in-transport involved in crash. 
PVH_INVL (Crash) = 0 No parked/working vehicles involved. 
RELJCT2_IM (Crash) = 2 or 3 Crash was at intersection or intersection-related. 
WRK_ZONE (Crash) = 0 No work zone at crash location. 
ALCHL_IM (Crash) ≠ 1 No alcohol-related crash. 
BDYTYP_IM (Vehicle) < 50 Only automobile, utility vehicles or light trucks* involved. 
TOW_VEH (Vehicle) = 0 No vehicle trailing involved. 
BUS_USE (Vehicle) = 0 No bus involved. 
SPEC_USE (Vehicle) = 0 No special use vehicles involved. 
EMER_USE (Vehicle) = 0 No emergency use vehicles involved. 
Note: * Light trucks with Gross Vehicle Weight Rating (GVWR) ≤ 10,000 LBS. 
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5.3.2	Numbering	Crash	Participants	

Each	intersection	two-vehicle	crash	has	two	participating	motor	vehicles.	The	CRSS	

numbered	the	two	vehicles	were	as	Vehicle	1	and	Vehicle	2	“sequentially”,	without	

specifying	the	ordering	basis	(144).	Before	analyzing	the	data	and	develop	crash	scenarios,	

crash	participating	vehicles	were	renumbered	based	on	their	intents	(implied	by	initial	

positions	and	trajectories)	in	crashes.	By	renumbering	the	participating	vehicles,	scenarios	

generated	using	the	crash	data	were	ensured	to	have	consistent	vehicle	alignments.	In	

simulation-based	tests	with	a	two-vehicle	crash	scenario,	the	automated	driving	system	

(ADS)	being	tested	would	be	aligned	as	one	of	the	two	participating	vehicles	(145).	The	ADS	

would	be	first	aligned	as	Vehicle	1,	with	Vehicle	2	as	an	adversarial	agent,	and	then	be	

aligned	as	Vehicle	2,	with	Vehicle	1	as	an	adversarial	agent.	In	that	case,	a	scenario	can	be	

fully	utilized	by	testing	the	ADS	on	both	participants’	roles	in	a	two-vehicle	crash.	

To	renumber	the	participating	vehicles,	information	about	vehicles	intents	was	

obtained	from	the	PC23	Crash	Type	Diagram	of	CRSS,	as	shown	in	Figure	31.	For	two-

vehicle	crashes,	there	are	5	high-level	categories	including	“Same	Trafficway	Same	

Direction”,	“Same	Trafficway	Opposite	Direction”,	“Change	Trafficway	Vehicle	Turning”,	

“Intersect	Paths”,	and	“Miscellaneous”.	The	5	high-level	categories	split	into	10	

configurations	(denoted	as	using	letters	from	“D”	to	“M”),	which	split	again	into	more	

specific	crash	types	(with	participating	vehicle’s	intent	numbered	from	“20”	to	“99”).	The	

rules	of	vehicle	renumbering	are	shown	in	Table	23.	Take	the	“68-69”	(left	turn	meets	

through)	combination	in	crash	configuration	“J”	as	an	example,	the	vehicle	with	an	intent	

“68”	(left	turn)	is	numbered	as	Vehicle	1,	and	the	vehicle	with	intent	“69”	(through)	was	

numbered	as	Vehicle	2.	
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Figure	31		CRSS	two-vehicle	crash	types	(144)	
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Table	23		Vehicle	renumbering	

CC IF CTID= VN= CC IF CTID= VN= CC IF CTID= VN= CC IF CTID= VN= 
D 20 1 F 44 1 J 68 1 L 86 1 

 21 2  45 2  69 2  87 2 

 22 2  46 1  70 1  88 1 

 23 2  47 1  71 2  89 2 

 24 1  48 1  72 1  90 1 

 25 2  49 1  73 2  91 1 

 26 2 G 50 1  74 1 M 92 1 

 27 2  51 2  75 1  93 2 

 28 1  52 1 K 76 1  98 1 

 29 2  53 1  77 2  99 1 

 30 2 H 58 1  78 1    
 31 2  59 2  79 2    
 32 1  62 1  80 1    
 33 1 I 64 1  81 2    

E 38 1  65 2  82 1    
 39 2  66 1  83 2    
 42 1  67 1  84 1    
       85 1    

Note: CC = Crash configuration; CTID = Vehicle’s ID in crash type; 
VN = Vehicle number in crash sequence. 

	

5.3.3	Encoding	Sequences	

The	crash	sequences	were	formed	using	four	CRSS	variables,	PCRASH1	(pre-event	

movement),	PCRASH2	(critical	event	pre-crash),	and	PCRASH3	(attempted	avoidance	

maneuver)	in	the	vehicle	level	data	set	VEHICLE,	as	well	as	the	SOE	(sequence	of	events)	

variable	from	the	event	level	data	set	CEVENT.	The	PCRASH1~3	variables	describe	“what	a	

vehicle	was	doing	just	prior	to	the	critical	precrash	event”,	“what	made	the	vehicle's	

situation	critical”,	and	“what	was	the	corrective	action	made,	if	any,	to	this	critical	

situation”	(144).	The	SOE	variable	records	series	of	harmful	and	non-harmful	events	

occurred	in	the	crashes,	in	chronological	order.	
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The	PCRASH1~3	and	SOE	events	were	combined	following	the	rule	illustrated	in	

Figure	32.	If	the	first	event	in	SOE	was	a	Vehicle	1	event,	then	the	PCRASH1~3	events	of	

Vehicle	1	were	inserted	before	the	PCRASH1~3	events	of	Vehicle	2,	and	all	PCRASH	events	

were	inserted	before	SOE.	Vice	versa,	if	the	first	event	in	SOE	was	a	Vehicle	2	event,	then	

the	PCRASH1~3	events	of	Vehicle	2	were	inserted	before	the	PCRASH1~3	events	of	Vehicle	

1,	and	all	PCRASH	events	were	inserted	before	SOE.	Lengths	(number	of	events)	of	the	

sequences	ranged	from	7	to	16,	as	shown	in	Table	24.	With	over	92%	of	the	sequences	

having	7	events,	the	average	length	was	7.2.	

	

Figure	32		Sequence	structure	

	

CRSS	has	a	total	of	160	categories	of	pre-crash	and	collision	events,	including	20	in	

PCRASH1,	57	in	PCRASH2,	14	in	PCRASH3,	and	69	in	SOE.	For	two	vehicles,	the	total	

number	would	be	320.	With	a	length	of	16,	there	would	be	theoretically	32016	possible	

sequences.	Identifying	patterns	in	sequences	would	be	difficult	with	too	many	event	
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categories.	Therefore,	in	this	chapter’s	research,	the	events	were	encoded	by	consolidating	

events	that	are	similar	in	nature.	With	the	encodings,	the	total	number	of	event	categories	

became	71,	including	14	in	PCRASH1,	29	in	PCRASH2,	11	in	PCRASH3,	and	17	in	SOE.	

Details	of	event	encodings	are	in	Table	A	-	4	of	the	Appendix.	

Table	24		Sequence	lengths	
Length Count 

7 36,924 
8 844 
9 1327 

10 423 
11 194 
12 87 
13 41 
14 6 
15 1 
16 3 

Average: 7.2 Total: 39,850 
	

5.3.4	Other	Crash	Attributes	

To	specify	crash	scenarios,	variables	describing	crash	outcomes,	human	factors,	and	

environmental	conditions	were	needed,	in	addition	to	the	crash	sequence	patterns.	The	

crash	outcomes	help	identify	scenarios	with	more	severe	injuries	and	fatalities,	which	may	

be	of	more	interest	in	testing	AVs.	The	human	factors	and	environmental	conditions	help	

depict	ODDs	which	consist	of	other	moving	objects	and	static	surroundings.	Crash	outcome	

variables	used	in	this	chapter	are	summarized	in	Table	25.	Variables	of	human	factors	and	

environmental	conditions	are	summarized	in	Table	26.	

More	than	half	(52.5%)	of	the	sample	crashes	ended	with	a	maximum	injury	

severity	of	no	apparent	injury,	less	than	a	half	(46.9%)	with	injury	to	different	extents,	and	
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0.4%	with	fatality.	In	terms	of	manner	of	collision,	angle	crashes	made	up	47.0%	of	the	

sample	crashes,	front-to-rear	crashes	made	up	38.7%,	and	others	made	up	14.3%.	The	

crash	outcomes	reflect	a	motor	vehicle’s	exposure	to	crash	risks.	When	setting	up	test	

scenarios	for	AV	safety	evaluation,	the	exposure	can	be	adjusted	through	selecting	a	

combination	of	crash	sequence	types.	

In	this	chapter,	the	human	factors	variables	were	derived	from	the	“D22	Speeding	

Related”	and	“D24	Related	Factors	–	Driver	Level”	variables	of	the	CRSS	VEHICLE	data	file.	

The	focus	was	on	the	most	frequent	driver	factors	involved	in	the	sample	crashes,	including	

speeding,	careless	driving,	did	not	see,	reckless	driving,	and	improper	control.	

Environmental	condition	variables	included	were	urbanicity,	time	of	day,	lighting	

condition,	weather,	type	of	intersection,	speed	limits,	road	surface	condition,	and	traffic	

control	device.	For	test	scenario	specifications,	the	human	factors	and	environmental	

conditions	describe	the	ODDs.	

Table	25		Crash	outcomes	

Variable % Variable % 
Maximum severity (maxsev) Manner of collision (moc) 

No apparent injury 52.5% Angle 47.0% 
Possible injury 27.7% Front-to-rear 38.7% 

Suspected minor injury 11.5% Sideswipe, same direction 7.0% 
Suspected serious injury 7.2% Front-to-front 5.3% 

Fatal 0.4% Sideswipe, opposite direction 1.0% 
Injured, severity unknown 0.5% (Other) 1.0% 
Note: Sample size 39,850. 
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Table	26		Human	factors	and	environmental	conditions	

Variable % Variable % Variable % 
Driver speeding (speeding) Urbanicity (urbrur) Speed limits (spdlim) 

N+N 90.5% Urban 80.2% 45+45 20.7% 
Y+N 5.7% Rural 19.8% 35+35 18.0% 
U+N 2.2% Time of day (tod) Unknown 13.4% 
N+Y 0.6% Day 80.7% 40+40 10.4% 
N+U 0.5% Night 19.3% 25+25 7.7% 
U+U 0.4% Lighting condition (light) 30+30 6.2% 

(Other) 0.1% Daylight 77.1% (Other) 23.5% 
Careless driving (careless) Dark-Not Lighted 3.6% Road surface condition (surcon) 

N+N 90.3% Dark-Lighted 15.3% Dry 83.2% 
N+Y 1.0% Dawn 1.2% Wet 13.6% 
Y+N 8.5% Dusk 2.5% Unknown 1.1% 
Y+Y 0.2% Dark-Unknown Lighting 0.3% Snow 0.9% 

Driver did not see (didnotsee) (Other) 0.0% Ice/frost 0.5% 

N+N 99.0% 
Weather (weather) Non-trafficway 

or driveway access 
0.4% 

N+Y 0.1% Clear 73.2% (Other) 0.2% 
Y+N 0.8% Cloudy 15.9% Traffic control devices (tcd) 
Y+Y 0.1% Rain 9.1% Signal+Signal 49.1% 

Reckless driving (reckless) Snow 1.4% No TCD+No TCD 19.7% 
N+N 96.7% Fog, Smog, Smoke 0.2% Sign+No TCD 11.7% 
N+Y 0.3% Sleet or Hail 0.1% Sign+Sign 7.8% 
Y+N 3.0% (Other) 0.2% No TCD+Sign 5.1% 
Y+Y 0.0% Type of intersection (typint) Unknown+Unknown 2.3% 

Improper control (impropctrl) (Other) 0.7% (Other) 4.3% 
N+N 99.5% 3-Legged 22.0% 

  

N+Y 0.0% Unknown 21.8% 
  

Y+N 0.5% 4-Legged 55.6% 
  

Note: Sample size 39,850. 
Labels with “+” indicate conditions of Vehicle 1 on the left side and Vehicle 2 on the right side. 
In speeding, etc.: U = Unknown; Y = Yes; N = No. 

	

5.4	Methodology	

This	chapter	employed	a	procedure	of	two	steps	to	specify	crash	scenarios	and	their	

ODDs.	The	first	step	was	characterization	of	crash	sequences	using	sequence	analysis,	and	

the	second	step	was	ODD	specification	based	on	a	Bayesian	network	modeling	of	

relationships	among	crash	sequence	types,	outcomes,	human	factors,	and	environmental	
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conditions.	Sequence	types	and	ODDs	make	up	scenarios.	Crash	sequence	types	describe	

what	could	happen	between	moving	objects	in	the	scenarios.	ODDs	illustrate	what	the	

surroundings	could	be	like	in	the	scenarios.	

5.4.1	Crash	Sequence	Comparison	and	Clustering	

In	sequence	analysis,	the	encoded	crash	sequences	were	compared	and	grouped.	

The	basis	of	sequence	comparison	and	clustering	is	the	measure	of	dissimilarity,	which	

quantifies	the	difference	between	each	pair	of	sequences	(64,	130,	142).	Optimal	matching	

(OM)	based	dissimilarity	measures	have	been	widely	used	in	bioinformatic	and	sociological	

research	to	for	gene	sequence	or	life	course	sequence	analysis	(64–66,	130,	133,	142).	The	

Chapter	3	research	also	found	OM	based	dissimilarity	measures	to	be	appropriate	for	crash	

sequence	analysis.	In	Chapter	3,	a	methodology	was	also	proposed	to	select	the	optimal	

encoding	schemes	and	dissimilarity	measures	for	different	crash	analysis	use	cases	and	

found	the	Levenshtein	distance	to	be	an	overall	good	choice	for	measuring	crash	sequence	

dissimilarity.	

The	OM	takes	two	sequences	and	align	them.	The	alignment	of	sequences	involves	

several	operations	such	as	substitutions,	deletions/insertions	(or	indels),	compression	and	

expansions,	and	transpositions	(or	swaps)	(13,	18,	30).	The	Levenshtein	distance	uses	only	

substitutions	and	indels.	The	mathematical	expression	of	OM	based	dissimilarity	between	a	

pair	of	sequences,	x	and	y,	is:	

𝑑82(𝑥, 𝑦) = min
9
∑ 𝛾*𝑇"

9-ℓ&
"(" 	 	 	 	 	 	 [15]	

where	ℓ9 	denotes	the	transformations	needed	to	turn	sequence	x	into	y;		and	
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𝛾*𝑇"
9-	is	the	cost	of	each	elementary	transformation	𝑇"

9 	(e.g.,	indel	or	substitution).	

An	example	of	sequence	alignment	using	Levenshtein	distance	is	shown	in	Table	27.	There	

are	multiple	ways	to	align	two	sequences,	“ABCD”	and	“ACB”.	Using	a	substitution	cost	of	s	

and	an	indel	cost	of	d,	the	two	ways	of	alignment	shown	in	Table	27	yielded	different	total	

costs.	The	OM	then	applies	a	greedy	algorithm	to	return	the	minimum	alignment	cost	as	the	

dissimilarity	between	the	two	sequences	(129).	

Table	27		Sequence	alignment	

Sequence 1 A B C D 
  

Sequence 2 A C B 
   

Alignment 1 
      

Sequence 1 A 
 

B C D 
 

Sequence 2 A C/ B ø ø 
 

Cost 
 

d 
 

d d = 3d 
Alignment 2 

      

Sequence 1 A B C D 
  

Sequence 2 A ø C B 
  

Cost 
 

d 
 

s 
 

= d+s 
Note: Insertion is marked with ø, 

Deletion is marked with slash/, 
Substitution is marked with underline 

	

Using	the	Levenshtein	distance,	a	dissimilarity	matrix	for	a	set	of	crash	sequences	

can	be	calculated.	The	matrix	is	of	size	n*n	,	where	n	is	the	number	of	sequences	in	the	set.	

Each	element	in	the	matrix	indicates	the	dissimilarity	between	a	pair	of	sequence.	The	

dissimilarity	matrix	can	then	be	plug	into	a	clustering	algorithm	to	characterize	crash	

sequences	as	distinctive	types.	

For	clustering,	a	weighted	k-medoid	method	was	employed	in	this	chapter.	K-

medoid	clustering	has	been	applied	in	prior	studies	for	crash	characterization	due	to	its	

good	performance	with	categorical	data	and	robustness	against	outliers	(11,	16).	The	



	

	

143 

weighted	k-medoid	clustering	algorithm	used	in	this	chapter	was	developed	by	Studer,	

accommodating	sampling	weights	(provided	by	CRSS	data	sets)	in	the	clustering	(160).	The	

sequence	dissimilarity	calculation	and	sequence	clustering	were	completed	using	R	and	the	

libraries	“TraMineR”	and	“WeightedCluster”	(157,	158,	160).	

To	characterize	the	intersection	two-vehicle	crashes,	the	sequence	comparison	and	

clustering	were	done	under	the	existing	CRSS	crash	configuration	(CC)	classification.	The	

distribution	of	CC	is	shown	in	Table	28.	Sequence	comparison	and	clustering	was	done	for	

each	CC	category.	By	conducting	sequence	analysis	under	the	existing	CC	classification,	

representations	were	kept	for	rarer	crash	types,	which	would	otherwise	be	overlooked	if	

all	39,850	crash	sequences	were	analyzed	in	a	lump	sum.	Those	rarer	crash	types	are	also	

useful	for	developing	potentially	challenging	test	scenarios.	

Table	28		Distribution	of	CRSS	intersection	two-vehicle	crash	configurations	

Category CC Description Count % Weighted Count % 
Same Trafficway,  
Same Direction 

D Rear End 14,784 37.10% 2,300,603 39.08% 
E Forward Impact 8 0.02% 1,143 0.02% 
F Angle, Sideswipe 1,692 4.25% 301,033 5.11% 

Same Trafficway,  
Opposite Direction 

G Head-On 153 0.38% 14,178 0.24% 
H Forward Impact 9 0.02% 586 0.01% 
I Angle, Sideswipe 117 0.29% 18,069 0.31% 

Change Trafficway,  
Vehicle Turning 

J Turn Across Path 7,932 19.90% 1,095,637 18.61% 
K Turn Into Path 6,777 17.01% 1,010,868 17.17% 

Intersect Paths L Straight Paths 7,160 17.97% 938,248 15.94% 
Miscellaneous M Backing, Etc. 1,218 3.06% 207,224 3.52%   

Total 39,850 100.00% 5,887,588 100.00% 
	

5.4.2	Bayesian	Network	Modeling	

Bayesian	network	modeling	has	been	used	in	prior	studies	to	evaluate	factors	

affecting	crash	type	and	injury	severity	(89, 90, 195, 91, 196, 189–191, 193, 194).	Bayesian	
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networks	are	directed	acyclic	graphs	(DAGs),	with	nodes	denoting	variables	and	directed	

edges	denoting	the	dependencies	between	variables	(197).	The	strengths	of	influences	

between	variables	are	measured	by	conditional	probabilities.	If	the	graph	has	variables	

𝑥), … , 𝑥<,	and	𝑆" 	as	the	set	of	parents	of	𝑥" ,	an	estimated	conditional	probability	is	then	

𝑃_(𝑥"|𝑆").	The	following	joint	probability	distribution	exists	for	the	graph:	

𝑃(𝑥), … , 𝑥<) = ∏ 𝑃_(𝑥"|𝑆")" 	 	 	 	 	 	 [16]	

The	construction	of	a	Bayesian	network	consists	of	two	steps	(189,	190):	

• Structure	learning:	determine	selection	of	variables	(nodes)	and	determine	the	

dependencies	or	independencies	between	nodes,	to	form	a	DAG.	

• Parameter	learning:	based	on	the	determined	DAG,	estimate	a	conditional	

probability	table	for	each	node	to	quantify	relationship	between	nodes.	

In	this	chapter,	the	structure	learning	was	completed	using	a	hill	climbing	algorithm,	which	

finds	the	network	structure	with	the	highest	Akaike	information	criterion	(AIC)	score.	The	

AIC	score	used	in	the	R	library,	“bnlearn”,	is	calculated	as	the	classic	definition	rescaled	by	

–2	(198):	

𝐴𝐼𝐶 = ln*𝐿[- − 2𝑘	 	 	 	 	 	 	 [17]	

where	𝐿[	=	the	maximum	likelihood	of	the	model;	k	=	the	number	of	estimated	parameters.	

Therefore,	a	higher	AIC	score	means	a	better	Bayesian	network	model.	The	learned	

network	structure	was	adjusted	based	on	the	authors’	domain	knowledge	in	traffic	crashes.	

Multiple	networks	structures	were	generated	and	compared	to	determine	a	most	

appropriate	one	for	ODD	specification,	based	on	the	conditional	probability	table.	The	
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structure	and	parameter	learning	were	completed	using	R	and	the	“bnlearn”	library	(157,	

198).	Bayesian	networks	were	visualized	using	the	“Rgraphviz”	library	(199).	

A	determined	Bayesian	network	can	reveal	the	dependencies	among	variables	

including	sequence	types	(developed	from	the	sequence	analysis),	crash	outcomes	(manner	

of	collision	and	injury	severity),	human	factors,	and	environmental	conditions,	using	graph	

visualizations.	The	network	can	also	help	identify	the	sequence	types	likely	yielding	serious	

crash	outcomes	and	the	ODD	settings	for	specific	sequence	types	by	querying	for	

conditional	probabilities	in	the	network.	Scenarios	can	be	defined	using	combinations	of	

sequence	types	and	ODD	settings,	and	can	be	used	to	help	render	simulation	tests	for	AV	

safety	evaluation.	

5.5	Results	

This	section	presents	the	results	of	1)	crash	sequence	characterization	from	

sequence	analysis	and	2)	variable	dependencies	from	Bayesian	network	modeling.	An	

example	of	scenario	specification	based	on	the	crash	sequence	type	and	Bayesian	network	

is	provided	at	the	end	of	this	section.	

5.5.1	Sequence	Types	

As	mentioned,	sequence	clustering	was	carried	out	for	each	CC	category	using	

Levenshtein	distance	and	weighted	k-medoid	clustering.	To	measure	the	quality	of	

clustering	and	determine	the	appropriate	number	of	clusters,	clustering	quality	indices	

including	the	Weighted	Average	Silhouette	Width	(ASWw),	Hubert’s	Gamma	(HG),	Point	

Biserial	Correlation	(PBC),	and	Hubert’s	C	(HC)	were	calculated.	A	range	of	k	values	(2	to	

25)	were	used	to	cluster	the	sequences,	and	the	indices	were	plotted	for	comparison.		
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The	plots	in	Figure	33	illustrate	the	clustering	quality	indices	for	the	clustering	of	CC	

D	crash	sequences.	An	optimal	k	value	would	give	us	maximum	ASWw,	HG,	and	PBC	(all	

range	from	-1	to	1),	and	a	minimum	HC	(ranges	from	0	to	1).	Based	on	Figure	33,	k	=	12	

was	chosen	as	the	number	of	clusters	for	CC	D	sequence	clustering.	The	same	procedure	of	

plotting	quality	indices	and	determining	the	appropriate	k	value	was	used	for	all	CC	

categories.	

 
(a) Original values 

 
(b) Standardized values 

Figure	33		Clustering	quality	indices	for	CC	D	(rear	end)	sequences	
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The	clustering	results	are	summarized	in	Table	29.	Only	the	sequence	representing	

the	most	sequences	in	each	cluster	is	presented.	More	detailed	results	showing	the	top	

three	representative	sequences	are	shown	in	Table	A	-	5	of	the	Appendix.	CC	D	Same	

Trafficway,	Same	Direction	–	Rear	End	(39%	of	all)	crashes	were	characterized	as	12	

sequence	types,	CC	J	–	Change	Trafficway,	Vehicle	Turning	–	Turn	Across	Path	(18%	of	all)	

crashes	were	characterized	as	3	sequence	types,	CC	K	–	Change	Trafficway,	Vehicle	Turning	

–	Turn	Into	Path	(17%	of	all)	crashes	were	characterized	as	9	sequence	types,	and	CC	L	–	

Intersect	–	Straight	Paths	(16%	of	all)	crashes	were	characterized	as	14	sequence	types.	

Interpretation	of	the	representative	sequences	is	shown	in	Table	30	for	easier	

understanding	of	the	sequence	types.	For	example,	the	representative	sequence	of	Type	e3	

was	“1ST-1OES-1BR-2ST-2OIS-2NA-1XV-1ROR-1XF-1NCH”,	which	was	interpreted	as	“v1	

moving	straight-other	encroached	into	lane	SD	(brake	and	turned	right)	→	v2	moving	

straight	(no)”,	meaning	Vehicle	1	and	Vehicle	2	were	both	moving	straight	along	the	same	

direction.	Some	other	vehicle	encroached	into	Vehicle	1’s	lane,	making	Vehicle	1	brake	and	

steer	right.	Vehicle	1	then	collided	into	the	rear	of	Vehicle	2,	which	did	not	make	any	

maneuver	to	avoid	the	collision.	Following	the	collision,	Vehicle	1	ran	off	the	road,	hit	a	

fixed	object,	and	suffered	a	non-collision	harmful	event.	
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Table	29		Sequence	clustering	results	
Category CC Type Representative Sequence % 
Same Trafficway,  
Same Direction 

D-Rear End  d1  1ST-1OIS-1B-2B-2OIS-2N-1XV 0.7 
 d2  1R-1OIS-1N-2S-2OIS-2NA-1XV 0.8 
 d3  1C-1OIS-1N-2S-2OIS-2NA-1XV 1.4 
 d4  1ST-1OIS-1N-2B-2OIS-2N-1XV 5.4 
 d5  1A-1OIS-1N-2S-2OIS-2NA-1XV 2.0 
 d6  2S-2OIS-2NA-1ST-1OIS-1N-2XV 0.7 
 d7  1ST-1OIS-1B-2S-2OIS-2NA-1XV 3.5 
 d8  1ST-1OIS-1N-2ST-2OIS-2N-1XV 1.8 
 d9  1ST-1OIS-1N-2S-2OIS-2N-1XV 1.2 
 d10  1B-1OIS-1N-2S-2OIS-2NA-1XV 1.5 
 d11  1ST-1OIS-1NA-2S-2OIS-2NA-1XV 2.9 
 d12  1ST-1OIS-1N-2S-2OIS-2NA-1XV 17.1 

E-Forward Impact  e3  1ST-1OES-1BR-2ST-2OIS-2NA-1XV-1ROR-1XF-1NCH 0.0 
F-Angle, Sideswipe  f1  2ST-2ELL-2N-1ST-1OES-1N-2XV 0.2 

 f2  1E-1OIS-1N-2S-2OIS-2NA-1XV 0.4 
 f3  2ST-2OES-2N-1E-1ELL-1N-2XV 0.3 
 f4  1E-1ELL-1N-2S-2OES-2NA-1XV 0.5 
 f5  1E-1ERL-1NA-2ST-2OES-2NA-1XV 0.2 
 f6  2ST-2ELL-2N-1S-1OES-1NA-2XV 0.2 
 f7  1ST-1ERL-1N-2ST-2OES-2N-1XV 0.3 
 f8  1E-1ELL-1N-2ST-2OES-2N-1XV 1.2 
 f9  1E-1ERL-1N-2ST-2OES-2N-1XV 1.7 

Same Trafficway,  
Opposite Direction 

G-Head-On  g1  1ST-1ELL-1N-2ST-2OEO-2N-1XV 0.2 
 g2  1ST-1OET-1L-2S-2OEO-2NA-1XV 0.0 

H-Forward Impact  h1  1ST-1OEO-1L-2ST-2OEO-2N-1CM-1XV 0.0 
I-Angle, Sideswipe  i1  1ST-1ELL-1N-2S-2OEO-2NA-1XV 0.2 

 i2  2ST-2OEO-2N-1ST-1LCF-1N-2XV-1ROL-1XF 0.1 
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(Table 29 Continued) 

Category CC Type Representative Sequence % 
Change Trafficway,  
Vehicle Turning 

J-Turn Across Path  j1  1R-1R-1N-2ST-2OES-2N-1XV 1.5 
 j2  1L-1L-1N-2ST-2OEO-2N-1XV 9.2 
 j3  2ST-2OEO-2N-1L-1L-1N-2XV 7.8 

K-Turn Into Path  k1  1L-1ELL-1N-2S-2OEO-2NA-1XV 0.9 
 k2  2ST-2ST-2N-1L-1OET-1N-2XV 1.4 
 k3  2ST-2OEO-2N-1L-1L-1N-2XV 3.9 
 k4  1L-1L-1N-2ST-2OEO-2N-1XV 3.1 
 k5  1L-1L-1N-2S-2OEO-2NA-1XV 0.4 
 k6  1R-1R-1N-2ST-2OES-2N-1XV 3.0 
 k7  2ST-2OES-2N-1R-1R-1N-2XV 0.9 
 k8  1L-1OET-1N-2ST-2ST-2N-1XV 0.5 
 k9  1L-1L-1N-2ST-2OES-2N-1XV 3.2 

Intersect Paths L-Straight Paths  l1  2ST-2OET-2N-1ST-1ST-1N-2XV 0.2 
 l2  1A-1ST-1N-2ST-2OET-2N-1XV 0.5 
 l3  1ST-1OET-1N-2A-2ST-2N-1XV 0.4 
 l4  1ST-1OET-1N-2ST-2OET-2N-1XV 0.3 
 l5  1ST-1OET-1B-2ST-2ST-2N-1XV 0.2 
 l6  2ST-2ST-2N-1ST-1OET-1N-2XV 1.5 
 l7  1ST-1ST-1N-2ST-2OET-2N-1XV-2ROR-2XF 0.2 
 l8  1ST-1ST-1NA-2ST-2OET-2NA-1XV 0.2 
 l9  1ST-1ST-1NA-2ST-2OET-2N-1XV 0.7 
 l10  1ST-1OET-1N-2ST-2ST-2NA-1XV 0.6 
 l11  1ST-1ST-1N-2ST-2ST-2N-1XV 0.7 
 l12  1ST-1OET-1N-2ST-2ST-2N-1XV 3.6 
 l13  1ST-1ST-1N-2ST-2OET-2N-1XV 6.6 
 l14  1ST-1ST-1B-2ST-2OET-2N-1XV 0.3 

Miscellaneous M-Backing, Etc.  m1  1BU-1BU-1N-2S-2OIR-2NA-1XV 1.5 
 u  1U-1U-1N-2ST-2OEO-2N-1XV 2.0 
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Table	30		Interpretation	of	representative	sequences	

Type Interpretation 

 d1   v1 moving straight (decelerated) → v2 decelerating  

 d2   v1 turning right → v2 stopped (no)  

 d3   v1 negotiating curve → v2 stopped (no)  

 d4   v1 moving straight → v2 decelerating  

 d5   v1 accelerating → v2 stopped (no)  

 d6   v2 stopped (no) → v1 moving straight (no)  

 d7   v1 moving straight (decelerated) → v2 stopped (no)  

 d8   v1 moving straight → v2 moving straight  

 d9   v1 moving straight → v2 stopped  

 d10   v1 decelerating → v2 stopped (no)  

 d11   v1 moving straight (no) → v2 stopped (no)  

 d12   v1 moving straight → v2 stopped (no)  

 e3   v1 moving straight-other encroached into lane SD (brake and turned right) → v2 moving straight (no)  

 f1   v2 moving straight-encroached into lane on left → v1 moving straight  

 f2   v1 changing lane → v2 stopped (no)  

 f3   v2 moving straight → v1 changing lane-encroached into lane on left  

 f4   v1 changing lane-encroached into lane on left → v2 stopped (no)  

 f5   v1 changing lane-encroached into lane on right (no) → v2 moving straight  

 f6   v2 moving straight-encroached into lane on left → v1 stopped (no)  

 f7   v1 moving straight-encroached into lane on right → v2 moving straight  

 f8   v1 changing lane-encroached into lane on left → v2 moving straight  

 f9   v1 changing lane-encroached into lane on right → v2 moving straight  

 g1   v1 moving straight-encroached into lane on left → v2 moving straight  

 g2   v1 moving straight (steering left) → v2 stopped (no)  

 h1   v1 moving straight (steering left) → v2 moving straight  

 i1   v1 moving straight-encroached into lane on left → v2 stopped (no)  

 i2   v2 moving straight-other encroached into lane → v1 moving straight-speeding  

Note: v1 = Vehicle 1; v2 = Vehicle 2. See Section 5.3.2  Numbering Crash Participants for details. 
SD = same direction. 
The arrow symbol, “→”, means that the vehicle left of the arrow collided into the vehicle right of it. 
Content in the parentheses is crash avoidance maneuver, no parenthesis means action unknown. 
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(Table 30 Continued) 

Type Interpretation 

 j1   v1 turning right → v2 moving straight-other encroached into lane SD  

 j2   v1 turning left → v2 moving straight-other encroached into lane OD  

 j3   v2 moving straight-other encroached into lane OD → v1 turning left  

 k1   v1 turning left → v2 stopped-other turning into OD (no)  

 k2   v2 moving straight → v1 turning left-other encroached on cross street  

 k3   v2 moving straight-other encroached on OD → v1 turning left  

 k4   v1 turning left → v2 moving straight-other encroached into lane OD  

 k5   v1 turning left → v2 stopped-other turning into OD (no)  

 k6   v1 turning right → v2 moving straight-other encroached into lane SD  

 k7   v2 moving straight-other turning into lane SD → v1 turning right  

 k8   v1 turning left-other encroached into lane from cross street → v2 moving straight  

 k9   v1 turning left → v2 moving straight-other encroached into lane SD  

 l1   v2 moving straight-other encroached into lane CS → v1 moving straight  

 l2   v1 accelerating/start moving → v2 moving straight-other encroached into lane CS  

 l3   v1 moving straight-other encroached into lane CS → v2 accelerating/start moving  

 l4   v1 moving straight-other encroached into lane CS → v2 moving straight-other encroached into lane CS  

 l5   v1 moving straight-other encroached into lane CS (brake) → v2 moving straight  

 l6   v2 moving straight → v1 moving straight-other encroached into lane CS  

 l7   v1 moving straight → v2 moving straight-other encroached into lane CS  

 l8   v1 moving straight (no) → v2 moving straight-other encroached into lane CS (no)  

 l9   v1 moving straight (no) → v2 moving straight-other encroached into lane CS  

 l10   v1 moving straight-other encroached into lane → v2 moving straight (no)  

 l11   v1 moving straight → v2 moving straight  

 l12   v1 moving straight-other encroached into lane CS → v2 moving straight  

 l13   v1 moving straight → v2 moving straight-other encroached into lane CS  

 l14   v1 moving straight (brake) → v2 moving straight-other encroached into lane CS  

 m1   v1 backing up → v2 stopped-other backing (no)  

 u   v1 making U-turn → v2 moving straight-other encroached into lane OD  

Note: SD = same direction; OD = opposite direction; CS = cross street. 
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5.5.2	Variable	Dependencies	

Using	a	hill	climbing	algorithm	with	AIC	as	the	criterion	for	model	selection,	a	

Bayesian	network	was	learned	to	illustrate	the	relationships	among	sequence	types,	crash	

outcomes,	human	factors,	and	environmental	condition	variables.	The	network	is	shown	in	

Figure	34.	Each	node	represents	a	variable,	and	the	directed	arcs	represent	dependencies	

among	variables.	The	weight	of	an	arc	represents	its	strength,	measured	by	the	potential	

change	in	AIC	score	which	would	be	caused	by	removing	the	arc	from	the	network	(i.e.,	the	

difference	between	the	network’s	AIC	score	with	and	without	the	arc).	If	the	change	in	AIC	

is	negative,	that	means	removing	the	arc	harmed	the	network	by	losing	information.	

Therefore,	a	more	negative	difference	indicates	a	higher	arc	strength	(i.e.,	stronger	

relationship	between	two	variables).	

The	Bayesian	network	shows	that	sequence	type	had	strong	relationships	with	

crash	outcome	variables	–	maximum	injury	severity	(“maxsev”)	and	manner	of	collision	

(“moc”).	Sequence	type	was	also	directly	or	indirectly	associated	with	human	factors	and	

environmental	conditions.	Detailed	arc	strengths	are	listed	in	Table	31.	Five	strongest	

direct	links	with	sequence	type	were	manner	of	collision	(moc),	traffic	control	device	(tcd),	

maximum	injury	severity	(maxsev),	speeding,	and	careless	driving	(careless).	
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Note: Crash outcomes are in blue; human factors are in pink; environmental conditions are in white. 

Figure	34		Bayesian	network	generated	from	hill	climbing	learning	

	

The	variable	pointed	by	an	arc	is	dependent	on	the	variable	on	the	other	end	of	the	

arc.	Note	that	the	arcs	pointing	from	crash	sequence	type	to	crash	outcomes	indicated	

expected	dependencies,	supported	by	prior	studies’	findings	that	the	order	of	events	and	

actions	taken	during	the	pre-crash	and	crash	periods	directly	affect	manner	of	collision	and	

injury	severity	(15).	Human	factors	and	environmental	conditions	were	suggested	by	some	

prior	studies	to	affect	crash	types	and	crash	outcomes,	with	arcs	in	Bayesian	networks	

pointing	from	human	factors	and	environmental	conditions	to	crash	types	and	crash	
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outcomes	(190,	191).	However,	some	other	studies	indicated	that	crash	data	did	not	

support	such	findings	and	presented	Bayesian	networks	with	arcs	pointing	from	crash	

types	and	outcomes	toward	crash	types	and	outcomes	(193,	194).	In	the	algorithmically	

learned	network	shown	in	Figure	34,	arcs	pointed	from	sequence	type	and	manner	of	

collision	to	human	factors	and	environmental	conditions.	

Table	31		Arc	strengths	

Arc From To Strength (change in AIC) 
seqtype → moc Sequence Type Manner of Collision -31,693.6 
seqtype → tcd Sequence Type Traffic Control Device -12,347.0 
weather → surcon Weather Road Surface Condition -10,261.1 
tod → light Time of Day Lighting Condition -8,899.4 
tcd → typint Time of Day Type of Intersection -2,897.5 
careless → reckless Careless Driving Reckless Driving -2,627.5 
moc → spdlim Manner of Collision Speed Limit -2,283.0 
seqtype → maxsev Sequence Type Maximum Injury Severity -2,065.7 
seqtype → speeding Sequence Type Speeding -1,536.6 
seqtype → careless Sequence Type Careless Driving -1,106.3 
spdlim → urbrur Speed Limit Urbanicity -920.4 
moc → typint Manner of Collision Type of Intersection -553.2 
seqtype → didnotsee Sequence Type Looked But Did Not See -198.1 
seqtype → tod Sequence Type Time of Day -131.9 
seqtype → impropctrl Sequence Type Improper Control -139.8 
urbrur → reckless Urbanicity Reckless Driving -71.2 
typint → light Type of Intersection Lighting Condition -65.2 
urbrur → careless Urbanicity Careless Driving -4.7 
urbrur → tod Urbanicity Time of Day -3.8 
tod → weather Time of Day Weather -53.6 

	

An	alternative	Bayesian	network	was	constructed	to	test	the	hypothesis	that	human	

factors	and	environmental	conditions	affect	sequence	types,	as	shown	in	Figure	35.	In	the	

alternative	network,	arcs	were	manually	added	to	point	from	human	factors	and	

environmental	conditions	to	sequence	types,	and	the	arc	strengths	(variable	dependencies)	
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were	weak.	Therefore,	the	hypothesis	about	sequence	type	being	dependent	on	human	

factors	and	environmental	conditions	was	not	supported	by	the	data.	Here,	the	data	and	

network	learning	algorithm	were	trusted,	and	the	Figure	34	network	was	determined	to	be	

selected	as	the	final	Bayesian	network	for	scenario	specification.	

	
Note: Dashed arcs indicate weak strengths. 

Figure	35		Alternative	Bayesian	network	

	

To	confirm	the	relationships	between	sequence	types	and	crash	outcomes,	as	well	

as	among	sequence	types,	human	factors,	and	environmental	conditions,	structural	stability	

of	the	local	network	was	tested	by	developing	partial	Bayesian	networks	as	shown	in	

Figure	36	and	Figure	37.	
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Figure	36		Bayesian	network	of	sequence	types	and	crash	outcomes	

	

	
Figure	37		Bayesian	network	of	sequence	types,	human	factors,	and	environmental	

conditions	
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Figure	36	shows	that	the	relationships	between	sequence	types	and	crash	outcomes	

did	not	change	after	removing	all	other	variables	from	the	original	network	(in	Figure	34).	

Figure	37	shows	that	the	local	network	structure	changed	only	slightly	on	type	of	

intersection	(“typint”)	and	speed	limit	(“spdlim”)	after	crash	outcome	variables	were	

removed	from	the	original	network.	Therefore,	the	local	network	structures	were	stable,	

confirming	the	relationships	between	sequence	types	and	other	variables.	

5.5.3	Scenario	Specification	

The	final	Bayesian	network	in	Figure	34	is	of	two	uses	in	specifying	test	scenarios.	

First,	crash	sequences	of	certain	injury	severity	levels	can	be	selected	based	on	the	

dependencies	between	sequence	types	and	crash	outcomes.	Second,	after	sequence	types	

of	interest	are	determined,	their	associated	ODD	attributes	can	be	specified	based	on	the	

dependencies	among	sequence	types,	human	factors,	and	environmental	conditions.	The	

scenario	specification	can	be	done	by	querying	the	conditional	probability	table	generated	

from	the	final	Bayesian	network.	The	process	is	demonstrated	here	with	an	example.	

If	we	would	like	to	specify	scenarios	for	some	intersection	two-vehicle	crashes	that	

resulted	in	fatalities,	we	can	first	query	the	final	Bayesian	network	to	obtain	the	

distribution	of	sequence	types	that	resulted	in	fatalities,	as	shown	in	Figure	38.	Using	the	

“bnlearn”	library	in	R,	the	distribution	was	generated	based	on	Monte	Carlo	particle	filters	

(198).	The	query	was	ran	with	1,000	replications	and	obtained	the	average	counts	of	

sequences.	The	results	showed	that	sequence	types	j2,	j3,	k3,	l7,	l12,	and	l13	were	the	most	

frequent	fatal	crash	sequences.	
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Figure	38		Distribution	of	sequence	types	resulting	in	fatalities	

	

If	we	would	like	to	specify	ODDs	for	a	sequence	type,	for	example,	k3,	we	can	query	

the	Bayesian	network	again	for	distributions	of	human	factor	and	environmental	condition	

variables	using	“seqtype	=	k3”	as	a	criterion.	Two	examples	are	demonstrated	here.	Table	

32	shows	query	results	for	the	distribution	of	intersection	type	and	traffic	control	device	

(TCD)	in	k3	crashes.	Table	33	shows	query	results	for	the	distribution	of	drivers’	speeding	

behavior	and	time	of	day	in	k3	crashes.	The	two	tables	are	color	coded	to	show	large	values	

in	darker	red,	smaller	values	in	darker	blue,	and	values	close	to	the	mean	in	white.	The	

query	results	showed	that	k3	crashes	happened	most	frequently	at	4-legged	intersections	

with	sign	control	on	minor	approaches,	3-legged	intersections	with	sign	control	on	minor	

approaches,	and	at	4-legged	intersections	with	signal	control	on	all	approaches.	Speeding	

was	not	related	to	95%	of	k3	crashes.	More	k3	crashes	happened	in	daytime	than	in	
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nighttime,	but	the	proportion	of	speeding-related	crashes	in	all	k3	crashes	were	the	same	

2%	regardless	of	daytime	or	nighttime.		

Table	32		Distribution	of	intersection	type	and	TCD	in	k3	crashes	

 Type of Intersection 
TCD 4-Legged 3-Legged Other Unknown 
No TCD+No TCD 40.5 45.9 0.6 21.8 
No TCD+Sign 20.0 4.0 0.1 1.6 
No TCD+Signal 1.8 0.3 0.0 0.3 
Other+No TCD 0.2 0.3 0.0 0.0 
Other+Other 0.5 0.6 0.0 0.4 
Sign+No TCD 217.4 184.9 4.8 30.0 
Sign+Other 3.3 5.3 0.1 1.4 
Sign+Sign 29.6 5.8 0.8 7.9 
Sign+Signal 1.9 0.7 0.0 0.3 
Sign+Unknown 8.9 7.1 0.0 9.2 
Signal+No TCD 3.0 0.5 0.0 0.4 
Signal+Sign 0.4 0.1 0.0 0.0 
Signal+Signal 128.2 15.7 0.8 22.2 
Unknown+No TCD 1.8 4.2 0.1 3.8 
Unknown+Sign 2.7 0.6 0.0 2.4 
Unknown+Signal 1.6 0.4 0.0 0.5 
Unknown+Unknown 2.8 1.1 0.1 5.1 

Note: Average values of 1,000 replications. 
Labels with “+” indicate conditions of Vehicle 1 on the left side and 
Vehicle 2 on the right side. 

	

Table	33		Distribution	of	speeding	behavior	and	time	of	day	in	k3	crashes	
 

Speeding 
Time of Day N+N N+U U+N U+U N+Y Y+N 
Day 671.4 6.6 7.6 5.3 9.6 2.8 
Night 146.4 1.4 1.6 1.2 2.0 0.7 

Note: Average values of 1,000 replications. 

	

With	the	information	obtained	from	Table	32	and	Table	33,	several	ODDs	can	be	

specified	for	the	testing	of	k3	crash	sequence	type.	For	example,	“a	4-legged	intersection	
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with	sign	control	on	the	minor	approaches	at	daytime”.	More	complex	queries	can	also	be	

run	to	obtain	more	comprehensive	descriptions	of	ODDs.	

Given	an	ODD,	the	distribution	of	sequence	types	can	also	be	obtained	by	querying	

the	Bayesian	network,	and	carry	out	tests	accordingly.	For	example,	Table	34	shows	the	

query	results	of	sequence	type	distribution	at	signal-controlled	intersections.	The	results	

are	color-coded	to	show	the	within-category	(4-legged	or	3	legged)	distribution,	with	

darker	red	indicating	a	higher	proportion	and	darker	blue	indicating	a	lower	proportion	

within	category.	Most	frequently	occurred	crash	sequence	types	for	both	4-legged	and	3-

legged	signalized	intersections	are	i1,	d12,	j2,	and	j3.	Crashes	can	be	sampled	based	on	this	

distribution	and	used	to	reconstruct	scenarios	in	a	simulation	environment	for	AV	testing.	

Table	34		Distribution	of	sequence	types	at	signal-controlled	intersections	

Seq 
Type 

Type of Intersection Seq 
Type 

Type of Intersection Seq 
Type 

Type of Intersection 
4-Legged 3-Legged 4-Legged 3-Legged 4-Legged 3-Legged 

d1 35.7 6.9 f8 57.0 6.1 l1 13.5 1.7 
d2 35.8 6.9 f9 90.9 9.8 l2 7.3 0.9 
d3 45.7 8.8 g1 17.5 2.1 l3 3.5 0.4 
d4 257.8 49.7 g2 13.2 1.9 l4 23.2 2.8 
d5 162.8 31.6 h1 1.8 0.2 l5 8.9 1.0 
d6 43.1 8.1 i1 2,176.0 263.3 l6 90.3 11.0 
d7 237.7 45.3 i2 129.1 15.8 l7 14.5 1.7 
d8 104.5 20.2 j1 93.1 10.7 l8 10.5 1.3 
d9 72.2 13.9 j2 958.6 115.6 l9 25.2 3.0 
d10 98.7 18.8 j3 816.9 98.9 l10 15.8 1.9 
d11 194.5 37.3 k1 29.9 3.9 l11 98.5 12.0 
d12 1,171.2 225.9 k2 194.1 23.4 l12 226.1 27.7 
e3 1.1 0.2 k3 128.2 15.5 l13 453.4 55.5 
f1 14.2 1.6 k4 48.3 6.0 l14 22.2 2.7 
f2 23.3 2.7 k5 9.6 1.3 m1 54.9 10.4 
f3 14.8 1.7 k6 119.5 14.5 u 98.0 12.7 
f4 39.6 4.4 k7 33.7 4.3 

   

f5 7.0 0.8 k8 61.0 7.4 
   

f6 9.7 1.1 k9 89.2 10.9 
   

f7 16.9 1.8 Note: Average values of 1,000 replications. 
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5.6	Discussion	and	Conclusions	

This	chapter	presents	a	procedure	to	generate	crash	scenarios	for	AV	safety	testing.	

The	method	consists	of	two	steps,	1)	characterization	of	crashes	encoded	by	sequences	of	

events	using	sequence	analysis	techniques,	and	2)	specification	of	scenarios	based	on	a	

Bayesian	network	modeling	dependencies	among	crash	sequence	types,	crash	outcomes,	

and	variables	depicting	ODDs.	The	procedure	was	demonstrated	using	2016-2018	

intersection	two-vehicle	crash	data	from	the	NHTSA	CRSS	database.	

This	chapter	has	two	major	findings.	First,	the	intersection	two-vehicle	crashes	were	

characterized	as	55	types	based	on	their	patterns	in	sequences	of	events.	The	55	crash	

sequence	types	offered	more	information	about	crash	progression	to	the	original	CRSS	

configuration	and	helped	identify	rare	crash	types	which	would	otherwise	be	overlooked.	

Second,	the	dependencies	among	crash	sequence	types,	crash	outcomes,	human	factors,	

and	environmental	conditions	were	shown	in	a	Bayesian	network.	Sequence	types	were	

found	to	be	the	core	of	the	network	and	have	direct	effects	on	crash	outcomes.	The	

dependencies	of	human	factors	and	environmental	conditions	on	sequence	types	are	useful	

in	specifying	ODDs	for	crash	sequence	types	and	identifying	distributions	of	crash	sequence	

types	for	specific	ODDs.	

The	contribution	of	this	chapter	is	that	it	offers	a	methodology	to	systematically	

generate	a	crash	scenario	library	based	on	national-level	crash	databases.	Such	a	library	

would	offer	a	comprehensive	set	of	crash	sequence	types	and	ODDs,	making	it	an	

appropriate	guide	for	developing	simulation-based	tests	for	AV	safety	evaluation.	
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Therefore,	such	a	scenario	library	would	complement	scenario	generating	methodologies	

developed	based	on	vehicle	kinematic	data	sources	such	as	naturalistic	driving	data.	

This	chapter	is	subject	to	limitations	in	crash	sequence	data	source.	More	detailed	

crash	event	data	than	what	was	obtained	from	the	CRSS	database	(or	any	other	current	

national	or	state-level	crash	database	in	the	United	States)	were	not	available,	so	crash	

sequences	used	in	the	case	study	were	limited	to	the	level	of	details	provided	by	CRSS.	

More	ODD	attributes	would	benefit	the	Bayesian	network	modeling	by	providing	more	

information.	However,	a	more	complex	network	would	require	more	effort	to	interpret.	For	

future	work,	data	sources	with	more	detailed	crash	sequence	data	would	be	sought	and	

used	to	generate	more	detailed	crash	characterization.	Also,	more	sophisticated	Bayesian	

network	modeling	techniques	would	be	explored.	
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Chapter	6 Conclusions	

6.1	Summary	of	Dissertation	

Motivated	by	an	urgent	need	in	developing	scenario-based	safety	verification	of	an	

emerging	transportation	technology	–	automated	vehicles	(AVs),	this	dissertation	research	

developed	a	methodology	for	crash	sequence	analysis	which	was	applied	to	generate	test	

scenarios	for	AV	safety	evaluation,	with	a	focus	on	evaluating	the	operational	safety	of	AVs	

with	SAE	Level	3	or	Level	4	automation.	Level	3	and	Level	4	AVs	are	being	tested	on	public	

roads,	closed	courses,	and	in	simulations,	with	a	near-term	expectation	to	share	the	roads	

and	face	similar	challenges	with	human	drivers.	Using	historical	crash	data,	from	national-

level	human-driven	vehicle	crash	databases	and	the	California	AV	collision	report	archives,	

this	dissertation	applied	crash	sequence	analysis	followed	a	scenario-generating	procedure	

consisting	of	two	steps	–	1)	characterization	of	crash	sequences	and	2)	specification	of	

dependencies	between	crash	sequences	and	other	crash	attributes.	To	achieve	the	research	

objective,	three	studies	were	completed.	

The	first	study	set	up	the	methodological	foundation	for	this	dissertation	by	

developing	a	methodology	to	analyze	crash	sequences.	The	study	further	investigated	the	

sequence	encoding	and	dissimilarity	measuring	techniques	to	accommodate	various	needs	

in	traffic	crash	analysis.	The	proposed	crash	sequence	analysis	methodology	consisted	of	

steps	of	1)	crash	data	processing,	2)	sequence	encoding,	3)	sequence	comparison,	and	4)	

sequence	clustering.	The	properties	of	nine	dissimilarity	measures	were	compared,	and	

five	Optimal	Matching	(OM)	based	measures	were	selected	for	further	comparison	in	a	case	

study	of	interstate	highway	single-vehicle	crash	sequences,	with	three	different	encoding	
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schemes.	The	five	measures	were	categorized	into	two	groups	based	on	correlations	

between	dissimilarity	matrices.	The	optimal	dissimilarity	measures	were	identified	for	

each	encoding	schemes	based	on	the	agreements	with	a	benchmark	crash	typology.	The	

case	study	results	demonstrated	the	effectiveness	and	usefulness	of	the	proposed	crash	

sequence	analysis	methodology.	This	study	has	been	written	in	the	form	of	a	manuscript	

which	has	been	submitted	to	Accident	Analysis	and	Prevention	and	is	currently	under	

review.	

The	second	study	applied	crash	sequence	analysis	methods	to	the	California	AV	

crash	data,	identified	representative	scenarios	in	crashes	during	AV	field	tests,	and	

proposed	a	framework	for	scenario-based	AV	safety	evaluation.	In	the	study,	sequence	of	

events	data	was	extracted	from	California	AV	collision	reports	and	used	to	investigate	

patterns	and	how	they	may	be	used	to	develop	AV	test	scenarios.	The	study	evaluated	168	

AV	crashes	(with	AV	in	automatic	driving	mode	before	disengagement	or	collision)	

reported	to	the	California	DMV	from	2015	to	2019.	The	analysis	of	subsequences	showed	

that	the	most	representative	pattern	in	AV	crashes	was	“collision	following	AV	stop”.	

Analysis	of	event	transition	showed	that	disengagement,	as	an	event	in	24%	of	all	studied	

AV	crash	sequences,	had	a	transition	probability	of	68%	to	an	immediate	collision.	Cluster	

analysis	characterized	AV	crash	sequences	into	seven	groups	with	distinctive	crash	

dynamic	features.	The	cross-tabulation	analysis	showed	that	sequence	types	were	

significantly	associated	with	crash	outcomes	and	environmental	conditions.	The	study	

concluded	that	crash	sequences	are	useful	for	developing	AV	test	scenarios	and	proposed	a	

scenario-based	AV	safety	testing	framework	with	sequence	of	events	embedded	as	a	core	
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component.	This	study	has	been	written	in	the	form	of	a	manuscript	which	has	been	

published	in	Accident	Analysis	and	Prevention.	

The	third	study	applied	crash	sequence	analysis	methodology	to	generate	scenarios	

of	intersection	two-vehicle	crash.	A	procedure	of	sequence	analysis	and	Bayesian	network	

modeling	of	sequence-ODD	relationships	was	followed.	Crash	data	was	obtained	from	the	

2016-2018	NHTSA	CRSS	database.	Participating	vehicles	were	specifically	renumbered	

based	on	their	intents	in	the	crashes.	Crash	sequences	were	encoded	to	include	detailed	

pre-crash	events	and	concise	crash	events	considering	the	use	in	scenario	generation.	

Based	on	sequence	patterns,	the	crashes	were	characterized	as	55	types.	A	Bayesian	

network	model	was	developed	to	depict	the	interrelationships	among	crash	sequence	

types,	crash	outcomes,	human	factors,	and	environmental	conditions.	Scenarios	were	

specified	by	querying	the	Bayesian	network’s	conditional	probability	table.	Distributions	of	

ODD	attributes	(e.g.,	driver	behavior,	weather,	lighting	condition,	intersection	geometry,	

traffic	control	device)	could	be	specified	based	on	conditions	of	sequence	types.	Also,	

distribution	of	sequence	types	could	be	specified	on	specific	crash	outcomes	or	

combinations	of	ODD	attributes.	This	study	has	been	written	in	the	form	of	a	manuscript	

which	will	be	submitted	to	the	Journal	of	Safety	Research.	

6.2	Contribution	

The	scholarly	contribution	of	this	dissertation	is	two-fold.	First,	it	contributes	to	

enhancing	the	understanding	of	traffic	crash	progression	and	causations	by	developing	a	

first-of-its-kind	crash	sequence	analysis	methodology	that	is	applicable	to	multiple	use	
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cases.	Second,	it	contributes	to	the	efficient	testing	of	AVs	by	applying	crash	sequence	

analysis	to	generate	scenarios	for	AV	safety	evaluation.	

The	findings	from	this	dissertation	will	further	benefit	traffic	safety	research	and	the	

development	of	an	AV	safety	validation	program.	Knowledge	of	crash	sequences	will	help	

further	research	in	identifying	appropriate	safety	countermeasures.	A	comprehensive	test	

scenario	library	will	speed	up	large-scale	AV	safety	testing	with	the	help	of	simulation.	

With	effective	and	efficient	testing,	AVs	will	be	deployed	to	public	roads	with	safe	

certification.	

6.3	Limitations	

This	dissertation	is	primarily	subject	to	limitations	in	the	crash	sequence	data	

source.	The	NHTSA	CRSS	crash	database	and	California	AV	collision	reports	were	the	two	

data	sources	used	in	this	dissertation.	The	two	data	sources	each	had	their	advantages	in	

offering	crash	sequence	data,	making	them	appropriate	sources	for	this	dissertation	

research.	The	CRSS	offered	a	comprehensive	sample	of	crashes	covering	different	ODDs.	

The	California	AV	collision	reports	provided	a	unique	sample	of	AV	crashes	otherwise	

cannot	be	obtained.	Apart	from	the	advantages,	limitations	of	the	two	data	sources	are	as	

follows.	

1. The	CRSS	database	did	not	provide	detailed	sequence	of	events	in	its	SOE	

variable	in	the	CEVENT	data	file,	where	crash	events	were	archived.	For	the	

intersection	two-vehicle	crashes	studied	in	Chapter	5,	a	majority	of	the	SOE	

records	had	only	one	event	of	“collision	with	motor-vehicle-in-transport”.	Also,	

detailed	pre-crash	events	(e.g.,	crash	avoidance	maneuver)	were	not	included	in	
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the	SOE	variable.	By	combining	the	SOE	with	PCRASH1~3	variables,	this	

limitation	was	addressed	to	some	extent.	However,	further	research	is	needed	to	

determine	appropriate	sequence	structures	when	combining	multiple	variables,	

especially	for	multi-vehicle	crashes.	

2. Reporting	of	crash	sequence	data	was	not	required	by	the	California	DMV.	No	

guideline	was	provided	for	including	crash	sequence	information	in	text	

narratives.	In	Chapter	4’s	study,	crash	sequences	were	manually	extracted	from	

the	narratives	of	AV	collision	reports.	To	ensure	consistency	in	the	extracted	

crash	sequences,	the	narratives	were	interpreted	by	one	researcher	and	a	two-

phase	encoding	process	was	conducted.	

6.4	Future	Directions	

For	future	work,	limitations	in	crash	sequence	data	sources	could	be	addressed	by	

exploring	the	potential	in	large-scale	automatic	extraction	of	crash	sequence	data	from	

crash	reports	using	natural	language	processing	techniques.	Sequence	analysis	methods	

can	also	be	applied	to	naturalistic	driving	data	and	video	surveillance	data	for	traffic	

conflict	and	crash	study.	Other	than	exploring	other	data	sources,	three	more	research	

directions	to	derive	from	this	dissertation	are	listed	as	follows.	

Validation	of	scenarios.	A	preliminary	thought	is	to	use	driving	simulator	

experiments	to	validate	the	scenarios.	Since	scenarios	are	developed	based	on	historical	

human-driven	vehicle	crashes,	when	human	drivers	are	tested	using	those	scenarios,	we	

should	expect	the	experiments	to	yield	a	failure	rate	(e.g.,	crash	rate)	close	to	a	pre-set	

failure	rate.	
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AV	safety	performance	metrics	and	benchmarks.	The	development	of	AV	aims	to	

create	a	driver	with	artificial	intelligence	(i.e.,	ADS)	to	replace	human	drivers	partially	or	

fully.	To	evaluate	ADS,	we	would	naturally	want	to	compare	the	ADS	with	human	drivers.	

We	need	to	set	up	a	set	of	safety	performance	metrics	and	benchmarks	to	match	our	

expectations	for	ADS	functionalities,	but	at	the	same	time	being	realistic.	Several	questions	

involved	in	this	research	topic	are:	

• What	performance	metrics	to	use?	Specifically,	functional	metrics	related	to	the	

perception,	reaction,	planning,	and	control	processes;	and	outcome	measures	

such	as	crash/conflict	frequency	and	crash	injury	severity.	

• What	benchmark	do	we	choose?	Do	we	use	the	performance	of	an	average	

human	driver	as	a	benchmark,	a	so-called	expert	driver,	or	some	other	

benchmark	to	be	manually	defined?	

Some	theoretical	studies	are	needed	to	answer	the	above	questions.	Once	we	have	the	

answers,	we	can	carry	out	case	studies	with	driving	simulator	experiments	to	evaluate	ADS.	

Using	scenario	and	simulation-based	tests,	experiments	can	be	carried	out	(e.g.,	using	

driving	simulators)	to	measure	and	compare	the	safety	performances	of	ADS	and	human	

drivers.	

Applications	of	the	crash	sequence	analysis	methodology	and	scenario-based	

testing	techniques.	Apart	from	research	on	testing	AVs,	the	crash	sequence	analysis	

methodology	and	scenario-based	testing	techniques	can	be	applied	to	a	variety	of	other	

research	topics.	Two	use	cases	are	1)	evaluation	of	bus	crash	sequences	and	testing	of	bus	

collision	avoidance	systems,	and	2)	evaluation	of	non-motorized	user	(pedestrian,	bicycle,	
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and	e-scooter	crashes)	related	crash	sequences	and	testing	of	Internet-of-Things	(IoT)	

applications	for	non-motorized	user	safety.	 	
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Appendices	

Appendix	for	Chapter	3	

Table	A	-	1		Encoding	Schemes	
PCRASH1 

Original Scheme 1 Scheme 2 CRSS Description 

11p0 N N 0 No Driver Present/Unknown if Driver Present 

11p1 ST ST 1 Going Straight 

11p2 B B 2 Decelerating in Road 

11p3 A A 3 Accelerating in Road 

11p4 A A 4 Starting in Road 

11p5 S S 5 Stopped in Roadway 

11p6 PA PA 6 Passing or Overtaking Another Vehicle 

11p10 R R 10 Turning Right 

11p11 L L 11 Turning Left 

11p12 U U 12 Making a U-turn 

11p13 BU BU 13 Backing Up (Other Than for Parking Position) 

11p14 C C 14 Negotiating a Curve 

11p15 E E 15 Changing Lanes 

11p16 E E 16 Merging 

11p17 CA CA 17 Successful Corrective Action to a Previous Critical Event 

11p98 N N 98 Other 

	

PCRASH2 

Original Scheme 1 Scheme 2 CRSS Description 

   Loss of Control: 

12p1 LCS LC 1 Blow Out/Flat Tire 

12p3 LCS LC 3 Disabling Vehicle Failure (e.g., Wheel Fell Off) 

12p4 LCM LC 4 Non-Disabling Vehicle Problem (e.g., Hood Flew Up) 

12p5 LCM LC 5 Poor Road Conditions (Puddle, Pothole, Ice, etc.) 

12p6 LCF LC 6 Traveling Too Fast for Conditions 

12p8 LCO LC 8 Other Cause of Control Loss 

12p9 LCO LC 9 Unknown Cause of Control Loss 

   This Vehicle Traveling: 

12p10 ELL VT 10 Over the Lane Line on Left Side of Travel Lane 
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Original Scheme 1 Scheme 2 CRSS Description 

12p11 ERL VT 11 Over the Lane Line on Right Side of Travel Lane 

12p12 ELE VT 12 Off the Edge of The Road on The Left Side 

12p13 ERE VT 13 Off the Edge of The Road on The Right Side 

12p14 ED VT 14 End Departure 

12p15 L VT 15 Turning Left 

12p16 R VT 16 Turning Right 

12p19 N VT 19 Unknown Travel Direction 

12p20 BU VT 20 Backing 

12p21 U VT 21 Making a U-Turn 

   Other Vehicle in Lane: 

12p50 OIS OI 50 Other Vehicle Stopped 

12p51 OIS OI 51 Traveling in Same Direction with Lower Steady Speed 

12p52 OIS OI 52 Traveling in Same Direction while Decelerating 

12p59 OIN OI 59 Unknown Travel Direction of The Other Motor Vehicle in Lane 

   Other Vehicle Encroaching into Lane: 

12p60 OES OE 60 From Adjacent Lane (Same Direction)-Over Left Lane Line 

12p61 OES OE 61 From Adjacent Lane (Same Direction)-Over Right Lane Line 

12p62 OEO OE 62 From Opposite Direction Over Left Lane Line 

12p63 OEO OE 63 From Opposite Direction Over Right Lane Line 

12p64 OES OE 64 From Parking Lane/Shoulder, Median/Crossover, Roadside 

12p66 OET OE 66 From Crossing Street, Across Path 

12p74 OES OE 74 From Entrance to Limited Access Highway 

12p78 OEN OE 78 Encroaching by Other Vehicle – Details Unknown 

   Pedestrian in Lane: 

12p80 PII PI 80 Pedestrian in Road 

12p81 PIA PI 81 Pedestrian Approaching Road 

   Pedalcyclist in Lane: 

12p83 BII BI 83 Pedalcyclist/Other Non-Motorist in Road 

12p85 BIN BI 85 Pedalcyclist Or Other Non-Motorist Unknown Location 

   Animal in Lane: 

12p87 AII AI 87 Animal in Road 

12p88 AIA AI 88 Animal Approaching Road 

12p89 AIN AI 89 Animal Unknown Location 

   Object in Lane: 

12p90 OBI OB 90 Object in Road 

12p91 OBA OB 91 Object Approaching Road 

   Other/Unknown: 
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Original Scheme 1 Scheme 2 CRSS Description 

12p98 N N 98 Other Critical Precrash Event 

12p99 N N 99 Unknown 

	

PCRASH3 

Original Scheme 1 Scheme 2 CRSS Description 

13p0 N N 0 No Driver Present/Unknown if Driver Present 

13p1 N N 1 No Avoidance Maneuver 

13p5 RB RB 5 Releasing Brakes 

13p6 L L 6 Steering Left 

13p7 R R 7 Steering Right 

13p8 BL BL 8 Braking and Steering Left 

13p9 BR BR 9 Braking and Steering Right 

13p10 A A 10 Accelerated 

13p12 AR AR 12 Accelerating and Steering Right 

13p15 B B 15 Braking and Unknown Steering Direction 

13p16 B B 16 Braking 

13p98 N N 98 Other Actions 

13p99 N N 99 Unknown/Not Reported 

	

SOE 

Original Scheme 1 Scheme 2 CRSS Description 

1v1 RLO NCH 1 Rollover/Overturn 

1v2 NCH NCH 2 Fire/Explosion 

1v3 NCH NCH 3 Immersion or Partial Immersion 

1v5 NCH NCH 5 Fell/Jumped from Vehicle 

1v7 NCH NCH 7 Other Noncollision 

1v8 XP XO 8 Pedestrian 

1v9 XB XO 9 Pedalcyclist 

1v11 XA XO 11 Live Animal 

1v15 XP XO 15 Non-Motorist on Personal Conveyance 

1v16 NCH NCH 16 Thrown or Falling Object 

1v17 XFC XF 17 Boulder 

1v18 XO XO 18 Other Object Not Fixed 

1v19 XFA XF 19 Building 

1v20 XFA XF 20 Impact Attenuator/Crash Cushion 
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Original Scheme 1 Scheme 2 CRSS Description 

1v21 XFC XF 21 Bridge Pier or Support 

1v23 XFB XF 23 Bridge Rail (Includes Parapet) 

1v24 XFA XF 24 Guardrail Face 

1v25 XFB XF 25 Concrete Traffic Barrier 

1v26 XFB XF 26 Other Traffic Barrier 

1v30 XFC XF 30 Utility Pole/Light Support 

1v31 XFC XF 31 Post, Pole or Other Support 

1v32 XFC XF 32 Culvert 

1v33 XFB XF 33 Curb 

1v34 XFA XF 34 Ditch 

1v35 XFA XF 35 Embankment 

1v38 XFA XF 38 Fence 

1v39 XFB XF 39 Wall 

1v40 XFC XF 40 Fire Hydrant 

1v41 XFA XF 41 Shrubbery 

1v42 XFC XF 42 Tree (Standing Only) 

1v43 XFB XF 43 Other Fixed Object 

1v44 NCH NCH 44 Pavement Surface Irregularity (Ruts, Potholes, Grates, etc.) 

1v46 XFC XF 46 Traffic Signal Support 

1v48 XFA XF 48 Snow Bank 

1v50 XFC XF 50 Bridge Overhead Structure 

1v52 XFC XF 52 Guardrail End 

1v53 XFB XF 53 Mail Box 

1v57 XFA XF 57 Cable Barrier 

1v58 XFA XF 58 Ground 

1v59 XFB XF 59 Traffic Sign Support 

1v61 EF NH 61 Equipment Failure (blown tire, brake failure, etc.) 

1v63 ROR NH 63 Ran Off Roadway-Right 

1v64 ROL NH 64 Ran Off Roadway-Left 

1v65 CM NH 65 Cross Median 

1v67 AIR NH 67 Vehicle Went Airborne 

1v68 CM NH 68 Cross Centerline 

1v69 RE NH 69 Re-entering Roadway 

1v71 ED NH 71 End Departure 

1v72 NCH NCH 72 Cargo/Equipment Loss, Shift, or Damage (Harmful) 

1v73 XO XO 73 Object That Had Fallen from Motor Vehicle In-Transport 

1v79 RO NH 79 Ran off Roadway - Direction Unknown 
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Original Scheme 1 Scheme 2 CRSS Description 

1v91 XO XO 91 Unknown Object Not Fixed 

1v93 XFB XF 93 Unknown Fixed Object 

1v99 N N 99 Reported as Unknown 

Note for Scheme 2: NCH = Non-collision harmful event; NH: non-harmful event;  
XO = hit object (non-fixed); XF = hit fixed object; N = Unknown. 

	

Table	A	-	2		CRSS	Crash	Type	Diagrams	

	

	
	

Table	A	-	3		Crash	Type	Recoding	

Crash Type Code Crash Type Code 

00 N 10 B4 

01 A1 11* C1 

02 A2 12 C2 

03 A3 13 C3 

04 A4 14 C4 

05 A4 15 C5 

06 B1 16 C5 

07 B2 92 R 

08 B3 98 U 

09 B4 99 U 

Note: * Type C1 did not appear in the case study sample data set 



	

	

188 

Appendix	for	Chapter	5	

Table	A	-	4		Event	Encodings	

PCRASH1 
Veh1 Veh2 CRSS Original Categories and Description 
1A 2A 3 Accelerating in Road, 4 Starting in Road 
1B 2B 2 Decelerating in Road 
1BU 2BU 13 Backing Up (Other Than for Parking Position) 
1C 2C 14 Negotiating a Curve 
1CA 2CA 17 Successful Corrective Action to a Previous Critical Event 
1E 2E 8 Leaving a Parking Position; 15 Changing Lanes; 16 Merging 
1L 2L 11 Turning Left 
1N 2N 0 No Driver Present/Unknown if Driver Present; 98 Other; 99 Unknown 
1P 2P 9 Entering a Parking Position 
1PA 2PA 6 Passing or Overtaking Another Vehicle 
1R 2R 10 Turning Right 
1S 2S 5 Stopped in Roadway; 7 Disabled or Parked in Travel Lane 
1ST 2ST 1 Going Straight 
1U 2U 12 Making a U-turn 
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PCRASH2 
Veh1 Veh2 CRSS Original Categories and Description   

This Vehicle 
1B 2B 18 This Vehicle Decelerating 
1BU 2BU 20 Backing 
1ELE 2ELE 12 Off The Edge of The Road on The Left Side 
1ELL 2ELL 10 Over The Lane Line on Left Side of Travel Lane 
1ERE 2ERE 13 Off The Edge of The Road on The Right Side 
1ERL 2ERL 11 Over The Lane Line on Right Side of Travel Lane 
1L 2L 15 Turning Left 
1LCF 2LCF 6 Traveling Too Fast For Conditions 
1LCM 2LCM 2 Stalled Engine; 4 Non-Disabling Vehicle Problem (e.g., Hood Flew Up); 5 Poor Road 

Conditions (Puddle, Pothole, Ice, etc.) 
1LCO 2LCO 8 Other Cause of Control Loss, 9 Unknown Cause of Control Loss 
1LCS 2LCS 1 Blow Out/Flat Tire, 3 Disabling Vehicle Failure (e.g., Wheel Fell Off) 
1N 2N 19 Unknown Travel Direction; 98 Other Critical Precrash Event; 99 Unknown 
1R 2R 16 Turning Right 
1ST 2ST 17 Crossing Over (Passing Through) Junction 
1U 2U 21 Making a U-Turn   

Other Vehicle 
1OEN 2OEN Encroached Unknown Direction: 73 From Driveway, Intended Path Not Known; 78 Encroaching 

By Other Vehicle – Details Unknown 
1OEO 2OEO Encroached Opposite Direction: 62 From Opposite Direction Over Left Lane Line; 63 From 

Opposite Direction Over Right Lane Line; 67 From Crossing Street, Turning Into Opposite 
Direction; 72 From Driveway, Turning Into Opposite Direction 

1OES 2OES Encroached Same Direction: 60 From Adjacent Lane (Same Direction)-Over Left Lane Line; 61 
From Adjacent Lane (Same Direction)-Over Right Lane Line; 64 From Parking Lane/Shoulder, 
Median/Crossover, Roadside; 65 From Crossing Street, Turning Into Same Direction; 70 From 
Driveway, Turning Into Same Direction; 74 From Entrance to Limited Access Highway 

1OET 2OET Encroached Across Path: 66 From Crossing Street, Across Path; 71 From Driveway, Across 
Path 

1OIN 2OIN In Lane: 59 Unknown Travel Direction Of The Other Motor Vehicle in Lane 
1OIO 2OIO In Lane: 54 Traveling in Opposite Direction 
1OIR 2OIR In Lane: 56 Backing 
1OIS 2OIS In Lane Same Direction: 50 Other Vehicle Stopped; 51 Traveling in Same Direction with Lower 

Steady Speed; 52 Traveling in Same Direction while Decelerating; 53 Traveling in Same 
Direction with Higher Speed 

1OIT 2OIT In Lane: 55 In Crossover   
Animal/Object/Bike/Ped 

1AIA 
 

88 Animal Approaching Road 
1AII 2AII 87 Animal in Road  

2BII 83 Pedalcyclist/Other Non-Motorist in Road  
2OBI 90 Object in Road 

1PII 2PII 80 Pedestrian in Road 
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PCRASH3 
Veh1 Veh2 CRSS Original Categories and Description 
1A 2A 10 Accelerated 
1AL 2AL 11 Accelerating And Steering Left 
1AR 2AR 12 Accelerating And Steering Right 
1B 2B 15 Braking and Unknown Steering Direction; 16 Braking 
1BL 2BL 8 Braking And Steering Left 
1BR 2BR 9 Braking And Steering Right 
1L 2L 6 Steering Left 
1N 2N 0 No Driver Present/Unknown if Driver Present; 98 Other Actions; 99 Unknown/Not Reported 
1NA 2NA 1 No Avoidance Maneuver 
1R 2R 7 Steering Right 
1RB 2RB 5 Releasing Brakes 

	

SOE 
Veh1 Veh2 CRSS Original Categories and Description 
1AIR 2AIR 67 Vehicle Went Airborne 
1CARG 2CARG 60 Cargo/Equipment Loss or Shift (non-harmful) 
1CM 2CM 65 Cross Median; 68 Cross Centerline 
1ED 2ED 71 End Departure 
1EF 2EF 61 Equipment Failure (blown tire, brake failure, etc.); 62 Separation of Units 

1NCH 2NCH 

Non-collision Harmful Events: 2 Fire/Explosion; 3 Immersion or Partial Immersion; 4 Gas 
Inhalation; 5 Fell/Jumped from Vehicle; 6 Injured in Vehicle (Non-Collision); 7 Other 
Noncollision; 16 Thrown or Falling Object; 44 Pavement Surface Irregularity (Ruts, 
Potholes, Grates, etc.); 51 Jackknife (Harmful to This Vehicle); 72 Cargo/Equipment Loss, 
Shift, or Damage (Harmful) 

1RE 2RE 69 Re-entering Roadway 
1RLO 2RLO 1 Rollover/Overturn 
1RO 2RO 79 Ran off Roadway - Direction Unknown 
1ROL 2ROL 64 Ran Off Roadway-Left 
1ROR 2ROR 63 Ran Off Roadway-Right 
1XB 2XB Collision: With Pedalcyclist 
1XF 2XF Collision: With Fixed Object 
1XO 2XO Collision: With Other Object Not Fixed 
1XP 2XP Collision: With Pedestrian, Non-Motorist on Personal Conveyance 

 2XPV Collision: With Parked Motor Vehicle 
1XV 2XV Collision: With the Other Motor Vehicle In-Transport 
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Table	A	-	5		Intersection	two-vehicle	crash	sequence	types	

Type Weighted Count  % in Total Representative Sequences % in Type 
d1        42,092  0.7% 1ST-1OIS-1B-2B-2OIS-2N-1XV 45%    

1ST-1OIS-1B-2B-2B-2N-1XV 8%    
1B-1OIS-1B-2B-2OIS-2N-1XV 7% 

d2        46,241  0.8% 1R-1OIS-1N-2S-2OIS-2NA-1XV 87%    
1R-1OIS-1N-2R-2OIS-2NA-1XV 4%    
1R-1OIS-1N-2R-2R-2NA-1XV 2% 

d3        81,464  1.4% 1C-1OIS-1N-2S-2OIS-2NA-1XV 91%    
1C-1OIS-1N-2S-2OIS-2N-1XV 3%    
1C-1OIS-1R-2S-2OIS-2NA-1XV 1% 

d4      320,110  5.4% 1ST-1OIS-1N-2B-2OIS-2N-1XV 41%    
1ST-1OIS-1N-2R-2OIS-2N-1XV 5%    
1ST-1OIS-1N-2B-2B-2N-1XV 5% 

d5      119,820  2.0% 1A-1OIS-1N-2S-2OIS-2NA-1XV 88%    
1A-1OIS-1N-2S-2OIS-2N-1XV 7%    
1A-1OIS-1N-2A-2OIS-2NA-1XV 1% 

d6        39,166  0.7% 2S-2OIS-2NA-1ST-1OIS-1N-2XV 28%    
2B-2OIS-2N-1ST-1OIS-1N-2XV 7%    
2ST-2OIS-2N-1ST-1OIS-1N-2XV 5% 

d7      205,907  3.5% 1ST-1OIS-1B-2S-2OIS-2NA-1XV 68%    
1B-1OIS-1B-2S-2OIS-2NA-1XV 11%    
1ST-1OIS-1B-2S-2OIS-2N-1XV 3% 

d8      108,359  1.8% 1ST-1OIS-1N-2ST-2OIS-2N-1XV 72%    
1ST-1OIN-1N-2ST-2OIS-2N-1XV 4%    
1ST-1OIS-1B-2ST-2OIS-2N-1XV 4% 

d9        72,006  1.2% 1ST-1OIS-1N-2S-2OIS-2N-1XV 86%    
1R-1OIS-1N-2S-2OIS-2N-1XV 3%    
1E-1OIS-1N-2S-2OIS-2N-1XV 2% 

d10        87,269  1.5% 1B-1OIS-1N-2S-2OIS-2NA-1XV 87%    
1B-1OIS-1N-2S-2OIS-2N-1XV 5%    
1B-1OIS-1N-2B-2OIS-2NA-1XV 3% 

d11      172,901  2.9% 1ST-1OIS-1NA-2S-2OIS-2NA-1XV 52%    
1A-1OIS-1NA-2S-2OIS-2NA-1XV 18%    
1C-1OIS-1NA-2S-2OIS-2NA-1XV 5% 

d12   1,005,268  17.1% 1ST-1OIS-1N-2S-2OIS-2NA-1XV 89%    
1E-1OIS-1N-2S-2OIS-2NA-1XV 1%    
1ST-1OIS-1N-2B-2OIS-2NA-1XV 1% 
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Type  Weighted Count  % in Total Representative Sequences % in Type 
e3     1,143  0.0% 1ST-1OES-1BR-2ST-2OIS-2NA-1XV-1ROR-1XF-1NCH 17%    

1ST-1OIS-1N-2S-2OEN-2NA-1XV 15%    
1E-1OEN-1N-2ST-2OES-2N-1XV 14% 

f1   14,220  0.2% 2ST-2ELL-2N-1ST-1OES-1N-2XV 29%    
2E-2ELL-2N-1ST-1OES-1N-2XV 11%    
2C-2ELL-2N-1C-1OES-1N-2XV 6% 

f2   23,919  0.4% 1E-1OIS-1N-2S-2OIS-2NA-1XV 16%    
1ST-1OIS-1N-2S-2OIS-2NA-1XV 11%    
1PA-1OIS-1N-2S-2OIS-2NA-1XV 6% 

f3   20,576  0.3% 2ST-2OES-2N-1E-1ELL-1N-2XV 25%    
2ST-2OES-2N-1E-1ERL-1N-2XV 20%    
2ST-2OES-2N-1E-1ERL-1NA-2XV 5% 

f4   32,310  0.5% 1E-1ELL-1N-2S-2OES-2NA-1XV 22%    
1E-1ERL-1N-2S-2OES-2NA-1XV 18%    
1ST-1ERL-1N-2S-2OES-2NA-1XV 9% 

f5     8,931  0.2% 1E-1ERL-1NA-2ST-2OES-2NA-1XV 39%    
1E-1ELL-1NA-2ST-2OES-2NA-1XV 37%    
1E-1OIS-1NA-2ST-2OES-2NA-1XV 5% 

f6   10,150  0.2% 2ST-2ELL-2N-1S-1OES-1NA-2XV 20%    
2E-2OIS-2N-1S-1OIS-1NA-2XV 8%    
2ST-2OIS-2N-1S-1OIS-1NA-2XV 5% 

f7   18,779  0.3% 1ST-1ERL-1N-2ST-2OES-2N-1XV 25%    
1ST-1N-1N-2ST-2N-2N-1XV 16%    
1ST-1OES-1N-2ST-2ELL-2N-1XV 8% 

f8   72,270  1.2% 1E-1ELL-1N-2ST-2OES-2N-1XV 67%    
1E-1ELL-1NA-2ST-2OES-2N-1XV 8%    
1E-1ELL-1N-2C-2OES-2N-1XV 4% 

f9   99,879  1.7% 1E-1ERL-1N-2ST-2OES-2N-1XV 55%    
1E-1ERL-1NA-2ST-2OES-2N-1XV 8%    
1PA-1ERL-1N-2ST-2OES-2N-1XV 4% 
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Type  Weighted Count  % in Total Representative Sequences % in Type 
g1     11,260  0.2% 1ST-1ELL-1N-2ST-2OEO-2N-1XV 18%    

1ST-1ELL-1N-2ST-2OEO-2N-1CM-1XV 12%    
1C-1ELL-1N-2C-2OEO-2N-1CM-1XV 7% 

g2       2,918  0.0% 1ST-1OET-1L-2S-2OEO-2NA-1XV 10%    
1ST-1N-1N-2ST-2N-2N-1XV 10%    
1C-1LCF-1N-2C-2OEO-2N-1XV 7% 

h1          586  0.0% 1ST-1OEO-1L-2ST-2OEO-2N-1CM-1XV 42%    
1ST-1ELL-1N-2ST-2OEO-2N-1XV 12%    
1ST-1ELL-1L-2ST-2OEO-2N-1XV 11% 

i1     14,663  0.2% 1ST-1ELL-1N-2S-2OEO-2NA-1XV 10%    
1C-1ELL-1N-2C-2OEO-2N-1XV 7%    
1C-1ELL-1N-2C-2OEO-2N-1CM-1XV 5% 

i2       3,405  0.1% 2ST-2OEO-2N-1ST-1LCF-1N-2XV-1ROL-1XF 16%    
1ST-1OIO-1L-2ST-2OIO-2N-1XV 14%    
1ST-1LCO-1N-2ST-2OEO-2N-1XV 8% 

j1     89,654  1.5% 1R-1R-1N-2ST-2OES-2N-1XV 15%    
1L-1ERL-1N-2L-2OES-2N-1XV 8%    
1R-1R-1N-2L-2OEO-2N-1XV 7% 

j2   544,349  9.2% 1L-1L-1N-2ST-2OEO-2N-1XV 52%    
1L-1L-1N-2ST-2OES-2N-1XV 5%    
1L-1L-1NA-2ST-2OEO-2N-1XV 4% 

j3   461,634  7.8% 2ST-2OEO-2N-1L-1L-1N-2XV 51%    
2ST-2ST-2N-1L-1OEO-1N-2XV 6%    
2ST-2ST-2N-1L-1L-1N-2XV 5% 
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Type  Weighted Count  % in Total Representative Sequences % in Type 
k1     50,571  0.9% 1L-1ELL-1N-2S-2OEO-2NA-1XV 18%    

1R-1ELL-1N-2S-2OEO-2NA-1XV 17%    
1R-1R-1N-2S-2OEO-2NA-1XV 14% 

k2     82,579  1.4% 2ST-2ST-2N-1L-1OET-1N-2XV 61%    
2ST-2ST-2N-1R-1OET-1N-2XV 5%    
2ST-2ST-2B-1L-1OET-1N-2XV 4% 

k3   228,645  3.9% 2ST-2OEO-2N-1L-1L-1N-2XV 43%    
2ST-2OES-2N-1L-1L-1N-2XV 10%    
2ST-2ST-2N-1L-1L-1N-2XV 7% 

k4   183,944  3.1% 1L-1L-1N-2ST-2OEO-2N-1XV 57%    
1L-1L-1NA-2ST-2OEO-2N-1XV 7%    
1L-1L-1N-2C-2OEO-2N-1XV 5% 

k5     21,835  0.4% 1L-1L-1N-2S-2OEO-2NA-1XV 49%    
1L-1L-1NA-2S-2OEO-2NA-1XV 10%    
1L-1L-1N-2S-2OES-2NA-1XV 8% 

k6   175,550  3.0% 1R-1R-1N-2ST-2OES-2N-1XV 50%    
1R-1R-1NA-2ST-2OES-2N-1XV 5%    
1R-1R-1N-2C-2OES-2N-1XV 3% 

k7     50,321  0.9% 2ST-2OES-2N-1R-1R-1N-2XV 50%    
2ST-2OES-2N-1R-1R-1NA-2XV 6%    
2C-2OES-2N-1R-1R-1N-2XV 5% 

k8     26,569  0.5% 1L-1OET-1N-2ST-2ST-2N-1XV 53%    
1R-1OET-1N-2ST-2ST-2N-1XV 6%    
1L-1OET-1N-2ST-2ST-2L-1XV 4% 

k9   190,854  3.2% 1L-1L-1N-2ST-2OES-2N-1XV 44%    
1L-1L-1NA-2ST-2OES-2N-1XV 6%    
1L-1L-1N-2ST-2ST-2N-1XV 5% 

m1     91,068  1.5% 1BU-1BU-1N-2S-2OIR-2NA-1XV 40%    
1BU-1OIS-1N-2S-2OIR-2NA-1XV 6%    
1BU-1BU-1NA-2S-2OIR-2NA-1XV 6% 

u   116,156  2.0% 1U-1U-1N-2ST-2OEO-2N-1XV 6%    
1U-1U-1N-2ST-2OES-2N-1XV 6%    
1ST-1N-1N-2ST-2N-2N-1XV 4% 
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Type  Weighted Count  % in Total Representative Sequences % in Type 
l1     12,508  0.2% 2ST-2OET-2N-1ST-1ST-1N-2XV 52%    

2ST-2OET-2N-1A-1ST-1N-2XV 7%    
2ST-2OET-2B-1ST-1ST-1NA-2XV 5% 

l2     31,062  0.5% 1A-1ST-1N-2ST-2OET-2N-1XV 71%    
1A-1ST-1N-2A-2OET-2N-1XV 5%    
1A-1ST-1N-2A-2ST-2N-1XV 3% 

l3     21,903  0.4% 1ST-1OET-1N-2A-2ST-2N-1XV 63%    
1ST-1OET-1B-2A-2ST-2N-1XV 6%    
1ST-1OET-1N-2A-2OET-2N-1XV 4% 

l4     16,065  0.3% 1ST-1OET-1N-2ST-2OET-2N-1XV 85%    
1ST-1OET-1N-2ST-2OET-2N-1XV-2ROR-2XF 2%    
1ST-1OET-1N-2S-2OET-2N-1XV 1% 

l5     10,319  0.2% 1ST-1OET-1B-2ST-2ST-2N-1XV 73%    
1ST-1OET-1B-2ST-2ST-2N-1XV-2RLO 5%    
1ST-1OET-1B-2ST-2ST-2N-1XV-2ROL-2XF 4% 

l6     88,353  1.5% 2ST-2ST-2N-1ST-1OET-1N-2XV 54%    
2A-2ST-2N-1ST-1OET-1N-2XV 7%    
2ST-2ST-2N-1ST-1ST-1N-2XV 6% 

l7     12,516  0.2% 1ST-1ST-1N-2ST-2OET-2N-1XV-2ROR-2XF 55%    
1ST-1ST-1N-2ST-2OET-2N-1XV-2ROR-2XF-2XF 19%    
1ST-1ST-1N-2ST-2OET-2R-1XV-2ROR-2XF 2% 

l8     12,597  0.2% 1ST-1ST-1NA-2ST-2OET-2NA-1XV 47%    
1ST-1OET-1NA-2ST-2OET-2NA-1XV 6%    
1ST-1ST-1NA-2ST-2ST-2NA-1XV 5% 

l9     43,371  0.7% 1ST-1ST-1NA-2ST-2OET-2N-1XV 56%    
1A-1ST-1NA-2ST-2OET-2N-1XV 16%    
1ST-1ST-1NA-2ST-2OET-2B-1XV 3% 

l10     35,840  0.6% 1ST-1OET-1N-2ST-2ST-2NA-1XV 46%    
1ST-1OET-1N-2A-2ST-2NA-1XV 10%    
1ST-1OET-1NA-2ST-2ST-2NA-1XV 9% 

l11     40,560  0.7% 1ST-1ST-1N-2ST-2ST-2N-1XV 85%    
1ST-1ST-1N-2ST-2ST-2N-1XV-1ROL-1XF 2%    
1ST-1ST-1B-2ST-2ST-2N-1XV 2% 

l12   210,273  3.6% 1ST-1OET-1N-2ST-2ST-2N-1XV 75%    
1ST-1OET-1N-2ST-2ST-2N-1XV-2ROR-2XF 2%    
1ST-1OET-1N-2ST-2ST-2N-1XV-2RLO 2% 

l13   385,833  6.6% 1ST-1ST-1N-2ST-2OET-2N-1XV 78%    
1ST-1ST-1N-2A-2OET-2N-1XV 1%    
1ST-1ST-1N-2ST-2OET-2NA-1XV 1% 

l14     17,047  0.3% 1ST-1ST-1B-2ST-2OET-2N-1XV 61%    
1ST-1ST-1B-2ST-2OET-2NA-1XV 5%    
1ST-1ST-1B-2ST-2OET-2B-1XV 3% 

	


