Appraisal of Pack River lands: Chelan County, Washington as of January 1, 1981. January 1, 1981

Landmark Research, Inc.
[s.I.]: [s.n.], January 1, 1981
https://digital.library.wisc.edu/1711.dl/OZWFEZ5BXYUIA9E
http://rightsstatements.org/vocab/InC/1.0/

The libraries provide public access to a wide range of material, including online exhibits, digitized collections, archival finding aids, our catalog, online articles, and a growing range of materials in many media.

When possible, we provide rights information in catalog records, finding aids, and other metadata that accompanies collections or items. However, it is always the user's obligation to evaluate copyright and rights issues in light of their own use.

Laudwask Ressarch, Ino.

APPRAISAL OF PACK RIVER LANDS
 CHELAN COUNTY, WASHINGTON

$$
\text { AS OF JANUARY 1, } 1981
$$

James A. Graaskamp, Ph.D., SREA, CRE
Tim Warner, MS, MAI, SREA
Jean B. Davis, MS

Attorney Ed Parry
Parry \& Esposito
Suite 604, Fidelity Building
Spokane, Washington 99201
Re: Appraisal Valuation of Pack River Lands Within Wilderness Designated by Alpine Management Act of 1976

Dear Mr. Parry:
With this letter we are transmitting to you an appraisal valuation as of January l, 1981, at fair market value of lands now owned by 20 interests in the former Pack River Company, referred to collectively as Pack River Lands in this report for convenience. This appraisal report culminates a three year research project by a variety of experts at the University of Wisconsin or at Landmark Research, Inc., so that the appraisal report is the conversion of the expertise of many specialties into a pricing model process with which to value the subject land for the owners whom you represent. Therefore this appraisal report incorporates by reference and draws heavily upon the following research compendiums and resources:

Appendix A	Comparable sales data collection, including appraiser notes, maps, photographs, and legal documentation selected by Landmark Research, Inc. as relevant and suitable to the valuation of the subject property. Photography by Sean Ahearn.
Appendix B	Report on technical problems of data mapping, reconciliation of legal descriptions, survey location, and computer mapping of subject and comparable properties by Prof. Ralph Kiefer; Professional report and notes of Sean Ahearn, photographer and environmental monitoring technician and surveying specialist.
Appendix C -	Report on methods and procedures for developing a computer data base covering the subject property and environs (100,000 acres plus subject properties), additional computer pricing model programs, and related procedures by Michael Robbins, environmental systems and valuation specialist.

To: Attorney Ed Parry

$$
\begin{aligned}
& \text { Appendix } D- \text { Survey research of Alpine Lakes hikers and } \\
& \text { campers using visitors employed photography, } \\
& \text { questionnaire survey, and graphic response } \\
& \text { techniques by Professors Bernard Niemann and } \\
& \text { Richard Chenoweth; procedures and applications } \\
& \text { of VIEWIT, a computer model for computation of } \\
& \text { seen areas, slope, and aspects for land use } \\
& \text { planning, developed by the Forest Service and } \\
& \text { appliedon the University of Wisconsin } \\
& \text { computer by William B. Gates. } \\
& \text { Appendix E - A collection of correspondence, technical } \\
& \text { tables, and other sources relied on within the } \\
& \text { appraisal for key assumptions and procedures. }
\end{aligned}
$$

Appendix F - A collection of technical readings and similar materials which provide a broader base of understanding of innovative concepts and current technology which may not be generally familiar or traditionally associated with the appraisal process, but nevertheless relevant to the subject property.

Appendix G - A collection of slide carousels which portray the subject property and comparable sales in three dimensional color with screen projection, which portray data collection and coding procedures, or which provide easily transportable views of cumbersome data sources such as relief maps, wall maps, and computer outputs.

This report provides a separate fair market value as of January 1, 1981 for each owner by parcel in Table 1 attached to this letter and taken from the concluding pages of Section IV of the attached report. The sum of these individual interests represents a total value at fair market value, assuming all conditions requisite of a fair sale with cash to the seller of

THIRTY-SEVEN MILLION DOLLARS
$(\$ 37,000,000)$

TABLE 1

FAIR MARKET VALUE BY OWNER NUMBER AND COMPLAINT NUMBER AS OF JANUARY 1, 1981

LETTER OF TRANSMITTAL DATED MARCH 1, 1982

To: Attorney Ed Parry

These value determinations are the result of a thorough and craftsmanlike analysis of the subject property and its attributes, the changing market for wilderness lands in the high country of the northwest, and consideration of the significant alternative uses to which the property might be put. It should be noted that we have concluded the highest and best use to be wilderness. There is a growing and orderly market for wilderness lands among well financed conservation groups and other cognescenti of natural beauty. Certain procedures in the appraisal are innovative in terms of scoring to rank the quality of wilderness, of natural beauty, of naturalness, and of solitude in order to focus more clearly on the superior and outstanding attributes of the subject property in these matters relative to other sales of comparable properties. A short description of appraisal logic and procedures is provided in the Appraisal Abstract following the Table of Contents. We have depended in part on sources and experts considered to be reliable and accurate but no guarantee can be made by Landmark Research for any of these sources and individuals. The findings and valuation conclusions must be read and understood in context with OUR STATEMENT OF LIMITING CONDITIONS as well as the critical assumptions throughout the report WHICH ARE STATED IN CAPITALIZED LETTERS.

Nevertheless all of us associated with the project are pleased and excited that we may have provided some small improvements to appraisal theory and technology, some needed refinements to the appraisal process for wilderness, and a new point of departure for ranking wilderness properties for both public and private decision makers, who need proxies for intangible attributes in the increasingly complex field of land use decisions and valuation.

Sincerely,

James A. Graaskamp, Ph.D., SREA, CRE
Trban Land Economist

Michael L. Robbins, MS
Environmental Monitoring \& Valuation Systems Specialist

table of contents

PAGE

iiLETTER OF TRANSMITTAL
TABLE OF CONTENTS vi
LIST OF EXHIBITS viii
APPRAISAL ABSTRACT xii
I. DEFINITION OF APPRAISAL ASSIGNMENT I-1
A. The Context for Appraisal I-1
B. Basic Appraisal Assumptions I-8

1. Definition of date of appraisal I-8
2. Definition of appraisal units I-9
C. Definition of Value I-29
D. Property Rights Appraised I-30
E. Highest and Best Use Concept I-33
3. Wilderness as an economic resource I-35
4. Valuation of intangible attributes I-38
5. Collective private markets for rare wilderness I-40
6. Substituting tangible facts of intangible qualities I-45
F. Wilderness Defined I-48
G. Appraisal Methodology I-52
II. SUBJECT PROPERTY - DESCRIPTION, DATA BASE, AND ECONOMIC CONTEXT II-1
A. Introduction II-1
B. General Elements of a Data Base II-2
C. Subject Property Data Base II-5
D. Data Organization II-5
E. Data Recording Process II-8
F. Data Sources II-10
G. Legal Attributes II-15
H. Subject Property Linkages II-20
I. Dynamic Attributes II-25
J. Environmental Attributes II-32 II-32
K. The Economic Context II-44
L. Conclusion II-55
III. DETERMINATION OF HIGHEST AND BEST USE III-1
A. Introduction III-1
B. Recreational Lot Potential III-1
C. Analysis of Logging Potential III-8
D. Combined Timber and Development Values III-13
E. Wilderness as Best Use III-14
IV. MARKET COMPARISON APPROACH TO VALUE IV-1
A. Basic Methodology IV-1
B. Definition of AcceptableArms-Length Transactions IV-2
C. Basic Data Screens and
Initial Data Sweep IV-7
D. Adjustment of Comparable Sale
Prices for Externalities IV-11
E. Establishing Comparative Wilderness Scores for Comparables IV-32
F. Analysis of Summary Scores
for Comparables IV-42
G. Establishing Basis for Market Comparison IV-45
H. A Brief Explanation of the MKTCOMP System IV-50
I. Market Comparison Price Model No. 2 IV-68
J. Multiple Regression Application to Valuation of Subject Property IV-73
K. Synthesis and Reconciliation of
Market Comparison Value Indicators IV-76
L. Final Value Conclusion IV-80
CERTIFICATE OF APPRAISAL IV-82
STATEMENT OF LIMITING CONDITIONS IV-103
QUALIFICATIONS OF APPRAISER IV-106

LIST OF EXHIBITS

EXHIBIT

PAGE
1 General Vicinity of Alpine Lakes Area . . . I-2
2 All Non-Federal Lands Being Considered
for Acquisition to Complete Alpine
Lakes Wilderness
3 Intended Wilderness Within Which Subject Property is Located in a Checkerboard Distribution

Public Law 94-357, 94 th Congress,
H. R. 7792, July 12, 1976

5 Four Acquisition Zones
Indicating Ownership Pattern and
Related Forest Service Lands
Available for Exchange .
I-10
6 Detailed Map of Four Appraisal Zones and
Ownership of Each Section in Color Code
Tied to Exhibit 6A
I-13
6A Ownership Key and Other Basic Boundaries or Development Factors Affecting Appraisal

I-15
7 Ownership Positions and Legal Descriptions
by Appraisal Zones to be Valued as Subject
Properties Within this Report • I-17
II-1 Subject Property Data Base II-4
II-2 Subareas of 100,000 Acres of Alpine Lakes Wilderness Surrounding and Including
Pack River II-7
II-3 Pack River Project, Alpine Lakes Area, Washington: Section Division into
64 Ten Acre Cells • II-9
II-4 Raw Data Geo-Coded into Data Base for
All Subject and Comparable Properties as of August 1981
II-5 Summary of Physical CharacteristicsCataloged as Predominant forEach Ten-Acre Cell in Four Appraisal Units . . II-16
II-6 Key Trail Linkages to Public Road System II-22
II-7 Dynamic Attributes of The Wilderness Evaluation System (WES) II-27
II-8 The Scenic Quality System (SQS) II-29
II-9 Comparable Summary Sheet II-30
II-10a Mean Score of Times Seen from
Public Viewing Platforms II-34
II-lOb Mean Score of Times Seen from Pack River Viewing Platforms II-39
II-ll Washington State Employment and Income II-46
II-12 Construction and Housing Statistics and Economic Indicators II-47
II-13 Use of National Forest Units,National Wilderness Preservation System,Fiscal Year 1979 (10/1/78-9/30/79) II-50
II-14 1977 Transportation Census,
Trips Taken for Outdoor Recreation Within the U.S. in 1977 II-54
III-1 Total No. of Lots Per Cluster withPotential Suitability for Low DensityRecreational Residential Development III-5
III-2 Sub-Division and Road Maps III-3
III-3 An Estimate of Board Foot Volume
Assuming Conventional and Skyline Logging Allocated by Four Cluster Groupings III-10
III-4 Preliminary Estimate of Harvestable Timber Values by Conventional \& Skyline Logging III-12
III-5 Alternative Use Comparisons by Property
Cluster for Pack River Properties. III-17
III-6 1978 National Park Statistical Abstract. . . . III-18
IV-1 Summary of Selected Comparable Sales and
Adjusted Prices for Pack River Appraisal . . . IV-10
IV-2 Pack River Comparable Sales Chart,
Assumptions and Explanations
IV-12
IV-3 Implicit Price Deflators for
Gross National Product
IV-19
IV-4 Summary of Results of Three Alternatives
Considered for Updating Adjusted Sales Price
for Appreciation and Inflation From Date of
Sale to January l, 1981 (Implicit Price
Deflator was Used)
IV-20
IV-4a Updating Adjusted Sales Price for
Appreciation and Inflation From Date of Sale
to January l, 1981 at Six Percent (6\%)
Annual Compounding IV-2l
IV-4b Updating Adjusted Sales Price for
Appreciation and Inflation From Date of Sale
to January l, 1981 at Six Percent (6\%) Annual
Compounding to January 1,1974 , and Ten
Percent (10\%) Annual Compounding From January
1, 1974, to January l, 1981
IV-22
IV-4c Updating Adjusted Sales Price for
Appreciation and Inflation From Date of Sale
to January l, 1981, Using the Implicit Price
Deflator for Gross National Product
IV-23
IV-5a Comparable Sales - Washington IV-24
IV-5b Comparable Sales - Idaho IV-25
IV-5c Comparable Sales - Colorado IV-26
IV-5d Comparable Sales - Wyoming IV-27
IV-5e Comparable Sales - Montana IV-28
IV-5f Summary of Comparable Sales Adjusted to
January l, 1981, After Adjustment for
External Market Conditions IV-33
IV-6 15 Potential Comparables Ranked by Average Wilderness Score Per 10 Acres Together With Other RARE II Rankings IV-34
IV-7 Comparable Summary Sheet IV-39
IV-8 A List of the Dynamic AttributesUsed in the Pack River AppraisalIV-40
IV-9 Subject Property Described as 59040 Acre Units Identified by Y and XCoordinates, Cell Number of Northwest10 Acre Cell, Owner, Area, and Numberof 10 Acre Cells in a 40 Acre Sub-Unit IV-48
IV-10 Comparable Sales Described as 17340 Acre Sub-Sale Units Identified by Yand X Coordinates, Cell Number of Northwest10 Acre Cell, Owner, Area, and Number of10 Acre Cells in a 40 Acre Sub-Unit IV-49
IV-ll Factor Adjustments Used forTwo-Stage MKTCOMP SelectionIV-56
IV-12 Graphic Illustration of Euclidian Distance as a Method for Ranking Comparable Sales of Relatively Different Attribute Sets IV-59
IV-13 Sample Market Comparison OutputAvailable for Each of 590 SubjectProperty 40 Acre UnitsIV-63
IV-14 Summary of MKTCOMP Values
by Section or Partial Section IV-64
IV-15 Summary of MKTCOMP Valuation Results by Cluster I to IV IV-65
IV-16 Number and Percentage of Selectionof Each Comparable Sub-SaleIV-66
IV-17 Computer Summary of Ownership ValuesDistributed to Each of 20 Owners byAssemblage of 40-Acre Parcel Valuesin Each Ownership IV-67

$$
\begin{array}{lll}
\text { IV-18 } & \text { Sorting of Comparable Sales as Wilderness } \\
& \text { and Trail Head with Above Average Scores } \\
& \text { for Wilderness and Scenic Quality • • • • • }
\end{array}
$$

APPRAISAL ABSTRACT

The appraisal of roadless wilderness lands of great topographical and ecological diversity is a specialty within general appraisal practice which has not received much theoretical or practical development. An appraisal is a systematic collection of facts about a specific property which are organized to explore alternative use scenarios with the objective of identifying the most probable use consistent with constraints of public policy and economic profitability. Given this best use or most probable use, the appraiser can generalize as to the profile of the most probable buyer type, his motivations and his means as a first step toward selecting or developing a model for pricing the property in a manner consistent with best use and probable buyer assumptions. Appraisal value is variously defined as a price under specific conditions and in this case the price is fair market value. Fair market value presumes cash to the seller, knowledgeable buyer and seller, the absence of duress, and an adequate offering time on the market.

The pricing model may be inferential from past sales of comparative properties or may simulate the decision rules of expected buyers, as in the case of cash flow investment models for commercial buildings. Where facts and precedent provide no basis for comparative inference or simulation, the appraiser falls back on normative methods like the cost approach, particularly where price prediction is not as important as a formalized procedure for fire insurance replacement costs or even assessment.

In the case at hand regarding some 23,000 acres of mountainous high country with unique attributes of scenic quality the standard appraisal problem has not quite been specified by the circumstances so the appraiser has established some working premises:
A. In the absence of determination of a date of purchase or taking by eminent domain, it was necessary to presume a date of January l, 1981, recognizing that a complex appraisal pricing model would need to be a design that was capable of responding quickly to a court directed change in appraisal date.
B. Since the Pack River lands are generally scattered in approximately 43 sections in a checkerboard pattern with federally owned lands, these sections are organized in clusters to define four appraisal units which seemed marketable, cohesive, and topographically defined.
C. Since the start of the appraisal, the original ownership found it necessary to liquidate so that there are now 20 owners scattered among the 43 sections, although not quite randomly. Therefore an appraisal system had to be designed with a land area unit which could be aggregated in the future into any appraisal unit to be later defined by negotiation or by the courts. A lo-acre cell was therefore used as the organizing unit for data.
D. In addition to alternative uses for the subject lands such as logging and recreational development which are rather customary scenarios, wilderness as a highest and best use was also considered. Evidence is presented of an orderly market for rare and high quality natural landscapes fostered through private organizations and government agencies without power of eminent domain. At some point wilderness attributes on a specific site are present in such quantity, diversity, and quality that the preservation market will pay more than any alternative use to acquire and preserve. The problem is scoring wilderness in such a way as to rank and price its quality so that the cross over points to best use as wilderness from say, logging, is objective.
E. Wilderness as an economic use has been ignored by appraisers and the courts because a significant vector of value is beauty and scenic quality, which did not seem to lend themselves to objective comparison. Therefore it was necessary to find physical ascertainable facts which were correlated into proxies for the degree of naturalness, solitude, recreational challenge and scenic beauty, the general components of wilderness ascribed to by the u.S. Forest Service RARE II.
F. To establish the relationship between the presence of various land forms, rock forms, water forms, vegetation forms, and vistas to perceived scenic quality, the appraisal uses a recent technique called Visitior Employed Photography, a tool of the Forest Service as well as other private/public sectors. This link made it possible to provide ordinal ranking based on the diversity of a given tract in terms of land form, rock form, water form, etc. Vistas were scored with a Forest Service computer program called VIEWIT.
G. Since land appraisal depends primarily on market comparison as opposed to income valuation or a cost approach, it was then necessary to catalog a diversity of rock, land, water, and vegetative forms on the 10-acre cell units of the subject property and of the comparable property to facilitate sensitive comparison of various properties with objective detail. When these physical elements were scored for their absence or presence in combination as found in the VEP studies, it was then possible to compare sites for alternative uses and related values.
H. The development of a premise for best use or most probable use explored the most probable options including logging, recreational development, logging and recreational development, and wilderness as an economic use.
I. Comparable sale properties were then sought out in mountainous wilderness tracts featuring some commercial forest cover, diversity of lake and stream water forms, with opportunities for challenging wilderness recreation, and roughly similar rainfalls, bought by preservation minded individuals, private organizations, or government agencies proceeding without benefit of eminent domain.

1. The search was further narrowed to emphasize the northern and eastern Cascades in Chelan, Skagit, and Snohomish Counties in Washington, the Primitive Areas along the Salmon, Monumental, and Big Creek areas in Idaho, and in the Spanish Peaks Primitive Area of Gallatin and Lewis \& Clark Counties of Montana. In addition several sales in Jackson Hole, Wyoming, and the Colorado Rockies were selected as well.
2. These sales were first adjusted for the classic externalities of terms of sale, improvements which may have been included with the land, differences for mineral rights, development pressure, seller circumstances, or recreational presures on a comparative regional basis. These adjusted prices were then adjusted for currency devaluation over time using the Federal Reserve Deflator Index.
3. Each comparable was cataloged as to its physical characteristics with the identical l0-acre unit coding system as was applied to the subject property. Only the vista component had to be simulated by the appraiser as an alternative to VIEWIT because of the absence of sufficient elevation points around some of the comparables.
4. To place sales on a common denominator, 14 sales were subdivided into 173 forty acre sub-sales by reallocating the adjusted price for the total property to each forty in the proportion that the score on the forty was to the total score on the property.
J. To match 40-acre units of the subject property to 40-acre sub-sale units of the comparable sales, an automated process known as MKTCOMP developed for market comparison appraisal was used. This system, which has had various government applications in the past ten years, uses Euclidian distance to measure differences between comparables in terms of the sum of the squares of adjustments between ten wilderness attributes of each subject with ten identical categories for the comparables. The dollar adjustment factores were generated in terms of total aggregate attribute scores as a percentage of the sum of total scores for all the comparables times the mean price per 40-acre sub-sale. The MKTCOMP model used permits the appraiser to define the preliminary group of sub-sales appriori, in this case, the best 18 out of 173 potential sub-sale units. Decision rule 2 was to accept only the first and second best sub-sale comparables from any one comparable transaction. As a final screen, the best six of the remaining comparables were then selected and the mean computed of their adjusted prices as representative of the price of the subject property.
K. The appraisal report relies on the basic concept of market comparison and is therefore in the main stream of appraisal; the selection of a fine grained computer mapping technique with which to record the physically ascertainable components which in combination produce a product called wilderness is simply the extension of data techniques in general use for land use planning, zoning, and subdivision land appraisal, where soils, slope, septic suitability, and shoreland preservation are critical to reliable valuation. The use of point systems to establish ordinal ranking and cutoff decision points is well established in decision making methodology. The innovative aspect of this appraisal is to apply these techniques to a commodity called wilderness to rank scenic quality and wilderness as defined in RARE II documentation. To recognize roadless wilderness as an economic commodity when a ubiquitious four wheel drive vehicle has penetrated almost everywhere is shown in the appraisal to be consistent with the literature on the economics of conservation. The correlation of multiple subjective aesthetic judgments to the absence or presence of physical features is a blossoming area of behavioral psychology and gives the appraiser a legitimate mechanism for dealing with the seemingly intangible values of landscape aesthetics.

I. DEEINITION OF APPRAISAL ASSIGNMENT

A. The Context for Appraisal

The issue for which fair market value is required as a benchmark for decision making stems from the Alpine Lakes Area Management Act (ALAM ACT) of 1976, Section 4 (Land Acquisition and Exchange) ${ }^{1}$ which authorized and directed the Secretary of Agriculture to acquire more than 41,000 acres of non-Federal lands in the Alpine Lakes wilderness and the "intended wilderness". (See Exhibit 1 for general location.) These purchases primarily impact on the interests of six property owners (see Exhibit 2) of which the Pack River Company is the largest. This appraisal has been requested by the successors in ownership to the Pack River Company, which has been dissolved since passage of the statutory intent to acquire. Negotiation prior to the appraisal has apparently ruled out acquisition of lands outside the defined wilderness area but within the management area (see Exhibit 3), has ruled out the possibility of exchange of timber for other timber lands in the National Forest, and discouraged the probability of donation so that acquisition will be by purchase for cash. ${ }^{2}$

Although the Management Act provided three years for negotiated purchase, the forest Service saw one of their alternatives to be no action at all (referred to as Plan D) in order to prompt land owners to force a purchase by court action. ${ }^{3}$ In one of the unique features of the Alpine Lakes

Vicinity Map

Source: Alpine Lakes Area Acquisitions, Final Environmental Impact Statement, Wenatchee, Colville and Mt. BakerSnoqualmie National Forests, Pacific Northwest Region, Forest Service, US Department of Agriculture, 1979

Rumanki Inc.

EXHIBIT 2

ALL NON-FEDERAL LANDS BEING CONSIDERED FOR ACQUISITION TO COMPLETE ALPINE LAKES WILDERNESS

Non-Federal Property Owner	Wilderness E Intended Wilderness	ALA Management Unit	Outside Alpine Lakes Area	Total

*Not included in Total.
$* * 22,456.77$ is corrected survey total.
Source: Page 5, ALPINE LAKES AREA ACQUISITION - FINAL ENVIRONMENTAL STATEMENT
\qquad

INTENDED WILDERNESS WITHIN WHICH SUBJECT PROPERTY IS LOCATED IN A CHECKERBOARD DISTRIBUTION DEFINED INTO FOUR SUB-ZONES

Alpine Lakes Area

Source: Alpine Lakes Area Acquisitions, Final Environmental Impact Statement, Wenatchee, Colville and Mt. BakerSnoqualmie National Forests, Pacific Northwest Region, Forest Service, US Department of Agriculture, 1979

Area Management Act, the owners within the intended wilderness have been given certain rights which modify the appraisal rules affecting condemnation. (See Exhibit 4.) In fact, attorneys representing the Pack River Company successor interests have initiated such a suit as provoked by Plan Alternative D in the United States District Court for the Eastern District of Washington, Complaint Numbers C-80-348 to $\mathrm{C}-80-367$.

While the ALAM ACT uses the term with "just compensation" there is no condemnation action at this time nor are the actions above adverse condemnation but rather suits to proceed with negotiation on purchases in which the court will set the price should negotiations stalemate. In the absence of precedent or instruction from the bench the appraiser must address certain basic issues that are undefined using logic, common sense, and the UNIFORM APPRAISAL STANDARDS FOR FEDERAL LAND ACQUISITIONS, U.S. Printing Office, catalog \#Y3.L22: 8 AP/6/1973 when applicable. ${ }^{4}$ There is the anticipation that the appraisal system selected must be adjustable quickly to future judicial rulings as the case unfolds. This need for methodology which is responsive has a significant bearing on the appraisal procedures selected as will be detailed below.

B. Basic_Appraisal Assumptions

1. Definition of date of appraisal

The intent of Congress and the ALAM ACT placed great stress on donation, exchange, or negotiation for acquisition, and at this time litigation is concerned with the rights of the land owners under the Act to seek a court push on purchase negotiations. While adverse condemnation might choose July 12, 1976 or 1979, as the effective date of Federal control, no such condemnation action has been instituted, and therefore a date of taking is not relevant. This appraisal was instituted prior to current litigation to accelerate purchase negotiations so neither litigation or negotiation has provided a definitive date of acquisition, however, Pack River dissolution with distribution to 20 owners suggests a date following the transfer.

THEREFORE THE APPRAISER HAS CHOSEN TO ASSUME JANUARY 1 , 1981 AS THE DATE OF VALUATION, ADJUSTING COMPARABLE SALES TO THAT DATE AND ASSUMING EXTERNAL CONDITIONS AS OF THAT DATE. FUTURE LEGAL INSTRUCTIONS MAY REQUIRE AN ALTERNATATE DATE AND AMENDMENTS TO THIS APPRAISAL ACCORDINGLY.
2. Definition of appraisal units

The fair market value concept generally requires application of the so-called "unit rule" which is intended to best reflect the true situation on the market. Unity requires consistency in treatment so that one cannot value a site both for timber and wilderness on a cumulative basis or separate legal interests cumulatively but rather look at the property as a whole in terms of its highest and best use. The property as a whole may be something less than a contiguous parcel where uses are different or may lack continguity where the best use is mutually interdependent. Therefore, the appraiser must define what shall be considered as an integrated unit. An appraisal unit may reflect best use determinations and distinguish between surface rights, timber rights, or mineral rights. Reference to both the maps of the properties to be acquired (See Exhibit 5) and the ownership pattern will not suggest any clear definition of the unit or entity to be acquired in part or in full.

The parcels to be acquired are located in the central part of the State of Washington, in Chelan County on the Eastern Cascades (see Exhibit 1) and represent the eastern edges of the intended wilderness which is not presently in Federal hands. A large majority of the wilderness is

EXHIBIT 5

FOUR ACQUISITION ZONES INDICATING OWNERSHIP PATTERN AND RELATED FOREST SERVICE LANDS AVAILABLE FOR EXCHANGE

already owned as part of the Wenatchee and Mount Baker-Snoqualmie Natịonal Forest (see Exhibit 5). A more detailed base map of the 43 sections and partial sections to be acquired from successors to the Pack River Company is provided in Exhibit 6. Although the ALAM Act will consider purchases outside the intended wilderness area in the land management area, it should be noted that litigation and appraisal is limited to those sections within the wilderness line so that partial sections are involved in the eastern edge. Detailed legal descriptions for each ownership position of properties to be appraised are provided in Exhibit 7, and these are given spatial orientation by the general color code of the map provided in Exhibit 6A.

To resolve the definition of the proper unit of appraisal, the appraiser applied the following logic relative to the physical unit. (Legal attributes of the unit are defined in the next section.) The total acquisition of $22,456.77$ acres is inappropriate as the appraisal unit as it consists of four distinct parts, separated by rugged terrain, diverse ownerships, and diverse potentials for use. The 20 ownership positions, not including the Sawyer trust that controls the mineral rights to all but 174.3 acres, are scattered throughout the

EXHIBIT 6

> DETAILED MAP OF FOUR APPRAISAL ZONES AND OWNERSHIP OF EACH SECTION IN COLOR CODE TIED TO EXHIBIT 6A

EXHIBIT 6A

OWNERSHIP KEY AND OTHER BASIC BOUNDARIES OR DEVELOPMENT FACTORS AFFECTING APPRAISAL

OWNERSHIP

As of August 8, 1980
CHELAN COUNTY, WASHINGTON

J and L Lands
Pack River Parcels Not In Wilderness AreaProposed Roads
n Existing RoadsExisting Wilderness Boundary
Intended Wilderness Boundary
184 Sold
III L. V. BrownJ.M. BrownC. Chastek
L. V. B. Trust
J. M. B. Trust
C. C. Trusts

EXHIBIT 7

OWNERSHIP POSITIONS AND LEGAL DESCRIPTIONS BY APPRAISAL ZONES TO BE VALUED AS SUBJECT PROPERTIES WITHIN THIS REPORT

That part of Section 33, Township 24 North, Range 17, E.W.M. described as follow:
Commencing at the section corner common to Sections 27, 28, 33 and 34 which is located on the Alpine Lakes Intended Wilderness Boundary (Snow Creek Parcel) point of beginning, thence South $00^{\circ} 15^{\prime} 00^{\prime \prime}$ West, 5280 feet $(1609 \mathrm{~m})$ along the section line between Sections 33 and 34 , Township 24 North, Range 17 East, W.M., to the section corner common to said sections, thence North $89^{\circ} 45^{\prime} 00^{\prime \prime}$ West, 4465 feet (1361 m) along the township line between townships 23 North and 24 North, Range 17 East, W.M., to angle point 16-1 located on the Alpine Lakes Intended Wilderness Boundary, thence North $46^{\circ} 15^{\prime} 00^{\prime \prime}$ East, 1782 feet (543 m), North $74^{\circ} 15^{\prime} 00^{\prime \prime}$ East, 912 feet (278 m), North $43^{\circ} 15^{\prime} 00^{\prime \prime}$ East, 636 feet (194 m), North $34^{\circ} 45^{\prime} 00^{\prime \prime}$ East, 1348 feet (411 m), North $40^{\circ} 00^{\prime} 00^{\prime \prime}$ East, 893 feet (272m), North $24^{\circ} 15^{\prime} 00^{\prime \prime}$ East, 814 feet (248 m), North $15^{\circ} 15^{\prime} 00^{\prime \prime}$ East, 810 feet (247 m) to the point of beginning;

That part of fractional Section 3, Township 23 North, Range 17, E.W.M. described as fcllows:
Beginning at the section corner common to Sections 3, 4, 9, 10, Township 23 North, Range 17 East, W.M., thence North $00^{\circ} 15^{\prime} 00^{\prime \prime}$ East, 5062 feet (1543 m) along the section line to the section corner common to Sections 3 and 4, Township 23 North, Range 17 East, W.M., thence South $89^{\circ} 45^{\prime} 00^{\prime \prime}$ East, 2639 feet (804 m) along the township line between Township 24 North and Township 23 North, Range 17 East, W.M. to a point on the Alpine Lakes Intended Wilderness Boundary from which angle point $16-4$ bears North $33^{\circ} 00^{\prime} 00^{\prime \prime}$ East, 1838 feet (560 m) thence South $33^{\circ} 00^{\prime} 00^{\prime \prime}$ West, 8 feet (2.4 m) , thence South $23^{\circ} 15^{\prime} 00^{\prime \prime}$ West, 1092 feet (333 m), South $18^{\circ} 00^{\prime} 00^{\prime \prime}$ West, 1201^{\prime} feet (366 m), South $08^{\circ} 15^{\prime} 00^{\prime \prime}$ West, 1032 feet $(315 \mathrm{~m})$ to an angle point 16-5 (top of Wedge Mountain) on the Alpine Lakes Intended Wilderness Boundary, thence South $00^{\circ} 30^{\prime} 00^{\prime \prime}$ East, 440 feet (134 m), South $37^{\circ} 45^{\prime} 00^{\prime \prime}$ West, 484 feet (147 m), South $21^{\circ} 15^{\prime} 00^{\prime \prime}$ West, 1076 feet (328 m), South $89^{\circ} 30^{\prime} 00^{\prime \prime}$ West, 200 feet (61 m) to angle point \#18 on the Alpine Lakes Wilderness Boundary, thence South $28^{\circ} 45^{\prime} 00^{\prime \prime}$ West, 59.27 feet (18 m) to a point on the section line between Sections 3 and 10 , thence North $89^{\circ} 45^{\prime} 00^{\prime \prime}$ West, 800 feet (244 m) along the section line to the point of beginning;

NAME	ACRES	COMPLAINT非	LEGAL
DEBORAH ANN HANSEN	$\begin{aligned} & 608.40 \\ & 320.00 \end{aligned}$	C-80-352	Section 19, Township 24 North, Range 16 East, W.M.; and W ${ }_{\frac{1}{2}}$ Section 29, Township 24 North, Range 16 East, W.M., Chelan County, Washington.
JEAN O. BROWN	640.00	c-80-355	Section 17, Township 24 North, Range 16 East, W.M., Chelan County, Washington;
	302.75	C-80-355	The East Half of Section 29, Township 24 North, Range 16 East, W.M., Chelan County, Washington; Subject to a contract of sale, notice of which is recorded at Book 749, page 599, Chelan County Auditor's Office, for the following described parcel, and certain uses in connection therewith in Section 29 and Section 21, Township 24 North, Range 16 East. The description of the land sold in said contract of sale is as follows:
			Beginning at the East $\frac{1}{4}$ corner of Section 29, Township 24 North, Range 16 East, W.M., and heading in a south-westerly direction, to the westerly shore of Lake Caroline, along a traverse line as follows:
			Beginning at the East $\frac{1}{4}$ corner of Section 29, Township 24 North, Range 16 East, W.M., thence South $52^{\circ} 01^{\prime} 00^{\prime \prime}$ West, 123.09 feet, thence South $83^{\circ} 12^{\prime} 30^{\prime \prime}$ West, 252.33 feet, thence South $64^{\circ} 46^{\prime} 37.5^{\prime \prime}$ West, 110.56 feet, thence South $34^{\circ} 35^{\prime} 22.5^{\prime \prime}$ ' West, 106.85 feet, thence South $39^{\circ} 22^{\prime} 03.8^{\prime \prime}$ West, 180.38 feet, thence South $56^{\circ} 57^{\prime} 56.3^{\prime \prime}$ West, 296.28 feet to a one and one-half inch ($1 \frac{1}{2}^{\prime \prime \prime}$) iron pipe, and the true point of beginning, thence North $34^{\circ} 29^{\prime} 06.3^{\prime \prime}$ West, 514.64 feet, thence North $86^{\circ} 43^{\prime} 41.4^{\prime \prime}$ West, 679.45 feet, thence South $19^{\circ} 00^{\prime} 54.7^{\prime \prime}$ West, 867.59 feet, thence North $84^{\circ} 46^{\prime} 21.5^{\prime \prime}$ East, 1240.15 feet, thence North $04^{\circ} 04^{\prime} 47.7^{\prime \prime}$ East, 244.89 feet to the true point of beginning;
JACQUELINE BROWN	615.57	C-80-363	Section 21, Township 24 North, Range 16 East, W.M., Chelan County, Washington; Subject to a contract of sale, notice of which is recorded at Book 749, page 599, Chelan County Auditor's office, for the following described parcel, and certain uses provided for in connection therewith, in Section 21 and Section 29, Township 24 North, Range 16 East. The description of the land sold in said contract of sale is as follows:

III

Section 31, Township 24 North, Range 16 East, W.M., Chelan County, Washington; and
Section 33, Township 24 North, Range 16 East, W.M., Chelan County, Washington, except Government Lot 1 in said Section 33.

IV

IV

$\mathbf{I V}_{3}$

GARY R. CHASTEK

Beginning at the township corner common to Section 1, Township 24 North, Range 16 East, W.M. and Section 6, Township 24 North, Range 17 East, W.M., thence South $89^{\circ} 15^{\prime} 00^{\prime \prime}$ West, 2218 feet (676 m) along the township line between Township 25 North and Township 24 North to the point of intersection of the Alpine Lakes Intended Wilderness Boundary, thence South $71^{\circ} 45^{\prime} 00^{\prime \prime}$ East, 1231 feet (375 m) to angle point 3-27 Alpine Lakes Intended Wilderness, thence South $14^{\circ} 00^{\prime} 00^{\prime \prime}$ West, 1151 feet (351 m), South $03^{\circ} 45^{\prime} 00^{\prime \prime}$ East, 939 feet (286 m), South $29^{\circ} 15^{\prime} 00^{\prime \prime}$ East, 982 feet (299m), South $29^{\circ} 15^{\prime} 00^{\prime \prime}$ East, 938 feet (286 m), South $12^{\circ} 15^{\prime} 00^{\prime \prime}$ East, 571 feet (174 m), South $38^{\circ} 00^{\prime} 00^{\prime \prime}$ East, 227 feet (69 m), North $87^{\circ} 15^{\prime} 00^{\prime \prime}$ East, 110 feet (34 m), thence North $00^{\circ} 30^{\prime} 00^{\prime \prime}$ West, 4881 feet (1485m) along the rangeline to the point of beginning;
$S \frac{1}{2} S W_{\frac{1}{4}} ; S \frac{1}{2} N W \frac{1}{4} \mathrm{~S}^{\frac{1}{4}}$; $\mathrm{S}_{\frac{1}{2}} \mathrm{NE} \frac{1}{4} \mathrm{SW}_{\frac{1}{4}}$, Section 33, Township 26 North, Range 16 East, W.M., Chelan County, Washington.

Swh

S $\frac{1}{2} \operatorname{SE} \frac{1}{4}$; $S_{\frac{1}{2}}^{2} \mathrm{NW}_{\frac{1}{4}} \mathrm{SE}_{\frac{1}{4}}$; $\operatorname{SE} \frac{1}{4} \mathrm{NE}_{\frac{1}{4}} \mathrm{SE}_{\frac{1}{4}}^{2}$, Section 33, Township 26 North, Range 16 East, W.M., Chelan County, Washington.

That part of Section 31, Township 25 North, Range 16.East, W.M., Chelan County, Washington, described as follows:

Commencing at the Northwest corner of said Section 31, the true point of beginning; thence South $89^{\circ} 45^{\prime} 00^{\prime \prime}$ East, 5,312 feet along the north section line of Section 31 to the northeast corner of said Section 31 ; thence South $00^{\circ} 15^{\prime} 00^{\prime \prime}$ West, 4,281 feet along the east line of said Section 31 to the intersection of the section line and the 3,400 foot contour line; thence along the 3,400 foot contour line the following courses and distances: South $80^{\circ} 15^{\prime} 00$ West, 121 feet; North $73^{\circ} 15^{\prime} 00^{\prime \prime}$ West, 479 feet; South
$71^{\circ} 15^{\prime} 00$ West, 441 feet; South $89^{\circ} 45^{\prime} 00^{\prime \prime}$ West, 439 feet; South $79^{\circ} 30^{\prime} 00^{\prime \prime}$ West, 1,337 feet; North $88^{\circ} 00^{\prime} 00^{\prime \prime}$ West, 519 feet; South $68^{\circ} 00^{\prime} 00^{\prime \prime}$ West, 429 feet; South $87^{\circ} 30^{\prime} 00^{\prime \prime}$ West, 998 feet; North $15^{\circ} 30^{\prime} 00$ West, 227 feet; South $41^{\circ} 45^{\prime} 00^{\prime \prime}$ West, 268 feet; South $76^{\circ} 30^{\prime} 00^{\prime \prime}$ West, 348 feet to a pointhe west line of said Section 31 intersecting the 3,400 foot contour line; thence North $00^{\circ} 15^{\prime} 00^{\prime \prime}$ East, 4,775 feet along the west line of said Section 31 to the northwest corner of said Section 31 , the point of beginning; and

Section 13, Township 25 North, Range 16 East, W.M., Chelan County, Washington.

MICHAEL CEASTEK
L. V. BROWN, JR.
J.M. BROWN
103.59
640.00 320.00
636.72
640.00
343.70
640.00
317.76
640.00

C-80-360

C-80-361

C-80-362

IV

LEGAL
$\mathrm{N}_{2}^{2} \mathrm{NE}_{\frac{1}{2}}^{1}$; $\mathrm{N}_{2} \mathrm{SW}_{\frac{2}{2}} \mathrm{NE}_{2} \frac{1}{4}$, Section 33, Township 26 North, Range 16 East, W.M., Chelan County, Washington.

Section 17, Township 25 North, Range 16 East, W.M.; and
E $_{\frac{1}{2}}$ Section 19, Township 25 North, Range 16 East, W.M., Cnelan County, Washington.
Section 7, Township 25 North, Range 17 East, W.M., Chelan County, Washington;
Section 11, Township 25 North, Range 16 East, W.M., Chelan County, Washington;
East Half of Section 5, Township 25 North, Range 16 East, W.M., Chelan County, Washington;

Section 15, Tuwnship 25 North, Range 16 East, W.M., Chelan County, Washington;
West Half of Section 19, Township 25 North, Range 16 East, W.M., Chelan County, Washington;
That part of Section 19, Township 25 North, Range 17 East, W.M., Chelan County, Washington, described as follows:

Commencing at the Southwest corner of said Section 19, the true point of beginning,
thence North $00^{\circ} 45^{\prime} 00^{\prime \prime}$ West, 4,603 feet along the west section line of Section 19 ; thenc along the following courses and directions: South $68^{\circ} 15^{\prime} 00^{\prime \prime}$ East, 2,606 feet; South $84^{\circ} 4^{\prime} 00^{\prime \prime}$ East, 2,238 feet; South $42^{\circ} 15^{\prime} 00^{\prime \prime}$ West, 779 fee; South $17^{\circ} 15^{\prime} 00^{\prime \prime}$ West, 462 feet; South $03^{\circ} 00^{\prime} 00^{\prime \prime}$ West, 1,183 feet; South $32^{\circ} 45^{\prime} 00^{\prime \prime}$ East, 324 feet; Thence South
$74^{\circ} 45^{\prime} 00^{\prime \prime}$ East, 1,239 feet to a point on the east section line of said Section 19 ; thence South $00^{\circ} 45^{\prime} 00^{\prime \prime}$ East, 580 feet to the southeast corner of Section 19, Township 25 North, Range 17 East, W.M.; thence South $89^{\circ} 15^{\prime} 00^{\prime \prime}$ West, 5,255 feet along the south section line of Section 19, to the southwest corner of Section 19, Township 25 North, Range 17 East, W.M., the point of beginning;

Section 29, Township 25 North, Range 16 East, W.M., Chelan County, Washington;

Section 25, Township 25 North, Range 16 East, W.M., Chelan County, Washington;

ACRES
686.24
174.30
L. V. BROWN

CHESTER CHASTEK 640.00
C-80-366

COMPLAINTH

C-80-365

C-80-365

IV ${ }^{5}$

LeGAL

Section 1, Township 25 North, Range 16 East, W.M., Chelan County, Washington;

That part of Section 31, Township 26 North, Range 17 East, W.M., Chelan County, Washington, described as follows:

Commencing at the township corner common to Sections 36 and 31 , thence South: $89^{\circ} 45^{\prime} 00^{\prime \prime}$ East, 2,863 feet (873 m) on the township line between Section 31, Township 26 North, Range 17 East, W.M., and Section 6, Township 25 North, Range 17 East, W.M., to the point on a ridge where the township line intersects the Alpine Lakes Intended Wilderness Boundary, thence along the ridge North $16^{\circ} 15^{\prime} 00^{\prime \prime}$ West, 1526 feet (465 m), North $32^{\circ} 30^{\prime} 00^{\prime \prime}$ West, 1,452 feet (443 m), North $52^{\circ} 30^{\prime} 00^{\prime \prime}$ West, 2,227 feet (379 m), thence South $01^{\circ} 15^{\prime} 00^{\prime \prime}$ East, 4,036 feet ($1,230 \mathrm{~m}$) along the range line between Section 36, Township 26 North, Range 16 East, W.M., and Sectiou 31, Township 26 North, Range 17 East, W.M., Chelan County, Washington.

Section 23, Township 25 North, Range 16 East, W.M., Chelan County, Washington.

Section 21, Township 25 North, Range 16 East, W.M., Chelan County, Washington.
various parcels. The current ownership pattern was a necessity of corporate liquidation of the Pack River Company following passage of the ALAM Act, which does not reflect necessarily natural marketing units or necessarily independent buy and sell actions. Potential uses such as timber, private recreational development, dispersed recreational use or public purposes each require a different scale as a minimum economic unit. Thus value by ownership or per acre is rather inexact as an economic unit when dealing with terrain of this scale and uses which have various economies of scale.

However the court may later define that appraisal unit, the appraiser finds that the aggregate properties in question can be naturally divided into four distinct clusters of parcels.

THERE SHALL BE FOUR AP PRAISAL CLUSTERS, I, II, III, AND IV AS DELINEATED GRAPHICALLY IN EXHIBIT 6 AND LEGALLY IN EXHIBIT 7 FOR PURPOSES OF APPRAISAL VALUATION: THESE CLUSTERS WILL RELATE TO HIGHEST AND BEST USE DETERMINATION: EACH OWNERSHIP INTEREST WITHIN EACH CLUSTER WILL BE VALUED SEPARATELY BY THE PRICING MODELS APPROPRIATE.

The reasons or purposes served by the delineation of appraisal clusters include consideration of:

1. The severe and difficult physical separation of Pack River lands by the terrain and river system.
2. The distinctly different sets of linkages of each unit to the external encroachment of society around them and their plottage ${ }^{5}$ values to adjacent government lands.
3. A highest and best use consideration which might lead to concerted action by multiple owners who are linked by family and business ties to maximize their sales price.
4. The natural boundaries created by terrain such as in Cluster IV where the wilderness perimeter is defined by ridge lines which create an interior bowl whose only intrusion from the works of man are jet contrails overhead and hikers' trails.
5. The varying degrees of immediate accessibility for resource or recreational development, pressures which create competition among alternative buyers with distinctly different priorities (such as groups protecting rare wilderness attributes versus timber companies).
6. The size and physical character of each cluster represent natural marketing units independent of one another for use or access.

C. Definition of Value

Numerous definitions of Market Value have been devised over the years by professional organizations, government bodies and commissions, professors, and the courts and recently there has been some convergence of language and qualifying conditions. A conference on interagency land acquisiton published a bulletin in 1973 called UNIFORM APPRAISAL STANDARDS FOR FEDERAL LAND ACQUISITION. On pages 3 and 4 it states that:
"Fair market value" is defined as the amount in cash or on terms reasonably equivalent to cash for which in all probability the property would be sold by a knowledgeable owner willing but not obligated to sell to a knowledgeable purchaser who desired but is not obligated to buy. In ascertaining that figure consideration should be given to all matters that might be brought forward and reasonably be given substantial weight in bargaining by persons of ordinary prudence, but no consideration whatever should be given to matters not affecting market value... It is realized that it is difficult to pinpoint an estimating value in an exact dollar amount. And, while eminent appraisers have expressed the belief that it is more logical to speak in terms of a range of a value, for practical purposes of litigation including estimation of just compensation to be deposited in the registry or the court upon the filing of declarations of taking, a specific dollar amount is required. ${ }^{6}$

The revised edition of the joint effort, THE REAL ESTATE TERMINOLOGY HANDBOOK, published in 1981 by the American

Institute of Real Estate Appraisers and the Society of Real Estate Appraisers, has defined and qualified market value as follows:

The most probable price in terms of money which a property should bring in competitive and open market under all conditions requisite to a fair sale, the buyer and seller, each acting prudently, knowledgeably and assuming the price is not affected by undue stimulus.

Implicit in this definition is the consummation of a sale as of a specified date and the passing of title from seller to buyer under conditions whereby:

1. buyer and seller are typically motivated.
2. both parties are well informed or well advised, and each acting in what they consider their own best interest.
3. a reasonable time is allowed for exposure in the open market.
4. payment is made in cash or its equivalent.
5. financing, if any, is on terms generally available in the community at the specified date and typical for the property type in its locale.
6. the price represents a normal consideration for the property sold unaffected by special financing amounts and/or terms, services, fees $;$ costs, or credits incurred in the transaction.

With caveat noted as to the limitation of "probable" to a single value conclusion, the appraiser is following the joint definition as representative of the Federal intent.

D. Property Rights Appraised

The Forest Service contemplates acquisition of all private rights to the parcels defined. However, in the case of most Pack River lands the mineral rights must be acquired separately
from the Sawyer Trust, with the exception of Section 31, T. 26 N., R.l7E., of which 174.3 acres is within the intended wilderness and would include full mineral rights. As noted previously we are treating the property as four assemblages with the assumptions that the multiple ownerships within each assemblage are acting in concert and their individual interests will be valued as a proportionate contribution to the total assemblage. Over the years, the general public has acquired certain privileges for traversing both the national forest and non-Federal lands; these privileges are assumed to have no impact on the marketability of the private interest and no right to compensation from the Forest Service.

Fee simple or marketable title sans mineral rights does not include rights growing out of legal agreements. These rights involve special land uses, mining claims, rights of way, or joint road agreements and permits for various uses on private land. These rights must be acquired or disposed of prior to the assumed purchase of marketable title. For example, Mt. Cashmere, Inc., which purchased certain acreages near Caroline Lake from Pack River, Inc., enjoys a license or permit to use Pack River land to extend the recreational range of Mt. Cashmere clients. A joint road agreement (Appendix E) also exists between Pack River, Inc., and its successors with the Forest Service, called "Chelan Road Right-of-Way Construction
and Use Agreement" (copy included in Appendix E) was assigned to Pack River with acquisition of the subject lands from the Sawyer Timber Trust. Apparently this agreement and right-toaccess survive the Wilderness Act, according to Robert W. Long, Assistant Secretary of Agriculture, in a statement dated April 5, 1974 and included in full in Appendix E:

The possibility that the Congress may act to designate the area as wilderness does not override the forest Service obligation to grant Pack River Company access to its privately owned lands under existing law and regulations. Even if the area were to be designated as wilderness, the company would be entitled to "adequate access" under section $5(a)$ of the Wilderness Act, 16 U.S.C. 1134 (a). The Chief, in his responsive statement, points out that they have long felt there was no realistic prospect that the private lands within the Coulter Creek checkboard would be transferred to Federal ownership by purchase or exchange. It was this, among other considerations, that formed the basis for the Forest Service position that the area should not be included in an Alpine Lakes wilderness. The record shows that Pack River Company has an immediate need for the access road.

With these exceptions and qualifications, this appraisal is concerned with all property rights in the marketable title possessed by Pack River, Inc., and the indemnity features against loss of value attributable to natural disaster or the economic cycle as intended by Section 4 of the Alpine Lakes Management Act.

E. Highest and Best Use Concept

The central premise to fair market value is determination of the highest and best use or most probable use which in the opinion of the appraiser will serve to focus selection of market comparison sales or the economic logic of other approaches to value. Historically, the concept of highest and best use focused only on wealth maximization for the owner of the land, regardless of the external costs or opportunity costs imposed on society as a whole. The rise of consumerism and environmentalism in the '60s and '70s has meant that the official definitions of the appraisal professional societies now recognize a land ethic. Consider the basic definition and discussion in the fundamental textbook THE APPRAISAL OF REAL ESTATE (7th Edition) which states:

Highest and best use for land is the use that, at the time of appraisal, is the most profitable likely use. It is the use that will provide the greatest return to the land after the requirements of labor, capital, and coordination have been satisfied. Thus it may also be defined as the available use and program of future utilization that produces the highest present land value.

The most profitable likely use cannot always be interpreted strictly in terms of money. Return sometimes takes the form of amenities. A wooded urban site, for example, may have its highest and best use as a public park; or the amenities of living in a private dwelling may represent to its owner satisfaction that outweighs a monetary net rental yield available from rental to a typical tenant. In this time of increasing concern over the environmental effects of land use, environmental acceptability is becoming an addition to the highest and best use concept.

A somewhat more detailed definition of highest and best use is found in the revised edition of the AIREA-SREA joint publication REAL ESTATE APPRAISAL TERMINOLOGY HANDBOOK:
...that use, from among reasonably probable and legal alternative uses, found to be physically possible, appropriately supported, financially feasible, and which results in highest land value.
...Implied within these definitions is recognition of the contribution of that specific use to community environment or to community development goals in addition to wealth maximization of individual property owners. Also implied is that the determination of highest and best use results from the appraiser's judgment and analytical skill, i.e., that the use determined from analysis represents an opinion, not a fact to be found.

Not only does the TERMINOLOGY HANDBOOK avoid the ambiguity and pomposity of the term highest and best use, a real estate anachronism from 19th century laissez-faire economics, ${ }^{11}$ but it is more explicit in recognizing collective values as distinct from social values when it refers to a community of interests. With growing frequency it is recognized that maximizing values for single individuals may be the result of externalizing cost on the community of other landowners quite unintentionally. Reasonable behaviour by one landowner may in the aggregate be unacceptable if practiced by the community of landowners. For example, the homeowner on the lake who cuts down trees on the shore to enjoy the view of the wooded shoreline is quickly frustrated by all the other cottage owners who do the same,
thus decimating the shoreline. The Institute definition hints at the aggregate creation of value as it speaks of return in the form of amenities. However, the TERMINOLOGY HANDBOOK is more specific in dealing with the aggregate value created by concern for the collective environment, and therefore this definition is felt more applicable to the subject case where properties to be valued exist in a checker-board ownership pattern in a symbiotic relationship with other lands for maximum access, recreational, scenic, and logging value maximization.

There was a time when it would have been adequate to inventory resources such as timber, mineral, hydro-electric potential, soils and slopes suitable for grazing or development as lots, ski slopes, campgrounds, and so on. But today wilderness itself is a resource relative to "community envrionment and community goals." Wilderness attributes must be considered in the inventory of property attributes to be cataloged for subject property and comparable sale alike.

1. Wilderness as an economic resource

Social, scientific, and political movement toward recognition of wilderness as a distinct, explicit land use which could compete with alternative potential resource uses such as mineral extraction, timber cutting,
recreational development, agriculture or urban uses generated the Wilderness Act of 1964. ${ }^{12}$ For wilderness to be recognized as a resource and as a commodity with some economic priority, society has to reach a certain condition to make wilderness an economic good, conditions well stated by Michael McCloskey, Conservation Director, Sierra Club, San Francisco, California:

Though natural beauty is widely appreciated, wilderness is an idealized conception of nature in pure form that becomes generally prized only in advanced cultures. Also conditions seem to be necessary for a consensus that wilderness is a public good that warrants preservation (l) a society with highly educated leaders and economic surplus, and (2) an increasing scarcity of wilderness areas. 13

Congressional passage of the Wilderness Act in 1964 after ten years of agitation followed by a series of additional congressional designations of specific wilderness areas is prima facia evidence of leadership and a concensus about economic surplus. The initial Act gave Congress exclusive authority to designate a Wilderness area and, initially, "charter membership under the Act included only 54 tracts already part of the Forest Service and National Park Service. 34 areas then designated as primitive by the Forest Service were identified for further review. In subsequent years review was scheduled for perhaps 200 other roadess areas in the National Park

System, wildife refuges, and game ranges. No mention was made of lands under the administration of the Bureau of Land Management, the federal government's largest landlord. The Secretaries of Agriculture and the Interior are permitted to recommend Wilderness tracts in their annual reports to Congress. ${ }^{14}$ Starting about 1970, Congress passed Omnibus bills identifying selected Wilderness tracts, but as of January 1 , 1981, less than 100 areas have been selected as sufficiently unique. The search for roadless areas of 5,000 acres or more generated many observations that the number of qualified areas was shrinking quickly under the influence of the ubiquitous four-wheel drive vehicle, further evidence of scarcity of such Wilderness in an area as vast as federal holdings in the western continental United States.

Until the 1970's wilderness was presumed to be subjective and therefore an aesthetic experience for which market pricing systems fail for purposes of economic theory. One of the more cogent critics of economics, Robert Broughton, nevertheless suggests that the aesthetics bias against economics was:
...partly because of need in any rational decision making procedure for a common yardstick. The most available yardstick for value is money; but to value something in money terms required either a functioning market or a reasonably close substitute.

Note this does not preclude the possibility of recognition of aesthetics in the marketplace; indeed it will be shown in this report that there are many organizations raising money from the public and buying land specifically to protect wilderness attributes and that these organizations are a signficant force in the functioning market. This report will attempt to document that market as functioning reliably, or as a reasonably close substitute in which certain attributes are valued more or less.
2. Valuation of intangible attributes

Economists, such as Lloyd Irland, who are critical of the market as an imperfect measure of intangible values such as scenic beauty, acknowledge that there is a need to factor in economic tradeoffs to set priorities in public land allocations:

At some point attention must be given to opportunity costs. Market prices of land may be inadequate guides, but basic financial information will be needed. 15

Similar support for the need to value intangible experiences is provided by Clawson in his discussion on recreational values:

Those who argue against monetary valuation of subjective experiences overlook the fact that we do this all the time, not only for such exotics as masterpieces of painting, but also for ${ }_{16}$ schooling, medicine and many other aspects of life. ${ }^{16}$

A philosophical thought from Santayana provides a succinct summary of the theoretical relationship between scenic beauty and market prices for land:

Aesthetics are concerned with the perception of values. 17

The perception of aesthetics as a rare commodity has led them to be highly valued. Krieger attributes this value to social processes:

As a result of the social process of creating a rare object, the usual indicators of rarity become important. Economically, prices rise... 18

Krieger points out that rarity and price are directly related, and that it is the public's perception of rarity that is the determinant factor. This concept is closely related to the Ricardian rent theory:

Increased demand for nonreproducible assets $19^{\text {in }}$
short supply result in relative price increases.

Later in his treatise on rarity and value, Krieger goes on to discuss preservation:
> ...That something is rare does not imply that it must be preserved. The characteristics which distinguish it as rare must also be valued.

> The social process which has sensitized people to the natural environment has led to a steady increase in the allocation of resources towards its preservation and a general increase in the market value of lands with scenic qualities. 20

This discussion illustrates the necessity of determining the qualities or attributes of landscapes that make them rare. It is people's perception of the rarity of these attributes that makes land valuable, and therefore desirable to preserve. Despite the logic of Krieger's argument, some people continue to believe that scenic beauty is intangible. Nevertheless, the growing demand and competition for finite resources has led to a reevaluation of the question of attribute tangibility.
3. Collective private markets for rare wilderness

The fact that rarity alone does not justify preservation is demonstrated by the fact that vacant lands that the layman would describe as wilderness have a progressive lexicon of their own as explained in subsection F below. At the same time the social process of which Krieger speaks has sensitized people to the extent that many cannot wait for the ponderous processes of government
to acquire and preserve. Thus, many local, regional, and national foundations have sprung up to raise funds and compete with those economic entities that consume resources to acquire and preserve high priority, sensitive areas from coast to coast. Acquisitions occur from purchases, gifts with tax benefits to the donor, exchanges, and from sale profits of lower cost acquisitions to government at fair market value, a tacit subsidy of these programs by government which recognizes its own inability to respond in a timely fashion. While it is impossible to identify all of these agencies, consider this quote from the May/June 1981 issue of THE NATURE CONSERVANCY NEWS, (Vol. 3l, Number 3), p. 1:

The Nature Conservancy is a national conservation organization committed to preserving natural diversity by finding and protecting areas that contain the best examples of all components of the natural world. Since 1950, the Conservancy and its members have been involved in the preservation of over 1.7 million acres in 50 states, the Virgin Islands, Canada, and the Caribbean. Although some areas are transferred for management to other conservation groups, both private and public, the Conservancy owns and manages a national system of approximately 700 sanctuaries.

Forests, wetlands, prairies, mountains, and islands--refuges for threatened wildife and rare plants, places of special beauty--remain untouched and protected because the Conservancy and its members cared and acted quickly. These safeguarded areas are a record of our accomplishments, a promise for tomor row, and a legacy for the future.

While some land is donated, much is purchased. Consider this further quote from the 1980 annual report of the Nature Conservancy, because it suggests both the scale of effective demand for preservation of natural areas and wilderness as well as the fact that knowledgeable buyers develop quality ratings in order to have priority lists and evaluate the cost effectiveness of their purchases. This substitution of tangible facts and scores for intangible qualities is not only a rapidly expanding area in the universities but has been operationalized by the private buyers of wilderness. Consider:

In response to a request from the Goodhill Foundation in early 1980, the Conservancy completed a nationwide assessment of threatened ecosystems and then developed a national priority list of critical areas. These efforts were rewarded by a challenge grant from the Goodhill trustees of $\$ 10$ million over the next three years, provided the Conservancy can raise $\$ 20$ million more to match the foundation's two-to-one challenge for the National Critical Areas Conservation Program.

Late in the year, the Conservancy had the opportunity to act on behalf of one critical ecosystem from its national list--the bottomland hardwood forests remaining along six rivers of the Gulf States. The Rivers of the Deep South Program was set in motion by a $\$ 15$ million grant from the Richard King Mellon Foundation to the Conservancy's Land Preservation Fund, with the request that we match the donation with an additional $\$ 15$ million in new capital funds.

Yet a third major program was launched during 1980: the California Critical Areas Program. With a fund-raising goal of $\$ 15$ million, the program was established to preserve representative examples of
the 11 California ecosystems now on the verge of disappearing.

In acquiring natural lands during the past year, The Nature Conservancy exceeded its goal, ending 1980 with a "saved" list of 204 projects. More significantly, 80 percent of these areas have top ecological quality ratings (as compared to 69 percent in 1979). Lands saved during the year encompass 143,422 acres with a fair market value of over $\$ 64$ million, while the actual cost was approximately $\$ 46$ million. Total acreage protected since 1953 amounted to $1,768,940$ by year's end.
...Financial support during the year for protecting natural diversity has never been greater. Beyond the $\$ 25$ million pledged by the Goodhill and Richard King Mellon Foundation, foundation grants totaled more than $\$ 23$ million. The Land Preservation Fund, inaugurated in 1977 to increase our revolving fund capacity, increased by 9.3 percent during 1980. At year's end, its balance was $\$ 25,431,835-$ more than 25 percent in excess of its original 1980 goal. Growing support from the business world was reflected in the addition of 64 new corporate associates, giving us a total of 308.
...Always the Conservancy's "backbone," membership rose in 1980 by 37 percent, giving us a total of 98,910 members. Over 40,000 new members were recruited during the year, and close to 80 percent of the conservancy's existing membership was retained. ${ }^{21}$

In other words, these corporate and individual donors are consumers of a resource called wilderness, and because they operate collectively in order to generate effective demand does not detract from the fact that there is effective demand in an organized marketplace. Other examples of this collective action are provided in Appendix E.

The federal government through various agencies of Agriculture and the Interior has continued to acquire significant acreages throughout the l970s. The Comptroller General reported in 1979 that the federal government had provided authorization to acquire up to $\$ 4$ billion of private land during the next eleven years. ${ }^{22}$ Indeed, the report accused the National Park, Forest, and Fish and Wildife Services of "following a general practice of acquiring as much private land as possible regardless of need, alternative land control methods, and impacts on private land owners." ${ }^{23}$ Moreover, not only have federal agencies acquired lands, primarily for conservation purposes, but the federal government has also spawned state acquisitions to increase effective demand and continually reduce supply of open space. Consider:

During the fiscal years 1973-77, the National Park, Forest, and Wildife Services acquired full or partial title to 2.2 million acres for $\$ 606$ million. The predominant acquisition method used was purchase of full title, accounting for 88 percent of the acreage and 95 percent of the costs. Current legislation authorizes up to $\$ 10$ billion through the Land and Water Conservation Fund--\$4 billion for Federal acquisition and s6 billion for grants to state and local governments--for land acquisition and development over the next 11 years and assures that Federal agencies as well as State and local governments, will continue to increase their inventories of land. 24

In addition, land developers of recreational properties in the northwest (interviews with James Tallman, of Talmo

Corporation of Gig Harbor, Washington) have found increasing demand for a 1/4 - $1 / 4$ section or two of wilderness for the individual seeking to own a little piece of the wild west.

All of these actions continue to reduce the supply of lands at all levels of wilderness quality available for trading in the private market with the expected result of pushing up prices on the remaining supply. It is useful to recognize at this point that there are categories of wilderness and that each category can be evaluated for quality including scenic quality in order to appreciate that demand pressure is not just on land representing the out-of-doors in relatively undeveloped areas (see Section F below). Instead demand from all sources is highly selective and increasingly focused by new-found abilities to convert physical ascertainable facts to qualitative rankings of aesthetic matters which have consumer preferences. 4. Substituting tangible facts of intangible qualities

As Bufford has pointed out there is a certain "judical uneasiness" with matters like wilderness which have an aesthetic and subjective dimension, presumably because:

1. There can be no consensus in matters of aesthetics.
2. No aesthetic judgement is more or less reasonable than any other because no arguments that rely on publicly ascertainable facts ${ }_{25}$ can be given in support of an aesthetic judgement. 25

However, Bufford points out that there can be general agreement in aesthetic judgments and that there are methods of inventory and evaluation. Bufford raises several salient points in regard to the legal acceptability of reasonable and objective aesthetic evaluations:

The law need not demand absolute certainty....there can be general consensus in aesthetic judgments and that these aesthetic judgments can be supported by reasoned arguments ${ }^{2} 6$ appealing to publicly ascertainable facts. 26

Broughton also addresses the traditional notion of scenic beauty as an intangible resource:
...nothing is intrinsically intangible. Intangi-bility--meaning difficulty in measurement--exists in part because no one has gone to the ${ }_{27}$ effort to work out some method of quanitification. 27

The past decade has been a period in which methods for collecting "publicly ascertainable facts", development of environmental measurement systems with reliability, validity and utility, and research of the public perception of the relationship between physical features and environmental quality have gone on intensively in many quarters of science. At the same time, despite the limitations of economic valuation models relative to intangible attributes of land, most preservationists,
researchers, and public administrators now acknowledge the need for basic attribute inventories and criteria to set priorities in resource protection due to economic and budgetary constraints. Even the ethical economist, Irland, states:

Ranking areas for priority cannot be avoided in a world of scarce administrative time and inadequate information or funding. 28

The noted land economist, Marion Clawson, has also recognized the need for monetary measurement in comparison of outdoor values:

The chief argument is that any reasonable estimate of value is better than none at all. Those who advance this argument assume that recreation uses (including wilderness recreation) must in some way be compared, and the more directly the better with other land and water uses. 29

In appraisal parlance allocation of land use by setting economic priorities is what is described as the concept of "highest and best use" or in contemporary fashion "the most fitting use." The appraiser has a responsibility of providing some evidence of scarcity or rarity, consumer preferences, and consumer action which not only ranks their preferences but manifests market activity in the land market. It is conventional wisdom that people buy land to extract minerals, cut timber, develop recreational enterprises or graze sheep and these activities are compared as alternatives on a piece of rural mountain
ground because of certain physically ascertainable facts. It will be shown that developments in a variety of applied arts and sciences including environmental resource monitoring, engineering air photo interpretation, computer mapping, appraisal theory and behavior of outdoor recreational consumer groups all support inclusion of wilderness as a special set of physical attributes competitive with attributes for mining, lumber, agriculture, and commercial development for specific parcels of land.

F. Wilderness Defined

The term wilderness itself is something of a semantics wasteland and has a variety of meanings depending on context which impact on the purposes of this appraisal and arguments of scarcity, demand, and attributes which define an economic good. Thus, it may be useful to recognize some significant variations in the definitions of wilderness.
l. Wilderness (without capitalization or quotation marks) is used as the equivalent of what conservationists refer to as de facto wilderness; i.e., the kind of area the ordinary person would think of if he were asked to describe wilderness; an area naturally wild, pretty much unaffected by man or man's works.
2. "Wilderness": certain naturally wild areas designated by executive agencies prior to passage of the Wilderness Act, regulated and managed with preservation of their wild character as the primary objective. It is therefore an administrative, as
opposed to statutory, designation. "Wild area" is a similar official but administrative designation, having the same meaning as "wilderness" but applied to areas smaller in size than "wilderness" areas.
3. "Roadless area" is another administrative designation equivalent to wilderness, except for an important difference; the "wilderness" of No. 2 is administered by the Forest Service of the Agriculture Department while the roadless areas are administered by elements of the Interior Department.
4. "Primitive areas" are only slightly less protected than "wilderness" or "roadless" areas. Land use management in a primitive area permits mixed uses with selected mining, timber, or recreational facilities and supporting infrastructure permitted under controls.
5. Wilderness, or Wilderness Area, with capital letters notation, is an area designated by Congress under the terms of the Wilderness Act as a componenet of the National Wilderness Preservation System (NWPS). 30

A Wilderness as a component of the National Wilderness Preservation System (NWPS) was first defined by the 1964 Wilderness Act as a land use category having both quantitative and qualitative parameters which by their nature would limit the qualified supply within the continental United States:

1. Wilderness is defined by the 1964 Act "as an area where the earth and its community of life are untrammeled by man, where man himself is a visitor who does not remain..." 2. The Act further defined Wilderness to mean an area of undeveloped Federal land retaining its primeval character and influence, without permanent improvements or human inhabitation, which is protected and managed so as to
preserve its natural conditions and which generally appears to have been affected primarily by the forces of nature, with the imprint of man's work substantially unnoticeable. 3. Wilderness must provide outstanding opportunities for solitude or a primitive or nonconfined type of recreation. 4. A Wilderness tract (once assembled from existing ownerships) must have at least 5,000 acres of land or be of sufficient size as to make practicable its preservation and use in an unimpaired condition.
2. Wilderness may also contain ecological, geological or other features of scientific, education, scenic or historic value.

Of more than 1,100 candidates for Wilderness designation by Congress, only 240 remain under review for future selection, and since 1964 less than 100 sites have qualified to be designated by Congress. Lands so qualified or still in review would therefore seem to be in short supply, sufficiently rare, and unique for recognition as economic commodities. But where is the market other than the Forest Service?

The concern for preservation of all classifications of wilderness has created a significant number of foundations as well as private patrons who will acquire wilderness properties to frustrate development, to anticipate future
funding of Federal acquisition programs, to create watersheds, to protect scenic vistas, and to interface ponderous government with transient needs of individual property owners.

Contiguity of non-federally owned lands to Wilderness defined by Congress means that private lands cannot be considered as Wilderness unless they are already part of a prescribed Wilderness boundary. NWPS is continuing its review to establish new areas which puts some pressure on private owners to develop candidates prematurely, a possibility which precipitates immediate demand for purchase among conservationist groups to prevent "trammeling" of future Wilderness components. Herein lies the basic dynamics creating markets for small pieces of prized wilderness to conserve them for a future designation as Wilderness.

THEREFORE, IN ADDITION TO ALTERNATIVE USES FOR TIMBER AND RESIDENTIAL RECREATIONAL, "WILDERNESS" WILL BE CONSIDERED AN ECONOMIC USE FOR WHICH THERE IS A FUNCTIONING MARKET. HIGHEST AND BEST USE FOR EACH OF THE FOUR CLUSTERS, I, II, III, AND IV, WILL BE SELECTED FROM ONE OF THE ALTERNATIVES.

G. Appraisal Methodology

The market comparison approach will be the basis for evaluation of the properties, a simple statement of intent with very difficult problems in application to a complex land system on the scale and diversity of the Alpine Lakes District. In order to be properly sensitive to all of the attributes which affect economic value, it is important to analyze any economic unit of land from residential lot to national wilderness by collecting relevant data according to the five following categories.

1. Physical attributes, such as size, shape, soils, geology, slope, water, flora and fauna, etc.
2. Legal attributes affecting use and degree of decision making within the private sector, including federal, state, county, and private land use controls relevant to the parcel.
3. Linkage attributes--those relationships which tie the site to systems such as roads and sewer or to peripheral activities and establishments which may generate demand for the parcel.
4. Dynamic attributes which have to do with how people perceive a site--such as prestigious, dangerous, attractive, enjoyable, beautiful, etc.
5. Environmental attributes have to do with off-site impacts of the subject property. Such as storm water runoff, or destruction of a view shed.

Appraisal of urban commercial property today generally requires a team approach involving $a n$ appraiser, and a mechanical or civil engineer. The appraisal of a rare and major wilderness tract requires an even broader array of professional talents in order to structure a data base of the critical attributes necessary to select the most fitting use or best use for each appraisal unit and to compare an appraisal unit so defined with comparable sales. To that end we have assembled a unique team of professionals so that the data base used by this report incorporates by reference the following appendices and comprehensive professional counseling of the following: Appendix A. Summary Data and Comparisons For Comparable Sale Transactions.

Appendix B. Survey Definition and Airphoto Interpretations of the Subject Property and the Comparables, by Ralph Kiefer, Ph.D., P.E.; Scenic Beauty--Wilderness Inventory Analysis, Sean Ahearn, M.S. candidate, Environmental Monitoring.

Appendix C. Data Collection, Coding, and Computer Mapping System, (plus data management system for automating certain appraisal procedures) by Michael L. Robbins, M.S., Ph.D. candidate.

Appendix D. Alpine Lakes Area User VEP Survey Study to Determine Consumer Ranking of Wilderness Attributes. Richard Chenoweth, Ph.D., and Bernard Niemann, Ph.D. Landscape Architecture. Appendix E. Legal documents, correspondence, and miscellaneous bibliography of data sources and interviews relevant to Pack River lands which are subjects of appraisal.

Appendix F. Collection of selected literature and articles referenced, bibliography.

Appendix G. Three-Dimensional Photography, study of subject property and all comparables, Sean Ahearn, M.S. candidate, Environmental Monitoring.

Section 2 will summarize the data collection system, salient features, and selection of best use for each of the four appraisal units.

Section 3 of this report will review the search for comparable sales, the adjustments for external influences on prices, and the unit of comparison developed for
external influences on prices, and the unit of comparison developed for this appraisal. Section IV will then value each appraisal unit cluster and allocate these values to the ownership positions within each cluster. Section IV will also provide aggregate values by ownership position for the entire 22,000 acres--plus involved in the four clusters. The report is concluded with a certification of value and statement of limiting conditions. The appraisal report itself is relatively short and brief in presentation because the great bulk of the detail underlying two years of research has been assembled and organized in separate volumes or ring binders which are identified as Appendices $A-F$ and incorporated by reference into this report.

PACK RIVER FOOTNOTES

> SECTION I. A.

1. Public Law 94-357 94th Congress, H.R. 7792, July 12, 1976.
2. It was the hope of Congress and the intent of ALAM ACT that compensation agreements could be negotiated which included exchange of other federally owned property or donations. Timber trades for national forest lands were considered probable, but when Pack River sold its saw mill operations in the Wenatchee, Washington, area of the intended wilderness, the Forest Service found it expedient to withdraw any trade offers from Pack River. (See Section 4 (c) (2) of ALAM ACT and Alternatives B1, B2 and E, FINAL ENVIRONMENTAL STATEMENT, ALPINE LAKES AREA ACQUISITIONS, USDA-FS-FES (Adm) 78-06, pp. 50-59.)
3. FINAL ENVIRONMENTAL STATEMENT, ALPINE LAKES AREA ACQUISITIONS, op. cit., See Alternative D--No Action, p. iv.
4. Interagency Land Acquisition Conference, UNIFORM APPRAISAL STANDARDS FOR FEDERAL LAND ACQUISITION, U.S. Government Printing Office, Washington, D.C., l973, pp. 25-28.
SECTION I. B.
5. Plottage - The process of assembling two or more sites under a single ownership such that there is an increment derived from greater utility.

Plottage Value - An increment of value as a consequence of the combining of two or more sites so as to develop one site having a greater utility than the aggregate of each when separately considered, or the value of an existing site of abnormal size or special shape which has greater utility than average lots of more conventional smaller size.

Byrl N. Boyce, comp. \& ed., REAL ESTATE APPRAISAL TERMINOLOGY, Revised Edition, AIREA/SREA, Ballinger Publishing Company, Cambridge, Mass, 1981, p. 188.
SECTION I. C.
6. Interagency Land Acquistion Conference, UNIFORM APPRAISAL STANDARDS FOR FEDERAL LAND ACQUISITION, op. cit., pp. 3-4.
7. Boyce, op. cit., pp. 160-161.
8. FINAL ENVIRONMENTAL STATEMENT, ALPINE LAKES AREA ACQUISITIONS, op. cit., p. 44 .
9. THE APPRAISAL OF REAL ESTATE, 7th Edition, Textbook Revision Committee, AIREA, Chicago, 1978, p. 44.
10. Boyce, op. cit., p. 27.
11. James A. Graaskamp, THE APPRAISAL OF 25 N. PINCKNEY: A DEMONSTRATION CASE FOR CONTEMPORARY APPRAISAL METHODS, Landmark Research, Inc., Madison, Wis., l977, p. 7.
12. 78 Stat. 890-896 (1964), 17 U.S.C. ll31-1136 (1965).
13. Michael McCloskey, " The Wilderness Act of 1964: Its Background and Meaning," OREGON LAW REVIEW, Vol. 45, 1966, pp. 118-314.
14. Kevin Haight, "The Wilderness Act: Ten Years After," ENVIRONMENTAL AFFAIRS, 1974, p. 275.
15. Lloyd Irland, WILDERNESS ECONOMICS AND POLICY, Lexington, Mass., D.C. Heath and Co., 1979, p. 69.
16. Marion Clawson, "Methods of Measuring the Demand for and Value of Outdoor Recreation," RESOURCES FOR THE FUTURE, Washington, D.C., 1959, Reprint No. 10, p. 3.
17. George Santayana, "The Sense of Beauty," p. 5
18. Martin Krieger, "What's Wrong with Plastic Trees?" SCIENCE, 179, 1973, p. 449.
19. J. V. Krutilla and A.C. Fisher, THE ECONOMICS OF NATURAL ENVIRONMENTS, Baltimore, Johns Hopkins University Press, 1975, p. 129 .
20. Krieger footnotes - no pages.
21. 1980 ANNUAL REPORT, THE NATURE CONSERVANCY, Signed by Frank D. Boren, Chairman of the Board, and William D. Blair, Jr., President, p. 7.
22. THE FEDERAL DRIVE TO ACQUIRE PRIVATE LANDS SHOULD BE REASSESSED, Report by The Comptroller General of the United States, CED-80-14, December 14, 1979.
23. Ibid.
24. Ibid., p. ii.
25. Bufford, "Beyond the Eye of the Beholder: Aesthetics and Objectivity," MICHIGAN LAW REVIEW, 1973, p. 1443.
26. Ibid., p. 1447 .
27. Robert Broughton, "Aesthetics and Environmental Law: Decisions and Values," LAND AND WATER LAW REVIEW, 7:2, 1975, p. 485.
28. Irland, op. cit.
SECTION I. F.
29. Clawson, op. cit., p. 2.
30. Haight, op. cit., pp. 275-276.

An Act

To designate the Alpine Iakes Wilderness, Mount Baker-Nuopualmie and Wematchee National forests, in the state of Washington.

Be it rumrted by the vemite and IImexe of lieprespututirex of the United Nitatex of A mericu in C'ongrexs maxembled. That this Let may be cited as the ". Itpine Latios . Irea Management Let of 1976

FINDINGS IND PCRMEF:

sur. $\underset{\sim}{2}$ (a) The (ongress finds that
(1) The C'ascade Mountains of the state of Wrashington between Stevens Pass and sinoqualmie Pass, commonly kown as the Nlpine Lakes region, comprise an enviromment of timbered vallegs rising to rugered, snoweovered momitains, dotted with over seven humded laties. lisplaying umsinal diversity of natural vegetation, and providing habitat for a varioty of wildlife.
(2) This region is abundant in it - multiple resourees, incluting an abundant soure of pure water. commerval forests, an out door laborafory for seientific rewarehand edurational activities. and opportmonties for grent diversity of iecreational use and enjoyment during all seasons of the year, in particular for quality honting. fishing, motorized recrentios, skimg. purnicking. camping. rock collecting, mature stme. backpacking. horselack riding, swimming, bonting, mountain (limib)ing, and many others, together with the opportmenty for millions of persons traveling throngh the peripherv of the areato enjog its mique: hlues.
(b) Purposes of this Let: In order to provide for public ontdoor recreation and nse and for conomic utilization of commereial forest lands, geologrical fentures, lakes, st reams and other resources in the ('entral ('asembe Mountainsof Washington State by present and future generations. there is hereby established. subject to valid exist ing rights an Ilpire Iakes Iren, incluting an . Ilpine Lakos Wilderness, an "Intended Wilderness" and a mamagroment unit, comprising approximately nine hondred and twenty thousamd acres.
Ske. 3. (a) The . Ipine Lakes Wildernese (hat
as "the wilderness"), the .. Intenderl Wilden (herevinafter reforred to as "the widerness"), the "Intended Wildermess". and the peripheral arva (hereinafter referred to as the "management unit"), shall comprise the arens so depicted on the map entitled ". Dlpine I a akes Area" and dated Jume 1976, which shall le on file and arailable for pulbie. insperetion in the ()tice of the (hief. Forest cerviere. Depmetment of thriculture. The serpetary of Agriculture (hervinafter refermel to as the "Ereretary") shall. as swon as practicable after the enactument of this Act. publish in the Federal Register a detailed doweription and map showing the lonndaries of the wilderness, "Intended Wililemess", and the management unit.
(b) The Serretary shall administer the Fodemal lames in the man agement unit in aroorlance with the laws. rules, and regulations applicoble to the national forrests in such a manner as to provide for the management of all of the resourers of the managrement unit.
(c) The Federal lands designated as the Alpine Lakes Wilderness shall be administered in accordance with the provisions of this Act and with the provisions of the Wilderness Act (78 Stat. 890), which-
(ver is the more restrictive.
(d) Federal lands depicted on the map and legal description us "Intended Wilderness" siall become part of the Alpine Lakes Wilderness ut such time as the adjacent non-Federal lands, interests or other property become wilderness according to the provisions of section 3(e) of this Act, at which times the Secretary shall file a map and legal description of such additions in the Federal Register.
(e) Non-Federal lands depicted on the map and legal description as "Wilderness" and "Intended Wilderness" shall become part of the Alpine Lakes Wilderness when acquired by the Federal Governinent in conformance with the acquisition program required by section t of this Act.

LAND MCQUIsITION ANI EXCH.NVGF

Sec. 4. (a) Within the boundaries of the wilderness and "Intended Wilderness", the Secretary is anthorized and directed to arquire with donated or appropriated funds, by gift. exchange, or otherwise. such non-Federal lands, interests, or any other property, in conformance with the provisions of section 4 of this A.t : Procided, That any such lands, interests, or other property owned by or under the control of the State of Washington or any political subdivision thereof may be acquired only by donation or exelhange. Nothing in this Let shall be construed to limit or diminish the existing authority of the Sercetary to acquire lands and interests therein within the Ilpine Lakes Area in accorilance with established law. Notwithstanding any other provision of law, any Federal property located within the namagenent mit may, with the concurrence of the agency having custody thereof. x e transferred withont consideration to the administrative jurisdiction of the secretary for use by him in carrying out the purpones of this Act. The teceretary shall exercise caution in exchanging land so is not to impair substantially the programmed allowable timber harrest of the Mount Baker-Snopualmic and Wematchee National Foreat Imoments appropriated from the Lamb and Water Conservation Fund thall be available for the acepuisition of lands and interest for the purposes of this Act.
(b) In exercising his authority to acquire property by exchange. the Secretary may accept title to any non-Federnl pioperty located within the wilderness and "Intended Wilderness". and conver to the owner of such property any mational forest land within the State of Washington under the juristiction of the Sercetars: Prorifled. That the Sereretary may accept cash for or pay cash to the grantor in such an exchange in order to equalize minor differences in the values of the properties exchanged.
(c) (1) As non-Ferleral lands and interests in the wilderness and "Intended Wilderness" are acquirenl, and as they berome protectable and administerable as wilderness, the lands shall herome part of the Dpine Lakes Wildernesis, and the Servotary shall pmblish from time to time a notice of such clasification in the Ferleral Register. It is the intention of Congrows that acruisition of the "Intenderl W'ilderneses" shall le completed no later than three yenrs after the date of enactment of this S.e. At any time after threv yons from the date of enactment of this Lct, an action may be instituted by an owner, all of whose lands withiu the lomularies of the "Intended Wikierness" have been managed in such a way so as not to beeome unsuitable or unmanageuble as rildemess (except for disturbance affecting a minor land aren and found by the Secretary to have resulted from strietly accidental and mintentional cirrumstances), apminst the Unitel States in the district court for the district in which such lands are located, to require the Socretary to anequire immerliately all of said orner's interest in
-nch lands, interests and property and to pay in accordance with this section t just compensation for sum lamds, interest, and property the plaintiff may have which are not vect arquired pursuant to this section t. By Felmuary 1 of each pear, the Secretary shall report in writing to the Committees on Interior and Insular Iffairs of the I'nited States ITouse of Representatives and the Senate, on the status of negotiations with private wwers to effect exchanges and acquisition of non-Ferleral poopery.
(z) The Thited States will pay just empensation to the owner of any lamds :and interests acquired by and pursuant to this Act. Such compensation hall te paid either: (1) by the Secretary of the Trasimey from money appropriated pursuant to this let from the Lamb abll Water Consorvation Fund, or from any other funds arailable for unch lise. "pon certification to him by the Secretary, of the agreed nesutiaterl ralue of such property. or the valuation of the property awarderl loy judguent. including interest at the rate of 8 ber centum per anmuin from the date of the acquisition of the property or the date of tiling an action acoording to the provisions of section $f(e)(1)$ of this . Set. whichever is earlier. to the date of payment therefor: or (13) by the serertary, if the owner of the land coneurs, with any ferlerally owned property a ailable to him for purposes of exehampe pursuant to sulsertion $4(\mathrm{~b})$; or ((') by the Secretary using any combination of such money or ferlerally owned property
(:3) Just compensation shall be the fair market value of the lands and interests acquired hy and pursuant to this Set, and shall he determimed as of the date of arguisition: I'rorided. howerer. That the fair market vahe of thos, lands acpuired from owners who, from the time of cuactment of this Let to the time of acquisition of any such lands, hate managed all hands within the "Intemded Wihlerness" moder their wwership so ats not to make such lamels l!msuitable or ummanageable as wihlermess (exept for disturbance atiocting a minor land area and foumd hy the serevtary to have resulted from strictly aceidental and fomintentional circomstances): shall be the simm of (A) the value of such lands amel interests at the rlate of aceubisition. plus (I3) any loss of walue of timber from casualty, deterioration. disense. or other natural canses from Jamuary 1. 19-ib, to the date of acquisition, with all existing and lest or damaged timber valued at the highest of (i) its market valus on the date of acpuisition. (ii) its market value on
 dates : I mel prowidnd further. That nothing in this Act shall be slemed or const rimed to deng to ownels of non-Fideral lands, or to change their rights to aceres to such lands or to manage the same for any otherwise iaw ful purpose prior to acquisition thereof by the secretary. For the purpores of this sertion. the owner of property is defined as the holder of fer title unless said property is subject to an agreement of sale entered into prior to April 1.1976.

WIIDERNER M.IN.IGRMENT PI.IN

Sec. J. In conjunction with the preparation of a wilderness management plan for the wilderness designated by this. Let, the Secretary shall prepare a special study of the Enchantment Lrea of the Llpine Lakes Vildorness. taking into consideration its especially fragile nature, its ense of aceessibility, its musual attractiveness. and its resultant hemey recreational usige. The study shall explore the feasibility and benefits of establishing special provisions for mamaging the Enchantment. Irea to protect its fragile leauty, while still maintaining the arnilability of the entire aroa for projected recreational demand.

Sec. 6. (a) Within two ymars of the enactment of this Let, the Secretary shall, in accordance with the provisions of this . Ict and other applicable acts governing the administration of the National Forest system and with full public involvement required by this and other pertinent law, prepare, complete and begin to implement in accordance with the provision of subsection (b) a single multiple-use plan for the Federal lands in the management unit.
(b) The managroment of the renewable resources will be in accordance with the Multiple-Use Sustained-Yield Act of 1960 (74 Stat. 215 ; 16 U.S.C. 528-531), with other applicalle laws and regulations of the United States, and will be such to obtain multiple use and sustained vield of the several products and services oltained therefrom.
(c) The Secretary shall publish a notice of such plan in the Federal Register and shall transmit it to the President and to the United States House of Representatives and to the Senate. The completed plan will take effect and will be implemented no earlier than ninety calendar days and no later than one hundred and fifty calendar days from the date of such transmittal.
(d) The resources of the management unit shall be managed in accordance with the provisions of the multiple-use plan until such time as the plan may be revised according to the provisions of this section.
(e) The Secretary shall review the multiple-use plan from time to time and, with full public involvement, shall make any changes he deems necessary to carry out the purposes of this Act.
(f) The Secretary shall permit and encourage the use of renewable lesources within the management unit, and nothing in this Act shall be construed to prohibit the conduct of normal national forest programs during the formulation of, nor to prohibit inclusion of such programs in the multiple-use plan required by this section.

ICTIIORITIES OF TIF: STATE: OF WISIINGTON

Sec. 7. (a) The Secretary shall permit hunting and fishing on lands and waters under his jurisdiction in accordance with applicable Federal and State laws. Except in emergencies, any regulations pursuant to this subsection shall be issued onlv after consultation with the fish and game departments of the State of Washington. Nothing in this Act shall be construed as affecting the jurisdiction or responsibilities of these agencies.
(b) Nothing in this Ict shall deprive the State of Washington or any political subdivisions thereof of its right to exercise civil and criminal jurisdiction within the aren or of its right to tax persons, (enporations, franchises, or other non-Federal property, in or on lands and waters within the area.

ACTIIORIZ.ITION OF APPRORRIATIONS
Sec. 8. There is herely authorized to be nppmprinted for the acquisition of lands and interests to carry out the purposes of this let, not more than $\$ 2(0), 000,000$) in fiscal year $197 \overline{7}, \$ 17,000,000$ in fiscal year $19: 8$, and $\sin (0,001), 000$ in fiscal year 1979 , such sums to remain ávailable until appropriated without fiscal year limitation. To prepare the multiple-use plan required by section 6 of this Act, there is authorizel to le appropriated not more than $\$ 500,000$. Appropriation requests by the Precident to implement the multiple-use plan shall express in qualitative and quantitative terms the most rapid and judicious manner and methods to achieve the purposes of this Act. Amounts appropriated to carry out this Act shall be expended in aceordance with the Budget Reform and Impoundment Control Act of 1974 (88 Stat. 297).

Approved July 12, 1976

II. SUBJECT PROPERTY - DESCRIPTION, DATA BASE, AND ECONOMIC CONTEXT

A. Introduction

The ALMA Act of 1976 allowed Congress to wax poetic in describing the subject property with strong visual images, as in Section $2(\mathrm{a})(1):$

The Cascade Mountains of the State of Washington between Stevens Pass and Snoqualmie Pass commonly known as the Alpine Lakes region, comprise an environment of timbered valleys, rising to rugged snowcovered mountains, dotted with over seven hundred lakes, displaying unusual diversity of natural vegetation, and providing habitat for a variety of wildife.

Photographs of the subject property are provided at the end of this section in lieu of several thousand words. The U.S. Geological Survey Maps precede the photographs. A common theme implied by both Congress and the photographs, and identified as a general perception of the area in the Visitor Employed Photography project (in Appendix D) is the natural beauty of the property.

The appraisal process prefers to compare the subject property in terms of specific, physically ascertainable attributes to broadly similar properties which have sold to a class of buyers of generally similar motivation. It is therefore necessary to supply the physically ascertainable attributes of the subject property which may be significantly related to alternative uses and selection of best use. Combining this data into relevant patterns permits comparison
of subject to similar inventories of the comparable sales. In the case of the Alpine Wilderness where the subject properties are owned in a checkerboard pattern, adjoining both government and other private ownership positions, it is also necessary to place the subject properties in context to the regional pattern and sub-environmental systems. Comparison of properties of the scale, physical diversity, ruggedness, and quality of the properties in question creates a data problem of staggering proportions, but nevertheless the distinctions between and among subject properties and comparables must be retained with sensitivity if pricing inferences are to be equitable. Thus a powerful data base system with which to structure an intensive data collection process was implemented for both subject property and comparables. The general process is detailed in Appendix C and is primarily the work of Michael L. Robbins, a Ph.D. candidate under Prof. Ralph Kiefer in Civil Engineering and Environmental Monitoring; Robbins is also a faculty member in the School of Business, Department of Real Estate where he teaches appraisal and property development--unique qualifications for an effort of this magnitude.
B. General Elements of a Data Base

In broad outline the development of a data base system requires the following steps for computerization:

1. Definition of the spatial area to be included in the data base.
2. Establishment of an $X-Y$ coordinate system which can synchronize with existing legal descriptions, subdivide to geocoded data cells, and permit ease of data entry.
3. Validation of ownership areas with data base coordinates and ownership areas.
4. Validation of land areas contained within each data base cell.
5. Selection of data sources available for both subject properties and comparable properties.
6. Specification of data to be reported, coding system, and data quality entry control system.
7. Development of programs for data retrieval and conversion to various forms of output including graphic display, statistical frequencies, and other relevant quantities.
8. Validation and quality control of retrieval systems.
9. Data storage, access, and protection systems to permit selective retrieval and combination for the appraisal process itself.

Responsibility for and details of these steps represent the bulk of supporting Appendices B, C, and D. More general

Southank Rewarch: Inc.

literature can be found in some of the selections reproduced in Appendix F .

C. Subject Property Data_Base

The development of a data base for the Alpine Lakes Region affected by the subject property acquisition required nearly two years of work to execute the basic procedures above and this work has been detailed in Appendix B and C, by Kiefer, Ahearn, and Robbins. The general description which follows is taken from the introduction to Appendix C by Robbins, beginning at page 6 .

The spatial data base covers an area roughly ll miles wide by 22 miles long and includes an area of approximately 100,000 acres (Exhibit II-1). The eastern side of the data base is located approximately $3-1 / 2$ miles due west of the City of Leavenworth, Washington. The Icicle River divides the area approximately in half, providing a northern and southern reference.

D. Data Organization

The recording of data for record keeping and storage in the spatial data base is based upon an arbitrary $X-Y$ coordinate basis. Each pair of $X-Y$ coordinates references a unique Section, based on the Township and Range mapping system. The X coordinates range in value from 1 to 13 and the Y coordinates
range in value from 1 to 23. The starting $X-Y$ coordinate is located in the northwest corner of the data base beginning approximately at Range 15E, Township 26 N , Section 24. To increase the efficiency of data entry into the data base, the data base is further subdivided into fifteen areas with each subarea labeled with an alpha code, A through O, as in Exhibit II-2.

Therefore, there are four valid township codes; Townships $23 N$ through 26 N . There are three valid range codes; Range 15 E , 16E, and 17 E . Valid section numbers range from 1 to 36 , appropriate for the subarea. Not all subareas include all section numbers that fall within the township and range areas. For example, Subarea A includes only section numbers 13-36; Subarea B has two sections: Sections 30 and 31 ; and Subarea C includes all 36 sections. (See Exhibit II-2.)

Each section is further divided into 64 cells of a theoretical 10 acres each, although the synchronization and validation process must later adjust for the quirks in the actual survey variances on the ground and denote cells of more or less than 10 acres. The 64 cells are represented by a spatial subdivision of 8 rows of 8 cells each, permitting a coding form with a matching 8×8 matrix. Each cell is then numbered, with Number 1 being the lower left corner of the

EXHIBIT 1I-2

SUBAREAS OF 100,000 ACRES OF ALPINE LAKES WILDERNESS SURROUNDING AND INCLUDING PACK RIVER

Subarea A	references	Township 26N, Range 16E
Subarea B	references	Township 26N, Range 17E
Subarea C	references	Township 25N, Range 16E
Subarea D	references	Township 25N, Range 17E
Subarea E	references	Township 24N, Range 16E
Subarea F	references	Township 24N, Range 17E
Subarea G	references	Toferences
Subarea H	references	Township 23N, Range 16E
Subarea 1	references	Township 26N, Range 15E
Subarea J	references	Township 24N, Range 15E
Subarea K	references	Township 23N, Range 15E
Subarea L	Teferences	Township 24N, Range 16E
Subarea M	references	Township 24N, Range 15E

coding form with the sequence moving from left to right, row by row as demonstrated by the sample form in Exhibit II-3.

Thus the grain of resolution for the data base shall be no less than 10 acres, but this unit of data can be aggregated to 40, 80, 160, etc., and represents a relatively fine grain of information for a tract covering 100,000 acres. Naturally it is not of the detailed resolution of digitized electronic photography, but on the other hand, much of the data recorded would not be available with reliability since it would not lend itself to electronic photography. It is small enough that the law of large numbers will essentially neutralize displacement of attributes over the borders of the cell due to mapping and coding errors and is large enough that the typical trained data collector, with the aid of a ten-acre plastic grid overlay, can convert maps and air photos reliably to data reflecting the dominant character, condition, presence or absence of selected variables. The cell provides a spatial location for each attribute recorded.

E. Data Recording Process

The data collection process begins with determination of an attribute to be recorded, identification and review of source and reliability for such information, and then development of an arbitrary numerical code to reflect the discrete or continuous nature of the variable or a sub-category of the

Pack River Project
Alpine Lakes Area, Washington

1	2	3	4	5	6	7	8

Subarea \qquad
Section
variable type. These code numbers are used for identification purposes only, and at this stage raw code numbers do not reflect value judgments. For example, if the variable being extracted, i.e. being put on the coding form, is Slope Aspect, the value coded into each of the 64 cells would define the prominant direction that the slope is facing within the cell. For this variable, the numerical scale utilizes integer values between 0 and 9 to denote the direction of the Slope Aspect, i.e. the value 1 will denote a north facing slope while the value 9 will denote a multi-directional slope and the value 0 would indicate that the cell is mostly flat. The fact that the north facing slopes have a value of 1 and the multi-directional slope has a value of 9 does not imply that the multi-directional slope is 9 times better or worse than the north facing slope. The transformation from a numerical identification to a judgmental evaluation will be accomplished later in transformation programs.

F. Data Sources

Source documents for data included topographic maps, U.S. Forest Service documents such as the Alpine Lakes and Environmental Impact Statement on Transportation Plans, Pack River In-House Timber and Land Development Plans, Visual assessment surveys and so on. Variables in Class 21 to 24 are from air photos and 3-D slides; in some cases small scale maps
were enlarged by photography to aid data extraction. The reader is urged to refer to the detailed data extraction process for every variable provided in Appendix C by Michael Robbins and Part II of Appendix B by Sean Ahearn. Only then can the arduous craftsmanship and care in data control or data derivation from combined bits of information be fully appreciated. A basic list of 25 physically ascertainable attribute groups coded and placed in individual files as raw information are provided in Exhibit II-4. In addition, three files were created for the subject property based on responses from the Visitor Employed Photography survey to be discussed later (detailed in Appendix D). These files include cells within visitor designated "most beautiful areas", cells within general areas designated as "least beautiful areas", and the access routes through which the visitors were hiking to reach the areas photographed.

The subject property does not lend itself to statistical description alone; the reader is urged to review the color prints of subject property included at the end of this section. In addition, all of the subject property in each of the comparables were photographed by Sean Ahearn in three dimensional slides which are available as a resource, but have not been added to the appraisal set. These slides and other slides of data recording technique and materials are maintained

EXHIBIT II-4

RAW DATA GEO-CODED INTO DATA BASE FOR
ALL SUBJECT AND COMPARABLE PROPERTIES AS OF AUGUST 1981

As Described in Appendix C

1. Centroid Elevation (CELEV.???)*

Major contour line elev. (ELBAS.???)
\#80-foot contours to centroid (ELADJ.???)
2. Predominant slope aspect (SLOPE.???)
$1=$ North
$2=$ Northeast
3 = East
$4=$ Southeast
$5=$ South
$6=$ Southwest
7 = West
$8=$ Nor thwest
$9=$ Multi-directional
$0=$ Mostly flat
3. Contours (CONTO.???)
4. Surface Water (WATER.???)
$0=$ None
$1=$ Intermittent stream
2 = Permanent stream
3 = Intermittent and permanent stream
$4=$ Multi-permanent stream
$5=$ Small lake (less than 10 acres)
$6=$ Intermittent stream and small lake
7 = Permanent stream and small lake
$8=$ Large lake
$9=$ Intermittent stream and large lake
$10=$ Permanent stream and large lake
$11=$ Large and small lake
12 = Lake and small lake and permanent stream
13 = lce/snow field
5. Trails (TRAILS.???)

1 or 0 or presence or absence
6. Ridge Lines (RIDGE.???)

0 or 1
7. Percent of Slope (PCSLOP.???)

Range between .000 and 1.94
8. Roads (ROADS.???)
$0=$ No roads existing or proposed
$1=$ Proposed logging road in joint agreement
$2=$ Any type of existing road
9. Airfields (AIRFD.???)
$0=$ No airfields existing or proposed
1 = Existing public airfield
1 = Usable private airfield
$1=$ Existing U.S. Forest Service airfield
2 = Potential U.S. Forest Service airfield
$3=$ U.S. Forest Service heliport
$4=$ Potential U.S. Forest Service heliport
$5=$ U.S. Forest Service touchdown site
$6=$ Potential U.S. Forest Service touchdown site
10. Buildings, Mines and Clearcuts (BUILD.???)
$0=$ No buildings, mines or clearcuts
1 = Presence of buildings
$2=$ Presence of mine
$3=$ Presence of timber clearcut
11. Precipitation (PRECIP.???)

Annual average rainfall in multiples of 10 inches
12. Relative Distance of Parcel from a Wilderness Boundary (DIPEC.???)
$0=2$ or more full sections from boundary
$1=1$ section from boundary
$2=$ Parcel adjacent to wilderness boundary
13. Peaks (PEAKS.???)

Highest centroid in 10 -acre cell of a mountain section coded as a 1 designating peak
14. Mountains (MOUNT.???)

Cluster 4 - Any cell over 6,800 feet. Cluster 3 - Any cell over 7,000 feet. Clusters 1 \& 2 - Any cell over 7,200 feet.
15. Potential Subdivision (SUBDIV.???)

1 = Tentative Pack River plan for subdivision
$0=$ All other cells
16. Soils (Solls.???)

Soil code number from county maps (Not available for all comps)
17. Timber Species (TIMSP.???)
$1=$ Mixed conifer
$2=$ Douglas fir (70% or more)
$3=$ Ponderosa pine (70% or more)
$4=$ Lodgepole pine (70% or more)
5 = Alpine fir (70% or more)
$6=$ Englemann Spruce (70% or more)
7 = Western larch (70% or more)
18. Timber Size (TIMSZ.???)

$$
\begin{aligned}
& 1=0-4.9^{\prime \prime} \text { D.B.H. } \\
& 2=5.0-8.9^{\prime \prime} \text { D.B.H. } \\
& 3=9.0-20.9^{\prime \prime} \text { D.B.H. } \\
& 4=21.0^{\prime \prime} \text { and over D.B.H. }
\end{aligned}
$$

19. Timber Stocking (TIMST.???)
$1=10-39 \%$ stocked (poor)
$2=40-69 \%$ (medium) $3=70 \%$ and over, stocked (well)
20. Non-Timber Types (NOTIM.???)

1-Fire
2 = Water
3 = Non-stocked
4 = Non-operable
5 = Grass
6 = Hardwood
7 = Rock
8 = Brush
$9=$ Clear cut
$10=$ Right of way
Data from Air Photo Interpretation As Described in Appendix B, Part 11
21. Physiography (PHYSI.???)

1 = Sharp Dissected Uneven Slopes
2 = Moderately Dissected Slopes
3 = Irregular Landscape
4 = Ridged Landscape
5 = Peak
22. Rockform (ROCKS.???)

```
l = Rock Avalanche Chute
2 = Snow Avalanche Chute
3 = Talus Slope or Boulder Field
4 = Rock Outcrop (less than 2 acres)
5 = Rock Outcrop (2-5 acres)
6 = Rock Outcrop (5-10 acres)
7 = Cliff
8 = Pinnacle
9=Cirque
10 = Permanent Snow Field
|= Glacier
12 = Rock Dome
```

23. Vegetation (VEGGY.???)

1 = Stocking 10-39\%
2 = Stocking 40-69\%
$3=$ Stocking 70%
4 = Large Old Growth Timber
$5=$ Bushes
6 = Dry Meadow
7 = Wet Meadow
24. Waterform (WFORM.???) $1=$ Unusual Shoreline Configufation $2=$ Falls 3 = Rapids or High Volume Flow 4 = Meander
25. Ownership (NEWOWN.???)
$1=$ L. V. Brown
2 = Sheila D. Brown
3 = J. M. Brown, Jr.
$4=$ Jean O. Brown
$5=$ Chester Chastek
6 = Catherine Chastek
7 = Beverly C. Cook
8 = Deborah A. Hansen
$9=$ Stephanie M. Brown
$10=$ Lawrence V. Brown, Jr.
$11=$ Josephine H. Drown
$12=$ Patricia E. Brown
13 = Jacqueline Brown
14 = Barbara Huquenin
15 = Patrick C. Chastek
$16=$ Joyce Esposito
17 = Gary R. Chastek
$18=$ Thomas D. Chastek
19 = Lawrence F. Chastek
20 = Michael P. Chastek
in a pool referred to as Appendix G. An initial summary of physical characteristics identified in Exhibit II-4 have been inventoried for each ten-acre cell in each of the four appraisal clusters in Exhibit II-5. These factors must then be grouped in subsets to represent suitabilities for alternate uses as well as qualities of environment for different purposes. For example, potential development will be sensitive to buildable slopes, soils for percolation, road access, southern aspect. Timber operations will relate to combinations of stocking, size, and species as well as access to road, helioports, and other similar factors.

G. Legal Attributes

All four clusters of the subject property are affected by a pyramid of federal, county, and private covenants or regulations as to their use or pace of development or for logging. Aside from general Forest Service regulations on logging in this district prior to the identification of a Wilderness District and a supplemental Management District, there is an operational joint road agreement which was assigned to Pack River by the previous owners and grantors which the courts have determined to be operational despite the Wilderness Act. These documents are provided in Appendix E. Development potentials are controlled by Chelan County Subdivision Regulations, adopted August 15, 1977 by Resolution 77-103 which

SUMMARY OF PHYSICAL CHARACTERISTICS CATALOGED AS PREDOMINANT

 FOR EACH TEN-ACRE CELL IN FOUR APPRAISAL UNITSVariable Name
Vegetation

1. Stocking, 10-39\% measured as a vertical projection of the crown cover to the ground
2. Stocking, 40-69\%
3. Stocking, $70 \%+$
4. Large old growth timber
5. Bushes
6. Dry Meadow
7. Wet meadow

Rockform

1. Avalanche Chute (Rock)	79	24.7	43	22.4	17	4.4	206	11.9
2. Avalanche Chute (Snow)	37	11.6	0	0.0	18	4.7	23	1.3
3. Talus Slope or Boulder Field	58	18.1	20	10.4	124	32.3	357	20.7

Variable Name	$\begin{gathered} \text { Cluster }{ }^{\prime} \\ (N=320) \end{gathered}$		$\begin{aligned} & \text { Cluster II } \\ & (N=192) \end{aligned}$		$\begin{aligned} & \text { Cluster } 111 \\ & (N=384) \end{aligned}$		$\begin{gathered} \text { Cluster IV } \\ (N=1728) \end{gathered}$	
	No. of Cells	\% of Total						
4. Ridged Landscape	19	5.9	23	12.0	63	16.4	150	8.7
5. Peak	9	2.8	23	12.0	0	0.0	0	0.0
Elevation								
1. L.T. ${ }^{\text {a }} 3400$	91	28.4	46	24.0	0	0.0	125	7.2
2. G.T**3400 and L.T. 5300	216	67.5	83	43.2	57	14.8	672	38.9
3. G.T. 5300 and L.T. 7100	13	4.1	57	29.7	265	69.1	888	51.4
4. G.T. 7100	0	0.0	6	3.1	62	16.1	43	2.5
Roads								
1. Existing Roads	25	7.8	2	1.0	53	13.8	222	12.8
2. Proposed Roads	0	0.0	0	0.0	0	0.0	9	0.5
Airfields								
1. U.S. Forest Service Touchdown Site	0	0.0	0	0.0	1	0.3	0	0.0
2. Non-existing U.S. Forest Service Touchdown Site	0	0.0	0	0.0	0	0.0	1	0.1
Trails	18	5.6	6	3.1	21	5.5	156	9.0
L.T. means Less Than $ * G . T$. means Greater Than								

Variable Name	Cluster 1$(N=320)$		Cluster 11$(N=192)$		Cluster 111$(N=384)$			iv 28) \% of Total
4. Rock Outcrop (2 acres)	46	14.4	53	27.6	77	20.1	495	28.6
5. Rock Outcrop (2 to 5 acres)	26	8.1	33	17.2	32	8.3	181	10.5
6. Rock Outcrop (5 to 10 acres)	8	2.5	12	6.2	28	7.3	69	4.0
7. Cliff	1	0.3	7	3.6	14	3.6	15	0.9
8. Pinnacle	3	0.9	7	3.6	8	2.1	24	1.4
9. Cirque	0	0.0	0	0.0	5	1.3	26	1.5
10. Permanent Snow Field	0	0.0	0	0.0	36	9.4	31	1.8
11. Glacier	0	0.0	0	0.0	0	0.0	0	0.0
Waterform								
1. Unusual Shoreline Configuration	33	10.3	6	3.1	9	2.3	71	4.1
2. Falls	34	10.6	5	2.6	8	2.1	59	3.4
3. Rapids or High Volume Flow	0	0.0	0	0.0	0	0.0	26	1.5
4. Meander	0	0.0	0	0.0	0	0.0	0	0.0
Physiography								
1. Sharp Dissected Uneven Slopes	21	6.6	21	10.9	12	3.1	88	5.1
2. Moderately Dissected Slopes	43	13.4	0	0.0	0	0.0	54	3.1
3. Irregular Landscape	34	10.6	0	0.0	33	8.6	274	15.9

tL.E. means Less That O Equal fo
**G.T. means Greater Than
permits a short form platting procedure for subdivisions involving lots which are sized to be 20 acres or more. All of the property is subject to access relative to exercise of mineral rights reserved by a previous owner, The Sawyer Trust. (The only exception is 174 acres previously identified in Section I.) The appraiser is not aware of any reservation of water or hydroelectrical potential on the subject site to other outside parties. There is a license to the Cashmere Mountain Corporation as a result of a land contract between Pack River, Inc. and Cashmere for two parcels in the vicinity of Lake Caroline. (It is understood that this land contract has been rescinded since the onset of appraisal research by the filing of eminent domain proceedings against the Cashmere Mountain vendee, which under the terms of the land contract rescinds the agreement and the licenses therein.)

H. Subject Property Linkages

It has already been noted that the Wilderness region lies between Interstate 90 on the south and U.S. Highway 2 on the north, providing adequate east-west linkages from population corridors on Puget Sound and to Spokane-Coeur D'Alene. Interstate 90 continues eastward as a major transcontinental route. The north-south connector is State Highway 97 which is scenic but curvy and slow. Wenatchee provides an airport for general aviation and a commuter airline but neither represent
major factors in utilization of the subject property. Leavenworth, on the eastern edge of the subject properties, is a small town with aggressive tourist promotion utilizing buses from the Puget Sound area during most seasons of the year, but the mountain area provides only a backdrop to these activities. The more significant linkages of these clusters are their individual access points to usable logging roads and recreational trail heads (parking areas where hikers can begin the long climb into the wilderness basins north and south of the Icicle.) Cluster \#2 via Snow Creek is probably the main entrance point for hikers entering the Enchanted Area (see Exhibit II-6). Similarly, Cluster \#l via Ingalls Creek is a popular point of entry into the high ground of the Stuart Range south of the. Enchanteds, although not as important as Cluster \#l. Nevertheless, the trail head for Cluster \#l is closer to State Highway 97 and will be popularized by the recent purchase of land by an outfitter and supply firm on the road rising from the State Highway to the Ingalls Creek trail heads. Both clusters are clearly entry points and vital trail corridors to the Enchanted Area south of the Icicle.

Access to Cluster \#3 is somewhat more difficult and requires traveling to the end of the Icicle Creek road and then moving approximately 3 miles up a logging road (Pack River Trail) to the trail head at Trout Creek. This trail leads to

EXHIBIT 1I-6

KEY TRAIL LINKAGES TO
PUBLIC ROAD SYSTEM

KEY TRAIL LINKAGES TO PUBLIC ROAD SYSTEM

the western slopes of Mt. Cashmere and is a back door approach to the northwestern edge of the Alpine Lakes. An alternative and more frequented approach is the Eightmile Creek logging road which leads to a trail head from which to reach Eightmile Lake or the beautiful Colchuck Lake on the northern shoulders of Mt. Stuart. The views from Pack River land in this zone across the Enchanted Basin are some of the best south of the Icicle. North of the Icicle there are two major entrances that are popular with campers. Chiwaukum Creek provides trail access almost directly from U.S. 2 into the Wilderness Area from the east, and it is also the access route to much of the better timber land on the Pack River property. The alternative is a trail to the north where the trail head is slightly north of the upper edge of Exhibit II-6; a trail which leads to a number of lakes, such as Lake Donald, Lake Ella, Chiwaukum Lake and others of high elevation and high scenic quality. Better public information about this sector of the Alpine Lakes Wilderness would shift some of the excess hiking pressure away from areas south of the Icicle.

Each of these major trail and creek access points have also been starting points for logging operations. Thus it may be that trail head linkages for hikers are of less economic importance than access routes for logging operations and that in the case of the area north of the Icicle, these logging
operations currently reach points just below the crest of the ridge which forms the Wilderness boundary. Linkage to current logging operations is not an insignificant relationship in terms of economies of scale for the logger and in terms of pricing. Not only do these linkages infer that contiguous parcels might receive immediate use given a normal pace of development, but it also means a threat of irreversible damage to the naturalness of the area would provoke bidding for the site by conservation groups even without the existence of ALMA. Such development pressure will become a factor in best use analysis and market comparison analysis in Sections III and IV.

I. Dynamic Attributes

Dynamic attributes have to do with how people perceive a particular property as these qualities are partly in the mind of the beholder in terms of the values attached to the presence of certain attributes. Certainly the dominant public image of the Alpine Wilderness Area is that of unique scenic beauty, and it is important to note here that the survey of hikers, which is provided in full in Appendix D, indicated that many of the hikers were well familiar with other North American and European mountain districts. Nonetheless, these hikers seldom, if ever, rated the Alpines Area as inferior to the northern Cascades, the Glacier Parks, or the Grand Teton range. (See Executive Summary in Appendix D.) The research presented in

Appendix D further indicates that scenic quality can be perceived as various combinations of physical attribute sets. Diversity of physical landscape in the foreground and middleground, with sky and snowcapped mountain peaks in the distant background, can be ranked and developed into a score for scenic quality. Indeed, the Forest Service efforts to implement Congressional mandates for review and ranking of alternative tracts for wilderness standing all involve perceptual or dynamic qualities about the real estate. (See RARE II Implementation Manual in Appendix E.) Therefore, it is necessary to take the data base of physically ascertainable facts and create combinations of that data which can serve as proxies for the perceptual components of wilderness, i.e., natural integrity, apparent naturalness, primitive recreation experience, and scenic quality. The primary link between the physical facts and the presumed perception is the Visitor Employed Photography (VEP) study done specifically in the Alpines Area and forming part of the Niemann-Chenoweth study in Appendix D.

The dynamic attributes for natural integrity - apparent naturalness, opportunity for solitude and opportunity for primitive recreation are explained in Exhibit II-7. Scenic quality scores require somewhat more complex relationships developed more in detail in Appendix C and summarized in

EXHIBIT II-7

The following is a list of the dynamic attributes used in the Pack River Appraisal. It is divided into two parts, those attributes associated with the Wilderness Evaluation System and those attributes associated with the Visual Quality System.

THE WILDERNESS EVALUATION SYSTEM (WES)
(I) Natural Integrity - Apparent Naturalness* is damaged by presence of:

1) paved road
2) clear-cut, logging operation
3) buildings
4) trails, fences
(II) Opportunity for Solitude is aided and abetted by data factors reflecting:
5) view from
6) view to
7) vegetative screening (stocking class)
8) distance perimeter to core
(III) Opportunity for a Primitive Recreation Experience is increased by each additional element in diversity reflected in data factors which impute challenge or diversity:
9) Challenge
a) Rockform present
10) avalance chute (snow or rock)
11) talus slope or boulder field
12) rock outcrop
13) cliff
14) pinnacle
15) cirque
16) permanent snow field
17) glacier
b) vegetative overstory
c) percent slope
18) Diversity (see VQS)
a) physiography
b) rockform
c) vegetation
d) waterform
*These two elements are separate categories in RARE II; given the fact that comparables were presumed to be wilderness candidates, a perfect wilderness score of 10 is presumed and adjusted downward for items listed. Apparent naturalness is recognized indirectly in the descending penalty score which reflects curability and observability from a distance. All areas were subject to fire control and fire histories were not available, so this factor in apparent naturalness was ignored. (See Appendix C, Sean Ahearn tab, for further details.)

Exhibit II-8. With these elements, the computer is capable of generating a summary report (Exhibit II-9) as to the dynamic attributes of both the subject property clusters and comparable sales elements, a report that forms a significant component of Appendix A; the same comparable summary sheet can be produced for any specified cell or cluster of cells from the data base described previously.

The scores for each attribute are based on the $1-10$ scale which is an ordinal ranking, and thus these scores do not in themselves permit comparison or combination of variables unless they are further defined in terms of a common denominator measurement, which was taken to be 100 percent in this case. Each score of 10 can then be recalibrated in terms of a percentage of the whole or certain attributes could receive more weight than others. Since the Forest Service RARE II system avoids any relative weighting per se, it was decided to be neutral for purposes of the appraisal even though scenic quality was the predominant benefit which visitors perceived, photographed, and enjoyed when hiking and camping. Therefore, as in Exhibit II-8, each of the four major elements of RARE II wilderness were weighted 25 percent. (See Executive Summary in Appendix D and the final survey questionnaire technique on "Slice-of-the-pie" test devised by the surveyors, Niemann-Chenoweth.) As they point out, beauty, which is a

EXHIBIT II-8
THE SCENIC QUALITY SYSTEM (SQS)**

(1) Physiography

1) Sharp dissected uneven slopes
2) Moderately dissected slopes
3) Irregular landscape
4) Ridged landscape
5) Peak
(II) Rockform
6) Avalanche chute (rock)
7) Avalanche chute (snow)
8) Talus slope or boulder field
9) Rock outcrop < 2 acres
10) Rock outcrop 2 - 5 acres
11) Rock outcrop 5+ acres
12) Cliff
13) Pinnacle
14) Cirque
15) Permanent snow field
16) Glacier
17) Rock dome
(III) Vegetation
18) Stocking 10 to 39%
19) Stocking 49 to 69%
20) Stocking $70 \%+$
21) Large old growth timber
22) Dry meadow
23) Wet meadow
(IV) Waterform
24) Unusual shoreline configuration (Lakes)
25) Falls
26) Rapids
27) Meander
**These factors reflect elements of diversity revealed by VEP study (Appendix D) to be prominent in scenic quality ratings of people who make the effort to enter the area on foot and selected for the fact that data could be gathered from air photos. Each data point implies smaller subsystems, such as flowers in the dry meadow, color patterns in rock outcrops, or distant views which include a mountain peak. See Sean Ahearn tab in Appendix C.

EXHIBIT II-9

COMPARABLE SUMMARY SHEET
I. WILDERNESS (.25)
. 25 1. Natural Integrity
(Apparent Naturalness) x.xxx x.xxx
II. SOLITUDE (.25)
.0625 l. Distance to Perimeter x.xxx
.0625 2. View FROM Cell (Rev.) x.xxx
.0625 3. View TO Cell (Rev.) x.xxx
. 0625 4. Vegetation Screening x.xxx x.xxx
III. PRIMITIVE RECREATION EXPERIENCE (.25)
. 083 l. Challenge
(Physical Feature)
x.xxx
.083 2. Diversity - \% Slope
$\mathrm{x} . \mathrm{XXx}$
. 083 3. Diversity - Terrain
$x . x x x$ x. $x x x$
IV. SCENIC QUALITY (.25)
.20 l. Scenic Quality x.xxx
. 05 2. View from Cell x.xxx x.xxx

AVERAGE ATTRIBUTE SCORE PER CELL x.xxx
ADJUSTED PURCHASE PRICE $x x x, x x x$.
TOTAL CELLS IN COMP $x x . x x$
TOTAL ACRES IN COMP $x x . x x$ TOTAL ATTRIBUTE POINTS $x x x . x x$

AVERAGE PRICE PER POINT PER CELL xxx.xx
AVERAGE PRICE PER ACRE PER CELL xxx.xx
dynamic attribute in terms of perception in the appraisal lexicon, actually consists of two components, the physical elements to be seen and the values of the perceiver. The data base provides the first element -- a representative set of elements and ecological sub-systems (such as the category "wet meadow") of what might be seen. The consumer research study in Appendix D provides insights into the perceiver's point of view with Visitor Employed Photography (VEP), survey research, and simple graphic responses to certain survey questions. It is precisely this link between physical fact and user benefit which was the subject under discussion in Section I in terms of the necessity of recognizing intangible values (aesthetics) in the presence of certain combinations of physical attributes. These intangible values combined in a matrix with conventional attributes may suggest that the best use is wilderness rather than more traditional forms of development. The opportunity costs of economic development may very well exceed the producer's surplus of pursuing traditional avenues of economic exploitation, thus negating apparent economic values for timber or mines or commercial recreation.

J. Environmental Attributes

Environmental attributes in terms of appraisal analysis is limited to off-site impacts which could be reasonably anticipated from economic development of the subject property. For the most part, the subject property is in a checkerboard relationship to lands primarily owned by the federal government. Indeect, logging operations would proceed on both federal and Pack River timberlands only as a result of considerable joint cooperation in development of a road under the existing agreement and cooperative selection of stands to be cut in order to strike an appropriate compromise between clear cutting for maximum return and selective cutting for conservation of slope stability, seeding stock, and some minimal degree of visual quality. Nevertheless, the Niemann-Chenoweth study suggested that a clear-cut or a major road were probably two of the more devastating man-made encroachments on the enjoyment of wilderness land, particularly the views from high mountain country, because the scars were visible from long distances. Therefore, analysis of alternative uses needs to consider the off-site damage to parcels having a view of said properties as well as off-site parcels impacted by the joint road program. These elements are provided from the data base developed by the VIEWIT program,
some results of which are displayed in Exhibit II-10 and for which additional information and operating detail are provided in Appendix C by William Gates.

In short, logging operations on Pack River land would do significant, if not directly measurable, damage to adjacent government lands where the Pack River property was in the view-shed, or the necessary road was on lands otherwise "untrammeled by man." The reverse of that same argument is that the acquisition of Pack River lands by the government would provide incremental value or plottage value to the government position since the view-shed which makes these lands attractive in valuable recreation would be protected. For example, if a particular acre of Pack River land is worth $\$ 4,000$ for timber but can be seen by ten other publicly owned acres, it is possible that logging could destroy $\$ 400$ worth of value for each parcel owned by the government. The result would be society had no net economic surplus at all, which is counter to the concept of highest and best use. It might be argued that if cutting the timber on 50 percent of the Pack River "acre" would ruin the wilderness quality for ten other government acres that the wilderness attribute which depended on the survival of all the trees was twice as valuable as the timber. The negative values associated with off-site costs must be internalized in the selection process of best use in Section III.

EXHIBIT II-10a

mean score of times seen from
 PUBLIC VIEWING PLATFORMS

MAPPING PROGRAM INFORMATION

LEVEL
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

SYMBOL

,
-
!
/
$=$
*

I
\%
W
\#

EXAMPLE:

$$
A=50
$$

$$
B=10
$$

$$
\text { Cell Value }=40
$$

1. $40-10=30$
2. $30 / 50=.60$
3. $.60 \times 10=6$
4. $6+1=7$
5. $7=$ "I"

SYMBOL DETERMINATION

1. User Input (scaling ranges)
$A=$ Maximum Allowed Value
$B=$ Minimum Allowed Value
2. Symbol $=((($ Cell Value $-B) / A) x 10)+1$

EXHIBIT 11-10b

MEAN SCORE OF TIMES SEEN FROM
PACK RIVER VIEWING PLATFORMS

K. The Economic Context

The subject property to be sold is not only enmeshed in a physical environment which lends itself to a spatial data base, but is also existing in an economic environment which must have some impact on a pricing model. With a tentative date of appraisal of January l, l981, there is at least some time focus to economic trends, but it should be noted that appraisal presumes a reasonable period of time for disposal of the property. Logically this must be the period prior to the date of sale. Even though 1981 may evolve into a new economic climate due to tax laws which might depress charitable donations to buyers of wilderness, due to increasing demands for timber to support new capital investment, or due to an improved GNP, these variables are not relevant. Economic conditions extant during 1979 and 1980 would be the prevailing trends to be considered in a pricing model. These trends cannot be directly linked to any price model for wilderness land in Chelan County, for at least two reasons. (l) National economic theory has not been able to establish any valid coefficients that would link specific wilderness land prices to national economic movements, aside from the confusion introduced by the fact that local and regional economies may not be in syncronization with the national scene. Uses for the subject
property, such as recreation for hikers or even second home sites have little to do with prosperity levels nationally. (2) Timber pricing for purposes of wilderness acquisition under the ALMA ACT is specifically tied to whatever the best price was since the passage of the Act in disregard of any blight, natural disaster, or fire damage to the trees.

Thus, the only important national phenomena for the time period involved is the distortion on dollar values over time caused by inflation or devaluation of the currency. This force has been specifically recognized by adjusting all comparable sales prices by the Implicit Price Deflator for Gross National Product Indices, $1972=100$ Base, which will be summarized in Section IV, Exhibit IV-3, and detailed in Appendix E.

More relevant to pressure on the subject site for recreation and timber is the status of the economy for the State of Washington. 1979 capped a three-year surge of growth for the State. The economic base underlying the State's brisk economic growth includes agriculture, food processing, and fishing, about 25 percent; aerospace, roughly 20 percent; manufacturing and mining, over 35 percent; and forest products just under 19 percent. Rates of growth and other relevant statistics are summarized in Exhibit II-11. By 1980, troubles in the housing industry were being felt in lumber production, as revealed in the lumber index in Exhibit II-12. Nevertheless,

WASHINGTON STATE EMPLOYMENT AND INCOME

Washington State 1979	Level	Percent

[^0]

EXHIBIT 11-12 (Continued)

ECONOMIC INDICATORS						
U. S. LUMBER CONSUMPTION	CURRERT			YEAR - TO - DATE		
	Latest Period Available	\% Change From			Change From	
	QIV '79	QIII '79	QIV 178	12 mos. 179	12 mos. 178	
		(Million Board Feet)				
Total	10,627	-12.5	-10.8	45,937	- 4.8	
Softwoods .	8,981	-13.4	-11.6	39,009	- 5.9	
Hardwoods	1,646	-7.1	-6.1	6,928	$\begin{array}{r}1.9 \\ \hline\end{array}$	
Total EMPLOMMENT - (Seasonally Adjusted)		Feb. '80	\% Change From Jan. '80			
		(Thousands of Employees)				
A11 Industries. All Mamfacturing Industries. Lumber and Wood Products. Furniture and Fixtures.		$\begin{array}{r} 90,731 \\ 20,900 \\ 727 \\ 480 \end{array}$	$+0.2$	+0.2		
		$+0.1$	- 0.6			
		- 0.7	- 5.3			
		-0.8	- 3.2			
WHOLESALE PRICES			Feb. ' 80			
			(Index - $1967=100$)			
All Commodities			259.8	$+2.0$	+15.9	
		262.2	$+1.2$	+ 7.4		
Lumber and Wood Products. -	294.8	$+1.7$	$+0.3$		
All Lumber.	341.5	$+1.5$	$+0.5$		
Softwood Lumber.	363.0	+ 2.1	$+0.3$		
Douglas Fir Lumber.	367.4	$+1.1$	+2.0		
Southern Pine Lumber. \cdot	322.2	$+0.1$	+ 5.2		
Other Softwood Lumber	-•	374.9	+ 3.6	- 2.5		
Hardwood Lumber .	- . . .	259.9	- 0.5	$+1.0$		
Millwork.	258.0	$+1.5$	$+2.6$		
Softwood Plywood.	300.8	$+4.2$	-11.5		
Hardwood Plywood.	- • . .	174.8	0.0	+ 9.1		
Wood Household Furniture.	213.2	$+1.1$	+11.5		
Pulp, Paper and Allied Prod	cts	238.9	$+0.6$	+14.4		
Steel Mill Products	294.2	+ 0.2	+8.2		
Aluminum Shapes .		257.0	0.0	+ 5.9		
Concrete Products . .Structural Clay Product		266.2	$+0.5$	+12.6		
		231.1	$+0.7$	+ 9.7		
Economic data on the state of the						
Lumber and Wood Products Industryis complled by						
MacKay-Shields Econonics,						
NATIONAL FOREST PRODUCTS ASSOCIATION						
1619 Massachusetts Avenue, N.W.						
	washington, D. C. 20036					

buyers of large timber tracts realize it would take five to ten years to extract the marketable timber on parcels of the size and terrain of the subject property; such buyers are not only concerned with sustaining timber related enterprises in the near term but with long-term, world-wide commodity pricing which has continually outperformed inflation and inflation-adjusted growth rates in the last decade. Therefore, even timber prices suitable for long-term operation have only a dampened response to topical upsets in the home-building industry within the United States. Logs from privately owned resources are eligible for the lucrative export market while logs cut on federal lands are not.

The subject property is also the beneficiary of the increasing population in the Seattle/Tacoma/Bellingham Corridor, people who would tend to look eastward for skiing and recreational hiking and camping along Routes 2 and 90. In short, the State of Washington enjoyed prosperity somewhat better than that of a nation as a whole and that is reflected with increasing utilization of the Snoqualmie and Wenatchee Forest areas. Consider Exhibit II-l3 which reports visitor days by fiscal year for 1979 and the use of national forest units within the National Wilderness Preservation System. The Alpine Lakes area in the State of Washington had more visitor days than any other Western forest area, with the exception of

EXHIBIT 1I-13
USE OF NATIONAL FOREST UNITS
NATIONAL WILDERNESS PRESERVATION SYSTEM
FISCAL YEAR 1979
(10/1/78-9/30/79)

Wilderness

Aqua Tibia
Caribou
Cucamonga
Desolation
Dome Land
Emigrant
Golden Trout
Hoover
John Muir
Kaiser
Marble Mountain
Minarets
Mokelumne
Santa Lucia ${ }^{2}$
San Gabriel
San Gorgonio
San Jacinto
San Rafael
South Warner
Thousand Lakes
Yolla Bolly-Middle Eel
Ventana
Subtotal

Eagle Nest
Flat Tops
Hunter-Fryingpan
Indian Peaks
La Garita
Maroon Bells Snowmass
Mt. Zirkel
Rawah
Weminuche
West Elk
Subtotal

Gospel Hump	
Hells Canyon	29,200
Sawtooth	22,900
Selway-Bitterroot ${ }^{4}$	63,100
\quad Subtotal	130,400

High Sierra
Salmon Trinity Alps
Subtotal
1,200
122,700
123,900

COLORADO

Uncompahgre
54,600
Wilson Mountains
19,200
118,000
26,400
22,600
314,700
27,300
$1,032,000$
Subtotal
73,800

IDAHO

| 179,400 |
| :--- | ---: |
| Idaho |
| Salmon River Breaks $\quad 38,500$ |

Absaroka-Beartooth	270,600
Anaconda-Pintlar	42,300
Bob Marshall	156,200
Cabinet Mountains	29,300
Gates of the Mountains	3,600
Great Bear	22,100
Mission Mountains	19,300
Scapegoat	36,300
Selway-Bitterroot	71,600
Welcome Creek	1,600
\quad Subtotal	652,900

2,400
140,500
11,100
143,600
34,200
55,000
11,500
31,200
Subtotal 429,500

Glacier Peak	106,300
Goat Rocks	65,500
Alpine Lakes	311,200
Mount Adams	50,200
Pasayten	51,500
Wenaha-Tucannon 6	47,300
Subtotal	632,000

Bridger
North Absaroka
Savage Run
Teton
Washakie
Fitzpatrick
Subtotal

TOTAL - ALL STATES

6,205,700
518,500
40,800
2,000
46,600
56,900
41,800
706,600

NEW MEXICO

Spanish Peaks
15,900

Subtotal
15,900

Black Range
9,300
Blue Range ${ }^{5}$
1,500
Gila
21,400

WASH INGTON

WYOMING

Cloud Peak	73,600
Glacier	5,200
Popo Agie	34,900

Subtotal
113,700

TOTAL - ALL STATES
577,400

EXHIBIT II-13 (Continued)

FOOTNOTES: ${ }^{1}$ Actually not yet within Wilderness System
${ }^{2}$ Use not reported pending boundary location in reporting system.
${ }^{3}$ Hells Canyon located in Oregon \& Idaho - total area use 40,100
${ }^{4}$ Selway-Bitterroot located in Idaho and Montana - total area use 202,000 ${ }^{5}$ Blue Range located in Arizona and New Mexico - total area use 34,300 ${ }^{6}$ Wenaha-Tucannon located in Oregon and Washington - total area use 71,100

Bridger National Park in Wyoming and the John Muir Park outside of San Francisco and Weminuche in Colorado. Indeed, it accounted for virtually 5 percent of the visitor days reported for these seven Western States ($311,200 / 6,205,700$) . Percent of household trips taken for outdoor recreation within the U.S. in 1977, placed Washington third only to Colorado and New Mexico where skiing plays such a dominant role in the winter lifestyle of the tourist (Exhibit II-14).

The Chelan County economic base has little real relevance to the pricing model of the wilderness tracts in question, although its subdivision ordinance will be shown to have some impact on recreational land development possibilities in the discussions of alternative uses.

In general, the appraiser has no credentials for making national economic forecasts. Instead he must simply identify the general economic environment within which any transaction would be negotiated. For purposes of this appraisal: IT IS ASSUMED THAT THE STATE OF WASHINGTON IN 1979 AND 1980 WAS PROSPEROUS, IN A GROWTH CYCLE, AND ITS RESIDENTS PUSHING INTO FURTHER EXPLOITATION OF RECREATIONAL RESOURCES IN THE CASCADE MOUNTAINS AT AN ACCELERATING RATE. IT IS ASSUMED FURTHER THAT EXPORT CONDITIONS FAVORED THE NEAR-TERM PROSPECTS FOR TIMBER PRICES AND THAT THE LONGER TERM INFLATION PROSPECTS WOULD CONTINUE TO PUSH INVESTORS TOWARD BIGGER INVESTMENTS IN NATURAL

EXHIBIT 11-14

1977 TRANSPORTATION CENSUS

TRIPS TAKEN FOR OUTDOOR RECREATION WITHIN THE U.S. IN 1977

State Where Travel Took Place	Household \qquad	Person Trips	\% of Total HH Trips in 7 States	$\begin{aligned} & \% \text { of Total } \\ & \text { Person Trips } \\ & \hline \end{aligned}$
Idaho	423	950	8.88	10.35
Nevada	724	1,261	15.19	13.74
Washington	738	1,341	15.48	14.62
Wyoming	446	924	9.36	10.07
Colorado	1,273	2,365	26.71	25.78
Montana	351	667	7.36	7.27
New Mexico	811	1,667	17.02	18.17
Total	4,766	9,175	100.00	100.00

Source: 1977 Transportation Census, U.S. Bureau of the Census, Dept. of Commerce, Washington, D.C.

RESOURCES SUCH AS TIMBER AND EVEN SMALL SCALE HYDRO-ELECTRIC POTENTIAL. THESE TRENDS, WHICH WOULD INEVITABLY LEAD TO SERIOUS ENCROACHMENTS ON THE REMAINING WILDERNESS AREAS IN PRIVATE OWNERSHIP IN THE EASTERN CASCADES, COULD ALSO BE EXPECTED TO GENERATE A SIGNIFICANT COUNTER THRUST BY PRESERVATIONISTS WHO WOULD COMPETE FOR THE PURCHASE OF PRIME WILDERNESS TRACTS. THERE IS NO REASON TO BELIEVE THAT IN 1979/80 THAT SUCH GROUPS ANTICIPATED ANY REDUCTION OF CASH SUPPORT FROM THEIR MEMBERSHIPS OR IN LONGER TERM BAILOUTS OF THEIR TEMPORARY COMMITMENTS BY STATE AND FEDERAL GOVERNMENT ACQUISITION PROGRAMS. It seems unnecessary to smother the reader with additional economic statistics, but additional data has been placed in Appendix F, that bears on this general statement of economic conditions, which may influence pricing of the physical attributes of the subject property and others like it.
L. Conclusion

The combination of thousands of acres and dozens of attributes is overwhelming to the reader, and the value of such a data base is not best comprehended until the data itself is organized into subsets related to possible alternative uses from which a best use determination can be made. The reader is advised to move through the entire process at the summary level represented by this appraisal report to maintain an overview while assimilating the overall logic and thrust of argument. After the first reading, it would be most appropriate to search
into the detail of the Appendices. To do otherwise may create a second wilderness of information in which to wander without shedding any light on the wilderness valuation at hand.

PICTURES AND MAPS

This portion of the appraisal contains U.S. Geological Survey Quadrangle Maps covering the subject properties, computer output "Comp Summary Sheets" for each section of land, and photographs of each section of land. Everything is in Appraisal Cluster order (as defined in Section I, page 28), with Cluster I being first, Cluster II second, and so on. (See Exhibit 6 in Section I for a map showing the Appraisal Clusters.)

It should be noted that Robbins' "Comp Summary Sheets", each of which precedes any picture or pictures relating to that particular section of land, have the section's numerical coordinates (See Exhibit II-l) at the top. However, instead of having them in $X-Y$ order, each "Comp Summary Sheet" has the Y, or vertical axis, coordinate first and the X, or horizontal axis, coordinate second. This was done to facilitate looking at the properties from the upper left (or Northwest) corner of the map, with North being at the top, and then moving from left to right (or West to East), just as you are reading this page. This $Y-X$ sequencing provided for the logical left to right, top to bottom, orientation.

The section numbers under the pictures themselves also follow this $Y-X$ coordinate ordering. The letter and number
within parentheses refers to another method of identifying each section used by Kiefer. Kiefer's coding system is further explained in Appendix B.

MOUNT STUART QUADRANGLE W ASHINGTON
15 MINUTE SERIES (TOPOGRAPHIC)

SUBJECT SUMMARY SHEET for - 21

I. HILDERNESS

1. NATURAL INTEGRITY (APPARENT NATURALNESS) 2.4609
II. solituae
2. IISTANCE TO PERIMETER . 315
3. UIEW FROM CELL
4. VIEH TO CELL . 504518
5. vegetation screening .425669 .388206
III. PRIMITIUE RECREATION EXPERIENCE
6. CHALLENGE
.465227
(FHYSICAL FEATURE)
7. DIVERSITY - \% SLOPE
.296946
8. IIIVERSITY - TERRAIN
.178741
IV. SCENIC QUALITY --- 1.19531
9. VIEW FROM CELL . 107707

AIJUSTEI PURCHASE PRICE $\quad x \times x \times x$.
TOTAL POINTS 399.239
TOTAL CELLS IN SECT. 64
AVERAGE PRICE PER POINT PER CELL $x, x x \times . x \times$
AUERAGE SCORE PER CELL $=6.33823$

Section 2110 (G29): Looking West - Ingalls Creek

Section 2110 (G29): Looking North at South Face of slope

SUBJECT SUMMARY SHEET FOR - 21
 12

I. WILDERNESS

1. NATURAL INTEGRITY
(APPARENT NATURALNESS) 2.52685
II. SOLITUDE
2. IISTANCE TO FERIMETER . 00525
3. VIEH FROM CELL . 609743
4. VIEW TO CELL . . 569369
5. VEGETATION SCREENING . 29312
III. PRIMITIUE RECREATION EXPERIENCE

1. CHALLENGE	.38817
(PHYSICAL FEATURE)	
2. IIVERSITY - SLOPE	.349399
3. DIVERSITY - TERRAIN	.258896

IV. SCENIC QUALITY --- . 803255

1. VIEU FROM CELL $.245451 E-1$

ADJUSTED PURCHASE PRICE $x x, x \times x$.
TOTAL POINTS $\quad 343.378$
total cells in sect. 60
aUERAGE PRICE PER POINT PER CELL $x, x x x . x x$
AVERAGE SCORE PER CELL $=\mathbf{5 . 8 2 8 6}$

Section 2112 (G27): Looking East Down Ingalls Creek

Rismad, Ino.
SUBJECT SUMMARY SHEET FOR - 22 9

1. HILDERNESS1. NATURAL INTEGRITY(APPARENT NATURALNESS)2.50628
II. SOLITUDE
2. distance to perimeter 820312E-4
3. UIEW FROM CELL 480944
4. VIEN TO CELL 516834
5. vegetation screening 250674
III. PRIMITIUE RECREATION EXPERIENCE
6. CHALLENGE 453487(PHYSICAL FEATURE)2. DIVERSITY - Z SLOPE360803
7. DIVERSITY - TERRAIN 228405
IV. SCENIC QUALITY --- . 978176
8. VIEW FROM CELL 126243
ADJUSTEI PURCHASE PRICE $x \times, x \times x$.
TOTAL POINTS 371.895
total cells in sect 64
AUERAGE PRICE PER POINT PER CELL $x, x x x . x x$
AVERAGE SCORE PER CELL $=5.90193$

Section 22 (G31): Looking South Up Falls Creek
SUBJECT SUMMARY SHEET FOR - 22 11
I. HILDERNESS

1. NATURAL INTEGRITY
(APPARENT NATURALNESS) 2.51924
II. SOLITUDE
2. DISTANCE TO PERIMETER $128174 \mathrm{E}-5$
3. VIEW FROM CELL 408352
4. VIEW TO CELL 512764
5. vegetation screening 443932
III. PRIMITIVE RECREATION EXPERIENCE
6. Challenge 253492
(PHYSICAL FEATURE)
7. DIVERSITY - \% SLOPE 32856
8. diversity - terrain 278506
IV. SCENIC QUALITY --- . 874659
9. VIEW FROM CELL 183848
ADJUSTED PURCHASE PRICE $x x, x \times x$.
total points 365.513
TOTAL CELLS IN SECT. 64
average frice per point per cell к, xxx. xi
AUERAGE SCORE PER CELL = 5.80335

Section 2211 (G33): Looking South at Northeast Slope

Section 2211 (G33): Looking South Up Ravine on East Side of Section

SUBJECT SUMMARY SHEET FOR - 22

I. HILDERNESS

1. NATURAL INTEGRITY

$$
\text { (APPARENT NATURALNESS) } 2.67995
$$

II. SOLITUDE

1. Distance to perimeter
. $915527 \mathrm{E}-7$
2. VIEW FROM CELL
.572318
3. VIEN TO CELL
.449276
4. VEGETATION SCREENING .66171

III. PRIMITIVE RECREATION EXPERIENCE

1. CHALLENGE	$.181066 E-1$
(PHYSICAL FEATURE)	
2. IIVERSITY - \% SLOPE	.39104
3. DIVERSITY - TERRAIN	$.198933 E-1$

IV. SCENIC QUALITY ---- . 262476

1. VIEW FROM CELL .820605E-1

ADJUSTED PURCHASE PRICE $x x, x \times x$.
TOTAL POINTS 66.1122
total cells in sect. 14
average price per point per cell $x, x x x . x x$
AVERAGE SCORE PER CELL $=\mathbf{5 . 1 3 6 8 3}$

SUBJECT SUMMARY SHEET FOR - 16
I. WIlderness

1. NATURAL INTEGRITY
(AFPARENT NATURALNESS) 2.54405
II. SOLItude
2. IISTANCE TO FERIMETER
. $391928 \mathrm{E}-3$
3. VIEW FROM CELL . 621923
4. VIEH TO CELL .496256
5. vegetation screening .365278
III. PRIMITIUE RECREATION EXPERIENCE
6. Challenge .43663
(PHYSICAL FEATURE)
7. DIVERSITY - Z SLOPE
.258435
8. DIVERSITY - TERRAIN
.216006
IV. SCENIC QUALITY --- . 910431
9. UIEU FROM CELL .252421E-1

ADJUSTED PURCHASE PRICE $x x, x \times x$.
TOTAL POINTS 153.591
total cells in sect. 27
average price per point per cell $x, x x x . x x$
AUERAGE SCORE PER CELL $=5.87464$

AVERAGE SCENIC BEAUTY SCORE (for entire section)

$$
16-11=.910431
$$

Section 1611 (F33): Looking West

Section 1611 (F33): Looking West, Close-up of Rock Outcrop

Sandmarke Research, Inc.

Section 1611 (F33): Looking Northeast
SUBJECT SUMMARY SHEET FOR - 17 10
I. HILDERNESS

1. NATURAL INTEGRITY (APPARENT NATURALNESS) 2.53975
II. SOLITUDE
2. DISTANCE TO PERI位ETER 612387E-5
3. VIEN FROM CELL 622589
4. VIEW TO CELL 527209
5. VEGETATION SCREENING 225223
III. PRIMITIUE RECREATION EXPERIENCE
6. Challenge 577448
(PHYSICAL FEATURE)
433304
7. DIVERSITY - Z SLOPE284797
IV. SCENIC QUALITY --- . 995476
8. VIEW FROM CELL 139882E-1
ADJUSTED PURCHASE PRICE $x x, x x x$.
TOTAL POINTS 392.192
TOTAL CELLS IN SECT. 64
aUERage price per point per cell $x, x x x . x x$
AUERAGE SCORE PER CELL 6.21979
Sandmarke Resserch, Ino.
AVERAGE SCENIC BEAUTY SCORE
(for entire section)
$17-10=.995476$

Section 1710 (G5): Looking North Up Icicle Creek

Section 1710 (G5): Looking South to Peak 7276
\square

Section 1710 (G5): Looking West, Close-up of Section
SUBJECT SUMMARY SHEET FOR - 17 12
I. HILDERNESS

1. NATURAL INTEGRITY (APPARENT NATURALNESS) 2.59768
II. SOLITUDE
2. distance to perimeter $.235534 \mathrm{E}-6$
3. VIEW FROM CELL 606454
4. VIEU TO CELL 32922
5. vegetation screening 149201
III. PRIMITIUE RECREATION EXPERIENCE
6. Challenge 724517
(PHYSICAL FEATURE)
7. DIVERSITY - \% SLOPE 578512
8. DIVERSITY - TERRAIN 483415
IV. SCENIC QUALITY 899826
9. VIEW FROM CELL $382303 \mathrm{E}-1$
AIJJUSTED PURCHASE PRICE $x \mathrm{x}, \mathrm{xxx}$.
total points 160.364
total cells in sect 26
aUERage price per point per cell $x, x \times x . x x$
AVERAGE SCORE PER CELL = 6.40706

SUBJECT SUMMARY SHEET FOR - 13 4
I. HILIERNESS
10. NATURAL INTEGRITY (APPARENT NATURALNESS) 2.52719
II. SOLITUDE
11. IISTANCE TO PERIMETER $37227 \mathrm{E}-15$
12. VIEW FROM CELL 6307673. VIEW TO CELL 5059
13. VEGETATION SCREENING 114737
III. PRIMITIUE RECREATION EXPERIENCE
14. CHALLENGE 513774
(PHYSICAL FEATURE)
15. DIVERSITY - \% SLOPE 32775
16. DIVERSITY - TERRAIN 199654
IV. SCENIC QUALITY --- 1.00183
17. VIEW FROM CELL 777051E-2
ADJUSTED PURCHASE PRICE $x \times, x x x$.
TOTAL FOINTS 366.822
total cells in sect. 64
average price per point per cell $x, x x x . x x$
average score per cell = 5.82937

Sandmande Revorcher Iw.

AVERAGE SCENIC BEAUTY SCORE (for entire section)

$$
13-4=1.00183
$$

Section 134 (E17): Looking Northwest from the Lake in the Southeast $\frac{1}{4}$ of Section

Section 134 (E17): Southeast Corner of Section 134 (E17) Looking at Northwest Corner of Section 145 (E21)

Section 134 (E17): Northern Part of Section
SUBJECT SUMMARY SHEET FOR - 14 3
I. HILDERNESS

1. NATURAL INTEGRITY
(APPARENT NATURALNESS) 2.51957
II. SOLITUDE
2. IISTANCE TO IERIMETER 315
3. VIEW FROM CELL 536792
4. VIEN TO CELL 525587
5. UEGETATION SCREENING 378808
III. PRIMITIUE RECREATION EXPERIENCE
6. CHALLENGE 118262(PHYSICAL FEATURE)
7. DIVERSITY - \% SLOPE 233371
8. DIVERSITY - TERRAIN 101682
IV. SCENIC QUALITY 525029
9. VIEU FROM CELL 819183E-1
adjusted purchase price $x x, x x x$.
total points 335.676
total cells in sect. 64
average price per point per cell $x, x x x . x x$
average score per cell = 5.33602

Sandmank Reserarch, Inc.

Section 143 (E19): Looking East at West Slope of Section
SUBJECT SUMMARY SHEET FOR - 14 5
I. UILDERNESS

1. NATURAL INTEGRITY
(APPARENT NATURALNESS) 2.53999
II. SOLITUDE
2. IIStance to perimeter 005
3. VIEW FROM CELL 60432
4. VIEH TO CELL 503442
5. vegetation screening 750128E-1
III. PRIMITIUE RECREATION EXPERIENCE
6. CHALLENGE 430052
(PHYSICAL FEATURE)
7. DIVERSITY - y SLOPE 313308
8. TIVERSITY - TERRAIN 183423
IV. SCENIC QUALITY --- . 868651
9. VIEW FROM CELL 284431E-1
adjusted purchase price $x x, x x x$.
TOTAL POINTS 344.418
total cells in sect. 63
AUERAGE PRICE PER POINT PER CELL $x, x x x . x x$
AVERAGE SCORE PER CELL = 5.55165

Laudmarke Research, Inc.

Section 145 (E21): West Ridge of Mount Cashmere Looking North

SUBJECT SUIMMARY SHEET FOR - 15

 4I. WILDERNESS

1. NATURAL INTEGRITY
(APPARENT NATURALNESS) 2.4932
II. SOLITUDE
2. DISTANCE TO PERIMETER . 315078
3. VIEW FROM CELL .521416
4. VIEH TO CELL . 520135
5. vegetation screening . 171469
III. PRIMITIUE RECREATION EXPERIENCE
6. CHALLENGE . 324454
(PHYSICAL FEATURE)
7. DIVERSITY - \% SLOPE . 224067
8. DIUERSITY - TERRAIN . 126069
IV. SCENIC QUALITY --- . 835448
9. VIEW FROM CELL . $941163 \mathrm{E}-1$

ADJUSTED PURCHASE PRICE $x x, x x x$.
TOTAL POINTS 354.478
tOTAL CELLS IN SECT. 64
AVERAGE PRICE PER POINT PER CELL $x, x x x . x x$
AVERAGE SCORE PER CELL $=\mathbf{5 . 6 2 5 4 6}$

AVERAGE SCENIC BEAUTY SCORE
 (for entire section)

$$
15-4=.835448
$$

Section 154 (E29): From Peak 7057 to Mount Stuart and The Enchantments

Section 154 (E29): Looking at Eightmile Mountain in Section 163 (E31) from Peak 7057 in Section 154 (E29)
\square

Section 154 (E29): Looking Southwest at Lake Caroline and Peak 7057

SUBJECT SUMMARY SHEET FOR - 16

I. HILDERNESS

1. NATURAL INTEGRITY
(APPARENT NATURALNESS) 2.53896
II. SOLITUDE
2. Distance to perimeter
.634723
3. VIEW FROM CELL . 523763
4. VIEW TO CELL . 551896
5. vegetation screening . $538667 \mathrm{E}-1$

III. PRIMITIUE RECREATION EXPERIENCE

1. CHALLENGE
.595148
(PHYSICAL FEATURE)
2. DIVERSITY - \% SLOPE
.42758
3. IIVERSITY - TERRAIN
.16797
IV. SCENIC QUALITY --- . 897427
4. VIEW FROM CELL .922518E-1

ADJUSTEI PURCHASE PRICE $x x, x \times x$.
TOTAL POINTS 409.337
TOTAL CELLS IN SECT. 64
average price per point per cell $x, x x \% . x x$
AVERAGE SCORE PER CELL $=6.48378$
Landmank Resserch, Ino.
AVERAGE SCENIC BEAUTY SCORE (for entire section)

$$
16-3=.897429
$$

Section 163 (E31): Looking Southwest at Eightmile Mountain

Section 163 (E31): Looking Southwest from Eightmile Mountain Peak

Landmarke Resserch, Inc.

Section 163 (E31): Looking Northeast from North Ridge
SUBJECT SUMMARY SHEET FOR - 16 5

1. UILDERNESS
2. NATURAL INTEGRITY
(APPARENT NATURALNESS) 2.4644
II. SOLITUDE
3. IIStance to PERImETER $105821 \mathrm{E}-1$
4. VIEW FROM CELL 47493
5. VIEW TO CELL 502803
6. VEGETATION SCREENING 412498
III. PRIMITIUE RECREATION EXPERIENCE
7. CHALLENGE 169002
(PHYSICAL FEATURE)
8. DIVERSITY - \% SLOPE 254743
9. IIVERSITY - TERRAIN 221662E-1
IV. SCENIC QUALITY --- . 581624
10. VIEU FROM CELL 131538
adjusted purchase price $x x, x x \times$.
TOTAL POINTS 294.973
TOTAL CELLS IN SECT. 60
average price per point per cell $x, x x x . x x$
average score per cell 5.02429

Section 14 (A17): Looking North - Lake Ethel

I. HILDERNESS

```
1. NATURAL INTEGRITY
(APFARENT NATURALNESS) 2.53906
```

II. SOLITUIE

1. IIStance to perimeter
.315
2. VIEW FROM CELL
.521005
3. VIEW TO CELL
.557488
4. VEGETATION SCREENING .750586E-1
III. PRIMITIUE RECREATION EXPERIENCE
5. CHALLENGE
.482276
(PHYSICAL FEATURE)
6. IIVERSITY - \% SLOPE
.234572
7. IIIVERSITY - TERRAIN
.211715
IV. SCENIC QUALITY --- 1.13125
8. VIEW FROM CELL .943164E-1
adjustei furchase frice $x x, x x x$.
TOTAL POINTS 388.931
total cells in sect. 64
aUERage price per point per cell $x, x x x, x x$
AVERAGE SCORE FER CELL $=6.16174$
AVERAGE SCENIC BEAUTY SCORE
(for entire section)

$$
2-3=1.13125
$$

Section 23 (A19): Loch Eileen Looking North

Section 23 (A19): South Slope of Section
SUBJECT SUMMARY SHEET FOR - 3
I. WILDERNESS

1. NATURAL INTEGRITY
(APPARENT NATURALNESS) 2.43342
II. SOLITUDE
2. IISTANCE TO PERIMETER $492187 \mathrm{E}-2$
3. VIEW FROM CELL 551417
4. VIEW TO CELL 54234
5. UEGETATION SCREENING 220688
III. PRIMITIUE RECREATION EXPERIENCE
6. Challenge 234489
(PHYSICAL FEATURE) 222837
7. DIVERSITY - \% SLOPE 112246
IV. SCENIC QUALITY 855176
8. VIEW FROM CELL 703018E-1
adjusted purchase price $x x_{2} \times x$.
total points 329.7
total cells in sect. 64
auerage price per point per cell $x, x \times x . x x$
average score per cell = 5.24784

Section 34 (A29): Chiwaukum Lake Looking Southeast
subject summary sheet for - 3 - 6
I. hilderness

1. NATURAL INTEGRITY (APPARENT NATURALNESS) 2.42443
II. SOLITUDE
2. isistance to perimeter $.16972 \mathrm{E}-3$
3. VIEW FFOM CELL 512804
4. VIEN TO CELL 465133
5. vegetation screening 166196
III. PRIMITIUE RECREATION EXPERIENCE
6. CHALLENGE 451707
(PHYSICAL FEATURE)
7. IIVERSITY - \% SLOPE 259546
8. IIVERSITY - TERRAIN 023905
IV. SCENIC QUALITY 926041
9. VIEW FROM CELL 110528
adjusted purchase price $x \mathrm{x}, \mathrm{xxx}$.
TOTAL POINTS 149.625
total cells in sect. 29
average price per point per CELL $x, x x x . x x$
average score per cell = 5.34046

Section 36 (A27): Looking West - South Facing Slope
SUBJECT SUMMARY SHEET FOR - 4 3
I. HILDERNESS

1. Natural integrity (APPARENT NATURALNESS) 2.53738
II. SOLITUDE
2. IISTANCE TO PERIMETER 630003
3. VIEW FROM CELL 477955
4. VIEW TO CELL 482819
5. VEGETATION SCREENING 132534
III. PRIMITIUE RECREATION EXPERIENCE
6. CHALLENGE 447996
(PHYSICAL FEATURE)
7. DIVERSITY - \% SLOPE 339946
8. DIVERSITY - TERRAIN 141733
IV. SCENIC QUALITY --- 1.20822
9. VIEW FROM CELL 128836
adjusted purchase price $x \mathrm{x}, \mathrm{xxx}$.
TOTAL POINTS 412.44
TOTAL CELLS IN SECT. 64
AVERAGE FRICE PER FOINT PER CELL $x, x \times x . x x$
AUERAGE SCORE PER CELL $=6.52782$

Section 43 (A31): Glacier Creek, Looking East

Sumbunack Resoarde: Iw.

Section 43 (A31): Jason Lake Looking South

Section 43 (A31): Glacier Creek Close-up
SUBJECT SUMMARY SHEET FOR - 4 5
I. WILDERNESS

1. NATURAL INTEGRITY (APPARENT NATURALNESS) 2.46661
il. SOLITUAE
2. IISTANCE TO PERIMETER 324844
3. VIEW FROM CELL 551924
4. VIEW TO CELL 481422
5. UEGETATION SCREENING 410586
III. PRIMITIVE RECREATION EXPERIENCE
6. CHALLENGE 266375
(PHYSICAL FEATURE)
7. DIUERSITY - \% SLOPE 294515
8. diversity - terrain $683552 \mathrm{E}-1$
IV. SCENIC QUALITY --- 768879
9. VIEW FROM CELL 699037E-1
adjusteli purchase price xx, xxx.
tOTAL POINTS 358.491
total cells in sect. 64
average frice per point per cell $x, x x x . x x$
average score per cell = 5.70341

Section 45 (A33): Looking Southeast Down Chiwaukum Creek
SUBJECT SUMMARY SHEET FOR - 4 9
I. Wilderness

1. Natural integrity (apparent naturalness) 2.54766
iI. SOLItuide
2. DISTANCE TO PERIMETER 732794
3. VIEW FROM CELL 510705
4. VIEW TO CELL 479409
5. vegetation screening 344023
III. PRIMITIVE RECREATION EXPERIENCE
6. Challenge 226455
(PHYSICAL FEATURE)
7. DIVERSITY - \% SLOPE 277381
8. diversity - terrain 135534
IV. SCENIC QUALITY --- . 652755
9. VIEW FROM CELL 114996
adJustel purchase price $x x, x x$.
TOTAL POINTS 150.09
total cells in sect. 25
average price per point per cell $x, x \times x . x x$
average score per cell = 6.23172
Sandmorise Reserarch, Ino.
AVERAGE SCENIC BEAUTY SCORE
(for entire section)
$4-9=.662755$

Section 49 (B31): Looking Northeast - Southwest Slope
SUBJECT SUMMARY SHEET FOR - 5 4
I. WILDERNESS
10. NATURAL INTEGRITY (APPARENT NATURALNESS) 2.53981
II. SOLITUIE
11. IISTANCE TO PERIMETER 644575
12. VIEW FROH CELL 505877
13. VIEW TO CELL 493772
14. vegetation screening $.792035 \mathrm{E}-1$
III. PRIMITIVE RECREATION EXPERIENCE
15. CHALLENGE 463929(PHYSICAL FEATURE)
322069
16. DIVERSITY - Z SLOPE239446
IV. SCENIC QUALITY 1.08223
17. VIEU FROM CELL 106641
adjusted purchase frice $\because X, ~ ン X X$.
TOTAL POINTS 408.332
total cells in sect. 64
average price per point per cell $x, x \times x \cdot x x$
AUERAGE SCORE PER CELL = 6.47755

subject summary sheet for - 5 6
I. WILDERNESS
18. NATURAL INTEGRITY (APPARENT NATURALNESS) 2.46
II. SOLItude
19. IISTANCE TO PERIMETER 325071
20. VIEW FROM CELL 495761
21. VIEW TO CELL 419184
22. VEGETATION SCREENING 309347
III. PRIMITIVE RECREATION EXPERIENCE
23. CHALLENGE 525999
(PHYSICAL FEATURE)
24. DIVERSITY - Z SLOPE 359079
25. IIVERSITY - TERRAIN 198273
IV. SCENIC QUALITY 1.22316
26. VIEW FROH CELL 114479
AdJUSTED FURCHASE PRICE $x \mathrm{x}, \mathrm{xxx}$.
TOTAL POINTS 405.065
total cells in sect. 64
average price per point per cell $x, x x x . x x$
average score per cell 6.43035

Section 56 (C3): Looking Up the Mouth of Painter Creek

Section 56 (C3): Looking Northeast Down South Fork
SUBJECT SUIMYARY SHEET FOR - 5 8
I. WILDERNESS

1. NATURAL INTEGRITY (APPARENT NATURALNESS) 2.53844
II. SOLITUDE
2. Distance to perimeter $507924 \mathrm{E}-2$
3. UIEW FROM CELL 609179
4. VIEN TO CELL 510648
5. vegetation screening 39563
III. PRIHITIUE RECREATION EXPERIENCE
6. CHALLENGE 332438(PHYSICAL FEATURE)
7. DIVERSITY - \% SLOPE 290923
8. DIVERSITY - TERRAIN 156129
IV. SCENIC QUALITY --- 781612
9. VIEW FROM CELL 024445
AdJusted purchase price $x x, x x x^{\prime}$
TOTAL POINTS 354.82
total cells in sect. 64
average price per point per cell x,xxx.xx
AVERAGE SCORE PER CELL = 5.64454

SUBJECT SUMMARY SHEET FOR - 6 3
10. HILDERNESS
11. NATURAL INTEGRITY (APPARENT NATURALNESS) 2.48654
II. SOLITUDE
12. IISTANCE TO PERIMETER 630079
13. VIEW FROH CELL 443431
14. VIEW TO CELL 469454
15. vegetation screening 233572
III. PRIMITIVE RECREATION EXPERIENCE
16. Challenge 251601
(PHYSICAL FEATURE)
17. DIVERSITY - \% SLOPE 275593
18. diversity - terrain 145096
IV. SCENIC QUALITY --- 930963
19. VIEW FROM CELL 156007
ADJUSTED PURCHASE PRICE $x \times, x \times x$.
TOTAL POINTS 379.785
TOTAL CELLS IN SECT. 64
AUERAGE PRICE PER POINT PER CELL $x, x x x . x x$
AVERAGE SCORE PER CELL $=6.02233$

Section 63 (C7): South Fork Looking West
SUBJECT SUNMARY SHEET FOR - 6 5
I. WILDERNESS

1. NATURAL INTEGRITY (APPARENT NATURALNESS) 2.48573
II. SOLITUDE
2. IISTANCE TO PERIMETER 639845
3. VIEW FROH CELL 454524
4. VIEW TO CELL 446957
5. vegetation screening 232024
III. PRIMITIVE RECREATION EXPERIENCE
6. CHALLENGE 464322(PhYSICAL fEATURE)
7. DIVERSITY - X SLOPE 329822
8. JIVERSITY - TERRAIN 143626
IV. SCENIC QUALITY --- . 889546
9. VIEW FROM CELL 147203
ADJUSTED PURCHASE PRICE $x \times, x \times x$.
TOTAL POINTS 392.928
total cells in sect. 64
average frice per point per cell $x, x x x . x x$
AVERAGE SCORE PER CELL = 6.2336
SUbject summary sheet for - 6 7
I. WILDERNESS
10. NATURAL INTEGRITY (APPARENT NATURALNESS) 2.43923
II. SOLITUDE
11. IISTANCE TO PERIMETER 639998
12. VIEU FROM CELL 560419
13. VIEW TO CELL 5449 .44
14. VEGETATION SCREENING 512547
III. frimitive recreation experience
15. CHALLENGE $526457 \mathrm{E}-1$
(PHYSICAL FEATURE
16. dIVERSITY - \% SLOPE 176341
17. diversity - terrain $.670879 E-1$
IV. SCENIC QUALITY 479524
18. UIEW FROM CELL $.631594 E-1$
adJusted purchase price $x x, x x x$.
TOTAL FOINTS 348.064
total cells in sect. 64
average price per point per cell $x, x x x . x x$
average score per cell = $\mathbf{5 . 5 3 5 9}$

Section 67 (C11): Looking Northeast
SUBJECT SUMMARY SHEET FOR - 6 9
I. HILDERNESS

1. NATURAL INTEGRITY
(APPARENT NATURALNESS) 2.46507
II. SOLITUDE
2. distaince to feriameter $999996 \mathrm{E}-2$
3. VIEW FROM CELL 615328
4. VIEW TO CELL 54431
5. VEGETATION SCREENING 410618
III. PRIMITIUE RECREATION EXPERIENCE
6. CHALLENGE 273166(PHYSICAL FEATURE)
7. IIVERSITY - \% SLOPE 372365
8. DIVERSITY - TERRAIN 106095
IV. SCENIC QUALITY 785618
9. UIEU FROM CELL 19580SE-1
AdJUSTED PURCHASE PRICE $x x, x x x$.
TOTAL POINTS 353.001
total cells in sect. 64
average price per point per cell $x, x x x \cdot x$
average score per cell = 5.50215

SUBJECT SUMMARY SHEET FOR - 7 4
I. WILDERNESS
10. NATURAL INTEGRITY (APPARENT NATURALNESS) 2.47875
iI. solitude
11. IISTANCE TO PERIMETER 630156
12. VIEW FROM CELL 54413
13. VIEW TO CELL 497149
14. VEGETATION SCREENING 274166
III. frimitive recreation experience
15. CHALLENGE 146924
(PHYSICAL FEATURE)
16. DIVERSITY - \% SLOPE 311881
17. DIVERSITY - TERRAIN 846578E-1
IV. SCENIC QUALITY --- 7904
18. VIEL FROM CELL 760872E-1
adjusted purchase price $x x, x \times x$.
TOTAL POINTS 367.793
TOTAL CELLS IN SECT. 64
AUERAGE PRICE PER POINT PER CELL $x, x x x . x x$
AVERAGE SCORE PER CELL = 5.8343

Section 74 (C17): Index Creek Looking Southwest

Section 74 (C17): Index Creek Close-up
SUBJECT SUMMARY SHEET FOR - 7
I. HILDERNESS

1. NATURAL INTEGRITY
(APPARENT NATURALNESS) 2.51217
II. SOLITUDE
2. ilistance to perimeter 639846
3. VIEW FROM CELL 485333
4. VIEN TO CELL 477315
5. vegetation screening 101737
III. PRIMITIUE RECREATION EXPERIENCE
6. CHALLENGE 702609
(Physical feature) 392639
7. DIVERSITY - \% SLOPE 377416
IV. SCENIC QUALITY --- 1.2061
8. UIEW FROM CELL 122751
AIIJUSTED PURCHASE PRICE $x x, x x x$.
total points 443.312
total cells in sect. 64
average price per point per cell $x, x \times x . x \%$
average score per cell = 7.01791

Section 76 (C15): Northwest Slope of Section
AVERAGE SCENIC BEAUTY SCORE (for entire section)

$$
7-8=.46572
$$

Section 78 (C13): Looking East
SUBJECT SUMMARY SHEET FOR - 7 8
I. HILDERNESS

1. NATURAL INTEGRITY (APPARENT NATURALNESS) 2.47949
II. SOLITUDE
2. DISTANCE TO FERIMETER $99976 \mathrm{E}-2$
3. VIEW FROM CELL 637583
4. VIEW TO CELL 55792
5. vegetation screening 495746
III. PRIMITIUE RECREATION EXPERIENCE
6. CHALLENGE 14715
(PHYSICAL FEATURE)
7. DIVERSITY - \% SLOPE 155276
8. DIVERSITY - TERRAIN 038319
IV. SCENIC QUALITY 46572
9. VIEW FROM CELL 191799E-2
adjusted purchase price $x x, x x x$.
total points 312.286
total cells in sect. 64
average price per point per cell $x, x x x . x x$
AVERAGE SCORE PER CELL = 4.98912
SUBJECT SUMMARY SHEET FOR - 8 3
I. WILDERNESS
10. NATURAL INTEGRITY
(APPARENT NATURALNESS) 2.42585
II. SOLITUDE
11. IISTANCE TO PERIMETER 630156
12. UIEW FROM CELL 506087
13. VIEW TO CELL 493128
14. vegetation screening 894492E-1
III. PRIMITIUE RECREATION EXPERIENCE
15. CHALLENGE 546987(PHYSICAL FEATURE)
16. DIVERSITY - \% SLOPE 302004
17. DIVERSITY - TERRAIN 335192
IV. SCENIC QUALITY 1.16978
18. VIEU FROM CELL 10628
AdJUSTED PURCHASE PRICE xx,xжx.
total points 417.725
total cells in sect. 64
average price per point per cell $x, x \times x . x$
AVERAGE SCORE PER CELL = 6.60491

Section 83 (C19): Looking West at West Ridge

Laudnowh Reromarde Inw.

Section 83 (C19): Lake Edna
SUBJECT SUMAMARY SHEET FOR - 8 5
I. WILDERNESS

1. NATURAL INTEGRITY(APPARENT NATURALNESS)2.43829
II. SOLITUDE
2. IISTANCE TO PERIMETER 324846
3. UIEU FROM CELL 439753
4. VIEW TO CELL 510327
5. vegetation screening 150038
III. FRIMITIUE RECREATION EXPERIENCE
6. challenge 170656
(Physical feature)
7. DIVERSITY - \% SLOFE 238156
8. IIVERSIty - terrain 176425
IV. SCENIC QUALITY --- 1.10578
9. VIEH FROM CELL 158926
adjusted furchase frice x $x, 2 \times 2$.
total points 359.04
total cells in sect. 64
average price per foint per cell $x, x \times x . x \times$
average score per cell = 5.7132

AVERAGE SCENIC BEAUTY SCORE
(for entire section)

$$
8-5=1.10578
$$

Section 85 (C21): Looking North - Carter Lake in Foreground

Section 85 (C21): Close-up of Painter Creek Valley Bottom
SUBJECT SUMMARY SHEET FOR - 8 7
I. HILDERNESS

1. NATURAL INTEGRITY
(APPARENT NATURALNESS) 2.47169
II. SOLITUDE
2. distance to perimeter 320076
3. UIEW FROM CELL 607143
4. VIEW TO CELL 574482
5. vegetation screening 159844
III. PRIMITIVE RECREATION EXPERIENCE
6. Challenge 281495
(PHYSICAL FEATURE)
7. DIVERSITY - \% SLOPE 22808
8. IIIVERSITY - TERRAIN 242678
IV. SCENIC QUALITY --- . 992278
9. VIEU FROM CELL 026077
addusted purchase price $x \times, x \times x$.
total points 372.133
total cells in sect. 64
AUERAGE PRICE PER POINT PER CELL $x, x x x . x x$
average score per cell = 5.90385

Section 87 (C23): Southeast Slope of Section
SUBJECT SUMMARY SHEET FOR - 8 9
I. WILDERNESS

1. NATURAL INTEGRITY(APPARENT NATURALNESS) 2.55373
II. SOLITUDE
2. DISTANCE TO PERIMETER $.695817 E-2$
3. VIEW FROM CELL 6431983. VIEN TO CELL600306
4. vegetation screening 475975
III. PRIMITIVE RECREATION EXPERIENCE
5. CHALLENGE 159489
(PHYSICAL FEATURE)
6. DIVERSITY - \% SLOPE 735235E-1
7. DIVERSITY - TERRAIN 113536
IV. SCENIC QUALITY --- 699832
8. VIEH FROM CELL $.566891 E-3$
AIJUSTED PURCHASE PRICE xx,xxx.
TOTAL POINTS 239.144
total cells in gect. 46
average price per point per cell x,xxx.xx
average score per cell = 5.32712

$$
\begin{aligned}
& \text { AVERAGE SCENIC BEAUTY SCORE } \\
& \text { (for entire section) } \\
& 8-9=.699832
\end{aligned}
$$

Section 89 (D19): Looking West Towards Big Jim Mountain
SUBJECT SUMMARY SHEET FOR - 9 4
I. HILJERNESS

1. NATURAL INTEGRITY (APPARENT NATURALNESS) 2.5399
II. SOLITUDE
2. IISTANCE TO PERIMETER $.108721 \mathrm{E}-3$
3. UIEW FROM CELL 492886
4. VIEW TO CELL 498614
5. vegetation screening $664996 \mathrm{E}-1$
III. PRIMITIUE RECREATION EXPERIENCE
6. CHALLENGE 553664
(PHYSICAL FEATURE)
7. DIVERSITY - \% SLOPE 339633
8. DIUERSITY - TERRAIN 22743
IV. SCENIC QUALITY --- . 904685
9. VIEW FROM CELL 116806
adjusted purchase price xx, x>x.
total points 362.047
total cells in sect. 64
average price per point per cell $x, x x x . x x$
average score per cell 5.74023

SUBJECT SUNMARY SHEET FOR - 9 6
I. HILDERNESS
10. NATURAL INTEGRITY (APPARENT NATURALNESS) 2.5635
II. SOLITUDE
11. IISTANCE TO PERIMETER 271803E-5
12. VIEW FROM CELL 586252
13. VIEN TO CELL 559778
14. vegetation screening $.199875 \mathrm{E}-1$
III. PRIMITIUE RECREATION EXPERIENCE
15. Challenge 563717
(PHYSICAL FEATURE)
16. DIVERSITY - \% SLOPE 267866
17. DIVERSITY - TERRAIN 289961
IV. SCENIC QUALITY --- . 872617
18. VIEW FROM CELL $.474201 \mathrm{E}-1$
AIIJUSTED PURCHASE PRICE $x \mathrm{x}, \mathrm{xxx}$.
TOTAL POINTS 225.064
total cells in sect. 40
average price per point per cell $x, x \times x . x x$
average score per cell = 5.7701

subject suimalay sheet for - 9 8
I. WILDERNESS
19. NATURAL INTEGRITY (APPARENT NATURALNESS) 2.41388
II. SOLITUDE
20. DISTANCE TO PERIMETER $424693 \mathrm{E}-7$
21. VIEW FROM CELL 597127
22. VIEN TO CELL 518062
23. vegetation screening 284781
III. PRIMITIVE RECREATION EXfERIENCE
24. Challenge 14498
(PHYSICAL FEATURE)
25. DIVERSITY - \% SLOPE 206498
26. DIVERSITY - TERRAIN 073265
IV. SCENIC QUALITY --- 776134
27. UIEW FROH CELL $341003 E-1$
adjusted purchase price $x \mathrm{x}, \mathrm{xix}$.
TOTAL POINTS 317.355
TOTAL CELLS IN SECT. 64
average price per point per cell $x, x x x . x x$
average score per cell = 5.04883

Suadmanch Ressarde Inc.

$$
\begin{gathered}
\text { AVERAGE SCENIC BEAUTY SCORE } \\
\text { (for entire section) } \\
9-8=.776134
\end{gathered}
$$

Section 98 (C 25): Cabin Creek Looking Northwest
SUBJECT SUMMARY SHEET FOR - 9 10
I. HILDERNESS

1. NATURAL INTEGRITY (APPARENT NATURALNESS) 2.57543
II. SOLITUDE
2. IISTANCE TO PERIMETER 132717E-8
3. VIEW FROM CELL 644723
4. VIEW TO CELL 574921
5. VEGETATION SCREENING 410524
III. PRIMITIUE RECREATION EXPERIENCE
6. CHALLENGE 199062
(PHYSICAL FEATURE)
7. DIVERSITY - Z SLOPE 164672
8. DIVERSITY - TERRAIN 437895E-1
IV. SCENIC QUALITY 524254
9. VIEW FROM CELL $.419064 \mathrm{E}-2$
adjusted purchase price $x \times, x \times x$.
TOTAL POINTS 159.481
total cells in sect. 32
average price fer point per cell $x, x x x . x x$
average score per cell = 5.14157

SUBJECT SUMMARY SHEET FOR - 10 3
I. HILDERNESS
10. Natural integrity (APPARENT NATURALNESS) 2.54365
II. SOLItude
11. IISTANCE TO PERIMETER 224943E-10
12. VIEW FROM CELL 386258
13. VIEW TO CELL 44626
14. VEGETATION SCREENING 11267
III. PRIMITIUE RECREATION EXFERIENCE
15. Challenge 601256
(PHYSICAL FEATURE)
445927
16. DIVERSITY - Z SLOPE511403
IV. SCENIC QUALITY 1.31397
17. VIEW FROM CELL 20219
AdJUSTED PURCHASE PRICE xx, $x \times x$.
TOTAL POINTS 382.11
total cells in sect. 59
average price per point per cell x,xxx.xx
average score per cell = 6.56358

Section 103 (C31): Looking Up Boggy Creek

Section 103 (C31): South Face of Section
SUBJECT SUMMARY SHEET FOR - 10 9
I. WILDERNESS

1. Natural integrity (APPARENT NATURALNESS) 2.53974
II. SOLITUDE
2. UISTANCE TO perimeter $.351474 \mathrm{E}-12$
3. VIEL FROM CELL 58662
4. VIEW TO CELL 543556
5. VEGETATION SCREENING 239979
III. PRIMITIVE RECREATION EXPERIENCE
6. Challenge 521661
(PhYSICAL FEATURE)
7. IIUERSITY - \% SLOPE 341561
8. UIVERSITY - TERRAIN19085
IV. SCENIC QUALITY --- 1.03616
9. VIEW FROM CELL 042378
adjusted purchase price $x \mathrm{x}, \mathrm{xxx}$.
TOTAL POINTS 380.157
total cells in sect. 64
average price per foint per cell $x, x x x \cdot x x$
AVERAGE SCORE PER CELL = 6.0425
SUBJECT SUMMARY SHEET FOR - 11 8
10. HILDERNESS
11. Natural INTEGRITY (APPARENT NATURALNESS) 2.59034
II. SOLITUDE
12. DISTANCE TO PERIMETER 251053E-13
13. UIEW FROHi CELL 660202
14. VIEW TO CELL 631925
15. vegetation screening $.981414 \mathrm{E}-1$
III. PRIMITIUE RECREATION EXPERIENCE
16. CHALLENGE 511547
(PHYSICAL FEATURE)
17. DIVERSITY - \% SLOPE 308969
18. DIVERSITY - TERRAIN 327846
IV. SCENIC QUALITY --- 1.11687
19. UIEL FROM CELL $.123127 \mathrm{E}-1$
ADJUSTED PURCHASE PRICE $x \mathrm{x}, \mathrm{xxx}$.
tOTAL POINTS 81.5716
total cells in sect. 14
average price per point per cell $x, x \times x$.
average score per cell = 6.25815

III. DETERMINATION OF HIGHEST AND BEST USE

A. Introduction

As discussed in more detail in Section I, the fundamental premise of an appraisal which structures and edits the valuation process is the determination of highest and best use for the subject property to be valued. While the final selection can never be made with definite exactness and must represent the opinion of the appraiser, the best use must be legal, technically possible, supported by effective demand, financially profitable, as well as compatible with public goals and plans. These screens imply that legality considers the bias of political administration in the law of land use; that technically feasible is at the preliminary level of review; that effective demand is also regarded from a preliminary knowledge of demographics; and that financial success and physical impact be considered at the broadest budgeting level. In this case, the appraiser has examined alternative use scenarios for recreational development, logging, logging plus recreational lot development, commercial recreational use, and wilderness as defined in Section I.

B. Recreational Iot Potential

One potential use of the lands within the properties to be appraised would be the sale of recreational home sites.

Typically such development has followed construction of a joint agreement road for logging purposes, where the road has been improved to a standard better than a logging road on private lands only, and where the government, under the terms of the joint agreement will provide road maintenance. This possibility is quickly tested by means of the data base described in Section II. Reference to Exhibit III-l demonstrates by cluster that less than one-third of the total number of ten acre cells in each cluster have predominant slopes of 45 percent or less and face other than northward. Slopes greater than 45 percent are presumed unsuitable from both a technical and public viewpoint. Since the data base contains only the dominant slope, it is assumed there may be some flatter homesites within cells of less than 45 percent slope. Slopes facing northwest, north, and northeast were eliminated as undesirable exposures since in the high country sun is at a premium for passive energy and vacationer vitality.

If the suitable area is further required to be convenient to the proposed joint road program (the Sawyer Lumber Company Agreement assigned to Pack River as mapped in the data base), very few cells would qualify. However, a tentative subdivision potential plan for the subject property had been blocked out by Pack River (Exhibit III-2) in 1977, along sections of the proposed joint road so this larger set of cells was taken as a

EXHIBIT |II-2

SUB-DIVISION AND ROAD MAPS

EXHIBIT |II-1

Total No. of Lots Per Cluster with Potential Suitability for Low Density Recreational Residential Development

| Cluster
 1 | Cluster
 2 | Cluster
 320 | $\frac{3}{382}$ |
| :---: | :---: | :---: | :---: |$\frac{$| Cluster |
| :---: |
| 4 |}{| 1792 |
| :--- |}

Cells of 45% slope or less without northfacing slopes (slope aspect 3 to 7) 82 38 162 520

Qualified cells remaining within Pack River Subdivision Plan*

17
0
35 153

Potential No. of 20-acre $\begin{array}{lllll}\text { lots** } & 9 & 0 & 18 & 77\end{array}$
*Plan provided by William Clairehen and John Lyngstad of Pack River Company. It presumed development following selective logging on joint road with Forest Service, 20 - to 40 -acre lots, and some soils on each lot suitable for septic field. Soil data recorded in data base is too generalized to determine if each site would qualify for septic.
**General sales pattern in area has favored lots closer to 40 acres in order that some pad sufficiently level for a residence can be found on a site with a dominant slope of 45% or less.
constraint to anticipate some cul-de-sacs, and the fact that 20 to 40 acre lots need only one 10 acre cell which would touch the road at some point. When these remaining cells are divided in half to suggest the potential number of 20 acre lots, Cluster No. 1 has a potential of nine lots out of 3,200 acres; Cluster No. 2 has no potential sites out of l,920 acres. Cluster No. 3 has modest development potential with 18 sites out of 3,840 , acres and Cluster No. 4 has some commercial possibilities with 77 possible sites surviving the first two screens. (See Exhibit III-1.) This level of development presumes that somewhere on each site a small patch of soil adequate for septic tank permits could be found, a problem which is generally the owners' responsibility. The appraisal data base does include soil types but the maps of this area are too generalized so that to use soil as an additional screen, as is generally done in urban areas, would unfairly eliminate many, if not most, of the cells suitable for development.

These lots are physically possible and could be compatible with the Chelan County Subdivision Ordinance (Article III Short Plats and Subdivisions, Chelan County Subdivision Regulations, adopted August 15, 1977). Political resistance to any home sites in Cluster No. 1 , which would encroach on the public perception of the Enchanted Area, would make the total cost of development for nine to ten lots prohibitive so that even
though there would be demand for such sites, it is reasonable to conclude that lot development as a potential use for Cluster No. 1 or Cluster No 2 is neither financially viable nor politically practicable.

Relative to Clusters No. 3 and No. 4, some distinction can be made. The views from Cluster No. 3 across the Enchanted Area toward Mt. Stuart, as well as locations on the shoulders of Mt. Cashmere, would make the sites highly desirable. Cluster No. 3 could be accessible from the western end of the road along the Icicle with a modest extension of the existing logging road through a single federal section to the cluster. These premier sites could sell for as much as $\$ 100,000$ each, for an average 25 acre site. With 18 or 20 such sites there might be a retail value of $\$ 1.8$ to $\$ 2$ million but the wholesale value to a developer would be barely 25 to 30 percent of that, or $\$ 600,000$. Such use affects only 35 to 40 cells, perhaps 10 percent of the total cells in the cluster, so that it is unreasonable to expect a purchase motivated by the potential for residential lot development. Any such development which did occur would be peripheral to selective logging.

In regard to Cluster No. 4, there may be sufficient number of potential residential lots (77) to justify commercial development efforts at securing plat approval, filing of a master plan subject to quality control covenants, and
positioning a sales office in Seattle as well as on site. A retail value of $\$ 35,000$ to $\$ 40,000$ per lot would indicate a raw land potential value of $\$ 750,000$ to $\$ 1$ million. Such a development might be tied to development of skiing potentials on the north slopes of Big Jim Mountain or provision for winter access to the Lake Donald Basin on the northwest. Such development would have access to Route 2. The market demand for such facilities may have already been anticipated by Aspen Skiing Corporation which has been acquiring lands at the foot of government owned mountain slopes just to the north of Route 2. (See Appendix E.) Nevertheless, should these speculations prove feasible, they would utilize only a limited number of acres, say 10 to 20 percent of the total 17,000 plus acres in the tract called Cluster No. 4. Clearly purchasers would have to contemplate some other use, probably selective logging, prior to development.

C. Analysis of Logging Potential

Landmark Research, Inc., is not qualified for timber cruises and the valuation of timber so that this discussion must rely entirely on information provided by International Forestry Consultants, Inc., (IFC, Inc.) of Seattle, Washington, and is abstracted from their correspondence found in Appendix E. The four clusters were originally purchased by the Pack

River Group from the Sawyer Trust in part for timber reserves to support their Pechastin sawmill operation. Before reviewing board foot potentials and species, it may be useful to refer to Exhibit II-5, Vegetation Variable, Items $1-4$ which reports the number of cells which enjoy some level of timber stocking, i.e., 10 to 39 percent, 40 to 69 percent, 70 percent plus, or large old growth timber, as measured as a vertical projection of crown cover to the ground from aerial photography. Clusters No. 2 and No. 3 have no significant old growth timber. Cluster No. 1 has approximately 250 acres while the vast areas of Cluster No. 4 contain 470 acres more or less. If stocking from 40 percent and above broadly suggest timber potential, then Cluster No. 1 has some potential on 58 percent of its acreage, Cluster No. 2 on 33 percent, Cluster No. 3 on 31 percent, and Cluster No. 4 on 43 percent of its ten acre cells.

Reference to Exhibit III-3 provides board foot estimates by cluster furnished by International Forestry Consultants, Inc., in comparison to data base cell distribution. With 8 percent of the area and 3 percent of potential board foot volume, Cluster No. 2 is not a strong candidate for efficient timber operation. This is confirmed by conversations with Mr. Biel of Forestry Consultants, Inc., who stated that all operations would require helicopter lifting of logs at a cost which would wash out the commercial value of the timber.

EXHIBIT III-3

AN ESTIMATE OF BOARD FOOT VOLUME ASSUMING CONVENTIONAL AND SKYLINE LOGGING ALLOCATED BY FOUR CLUSTER GROUPINGS ${ }^{a}$
$\frac{\text { Cluster No. } 1}{\text { Sections in }}$
Ingalls Creek
Cluster No. 2 Sections in Snow Creek area

Cluster No. 3 Sections in Mt.
Cashmere area
Cluster No. 4
Sections North of Icicle Creek

TOTALS

Based on Acres in $\frac{\text { Intended Wilderness Only** }}{\text { Net Gross }}$
\% Data
Base Cells**

26,949
28,446
14%
$26,949 * \quad 28,446 \quad 14 \%$
$6,121 \quad 6,575 \quad 3 \%$
6,121
6,575
3%
$22,265 \quad 23,460 \quad 12 \%$
14%

132,274	$\frac{140,890}{}$		71%
187,609	199,371	100%	

[^1]Reference to Exhibit III-4 provides a conversion of board foot volumes to rough market value estimates based on bids and stumpage prices for the State of Washington and the eastern Cascades. These figures provided by IFC, Inc., were not intended to be a full appraisal but rather to provide some order-of-magnitude numbers that are appropriate for decisions of highest and best use. Preliminary value estimates did reflect a weighted valuation in which ponderosa pine represented approximately 8.1 percent, white pine .6 percent, lodgepole pine 5.8 percent, spruce 17.7 percent, and a balance of less desirable commercial grades about 67.8 percent of the total mix. A review of IFC, Inc., correspondence will also show they considered several levels of intensity of logging beyond conventional and skyline methods. However, these methods quickly became so costly as to wash out the incremental sale income; moreover, they would have been inconsistent with the former Pack River management pattern of selective cutting in cooperation with the Forest Service to protect some view sheds and erodible slopes. In terms of pricing assumptions in these estimates, the February l2, 1981, letter from Kenneth Biel suggests:

Timber sale data, volume sold and average stumpage rate for all species, is listed for all public agencies and for the State of Washington (DNR), by quarters for the years 1976 through 1980, in the publication "Production, Prices, Employment and Trade" published by

EXHIBIT III-4

PRELIMINARY ESTIMATE OF HARVESTABLE TIMBER VALUES BY CONVENTIONAL AND SKYLINE LOGGING

Provided by
International Forestry Consultants, Inc.
(4)

Preliminary
Estimate IFC Letter
Feb. 12 Amended
(5)

Rough Estimate of Land
Development
Raw Acreage
Value ($111-B$)
\qquad
Lumber ε Land Development Values Combined ($111-b$)

$$
\begin{array}{lllll}
\text { Icicle Creek } & 132,274 & 140,890 & 71 \% & \$ 13,163,400
\end{array}
$$

$$
\$ 1,000,000
$$

$$
\$ 14,160,000
$$

$\$ 14,160,000$

$$
22,265 \quad 23,460
$$

$$
12 \%
$$

$$
2,224,800
$$

600,000
$2,825,000$

$$
556,200
$$

-0-

$$
-0-
$$

556,000

100,000
2,700,000
$\$ 20,241,000$

[^2]> the Pacific Northwest Forest and Range Experiment Station. DNR data is also included in the all publif agencies listing. DNR sales, however, of all public agencies are no doubt the closest to private sales in regards to restrictions and requirements, e.g. logs from DNR sales are exportable. Therefore, it is suggested that the DNR data is most comparable to the Pack River lands in the Alpine Lakes Wilderness. A listing of this data (pencil copy), by quarters for the years 1976 through l980, is appended to this letter. An average stumpage rate, weighted by volume for each quarter, has been calculated for each year and for all five years In reference to the language of the Wilderness Act in regards to the time of appraisal, it would seem that the last quarter of la80, representing the date of acquisition, would be most appropriate considering the data available at this time, The figure for the last quarter of $1980, ~ \$ 252.07$ per MBF, needs to be adjusted for Alpine Lakes conditions. In general, based on a few DNR sales prospectus we have in hand, it would seem that DNR sales have better quality timber and lower logging costs. The appraisal estimate is:
> Conventional and skyline logging
> Conventional, skyline and
> helicopter logging

D. Combined Timber and Development Values

When the timber values in Column 4 are compiled with the raw land values of land suitable for development (Column 5), after selective timbering (the two uses are consistent with one another rather than mutually exclusive), the result is a minimum estimate of lumber and development numbers combined in Column 6. The total of Column 6, $\$ 20,000,000$, assigns no value to any of the land which is not timbered or developed for lots; in addition, those who would purchase it for these uses in
these suggested price ranges anticipate time horizons for realization of the timber and land revenues over a five to ten year period, depending on individual purchaser needs. Thus, these values have included sharp discounts for the time value of money, the present value of future benefits. It would follow that uses which were immediate, used all the land, and benefitted from all the timber rather than only the timber accessible to conventional and skyline logging should have a value in excess of $\$ 20,000,000$.

E. Wilderness as Best Use

Selection of best use for a jewel of a site is comparable to the irreversible plan for cutting a gem stone to maximize its potential value by highlighting its natural facets and crystal characteristics. It seldom makes sense to reduce a rare 22-carat raw stone to a 7-carat diamond leaving 15 carates of shreds whose crystaline structure has been indelibly marred. That would be inconsistent with maximizing value.

Commercial development of timber and recreational lots affects only 7,000 to 9,000 acres of the subject property, leaving 13,000 acres of waterfall, craggy ridges, and mountain meadows, snow fields and water forms. These shreds and remainders have lost that elusive attribute of scope, expansiveness, and natural view shed. These elements are intermixed with similar public lands. If Pack River and public
lands were combined into a single roadless area, the total intangible value would be greatly magnified, an increment in real estate where the sum of the whole can be greater than its part, called plottage value. Alternatively, the value of these private and public parcels, as rare landscapes of great size would both be diminished by encroachment such as roads, clear-cuts, and recreational homes where the value could be enhanced if the view shed remained a totality. Therefore, a use which optimized the value of the total area rather than the 7,000 to 9,000 acres with timber and road in a fashion consistent with "community plans and goals" would be closer to the current definition of highest and best use than combined timber and development.

Recall the definition of best use from the APPRAISAL TERMINOLOGY HANDBOOK of 1981 quoted in Section l, page 34:

It is to be recognized that in cases where a site has existing improvements on it, the highest and best use may very well be determined to be different from the existing use. The existing use will continue, however, unless and until land value in its highest and best use exceeds the total value of the property in its existing use. See Interim use. . . .

Implied within these definitions is recognition of the contribution of that specific use to community environment or to community development goals in addition to wealth maximization of individual property owners. Also implied is that the determination of highest and best use results from the appraiser's judgment and analytical skill, i.e., that the use determined from analysis represents an opinion, not a fact to be found.

Groups and individuals buy wilderness at prices sometimes greater than the $\$ 900$ per acre price suggested for the entire property through commercial development. The problem for the appraiser is to establish some relationship between degree of wilderness, relative degrees of scenic qualtiy, relative degrees of recreational challenge, and solitude, in order to establish a pricing model for wilderness as best use. Certainly the subject tract meets the size, roadless, naturalistic, recreational, and solitude requirements of RARE II wilderness doctrine. Logically, when wilderness is a commodity, price per acre should reflect quality, just as diamonds of the same carat weight have different prices for color and quality.

Even without plans for the Alpine Wilderness, contribution of the subject property to public recreational resources is well established for at least three of the four clusters. With that in mind, alternative uses might be summarized as in Exhibit III-5. Moreover, it would be safe to say that with growing use of the national park system in the state of Washington in a year when gasoline issues reduced park pressure elsewhere (Exhibit III-6), with excess use of the Alpine Enchanteds' area prompting a permit system to reduce pressure, and with the scarcity of roadless areas the size of the subject area, the consumer surplus would be served best by preservation and be of a magnitude to virtually negate the producer's

EXHIBIT III-6
1978 NATIONAL PARK STATISTICAL ABSTRACT

EXHIBIT II (Continued) IIT 6

[^3]surplus of timber and development. In short, if costs to the public were internalized as a charge against timber and development, those uses would have a net present value approaching zero; on the other hand, public uses would unquestionably be greater than zero so that public uses would best meet the definition of highest and best use above. It must be conceded that the cost-benefit measures required to make this conclusion do not lend themselves to precise arithmetic, but best use decisions are not expected to be quantitative decisions. Note that the definition of best use states, "...the determination of highest and best use results from the appraiser's judgment and analytical skill, i.e., that the use determined from analysis represents an opinion, not a fact to be found."

To that end, the appraiser has indicated what portion of each cluster would be allocated to best use as trail-head and access corridor, as a linkage from public roads to the basins and mountain plateaus which characterize the high-mountain, back country. The balance of the land has been allocated to general wilderness for public purposes as best use as shown in Exhibit III-5.

THE APPRAISER HAS DETERMINED IN HIS OPINION THAT HIGHEST AND BEST USE OF EACH CLUSTER SHALL BE ALLOCATED BETWEEN CERTAIN ACRES APPROPRIATE AS TRAILHEAD AND PUBLIC CORRIDOR TO THE BACK COUNTRY AND CERTAIN ACRES SHALL BE ALLOCATED AS WILDERNESS FOR PUBLIC PURPOSES AS THESE USES HAVE NOT ONLY IMMEDIATE AND HIGHER PRESENT VALUE THAN ALTERNATIVES BUT ARE IN ADDITION MOST COMPATIBLE WITH COMMUNITY ENVIRONMENT AND DEVELOPMENT GOALS. THESE USES PRESUME A PROBABLE BUYER OR BUYERS MOTIVATED TO PRESERVE HIGH PRIORITY WILDERNESS TRACTS AND REPRESENTING COLLECTIVE PRIVATE CITIZENS FINANCING.

IV. MARKET COMPARISON APPROACH TO VALUE

A. Basic Methodology

The basic concept of the market comparison approach is to search for properties which might have served the same uses as that ascribed as best use for the subject property to be appraised on the principle that buyers will tend to pay as top price only as much as they would have had to pay for reasonable substitutes--a presumption about behavior often referred to in the textbooks as the principle of substitution. There are three major conditions for executing this otherwise plausible task:

1. There is an orderly market for parcels of singular scenic quality and other wilderness attributes producing transactions at arms length without recourse to eminent domain.
2. There is adequate information to adjust sale prices of transactions meeting the first condition for external factors such as time of sale, financial terms and custom conditions short of a cash sale in fee simple, and that the appraiser can exercise judgement in the application of reasonable adjustments for differences in location or imbalances in the market to the degree that these differences are unique to only some of the comparables.
3. There is a common denominator for comparison of sales once adjusted for condition two that will
overcome differences in both size and quality or suitability for the use presumed.

This section of the appraisal details the procedures, properties, and final valuation benchmarks developed for valuation of the subject property in Clusters I-IV.

B. Definition of Acceptable
 Arms-Length Transactions

There are markets where each purchase represents the effective demand of a single party at interest, such as the market for detached single-family homes or commercial facilities purchased for a single proprietorship. However the scale and increasing cost of real estate has led to increasing use of group purchase mechanisms to effect the market requirements of each member of the group, whether it be real estate syndications, corporations, municipal economic development groups, or local and national conservancy groups which raise money to buy, hold, or gift landmarks and open space to the public interest.

As discussed in Section I, E.3., groups like the Nature Conservancy represent customers in the market for wilderness. Since they are eligible to receive cash donations and donations of land as tax-deductible gifts, it has been argued by some that their acquisitions and transfers to government are not arms-length transactions. However, this appraiser has assumed,
on the basis of discussions with grantors and grantees, that properties acquired through some combination of trade, gift, and cash and reported as a cash price on the deed is equal to or slightly less than fair market value of the property if there is evidence of hard negotiation to accomplish acquisition. Where discount from appraisal value is known, an adjustment can be made for possible cash savings on taxes as a result of charitable donation. Many such sales contemplate eventual acquisition by government, and in particular acquisitions by the Forest Service and the Bureau of Land Management, as well as the states, have been at fair market value or slightly less not only to avoid exposure to political criticism, but for two other basic reasons. First, the appraisal price must withstand the scrutiny of the Internal Revenue Service to the degree that any part of that price is to qualify for a charitable donation on the part of the seller. A conspiracy of every IRS district office to wink at federal and state acquisition prices is absurd. Secondly, the conservancy groups utilize any reduction in the acquisition price to mark up the price to the acquiring government agency sufficiently to recover their costs of acquisition, interest on funds tied down while waiting for government funding of an agreed purchase price, and administrative costs of the fund. While the government may gain access to the property, at some benefit of
a bargain (less than appraised price), in many, if not most cases, the bargain is in the form of avoiding the costs of eminent domain action or inflationary increases in market prices during the intolerable delays in government procedures to approve and fund acquisitions at the market price. In a Report to Congress of the United States by the Comptroller General in May of 1980, relative to federal land acquisitions by condemnation, the major conclusions were digested as follows:

The Federal Government has a backlog of over 20,000 court cases in which it seeks to acquire by condemnation private lands for public use. At the close of fiscal year 1978, the land in question was appraised at $\$ 481$ million. Actual acquisition costs probably will be much higher because of administrative costs, awards, or settlements in excess of Government appraisals, and long delays in court.

The large caseload arises from the many sizable land acquisition programs for such public purposes as recreation, environmental and wildife protection, civil and military public works, and various other programs authorized by the Congress. One large National Park Service land preservation project alone accounted for over 10,000 cases pending in September 1979. Condemnation action is generally needed when a landowner is unwilling to sell at the Government's offered price or when the Government cannot acquire clear title without judicial determination.

Sharply rising real estate prices and administrative expenses make it particularly desirable to expedite acquisitions, although the condemnation of real property is a complex process that cannot be easily simplified.

This same report indicated that only about 10 percent of all properties to be acquired are acquired by eminent domain
and that condemnation action is only required when the owner is so unwilling to sell or so aggrieved at the Government's offering price that he is willing to endure years of delay and risk of considerable expense for a judicial determination. Indeed the report states:

Condemnation action is generally needed when a landowner is unwilling to sell at the Government's offered price or when the Government cannot acquire clear title to the property without judicial determination. Acquisition by condemnation is a means of last resort. To avoid litigation and relieve congestion in the courts, Federal agencies are required by law (Public Law 91-646 (42 U.S.C., 4651)), to the greatest extent practicable, to make every reasonable effort to acquire expeditiously real property by negotiation.

Since conservancy group acquisitions and congressionally mandated wilderness purchases represent a significant proportion of the market for wilderness attributes as best use of certain parcels, this appraiser has decided to recognize as arms-length transactions government purchase of wilderness tracts directly from the owner when it was accomplished through extended negotiations. In some cases, state or federal government have been acquiring parcels to complete wildernes areas or remove development threats to areas of solitude by negotiated purchase even though the agencies involved had not been given specific powers of eminent domain for such projects, as for example federal acquisitions in the Idaho primitive area. In other cases, the threat of implied eminent domain is
not in the interest of either party in terms of financial advantage. Moreover, this appraiser will assume that after careful investigation of transactions for outright gifts (which would disqualify transactions), transfers of properties from conservancy groups to the government, or from individuals to conservancy groups, are at fair market value, or at least never greater than fair market value, so that their use as comparable sales is not to the disadvantage of the government. To do otherwise is to argue that there is no common denominator among transactions to acquire wilderness lands for wilderness purposes. We believe that it can be demonstrated (later in this section of the report) that there is a strong correlation and inference that wilderness acquisition prices have some relationship to wilderness and scenic qualities too strong to be coincidental.

THEREFORE THE DEFINITION OF ARMS-LENGTH TRANSACTIONS IS EXTENDED TO INCLUDE FEDERAL ACQUISITIONS WHERE THREAT OF EMINENT DOMAIN WAS UNAVAILABLE OR, FOR PRACTICAL PURPOSES UNWORKABLE, AND CONSERVANCY GROUP ACQUISITIONS WHERE COMPLEX NEGOTIATION, CASH PAYMENTS AND TAX SHELTER MAY HAVE BEEN A FACTOR IN BRINGING THE BARGAIN PRICE PLUS AG ENCY MARKUP CLOSE TO MARKET VALUE AS RECORDED FOR THE TRANSACTION.

With the exception above and with the discussion in Section I of consumer demand for wilderness, it is concluded that there is an orderly market with a reasonable number of transactions for parcels of rare scenic quality and wilderness scale at arms length so that Condition 1 of the market comparison approach is satisfied.

C. Basic Data Screens and Initial Data Sweep

The general search for sales transactions is first constrained by determination of highest and best use as a mountainous wilderness tract featuring lake and stream waterforms, some commercial forest cover of the type found in generally dry, non-coastal altitudes, and relatively similar opportunities for challenging wilderness recreation, naturalness, solitude, and diversity of scenic elements. Coastal rainfalls led the appraiser to rule out properties in the Western Cascades of Washington and Oregon and in the forests of northern California. Snowcapped mountain ranges were considered in Colorado, Wyoming, Washington, Idaho and western Montana. The search was further narrowed to emphasize the northern and eastern Cascades in Chelan, Skagit, and Snohomish Counties in Washington, the Idaho Primitive Areas in the general vicinity of the Salmon, Big Creek, Monumental Creek Districts, and in the Spanish Peaks Primitive Areas of Gallatin and Lewis and Clark counties of Montana. These latter two areas
were somewhat drier but otherwise more similar in elevation and terrain than lands to the south. What is high country along the northern border at 8,000 to 10,000 feet is barely the end of the timberline in the southern latitudes of Teton Valley, Wyoming or the Colorado Rockies. Within these still broad parameters, the methods of sale transaction search reflected the emphasis placed on proximity to the eastern Cascades, similarity of terrain, latitude, and altitude, and as far as possible, a motivation on the part of the buyer to conserve the property in its natural state.

The title company searched Chelan County for land transactions, contact with Washington appraisers uncovered some additional sales in Skagit and Snohomish counties, and correspondence with appraisers in other states, government agencies, conservancy groups, as well as review of various public reports on acquisition programs identified many other candidates in the five state area. The Pack River Group had collected a large collection of sales with little editorial control and continued to send the appraiser such transactions as came to their attention. Ultimately, a list of 40 sales became the focus of analysis, and these were quickly reduced to 15 when sites for home construction along the Icicle, Chelan acreage for timber cutting, recreational development, and commercial outfitting were eliminated, or conversations with
federal officials or the grantor indicated that buyer motivation and economic purposes were not compatible with the concept of best use and a scoring of wilderness in terms of its wilderness quality.

Many properties which seemed appropriate in terms of purpose of acquisition and locale were determined to be inappropriate after visual inspection by helicopter by the appraiser and his photographer during the Summers of 1979 and 1980, and in one case, Spring of 1981. Of more than 40 candidates, 15 remained and form the basis for Appendix A, where property details, legal descriptions, and supporting documents have all been assembled. A basic identification is provided in Exhibit IV-l. At this point, sales have been selected because of their size, representative character of a mountain region or high country, buyer motivation, and broad visual similarity but prior to detailed analysis in terms of the elements specified in Section II.

These a priori selections must then be equalized for external differences in regard to terms of sale, regional locale, degree of improvement, and differences in terms of sale and purchasing power at the time of sale. Only after adjustment can sale prices be matched to wilderness attributes purchased and at that point statistical data management may suggest a further ex post rejection of one or more comparables. A summary

SUMMARY OF SELECTED COMPARABLE SALES and adjusted prices for pack river appraisal

| Landmark
 Comparable
 Number | Property
 Name | Crescent Marble |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |

adjustment sheet of the preliminary set of comparable sales and the basis for adjustments are outlined in the following exhibits, as well as in Appendix A, and significant totals of acreage and adjusted price, by state and private or government grantees, are also provided as a basis for discussion in the next sub-section, D.

D. Adjustment of Comparable Sale Prices for Externalities

To equalize comparative sales for terms of sale, regional locale, improvements included with land, differences in development or market pressures, and price change over time due to dollar devaluation, it is useful to set up some rules for adjusting sales prices to a common date (January l, 1981), a common bundle of rights (sans mineral rights values, if any), terms of sale, and market context. While many of these adjustments are subjective judgments on the part of the appraiser, they must be carried through with consistency in application to each comparable. A Landmark comparable number, name, and basic data are provided in summary form in Exhibit IV-l, but the reader is reminded the bulk of material is in Appendix A. The adjustment rules and formulas are provided in Exhibit IV-2, 3, and 4, and the Chart of Individual Sales Adjustments of Comparable Properties is provided in Exhibit IV-5, including footnotes.

PACK RIVER
COMPARABLE SALES CHART
Assumptions and Explanations

COLUMN

1 The number in this column identifies comparable sales by a Landmark number for easier reference.

2 The property is identified by its common name, buyer and/or seller's name, or area.

3 The first name is the grantor and the second is the grantee.

4 Acreage of the property is shown here.
5 Total price is shown here.
$6 \& 7$ Special terms and benefits identifies such items as financing, any rights reserved by the seller or any special rights given to the buyer. Column 7 makes the adjustment for column 6 by percentage, with dollar amount shown also.

Financing adjustments are as follows:
If financing was involved and:

1. Down payment less than 10\%; -25\% adjustment
2. Down payment greater than 10% but less than 25\%; -15\% adjustment
3. Down payment greater than 25% but less than 40\%; -5\% adjustment
4. If the interest rate was normal (less than 8\%) ; -5\% adjustment (if adjusted for down payment, adjustment was not made for interest rate and vice versa).

8 Deductions are made here for improvements, etc., as shown.

9 This is the total price for raw land only $=$ column 5 - column 7 - column 8.

10 Raw land price per acre $=$ column 9/column 4.
$11 \& 12$ The type or types of access into the property are shown and column 12 makes the adjustment for column ll, according to the following schedule:

1. Roadless; no adjustment
2. Jeep Trail; -5\% (=.95)
3. Forest Road; - $10 \%(=.90)$
4. Paved Highway; $-20 \%(=.80)$

13 The number in this column reidentifies comparable sales by the Landmark number for easier reference.

14 The name of the county in which comparable is located.
15 Column 15 adjusts raw land for the county in which the property is located for distance to a primary market as follows:

1. No adjustment if it's within 125 miles of an SMSA of 400,000 or more persons.
2. $+7.5 \%(=1.075)$ if it's within 125 miles of an SMSA of less than 400,000 persons.
3. $+10 \%(=1.10)$ if it's more than 125 miles from an SMSA of 100,000 or more persons.

16 The appraiser recognized that national public recognition and demand for recreation in the Aspen area of Colorado or the Teton Valley area of Wyoming is an influence on land prices, particularly areas where supply is limited and the area is close to major population centers.

STANDARD METROPOLITAN STATISTICAL AREAS (SMSA)

1977 population estimate from Statistical Abstract of the United States 1979

```
SMSA
Population
```

Billings, Montana 101,000
Boise City, Idaho 145,000
Denver - Boulder, Colorado 1,466,000
Great Falls, Montana 85,000
Seattle - Everett, Washington 1,436,000
Spokane, Washington
312,000

16 The index for national recognition was determined by using visitor-days information from the USDA Forest Service as follows:

```
USE OF NATIONAL FOREST UNITS (By Visitor Days)
    NATIONAL WILDERNESS PRESERVATION SYSTEM
        FISCAL YEAR 1979 (10-1-78 to 9-30-79)
```

State	Wilderness	Primitive	Total	Total/ Wash. Total	
Colorado	1,032,000	73,800	1,105,800	1.75	$\begin{aligned} & -37.5 \% \\ & (=.625) \end{aligned}$
Idaho	245,600	217,900	463,500	. 73	$\begin{aligned} & +12.5 \% \\ & (=1.125) \end{aligned}$
Montana	652,900	15,900	668,800	1.06	$\begin{aligned} & -5 \% \\ & (=.95) \end{aligned}$
Wash.	632,000		632,000	1.00	- 0
Wyoming	706,600	113,700	820,300	1.30	-15\%

Therefore, approximately 1% adjustment was made for each 2% of difference from that state's visitor days usage to the norm (Washington's visitor days).

17 \& 18 Column 17 shows the particular wilderness or primitive area, if applicable, and column 18 adjusts for the area, with the scale being based on visitor days (see explanation of column l6) as follows:

	Visitor-Days	Visitor-Days/ Alpine Lakes	Adjustment
Idaho			
-Selway-Bitterroot			
Wilderness	130,400*	. 42	+5\% ($=1.05$)
-Idaho Primitive	179,400	. 58	+4\% ($=1.04$)
Montana			
-Selway-Bitterroot			
Wilderness	71,600*	. 23	+7\% ($=1.07$)
-Spanish Peaks			
Primitive	15,900	. 05	+9\% ($=1.09$)
Washington			
-Alpine Lakes	311,200	1.00	- 0 -

*Selway-Bitterroot located in Idaho and Montana; total area use $=202,000$

Here a 10% differential in visitor days was determined to give a l\% value differential, with Washington's Alpine Lakes being the base. No specific utilization adjustments were made for Colorado or Wyoming.

19 This column adjusts for development pressure or limited supply. A 10% adjustment was made if there was development pressure or a commercial use in place ($=.90$). A 50% adjustment was made if there was a limited supply adjustment (completion of assemblage for total control, much like purchasing the last item in a collector's set. (=.50).

20 The total percent adjustment results from a multiplication of all percentage adjustments from columns 12, 15, 16, 18 and 19.

21 The adjusted raw land price per acre results from applying the percentage adjustment in column 20 to the raw land price per acre in column 10 (= column 20 x column 10).

22 This column gives the date of sale for each of the comparable sales.

23 The adjusted raw land price per acre must then be adjusted for time to the appraisal date of January l, 1981. Alternative methods would be match sales, expert opinion from a government agency, or an index reflecting changes -- in dollar purchasing power only. After review summarized as Items 1 and 2 below, it was decided to take an adjustment only for changes in dollar value. The source is the Implicit Price Deflator Index, survey of current business published by the Bureau of Economic Analysis (See Exhibit IV-3).

1. Rate of appreciation in wilderness lands has been increasing at an increasing rate for the past ten years; moreover, the rate has varied erratically and with volatility in some areas depending on recreational pressure, public perception of the limited supply after government purchases, or rate of devaluation of the dollar. For example, the Lanham ranch sale, (Landmark No. 17) in 1974 and the Bettis-Jager sale in 1979 (Landmark No. 16) are only a few miles apart in the same creek basin, both were dude ranches, both depended on airstrips, and both were surrounded by the vast Idaho Primitive area. The first sale at $\$ 2,000$ an acre compared to the second sale at $\$ 5,500$ an acre suggests a compound rate of return over six years of 18.36% per year.
2. A report by the Comptroller General which drew on the Department of Justice's Land and Natural Resources Division quoted Justice as estimating that each year's delay in processing condemnation cases through the courts would cost the government an additional $\$ 31$ million because of escalating land value on tracts valued by the government at \$332 million, an estimated inflationary rate of 10\%. The land owners were claiming $\$ 1.2$ billion in the same actions.
3. Price deflator presumes a constant level of demand. as in alternative prices were inflated at a simple 6 percent per annum and at 6 percent until 1974, and 10 percent thereafter. The deflator proved an excellent compromise.

Report to the Congress of the United States by the Comptroller General, CED-80-54, May 14, 1980, pp. 6-7.

24 The total time adjusted raw land price results from multiplication of the January l, 1981, adjusted raw land price per acre by the number of acres (- column 23 x column 4).

25 The amount in this column is the amount in Column 24 rounded to the nearest thousand.

EXHIBIT IV-3

IMPLICIT PRICE DEFLATORS FOR GROSS NATIONAL PRODUCT

	Quarter Index Numbers, $1958=100$				$\begin{gathered} \text { Quarter } \\ \text { Index Numbers, } 1972=100 \end{gathered}$			
Year	I	II	III	IV	I	II	III	IV
1969	125.55	127.24	129.14	130.88				
1970	132.91	134.41	135.77	137.88				
1971	139.47	141.13	142.03	142.70				
1972	144.62	145.31	146.50	147.96				101.44
1973	149.95	152.61	155.67	158.93	102.89	104.65	106.57	109.05
1974					111.28	114.34	117.52	121.06
1975					124.16	125.95	128.19	130.14
1976					131.40	132.92	134.39	136.28
1977					138.27	140.86	142.63	144.56
1978					147.05	150.82	153.45	156.68
1979					160.22	163.81	167.20	167.47
1980					171.23 r	175.28	179.18	183.81
1981					$188.25^{\text {r }}$			

Source: Survey of Current Business, U.S. Department of Commerce, Bureau of Economic Analysis. The following issues were used: (See Appendix

```
July 1973, Volume 53, Number 7
    July 1974, Volume 54, Number 7
    July 1976, Volume 56, Number 7
    July 1977, Volume 57, Number 7
    July 1978, Volume 58, Number 7
    August 1979, Volume 59, Number 8
    July 1980, Volume 60, Number 7
    May 1981, Volume 61, Number 5
```


EXHIBIT IV-4

SUMMARY OF RESULTS OF THREE ALTERNATIVES CONSIDERED
FOR UPDATING ADJUSTED SALES PRICE FOR APPRECIATION AND INFLATION
FROM DATE OF SALE TO JANUARY 1, 1981 (IMPLICIT PRICE DEFLATOR WAS USED)

Comparable Sale Number

1 Marble Creek
2 Phelps Creek
6 Bench-Caroline
9 Sunset Lake
16 Bettis
17 Lanham
18 Matteson
19 Taylor Ranch
22 Wolfinbarger
30 Sloan-Kettering
35 Nature Conservancy
36 Ankeny
37 Markley
39 National Wildlife
40 Mueller Ranch
6% annual Compounding*
\$ 443,000
278,000
39,000
125,000
482,000
1,347,000
264,000
121,000
328,000
869,000
892,000
647,000
323,000
152,000
$\begin{array}{r}475,000 \\ \hline\end{array}$
\$6,785,000/
8849.54 Acres
=
\$766.71/Acre

6\% to 1-1-74; 10\% 1-1-74 to $1-1-81$ *
\$ 574,000
294,000
47,000
147,000
509,000
1,697,000
321,000
157,000
395,000
1,027,000
1,025,000
690,000
347,000
159,000
516,000
\$7,905,000/
8849.54 Acres
\$893.27/Acre

Implicit Price Deflator
\$ 501,000 287,000 42,000 136,000

497,000
1,499,000
281,000
132,000
351,000
937,000
958,000
671,000
337,000
159,000
501,000
\$7,289,000/
8849.54 Acres
\$823.66/Acre

UPDATING ADJUSTED SALES PRICE FOR APPRECIATION AND INFLATION FROM date of sale to january 1, 1981 at Six Percent (6%) annual compounding

Landmark No.	Date of \qquad Sale	$\begin{aligned} & \text { Nearest }(1 / 4) \\ & (1-1,4-1,7-1 \\ & \text { or } 10-1) \\ & \hline \end{aligned}$	Adj. Raw Land Price Per Acre	Years to 1-1-81	$\begin{gathered} \text { Adj. to } \\ \text { 1-1-81 Price } \\ \text { Per Acre } \\ \hline \end{gathered}$	Size in Acres	Adj. Total Land Price \qquad	Previous Column Rounded to Nearest Thousand	
1	11-14-73	10-1-73	\$2,417	7.25	\$3,687.60	120	\$442,512	\$443,000	
2	7-15-79	7-1-79	714	1.5	779.21	357	278,178	278,000	
6	$1-\mathrm{-76}$	1-1-76	698	5.0	934.08	41.7	38,951	39,000	
9	5-19-76	7-1-76	300	4.5	389.94	320	124,781	125,000	茥
16	8-12-79	7-1-79	2,759	1.5	3,011.00	160	481,760	482,000	$\frac{\square}{7}$
17	8-20-74	10-1-74	1,509	6.25	2,171.96	620	1,346,612	1,347,000	₹
18	11-5-75	10-1-75	2,375	5.25	3,224.92	81.83	263,895	264,000	+
19	2--69	1-1-69	931	12.0	1,873.35	64.84	121,468	121,000	
22	1-2-76	1-1-76	2,794	5.0	3,739.00	87.7	327,910	328,000	
30	8-9-76	7-1-76	1,445	4.5	1,878.21	462.82	869,273	869,000	
35	4-12-77	4-1-77	195	3.75	242.62	3,677	892,114	892,000	
36	4-5-79	4-1-79	332	1.75	367.64	1,760	647,047	647,000	
37	1-2-79	1-1-79	2,379	2.0	2,673.04	120.65	322,503	323,000	
39	9-10-79	10-1-79	420	1.25	451.73	336	151,781	152,000	
40	10--78	10-1-78	651	2.25	742.20	$\underline{640}$	475,006	475,000	
						8,849.54	\$6,783,791	\$6,785,000	

UPDATING ADJUSTED SALES PRICE FOR APPRECIATION AND INFLATION FROM DATE OF SALE TO JaNUARY 1, 1981 at SIX PERCENT (6\%) ANNUAL COMPOUNDING TO JANUARY 1, 1974, aND TEN PERCENT (10\%) ANNUAL COMPOUNDING FROM JANUARY 1, 1974, TO JANUARY 1, 1981

	$\begin{gathered} \text { Comparable } \\ \text { Sale } \\ \text { Number } \\ \hline \end{gathered}$	Date of Sale	$\begin{aligned} & \text { Nearest }(1 / 4) \\ & (1-1,4-1, \\ & 7-1, \text { or } 10-1) \end{aligned}$	Adjusted Raw Land Price Per Acre	$\begin{aligned} & \text { Years } \\ & \text { to } \\ & 1-1-74 \end{aligned}$	Adjusted to 1-1-74 Price Per Acre	$\begin{gathered} \text { Years } \\ \text { to } \\ 1-1-81 \end{gathered}$	Adjusted to 1-1-81 Price Per Acre	Size in Acres.	$\begin{gathered} \text { Adjusted Total } \\ \text { Land Price } \\ 1-1-81 \\ \hline \end{gathered}$	Previous Column Rounded to Nearest 1,000
	1	11-14-73	10-1-73	\$2,417	. 25	\$2,452.47	7.0	\$4,779.16	120	\$573,500	\$574,000
	2	7-15-79	7-1-79	714	--	--	1.5	823.73	357	294,072	294,000
	6	1--76	1-1-76	698	--	--	5.0	1,124.14	41.7	46,877	47,000
$\overline{<}$	9	5-19-76	7-1-76	300	--	--	4.5	460.67	320	147,414	147,000
N	16	8-12-79	7-1-79	2,759	--	--	1.5	3,183.03	160	509,285	509,000
	17	8-20-74	10-1-74	1,509	--	-	6.25	2,737.75	620	1,697,405	1,697,000
	18	11-5-75	10-1-75	2,375	--	--	5.25	3,917.20	81.83	320,544	321,000
	19	2--69	1-1-69	931	5.0	1,245.89	7.0	2,427.88	64.84	157,424	157,000
	22	1-2-76	1-1-76	2,794	--	--	5.0	4,499.76	87.7	394,629	395,000
	30	8-9-76	7-1-76	1,445	--	--	4.5	2,218.89	462.82	1,026,947	1,027,000
	35	4-12-77	4-1-77	195	--	--	3.75	278.78	3,677	1,025,074	1,025,000
	36	4-5-79	4-1-79	332	--	-	1.75	392.26	1,760	690,378	690,000
	37	1-2-79	1-1-79	2,379	--	--	2.0	2,878.59	120.65	347,302	347,000
	39	9-10-79	10-1-79	420	--	--	1.25	473.14	336	158,975	159,000
	40	10--78	10-1-78	651	--	--	2.25	806.70	$\xrightarrow{640}$	516,288	516,000
									8,849.54	\$7,906,114	\$7,905,000

UPDATING ADJUSTED SALES PRICE FOR APPRECIATION AND INFLATION FROM DATE OF SALE TO JANUARY 1, 1981, USING THE IMPLICIT PRICE DEFLATOR FOR GROSS NATIONAL PRODUCT

Comparable Sale Number	$\begin{gathered} \text { Date of } \\ \text { Sale } \\ \hline \end{gathered}$	$\begin{gathered} \text { In Quarter } \\ \text { (I, II, III, IV) } \\ \text { \& Year } \\ \hline \end{gathered}$	Adjusted Raw Land Price Per Acre	```Implicit Price Deflator for Quarter of Sale Date \(1972=100\)```	$\begin{aligned} & \text { Adjusted to } \\ & 1-1-81 \\ & \text { Price/Acre } \end{aligned}$	$\begin{aligned} & \text { Size in } \\ & \text { Acres } \end{aligned}$	Adjusted Total Land Price \qquad -1-1-81	Previous Column Rounded to Nearest Thousand
1 -	11-14-73	IV '73	\$2,417	109.05	\$4,172.40	120	\$500,688	\$501,000
2	7-15-79	III '79	714	167.20	803.89	357	286,989	287,000
6	1--76	I '76	698	131.40	999.99	41.7	41,700	42,000
9	5-19-76	II '76	300	132.92	424.88	320	135,962	136,000
16	8-12-79	III '79	2,759	167.20	3,106.35	160	497,016	497,000
17	8-20-74	III 174	1,509	117.52	2,417.20	620	1,498,664	1,499,000
18	11-5-75	IV '75	2,375	130.14	3,435.48	81.83	281,125	281,000 \quad \%
19	2- -69	I 169	931	86.07**	2,036.12	64.84	132,022	132,000
22	1-2-79	I ${ }^{76}$	2,794	131.40	4,002,82	87.7	351,047	351,000 -
30	8-9-76	III '76	1,445	134.39	2,024.12	462.82	936,803	937,000 ₹
35	4-12-77	II '77	195	140.86	260.60	3,677	958,226	958,000
36	4-5-79	II 179	332	163.81	381.53	1,760	671,493	671,000 \quad n
37	1-2-79	1 79	2,379	160.22	2,795.20	120.65	337,241	337,000
39	9-10-79	III '79	420	167.20	472.88	336	158,888	159,000
40	10--78	IV '78	651	156.68	782.17	$\underline{640}$	-500,589	501,000
						8,849.54	\$7,288,453	\$7,289,000

*Formula Used:
I $181=188.25$ ($1972=100$ Base)
1-1-81 Price Per Acre $=\overline{\text { (Implicit Price Deflator Por Quarter of Sale Date) }}$

```
**1958=100 Base I '69 = 125.55 to IV '72 = 101.44
    1972 = 100 Base IV '72 = 147.96
    Conversion to 1972 = 100 Base: }\frac{101.44}{147.96}=\frac{x}{125.55
                x = 86.07
```


*Partial loan to facilitate later trade-- $\$ 210,000$ adjustment and interest $\$ 55,000$

While many of the adjustments are technical in the traditional sequence of adjusting for terms, mineral rights, improvement deductions and location, several adjustments represent significant policy assumptions by the appraiser and should receive special notice:

1. The subject property will be purchased without mineral rights while many of the comparable properties involved title including mineral rights. For example, the Marble Creek acquisition included mineral rights but a letter was received from the seller indicating that after much exploration, the seller had concluded the rights were worthless; on the other hand, a similar comment on the Phelps Creek property was countered by the fact that the buyers perceived mineral opportunities in the one small parcel not tested by the seller and in any event the buyers acquired the hydroelectric rights. Thus, a substantial deduction was taken for potential mineral values and hydroelectric potential in the Pelton wheel. In some Idaho Primitive Area cases, there had never been any serious exploration or motivation for buyers and sellers to regard the mineral rights as significant or relevant so that no adjustment was made. The reader is referred to comments pertaining thereto on each comparable in Appendix A.
2. It was recognized that recreational land purchases are in part priced for their monopoly value, i.e., the degree to which they are protected by and surrounded by government owned wilderness to which the private property owner has relatively unrestricted access. Heavy adjustments were made for such conditions.
3. It was recognized that national and regional public recognition of certain areas such as Teton Valley or Colorado ski areas contribute to the demand for undeveloped roadless lands in those areas, and adjustments were made for visitor day pressures in these areas relative to Alpine Lakes as defined in the footnotes in Exhibit IV-2.
4. A dollar value was attached to improvements as a function of assessed value or as a judgment by the appraiser having inspected same by low level helicopter viewing. The value of dirt landing strips or log buildings built years ago is subjective and in part acceptable only in reference to the general romance of the site. 5. After sales prices had been adjusted to a common denominator, the raw adjusted price still needed correction for time. Although 7 out of 15 sales had occurred since 1978 and 10 since 1975, one excellent comparable went as far back as 1969. During that decade public sensitivity and demand for wilderness had increased and dollar values
had eroded. Dollar values could be adjusted using the Implicit Price Deflator Index provided quarterly by the U.S. Department of Commerce, Bureau of Economic Analysis, Exhibit IV-3 (Source publication is: SURVEY OF CURRENT BUSINESS, found in Appendix E), to adjust for inflation differences among prices. The question remained whether that left significant amounts of appreciation out of the computaton. Therefore, two alternative, more arbitrary tests were made. In the opinion of the appraiser, wilderness lands could have appreciated 6 percent per annum until 1974 after which greater public sensitivity might have generated a maximum of 10 percent annual compound increases in price. (There is some scant support for 10 percent from GAO.) The alternative was 6 percent annual compounding, to avoid the impossible determination of just when the rate of increase took place. The aggregate results of all three approaches are provided in Exhibit IV-4, and it will be noted that the price deflator which can be supported by national data produces a price per acre that is a near perfect midpoint between the two alternatives. Therefore, prices were adjusted only for deflation although the appraiser believes that demand pressure may have
justified a somewhat higher adjustment for time. Computations for the deflator adjustment are provided in Exhibit IV-4 a, b, and c.

These sales prices, adjusted for time and other externalities, become the basis with which to appraise the subject property. These adjusted sales prices of wilderness properties, generally purchased with the explicit buyer objective or implicit recognition that the property would largely remain wilderness, meet the second condition of the market comparison approach identified at the beginning of Section IV. The group is summarized by state and by private or public grantee in Exhibit IV-5 a, b, c, d, e, and f with adjusted prices rounded to the nearest thousand. Exhibit IV-6 summarizes the comparables ranked by average wilderness score as explained in the following section.

E. Establishing Comparative Wilderness

Scores for Comparables

The key to the market comparison approach is selecting a relevant unit for comparison, a unit that measures the kinds of utility which the buyer thinks he may be purchasing. A Mercedes-Benz and a Ford pick-up cannot be compared on price per pound, but corn land is rated in bushels per acre of production, and grazing land is compared on animal unit months of carrying capacity rather than just acres. Bushels and animal

SUMMARY OF COMPARABLE SALES
ADJUSTED TO JANUARY 1, 1981, AFTER ADJUSTMENT FOR EXTERNAL MARKET CONDITIONS

15 POTENTIAL COMPARABLES RANKED BY AVERAGE WILDERNESS score per 10 Acres together with other rare il rankings

	$\begin{aligned} & \text { Landmark } \\ & \text { No. } \end{aligned}$	Name	No. of Acres	Adjusted Price	Price/ Acre	Natural Integrity Score	Solitude	Prime Recrea- tional	Scenic Quality Score	\qquad	$\begin{gathered} 10 \\ \text { Acre } \\ \text { Cells } \end{gathered}$
1	9	Sunset Lakes	320	136,000	425	2.50	1.688	1.903	1.535	7.627	32
2	40	Mueller	640	501,000	782.81	2.50	. 894	1.696	1.391	6.481	64
3	2	Phelps Creek	357	287,000	803.92	2.36	. 981	1.678	1.369	6.325	42
4	16 G	Bettis	160	497,000	3,106.25	2.075	1.847	1.022	1.262	6.206	16
5	36	Ankeny	1,760	671,000	381.25	2.478	1.394	1.269	1.016	6.158	176
6	30 G	SloanKettering	462.8	937,000	2,024.63	2.385	. 764	1.479	1.237	5.864	48
7	39	$\begin{aligned} & \text { National } \\ & \text { Wildife } \end{aligned}$	336	159,000	473.21	2.50	. 518	1.125	1.562	5.668	44
8	18 G	Matteson	81.83	281,000	3,433.95	1.698	1.492	1.045	1.268	5.504	22
9	22 G	Wolfinbarger	87.7	351,000	4,002.28	1.771	1.485	1.001	1.172	5.428	18
10	6	Lake Caroline	41.7	42,000	1,007.19	1.944	1.281	1.411	. 689	5.325	9
11	1 G	Marble Creek	120	501,000	4,175	2.322	1.197	1.030	. 505	5.054	12
12	19	Taylor	64.84	132,000	2,035.78	1.39	1.572	. 932	. 948	4.842	17
13	17 G	Lanham	620	1,499,000	2,417.74	1.539	1.26	. 859	. 898	4.558	64
14	37 G	Markley	120.65	337,000	2,793.20	1.527	. 817	. 529	1.025	3.899	24
15	35	Nature Conservancy	3,677	958,000	260.54	. 650	1.547	. 459	. 701	3.356	368
				MEAN (av	Rage)	1.976	1.249	1.163	1.105	5.486	
	:			STANDARD	deviation	. 543	. 3815	. 413	. 316	1.068	
		*(Without Comparable 35)		MEAN (average)		2.071	1.228	1.213	1.134	5.639	
				STANDARD	deviation	. 4161	. 387	. 378	. 307	. 924	

unit months are simple point systems which reflect complex combinations of soil, water, climate, and farming methods. Farm appraisal provides another useful analogy. When comparing farm sales it is necessary to reallocate the total purchase price to the different types of land, including tillable acres, meadowland, woodlot, bottomland, and so on in terms of their relative contribution to the farm as an enterprise. Similarly, it would be misleading to buy a complex system like a house on price per square foot, although it may be useful to compare apartments in terms of price per room if the rent structure is based on rent per room. In the same way, wilderness needs a unit per dollar for comparison purposes, and thus the appraisal team has developed a point-scoring system for wilderness attributes. Point systems are not a new idea in appraisal; point scores have been used many years for appraisal of land, office buildings, and even single-family homes. The following discussion explains the establishment of a wilderness score for each ten acre cell of subject property and comparable sale alike.

Section II described the collection and organization of physical attributes of the subject properties, the conversion of physical attributes into proxies for dynamic and environmental attributes such as solitude, challenge, scenic quality and wilderness, as well as linkages and legal
attributes. Section III provided the analysis that the highest and best use of the subject properties was either wilderness or access to recreational wilderness. Now these elements of physical, ascertainable facts must be combined into a scoring system which will permit construction of a land pricing model based on comparable sales relative to their similarities and differences in serving a wilderness use. Since the data is collected in ten acre cells, the object will be to establish a point score for each cell to the degree that it meets wilderness standards and then to assemble four ten acre cells into a forty acre unit which is often the basic unit of transaction in tracts of vacant land, that is, one quarter of a quarter section.

Data was collected on each comparable from the same sources and using the same methodologies as the procedures described in Section II relative to the subject properties, with two significant exceptions. Soil maps were not available for many of the comparable properties and remote areas for which there has been little priority for soil analysis. This omission will have no impact, since it would be relevant as an isolated variable primarily for development purposes and since it is otherwise represented by proxy in terms of expected combinations of vegetation, slope, and terrain. However, the variables for view from and to a cell could not utilize the

VIEWIT system since the centroid altitudes of surrounding terrain were not recorded. It was necessary for the appraiser, working with Sean Ahearn, to estimate manually the view shed of each cell and the intrusion from off-site viewing platforms into the privacy of each cell by using the U.S. Geological Survey Maps enclosed with each comparable package of information in Appendix A. These estimates were made directly to a scale of 10 rather than converted to a scale of 10 from a frequency count generated by VIEWIT. (See Procedures by Gates in Appendix D and Notes by Ahearn in Appendix B.) This manual procedure used 40 acre cells and imputed the same score to each 10 acre cell in the 40 . The appraiser and Sean Ahearn were tested on randomly selected subject property quarter sections, and their judgments were found to be an acceptable approximation of VIEWIT scores in terms of "view from" but somewhat less reliable in terms of "view to." The latter variable was therefore given little weight in the final scoring system.

In summary, each comparable was analyzed for wilderness attributes to be comparable to the ten attributes scored for the subject property, specifically:

1. Apparent naturalness
2. Distance to perimeter
3. View from cell-reversed
4. View to cell-reversed
5. Vegetation screening
6. Challenge
7. Diversity - percent slope
8. Diversity - terrain
9. Scenic quality
10. View from cell-normal

Given the compatibility of relevant data for the subject property and computerized comparable data, it was then possible to construct a scoring system reflecting the RARE II attributes of natural and apparent naturalness, solitude, primitive recreation experience, and scenic quality from the 10 attributes above. The elements of this scoring process are summarized in Exhibit IV-7 and converted to proxies of RARE II concepts in Exhibit IV-8, repeating Exhibits II-8 and II-9 for convenience.

Each of the variables included in the Wilderness Evaluation System List and in the Scenic Quality System List were converted to a standard ten score and combined to determine the total score per cell, a natural integrity score, and a scenic quality score. It should be noted that scoring is an ordinal system which does not permit direct comparison between variables without scaling to a common measure. Therefore, scaling to a common denominator is required in order to combine and take a simple mean of cell scores to determine the score for the total parcel. In this case the common denominator is

Research Inc.
EXHIBIT IV-7
COMPARABLE SUMMARY SHEET
I. WILDERNESS (.25)
.25 1. Natural Integrity
(Apparent Naturalness) $\mathbf{X . X X X}$ X. XXX
II. SOLITUDE (.25)
.0625 1. Distance to Perimeter X. XXX
. 0625 2. View FROM Cell (Rev.) X. XXX
.0625 3. View TO Cell (Rev.) X. XXX
. 0625 4. Vegetation Screening $\mathrm{X} \cdot \mathrm{XXX}$ $\mathbf{x} \cdot \mathbf{X X X}$
III. PRIMITIVE RECREATION EXPERIENCE (.25)
.083 1. Challenge(Physical Feature)X. XXX
. 083 2. Diversity - \% Slope

$$
\mathrm{x} \cdot \mathrm{xxx}
$$

$$
.083 \text { 3. Diversity - Terrain x.xxx }
$$

$$
\mathrm{x} \cdot \mathrm{xxx}
$$

IV. SCENIC QUALITY (.25)
.20 l. Scenic Quality $\mathrm{X} . \mathrm{XXX}$
. 05 2. View from Cell $\mathrm{X} . \mathrm{XXX}$ X. XXX
AVERAGE ATTRIBUTE SCORE PER CELL X. XXX
ADJUSTED PURCHASE PRICE $x X x, x x x$.
TOTAL CELLS IN COMP $\mathrm{xx} . \mathrm{XX}$
TOTAL ACRES IN COMP

$$
x \times \cdot x x
$$

$$
\text { TOTAL ATTRIBUTE POINTS } x \times x \cdot x x
$$

AVERAGE PRICE PER POINT PER CELL XXX.XX
AVERAGE PRICE PER ACRE PER CELL XXX. XX

EXHIBIT IV-8

A List of the Dynamic Attributes Used in the Pack River Appraisal
Part 1 - Wilderness Evaluation System
Part 2 - Scenic Quality System (SQS)

Part 1: The Wilderness Evaluation System (WES)
(1) Natural Integrity - Apparent Naturalness ${ }^{\text {a }}$ is damaged by presence of:

1) paved road
2) clear-cut, logging operation
3) buildings
4) trails, fences
(II) Opportunity for Solitude is aided and abetted by data factors reflecting:
5) view from
6) view to
7) vegetative screening (stocking class)
8) distance perimeter to core
(III) Opportunity for a Primitive Recreation Experience is increased by each additional element in diversity reflected in data factors which impute challenge or diversity:
9) challenge
a) Rockform present
10) avalanche chute (snow or rock)
11) talus slope or boulder field
12) rock outcrop
13) cliff
14) pinnacle
15) cirque
16) permanent snow field
17) glacier
b) vegetative overstory
c) percent slope
18) Diversity (see VQS)
a) phyiography
b) rockform
c) vegetation
d) waterform
${ }^{\text {a }}$ These two elements are separate categories in RARE II; given the fact that comparables were presumed to be wilderness candidates, a perfect wilderness score of 10 is presumed and adjusted downward for items listed. Apparent naturalness is recognized indirectly in the descending penalty score which reflects curability and ovservability from a distance. All areas were subject to fire control and fire histories were not available so this factor in apparent naturalness was ignored. (See Appendix C, Sean Ahearn tab, for further details.)

EXHIBIT IV-8 (Continued)

Part 2: The Scenic Quality System (SQS) ${ }^{\text {b }}$

1) Physiography
2) Sharp dissected uneven slopes
3) Moderately dissected slope
4) Irregular landscape
5) Ridged landscape
6) Peak
7) Rockform
8) Avalanche chute (rock)
9) Avalanche chute (snow)
10) Talus slope or boulder field
11) Rock outcrop - 2 acres
12) Rock outcrop 2-5 acres
13) Rock outcrop 5+ acres
14) Cliff
15) Pinnacle
16) Cirque
17) Permanent snow field
18) Glacier
19) Rock dome
III) Vegetation
20) Stocking 10 to 39%
21) Stocking 49 to 69%
22) Stocking 70%
23) Large old growth timber
24) Dry meadow
25) Wet meadow
IV) Waterform
26) Unusual shoreline configuration (Lakes)
27) Falls
28) Rapids
29) Meander
${ }^{b}$ These factors reflect elements of diversity revealed by VEP study (Appendix D) to be prominent in scenic quality ratings of people who make the effort to enter the area on foot and selected for the fact that data could be gathered from air photos. Each data point implies smaller subsystems, such as flowers in the dry meadow, color patterns in rock outcrops, or distant views which include a mountain peak. See Sean Ahearn tab in Appendix C.

100 percent with Wilderness, Solitude, Primitive Recreation, and Scenic Quality each weighted 25 percent. As previously discussed, the RARE II standards recognized the significance of scenic quality or historic elements but failed to provide any standardized system for treating these vectors of RARE II. As explained in Section II, I and J, 25 percent weight on Scenic Quality is supported by findings in Niemann-Chenoweth's surveys and a consensus among congressional drafters and supporters of ALMA that scenic quality was the thrust of preservation objectives, the distinguishing element which made the lands rare, in short supply, and in growing public demand. However, it is conceivable that other types of wilderness, such as salt marsh or desert dunes, would require a different weighting and different data items to meet the viewers' consensus of important attributes. Detailed scores for each of these variables by cell and a summary sheet for each comparable by category, combining points and adjusted purchase price, are included in Appendix A. The format of this summary sheet indicating the weights by category and components is provided in Exhibit IV-7.

F. Analysis of Summary Scores

for Comparables
Critical summary information from the computer data sheets for each comparable in Appendix A is presented in rank order
form in Exhibit IV-6 as a basis for discussion. Until all the data has been entered, processed by the computer, and related to the adjusted price, there is no way of knowing objectively what the scores in terms of dollars per point for purposes of comparison will be or whether there will in fact be a pattern of consistency which would justify a prediction or inference of price relative to the subject properties. Nevertheless, most observers of the photographs of the comparable properties, even without additional information, would have undoubtedly rated Sunset Lake (No. 1), and the Mueller Ranch Dome Rock (No. 40) as the best properties in terms of model wilderness specimens, natural integrity, and scenic quality.

Phelps Creek (No. 2) has strong wilderness characteristics but solitude and natural integrity are damaged by the road and improvements on two of its lower elevation cells. Recreational challenge is high because of its altitude on upper parcels and scenic quality is enhanced by the presence of an intermittant stream to provide diversity of vegetation and terrain. It is useful to look at Bettis (No. 16 G), Lanham (No. 17 G), and Taylor (No. 19) sales together. The Lanham property was the largest, but only a few cells have the benefit of streams; its diversity score was dampened by averaging the attractive cells with a larger number of cells of dry and wet meadow. The airstrip and ranch buildings together with crisscrossing trails
depress the national integrity score. The Bettis property had a very high scenic quality score primarily because it had more shoreline on Monumental Creek and had a second smaller creek as well so that water forms improved the score significantly. The natural integrity score is overstated, damaged only by the airstrip, since the buildings remain just offsite in control of the seller. The Taylor Ranch was the smallest, had the largest proportion of its area in river-bottom meadow reducing the diversity score, and was fully impoved with ranch buildings and airstrip. Because the cells with physcial improvements were a larger proportion of the total cells in Taylor, the natural integrity score was very low.

The Sloan-Kettering property has better than average scenic quality, but its natural integrity is damaged by the presence of a trail in a third of its cells and a direct view of the Jackson Hole airport. The Ankeny sale in the Spanish Primitive Area has average scenic beauty, but high natural integrity because the data cells reflect the minimal man-made disturbance that existed before the developer brought in roads and power lines to a major section of his purchase. The government immediately traded for his high-country parcels, which had contributed a major source of strength to the natural integrity score. The appraiser is ambivalent about this sale as motivation was mixed, partly development and partly
conservation at an undisclosed value. However, it is the largest sale of high country.

Contrast the Ankeny sale with that of the Nature Conservancy (No. 35) (Goodrich Ranch) where scenic quality was low due to the lack of physical diversity and clearcut zones. Natural integrity was devastated by over a thousand acres of clearcut and roads. The appraiser decided that its scores for wilderness, natural integrity, and scenic quality disqualified it from further consideration and the appraisal will depend on 14 comparables.

Most surprising however, was the result on the Marble Creek (No. 1 G) property, 120 acres in the Northern Cascades, that visually and geographically had much in common with the subject properties. However, the scenic quality score was extremely low for lack of diversity since timber stocking was more or less constant and the creek and wet meadow characterized only two or three cells of the twelve in the property. The natural integrity score as wilderness was relatively high, except that it was damaged by the presence of a mine shaft and tailings on two cells.

G. Establishing Basis for Market Comparison

To apply the market comparison approach it is then necessary to match physical attributes of the comparable sales to the physical attributes of the subject properties in order
to choose the best comparables for each subject property. Given the great diversity of wilderness attributes in many of the large tracts and the finely detailed attribute descriptions, the matching process requires a smaller unit of comparison as a common denominator, and in this case the appraiser chose 40 acres as the appropriate unit of comparison and pricing because the quarter-quarter section is often a unit of trading in the purchase and sale of recreational/wilderness land. The use of a 40-acre base for comparison is analogous to the comparison of an apartment project in terms of the number of bedrooms because projects have varying numbers of apartments and different mixes of one, two, and three bedroom units; similarly, it is analogous to farm appraisal where a l20-acre purchase, for example, might be compared in units of 40 acres tillable, 40 acres wetland and woodlot, and 40 acres of meadow in order that price comparisons can be more sensitive to differences in both physical attributes and farm sizes (in terms of number of 40 -acre units) which are found in the array of comparable sales. To this end, the l0-acre cells of both the subject properties and the comparable sales were regrouped into 40-acre units and given the geo-code or location identifier of the 10 -acre cell in the upper left hand corner of the 40-acre unit.

This process created a total of 59040 -acre units for the subject property listed as part of the final valuation in Exhibit IV-9 and 173 40-acre sub-units from 14 comparable sales listed in Exhibit IV-lo.

Relative to the comparable sales, the total sales price of the property was realloacted to each 40-acre sub-unit in proportion to the ratio of the total wilderness attribute score of the 40 -acre section (the sum of the four lo-acre total scores) to the total point score of all sections in the comparable property. That process too is analogous to farm appraisal where the tillable land is regarded as, say, three times as valuable as meadowland and meadowland is twice as valuable as wetland and woodlot. The weights (or point scores) would be one (1) for woodlot, two (2) for meadowland, and six (6) for tillable land so the tillable land would receive 6/9 of the purchase price for the 120 -acre example referred to above. At this point, the comparable sales data is ready for application to pricing of the subject 40^{\prime} s, but the problem remains to establish decision rules and techniques for matching 40-acre sub-units from the comparable sales to each of the 40-acre units of the subject property.

To this end, the appraiser utilized a data processing technique designed specifically for automated market comparison called MKTСомP, a process developed at the University of

SUBJECT PROPERTY DESCRIBED AS 59040 ACRE UNITS IDENTIFIED BY Y AND X COORDINATES, CELL NUMBER OF NORTHWEST 10 ACRE CELL, OWNER, AREA, AND NUMBER OF 10 ACRE CELLS in A 40 ACRE SUB-UNIT
description of codes
$A=Y ; B=X ; C=C E L L \# ; D=O W N E R ; E=$ AREA $; F=\#$ of $10^{\prime} \mathrm{s}$
$G=$ PRICE; $H=$ STANDARD DEVIATION PRICE; $I=\# 1 ; J=\# 2 ; K=\# 3$;
$\mathrm{L}=\# 4 ; \mathrm{M}=\# 5 ; \mathrm{N}=\# 6 ; \mathrm{O}=\# 7 ; \mathrm{P}=\# 8 ; \mathrm{Q}=\# 9 ; \mathrm{R}=\# 10$

, 60054.00, 46401.00,
, $76054.00,46715.00$
, 53103.00 . 45248.00
, $35215.00,32202.00$,
$50385.00,47747.00$
$59781.00,45898.00$
, $57735.00,50734.00$
, 57735.00, 50734.00,
, 51576.00, 52261.00,
$47934.00,48249.00$
$52208.00,50630.00$
-52208.00, 50630.00
, 77352.00, 49206.00,
, 46614.00, 52316.00,
, 69090.00 , 64164.00 ,
, 58676.00, 54164.00,
, 58962.00, 51697.00,
, 87649.00, 53047.00
, 72865.00, 46457.00,
, 73969.00, 53235.00,
, 68974.00, 46961.00
, 67654.00, 58763.00,
, $75545.00,51027.00$,
, 68899.00, 49143.00,
, $73258.00,48882.00$,
, $63957.00,48530.00$,
, 50805.00, 43274.00,
, $35524.00,35072.00$
, 54784.00, 46398.00,

- $81034.00,60494.00$
$51034.00,60494.00$,
$, 59038.00,45107.00$,
, $59038.00,45107.00$,
, 88189.00, 53784.00 ,
, $88189.00,53784.00$,
, 44270.00, 48824.00,
, $52498.00,51402.00$
, 42504.00, 49873.00
, $41405.00,47915.00$
, 49596.00, 48939.00,
, -4890.00 , 62598.00,
, 40494.00, 47868.00,
, $44613.00,48249.00$,
- $54343.00,50302.00$,
, $80204.00,49143.00$,
, $51448.00,52316.00$
, $70404.00,51168.00$,
, $55973.00,51071.00$
, 57027.00 , 50258.00
, 77544.00, 64750.00
, 46560.00, 40629.00 ,
C
D E
$E \quad F$ $\therefore 104$

G
$0.600 \cdot 00,485.6 .6 .00$
, $04551.60,17 / 30.00$, $50550.00,43914.00$, , $73849.00,53049.00$, $52793.00,13783.00$, 75352.00, 454:4.00 , $46659.00,54261.00$ - 45653.00, 48110.00 79754.00, 50202.00 $75422.00,53272.00$ $56085.00,49190.00$ - $34714.00,32144.00$, 74655.00, 59170.00 $62.2575 .00,49190.00$, 55671.00 .47732 .00 42969.00, 33363.00 4891500.31983 .00 $92861.00,53823.00$, $888424.00,59170.00$, $74463.00,45768.00$, $72098.00,50607.00$, 83030.00, 53787.00 $94555.00,57480.00$ 98439.00, 53212.00 80926.00, 46716.00 78374.00, 49246.00 , 01935.00, 51355.00 , $50746.00,47915.00$, 93710.00, 53787.00, - $91640.00,53787.00$ $46220.00,40629.00$ $51949.00,50630.00$ $62632.00,48556.00$ $46781.00,36219.00$ $49821.00,33594.00$ 49756.00, 44796.00
, 76096.00. 52784.00
, 49457.00, 40794.00
, 59225.00, 49239.00
, 54375.00, 50490.00
40364.00 , 34655.00
78191.00 , 48840.00
90413.00, 48625.00

- 79112.00, 45948.00
- $77370.00,44628.00$
- 32492.00, 32391.00
, 56342.00, 53662.00
- $48156.00,54650.00$
, $57624.00,47595.00$
: $53513.00,47719.00$
73078.00, 51923.00
- 80865.00 .71591 .00
57677.00, 46980.00
- $51694.00,46900.00$
- 91519.00 . 60311.00
, $85597.00,59906.00$
, 54875.00, 51071.00
, $57472.00,50486.00$
, 39341.00, 51132.00,
\end{abstract}


```
C023
```



```
C302 33 C19 1.17-C02 3 51-C17 3 37-C37 2 19-C39 1 1 1-C16 2. 19-C36 4 55-C16 2 19
C18
```



```
C19 1 17-C30 2 33-C37 2 111-CO2 3 51-C40 1 53-C39 1 1 1-C36 5 49-C17 3 37-C16 2-19-C16 2
```



```
C19 1 1 33-C18 1 33-C40 1 [ 53-C30 1 1 3-C36 3 21-C39 3 19-C22 1 1 2-C30 1 3
```



```
-C30 11 35-C37 2 35-C22 11 2-CO2 3 51-C19 1 33-C40 14 53-C17 3 37-C36 4 51-C16 2-19-C40 1
-C30 1 35-C37 2, 35-C02 3 51-C17 3 37-C40 11 53-C36 4 53-C16 2 19-C
```



```
C19}
C30 11 35-C22 1 2-CO2 3 51-C19 11 33-C36 2 33-C40 1 53-C17 3 37-C16 2 19
```



```
C18 1 19-c02 1 51-C40 11 51-c39 3 55-c30 1 19-c36 1 37-c09 1 3
C18 1 19-C02 1 51-C40 1 51-C.49 3 55-Cu0 1, 7-C30 1 3-C09 1 3-C22 1 19-C16 1 7-C09 1
CO2 2 59--C06 1 53-C40 1 37-C36 1 39-C09 1 7 7-C30 11 49-C17 2 3
C40 11 37-c02 3 33-c36 4 35-C09
```



```
-C02 1 9-C40 1 33-C30 2 1-C06 1 53-C22 1 111-C36 1 55-C09 1 7-C17 2 
```



```
C37 2 2-C18 1 21-C16 2 1-C17 2 52-C19 1 27-c22 1 1 17-c39 1 1-č46 3 1
C37 2 2-C18 1 23-C22 1 33-C16 2 1-C17 1 55-C19 1 2--C39 1 3-C36 3-35-C19 1 27-C18 1
```



```
C40 1 1 37-C02 11 51-C39 3 5s-C36 1 51-C09 11 23-C30 1 19
```



```
-C02 3 35-C18 1 19-C19 1 29-C40 1 51-C30 11 19-C39 3 25-C36 5 55-C09 1 51-C166 1, %
```



```
C18}
```



```
-C37 2
```


A	B	C	D	F	G	H
5	6	55	1110	4	22278.00,	31544.
5	8	1	15	4	39710.00,	55634.00,
5	8	3	15	4	31702.00,	32202.00,
5	-	17	10	4	53340.00,	53978.00,
5	8	19	10	4	52526.00,	56126.00,
5	8	5	15	4	, 36912.00,	35405.00,
,	8	7	15	4	68010.00,	45954.00,
5	8	21	10	4	33682.00,	31583.00,
	B	23	10	4	47549.00,	51723.00,
5	8	33	10	4	, 90297.00,	60914.00,
5	8	35	10	4	, 64370.00,	47472.00,
5	8	49	10	4	, 53243.00.	47734.00,
5	8	51	10	4	, 80352.00,	59402.00,
5	8	37	10	1	, 80243.00,	59402.00,
5	8	39	10	4	, 84049.00,	59882.00,
5	8	53	10	4	, 80362.00,	57061.
5	8	55	10	4	, 61955.00,	47280.
6	3	1	99	4	, 65280.00,	51090
6	3	3	10	4	-50704.00,	50507.
6	3	17		4	, 59928.00,	50047.00,
6	3	19	910	4	, 46443.00,	38597.00,
6	3	5	910	4	, 69314.00,	57648.00,
6	3	7	910	4	, 73695.00,	47342.00,
6	3	21	910	4	, 71672.00,	51402.00 ,
6	3	23	910	4	, 56193.00,	45542.00,
6	3	33	99	4	73796.00,	48305.00,
6	3	35	910	4	- 65746.00,	39411.00 ,
6	3	49	99	4	57646.00,	47252.00,
6	3	51	910	4	73867.00,	590
6	3	37	910	4	70053.00,	51402.00,
6	3	39	10	4	48222.00,	50510.00,
6	3	53	10	4	, 74416.00,	59882.00,
6	3	55	10	4	89568.00,	53823.00,
6	5	1	1110	4	, 75187.00,	56026.00,
6	5	3	1110	4	49363.00,	45902.00,
6	5	17	1110	4	54274.00,	47280.00,
6	5	19	1110	4	, 81839.00,	39666.00,
6	5	5	1110	4	, 63193.00,	67789.00,
6	5	7	1110	4	, 62741.00,	67396.00,
6	5	21	1110	4	, 56502.00,	53871.00 ,
6	5	23	1110	4	, 55042.00,	52333.00,
6	5	33	1110	4	, 80302.00,	53823.00,
6	5	35	1110	4	, 65074.00,	49957.00,
6	5	19	1110	4	, 45105.00,	53978.00,
6	5	51	1110	4	, 45328.00,	51723.00,
6	5	37	1110	4	, 46900.00,	33594.00,
6	5	39	1110	4	, 61651.00,	50486.00,
6	5	53	1110	4	, 51159.00,	53546
6	5	55	1110	4	, 51395.00,	5563
6	7	1	10	4	, 83146.00,	5382
6	7	3	10	,	, 78747.00,	53960.00,
6	7	17	10	4	, 83014.00,	52269.00,
6	7	19	10	4	, 86550.00,	59882.00,
6	7	5	10	4	, 57835.00,	45791.00,
6	7	7	10	1	, 87748.00,	50788.00 ,
6	7	21	10	4	, 78394.00,	59074.00,
6	7	23	10	4	, 91576.00,	52269.00,
6	7	33	10	4	, 73544.00,	61467.00 ,
6	7	35	10	4	, 84923.00,	59402.00,
6	7	49	10	4	, 75162.00,	49399.00,
6	7	51	10	4	, 65519.00,	46401.00,
6	7	37	310	4	85415.00,	594
	7	39	10	1	81925.00 ,	53

	1		J		K		L		M		N		0		P		Q	R	
--C06	1	53-C02	3	3-C40	1	37-c36	5	33-C09	1	19-C30	1	19-C40	1	37-C30		19			
-cos	1	53-C02	3	3-C40	1	21-c36	5	33-c30	1	19-C09	1	19-C17	2	3					
--02	1	9-C40	13	33-C18	1	13-C36	1	33-C39	1	21-C09	1	7-C30	2	1-C22	1	11			
-c22	1	11-C30	5	51-C40	1	55-C36	,	33-C09	1	S-C17		37							
-C40	1	55-C02	3	19-C36		35-C30	2	3-C09	1	7-C17	2	3-C40	1	55-C36	5	35			
-C40	1	23-C39	3	19--C02	3	49-C36	1	49-C18	1	33-C09	1	5-C30	1	3-C22	1	11-C22		11	
-C30	1	35-C37	2	35--C22	1	2-C02	3	51-C19	1	33-C40	1	53-C17	3	37-C36	3	21-C16		19	
-C06	1	53-C02	3	3-C40	1	21-c36	5	33-C09	1	19-C30	1	19-C30	1	19					
--C40	1	17-C02	2	59--C06	1	53-C36	5	37--C30	1	49-C09	1	7-C17	2	3					
-c37	2	33-C17	3	37-C30	2	49-C16	2	19-CO2	3	51-C36	3	49-C01	1	50-C01	1	50			
-C30	1	35-c37	2	35-C02	3	51-C19	1	33-C40	1	53-C36	3	49-C17	3	37-C16	2	19-C02		51	
-c30	2	33-C02	3	51-c37	2	35-C19	1	33-C36	3	39-C40	1	53-C39	1	1-C17	3	37-C16	2	19	
-c30	2	49-C37	2	33-C17	3	37-C16	2	19-CO2	3	51-C19	1	33-C36	3	33-CO1	1	50			
-C30	2	49-c37	2	33-C17	3	37-C16	2	19-C02	3	51-C19	1	33-C36	3	33-C01	1	50			
-c37	2	35-c30	2	49-C17	3	37-C02	3	51-C19	1	33-C16	2	19-C36	3	49-C01	1	50			
--C37	2	35-C30	2	49-C17	3	37-C02	3	51-C16	2	19-C19	1	33-C36	4	49-CO1	1	50			
-C30	2	49-C37	2	35-C02	3	51-C19	1	33-c36	3	39-C40	1	53-C17	3	37-C16	2	19-C30	2	49	
-C18	1	13-C30	1	3-C40	1	3-C02	3	49-C39	1	7-C22	1	19-C36	1	53-C17	3	23			
--C40	1	17-C02	2	59--C06	1	53-c30	1	49-C22	1	11-C36	5	37-C09	1	7-C17	2	3			
--C18	1	13-C40		19-C30	2	1-C02	3	19-C39	1	21-C36	1	37-C.09	1	5-C22	1	19-C17	2	3-C30	2
--CO2	1	51-C18	1	19-C40	1	51-c36	1	53-C39	3	55-C09	1	5-C30	1	19-C22	1	19-C02	1	51	
--C19	1	39-C22	1	19-C40	1	3-C39	3	19-c36	1	49-C18	1	21-C17	3	23-C17	3	23			
-C19	1	29-C18	1	19-C37	1	30-c22	1	19-CO2	3	49-C39	1	7--6,40	1	35--C36		49-C16	2	3-C17	1
--c30	2	33-C37	2	2-C22	1	2-C.02		51-C19	1	33-C40	1	53-c;39	1	1-C36	3	19-C16	2	19-C17	
-C30	1	3-C22	1	11-C40	1	1-C39	3	19-C36	1	33-c:18	1	21-C39	3	19					
-C19	1	29-C18	1	19-C37	1	30-C22	1	19-C02	3	49-C40	1	35-C36	1	49-C39		55-C16	2	3-C17	
-C30	1	3-C19	1	17-C37	2	2-C22	1	2-C40	1	53-C39	1	1 -C36	3	7-C18	1	21			
-C30	1	35-C37	2	35-CO2	3	51-C19	1	33-C36	3	39-C40	1	53-C17	3	37-C16	2	19-C17	3	37	
-C37	2	35-C30	2	49-C17	3	37-C02	3	51-C19	1	33-C16	2	19-C36	3	33-CO1		50			
--C30	2	33-C37	2	2-C22	1	2-C02	3	51-C19	1	33-C40	1	53-C39	1	1-C36	3	19-C16	2	19-C17	1
-CO2	3	51-c19	1	33-C30	1	35-C36	3	39-C40	1	53-C39	1	$1-\mathrm{C} 17$	3	37-C16	2	19-C30	1		
-C37	2	35-C30	2	49-C17	3	37-C02	3	51-C19	1	33-C16	2	19-C36	3	49-C01	1	50			
--C19	1	35-C37	2	33-C17	3	37-C30	2	49-C16	2	19-C02	3	51-c36	3	53-CO1	1	50			
-C37	2	2-c30	2	33-C19	1	33-C22	1	17-C16	2	19-C36	3	5-c39	1	$1-\mathrm{C} 17$	1	21			
--C30	1	3-C22	1	11-C40	1	3-C39	3	19-C36		33-C18	1	21-c,30	1	3					
-c30	2	49-c37	2	35-C02	3	51-C19	1	33-C36	3	39-C40	1	53-C17	3	37-C16	2	19			
-C19	1	37-C30	2	33-C18	1	26-C17	3	35-C02	3	51-C37	2	19-C16	2	19-C36	4	49-C17	3	35	
--C30	1	51-C40	,	39-C06	1	52-C02	1	9-C39	1	17--C36	5	51-C17		37-CO1	1	17-C17	3	37	
-c30	1	49--C40	1	39--C06	1	52-C02	1	9-c39	1	17-C36	5	19-C17	3	37-CO1	1	17			
-C02	3	2-C06	15	53-C40	1	37-C09	1	7-C30	1	19-C36	5	33-C17	2	3					
-C40	1	17-CO2	3	2-C06	1	53-C30	1	49--C36		39-C09	1	7-C17	2	3-C17	2	3			
-C19	1	35-C37	2	33-C17	3	37-C30	2	49-C16	2	19-CO2	3	51-C36	3	$53-\mathrm{CO1}$	1	50			
-C30	1	3-C22	1	11-C40	1	49-C36	5	53-C17	3	37-C22	1	11							
-C22	1	11-C30	1	51-C40	1	55-C36	4	33-C09	1	5-C17	3	37							
-C40	1	17-C02	2	59-C06	1	53-C36	5	37-C30	1	49-C09	1	7-C17	2	3-C09	1	7			
-C40	1	19-C18	1	13-C06	1	53-C02	3	19-C36	1	55-C09	1	7-C30	2	1-C22	1	11			
-C18	1	13-C40	1	23-C30	2	3-C02	3	19-C22	1	11-C36	1	55-C09		$5-\mathrm{C} 17$	2	3			
- CO 2	2	59-C06	1	53-C40	1	37-C09	1	7-C36	5	17--C30	1	49-C17	2	3					
-C06	1	53-C02	3	3-C40	1	21-C36	5	33-C30	1	19-C09	1	19-C17	2	3					
-C19	1	35-C37	2	33-C17	3	37-C30	2	49-C16	2	19-C02	3	51-C36	3	53-C01	1	50			
--C19	1	35-C17	3	35-C37	1	39-C30	2	49-C16	2	19-cos	3	51-C36	3	53-C01	1	50			
-C37	2	33-c19		35-C22	1	35--C16	2	19-C30	2	49-C18	1	37-C17	1	37-CO2	3	51-C01		50-C36	3
-C37	2	35-C30	2	49-C17	3	37-C02	3	51-C19	1	33-C16	2	19-C36	3	49-C01	1	50-C16		19	
-C30	2	33-C37	2	11-C19	1	37-C02	3	51-C17	3	35-C36	3	5-C39	1	1-C16	2	19			
--C19	1	37-c17	3	35-c30	2	49-c37	1	39-C18	1	26-C16	2	19-C02		51-C36	4	49-C01	1	50-C02	3
--C37	2	35-C30	2	49-[17	3	37-C02	3	51-C19	1	33-C16	2	19-C36	3	33-C01	1	50			
-C37	2	33-C19		$35-222$		35-C16	2	19-C30	2	49-C18	1	37-C17	1	37-C02	3	51-C01	1.	50-C36	3
--C30	1	51-c:22	1	2-c;40	1	$55-C 36$	4	33-C02	3	19-C09	1	$5-\mathrm{C} 17$		37-C16	2	19			
--c30	2	49-C37	2	33-C17	3	37-C16	2	19-CO2	3	51-C19	1	33-c36	3	33-CO1	1	50			
--C19	1	17-C30	2	33-c37		11-C02	3	51-C17	3	37-6:40	1	53-C39	1	1-C22	1	17-C36	3	19-C16	2
${ }^{-} \mathrm{C} 30$	2	33-6.37	2	35-C02		51-C19		33-C22	1	2-C40	1	53-C39	1	1-C.C36	3	17--C17	3	37-C16	2
-C30	2	49-C37	2	33-C17	3	37-C16	2	19-CO2	3	51-C19	1	33-c36	3	33-C01	1	50			
--C19	1		3		1	39-C30	2	49-C16	2	19-C02	3	51-C36	4	49-CO1	1	50-C16	2	19	

G
H
, 71928.00, 45725.00
, 79628.00, 58063.00, , $66217.00,48156.00$, , 67533.00, 49742.00 , $34097.00,47063.00$ 45232.00 , 51642.00 $38338.00,35853.00$, $43759.00,37634.00$, $79582.00,46716.00$ - 87361.00, 53823.00 , 85908.00, 60194.00 , 79784.00, 53387.00 , 77708.00, 58063.00 79311.00, 59170.00 , 43651.00, 48012.00, , 59587.00 , 49190.00 - $49655.00,46401.00$, , 92009.00, 53823.00, , $91476.00,53823.00$, , $81831.00,45948.00$, , $72769.00,45961.00$
, 56620.00. 49363.00
, $79190.00,48530.00$
, $64293.00,49399.00$
, $78640.00,44628.00$
, 74388.00, 47559.00,
. $80942.00,56031.00$
: 46942.00 , 46408.00 ,
, $56942.00,46408.00$
, 73702.00, 47926.00
, $95819.00,53212.00$
, 37446.00, 37232.00,
, 39457.00. 38513.00

- 36629.00, 39094.00
- $39348.00,48550.00$
, 56871.00, 54179.00,
, 71699.00, 51029.00,
, 40375.00, 32157.00 ,
, 57032.00, 51723.00,
, 50955.00, 51123.00
57486.00, 54380.00
, $35302.00,32381.00$
. $58733.00,56217.00$
, 55109.00, 51698.00
, 56612.00 , 56217.00
, 73844.00. 64966.00
, $54499.00,50480.00$,
, $67649.00,50015.00$
, 69967.00, 59170.00,
, 74986.00. 61398.00
, 79104.00, 59402.00,
, 76772.00, 53212.00,
- $71447.00,52269.00$,
, 85283.00, 53823.00
, 85340.00, 53212.00,
: $51919.00,53978.00$
: $88476.00,57241.00$,
: $71073.00,52461.00$,
: $44056.00,54000.00$,

			J		K		L		M		N		0		P		Q	R	
-c30	2	33-C37	2	35-C22	1	2-C02	3	51-C19	1	33-C40	1	53-C17	3	37-C36	4	51-C16	2	19-C30	2
-c30	2	49-C37	2	33-C17	3	37-C16	2	19-CO2	3	51-C19	1	33-c36		53-C01	1				
-C30	1	35-C37	2	35-CO2	3	51-C19	1	33-C40	1	53-C17	3	37-C36	3	17-C16	2	19-C17	3	37	
-C30	1	3-C22	1	11-C40	1	49-C36	5	51-C17	3	37--C36	5	51							
-C18	1	33-C37	1	30-C40	1	23-C30	1	51-C39	3	19-C02	3	49-C36	1	49-C22	1	2-C09	1	$5 \cdots \mathrm{Cl}$	1
-C40	1	19-C18	1	13-C02	3	49-C36	1	53-C39	1	19-C09	1	5-C30	1	3-C22	1	19-C02	3	49	
-C40	1	19-C02	2	59-C06	1	53--C36	1	55-C30	1	49-C09	1	7-C17	2	3-C02	2	59			
-C40	1	1-C39	3	19-C18	1	33-C36	1	33-c30	1	3-C09	1	5-C22	1	11-C09	1	5-C22	1	11-C36	1
-C40	1	23-C18	1	13-C02	3	49--C36	1	49-C39	1	19-C09	1	5-C30	1	3-C22	1	19-C39	1	19	
-C30	1	35-C22	1	2-C02	3	51--C19	1	33-C36	2	33-C40	1	53-C17	3	37-C16	2	19			
-C19	1	35-C37	2	33-C17	3	37--C30	2	49-C16	2	19-C02	3	51-c36	3	53-C01	1	50			
-C37	2	35-C30	2	49-C17	3	37-C16	2	19-C02	3	51-C36	2	35-C01	1	50-C37	2	35-C02	3	51	
-C19	1	35-C22	1	35-C37	1	39-C30	2	49-C16	2	19-C17	2	19-C02	3	51-C36	3	55-C01	1	50	
-C30	2	49-C37	2	33-C17	3	37-C16	2	19-CO2	3	51-C19	1	33--C36	3	53-C01	1	50			
-C37	2	35-C30	1	35-C17	3	37-C02	3	51-C19	1	33-C16	2	19-C36	2	35-C01	1	50			
-C18	1	33-C30	1	3-C40	1.	55-C22	1	11-C39	3	19-C36	5	51-C09	1	5-C17	3	37			
-C02	3	51-C30	1	35-C19	1	33-C22	1	2-C40	1	53-C39	1	1-C36	3	21-C17	3	37--C16		19-C30	1
-C30	2	33-C37	2	35-C02	3	51-C19	1	33-C22	1	2-C40	1	53-C39	1	1-C36	3	17-C17	3	37-C16	2
-C19	1	35-C37	2	33-C17	3	37-C30	2	49-C16	2	19-C02	3	51-c36	3	53-C01	1	50			
-C19	1	35-C37	2	33-C17	3	37-C30	2	49-C16	2	19-C02	3	51-C36	3	53-C01	1	50			
-C37	2	2-C18	1	23-C22	1	33-C16	2	1-C17	1	55-C19	1	27-c39	1	3-C36	3	35-C18	,	23	
-C19		29-C18	1	19-C37	1	30-C40	1	3-C22	1	19--C02	3	49--C39	1	7-C36	1	49-C16	2	$3-\mathrm{C} 17$	1
-C40	1	1-C39	3	19-C18		33-C36	1	33-C30	1	3-C09	1	5-C22	1	11-C36	1	33			
-C02	1	9-C40	1	17-C30	2	1-C06	1	53-C22		11-C36	1	55-C09	1	7-C17	2	3-C09	1	7	
-C19	1	17-C37	2	2-C18		21-C16	2	1-C17	1	55-C22	1	17-C40	1	49-C39	1	5-C36	3	1	
-C19	1	17-C30	2	33-c37	2	11-C02	3	51-C17	3	37-C40	1	53-c39	1	1-C22	1	17--C36	3	19-C16	2
-C37	2	2-C18	1	23-C22	1	33-C16	2	1-C17	2	52-C19	1	27-C39	1	1-C.36	3	1-C36	3	1	
--C37	2	2-C18	1	23-C16	2	1-C17	1	39-C19	1	27-C22	1	17-C39	1	1-C36	3	1-C39	1	1-C	1
-C37	2	11-6;30	2	33-C19	1	33-C22	1	17-C16		19-C36	3	5-C39	1	1-C17		21			
C30	2	33-c37	2	11-C02	3	51--C19	1	33-C17	3	35-C39	1	1-C36	3	51-C16	2	19			
-c30	2	33-C37	2	2-C22	1	2-C02	3	51-C19	1	33-C40	1	53--c39	1	1-C36	3	51-C16	2	19-C17	
-C18	1	33-CO2	3	51--C19	1	33-C30	1	35-C22	1	2-C40	1	53-c36	3	21-C39	3	19-C17	3	37-C16	2
-C19	1	35-C22	1	35-C37	2	33-C30	2	49-C16	2	19-C17	1	37-C02		51-c36	3	55-C01	1	50	
-C40	1	23-C02	3	19-C09	1	5-C36	5	55-C30	2	3-C36	5	55-C30	2	3					
--C.40	1	55-0.c36	4	33-C02	3	19-C09	1	5-C30	2	3-C22	1	11							
-C40	1	23-C39	3	19-C02	3	49--C18	1	33-C36		49-C09	1	5-C30	2	3-C22	1	19-C30	2	3	
--CO2	1	51-C40	1	51-C18	1	19-C39	3	25-C36	5	55--C09	1	3-C30	1	19-C16	1	7-C09	1	3	
-C40	1	37-C02	1	33-c30	1	17-C36	1	35-C09	1	49-C16	1	7-C40	1	37					
-C40	1	7-C39	3	25-C02	3	18-C19	1	29-C36	1	35-C30	1	17-C09	1	21-C16	1	7-C30	1	17	
-C06	1	53-C40	1	37-C02	1	33-C36	1	51-C09	1	23-C30		19-C09	1	23-c30	1	19-C02	1	33	
--C40	1	17-C02	2	59-C06	1	53-C36	5	37-C30	1	49--C09	1	$7-\mathrm{C17}$	2	3-C09	1	7			
--C40	1	17-C06	1	45-C02	2	59-C30	1	49-c36	5	37-C09	1	7-C17	2	3					
--618	1	13-C02	3	19-C30	1	19-C40	1	21-c39	1	19-C36	1	37--C09	1	5-C22	1	19-C17	2	3	
--C02	2	59--C06	1	53-C40	1	37-C36	1	39-C30	1	19-C09	1	23-C17	2	3-C06	1	53			
--C40	1	37-C02	1	51-C39	3	55-C36	1	51-C09	1	23-c30	1	19							
--06	1	53-C40	1	37-C02	1	33-C36	1	51-c30	1	19-C09	1	23-C17	2	3-C09	1	23--C30	1	19	
-C40	1	17-C02	1	17-C06	1	53-C36	5	37-C30	1	49-C09	1	7-C17	2	3-C09	1	7			
-C06	1	53-640	1	37-C02	1	33-c36		51-c30	1	19-co9	1	23-C17	2	3-C09	1	23-C30	1	19	
-C19	1	17-c18	1	21-C40	1	39-C06	1	52-C02	1	9-C17	3	37-C39	1	17-C22	1	17--C36	3	7-C01	
--C40	1	17-C02	1	17-C06	1	53-C30	1	49-c:22	1	11-C36	5	37-C09	1	7-C17	2	3-C36	5	37-C40	1
-c30	1	35-c37	2	35-C02	3	$51-\mathrm{c} 17$	1	37-C40	1	53-c36	3	49-C16	2	19-C17	3	37			
-c37	2	35-c30	1	35-C17	3	37--C02	3	51-C19	1	33-C16	2	19-C36	2	35-C01	1	50			
-C37	2	35-C30	2	49--C02	3	51-C19	1	33-C17	3	37--C16	2	19-C40	1	53-C36	3	49-C01.	1	50	
-C30	2	49-0.3)	2	33-C17	3	37-C16	2	19-C02	3	51-C19	1	33-C36	3	33-C01	1	50			
-C19	1	35-C22	1	35-c37	2	33-C30	2	49-C16	2	19-C17	1	37-CO2	3	51-C36	3	55-C01	1	50	
--C37	2	33-C19	1	35-c22	1	35-C16	2	19-C30	2	49--C18	1	37-C17	1	37-CO2	3	51-C01	1	50-C36	3
--C19	1	35-C37	2	33--C17	3	37-C30	2	49-C16	2	19-C02	3	51-C36	3	53-C01	1	50-C30	2	49	
-C19	1	35--C22	1	35-C37	2	33-C30	2	49-C16	2	19--C17	1	37-C02	3	51-c36	3	55-C01	1	50	
- C 22	1	11-C30	1	51-C40	1	55-C36	4	33-C09	1	5-C17	3	37							
-C19	1	35-C37	2	33-C30	2	19-516	2	19-C17	2	19-C02	3	51-c36	3	53-C01	1	50			
-c30	1	35-C19	1	17--CO2	3	51-C17	3	37-C40	1	39-C36	2	49-C16	2	19-C39	1	17-C01.	1	17	
-640	1	17-C02	3	$2 \cdots \mathrm{C} 36$	5	19-C30	1	49-C09	1	7-C17	2	3-C17	2	3					
C19		35-037		$33-\mathrm{C} 17$		37 c30		49-C16		19 Co		$51-\mathrm{C} 3$		53-C0		50			

74540.00, 61398.00, 65347.00, 53823.00, 48352.00, 52316.00,
40867.00, 47252.00, -46316.00, 51698.00
$40961.00,4517.00$,
$54490.00,44176.00$,
$43433.00,41529.00$,
45583.00, 54179.00 ,
, $66955.00,58893.00$,
, 45424.00, 48632.00,
, $62114.00,46.354 .00$,
, 58866.00, 49957.00,
$52742.00,49263.00$,
36030.00 , 32202.00 , 36297.00, 35725.00, $45316.00,41529.00$,
$65621.00,64966.00$,
38544.00, 4515.3.00,
62369.00, 67750.00,
59914.00 . 39488.00,
$53467.00,50258.00$,
32210.00, 44905.00,
55766.00, 39488.00,
64410.00 . 66683.00,
$50266.00,50480.00$,
39998.00, 51698.00,
-42609.00, 45177.00,
59646.00, 46081.00,
58596.00, 43389.00,
58934.00, 42828.00,

- 56201.00, 49754.00,
, $53610.00,46353.00$,
$57600.00,46098.00$,
$66540.00,53735.00$,
$54854.00,5143.00$,
54854.00, 514.0.00, $51407.00,44196.00$, 51407.00, 44196.00 , $73125.00,60530.00$,
$73125.00,60530.00$,
$43815.00,42323.00$,
$43815.00,42323.00$,
$50937.00,48616.00$,
$50937.00,48616.00$,
$63612.00,46517.00$,
$61485.00,44093.00$,
79684.00, 59170.00 ,
$58092.00,45898.00$,
60366.00, 47252.00,
89392.00, 57537.00,
89628.00, 59236.00,
86942.00, 53823.00,

 $65227.00,52563.00,-\mathrm{C40} 1$

$7-\cos \quad 5 \quad 51-\cos 117-\cos 351$ $65894.00,49957.00,-\mathrm{C} 30113-\mathrm{C} 22111$-C40 1449 -C36 5 53-C17 3 37-C22 111

44733.00, 49227.00,-C18 1
45528.00, 39488.00,-C30
-34093.00, $31583.00,-$ C06
- 64834.00, 48873.00,--C19
, 45289.00, 48249.00,-C18
- 42607.00, 37471.00,-C40
, 43780.00, 53254.00,-CO2 2
, $51235.00,45542.00,-$ C30 1
$57874.00,48862.00,--630$
$51987.00,50507.00,--640$
$51987.00,50507.00,-\mathrm{C4O}$
5824.00, $3972.00,-6401$
$51131.00,44176.00,-C 30$
, $72032.00,59608.00,-030$
, 50377.00 , 52261.00,-C18
$51426.00,49263.00,-$ CO2 1
40422.00, 51096.00,-.c40
, 37384.00, 41683.00,-CO2
47810.00, 50803.00,--C02
76907.00, 53212.00,--C19
89902.00, 53823.00,--C19
, 90229.00, 53212.00,--C19
- 91009.00 , 53212.00,--C19
-90088.00, 53823.00,-С19 $65962.00,48431.00,-\mathrm{C} 30$ 81725.00, 62820.00, …37 75016.00, 44628.00, ‥C37 90289.00, 53212.00,-C19 $78005.00,39666.00,-\ldots 15$
$81022.00,59402.00, \ldots C 30$ 81.022.00, 59402.00,..C30 . 74111.00 , 5161.00 C19 $43497.00,40103.00,-630$ 48312.00, $17568.00,-102$

$43937.00,51698.00,-\mathrm{C} 401$ $29649.00,44271.00,--C 40$
$48159.00,51698.00,-\mathrm{C} 40$ 49529.00, 50480.00,--C40 1 $61961.00,40702.00,-C 181$ 79499.00, 64723.00,--C37 2 62312.00, 44612.00,-C30 2 , 69547.00, 52355.00,-C30 2 , $52973.00,44176.00,-\mathrm{C} 302$ $5327.00,53662.00,-$ C40 1 , 53272.00, 40657.00,-C18 68648.00, 57141.00,-C19 53254.00, 45248.00,-C18 $76019.00,48530.00,-$ C19
$56807.00,47328.00,-$ C18 1 $60623.00,48846.00,-. \operatorname{Co2} 3$ $60623.00,48846.00,-\mathrm{CO} 2$
$71281.00,40963.00,-\mathrm{C} 302$ $69379.00,50360.00,-\mathrm{C} 302$ $51965.00,46587.00,-\mathrm{c} 30$ 63668.00, 51182.00,-c30 75711.00, 49143.00,-C19 $75430.00,67749.00,-$ C30 53343.00, 39488.00,-C30 1 45983.00, 45177.00,--C06 66116.00, 62945.00,-C19 42787.00, 39488.00,-.C30 1 $49155.00,51722.00,-\mathrm{C} 401$
$51391.00,47915.00,-\mathrm{CO} 1$ $51391.00,47915.00,-\operatorname{CO2} 1$, 54838.00, 50480.00,-C40 1 57641.00, 50480.00,-C40 1 70859.00, 62029.00,--C19 $50135.00,51698.00$, C 40 $63513.00,6896100,-c 30$ 63513.00, 68981.00,-C30 75901.00, $63967.00,-037$ $56630.00,54677.00,-\operatorname{co6}$ $59080.00,54179.00,-140$ $51475.00,41529.00,--C 301$ $81153.00,66510.00,-$ C18 1 $45556.00,51123.00,-\mathrm{C4O} 1$ $75777.00,64234.00,-\mathrm{C} 301$ 51600.00, 48071.00,--C02 50778.00, 48515.00,-1818 $34707.00,39599.00,-\cos 3$ 76411.00, 59632.00,-6372 $39174.00,38460.00,-\operatorname{co2} 3$ 79613.00, 52269.00,-6372 84496.00, 53235.00,-C19 1 $61337.00,46401.00,-\mathrm{C} 302$
$, 88862.00,53212.00,-\mathrm{C} 191$ 75318.00, 59882.00, C37 $43597.00,38504.00, \mathrm{C} 301$ $62480.00,4576700,002$ $62480.00,45767.00, \mathrm{C} 301$ $45675.00,46267.00, \cdots 630$
$63100.00,45768.00, \cdots 30$ $65386.00,50607.00,-630$ $91755.00,60607.00,-16301$ $73703.00,64234.00,-630$ 45278.00, 51699.00, С40
76299.00, 69498.00,-C30
\square 17--C02 1-17-C06 39-C06 17-C06
52-C02 1 53-C36 5 37-C30 1 49-C09 1 $17-\mathrm{Cl} 7$ 7-C17 72 $3-\cos 1$ 17
 17-C02 1

\qquad 13-c30 2 $\begin{array}{lll}51-C 30 & 1 & \\ 33-c 37 & 2\end{array}$ $\begin{array}{lll}33-\operatorname{co2} & 3 & 51 \\ 33-\cos & 3 & 5\end{array}$ $33-\operatorname{co2} 3$
$33-\mathrm{C} 37$ 17-c37 $\begin{array}{rrr}2-C 18 \\ 3 & 2 & 2\end{array}$ 3-C19 $52-\mathrm{CO}$
$17-\mathrm{C} 30$
1 1-C30 1 35-C02
$17-\cos 1$
$17-\cos 2$
$9-\operatorname{c40}$ $17-\cos$
$17-\cos$ 9-C19 1

\qquad
\qquad 17-C06
$35-C 19$ $\begin{array}{llll} \\ 9-C 40 & 1 & 17-C 02 & 33-C 39\end{array}$
> $13-$ C40 1 1-C30

\section*{| $1-C 19$ |
| :--- |
| $35-030$ |}

 35-Cx

G H
48965.00, 47046.00, .-C18

$48970.00,49436.00,-\mathrm{C18} 113$-C30
$\begin{array}{rrrrrr}49-C 40 & 1 & 21-C 30 & 1 & 19-C 39 & 1 \\ 3-\mathrm{C} 40 & 1 & 19-\mathrm{C} 20 & 1 & 11-\mathrm{C}\end{array}$

, 59942.00, 67396.00, C30 14
, $49296.00,51723.00,-\mathrm{C} 4011$
$51031.00,53311.00,-\mathrm{C} 40117-\operatorname{co2}$
$53852.00,51723.00$, C40 1 17-C02
, $87499.00,53787.00,-\mathrm{C19} 135 \mathrm{C}$ - C 22
$54615.00,51071.00,-\mathrm{C} 40$ 1 37--C02
$60623.00,54019.00,-\mathrm{C4O}$
$54385.00,51071.00,-\mathrm{C4O} 1 \quad 37-\mathrm{CO}$
$54079.00,5366200,-140$
$57611.00,54000.00,-\mathrm{C} 401$
45518.00, 54261.00, 40 1 37-C02
$33792.00,32517.00,-\mathrm{C4O} 1$ $52130.00,49190.00,-\cos 3$ 34615.00, 40794.00,-C40 1 30473.00, 41702.00,-602 3 $69689.00,43456.00,-1301$ 88786.00, 53923.00,--C19 $55006.00,48926.00,-6181$ 59774.00, 45767.00,-C30 1 79292.00, 61398.00,-6372
, 68235.00, 49181.00,-C18 1
, $87087.00,53212.00$, C19 1
, 83360.00, 61398.00, C372
$43336.00,39996.00$, С40 1
$62372.00,47489.00,-C 181$
$81554.00,59632.00,-\mathrm{C} 372$ 82795.00, 47172.00,-C19 83564.00, 54120.00,-С40 83564.00, 53102.00,-C22 47680.00. 47868.00, C. $47680.00,47868.00,-\operatorname{co2} 1$ $48596.00,53325.00,-102$
$45570.00,51723.00, \ldots 40$ $56523.00,50316.00,-\mathrm{CO}$

$$
\begin{array}{rrr}
19617 & 37 \\
7617 & 3 & 3
\end{array}
$$

$$
\begin{array}{rlll}
49-609 & 1 & 7617 & 3 \\
7-030 & 1 & 33-617 & 2
\end{array}
$$

$$
\begin{array}{lll}
7 \operatorname{Cos} & 17 \\
3-\cos & 17 \\
\hline
\end{array}
$$

$$
\begin{array}{rrrrr}
7-\cos & 1 & 33-\operatorname{C17} & 2 & 3 \\
49-\operatorname{cog} & 1 & 7 \cdots C 17 & 2 & 3
\end{array}
$$

$$
\begin{array}{ccccccccccc}
49-\operatorname{cog} & 1 & 7 \cdots \cos & 2 & 3 \\
49-\cos & 1 & 38-\cos & 2 & 36-\cos & 1 & 51-\operatorname{coc} & 1 & 11 & C 36 & 4
\end{array}
$$

$$
\begin{array}{lllll}
49-616 & 1 & 7 & \\
17-C 16 & 1 & 7-030 & 1 & 17
\end{array}
$$

$$
\begin{array}{llll}
7 & 0.30 & 1 & 17 \\
7 & 0 & & 17
\end{array}
$$

$$
1.37
$$

$7-640 \quad 1 \quad 37$
37

17124 1712
21
10 2110
2110 $\begin{array}{lll}21 & 10 & 19 \\ 21 & 10 & 5\end{array}$ 2110 $\begin{array}{lll}1 & 10 & 23 \\ 1 & 10 & 33\end{array}$ 2110 $\begin{array}{lll}21 & 10 & 37 \\ 21 & 10 & 39\end{array}$ $\begin{array}{lll}21 & 10 & 53 \\ 21 & 10 & 55\end{array}$ $\begin{array}{lll}1 & 12 & 9\end{array}$ $\begin{array}{llll}31 & 12 & 11 \\ 21 & 12 & 17\end{array}$ 211219 $21 \quad 12 \quad 5$ 21 $\begin{array}{lllll}21 & 12 & 37 & 7 & 1\end{array} 4$. 22
14.
$\begin{array}{lll}A & \text { B } & C \\ 16 & 11 & 51\end{array}$ $\begin{array}{lll}16 & 11 & 38 \\ 16 & 11 & 39\end{array}$ $\begin{array}{lll}16 & 11 & 39 \\ 16 & 11 & 53\end{array}$ $\begin{array}{lll}16 & 11 & 53 \\ 16 & 11 & 55\end{array}$ $\begin{array}{llll}16 & 11 & 55 \\ 17 & 11 & 1\end{array}$ 171 $\begin{array}{ll}1710 & 1 \\ 17 & 10\end{array}$ 1710 $\begin{array}{lll}17 & 10 & 7 \\ 17 & 10 & 21\end{array}$ 17 17 $\begin{array}{ll}1710 \\ 17 & 10 \\ 17 & 10\end{array}$ $\begin{array}{ll}1710 & 49 \\ 17 \\ 17 & 10 \\ 17\end{array}$ $\begin{array}{lll}17 & 10 & 51 \\ 17 & 10 & 37\end{array}$ $\begin{array}{lll}17 & 10 & 37 \\ 17 & 10 & 39\end{array}$ $\begin{array}{ll}1710 & 53 \\ 1710 & 5\end{array}$ 1712 1; 12 171 171

EXHIBIT IV - 10
COMPARABLE SALES DESCRIBED AS 17340 ACRE SUB-SALE UNITS IDENTIFIED BY Y AND X COORDINATES, CELL NO. OF NORTHWEST 10 ACRE CELL, AND NO. OF 10 ACRE CELLS IN A 40 ACRE SUB-UNIT DESCRIPTION OF CODES
$A=I D$ CODE $; B=$ SALE $I D ; C=$ ALLOCATED PRICE; $D=$ APPNTL;
$E=D I S T A N C E ; F=$ VIEWFRMR; $G=$ VIEWTOR; $H=$ VEGSCRN; $1=$ CHALLENGE;
$J=$ DIVSLOPE; K = DIVTERRA; L = VIEWTON; M = SCENICQL; $N=$ ADJUSTED AMOUNT

EXHIBIT IV - 10 (Continued)

EXHIBIT IV - 10 (Continued)

EXHIBIT IV - 10 (Continued)

$\begin{gathered} c 22 \pm 35 \\ 0.60, \end{gathered}$	0.60	$\begin{gathered} 1 ., 22 . \\ 0.00 \end{gathered}$	$\begin{gathered} 64484 ., \\ 17.95, \end{gathered}$	3.30,	2.52,	1.76,	2.19,	0.25 ,	0.00,	66,
0221.4%		1.22.,	81756.,	10.00,	2.52,	1.51,	2.27,	0.00 ,	0.00 ,	0.00,
1.66,	0.80	4.00,	22.75,							
$\begin{gathered} 0301 \\ 1.74, \end{gathered}$		$4 ., 30 .$, 4.00,	80759.,	10.00,	0.00,	1.06,	1.06,	0.75,	1.66,	2.82,
c30 117.		4.,30.,	97480.	10.00,	0.00,	1.44,	1.44,	0.25,	3.32,	3.32,
2.66 ,	0.86	6.00 ,	29.28,							
C30 119.		4.,30.,	87361.	9.15,	0.00,	1.01	1.01	0.76,	2.91	2.2
2.57,	1.20	5.40 ,	26.24,							
C30 133.		4.,30.,	83835.	9.15,	0.00,	1.56,	1.56,	1.58,	2.91,	2.24,
1.83,	0.76	3.60,	25.18,							
c30 135.		4.,30.,	69329	9.15	00	0.56,	0.56 ,	1.89,	1.25,	74,
1.33,	1.56	, 2.80,	20.82, 79787				81	0.50,	2.49,	2.66,
$\begin{gathered} \mathrm{C} 301,49 . \\ 1.74, \end{gathered}$	1.36	$\begin{array}{r} 4.930+, \\ 3.60, \end{array}$	$\begin{array}{r} 79787 \\ 23.97 \end{array}$			0.81	0.81			
C30 151.		4.,30.,	76854.,	9.15,	0.00,	. 81	0.81	1.39,	1.66,	2.66,
1.66,	1.36	3.60,	23.08,							
c30 21.		4.,30.,	82977.	10.00	0.00,	1.14,	1.14,	0.25,	2.08,	3.32,
1.91,	1.10	4.00,	24.92,							
c30 23.		4.,30.,	77100.	9.15,	0.00,	0.93	0.93	32,	2.08,	. 66 ,
1.83 ,	1.2	4.00,	23.16,							
C30 217.		4.,30.	75219.	9.15,	0.00,	1.01,	1.01,	0.25,	2.08,	1.83,
2.08,	1.20	4.00,	22.59,							
C30 233.		4.,30.	63573.	9.58	00	06	06	1.07,	0.00,	
1.08 ,	1.16	2.60,	19.10,							
C30 249.		4.,30.,	S2802.,	10.00,	0.00,	1.01,	1.01,	1.89,	0.00,	+33,
0.83 ,	1.2	1.60,	18.86,							
C36 133.		4.,36.	15071.	10.00	1.26,	2.27,	1.39,	0.25,	1.66,	1.66,
1.66,	0.20	4.00,	24.35,							
C36 135.		4.,36.,	18358.	10.00	26	27	76	0.13 ,	3.32,	3.07,
2.66,	0.20	, 6.00,	29.66,							
C36 149.		4.,36.,	15137..	10.00,	1.26,	2.27,	1.44,	0.50,	1.25,	1.00,
1.74,	0.20	$4.80,$	$\begin{array}{r} 24,45, \\ 1>940, \end{array}$				0.81,	0.25,	3.32,	2.91,
$\begin{gathered} 36151 . \\ 2.57, \end{gathered}$	0.20	$\begin{array}{r} 4.936 ., \\ , \quad 5.40, \end{array}$	$\begin{gathered} 17940, \\ 28.99, \end{gathered}$	10.00,	1.26,	2.27,	0.81,	0.25,	3.32,	2.91,
C36 137.		4.,36.,	16184.	10.00	1.26,	2.27,	1.64,	0.25,	2.49,	1.08,
2.16 ,	0.20	, 4.80,	26.15,							
C36 139.		4.,36.,	17170.,	10.00,	1.26,	2.02,	0.76,	0.19,	3.32,	3.32,
2.03,	0.40	, 4.40,	27.74,							
536153.		4, 36.,	15238.	0	1.26,	2.27,	. 69	0.25 ,	1.	0.
1.83 ,	0.20	, 4.80,	24.62,							
$c 36155 .$ $1.66,$		$4 ., 36 .,$	$\begin{array}{r} 15660 ., \\ 25.30, \end{array}$	10.00,	1.26,	2.02,	0.81 ,	0.44,	2.49,	1.83,
c36 2.633.		4.,36.,	14357.,	8.30,	1.26,	0.76,	1.89,	1.58,	1.66,	1.66,
1.49,	1.40	, 3.20,	23.20,							
C36 235.		4.,36.,	14046.,	10.00	26,	1.14	1.89,	1.89,	0.83,	1.99,
1.00,	1.10	, 1.60,	22.69,							
$\begin{gathered} 36249 \\ 1.25, \end{gathered}$	1	$\begin{aligned} & 4 ., 36 ., \\ & 0,8.80, \end{aligned}$	$\begin{aligned} & 13615, \\ & 22.00, \end{aligned}$	9.15,	1.26,	0.76,	1.89,	0.76 ,	1.25,	1.49,
C36 251.		4.,36.,	17564.,	10.00,	1.26,	1.14,	1.89,	0.13,	3.32,	2.91
2.24,	1.10	4.40,	28.38,							
C36 31.	.	4.,36.,	13648.,	10.00	1.26,	2.02,	2.02	0.25,	0.42,	1.
1.33 ,	0.40	, 3.20,	22.05,							
$c 363 \quad 3$		$4,, 36 .,$ 2.40	$\begin{array}{r} 13000 ., \\ 21.00, \end{array}$	10.00,	1.26,	2.02,	2.02,	0.25,	0.00,	. 6
C36 317		4.,36.,	14439.,	10.00,	1.26,	2.02,	2.14	1.64,	0.42,	1.49
1.16,	0.40	, 2.80,	23.33,							
C36 319		4.,36.,	13995.,	10.00,	1.26,	2.02,	2.14	0.76,	0.42,	1.66
1.16,	0.40	, 2.80,	22.61,							
236 35	.	4, ,36.,	13316.,	10.00	1.26,	1.89,	1.82,	0.76,	0.00,	1.33
1.16,	0.50	, 2.80,	21.51,							

EXHIBIT IV - 10 (Continued)

$\begin{gathered} c 36 \\ 1.58, \end{gathered}$	$0.50,$	$\begin{array}{r} 4 ., 36 ., \\ \quad 3.20, \end{array}$	$\begin{gathered} 14889, \\ 24.06, \end{gathered}$	10.00	1.26,	1.89,	1.64,	0.50,	1.25,	2.24,
$\begin{gathered} 036321 \\ 1.49, \end{gathered}$	0.20	$\begin{array}{r} 4.35 ., \\ 3.20, \end{array}$	$\begin{aligned} & 14345,, \\ & 23.17, \end{aligned}$	10.00,	1.26,	2.27,	1.44,	1.32,	0.83,	1.16,
$\begin{gathered} C 36323 \\ 1.41 \end{gathered}$	0.50	$4 ., 36 .,$	$\begin{array}{r} 13876 ., \\ 22.42, \end{array}$	10.00,	1.26,	1.89,	1.26,	1.39,	0.42,	1.49,
$\begin{gathered} 036333 \\ 0.83 \end{gathered}$	$0.40,$	$\begin{aligned} & 4 ., 36 ., \\ & 1.60, \end{aligned}$	$\begin{aligned} & 14088, . \\ & 22.76, \end{aligned}$	10.00,	1.26,	2.02,	2.14,	2.52,	0.00,	1.99,
$\begin{gathered} C 36335 \\ 1.49, \end{gathered}$	0.40	$\begin{array}{r} 4.736, \\ , \quad 4.00, \end{array}$	$\begin{aligned} & 14272 ., \\ & 23.06, \end{aligned}$	10.00,	1.26,	2.02,	2.14,	0.25,	0.00,	1.49,
$\begin{gathered} C 36349 \\ 1.16, \end{gathered}$	0.40	$\begin{array}{r} 4.36 . \\ 2.00 \end{array}$	$\begin{aligned} & 14592 ., \\ & 23.58, \end{aligned}$	10.00,	1.26,	2.02,	2.14,	2.52,	0.42,	1.66,
$\begin{gathered} 636351 \\ 1.25 \end{gathered}$	$0.40,$	$\begin{array}{r} 4 ., 36 ., \\ 2.80, \end{array}$	$\begin{aligned} & 13676 ., \\ & 22.10, \end{aligned}$	10.00,	1.26,	2.02,	2,14,	1.07,	0.00,	1.16,
$\begin{gathered} c 36337 \\ 1.41, \end{gathered}$	$0.40,$	$\begin{array}{r} 4 ., 36 ., \\ , \quad 4.00, \end{array}$	$\begin{aligned} & 13917 ., \\ & 22.48, \end{aligned}$	10.00,	1.26,	2.02 ,	1.56,	0.50,	0.00 ,	1.33,
$\begin{gathered} 036339 \\ 1.16 \end{gathered}$	$0.20,$	$\begin{array}{r} 4 ., 36 ., \\ , \quad 2.40, \end{array}$	$\begin{aligned} & 13536,0 \\ & 21.87, \end{aligned}$	10.00,	1.26,	2.27,	1,26,	1.58,	0.42,	1.33,
$\begin{gathered} \cos 353 \\ 0.75, \end{gathered}$	$0.40,$	$\begin{array}{r} 4.936 ., \\ 1.20, \end{array}$	$\begin{aligned} & 12862, \cdot \\ & 20.78, \end{aligned}$	10.00,	1.26,	2.02,	1.64,	2.52,	0.00,	1.00,
$\begin{gathered} 036355 \\ 0.66, \end{gathered}$	0.40	$\begin{aligned} & 4 ., 36, \\ & 0.80, \end{aligned}$	$\begin{aligned} & 12793 ., \\ & 20.67, \end{aligned}$	10.00,	1.26,	2.02,	1.51,	2.52,	0.00,	1.49,
$\begin{gathered} C 36433 . \\ 1.58, \end{gathered}$	$1.40,$	$\begin{array}{r} 4.36 .9 \\ 3.40, \end{array}$	$\begin{aligned} & 15733 ., \\ & 25.42, \end{aligned}$	9.58,	1.26,	0.76,	1.89,	1.58,	1.66,	2.32,
$\begin{gathered} C 36435 . \\ 2.41, \end{gathered}$	$0.80,$	$\begin{array}{r} 4 ., 36 ., \\ 5.40, \end{array}$	$\begin{aligned} & 18602 ., \\ & 30.05, \end{aligned}$	10.00,	1.26,	1.51,	1.44,	1.26,	3.32,	2.66,
$\begin{gathered} c 36449 \\ 0.91, \end{gathered}$	$1,40,$	$\begin{array}{r} 4 ., 36, \\ , \quad 2.00, \end{array}$	$\begin{aligned} & 12231,, \\ & 19.76, \end{aligned}$	9.15,	1,26,	0.76 ,	1.94,	1.26,	0.00,	1.08,
$\begin{gathered} \mathrm{c} 33451 \\ 0.91 \end{gathered}$	$1.40,$	$\begin{aligned} & 4.36 ., \\ & , \quad 3.20, \end{aligned}$	$\begin{aligned} & 14444, \cdot \\ & 23.33, \end{aligned}$	10.00,	1.26,	0.76 ,	1.94,	2.21,	0.00 ,	1.66,
$\begin{gathered} C 36453 . \\ 1.16, \end{gathered}$	0.80	$\begin{array}{r} 4.36 . \\ , \quad 2.00 \end{array}$	$\begin{aligned} & 15020 ., \\ & 24.27, \end{aligned}$	10.00,	1.26,	1.51,	1.89,	1.58,	1.25,	2.82,
$\begin{gathered} C 36455 \\ 1.49 \end{gathered}$	0.80	$\begin{array}{r} 4.936 .9 \\ , \quad 2.80, \end{array}$	$\begin{aligned} & 15126 ., \\ & 24.44, \end{aligned}$	10.00,	1.26,	1.51,	1.18,	1.07,	1.25,	3.07,
$\begin{gathered} C 36517 . \\ 2.41, \end{gathered}$	0.96	$\begin{array}{r} 4 ., 36 ., \\ , \quad 4.40, \end{array}$	$\begin{aligned} & 17867 ., \\ & 28.87, \end{aligned}$	10.00,	1.26,	1.31,	1.64,	0.25,	3.32,	3.32,
$\begin{gathered} C 36519, \\ 1.49, \end{gathered}$	0.96	$\begin{array}{r} 4 ., 36 ., \\ 3.20, \end{array}$	$\begin{aligned} & 15504 ., \\ & 25.05, \end{aligned}$	-	1.26,	1.31,	1.01,	0.50,	2.49,	2.82,
$\begin{gathered} C 36533 . \\ 2.49, \end{gathered}$	0.96	$\begin{array}{r} 4 ., 36 ., \\ 4.80, \end{array}$	$\begin{aligned} & 18478 ., \\ & 29.85, \end{aligned}$	10.00,	1.26,	1.31,	1.64,	0.76,	3.32,	3.32,
$\begin{gathered} C 36535 \\ 1.66 \end{gathered}$	0.96	$\begin{array}{r} 4.936 ., \\ 3.20, \end{array}$	$\begin{aligned} & 16813 ., \\ & 27.16, \end{aligned}$	10.00,	1.26,	1.31,	1.39,	1.58,	2.49,	3.32,
$\begin{gathered} c 36549 \\ 1.25, \end{gathered}$	0.96	$\begin{array}{r} 4 ., 36 ., \\ 2.80, \end{array}$	$\begin{aligned} & 14708 ., \\ & 23.76, \end{aligned}$	10.00,	1.26,	1.31,	1.69,	1.01,	1.25,	2.24,
$\begin{gathered} \operatorname{c36} 551 \\ 1.58 \end{gathered}$	0.96	$\begin{array}{r} 4 ., 36, \\ 3.20 \end{array}$	$\begin{gathered} 16087 . \\ 25.99, \end{gathered}$	10.00,	1.26,	1.31,	1.69,	1.26,	1.66,	3.07,
$\begin{gathered} C 36537 \\ 1.99, \end{gathered}$	0.86	$\begin{array}{r} 4.936 . \\ 4.00 \end{array}$	$\begin{aligned} & 16916,, \\ & 27.33, \end{aligned}$	10.00,	1.26,	1.44,	1.39,	0.25,	3.32,	2.82,
$\begin{gathered} C 36539 \\ 2.32, \end{gathered}$	0.86	$\begin{array}{r} 4.36 . \\ 4.00 \end{array}$	$\begin{aligned} & 17745, \\ & 28.67, \end{aligned}$	10.00,	1.26,	1.44,	1.64,	0.76,	3.32,	3.07,
$\begin{gathered} C 36553 \\ 1.58, \end{gathered}$	0.86	$\begin{array}{r} 4 ., 36 \ldots \\ 3.60, \end{array}$	$\begin{aligned} & 15676,9 \\ & 25.32, \end{aligned}$	10.00,	1.26,	1.44,	1.69,	0.50,	2.08,	2.32,
$\begin{gathered} c 36555 \\ 2.32, \end{gathered}$	$0.86,$	$\begin{array}{r} 4 ., 36 . \\ 5.20 \end{array}$	$\begin{aligned} & 18316 ., \\ & 29.59, \end{aligned}$	10.00,	1.26,	1.44,	1.69,	1.26,	2.91,	2.66,
$\begin{gathered} C 37130 . \\ 1.99 . \end{gathered}$	$1+40,$	$\begin{aligned} & 1.337 \ldots \\ & 5.60, \end{aligned}$	$\begin{aligned} & 82596 ., \\ & 22.94, \end{aligned}$	10.00,	0.00,	0.76,	1.94,	0.25,	0.00,	1.00,
$\begin{gathered} 637131 . \\ 1.99, \end{gathered}$	1.40,	$\begin{array}{r} 2 ., 37 \ldots \\ 5.60 \end{array}$	$\begin{aligned} & 79008, \\ & 21.94, \end{aligned}$	10.00,	0.00 ,	0.76,	1.94,	0.25,	0.00,	0.00,
$\begin{gathered} C 37138 . \\ 1.16, \end{gathered}$	2.00	$\begin{array}{r} 2 ., 37, \\ 0.40 \end{array}$	$\begin{aligned} & 27052, \\ & 7.51, \end{aligned}$	0.00,	0.00,	0.00,	2.07,	1.39,	0.00,	0.50,
$\begin{gathered} C 37139, \\ 1.08, \end{gathered}$	$2.00,$	$\begin{array}{r} 4 ., 37 ., \\ 1.00, \end{array}$	$\begin{aligned} & 50943 ., \\ & 14.15, \end{aligned}$	5.00,	0.00,	0.00,	2.02,	1.89,	0.00,	1.16,
03722.		3, 37, ,	67836.,	8.87,	0.00,	0.56,	1.82,	0.25,	0.00,	0.66 ,
1.66,	1.56,	3,47,	18.84,							

EXHIBIT IV - 10 (Continued)

037211.	1.,37.,	67063.,	10.00,	0.00,	0.81,	1.82,	0.25,	0.00,	1.00,
$\begin{gathered} 1.00, \\ 237 \\ 2 \end{gathered}$	$1.36, \frac{2.40,}{4 ., 37},$	$\begin{gathered} 18.62, \\ 47877 . \end{gathered}$	5.00,	0.00,	0.00,	2.07	0,25.	0.00,	0.25
1.33, 2	2.00, 2.40,	13.30,							
C37 219.	3.,37.,	42755.,	3.33,	0.00,	0.00,	2.079	0.50,	0.00,	0.66,
1.44, 2	$2.00,1.87$,	11.87,							
c37 233.	3.,37.,	59752.,	6.679	0.00,	0.00,	2.02,	2.52,	0.00,	1.22,
1.11, 2	$2.00,1.07$,	16.59,							
C37 235.	1.,37.,	79884.	10.00,	0.00%	1.26,	2.02,	2.52,	0.00%	1.669
1.33, 1	1.00, 2.40,	22.18							1.99,
C39 1 1.	4.,39.,	$13293 .$	10.00,	0.00,	0.56,	1.269	0.44,	0.42,	1.99,
1.41, 1	1.56, 3.20,	20.84,							
03913.	4.939..	12860.'	10.00,	0.00,	0.56,	1.26,	0.13,	0.00,	1.00%
1.66, 1	1.56, 4.00,	20.16,							
C39 1 17.	4.,39.,	14439.,	10,00,	0.00,	0.56,	1.51,	0.069	1.259	3,32,
1, 58, 1	1.56, 2.80,	22.63, 15826.						1.66,	2.49,
C39 1 19.	4., 39.9	15826.9	10.00,	0.00,	0.00,	1.44;	0.06\%	1.669	2,47,
2.16, 2	2.00, 5.00,	24.81,							
03915.	4.,39.,	13200.,	10.00,	0.00,	0.009	1.44,	0.00,	0.83,	1.16\%
1.66, 2	2.00, 3.60,	20.69,							
03917.	3.,39.,	14325.9	10.00,	0.00,	0.00,	1.51,	0.00,	1.11,	0.66,
2.10, 2	2.00, 5.07,	22.45, 15168.					0.00,	1.66,	1.66,
C39 1 21.	4, 39,	15168.9	10.00\%	0.00,	0.00,	1.66;	0.00,	1.609	1.689
1.99, 2	2.00, 4.80,	$\begin{aligned} & 23.78, \\ & 12876 ., \end{aligned}$			0.00,	1.89,	0.00,		0.00,
$C 39$ $1.49, ~$		$\begin{aligned} & 12876.9 \\ & 20.19, \end{aligned}$	10.00\%	0.00,	0.00,	1.89,	0.00,	0.00,	0.00,
$1.49,2$ 39239.	2.00, 4.80,	20.19, 14706.9	10.00,	0.00,	1.69,	1.64,	0.25,	0.42,	2.41,
$\begin{gathered} 39239 . \\ 1.99,0 \end{gathered}$	$\begin{array}{r} 4.939 .9 \\ 0.66, \quad 4.00, \end{array}$	23.05,	10.00,	0.00,	1.69,	1.64,			
c39 3 25.	2.,39..	16674.9	10.00,	0.00,	0.00,	1.89,	0.63,	1.66,	0.83,
2.32, 2	2.00, 6.80,	26.14,							
C39 319.	4.939..	14679.,	10.00,	0.00,	0.00,	1.76,	0.69,	0.83,	1.41,
1.91, 2	2.00, 4.40,	23.01,							
c39 35.	4, 39.9	15858.,	10.00,	0.00,	0.00,	2.02,	0.13,	1.66,	1.41,
2.24, 2	2.00, 5.40,	24.85,							
co6 152.	2., 6.,	19640.,	10.00,	0.00,	2.52,	2.52,	0.00,	2.49,	1.33,
1.16, 0	0.00, 2.40,	22.42,							
C06 145.	2., 6.,	21324.,	10.00,	0.00,	2.52,	2.52,	0.13,	3,32,	1.33,
1.33, 0	0.00, 3.20,	24.34,							
Cob 139.	2., 6.,	9152.,	0.00,	0.00,	2.52,	2.52,	0.13,	2.49,	0.50,
1.49, 0	0.00, 0.80,	10.45,						3.32.	1.44,
cob 153.	$3 ., 6.9$	22569.,	10.00,	0.00,	2.52,	2.52,	0.08,	3.32,	1.44,
1.88, 0	0.00, 4.00,	25.76,							

Wisconsin in cooperation with a joint project of the appraisal professional groups called EDUCARE, The Education Foundation for Computer Applications to Real Estate, and EDUCARE Network, Inc., a cooperative which makes these systems available to the real estate industry through GE Time Sharing. Over the years MKTCOMP has been used intensively by such federal agencies as the National Park Service in the acquisition of the southwest Everglades in Florida, The National Wildife Service in the evaluation of border waters in Minnesota, and the Bureau of Indian Affairs for pricing agricultural land. Private appraisers have used it for ranch lands, single family homes, and rental comparisons as well as automated community tax assessment.

H. A Brief Explanation of the MKTCOMP System

The essence of the market comparison approach in real estate appraisal is the process of selection from a broad array of sales, those properties which are most substitutable to the subject property in terms of physical attributes (the principle of substitution) with adjustment made for small differences in proportion to the contribution these differences make in the price of each sale (principle of contribution). In order to execute this process in a data processing mode without placing any constraints upon the manner in which the appraiser wishes
to express his judgment, experience and insight, the MKTCOMP system has the following components:

1. A subject file which provides the identification and desired attributes for one or more subject properties, which in this case consists of 590 40-acre units as prepared in II and IV-G.
2. A comparable sale file which in this case consists of the 173 40-acre sub-sale units prepared as previously described in this chapter and containing the same set of attributes provided for the subject property.
3. The factor file which identifies each attribute in the same sequence and category established for the subject file and comparable sale file together with the appropriate adjustment for a difference in the degree or quantity of a specific attribute when each comparable is compared to the subject property. These adjustments will be discussed below.
4. Aranking procedure which will array the 173 comparable sub-sale units in order of their similarity to the subject 40 -acre unit to be appraised. The degree of similarity is measured by means of Euclidian distance and development of a coefficient of comparability, which will be described below, generated from ajjustments for differences between subject and
comparables in the ten wilderness attributes in the factor file.
5. Decision Rule \#l of the appraiser is to consider only the best 28 comparables for each 40 -acre section, so that 28 from a potential of 173 alternatives will be selected using the comparability coefficient as most similar to the subject 40 in terms of the ten wilderness attributes previously defined.
6. Decision Rule \#2 addresses the problem that of the 14 original comparable sales, some contribute many more 40 -acre cells to the 173 pool of sub-sales than others so that a larger number of sub-sale properties from the same original sale might dominate the array of comparable 40's. To avoid one comparable sale dominating any particular set, the appraiser directed the system to accept only the first and best sub-sale from any specific sale of the 14 in the final array selected, so that the 28 may be reduced to as low as six 40's to avoid no more than one 40 in the set from any one sale.
7. Decision Rule \#3 is to choose up to the best ten 40-acre units of those surviving decision \#2 by computing the mean of the survivors and discarding any 40 where the reallocated price is more than two

> standard errors from the mean of the cluster to avoid outliers.

The system keeps count of the frequency with which each of the 14 comparables plays a part in the value conclusion and the relative aggregate influence of private and government sales so that the appraiser may judge the equity and scope of representation of the comparables in the final conclusion. Rather than rely entirely upon the automated process, the appraiser and staff then took a sample of the foremost comparable sales, located the appropriate three dimensional slides, and matched these visually and from data records to the subject property, to confirm the appropriateness of selection.

The key link between subject property and comparable sale is the Factor file. The factors selected are the wilderness attributes previously described which in combination represent the wilderness components of the RARE II concepts of wilderness. Following the factor name, the file provides a type code which indicates the type of adjustment which should be made, followed by the actual rate or quantity of adjustment to be made. The system allows for five code types, of which three might be relevant to this appraisal.

Type Code 1 designates factors for which the adjustment to be made is specified in number of dollars per point. (For example, each additional parking
stall in a garage could be assumed to require an adjustment of $\$ 1,200$ or each square foot of building difference might require an adjustment of $\$ 20$.

Type Code 2 designates factors which compare on a proportion or percentage of the sales price. (For example, adjusted age provides for an adjustment for the difference between the age of a comparable and a subject property which is associated with a 2 percent decline in price, thus a -.02.) Similarly, each increment in a construction quality code number describing a comparable would be associated with a 3 percent adjustment in price. The construction quality code number assigned to each comparable by the user is optional and subjective.

In this appraisal, all adjustments are made as a Type Code 1 based on the relative contribution in dollars per point of each of the ten variables in terms of the mean price per 40 acre sub-sale unit. A computer program called FACTOR was designed to accumulate into a single total the sum of individual attribute scores to calculate a ratio which demonstrates the relative contribution of each attribute point
score to the total point score. Since dollar adjustments must be made to 40 -acre sub-sale units, the mean price of $\$ 43,794$ of the 173 sub-sales was multiplied by the percentage of contribution of any single attribute to the aggregate point score in order to establish a dollar amount per point of final adjustment for differences (see Exhibit IV-ll) between a 40-acre subject property and any one 40-acre sub-sale. The model permits initial selection of a set of candidates for comparable analysis with a partial factor set as will be shown below.

Comparison or matching of the subject 40 acres to all of the 173 40-acre sub-sales in the sale pool is a two-step process which parallels the traditional market comparison done manually. In Step 1 , for example, an appraiser might compare two 3-bedroom homes otherwise identical except for the fact that Comparable A, which sold for $\$ 60,000$, has two bathrooms; Comparable B, which sold for $\$ 50,000$ has one bathroom, and the subject property has $1-1 / 2$ bathrooms. The appraiser might determine that each bathroom fixture in addition to the first bathroom was worth $\$ 1,000$ in the consumer's mind and list of preferences. In that case, Comparable A would be compared by taking $1-1 / 2$ baths (five fixtures) in the subject minus two baths (six fixtures) for a reduction in price of minus one fixture converted to dollars of minus $\$ 1,000$ for an adjusted

EXHIBIT IV-11

FACTOR ADJUSTMENTS USED
FOR TWO-STAGE MKTCOMP SELECTION
MEAN PRICE PAID PER WILDERNESS CELL IS 43,794

SALE ID	0	0	0
PRICE	0	0	0
APPARENT NATURALNESS	25.00%	10949	0
DISTANCE TO PERIMETER	6.25	2737	0
VIEW FROM CELL-REV	6.25	2737	0
VIEW TO CELL-REV	6.25	2737	0
VEGETATION SCREENING	6.25	2737	1099
CHALLENGE	8.33	3646	1099
DIVERSITY - \%SLOPE	8.33	3646	0
DIVERSITY - TERRAIN	8.33	3646	0
VIEW FROM	5.00	2190	0
SCENIC QUALITY	20.00	8759	1099
WILDERNESS ATTRIBUTES	0	0	0

U1S ALL25.FAC

```
0,0,0,0
1.28,0
2,1,0.
3.590.2.0
4,10,0.
5,2,0.
0.0.0
SALEIT,1,0,0.0.0.0
PFICE,0,0,1,0,0,0
AFFNTL, 1,0.1094%,1,0.0
MISTANCE,1,0.2737,1,0,0
UIEWFRMF,1,0,2737,1,0.0
VIEWTOR,1,0,2737,1,0,0
VEGSCEN,1,0,2737,1,0.1097
CHALLENG.1,0,3646,1,0.1079
MIUSLOFE,1,0,3546,1,0,0
UIUTEFSA,1,0,3645,1,0,0
UIEMTON.1.0.2170.1,0,0
SCEMICOL.1,0.375%,1,0.1057
HILIATT,1,0.0.0,0,0
```

price of $\$ 59,000$. At the same time, Comparable B with three fixtures subtracted from the five in the subject property would indicate a plus two fixtures times $\$ 1,000$ or an adjustment upward of $\$ 2,000$ for a total price of $\$ 57,000$. Adjusting sales prices for the differences in the bathrooms greatly reduces the dispersion of prices, although it can almost never explain the total difference in consumer motivations. The property which is most comparable is the one which is least adjusted for differences. A variety of small adjustments is preferable to one large single adjustment so that small errors in the appraisal judgment can begin to offset each other. Thus, ten $\$ 100$ adjustments are preferable to a single $\$ 1,000$ adjustment, since some are plus and some are minus, some may be a little high and others a little low.

Step 2 requires the appraiser to rank all the comparables for degree of comparability to treat the adjustments as absolute numbers (ignoring the + or - sign) and to penalize for larger adjustments, it is desirable to square each adjustment, take the sum of the square, and then compute the square root of the sum of the squares as a measure of the relative distance (geometric distance serving as a measure of difference) of each comparable from the subject property. Notice that in the immediate example above $\$ 100$ squared is $\$ 10,000 \times 10=\$ 100,000$ sum of the square of all adjustments as compared to $\$ 1,000$
squared which equals $\$ 1$ million. The square root of $\$ 100,000$ is \$316.23, a much smaller number than the square root of $\$ 1$ million ($\$ 1,000$) so that the property with more frequent small adjustments is more comparable. The $\$ 316.23$ is the comparability coefficient which appears in MKTCOMP. That method, which is best known as Euclidian distance, is applied to the subject appraisal as illustrated in Exhibit IV-12. In order to convert differences in two different scores, such as scenic quality and terrain, it is necessary to have a common denominator in terms of dollars per point so that it is possible to measure difference in terms of total dollars of adjustment. In the hypothetical example of Exhibit IV-12 terrain points are considered to contribute 1.33 percent more to value than scenic quality points, an implication that is drawn from the appraiser's assignment of $\$ 200$ adjustment for each full point of difference of the terrain score between subject and comparable and only $\$ 150$ adjustment for each full point difference of scenic quality score. To understand Exhibit IV-12, assume that a subject 40-acre unit has a score of 1.5 for scenic quality and 7.5 for terrain. For two dimensions the subject property is represented by the intersection of the vertical line for terrain score and the horizontal line for scenic quality score. Comparable \#l is defined by point B at the upper right and Comparable \#2 is identified as point Y at

EXHIBIT IV - 12

GRAPHIC ILLUSTRATION OF EUCLIDIAN DISTANCE AS A METHOD FOR RANKING COMPARABLE SALES OF RELATIVELY DIFFERENT ATTRIBUTE SETS

the lower left. Which is most comparable to C depends on whether the hypotenuse of the triangle $B C$ or $Y C$ is shorter. In the illustration, the hypotenuse of YC is 427 as compared to 522 for $B C$ so that Comparable \#2 is most comparable. The MKTCOMP uses multi-dimensional geometry and takes the sum of the squares of all adjustments before solving for the coefficient of comparability with which to rank each of the 173 comparable sub-sales relative to the subject 40 and then takes the best 28 , i.e., the lowest 28 comparability coefficients.

The MKTCOMP model permits a two-stage application of the Euclidian distance selection process because if one factor is given too much weight initially, the square of that number will be so big that the selection process would lock into selection of comparables that were identical in only one factor since none of the other differences when squared and summed would modify the ranking established by the single dominant adjustment. Therefore, the first column of selection adjustments softens the significance of particular variables to permit a possible greater diversity of selection and those selected are then readjusted to the final factor file in a second pass. The factor adjustments used for intial selection and those used for final adjustment are displayed in Exhibit IV-ll. Notice the selection adjustments have softened the emphasis on apparent naturalness and scenic quality lest the
system choose only comparable sub-sales which are identical to the subject property's score in most categories. The final set of adjustments reflects the equal weight given the four components of RARE-II wilderness which generate the wilderness score as displayed earlier in Exhibit IV-8.

The MKTCOMP model then allows the appraiser to further screen the initial set of 28 sub-sale comparables in order to be assured of reasonable diversity among comparable sales and buyer/seller motivations while at the same time reducing the dispersion before calculating a mean price of the similar properties selected. The program wil only accept the first and best sub-sale in terms of comparable coefficients from any one subject sale. It will then compute the mean adjusted price of the remaining comparable sales units and reject any price which is more than two standard errors from the mean so that outlier sales cannot adversely affect the final pricing of the subject 40. Of the remaining comparables, the best 10 are selected and the mean of these remaining sales is the price assigned the subject 40. Each step should reduce the dispersion of the sale cluster as represented by the standard error of the mean. Exhibit IV-13 provides a sample output and explanations of each number are attached to the output to assist in understanding the process. The same output is available for each 40 acres of the subject property and is included in

Appendix C of this appraisal. Note that every comparable 40-acre sub-sale is identified and the actual adjustments to those which were used to price the subject 40 has a separate one-page report as illustrated in Exhibit IV-13. Sale values have been summarized by 640 acre sections (Exhibit IV-l4), by cluster (Exhibit IV-15), by the number of percentage of times a sub-sale unit was chosen from each comparable sale (Exhibit IV-16), and by the number of sub-sale units involving government purchases and non-government purchases (Exhibit IV-16). Note the evenness of representation for all comparable sales, large and small, expensive and inexpensive and the further balance between government and non-government sales. The appraiser feels that this balance neutralizes the immeasureable influence of seller attitudes when negotiating with government or private agencies concerned with wilderness conservation. It is a clear statement of objectivity in the matching of physical elements without regard to price. Finally, the values are provided for each of the 20 ownership positions (Exhibit IV-17). THE TOTAL VALUE OF THE 20 OWNERSHIP POSITIONS BASED ON 40-ACRE MARKET COMPARISON COMPARABLE MATCHING IS $\$ 35,750,000$. However, the MKTCOMP value of $\$ 35,734,100$ or $\$ 35,750,000$ should be put in context in terms of more traditional market comparison approaches and in terms of the issues of plottage and economies of scale.

EXHIBIT IV - 13

SAMPLE MARKET COMPARISON OUTPUT AVAILABLE FOR EACH OF 590 SUBJECT PROPERTY 40 ACRE UNITS. ENTIRE OUTPUT CAN BE FOUND AT THE END OF APPENDIX C

Subject 40 acre score data
Square root of sum of the squares of the differences between subject and comp. The lower the index, the more comparable to the subject 40 acre cell.
Reallocated price adjusted for difference between comp. and subject

Reallocated price per 40 acre cell

EXHIBIT IV - 14

```
SUMMARY OF MKTCOMP VALUES BY
    SECTION OR PARTIAL SECTION
```

VALUATION RESULTS BY SECTION SEQUENCE NO. Y-COORDINATE X-COORIINATE VALUATION

EXHIBIT IV - 15

SUMMARY OF MKTCOMP VALUATION RESULTS BY CLUSTER I TO IV

```
valuation results by cluster
ClustER NO. valuation
    1 $4,128,810.
    2 $1,780,600.
    3 5,803,020.
    4 $24,021,700.
            ============
        $35,734,200.
```

	EXHIBIT IV - 16	
	NUMBER AND PERCENTAGE OF SELECTION OF EACH COMPARABLE SUB-SALE	
No. Landmark	Number of Sub-Sales Chosen	Percentage Times Chosen
1	142.	0.03
16	306.	0.06
17	500.	0.10
18	232.	0.05
22	362.	0.07
30	580.	0.11
37	250.	0.05
2	520.	0.10
6	146.	0.03
9	283.	0.06
19	316.	0.06
36	621.	0.12
39	327.	0.06
40	492.	0.10
\%		
SUMMARY OF SELECTION BY FREQUENCY DISTRIBUTION BETWEEN GOVERNMENT AND NON-GOVERNMENT		
	2372 .467205 2705 .532795	

EXHIBIT IV - 17

COMPUTER SUMMARY OF OWNERSHIP VALUES DISTRIBUTED TO EACH OF 20 OWNERS BY ASSEMBLAGE OF 40-ACRE PARCEL VALUES IN EACH OWNERSHIP

IIS MKTONR.FIX

```
+CFU LIMIT: NONE ELAPSED TIME LIMIT: 7 HRS, 5O MINS
    RUN MKTONR.BAS
    INPUT FILENAME? MKTCHP.FIX
    OUTPUT FILENAME <MKTCNP.FIX\? MEAN.OUT
    ENTER O FOR MEAN PRICE
    ENTER I FOR UEIGHTED AVE
    ENTER 2 FOR FOST SELECTED MEAN PRICE
    ? 0
    OUNERSHIP SUMMARY FOR MEAN.OUT
\begin{tabular}{lr}
1 & \(\$ 4,089,320\). \\
2 & \(\$ 3,380,380\). \\
3 & \(\$ 5,823,230\). \\
4 & \(\$ 5,599,520\). \\
5 & \(\$ 976,748\). \\
6 & \(\$ 1,003,280\). \\
7 & \(\$ 1,390,790\). \\
8 & \(\$ 1,728,860\). \\
9 & \(\$ 1,464,440\). \\
10 & \(\$ 1,553,040\). \\
11 & \(\$ 1,882,630\). \\
12 & \(\$ 2,030,870\). \\
13 & \(\$ 1,869,640\). \\
14 & \(\$ 1,894,770\). \\
15 & \(\$ 192,188\). \\
16 & \(\$ 186,746\). \\
17 & \(\$ 91,884\). \\
18 & \(\$ 263,531\). \\
19 & \(\$ 146,561\). \\
20 & \(\$ 165,454\). \\
& \(===========\) \\
& \(\$ 35,734,100\).
\end{tabular}
```


I. Market Comparison Price Model No. 2

There are alternative approaches to MKTCOMP for determining market price from the array of comparable sales data in Exhibit IV-8. None are as sensitive and objective as MKTCOMP, but traditional formats may serve as a check and stabilizing adjustment of results. The first of these is perhaps the most basic and traditional. One conventional approach is to use an average price per acre for several alternative acreage categories. In this case the 14 comparables can be divided between those which are appropriate only to sections and subsections where the best use is clearly as a trail-head and access route to a public heritage, and those best considered as wilderness. Recalling the conclusions as to highest and best use (Section II), indicated that all of Cluster II was an access control corridor and that certain components in Sections I and III were best preserved as wilderness trail-head and access routes, with the balance of their lands being irreplaceable wilderness inextricably tied to the view shed of the Enchanteds Area. Cluster IV was a wilderness in its own right, with visual control by its singular horseshoe-ridge pattern; its scale at 17,000 acres before combination with Federal lands made it one of the largest roadless areas of its kind in private ownership. Only two of its sections were
considered trail-heads and development pressure points, and the balance of the sections were considered wilderness acres.

To determine the mean adjusted price refer to Exhibit IV-18 of comparable sales representing major access points to the wilderness which the public or conservationists would need to control if they were to control the level of utilization, the appraiser selected only those sales with a wilderness score higher than the comparable mean of 5.4 and a scenic quality comparable mean score higher than 1.0 since the subject property is generally superior to both these categories. These standards selected comparable No. 30 G , Sloan Kettering; No. 16 G, Bettis; No. 22 G , Wolfinbarger; and No. 18 G , Matteson; indicating their average adjusted price per acre in Column 12 of Exhibit IV-18 and the mean price of $\$ 3,142$, or rounded to $\$ 3,150$ per acre. The standard deviation is a respectable $\$ 831$ per acre.

To price the remaining acreage in each cluster which could be considered wilderness, it was important to select comparables of the highest wilderness quality and scenic quality. Therefore, the appraiser determined to use only those comparables where the average wilderness score per ten acres was greater than 5.4 , the mean wilderness score for all the properties, and the scenic quality score was greater than l.0. Definition of a set of comparable sales strong in wilderness

SORTING OF COMPARABLE SALES AS WILDERNESS AND trail head with above average scores for wilderness AND SCENIC QUALITY

	Landmark No.	Name	No. of Acres	Adjusted Price	Price/ Acre	Mean Acre Price of Those Properties With Wilderness Score 5.4 and Scenic Quality Score leil	Mean Acre Price of Those Properties With Trail Head Entries With Wilderness Score 5.4 and Scenic Quality Score 1.0
1	9	Sunset Lakes	320	\$136,000	\$425	\$425	
2	40	Mueller	640	501,000	782.81	783	
3	2	Phelps Creek	357	287,000	803.92	+804	\$3,106
4	16 G	Bettis	160	497,000	3,106.25	3,106	\$3,106
5	36	Ankeny	1,760	671,000	381.25 $2,024.63$	2,025	2,025
6	30 G	SloanKettering	462.8	937,000	2,024.63	2,025	2,025
7	39	National Wildife	336	159,000	473.21	473	
8	18 G	Matteson	81.83	281.000	3,433.95		$\begin{aligned} & 3,434 \\ & 0 \end{aligned}$
9	22 G	Wolfinbarger	87.7	351,000	4,002.28		
10	6	Lake Caroline	41.7	42,000	1,007.19		
11	1 G	Marble Creek	120	501,000	4,175		
12	19	Taylor	64.84	132,000	2,035.78		
13	17 G	Lanham	620	1,499,000	2,417.74		
14	37 G	Markley	120.65	337,000	2,793.20	,	
		MEAN (AVE	E)		\$1,190	\$1,142	\$3,142
		STANDARD	VIATION		1,363	1,034	831
						or $\$ 1,150$ per acre rounded	or $\$ 3,150$ per acre rounded

and scenic quality produced seven comparables, No. 9, Sunset Lake; No. 40, Mueller-Dome Rock; No. 39, National Wildife on Holter Lake; No. 30 G , Sloan-Kettering; No. 2, Phelps Creek; No. 17 G, Bettis, and No. 36, Ankeny. These convert to a mean price per acre of $\$ 1,142$, or rounded to $\$ 1,150$ per acre. These prices were then applied to each ownership position by cluster as demonstrated in Exhibit IV-19 to estimate a total market value of $\$ 33,001,550$, allocated to each owner as indicated in Column 6.

Although selection of comparables are based on better than average wilderness scores and scenic quality scores well above average, and average price per acre approach can be suspect because:

1. Average price quality does not reflect the superior wilderness quality of the subject property reflected by the large percentage of cells with higher than average scores, particularly in Clusters 3 and 4.
2. For comparable sales quality scores declined significantly with increasing size of the purchase, a corelation which is not really true for the subject property, which has so many superior ten acre cells in each cluster.
3. Average price is insensitive to the fact that prices tend to fall per acre for the very largest properties and

valuation by cluster and ownership using average price per acre OF HIGH QUALITY WILDERNESS OR TRAIL HEAD COMPARABLES PRICING MODEL NUMBER 2

(1) Owner ${ }^{\mathrm{No}}$	(2) Cluster I	(3) Cluster II	(4) Cluster III	(5) Cluster IV	(6) Total Per Owner No.	
1	$1483 \times 1150=1,705,450$			$861 \times 1150=990,150$	\$2,695,600	
2				$1662 \times 1150=1,911,300$		
2				$640 \times 3150=2,016,000$	3,927,300	
3				$2960 \times 1150=3,404,000$		
3				$640 \times 3150=2,016,000$	5,420,000	
4			$623 \times 1150=716,450$	$1404 \times 1150=1,614,600$		
4	$106 \times 3150=333,900$	$1028 \times 3150=3,238,200$	$320 \times 3150=1,008,000$		6,911,150	
5				$640 \times 1150=736,000$	736,000	
6				$640 \times 1150=736,000$	736,000	뜬
7	$426 \times 1150=489,900$					-1
7	$534 \times 3150=1,682,100$				2,172,000	$<$
8			$929 \times 1150=1,068,350$		1,068,350	$\xrightarrow{-1}$
9				$980 \times 1150=1,127,000$	1,127,000	6
10				$960 \times 1150=1,104,000$	1,104,000	
11				$1326 \times 1150=1,524,900$	1,524,900	
12				$1182 \times 1150=1,359,300$	1,359,300	
13			$616 \times 1150=708,400$	$640 \times 1150=736,000$	1,444,400	
14			$889 \times 1150=1,022,350$			
14			$320 \times 3150=1,008,000$		2,030,350	
15				$102 \times 1150=117,300$	117,300	
16				$102 \times 1150=117,300$	117,300	
17				$120 \times 1150=138,000$	138,000	
18				$110 \times 1150=126,500$	126,500	
19				$110 \times 1150=126,500$	126,500	
20				$104 \times 1150=119,600$	119,600	

therefore the process would tend to be insensitive to changes in a court decision as to the size of the appraisal unit. It was noted in Section I that whatever appraisal model was chosen, it should be responsive to changing appraisal instructions by negotiators or the courts. 4. An average price mechanism does not replicate or predict prices of the comparable properties. Instead, it substitutes an average as a consistent pattern. 5. An average price mechanism is not sensitive to differences in point scores or size of ownership position by cluster for each of the twenty owners.

Therefore, an alternative pricing model such as MKTCOMP must be weighted more heavily because it provides greater sensitivity to the differences among comparables and between comparables and subject properties relative to wilderness elements which affect price of wilderness tracts. In short, the point systems developed to this stage in the appraisal should be integrated into the price formula rather than simply used as a sorting device as was done to select comparables for the average price estimate.
J. Multiple Regression Applications to

Valuation of Subject Property
In recent years mass appraisals of roughly similar properties have utilized a statistical technique called
stepwise multiple regression in an effort to relate physical factors to price. Although the technique produces relatively unreliable prices for each individual subject unit, the nature of the technique minimizes the collective error so that the aggregate sum of all prices of the individual subjects is highly reliable. Indeed, multiple regression was first applied to farm and ranch land appraisals using soil types and animal unit month scoring systems, not unlike the point scores used in this appraisal for wilderness.

In this case, a multiple regression program which is a routine component of MINITAB on the WITS system of the University of Wisconsin School of Business was used to test the applicability of stepwise multiple regression analysis to the subject property.

The nine comparable sales used for the average log price per ten acre cell were regressed in various combinations against the ten wilderness attributes previously discussed. Only two attributes, apparent naturalness and vegetation cover had t values greater than two.

The nine comparable sales, using log price per ten acre cell, were then regressed against apparent naturalness and vegetation cover to provide an R-squared of 71 percent after adjustment for six degrees of freedom. The results are shown in Exhibit IV-20. The regression equation derived is:

$$
\begin{aligned}
\text { Price }= & 6.7528-1.26(\text { Xl - apparent naturalness }) \\
& +1.01(x 2-\text { vegetation })
\end{aligned}
$$

This equation expresses price as the log of price per ten acre cell. The use of the log compresses the variance attributable to the many varied sized properties with resulting varied prices per acre. The equation was then applied to each ten acre data cell of the subject property to infer the values by ownership position and cluster shown in Exhibit IV-2l.

Regression also tends to provide some volatility for the six smallest ownerships although ten acre cells do permit some offset of statistical variance in the price inference for each ten acres.

Regression is not a true market comparison, as noted earlier, although some recognition should be made of its aggregate value indications.

K. Synthesis and Reconciliation of

Market Comparison Value Indicators
Three valuation methods using market comparison data have been applied using three units of comparison, one acre for the average price per acre approach, ten acres for the multiple regression approach, and a 40 acre sub-unit for the MKTCOMP approach.

The average price per acre model (pricing model no. 2) has little to recommend it other than its tendency to stabilize values of the smallest acreage owners, primarily owners 15

EXHIBIT IV - 21

PRICING OF 20 OWNERSHIP POSITIONS USING MULTIPLE REGRESSION PRICING MODEL NUMBER 3

Ready
gisflay value.gut

Fun sumsur				
ENTER InPUT FIGE Mate				
? RUH2.5RT				
1	1	724.	10.276.000.	1.483.
1	4	505.	1.096.230.	861.
2	4	1.324.	17.635.900.	2.302.
3	4	2,153.	4.444.220.	3,600.
4	1	66.	249,172.	106.
4	2	706.	1.020.000.	$1.02{ }^{\circ}$
4	3	541.	88, 141.	943.
4	4	846.	1,139,360.	1,404.
5	4	372.	544.575.	640 .
5	4	359.	728.025.	640.
7	1	556.	1,226,260.	760.
8	3	516.	1,101.760.	927.
9	4	592.	942,279.	980.
10	4	574.	1.045.100.	960.
114		798.	1,592,030.	1.326.
124		695.	1,520,370.	1,182.
133		344.	336.701.	616.
134		317.	931.407.	640.
143		704.	1.335.560.	1,297.
157		58.	150.77i.	102.
164		55.	171.367.	102.
174		69.	81,136.	120.
154		ci.	24, 037.	110.
14		62.	177.256.	110.
204		56.	219.950.	104.
TOTAL FOIITS $=13.250$.				
TOTAL ACRES $=22,454.00$				
TOTAL AMOUAT $=45,088,100$.				
HORMAL ENII OF FUN.				

through 20. Owners of 640 acres have 16 sections of 40 acres each so that the theory of offsetting error can control small variances between the 40 s, stabilizing prices to reflect significant differences without exaggeration. Therefore it may be useful to recognize the average price per acre to some small degree in the final conclusion.

Multiple regression (pricing model no. 3) is reliable in the aggregate but also suspect for small size parcels because there may be an insufficient number of cells to affect residual erors. It also is not quite a true market comparison as each subject is compared to the least squares mean of the sample rather than to specific comparable sales. Nevertheless, the power of multiple regression analysis to predict aggregate values in mass appraisals is well established.

Therefore we have chosen to set our final price estimate as a weighted average of the three methodologies, placing a five percent (5\%) weight on the simple average price per acre method, a fifteen percent (15\%) weight on multiple regression, and a weight of eighty percent (80%) on MKTCOMP. These weights are applied in Exhibit IV-22 and the sum of the total values ascribed each owner is the result.

WEIGHTED AVERAGE SYNTHESIS OF THREE PRICING MODELS TO ESTABLISH FAIR MARKET VALUE AS OF JANUARY 1, 1981 FOR 20 OWNERSHIP POSITIONS
(1)

Owner Number
(3)

Column (2)
$\mathrm{x} \quad .80$

$\$ 3,274,240$
$2,704,304$
$4,658,584$
$4,479,616$
781,398
802,624
$1,112,792$
$1,383,088$
$1,171,552$
$1,242,432$
$1,506,104$
$1,624,696$
$1,495,712$
$1,515,816$
153,750
149,397
73,507
210,825
117,249
132,363

$\$ 28,590,049$
(4)
Price Model
Number 2
(Avg. Price
Per Acre)

$\$ 134,954$
196,365
271,000
345,558
36,800
36,800
108,600
53,418
56,350
55,200
76,245
67,965
72,220
101,518
5,865
5,865
6,900
6,325
6,325
5,980

$\$ 2,699,080$
$3,927,300$
$5,420,000$
$6,911,150$
736,000
736,000
$2,172,000$
$1,068,350$
$1,127,000$
$1,104,000$
$1,524,900$
$1,359,300$
$1,444,400$
$2,030,350$
117,300
117,300
138,000
126,500
126,500
119,600

(6)

Column (4)
x . 05
(5)

Price Model
Number 3
(Multiple
Regression
Per 10 Acres)
Per 10 Acres)
$\$ 11,375,710^{*}$
(7)

Column (6)
x . 15
\qquad
(8)

Total of Columns (3), (5), \& (7)

$\$ 1,706,357$
$2,045,535$
666,633
493,586
81,686
109,204
183,939
165,264
141,342
156,765
238,805
228,131
190,216
200,034
22,619
25,705
12,170
36,156
26,590
32,993
$\$ 6,763,730$

1	\$4,092,800"
2	3,380,380
3	5,823,230
4	5,599,520
5	976,748
6	1,003,280
7	1,390,990
8	1,728,860
9	1,464,440
10	1,553,040
11	1,882,630
12	2,030,870
13	1,869,640
14	1,894,770
15	192,188
16	186,746
17	91,884
18	263,531
19	146,561
20	165,454
TOTAL	\$35,737,562

[^4]
L. Final Value conclusion

The appraiser therefore concludes that the fair market value by individual owner and claim number as presented in Exhibit IV-23 totals the sum of:

THIRTY-SEVEN MILLION DOLLARS
$(\$ 37,000,000)$
as of January 1,1981 , under the assumptions, limiting conditions, and appraisal judgements included in this report.

EXHIBIT 23

FAIR MARKET VALUE BY OWNER NUMBER AND COMPLAINT NUMBER AS OF JANUARY 1 , 1981

LETTER OF TRANSMITTAL DATED MARCH 1, 1982

CERTIFICATE OF APPRAISAL

We hereby certify that we have no interest, present or contemplated, in the property and that neither the employment to make the appraisal nor the compensation is contingent on the value of the property. We certify that we have personally inspected the property and that according to our knowledge and belief, all statements and information in the report are true and correct, subject to the underlying assumptions and limiting conditions.

Based upon the information and subject to the limiting conditions contained in this report, it is our opinion that the Fair Market Value, as defined herein, of the property in Complaint Number $\mathrm{C}-80-365$, and owned by L. V. Brown, as of January l, 1981, is:

FIVE MILLION ONE HUNDRED FIFTEEN THOUSAND FIVE HUNDRED FIFTY ONE DOLLARS
(\$5,115,551)
$\frac{\text { James A. Graaskamp, Ph.D., SREA, GRE }}{\text { San }}$
$3-1-82$
Date

We hereby certify that we have no interest, present or contemplated, in the property and that neither the employment to make the appraisal nor the compensation is contingent on the value of the property. We certify that we have personally inspected the property and that according to our knowledge and belief, all statements and information in the report are true and correct, subject to the underlying assumptions and limiting conditions.

Based upon the information and subject to the limiting conditions contained in this report, it is our opinion that the Fair Market Value, as defined herein, of the property in Complaint Number C-80-351, and owned by Sheila D. Brown, as of January 1,1981 , is:

FOUR MILLION NINE HUNDRED FORTY SIX THOUSAND
TWO HUNDRED FOUR DOLLARS
$(\$ 4,946,204)$

CERTIFICATE OF APPRAISAL

We hereby certify that we have no interest, present or contemplated, in the property and that neither the employment to make the appraisal nor the compensation is contingent on the value of the property. We certify that we have personally inspected the property and that according to our knowledge and belief, all statements and information in the report are true and correct, subject to the underlying assumptions and limiting conditions.

Based upon the information and subject to the limiting conditions contained in this report, it is our opinion that the Fair Market Value, as defined herein, of the property in Complaint Number $\mathrm{C}-80-362$, and owned by J. M. Brown Jr., as of January l, 1981, is:

FIVE MILLION FIVE HUNDRED NINETY SIX THOUSAND TWO HUNDRED SEVENTEEN DOLLARS
$(\$ 5,596,217)$

CERTIFICATE OF APPRAISAL

We hereby certify that we have no interest, present or contemplated, in the property and that neither the employment to make the appraisal nor the compensation is contingent on the value of the property. We certify that we have personally inspected the property and that according to our knowledge and belief, all statements and information in the report are true and correct, subject to the underlying assumptions and limiting conditions.

Based upon the information and subject to the limiting conditions contained in this report, it is our opinion that the Fair Market Value, as defined herein, of the property in Complaint Number C-80-355, and owned by Jean O. Brown, as of January l, 1981, is:

FIVE MILLION THREE HUNDRED EIGHTEEN THOUSAND SEVEN HUNDRED SIXTY DOLLARS
$(\$ 5,318,760)$

Date

We hereby certify that we have no interest, present or contemplated, in the property and that neither the employment to make the appraisal nor the compensation is contingent on the value of the property. We certify that we have personally inspected the property and that according to our knowledge and belief, all statements and information in the report are true and correct, subject to the underlying assumptions and limiting conditions.

Based upon the information and subject to the limiting conditions contained in this report, it is our opinion that the Fair Market Value, as defined herein, of the property in Complaint Number C-80-366, and owned by Chester Chastek, as of January l, 1981, is:

```
EIGHT HUNDRED NINETY NINE THOUSAND EIGHT HUNDRED EIGHTY FOUR DOLLARS
```

$(\$ 899,884)$

Date

We hereby certify that we have no interest, present or contemplated, in the property and that neither the employment to make the appraisal nor the compensation is contingent on the value of the property. We certify that we have personally inspected the property and that according to our knowledge and belief, all statements and information in the report are true and correct, subject to the underlying assumptions and limiting conditions.

Based upon the information and subject to the limiting conditions contained in this report, it is our opinion that the Fair Market Value, as defined herein, of the property in Complaint Number $C-80-367$, and owned by Catherine Chastek, as of January l, 1981, is:

NINE HUNDRED FORTY EIGHT THOUSAND
SIX HUNDRED TWENTY EIGHT DOLLARS
$(\$ 948,628)$

CERTIFICATE OF APPRAISAL

We hereby certify that we have no interest, present or contemplated, in the property and that neither the employment to make the appraisal nor the compensation is contingent on the value of the property. We certify that we have personally inspected the property and that according to our knowledge and belief, all statements and information in the report are true and correct, subject to the underlying assumptions and limiting conditions.

Based upon the information and subject to the limiting conditions contained in this report, it is our opinion that the Fair Market Value, as defined herein, of the property in Complaint Number $C-80-349$, and owned by Beverly C. Cook, as of January l, 1981, is:

ONE MILLION FOUR HUNDRED FIVE THOUSAND THREE HUNDRED THIRTY ONE DOLLARS
(\$1,405,331)

Date

CERTIFICATE OF APPRAISAL

We hereby certify that we have no interest, present or contemplated, in the property and that neither the employment to make the appraisal nor the compensation is contingent on the value of the property. We certify that we have personally inspected the property and that according to our knowledge and belief, all statements and information in the report are true and correct, subject to the underlying assumptions and limiting conditions.

Based upon the information and subject to the limiting conditions contained in this report, it is our opinion that the Fair Market Value, as defined herein, of the property in Complaint Number $\mathrm{C}-80-352$, and owned by Deborah A. Hansen, as of January l, 1981, is:

ONE MILLION SIX HUNDRED ONE THOUSAND SEVEN HUNDRED SEVENTY DOLLARS
(\$1,601,770)

$3-1-82$
Date

We hereby certify that we have no interest, present or contemplated, in the property and that neither the employment to make the appraisal nor the compensation is contingent on the value of the property. We certify that we have personally inspected the property and that according to our knowledge and belief, all statements and information in the report are true and correct, subject to the underlying assumptions and limiting conditions.

Based upon the information and subject to the limiting conditions contained in this report, it is our opinion that the Fair Market Value, as defined herein, of the property in Complaint Number C-80-353, and owned by Stephanie M. Brown, as of January l, 1981, is:

ONE MILLION THREE HUNDRED SIXTY NINE THOUSAND TWO HUNDRED FORTY FOUR DOLLARS
$(\$ 1,369,244)$

Date

We hereby certify that we have no interest, present or contemplated, in the property and that neither the employment to make the appraisal nor the compensation is contingent on the value of the property. We certify that we have personally inspected the property and that according to our knowledge and belief, all statements and information in the report are true and correct, subject to the underlying assumptions and limiting conditions.

Based upon the information and subject to the limiting conditions contained in this report, it is our opinion that the Fair Market Value, as defined herein, of the property in Complaint Number $\mathrm{C}-80-361$, and owned by Lawrence V. Brown Jr. as of January l, 1981, is:

ONE MILLION FOUR HUNDRED FIFTY FOUR THOUSAND THREE HUNDRED NINETY SEVEN DOLLARS
$(\$ 1,454,397)$

$3-1-82$
Date

We hereby certify that we have no interest, present or contemplated, in the property and that neither the employment to make the appraisal nor the compensation is contingent on the value of the property. We certify that we have personally inspected the property and that according to our knowledge and belief, all statements and information in the report are true and correct, subject to the underlying assumptions and limiting conditions.

Based upon the information and subject to the limiting conditions contained in this report, it is our opinion that the Fair Market Value, as defined herein, of the property in Complaint Number $\mathrm{C}-80-350$, and owned by Josephine H . Brown as of January l, l981, is:

ONE MILLION EIGHT HUNDRED TWENTY ONE THOUSAND
ONE HUNDRED FIFTY FOUR DOLLARS
$(\$ 1,821,154)$

Date

We hereby certify that we have no interest, present or contemplated, in the property and that neither the employment to make the appraisal nor the compensation is contingent on the value of the property. We certify that we have personally inspected the property and that according to our knowledge and belief, all statements and information in the report are true and correct, subject to the underlying assumptions and limiting conditions.

Based upon the information and subject to the limiting conditions contained in this report, it is our opinion that the Fair Market Value, as defined herein, of the property in Complaint Number $\mathrm{C}-80-359$, and owned by Patricia E. Brown as of January 1, 1981, is:

> ONE MILLION NINE HUNDRED TWENTY THOUSAND SEVEN HUNDRED NINETY TWO DOLLARS
$(\$ 1,920,792)$

CERTIFICATE OF APPRAISAL

We hereby certify that we have no interest, present or contemplated, in the property and that neither the employment to make the appraisal nor the compensation is contingent on the value of the property. We certify that we have personally inspected the property and that according to our knowledge and belief, all statements and information in the report are true and correct, subject to the underlying assumptions and limiting conditions.

Based upon the information and subject to the limiting conditions contained in this report, it is our opinion that the Fair Market Value, as defined herein, of the property in Complaint Number C-80-363, and owned by Jacqueline Brown as of January 1,1981 , is:

ONE MILLION SEVEN HUNDRED FIFTY EIGHT THOUSAND ONE HUNDRED FORTY EIGHT DOLLARS

(\$1,758,148)

CERTIFICATE OF APPRAISAL

We hereby certify that we have no interest, present or contemplated, in the property and that neither the employment to make the appraisal nor the compensation is contingent on the value of the property. We certify that we have personally inspected the property and that according to our knowledge and belief, all statements and information in the report are true and correct, subject to the underlying assumptions and limiting conditions.

Based upon the information and subject to the limiting conditions contained in this report, it is our opinion that the Fair Market Value, as defined herein, of the property in Complaint Number $\mathrm{C}-80-364$, and owned by Barbara Huquenin as of January l, 1981, is:

ONE MILLION EIGHT HUNDRED SEVENTEEN THOUSAND THREE HUNDRED SIXTY EIGHT DOLLARS
$(\$ 1,817,368)$

We hereby certify that we have no interest, present or contemplated, in the property and that neither the employment to make the appraisal nor the compensation is contingent on the value of the property. We certify that we have personally inspected the property and that according to our knowledge and belief, all statements and information in the report are true and correct, subject to the underlying assumptions and limiting conditions.

Based upon the information and subject to the limiting conditions contained in this report, it is our opinion that the Fair Market Value, as defined herein, of the property in Complaint Number C-80-348, and owned by Patrick C. Chastek as of January l, 1981, is:

> ONE HUNDRED EIGHTY TWO THOUSAND TWO HUNDRED THIRTY FOUR DOLLARS
(\$182,234)

$$
3-1-82
$$

Date

CERTIFICATE OF APPRAISAL

We hereby certify that we have no interest, present or contemplated, in the property and that neither the employment to make the appraisal nor the compensation is contingent on the value of the property. We certify that we have personally inspected the property and that according to our knowledge and belief, all statements and information in the report are true and correct, subject to the underlying assumptions and limiting conditions.

Based upon the information and subject to the limiting conditions contained in this report, it is our opinion that the Fair Market Value, as defined herein, of the property in Complaint Number C-80-354, and owned by Joyce Esposito as of January l, 1981, is:

ONE HUNDRED EIGHTY THOUSAND NINE HUNDRED SIXTY SEVEN DOLLARS
$(\$ 180,967)$

$3-1-82$
Date

We hereby certify that we have no interest, present or contemplated, in the property and that neither the employment to make the appraisal nor the compensation is contingent on the value of the property. We certify that we have personally inspected the property and that according to our knowledge and belief, all statements and information in the report are true and correct, subject to the underlying assumptions and limiting conditions.

Based upon the information and subject to the limiting conditions contained in this report, it is our opinion that the Fair Market Value, as defined herein, of the property in Complaint Number C-80-356, and owned by Gary R. Chastek as of January l, 1981, is:

NINETY TWO THOUSAND
FIVE HUNDRED SEVENTY SEVEN DOLLARS
$(\$ 92,577)$

We hereby certify that we have no interest, present or contemplated, in the property and that neither the employment to make the appraisal nor the compensation is contingent on the value of the property. We certify that we have personally inspected the property and that according to our knowledge and belief, all statements and information in the report are true and correct, subject to the underlying assumptions and limiting conditions.

Based upon the information and subject to the limiting conditions contained in this report, it is our opinion that the Fair Market Value, as defined herein, of the property in Complaint Number C-80-357, and owned by Thomas D. Chastek as of January l, 1981, is:

TWO HUNDRED FIFTY THREE THOUSAND THREE HUNDRED SIX DOLLARS
$(\$ 253,306)$

$3-1-82$
Date

CERTIFICATE OF APPRAISAL

We hereby certify that we have no interest, present or contemplated, in the property and that neither the employment to make the appraisal nor the compensation is contingent on the value of the property. We certify that we have personally inspected the property and that according to our knowledge and belief, all statements and information in the report are true and correct, subject to the underlying assumptions and limiting conditions.

Based upon the information and subject to the limiting conditions contained in this report, it is our opinion that the Fair Market Value, as defined herein, of the property in Complaint Number $\mathrm{C}-80-358$, and owned by Lawrence F. Chastek as of January l, 1981, is:

ONE HUNDRED FIFTY THOUSAND ONE HUNDRED SIXTY FOUR DOLLARS
(\$150,164)

We hereby certify that we have no interest, present or contemplated, in the property and that neither the employment to make the appraisal nor the compensation is contingent on the value of the property. We certify that we have personally inspected the property and that according to our knowledge and belief, all statements and information in the report are true and correct, subject to the underlying assumptions and limiting conditions.

Based upon the information and subject to the limiting conditions contained in this report, it is our opinion that the Fair Market Value, as defined herein, of the property in Complaint Number $\mathrm{C}-80-360$, and owned by Michael P. Chastek as of January 1,1981 , is:

ONE HUNDRED SEVENTY ONE THOUSAND THREE HUNDRED THIRTY SIX DOLLARS
(\$171,336)

STATEMENT OF LIMITING CONDITIONS

1. Contributions of Other Professionals

This appraisal is a team study by various professional disciplines and specialists, under the direct control and supervision of Professor James A. Graaskamp. Each professional has responsibility for the care and craftsmanship of their contribution and those who work under their direction. Each contributor was subject to quality control procedures described elsewhere in this report but no absolute warranty can be made by Landmark Research, Inc., or by the individual appraiser in charge. Information and data processing furnished by others was believed to be reliable and computer data hand checked but no guarantee of computer infallibility can be provided.

- Legal descriptions of the subject site and ownership positions were provided by Attorney Ed Parry and reviewed for consistency by Professor Ralph Kiefer, P.E., whose credentials can be found in Appendix B. Professor Kiefer supervised design of a grid system for computer mapping of subject parcels, federal lands, and comparable properties. In addition, he supervised three-dimensional photography of subject and comparable lands, and supervised Sean Ahearn in the correct placement of comparable legal descriptions on aerial photographs and other map information sources.
- Computer mapping, data processing, and related matters were the responsibility of Michael L. Robbins, who also supervised the input of basic data concerning the properties in this report. These procedures and data systems can be found in Appendix C.
- Development of scenic quality ratings from Visitor Employed Photography (VEP) and statistical analysis of related data together with a review of literature and practices of the Forest Service and others in this related area are the responsibility of Professor Bernard Niemann and Professor Richard Chenoweth and representations of the appraiser are based solely on their materials in Appendix D.
- Landmark Research, Inc., and this appraiser take no responsibility for timber cruises and timber valuation. Some data was provided from Pack River data resources by John Lyngstad and all timber valuation estimates were provided by Kenneth E. Beil, A.C.F., of International Forestry Consultants, Inc.s in a letter dated August 27, 1981.
- All maps and sketches in this report are included for illustrative purposes only, to assist the reader in visualizing a property or attribute; none of these drawings represent actual surveys or scaled presentations.
- Information on comparable sales was gathered from a variety of sources and validated wherever possible by the appraiser by direct conversation or correspondence with grantor, grantee, or their agents. In several cases photocopies of documents of record were furnished directly by Ed Parry but the appraiser takes responsibility for validation of basic sales price and terms of sale.
- The MKT COMP computer program and concepts are the property of EDUCARE NETWORK, INC, and the program is currentiy available on GE Time Sharing and on The University of Wisconsin School of Business WITS System. It is used for assessment and valuation purposes by a number of communities, lending institutions, and federal agencies and is believed to be reliable. It represents several years of development work by H. Robert Knitter, Michael L. Robbins, and James A. Graaskamp and appraisers throughout the country and is believed to be reliable and accurate in its process.

2. Facts and Forecasts Under Conditions of Uncertainty

- Data mapping has been done with craftsmanship and care, but the nature of available mapping resources such as U.S. Geodetic Survey Maps, and orthographic maps will cause some ground proofing errors which in urban appraisal could be serious but which in huge landscapes permits the application of rules of statistical offsetting error. Since the basic information unit is ten square acres, there are more than ten thousand information cells on the subject property and its environs. Data on comparable sales has also been organized by ten acre cells and placed on maps of the
comparables as described in the report by Sean Ahearn in Appendix B. Despite possible site border aberrations, we believe that the process has made site data representative at a refined scale never before available with both spatial location and detail as is provided in this report for comparable sized vast land wilderness tracts.
- Those who would use this appraisal must keep in mind that key assumptions defining the date, scope, or other critical premises on which any appraisal is dependent are stated in ALL CAPITAL LETTERS throughout the report and these assumptions are a significant part of the statement of limiting conditions in this report.

3. Controls on Use of Appraisal

- Possession of this report or any copy thereof does not carry with it the right of publication nor may the same be used for any other purpose by anyone without the previous written consent of the appraiser or the applicant, and in any event, only in its entirety.
- Neither all nor any part of the contents of this report shall be conveyed to the public through advertising, public relations, news, sales, or other media without the written consent and approval of the author, particularly regarding the valuation conclusions, and the identity of the appraiser, or of the firm with which he is connected or any of his associates.

JAMES A. GRAASKAMP

PROFESSIONAL OESIGNATIONS
SREA, Senior Real Estate Analyst, Society of Real Estate Appraisers CRE, Counselor of Real Estate, American Society of Real Estate Counselors

CPCU, Certified Property Casualty Underwriter, College of Property Underwriters

EDUCATION

Ph.D., Urban Land Economics and Risk Management - University of Wisconsin Master of Business Administration Security Analysis - Marquette University Bachelor of Arts - Roll ins College

ACADEMIC HONORS
Chairman, Department of Real Estate and Urban Land Economics, School of Business, University of Wiscons in Urban Land Institute Research Fellow University of Wisconsin Fellow, Omicron Delta Kappa Lambda Alpha - Ely Chapter Beta Gamma Sigma, Will iam Kiekhofer Teaching Award (1966)

RROFESSIONAL EXPERIENGE
Or. Graaskamp is the President and founder of Landmark Research, Inc., which was established in 1968. He is also co-founder of a general contracting firm, a 1 and development company and a farm investment comporation. He is fomerly a member of the Board of Directors and treasurer of the Wisconsin Housing Finance Agency. He is currently a member of the Board and Executive Committee of First Asset Real ty Advisors, a subsidiary of First Bank Minneapolis. He is the codesigner and instructor of the EDUCARE teaching program for computer applications in the real estate industry. His work includes substantial and varied consulting and valuation assignments to include investment counsel ing to insurance companies and banks, court testimony as expert witness and the market/financial analysis of various projects, both nationally and locally, and for private and corporate investors and municipalities.

[^0]: Source:Seafirst Corporation 1979 Annual Report, p. 7

[^1]: ${ }^{\text {a }}$ Sources: Data is taken from letter in Timber Cruise of Pack River Company Lands in Alpine Lakes Wilderness Area by Kenneth E. Beil of International Forestry Consultants, Inc., dated August 27, 1981, and letter from Kenneth E. Beil of August 31, 1981. Complete correspondence in Appendix E.
 *OOO omitted
 *\%For comparison data base cell percentages are provided from Exhibit II-5.

[^2]: ${ }^{\text {a }} 000$ omitted $i n$ board foot estimate.
 ${ }^{\text {b }}$ Conversion of board foot volume to dollars by IFC based on quarterly data for State of Washington (DNR) for last quarter of 1980 (See Appendix E, Section IFC, letter to Ed Parry dated February 12, 1981).

 Source: Correspondence of International Forestry Consultants, Inc. provided in Appendix E.

[^3]: 1 Data for North Cascades NP, Ross Lake NRA, and Lake Chelan NRA are shown combined, no breakdown available.

[^4]: 174 acres

