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Abstract

For decades, the Standard Model of Particle Physics has stood the test of time, being one of the most

comprehensive and reliable models ever proposed. One of the few exceptions to its robustness was the

discovery of neutrino oscillations (and consequently the implication that neutrinos have mass). It is one of

the only confirmed pieces of evidence of physics beyond the Standard Model. Since this discovery, there has

been a worldwide effort on both the theoretical and experimental fronts to answer many questions that this

discovery raised. Many neutrino experiments around the world seek to measure the model parameters that

describe these oscillations within the current theoretical 3 neutrino framework.

The IceCube Neutrino Observatory is a kilometer-scale detector embedded in the Antarctic ice at the

South Pole and detects Cherenkov light produced by neutrinos interacting in the ice. DeepCore is a densely

instrumented sub-array within the full detector that observes interactions of atmospheric neutrinos down to

5 GeV. At these energies, Earth-crossing muon neutrinos have a high chance of oscillating to tau neutrinos.

DeepCore is able to measure these oscillations with precision comparable to accelerator-based experiments,

but it is also complementary to accelerator measurements because it probes longer distance scales and higher

energies, peaking above the tau lepton production threshold.

This dissertation presents the effort involved in curating one of the largest neutrino oscillation datasets

in the world, with over 200,000 events spanning almost 10 years (from April 2012 to January 2022) and a

neutrino purity of over 99%. This sample is optimized for performing a measurement of the atmospheric

neutrino oscillation parameters. The nearly unprecedented level of statistics also requires unprecedented

precision in the treatment of systematic uncertainties. Compared to previous DeepCore analyses, this analysis

benefits from improved background rejection, new simulation, a new reconstruction, a new machine learning

particle classification algorithm, improved modeling of systematic uncertainties, and more years of data.

Given the large number of changes compared to previous analyses, an extensive suite of quality and robustness

checks were performed.

Even with the extensive testing program, our fit to data informed us that our modeling is not yet on par

with the level of statistical precision achieved with the new sample; the goodness-of-fit between our data and

simulation yielded a p-value of 0%. At the time of writing, there remains an ongoing effort to improve our

models to describe the full dataset. This dissertation includes the unblinded results of an analysis performed

with a sub-sample containing 20% of the full dataset.
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1
Introduction

1.1 Overview

The field of neutrino physics has flourished in the last two decades since the discovery of neutrino

oscillations [1–3]. Although the existence of this phenomenon is considered well established, the precise

values of the parameters that govern these oscillations are still active questions. Even the best estimates,

obtained by combining data from many experiments around the world [4], have percent-level uncertainty on

these neutrino parameters. This experimental precision pales in comparison to the precision with which other

fundamental particles’ properties have been measured (properties such as the mass or magnetic moment of

particles like the electron and muon are often quoted in parts-per-million, billion, or even trillion [5, 6]). And

for good reason: neutrinos are notoriously difficult to observe, so they (and their properties) have evaded

precision measurement.

IceCube DeepCore is one of many experiments around the world that has measured these parameters

[7, 8] and continues to seek improved precision on the measurement of these parameters. I, along with a

group of collaborators, have spent the past few years developing a new DeepCore neutrino sample and new

analysis techniques for measuring the properties of neutrino oscillations. The sample, which we refer to as

“OscNext”, is now being used for almost a dozen analyses. Much of the development has been a group effort

and therefore this dissertation is not intended to be a comprehensive summary of all parts of the sample and

analysis development. I have instead tried to focus this dissertation on my own personal contributions, while
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still including enough relevant context about the sample and analysis at large. Therefore, in the overview

that follows, I provide clarification as to what my personal contributions were to this large group effort.

The remaining portion of this chapter will cover the relevant background information on neutrino physics

as well as the DeepCore detector. Chapter 2 will cover the event selection and sample; I contributed the

work that is discussed in Section 2.3, and a large portion of the work discussed in Section 2.4. Chapter 3

covers a technique I developed to increase the efficiency of our background muon simulation; I then used

this technique to generate the muon simulation used across our sample and analyses. Chapter 4 includes the

analysis methods, techniques, and choices that are common to many of the analyses that use the sample; I

contributed heavily to the work described in Section 4.1. Chapters 5 and 6 cover the analysis for which I

was the lead analyzer, and worked in conjunction with another collaborator. Chapter 7 presents the results

of a fit to a 20% sub-sample of the real data; I was the sole analyzer for this work. Chapter 8 provides some

concluding remarks and outlook.
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1.2 Introduction to Neutrino Oscillations

Neutrinos in the Standard Model

The Standard Model of Particle Physics is widely accepted as the most comprehensive and accurate

description of almost all of the known fundamental particles and forces (except gravity). See Figure 1.1.

The Standard Model predicts 3 massless neutrinos which only interact via the Weak Force. Each neutrino

(ν) gets its name, or “flavor”, from the charged lepton in its generation: electron (e), muon (µ), or tau (τ).

In the Standard Model description, neutrinos only interact via the Weak Force and have an extremely

low probability of interacting (i.e. a small cross section). The interaction types get their names based on

the charge of the boson mediating the interaction. Charged current (CC) interactions are mediated by the

charged W boson. See Figure 1.2a for an example. Neutral current (NC) interactions are mediated by the

neutral Z boson. See Figure 1.2b for an example. The examples shown in Figure 1.2 are examples of Deep

Inelastic Scattering (DIS) in which the interaction occurs with an individual quark (u or d) within the nucleon

(proton p or neutron n), and breaks apart the nucleon, producing a shower of additional particles. While

there are other types of neutrino interactions that occur at lower energies, these are the main interaction

types that will be relevant for this work.

One of the only experimentally confirmed pieces of evidence of physics beyond the Standard Model was

the discovery of neutrino oscillations, which will be introduced in the next section [1–3]. This phenomenon

requires that neutrinos have mass, whereas the Standard Model predicted that neutrinos have no mass. This

discovery paved the way for what is now a very active field of research – neutrino physics – which aims to

measure the parameters that govern these oscillations, measure the neutrino mass and determine the origin

of neutrino mass, search for additional neutrinos outside the Standard Model, and more.

Figure 1.1: The Standard Model of Particle Physics consists of quarks, leptons, and bosons. The
leptons consist of three neutrinos ν and three charged leptons e, µ, and τ .
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(a) Charged current interaction (CC) (b) Neutral current interaction (NC)

Figure 1.2: Diagram of Deep Inelastic Scattering (DIS) neutrino interactions. (a) Charged current
interaction mediated by a W boson. The incoming particle is a neutrino; the outgoing particle
is its associated charged lepton. (b) Neutral current interaction mediated by a Z boson. The
incoming particle is a neutrino, and the outgoing particle is the same neutrino. The circle with
the hatch pattern represents a nucleon (proton p or neutron n) that has been broken apart and
then the interaction occurs with an individual quark. This process of breaking apart the nucleon
is known as Deep Inelastic Scattering.

Neutrino Oscillations and the 3ν Paradigm

Most particles in the Standard Model have a definite mass; however, for the neutrinos the picture is more

complicated. While there are the three flavors of neutrinos (νe, νµ, and ντ ) and there are three neutrino mass

states (ν1, ν2, and ν3), there is not a 1:1 correspondence between these states. The mass states form one

basis and the flavor states form a second basis. A neutrino in a definite state in one basis can be expressed

as a quantum superposition of the states in the other basis. Figure 1.3 shows the contributions of each

flavor state to each mass state. This mismatch of bases results in the phenomenon of “neutrino oscillations”,

whereby a neutrino can change flavor as it propagates over macroscopic distances.

Figure 1.3: Decomposition of each mass state (ν1, ν2, and ν3) into the flavor states (νe, νµ, and
ντ ). Data from [4].
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The matrix that relates these two bases is known as the PMNS matrix (named after B. Pontecorvo, Z.

Maki, M. Nakagawa, and S. Sakata) and is shown in Equation 1.1. This matrix is often notated as U due to

the fact that the matrix is assumed to be unitary in the standard 3ν description.


νe

νµ

ντ

 =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



ν1

ν2

ν3

 (1.1)

This matrix can be decomposed into 3 rotation matrices, with each relating a pair of two states i and j.

Each pair of states has a characteristic angle θij that describing the mixing of those two states. There is

one additional term introduced known as the “CP-violating phase”. Charge-parity (CP) symmetry dictates

that a particle should behave the same as an antiparticle with the opposite spin. It has not yet been

experimentally confirmed whether there is CP-violation in the neutrino sector, so a CP-volating phase δCP

is introduced to allow for this possibility. By convention [5], the matrix is expressed in the following way:

U =


1 0 0

0 cos(θ23) sin(θ23)

0 −sin(θ23) cos(θ23)




cos(θ13) 0 sin(θ13)e−iδCP

0 1 0

−sin(θ13)eiδCP 0 cos(θ13)




cos(θ12) sin(θ12) 0

−sin(θ12) cos(θ12) 0

0 0 1


Then, abbreviating cos(θij) and sin(θij) to cij and sij for simplicity, we find that

U =


c12c13 s12c13 s13e

−iδCP

−s12c23 − c12s13s23eiδCP c12c23 − s12s13s23eiδCP c13s23

s12s23 − c12s13c23eiδCP −c12s23 − s12s13c23eiδCP c13c23

 . (1.2)

This matrix can be used to express the flavor state α ∈ {e, µ, τ} that a neutrino is created in as a linear

combination of the mass states i ∈ {1, 2, 3}:

|να〉 =

3∑
i=1

U∗αi |νi〉 .

As the neutrino propagates, it evolves according to the standard time evolution operator, and thus the

time-evolved state at some later time t can be expressed in terms of its energy E:

|να(t)〉 =

3∑
i=1

U∗αie
−iEit |νi(t = 0)〉 .
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Note that this is expressed in natural units where h̄ = 1 and c = 1. We can then determine the probability

P that a neutrino which started in the flavor α is now β after having some time to evolve:

Pαβ =
∣∣∣ 〈νβ |να(t)〉

∣∣∣2 =
∣∣∣ 3∑
j=1

3∑
i=1

U∗αiUβje
−iEit 〈νj〉 νi(t)

∣∣∣2.
Then we apply the assumptions that neutrinos are ultrarelativistic: Ei =

√
p2i +m2

i ≈ p+
m2
i

2E and t ≈ L
c = L

where L indicates the distance that the neutrino traveled during the time t. The probability simplifies to:

Pαβ = δαβ − 4

3∑
i<j

Re
[
UαiU

∗
βiU

∗
αjUβj

]
sin2

(
(m2

i −m2
j )L

4E

)

+ 2

3∑
i<j

Im
[
UαiU

∗
βiU

∗
αjUβj

]
sin

(
2(m2

i −m2
j )L

4E

)
(1.3)

where δαβ is the Kronecker delta (1 if α = β, 0 if α 6= β). To simplify notation, it is conventional to notate

m2
i −m2

j as ∆m2
ij and refer to these as the “mass splittings”. We can see from this equation that the flavor

changes are oscillatory in nature due to the sine term, and that the probabilities are given by the values

of θij in the PMNS matrix, ∆m2
ij , L, and E. Converting from natural units to units that are useful in an

experimental setting, we find that the characteristic oscillatory pattern is driven by the sinusoidal term:

sin2

(
1.267∆m2

ij

L

E

)
(1.4)

when ∆m2
ij is given in [eV2] and L/E is in [km/GeV] (or equivalently, [m/MeV]).

Measuring Neutrino Oscillations

The physical parameters of interest to be measured are the mixing angles θij from the PMNS matrix

and the mass splittings ∆m2
ij . The observable parameters from the experiments are L and E. We see

from Equation 1.4 that the value of ∆m2
ij determines the relevant L/E scale. Two of the states are much

closer together than the third, so for practical purposes, there are only two relevant mixing scales. The

names of each mixing scale are derived from the historical anomaly that they solved. The first is the

“solar” mixing (which solves the “solar neutrino problem”, and is often abbreviated with the symbol �),

with ∆m2
21 = O(10−5) eV2 [5]. The second is the “atmospheric” mixing (which solves the “atmospheric

neutrino anomaly”), with ∆m2
atm = ∆m2

32 ≈ ∆m2
31 = O(10−3) eV2 [5]. Figure 1.4 shows the ability of many

different experiments to measure various L and E scales. Some experiments have “fixed baselines” since the

production sources and detector are both located at fixed points. Other experiments indicated in shaded
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regions, such as DeepCore, can access a range of baselines; this will be discussed in more detail in the next

section. The diagonal lines indicate the L/E scales that corresponded to the solar (dashed) and atmospheric

(dot dashed) mixing. From this, we can see which type of mixing each experiment is sensitive to.

Figure 1.4: Experimental landscape for various L and E scales. Experiments marked with hori-
zontal lines have “fixed baselines”; experiments with shaded/patterned regions, such as DeepCore,
can access a range of baselines. The diagonal lines indicate the L/E scales that corresponded to
the solar (dashed) and atmospheric (dot dashed) mixing. Figure Credit: [9].

Atmospheric Neutrino Oscillations

As mentioned in the previous section, the “atmospheric” parameters determine the mixing between the

the third mass state and the first and second mass states. This was historically measured by experiments

which detect neutrinos produced by the interaction of cosmic rays in Earth’s atmosphere. These cosmic ray

interactions produce mesons like pions and kaons, which subsequently can decay into neutrinos. The flux

of atmospheric neutrinos is dominated by the muon flavor with a subleading contribution from the electron

flavor. See Figure 1.5. Among each flavor, the neutrinos contribute a larger fraction than the antineutrinos.

These neutrinos are produced on a spherical shell across all of Earth with a median production height of

∼15 km above sea level [10]. This means that an experiment designed to observe atmospheric neutrinos can

observe neutrinos produced ∼15 km away to neutrinos that were produced on the opposite side of the Earth

and traveled an Earth diameter of ∼12, 700 km and any distance in between. Thus, as shown in Figure 1.6,
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Figure 1.5: Predicted flux of atmospheric neutrinos at the South Pole, averaged over all directions.
The flux is dominated by the muon flavor with a subleading contribution from the electron flavor.
Figure Credit: [10].

the arrival direction provides the information about the baseline L for any atmospheric neutrino experiment.

The baseline is related to the arrival direction by

L ≈ −DEarth cos(θzenith)

where θzenith is the arrival direction defined as the angular deviation from downgoing with respect to a given

detector, as shown in Figure 1.6.

The strongest oscillation signal relevant for neutrinos produced in the atmosphere is the disappearance

of muon neutrinos. Equation 1.3 can be approximated as follows to describe the survival probability of

atmospheric muon neutrinos:

Pνµ→νµ ≈ 1− sin2
(
2θ23

)
sin2

(
∆m2

32L

4E

)
(1.5)

With the baseline L converted to cos(θzenith), we can express the survival probabilities as a function of E

and cos(θzenith). See Figure 1.7. We see that the first oscillation peak for neutrinos crossing the entire Earth

diameter (cos(θzenith) = −1.0) occurs at about 25 GeV.
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Figure 1.6: Diagram of the relationship between the neutrino arrival direction cos(θzenith) and the distance
that the neutrino traveled. Note that the arrival direction is defined with respect to the detector’s internal
coordinate system.

Figure 1.7: Muon neutrino survival probability as a function of true neutrino energy E and arrival direction
cos(θzenith) (used as a proxy for the distance L that the neutrino traveled). For neutrinos crossing the entire
Earth diameter (cos(θzenith) = −1.0), the first oscillation peak occurs at about 25 GeV.
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1.3 Introduction to IceCube DeepCore

IceCube

The IceCube Neutrino Observatory is a cubic kilometer detector located at the South Pole, that consists

of 5,160 modules spread across 86 strings arranged in a hexagonal grid with 125 meter spacing between

adjacent strings [11]. See Figure 1.8. Each module, which is referred to as a Digital Optical Module (DOM),

contains a 10 inch photomultiplier tube (PMT) that detects optical Cherenkov photons.

Cherenkov radiation refers to the process by which charged particles emit light along a coherent wavefront

when traveling in a polarizable medium at a speed greater than the phase velocity of that medium, as

illustrated in Figure 1.9. The light is emitted in a cone with a characteristic angle θc such that cos(θc) = 1
βn ,

where n is the index of refraction of the material and β = v
c is the particle’s velocity relative to the speed

of light in a vacuum. For ice, the index of refraction is n = 1.31 and therefore the Cherenkov angle is about

41◦ for highly relativistic particles.

As mentioned in previous sections, when neutrinos interact in the ice and undergo Deep Inelastic Scatter-

ing (DIS), a shower of particles is produced. Many of these particles are highly-energetic charged particles,

which will emit Cherenkov light that can be detected by the DOMs.

DeepCore

DeepCore is a sub-array within IceCube located in the bottom center portion of the full detector [13].

See Figure 1.10. It consists of 8 dedicated DeepCore strings as well as 7 of the nearby IceCube strings. Many

of the DOMs on the DeepCore strings have PMTs with higher quantum efficiency, which means they are

able to detect more photons. The denser spacing allows us to observe events with lower energies, compared

to a more sparse array like IceCube. While IceCube is designed to look for events in the TeV-PeV energy

range, DeepCore can observe events with energies down to about 5 GeV.
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Figure 1.8: The IceCube Detector is a cubic kilometer array consisting of 5,160 modules buried in the
Antarctic ice. Figure Credit: IceCube Internal Gallery.

Figure 1.9: Diagram of Cherenkov light. A particle traveling with a velocity lower than (left) and higher
than (right) the phase velocity of the medium. The Cherenkov effect only occurs for the particle on the
right, because it is traveling with sufficient speed for a coherent wavefront of light to be formed. The light
is emitted in a cone with a characteristic angle θc such that cos(θc) = 1

βn , where n is the index of refraction
of the medium and β = v

c is the particle’s velocity relative to the speed of light in a vacuum. Figure Credit:
[12].
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Figure 1.10: The IceCube DeepCore Detector is located at the bottom center of IceCube. It consists of 8
dedicated DeepCore strings along with 7 surrounding IceCube strings. Figure Credit: [8].
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Event Types

There are two main types of neutrino events in IceCube and DeepCore. The first event type is “cascades”

which are roughly spherical in shape and are produced by showers of particles. All events have a hadronic

shower component that occurs when the nucleus is broken apart by DIS. For NC events, this is all that is

observed. The νe CC and ντ CC events have additional shower components due to the outgoing charged

lepton (the interaction of e and the decay of τ), but these particles travel such short distances that the

charged lepton component cannot be distinguished from the hadronic shower at the vertex. Thus, these

types of events are all resolved as a single cascade. The second event type is “tracks” resulting from νµ CC

interactions. The outgoing µ lepton can travel long distances which results in an elongated shape.

Figure 1.11 compares what these event types look like for high energy events in the full IceCube detector

and low energy events in DeepCore. In these event displays, each colored dot indicates a single DOM that

observed light. The color corresponds to the timing information, with red indicating the earlier hits and

blue indicating the later hits. The size of the dot corresponds to how much light the DOM detected, with

larger dots indicating more light. In the top two images showing the IceCube events, we see that the cascade

is approximately spherical and the track is quite elongated. By contrast, the DeepCore events are much

lower in energy and therefore have fewer modules hit and contain much less information. These events are

also much harder to distinguish between the spherical and elongated shapes. We will return to this topic in

Section 2.3 to discuss a new technique for differentiating between these event types in DeepCore.

In addition to the neutrino events, we also have two main types of background events. The first is

atmospheric muons. These muons leave light along their path creating an elongated signature (as is the case

for secondary muons produced in νµ CC interactions). Therefore we use veto regions and restrict ourselves

to events contained in DeepCore, since neutrinos leave no light in the detector prior to their interaction

vertex. Figure 1.12 shows how a veto region is used to eliminate a muon entering the detector by identifying

light in the veto region, and how a neutrino event will pass this veto region leaving no light until it interacts.

The second main background is random noise, caused by dark noise from the PMTs or radioactive decays

in the glass housings that encase the DOMs. These hits tend to be scattered more uniformly throughout

the detector in space and time. We can use space-time causality to determine if the hits are likely a random

coincidence or if they are consistent with a relativistic particle crossing the detector.
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(a) IceCube cascade; 1 PeV (b) IceCube track; 290 TeV

(c) DeepCore cascade; 25 GeV (d) DeepCore track; 25 GeV

Figure 1.11: Event displays for cascades and tracks in IceCube and DeepCore. Each dot corresponds to
an individual DOM that saw light. The color indicates the timing information with red indicating the first
hits in time, and blue indicating the later hits in time. The size of the dot indicates the amount of light
detected by the module (with a larger dot indicating more charge). For the IceCube events, the cascade
is approximately spherical and the track is quite elongated. By contrast, the DeepCore events which are
much lower energy have fewer modules hit and therefore have much less information. These events are also
much harder to distinguish between the spherical and elongated shapes. The event shown in (a) and (b)
correspond to real data events from [14] and [15], respectively.
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(a) Atmospheric muon is vetoed. (b) Neutrino passes the veto.

Figure 1.12: Diagram of the veto principle. (For illustration purposes only; for the work presented in later
chapters, the allowed region is restricted only to DeepCore. The rest of the IceCube detector is used as the
veto zone.) Figure Credit: IceCube Internal Gallery.

Detector and Ice Properties

Since the primary detector medium is natural ice, we have no control over the purity and optical properties

of the ice. Therefore, a substantial internal calibration program is required to characterize and model the

detector and the surrounding ice. Our detector observes the photons produced in a neutrino interaction, so

we need to understand how these photons propagate through the ice, referred to henceforth as “bulk ice”.

As the light travels, it can be attenuated by the medium (described by an absorption coefficient) or can

change direction (described by a scattering coefficient). The amount of scattering and absorption that occur

change as a function of the depth of the detector, due to the stratified layers of ice that form a glaciological

record. Figure 1.13 shows how the effective coefficients that describe the scattering and absorption change

as a function of depth. The instrumented detector depths are shown as the red shaded region. In the middle

of the detector is a dust layer with very poor optical properties (enhanced scattering and absorption).

When the detector was constructed, columns of ice were melted, the strings of DOMs were deployed

down the water holes, and then the holes were allowed to refreeze. The ice in these holes, referred to as

“hole ice”, has therefore been altered and does not share its optical properties with the surrounding bulk

ice. When the ice refroze, a column of air bubbles became trapped at the center of each hole which leads
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Figure 1.13: Effective scattering (top) and absorption (bottom) coefficients for photons in South
Pole ice as a function of depth. The instrumented detector depths are indicated by the red shaded
region. In the middle of the detector is a dust layer with very poor optical properties (enhanced
scattering and absorption). Figure Credit: [16].

to increased scattering and uncertainty in this region of the ice. The effects of the hole ice are dependent

on the incoming angle of the photon, since horizontal photons will travel through less hole ice than steeply

inclined ones, as shown in Figure 1.14. In addition, we can see from the diagram that the PMT is oriented

downwards so photons traveling upwards towards the face of the PMT are more likely to be detected than

photons traveling downwards since there is no sensor on the top of each module. All of this information is

combined to form a single model that describes how the response of the detector changes as a function of

the incident angle η of the photon. The parameters used to describe this space are referred to as hole ice p0

and p1. Figure 1.15 shows how the angular response curve changes for a continuous sweep of values.

The final type of detector uncertainty relates to the efficiency of the PMT. The efficiency refers to the

fraction of incident photons that are able to be detected. While this has been constrained by both lab and in

situ calibration measurements, these measurements aren’t perfect so we allow for additional uncertainty. We

refer to this as “DOM Efficiency” and it is described using a scaling factor with a value of 1.0 corresponding

to the calibrated model’s central value. This effect is particularly important for low energy events, because it

can change whether or not you see an event at all if it is near the detector’s triggering threshold (in contrast

to high energy events where you are simply changing the amount of light that is able to be detected for a

given event).
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Figure 1.14: Diagram of DOM in deployed hole. Figure Credit: [11].

Figure 1.15: Relative acceptance of the photons as a function of the incident angle η of the photon. These
plots show how the relative angular acceptance changes for various values of p0 (left) and p1 (right). cos(η)=1
indicates the bottom of the DOM and the face of the PMT. cos(η)=-1 indicates the top of the DOM where
there is no PMT. Figure Credit: [17].
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2
The OscNext Sample

Shiny new tools now available!

– Tom Stuttard

Performing a measurement of the atmospheric neutrino oscillation parameters requires curating a targeted

sample of atmospheric neutrino data as well as generating accompanying simulation to model the data. Since

the previous generation of DeepCore oscillation analyses, there have been many new updates made available.

Over the past few years, about a dozen people from the IceCube Collaboration (including myself) have

revisited almost every step involved in both developing an atmospheric neutrino sample and subsequently

performing analyses with that sample. This effort, along with the resulting sample and suite of tools, are

known internally as “OscNext”. This chapter will cover the OscNext sample.

The data used in this sample spans just shy of a decade, from April 2012 to January 2022. We only use

the portion of the data that has been cleared for use in physics analyses, which gives 9.28 years of detector

livetime.

2.1 Simulation

Simulation is used for two primary purposes: first, most of the sample development and analysis devel-

opment are performed with simulation so that the analysis remains blinded to the real data, and second, the

analysis fit uses a binned maximum-likelihood method so we must have a model that gives us the expected
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number of events for various parameter combinations in order to perform the binned maximum-likelihood

fit. Our simulation is generated using Monte Carlo (MC) methods, and therefore the terms “simulation”,

“Monte Carlo”, and “MC” may be used interchangeably throughout. We repeatedly simulate many events

each seeded with a different random number. We generally try to simulate significantly more events than we

have in data so that our statistical uncertainty is dominated by the real statistical uncertainty rather than

the statistical uncertainty associated with our modeling.

We must simulate our neutrino signal and also our primary backgrounds, in order to develop techniques

to distinguish between the two and suppress the backgrounds, as well as to account for any remaining

background in the final sample when a fit is later performed. We use a package called GENIE for simulating

neutrinos, which is a standard neutrino event generator used across the field of neutrino physics [18]. We

use a modified version that has been adapted into the IceCube software framework. For our atmospheric

muon background, we use an internal software known as MuonGun which generates muons at random points

on a cylindrical shell around the detector. This is then weighted to a realistic energy spectrum. More

details about MuonGun and improvements I made to its efficiency can be found in Chapter 3. The second

background is noise which can be caused by dark noise from the PMT or radioactive decays in the glass

housings that encase the DOMs. Noise is modeled using an internal software package known as Vuvuzela

[19]. Vuvuzela is used both on its own for pure noise events and applied to other simulated event types to

make the simulated neutrino and muon events more realistic.

Simulation Procedure

The follow steps are used to produce simulation:

• Step 1: Particle generation and propagation. Neutrinos and muons are produced and propagated

through the ice. When these particles interact in the ice, any resulting energy deposits and/or secondary

particles are recorded.

• Step 2: Photon propagation. Energy deposits are converted into photon particles and the photons are

propagated through the ice. This step has been optimized to run on GPUs and is still one of the most

computationally expensive parts of producing simulation.

• Step 3: Detector response. This step simulates the response of the detector’s PMTs, noise, electronics,

and triggering to generate output that reproduces the detector’s output.

At this point, the aggregate simulation bears resemblance to real detector data, though admittedly does

not have satisfactory agreement yet. Further levels of selection are necessary to ensure that the data and
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simulation events that we use are high quality and well modeled.

Systematic Uncertainty of the Detector

For Steps 2 and 3, we have an appreciable amount of uncertainty in the parameters that describe the

photon propagation in ice and the detector response. The effects of changing these parameters are not well

described analytically a priori, so we must change the model parameters and directly resimulate under the

new scenario. We resimulate our events for many discrete parameter values, and later on (see Section 4.2)

we will introduce an interpolation method that allows us to describe the detector response analytically at

the final level.

2.2 Event Selection

The purpose of an event selection is to get a “good” sample of signal events that can later be used

for an analysis, but this must balance competing objectives: high statistics (keeping as many signal events

as possible to reduce statistical uncertainty) and high purity (eliminating as many background events as

possible). This is done through several successive levels of processing. Figure 2.1 shows the rates of noise,

muons, and each neutrino flavor for all of the levels of processing between the DeepCore Filter and the final

analysis level. The remainder of this section will go into more detail about each level of processing.

Figure 2.1: The OscNext Event Selection, beginning at the DeepCore Filter through the final
analysis level. Overall, the atmospheric muon and noise backgrounds are suppressed by 6 and 8
orders of magnitude respectively.
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Level 1

Level 1 is the detector trigger and is common across all of IceCube. It requires multiple DOMs near each

other to see light and when this occurs, the data is read out for the full detector. More details on the trigger

can be found in [11].

Level 2

At Level 2, there are many filters to identify and sort different types of events. The only filter relevant

for this work is the DeepCore filter, which uses the veto technique introduced in Section 1.3. Since DeepCore

is located in the bottom center portion of IceCube, it is able to use the upper and outer layers of IceCube

beyond DeepCore as a veto region. A quick reconstruction estimates the vertex position to be the center-

of-gravity of hits inside the DeepCore fiducial volume. Then, a relative velocity is calculated between hits

in the veto region and the vertex estimate. If the velocity between the hits in the veto region and fiducial

volume is consistent with a muon hypothesis, then the event will be removed by the filter. Although some

of these events could be secondary muons from neutrino interactions outside the detector, this would be

indistinguishable from our atmospheric muon background and thus we reject them anyway. More details on

the DeepCore Filter can be found in [13].

Level 3

The objective of Level 3 is to use simple, fast cuts to remove other event types which we are not interested

in and/or do not simulate, such as muon bundles in which two or more atmospheric muons enter the detector

together, coincident events in which a neutrino and atmospheric muon enter the detector at the same time,

and events which are pure noise. At this point, a cleaning procedure is performed to eliminate hits which

are not causally connected: (x2 − x1) > c(t2 − t1). That is, if the distance between hits is greater than the

distance a particle moving the speed of light could travel in the same time window, then it is assumed to

be noise. The cleaning procedure eliminates hits in an event which are likely noise and leaves behind hits

which could be causally connected. Several cuts are made on these cleaned events to eliminate backgrounds;

a representative sample of cuts are shown in Figure 2.2 and explained in this section, but note that this is

not an exhaustive list of the cuts that are made at this level. Additional cuts are made in a similar spirit to

target these same backgrounds.

If an event has fewer than 6 remaining DOMs that saw light after the cleaning procedure, the event is

discarded as this is still consistent with a pure noise event. Figure 2.2a shows this cut along with the noise

rates which peak below the cut value, and the signal rates. The neutrino events that are lost in this step
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are likely too low energy to be well reconstructed anyway, so this is not of concern. Atmospheric muons

are targeted using another veto cut. If there are 10 or more hits in the top portion of the detector, the

event is discarded because this is consistent with the hypothesis of a down-going atmospheric muon. This

cut is shown in Figure 2.2b; we see that this eliminates most of the simulated atmospheric muons, while

most of the neutrino signal is retained. The third category of background events targeted at this level is

unsimulated events such as coincidences, i.e. two events within the same trigger window. If there are two

events occurring in a trigger, then the event will generally appear to be longer, therefore we can eliminate

these types of events based on the time length (the difference in time between the first hit and the last hit).

Figure 2.2c shows the cut on this variable. If an event lasts longer than 5,000 ns, it is discarded. We see

that this eliminates many of the unsimulated events, but keeps our neutrino signal.

In total, this level eliminates 99.4% of simulated noise events and 93% of simulated atmospheric muons,

and keeps about 61% of neutrino events. The overall event rate at this point is about 1 Hz.

Level 4

Level 4 consists of two boosted decision trees (BDTs) designed to eliminate noise and muons. Each one

is trained to differentiate its target event type from neutrinos, by returning a score from 0 to 1 indicating

how neutrino-like (1.0) or background-like (0.0) the event is. The output score distributions of these two

classifiers are shown in Figure 2.3. Cuts are placed at 0.7 for the noise classifier and 0.65 for the muon

classifier. Only events which are more neutrino-like than the given threshold are kept.

In total, this level eliminates more than 99% of the remaining simulated noise events and 94% of the

remaining simulated atmospheric muons, and keeps over 80% of neutrino events.

Level 5

Level 5 further targets the muons in order to achieve a neutrino-dominated sample. The muons that

remain do not look like the typical muon signature, which is why they were not eliminated by previous cut

levels. Because IceCube is more sparse than DeepCore, it is possible for dim muons to travel between strings

and have only very small amounts of light registered by the strings along the corridor, until reaching the

more dense DeepCore region where light is detected by more strings. An example of one of these corridors

is indicated by the purple arrow on Figure 1.10. We remove events which have more than 2 DOMs hit along

an identified corridor. Additionally, we require events to have vertex estimates contained within DeepCore,

to eliminate events that start just outside DeepCore. Finally, we tighten the cuts that were made on the

Level 4 classifiers (to 0.85 for noise, and 0.9 for muons), so that we have a neutrino dominated sample.
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(a) Number of DOMs remaining that saw light after the cleaning procedure. Events are discarded if they
have fewer than 6 remaining DOMs.

(b) Number of hits in the top portion of the detector. Events are discarded if they have 10 or more hits
in this veto region.

(c) Difference in time between the first hit and the last hit. Events longer than 5,000 ns are removed,
which eliminates many unsimulated events that are likely coincident events.

Figure 2.2: Sample cuts made at Level 3 to eliminate noise, muons, and unsimulated coincident events.
Figure Credit: [20].
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(a) Output score distribution for the Level 4 noise BDT classifier. We see that the noise (grey) is peaked
at 0, and the neutrino signal (red, blue, teal, gold) is peaked at 1.0. A cut is placed at 0.7 and only events
which are more neutrino-like than this are kept.

(b) Output score distribution for the Level 4 muon BDT classifier. We see that the muons (maroon) are
peaked at 0, and the neutrino signal (red, blue, teal, gold) is peaked at 1.0. A cut is placed at 0.65 and
only events which are more neutrino-like than this are kept.

Figure 2.3: Cuts made at Level 4 to eliminate noise and muons. Figure Credit: [20].
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Level 6 - Reconstruction

Once we have reach a point where our sample is dominated by neutrinos rather than backgrounds,

i.e. after Level 5, it becomes computationally feasible to perform more sophisticated and computationally

intensive reconstruction algorithms. We use a brand new reconstruction method described in [21] called

RetroReco. It is a likelihood-based reconstruction with an 8-dimensional event parameterization to describe

the neutrino interaction. The model, shown in Figure 2.4, takes into account the direction of incoming

neutrino in zenith and azimuth Ψ(θ, φ), the vertex of the neutrino interaction V (x, y, z, t), the energy of

the shower at the interaction vertex Ecascade, and the length of the track component Ltrack. The (x, y, z)

coordinates are given in terms of the IceCube coordinates, where (0, 0, 0) is defined to be the center of

the IceCube detector. The reconstruction takes into account the detector response and determines what

combination of parameters is most likely, given the pattern of hits observed in the detector.

There are a few additional pieces of information provided by the reconstruction that will be useful for

the steps that follow. The total energy is the sum of energy in the track and cascade portions, where the

track energy has been calculated from the track length using the assumption that the muon experiences a

constant energy loss of 0.22 GeV/m. RetroReco also provides an estimate of how track-like an event is. This

is determined by computing the difference in log-likelihood (LLH) of how well the model fits the data for the

full 8-dimensional hypothesis, compared to a hypothesis where the track length L = 0. This quantifies how

necessary the track component is to describing the event well. This quantity is referred to as “Zero dLLH”

and is used in Section 2.3. In addition, RetroReco also returns uncertainties on each quantity, given as an

upper and lower bound.

Ψ

Figure 2.4: Diagram of the 8-dimensional event parameterization used for reconstruction:
direction of incoming neutrino in zenith and azimuth Ψ(θ, φ), vertex of the neutrino interac-
tion V (x, y, z, t), energy of the shower at the interaction vertex Ecascade, and length of the track
component Ltrack. Figure Credit: [21].
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Level 7

There is one final level of selection performed after the reconstruction. A series of cuts are used to target

the coincident events that were first mentioned at Level 3. These cuts include the reconstructed vertex time,

as well as the number of DOMs hit in the veto region (IceCube). We require that events have no light in the

top 15 layers of IceCube, and fewer than 8 hits in the outer few layers of IceCube. Additionally, we require

the reconstructed vertex time to be less than 14,500 ns.

Next, we make cuts on the containment, similar to those performed at Level 5, but this time using the

vertex position from the full reconstruction, rather than the quick estimates that were available previously.

The vertex x and y positions are converted to a radial distance ρ. We define a cylindrical region around

DeepCore and keep only events with a reconstructed vertex inside. Figure 2.5 shows the distribution of the

reconstructed vertex coordinates along with the cut values for the ρ and z coordinates.

At Level 6, in addition to the full RetroReco reconstruction, we run an additional quick reconstruction

that provides direction only. This quick reconstruction is called “SANTA” and more details of it can be

found in [21]. It uses a hit cleaning algorithm to select only hits from unscattered photons, referred to as

“direct hits”. This is determined by applying causality cuts to determine which hits are consistent with a

Cherenkov cone. We make a cut to require that events have at least 3 direct hits. In general, these hits

are the most useful and are the highest quality since being unscattered means they are, by default, less

influenced by ice properties. Additionally, events with few or no direct hits typically have larger errors on

the reconstruction.

The main background rejection power at Level 7 comes from a BDT that is trained to distinguish the

remaining muons from neutrinos. Figure 2.6 shows the output score distribution of this classifier. A cut is

placed at 0.8 and we only keep events with scores above this value. The process for choosing this cut value

is described in more detail in Section 4.1.

At Level 7, we also run a classifier to distinguish tracks versus cascades, but no selection cuts are made

on this variable. More details of this classifier will be provided in the next section.

At this point, we have reached the final sample that will be used for analyses. We consider noise events

to be completely removed at this point, and they are therefore not included in the analysis. No simulated

noise events remain at final level, which given the statistics of the simulation implies that noise accounts for

less than 0.03% of the sample. Table 2.1 lists the expected rates and number of events for each of the event

types.
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(a) Radial coordinate of reconstructed vertex in meters. Only events with ρ < 300 m are kept.

(b) Z-position reconstructed vertex in meters. Only events with −500 < z < −200 m are kept.

Figure 2.5: Distribution of reconstructed vertex coordinates, along with the containment cut values indicated
by the red lines. Figure Credit: [22].
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Figure 2.6: Output score distribution of Level 7 muon classifier. The atmospheric muon back-
ground (purple) peaks at low values near 0. The neutrinos (red, blue, green, yellow) peak near 1.
A cut is placed at 0.8 and only events above this value are kept. Figure Credit: [22].

Rate [mHz] Num events [9.3 yr] % of sample

νe,CC 0.165 48234± 75 23.0

νµ,CC 0.436 127725± 129 61.0

ντ,CC 0.033 9678± 21 4.6

νNC 0.076 22245± 51 10.6

µatm 0.005 1463± 87 0.7

Noise - - < 0.03

Total 0.715 209346± 182 100

Table 2.1: Final level event rates after all cuts are applied. The quoted uncertainty comes from
the finite MC statistics. The background simulation is more limited in statistics than the neutrino
simulation. No simulated noise events remain at final level.
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2.3 Particle Identification

Because the oscillations that we are studying are inherently flavor-dependent, we must have some way to

identify events of different flavors. Unfortunately, at these low energies the only information we are currently

able to get is from muons. Muon neutrino charged current interactions leave muons in the detector that

may travel far enough to have visible tracks. Taus produced in tau neutrino charged current interactions

decay to muons 17% of the time. All other interactions (NC events, NuE CC, and the other 83% of NuTau

CC events) appear as single cascades because we cannot distinguish between hadronic and electromagnetic

cascades. The process of distinguishing between tracks and cascades is referred to as “event classification”

and as “particle identification (PID)”. For this analysis, I developed a new event classification scheme. This

is the first generation of DeepCore analyses to use machine learning techniques for this classification. I used

a boosted decision tree (BDT) trained on simulation, in particular I used the XGBoost algorithm [23].

Input Variables

The following variables are used as inputs to the BDT:

• Track Length This variable is the most straightforward measure of how track-like an event is. It is

simply the reconstructed track length. An event with a very long reconstructed track likely does have

a true muon track present.

• Cascade Energy This variable is RetroReco’s estimate of how much light is in the cascade portion

of the event (as opposed to the track portion).

• Zero dLLH This variable is RetroReco’s estimate of how necessary the track hypothesis is to explain

the shape of the event. Upon completing the full 8-dimensional minimization of the reconstruction and

determining the log-likelihood (LLH) of the event’s hits with the best fit parameters, it forces the track

length to 0 and determines the LLH of the hits having been produced by an event with the remaining

7 parameters. If the fit gets significantly worse by removing the track portion, then the event is likely

a track because the track portion is required in order to get a good fit. If the LLH remains almost

unchanged after eliminating the track component, then the event is likely a cascade because it does

not require a track to get a good fit.

• Zenith We expect there to be some zenith dependency on the ability to identify track-like events due

to the geometry of the detector. Because the spacing between adjacent DOMs in the vertical direction

https://xgboost.readthedocs.io/en/latest/index.html
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is much smaller than in the x-y direction, we expect tracks that are nearly upgoing or downgoing to

be easier to identify than horizontal ones.

• Zenith Uncertainty In addition to providing the most likely value for each reconstructed parameter,

RetroReco also reports a lower and upper bound as a proxy for the uncertainty of that parameter. The

uncertainty is computed by taking the difference between the upper and lower bounds for the zenith

estimate of each event. Because tracks are typically associated with better pointing resolution due to

their longer lever arm, we expect events with a smaller zenith uncertainty to be more track-like.

The distribution of these input variables, as well as the output score, for tracks and cascades can be seen in

Figure 2.7, including the agreement between data and simulation for each variable.

Classifier Training

The classifier was trained using events that passed the final level muon classifier. To get a good clean

sample for training, the track-like events used for training were νµ,cc and νµ,cc with reconstructed total

energy between 5 and 500 GeV, and the cascade-like events used for training were νe,cc and νe,cc again with

reconstructed total energy between 5 and 500 GeV. The lower energy events are excluded from training

because they do not have any distinguishable track features, so it would confuse the classifier to say that

something that looks very cascade-like is actually a “track”. ντ events are excluded from training because

some produce tracks (i.e. the 17% of ντ,cc interactions that decay into muons) while others produce cascades.

The weights used for training are an unoscillated atmospheric neutrino flux from [10]. We chose to use

unoscillated weights because energy and cos(θzenith) are inputs into the classifier, and we wanted to prevent

any influence of the oscillation pattern being used to assign whether events are more likely to be tracks or

cascades. Sample balancing was also applied during training so that the sum of the track weights was equal

to the sum of the cascade weights, to ensure equal priority is given to correctly identifying both track and

cascade populations. Half of events are used for training and half are used for testing.

Performance

We can evaluate the performance of this method in different portions of phase space, namely as a function

of energy and cos(zenith). Figure 2.8 shows the fraction of tracks and cascades correctly identified. A few

general features can be seen. At low energies, fewer events are identified as tracks because there are no

distinguishable muons. In tracks (left panel) this shows up as a deficit of events classified correctly, but

in cascades (right panel) most low energy events are classified correctly. At high energies, both tracks and
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(a) Track Length (b) Cascade Energy

(c) Ratio of the goodness-of-fit between the
cascade+track and cascade-only hypotheses

(d) cos(θzen)

(e) Zenith Uncertainty (f) Output score of PID classifier

Figure 2.7: Variable distributions and Data/MC comparisons for each classifier input variable and the
classifier output variable.
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(a) True Tracks (νµ,cc) (b) True Cascades

Figure 2.8: Fraction of events classified correctly as a function of energy and cos(θzenith). (a)
shows νµ,cc events classified as tracks, (b) shows all other particles classified as cascades.

cascades are identified correctly because they are easy to distinguish. At intermediate energies there is

some confusion in both types. In the left panel, a zenith structure is also visible at intermediate energies,

because upgoing and downgoing tracks look more track-like due to the closer DOM spacing and are more

easily identified, whereas horizontal tracks are more difficult to identify. The structure visible in Figure 2.8a

carries over into our final analysis templates, as will be seen in later chapters.

Once we have the output score distribution as shown in Figure 2.7f, we can determine where to place the

cut boundaries to make the distinction in our analysis, but further discussion on this topic will be reserved

for Section 4.1.

Comparison to previous methods

The previous generation of oscillation analyses [7, 8] before OscNext used univariate methods for classi-

fication; one analysis used reconstructed track length and a different analysis used the Zero dLLH quantity

described earlier in this section. Figure 2.9 shows a ratio of the fraction of events classified correctly using

this classifier method compared to the fraction of events classified correctly using the method that only

relies on track length. The regions indicated in red indicate portions of phase space where the new classifier

method performs better. In the left panel, you can see that the classifier is better at correctly identifying

low energy tracks. This is because the track length only method requires events be high enough energy to

produce a muon that can travel 35 meters, whereas the classifier method can pick out track-like shapes on

a smaller scale. In the right panel, you can see that the classifier method performs better for high energy

cascades because even if an event is reconstructed with a long track length, if the overall shape is still more

spherical, then the classifier might determine it is a cascade.
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(a) True Tracks (νµ,cc)
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(b) True Cascades

Figure 2.9: Ratio of the fraction of events classified correctly using the classifier method compared
to the track length only method. Red is where the classifier method performs better, blue is where
the track length only method performs better. (a) shows the ratio of tracks classified correctly,
(b) shows the ratio of cascades classified correctly.

2.4 Improvements to the Reconstructed Energy Proxies

RetroReco provides two proxies for energy. The first one is an estimated track energy, which at the time

of reconstruction is assumed to scale linearly with track length using the assumption of a minimum ionizing

muon with a constant energy loss of 0.22 GeV/m. The second is an estimated cascade energy, which is

obtained by scaling the light produced by a 1 GeV electromagnetic (EM) cascade to the total light yield of

the event. This estimate is known at the EM-equivalent cascade energy, EEM . In reality, both of these are

approximations.

Cascade events from neutrino interactions are never purely electromagnetic since inelastic scattering

breaks apart the nuclei and generates a hadronic component to the cascade. The decay of secondary τ

leptons can also produce hadronic showers. Since the hadrons produced are more massive and slower than

the electrons and positrons created during a pure EM shower, less Cherenkov light is expected from hadronic

cascades (HD for short). This means that EEM is likely underestimating the true energy of the cascade.

Additionally, there can be neutral shower products which do not produce Cherenkov emission. To account

for this, a correction factor is applied based on GEANT4 simulation of EM and HD cascades in ice [24,

25]. In these simulations, proton and electron primaries of equal energies were simulated to interact in the

ice, and the total light yield of the cascade was taken to be the sum of the track length of all charged

decay products with a velocity larger than the Cherenkov threshold. From that, a ratio of light yield can be



34

computed between EM and HD cascades at various energies:

F (E) =
THD(E)

TEM (E)
(2.1)

where THD(E) and TEM (E) correspond to the respective Cherenkov track length (light yield) of the hadronic

and electromagnetic cascade simulated with a primary of energy E. This relationship allows us to convert

from the EM energy to HD energy.

For the tracks, we can get an improved estimate of the real track energy by using more realistic energy

losses rather than a linear approximation. The track energy can be recalculated from the track length using

an interpolation of the muon energy loss data tabulated in [26].

Even after these changes, the resulting reconstructed cascade energies and track lengths do not perfectly

match their truth parameters in simulation. A linear scaling factor is introduced to make the reconstructed

parameters better match the truth. Figure 2.10 shows the hadronic cascade energy before and after a scaling

factor of 1.7 is applied, and Figure 2.11 shows the track length before and after a scaling factor of 1.45 is

applied.
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(a) Hadronic cascade energy before rescaling
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(b) Hadronic cascade energy after rescaling

Figure 2.10: Hadronic cascade energy before and after a linear scaling factor of 1.7 is applied.
This bias correction is applied to make the reconstructed energy be a better estimator of true
cascade energy. The red lines show the median and 68% containment regions. The black line is
the 1:1 line where the reconstructed value exactly matches the truth. The correction factor pulls
the median to more closely follow the 1:1 line. The different panels correspond to the different
interaction types: νe CC, νµ CC, ντ CC, and all NC.
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Figure 2.11: Reconstructed track length before and after a linear scaling factor of 1.45 is applied.
This bias correction is applied to make the reconstructed track length be a better estimator of
true track length. The red lines show the median and 68% containment regions. The black line is
the 1:1 line where the reconstructed value exactly matches the truth. The correction factor pulls
the median to more closely follow the 1:1 line. Only νµ CC is shown because other flavors do not
have true tracks.

The total energy is again computed by summing the contributions from the cascade energy and track

energy, this time with the adjusted values. The effects on the total energy with and without these correction

factors applied can be seen in Figure 2.12. For νe CC events and νµ CC events, the total reconstructed energy

matches the neutrino energy quite well for most of our events. For the ντ CC and Neutral Current events,

the reconstructed energy is lower than the initial neutrino energy, because there is energy carried away by

an outgoing neutrino, not all of the incoming neutrino energy is visible. Therefore we wouldn’t expect these

to have perfect energy resolution. We can remove the “missing” energy due to the outgoing neutrino to

get a quantity we refer to as the “deposited energy”, and then we can perform the same comparison. This

is shown in Figure 2.13. We find that this procedure provides a reliable method for determining the true

deposited energy in the energy range of 5 to 300 GeV. This energy estimator is used for the analysis in the

chapters that follow.
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(a) Total reconstructed energy before rescaling
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(b) Total reconstructed energy after rescaling

Figure 2.12: Total reconstructed energy before and after linear scaling factors are applied. This
bias correction is applied to make the reconstructed energy be a better estimator of true energy.
The red lines show the median and 68% containment regions. The black line is the 1:1 line where
the reconstructed value exactly matches the truth. The correction factor pulls the median to more
closely follow the 1:1 line. The different panels correspond to the different interaction types: νe
CC, νµ CC, ντ CC, and all NC.
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Figure 2.13: Reconstructed deposited energy before and after the scaling factors are applied. This procedure
makes the reconstructed energy a better estimator of true deposited energy. The shaded regions show the
68% containment regions, and the solid lines show the median. The dashed, black line is the 1:1 line where
reconstructed energy exactly matches the true deposited energy. The correction pulls the median to more
closely follow the 1:1 line. Figure Credit: [21].
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3
Optimization of Muon Simulation

Twice as fast, and this isn’t even my final form.

– Juan Pablo Yáñez, describing the
optimization discussed in this chapter

Atmospheric muons, which are generated in the same type of air showers that produce atmospheric

neutrinos, are one of our largest backgrounds. As shown in Figure 2.1, atmospheric muons initially outnumber

neutrinos by several orders of magnitude. When trying to perform an analysis, it is crucial to have trustworthy

modeling of our backgrounds to understand any potential contamination that could be present in our final

sample. This requires large amounts of Monte Carlo (MC) simulation with enough simulated background

events in the final level to understand what types of events are making it into the final sample. Generating

enough MC at the final sample poses significant computational challenges because the event selection, by

design, eliminates almost all of the muons. For every 1,000,000 muons that pass the DeepCore Filter, only 1

will survive to the final level. To make it computationally feasible to generate enough muon MC necessary

for an analysis, I developed a new scaling technique using Kernel Density Estimation (KDE) and importance

sampling to improve the efficiency of our simulation, which will be covered in this chapter.

3.1 Generating a Target Kernel

Atmospheric muons can be simulated using an air-shower simulation package known as Corsika [27],

however this is very computationally expensive and, for our purposes, quite inefficient. Instead, we use
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an internal tool known as MuonGun which generates muons on the surface of a cylinder surrounding the

detector and weights this to match air shower simulation like Corsika, rather than re-simulating the full air

showers. The muon energies in this chapter refer to the energy at the surface of the generation cylinder.

The events initially generated by MuonGun look very different than the resulting distributions after a few

levels of the event selection. Notice that at the MuonGun generation level (Figure 3.1a), most of the muons

begin in the upper left corner around cos(θzenith) of 0.8-1.0 and less than ∼250 GeV, whereas for Corsika

Level 3 (Figure 3.1b), essentially no muons remain in that same region of phase space. This means that

we are simulating many, many muons that are almost immediately discarded. This is very computationally

inefficient. In order to improve the efficiency of this simulation, this new technique modifies the distribution

of muons when they are generated, to more closely match the distribution after a few levels, so that more

events survive to the later levels.

For the purposes of developing this technique, the “target” distribution that we use is Level 3 Corsika

simulation. Even though the low statistics leads to a patchy distribution, we observe from Figure 3.1b that

two distinct populations are starting to form, a cluster near cos(θzenith) = 1.0 and another cluster spanning

cos(θzenith) from about 0.4 to 0.8. This is the result of a geometrical detector effect due to the detector

being approximately cylindrical. We can separate these populations based on whether they enter through

the top of the cylinder or through the side of the cylinder; therefore we will refer to these populations as

“top” and “side”. (It is extremely unlikely for a muon to enter through the bottom of the cylinder because

Earth acts as a shield.) Figure 3.2 shows a diagram of this geometry (not to scale). Figure 3.3 shows the

events divided into these two populations.

(a) Generation Level (b) Level 3

Figure 3.1: Simulated distributions of muons when they are first generated and after a few levels of processing.
For the region of phase space where most muons are generated, almost no muons survive to later levels.
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Figure 3.2: Diagram (not to scale) showing the cylindrical shell around detector. We can separate these
populations based on whether they enter through the top of the cylinder (blue) or through the side of the
cylinder (purple). The distributions of each event type is shown in Figure 3.3.

(a) Top. (b) Side

Figure 3.3: Simulated Level 3 distributions of muons which entered through the top (left) or side (right) of
the detector.
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Before generating the kernels, there is one more modification necessary. Because the kernel smooths out

the distribution, it does not handle sharp boundaries well. It smears the top bin above cos(θzenith)=1 and

does not give the correct behavior in the last bin (See Figure 3.4a). This can be circumvented by creating

the kernel from a distribution without sharp boundaries, by making a mirror copy of the data and flipping it

over the cos(θzenith)=1 boundary. Of course a value such as cos(θzenith)=1.1 is unphysical, but it creates the

correct distribution in our region of interest (0 to 1). This is only done to the muons in the “top” distribution

because the “side” distribution does not have a sharp drop at a boundary; it is a continuous distribution

centered far from cos(θzenith)=1. This duplicate distribution is created using the mapping x→ 1 + (1− x)

where x is each event’s cos(θzenith). Figure See Figure 3.4b shows a 1d projection of the original distribution,

the mirrored distribution, and the resulting kernel. We see that it now exhibits the correct behavior in the

region of interest, i.e. up to cos(θzenith)=1.

(a) Before applying mirror (b) After applying mirror

Figure 3.4: Distribution of simulated events and the resulting KDE values, with and without mirroring
applied. When mirroring is applied, we correct the behavior in the last bin (just below 1.0).

After getting our desired L3 simulation and making the necessary modifications, we create the 2-

dimensional kernels using scipy.stats.gaussian kde. There is one kernel for the top events and one

kernel for the side events, each kernel is generated in 2-d using energy and cos(θzenith), as was shown in

Figure 3.3. Figure 3.5 shows 1-dimensional slices compared to the histogram of the simulated data used to

create it. The KDEs trace a smoothed version of the histograms which is exactly what we want and expect.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html
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Figure 3.5: 1-dimensional slices of the KDE compared to the histogram of the simulated data used to create
it. As expected, the KDEs trace a smoothed version of the histogram.

3.2 Rejection Sampling

Once we have our desired target distribution, we use it at generation level to determine which events to

keep and eliminate using a technique called rejection sampling. For each generated muon, the value of the

KDE at that point is determined based on its energy, cos(θzenith), and whether it entered through the top

or side. The maximum KDE value is used to normalize this and turn it into a probability of keeping the

event. For example, an event at the point where the KDE is at its maximum would have a 100% chance of

being kept, while a smaller KDE value would correspond to a lower chance of being kept. Then, a random

number is generated and we use the accept-reject sampling method to determine if the event should be kept.

If the random number is less than the probability of being kept, we keep the event. If the random number is

greater, then we discard the event. A 1-dimensional slice (for illustration purpose only) is shown in Figure

3.6. One caveat is that we didn’t want to completely eliminate any portions of phase space and potentially

introduce unexpected effects down the road, so we implemented a floor at 1% so that if the probability of

keeping an event is less than 1%, we use 1% as its probability instead. This ensures that we keep about 1 in

100 events even in the most unlikely survival regions, rather than completely eliminating these regions from

our simulation.
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Figure 3.6: Example 1-dimensional slice of the KDE. For a given event, the corresponding KDE value is
determined and then normalized by the maximum KDE value to determine the probability of being kept. A
random number is drawn between 0 and 1. If the random number is less than the probability of being kept,
we keep the event (shown in green). If the random number is greater, then we discard the event (shown in
red).

3.3 Re-weighting

Finally, because this is a technique to change the efficiency of simulation, there should be no net change

on the physical weighted outcome. Therefore we must re-weight our events to take into account the way we

changed the underlying simulated distribution. To do this, we divide each event’s weight by the probability

of having kept it during rejection sampling. Therefore, events that were unlikely to be kept are up-weighted

since they effectively need to represent the events similar to it that were discarded. Figure 3.7 compares

the generated distributions with and without the KDE, for both the unweighted and weighted scenario. We

see that the unweighted distribution is now a closer match to later levels of processing, but the weighted

physical distributions are still unchanged.

I performed a study to determine the improvement from this new method and found that it improves

the speed of simulation by about 40% while simultaneously allowing for about 40% more events to be kept

through later levels of processing.
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(a) Unweighted distributions

(b) Weighted distributions

Figure 3.7: Generated distributions with (green) and without (blue) the KDE, for both the unweighted (top)
and weighted (bottom) scenario. We see that the unweighted distribution is now a closer match to later
levels of processing (red), but weighted physical distributions are still unchanged.
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4
Analysis Methods for Measuring the

Atmospheric Neutrino Oscillation Parameters

4.1 Binned Analysis

As mentioned in earlier chapters, the primary goal of this work is to measure the atmospheric neutrino

oscillation parameters, namely θ23 and ∆m2
32. As seen in Figure 1.7, this presents as the disappearance

of muon flavored neutrinos in certain portions of the energy-cos(θzenith) phase space. Because of this, we

perform a binned analysis whereby the events are binned in the following parameters: reconstructed energy,

reconstructed cos(θzenith), and the flavor/particle identification (PID) described in Section 2.3.

The boundaries and binning for these parameters were chosen to balance competing interests: eliminating

regions of phase space where we do not properly simulate events versus keeping as much of the phase space

as possible that contributes to improving our sensitivity to the oscillation parameters of interest. These

boundaries and binnings were also chosen in conjunction with the boundary for the final level muon cut

using the procedures outlined in the following sub-sections. Ultimately, the following binning scheme is

used:

• Energy: 12 log10-spaced bins between 5 and 300 GeV

• cos(θzenith): 10 linearly-spaced bins between -1.0 and 0.3
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• PID: 3 bins with edges at [0,0.5,0.85,1.0]

Final Level Muon Cut, cos(θzenith) cut, and the atmospheric muon background

The first decision to make is with regard to the amount of atmospheric muons that we allow into our

final sample. Due to the difficulties with simulating an adequate number of atmospheric muons, it can be a

problematic background to model properly. Because of this, we ultimately choose a conservative approach

that uses stringent cuts to reduce the number of atmospheric muons in our final sample. Three scenarios of

binning cuts in zenith were tested:

• Scenario A: Full sky (no cuts)

• Scenario B: Mild downgoing event cut (keep cos θzenith < 0.6)

• Scenario C: Harsh downgoing event cut (keep cos θzenith < 0.2)

In addition to zenith angle cuts, three choices of cuts on the final level muon classifier were tested:

• Scenario 1: Higher statistical power (keep classifier output score > 0.3)

• Scenario 2: Medium statistical power (keep classifier output score > 0.6)

• Scenario 3: Lower statistical power (high neutrino purity) (keep classifier output score > 0.9)

Distributions of both of these variables along with the cut values indicated are shown in Figure 4.1.

The different scenarios of muon classifier cuts were tested to evaluate the cost/benefits of sample statistics

vs. signal purity in the context of the resulting analysis sensitivity they provide. All combinations of zenith

and classifier cut scenarios were tested, and evaluated using the outcome of a sensitivity test (see Section

5.2 for a description of such test). The outcome of this optimization study is illustrated in Figure 4.2. We

ultimately chose the restrictive muon cuts in order to simplify the treatment of muons in later stages of the

analysis; the cut values chosen were cos θzenith < 0.3 and muon classifier score > 0.8 which is closest to the

“C3” scenario tested here. Although this does correspond to the worst sensitivity of the scenarios tested,

the impact was small enough that it was still worthwhile in order to allow us to use the simplified muon

treatments as will be described Section 4.2.
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(a) Zenith distribution of muon background events, show-
ing the three cut values tested: 1.0, 0.6, 0.2.

(b) L7 muon classifier distribution for muon and neutrino
events, showing the three cut values tested: 0.3, 0.6, 0.9.

Figure 4.1: Final level cut values tested during optimization of cos(θzenith) (left) and Level 7 muon classifier
(right).

Figure 4.2: Sensitivities to the atmospheric neutrino oscillation parameters for various combinations of the
Level 7 muon classifier and cos(θzenith) cut configurations. The colors indicate the zenith cut (A=green,
B=blue, C=red). The line styles indicate the muon classifier cut (1=dotted, 2=dashed, 3=solid). The chosen
cut was closest to C3 (solid red). The yellow line shows the result from a previous generation of analysis [7]
for comparison.
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PID Binning

A similar test was performed to determine the effect of the number and location of PID bins on the

resulting sensitivity. Four different PID binning configurations were explored:

• Scenario 2: Two PID bins only (boundaries: [0, 0.5, 1.0])

• Scenario 3a: Three PID bins option A (boundaries: [0., 0.35, 0.5, 1.0])

• Scenario 3b: Three PID bins option B (boundaries: [0., 0.5, 0.85, 1.0])

• Scenario 4: Four PID bins (boundaries: [0., 0.35, 0.5, 0.85, 1.0])

Distributions of the PID variable along with these cut values are shown in Figure 4.3.

Performing tests of the effects of these cut configurations on the sensitivity (see Figure 4.4), we found

that Scenarios 2 and 3a yielded similar sensitivities, and Scenarios 3b and 4 yielded similar sensitivities.

We decided to go to with Scenario 3b to maximize sensitivity without adding unnecessary bins that don’t

contribute towards improving the sensitivity. The chosen binning scheme results in the νµ,cc purities for each

bin listed in Table 4.1.

Figure 4.3: PID distribution and bin configurations tested. The 2-bin scenario uses only the
middle cut at 0.5. The 3a-bin scenario uses two lower cuts (0.35 and 0.85). The 3b-bin scenario
uses the two upper cuts (0.5,0.85). The 4-bin scenario uses all three cuts.
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Figure 4.4: Sensitivities to atmospheric neutrino oscillation parameters for various PID binning
configurations. Scenarios 2 (green) and 3a (blue) yielded similar sensitivities, and Scenarios 3b
(red) and 4 (purple) yielded similar sensitivities. The yellow line shows the result from a previous
generation of analysis [7] for comparison.

Bin label PID Score Range νµ,cc Purity

Cascades 0.0-0.5 48%
Low purity tracks 0.5-0.85 72%
High purity tracks 0.85-1.0 97%

Table 4.1: PID bin boundaries and the resulting νµ,cc purity

Energy Boundaries

To complete the analysis binning optimization, the reconstructed energy range was chosen to include

events solely within the range [5, 300] GeV. These boundaries were chosen to limit the contributions of

unsimulated misreconstructed events into our sample, which could lead to data/MC disagreement. We

simulate events in the true energy range of 1 GeV to 10 TeV, but at both extremes there is some spread in

the reconstructed energies that this corresponds to. To estimate the potential contamination of unsimulated

events reconstructing into our analysis region, we look at the next best thing – the very extreme values of

events we do simulate. At the lower range, we look at events with true energies of 1-2 GeV and at the upper

end we look at events with true energies of 9-10 TeV. Comparing the reconstructed energy distribution of all
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events versus the events in these extreme regions, we can estimate the potential contamination. Figure 4.5

shows the fraction of contamination due to low/high energy events into the reconstructed energy distribution,

along with the proposed reconstructed energy boundaries of 5 GeV and 300 GeV.

In the lowest energy bin around reconstructed energy of 5 GeV, about 1-1.5% of events in that bin are

events with true energies of 1-2 GeV (see Figure 4.5a). Therefore, we estimate that the contribution of events

into that lowest bin due to unsimulated events (events with true energy below 1 GeV) to be at the level of

less than about 1%. At the highest energies, the contamination is much smaller, on the order of 0.01% (see

Figure 4.5b). But there are also much fewer statistics at high energy, so we place the cut at 300 GeV to

avoid regions where statistical fluctuations are large. Our resulting sample therefore is restricted to events

with reconstructed energies of 5-300 GeV.

(a) Lower bound (b) Upper bound

Figure 4.5: Contamination of events near the edges of the simulated energy regions into the
reconstructed analysis space is used as an upper bound estimate on the possible contamination
due to events outside the simulated energy bands.

Number of bins in energy and cos(θzenith)

Once the external boundaries/edges are determined, we also must choose the internal spacing of the

bins. We want enough bins that we can resolve the oscillation peak, but a binning too fine would reduce the

number of events in each bin and increase statistical error in each bin. In the end, we have 12 log10-spaced

bins in energy and 10 linear bins in cos(θzenith).
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Bin Masking

There is one final choice made with respect to the bins used in the analysis. Bins with very few expected

counts can introduce unwanted behavior in the oscillation fits if a data event is found in a bin with <<1

expected events. Because these bins don’t contribute much to the analysis and to avoid any issues during the

fit, we have chosen to mask off bins with very few events. Or in other words, these bins are excluded from

the analysis. They are mostly low energy bins in more track-like PID regions (since it is difficult/impossible

to confidently identify low energy νµ,CC events as tracks since the µ produced is low energy and does not

travel far enough to be clearly identified). The bins we have chosen to mask are shown in Figure 4.6 as the

grey shaded boxes.

Expected Event Maps

Putting together all of the binning components described in this section, we end up with the expected

distribution of events (sometimes referred to as “templates” or “maps”) shown in Figure 4.6 according to

our nominal simulation. We can also quantify the effect that our physics parameters of interest will have

on these templates. Figure 4.7 shows the change in the expected number of events in each bin that occurs

if the physics parameters are shifted from θ23 = 45◦ to θ23 = 50◦ (top), and from ∆m2
31 = 2.48× 10−3 eV2

to ∆m2
31 = 2.38× 10−3 eV2 (bottom). The effects are strongest in the track bins and occur in the upgoing

region around 20-50 GeV, similar to the expected effect from Figure 1.7.
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Figure 4.6: Expected distribution of events in the final analysis binning. The grey boxes indicate the bins
that have been masked.

(a) Effect of shifting θ23 from 45◦ to 50◦.

(b) Effect of shifting ∆m2
31 from 2.48 × 10−3 eV2 to 2.38 × 10−3 eV2.

Figure 4.7: Change in the expected number of events in each bin, as the physics parameters are shifted.
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4.2 Treatment of Systematic Uncertainties

Flux Uncertainties

The uncertainties associated with the production of neutrinos and muons in the atmosphere include

the overall normalizations of the rates of neutrinos and muons, the spectral index of the neutrino flux, as

well as a suite of parameters introduced by Barr et al. to describe hadron production uncertainties [28].

Experimental data is used to estimate the uncertainty in the neutrino production for various portions of E

and xlab phase space, for production from both pions and kaons, where xlab is the amount of energy that the

secondary receives from its parent particle. Figure 4.8 shows the phase space divided into regions we refer

to as “blocks”. Figure 4.9 shows the uncertainty associated with each block.

Figure 4.8: Barr blocks used for parameterizing flux uncertainties. Each block corresponds
to a certain portion of phase space in E and xlab. Figure Credit: [28].

Figure 4.9: Uncertainty on atmospheric neutrino flux production corresponding to each Barr
block. Figure Credit: [28].
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Cross Section Uncertainties

The dominant cross section for our energy range is Deep Inelastic Scattering (DIS), but we also have

subleading contributions from charged-current quasi-elastic (CC QE) events and charged-current resonance

events (CC RES). For each interaction type, we include the axial massMA as a nuisance parameter. Changing

the axial mass changes the associated form factor, which in turn changes the number of neutrinos that undergo

that type of interaction.

To treat uncertainties in the DIS cross-section, we use a bespoke treatment that allows for interpolation

between discrete models. The Genie package [18] that we use for generating simulated neutrinos is generally

considered quite reliable at lower energies, but less so at high energies. At high energies, the CSMS model

[29], named after A. Cooper-Sarker, P. Mertsch, and S. Sarkar, is the model that would typically be used,

but they only report down to 100 GeV in their paper. This analysis sits right in the intermediate region,

so we introduce an interpolation scheme that allows the data to choose if it prefers a more Genie-like or

CSMS-like model. This is implemented as a scaling factor where 0 corresponds to Genie, and 1 corresponds

to CSMS. We refer to this parameter as “DIS CSMS”.

Treatment of Detector Uncertainties

The various types of detector uncertainties were introduced in Section 1.3 such as bulk ice, hole ice, and

DOM efficiency, and in Section 2.1 we discussed the technique for simulating the detector response for several

discrete parameter values. At this point, we can use this information to quantify the detector response at

the analysis level. We begin by binning the events in energy, cos(θzen), and PID using the scheme described

in Section 4.1. Then, we treat every bin independently. For each bin, we collect the parameter values used

to make the simulation ~x = (x1, x2, x3, x4, x5), where x1 is the value of the DOM efficiency parameter, x2 is

the value of the bulk ice scattering parameter, etc. for each of the 5 detector uncertainty parameters, and

y = Ncounts (the number of counts in that bin for that set). We then fit a hyperplane to these (~xi, yi), where

i is each simulated systematic set. The output of this fit is a slope for each systematic parameter and an

intercept. Figure 4.10 shows the input and output of this procedure for the case of two systematic parameters

(for visualization purposes only). The actual hyperplane fit uses all 5 detector systematic parameters.

Figure 4.11 shows an example of a hyperplane fit projected into only 1-dimension, hole ice p1. A horizontal

line would indicate that that parameter does not strongly influence the number of events in that bin; a steep

line would indicate that the number of events in that bin has a strong dependence on the parameter value.

Therefore, we see that for the example shown in Figure 4.11, the tracks are slightly more sensitive to the

hole ice p1 parameter than the cascades are, for that particular bin. We can then use these hyperplanes to
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estimate the number of events expected in a bin, even for values of the detector systematic parameters that

were not directly simulated.

Originally we had planned to use this procedure for both neutrinos and muons, but we encountered issues

with the muon fits due to the low number of muons in our final sample. Ultimately, we decided to make a

harsher cut on the muons so that the impact of muons in the final sample was sufficiently negligible that we

no longer needed to account for this type of uncertainty on the muons. Therefore the hyperplane procedure

described here is only used for neutrinos.

Figure 4.10: Diagram of the hyperplane fit used for modeling the response of the detector to systematic
uncertainties. The left diagram shows the input, i.e. the number of events in that bin for a given
combination of detector systematic parameter values. The right diagram shows the output, i.e. the
slopes associated with each parameter and the intercept. This diagram shows only 2 detector parameters
for visualization; the real hyperplane fit uses all 5 detector parameters.

Figure 4.11: Example hyperplane fit projected into 1-dimension, hole ice p1. The scatter points indicate
the discrete simulated sets, and the line indicates the outcome of the hyperplane fit. For this particular
bin, the tracks are slightly more sensitive to the hole ice p1 parameter than the cascades.
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Final List of Nuisance Parameters

There were additional types of systematic uncertainty studied that were determined to have a negligible

impact on the outcome of a fit. Table 4.2 shows the final list of nuisance parameters included in the analysis,

along with their nominal values, the type of prior imposed, and the allowed range.

Category Param Nominal Prior Range

Flux ∆γν 0 gaussian, σ = ±0.1 [ -0.5, 0.5 ]

Flux Barr, g π+ 0 gaussian, σ = ±0.3 [ -1.5, 1.5 ]

Flux Barr, h π+ 0 gaussian, σ = ±0.15 [ -0.75, 0.75 ]

Flux Barr, i π+ 0 gaussian, σ = ±0.122 [ -0.61, 0.61 ]

Flux Barr, w K+ 0 gaussian, σ = ±0.4 [ -2, 2 ]

Flux Barr, y K+ 0 gaussian, σ = ±0.3 [ -1.5, 1.5 ]

Cross-sections MA,QE 0 gaussian, σ = ±1 [ -2, 2 ]

Cross-sections MA,res 0 gaussian, σ = ±1 [ -2, 2 ]

Cross-sections DIS 0 gaussian, σ = ±1 [ -3, 3 ]

Normalization Nν 1 uniform [ 0.1, 2 ]

Normalization Nµ 1 uniform [ 0.1, 3 ]

Detector/Ice DOM Efficiency 1 gaussian, σ = ±0.1 [ 0.8, 1.2 ]

Detector/Ice Hole ice, p0 0.102 uniform [ -0.6, 0.5 ]

Detector/Ice Hole ice, p1 -0.0493 uniform [ -0.15, 0.05 ]

Detector/Ice Ice absorption 1 gaussian, σ = ±0.05 [ 0.9, 1.1 ]

Detector/Ice Ice scattering 1.05 gaussian, σ = ±0.1 [ 0.85, 1.25 ]

Table 4.2: Table of nuisance parameters used in fit.
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4.3 Test Statistic

Our analysis is performed using a binned Poisson likelihood as the optimization metric. For each bin i,

we can compute the probability of observing kdata,i data events given the expected number of events λi for

that bin:

L =
∏

iε{bins}

Pois(kdata, i;λi) =
∏

iε{bins}

λkdata, ie−λ

(kdata, i)!
(4.1)

or taking the log:

LLH =
∑

iε{bins}

log

(
λkdata, ie−λ

kdata, i!

)
(4.2)

In the context of Monte Carlo simulation, the expected number of events λi for a given bin is given by the

sum of all the weighted MC events falling into that bin. We also include penalty terms for the nuisance

parameters which have Gaussian prior constraints imposed. The penalty term is given by

∑
jε{sys}

(sj − ŝj)2

σ2
sj

(4.3)

where sj and σsj are the jth nuisance parameter’s nominal value and standard deviation, and ŝj is the

estimated value of the parameter during the fit. Putting these together, our final test statistic −LLH is

given by:

−LLH = −
∑

iε{bins}

log

(
λkdata, ie−λ

kdata, i!

)
+
∑

jε{sys}

(sj − ŝj)2

σ2
sj

(4.4)

4.4 Analysis Framework

The analysis is performed using an open-source software framework called PISA; more details on this

framework can be found in [30]. This software provides a staged approach for folding together information

from many components to produce expected event distributions, as well as performing the binned likelihood

minimization as described above. The number of expected events depends on the flux Φ, the oscillation

probabilities Posc, the cross sections σ, and the detector response E :

N = Φ · Posc · σ · E (4.5)

Each of these is computed in a dedicated stage and can be folded together. There are additional stages

available for other specialized tasks, such as template smoothing, that can be used if needed.
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5
Pre-fit Tests for Evaluating Analysis

Performance

The name of the Asimov data set is inspired by the short

story “Franchise”, by Isaac Asimov. In it, elections are

held by selecting the single most representative voter to

replace the entire electorate.

– G. Cowan, K. Cranmer, E. Gross, O. Vitells [31]

After all analysis choices are finalized, a number of tests are performed prior to fitting to real data. They

are meant to evaluate the potential of the analysis to perform as expected, the robustness of the fitting

strategy, and its capacity to run smoothly in the idealized case where the data is derived directly from MC

simulation, referred to as “pseudodata”. A number of tests refer to “Asimov” pseudodata sets [31], which

refer to an artificial data set generated using the expected values of the parameters (as opposed to, for

example, one where statistical fluctuations have been applied). This chapter contains information for each

test about its purpose, how the test is performed, and the conclusions that can be drawn from the outcome.
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5.1 Asimov Inject-Recover Test

Purpose: Ensure that the minimizer is capable of converging to the correct true value of injected physics

parameters.

Test procedure:

1. The MC template is weighted to specific values of the physics parameters, and provided as Asimov

pseudodata for the fit.

2. Perform the fit to pseudodata.

3. Check whether the recovered (i.e. fitted) values match the injected truth.

4. Repeat for several different values of the physics parameters.

Outcome: Figure 5.1 shows the result of an inject-recover test for various injected values of the physics

parameters. For every injected combination of physics parameters, the minimizer recovers the truth. This

can be seen in the figure as the fitted values (purple x’s) falling exactly on top of the true injected parameters

(yellow circles).

Figure 5.1: Results of the inject-recover test with Asimov pseudodata. For each of the scan points
shown in yellow, a fit was performed where the pseudodata is generated with that combination of
true physics parameter values. In every case, the analysis is able to recover the correct values of
the true physics parameters.
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5.2 Sensitivity Test

Purpose: Quantify the precision with which the analysis is able to measure the physics parameters of

interest (for a given combination of true physics parameters). Essentially this is trying to answer: for a given

combination of true physics parameters, what other combinations of physics parameters can we reject at the

90% confidence level?

Test procedure:

1. The Monte Carlo template is weighted to nominal values of the physics parameters, and provided as

Asimov pseudodata for the fit. (No statistical fluctuations applied.)

2. Perform a free fit to pseudodata, to determine the test statistic LLH value at the best fit point.

3. Perform the fit to pseudodata again with the physics parameters fixed to a certain off-nominal value

during the fit.

4. Quantify the difference in LLH between the fit with the off-nominal physics parameters and the free

fit to the best fit point.

5. Repeat steps 3 & 4 with fixing the physics parameters to many different combinations, to map out the

likelihood space.

6. Determine the test statistic critical values that corresponds to 1σ and/or 90% confidence level using

Wilks’ theorem [32].

7. Draw a contour where the difference in LLH equals the test statistic critical values found above.

Outcome: Following the fits described above, the test statistic value is calculated for every tested combi-

nation of physics parameters, and from that, a 90% contour is drawn. The sensitivity can also be compared

to the currently reported measurement contours of the oscillation parameters from other experiments. This

is done in Fig. 5.2. We see that the analysis is expected to yield a result that constrains the parameters of

interest with similar precision to other existing neutrino experiments.
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Figure 5.2: Outcome of sensitivity test: 90% expected contour (in red) in comparison to the
90% confidence level measurements of another DeepCore measurement (gold) and a few other
experiments’ published results (dashed lines) [33–36].
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5.3 Parameter Ensemble Test

Purpose: Ensure that the analysis fit behaves well for off-nominal values of the nuisance parameters,

and that those parameters are able to be accurately recovered in the fit. This is another form of inject-

recover test. (Note: the previously mentioned tests investigate how the analysis responds to changes in

physics parameters, and so this test is designed to investigate behavior for all parameters, i.e. both the

systematic/nuisance parameters and the physics parameters.)

Test procedure:

1. Draw a single possible realization of the various combinations of physics and nuisance parameters,

according to their given priors and ranges (i.e. Gaussian or uniform, as indicated in Table 4.2).

2. Re-weight the MC template to the chosen values of the physics and nuisance parameters, and provide

it as pseudodata for the fit. (No statistical fluctuations are applied.)

3. Perform the fit to the pseudodata.

4. Repeat for many different realizations of the nuisance and physics parameters.

5. Check whether the recovered (i.e. fitted) values match the injected truth.

Outcome: Figure 5.3 shows the results of the parameter ensemble tests. The minimizer is able to recover

the true parameters. For some of the parameters to which we only have a weak dependence (such as the

Barr parameters and the axial mass terms), the injected value is only partially recovered due to the effects of

the prior pulling the parameter towards its nominal value. In other words, for these parameters, the power

of the data to constrain the parameter is comparable to the prior imposed.



62

(a) Normal Ordering

(b) Inverted Ordering

Figure 5.3: Outcome of parameter ensemble test for each ordering. Each subplot shows the injected parame-
ters (on the x-axis) and the recovered parameters (on the y-axis), for 100 trials. In general, most parameters
are able to be recovered. For some parameters (such as the Barr parameters and the axial mass terms), the
fit value is influenced by the Gaussian prior.
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5.4 Ensemble Test

Purpose: Ensure that the analysis behaves correctly when statistical fluctuations are applied to the MC

template.

Test procedure:

1. A number of pseudo-experiment templates are created by statistically fluctuating the bin counts of the

nominal simulation template.

2. For each trial, fit the pseudo-data using the standard analysis procedure.

Outcome: Fig. 5.4 shows the distribution of fitted parameters resulting from the trials in this test. For

all parameters, we can see that the distributions of fitted values (gold) are peaked around the true injected

values (grey vertical line), as expected.
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(a) Normal Ordering

(b) Inverted Ordering

Figure 5.4: Distribution of fitted parameters resulting from 500 pseudodata templates for normal ordering
(100 trials for inverted ordering), generated by applying statistical fluctuations to the nominal template.
The fitted values (gold) are peaked around the true injected values (grey vertical line), as expected. If a
parameter has a Gaussian prior, then its 1σ band is shown by the green shaded region.
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6
Blind Fits to Data

What you really learn in a life of science is the

vastness of what we don’t know.

– David Eagleman

As is customary in many scientific experiments, our analysis is performed in a blind way. This means that

all analysis choices should be settled prior to revealing any information that could indicate (either directly

or indirectly) what the results of the analysis are. In this case, the results refer to the preferred values of

∆m2
32 and sin2(θ23). The previous chapters introduced how the analysis choices were made and how the

analysis set-up is tested for robustness before a fit to data is ever performed. This chapter will discuss the

next phase in which we actually perform the fit to data, but again refrain from revealing any information

about the best fit values of ∆m2
32 and sin2(θ23). We refer to this as a “Blind Fit” because, as the name

suggests, we have performed a fit but still remain blinded to the physics parameters of interest.

As the epigraph of this chapter alluded to, the blind fits revealed that we do not yet know all there is to

know about our data sample. This analysis has a factor of ∼3× more events than any previous DeepCore

oscillation analysis, and as we continue to increase the number of events and decrease the amount of statistical

uncertainty present in our analyses, any potential systematic effects which had not been detectable in previous

analyses can become important. This chapter will discuss the outcome of our blind fits and will touch on

some of the investigation that followed.
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6.1 Original Blind Fit

The blind fits are performed with a phased approach and the procedures must be approved in advance

by members of the collaboration. We want to ensure that we receive enough information from the fit to

determine if the results are trustworthy, but without looking at any information that could compromise the

blindness of the study. The fits are run as follows:

1. Run fits - Fit both normal ordering and inverted ordering, but for blind fits do not report which one

is preferred.

2. Pseudotrials at best fit - Generate many realizations of psuedodata assuming the Best Fit Point

(BFP). To do this, we inject the preferred mass ordering and best fit parameter values and then apply

statistical fluctuations to the simulated templates. These pseduodata templates are then fit using the

standard procedure. (These scripts are automated so we don’t view the best fit parameters.)

Nuisance Pulls

We begin by looking at how far the nuisance parameters are pulling from their priors. We set a soft

boundary at 2σ and say that if we get any parameter beyond two sigma, we will pause and undergo further

investigation. This might seem too strict at first glance given that we have 12 parameters with Gaussian

priors, but we find this to be a reasonable choice for a few reasons. These parameters have constraints

placed on them by reliable external data, and therefore values of the nuisance parameters that contradict

the external data would warrant further investigation anyway. Additionally, we could naively calculate how

often we expect to get “unlucky” and randomly get a parameter beyond 2σ given that we have 12 parameters,

but in practice, we expect a parameter to “randomly” fall beyond 2σ far less than this calculation yields.

From Figures 5.3 and 5.4, we see that in our MC simulation we have only weak sensitivity to some parameters,

and that the prior is more constraining than the data for those parameters. We see that the simulated trials

fall within the shaded 1σ bands far more than 68% of the time. In fact, it can be up to 90-100% of the time

for some parameters. This tells us that regardless of the true value or statistical fluctuations, we expect a

parameter to fall outside 2σ quite rarely.

When we observe the nuisance pulls for our blind fit (see Figure 6.1), we find that two parameters are

pulling beyond 2σ. Additionally we find that two more parameters, Barr g and h, are pulling beyond 1.5σ

even though our earlier tests showed that we generally always expect those parameters to fit back within 1σ

(as seen in Figure 5.3). This tells us that there is something unexpected occurring in the data that we are

not able to reproduce with statistical fluctuations or by varying the nuisance parameters in our simulation.
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Figure 6.1: Parameter pulls for systematic nuisance parameters for the blind fit. Two parameters
fall beyond the > 2σ threshold.

Goodness-of-fit

While the nuisance pulls in the previous section suggest that there may be something occurring in data

that we didn’t anticipate from the MC simulation, it doesn’t necessarily provide the full picture. The next

metric we evaluate uses the pseudotrials at the best fit point (BFP) to examine the goodness-of-fit. We

assume that the BFP is truly the correct underlying combination of physics and nuisance parameters, and

evaluate what range of LLHs would be reasonable given our statistical uncertainty. As defined in Section

4.3, values closer to 0 indicate that the (pseudo)data is well described by the template, and values farther

from 0 indicate that the (psuedo)data is not described well by the template.

When we plot this distribution comparing the observed and expected LLH values, we find that observed

LLH value is far worse than the expected LLH values (see Figure 6.2). This indicates that our simulation,

even with the extreme pulls in nuisance parameters, is not describing the data template well.
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Figure 6.2: Outcome of goodness-of-fit test. The yellow distribution represents the expected likelihood distri-
bution for psuedotrials generated at the BFP with statistical fluctuations applied. The purple line indicates
the observed likelihood value. We see the observed value is not consistent with statistcal fluctautions.

Minimization checks

An obvious question to ask next is whether or not the minimizer has gotten stuck. Although we perform

tests of the minimizer ahead of time across a range of physics and nuisance parameters to make sure the

minimizer is capable of handling many values, it could be possible that in the real data fit, it either fails

right away or fails to converge after a long time. We use our pseudotrials mentioned in previous sections of

this chapter to determine what a “reasonable” number of fit iterations is. As shown in Figure 6.3, almost

all of the trials fall between 1,000–3,000 iterations, so we check whether the real data fit also finished within

the range of 1,000–3,000, and we find that it did. This indicates that it is likely not a catastrophic failure of

the minimizer.

Figure 6.3: Expected number of fit iterations based on many pseudotrials. We confirmed that the fit to real
data also converged within 1,000–3,000 iterations, which is in line with this expectation.
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6.2 Further Investigations

Based on our knowledge of the parameters with extreme pulls and knowledge of issues that had been

encountered in prior DeepCore studies, there were several possible leads that warranted further investigation.

Removing high energy bins

The parameters that pulled to extreme values in the initial fit, DIS CSMS and the Barr parameter

corresponding to the I block, are both relevant for describing the high energy events in our sample (> ∼100

GeV). Furthermore, the high energy region has historically been excluded from analyses; previous analyses

like [7, 8] only used reconstructed energies up to 56 GeV. This motivated a study to determine if it was a

discrepancy at high energies causing the effect. To test this, we removed the high energy bins and performed

the blind fit again (see Figure 6.4.) Unfortunately, this did not resolve our tension as we still see pulls > 2σ.

Figure 6.4: Nuisance parameter pulls for blind fit with high energy bins removed.

Removing downgoing bins

Similarly, there have historically been concerns in IceCube analyses about the atmospheric muon back-

ground. As mentioned in previous chapters, the muons are largely downgoing and horizontal. The re-

constructed zenith distribution of muons was shown in Figure 4.1a. We tested a more restrictive cut on

cos(θzenith) to test this muon hypothesis, but again found that this did not resolve the tensions in the fit.

See Figure 6.5.
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Figure 6.5: Nuisance parameter pulls for blind fit with horizontal/downgoing bins removed.

Independent PID fits

To narrow down where the discrepancies are occuring, we performed the fit treating each individual PID

bin separately. So rather than having one set of nuisance parameters that is the best fit across the entire

sample, each PID bin is allowed to dictate its own preferred value. The results of this test are shown in Figure

6.6. Since the nuisance parameter pulls pass the 2σ threshold at this point, we also run the ensemble tests to

determine the goodness-of-fit for each PID bin’s fit. See Figure 6.7. We see that by loosening this constraint,

the disagreement between data and MC is improved and the observed test statistic is now consistent with

the expected distribution. We see that the low-purity PID bin still has a nuisance parameter pulling quite

close to 2σ, but for all the PID bins, the goodness-of-fit is consistent with the expected distributions. This

indicates the tension in the full fit could be arising from trying to describe multiple particle types at once,

or from a yet-to-be-identified systematic effect that affects different event types in different ways.

Figure 6.6: Nuisance parameter pulls for blind fits where each PID bin fit independently.
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(a) Cascades (b) Low-purity tracks (c) High-purity tracks

Figure 6.7: Goodness-of-fit tests for the blind fits where each PID bin is fit independently.

Treatment of Systematic Uncertainties

One of our largest sources of systematic uncertainty, as mentioned previously, is the ice properties.

Cascade events are generally more susceptible to ice systematics than the other event types. The calibration

program in IceCube is very active, and as such, is always working to further our understanding and improve

our ice models. There have been new updates to the ice models in recent years, such as a model that takes

into account the birefringence of light due to the ice’s crystalline structure [37]. This model corrects a known

discrepancy in the azimuthal data/MC agreement, but since our analysis does not use azimuth, this should

not have a large effect to first-order. However, this model could have second-order effects that do impact

our observable parameters. Our analysis was underway before this model became available, so it was not

originally included, but there is currently an effort to include this ice model in our analysis. This would

allow us to determine if the birefringence modeling is the missing piece necessary for our model to describe

our data well.

Also under investigation are the flux and cross section systematics. The parameters that generated the

large pulls in the original fit are new parameters that were not included in previous generation analyses.

Therefore, it could be possible that the new parameterization or implementation are flawed. There are still

many open avenues to explore, but is very likely that whatever the resolution may be, we will learn something

new about our detector and/or our models.
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7
20% Sub-sample Fit

Sometimes the half is better than the whole.

– Hesiod, ancient Greek poet

7.1 Defining a Sub-sample

Due to the unresolved issues with the full sample’s fit, it became necessary to move forward with only a

sub-sample for the remainder of this work. IceCube collects data in increments of ∼8 hours, which are known

as “runs”. Each run is given an associated incremental number known as a “Run ID”. The sub-sample used

in this chapter uses only runs with Run IDs ending in 0 and 5. This ensures that the sub-sample is an

accurate representation of the full sample spanning all data years. All other parts of the analysis remain the

same as introduced in earlier chapters. Figure 7.1 shows the expected event distribution for the sub-sample.

Figure 7.1: Expected nominal event distribution for the 20% sub-sample.
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7.2 Pre-fit Tests

Before performing the fit, all pre-fit tests described for the full sample were repeated with the sub-sample

to evaluate the performance of the analysis with the reduced statistics. This section shows the outcome of

these tests; for the description and procedures associated with each test, refer to Sections 5.1–5.4.

Asimov Test (inject-recover test with no fluctuations)

Figure 7.2 shows the result of an inject-recover test for various injected values of the physics parameters.

For every injected combination of physics parameters, the minimizer recovers the truth. This can be seen in

the figure as the fitted values (purple x’s) falling exactly on top of the true inject parameters (yellow circles).

Figure 7.2: Results of the inject-recover test on Asimov pseudodata for the sub-sample. For each
of the scan points shown in yellow, a fit was performed where the pseudodata is generated with
that combination of true physics parameter values. In every case, the analysis is able to recover
the correct values of the true physics parameters.

Parameter Ensemble Test (inject-recover test with nuisance param. fluctuations)

Figure 7.3 shows the result of a “parameter ensemble test” in which the physics and nuisance parameters

are varied and injected as pseudodata. In general, the minimizer recovers the truth values. This can be seen

in the figure by the trials falling approximately on the 1:1 line. This test tells us how well the analysis recovers

off-nominal values of the nuisance parameters. For some parameters that we only have weak sensitivity too,

the fit value is influenced by the Gaussian prior, indicated by the grey shaded region.
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Figure 7.3: Outcome of parameter ensemble test for the 20% sub-sample. Each subplot shows the injected
parameters (on the x-axis) and the recovered parameters (on the y-axis), for many trials. In general, most
parameters are able to be recovered. For some parameters, the fit value is influenced by the Gaussian prior.

Ensemble Test (inject-recover test with statistical fluctuations)

Figure 7.4 shows the result of an “ensemble test” in which statistical fluctuations are applied and injected

as pseudodata. Each sub-figure shows the distribution of fitted values for a given physics or nuisance

parameter. For most parameters, we see that the distributions of fitted values (gold) are peaked around the

true injected values (grey vertical line), as expected.

One notable exception is the muon normalization Nµ which represents a scaling factor on the amount of

muon background events present in the sample, with 1 corresponding to the nominal Monte Carlo prediction.

We see that although the true value for this parameter is 1 in all the trials, the fit prefers values close to 0

when statistical fluctuations are applied. This differs from the outcome we saw with the full sample where

the true value of 1 was recovered more accurately (see Figure 5.4). In a standalone analysis, this may have

warranted further investigation, however in order to keep this analysis as similar to the full sample analysis

as possible, no changes were made. This behavior is not particularly worrisome due to the very low muon

content in the sample (< 1%). Figure 7.5 shows the nominal expected distribution of background muons in

the 20% sub-sample, and we see that most of the analysis bins have on the order of single events with at

most about 6 expected events. Compare to Figure 7.1 which shows the expected templates for all events in

the sample, which have O(100s) of events per bin.
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Figure 7.4: Distribution of fitted parameters resulting from many pseudodata templates, generated by
applying statistical fluctuations to the nominal template. If a parameter has a Gaussian prior, then its 1σ
band is shown by the green shaded region.

Figure 7.5: Expected nominal distribution of muons for the 20% sub-sample. All bins have very few expected
events.
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7.3 Blind Fits

The blind fit procedure introduced in Section 6.1 was repeated using this 20% sub-sample. First, the fits

are run for both mass orderings. Then, that BFP is used to generate many pseudotrials.

Nuisance Parameter Pulls & Goodness-of-fit

We begin by looking at the same information as before: the nuisance parameter pulls and the goodness-

of-fit. With this sub-sample, we find that no nuisance parameters are pulling beyond the pre-defined 2σ

threshold, as shown in Figure 7.6. Additionally, our observed test statistic is in good agreement with the

the expected test statistic distribution, as shown in Figure 7.7. This indicates that our model is describing

our data to a level consistent with statistical fluctuations.

Figure 7.6: Parameter pulls for systematic nuisance parameters for the sub-sample blind fit.
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Figure 7.7: Outcome of goodness-of-fit test. The yellow distribution represents the expected
likelihood distribution for 500 psuedotrials at the BFP with statistical fluctuations applied. The
purple line indicates the observed likelihood value.

Data/MC Agreement in 1-dimensional projections

After these positive indications that the fit appears to be successfully describing our data, we move

on to some additional checks to again evaluate how well the fit has performed, without compromising any

information that could indicate where the best fit physics parameters lie. The oscillation pattern that defines

our signal is visible in the energy-cos(θzenith) plane for the track-like PID bins (as shown in Figure 1.7).

Because we need to slice our events in 3 dimensions to observe the oscillation pattern, it is generally accepted

that conclusions about the oscillation values cannot be drawn from 1-dimensional projections. Therefore we

are able to look at the data/MC agreement pre- and post-fit in the blind stage. Figure 7.8 shows the pre-

and post-fit data/MC agreement for reconstructed energy, cos(θzenith), and the output BDT score from the

PID classifier. We see that the fit corrects the slight tilts in both energy and cos(θzenith).
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(a) Pre-fit reconstructed energy (b) Post-fit reconstructed energy

(c) Pre-fit reconstructed cos(θzenith) (d) Post-fit reconstructed cos(θzenith)

(e) Pre-fit PID score (f) Post-fit PID score

Figure 7.8: Data/MC agreement for each of our observable variables before (left) and after (right) the fit.
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Evaluation of binned likelihood

Because the fit is performed using a binned likelihood, we can also look at the contributions from the

individual bins to determine if they are distributed in agreement with statistical fluctuations. To do this, we

compare the best fit MC template with the data template. For each bin, we compare the difference between

these two templates to the total statistical uncertainty (the data statistical uncertainty is defined as
√
N

and the MC statistical uncertainty is calculated from the MC weights). If the bins are perfectly statistically

distributed, we expect the distribution to follow a Normal distribution. Figure 7.9 shows the distribution of

the bins, along with a Gaussian fit. We find that the Gaussian fit yields parameters quite close to µ = 0 and

σ = 1.

Next, we look at a map of the LLH values for each bin to look for any potential clustering. See Figure

7.10. The entry for each bin corresponds to the log of the Poisson likelihood introduced in Equation 4.2.

This value is quantifying the probability that the number of observed data events in a given bin is a plausible

realization, if the best fit point is assumed to be true. We can look for regions that have many unlikely

realizations, which could indicate that there is a region of phase space that is not being modeled correctly or

that there is potentially an unsimulated background in a certain region. Looking at Figure 7.10, we see that

there are not regions which have significant clustering. In conjunction with Figure 7.9, we conclude that any

variations between the data template and the MC template seem consistent with statistical fluctuations.

Figure 7.9: Distribution comparing the data/MC agreement (gold). Each entry in the histogram corresponds
to an individual bin in the 3d templates. The purple line shows a Gaussian fit, which we see has parameters
quite close to a normal distribution.
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Figure 7.10: Contribution of each bin to the overall test statistic. A value near 0 indicates that the number
of data events is a likely Poisson realization given the expected number of events from the best fit MC; A
value far from 0 indicates that the number of data events is an unlikely Poisson realization given the expected
number of MC events. We see that there is no strong evidence of clustering.

7.4 Results

Best fit parameter values

After determining that everything seen in the blind fit phase is satisfactory, we proceed with unblinding

all parameters. The best fit values for all the fitted parameters are shown in Table 7.1. The best fit values

of the atmospheric oscillation parameters of interest are θ23 = 49.26◦ and ∆m2
31 = 2.483110−3 eV2, which

corresponds to sin2(θ23) = 0.5742 and ∆m2
32 = 2.4092× 10−3 eV2, as shown in Table 7.2.

Category Param Nominal Prior Range Best Fit

Flux ∆γν 0 gaussian, σ = ±0.1 [ -0.5, 0.5 ] 0.0371

Flux Barr, g π+ 0 gaussian, σ = ±0.3 [ -1.5, 1.5 ] -0.0866

Flux Barr, h π+ 0 gaussian, σ = ±0.15 [ -0.75, 0.75 ] -0.1611

Flux Barr, i π+ 0 gaussian, σ = ±0.122 [ -0.61, 0.61 ] 0.1271

Flux Barr, w K+ 0 gaussian, σ = ±0.4 [ -2, 2 ] 0.1422

Flux Barr, y K+ 0 gaussian, σ = ±0.3 [ -1.5, 1.5 ] -0.0383

Cross-sections MA,QE 0 gaussian, σ = ±1 [ -2, 2 ] 0.7068

Cross-sections MA,res 0 gaussian, σ = ±1 [ -2, 2 ] 0.5469

Cross-sections DIS 0 gaussian, σ = ±1 [ -3, 3 ] 0.6578

Normalization Nν 1 uniform [ 0.1, 2 ] 0.9294

Normalization Nµ 1 uniform [ 0.1, 3 ] 0.1

Detector/Ice DOM Efficiency 1 gaussian, σ = ±0.1 [ 0.8, 1.2 ] 1.017

Detector/Ice Hole ice, p0 0.102 uniform [ -0.6, 0.5 ] 0.2042

Detector/Ice Hole ice, p1 -0.0493 uniform [ -0.15, 0.05 ] -0.1025

Detector/Ice Ice absorption 1 gaussian, σ = ±0.05 [ 0.9, 1.1 ] 0.9654

Detector/Ice Ice scattering 1.05 gaussian, σ = ±0.1 [ 0.85, 1.25 ] 1.1103

Oscillations θ23 [deg] 45.4 uniform [ 0, 90 ] 49.26

Oscillations ∆m2
31 [10−3eV2] 2.48 uniform [ 1.0, 5.0 ] 2.4831

Table 7.1: Table of best fit parameter values for nuisance and physics parameters.
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Parameter Best Fit

sin2(θ23) 0.5742

∆m2
32 2.4092 10−3eV2

Table 7.2: Results for the atmospheric neutrino oscillation parameters, converted into sin2(θ23) and ∆m2
32.

90% confidence allowed region & comparison to other experimental results

Finally, we generate our 90% confidence level contour using a procedure similar to the sensitivity test

described in Section 5.2. Scanning over a grid of sin2(θ23) and ∆m2
32 values, the template is fixed to those

values, the data is fit, and then we determine the difference in test statistic between the best fit point and

the scan point. Assuming Wilks’ theorem (see Section 7.5 for testing the validity of this assumption), we

can determine what test statistic value corresponds to the 90% confidence level, and then draw a contour at

that level. The contour is shown in Figure 7.11, along with the 90% result contours for several other global

neutrino experiments [33–36].

Figure 7.11: Contour showing the 90% confidence level allowed region for the physics parameters, along
with results from several other global neutrino experiments. The crosses show the best fit values from
each experiment. Other experimental results from [33–36].
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7.5 Post-unblinding Checks

Examining best fit detector systematic parameters

As mentioned in Section 4.2, the detector systematic parameters are simulated in discrete sets and then

interpolated between the discrete sets. To ensure that the best fit point (BFP) is in the interpolation region

(rather than being an extrapolation), we investigate how the BFP compares to the simulated sets. Figure

7.12 shows the values for hole ice p0 and p1 for the nominal set, best fit point, and simulated systematic sets.

We see that the best fit point is not more extreme than the simulated sets in either parameter. Figure 7.13

shows the angular acceptance as a function of the incident photon angle η on the DOM for the nominal set,

the best fit point, and the simulated systematic sets. Similarly for the bulk ice, Figure 7.14 shows the values

for bulk ice scattering and absorption for the nominal set, best fit point, and simulated systematic sets. We

again see that the best fit point is not more extreme than the simulated sets in either parameter.

Figure 7.12: Values of hole ice systematic parameters p0 and p1 for the nominal set (black x), best fit
point (red x), and various simulated systematic sets (colored circles).
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Figure 7.13: The angular acceptance as a function of the incident photon angle on the DOM for
the nominal set (black), the best fit point (red), and the simulated systematic sets (various colors).
cos(η)=1.0 corresponds to a photon hitting the face of the PMT, cos(η)=-1.0 corresponds to a photon
hitting the top of a DOM opposite from the PMT face.

Figure 7.14: Values of bulk ice systematic parameters scattering and absorption for the nominal set
(black x), best fit point (red x), and various simulated systematic sets (colored circles).
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Data/MC Agreement for L/E

As originally shown back in Equation 1.4, the primary variable driving the oscillations is L/E. We

examined the data/MC agreement of L and E (using cos(θzenith) as a proxy for length) after the fit in

Figures 7.8b and 7.8d. We can use that same information to determine the distribution of the derived

quantity L/E after the fit. Figure 7.15 shows the post-fit data/MC agreement, along with the no oscillation

comparison. We find that this variable has good agreement between data and simulations after the fit.

Additionally, we see that the oscillations have a large effect on the distribution, particularly in the range

100–1000 km/GeV.

Figure 7.15: Post-fit data/MC agreement, along with the no oscillation comparison (dotted), for L/E
which is the characteristic variable that the oscillations are sensitive to.
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Assumption of Wilks’ Theorem

As mentioned in Section 7.4, we assumed Wilks’ theorem for determining the 90% confidence level

contour. Wilks’ theorem states that for a sufficiently large sample size, if the null hypothesis is true, then

the distribution of the test statistic −2∆LLH will approach the chi-squared χ2 distribution for the number

of degrees of freedom equal to the difference in the number of degrees of freedom between the null hypothesis

and the hypothesis being tested [32]. To test the validity of this assumption, we use the pseudotrials generated

as part of the blind fit stage (used in Section 7.3) to compare the observed −2∆LLH distribution to the χ2

distribution as suggested by Wilks’ theorem. See Figure 7.16. Because the gold line is slightly above the 1:1

line, this indicates that we have slight overcoverage. This means that the contour reported in Section 7.4 is

conservative. In other words, we expect 90% of pseudotrials to fall below the critical value, but there are

actually more than 90% of trials below the threshold.

Given that this sub-sample fit is intended to be testing the validity of our analysis procedure, this con-

servative coverage is determined to be adequate. Once the fit with the full sample is successfully unblinded,

if the trials indicate that there is still overcoverage, it would be appropriate to perform Feldman-Cousins

corrections [38] on the result contour to ensure the accuracy of the stated 90% interval.

Figure 7.16: Comparison of the observed number of trials with a given −2∆LLH to the expected
number of trials predicted by Wilks’ theorem. Because the gold line is slightly above the 1:1 line, this
indicates that we have slight overcoverage. This means that the contour reported in Section 7.4 is
conservative.
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8
Conclusions & Outlook

In this work, we covered a new sample that was developed to measure neutrino oscillations in IceCube

DeepCore using data from 2012–2022. Almost all aspects of the analysis are new compared to previous

generations of analyses, such as the event selection, the reconstruction, the use of machine learning classifi-

cation, the simulation, the majority of the data, and the treatment of many of the systematic uncertainties. I

discussed my own work on particle identification, energy estimators, muon simulation, binning optimization,

and more. I presented the status of my analysis to measure the atmospheric neutrino oscillation parameters.

Although the full data fit remains an ongoing work in progress as of the time of writing this, the statistical

power that this sample will bring upon completion will allow it to measure the parameters θ23 and ∆m2
32 with

precision comparable to the current world-leading experiments. It also provides complementarity to these

other experiments since we are sensitive to very different sources of systematic uncertainties; our detector

observes naturally-occurring atmospheric neutrinos and uses a natural detection medium, whereas the other

leading experiments are accelerator-based so they have very different methods of production and have fully

human-made detectors.

There are many routes being investigated as possible sources of the observed discrepancy in the full

fit, but along the way we continue to learn new things about the detector and our sources of systematic

uncertainties. Everything learned here will be useful knowledge to carry forward to future generations of

analyses, and eventually future detectors like the IceCube Upgrade [39]. Finally, using the 20% sub-sample,

we confirmed the validity of our methods, simulation, and data to perform as expected and we measured the

atmospheric neutrino oscillation parameters which appear consistent with other experimental measurements.
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