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Abstract

In this work we approach the theory of finitely generated FIG-modules through the lan-

guage of abelian categories. In the first chapter, we define various homological invariants

of finitely generated FIG-modules, and show that they encode certain previously observed

phenomena. More specifically, we show that the derived functors of the derivative en-

code the so-called Nagpal number of the module. We also provide a theory of depth for

finitely generated FIG-modules, which generalizes previous work of Sam and Snowden.

In the second chapter, joint with Liping Li, we study a theory of local cohomology for

FIG-modules. Using this theory we refine the results of the first chapter, while expanding

it in many ways. It is shown that these local cohomology modules encode a plethora of

significant properties, including the regularity of the module. Finally, the third chapter

deals with removing the assumption of finite generation from the first two. We prove

that the weaker assumption of coherence is sufficient for much of the theory to continue

to work. As an application, we prove a kind of local duality for coherent FIG-modules.
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Preface

In this preface, we give a very brief summary of the work which follows. Each chapter

in the body of the work has its own introduction and background section, making them

all self-contained. The purpose of this preface is to give a brief sense of the topics in the

body of the work. For a completely rigorous treatment, one should read through the

chapters which follow.

The philosophy of asymptotic algebra can be stated as follows. If a family of objects

displays some kind of asymptotically regular behavior, the entire family can be encoded

into a single object which is finitely generated in some abelian category. For example,

let M be an orientable manifold of dimension at least 2, which can be realized as the

interior of a manifold with boundary. The n-strand (ordered) configuration space ofM

is defined to be

Confn(M) := {(x1, . . . , xn) | xi 6= xj}

The n-strand unordered configuration space of M is defined to be the quotient space

of Confn(M) by the natural symmetric group action. It was classically observed that

for each i the homology groups Hi(UConfn(M)) are eventually constant in n. This

phenomenon was explained by McDuff [McD], who showed that the abelian group⊕
n≥0Hi(UConfn(M)) can be endowed with an action by the ring Z[x], which turns

it into a finitely generated graded module over this ring.

Despite the success of McDuff’s result, it was noted that the ordered configuration
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spaces did not share this kind of stability in their homology groups. Indeed, the homol-

ogy groups of these spaces would have to be treated in a considerably more subtle way.

Observe first that for each n the homology group Hi(Confn(M)) carries the structure of

a Z[Sn]-module. The key insight of Church [Chu], was that these homology groups will

stabilize after accounting for this symmetric group action. Of course, while it doesn’t

make literal sense to say that some Sn representation is “the same as” some Sn+1

representation, one would never object to someone saying the trivial representation of

Sn is the same as the trivial representation of Sn+1. The work of Church, and later

Church, Ellenberg, and Farb, made this intuition rigorous through the use of FI-modules.

Let FI denote the category of finite sets and injections. An FI-module over Z is a

functor from the category FI to the category of abelian groups. The work of Church

shows that the group
⊕

n≥0Hi(Confn(M)) can be endowed with the structure of a

finitely generated FI-module over Z, thereby providing a kind of generalization to the

original approach to McDuff. Since the work of Church, Ellenberg, and Farb, there has

been an explosion of interest in FI-modules, as well as modules over related categories.

In the following work, we will be concerned with understanding modules over FIG for a

given group G, a category which generalizes FI. Put briefly, one may think of FIG as

the category whose acting groups are no longer the symmetric groups, but rather the

wreath product of the symmetric group with G.

The following work is a compilation of three previous papers [R, LR, R2]. The second

of these [LR] was also coauthored by Liping Li. The purposes of these three works were
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in understanding FIG-modules from the perspective of abelian categories. More specifi-

cally, I hoped to prove facts about FIG-modules by applying techniques most commonly

used in commutative algebra.

In the first chapter, we introduce the concept of depth for FIG-modules. Depth is

a very well studied invariant from commutative algebra, and the notion we introduce

for FIG-modules shares numerous similarities with this classical invariant. Using this

concept, we are able to provide effective bounds on a celebrated theorem of Nagpal [N],

and clarify previous work of Church and Ellenberg [CE]. Such effective bounds have

been shown by Wiltshire-Gordon [W-G] to have many natural applications in topology

and beyond.

In the second chapter, Liping Li and I expand upon the first work. It is explained that

much of [R] actually derives from a kind of local cohomology theory for FIG-modules.

Just as with depth, local cohomology is a very well studied subject from commutative

algebra. It is discovered that the local cohomology theory for FIG-modules shares an

almost alarming amount of similarity with the classical case. For instance, the afore-

mentioned result of Nagpal, which is itself a kind of Hilbert polynomial analogue for

FIG-modules, is shown to fall out of the theory. The main conjecture of [LR] was re-

cently proven to be the case by Nagpal, Sam and Snowden in [NSS].

In the third chapter, we seek to answer the question: “when is finite generation

necessary?” Inspired by work of Church and Ellenberg [CE], the author introduces a
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definition of coherence for FIG-modules, and proves that the category of coherent FIG-

modules is always abelian. This result allows one to study FIG-modules in the absence

of finite generation, and therefore allows one to consider cases wherein the group G is

not finite. The chapter concludes by applying previously established technical results to

prove a kind of local duality for FIG-modules.
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Chapter 1

Homological Invariants of

FI-modules and FIG-modules

1.1 Introduction

Let FI denote the category whose objects are the sets [n] := {1, . . . , n}, and whose

morphisms are injections. An FI-module over a commutative ring k is a functor V :

FI→ k -Mod. These objects were introduced by Church, Ellenberg, and Farb in [CEF],

and were shown to have a plethora of applications to topology and number theory

due to their strong connection to representation stability theory, introduced in [CF].

Following the work of Church, Ellenberg, and Farb, Wilson studied modules over a very

similar category, FIBC [W]. The category FIBC is that whose objects are the sets [n],

while morphisms are pairs (f, g) : [n] → [m] of an injection of sets with a map of sets

g : [n]→ Z/2Z. Composition in this category is defined to be,

(f, g) ◦ (f ′, g′) = (f ◦ f ′, h), h(x) = g′(x) + g(f ′(x)).

Wilson shows in [W] that FIBC-modules also naturally arise in studying stability phe-

nomena in topology. It is shown in [W] that many well known properties of FI-modules

are also present in FIBC-modules. These many similarities are explained by the fact that

both are specific cases of a more general object.
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Let G be a group. The category FIG, introduced in [SS2], is that whose objects

are the sets [n], and whose morphisms are pairs (f, g) : [n] → [m] such that f is an

injection, and g : [n] → G is a map of sets. Composition in this category is defined in

the analogous way to FIBC-modules. If G = 1 is the trivial group, then FIG is equivalent

to the category FI of finite sets and injections. If G = Z/2Z, then FIG is equivalent to

the category FIBC , discussed above. For any commutative ring k, an FIG-module over

k is a covariant functor V : FIG → k -Mod. We will often write Vn := V ([n]).

In the present paper we study various homological invariants of FIG-modules, and

show how they relate to concrete questions about stability. In particular, we general-

ize the bounds on Castelnuovo-Mumford regularity in [CE, Theorem A], and provide

explicit bounds on results from [CEFN, Theorem B] and [NS]. If V is an FIG-module,

then we define H0(V ) on any finite set [n] to be the quotient of Vn by the images of all

maps V (f, g) where (f, g) ∈ HomFIG([m], [n]) and m < n. The functor V 7→ H0(V ) is

right exact, and we define its right derived functors, Hi, to be the homology functors.

The paper [CE] studied these functors in the case of FI-modules, and showed various

applications to the homology of congruence subgroups.

We say that V is generated in degree ≤ m if deg(H0(V )) ≤ m (See Definition 1.7),

where the degree of an FIG-module deg(V ) is the largest n such that Vn 6= 0. Similarly,

we say that V has first homological degree ≤ r if deg(H1(V )) ≤ r (See Definition

1.7, and Remark 1.14 for more on this definition). If a module has finite generating and

first homological degrees, then it is said to be presented in finite degree.
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The main tool in much of the paper is the use of the derivative functor. Given an FIG-

module, we define its first shift SV to be the module defined on points by SVn = Vn+1.

For any (f, g) : [n]→ [m], the map SV (f, g) : Vn+1 → Vm+1 will be the map V (f+, g+),

where f+ agrees with f on [n] and maps n + 1 to r + 1, while g+ agrees with G on [n]

and maps n+ 1 to the identity (see Definition 1.17). We will write Sb to denote the b-th

iterate of S. This functor was first introduced in [CEFN, Definition 2.8], and has since

seen use in many papers (e.g. [N], [NS], [L], [GL]). If V is any FIG-module, then the

map induced by the natural inclusion fn : [n] → [n + 1] (i.e. that which sends i to i

for all i), paired with the trivial map into G, induces a map of FIG-modules V → SV .

The derivative of V , denoted DV , is defined to be the cokernel of this map (see Defi-

nition 2.28). As with the shift functor, we set Da to be the a-th iterate of D. Because

this functor is right exact, we can consider its left derived functors, which we denote HDa

i .

The connection between the derivative functor and homology was established for

FI-modules in [CE]. Church and Ellenberg show that many properties of the deriva-

tive are encoded in the combinatorics of FI, which they then compute and relate to

the regularity. One of the main objectives of the latter part of this paper is to argue

that, in fact, the homological properties of the derivative functor provide deeper insights

than were previously noted. Two invariants related to the derivative functors that we

introduce and study in this work are the depth and the derived regularity of a module.

The primary goal of this paper is to explore how these two new invariants can be used

to refine our understanding of the homology and structure of FIG-modules.
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If V is an FIG-module, then we set its depth to be the smallest non-negative value

a for which HDa+1

1 (V ) 6= 0 . While this definition does not at first seem related to more

classical notions of depth, we will find that it satisfies many desirable properties. This

is explored deeply in Section 2.31. Using the properties of depth discussed in Section

2.31, we will be able to prove the following theorem.

Theorem A. Let V be a FIG-module which is generated in finite degree over a commu-

tative ring k. Then the following are equivalent:

1. V admits a filtration 0 = V (0) ⊆ V (1) ⊆ . . . ⊆ V (n) = V , such that the cofactors

are relatively projective (see Definition 1.5);

2. There is a series of surjections Q(n) = V � Q(n−1) � . . . � Q(0) = 0 whose

successive kernels are relatively projective;

3. V is homology acyclic;

4. H1(V ) = 0;

5. V admits a finite resolution by homology acyclic objects which are generated in

finite degree.

If, in addition, V is presented in finite degree, then the condition Hi(V ) = 0 for some

i > 0 is also equivalent to the above.

Remark 1.1. A very recent preprint of Li and Yu [LY] has overlap with this paper.

Namely, they prove a weaker version of Theorem 3.9 as their Theorem 1.3. While ear-

lier versions of this work were otherwise independent, we use arguments inspired by [LY,
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Section 3] in Section 2.31 to generalize the results of these previous versions.

Relatively projective FIG-modules will be defined and expanded upon in later sec-

tions. For now, one can imagine these objects as being projective in the traditional sense.

In fact, we will later see that all projective modules are relatively projective, although

relatively projective FIG-modules need not be projective. However, they turn out to be

acyclic with respect to many natural functors on the category of FIG-modules. If k is

a field of characteristic zero, then the above theorem implies that every non-projective

object in the category of finitely generated FIG-modules has infinite projective dimen-

sion. This fact was proven by Sam and Snowden in the case of FI-modules in [SS3,

Section 0.1]. We say that an FIG module V is ]-filtered whenever it satisfies any of the

conditions in the above theorem.

Our second application of depth will be to establish a firm connection between homo-

logical properties of the category of finitely generated FIG-modules, and the phenomenon

of the stable range.

If G is a finite group, and V is a finitely generated FIG-module over a field k, we de-

fine its Hilbert function to be HV (n) = dimk(Vn). In [CEF, Theorem 3.3.4], Church,

Ellenberg, and Farb prove that if k is a field of characteristic 0, and V is a finitely gen-

erated FI-module, then there is a polynomial PV (x) ∈ Q[x] such that HV (n) = PV (n)

for all n � 0. They go on to show that this equality holds for n ≥ r + d, where r is

the first homological degree of V , and d is the generating degree of V . This was was

also proven by Sam and Snowden in [SS3], although their bound is stated in terms of a
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kind of local cohomology theory [SS3, Theorem 5.1.3 and Remark 7.4.6]. Later, Church,

Ellenberg, Farb, and Nagpal [CEFN, Theorem B] prove that if k is any field, then HV (n)

agrees with a polynomial for n � 0. In this case, the authors do not provide bounds

on when this stabilization occurs. These same theorems were later proven by Wilson

in the case where G = Z/2Z [W, Theorems 4.16 and 4.20]. Later, Sam and Snowden

proved that the Hilbert function is eventually polynomial for an arbitrary finite group,

although they did not provide bounds on when the equality begins [SS, Theorem 10.1.2].

The question of how big n has to be before this stability begins is known as the

stable range problem. We say that a finitely generated FIG-module V over a field k has

stable range ≥ m if there is a polynomial PV (x) ∈ Q[x] such that for any n ≥ m,

HV (n) = PV (n).

Theorem B. Let G be a finite group, and let V be a finitely generated FIG-module over

a field k. Then the stable range of V is at least r + min{r, d} where r is the first homo-

logical degree of V , and d is the generating degree.

The work in this paper therefore provides a new proof of the bounds given in [CEF,

Theorem 3.3.4] and [W, Theorem 4.16], while providing a novel bound in the cases where

k is a field of positive characteristic or where G 6= 1,Z/2Z.

One of the major insights of Nagpal in [N, Theorem A] is that the aforementioned
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phenomenon of the stable range is actually a simple consequence of a much deeper struc-

tural theorem. This theorem was later generalized by Nagpal and Snowden in [NS].

Theorem ([NS]). Assume that G is a polycyclic-by-finite group, and let V be a finitely

generated FIG-module over a Noetherian ring k. Then for b� 0, Sb V is ]-filtered.

Note that ]-filtered modules have a polynomial Hilbert function for all n whenever

G is finite. The above theorem is therefore a generalization of the stable range phe-

nomenon, as previously stated.

We call the smallest b ≥ 0 such that Sb V is ]-filtered the Nagpal number of V ,

N(V ). Neither [N] nor [NS] provide bounds on N(V ) In this paper, we show that the

Nagpal number of a module V is actually encoded by its derived regularity. The de-

rived regularity of V , denoted ∂reg(V ), is the maximum across all integers a of the

degree of HDa

1 (V ).

Theorem C. Let V be an FIG-module which is presented in finite degree over a commu-

tative ring k. Then Sb V is ]-filtered for b� 0. Moreover, in this case Sb V is ]-filtered

if and only if b > ∂reg(V ). In particular, if V is not ]-filtered then N(V ) = ∂reg(V )+1.

The major content of Theorem C is that the language of depth and derived regular-

ity allows us to reinterpret the Nagpal number in terms of the finiteness of a particular

homological invariant. Moreover, the generality of this language allows us to prove the
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result of Nagpal-Snowden in a more general context.

It was observed by Church and Ellenberg in [CE] that the derivative functors of a

module could be used to bound its Castelnuovo-Mumford regularity. The Castelnuovo-

Mumford regularity of an FIG-module V is the smallest integer N such that

deg(Hi(V ))− i ≤ N

for all i ≥ 1 (see Definition 1.13). It was proven by Sam and Snowden in [SS3, Corol-

lary 6.3.5] that finitely generated FI-modules in characteristic zero have finite regularity.

Following this, Church and Ellenberg proved that FI-modules which are presented in

finite degree have finite regularity over any ring, and they provided a bound on this

regularity [CE, Theorem A]. More recently, Li and Yu have provided different bounds

on the regularity of FI-modules [LY, Theorem 1.8]. One of the early goals of this paper

is to prove that similar bounds exist for FIG-modules. Indeed, we will find that the

regularity of a module V , which is presented in finite degree, can be bounded in terms

of the generating degree and the relation degree of V .

Theorem D. Let V be an FIG-module over a commutative ring k with generating degree

≤ d and first homological degree ≤ r. Then reg(V ) ≤ r + min{r, d} − 1.

Note that the above bound exactly agrees with the bound given by Church and El-

lenberg for FI-modules in [CE, Theorem A]. Indeed, much of the work done in proving

the above theorem will involve generalizing the techniques used in that paper.
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1.2 FIG-Modules

1.2.1 Basic Definitions

For the remainder of this paper we fix a commutative ring k, and a group G. We will

use [n] to denote the set [n] = {1, . . . , n}. By convention, [0] = ∅.

Definition 1.2. We define the category FIG to be that whose objects are finite sets, and

whose morphisms are pairs (f, g) : S → T , of an injection of sets f : S ↪→ T , and a map

of sets g : S → G. Given two composable morphisms in FIG, (f, g), (f ′, g′), we define

(f, g) ◦ (f ′, g′) = (f ◦ f ′, h), where h(x) = g′(x) · g(f ′(x)).

Note that for any n, AutFIG([n]) = k[Sn o G]. For the remainder of this paper we

shall write Gn to denote the group Sn oG.
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One immediately observes that the full subcategory of FIG whose objects are the

sets of the form [n] is equivalent to FIG. For convenience of exposition, we will from

this point on refer to this category as FIG. In the case where G is the trivial group, one

sees that the category FIG is naturally equivalent to the category FI of finite sets and

injections. If instead we specialize to G = Z/2Z, then FIG is naturally equivalent to the

category FIBC discussed in [W].

Definition 1.3. An FIG-module over k is a covariant functor V : FIG → Modk from

FIG to the category of k-modules. We will often use the shorthand Vn := V ([n]), and

write (f, g)* : Vn → Vm to denote the map induced by an arrow (f, g) ∈ HomFIG([n], [m]).

The collection of morphisms (f, g)* are known as the induced maps of V , while the

maps (f, g)*, with n < m, are called the transition maps of V . The collection of FIG-

modules over k, along with natural transformations, form a category, which we denote

FIG -Mod.

Many constructions from the category -Modk will continue to work in FIG -Mod,

so long as one applies the construction ”point-wise.” For example, there is a natural

notion of direct sum of two FIG-modules V,W , where we set (V ⊕ W )n = Vn ⊕ Wn.

The induced maps of the sum are defined in the obvious way. One may similarly de-

fine point-wise notions of kernel and cokernel, which make FIG -Mod an abelian category.

One should observe that for any fixed n, and any FIG-module V , the module Vn

carries the action of an k[AutFIG([n])] = k[Gn] module. One may therefore think of an
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FIG-module as a single object which encodes a collection of compatible Gn representa-

tions, where the compatibility is given by the transition maps. This was the original

motivation for Church, Ellenberg, and Farb [CEF] studying FI-modules and their rela-

tionship with Church and Farb’s representation stability found in [CF].

Definition 1.4. We use FBG to denote the subcategory of FIG whose objects are the sets

[n], and whose morphisms are pairs (f, g) such that f is a bijection. An FBG-module

over k is a functor V : FBG → Modk. We denote the category of FBG-modules over k

by FBG-Mod.

One can think of FBG-modules as sequences of k[Gn]-modules, with n increasing.

We see that FBG-Mod can be thought of as a subcategory of FIG-Mod, the subcategory

of modules with trivial transition maps. Because of this, we will often use terms and

definitions from the theory of FIG-modules when describing FBG-modules.

Definition 1.5. For any non-negative integer n, we define the free FIG-module of

degree n M(n) by the following assignments: M(n)m := k[HomFIG([n], [m])] is the free

k-module spanned by vectors {e(f,g)} indexed by the members of HomFIG([n], [m]), while

induced maps act on the natural basis by composition. We will also refer to direct sums

of free modules as being free.

If W is a k[Gn]-module, then we define the relatively projective FIG-module over

W by the following assignments: M(W )m = W ⊗k[Gn] k[HomFIG([n], [m])], while induced
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maps act by composition in the second coordinate. More generally, if W is an FBG-

module, then the rule M(W ) =
⊕

n≥0M(Wn) makes M into a functor from FBG-Mod

to FIG-Mod. Modules in the image of this functor will also be referred to as relatively

projective. We observe that M(n) = M(k[Gn]).

Remark 1.6. Note that the terminology for the above definitions is not consistent in

the literature. Relatively projective modules are the same as those denoted FI ]-modules

in [CEF], and those denoted free in [CE]. Free modules are the same as those denoted

principally projective in [SS].

Proposition 1.3. If W is a k[Gn]-module, and V is any FIG-module, then

HomFIG -Mod(M(W ), V ) = HomGn(W,Vn). (1.1)

Proof

Given any map φn from the right hand side, we can extend it to a map φ of FIG-modules

by just insisting it commute with transition maps. For example, for any m > n, the

module M(W )m = W ⊗Gn k[HomFIG([n], [m])] is generated by pure tensors w ⊗ (f, g),

where w ∈ W and (f, g) ∈ HomFIG([n], [m]). We therefore define

φm : M(W )m → Vm, φm(w ⊗ (f, g)) := (f, g)*(φn(w ⊗ id)).

One can quickly see that this defines a well defined morphism of FIG-modules.

The adjunction (1.1) immediately implies that M(W ) is projective whenever W is a

projective k[Gn]-module. In fact, we will see in section 2.4 that all projective modules
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are relatively projective. Observe that this implies that the free FIG-modules are actu-

ally projective, and therefore FIG -Mod has sufficiently many projective objects.

Note that in the special case where W = k[Gn], the adjunction (1.1) becomes

HomFIG -Mod(M(n), V ) = Vn.

In other words, a map from the free object of degree n is equivalent to a choice of an

element of Vn. More precisely, the map sending a homomorphism φ : M(n) → V to

φ(id[n]) is an isomorphism.

We will prove other important properties of the M functor in Section 1.5.1.

Definition 1.7. Given a non-negative integer m, we say that an FIG-module V is gen-

erated in degree ≤ m if there exists a surjection⊕
i∈I

M(ni)� V,

where I is some index set and ni ≤ m for all i ∈ I. If the index set I can be taken to

be finite, then we say that V is finitely generated. We denote the category of finitely

generated FIG-modules by FIG-mod. By convention, the trivial FIG-module is said to be

generated in degree ≤ −1.

We say that V has relation degree ≤ r if there is an exact sequence

0→ K →M → V → 0,

with M relatively projective, such that K is generated in degree ≤ r. An exact sequence

of the above form is known as a presentation for the module V , and we say that V is
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presented in finite degree if V has finite relation and generating degrees.

The M-functor M : FBG -Mod→ FIG -Mod is that given by

M(W ) =
⊕
i

M(Wi).

Let V be an FIG-module, and let S be any subset of tnVn. Then we define the span

of S to be the FIG-module defined on objects by

spank(S)m = {w ∈ Vm | w =
∑
i

λi(fi, gi)*(xi) with xi ∈ S, λi ∈ k, and (fi, gi) ∈ HomFIG([ni], [m])},

with induced maps restricted from V . Then V is generated in degree ≤ n if and only

if spank(ti≤nVi) = V . From the remark about maps from free objects, one can also see

that V is finitely generated if and only if it is the span of a finite set of elements.

Definition 1.8. Given an FIG-module V we define deg(V ), the degree of V , to be the

supremum sup{n | Vn 6= 0} ∈ N ∪ {−∞,∞}, where we use the convention that the

supremum of the empty set is −∞. We say that V has finite degree if and only if

deg(V ) <∞.

It is an immediate consequence of the relevant definitions that all FBG-modules with

finite generating degree have finite degree.
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One very non-obvious fact about the category FIG-mod is that it can be abelian.

While finite generation is clearly preserved by quotients, it is not obvious that sub-

modules of finitely generated objects are also finitely generated. We have the following

theorem, usually called the Noetherian property.

Theorem 1.9 (SS2, Corollary 1.2.2). If k is a Noetherian ring and G is a polycyclic-

by-finite group, then the category FIG-mod is abelian. That is, submodules of finitely

generated FIG-modules are also finitely generated.

Historically, the Noetherian property was proven for FI-modules over a field of charac-

teristic 0 in [S, Theorem 2.3] and independently in [CEF, Theorem 1.3]. It was proven for

FI-modules over a general Noetherian ring in [CEFN, Theorem A]. The case G = Z/2Z

was proven in [W, Theorem 4.21]. The paper [SS2] proves the theorem for all polycyclic-

by-finite groups G.

Remark 1.10. Note that the above theorem requires that the group G be polycyclic-by-

finite. In this paper we will not need this assumption on G. In particular, our results

will be independent of the Noetherian property.

1.3.1 The Homology Functors and Nakayama’s Lemma

Definition 1.11. Let V be an FIG-module, and let n be a non-negative integer. We use

V<n ⊆ Vn to denote the submodule of Vn spanned by the images of all transition maps.
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Put another way, V<n is the submodule of Vn generated by the elements

∪i<n ∪(f,g)∈HomFIG
([i],[n]) (f, g)*(Vi).

The zeroth homology of V is the FBG-module defined by H0(V )n = V/V<n.

This notion was first introduced for FI-modules in [CEF], and later expanded upon

in [CEFN] and [CE]. This functor was also considered in [GL] and [GL2], albeit in a

slightly different language.

Proposition 1.4. The zeroth homology functor H0 enjoys the following properties:

1. for any k[Gn]-module W , H0(M(W ))n = W , while H0(M(W ))m = 0 for all m 6= n;

2. if {vi}i∈I ⊆ tnH0(V )n is a generating set for H0(V ), and wi is a lift of vi for each

i ∈ I, then {wi}i∈I is a generating set for V . Equivalently, H0(V ) = 0 if and only

if V = 0 (Nakayama’s Lemma);

3. H0(V ) is generated in degree ≤ n (resp. finitely generated) if and only if V is

generated in degree ≤ n (resp. finitely generated);

4. H0 is left adjoint to the inclusion functor FBG-Mod → FIG-Mod;

5. H0(V ) is right exact, and maps projective modules to projective modules.

Proof

The first non-zero entry in M(W ) is M(W )n = W . On the other hand, one sees im-

mediately from definition that M(W ) is generated in this degree. In other words, all
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other elements in M(W ) are linear combinations of transition maps applied to elements

of M(W )n. This implies the first statement.

Let vi and wi be as in the second statement. Let j be the least index such that

Vj 6= 0. Then H0(V )j = Vj, and therefore Vj is generated by the wi by assumption. To

finish the proof we proceed by induction. If n > j, and v ∈ Vn, then the image of v in

H0(V )n can be expressed as a linear combination of the vi. In particular, v is a linear

combination of the wi, as well as images of elements from lesser degrees. Applying the

inductive hypothesis completes the proof.

The third statement is an immediate consequence of Nakayama’s Lemma.

Let V be an FIG-module, and let W be a FBG-module. If φ : H0(V ) → W is any

map of FBG-modules, then for each n we define a map of k[Gn]-modules φ̃n : Vn → Wn

via φ̃n(v) = φn(π(v)), where π : Vn → H0(V )n is the quotient map. We claim that φ̃ is

actually a morphism of FIG-modules. If (f, g)* is any transition map, and v ∈ Vm, then

φ̃n((f, g)*(v)) = φn(π((f, g)*(v))) = 0 = (f, g)*(φ̃n(v)).

On the other hand, if σ ∈ k[Gn], then

φ̃n(σ(v)) = φn(π(σ(v))) = φn(σ(π(v))) = σ(φn(π(v))) = σ(φ̃(v)).

Conversely, let φ : V → W be a morphism of FIG-modules. Because φ respects tran-

sition maps, and because W has trivial transition maps, it follows that φn vanishes on

the images of the transition maps into Vn. In particular, the map φ̃ : H0(V )→ W given
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by φ̃n(v) = φn(v) is well defined. The two constructions give above are clearly inverses

of one another, proving the adjunction.

The last statement is a consequence of standard homological algebra. Left adjoints

are always right exact, and any left adjoint to an exact functor must preserve projectives.

As a quick application of the above proposition, we prove that all projective modules

are relatively projective.

Proposition 1.5. Let V be an FIG-module. Then V is projective if and only if V =⊕
iM(Wi), where each Wi is some projective k[Gi]-module. In particular, all projective

FIG-modules are relatively projective.

Proof

We have already seen that modules of the form
⊕

iM(Wi), with Wi projective, are

projective. Conversely, let V be a projective FIG-module. Then part 5 of Proposition

1.4 implies that H0(V ) is a projective FBG-module. It follows that the quotient map

qn : Vn → H0(V )n admits a section ιn : H0(V )n → Vn. Proposition 2.3 implies there is

a map
⊕

iM(H0(V )i)→ V induced by the collection of ιn. Nakayama’s lemma implies

that the map is a surjection. We claim that this map is actually injective as well. Let

K be its kernel, and apply H0 to the exact sequence

0→ K →
⊕

M(H0(V )i)→ V → 0.
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Because V is projective, and because H0 is right exact by the previous proposition, it

follows that there is an exact sequence

0→ H0(K)→ H0(V )→ H0(V )→ 0

where we have used part 2 to simplify the second term. It is easy to see from construc-

tion that the right most non-trivial morphism in this sequence is an isomorphism, and

therefore H0(K) = 0. Nakayama’s lemma now implies that K = 0, as desired.

Definition 1.12. We write Hi for the i-th derived functor of H0. We call the collection

of these functors the homology functors.

The following nomenclature is used in [L].

Definition 1.13. If V is an FIG-module, then for each i we define its i-th homological

degree to be hdi(V ) = deg(Hi(V )). For some non-negative constant N , we say that V

has regularity ≤ N if hdi(V )− i ≤ N for each i ≥ 1. We write reg(V ) for the smallest

value N for which V has regularity ≤ N .

Remark 1.14. Nakayama’s lemma tells us that the zeroth homological degree is an op-

timal bound on the the generating degree of V . One would hope that the first homological

degree would be an optimal bound on the relation degree of V . Indeed, if

0→ K →M → V → 0
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is a presentation of V with M generated in degree ≤ d and K generated in degree ≤ r,

then an application of the H0 functor implies that

hd1(V ) ≤ hd0(K) = r ≤ max{d, hd1(V )}. (1.2)

Despite this, it is not clear whether V admits a presentation whose kernel is generated

in degree ≤ hd1(V ).

The bounds (1.2) imply that r = hd1(V ) whenever hd1(V ) ≥ hd0(V ). This is the

typical case. In fact, if instead we assume that hd1(V ) < hd0(V ), then Li and Yu show

[LY, Corollary 3.4] there exists an exact sequence

0→ V ′ → V → Q→ 0

where Q is relatively projective and hd0(V ′) = hd0(V )− 1. One immediately notes from

this, and Theorem 3.9, that Hi(V
′) = Hi(V ) for i ≥ 1. In the paper [CE, Theorem A],

Church and Ellenberg show that

reg(V ) ≤ r + min{r, d} − 1

where r is the relation degree of V and d is the generating degree. The observations

made in this remark will allow us to convert this bound to a bound in terms of the first

homological degree hd1(V ). If it is the case that hd1(V ) ≥ d, then r = hd1(V ) ≥ d, and

the above bound becomes

reg(V ) ≤ r + d− 1 = hd1(V ) + minhd1(V ), d− 1.

Otherwise, we may apply the lemma of Li and Yu, as well as induction, to conclude

there is some submodule V ′′ ⊆ V which is generated in degree ≤ hd1(V ) and

reg(V ) = reg(V ′′) ≤ 2hd1(V ′′)− 1 = hd1(V ) + min{hd1(V ), d} − 1.
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We may therefore conclude that the bounds of Church and Ellenberg remain true when

the relation degree is replaced with the first homological degree. In this paper, we will

prove bounds using methods of Church and Ellenberg. To conclude the bounds promised

in the introduction, one simply applies the methods in this remark.

The main result of [CE] is a bound on the regularity of an FI-module in terms of

its generating and relation degrees. Later, [L, Theorem 1.5] used different methods to

prove conditional bounds on the regularity of finitely generated FIG-modules whenever

G is finite. Li also gives non-conditional bounds in the case of FI, and where k is a field

of characteristic 0 [L, Theorem 1.17]

1.5.1 The Category FIG ] and the M functor

Definition 1.15. We define the category FIG ] as follows. The objects of the category

FIG ] are once again the sets [n], while the morphisms are triples (A, f, g) : [n] → [m]

such that A ⊆ [n], f : A → [m] is an injection, and g : A → G is a map of sets.

Composition in this category is defined in the following way. If (A, f, g) and (B, f ′, g′) are

two morphisms which can be composed then (B, f ′, g′)◦ (A, f, g) = (A∩f−1(B), f ′ ◦f, h)

where h(x) = g(x)g′(f(x)), as before. An FIG ]-module over k is a covariant functor

FIG ]→ Modk.

This category has been studied in the case where G is the trivial group [CEF], as well

as the case where G = Z/2Z [W]. One sees that there is a natural inclusion FIG → FIG ],
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which induces a forgetful functor FIG ]-Mod→ FIG -Mod. For this reason we may con-

sider a kind of homology functor H0 : FIG ]-Mod → FBG -Mod which is defined as the

composition of the forgetful map, and the usual zeroth homology functor.

The first example of an FIG ]-module is the free module M(m). Indeed, We endow

M(m) with the structure of an FIG ]-module as follows. let e(f,g) ∈ M(m)n be one of

the canonical basis vectors, and let (A, f ′, g′) : [n] → [r] be a morphism in FIG ]. Then

we set

(A, f ′, g′)*e(f,g) =


0 if f([m]) 6⊆ A

e(f ′◦f,h) otherwise,

where h : [m]→ G is the function h(x) = g(x)g′(f(x)). This same argument shows that

M(W ) is an FIG ]-module for any FBG-module W .

The above discussion shows that we may consider M as being valued in FIG ]-Mod.

Proposition 1.6. The functor M : FBG-Mod → FIG-Mod enjoys the following proper-

ties

1. The composition H0 ◦M is isomorphic to the identity;

2. M is exact;

3. for all i ≥ 1, Hi ◦M = 0.

Proof

The first statement follows immediately from the first part of Proposition 1.4 and the
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definition of M .

For the second statement, it suffices to show that the functor preserves exactness of

sequences of the form

0→ W ′ → W → W ′′ → 0

where W ′,W and W ′′ are k[Gm]-modules for some m. For any n, we have that M(W )n =

W ⊗k[Gm] k[HomFIG([m], [n])]. Because kernels and cokernels are computed point-wise,

it suffices to show that k[HomFIG([m], [n])] is a flat k[Gm]-module. Fix a representative

from each orbit of the Gm action on HomFIG([m], [n]). If we set I to be the collection of

these maps, then let B = {e(f,g)}(f,g)∈I be the associated set of canonical basis vectors of

k[HomFIG([m], [n])]. We claim that k[HomFIG([m], [n])] is a free k[Gm]-module with basis

B. Because the orbits partition the whole of HomFIG([m], [n]), it follows that this set is

spanning. On the other hand, assume that one has an equation
∑

(f,g)∈B e(f,g)x(f,g) = 0,

for some x(f,g) ∈ k[Gm]. We may write x(f,g) =
∑

σ∈Gm a(f,g),σσ, and therefore

∑
(f,g),σ

a(f,g),σe(f,g)◦σ = 0.

We observe that for distinct (f, g), (f ′, g′) ∈ B and any σ, τ ∈ Gm, the elements (f, g)◦σ

and (f ′, g′) ◦ τ must be distinct, as they are in different orbits by construction. If we fix

(f, g) and vary σ, then (f, g) ◦ σ = (f, g) ◦ τ implies that σ = τ because (f, g) is monic.

In particular, the above sum can be written

∑
(f,g)◦σ=(f ′,g′)∈HomFIG

([m],[n])

a(f,g),σe(f ′,g′) = 0

with each (f ′, g′) appearing at most once. This implies that a(f,g),σ = 0 for all f, g, and

σ, as desired.
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The final statement follows from the first two. Because M maps projective objects

to projective objects by Proposition 1.5, The derived functor of the composition H0 ◦M

can be computed using the Grothendieck spectral sequence. This spectral sequence will

only have one row because M is exact. It therefore degenerates and we find that the

derived functors of H0 ◦M are isomorphic to Hi ◦M . On the other hand, statement 2

tells us that H0 ◦M is the identity functor, which is clearly exact. This completes the

proof.

We note that the composition M ◦ H0 is not isomorphic the identity functor if we

consider M as being valued in FIG-Mod. If we instead consider M as being valued in

FIG ]-Mod, then this composition is isomorphic to the identity as the following theorem

shows.

Theorem 1.16 ([CEF],[W]). The functor M : FBG -Mod→ FIG ]-Mod is an equivalence

of categories with inverse H0 : FIG ]-Mod→ FBG -Mod.

The two citations given prove the theorem in the cases where G is the trivial group,

and where G = Z/2Z, respectively. The proofs go through essentially word for word to

prove Theorem 1.16 in the general case.

Theorem 1.16 can be considered the justification for the terminology ]-filtered from

Theorem 3.9.
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1.6.1 The Shift Functor and Torsion

The final piece we need from the basic theory of FIG-modules is the shift functor. This

functor was heavily featured in both [GL] and [L], and will be of great use to us in what

follows.

Definition 1.17. Let Σ denote the endofunctor of FIG, which sends [n] to [n+ 1], and

takes a map (f, g) : [n]→ [m] to the map (f+, g+) : [n+ 1]→ [m+ 1] defined by

f+(x) =


f(x) if x 6= n+ 1

m+ 1 otherwise

g+(x) =


g(x) if x 6= n+ 1

1 otherwise.

We define the shift functor S with respect to Σ to be the endofunctor of FIG-Mod

SV := V ◦ Σ.

For any integer b ≥ 1 we set Sb to be the b-th iterate of S.

Shift functors were originally introduced in [CEFN] in the case of FI-modules, and

have since seen use in various papers in the field (e.g. [N], [GL], [NS], [L]). The following

proposition collects many of the important properties of the shift functor.

Proposition 1.7. The shift functor S enjoys the following properties:

1. S is exact;
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2. if V is generated in degree ≤ n, then so is SV ;

3. If W is any k[Gn]-module, then S(M(W )) = M(Res
k[Gn]
k[Gn−1] W )⊕M(W ).

Proof

Kernels and cokernels are computed point-wise by definition. It follows immediately

from this that S is exact.

If 0 → K → F → V → 0 is a presentation for V , with F free, then exactness of

the shift functor implies that 0 → SK → SF → SV → 0 is exact as well. It therefore

suffices to show that S(M(m)) is generated in degree ≤ m. Let n > m+ 1, and let e(f,g)

be a canonical basis vector in M(m)n. Let h : [m] → [m + 1] be the injection which

sends f−1(n) to m+1, if it exists, and is the identity elsewhere, and let h̃ : [m]→ [n−1]

be the injection which agrees with f away from f−1(n), and sends f−1(n) to something

outside the image of f . Finally, we let 1 : [m]→ G be the trivial map into G. Then we

have

Σ(h̃,1) ◦ (h, g) = (f, g)

This shows that SM(m) is generated in degree m, as desired.

For the first part of final statement, Theorem 1.16 implies that to show that SM(W )

is relatively projective, it will suffice to show that it is an FIG ]-module. Let (A, f, g) :

[m] → [n] be a morphism in FIG ]. Then we may define an endofunctor Σ] of FIG ],

which maps [m] to [m+ 1] and Σ](A, f, g) = (A∪{m+ 1}, f+, g+) where f+ agrees with

f on A, and sends m + 1 to n + 1, and g+ agrees with g on A and sends m + 1 to the
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identity. Observe that Σ] restricts to Σ on FIG ⊆ FIG ]. In particular, the functor S

can be extended naturally to a functor on FIG ]. This shows that SM(W ) is relatively

projective.

Once again applying Theorem 1.16, it remains to compute H0(SM(W )). The second

part of this proposition implies that it suffices to compute H0(SM(W )) in degrees m−1

and m. It is clear from definition that H0(SM(W ))m−1 = Res
k[Gm]
k[Gm−1] W . A direct

computation also shows that the transition maps originating from SM(W )m−1 will hit

all pure tensors in SM(W )m = M(W )m+1 except for those of the form w⊗ (f, g) where

f−1(m + 1) = ∅. The group Gm now acts on these pure tensors in precisely the way it

acts on W . In particular, H0(W )m = W , which concludes the proof.

Remark 1.18. If G is an infinite group, then shifts do not need to preserve finite

generation. Indeed,

SM(m) = M(m− 1)m·|G| ⊕M(m)

by the above proposition.

Note that the last two properties were proven for FI-modules in [CEFN, Lemma

2.12] and [N, Lemma 2.2]. The next property of the shift functor which is important to

us is its connection with torsion.

Definition 1.19. Let V be an FIG-module. Fix b ≥ 0, and let (fnb ,1) : [n] → [n + b]

denote the morphism in FIG whose injection is the standard inclusion (j maps to j for
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all j), and whose G-map is the trivial map. Then the collection of the induced maps

(fnb ,1)* : Vn → Vn+b define a morphism of FIG-modules ιb : V → Sb V . We say that V

is torsion free if ιb is injective for all b. Any element of tnVn which appears in the

kernel of some ιb is called a torsion element of V . If every element of V is torsion,

then we say the module V is itself torsion.

The fact that every FIG-module maps into its shift will be used throughout this

paper. One should observe that an FIG-module V is torsion free if and only if ι := ι1 is

injective. Indeed, if v ∈ Vn is in the kernel of some (fnb ,1)*, then we write

0 = (fnb ,1)*(v) = (fn+b−1
1 ,1)*(fnb−1,1)*(v)

If (fnb−1,1)*(v) = 0, then we repeat the above until we find a non-trivial element in the

kernel of (fa1 ,1)* for some a ≥ n. Also note that if v ∈ Vn is in the kernel of some

transition map, then it must in fact be in the kernel of some ι as well. Indeed, this

follows from the fact that the action of Gn on HomFIG([m], [n]) is transitive.

Lemma 1.20. Let V be an FIG-module, which is generated in degree ≤ m and related

in degree ≤ r. Then for any b, coker(V → Sb V ) is generated in degree < m and related

in degree < r.

Proof

Looking through the proof of the second part of Proposition 1.7, one finds that the

inclusion

M(W ) ↪→M(Res
k[Gn]
k[Gn−1] W )⊕M(W ) = SM(W )
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is exactly ι. Let F be a free module generated in degree ≤ m which surjects onto V .

Then exactness of the shift functor implies we have the following commutative diagram

with exact rows,

coker(K → SbK) −−−→ coker(F → Sb F ) −−−→ coker(V → Sb V ) −−−→ 0x x x
SbK −−−→ Sb F −−−→ Sb V −−−→ 0x x x
K −−−→ F −−−→ V −−−→ 0

The middle column is a split exact sequence 0 → F → Q ⊕ F → Q → 0, for some

free module Q generated in degree < m, by the previous remarks. This shows that

coker(V → Sb V ) is generated in degree < m. Therefore, coker(K → SbK) is generated

in degree < r. Because the rows of the above diagram are exact, we conclude that the

relation degree of coker(V → Sb V ) is < r.

1.7.1 ]-Filtered Objects and the First Half of Theorem 3.9

Definition 1.21. We say that an FIG-module V is ]-filtered if it admits a filtration

0 = V (0) ⊆ . . . ⊆ V (n−1) ⊆ V (n) = V

whose cofactors are relatively projective.

If k is a field, and G is a finite group, the dimension data of a finitely generated

]-filtered object is described by a single polynomial for all n. That is to say, the Hilbert

function

n 7→ dimk Vn
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is a polynomial in n for all n. Indeed, a direct computation verifies that for any finite

dimensional k[Gm]-module W ,

dimkM(W )n =

(
n

m

)
dimkW

for all n ≥ 0.

Theorem 1.22 ([NS]). Assume that G is a polycyclic-by-finite group, and let V be a

finitely generated FIG-module over a Noetherian ring k. Then for b � 0, Sb V is ]-

filtered.

Definition 1.23. The Nagpal number, N(V ) ∈ N∪ {∞}, of an FIG-module V is the

smallest value b such that Sb V is ]-filtered.

Note that in the context of this paper, it is not clear whether N(V ) is finite. The

Nagpal-Snowden theorem tells us that this will be the case whenever G is polycyclic-

by-finite, V is finitely generated, and k is a Noetherian ring. One of the main results of

this paper will be to show that N(V ) is finite in many other cases as well (see Theorem

C). The above discussion implies the following immediate corollary.

Corollary 1.24. If G is a finite group, and V is a finitely generated FIG-module

over a field k, then there is a polynomial PV (x) ∈ Q[x] such that the Hilbert func-

tion HV (n) = dimk Vn is equal to PV (n) for n ≥ N(V ).
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Remark 1.25. Keeping in mind Theorems C and B, the above corollary provides a

parallel between FIG-modules and graded modules over a polynomial ring. Namely, it is

a consequence of the Hilbert Syzygy Theorem that the regularity of a graded module M

over a polynomial ring provides a bound to the obstruction of the Hilbert polynomial (See

[E] or [E2]). The results of this paper therefore imply a similar relationship between the

regularity of an FIG-module and bounds on its stable range. This might come as some-

what of a surprise, as Theorem 3.9 implies that all non-]-filtered modules require infinite

resolutions; a stark contrast to the Hilbert Syzygy Theorem.

This corollary was proven for FI-modules over a field of characteristic 0 in [CEF,

Theorem 1.5] and [SS3, Theorem 5.1.3], and over an arbitrary field in [CEFN, Theorem

B]. Following this, polynomial stability was proven in the case where G = Z/2Z in [W,

Theorem 4.20]. It was proven for general FIG-modules in [SS, Theorem 10.1.2]. None

of these sources used the Nagpal-Snowden Theorem in their work. Using the new ho-

mological invariants defined in this paper, we will be able to replace n ≥ N(V ) in the

above corollary with an explicit lower bound on n.

Remark 1.26. Although it is not proven in [NS], Theorem 1.22 actually implies that

the Grothendieck group K0(FIG -mod) is generated by the classes of torsion modules and

relatively projective modules whenever k is a Noetherian ring and G is polycyclic-by-

finite. Indeed, if V is an FIG-module we have the exact sequence

0→ T (V )→ V → V ′ → 0

where V ′ is torsion free. Because V ′ is torsion free, it embeds into all of its shifts. The
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Nagpal-Snowden theorem therefore implies that V ′ embeds into a ]-filtered object, and

Lemma 1.20 shows that the cokernel of this embedding is generated in strictly lower de-

gree than V . Induction implies the desired result. This fact was proven for FI-modules

over a field of characteristic 0 by Sam and Snowden in [SS3, Proposition 4.9.1]. Note

that we may also view this presentation of the Grothendieck group as a consequence of

the classification theorem from Section 2.31.

At this point in the paper, we are ready to prove the first collection of equivalences

guaranteed by Theorem 3.9.

Theorem 1.27. For an FIG-module V which is generated in finite degree, the following

are equivalent:

1. V is ]-filtered;

2. There is a series of surjections Q(n) = V � Q(n−1) � . . . � Q(0) = 0 whose

successive kernels are relatively projective;

3. V is homology acyclic;

4. H1(V ) = 0;

Proof

The third part of Proposition 1.6 shows that the first two statement imply the third,

and clearly the third implies the fourth.
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Assume that H1(V ) = 0, and let i be the least index such that Vi 6= 0. Then we may

construct a map M(Vi)→ V , which is an isomorphism in degree i. Denote the kernel of

this map by K(n), and its image by I(n). This leaves us with a pair of exact sequences,

0→ K(n) →M(Vi)→ I(n) → 0 (1.3)

0→ I(n) → V → Q(n−1) → 0 (1.4)

Applying H0 to (1.3), we find that H0(M(Vi)) surjects onto H0(I(n)) and therefore these

must be isomorphic. Indeed, H0(M(Vi)) is zero everywhere but in degree i, where it

is Vi, and H0(I(n)) must be Vi in degree i by construction. This shows that the map

H0(I(n)) → H0(V ) is an injection. Applying H0 to (1.4) and using our assumption we

obtain the exact sequence

H2(Q(n−1))→ H1(I(n))→ 0→ H1(Q(n−1))→ H0(I(n))→ H0(V ) (1.5)

By what was just discussed we may conclude that H1(Q(n−1)) = 0. We observe that

the first degree j for which Q
(n−1)
j 6= 0 will be strictly larger than i. This allows us to

iterate the above process. Moreover, because V was generated in finite degree, we know

that the same is true about Q. This shows that H0(Q) is supported in precisely one less

degree than H0(V ). It follows from this that this process will eventually terminate. To

finish the proof, it suffices by induction to show that K(n) = 0. Once again looking at

H0 applied to (1.3) we find

0→ H1(I(n))→ H0(K(n))→ H0(M(Vi))→ H0(I(n))→ 0

We have already discussed that the last map is an isomorphism, so H1(I(n)) = 0 if and

only if H0(K(n)) = 0. In this case Nakayama’s lemma would imply that K(n) = 0. It
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therefore remains to show that H1(I(n)) = 0.

Note that at the final step in this construction we will be left with a sequence of the

form

0→ K(1) →M(W ′)→ Q(1) → 0,

where W ′ is a k[Gj]-module for some j. Indeed, H0(Q(1)) is only supported in a single

degree by assumption, and therefore the map M(W ′)→ Q(1) must actually be surjective

by Nakayama’s lemma. Applying H0, and using the assumptions that H0(M(W ′)) →

H0(Q(1)) is an isomorphism and H1(Q(1)) = 0, we conclude that H0(K(1)) = 0. It fol-

lows that K(1) = 0, and therefore Q(1) = M(W ′) is homology acyclic by part three of

Proposition 1.6. The first two terms in (1.5) now imply that H1(I(2)) = 0. Proceeding

inductively, we eventually reach the conclusion that H1(I(n)) = 0, as desired.

We have thus far shown that the second statement is equivalent to the third and

fourth, and that the first statement implies these. It only remains to show that the

second statement implies the first. Assume that V admits a cofiltration as in the third

statement of the theorem, and assume that the factors of this cofiltration are given by

the collection {M(Wi)}gi=1, with Wi a k[Gi]-module. We first observe that H0(V ) is the

FBG-module which is Wi in degree i, and zero elsewhere. Indeed, this follows from how

the Wi were constructed above. For each i, let {wi,j}κ1j=1 be a generating set for Wi.

Applying Nakayama’s lemma we obtain a surjection

g⊕
i=1

M(i)κi � V.

Set V ′ to be the submodule of V generated by lifts of the wi,j with i < g. It remains to
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show that V/V ′ = M(Wg).

Call Q := V/V ′, and apply H0 to the exact sequence

0→ V ′ → V → Q→ 0.

By the previously proven equivalences, we are left with the sequence

0→ H1(Q)→ H0(V ′)→ H0(V )→ H0(Q)→ 0

By construction, H0(V ′) is the module H0(V ) with the term Wg set to zero, and the

map H0(V ′) → H0(V ) is the obvious inclusion. This implies two things: H1(Q) = 0,

and H0(Q) is the module which is Wg in degree g, and zero elsewhere.

The structure of H0(Q) implies that Q is zero up to degree g, where it is Wg. The

identity map on Wg induces a surjection

M(Wg)� Q,

which we claim is an isomorphism. Letting K be the kernel of this map, and using the

fact that H1(Q) = 0, we are obtain an exact sequence

0→ H0(K)→ H0(M(Wg))→ H0(Q)→ 0.

The final map is an isomorphism by construction, and so H0(K) = 0. This concludes

the proof.

Remark 1.28. As was noted during the proof, we again observe that the filtration con-

structed above has the property that the k[Gn]-modules which appear in the cofactors
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M(W ) are precisely the non-trivial terms of H0(V ).

Remark 1.29. The theorem just proven is the first, and largest, part of Theorem 3.9.

One may have noted that very little about the structure of FIG specifically was used in the

previous proof. Indeed, this theorem will hold for modules over many other categories.

Examples of these categories include FId, of finite sets with injections decorated by a

d-coloring of the complement of their image, and VI, of finite vector spaces over a fixed

finite field with injective linear maps. The interested reader should see [GL][L][SS][PS]

for more on modules over these categories.

It is natural for one to ask if we can prove the second half of Theorem 3.9 in a more

general context. The answer to this question no, and it is most easily illustrated by the

following example of Jordan Ellenberg. Let C be the natural numbers, viewed as a poset

category. The above theorem will hold in this category. One immediately finds that the

C-module M(0) is the object which is k in every degree, while M(1) is the object which

is 0 in degree 0, and k in all other degrees. In particular, there is a natural embedding

M(1) ↪→ M(0), whose cokernel is the object which is k in degree 0, and 0 elsewhere.

It is clear that this cokernel is not sharp filtered, and therefore we have a non ]-filtered

object which admits a finite resolution by ]-filtered objects. It is an interesting question

to ask for which categories one has the latter two equivalences of Theorem 3.9.

One technical corollary to Theorem 1.27 is the following.
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Lemma 1.30. Given an exact sequence

0→ V ′ → V → V ′′ → 0,

of FIG-modules which are generated in finite degree such that V ′′ is ]-filtered, V ′ is ]-

filtered if and only if V is ]-filtered.

Proof

One applies the zeroth homology functor, and uses the fact that V ′′ is ]-filtered, to

conclude that Hi(V ) = Hi(V
′) for all i ≥ 1. Theorem 1.27 now implies the lemma.

This fact was first proven in [D, Proposition A.6] in a much more general context.

More recently, it was also proven in [LY, Corollary 3.6] for FI-modules. In fact, the

result proven in these papers is slightly stronger than that given above, as it includes

the case where V ′ and V are known to be ]-filtered. We will provide a different proof

of this strengthening as a consequence of the depth classification theorem in Section 2.31.

Remark 1.31. The work thus far completed in this paper seems to indicate that ]-filtered

objects are a fundamentally important class in FIG-mod. One observes that there is a

chain of classes

Projective Objects ⊆ Relatively Projective Objects ⊆ ]-Filtered Objects

In the case where k is a field of characteristic 0, the above inclusions are equalities by

Proposition 1.5. However, in general the inclusions can be proper. For example, if k is

a field of characteristic p > 0, then an example of Nagpal [N, Example 3.35], which was
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independently discovered by Gan and Li [GL, Section 3], shows that there are ]-filtered

objects which are not relatively projective. On the other hand, if W is a non-projective

k[Gn]-module for some n, then M(W ) is not projective. It becomes an interesting ques-

tion to ask whether there is some homological criterion which separates ]-filtered from

relatively projective.

1.8 The Church-Ellenberg Approach to Regularity

1.8.1 The Derivative and its Basic Properties

Definition 1.32. Let V be an FIG-module, and let ι denote the natural map ι : V → SV .

The derivative of V is the FIG-module

DV = coker(ι).

For any a ≥ 0, we define Da to be a-th iterate of D.

Because S is exact, and because DV is defined as a cokernel, it follows immediately

that D is a right exact functor.

Definition 1.33. We will follow [CE] and write HDa

i to denote the i-th left derived

functor of Da for any a ≥ 1.

Proposition 1.9 ([CE], Proposition 3.5 and Lemma 3.6). The derivative functor D

enjoys the following properties:



39

1. for any k[Gn]-module W ,

D(M(W )) = M(ResGnGn−1
W );

2. if V is ]-filtered, then it is acyclic with respect to Da for all a ≥ 1;

3. if V is generated in degree ≤ m, then DV is generated in degree ≤ m − 1. Con-

versely, if deg(DaV ) ≤ m for some a,m, then V is generated in degree ≤ a+m;

4. for any FIG-module V there is an exact sequence

0→ HD
1 (V )→ V

ι→ SV → DV → 0;

5. HD
1 (V ) = 0 if and only if V is torsion free;

6. for any FIG-module V , HD
i (V ) = 0 for all i > 1;

7. if deg(V ) ≤ n then deg(DV ) ≤ n− 1, and deg(HD
1 (V )) ≤ deg(V ).

Remark 1.34. In the cited paper, the authors only prove that relatively projective ob-

jects are acyclic with respect to Da. Part 2 of the previous proposition actually follows

immediately from this. Also note that the provided source only proves these statements

for FI-modules. The proofs are exactly the same.

One of the main results of the cited paper was to prove that, in the case of FI, the

functors HDa

i all had finite degree. They did this by providing an explicit bound on the

degree in terms of certain invariants of V [CE, Theorem 3.8]. We will eventually be able
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to do this as well in the case of FIG-modules.

Observe that Propositions 3.3, 1.7, and 1.5 imply that both S and D preserve pro-

jective objects. This will allow us to call upon the Grothendieck spectral sequence in

the following lemma.

Lemma 1.35. There is a natural isomorphism of functors

Sb ◦Da ∼= Da ◦ Sb

for all a, b ≥ 1. More generally, there are natural isomorphisms of functors

Sb ◦HDa

i
∼= HDa

i ◦ Sb

for all b, a ≥ 1 and all i ≥ 0.

Proof

We begin with the first claim. It clearly suffices to show the statement in the case where

a = b = 1. Let V be an FIG-module, and let τn : Vn+2 → Vn+2 denote the isomorphism

induced by the transposition (n+ 2, n+ 1) paired with the trivial map into G. We claim

that this map induces an isomorphism SD(V )n ∼= D(SV )n.

Reviewing how everything is defined, we see that on points

SD(V )n = Vn+2/ im((fn+1,1)*),

D(SV )n = Vn+2/ im((fn+,1)*)
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where fn+1 : [n+ 1]→ [n+ 2] is the standard inclusion, fn+ : [n+ 1]→ [n+ 2] is the map

which is the identity on [n] and sends n+ 1 to n+ 2, and where 1 is the trivial map into

G. In particular,

τn(fn+1,1)* = ((n+ 2, n+ 1)fn+1,1)* = (fn+,1)*.

This shows that τn induces an isomorphism between SD(V )n and D(SV )n, as desired.

We claim that τ is actually a map of FIG-modules. Let (f, h) : [n] → [m] be an map

in FIG. Then the map induced in D(SV ) will be the image under the quotient of

(f++, h++)* : Vn+2 → Vm+2, where f++ agrees with f on [n] and sends n + i to m + i

for 1 ≤ i ≤ 2, and h++ agrees with h on [n] and sends both n + 1 and n + 2 to 1. On

the other hand, the map induced on SD(V ) will also be the image in the quotient of

(f++, h++)*. Then,

(f++, h++)*τn = (f++(n+ 1, n+ 2), h++)* = ((m+ 1,m+ 2)f++, h++)* = τm(f++, h++)*.

The fact that the collection of τ gives us a map of functors is easily checked.

The second statement is largely homological formalism. Let HDa◦Sb
i denote the i-th

left derived functor of Da ◦ Sb, and similarly define HSb ◦Da
i . Because Sb is exact, the

Grothendieck spectral sequences for both of these derived functors have a single row, or

column, respectively. In particular,

HDa

i ◦ Sb = HDa◦Sb
i = HSb ◦Da

i = Sb ◦HDa

i .

This concludes the proof.
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We have already discussed the fact that the modules HDa

i (V ) have finite degree for

all i and a whenever V is finitely generated. The previous lemma implies Sb V will be

acyclic with respect to all derivative functors for b sufficiently large. We will reinterpret

this later in terms of depth.

Before we finish this section, we take a moment to point out the exact sequence

relating the derived functors of varying derivatives. In particular, if one writes Da =

D ◦ Da−1, then HDa

p can be computed using the Grothendieck spectral sequence. By

part 6 of Proposition 3.3, we know that this spectral sequence only has two columns.

Thus,

0→ DHDa

i (V )→ HDa+1

i (V )→ HD
1 (HDa

i−1(V ))→ 0. (1.6)

1.9.1 The Relationship Between the Derivative and Regularity

Definition 1.36. Let V be an FIG-module. We define the derived regularity of V to

be the quantity ∂reg(V ) := sup{deg(HDa

1 (V ))}∞a=1 ∈ N ∪ {−∞,∞}. If V is acyclic with

respect to Da for all a, then we set ∂reg(V ) = −∞.

We also define the derived width of V to be the quantity ∂width(V ) = sup{deg(HDa

1 (V ))+

a}∞a=1 ∈ N ∪ {−∞,∞}.
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We will find the derived width and regularity of a module to be of great importance

in what follows. Our first goal will be to show that both of these quantities are bounded

relative to one another.

Proposition 1.10. Let V be an FIG-module which is presented in finite degree and

generated in degree ≤ d. Then,

∂reg(V ) + 1 ≤ ∂width(V ) ≤ ∂reg(V ) + max{hd1(V ), d}

Proof

The proposition is clear if ∂reg(V ) = ∞, so we assume not. By assumption there is a

presentation

0→ K →M → V → 0

such that M is generated in degree ≤ d, and K is generated in degree ≤ max{hd1(V ), d}

(See Remark 1.14). Applying Da to the above sequence, with a > max{hd1(V ), d},

and applying the second and third part of Proposition 3.3, it follows that HDa

1 (V ) =

0. Therefore, any a for which HDa

1 (V ) 6= 0 must satisfy HDa

1 (V ) + a ≤ ∂reg(V ) +

max{hd1(V ), d}.

It follows from the above work that we may find some a such that deg(HDa

1 (V )) =

∂reg(V ). Then,

∂reg(V ) + 1 = deg(HDa

1 (V )) + 1 ≤ deg(HDa

1 (V )) + a ≤ ∂width(V ).

This completes the proof.
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For the purposes of relating the derived regularity to the usual regularity of a mod-

ule, we will need to know how the degrees of HDa

i (V ) depend on i and a.

Proposition 1.11. Let V be an FIG-module which is presented in finite degree. Then,

for all a and i ≥ 1,

deg(HDa

i (V )) ≤ ∂width(V )− 1 + i− a,

Proof

This proposition was essentially proven in [CE, Theorem 3.8] for FI-modules. We follow

their general strategy here.

The exact sequence (1.6) implies that the first a for which V is not acyclic with

respect to Da must have HDa

1 (V ) 6= 0. If it is the case that ∂reg(V ) = −∞, this implies

that V is acyclic with respect to Da for all a, and the above inequality holds. We may

therefore assume that ∂reg(V ) is finite. We proceed by induction on a. If a = 1, then

Proposition 3.3 implies that HD
i (V ) = 0 for all i > 1, and the bound holds trivially in

this case. If i = 1, then the bound follows from the definition of derived width.

Assume that the statements hold up to some a. We first note that the bound holds

when i = 1 by the definition of derived width. We once again call upon (1.6) and write,

0→ DHDa

i (V )→ HDa+1

i (V )→ HD
1 (HDa

i−1(V ))→ 0.

Assuming that i > 1, we know that

deg(HDa

i (V )) ≤ ∂width(V )− 1 + i− a

deg(HDa

i−1(V )) ≤ ∂width(V )− 1 + i− a− 1.



45

Applying part 7 of Proposition 3.3 to both of these inequalities, we find that

deg(DHDa

i (V )) ≤ ∂width(V )− 1 + i− a− 1

deg(HD
1 (HDa

i−1(V ))) ≤ ∂width(V )− 1 + i− a− 1.

This proves the claim.

We finish this section by showing the connection between derived regularity, and the

previously mentioned notion of regularity .

Proposition 1.12. Let V be an FIG-module which is presented in finite degree and has

≤ r. Then,

hdi(V ) ≤ max{∂width(V )− 1,max{hd1(V ), d} − 1}+ i,

for all i ≥ 1. In particular,

hdi(V ) ≤ ∂reg(V ) + max{hd1(V ), d} − 1.

Proof

As with the previous proposition, this statement largely follows from the work in [CE,

Theorem 3.9]. For the remainder of the proof, we fixN := max{∂width(V )−1,max{hd1(V ), d}−

1}. We begin with a projective resolution of V ,

. . .→M1 →M0 → V → 0.
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Writing this as a collection of short exact sequences, we have

0→ Xi+1 →Mi → Xi → 0

for some modules Xi, with X0 = V . By repeatedly applying Nakayama’s lemma, we

may assume without loss of generality that deg(H0(Mi)) = deg(H0(Xi)) for all i Our

first objective will be to prove the following claim:

deg(H0(Xi)) ≤ N + i

for all i ≥ 1. We prove this by induction on i. If i = 1, then

deg(H0(X1)) ≤ max{hd1(V ), d}+ 1 ≤ N + 1.

Assume that deg(H0(Xi)) ≤ N + i for some i ≥ 1, and consider the exact sequence

0→ Xi+1 →Mi → Xi → 0. (1.7)

By the assumption made at the beginning of the proof, we know that Mi is generated

in degree ≤ N + i. Part 3 of Proposition 3.3 implies that DN+i+1Mi = 0. Applying this

functor to (1.7), we therefore find

0→ HDN+i+1

1 (Xi)→ DN+i+1Xi+1 → 0,

where we have used the fact that Mi is projective to imply the leading zero. We know

that HDN+i+1

1 (Xi) = HDN+i+1

i+1 (V ), and Proposition 2.61 implies

0 ≥ ∂width(V )−1+i+1−N−i−1 ≥ deg(HDN+i+1

i+1 (V )) = deg(HDN+i+1

1 (Xi)) = deg(DN+i+1Xi+1).

The third part of Proposition 3.3 implies that Xi+1 is generated in degree ≤ N+ i+1, as

desired. To finish the proof, one applies the zeroth homology functor to (1.7) to obtain,

0→ H1(Xi)→ H0(Xi+1).
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This shows that deg(H1(Xi)) ≤ N + i + 1. We know that H1(Xi) = Hi+1(V ), finishing

the proof of the proposition.

Remark 1.37. One should note the following consequence of the above proof. If V is

an FIG-module which is presented in finite degree, and which has finite derived width,

then V admits a projective resolution whose every member is generated in finite degree.

One application of this result is in bounding the regularity of FIG-modules with finite

degree.

Corollary 1.38. Let V be an FIG-module with deg(V ) <∞. Then,

hdi(V ) ≤ i+ deg(V )

Proof

To begin, we claim that ∂width(V )− 1 ≤ deg(V ). In particular, for all a ≥ 1

deg(HDa

1 (V )) ≤ deg(V ) + 1− a. (1.8)

We prove this claim by induction on a. If a = 1, then the bound holds by the fourth part

of Proposition 3.3. Assume we have proven the bound for some a ≥ 1. The sequence

(1.6) implies

0→ DHDa

1 (V )→ HDa+1

1 (V )→ HD
1 (DaV )→ 0.

The module DaV has degree at most deg(V )−a, and therefore HD
1 (DaV ) also has degree

at most deg(V ) − a by the last part of Proposition 3.3. On the other hand, induction



48

tells us that deg(HDa

1 (V )) ≤ deg(V )−a+1, and therefore deg(DHDa

1 (V )) ≤ deg(V )−a

by the third part of Proposition 3.3. The above exact sequence implies the claim.

To finish the proof, one simply notes that hd1(V ) ≤ deg(V ), and applies Proposition

1.12.

This same bound is found in [L, Theorem 1.5] using different methods.

1.12.1 Bounding the Derived Width and the Proof of Theorem

D

The purpose of this section is to generalize the methods of Church and Ellenberg to

provide explicit bounds on the regularity in terms of the generating and relation degrees

of the module V . More specifically, we will provide bounds on the derived width of V

and apply Proposition 1.12.

The notation used in this section traces its origins to [CE]. Indeed, one may con-

sider this section as an expository account of [CE, Section 2], where we are careful in

generalizing relevant definitions to FIG-modules.

Definition 1.39. Let V be an FIG-module, and fix a pair of integers i ≤ n. Then we

write Vn−{i} to denote the submodule of Vn generated by images of induced maps of the
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form (fi,1)*, where 1 : [n− 1]→ G is the trivial map and fi : [n− 1]→ [n] is the map

fi(x) =


x if x < i

x+ 1 otherwise.

.

Remark 1.40. Because it will be important later, we note that, in fact, Vn−{i} is the

submodule of Vn generated by images of maps of the form (fi, g), where g : [n− 1]→ G

is any map. Indeed, this follows from the identity

(fi, g)*(v) = (fi,1)*((id, g)*(v)).

With this notation it is immediate that for any a ≥ 1,

DaVn = Vn+a/
a∑
i=1

Vn+a−{n+i}.

Let 0 → K → M → V → 0 be a presentation for V . Then applying Da it follows

that

HDa

1 (V ) = ker(Kn+a/
a∑
i=1

Kn+a−{n+i} →Mn+a/
a∑
i=1

Mn+a−{n+i}).

This implies the following proposition.

Proposition 1.13. The degree of HDa

1 (V ) is the smallest integer m such that

Kn+a ∩
a∑
i=1

Mn+a−{n+i} =
a∑
i=1

Kn+a−{n+i}

for all n > m.
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This reformulation was first observed by Church and Ellenberg in [CE]. In that pa-

per, it is shown that bounding the value m in the above proposition is deeply rooted in

the combinatorics of FI-modules. For the remainder of this section, we show that the

techniques of [CE] can be applied to FIG.

Definition 1.41. Fix a non-negative integer n, and let i 6= j be elements of [n]. Then

we set

J ji = (id,1)− ((i, j),1) ∈ Z[Gn],

where 1 is the trivial map into G. For any non-negative integer m, we define Im to be

the ideal of Z[Gn] generated products of the form

J j1i1 · · · J
jm
im

where all of the indices are distinct elements of [n].

For any non-negative integer b, we write Σ(b) to denote the collection of b-element

subsets S ⊆ [2b] such that the i-th smallest element of S is at most 2i − 1. For any

1 ≤ a ≤ b we write Σ(a, b) = {S ∈ Σ(b) | [a] ⊆ S}.

For any S ∈ Σ(b), we may write its entries in increasing order as s1 < . . . < sb, and

we may write the entries of its compliment in increasing order as t1 < . . . < tb. Then

define

JS :=
∏
i

J tisi .

The paper [CE] spends some time discussing the interesting combinatorial properties

of Σ(a, b), and its connection with the Catalan numbers. One observation they make is
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the following.

Lemma 1.42 ([CE], Section 2.1). Let S ⊆ [2b] have b elements, and write its elements

in increasing order as s1 < . . . < sb. Assume that U ⊆ [n] is such that S ⊆ U . For any

b distinct elements i1 < . . . < ib in [n]−U , write H for the subgroup of Sn generated by

the disjoint transpositions (ip, sp). Then,

S ∈ Σ(b) =⇒ U is lexicographically first among {σ · U | σ ∈ H}.

We note that the in the case of FI, defining J ji does not require a choice of map

[n]→ G. In the above definition we have chosen the trivial map for the following reason.

If (f, g) : [m]→ [n] is any map in FIG, and (σ,1) ∈ Gn, then (σ,1) ◦ (f, g) = (σ ◦ f, g).

In other words, choosing the map into G to be trivial grants us the ability to often times

ignore the map g. This choice will allow us to use the arguments of [CE].

For the remainder of this section we fix integers r ≤ n, and write F := Z[HomFIG([r], [n])].

Definition 1.43. Let 1 ≤ a ≤ b be integers, and assume S ∈ Σ(b). Then we define the

following submodules of F ,

1. F 6=S := ((f, g) ∈ F | S 6⊆ im f);

2. F b := ((f, g) ∈ F | ∀S ∈ Σ(b), S 6⊆ im f) = ∩S∈Σ(b)F
6=S;
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3. F a,b := ((f, g) ∈ F | ∀S ∈ Σ(a, b), S 6⊆ im f) = ∩S∈Σ(a,b)F
6=S;

4. F=S := ((f, g) ∈ F | [2b] ∩ im f = S).

Proposition 1.14 ([CE] Propositions 2.3, 2.4, 2.6, and Lemma 2.5). Let a, b,m, and p

be non-negative integers.

1. If n ≥ b+ r, then

F = Ib · F + F b.

2. If a ≤ b and 2b ≤ n, then

F a,b+1 ⊆ F a,b +
∑

S∈Σ(a,b)

JS · F=S.

3. If V is an FIG-module which is generated in degree ≤ r, then Ir+1 ·Mn = 0 for all

n ≥ 0.

4. Given (f, g) : [r]→ [n] and {i1, j1, . . . , im, jm} ⊆ [n], if im f ∩{ip, jp} = ∅ for some

p, then J j1i1 · · · J
jm
im

(f, g) = 0.

Proof

The cited source proves all of these claims for FI-modules. As stated previously, by our

choice in defining the elements J ji all of these arguments will work almost verbatim. We

work through the proof of the first statement as an example of this.

It is clear that F = Ib · F + F b if and only if the latter group contains all the

canonical basis vectors. Assume that this is not the case, and pick (f, g) /∈ Ib · F + F b
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so that the image of f is lexicographically largest among all basis vectors missing from

Ib · F + F b. Note that the image of f has size r, and there are therefore at least b

elements in the compliment of this image, by assumption. Write i1 < i2 < . . . < ib for

some sequence of elements in [n]− im f . By assumption, (f, g) /∈ F b, which implies that

there is some S ∈ Σ(b) such that S is contained in the image of f . Write the elements

of S in increasing order as s1 < . . . < sb, and consider ((sp, ip),1) · (f, g) = ((sp, ip)f, g).

Applying Lemma 1.42 with U being the image of f , we conclude that the image of

(sp, ip)f is lexicographically larger than the image of f . By our assumption on f , it

must be the case that ((sp, ip)f, g) ∈ Ib ·F +F b. Calling J := Js1i1 · · · J
sp
ip

, it follows from

definition that

J − (id,1) =
∑

id6=σ∈H

(−1)σ(σ,1)

where H is the subgroup of Sn generated by the transpositions (sp, ip). In particular,

(J − (id,1))(f, g) ∈ Ib · F + F b by the previous computation. On the other hand,

J · (f, g) ∈ Ib · F ⊆ Ib · F + F b by definition. This shows that (f, g) ∈ Ib · F + F b, which

is a contradiction.

We are now ready to state and prove the main theorem of this section. As with all

the previous statements, the proof of the following proceeds in precisely the same way

it did in the case of FI-modules.

Theorem 1.44 ([CE], Theorem A). Let K ⊆ M be torsion free FIG-modules, and

assume that M is generated in degree ≤ d and K is generated in degree ≤ r. Then for
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all n ≥ min{r, d}+ r + 1, and all a ≤ n,

Kn ∩
a∑
i=1

Mn−{i} =
a∑
i=1

Kn−{i}.

In particular, if V is an FIG-module which is generated in degree ≤ d and related in

degree ≤ r then ∂width(V ) ≤ min{r, d}+ r.

Proof

We first note that the second statement follows as an immediate consequence of the first

statement, Proposition 1.13, and the definition of derived regularity. It therefore suffices

to prove the first statement. Due to its similarity with the proof in the provided source,

we only give an outline here for the convenience of the reader.

Our first reduction will be to assume that K and M are FIG-modules over Z. Observe

that if V is an FIG-module over a ring k, then it can also be considered as an FIG-module

over Z. It is clear that doing this does not change whether V is generated in finite degree.

Because K is generated in degree ≤ r, the map F ⊗ Kr → Kn is surjective for all

n > r. Let a be as in the statement of the theorem, and let b ≥ a be an integer. We

define the following submodules of Kn

Kb := im(F b ⊗Kr → Kn), Ka,b := im(F a,b ⊗Kr → Kn)

The remainder of the proof proceeds in the following steps. One first shows that

Ka,min{r,d}+r+1 = Kn, and then that Ka,b+1 ∩
∑

iMn−{i} ⊆ Ka,b. At this point induction

on b, beginning at min{r, d}+r+1 and ending at a, implies that Kn∩
∑

iMn−{i} ⊆ Ka,a.
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Note that Ka,a is, by definition, the submodule of Kn generated by images of induced

maps (f, g) such that [a] is not contained in the image of f . In other words, using the

remark at the beginning of the section,

Ka,a =
a∑
i=1

Kn−{i}.

This proves the theorem.

Applying the first part of Proposition 1.14, we find

Kn = im(F⊗Kr) = im(Imin{r,d}+r+1F+Fmin{r,d}+r+1⊗Kr) = Imin{r,d}+r+1·Kn+Kmin{r,d}+r+1

Applying the third part of Proposition 1.14, we have that Imin{r,d}+r+1 · Kn = 0, and

therefore

Kn = Kmin{r,d}+r+1 ⊆ Ka,min{r,d}+r+1 ⊆ Kn.

The second claim - that Ka,b+1 ∩
∑

iMn−{i} ⊆ Ka,b - is considerably more subtle.

We direct the reader to the original source for the details.

Corollary 1.45. Let V be an FIG-module which is presented in finite degree, and which

is generated in degree ≤ d. Then

∂width(V ) ≤ hd1(V ) + min{d, hd1(V )}.

Proof

This follows from the techniques discussed in Remark 1.14. One simply notes that the

functors Da are right exact, and that ]-filtered objects are acyclic with respect to these
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functors.

Using all we have thus far learned, we can finally prove Theorem D.

Proof of Theorem D

One applies Corollary 1.45, and Proposition 1.12.

1.15 Depth

1.15.1 Definition and the Classification Theorem

The “usual” first definition of depth in classical commutative algebra is stated in terms

of regular sequences (see [E, Chapter 18] for the classical theory). One then proves a

relationship between this definition and the Koszul complex. It is not immediately ob-

vious what one would mean by a regular sequence in an FIG-module, however. Another

approach one might consider is defining depth through some kind of local cohomology

theory. This may not work in this setting, as FIG-mod over a field of characteristic p,

for example, will not have sufficiently many injectives. It is therefore not even clear that

a local cohomology theory exists in this case. Note that if k is a field of characteris-

tic 0, then Sam and Snowden have developed a theory of local cohomology and depth

for FI-modules [SS3]. The definition we give now seems completely divorced from the

classical theory. We hope that through the proofs that follow, one can develop a better

idea of why this is the right definition. In Section 1.16.2, we explore a more classically
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motivated definition, and prove that it is equivalent.

Definition 1.46. Let V be an FIG-module. Then we define the depth depth(V ) of V

to be the infimum

depth(V ) := inf{a | HDa+1

1 (V ) 6= 0} ∈ N ∪ {∞}},

where we use the convention that the infimum of the empty set is ∞.

Lemma 1.47. Let V be an FIG-module which is presented in finite degree, and for which

there is some δ ≥ 0 such that V is acyclic with respect to Da for all a ≤ δ, while V is

not acyclic with respect to Dδ+1. Then for all l ≥ 1, HDδ+l

l (V ) 6= 0, while HDδ+l

i (V ) = 0

for i > l.

Proof

We proceed by induction on l. If l = 1. We know that HDδ+1

i (V ) 6= 0 for some i.

On the other hand, if one plugs in any i > 1 and a = δ + 1 into (1.6), then one finds

HDδ+1

i (V ) = 0. This shows that HDδ+1

1 (V ) 6= 0, while HDδ+1

i (V ) = 0 for all i > 1.

Assume that HDδ+l

l (V ) 6= 0. Then the sequence (1.6) shows

0→ DHDδ+l

l+1 (V )→ HDδ+l+1

l+1 (V )→ HD
1 (HDδ+l

l (V ))→ 0.

By assumption HDδ+l

l (V ) 6= 0. Proposition 2.61 and Theorem 1.44 tell us that HDδ+l

l (V )

has finite degree, and therefore has nontrivial torsion. The fifth part of Proposition 3.3

implies that HD
1 (HDδ

i (V )) 6= 0, whence HDδ+l+1

l+1 (V ) 6= 0. If i > l, then the above
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sequence, and induction, implies our desired vanishing.

Lemma 1.47 implies the following alternative characterization of depth.

Proposition 1.16. Let V be presented in finite degrees. Then,

depth(V ) = sup{a | V is acyclic with respect to Da}.

Our next goal will be to show the following incremental property of depth. It shows

how the depth of a module relates to the depth of its syzygies.

Lemma 1.48. Given an exact sequence of FIG-modules which are presented in finite

degree,

0→ V ′ → X → V → 0,

such that X is ]-filtered, depth(V ′) = depth(V ) + 1.

Proof

We begin by recalling that X is acyclic with respect to Da for all a ≥ 1 (Proposition 3.3).

Applying Da to the given exact sequence, it therefore follows that HDa

i (V ′) = HDa

i+1(V )

for all i, a ≥ 1. If depth(V ) = ∞, then this immediately implies the same about

depth(V ′). If depth(V ) = δ <∞, then these equalities imply that HDa

i (V ′) = 0 at least

up to a = δ. Moreover, Lemma 1.47 tells us that HDδ+1

1 (V ′) = HDδ+1

2 (V ) = 0, while

HDδ+2

1 (V ′) = HDδ+2

2 (V ) 6= 0, showing that depth(V ′) = δ + 1.
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To prove the classification theorem, we will need a collection of technical lemmas.

The following lemma was originally proven by Nagpal in [N, Lemma 2.2] for FI-modules,

and was later reproven by Li and Yu in [LY, Lemma 3.3].

Lemma 1.49. Let W be a k[Gm]-module for some m, and assume that there is an exact

sequence

0→ U →M(W )→ V → 0,

such that U is generated in degree ≤ m. Then U and V are both relatively projective.

Proof

Applying H0 to the given exact sequence, we find that

0→ H1(V )→ H0(U)→ H0(M(W ))→ H0(V )→ 0

Because U was generated in degree m, it follows that H0(U) is only supported in degree

m. Because U is a submodule of M(W ), it follows that H0(U)m = Um, and therefore

the map H0(U) → H0(M(W ))m is injective. We conclude that H1(V ) = 0. Our result

now follows by Theorem 1.27.

The following lemma was proven in a slightly stronger form in [LY, Lemma 3.11]

using different methods.

Lemma 1.50. Let V be an FIG-module which is generated in degree ≤ m, and assume
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that HDm+1

1 (V ) = 0. Then the relation degree of V is ≤ m. In particular, if V is gener-

ated in finite degree and has infinite depth, then V is presented in finite degree.

Proof

By assumption there is an exact sequence,

0→ K →M → V → 0

where M is free and generated in degree ≤ m. Applying the functor Dm+1 to this

sequence, and using Proposition 3.3 as well as our assumption, we find that Dm+1K = 0.

Proposition 3.3 implies that K is generated in degree ≤ m.

Theorem 1.51 (The Depth Classification Theorem). Let V be an FIG-module which is

presented in finite degree. Then:

1. depth(V ) = 0 if and only if V has torsion;

2. depth(V ) =∞ if and only if V is ]-filtered;

3. depth(V ) = δ is a positive integer if and only if there is an exact sequence

0→ V → Xδ−1 → . . .→ X0 → V ′ → 0

where Xi is sharp filtered for all i, hd0(V ) = hd0(Xδ−1), hd0(Xi) > hd0(Xi−1) >

hd0(V ′) for all i, and V ′ is some FIG-module with torsion.
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Proof

The first statement is just a rephrasing of the fifth part of Proposition 3.3.

The backwards direction of the second statement is a rephrasing of part 2 of Propo-

sition 3.3. We will prove the forward direction by induction on the generating degree.

If V = 0, then it is ]-filtered by definition. Assume that V is generated in non-negative

degree ≤ m, and let V ′ be the submodule of V generated by the elements of Vi with

i < m. Then we have an exact sequence,

0→ V ′ → V → Q→ 0

where Q is generated in degree m. Applying the H0 functor we find that

H1(V )→ H1(Q)→ H0(V ′)

By assumption, deg(H0(V ′)) ≤ m− 1, while deg(H1(V )) is at most the relation degree

of V , which is at most m by Lemma 1.50. It follows that deg(H1(Q)) ≤ m.

If,

0→ K →M(W )→ Q→ 0

is an exact sequence, with W a k[Gm]-module, then applying H0 we find

0→ H1(Q)→ H0(K)→ H0(M(W ))

It follows that

hd0(K) ≤ max{hd0(M(W )), hd1(Q)} ≤ m.

Nakayama’s lemma and Lemma 3.15 imply that Q is ]-filtered. In particular, it has infi-

nite depth and therefore V ′ also has infinite depth. Applying Lemma 1.50 we know that
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V ′ is presented in finite degree, and therefore induction tells us that it is also ]-filtered.

Lemma 1.30 implies that V is ]-filtered, as desired.

The backwards direction of the third statement follows from Lemma 1.48. Conversely,

assume that V is presented in finite degree, and 0 < depth(V ) = δ < ∞. Theorems

1.44 and C (proven in the next section) imply that we may find some b � 0 such that

Sb V is ]-filtered. Because V has positive depth, it is torsion free, and therefore the map

V → Sb V is an embedding. The cokernel of this map is also presented in finite degree

by Lemma 1.20, and its relation and generating degrees are strictly smaller. The claim

now follows from an application of Lemma 1.48 and induction on the generating degree.

Remark 1.52. Lemma 1.50 guarantees that any infinite depth module which is generated

in finite degree must actually be related in finite degree as well. The second equivalence

of the classification theorem may therefore be stated under the assumption that V is gen-

erated in finite degree.

The proof that infinite depth modules are equivalent to ]-filtered modules was signif-

icantly different in the earlier versions of this paper. In these versions, the techniques

used in the proof only worked if k was a Noetherian ring, G was finite, and V was finitely

generated. The recent preprint [LY] proves various new properties of the derivative for

FI-modules. The proof of Theorem 2.31 given here has adapted certain techniques of the

paper [LY], which has allowed us to generalize our original result.
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One immediate consequence of Theorem 2.31 is a bound on depth(V ) in terms of the

generating degree of V .

Corollary 1.53. Let V be an FIG-module which is presented in finite degree, and is of

finite depth. Then depth(V ) ≤ hd0(V ).

As promised earlier, the classification theorem implies the following strengthening of

Lemma 1.30.

Corollary 1.54. Let

0→ V ′ → V → V ′′ → 0

be an exact sequence of FIG-modules which are generated in finite degree. Then any two

of V ′, V, or V ′′ are ]-filtered if and only if the third is as well.

Proof

Lemma 1.30 deals with all cases except that in which V ′ and V are ]-filtered. In this case

Lemma 1.48 implies that V ′′ must have infinite depth, and the classification theorem

then implies that V ′′ is ]-filtered, as desired.

This lemma is the last piece needed to prove Theorem 3.9.

Proof of Theorem 3.9

The equivalence of the first four statements was proven in Theorem 1.27. It is clear that
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any of these four implies the fifth statement. Conversely, if V admits a finite resolution

by ]-filtered modules, then we conclude that V must be ]-filtered through repeated ap-

plications of Corollary 3.8.

Assume now that V is presented in finite degree. It is clear that the first five state-

ments imply that Hi(V ) = 0 for some i ≥ 0. Conversely, fix i > 0 such that Hi(V ) = 0.

If i = 1, then the previously proven equivalences imply that V is ]-filtered. If i > 1, we

may truncate a free resolution of V at the i-th step, and write,

0→ Xi−1 →Mi−2 → . . .→M0 → V → 0 (1.9)

where the Mj modules are free. Note that the proof of Proposition 1.12 as well as

Theorem 1.44 imply that we may assume all Mj, as well as Xi−1, are generated in finite

degree. Using the fact that H1(Xi−1) = Hi(V ) = 0, we conclude that Xi−1 is ]-filtered.

1.16.1 The Proofs of Theorems C and B

The classification theorem will now allow us to prove the connection between regularity

and depth.

Proof of Theorem C

Lemma 1.35 tells us that there are isomorphisms for all a and b,

SbH
Da

1 (V ) = HDa

1 (Sb V ).

The depth classification theorem implies that Sb V is sharp filtered if and only if SbH
Da

1 (V ) =

0 for all a ≥ 1. This is equivalent to saying that deg(HDa

1 (V )) < b.
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At this point we are ready to put all the pieces together. This theorem tells us

that the question of when a module becomes sharp filtered is equivalent to bounding its

derived regularity. Proposition 1.12 then implies that bounds on the derived regularity

leads to bounds on the homological degrees of the module. Moreover, we notice that this

theorem can be used in both directions. Known bounds on how far a module must be

shifted to become sharp filtered give bounds on the regularity of V . Conversely, known

bounds on the derived regularity of V , such as those given in Theorem 1.44, give bounds

on how far a module must be shifted to become ]-filtered. In particular, we have the

following.

Corollary 1.55. Let V be an FIG-module which presented in finite degree, and is gen-

erated in degree ≤ d. Then Sb V is sharp filtered for b ≥ hd1(V ) + min{hd1(V ), d}.

This gives us all we need to bound the stable range when G is a finite group.

The Proof of Theorem B

We recall that ]-filtered modules have a dimension polynomial for all n (see the discussion

immediately following Definition 2.8). Corollary 1.55, and the techniques of Remark

1.14, immediately imply Theorem B.

Remark 1.56. In [L, Theorem 1.5], Li proves that if G is a finite group, and if b is

such that hdi(Sb V ) ≤ hd0(Sb V ) + i for all i, then hdi(V ) ≤ hd0(V ) + b + i for all i.

Theorems 3.9 and 1.22, along with this theorem of Li, imply Theorem D. Indeed, by the
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results in this paper, Li’s result implies

hdi(V ) ≤ hd0(V ) + ∂reg(V ) + 1 + i.

This is related to the bound discussed in Theorem D, and is better in certain cases.

1.16.2 An Alternative Definition of Depth

In this section we explore an alternative definition for depth, which is more classically

rooted. For convenience of exposition, we assume throughout this section that k is a

field of characteristic 0, and that G is a finite group. It is the belief of the author that

all that follows can be done in the generality of the rest of the paper. The main result of

this section will show that this alternative definition is equivalent to that given above.

If R is a commutative ring with ideal I ⊆ R, it is classically known that for any

R-module M ,

depth(I,M) = min{i | Exti(R/I,M) 6= 0}.

See [E, Proposition 18.4] for the proof of this equality. This is the definition of depth

which we will now emulate for our setting.

In [GL], the Gan and Li define the ring k FIG =
⊕

n≤m k[HomFIG([n], [m])], whose

multiplication is defined by

(f, g) · (f ′, g′) =


(f, g) ◦ (f ′, g′) if the codomain of f ′ is equal to the domain of f

0 otherwise.

Writing en for the identity morphism in HomFIG([n], [n]), we say that a k FIG-module V

is graded if V =
⊕

n en · V . In the paper [GL], Gan and Li show that the category of
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graded k FIG-modules is equivalent to the category of FIG-modules.

One observes that the ring k FIG has a natural two sided ideal generated by the

upwards facing maps, m = ((f, g) : [n] → [m] | n < m). The quotient G = k FIG /m is

the direct sum
⊕

n k[Gn] where all upwards facing maps act trivially.

Definition 1.57. We write G to denote the FIG-module which is defined on points by

Gn = k[Gn], and whose transition maps are trivial. For any FIG-module V , The k-module

HomFIG -Mod(G, V ) carries the structure of an FBG-module via

HomFIG -Mod(G, V )n = HomFIG -Mod(k[Gn], V )

We write Hom(G, •) : FIG -Mod→ FBG -Mod to denote this functor.

Proposition 1.17. The functor Hom(G, •) enjoys the following properties:

1. Hom(G, V ) 6= 0 if and only if V has torsion;

2. Hom(G, •) takes finitely generated FIG-modules to finitely generated FBG-modules;

3. Hom(G, •) is right adjoint to the inclusion functor FBG-mod → FIG-mod. In par-

ticular, Hom(G, •) is left exact, and maps injective objects of FIG-mod to injective

objects of FBG-mod.

Proof

For the first statement, a map HomFIG -mod(k[Gn], V ) is just a map of k[Gn]-modules
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f : k[Gn]→ Vn, whose image is in the kernel of every transition map out of Vn. Therefore

if Hom(G, V ) 6= 0, V must have torsion. Conversely, if v ∈ Vn is a torsion element, then

there is some transition map (f, g)* : Vn → Vm such that (f, g)*(v) = 0. We may write

the map (f, g) as

(f, g) = (f1, g1) ◦ (f2, g2)

where (f1, g1) : [m − 1] → [m] and (f2, g2) : [n] → [m − 1]. If (f2, g2)*(v) = 0, then

we may repeat this decomposition until it is not. Assuming that this is not the case,

then (f2, g2)*(v) ∈ Vm−1 is in the kernel of all transition facing maps. In particular,

Hom(G, V )m−1 6= 0.

Any element of Hom(G, V )n will naturally correspond to a torsion element of Vn by

the previous discussion. In particular, we may consider Hom(G, V ) as a submodule of

V . The Noetherian Property implies that Hom(G, V ) is finitely generated.

Let W be a finitely generated FBG-module, and let V be a finitely generated FIG-

module. If we consider W as being an FIG-module with trivial transition maps, then a

morphism W → V must send elements of W to elements of V which are in the kernel

of all transition maps. By the previous discussion, these correspond precisely to the

elements of Hom(G, V ). Conversely, if we have a map φ : W → Hom(G, V ), then we set

φ̃ : W → V by φ̃n(w) = φn(w)(id).

The final two statements are general facts from homological algebra. Any functor

which is right adjoint has the first property, and if its left adjoint is exact then it has

the second property.
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We have already discussed the fact that the category FIG-mod might not have suffi-

ciently many injective objects if k is a field of characteristic p > 0. When k is a field of

characteristic 0, and G is a finite group, however, this is not an issue. In fact, Sam and

Snowden [SS3, Theorem 4.3.1], as well as Gan and Li [GL, Theorem 1.7], have shown

that every object has finite injective dimension in this case. Moreover, the cited papers

prove that all projective objects are also injective, and these are precisely the torsion

free injective objects. In other words, one has the following chain of equalities

{]-Filtered Modules} = {Projective Modules} = {Torsion Free Injective Modules}

Definition 1.58. We will denote the right derived functors of Hom(G, •) by Exti(G, •).

Given a finitely generated FIG-module V , we define its classical depth to be the quan-

tity depthclass(V ) := min{i | Exti(G, •) 6= 0}.

As was the case with the other notion of depth, the first property one needs to prove

to justify using the name depth is the increment property.

Lemma 1.59. If there is an exact sequence of finitely generated FIG-modules

0→ V ′ → X → V → 0

such that X is ]-filtered, then depthclass(V ′) = depthclass(V ) + 1.
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Proof

Applying the functor Hom(G, •) to the above sequence, and using the fact that X is

injective and torsion free, we find that Exti+1(G, V ′) = Exti(G, V ) for all i ≥ 0. This

immediately implies the desired result.

The first step in showing that the two notions of depth coincide is to show that they

are the same at the extremes. Proposition 1.17 implies that depth zero and classical

depth zero are equivalent. We next prove that objects of infinite classical depth are

precisely the ]-filtered modules.

Proposition 1.18. For any finitely generated FIG-module V , depthclass(V ) =∞ if and

only if V is ]-filtered.

Proof

Because depthclass(V ) is defined in terms of the vanishing of Ext functors, it follows that

depthclass(V ) = ∞ if V is injective and torsion free. Conversely assume that V has

infinite classical depth. This implies, in particular, that V is torsion free, and therefore

embeds into all its shifts. Using Theorem 1.22, we may find some b >> 0 such that

Sb is ]-filtered. Lemma 1.20 implies the cokernel of V ↪→ Sb V is generated in strictly

smaller degree, while Lemma 1.59 implies that it has infinite classical depth. Proceeding

inductively, we will eventually be left with a module V ′ such that Sb′ V
′ is sharp filtered

for some b′ >> 0 and Sb′ V
′/V ′ is ]-filtered. Corollary 3.8 implies that V was ]-filtered

to begin with.
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This is all we need to prove the equivalence.

Theorem 1.60. Let V be a finitely generated FIG-module. Then depthclass(V ) = depth(V ).

Proof

If depthclass(V ) = 0 or depthclass(V ) = ∞, then we have already seen depth(V ) agrees

with depthclass(V ). Assume that depthclass(V ) = δ > 0, and assume for the sake of

contradiction that depth(V ) = δ′ < δ. Because δ is positive, it must be the case that δ′

is positive as well. We may therefore find some b >> 0 such that Sb V is ]-filtered. This

gives us an embedding

0→ V → Sb V → Q→ 0

for some Q with depthclass(Q) = δ − 1, and depth(Q) = δ′ − 1. Proceeding inductively,

we would eventually we left with a module with depth(V ′) = 0 and depthclass(V ) > 0.

This is a contradiction.

Remark 1.61. In [SS3], Sam and Snowden provide a definition of the depth of an FI-

module in characteristic 0. This definition is formulated in terms of a kind of Auslander-

Buchsbaum formula. It can be shown that this definition of depth is also equivalent to

the definitions given in this paper.
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Chapter 2

Depth and the local cohomology of

FIG-modules (joint with Liping Li)

2.1 Introduction

2.1.1 Motivation

Since the fundamental work of Church, Ellenberg, and Farb in [CEF], the representa-

tion theory of the category FI, whose objects the finite sets [n] = {1, . . . , n} and whose

morphisms are injections, has played a central role in Church and Farb’s representation

stability theory [CF]. The methodology of Church, Ellenberg, and Farb has since been

generalized to account for many other well known facts in asymptotic algebra. The main

idea behind these generalizations is that stability properties of sequences of group rep-

resentations can be converted to considerations in the representation theory of certain

infinite categories, usually equipped with nice combinatorial structures. This philosophy

was carried out by a series of works in this area; see [CEF, CEFN, GL, N, R, SS, SS2, W].

In this paper, we will be concerned with representations of the category FIG, where G

is a finite group, which was introduced in [SS2].
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The homological aspect of the representation theory of FI and its generalization FIG

originates from the papers [CEFN], and [CE] by Church, Ellenberg, Farb and Nag-

pal. In these papers, the notion of FI-module homology was introduced, as well as

the Castelnuovo-Mumford regularity (See Definitions 2.12 and 2.13). The paper [CE]

was the first to provide explicit bounds on this regularity [CE, Theorem A]. Soon af-

terward, the techniques of Church and Ellenberg were expanded through two different

approaches. One approach was rooted in classical representation theory, and pursued

by the first author and Yu in [LY, L2]. The second approach applied certain important

ideas in commutative algebra, and was studied by the second author in [R]. Both ap-

proaches established a strong relationship between homological properties of FIG and its

representation stability phenomena, which was accomplished by obtaining upper bounds

on certain homological invariants; see [L2, Theorem 1.3] and [R, Theorems C and D].

So far this project is still under active exploration.

This paper has two major goals. Firstly, it is a known fact that most finitely gener-

ated FIG-modules have infinite projective dimension (see [LY, Theorem 1.5]). Moreover,

it can be shown that the category of finitely generated FIG-modules over an arbitrary

Noetherian ring does not usually have sufficiently many injective objects (see Theorem

2.46). As a result of this, it becomes important for one to develop different machinery

for computing certain homological invariants. The first half of this paper is concerned

with creating such machinery, which will be built around the homological properties

of ]-filtered modules (see Definition 2.8). One may think of these modules as acting as

both the projective and torsion free injective objects of the category of finitely generated

FIG-modules (See Theorems C and D)
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Secondly, we apply the homological machinery developed in the first half of the pa-

per to the concepts of depth (See Definition 2.30) and local cohomology. For instance,

the depth and classical depth (See Definition 2.32) of an FIG-module were shown to

be equivalent by the second author in [R, Theorem 4.15] for fields of characteristic 0.

It is therefore natural to wonder whether they also coincide for arbitrary commutative

Noetherian rings. Moreover, Sam and Snowden described a local cohomology theory for

FI in [SS3] for fields of characteristic 0, so we ask whether a generalized theory for FIG

can be developed in the much wider framework of commutative Noetherian rings. The

main goal of the second half of the paper is to give affirmative answers to the above

concerns.

2.1.2 An inductive method

An extremely useful combinatorial property of the category FIG is that it is equipped

with a self-embedding functor, which induces a shift functor Σ in the category of FIG-

modules (See definition 3.2.3). This functor has seen heavy use in the literature. Ex-

amples of this include [CEF, CEFN, CE, GL, L, LY, N, R, L2]. The importance of

this functor lies in the following key facts: it preserves both left and right projective

modules; and for every finitely generated FIG-module V , after applying the shift functor

Σ enough times, V becomes a ]-filtered module [N, Theorem A].
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From the perspective of more classically rooted representation theory, the shift func-

tor Σ is a kind of restriction. It has a left adjoint functor (called induction) and a right

adjoint functor (called coinduction), denoted by us L and R. The coinduction functor

R was explicitly constructed in [GL]. In this paper we systematically consider these

functors, showing that their behaviors perfectly adapt to ]-filtered modules. Moreover,

the Eckmann-Shapiro lemma holds in the context of FIG-modules, which allows us to

reduce general questions to their simplest cases.

Theorem A. Let k be a commutative Noetherian ring, and let Vn be a finitely generated

kGn-module, where Gn = G oSn. We have:

1. the functors Σ, L, and R are all exact;

2. the functors Σ, L, and R preserve ]-filtered modules. In particular (see Definition

2.8):

ΣM(Vn) ∼= M(Vn)⊕M(ResGnGn−1
Vn);

R(M(Vn)) ∼= M(Vn)⊕M(Ind
Gn+1

Gn
Vn);

L(M(Vn)) ∼= M(Ind
Gn+1

Gn
Vn).

3. For two finitely generated FIG-modules V and V ′ and i > 0, one has

ExtikFIG
(L(V ), V ′) ∼= ExtikFIG

(V,ΣV ′);

ExtikFIG
(ΣV, V ′) ∼= ExtikFIG

(V,R(V ′)).
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As an example of these induction style arguments, we prove the aforementioned

equivalence of depth and classical depth. If V is an FIG-module, there is always a nat-

ural map V → ΣV (See Definition 2.28 for the explicit definition). The cokernel of this

map defines a functor, which we call the derivative DV . The derivative functor was

first introduced in [CE], and was later used by Yu and the authors in [LY], and [R].

The paper [R] used the derived functors of the derivative and its iterates, HDa

i (•), to

develop a theory of depth for FIG-modules. It was also noted in that paper that there

was a more classically rooted definition of depth called the classical depth of the module.

Using Theorem A we will be able prove the following.

Theorem B. Let V be a finitely generated FIG-module over a Noetherian ring k. Then

the depth and classical depth of V coincide. That is:

inf{a | HDa+1

1 (V ) 6= 0} = inf{i | ExtiC -Mod(kC /m, V ) 6= 0}.

2.1.3 A machinery for homological calculations

In practice, to compute the homology (resp. cohomology) groups of representations

of a ring, one usually approximates these representations by suitable projective (resp.

injective) resolutions. However, we have already discussed that this strategy does not
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work very well in the context of FIG-modules. To overcome this obstacle, one has to

find suitable objects which satisfy the following two requirements: they must be acyclic

with respect to certain important functors; and finitely generated FIG-modules must be

approximated by finite complexes of such objects.

The work of Nagpal, Yu, and the authors in [N, Theorem A], [LY, Theorem 1.3], and

[R, Theorem B], strongly suggest that ]-filtered modules are best candidates. These ob-

jects were introduced as modules which were “almost” projective, and were later proven

to be acyclic with respect to many natural right exact functors. One of the major real-

izations of this paper is that ]-filtered objects are also acyclic with respect to many left

exact functors. In particular, the following results convince us that ]-filtered modules

do play the role of both projective objects and injective objects for many homological

computations.

Theorem C (Homological characterizations of ]-filtered modules). Let k be a commu-

tative Noetherian ring, and let V be a finitely generated FIG-module over k. Denote the

endomorphism group of object [s] in FIG by Gs, s > 0. Then V is ]-filtered if and only

if it satisfies one of the following equivalent conditions:

1. TorkFIG
i (kGs, V ) = 0 for i > 1 and s > 0;

2. TorkFIG
1 (kGs, V ) = 0 for s > 0;

3. TorkFIG
i (kGs, V ) = 0 for s > 0 and a certain i > 1;

4. ExtikFIG
(kGs, V ) = 0 for i, s > 0;
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5. ExtikFIG
(T, V ) = 0 for i > 0 and all finitely generated torsion modules (See Defi-

nition 2.36).

Remark 2.1. The first three homological characterizations of ]-filtered modules are not

new. They have been described in [LY, Theorem 1.3] and [R, Theorem B].

The Tor functors in the above theorem are strongly related the the notion of FIG-

module homology, which we will formally define later. We state the above theorem using

the language of Tor so that the relationship between the five given statements is more

clear.

Theorem D (Homological orthogonal relations). Let k be a commutative Noetherian

ring, and let V be a finitely generated FIG-module over k. Then

1. T is a torsion module if and only if ExtikFIG
(T, V ) = 0 for all ]-filtered modules V

and all i > 0.

2. V is an injective module if and only if Ext1
kFIG

(W,V ) = 0 whenever W is a ]-

filtered module or W is a finitely generated torsion module.

3. ExtikFIG
(V, F ) = 0 for all ]-filtered modules F and all i > 1 if and only if ΣNV is

a projective module for N � 0.

4. ExtikFIG
(T, V ) = 0 for i > 1 and all finitely generated torsion modules T if and

only if V is a direct sum of an injective torsion module and a ]-filtered module.
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This should convince the reader that ]-filtered objects are acyclic with respect to

many natural left and right exact functors. To prove that ]-filtered objects can be used

to approximate arbitrary modules, we call upon the following theorem.

Theorem 2.2 ([L2], Theorem 1.3). Let k be a commutative Noetherian ring, and let V

be a finitely generated FIG-module over k. Then there is a complex

C•V : 0→ V → F 0 → . . .→ F n → 0

enjoying the following properties:

1. every F i is a ]-filtered module;

2. gd(F i) ≤ gd(V )− i (see Definition 2.13). Therefore, n ≤ gd(V );

3. the cohomologies H i(C•V ) are finitely supported (See Definition 2.13), and
td(H i(V )) = td(V ) if i = −1

td(H i(V )) ≤ 2 gd(V )− 2i− 2 if 0 ≤ i ≤ n.

We will find this theorem vital in our studies of the local cohomology of FIG-modules.

2.1.4 A local cohomology theory

Another application of the above machinery and inductive method is in developing a

local cohomology theory of FIG-modules over arbitrary commutative Noetherian rings,
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generalizing the corresponding work in [SS3].

Given a finitely generated FIG-module V , there is a natural exact sequence

0→ VT → V → VF → 0

where VT is torsion and VF is torsion free (see Definition 2.13). The assignment V → VT

gives rise to a functor, which we denote H0
m(•). This is a left exact functor, and its

right derived functors H i
m(•) are called the local cohomology functors. Considering the

profound impact that local cohomology has in more classical settings, it is natural for

one to wonder whether the same is true for FIG-modules.

Before one considers applying local cohomology modules in bounding various homo-

logical invariants, it is important that we develop some way of computing the modules

in a systematic way. Using the above homological computation machinery and inductive

method, we can provide such a computational tool.

Theorem E. Let k be a commutative Noetherian ring, V be a finitely generated FIG-

module, and let C•V be the complex in Theorem 2.2. Then, for i > −1, there are

isomorphisms

H i(C•V ) ∼= H i+1
m (V ).

Consequently, H i
m(V ) is a finitely generated, torsion C -module. Moreover,

td(H i
m(V )) = td(V ) if i = 0

td(H i
m(V )) ≤ 2 gd(V )− 2i− 2 if 1 ≤ i ≤ gd(V ).
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Using this theorem, we can show that local cohomology groups are related to certain

important homological invariants such as the depth, Nagpal number (see Definition 2.20),

and regularity of a module (see Definition 2.13).

Theorem F. Let k be a commutative Noetherian ring, and let V be a finitely generated

FIG-module. Then:

1. the depth of V is the smallest integer i such that H i
m(V ) 6= 0;

2. the Nagpal number of V , N(V ) satisfies the bounds

N(V ) = max{td(H i
m(V )) | i > 0}+ 1 ≤ max{td(V ), 2 gd(V )− 2}+ 1.

3. The regularity of V , reg(V ) satisfies the bounds

reg(V ) 6 max{td(H i
m(V )) + i} 6 max{2 gd(V )− 1, td(V )}.

Motivated by the classical result for polynomial rings, we also state the following

conjecture.

Conjecture 2.3. Let k be a commutative Noetherian ring, and let V be a finitely gen-

erated FIG-module. Then

reg(V ) = max{td(H i
m(V )) + i}.
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The previous theorem tells us that the right hand side of our conjectured identity is

an upper bound on the left hand side. It therefore only remains to show the opposite

inequality. We note that the natural way one might try to accomplish this, namely

through some induction argument on the projective dimension, cannot work in this case

for reasons we have already stated. If this conjecture proves to be false, it would provide

evidence that the Hilbert Syzygy theorem is actually vital to the statement being true

in the classical case.

2.1.5 Organization

This paper is organized as follows. In Section 2 we describe some elementary definitions

and results, which will be used throughout this paper. In Section 3 we study the shift

functor and its adjoint functors, prove a few crucial technical tools, and use them to

show that the depth and classical depth coincide. In Section 4 we use the inductive

tools developed in Section 4 to prove a variety of homological structure theorems about

]-filtered modules. Finally, in the last section we develop a local cohomology theory of

FIG-modules and discuss its applications. We also present the above conjecture and its

useful consequences.
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2.2 Preliminaries

2.2.1 Elementary Definitions

For the remainder of this paper we fix a finite group G, and a commutative Noetherian

ring k. The category FIG is that whose objects are the finite sets [n] := {1, . . . , n} and

whose morphisms are pairs, (f, g) : [n]→ [m], of an injection f : [n] ↪→ [m] with a map

of sets g : [n]→ G. Given two composable morphisms (f, g), (f ′, g′), composition in this

category is defined by

(f, g) ◦ (f ′, g′) = (f ◦ f ′, h)

where h(x) = g′(x)g(f ′(x)). It follows immediately from this that for any [n], the en-

domorphisms of [n] form the group EndFIG([n]) = G o Sn, where Sn is the symmetric

group on n letters. We will write Gn as a shorthand for this group.

Two important special cases of FIG are those wherein G = 1 is the trivial group,

and G = Z/2Z. In the first case, FIG is equivalent to the category FI of finite sets and

injective morphisms. In the second case we have FIG = FIBC , which was studied in [W].

Definition 2.4. An FIG-module is a covariant functor V from FIG to the category of

k-modules. We write Vn for the module V ([n]), and, given any map (f, g) : [n] → [m],

we write (f, g)* for V (f, g). We call the morphisms (f, g)* the induced maps of V . In

the specific case where n < m, we call (f, g)* a transition map of V .
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The collection of FIG-modules, with natural transformations, form an abelian cate-

gory which we denote FIG -Mod.

The definition for FIG-module given above was introduced by Church, Ellenberg, and

Farb in [CEF]. This was followed by the work of Wilson [W], as well as that of Sam and

Snowden [SS][SS2]. More recently, a new approach to the subject has been considered,

which is more rooted in classical representation theory. This can be seen in the works

of Gan, the first author, and Yu [GL] [L] [LY]

Definition 2.5. Let k FIG denote the category algebra whose additive group is given

by

k FIG :=
⊕
n≤m

k[HomFIG([n], [m])],

where k[HomFIG([n], [m])] is the free k-module with a basis indexed by the set HomFIG([n], [m]).

Multiplication in k FIG is defined on basis vectors (f, g) : [n]→ [m], (f ′, g′) : [r]→ [s] by

(f, g) · (f ′, g′) =


(f, g) ◦ (f ′, g′) if n = s

0 otherwise.

Write en ∈ EndFIG([n]) for the identity on [n] paired with the trivial map into G. Then

we say that a module V over k FIG is graded if V =
⊕

n en · V . In this case we write

Vn := en · V .

Remark 2.6. Because all k FIG-modules considered in this paper are graded, we will

simply refer to them as k FIG-modules.
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If V is a k FIG-module, then we obtain an FIG-module by setting Vn := en · V , and

defining the induced maps in the obvious way. It is clear that this defines an equivalence

between the category of FIG-modules, and the category of (graded) k FIG-modules. We

will use both definitions interchangeably during the course of this paper.

Remark 2.7. In everything that follows, our results will not depend on the finite group

G. Therefore, to clarify notation, we will write C := FIG.

Definition 2.8. Let W be a kGn-module for some n > 0. Then the basic filtered

module over W , is the C -module M(W ) defined by the assignments

M(W )m = k[HomC ([n], [m])]⊗kGn W.

The induced maps of M(W ) are defined by composition on the first coordinate. In the

special case where W = kGn, we write M(n) := M(W ), and refer to direct sums of these

modules as being free.

Since kGn can be viewed as a subalgebra of kC , we see that M is nothing but the

induction functor kC ⊗kGn •.

We say that a C -module V is ]-filtered if it admits a filtration

0 = V (−1) ⊆ V (0) ⊆ V (1) ⊆ . . . ⊆ V (n) = V

such that V (i)/V (i−1) = M(W (i)), for some kGi-module W (i), for each i > 0.
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It was shown in [LY], as well as [R], that ]-filtered objects are of a fundamental

importance to the study of homological properties of C -modules. For instance, ]-filtered

objects are precisely the acyclic objects with respect to certain natural right exact func-

tors. These will be discussed in the coming sections (See Theorems 3.9 and 2.31). One

of the interesting consequences of the results in this paper is that ]-filtered objects are

also acyclic with respect to certain left exact functors.

The following proposition follows easily from the relevant definitions.

Proposition 2.3. Let W be a kGn-module. Then there is a natural adjunction,

HomC -Mod(M(W ), V ) ∼= HomkGn -Mod(W,Vn),

given by

φ 7→ φn.tor

One observes that for a kGn-module W , M(W ) is projective if and only if W is pro-

jective. In fact, it can be shown that all projective C -modules are direct sums of basic

filtered modules [R, Proposition 2.13]. Therefore, free C -modules are always projective.

Definition 2.9. Given a finitely generated kGn-module W , we say that M(W ) is finitely

generated. We say that a ]-filtered object is finitely generated if the cofactors in its

defining filtration are finitely generated. Finally, we say that a C -module is finitely gen-

erated if and only if it is a quotient of a finitely generated ]-filtered object.

We denote the category of finitely generated C -modules by C -mod.
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Remark 2.10. One immediately remarks that the free module M(n) is finitely generated

for all n. In fact, it is an easily seen consequence of Nakayama’s Lemma (Lemma 2.4)

that a module V is finitely generated if and only if there is a finite set I, and a finite

collection of non-negative integers {ni,mi}i∈I such that V is a quotient of
⊕

i∈IM(ni)
mi.

Proposition 2.3 informs us that a map M(n) → V is equivalent to a choice of an

element of Vn. Putting everything together, we can conclude that V is finitely generated

if and only if there is some finite set of elements in tnVn which are not contained in any

proper submodule. We call such a set a generating set of elements for V . While a

definition of this sort may seem more natural, we use the above definition to be more in

line with the philosophy of Theorem 3.9.

One remarkable fact about the category C -mod is that it is also abelian. Given any

morphism of finitely generated C -modules, it is clear that its image and cokernel must

also be finitely generated. The significance of saying that C -mod is abelian therefore

comes from the fact that the kernel of this morphism must also be finitely generated.

Put another way, the category C -mod is Noetherian.

This fact was proven by Sam and Snowden in [SS2, Corollary 1.2.2] for general

C -modules, although it had been proven in certain specific cases earlier [W, Theorem

4.21][CEF, Theorem 1.3][CEFN, Theorem A][S, Theorem 2.3]. We often refer to the

following result as the Noetherian property.
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Theorem 2.11 ([SS2], Corollary 1.2.2). If V is a finitely generated C -module over a

Noetherian ring k, then all submodules of V are also finitely generated.

Much of the remainder of the paper will be concerned with various homological prop-

erties of the category C -mod.

2.3.1 The Homology Functors

For the remainder of this paper, we write m ⊆ kC to denote the ideal

m :=
⊕
n<m

k[HomC ([n], [m])].

Definition 2.12. For any kC -module V , we use H0(V ) to denote kC /m⊗kC V . In the

language of C -modules, H0 : C -mod→ C -mod is the functor defined by

H0(V )n = Vn/V<n

where V<n is the submodule of Vn spanned by the images of transition maps originating

from Vm with m < n. We use Hi to denote the derived functors

Hi(V ) := TorkCi (kC /m, V )

We call the functors Hi the homology functors.

Proposition 2.4 (Nakayama’s Lemma). Let V be a C -module, let {ṽi} ⊆ tnH0(V )n be

a collection of elements which generate H0(V ), and let vi be a lift of ṽi for each i. Then

{vi} is a generating set for V .
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Proof

Let j be the least index such that Vj 6= 0. Then Vj = H0(V )j, and it is clear that every

element of Vj is a linear combination of those ṽi in H0(V )j. Next, let n > j, and let

v ∈ Vn. Then the image of v in H0(V )n can be expressed as some linear combination of

elements of {ṽi}. By definition, this implies that v is a linear combination of elements

of {vi}, as well as images of elements from lower degrees. The result now follows by

induction.

One immediate consequence of Nakayama’s Lemma is that if V is finitely generated,

then H0(V ) is supported in finitely many degrees.

Definition 2.13. Given a C -module V , we define its support to be the smallest integer

N for which Vn = 0 for all n > N , if such an integer exists. We define the torsion

degree of V by

td(V ) := sup{n | HomkC (kGn, V ) 6= 0} ∈ N ∪ {−∞,∞},

where td(V ) = −∞ if and only if V is torsion free. Note that if V is finitely supported,

then td(V ) is precisely its support.

The i-th homological degree of V is defined to be the quantity,

hdi(V ) := td(Hi(V )).

The zeroth homological degree is often referred to as the generating degree of V and

written gd(V ).
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The regularity of V , denoted reg(V ), is the smallest integer N such that

hdi(V ) ≤ N + i

for all i > 1. We say that reg(V ) = ∞ if no such N exists, and we say reg(V ) = −∞

if V is acyclic with respect to the homology functors.

Remark 2.14. It is a subtle but important point that the regularity of a module is defined

by only bounding the higher homologies. From the perspective of classical commutative

algebra this might seem a bit strange. We stress, however, that Theorem F is false if

the definition of regularity is altered to include td(H0(V )). From the perspective of local

cohomology this can be explained by the fact that ]-filtered objects are local cohomology

acyclic, despite also being those objects which one might consider as substitutes for pro-

jectives (see Corollary 2.54).

It is a remarkable fact that the regularity of any finitely generated C -module is not

∞. This was proven in the case of FI-modules in characteristic 0 by Sam and Snowden

[SS3, Corollary 6.3.5], general FI-modules by Church and Ellenberg [CE, Theorem A],

and for C -modules by the authors and Yu [R, Theorem A] [LY, Theorem 1.8]. Most of

these papers also provide explicit bounds on the regularity of a C -module in terms of

its first two homological degrees. Later, we will provide new bounds on the regularity

of a module in terms of its local cohomology modules.

As previously stated, ]-filtered modules are precisely those which are acyclic with

respect to the homology functors.
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Theorem 2.15 ([LY] Theorem 1.3, [R] Theorem B). Let V be a finitely generated C -

module. Then the following are equivalent:

1. V is ]-filtered;

2. V is homology acyclic;

3. H1(V ) = 0;

4. Hi(V ) = 0 for some i > 1.

Remark 2.16. Note that this theorem implies the first three conditions of Theorem C.

It follows as a consequence of this theorem that the only finitely generated modules

which can have finite projective dimension are ]-filtered objects. The question of what

]-filtered modules can have finite projective dimension is considered in [LY, Theorem 1.5].
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2.5 The Shift Functor and its Adjoints

2.5.1 The shift functor

Definition 2.17. For any morphism (f, g) : [n] → [m] in C , we define (f+, g+) :

[n+ 1]→ [m+ 1] to be the morphism

f+(x) =


f(x) if x < n+ 1

m+ 1 otherwise

, g+(x) =


g(x) if x < n+ 1

1 otherwise.

Let ι : C → C be the functor defined by

ι([n]) = [n+ 1], ι(f, g) = (f+, g+).

Then we define the shift functor, or the restriction functor, Σ : C -Mod→ C -Mod

by ΣV := V ◦ ι. We write Σb for the b-th iterate of Σ.

We note that the map ι induces a proper injective map of algebras kC → kC , which

we call the self-embedding of kC .

One of the most important properties of the shift functor is that it preserves ]-filtered

objects. This was first observed by Nagpal in [N, Lemma 2.2].

Proposition 2.6. Let W be a kGn-module. Then there is an isomorphism of C -modules

ΣM(W ) ∼= M(ResGnGn−1
W )⊕M(W ).

In particular, if X is a ]-filtered C -module, then ΣV is as well.
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Proof

We will construct the isomorphism here, and direct the reader to [R, Proposition 2.21]

for a proof that the map we construct is actually an isomorphism.

Proposition 2.3 implies that any map M(ResGnGn−1
W )⊕M(W )→ ΣM(W ) is deter-

mined by two maps, φ1 : ResGnGn−1
W → ΣM(W )n−1 and φ2 : W → ΣM(W )n. It is

clear from definition that M(W )n−1 = ResGnGn−1
W , and so we may choose φ1 to be the

identity. Once again applying the definition of the shift functor, we note that the only

pure tensors w ⊗ (f, g) ∈ ΣM(W )n which are not in the image of a transition map are

those for which f−1(n + 1) = ∅. Looking at the collection of all such pure tensors, we

find that they form a copy of W in ΣM(W )n. We define

φ2(w) = w ⊗ (fn,1)

where fn : [n]→ [n+ 1] is the standard inclusion, and 1 is the trivial map into G.

One remarkable fact about the shift functor, first observed by Nagpal in [N, Theorem

A], is that all finitely generated C -modules are “eventually” ]-filtered.

Theorem 2.18 ([N], Theorem A). Let V be a finitely generated C -module. Then ΣbV

is ]-filtered for b� 0.

One major consequence of this theorem is the phenomenon of the stable range. If k

is a field, and W is a finite dimensional kGn-module, then one may easily compute

dimk(M(W )m) =

(
m

n

)
dimkW.
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Nagpal’s theorem therefore implies the following.

Corollary 2.19. Let V be a finitely generated C -module over a field k. Then there is a

polynomial PV ∈ Q[x] such that for all n� 0, dimk Vn = PV (n).

Definition 2.20. Let V be a finitely generated C -module. The smallest b for which ΣbV

is ]-filtered is known as the Nagpal number of V , and is denoted N(V ).

The paper [R, Theorem C] examines the Nagpal number from the perspective of a

theory of depth. In this work, the second author provides bounds on N(V ) in terms of

the generating degree and the first homological degree. Similar bounds were later found

by the first author in [L2, Theorem 1.3] using different means. We will examine the

notion of depth in the coming sections, and its connection to local cohomology.

2.6.1 The coinduction functor

Definition 2.21. If V is a C -module, then we define the coinduction functor R :

C -Mod→ C -Mod

R(V )n := HomkC (ΣM(n), V ).

If (f, g) : [n] → [m] is a morphism in C , and φ : ΣM(n) → V is a morphism of

C -modules, then we define (f, g)*φ ∈ HomkC (ΣM(m), V ) by

((f, g)*φ)r(f
′, g′) = φr((f

′, g′) ◦ (f, g))
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where (f ′, g′) : [m]→ [r + 1].

Remark 2.22. Because it will be useful to us later, we note that the coinduction functor

is exact. Indeed, we have already seen that the shift functor preserves projective objects,

and that M(n) is projective for all n. This implies that HomkC (ΣM(n), •) is exact for

all n, whence R is exact.

Proposition 2.7 ([GL], Lemma 4.2). The coinduction functor is right adjoint to the

shift functor.

The coinduction functor was introduced by Gan and the first author in [GL]. Theo-

rem 2.24 generalizes Theorem 1.3 of that paper. We will eventually use this more general

result to prove that depth and classical depth agree for C -modules over any Noetherian

ring (see Theorem B).

Lemma 2.23. Let W be a finitely generated kGn-module. Then M(W ) is a summand

of R(M(W )).

Proof

We will construct a split injectionM(W )→ R(M(W )). Proposition 2.3 tells us that such

a map is equivalent to a map W → R(M(W ))n = HomkC (ΣM(n),M(W )). Proposition

2.6 tells us that

ΣM(n) ∼= M(n− 1)|G|·n ⊕M(n),
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and therefore

HomkC (ΣM(n),M(W )) ∼= HomkC (M(n),M(W )) ∼= W.

Being explicit, the isomorphism HomkC (ΣM(n),M(W )) ∼= W is given by

φ 7→ φn(fn,1)

where fn : [n] → [n + 1] is the standard inclusion, and 1 is the trivial map into G. We

claim that the map M(W )→ R(M(W )) induced by the identity on W is a split injection.

To prove the claim, we will construct a splitting ψ : R(M(W )) → M(W ). Indeed,

for a morphism φ : ΣM(r)→M(W ) we set

ψr(φ) = φr(fr,1),

where fr : [r]→ [r+1] is the standard inclusion, and 1 is the trivial map into G. The fact

that ψ defines a morphism of C -modules is routinely checked. In fact, if (f, g) : [r]→ [s]

is any map in C then,

(f, g)*(ψr(φ)) = (f, g)*φr(fr,1) = φs((f+, g+)◦(fr,1)) = φs((fs,1)◦(f, g)) = ((f, g)*φ)s(fs,1) = ψs((f, g)*φ)

By the discussion in the previous paragraph, it is clear that ψ is a splitting of our map.

This is all we need to prove the main theorem of this section.

Theorem 2.24. Let W be a finitely generated kGn-module. Then R(M(W )) is a direct

sum of basic filtered modules. More specifically,

R(M(W )) ∼= M(W )⊕M(Ind
Gn+1

Gn
W ).
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Proof

We may find some integer m such that there is an exact sequence

0→M(Z)→M(n)m →M(W )→ 0

where Z is some kGn-module. Applying the exact coinduction functor, and using [GL,

Theorem 1.3], we obtain an exact sequence

0→ R(M(Z))→M(n)m ⊕M(n+ 1)m → R(M(W ))→ 0

It follows from this that hd1(R(M(W ))) ≤ n + 1, and that R(M(W )) is generated in

degrees n and n+ 1.

Lemma 2.23 tells us that the submodule of R(M(W )) generated by R(M(W ))n ∼= W

is precisely M(W ). That is, there is a split exact sequence

0→M(W )→ R(M(W ))→ Q→ 0

for some module Q generated in degree exactly n + 1. Applying the H0 functor to this

sequence, we find that

H1(R(M(W )))→ H1(Q)→ H0(M(W ))

from which it follows that hd1(Q) ≤ n + 1. The argument of [LY, Corollary 3.4] now

implies that Q is actually a basic filtered module Q ∼= M(U) for some kGn+1-module U .

Now we complete the proof by showing that U ∼= Ind
Gn+1

Gn
W . By considering the
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value of R(M(W )) on the object n+ 1, we have

R((M(W ))n+1 = HomkC (Σ(M(n+ 1)),M(W ))

∼= HomkC (M(n+ 1)⊕M(n)(n+1)|G|,M(W ))

∼= M(W )n+1 ⊕M(W )(n+1)|G|
n

The endomorphism group Gn+1 acts transitively on the (n+1)|G| copies of M(W )n ∼= W .

Therefore, as a left kGn+1-module, R(W )n+1 is a direct sum of Wn+1 and Ind
Gn+1

Gn
Wn.

Note that these two direct summands are actually isomorphic since

M(W )n+1
∼= k[HomC (n, n+ 1)]⊗kGn W ∼= kGn+1 ⊗kGn W,

where k[HomC (n, n + 1)] as a (kGn+1, kGn)-bimodule is isomorphic to kGn+1. But we

have

R(W )n+1
∼= Wn+1 ⊕ U.

Since we already know that R(W )n+1 is a direct sum of two copies of the induced module,

it forces U to be isomorphic to the induced module.

2.7.1 The induction functor and the proof of Theorem A

We now spend some time considering the left adjoint of the shift functor. For our

purposes, its most important property will be related to the Eckmann-Shapiro Lemma

(Proposition 2.9).

Unlike the coinduction functor, we will see that the shift functor’s left adjoint cannot

be easily expressed in the language of C -modules. We will therefore present this functor
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entirely in the language of kC -modules.

Definition 2.25. Let V be a kC -module. Set C+ to be the full subcategory of C whose

objects are the sets [n] with n > 0, and let kC+ be the corresponding subalgebra of kC .

Then we define the Induction functor L as the kC -module,

L(V ) := kC+ ⊗kC V

where here we consider kC+ as a kC -bimodule via normal multiplication on the left, and

via the self-embedding on the right.

Proposition 2.8. The induction functor is left adjoint to the shift functor.

Proof

Let kC+ be as in the definition of the induction functor. We will prove that there is a

natural isomorphism of functors

ΣV ∼= HomkC (kC+, V ).

Keeping this in mind, the proposition is just the usual Tensor-Hom adjunction.

For this proof only, set A := HomkC (kC+, V ). Then A is a kC -module. Recall that

we use en to denote the morphism of C defined by the pair of the identity on [n] and

the trivial map into G. For any φ ∈ An, define

ψV (φ) = φ(en+1) ∈ Vn+1.
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We claim that ψ : A → ΣV is a morphism of kC -modules. Indeed, if (f, g) : [n] → [m]

is any morphism in C , and φ ∈ An, then

ψV ((f, g)*φ) = ((f, g)*φ)(em+1) = φ(em+1◦(f+, g+)) = (f+, g+)*φ(en+1) = (f, g)*(ψV (φ)).

The fact that the collection of ψV , with V varying, define a natural transformation of

functors is easily checked.

Remark 2.26. The induction and coinduction functors of C -modules are not isomor-

phic. Indeed, we have already seen that R(M(n)) ∼= M(n) ⊕M(n + 1), while Theorem

A tells us that L(M(n)) ∼= M(n+ 1).

We have already seen that the shift functor preserves projective C -modules (Propo-

sition 2.6). For the purposes of the Eckmann-Shapiro lemma, however, we will need to

know whether it preserves right projective modules. This is indeed the case.

Lemma 2.27. Let P be a projective right kC -module. Then ΣP is also a projective

right kC -module.

Proof

It suffices to show that the projective modules of the form ei ·kC remain projective once

shifted. In fact, it is the case that

Σ(en · kC ) ∼= (en−1 · kC )n.
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This is easily checked by explicitly computing the action.

Putting everything in the previous two sections together, we can finally prove The-

orem A.

The proof of Theorem A

We have already seen that Σ and R are exact. The fact that L is also exact follows

immediately from its definition. Indeed, it is a simple computation to show that

L(V )n+1 = Ind
Gn+1

Gn
Vn

for any n ≥ 0. Because kernels and cokernels are computed pointwise, exactness of L

follows from the exactness of the classical induction functor.

Proposition 2.6, and Theorem 2.24 imply the first two claims of the second statement.

Let W be a kGn-module. Then by Proposition 2.8, if V is a C -module

HomkC (L(M(W )), V ) ∼= HomkC (M(W ),ΣV ) ∼= HomkGn(W,Res
Gn+1

Gn
Vn+1) ∼= HomkGn+1(Ind

Gn+1

Gn
W,Vn+1).

Proposition 2.3 implies that L(M(W )) ∼= M(Ind
Gn+1

Gn
W ), as desired.

The final part of the theorem is just the Eckmann-Shapiro lemma from representation

theory, and is proven in the same way in this context.

For ease of reference later, we take a moment to state the Eckmann-Shapiro lemma.
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Proposition 2.9 (The Eckmann-Shapiro lemma). Let V and V ′ be finitely generated

C -modules. Then there are isomorphisms for all i > 0

ExtikC (L(V ), V ′) ∼= ExtikC (V,ΣV ′); (2.1)

ExtikC (ΣV, V ′) ∼= ExtikC (V,R(V ′)). (2.2)

2.10 Homological computations

2.10.1 Depth and the proof of Theorem B

In this section we will review the concept of depth first introduced in [R]. Following

this, we will consider an invariant we call classical depth, and prove that it is equivalent

to the depth of [R].

Definition 2.28. Let V be a C -module, and let τV : V → ΣV be the map induced by

the pairs (fn,1), where fn : [n] → [n + 1] is the standard inclusion and the trivial map

into G. We define the derivative functor to be the cokernel

DV := coker(τV ).

We write Da for the a-th iterate of D.

Note that the derivative functor is right exact, and so we write HDa

i to denote the

i-th derived functor of Da. By [CE, Lemma 3.6], V is torsion free if and only if τV is
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injective.

Remark 2.29. It follows from the proof of Proposition 2.6 that τM(W ) : M(W ) →

ΣM(W ) is a split injection. Moreover, the compliment of M(W ) in ΣM(W ) is generated

in strictly smaller degrees. Therefore, if V is any finitely generated C -module with

gd(V ) = d, then gd(DV ) ≤ d− 1. In fact, it was shown by the first author and Yu that

gd(DV ) = d − 1, so long as DV 6= 0 [LY, Proposition 2.4]. Using the same proofs, we

can actually say something a bit more general. For any positive integer b, Let τb be the

map

τb : V → ΣbV

induced by the pair (f bn : 1), where f bn : [n]→ [n+ b] is the standard inclusion, and 1 is

the trivial map into G. Then gd(coker(τb)) < gd(V ).

The derivative functor was introduced as a means of bounding the regularity of

FI-modules by Church and Ellenberg in [CE, Theorem A]. In that paper, Church and

Ellenberg use the derivative as a convenient homological tool for approximating the ho-

mological degrees. Following this, the second author discovered that the derivative func-

tor held much higher homological significance than was previously observed. Namely, it

was shown that the derivative was critical in developing a theory of depth for C -modules

[R]. At the same time as this, the first author and Yu also used the derivative in proving

many homological facts about C -modules [LY].
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Definition 2.30. Let V be a finitely generated C -module. We define the depth of V to

be the quantity,

depth(V ) := inf{a | HDa+1

1 (V ) 6= 0} ∈ N ∪ {∞},

where we use the convention that the infimum of the empty set is ∞.

Theorem 2.31 ([R], Theorem 4.4). Let V be a finitely generated C -module. Then,

1. depth(V ) = 0 if and only if V is not torsion free;

2. depth(V ) =∞ if and only if V is ]-filtered;

3. depth(V ) = a > 0 is finite if and only if there is an exact sequence

0→ V → Xa−1 → . . .→ X0 → V ′ → 0

where Xi is ]-filtered for each i, gd(Xi) > gd(Xi−1), and V ′ is not torsion free.

While the above theorem justifies the use of the terminology depth, it might still be

unclear at this point where this definition of depth comes from. In the remainder of this

section, we will use the classical nature of the language of kC -modules to provide an

alternative definition of depth, which we prove is equivalent to the above.

Definition 2.32. Let V be a finitely generated kC -module, and recall that m ⊆ kC is

the ideal generated by all non-permutations. Then we define the classical depth of V

to be the quantity

depthclass(V ) := inf{i | ExtiC -Mod(kC /m, V ) 6= 0}
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where we use the convention that the infimum of the empty set is ∞.

Remark 2.33. As a slight technical point, one should note that the category of finitely

generated C -modules may not have sufficiently many injectives if k is not a field of

characteristic 0 (see Theorem 2.46). This is of course not problematic here, as we may

compute these Ext-groups through a projective resolution of kC /m. Later, when we dis-

cuss cohomology, this will become more of an issue.

In the paper [R, Theorem 4.17], the second author shows that depthclass(V ) =

depth(V ) whenever k is a field of characteristic 0. This proof, however, is highly de-

pendent on the properties of C -modules over a field of characteristic 0. The proof we

provide in this section will work over any Noetherian ring.

We will proceed with a collection of reductions, which end with us only needing to

show a particular collection of Ext-groups vanish. We begin with the following lemma.

Lemma 2.34. Depth and classical depth are equivalent if and only if ]-filtered objects

have infinite classical depth.

Proof

This follows from the techniques used in the proof of [R, Theorem 4.17].
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Our second major reduction is to note that

ExtikC (kC /m, V ) ∼=
∏
n

ExtikC (kGn, V ).

It therefore suffices to show that ExtikC (kGs, V ) = 0 for all s, whenever V is ]-filtered.

Moreover, a simple homological argument shows that it actually suffices to assume that

V = M(W ) for some kGn-module W .

Lemma 2.35. The modules ExtikC (kGs, V ) are zero for all s, i > 0 and all basic filtered

modules V if and only if the modules ExtikC (kG0, V ) are zero for all i > 0 and all basic

filtered modules V .

Proof

The forward direction is clear. Assume that ExtikC (kG0, V ) = 0 for all i > 0 and all

basic filtered modules V .

A straight forward computation verifies that L(kGs) ∼= kGs+1 for all s ≥ 0. There-

fore, if V is any basic filtered module, and i, s > 0

ExtikC (kGs, V ) ∼= ExtikC (Ls(kG0), V ) ∼= ExtikC (kG0,ΣsV ) = 0.

Note that the second isomorphism follows from the Eckmann-Shapiro lemma and our

assumption as well as Proposition 2.6.

We have now reduced the problem enough to be solvable.
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The proof of Theorem B

By the previous lemmas it suffices to prove that ExtikC (kG0, V ) = 0, where V = M(W )

for some kGn-module W .

We first note for any C -module V ′, elements of HomkC (kG0, V
′) can be thought of

as elements of V ′0 which are in the kernel of all transition maps out of V ′0 . Since basic

filtered modules are torsion free, it follows that our desired result holds for i = 0. Next,

consider the exact sequence

0→ J0 →M(0)→ kG0 → 0.

If V is generated in degree > 2, then it is clear that HomkC (J0, V ) = 0. If V is generated

in degree 1, then an element of HomkC (J0, V ) is a choice of an element of V1 whose image

under all transition maps is invariant with respect to the Gm-action. It is easily seen

that no such elements exist in our case, and so once again HomkC (J0, V ) = 0. Finally,

if V is generated in degree 0, then HomkC (M(0), V ) ∼= HomkC (J0, V ). In all cases, we

conclude Ext1
kC (kG0, V ) = 0.

Using Theorem 2.24, we may write RV ∼= V ⊕ V ′, where V ′ = M(U) for some

kGn+1-module U . In particular, it must be the case that V ′ is generated in degree > 1,

and therefore HomkC (J0,W ) = 0 by the previous paragraph’s discussion. Applying the

functor HomkC (J0, •) one gets

Ext1
kC (J0, V ) ⊆ Ext1

kC (J0, R(V )).

But the Eckmann-Shapiro lemma implies

Ext1
kC (J0, R(V )) ∼= Ext1

kC (ΣJ0, V ) ∼= Ext1
kC (M(0), V ) = 0.
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This forces

0 = Ext1
kC (J0, V ) ∼= Ext2

kC (kG0, V ).

Now suppose that the conclusion holds for some i > 2, and consider Exti+1
kC (kG0, V ).

Then

Exti+1
kC (kG0, V ) ∼= ExtikC (J0, V ).

Applying HomkC (J0, •) to the exact sequence

0→ V → RV → V ′ → 0

one gets

Exti−1
kC (J0, V

′)→ ExtikC (J0, V )→ ExtikC (J0, RV ).

The first term is 0 by induction hypothesis, and the last term is 0 as well by using the

Eckmann-Shapiro lemma, as we did previously. This proves the claim.

As an interesting consequence of our theorem, we obtain the following vanishing the-

orem for Ext-modules.

Proposition 2.11. Let V be a finitely generated C -module. Then for all i > 0, and for

all n > N(V ),

ExtikC (kGn, V ) = 0.

Proof

Take N to be the Nagpal number of V . Then for all n > N ,

ExtikC (kGn, V ) ∼= ExtikC (Ln(kG0), V ) ∼= ExtikC (kG0,ΣnV ) = 0
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since ΣnV is ]-filtered. This completes the proof.

2.11.1 Homological Orthogonal Relations

In this section, we more closely examine the relationship between torsion and ]-filtered

modules. In particular, over the course of this section we will be proving Theorems C

and D.

Definition 2.36. Let V be a C -module. We say that an element v ∈ Vn is torsion if

it is in the kernel of some transition map out of n. In the language of kC -modules, we

say that an element v ∈ Vn is torsion, if there is some map (f, g) : [n] → [m] such that

(f, g) · v = 0. We say that V is torsion if its every element is torsion.

If V is a C -module, then there is always an exact sequence

0→ VT → V → VF → 0

where VT is a torsion module called the torsion part of V , and VF is a torsion free

module called the torsion free part of V .

While the following lemma might seem tautological, and indeed we will find it not

difficult to prove, it is not immediate from the definitions thus far provided. Recall that

we say that V is torsion free whenever τV is injective.
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Lemma 2.37. A module V is torsion free if and only if it contains no torsion elements.

Proof

The key observation of this proof is that an element v ∈ Vn is in the kernel of some

(f, g)* : Vn → Vm if and only if it is in the kernel of every transition map from n to

m. Indeed, this follows from the fact that the left action of Gm on HomC ([n], [m]) is

transitive. Moreover, we can produce, from v, a torsion element in Vm−1 by viewing (f, g)

as a composition of a map from [n] to [m− 1] and a map from [m− 1] to [m]. It follows

immediately from this that V has a torsion element if and only if it has an element which

is in the kernel of a transition map of the form (fn,1), where fn : [n] → [n + 1] is the

standard inclusion and 1 is the trivial map into G. We recall that the map τ : V → ΣV

is induced by these transition maps, and therefore the proposition follows.

Lemma 2.38. Let V be a finitely generated torsion module. Then td(V ) <∞.

Proof

By assumption, there is a finite set {vi} ⊆ tVn which generates V . By the observations

in the proof of the previous lemma, for each i we may find some ni such that vi is in

the kernel of every transition map into Vn with n > ni. Because there are finitely many

generators, we may find some N such that all generators are in the kernel of transition

maps into Vn whenever n > N . It follows that td(V ) ≤ N .
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We begin with the following theorem, which expands upon some of the work in pre-

vious sections.

Theorem 2.39. Let V be a finitely generated C -module. Then

1. T is a torsion module if and only if ExtikC (T, V ) = 0 for all basic filtered modules

V and all i > 0.

2. V is a ]-filtered module if and only if ExtikC (kGs, V ) = 0 for all s, i > 0

3. V is an injective module if and only if Ext1
kC (W,V ) = 0 whenever W is a basic

filtered module or W is a finitely generated torsion module.

Proof

Let T be a finitely generated torsion module. Note that td(T ) < ∞ by Lemma 2.38.

Let N = td(T ), and let T ′ be the submodule of T generated by TN . Then we have an

exact sequence

0→ T ′ → T → T ′′ → 0

where td(T ′′) < td(T ). Applying the functor HomkC (•, V ), we find that the proposition

follows if we can show ExtikC (T ′, V ) = ExtikC (T ′′, V ) = 0. By induction on the torsion

degree, we only need to show that ExtikC (T ′, V ) = 0.

Because T was finitely generated, it follows that T ′ is finitely generated by the

Noetherian property. Therefore there is an exact sequence

0→ Ω→ kGm
N → T ′ → 0
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for some module Ω which is also supported exclusively in degree N . Applying the functor

HomkC (•, V ), and using the facts that V is torsion free and Theorem B, we find that

0 = HomkC (Ω, V )→ Ext1
kC (T ′, V )→ 0 = Ext1

kC (kGm
N , V ).

Therefore Ext1
kC (T ′, V ) = 0. Looking further along the above exact sequence, we also

conclude that Exti+1
kC (T ′, V ) ∼= ExtikC (Ω, V ) for all i > 1. Using the fact that T ′ was

arbitrary, and that Ext1
kC (T ′, V ) = 0, the only if direction of the first statement now

follows by induction.

Now we prove the if direction of the first statement; that is, ExtikC (T, V ) = 0 for all

]-filtered modules V implies that T is torsion. But this is clear. Indeed, if T is not tor-

sion, its torsionless part TF 6= 0. Then ΣNTF is a nonzero ]-filtered module for N � 0,

and we get a nonzero map T → TF → ΣNTF where the first component is surjective

and the second component is injective.

The second statement is simply Theorem B, along with Theorem 2.31.

One direction of the third is trivial. To prove the other direction, Theorem 2.2

implies that for every finitely generated kC -module W there is a finite complex of ]-

filtered modules

0→ W → F 0 → F 1 → . . .→ F n → 0.

Theorem 2.2 also tells us that all homologies in this complex are finitely generated
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torsion modules. This complex gives rise to a few short exact sequences

0→ WT → W → WF → 0,

0→ WF → F 0 → W (1) → 0,

. . . ,

0→ W
(n)
F → F n → W (n+1) → 0,

where W (n+1) is torsion. By assumption, one recursively deduces that ExtikC (W (s), V ) =

0 for all i > 0 and 0 6 s 6 n+ 1, where W (0) = W . Therefore, V is injective since W is

arbitrarily chosen.

If we only consider extension groups with positive degrees, we have:

Theorem 2.40. Let V be a finitely generated C -module. Then

1. ExtikC (V, F ) = 0 for all basic filtered modules F and all i > 1 if and only if ΣNV

is a projective module for N � 0.

2. ExtikC (T, V ) = 0 for i > 1 and all finitely generated torsion modules T if and only

if V is a direct sum of an injective torsion module and a ]-filtered module.

Proof

If ΣNV is a projective module, then one has

0 = ExtikC (ΣNV, F ) ∼= ExtikC (V,RN(F )).
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But F is isomorphic to a direct summand of RN(F ) by Theorem 2.24. Consequently,

ExtikC (V, F ) = 0 for all i > 1 and all ]-filtered modules F .

Conversely, for N � 0, we know that Ṽ = ΣNV is a ]-filtered module. We show that

if it is not projective, then there exists a ]-filtered module F such that Ext1
kC (V, F ) 6= 0.

Suppose that gd(Ṽ ) = n > 0. Since Ṽ is filtered, there is a short exact sequence

0→ V ′ → Ṽ → V ′′ → 0

such that V ′ is the submodule generated by
⊕

i<n Vi and V ′′ is a basic filtered module

generated in n. Without loss of generality we can assume that V ′′ is not projective since

otherwise we can replace Ṽ by V ′ and repeat the above process.

Now consider V ′′ which is isomorphic to M(V ′′n ). Since V ′′ is not projective, V ′′n as

a kGn-module cannot be projective. Therefore, we can find a finitely generated kGn-

module Wn such that Ext1
kGn(V ′′n ,Wn) 6= 0. That is, there is a non-split exact sequence

0→ Wn → Un → V ′′n → 0.

Applying the exact functor M(•) we get a non-split exact sequence

0→M(Wn)→M(Un)→M(V ′′n )→ 0.

Consequently, Ext1
kC (M(V ′′n ), F ) 6= 0, where F = M(Wn). Moreover, applying the

functor HomkC (•, F ) to the exact sequence

0→ V ′ → Ṽ → V ′′ → 0

we deduce that Ext1
kC (Ṽ , F ) 6= 0 since Ext1

kC (V ′′, F ) 6= 0 and HomkC (V ′, F ) = 0 be-

cause gd(V ′) < gd(F ) = n. But Ṽ = ΣNV . Using the adjunction, one deduces that
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Ext1
kC (V,RN(F )) 6= 0. However, RN(F ) is still filtered. This contradicts the given con-

dition. In this way we prove the first statement.

Now we turn to the second statement. The if direction is clear. For the other

direction, we consider the short exact sequence

0→ VT → V → VF → 0.

Applying HomkC (T, •) and noting that HomkC (T, VF ) = 0, by the given assumption, we

deduce that Ext1
kC (T, VT ) = 0. But the finitely generated torsion module VT is injective

if and only if it viewed as a representation of the finite full subcategory with objects

n 6 td(VT ) is still injective (see [GL, Section 2,4]), if and only if Ext1
kC (T, VT ) = 0 for all

torsion modules. From this observation we conclude that VT is injective, so V ∼= VT⊕VF .

Moreover, from the long exact sequence we conclude that Ext1
kC (T, VF ) = 0 for all i > 0

and all torsion modules. By the second statement of the previous theorem, VF is a

]-filtered module.

These two results give another classification of finitely generated injective modules

when k is a field of characteristic 0.

Corollary 2.41. If k is a field of characteristic 0, then every finitely generated projec-

tive module is injective as well, and every finitely generated injective module is a direct

sum of a finite dimensional injective module and a projective module.

Proof
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Let P be a finitely generated projective module. We know that ExtikC (kGs, P ) = 0 for

all i, s > 0 since projective modules and ]-filtered modules coincide in this case. Indeed,

this follows from the fact that M(W ) is projective if and only if W is projective. For the

same reason, clearly one has ExtikC (F, P ) = 0 for all finitely generated ]-filtered modules

F . By (3) of Theorem 2.39, P is injective as well.

If I is an injective module, then by the second statement of the previous theorem, I

is a direct sum of a finite dimensional injective module and a ]-filtered module, which

in this case is projective.

This fact was proven for FI-modules by Sam and Snowden in [SS3, Theorem 4.2.5].

The result was generalized to C -modules by the Gan and the first author in [GL, The-

orem 1.7].

Remark 2.42. Note that the results in this section seem to indicate that C -modules are

a natural candidate for a tilting theory. We do not pursue this further here, although we

note that it is a possible area for further research.

2.11.2 Injective objects in the category C -mod

In this section we substantiate the claim made throughout the paper that the category

C -mod over a Noetherian ring will often times not have sufficiently many injective ob-

jects. In fact, we will prove the stronger statement that in many cases the category
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does not have any torsion free injective objects. In [GL, Theorem 1.7], as well as [SS3,

Theorem 4.3.1], It is shown that the category C -mod does have sufficiently many injec-

tive objects whenever k is a field of characteristic 0. The main theorem of this section

therefore represents a drastic departure from the cases which were previously studied.

We begin with some homological lemmas, which follow from the work of the previous

sections.

Lemma 2.43. Let V be a finitely generated, torsion free injective C -module. Then V

is ]-filtered.

Proof

This follows at once from Theorem D.

Lemma 2.44. The shift functor Σ preserves injective objects. The derivative functor

D preserves torsion free injective objects. That is to say, if V is a torsion free injective

object, then so is DV .

Proof

We have already seen that Σ is right adjoint to the exact induction functor. This implies

that it must preserve injective objects. On the other hand, if V is a torsion free injective

object, then there is a split exact sequence

0→ V → ΣV → DV → 0.



118

The fact that ΣV is injective implies that DV must be as well. Moreover, DV must be

torsion free, as the same is true of ΣV .

Lemma 2.45. If V is an injective C -module, then Vn is an injective kGn-module for

all n ≥ 0.

Proof

Let U ⊆ W be kGn-modules, and assume we have a map φ : U → Vn. Then Proposition

2.3 implies that there is a map φ : M(U)→ V such that φn = φ. Because V is injective,

this will lift to a map ψ : M(W )→ V . Looking at this map in degree n, we obtain the

desired lift of φ.

This is all we need to prove the main theorem of this section.

Theorem 2.46. Let k be a Noetherian ring, and assume that either k is a field of char-

acteristic p > 0, or that there are no non-trivial finitely generated injective k-modules.

Then the category C -mod does not admit any torsion free injective modules over k. In

particular, under either of the above hypotheses, the category C -mod does not have suf-

ficiently many injective objects.

Proof

Let V be a finitely generated, torsion free injective C -module. Then V is ]-filtered by

Lemma 2.43. Moreover, [LY, Proposition 2.4] tells us that gd(DV ) = gd(V ) − 1, so



119

long as gd(V ) 6= 0. In particular, Lemma 2.44 implies that if we apply the derivative

functor enough times to V , we will be left with a torsion free, injective module, which

is generated in degree 0. All such modules take the form M(W ), where W is a finitely

generated module over kG0
∼= k. Note that Lemma 2.45 implies that W is injective as

a k-module.

Now assume that k is a field of characteristic p > 0. Then M(0) will be a summand

of M(W ), and therefore will be injective as well. This is a contradiction of Lemma 2.45,

as M(0)n is the trivial module for all n, and the trivial module is not injective for n > p.

If, on the other hand, k satisfies the second of our two conditions, then we reach a

contradiction with the fact that W must be a finitely generated injective module.

Remark 2.47. The above theorem was proven by Changchang Xi and the first author

during the latter’s visit to Capital Normal University in December of 2015. It was in-

dependently proven by the second author a short time later. The first author would like

to thank Prof. Xi for hosting him during this visit, and both authors thank Prof. Xi for

kindly allowing us to include this result in the paper.

Remark 2.48. In [SS3, Theorem 2.5.1], Sam and Snowden prove that the category

C -modtor and the Serre quotient category C -mod /C -modtor are equivalent whenever k

is a field of characteristic 0. In [GL], it is shown that C -modtor has sufficiently many

injective objects whenever k is a field. The above theorem therefore seems to indicate



120

that the equivalence of Sam and Snowden will fail whenever k has positive characteristic.

2.12 Local Cohomology

In this final portion of the paper, we aim to develop a theory of local cohomology for

finitely generated C -modules. This problem was first considered by Sam and Snowden

in [SS3]. Their work only applies to the case where k is a field of characteristic 0. Much

of the difficulty of treating the theory over a general Noetherian ring is that it is unclear

whether the category C -mod has sufficiently many injective objects. Despite this fact,

we will discover that ]-filtered objects can play the role of injective modules in many

computations. The reader is encouraged to compare the theorems in this part of the

paper to theorems in the local cohomology of modules over a polynomial ring.

2.12.1 The Torsion Functor

Definition 2.49. We write C -Modtor for the category of torsion C -modules. We will

also used C -modtor to denote the category of finitely generated torsion modules. By

Lemma 2.38, C -modtor is equivalent to the category of finitely generated C -modules

with finite support.

The torsion functor H̃0
m : C -Mod→ C -Modtor is defined by setting H0

m(V ) to be

the maximal torsion submodule of V . We will use H0
m : C -mod → C -modtor to denote

the restriction of H̃0
m to C mod .
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Our goal for the remainder of this paper is to study the torsion functor and its de-

rived functors. Unfortunately, it is not yet clear that this functor actually has derived

functors. When k is a field of characteristic 0 Sam and Snowden [SS3, Theorem 4.3.1],

as well as Gan and the first author [GL, Theorem 1.7], have shown that the category

C -mod has sufficiently many injective objects. When k is not a field of characteristic 0

this is no longer the case. Luckily, we can easily show that the larger category C -Mod

does have sufficiently many injective objects.

Proposition 2.13. The category C -Mod has sufficiently many injective objects.

Proof

It suffices to show that C -Mod satisfies Grothendieck’s AB Criterion [G, Theorem

1.10.1]. This follows from the fact that it is a functor category from a small cate-

gory (C ) into a category which satisfies this criterion (k -Mod).

Because of this proposition, we know that we may at least make sense of the derived

functors of H̃0
m.

Definition 2.50. We write H̃ i
m to denote the i-th right derived functor of H̃0

m. We refer

to these as the local cohomology functors.
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Our goal for much of what follows will be to show that if V is a finitely generated C -

module, then the modules H̃ i
m(V ) are also finitely generated. Once this is accomplished,

we will spend the remainder of the paper showing how this result applies to invariants

such as the Nagpal number and regularity.

2.13.1 Some Acyclics

In this section we will classify two important families of finitely generated modules which

are acyclic with respect to local cohomology: ]-filtered objects and torsion modules. To

accomplish this, we will need to view the torsion functor from a slightly different per-

spective.

Definition 2.51. For each n > 1, and each r > 0, we define the C -module M(r)/mn as

the quotient of M(r) by the submodule generated by M(r)r+n. We also use H om(kC /mn, •) :

C -Mod→ C -Mod to denote the functor

H om(kC /mn, V ) :=
⊕
r

HomkC (M(r)/mn, V ).

We set E xti(kC /mn, •) : C -Mod→ C -Mod to be the i-th derived functor of H om(kC /mn, •).

Explicitly,

E xti(kC /mn, V ) :=
⊕
r

ExtikC (M(r)/mn, V )

Remark 2.52. We note that the C -modules HomkC (kC /mn, V ) and H om(kC /mn, V )

are not necessarily isomorphic. Indeed, morphisms which appear as elements in the lat-

ter module are necessarily supported in finitely many degrees, while this is not the case
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for the prior module.

Also note that if we restrict ourselves to working with finitely generated modules,

then H om(kC /mn, •) and HomkC (kC /mn, •) are isomorphic. This follows from Lemma

2.53, as well as the fact that the torsion parts of finitely generated modules are finitely

supported.

Lemma 2.53. Let r > 0 and n > 1 be integers, and let V be a C -module. Then

H om(kC /mn, V ) is naturally isomorphic to a submodule of V . Namely,

H om(kC /mn, V )r = those elements of Vr which are in the kernel of every transition map

(f, g) : [r]→ [s] with s− r > n.

Proof

By definition, H om(kC /mn, V )r = HomkC (M(r)/mn, V ). Proposition 2.3 implies that

any morphism M(r) → V is determined by the image of the identity in degree r. It

follows that a morphism M(r)/mn → V is determined by a choice of element in Vr,

with the added restriction that it is in the kernel of all transition maps into Vr+n. This

completes the proof.

Proposition 2.14. There is a natural isomorphism of functors,

H̃0
m(•) ∼= lim

→
H om(kC /mn, •).

More generally, there are natural isomorphisms

H̃ i
m(•) ∼= lim

→
E xti(kC /mn, •)
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for all i > 0.

Proof

The fact that lim→ E xti(kC /mn, •) are the derived functors of lim→H om(kC /mn, •)

follows from the fact that filtered colimits are exact, as well as the relevant definitions.

It therefore suffices to prove the first statement. This statement follows immediately

from the previous lemma.

This new perspective on the torsion functor will allow us to use what we already

proved about ]-filtered modules to conclude that they are acyclic with respect to local

cohomology.

Corollary 2.54. If V is a ]-filtered C -module, then H̃ i
m(V ) = 0 for all i.

Proof

Follows immediately from the previous proposition, as well as the first part of Theorem

2.39.

Proposition 2.14 also implies that finitely generated torsion modules are acyclic with

respect to H̃0
m. Indeed, while it is not the case that E xti(kC /mn, V ) = 0 for all n and

all torsion modules V , this is the case for n sufficiently large.
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Corollary 2.55. Let V be a finitely generated, torsion C -module. Then for all n � 0

and all i > 1, E xti(kC /mn, V ) = 0. In particular, H̃ i
m(V ) = 0 for i > 1.

Proof

Fix some integer r > 0 and i > 1. It suffices to show that ExtikC (M(r)/mn, V ) = 0 for

all n � 0. Write K(r,n) for the submodule of M(r) generated by M(r)n+r. Then by

definition there is an exact sequence,

0→ K(r,n) →M(r)→M(r)/mn → 0.

Using the fact that M(r) is projective, we conclude that for all i > 1 there is an exact

sequence

Exti−1
kC (K(r,n), V )→ ExtikC (M(r)/mn, V )→ 0.

Choose n such that r + n > td(V ). We may construct a projective resolution of K(r,n),

say F • → K(r,n) → 0, such that for all j, and all m < r + n, F j
m = 0. The mod-

ule Exti−1
kC (K(r,n), V ) is a subquotient of the module HomkC (F i−1, V ), which is zero by

Proposition 2.3 and our choice of n. This completes the proof of the first statement.

The second statement is an immediate consequence of Proposition 2.14.

2.14.1 Computing Local Cohomology

In this section we present a complex C•V , associated to a finitely generated C -module

V , whose cohomology modules are precisely the local cohomology modules of V . This

complex will allow us to show that the local cohomology modules of V are always finitely
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generated, and will allow us to relate local cohomology to the Nagpal number and the

regularity of V .

Let V be a finitely generated C -module. By Nagpal’s Theorem, we may find an

integer b−1 such that Σb−1V is ]-filtered. This yields an exact sequence

V
τb−1→ Σb−1V → Q(0) → 0

where τb−1 is the map defined in remark 3.3. Call F 0 := Σb−1V , and recall from Remark

3.3 that gd(Q(0)) < gd(V ). Proceeding inductively, we may find an integer bi for which

F i+1 := ΣbiQ
(i) is ]-filtered. We also have maps ∂i : F i → F i+1 defined by the compo-

sition of the quotient map F i → Q(i), and the map τbi+1
: Q(i) → F i+1. Putting it all

together, we obtain a complex

C•V : 0→ V → F 0 → . . .→ F n → 0

Note that this complex is necessarily bounded by our observation that the generating

degree of Q(i) is always strictly less than that of Q(i−1). If we define Q(−1) := V , then

one also notes that

H i(C•V ) = H̃0
m(Qi)

The complex C•V was first introduced by Nagpal in [N, Theorem A] and was rediscov-

ered by the first author and Yu in [LY, Theorem 1.7]. Following this, the first author

used this complex to prove bounds on the regularity and the Nagpal number of V , which

we saw in Theorem 2.2.

Remark 2.56. One may have noted that the construction of the complex C•V depended

on the integers bi. Indeed, the assignment V 7→ C•V is non-functoral in the category
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of chain complexes of C -modules. However, this assignment is functoral in the derived

category. That is to say, choosing different values for the integers bi yields a complex

which is quasi-isomorphic to the original complex.

One thing that is important for the present work, is that this complex actually com-

putes the local cohomology modules of V .

Proof of Theorem E

Recall the modules Q(i) defined during the construction of C•V . We have already noted

that H i(C•V ) ∼= H̃0
m(Q(i)). We will prove that

H̃0
m(Q(i)) ∼= H̃ i+1

m (V ).

The claim is clear when i = −1. Otherwise, we have an exact sequence

0→ Q
(i)
T → Q(i) → Q

(i)
F → 0

where Q
(i)
T is the torsion part of Q(i) and Q

(i)
F is the torsion free part. Corollary 2.55

implies H̃ i
m(Q

(i)
F ) ∼= H̃ i

m(Q(i)) for i > 1. Next, we look at the exact sequence

0→ Q
(i)
F → F i+1 → Q(i+1) → 0

and apply Corollary 2.54 to conclude

H̃0
m(Q(i+1)) ∼= H̃1

m(Q
(i)
F ) ∼= H̃1

m(Q(i)).

We reach our desired conclusion by induction.
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The bounds given in the theorem follow immediately from Theorem 2.2.

We are now free for the remainder of the paper to consider all local cohomology mod-

ules as existing inside the category C -modtor. In particular, it is no longer necessarily

to distinguish H0
m from H̃0

m.

Definition 2.57. We write H i
m : C -mod→ C -modtor to denote the i-th derived functor

of H0
m.

2.14.2 Applications of Theorem E

We spend this section exploring the plethora of applications of Theorem E. In particular,

we will prove Theorem F, along with many other results. To begin, we obtain a new

homological characterization of ]-filtered modules.

Proposition 2.15. Let V be a finitely generated C -module. Then H i
m(V ) = 0 for all

i > 0 if and only if V is ]-filtered. In particular, V is ]-filtered if and only if C•V is exact.

Proof

The backwards direction follows from Corollary 2.54. If H i
m(V ) = 0 for all i, then C•V

is exact in all degrees by Theorem E. This implies V is ]-filtered by Theorem 3.9.
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This will allow us to classify all modules which are acyclic with respect to the torsion

functor.

Proposition 2.16. Let V be a finitely generated C -module. Then V is acyclic with

respect to the torsion functor if and only if its torsion free part VF is ]-filtered.

Proof

The exact sequence

0→ VT → V → VF → 0

implies that H i
m(V ) ∼= H i

m(VF ) for all i > 1 by Corollary 2.55. The previous proposition

now implies our result.

The fact that the complex C•V is bounded from above implies that H i
m(V ) = 0 for

all i� 0. We may therefore make sense of the following definition.

Definition 2.58. Let V be a finitely generated C -module which is not ]-filtered. Then

we define its cohomological dimension to be the quantity

cd(V ) := sup{i | H i
m(V ) 6= 0} ∈ N.

Proposition 2.17. If V is a finitely generated C -module which is not ]-filtered, Then

any non-trivial local cohomology modules H i
m(V ) must have

depth(V ) ≤ i ≤ cd(V ).
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Moreover, H i
m(V ) 6= 0 at each of the two extremes.

Proof

We only need to show that H i
m(V ) = 0 for all i < depth(V ), and that H i

m(V ) 6= 0 for

i = depth(V ). If δ is the smallest value for which H i
m(V ) 6= 0, then Theorem E implies

that there is an exact sequence,

0→ V → F 0 → . . .→ F δ−1 → V ′ → 0

where F i is ]-filtered, and V ′ has torsion. This implies that depth(V ) = δ by Theorem

2.31.

Corollary 2.59. Let V be a finitely generated C -module which is not ]-filtered. Then

cd(V ) ≤ gd(V ).

We next turn our attention to the relationship between local cohomology and the

Nagpal number and regularity. We begin with the following observation.

Theorem 2.60. Let V be a finitely generated C -module which is not ]-filtered. Then

N(V ) = max{td(H i
m(V )) | i > 0}+ 1.

In particular,

N(V ) ≤ max{td(V ), 2 gd(V )− 2}+ 1.
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Proof

Proposition 2.15 tells us that V is ]-filtered if and only if C•V is exact. Using the fact

that the shift functor is exact, and the construction of the complex C•V , it follows that

ΣbV is filtered whenever

b > max{td(H i(C•V )) | i > −1} = max{td(H i
m(V )) | i > 0}.

The desired bound follows immediately from Theorem 2.2.

Note that this bound on the Nagpal number is not new. Indeed, it was proven by

the first author in [L2, Theorem 1.3]. A similar bound was found by the second author

in [R, Theorem D].

Theorem 2.61. Let V be a finitely generated C -module. Then,

reg(V ) 6 max{td(H i
m(V )) + i}.

In particular,

reg(V ) 6 max{2 gd(V )− 1, td(V )}.

Proof

We proceed by induction on the generating degree of V . The bound is vacuously true if

V = 0. Assume that V 6= 0, and note we have an exact sequence

0→ VT → V → VF → 0.

Applying Corollary 2.55 we find that H i
m(V ) ∼= H i

m(VF ) for all i > 1. Because VF is

torsion free, Remark 3.3 implies we have an exact sequence

0→ VF → F → C → 0
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where F is ]-filtered, and C is generated in strictly smaller degree. Applying the homol-

ogy functor, and using Theorem 3.9 we find by induction that for all i > 1

td(Hi(VF ))−i = td(Hi+1(C))−(i+1)+1 ≤ reg(C)+1 ≤ max{td(Hs
m(C))+s | s > 0}+1.

If we instead apply the torsion functor to this exact sequence, we find that Hs
m(C) ∼=

Hs+1
m (V ) for all s > 0. Therefore, recalling that regularity only requires we bound the

higher homologies (Definition 2.13),

reg(VF ) ≤ max{td(H i
m(V )) + i | i > 0}.

On the other hand, VT is a torsion module and therefore [L, Theorem 1.5] [R, Corollary

3.11] imply that reg(VT ) ≤ td(VT ) = td(V ). Putting everything together we obtain our

desired bound.

The second bound follows immediately from the first and Theorem 2.2.

As with the bounds on the Nagpal number, the second bound in the above theorem

is not new. The first author had discovered this bound earlier in [L2, Theorem 1.3].

2.17.1 A Conjecture and its Consequences

In this section we state our primary conjecture, which firmly establishes the relationship

between local cohomology and regularity. Following this, we take time to illustrate some

interesting consequences of the conjecture.
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Conjecture 2.62. Let V be a finitely generated C -module which is not ]-filtered. Then,

reg(V ) = max{td(H i
m(V )) + i}.

We have already seen that max{td(H i
m(V )) + i} is an upper bound on the regularity

of V (Theorem 2.61). The opposite inequality seems to be much harder to prove. The

reader familiar with classical local cohomology theory may recognize a similar statement

from local cohomology of modules over a polynomial ring [E2, Theorem 4.3]. What is

interesting is that the proofs that reg(V ) > max{td(H i
m(V )) + i} in that context often

proceed by induction on the projective dimension. Theorem 3.9 suggests that such an

approach will not work.

We now spend the remainder of this section detailing some corollaries to the above.

Corollary 2.63. Let V be a finitely generated torsion module, and assume Conjecture

2.62. Then

reg(V ) = td(V )

Proof

This follows immediately from Conjecture 2.62 and Corollary 2.55.

What is perhaps more interesting, is what the conjecture implies about the relation-

ship between regularity and the shift functor. To see this, first note that for all i > 0,

H i
m(ΣV ) ∼= ΣH i

m(V ). Indeed, this follows from Theorem E, as well as how the complex

C•V was constructed. We therefore conclude the following.
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Corollary 2.64. Let V be a finitely generated C -module such that ΣV is not ]-filtered,

and assume Conjecture 2.62. Then

reg(ΣV ) = reg(V )− 1

Proof

Assuming the conjecture we have,

reg(ΣV ) = max{td(H i
m(ΣV ))+i} = max{td(ΣH i

m(V ))+i} = max{td(H i
m(V ))+i}−1 = reg(V )−1.
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Chapter 3

On the degree-wise coherence of

FIG-modules

3.1 Introduction

Let FI be the category whose objects are the sets [n] := {1, . . . , n}, and whose mor-

phisms are injections. An FI-module over a commutative ring k is a functor from the

category FI to the category of k-modules. FI-modules were first introduced by Church,

Ellenberg, and Farb as a way to study stability phenomena common throughout math-

ematics [CEF]. Following this work, representations of various other categories were

studied by a large collection of authors. See [W], [SS], [SS2], [PS], for examples of this

work. In this paper, we will be concerned with modules over a category which naturally

generalizes FI, FIG.

Let G be a group. Then the category FIG is that whose objects are the sets [n],

and whose morphisms (f, g) : [n] → [m] are pairs of an injection f with a map of sets

g : [n]→ G. If (f, g) and (f ′, g′) are two composable morphisms in FIG, then we define

(f, g) ◦ (f ′, g′) := (f ◦ f ′, h), h(x) = g′(x) · g(f ′(x))

If G = 1 is the trivial group, then it is easily seen that FIG is equivalent to the category
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FI. If, instead, we assume that G = Z/2Z, then FIG is equivalent to the category FIBC

first introduced by Wilson in [W]. An FIG-module over a commutative ring k is defined

in the same way as it was for FI-modules. FIG-modules were first introduced by Sam

and Snowden in [SS2].

For much of this paper, we will be concerned with the category FIG -Mod of FIG-

modules. It is immediate that FIG -Mod is an abelian category with the usual abelian

operations being computed on points. Because of its close connections with the cate-

gory k -Mod, one may define many properties of FIG-modules which are analogous to

properties of k-modules. One such property, which is most important to us, is finite gen-

eration. We say that an FIG-module V is finitely generated if there exists a finite set

{vi} ⊆ tn≥0V ([n]), which no proper submodule contains. Perhaps the most significant

fact about finitely generated FIG-modules is that they are often times Noetherian.

Theorem 3.1 (Corollary 1.2.2 [SS2]). Let G be a polycyclic-by-finite group, and let k

be a Noetherian ring. Then submodules of finitely generated FIG-modules are themselves

finitely generated.

Note that another way of thinking of the above theorem is that the category FIG -mod

of finitely generated FIG-modules is abelian under sufficient restrictions on k and G. The

hypotheses of the above theorem are currently the most general known. It is conjec-

tured that G being polycyclic-by-finite is also necessary for the Noetherian property
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to hold [SS2]. One of the main goals of this paper is to argue that many theoreti-

cal constructions in the theory of FIG-modules can actually be done independent of the

Noetherian property. Instead, we argue that degree-wise coherence is often sufficient.

We say that an FIG-module is degree-wise coherent if there is a set (not necessarily

finite) {vi} ⊆ tn≥0V ([n]) such that:

1. no proper submodule contains {vi}, and there is some N � 0 such that {vi} ⊆

tNn=0V ([n]). In this case we say that V is generated in finite degree;

2. the module of relations between the elements {vi} is itself generated in finite de-

gree (see Definition 3.5).

One can think about the above definition in the following way. Instead of requiring

that our module have finitely many generators, we only require that it admits a gen-

erating set whose elements appear in at most finitely many degrees. In addition, we

also require that these generators have relations which are bounded in a similar sense.

The significance of this condition traces its origins to the paper [CE], although they

do not use the same terminology. Following this work, degree-wise coherent modules

were studied more deeply by the author in [R]. The first goal of this paper will be to

understand the connection between being degree-wise coherent, and having finite torsion.

We say an element v ∈ V ([n]) is torsion if there is some morphisms (f, g) : [n]→ [m]

in FIG, such that V (f, g)(v) = 0. The torsion degree of an FIG-module is the quantity,

td(V ) := sup{n | Vn contains a torsion element.}
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It was first observed by Church and Ellenberg that degree-wise coherent FI-modules

will necessarily have finite torsion degree [CE, Theorem D]. It was then later shown by

the author that the same statement was true for FIG-modules [R, Theorem 3.19]. More

recently, Li has conjectured that the converse of this statement was true as well [L3]. In

this paper, we will prove this conjecture in the affirmative.

Theorem A. Let G be a group, and let k be a commutative ring. If V is an FIG-

module which is generated in finite degree, then V is degree-wise coherent if and only if

td(V ) <∞.

As a first application of the above technical theorem, we will be able to show that

degree-wise coherent modules form an abelian category.

Theorem B. Let G be a group, and k a commutative ring. Then the category FIG -Modcoh

of degree-wise coherent modules is abelian.

This theorem was recently proven independently by Li in his note [L3, Proposition

3.4]. One immediately sees that the above theorem is independent of the ring k, as

well as the group G. As stated previously, working in the category FIG -Modcoh often

has benefits which the category FIG -mod does not permit. Perhaps the most explicit

of these benefits is the existence of infinite shifts, which we discuss below. Of course,

one should note that there are also benefits which are exclusive to finitely generated
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modules. The most obvious of these is the ability to do explicit computations.

Much of the remainder of the paper is dedicated to showing how well known theorems

about finitely generated FIG-modules will continue to hold in the category FIG -Modcoh.

In particular, we focus on generalizing the local cohomology theory of FIG-modules, in-

troduced by Li and the author in [LR].

If V is an FIG-module, then the 0-th local cohomology functor is defined by

H0
m(V ) := the maximal torsion submodule of V .

H0
m is a left exact functor, and we denote its derived functors by H i

m. Section 3.11.1

is largely dedicated to arguing that the theorems of [LR] will continue to hold in

FIG -Modcoh. One of the main results of [LR], is that whenever V is finitely gener-

ated there is a complex C •V which computes H i
m (see Definition 3.18). One problem

with this complex, is that it’s not functoral in V . Allowing ourselves to work in the

category FIG -Modcoh, we can fix this issue using the infinite shift.

Let ι : FIG → FIG be the functor defined by the assignments,

ι([n]) = [n+ 1], ι((f, g) : [n]→ [m]) = (f+, g+)

where

f+(x) =


f(x) if x < n+ 1

m+ 1 otherwise

, g+(x) =


g(x) if x < n+ 1

1 otherwise.
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The shift functor Σ is defined to be

Σ(V ) := V ◦ ι.

We write Σb to denote the b-th iterate of Σ. In Section 3.2.3, it is show that there is a

commutative diagram for all b ≥ 1,

V −−−→ Σb+1∥∥∥ x
V −−−→ Σb

The infinite shift Σ∞ is the directed limit of the right column of this diagram. That

is,

Σ∞V := lim
→

ΣbV.

The collection of maps V → Σb in the above diagram induce a morphism V → Σ∞V .

The infinite derivative is defined to be the cokernel of this map

D∞V := coker(V → Σ∞V ).

One should observe that is rarely ever the case that the infinite derivative or the infinite

shift are finitely generated. We will see, however, that if V is degree-wise coherent, then

the same is true of both Σ∞V and D∞V . It is shown in Section 3.9.1 that the infinite

derivative functor is right exact. We use H
Db∞
i to denote the i-th left derived functor

of the b-th iterate of D∞. The main result of the final section of the paper is the following.

Theorem C. Let V be a degree-wise coherent FIG-module of dimension d < ∞ (see

Definition 3.34). Then there are isomorphisms for all i ≥ 1,

HDd+1
∞

i (V ) ∼= Hd+1−i
m (V ).
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One can think of the above theorem as a kind of local duality for FIG-modules, in

so far as it describes the equivalence of local cohomology with the derived functors of

some right exact functor. We have already discussed the fact that the functor D∞ does

not exist within the category of finitely generated modules, and therefore the above

represents a means of uniformly describing local cohomology modules in a way which is

inaccessible by simply working with finitely generated modules.
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3.2 Preliminaries

3.2.1 Elementary Definitions

Let G be a group, and let k be a commutative ring.
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Definition 3.2. The category FIG is that whose objects are the finite sets [n] := {1, . . . , n},

and whose morphisms are pairs (f, g) : [n]→ [m], where f : [n]→ [m] is an injection of

sets and g : [n]→ G is a map of sets. For two composable morphisms (f, g), (h, g′), we

define

(f, g) ◦ (h, g′) := (f ◦ h, g′′)

where g′′(x) = g′(x) · g(h(x)). For each non-negative integer n, we denote the group of

endomorphisms EndFIG([n]) = Sn oG by Gn.

An FIG-module over k is a covariant functor V : FIG → k -Mod. We use Vn to

denote the k-module V ([n]). For any FIG-morphism (f, g) : [n] → [m] we write (f, g)*

for the map V (f, g). We call these maps the induced maps of V , and in the case where

n < m we say that (f, g)* is a transition map of V .

Given any FIG-module V , its degree is the quantity,

deg(V ) := sup{n | Vn 6= 0} ∈ N ∪ {±∞}

where we use the convention that the supremum of the empty set is −∞.

We note that the category of FIG-modules and natural transformations FI -Mod is

abelian. Indeed, one computes kernels and cokernels in a pointwise fashion. One nice

feature of FIG-modules is that many properties of k-modules have natural analogs. Per-

haps the most significant of these properties is finite generation.
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Definition 3.3. Let V be an FIG-module. We say that V is finitely generated if there

is a finite collection S ⊆ tn≥0Vn which no proper submodule of V contains. We denote

the category of finitely generated FIG-modules by FIG -mod.

Finitely generated FIG-modules were first studied by Sam and Snowden in [SS2].

Prior to this, the case wherein G = 1 was studied by Church, Ellenberg, Farb, and

Nagpal in [CEF], and [CEFN]. This case was also featured prominently in the work of

Sam and Snowden [SS3]. We note that Church, Ellenberg, Farb, and Nagpal refer to

these modules as being FI-modules. The case wherein G = Z/2Z was studied by Wilson

in [W]. Wilson refers to these modules as being FIBC-modules.

Theorem 3.4 (Corollary 1.2.2 [SS2]). Assume that G is a polycyclic-by-finite group, and

that k is a Noetherian ring. Then the category FIG -mod is abelian. That is, submodules

of finitely generated modules are finitely generated.

One should observe the two hypotheses of the above theorem. In this paper we will

not be studying finitely generated FIG-modules, instead focusing on degree-wise coher-

ent modules (see Definition 3.5). Working with these more general modules will allow

us to prove many theorems without needing to restrict the ring k or the group G. One

goal of this paper is to argue that degree-wise coherence is a more natural condition

than finite generation in many contexts.
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Definition 3.5. Let r ≥ 0 be an integer. The principal projective FIG-module

generated in degree r M(r) is defined on points by

M(r)n := k[HomFIG([r], [n])],

where k[HomFIG([r], [n])] is the free k-module with basis labeled by the set HomFIG([r], [n]).

The induced maps of this module act by composition on the basis vectors. More gener-

ally, if W is a kGr-module, then we define the free FIG-module relative to W M(W )

by the assignments

M(W )n := k[HomFIG([r], [n])]⊗kGr W.

The induced maps of this module act by composition in the first component. In this case,

we say that M(W ) is generated in degree r. Direct sums of modules of either of these

two types will generally be referred to as free modules. The generating degree of a

free module is the supremum of the generating degrees of its free summands.

We say that a module V is ]-filtered if it admits a finite filtration

0 = V (−1) ⊆ . . . ⊆ V (n) = V.

such that V (i)/V (i−1) is a free module for each i. In this case, the integer n is called the

generating degree of V .

A presentation for a module V is an exact sequence of the form,

0→ K → F → V → 0,

where F is a free-module. If F is ]-filtered with generating degree n, then we say that

V is generated in degree ≤ n. If, in addition, K is generated in finite degree, then
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we say that V is degree-wise coherent. We denote the category of modules which are

generated in finite degree by FIG -Modcoh.

Note that free modules are not always projective, although projective modules are

always free. Indeed, it can be shown that for a kGr-module W , M(W ) is projective as

an FIG-module if and only if W is projective as a kGr-module. Proofs of these facts can

be found in [R].

3.2.2 The homology functors and regularity

Definition 3.6. Let V be an FIG-module. Then the 0-th homology functor is defined

on points by

H0(V )n := Vn/V<n,

where V<n is the submodule of Vn spanned by the images of all transition maps into Vn.

We write Hi to denote the i-th derived functor of H0.

The i-th homological degree of a module V is the quantity

hdi(V ) := deg(Hi(V )) ∈ N ∪ {±∞}.

the 0-th homological degree hd0(V ) will be referred to as the generating degree of the

module, and is denoted by gd(V ). The regularity of a module V is

reg(V ) := inf{N | hdi(V )− i ≤ N∀i ≥ 1} ∈ N ∪ {±∞}.
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Remark 3.7. Note that in the above definition, regularity is computed using strictly

positive homological degrees. This is slightly different from how regularity is defined in

classical commutative algebra. When we discuss local cohomology later in this paper, it

will be explained why the above definition was chosen.

It is an easy check to show that the definition of gd(V ) given above agrees with the

notion of generating degree given in Definition 3.5. It is also important that one notes

the connection between the module of relations of V , and the first homological degree

hd1(V ). Given a presentation,

0→ K → F → V → 0

we may apply the homology functor to find,

hd1(V ) ≤ gd(K) ≤ max{gd(V ), hd1(V )}.

In particular, V is degree-wise coherent if and only if both gd(V ) and hd1(V ) are finite.

If V is acyclic with respect to the homology functors, then we define its regularity to

be −∞.

The regularity of FI-modules was first studied by Sam and Snowden in [SS3, Corol-

lary 6.3.5], in the case where k is a field of characteristic 0. Following this, Church and

Ellenberg provided explicit bounds on the regularity of FI-modules over any commuta-

tive ring k [CE, Theorem A]. The author then adapted the techniques of Church and

Ellenberg to work for general FIG-modules [R, Theorem D].
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Theorem 3.8 ([CE],[R]). Let V be an FIG-module. Then,

reg(V ) ≤ hd1(V ) + min{hd1(V ), gd(V )} − 1.

In particular, if V is degree-wise coherent, then V has finite regularity.

One notable takeaway from the work of Church and Ellenberg is that their bound is

only dependent on the generating degree and first homological degree of the module. In

particular, their work entirely takes place in the category FI -Modcoh. This philosophy

was also heavily featured in [R]. One goal of the present work is to develop an under-

standing of the category FIG -Modcoh.

Following this work, regularity was studied Liang Gan, Li, and the author in [Ga],

[L], [L2], and [LR]. The paper [LR] studied the connection between regularity and a

local cohomology theory for FIG-modules, in the case where G is a finite group. We will

later rediscover this connection in the more general context of the current work.

To conclude this section, we state the theorem which classifies the homology acyclic

modules.

Theorem 3.9 (Theorem 1.3 [LY], Theorem A [R]). Let V be a degree-wise coherent

module. Then the following are equivalent:

1. V is acylic with respect to the homology functors;

2. H1(V ) = 0;
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3. Hi(V ) = 0 for some i ≥ 1;

4. V is ]-filtered.

3.2.3 The shift and derivative functors

Definition 3.10. Let ι : FIG → FIG be the functor which is defined on objects by

ι([n]) = [n + 1], while for each morphism (f, g) : [n] → [m] we set ι(f, g) = (f+, g+))

where,

f+(x) :=


f(x) if x ≤ n

m+ 1 otherwise

, g+(x) :=


g(x) if x ≤ n

1 otherwise.

The shift functor is defined as the composition

ΣV := V ◦ ι.

We write Σa for the a-th iterate of V .

For each positive integer a, there is a natural map of FIG-modules τa : V → ΣaV

defined on each point by the transition map (fna ,1)*, where fna : [n] → [n + a] is the

natural inclusion while 1 is the trivial map into G. The length a derivative functor

is the cokernel of this map

DaV := coker(τa)

We write Db
a for the b-th iterate of Da. In the case where a = 1, we will write D := D1.
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The derivative functors were introduced by Church and Ellenberg in [CE], and have

since seen use in [R] and [LY]. Later, we will consider the direct limit of all derivative

functors, which we call the infinite derivative (see Definition 3.26). We record some

useful properties of the derivative and shift functors below. Proofs of these facts can be

found in [R, Proposition 3.3] and [CE, Proposition 3.5].

Proposition 3.3. Fix an integer a ≥ 1. The length a derivative functor and the shift

functor enjoy the following properties:

1. If V is an FIG-module which is degree-wise coherent, then the same is true of DaV

and ΣV ;

2. If gd(V ) ≤ d, then gd(ΣV ) ≤ d and gd(DaV ) < d;

3. Da is right exact, and Σa is exact;

4. For any kGr-module W , both ΣM(W ) and DaM(W ) are free modules. In fact,

ΣM(W ) ∼= M(W )⊕M(ResGrGr−1
W ), DM(W ) ∼= M(ResGrGr−1

W ). (3.1)

In particular, Σ and Da preserve ]-filtered modules.

Remark 3.11. Note that if G is a finite group, then Σ and Da both preserve finitely

generated FIG-modules. This is no longer the case if G is infinite. It is always the case

that these functors preserve being degree-wise coherent.



150

Part 3 of Proposition 3.3 implies that the functors Da have left derived functors. We

will follow the notation of [CE] and [R] and write H
Dba
i for the i-th derived functor of

Db
a. One of the main insights of [CE] was that the properties of the modules HDb

i (V ) are

critical in bounding the regularity of V . Later, the author [R] showed that the functors

HDb

1 could be used to define a theory of depth for FIG-modules. Proofs for the following

facts can be found in [CE] and [R].

Proposition 3.4. Fix integers a, b, i ≥ 1. The functors H
Dba
i enjoy the following prop-

erties:

1. If V is degree-wise coherent, then deg(H
Dba
i ) <∞;

2. For any module V , there is an exact sequence

0→ HDa
1 (V )→ V

τa→ ΣaV → DaV → 0.

3. If i > b, then H
Dba
i = 0.

Remark 3.12. The cited sources prove these facts in the case where a = 1. The proofs

are identical for arbitrary a.

Note that the exact sequence in the second part of Proposition 3.4 is strongly related

to torsion. This will be explored in the next section.
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Definition 3.13. Let V be a degree-wise coherent module. Then we define its depth to

be the quantity,

depth(V ) := inf{b | HDb+1

1 (V ) 6= 0} ∈ N ∪ {∞}.

Remark 3.14. In [LR] an alternative notion of depth is provided, which is defined in

terms of the vanishing of particular Ext groups. It is shown in that paper that both

notions agree with one another. Due to the emphasis on the derivative functors in this

paper, we will use the above definition.

Perhaps the most significant property of the shift functor is the following structural

theorem. Note that this theorem was proven by Nagpal [N, Theorem A] in the case where

G is a finite group, k is a Noetherian ring, and V is finitely generated. It was then gener-

alized by Nagpal and Snowden [NS] to the case where G is a polycyclic-by-finite group.

Finally, the author [R] proved the theorem to the level of generality presented here.

Theorem 3.15. Let V be an FIG-module which is degree-wise coherent. Then for b� 0,

ΣbV is ]-filtered.

Definition 3.16. We denote the smallest b for which ΣbV is ]-filtered by N(V ).
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It is natural for one to ask whether it is possible bound N(V ). Indeed, this was

accomplished by the author in [R, Theorem C].

Theorem 3.17. Let V be an FIG-module which is degree-wise coherent. If V is not

]-filtered, then HDb

1 (V ) = 0 for b� 0, and

N(V ) = max
b
{deg(HDb

1 (V ))}

One of the many consequences of Theorem 3.15 is the construction of the following

complex, which we will see play a major part in the local cohomology of FIG-modules.

Definition 3.18. Let V be an FIG-module which is degree-wise coherent. Setting b−1 :=

N(V ), there is an exact sequence

V
τb−1→ F 0 := ΣbV → Db−1V → 0

By Proposition 3.3, the module Db−1V is degree-wise coherent and is generated in strictly

smaller degree than V . We may therefore repeat this process finitely many times to obtain

the complex

C •V : 0→ V → F 0 → . . .→ F n → 0.
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The complex C •V was introduced by Nagpal in [N, Theorem A]. It was subsequently

studied by Li in [L2], and by Li and the author in [LR]. Note that the assignment

V 7→ C •V is not functoral. Later, we will construct a uniform version of the complex

C •V which is functoral in V (see Definition 3.28).

3.5 Degree-wise coherence

3.5.1 Connections with torsion

Definition 3.19. Let V be an FIG-module. An element v ∈ Vn is torsion if it is in the

kernel of some - and therefore all - transition maps out of Vn. We say that a module V

is torsion if its every element is torsion.

Note that every FIG-module fits into an exact sequence of the form

0→ VT → V → VF → 0

where VT is a torsion module, and VF is torsion free.

The torsion degree of an FIG-module is the quantity

td(V ) := deg(VT ).
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The exact sequence of Proposition 3.4 implies that td(V ) = deg(HD
1 (V )). Propo-

sition 3.4 also tells us that deg(HD
1 (V )) is finite. We therefore obtain the following

corollary.

Lemma 3.20. Let V be a degree-wise coherent module. Then td(V ) <∞. In particular,

a degree-wise coherent module V is torsion if and only if deg(V ) <∞.

We will see later that a converse of this statement is true as well. That is, if V is

generated in finite degree, and td(V ) < ∞, then V is degree-wise coherent. To prove

this fact, we will need the following proposition. It is, in some sense, a rephrasing of [CE,

Theorem D]. Church and Ellenberg proved this for FI-modules, and it was generalized

to FIG-modules by the author in [R, Theorem 3.19].

Proposition 3.6. Let V ⊆M be torsion-free FIG-modules which are generated in finite

degree. Then td(M/V ) <∞.

Proof

We have an exact sequence,

0→ V →M →M/V → 0

Applying the functor D, we obtain an exact sequence

HD
1 (M)→ HD

1 (M/V )→ DV → DM.

By assumptionM is torsion-free, and thereforeHD
1 (M) = 0. This implies thatHD

1 (M/V ) ∼=

ker(DV → DM). Unpacking definitions, [CE, Theorem D] and [R, Theorem 3.19] imply
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that this kernel is only non-zero in finitely many degrees.

We are now able to prove the main theorem of this section.

Theorem 3.21. Let V be an FIG-module which is generated in finite degree. Then V is

degree-wise coherent if and only if td(V ) <∞.

Proof

We have already seen the forward direction. Conversely, assume that gd(V ) < ∞ and

td(V ) <∞. Then we have an exact sequence

0→ VT → V → VF → 0

where VT is torsion, and VF is torsion free. Applying the homology functor, it follows

that

deg(H1(V )) ≤ max{deg(H1(VT )), deg(H1(VF ))}

It is easily seen that deg(H1(VT )) <∞, and therefore it suffices to show that deg(H1(VF ))

is finite. In particular, we may assume without loss of generality that V is torsion free.

Assuming that V is torsion free, we have an exact sequence

0→ V → ΣV → DV → 0

where ΣV is also torsion free. Proposition 3.6 now implies that td(DV ) <∞. We also

know, however, that gd(DV ) < gd(V ) <∞ by Proposition 3.3. Applying induction on
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the generating degree, we may assume that DV is degree-wise coherent. Proposition 3.4

implies that deg(HDb

i (DV )) <∞ for all i, b.

Next, we claim that for all i, b ≥ 1, HDb

i (DV ) ∼= HDb+1

i (V ). To see this, we compute

the derived functors of Db+1, when viewed as the composition Db ◦D. Proposition 3.4

implies the Grothendieck spectral sequence associated to this composition only has two

rows. It therefore degenerates to the long exact sequence

. . .→ HDb

i−1(HD
1 (V ))→ HDb

i (DV )→ HDb+1

i (V )
∂→ HDb

i−1(HD
1 (V ))→ . . .

The fact that V is torsion-free implies HD
1 (V ) = 0, and therefore HDb

i (DV ) ∼= HDb+1

i (V )

for all i.

Recall that we have shown that DV is degree-wise coherent. The above isomorphisms

therefore imply that deg(HDb

i (V )) <∞ for all i, b. Theorem 3.16 now implies that ΣbV

is ]-filtered for b� 0. In particular, we have an exact sequence

0→ V → ΣN(V )V → DN(V )V → 0

By assumption V is generated in finite degree, and therefore DN(V )V is degree-wise

coherent. Applying the homology functor, and using Theorems 3.9 and 3.8, we conclude

that deg(H1(V )) <∞, as desired.

Remark 3.22. The author’s interest in proving the above theorem was heavily influenced

by recent work of Li [L3]. In that work, Li argues the forward direction of the theorem,

and leaves the converse as a conjecture. The author would like to thank Professor Li for
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pointing him in the direction of this problem.

Remark 3.23. It is important that one develop an intuition for why one would suspect

Theorem 3.21 is true. In the work of Li and the author [LR, Theorem F], it is shown

that the regularity of a finitely generated FIG-module, where G is finite and k is Noethe-

rian, can be bound in terms of the torsion degrees of its local cohomology modules (see

Definition 3.29). Li has shown that the higher local cohomology modules can be bounded

entirely in terms of the generating degree [L2]. Put together, it follows that the regu-

larity of a finitely generated FIG-module is bounded by a constant depending only on its

torsion degree and its generating degree. Theorem 3.21 implies that these bounds on regu-

larity will continue to hold even if we do not assume that the module is finitely generated.

3.6.1 The category FIG -Modcoh

In this section we consider the category of degree-wise coherent modules, and examine

some of its technical properties. The main result of this section will be to show that

FIG -Modcoh is abelian. We once again note that the category of finitely generated FIG-

modules is only known to be abelian when k is Noetherian, and G is polycyclic-by-finite.

This would seem to indicate that the property of being degree-wise coherent is often

times better suited for homologically flavored questions about FIG-modules.

One recurring theme throughout the proofs in this section is Theorem 3.21. This

theorem tells us that the property of being degree-wise coherent can be partially checked
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on the maximal torsion submodule. This will allow us to prove non-obvious facts about

submodules of degree-wise coherent submodules. One example of this is the following.

Proposition 3.7. Let V be a degree-wise coherent FIG-module, and let V ′ ⊆ V be a

submodule which is generated in finite degree. Then V ′ is also degree-wise coherent.

Proof

Because V ′ is a submodule of V , we must have td(V ′) ≤ td(V ). Theorem 3.21 now

implies the proposition.

Note that the above proposition justifies the terminology of coherence. Recall that a

module M over a commutative ring R is said to be coherent if it is finitely presented, and

every finitely generated submodule of M is also finitely presented. It is well known that

a module over a coherent ring is finitely presented if and only if it is coherent. When k is

a field of characteristic 0, Sam and Snowden’s language of twisted commutative algebras

imply that the category of FI-modules is equivalent to the category of GL∞-equivariant

modules over a polynomial ring in infinitely many variables [SS3]. A polynomial ring in

infinitely many variables over a field is coherent, and therefore Proposition 3.7 can be

heuristically thought of as a consequence of this.

Proposition 3.8. Let,

0→ V ′ → V → V ′′ → 0

be an exact sequence of FIG-modules. Then any two of V ′, V, or V ′′ are degree-wise
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coherent only if the third is as well.

Proof

The above exact sequence induces the exact sequence,

H2(V ′′)→ H1(V ′)→ H1(V )→ H1(V ′′)→ H0(V ′)→ H0(V )→ H0(V ′′)→ 0.

This implies the collection of bounds,

hd1(V ) ≤ max{hd1(V ′), hd1(V ′′)}, gd(V ) ≤ max{gd(V ′), gd(V ′′)} (3.2)

hd1(V ′) ≤ max{hd2(V ′′), hd1(V )}, gd(V ′) ≤ max{hd1(V ′′), gd(V )} (3.3)

hd1(V ′′) ≤ max{gd(V ′), hd1(V )}, gd(V ′′) ≤ gd(V ). (3.4)

If V ′ and V ′′ are degree-wise coherent, then the first pair of bounds immediately

implies the same about V . If we instead assume that V ′′ and V ′ are degree-wise coherent,

then Theorem 3.8 implies that hd2(V ′′) < ∞. The second pair of bounds now imply

that V ′ is degree-wise coherent. Finally, if V ′ and V are degree-wise coherent then the

third pair of bounds imply that V ′′ must be as well.

This is all we need to prove the main theorem of this section.

Theorem 3.24. The category FIG -Modcoh is abelian.

Proof

The only thing that needs to be checked is that FIG -Modcoh permits images, kernels and
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cokernels. That is, if φ : V → V ′ is a morphism of degree-wise coherent modules, then

we must show that ker(φ), im(φ) and coker(φ) are all degree-wise coherent. We have a

pair of exact sequences

0→ ker(φ)→ V → im(φ)→ 0

0→ im(φ)→ V ′ → coker(φ)→ 0

The module im(φ) is generated in finite degree because it is a quotient of V , and

td(im(φ)) < ∞ because it is a submodule of V ′. Theorem 3.21 implies that im(φ)

is degree-wise coherent, whence ker(φ) and coker(φ) are as well by Proposition 3.8.

Remark 3.25. Li has also independently proven this theorem in his work [L3, Proposi-

tion 3.4]. His methods do not use Theorem 3.21.

3.9 Applications

In this half of the paper, we consider applications of the machinery developed in pre-

vious sections. To start, we will define the infinite shift and derivative functors. Using

these functors, we will describe a local cohomology theory for degree-wise coherent FIG-

modules. Finally, we finish by proving a kind of local duality theorem for FIG-modules.
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3.9.1 The infinite shift and derivative functors

Definition 3.26. Let V be an FIG-module. For each positive integer a, the transition

map (fn+a,1)*, induced by the pair of the standard inclusion fn+a : [n+a]→ [n+a+ 1]

and the trivial map into G, gives a map ΣaV → Σa+1V . The infinite shift of V is the

direct limit

Σ∞V := lim
→

ΣaV

The maps (fn+a,1)* also induce maps DaV → Da+1V . The infinite derivative of the

module V is the direct limit

D∞V := lim
→
DaV

One should immediately note that if V is finitely generated, then neither Σ∞V , nor

D∞V are necessarily finitely generated. These functors do preserve degree-wise coher-

ence, as we shall now prove.

Proposition 3.10. The infinite shift and derivative functors enjoy the following prop-

erties:

1. Σ∞ is exact, and D∞ is right exact;

2. for all FIG-modules V , there is an exact sequence

V → Σ∞V → D∞V → 0.

V is torsion-free if and only if the map V → Σ∞V is injective;

3. for any kGn-module W , Σ∞M(W ) ∼= M(W ) ⊕ Q where Q is some free-module

generated in degree < r, while D∞M(W ) ∼= Q. In particular, both the infinite shift

and derivative functors preserve ]-filtered objects;
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4. if gd(V ) ≤ d is finite, then gd(Σ∞V ) ≤ d and gd(D∞V ) < d;

5. if V is degree-wise coherent, then Σ∞V is ]-filtered, and D∞V is degree-wise co-

herent.

Proof

The first statement follows from Proposition 3.3, as well as the exactness of filtered

colimits.

Write ω for the poset category of the natural numbers. We define the functors

Fi : ω → FIG -Mod, i = 1, 2, 3 as follows:

F1(a) = V, F2(a) = ΣaV, F3(a) = DaV.

Note that F1 maps all morphisms of ω to the identity, while F2 and F3 map the mor-

phisms of ω to the previously discussed maps ΣaV → Σa+1V and DaV → Da+1V . Then

all relevant definitions imply there is an exact sequence

F1 → F2 → F3 → 0

Applying the exact direct limit functor to this exact sequence implies the first half of

the second claim. If V is torsion free, then the map F1 → F2 is exact by definition of

torsion, and this will be preserved after taking direct limits. Conversely, assume that V

has torsion. In particular, there is an element v ∈ Vn for some n, such that v is in the

kernel of some transition map Vn → Vm. In this case, every transition map to Vr, with

r ≥ m, will also contain v in its kernel. In particular, v will be an element in the kernel

of the maps V → ΣaV for all a > 0. This implies that the element v is in the kernel of
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the map V → Σ∞V .

The fact that Σ∞M(W ) takes the prescribed form follows immediately from Propo-

sition 3.3 and (3.1). The statement about the infinite derivative follows from the second

part of this proposition.

The fourth statement follows from the first statement and the third.

The fifth statement follows from the fourth, as well as Theorem 3.15.

While the infinite shift and derivative functors may be harder to compute than their

finite counter-parts, they allow us to more uniformly state certain theorems. For in-

stance, we will see that infinite shifts can be used to fix the issue of functoriality of the

complex C •V . We will also see that the infinite derivative functor can be used to prove

a kind of local duality for FIG-modules.

The above proposition implies that the functors Σ∞ and D∞ can be considered as

endofunctors of the abelian category FIG -Modcoh. This proposition also tells us that

D∞ admits left derived functors in this category.

Definition 3.27. For each b ≥ 1, we will write H
Db∞
i : FIG -Modcoh → FIG -Modcoh to

denote the i-th derived functor of Db
∞.



164

Proposition 3.11. The functors H
Db∞
i enjoy the following properties:

1. for all degree-wise coherent modules V , there is an exact sequence

0→ HD∞
1 (V )→ V → Σ∞V → D∞V → 0;

In particular, if V is torsion free, then HD∞
1 (V ) = 0;

2. If V is ]-filtered, then H
Db∞
i (V ) = 0 for all i, b ≥ 1;

3. for all degree-wise coherent modules V , and all b, i ≥ 1, deg(H
Db∞
i (V )) <∞.

Proof

Let

0→ K → F → V → 0

be a presentation for V . Then we have a commutative diagram with exact rows

Db
∞(K) −−−→ Σ∞D

b
∞(K) −−−→ Db+1

∞ (K) −−−→ 0y y y
0 −−−→ Db

∞(F ) −−−→ Σ∞D
b
∞(F ) −−−→ Db+1

∞ (F ) −−−→ 0

Note that the second row is exact on the left, as Db
∞(F ) is ]-filtered, and therefore it is

torsion free. Applying the snake lemma, we obtain a long exact sequence

H
Db∞
1 (V )→ Σ∞H

Db∞
1 (V )→ HDb+1

∞
1 (V )→ Db

∞(V )→ Σ∞D
b
∞(V )→ Db+1

∞ (V )→ 0 (3.5)

Now assume that b = 0. In this case the above becomes the claimed exact sequence

of the first part of the proposition.
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We can prove the second statement by induction on b. Note that Theorem 3.9 implies

that any presentation of a ]-filtered module will necessarily have a ]-filtered first syzygy.

It follows that it suffices to prove the second claim in the proposition for i = 1. Because

]-filtered objects are torsion free, the first part of this proposition implies the claim for

b = 1. Otherwise, the exact sequence (3.5) degenerates to,

0→ HDb+1
∞

1 (V )→ Db
∞(V )→ Σ∞D

b
∞(V )

Using the fact that the infinite derivative of a ]-filtered object is still ]-filtered, as well

as the fact that ]-filtered objects are torsion free, we obtain our desired vanishing.

Straight forward homological dimension shifting arguments imply that it suffices to

prove the third claim for i = 1. We proceed by induction on b. If b = 1, then the

first statement along with Theorem 3.21 imply that HD∞
1 (V ) has finite degree. Assume

that the statement is true for some integer b ≥ 1, and consider the sequence (3.5). By

induction we know that H
Db∞
1 (V ) has finite degree, and therefore Σ∞H

Db∞
1 (V ) = 0. The

above sequence will simplify to

0→ HDb+1
∞

1 (V )→ Db
∞V → Σ∞D

b
∞V → Db+1

∞ V → 0.

Proposition 3.10 implies that Db
∞(V ) is degree-wise coherent, and therefore it has finite

torsion degree by Theorem 3.21. We conclude thatHDb+1
∞

1 (V ) has finite degree, as desired.

To finish this section, we define an improved version of the complex C •V . This new

complex will share almost all of C •V ’s most important properties, while having the ad-

vantage of being functoral in V .
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Definition 3.28. Let V be a degree-wise coherent FIG-module. Then Theorem 3.15 and

Proposition 3.10 imply that Σ∞V is ]-filtered, and that there is an exact sequence

V → Σ∞V = F 0 → D∞V → 0

where D∞V is also degree-wise coherent with strictly smaller generating degree. Repeat-

ing this process, we obtain a complex

C •∞V : 0→ V → F 0 → F 1 → . . .→ F n → 0.

Note that by construction,

H i(C •∞V ) ∼= ker(Di+1
∞ V → Σ∞D

i+1
∞ V ) ∼= HD∞

1 (Di+1
∞ V )

where D0
∞ is the identity functor by convention. In particular, the cohomology modules

of C •∞ all have finite degree.

3.11.1 Local Cohomology

In this section, we record results about local the local cohomology of the modules in

FI -Modcoh. These facts were proven about finitely generated modules in [LR], and the

proofs from that paper will work in this context as well, thanks to Theorems 3.24 and

3.15. The fact that these two results imply that the work of [LR] will hold for degree-

wise coherent modules was also noted by Li in [L3].

Definition 3.29. Recall that every FIG-module V fits into an exact sequence

0→ VT → V → VF → 0
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where VT is torsion, and VF is torsion free. The 0-th local cohomology functor is

defined by

H0
m(V ) := VT

The category FIG -Mod is Grothendieck, and therefore we can define the right derived

functors of H0
m. The i-th derived functor of H0

m is denoted by H i
m, and is known as the

i-th local cohomology functor.

One of the main results of the paper [LR, Theorem E], is that, when working over a

Noetherian ring, H i
m(V ) is finitely generated whenever V is. In this work we will show

that H i
m(V ) is degree-wise coherent whenever V is. To do so, we first record the following

alternative definition of local cohomology.

Definition 3.30. For each integer r ≥ 0, and each integer n ≥ 1, we define the module

M(r)/mnM(r) to be the quotient of M(r) by the submodule generated by M(r)r+n. Then

we define the functor H om(k FIG /m
n, •) : FIG -Mod→ FIG -Mod by

H om(k FIG /m
n, V )r := HomFIG -Mod(M(r)/mnM(r), V )

Note that a map M(r)/mnM(r)→ V is determined by a choice of element Vr, which is

in the kernel of all transition maps into Vr+n. Given such a map φ : M(r)/mnM(r)→ V ,

and a morphism (f, g) : [r]→ [m] in FIG, we define (f, g)*φ to be the map M(m)/mnM(m)→

V which sends the identity in degree m to (f, g)*(φ(idr)). This defines an FIG-module

stucture on H om(k FIG /m
n, V ). We use E xti(k FIG /m

n, •) to denote the i-th derived

functor of H om(k FIG /m
n, •).
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One important observation is that for each r ≥ 0 and n ≥ 1, there is a map

M(r)/mn+1M(r)→M(r)/mnM(r).

This induces maps HomFIG -Mod(M(r)/mnM(r), V )→ HomFIG -Mod(M(r)/mn+1M(r), V ),

which one may check are compatible with the induced maps of H om(k FIG /m
n, V ). In

particular, for any V we obtain a morphism of FIG-modules

H om(k FIG /m
n, V )→H om(k FIG /m

n+1, V ).

This also gives us maps

E xti(k FIG /m
n, V )→ E xti(k FIG /m

n+1, V )

for each i ≥ 0. This justifies the following proposition.

Proposition 3.12. There is an isomorphism of functors,

H0
m(•) ∼= lim

→
H om(k FIG /m

n, V ),

inducing isomorphisms of derived functors

H i
m(•) ∼= lim

→
E xt(k FIG /m

n, V )

Using this alternative description, one then goes on to prove the following acyclicity

results.
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Proposition 3.13. Let V be degree-wise coherent. If V is either a torsion module, or

a ]-filtered module, then

H i
m(V ) = 0

for all i ≥ 1.

Next, we recall the complex C •∞V . By construction this complex is comprised of

]-filtered modules in its positive degrees, and its cohomologies are all degree-wise coher-

ent torsion modules. The above proposition can therefore be used to prove the following.

Theorem 3.31. Let V be a degree-wise coherent module. Then there are isomorphisms

for all i ≥ 0,

H i
m(V ) ∼= H i−1(C •∞V )

In particular, if V is degree-wise coherent, then the same is true of its local cohomology

modules.

This theorem has a long list of consequences, some of which we list now.

Corollary 3.32. Let V be a degree-wise coherent module. Then V is acyclic with respect

to local cohomology if and only if there is an exact sequence

0→ VT → V → VF → 0

where VT is a torsion module, and VF is ]-filtered.
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Corollary 3.33. Let V be a degree-wise coherent module. Then H i
m(V ) = 0 for i� 0,

while

depth(V ) = inf{i | H i
m(V ) 6= 0}

Definition 3.34. Let V be a degree-wise coherent module which is not ]-filtered. Then

Corollary 3.33 implies that there is a largest i for which H i
m(V ) 6= 0. We define the

dimension of the module V to be the quantity,

dimFIG(V ) := sup{i | H i
m(V ) 6= 0}.

If V is ]-filtered, then we set dimFIG(V ) =∞.

Corollary 3.35. Let V be a degree-wise coherent module. Then,

N(V ) = max
i
{deg(H i

m(V ))}+ 1,

whenever V is not ]-filtered.

Corollary 3.36. Let V be a degree-wise coherent module. Then,

reg(V ) ≤ max
i
{deg(H i

m(V )) + i}.
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The reader might have noticed that Corollary 3.36 looks very similar to a classic

result from the local cohomology theory of the polynomial ring. Indeed, it is the belief

of the author that the following is true.

Conjecture 3.37. Let V be a degree-wise coherent module. Then,

reg(V ) = max
i
{deg(H i

m(V )) + i} (3.6)

Remark 3.38. Note that the above conjecture would be false if our definition of reg(V )

included the 0-th homological degree. Indeed, Proposition 3.13 implies that ]-filtered

modules are torsion free acyclics with respect to local cohomology, and therefore the right

hand side of (3.6) is always −∞ for ]-filtered modules.

Note that as of the writing of this paper, not much is known about this conjecture.

It was shown to be true for torsion modules by Liang Gan, and Li in their paper [GL2].

Remark 3.39. The conjecture has, since the original publication of this paper, been

proven in full generality by Nagpal, Sam and Snowden in [NSS].

To finish this section, we more closely examine the relationship between the infinite

derivative and local cohomology.
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Proposition 3.14. Let H
Db∞
i : FIG -Modcoh → FIG -Modcoh denote the i-th derived

functor of Db
∞. Then for all i, b ≥ 1 there are natural isomorphisms of functors

H
Db∞
i
∼= HDb−1

∞
i−1

∼= . . . ∼= HDb−i+1
∞

1
∼= HD∞

1 ◦Db−i
∞ .

Proof

Consider the Grothendieck spectral sequence associated to the composition D∞ ◦Db−1
∞ .

Note that Proposition 3.11 implies that HD∞
i (V ) = 0 for all i > 1, and all degree-wise

coherent modules V , and therefore this spectral sequence only has two columns. The

spectral sequence will therefore degenerate to the collection of short exact sequences

0→ D∞H
Db−1
∞

i (V )→ H
Db∞
i (V )→ HD∞

1 (HDb−1
∞

i−1 (V ))→ 0.

Proposition 3.11 tells us that HDb−1
∞

i (V ) has finite degree, and therefore the left most

term in these exact sequences is always zero. This same proposition also implies that

HD∞
1 (HDb−1

∞
i−1 (V )) ∼= HDb−1

∞
i−1 (V ) whenever i > 1. Naturality of the isomorphismsH

Db∞
i (V ) ∼=

HDb−1
∞

i−1 (V ) follows from the naturality of the Grothendieck spectral sequence. The result

now follows by induction.

Theorem 3.31 tells us that the local cohomology modules of a degree-wise coherent

module V can be computed as the torsion submodules of the infinite derivatives of V .

Proposition 3.14 directly relates these torsion modules to the derived functors of these

infinite derivatives. Putting everything together, we have proven the following theorem.

One may think of this as a kind of “local duality,” as it relates the local cohomology
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functors to the derived functors of some right exact functor.

Theorem 3.40. Let V be a degree-wise coherent module of dimension d. Then there

are isomorphisms for all i ≥ 1,

HDd+1
∞

i (V ) ∼= Hd+1−i
m (V ).

Proof

Theorem 3.31 and Proposition 3.14 imply

HDd+1
∞

i (V ) ∼= HD∞
1 (Dd+1−i

∞ V ) ∼= Hd−i(C •∞V ) ∼= Hd+1−i
m (V ).
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