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Introduction 
 

 

This dissertation explores relationships between environmental factors and human health 

outcomes in various settings. A primary reason for valuing environmental quality is for its 

associated health benefits, but the activities that generate pollution often also have economic 

value. Optimal environmental regulation must take both costs and benefits into consideration, so 

understanding the full extent of these values is essential. In my essays, I focus on measuring the 

costs of pollution, which comes with a number of empirical challenges. Exposure to 

environmental factors is not randomly assigned because environmental quality is in part 

determined by human activities and choices in complex economic systems. Each chapter in this 

dissertation yields new information on the health benefits of environmental quality and accounts 

for confounding factors that inhibit causal inference. 

 The first chapter estimates how medical expenditures respond to changes in air quality. 

The health-related costs of poor air quality come in a variety of forms, including defensive 

expenditures, medical expenditures, lower worker productivity, suffering from illness, and 

premature mortality. As medical technology improves and demographics shift in the United 

States, more people are living longer with chronic respiratory conditions, which are exacerbated 

by pollution exposure. In this chapter, I find that increases in fine particulate matter significantly 

increase medical expenditures for these types of conditions. To estimate this effect, I first 

connect household level medical expenditure panel data with measures of ambient pollution. The 

data allows me to estimate the impact of pollution on a variety of different types of medical 

expenditures, such as medication purchases and hospital visits, and for various disease types, 

such as respiratory or cardiovascular conditions. Identification first comes from including 
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household fixed effects, which control for unobserved household characteristics and some types 

of long-term avoidance behaviors. Next, I instrument for pollution measures using variation in 

emissions from distant sources. These pollution sources are less likely to be related to 

unobserved local sources of economic activity that may confound estimated effects. The 

instrumental variables strategy also accounts for potential measurement error in the pollution 

monitoring data. With this estimation strategy, I find that a one standard deviation decrease in 

fine particulate matter decreases medical expenditures for chronic respiratory diseases by 8.3 

percent. Considering total spending on these conditions in the United States, this corresponds to 

$6.3 billion in savings annually. The costs measured in this chapter are only one piece of the 

overall economic costs of air pollution. Still, reductions in spending on chronic respiratory 

disease may alone be sufficient to justify annual environmental compliance costs for electricity 

generating units, which are the source of most of the emissions reductions during the study 

period. 

 The second chapter of this dissertation examines relationships between built-

environment features and human health outcomes. Recent research in public health finds 

associations between the proximity of an individual to greenspace and various health outcomes, 

including obesity, cardiovascular disease rates, depression, and anxiety. Based on these 

associations, it is sometimes asserted that better access to parks will lead to improved health 

outcomes. This chapter tests this assertion by focusing on an issue sometimes ignored in this 

literature: people sort themselves into neighborhoods based on the characteristics of those 

neighborhoods and their personal preferences. Using observed neighborhood location decisions 

by young adults from the National Longitudinal Study of Adolescent to Adult Health (Add 

Health), I find that living near a park decreases obesity. My estimation strategy reveals that 



3 
 

accounting for time varying unobserved variables is crucial when estimating the relationship 

between greenspace and health. To identify the effect, I first exploit the panel design of the data 

and include individual fixed effects to control for unobserved heterogeneity. I then utilize a novel 

instrumental variables strategy that instruments for built environment features using other 

neighborhood characteristics that are unrelated to health outcomes. This approach reveals that 

one additional park within one kilometer of an individual’s residence decreases body mass index 

(BMI) by 1.25 percent. My study complements the current literature by yielding new evidence 

on how greenspace amenities impact health outcomes, and how heterogeneous amenity 

valuations may account for observed greenspace/health associations. 

The last chapter investigates the defensive actions people take to avoid exposure to air 

and water pollution. These avoidance behaviors are generally not observed by researchers and 

obfuscate the true relationship between ambient pollution levels and health outcomes. Avoidance 

behaviors themselves are costly, so understanding their prevalence gives a clearer idea of the 

magnitude of this piece of pollution costs and the subgroups that are disproportionately bearing 

these costs. The answers to these questions also enhance our understanding of the motivations 

behind avoidance behaviors. Using survey response data that asks individuals if they have 

engaged in a number of defensive behaviors, I examine which types of behaviors are most 

common and which demographic and economic characteristics are the strongest predictors of 

defensive behavior decisions. I access confidential behavioral data that is geographically 

matched to data on weather and air quality outcomes, which are important determinants of some 

types of avoidance behavior. Further, I control for a variety of proxies for unobserved health and 

risk preferences and implement instrumental variables estimation to address endogeneity issues. I 

find that leisure time preference and labor market variables have significant impacts on the 
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decision to engage in defensive behaviors, and the determinants of defensive behavior vary 

substantially over behavior type. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

Chapter 1:     The Morbidity Costs of Air Pollution: Evidence from 

Spending on Chronic Respiratory Conditions 
 

 

1.1 Introduction 
 

People living in urban areas are frequently exposed to unhealthy levels of air pollution, 

and the biological consequences of this exposure include damage to respiratory and 

cardiovascular health.  The Clean Air Act (CAA) introduced policies to reduce ambient levels of 

pollution in order to minimize these negative health consequences.  In accordance with the CAA, 

the Environmental Protection Agency (EPA) sets National Ambient Air Quality Standards 

(NAAQS) that limit allowed concentrations of six criteria pollutants, including sulfur dioxide 

and particulate matter.  Evaluating the efficiency of the criteria pollutant standards requires 

estimates for pollution abatement costs, and the demand for pollution reductions.  In 2010,  

economy-wide compliance costs for the CAA were estimated to be over $50 billion (US EPA, 

2011).  The economic benefits from pollution reduction arise mainly from reductions in mortality 

and morbidity rates, along with improved environmental quality.  For the health impacts, 

measuring demand requires an empirical link between health-related outcomes and ambient 

pollution, and theory linking health outcomes to welfare measures.  The empirical task is 

complicated by the inability to observe individual-level exposure to ambient pollution.  

Furthermore, even if a proxy pollution measure is available, theory predicts that people will 

engage in defensive actions aimed at reducing their exposure to pollution, or alleviating the ill 

effects of exposure once it has occurred.  These behaviors decrease mortality and morbidity rates 

and, if not addressed, will compromise efforts to estimate the causal impact of pollution on 

health outcomes.  
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Defensive behaviors also provide an avenue for understanding the demand for air 

pollution reductions, since the actions undertaken have an opportunity cost.  Medical services 

consumption is an important example of a costly action that alleviates damage from pollution 

exposure, so understanding the link between medical services and ambient pollution is critical 

for measuring the demand for air quality improvements. In this paper, we focus on how changes 

in ambient air pollution induce changes in medical expenditures related to asthma and chronic 

obstructive pulmonary disease (COPD) – two highly prevalent chronic respiratory diseases that 

together accounted for over $75 billion in US healthcare spending in 2012 (Cohen, 2014).   

There are several motivations for studying the relationship between pollution and 

healthcare spending.  First, although early-mortality costs from pollution are thought to be much 

larger than the costs of morbidity, understanding the impact of pollution on morbidity is 

increasingly recognized as important for evaluating policy (Cameron, 2014). Direct estimates of 

morbidity costs may be more politically palatable than mortality costs that rely on estimates of 

the value of a statistical life, and the costs of morbidity may be more salient to individuals who 

have personal experience with chronic disease.  Morbidity costs operate through several 

channels, including lower worker productivity, decreased earnings, and costly medical 

conditions.  Accounting for medical utilization is therefore an important aspect of the 

relationship between pollution and health outcomes, yet few studies have measured the 

contribution of pollution exposure to these morbidity-related costs.  Furthermore, as health 

technologies improve, mortality rates are decreasing, while the prevalence rates of people 

surviving and living with chronic diseases such as asthma and COPD are increasing (American 

Lung Association, 2013).  This increase in prevalence implies an increase in expenditures needed 

to manage the conditions, all else equal.  Asthma and COPD consistently rank among the top 
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five most costly conditions in terms of health care expenditures, and so if ambient pollution has 

even a modest impact on this spending, a reduction could have large welfare benefits.  Also, the 

use of medication and medical services is likely one of the more common ways in which 

individuals with respiratory conditions respond to poor air quality, so understanding the nature 

and magnitude of this response is necessary for developing a comprehensive understanding of 

defensive behaviors.  Finally, the relationship between CAA criteria air pollutants such as fine 

particulates, and newly regulated pollutants such as carbon and mercury, is increasingly 

important for environmental policy.  Initiatives such as the Clean Power Plan (for carbon) and 

the Mercury and Air Toxics Standards will simultaneously decrease particulate concentrations, 

and the resulting decrease in morbidity and mortality will be important for determining if the 

standards provide positive net economic benefits.  This study fills in some of the current gaps in 

our knowledge of the morbidity costs of fine particulates and can help inform future cost-benefit 

analyses for environmental regulations.  

We show how defensive expenditures, or medical services consumption in the current 

case, can be used to construct welfare measures for changes in ambient pollution. We apply the 

defensive expenditures model in a new and important setting, using data on over 10,000 

households living in 26 US metropolitan areas between 1996 and 2003.  This time period is 

particularly interesting because it overlaps with the first and second phases of Title IV of the 

1990 Clean Air Act amendments, which established a sulfur dioxide (SO2) allowance market in 

the US.  Though the program was initially intended to protect water and forest ecosystems from 

acid rain, the vast majority of benefits are thought to have arisen from decreases in mortality, due 

to the large reduction in SO2 and the fine particulate matter associated with it (Schmalensee and 

Stavins, 2013).  The pollution reductions induced by this policy provide significant variation in 
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ambient air quality levels over time and across US metropolitan areas, allowing identification of 

the relationship between pollution and medical expenditures. 

We rely on the Medical Expenditure Panel Survey (MEPS) data, collected by the Agency 

for Healthcare Research and Quality (AHRQ), in our analysis. This, when combined with 

ambient air pollution data from the EPA’s Air Quality System database, allows us to track 

household medical expenditures and local pollution levels over two-year periods.  We aggregate 

this spending by quarter and use fixed effects and instrumental variable models to measure the 

response of spending to changes in ambient pollution at the Metropolitan Statistical Area (MSA) 

level.  We find that a one standard deviation increase in fine particulate matter (PM2.5) increases 

asthma/COPD spending by over 8 percent.  A one standard deviation change in mean pollution 

levels is large, representing 56 and 27 percent changes in average SO2 and PM2.5, respectively.  

However, these magnitudes are generally consistent with the decreases in ambient levels of 

pollution occurring during this time period.  According to the EPA, the annual 99th percentile of 

daily maximum SO2 concentrations decreased by 76 percent between 1990 and 2014.  In 

addition, annual averages of PM2.5 decreased by 37% between 2000 and 2015.  Since spending 

on these conditions is so high, an 8 percent change represents over $6 billion in annual 

expenditures (relative to 2012 expenditure levels).  We show that our estimates can be used to 

derive partial welfare measures for changes in pollution, which suggest that this figure is a lower 

bound on the annual willingness to pay for a standard deviation reduction in ambient pollution.   

This paper adds to the literature on defensive actions and air quality valuation in several 

ways.  First, we quantify the contribution of SO2 and PM2.5 to healthcare spending.  In this sense, 

we are directly estimating one aspect of pollution-related morbidity costs, as a complement to the 

large volume of research that has focused on pollution and mortality/morbidity risk.  A more 
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complete understanding of this aspect of the welfare costs of pollution exposure is necessary for 

evaluating and updating air quality standards.  Second, we use household level data, while the 

one similar study of which we are aware uses aggregate measures of medical expenditures.  

Household fixed effects allow us to control for unobserved characteristics, which includes the 

propensity of individuals to engage in avoidance behavior or other non-medical defensive 

actions.  Household level data also provides the opportunity to investigate how household 

attributes, such as insurance status and income, influence behavioral responses to pollution.  

Next, we break down expenditures by disease type to identify the main drivers of medical 

expenditure changes, rather than focusing on broad categories such as ‘respiratory conditions’.  

Importantly, we find no effect when using a broad respiratory categorization, but strongly 

significant results for asthma and COPD spending.  This provides a more nuanced explanation 

for how households alter their consumption behavior in response to pollution changes.  Finally, 

we employ a distant-source instrumental variable (IV) strategy, similar to Bayer et al. (2009) and 

Hamilton and Phaneuf (2015), to account for local unobserved macroeconomic factors that might 

be related to both pollution levels and healthcare markets, and to address measurement error 

concerns.  As in previous research, we find that implementing this type of strategy increases the 

magnitude of our estimates, which highlights the importance of properly dealing with pollution 

endogeneity and measurement concerns.  

 

1.2     Background 
 

Understanding the impact of pollution exposure on human health has been a central 

public health concern for the past few decades, and imposing appropriate pollution standards 

remains a contentious policy issue.  A wealth of literature in economics, epidemiology, and other 
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health sciences has described the relationship between air pollution and health outcomes and 

given insight into how these pollutants should be regulated.  The EPA currently regulates several 

six criteria air pollutants:  SO2, particulate matter, nitrogen dioxide (NO2), carbon monoxide 

(CO), ground-level ozone (O3), and lead.  Particulate matter is further categorized by particulates 

smaller than 2.5 micrometers and particulates smaller than 10 micrometers, denoted PM2.5 and 

PM10, respectively.  The EPA’s Integrated Science Assessments provide detailed summaries of 

the sources, distribution, and known health impacts of each pollutant type.  All are thought to 

harm human health, but may impact different conditions.  Epidemiological studies that find 

statistical associations between pollution and morbidity, combined with results from human 

clinical studies that demonstrate causal pathways between exposure and symptoms, such as 

airway inflammation and limited lung function, provide strong evidence of a causal negative 

impact of air pollution on health.  Careful consideration of this evidence suggests that all of the 

criteria pollutants increase respiratory morbidity, and that PM2.5, O3, and CO exposure increase 

cardiovascular morbidity and overall mortality (US EPA 2008a, 2008b, 2009, 2010, 2013). 

Though work in epidemiology and other fields has established a clear link between 

pollution and health outcomes, economists have noted problems with casual interpretation in 

these studies, since pollution exposure is not randomly assigned, and is likely correlated with 

unobserved drivers of health and other outcomes.  Chay and Greenstone (2003) use exogenous 

variation in pollution reductions resulting from the 1980-82 recession to address this issue.  They 

find that the estimated impact of total suspended particulates (TSPs) on health is consistently 

larger, when accounting for these potential sources of bias.  Similarly, Schlenker and Walker 

(2015) use exogenous variation in airport congestion to estimate the impact of CO on health 

outcomes for individuals living near airports.  They find a one standard deviation increase in CO 
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pollution increases daily asthma attacks by 21 percent, relative to the baseline average.  These 

estimates are an order of magnitude larger than estimates that ignore the potential endogeneity.  

These papers demonstrate the need for careful vetting of the sources of pollution variation, when 

examining the causal relationship between health outcomes and ambient air quality.   

Even when variation in pollution is exogenous, ignoring the defensive actions people take 

to protect themselves against pollution can bias estimates.  For instance, if a person wears a mask 

(which filters out particulate matter) on poor air quality days, she will not experience respiratory 

damage as severe as a person who does not take this precaution.  If a large proportion of the 

population engages in defensive behavior, then observed health outcomes on a poor air quality 

day will be only a fraction as severe as the counterfactual, in which no person engages in 

defensive behaviors.  Morretti and Neidell (2011) provide evidence of this using ship arrivals in 

Los Angeles ports as an exogenous source of variation in ozone.  Their objective is to estimate 

the causal relationship between hospitalizations (a proxy for health outcomes) and ozone 

concentrations.  Port activity is a large source of ozone in the area but generally unobserved by 

individuals, so defensive behavior is unlikely to directly respond to it.  Using ship traffic as an 

instrument for ozone, Morretti and Neidell find IV estimates that are four times larger than 

similar estimates using OLS.  Specifically, they show that hospital costs increase by more than 

4.5 percent in response to a 0.01 part per million (20 percent of mean) increase in average ozone 

levels.  

Other studies focus directly on the defensive actions.  Behavioral changes induced by a 

decrease in environmental quality are often to as defensive expenditures.  Graff Zivin et al. 

(2011) find that consumers respond to notices of public drinking water violations by increasing 

purchases of bottled water between 17 and 22 percent.  For microorganism violations, they find a 
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higher response rate in communities with a larger elderly (over 65) population, corroborating the 

theory that vulnerable groups will have more incentive to respond to violation notices.  In other 

examples, Mu and Zhang (2014) and Zheng et al. (2015) find that purchases of anti-pollution 

facemasks and air filters increase with ambient pollution levels.  

Our paper examines defensive expenditures related to medication purchases, and so 

contributes to the literature using this approach to measure the morbidity-related welfare effects 

from changes in air pollution.  In contrast to studies with a regional or niche product emphasis, 

we focus on a nationally-relevant category of spending that totals over $75 billion per year.  In 

addition, previous evidence suggests this spending may be sensitive to ambient air quality.  For 

example, an EPA report on the costs and benefits associated with the 1990 Clean Air Act 

Amendments suggests that particulate matter accounted for $11.6 billion in medical expenditures 

in 2010 (EPA, 2011).  This figure is derived from estimated pollution-induced changes in 

cardiovascular and respiratory disease incidence, multiplied by an average cost of illness 

measure.  While the EPA estimate provides a useful benchmark, its methodology likely suffers 

from the critiques described above.  Our paper builds on the existing literature’s focus on 

plausibly exogenous pollution measures and careful accounting for avoidance behavior, to 

provide a valid estimate of the impact of air pollution on respiratory disease spending.   

The paper closest to our study is Deschenes et al. (2016), who use county level insurance 

claims data to investigate how reductions in ozone attributed to the implementation of the NOx 

Budget Program – a cap and trade policy established in the northeastern US – impact healthcare 

expenditures.  Using policy implementation differences across states as an exogenous treatment, 

they find that the program reduced respiratory and cardiovascular spending by 2 percent, an 

effect that primarily operates through the reduction in ambient ozone concentrations.  Our 
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research builds on and complements this by exploring the connection between spending and air 

pollution in a wider geographic context, using household level panel data.  While Deschenes et 

al. exploit variation in ozone, we use variation in SO2 and particulate matter to investigate 

analogous effects from pollutants that have thus far not been examined in this context.  

Furthermore, we apply an identification strategy that is new to the pollution-health relationships 

literature.    

 

1.3     Theoretical model 
 

Exposure to pollution has biological consequences that can result in degraded respiratory 

health.  Defensive actions occur after pollution levels have been realized, and people can utilize 

healthcare to alleviate damage caused by the resulting pollution exposure.  Here we present a 

static version of Grossman’s (1972) health production framework to frame this problem more 

precisely, and to motivate our empirical analysis.  We assume the person receives utility from 

health H along with spending on a composite good x based on the direct utility function U(H,x).  

Health is produced according to the production function H=h(m,a), where m is spending on 

healthcare (e.g. medication), and a is the ambient level of air pollution.  We assume that m has 

positive marginal product and a negative marginal product, so that higher air pollution reduces 

health.  The person’s optimization problem is given by 

  ( , ) max , ( , ) ,
m

V a y U y pm h m a    (1) 

where p is the out of pocket cost of medication, y is income, and  is an insurance premium paid 

by the consumer.  The solutions to this problem are given by m(p,a,y) and x(p,a,y), where 

.x y pm     This allows us to express the health outcome as 

 ( ( , , ), ).H h m p a y a  (2) 
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Taking the total derivative of (2) respect to a while holding H fixed we obtain 

 
( , , )

0 ,
h m p a y h

m a a

  
 
  

 (3) 

which, after rearranging and multiplying both sides by p, we have 

 ( , , )
.

m p a y h a
p p

a h m

  
 

  
  (4) 

Note that the left hand side of (4) is the marginal change in out of pocket expenditure on m 

following a marginal change in a, and the right hand side is the value of the units of m needed to 

offset a change in a, holding H constant.  To relate (4) to marginal willingness to pay, we 

differentiate (1) with respect to a to obtain  

 

,

V U m U h m h
p

a x a a H m a a

U m
p

x a a

          
                 

   
      

 (5) 

where the second equality follows from equation (3).  Dividing through by the marginal utility of 

income, we obtain an expression for marginal willingness to pay as 

 ( , , )
( ) .

V a m p a y
MWTP a p

V y a a

   
   

   
 (6) 

Thus knowledge of the insurance premium structure and household demand for m allows 

calculation of marginal willingness to pay for a small change in a.   

For insight on the structure of the insurance premium, we consider a highly stylized 

model of a competitive insurance provider.  We abstract from adverse selection and assume that 

the insurance company knows the demand for health services, but is uncertain over ambient 

pollution levels.  Specifically, the insurance company sets its premium and out of pocket copay 

before the level of ambient pollution is realized, so that expected profit is 

  ( ) ( , , ) ( ) ,E c p m p a y f a da        (7) 
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where c is the marginal cost of providing a unit of m and f(a) is the probability distribution for a.  

At zero expected profit, for a given p the equilibrium premium level is characterized by1 

 

 

 

   

( , , ) ( )

( , , ) ( )

( , , ) .

c p m p a y f a da

c p m p a y f a da

c p E m p a y

    

  

  



  (8) 

Equation (8) shows that, holding p fixed, a influences the actuarially fair premium level through 

its influence on health care demand.  Specifically, after differentiating we have 

  
( , , )

.
m p a y

c p E
a a

  
   

  
  (9) 

Substituting this expression into equation (6), we can write the household’s marginal willingness 

to pay for a change in a as 

 

 

( , , )
( )

( , , ) ( , , )
,

m p a y
MWTP a p

a a

m p a y m p a y
c p E p

a a

 
 
 

  
   

  

  (10) 

and the average marginal willingness to pay is the expected change in the full cost of health care: 

 

   
( , , ) ( , , )

( )

( , , )
.

m p a y m p a y
E MWTP a c p E p E

a a

m p a y
c E

a

    
       

    

 
   

 

  (11) 

Equation (11) is our key result.  It shows that an estimate of the change in total expenditures 

from a change in a can be linked to marginal willingness to pay, even when households’ out of 

pocket expenditures are less than total expenditures.  This result motivates of our use of total 

expenditures in our main empirical analyses and welfare predictions.   

                                                           
1 Cutler and Zeckhauser (2000) present a more detailed exposition of an optimal insurance policy, including 

selection of the optimal coinsurance rate.   
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Appendix A extends this theory to include cases with additional defensive actions.  If 

both medication use and behavioral adjustments are available, the household simultaneously 

equates the marginal benefit to the marginal cost of producing health through each channel.  In 

our empirical section we focus on estimating the demand for medication, while controlling for an 

individual’s propensity to engage in other defensive activities.  Bartik (1988) and Phaneuf and 

Requate (2016) extend this analysis to the case of non-marginal changes in pollution.  They show 

that the change in defensive expenditures following a change in pollution provides a lower bound 

on compensating variation (CV).  We use this result in our empirical analysis to argue that our 

predicted changes in expenditures provide a lower bound estimate of the willingness to pay for 

the pollution reduction magnitudes observed during our study period.  

Our model shows how welfare measures can be derived from observed consumption 

behavior in a static context.  However, a more complex dynamic model may be necessary to 

fully describe some types of consumption behavior over time.  A dynamic model would need to 

vary by the type of medical spending being analyzed.  For example, for chronic respiratory 

ailments, such as asthma and chronic obstructive COPD, there are two broad types of 

medications.  The first group consists of ‘rescue’ inhalers that are used in the event of an acute 

asthma attack.  Purchase of these types of medicines can be thought of as self-insurance, aimed 

at reducing the severity of an asthma attack if it occurs.  It is intuitive that use of this type of 

medication will be immediately responsive to environmental irritants, but not impact future use.  

It is therefore consistent with a static model of behavior. 

The second group includes long-acting medications, such as inhaled corticosteroids, that 

reduce the probability of a future asthma attack.  Purchase of this type of medication can be 

thought of as self-protection.  Long-acting inhaler purchases, and possibly office visits, may 
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come before or in expectation of a forthcoming pollution season, in contrast to rescue inhaler use 

or emergency room visits, which come after exposure has occurred.  Furthermore, long-acting 

medications are often recommended for daily use, suggesting they would not be responsive to 

short term environmental changes.  Despite these considerations, evidence from the health 

literature shows that utilization of these medications is reactive in nature, and exhibits seasonal 

variation similar to rescue medications (Sloan et al. 2013).  In addition, long-acting inhalers are 

refilled, on average, two to four times annually (Stempel et al. 2005).  This frequency allows 

observation of changes in use within quarterly data, even for medications that are more long-

term in nature.  In our empirical analysis, we focus on asthma and COPD spending, which this 

reasoning suggests may be responsive at a quarterly time span, and so provides a suitable setting 

for framing under the static health-substitutes model described here. 

 

1.4 Data 
 

1.4.1 Medical Expenditure Panel Survey 

 

Our analysis relies on data describing health care expenditures, ambient air quality, and 

several additional controls.  The health expenditure data come from the Medical Expenditure 

Panel Survey (MEPS) from 1996 to 2003.  These data consist of seven overlapping panels.  

Households in each panel are drawn from the previous year’s National Health Interview Survey 

(NHIS), and are interviewed five times over a two year period.  The NHIS selects a nationally 

representative sample of households and then collects data for every member in a chosen 

household.  This protocol allows us to include personal and household characteristics, account 

for some pre-existing conditions, and identify a household’s location at the Metropolitan 

Statistical Area (MSA) level.  Linking the MEPS and NHIS files requires a confidential data use 
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agreement through the Agency for Healthcare Research and Quality (AHRQ).  Although we can 

match spending to individuals, we aggregate the data to the household level, and use this as our 

cross sectional unit of observation, for several reasons.  First, some characteristics that influence 

healthcare decisions, such as income, insurance status, and genetic risk factors for illness, are 

typically shared by all members of a household.  Also, consumption decisions may be made 

jointly or primarily by a head of household figure.  Finally, some drugs, such as allergy and cold 

medications, are likely shared among members of a household.  

Interview rounds in the MEPS cover a five month period on average, but some variables 

are available on a monthly or even daily level.  For example, a prescription medication refill date 

is only known at the interview-round level, but ambulatory care or emergency room visit dates 

are known exactly.  We specify expenditures at the quarterly (three month) level and use quarters 

as our time unit of observation.  For medication purchases only observed at the interview-round 

level, and interview-rounds that span more than one quarter, expenditures are divided 

proportionally across the quarters.  This results in eight observations per household over their 

two year interview period. 

Categories of spending that we consider include prescription medications, office-based 

physician visits, and emergency room visits.  Medical conditions related to these spending 

categories can be identified using Internal Classification of Diseases (ICD-9) codes.  Expenditure 

data is cross checked with insurance providers and pharmacies during data collection, so there is 

little worry about measurement error for these variables.  Our main analysis uses spending on 

conditions for chronic obstructive pulmonary disease (COPD) and allied conditions (ICD-9 

codes 490-496).  The ‘allied conditions’ in this category include bronchitis, emphysema, and 

asthma.  We further separate asthma from the other conditions under the hypothesis that the 
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management of asthma symptoms may differ from other chronic respiratory conditions, due to 

the nature of the disease and/or differences in the populations with each condition.  Additional 

categories we examine include diseases of the cardiovascular (ICD-9 410-414) and digestive 

(ICD-9 520-579) systems, where the latter serves as a placebo test.  Expenditures on all 

categories are converted to 2003 dollars, and deflated using the appropriate Personal Health Care 

(PHCE) or Component Price Indices (CPI), as recommended by the AHRQ (AHRQ, 2015).  

Summaries of household spending by type are presented in Table 1.  Over 13 percent of 

households have positive spending on asthma medications during at least one quarter, while 11.4 

and 11.9 percent of households have positive spending on rescue inhalers and office based 

asthma/COPD visits, respectively.  On the other hand, COPD medication purchases and 

emergency room visits are more rare, but also more costly per event.  The MEPS data also 

provide individual level characteristics, such as insurance status and type, age, income, and 

diagnosed health conditions.  Table 2 summarizes some of these variables.  The indicator Asthma 

equals one if the individual has ever been diagnosed with asthma or emphysema, has had a 

recent asthma attack, or has used asthma medications in the past.  Among sampled individuals, 

7.2 percent belong to the asthma category.  

 

1.4.2    Pollution Data 

 

Data on ambient pollution concentrations come from EPA’s Air Quality System database, 

which we use to characterize pollution at the metropolitan statistical area (MSA) level, since this 

is the finest geographical resolution available in the MEPS data.  For reasons we discuss below, 

we focus primarily on sulfur dioxide (SO2) and particulate matter, though we consider other 

criteria air pollutants as controls.  The combustion of fossil fuels for electricity production or 
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industrial use generates the vast majority of SO2 emissions in the United States.  Transportation-

related sources also emit SO2, but contribute only five percent of total emissions.  Particulate 

matter finer than 2.5 micrometers (PM2.5) comes from natural sources, such as forest fires, as 

well as from reactions to chemicals emitted during the combustion of fossil fuels for electricity 

production (US EPA, 2009).  The largest anthropogenic source of particulate matter smaller than 

10 micrometers (PM10), however, is from transportation.  In terms of other criteria pollutants, 

nitrogen dioxide (NO2) emissions result primarily from on-road mobile sources, but electricity 

production is also a significant contributor.  Ground level ozone (O3) occurs when sunlight 

interacts with nitrogen oxides (NOx), which include NO2, and volatile organic compounds 

(VOCs).  Carbon monoxide (CO) is also a precursor to ambient levels of O3.  Transportation is 

the largest contributor to these ozone precursors. 

The Air Quality System database provides an inventory of pollution concentration 

measures taken from individual monitors across the country.  To match medical expenditures to 

ambient pollution levels, we aggregate pollution data from monitors at the MSA level for three 

month periods.  Pollution measures are calculated by first averaging the daily mean values across 

all of the monitoring stations within an MSA for a given day.  Then, these daily means are 

averaged within a three month quarter.  Similar MSA/quarter measures are created using daily 

maximums and the 98th or 99th percentiles of daily maximums, depending on the form of the 

EPA’s ambient air pollution standards for each particular pollutant.  Since pollution monitors 

may come into service or retire during the study period, and because some monitors only operate 

seasonally, we restrict attention to monitors that operate continuously, to minimize any potential 

bias from selective monitoring.  Continuous operation in our context means there is at least one 

weekly observation for 47 weeks per year, for both years of an individual’s survey period.  This 
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cut-off point is admittedly arbitrary, but it retains the majority of the monitor data and mirrors 

the strategy used in Deschenes et al. (2016).  Pollution summary statistics, including means, 

within-person standard deviations, and the number of cities sampled with consistent monitors for 

the pollutions we consider are included in Table 3.  Relative to its mean, SO2 has the highest 

overall and within-panel variation, which is consistent with the contemporaneous policy 

environment.  A full list of MSAs represented in our data, by monitoring type, is included in 

Appendix B as Table B1.  

Though our expenditure data requires us to characterize pollution at the MSA level, there 

may be significant variation in pollution levels within an MSA, causing deviation from the MSA 

average in actual exposure for people in different areas of the city.  The bias caused by this 

measurement error will attenuate our estimates, leading to conservative estimates of the true 

effect.  However, this not be a large concern in our setting.  Fine particulate matter 

concentrations tend to be more homogenously distributed within a city than pollutants such as 

NO2 and CO (US EPA 2008b, 2009, 2010).  For SO2, cities with high readings from monitors 

across the city are more highly correlated than in cities with low ambient levels (US EPA 

2008a).  In addition, the source of a pollutant determines its intra-urban homogeneity:  PM2.5 on 

road mobile sources will be more heterogeneously distributed than PM2.5 originating from distant 

regional electricity production (US EPA 2009).  As we discuss in detail below, our instrumental 

variables strategy exploits variation in the latter source of pollution.  Table B2 in Appendix B 

shows within-MSA correlations for monitors included in the EPA data inventory.  Average 

pairwise correlations within a city range from 0.46 for CO to 0.76 for PM2.5.  More generally, 

PM2.5, O3, and SO2 have the highest correlations, while CO and NO2 have the lowest.  This is 

one motivation for our focus on PM2.5 and SO2.   
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The timing of the available MEPS data and implementation of the 1990 Clean Air Act 

Amendments provide a second motivation.  Our 1996-2003 study period overlaps the first and 

second phases of the SO2 allowance trading program in the United States.  This policy led to 

large reductions in SO2 in some regions of the country, offering more year to year variation than 

other pollutants during this period.  Importantly, sulfur dioxide is a precursor for PM2.5, which 

also exhibited large decreases over the study period.  Most of the mortality-centered health 

benefits from the cap and trade program are attributed to this reduction, making particulate 

matter of central interest. One limitation is that PM2.5 measurements are not widely available 

until 1999, while PM10 readings are available throughout the study period.  This presents a 

tradeoff between sample size and our ability to use our preferred pollutant.  For this reason, we 

estimate models on samples including either PM2.5 or PM10 and compare the results, which we 

find to be remarkably similar. 

According to the EPA, national averages of PM2.5 decreased by 37 percent between 2000 

and 2015. In our estimates, we report the effects of a one standard deviation change in PM2.5, 

which equate to approximately 27 percent of our sample average concentration. While this is a 

large change, it corresponds with the large reductions in PM2.5 that occurred over the past two 

decades. To assess the contribution of the 1990 CAA Amendments to this reduction, the EPA 

developed counterfactual estimates of PM2.5 concentrations in the absence of the policy changes 

(EPA 2011). They find that concentrations in some large population centers to be dramatically 

smaller; for example, they estimate PM2.5 concentrations to be 27 percent lower in Los Angeles 

and Pittsburgh, 37 percent lower in Manhattan, and 67 percent lower in Chicago than they would 

have been by the year 2000 in the absence of the CAA Amendments. 
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Figure 1 displays pollution trends over the study period.  Sulfur dioxide shows a clear 

decrease from year to year, with peaks over the winter months.  Ozone concentrations have a 

clear seasonal pattern that peaks during the summer, but there are no evident aggregate year to 

year trends during the sample period, and so quarter fixed effects should remove most of the 

natural O3 variation in the data.  Fine particulate matter (PM2.5) levels are more volatile, but still 

exhibit seasonal patterns, with a slight downward trend over time.  The existence of significant 

year to year variation in SO2 and particulate matter provides quantitative evidence in support of 

our decision to focus primarily on these two pollutants.   

 

1.4.3    Additional Controls 

 

Additional controls in our regressions include weather data, which comes from the 

National Climatic Data Center (NCDC).  Weather variables include mean precipitation, tenth 

percentiles of daily maximum temperatures and relative humidity, and the standard deviation of 

barometric pressure.  The tenth percentile measures are used since cold and dry air are known to 

agitate respiratory conditions (Hyrkas et al. 2014, Makinen et al. 2009).  There is some evidence 

that changes in atmospheric pressure may also irritate asthma, so a measure of variability is used 

for the pressure variable (Hashimoto et al. 2004).  

 

1.5 Empirical Approach 

 

Our objective is to estimate the effect of contemporaneous air pollution on household 

medical expenditures.  Our baseline model is 

 ( )

1 2 3 ( ) ( ) ,y t

it jt jt it i q t cr j itY pollution weather X               (12) 
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where Yit is one of the (log-transformed) expenditure categories listed in Table 1, for household i 

during quarter t.  Medical expenditure data from a general population often contains many zero 

observations with some rare high-cost events. A logarithmic transformation is a simple method 

commonly used in health economics to address the right-skewed nature of the data (Manning and 

Mullahy 2001).  Due to the existence of zeros in our data, the exact transformation of the 

dependent variable takes the form log( 1)x  .  Other transformations, including inverse hyperbolic 

sine, were tested but led to qualitatively similar results.  Further estimation strategies that address 

the zeros and skewness in our data are included in the robustness section below. Insurance 

premium payments are not included in the publicly available MEPS data, so we primarily use 

total, rather than out of pocket, expenditure measures as dependent variables. Our theoretical 

model implies that total expenditures more comprehensively account for the medical costs of air 

pollution. The main coefficient of interest is 1, which measures the proportionate change in 

expenditures from a unit change in pollution, expressed in our models as a standard deviation 

change in concentration.  For controls we include household (i) and quarter of year (q(t)) fixed 

effects, so that 1 is identified off within-household variation purged of seasonal trends.  The 

variables weatherjt and Xijt account for time-varying weather shocks at the MSA (j index) level 

and co-pollutants; the latter also includes household controls.  Finally, ( )

( )

y t

cr j  is a year-by-census-

region dummy variable that flexibly accommodates geographic variation in aggregate annual 

time trends.  These trends include regional macroeconomic cycles that may impact both 

emissions and healthcare expenditures.   

Consistent estimation of 1 in equation (12) requires that, conditional on the fixed effects 

and observables, pollutionjt and it are uncorrelated.  Unobserved determinants of medical 

expenditures may pose a threat to this condition.  For example, people may engage in avoidance 
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behaviors, such as spending more time indoors on poor air quality days, so as to reduce exposure 

to outdoor ambient pollution.  Insofar as people are engaging in these types of behavior during 

more-polluted periods, estimates of the impact of pollution on respiratory disease and spending 

will be biased downwards, providing a conservative estimate of the true costs.  However, the 

household fixed effects in the model account for propensities to engage in avoidance behaviors 

generally, as well as other unobserved household characteristics that do not change over time, 

and so this downward bias may be attenuated.  In addition, household fixed effects can improve 

estimation when measurement error in right hand side variables is constant over time (Bound and 

Krueger, 1991).  In our case, MSA level ambient pollution measures may be poor proxies for 

actual ambient levels where a household is located.  However, if pollution in a household’s 

neighborhood is consistently (say) higher than the MSA average, due to fixed geographic 

influences, then the household fixed effect will absorb that difference.  

An additional threat to identification is due to correlation between pollution 

concentrations and local macroeconomic conditions, which may also impact our outcome 

variable.  To address this and other endogeneity concerns, we implement an instrumental 

variable (IV) strategy similar to the one used by Bayer et al. (2009) and Hamilton and Phaneuf 

(2015).  Their approach uses an atmospheric source-receptor matrix, developed by US EPA 

contractors, that predicts how emissions of SO2 and nitrous oxides (NOX) originating from a 

source s (s=1,…,S) affect concentrations of particulate matter at a receptor r (r=1,…,R).2  

                                                           
2 An example of research using this source receptor matrix to predict the impacts on particulate matter 

concentrations of place-specific emission reductions is Shadbegian et al. (2007).  These authors interacted with EPA 

staff and Abt Associates analysts to document how to use the matrix, which was originally described in Latimer 

(1996).  The latter reference seems to no longer exist, though technical information on the source-receptor matrix is 

also provided in Abt Associates (2000, pp. E1-E5).  Bayer et al. (2009) and Hamilton and Phaneuf (2015) relied on 

personal communication with Wayne Gray to obtain the necessary files and documentation, which we have drawn 
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Sources in the matrix we use include specific point sources (generally electricity generating 

units) with stacks over 500 meters tall, as well as county-level aggregates for shorter stacks and 

other emission sources.  Receptors are at the level of US counties, and the elements of the matrix 

are pollutant-specific transfer coefficients that are calibrated based on prevailing winds, stack 

heights, and other physical features.  Given data on SO2 and/or NOX emissions from a set of 

sources at a given time, it is possible to predict the county-level concentrations of particulate 

matter derived from that pollutant using  

 ,k k k

t tSR E A    (13) 

where k

tE  is an S×1 vector of emissions of pollutant k (SO2 or NOX) at time t from each of the S 

sources, SRk is the R×S source-receptor matrix specific to pollutant k, and k

tA  is a vector of 

particulate matter concentrations predicted from pollutant k, for the R receptor counties.   

Since the sources and receptors included in SRk are spatially explicit, it is possible to 

determine the distance between each source-receptor pair.  With this, we define the R×S matrix 

D such that drs=1 if receptor r is located more than some cutoff distance from source s, and zero 

otherwise.  We then define an alternative prediction of concentrations in the R counties 

according to 

  . ,k k k

t tD SR E A     (14) 

where the operator ‘.×’ denotes element by element multiplication.  Note that k

tA  is a prediction 

of concentrations based on pollutant k, which excludes all emission sources located less than the 

cutoff distance from the receptor county.  In our main models we use a cutoff distance of 50km 

                                                           
on for this paper.  Documents on using the matrix, including emails sent to Shadbegian et al. from developer 

Douglas Latimer, are available upon request.   
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and present robustness checks for 120km.  This makes it useful as an instrument.  Specifically, 

the design of the source-receptor matrix (and variation in geography and prevailing wind 

patterns) imply that k

tA  will be correlated with observed concentrations at a particular location, 

but its reliance on only distant pollution sources in calculation suggests it is plausibly 

uncorrelated with local macroeconomic conditions, and any time-varying propensity individuals 

may have to engage in avoidance behavior.3  Additional details on how we construct k

tA  using 

the source-receptor matrix are available in Appendix C.   

Though previous papers have developed this instrument at the annual level, we use 

quarterly emissions data from the EPA’s Air Market Program Data (AMPD), which provides 

comprehensive emissions data for SO2 and NOX for thousands of facilities.  Using these 

emissions data, we construct two separate instruments using distant emissions of SO2 and NOX 

individually, which vary quarterly across our study years.  These instruments are correlated with 

our focus pollutants (MSA level concentrations of sulfur dioxide and fine particulate matter), but 

plausibly uncorrelated with locally unobserved drivers of medical expenditures via the distance 

exclusion.  

We implement our IV strategy using the following generalization of equation (12).  The 

first stage is given by 

 ( )

1 2 3 ( ) ( ) ,k y t

jt jt jt it i q t cr j itpollution A weather X u             (15) 

which we then use to construct an instrument for pollutionjt in 

                                                           
3 That is, though most local ambient pollution comes from local sources, some emissions are carried long distances 

due to weather and geographical patterns.  As such, local pollution concentrations depend on both ‘endogenous’ 

locally produced emissions, and ‘exogenous’ emissions produced by distant sources. 
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 ( )

1 2 3 ( ) ( ) .y t

it jt jt it i q t cr j itY pollution weather X               (16) 

If distant emissions are uncorrelated with local unobserved factors serving as correlated omitted 

variables, this IV strategy will yield improved estimates of    

 

1.6 Results 

 

1.6.1 Main Findings 

 

Table 4 presents baseline OLS fixed effects results for specifications that include and 

exclude co-pollutants, and use the PM2.5 and PM10 samples.  For each column the dependent 

variable is log-transformed total spending on asthma and COPD, which includes medication 

purchases, office-based visits, and emergency room visits.  The pollutant measures are quarterly 

averages of the observed daily mean, normalized to have zero mean and a standard deviation of 

one.  Standard errors are clustered at the MSA/survey cohort level.4   

Our OLS results show a strong and robust positive marginal effect of SO2 on 

expenditures.  Specifically, a one standard deviation increase in average SO2 is associated with 

an increase in asthma and COPD spending of between 2.4 and 4.2 percent.  All other pollutants, 

including both measures of particulate matter, have insignificant coefficients across all models.  

This provides initial evidence that air pollution affects spending on respiratory medications, 

though the potential endogeneity of our pollution measures requires additional analysis to 

establish causality.   

Table 5 presents our main IV results using distant source emissions as an instrument for 

                                                           
4 That is, respondents included in the same cohort timeframe and living in the same MSA are included in the same 

cluster.  For our PM2.5 sample this produces 68 clusters, and for the PM10 sample there are 133 clusters.   
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local pollution concentrations.  Here we focus on the PM2.5 sample and again examine total 

spending on asthma and COPD conditions.  In addition to the household and time fixed effects, 

these estimates control for time-varying unobservable drivers of healthcare consumption that 

may be correlated with local pollution.  As described above and in Appendix C, we construct 

instruments for SO2 and PM2.5 concentrations using the source-receptor matrix and distant 

emissions of SO2 and NOX, though similar endogeneity concerns may exist for the co-pollutant 

controls we include in the model.  Without instruments to estimate all endogenous pollutants 

jointly, we face a tradeoff between omitted variable bias from excluding co-pollutants, and bias 

that comes from including non-instrumented endogenous variables.  Table 5 presents a 

systematic exploration of this tradeoff.  Each column displays models containing a different 

subset of (non-instrumented) co-pollutants, and the rows show estimates of the two coefficients 

of interest for different IV strategies.  The bottom row is our ex ante preferred specification, in 

that it jointly instruments for both SO2 and PM2.5.   

Our first stage F-statistics show that our instruments based on distant source emissions 

are reasonably strong predictors of local concentrations.5  In our second stage results, we find 

that instrumenting for PM2.5 produces statistically and economically significant effects for this 

pollutant across the range of co-pollutant specifications.  Point estimates from the bottom two 

rows of Table 5 suggest a one standard deviation increase in PM2.5 concentration increases 

spending on medication between 3.6 and 8.3 percent.  Importantly, in our preferred bottom-row 

specification that jointly instruments for both pollutants of interest, only PM2.5 retains its 

statistical and economic significance.  Here we find that a one standard deviation increase in 

PM2.5 increases expenditures for asthma and COPD by 4.7 to 8.3 percent.  Omitting O3 as a 

                                                           
5 Table R1 in the reviewer’s appendix shows representative first stage results.  
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control, as in columns (2) and (4), decreases the coefficients on PM2.5.  This makes sense, since 

O3 is negatively correlated with PM2.5 in general, while CO and NO2 are positively correlated 

with PM2.5.  Consistent with findings in previous studies, our IV estimates are larger than their 

OLS counterparts, perhaps due to improved accounting for time-varying avoidance behavior.  In 

addition, the switch in significance from the SO2 to PM2.5 variables could be indicative of 

measurement error in our PM2.5 variable.  In particular, the alternative PM2.5 measures from our 

instruments may help isolate the true PM2.5 effect, whereas in the OLS regressions, SO2 acted as 

the proxy for particulate matter.   

 

1.6.2     Disaggregate Findings 

 

Our main findings show that particulate matter concentrations have an economically 

important influence on asthma and COPD spending.  In this section we further examine the 

relationship by presenting regressions using disaggregated categories of spending.  Table 6 

shows results from several models that use our preferred IV strategy of instrumenting for both 

SO2 and PM2.5.  Panel A focuses on the total expenditures (out of pocket costs plus insurance 

contributions) that have been our main emphasis, while Panel B uses out of pocket household 

expenditures as the dependent variables.   

In Panel A, the estimates on PM2.5 are positive and significant for most of the categories, 

while the estimate on SO2 generally remains insignificant.  More specifically, the PM2.5 estimate 

is qualitatively consistent across asthma-related spending on medications, office visits, and 

emergency room visits (columns 2, 5, and 6).  From these regressions we see that asthma-

specific spending has an economically significant relationship to pollution, even when examined 

separately from COPD.  Given the quite different populations suffering from these two 
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conditions, this is a useful insight.  Columns 3 and 4 break spending on asthma medications into 

long-acting and rescue inhalers.  The former is found to be more responsive to air pollution – a 

result consistent with findings in Deschenes et al. (2016).  This gives new insight into how 

people adapt to air pollution patterns.  In particular, long-acting medications are more responsive 

over quarterly periods than rescue medications.  Individuals with chronic respiratory conditions 

may purchase rescue inhalers proactively, which would lead to the insignificant effects in 

column 4.  Columns 7 and 8 illustrate the importance of specificity in relating pollution to health 

care expenditures.  Column 7 presents estimates when the dependent variable is broadly defined 

to include spending on all types of respiratory-related ailments, while column 8 does so for 

cardiovascular ailments.  In contrast to our robust findings for asthma and COPD, these broad 

categories produce null and/or counterintuitive results.  We speculate that the broad spending 

categories nest too much heterogeneity in physiological responses to different air pollutants to 

allow clean identification of a single-pollutant effect.  Finally, column 9 in Panel A provides a 

placebo test relating spending on digestive ailments, which should not respond to air pollution, to 

our preferred measures of air pollution.  Consistent with intuition, there is no significant 

relationship between this category of spending and PM2.5 or SO2.   

The estimates focusing on out of pocket expenditures (Panel B) mirror their total 

expenditure counterparts in sign, but they are consistently smaller in magnitude.  This is intuitive 

from a practical perspective, but also has a potential moral hazard explanation.  For example, an 

annual cap on total out of pocket spending could produce the observed differences in pollution 

response effects, even if the quantity consumed at a given level of pollution remains constant.  

More speculatively, if moral hazard causes inefficiently high use of medical services, the 

marginal willingness to pay for a pollution reduction based on out of pocket costs may be smaller 
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than the marginal effect on total expenditures.  Further research could investigate this link more 

completely.  For our analysis here, we rely on our main theoretical predictions as motivation for 

focusing on total expenditures for our welfare interpretation.    

 

1.6.3     Robustness 

 

We completed several additional analyses to check the robust of our main findings to 

alternative assumptions and data configurations.  In this section we describe a subset of these 

efforts that serve to illustrate the stability of our main findings.  To test the dependence of our 

findings on how MSA-level air pollution is represented, we examined alternative pollution 

measures in our main regressions.  Table 7 replicates our preferred IV specification for total 

asthma and COPD spending using the quarterly average of daily maximum and percentiles of 

daily maximums that mirror the form of EPA’s NAAQS.  The daily maximum and percentile 

measures in columns 1 and 2, respectively, result in estimates similar to those from our baseline 

joint IV estimates.  This is encouraging, in that it is not entirely clear ex ante which pollution 

measure should be preferred.   

Our main regression analysis focused on medical service expenditures, which combines 

both quantity demanded and pricing aspects.  To check that our findings are driven by 

consumption responses and not a spurious relationship between pollution and medical services 

pricing, perhaps due to drug company pricing policies, we sought out models that would hold 

price effects fixed.  Since there are hundreds of differentiated products included in each spending 

type, and because we only have expenditure and quantity information for those who purchased 

medication, directly including price effects in this setting is infeasible.  It is possible, however, to 

investigate if the number of prescriptions or their quantity, such as number of doses per 
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prescription, increase in response to increases in pollution.  Table 8 presents two models using 

our preferred IV strategy that investigate these notions.  In column 1, the number of asthma 

medications purchased per survey round is used as the dependent variable.  Similarly, the dose 

quantity per asthma medication is the dependent variable in column 2.  There is clear evidence 

that both number of prescriptions and doses per prescription increase in response to increases in 

particulate matter, which should alleviate concerns about endogenous pricing by drug 

companies, or other spurious correlations between pollution and prices. 

Our IV strategy relies on the exclusion restriction that emissions generated more than 

50km from a receptor county are uncorrelated with time-varying unobservable drivers of health 

care spending.  This decision followed from the Bayer et al. (2009) and Hamilton and Phaneuf 

(2015), but is nonetheless an arbitrary cutoff point.  Table 9 replicates the results in Table 6, but 

does so using a cutoff distance of 120km to construct the instruments.  Comparison of estimates 

in the two tables confirms that our findings are not sensitive to our choice of cutoff distance.   

Another concern relates to our use of continuous linear models for our limited dependent 

variable outcomes.  We check the robustness of our non-IV results in Table 4 by presenting 

estimates from correlated random effects (CRE) probit and CRE tobit models.  The CRE 

versions of these estimators model unobserved heterogeneity as functions of the observed 

covariates.  The CRE tobit model is appealing in our context due to the large number of zeros in 

medical expenditure data.  In addition, the average partial effects are estimated, which are the 

objects of interest because our data are corner-solution in nature rather, than censored 

(Wooldridge 2010).  Table 10 displays results from models that use both the PM2.5 (Panel A) and 

PM10 (Panel B) samples.  In column 1, the CRE tobit model produces results similar to those 

presented in Table 4.  Columns 2 and 3 use a binary indicator of positive spending or no 
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spending as the dependent variable in a linear probability model and CRE probit, respectively.  

These models are qualitatively consistent with Table 4, in that they show a positive association 

between SO2 and the likelihood of a household having positive spending.  Comparison of Panels 

A and B implies similar associational findings for the two different samples, across the tobit, 

probit, and linear probability models.  Though these estimates do not support the robustness of 

our causal findings, they do suggest that our findings are robust to a fuller accounting of the 

limited dependent variable nature of our data.   

The final columns in Panel A of Table 10 does contribute to the robustness of our causal 

inference.  Column 4 our preferred IV, fixed effects analysis of the binary outcome describing 

spending or no spending by a household.  Consistent with our main findings, we show that a 

higher concentration of particular matter leads to a higher probability that the household will 

have positive spending on asthma or COPD medial conditions.  In column 5 of Panel A, we use 

an inverse hyperbolic sine function to transform the continuous spending variable. This 

transformation is appealing as it does not require the addition of an arbitrary constant to data 

with zeros, and coefficient estimates can be interpreted in a similar way to those produced by a 

log transformation. With this alternative specification, an increase in PM2.5 is found to increase 

expenditures by over 9 percent. The magnitude of this estimate is consistent with those found 

using our preferred log transformation. 

As a final robustness check, we depart from our household-level analysis and consider 

individual level spending.  Table 11 presents our results.  Column 1 is comparable to Table 6, 

Column 1, Panel A. The magnitude of the PM2.5 estimate is now smaller, but still positive and 

significant. Columns 2 and 3 divide the sample into two age groups.  The first groups consists of 

adults between the ages of 18 and 64, and the second group includes what are generally 
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considered more vulnerable groups: children under the age of 18 and seniors 65 and older.  We 

find no significant effect for the vulnerable age groups, but a strong effect for the 18-64 group. A 

possible explanation for this result is that vulnerable individuals with diagnosed respiratory 

conditions utilize high levels of medications and medical services regardless of pollution level, 

and they therefore are less likely to respond to quarterly variation in pollution.  

 

1.7 Conclusions 
 

Our empirical work in this paper demonstrates an economically significant and robust 

relationship between air pollution and asthma and COPD related medical expenditures.  In our 

preferred specifications, we find that a one standard deviation increase in PM2.5 increases 

spending on asthma and COPD by as much as 8.3 percent.  This estimate implies that a 

substantial amount of spending is attributable to air pollution, given that total spending on these 

conditions exceeded $75 billion in 2012.  We identify this effect using high quality data on 

household medical expenditures, combined with ambient air quality and emissions data, which 

we analyze using a fixed effects panel IV estimator.  By controlling for time-invariant household 

characteristics and instrumenting for local ambient pollution using emissions from distance 

sources, we provide a convincing causal estimate at a large spatial scale, for a pollutant and 

medical expenditure category that have until now not been carefully examined.   

We also frame our empirical analysis in the context of a static health production 

framework, which allows us to link changes in medical expenditures to welfare effects.  

Specifically, by integrating a model of household behavior with a stylized competitive insurance 

provider, we show that the marginal willingness to pay for a change in pollution is at least as 

large as the marginal change in total expenditures (out of pocket plus insurance) resulting from 
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the change.  Using this and the Bartik (1988) logic for bounding the willingness to pay for 

discrete environmental changes, we conclude that the changes in fine particulate matter 

concentrations stemming from the 1990 Clean Air Act Amendments and contemporaneous 

events – which correspond approximately to a standard deviation reduction across our data years 

– generate over $6.3 billion in in annual economic benefits via lower expenditures on asthma and 

COPD medical services.  Since the economic benefits from this policy have mainly focused on 

the reduced mortality stemming from the decreases in PM2.5, this is a heretofore unmeasured 

benefit of the program.  As people live longer with accurate respiratory and cardiovascular 

ailments, morbidity-focused benefits of this type are likely to become increasingly important for 

evaluating air pollution policy.   

Our findings complement the small number of other studies that have examined how the 

demand for medical services responds to air quality.  For example, Deschenes et al. (2016) find 

evidence that a 6 percent reduction in ambient ozone concentrations led to 2 percent reduction in 

respiratory and cardiovascular medication expenditures.6 Our results add to this work by 

showing a convincing pathway between particulate matter and asthma and COPD expenditures, 

using household level data representative of the US urban population.  

Our paper also highlights possibilities for additional study.  In our empirical models we 

have controlled for concentrations of co-pollutants – i.e. pollutants beyond PM2.5 and SO2 that 

may also affect health outcomes.  The estimates for these were generally insignificant, which 

may suggest that respiratory medical expenditures are not responsive to these pollutants over the 

relatively long seasonal time periods that we consider.  Alternatively, it may be that the large 

                                                           
6 For completeness and comparison, Reviewer’s Table R2 shows estimates when we use our instrument strategy to 

identify ozone’s effect on asthma and COPD expenditures.   
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variation in SO2 and PM2.5 induced by acid rain program allows statistically precise 

identification of their effects, while leaving the other pollutants relatively invariant at our 

timescale.  It would be useful to know if a limited focus on SO2 and PM2.5 translates to other 

respiratory ailment contexts.  Also, our analysis identifies differences in the responsiveness to 

particulate matter of total spending and out of pocket spending.  We have focused on the former 

for our welfare analysis, but suggest that there may be implications for the welfare effects of air 

pollution changes – both conceptually and empirically – of moral hazard and other institutional 

features of medical services markets in the US.   
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Table 1: Expenditure Categories and Descriptions 

Spending Category 

Average 

Positive Total 

Expenditure 

(2003 $) 

Average 

Positive Out 

of Pocket  

(2003 $) 

Inferred 

Coinsurance 

Rate 

# Households 

with Positive 

Spending 

% Households 

with Positive 

Spending 

Asthma Medication 144.88 51.09 0.35 1411 13.1 

COPD Medication 241.01 105.17 0.44 125 1.2 

Long-Acting Inhalers 167.00 56.33 0.34 533 4.9 

Rescue Inhalers 61.95 22.22 0.36 1231 11.4 

Office Based Visits 

for Asthma/COPD 
152.40 19.39 

0.13 
1280 11.9 

Emergency Room for 

Asthma/COPD 
729.43 287.76 

0.39 
250 2.3 

Digestive Medication 149.65 53.57 0.36 2625 24.3 

Average expenditure values are conditional on positive spending by a household within a quarter.  Coinsurance rate 

indicates the percentage of a health care service paid out of pocket. We observe 10,187 unique households over 8 

quarters.  Percentages are based on pooled sample.   

 
 
 

 

 

 

 

 

 

 

 

Table 2: Individual Summary Statistics 

Variable Observations Mean Std. Dev. Min Max 

Insurance 27051 0.8106 - 0 1 

Age 27051 34 22 1 90 

Asthma 27051 0.072 - 0 1 

Income 27051 $19,635 25,308 -$47,387 $186,145 

We observe 27,051 individuals in 10,187 unique households.  Income is reported here at the individual level.  

Negative income indicates an individual is taking on debt in that period.  Values for individuals in the same 

household are averaged for household level analysis.   
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Table 3: Pollution summaries 

Pollutant SO2 PM2.5 PM10 O3 NO2 CO 

Average Daily Mean 4.45 13.90 25.81 25.09 18.27 .718 

Overall Standard Dev. 2.52 3.78 7.43 7.92 6.15 .279 

Within Standard Dev. 1.37 2.39 4.71 7.31 3.43 .198 

Minimum .35 6.25 9.20 7.88 2.99 .300 

Maximum 13.61 28.55 62.34 49.82 48.11 2.392 

99th Percentile 73.54 na na na na na 

98th Percentile na 34.50 60.84 na 65.24 na 

Observations 1026 598 1030 726 946 1074 

MSAs 39 34 40 29 37 41 

Unit of observation is an MSA-quarter pair.  SO2, O3, CO, and NO2 are measured in parts per billion (ppb), 

and PM10 and PM2.5 units are in micrograms per cubic meter (g/m3). 
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Table 4: Impact of SO2 and PM on Asthma & COPD Spending, with and without Co-Pollutant 

Controls 

 (1) (2) (3) (4) 

SO2 
0.0411*** 0.0419*** 0.0242*** 0.0272*** 

(0.00889) (0.00844) (0.00838) (0.00806) 

PM2.5 
0.00609 0.000818   

(0.00929) (0.00713)   

PM10 
  -0.00628 -0.00920 

  (0.00659) (0.00641) 

O3 
-0.00848  -0.0113  

(0.00908)  (0.00743)  

NO2 
-0.0178  -0.00583  

(0.0161)  (0.0135)  

CO 
-0.000102  0.00293  

(0.0117)  (0.00974)  

Insurance 
0.0428 0.0427 0.0208 0.0208 

(0.0278) (0.0279) (0.0196) (0.0196) 

Income 
1.35e-07 1.33e-07 1.14e-07 1.13e-07 

(6.32e-07) (6.31e-07) (4.72e-07) (4.72e-07) 

Temperature 
0.000906 0.000469 0.00148* 0.00114 

(0.000727) (0.000644) (0.000890) (0.000753) 

Air Pressure 
-0.000225 -0.000268 5.33e-05 3.38e-07 

(0.000200) (0.000195) (0.000156) (0.000152) 

Precipitation 
-0.000226 -0.000102 3.73e-05 0.000243 

(0.000599) (0.000579) (0.000540) (0.000547) 

Humidity 
0.00108 0.00128 0.000255 0.000290 

(0.000813) (0.000790) (0.000382) (0.000369) 

     

Household FE X X X X 

Region by Year FE X X X X 

Quarter FE X X X X 

Observations 48,626 48,626 76,870 76,870 

Households 6,137 6,137 10,187 10,187 

OLS estimator with log-transformed total spending on asthma and COPD as dependent variable. 

Pollution units are standard deviations of mean concentrations.  Household level probability weights are 

used.  Standard errors, clustered at the MSA/survey cohort level, are included in parentheses. *** 

p<0.01, ** p<0.05, * p<0.1 
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Table 5: IV Estimation, Impact of SO2 and PM2.5 on Total Asthma and COPD Spending 

  (1) (2) (3) (4)  

 Pollutant All Co-

Pollutants 

No Co-

pollutants 

O3 Only NO2, CO 

Only 

First Stage 

F-Stat 

SO2 instrumented  

SO2 
0.0350** 0.0298** 0.0338** 0.0312** 

42.79 
(0.0154) (0.0148) (0.0154) (0.0146) 

PM2.5 
0.00681 0.00164 0.0022 0.00437  

(0.00921) (0.00710) (0.00721) (0.00867)  

       

PM2.5 instrumented  

SO2 
0.0333*** 0.0375*** 0.0320*** 0.0400***  

(0.00958) (0.00772) (0.00943) (0.00780)  

PM2.5 
0.0636** 0.0404** 0.0568** 0.0394** 

23.53 
(0.0247) (0.0174) (0.0227) (0.0174) 

       

Jointly instrumented  

SO2 
0.00594 0.0161 0.00923 0.0175 

54.18 
(0.0193) (0.0153) (0.0188) (0.0144) 

PM2.5 
0.0834*** 0.0471** 0.0682*** 0.0480** 

35.67 
(0.0282) (0.0192) (0.0256) (0.0187) 

       

Observations  48,626 48,626 48,626 48,626  

Households  6,137 6,137 6,137 6,137  

Contributions from distant SO2 and NOx emissions to local predicted particulate matter concentration are used as 

instruments for all regressions.  All regressions include household fixed effects, household, co-pollutant and weather 

controls, quarter of year fixed effects, and region-year fixed effects.  The dependent variables are log-transformed 

expenditures on Asthma and COPD.  Pollution units are standard deviations of mean concentrations.  Household 

level probability weights are used.  Standard errors, clustered at the MSA/survey cohort level, are included in 

parentheses. *** p<0.01, ** p<0.05, * p<0
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Table 7: Alternative Pollution Measures 

 (1) (2) 

Max SO2 
0.0105  

(0.0353)  

Max PM2.5 
0.0798***  

(0.0298)  

99th Percentile SO2 
 0.0574 

 (0.0441) 

98th Percentile PM2.5 
 0.0618** 

 (0.0266) 

Observations 48,626 48,626 

Households 6,137 6,137 

Contributions from distant SO2 and NOx emissions to local predicted particulate matter concentration are used as 

instruments.  Both regressions include household fixed effects, household, co-pollutant and weather controls, quarter 

of year fixed effects, and region-year fixed effects.  The dependent variables are log-transformed expenditures on 

Asthma and COPD.  Pollution units are standard deviations of mean concentrations.  Household level probability 

weights are used.  Standard errors, clustered at the MSA/survey cohort level, are included in parentheses. *** 

p<0.01, ** p<0.05, * p<0.1 

 

 

Table 8: Impact on Number and Size of Prescriptions for Asthma 

 (1) (2) 

 # RX  Quantity  

SO2 
-0.0143 -0.877 

(0.0207) (1.549) 

PM2.5 
0.0796** 4.339** 

(0.0315) (1.732) 

Observations 48,628 48,628 

Households 6,137 6,137 

#RX indicates number of prescriptions used as dependent variable.  Quantity indicates number of doses per 

prescription. Contributions from distant SO2 and NOx emissions to local predicted particulate matter concentration 

are used as instruments.  Both regressions include household fixed effects, household, co-pollutant and weather 

controls, quarter of year fixed effects, and region-year fixed effects.  Pollution units are standard deviations of mean 

concentrations.  Household level probability weights are used.  Standard errors, clustered at the MSA/survey cohort 

level, are included in parentheses. *** p<0.01, ** p<0.05, * p<0.1



47 
 

 
 

 

 

 

T
ab

le
 9

: 
E

ff
ec

t 
b

y
 C

at
eg

o
ry

 u
si

n
g
 1

2
0

k
m

 C
u
to

ff
 D

is
ta

n
ce

 f
o
r 

IV
 E

st
im

at
io

n
 

 

 

(1
) 

A
st

h
m

a 
&

 

C
O

P
D

 

(2
) 

A
st

h
m

a 

M
ed

s 

(3
) 

L
o
n
g
-A

ct
in

g
 

M
ed

s 

(4
) 

R
es

cu
e 

M
ed

s 

(5
) 

O
ff

ic
e 

A
st

h
m

a 

(6
) 

E
m

er
g
en

cy
 

A
st

h
m

a 

(7
) 

R
es

p
ir

at
o

ry
 

M
ed

s 

(8
) 

C
ar

d
io

 

M
ed

s 

(9
) 

D
ig

es
ti

v
e 

M
ed

s 

P
an

el
 A

: 
T

o
ta

l 
E

x
p

en
d
it

u
re

s 

S
O

2
 

0
.0

2
0

1
 

-0
.0

0
0

8
9
4

 
-0

.0
0
8
3
0

 
-0

.0
1
5
7

 
0
.0

3
6
1
*
*
 

-0
.0

2
0
5
*

 
-0

.0
5

2
2

 
-0

.0
4

1
8

*
 

0
.0

0
6
9

6
 

(0
.0

1
6

8
) 

(0
.0

0
9

9
8
) 

(0
.0

1
0
7
) 

(0
.0

1
2
6
) 

(0
.0

1
7
7
) 

(0
.0

1
2
3
) 

(0
.0

3
9

3
) 

(0
.0

2
2

2
) 

(0
.0

2
5

4
) 

P
M

2
.5
 

0
.0

5
8

9
*

*
 

0
.0

3
8

6
*
 

0
.0

2
7
6
 

0
.0

1
0
7
 

0
.0

3
8
9
 

0
.0

2
5
4
*
 

0
.0

6
2

8
 

0
.0

0
0

1
3

3
 

-0
.0

4
4

8
 

(0
.0

2
8

0
) 

(0
.0

2
1

5
) 

(0
.0

1
7
3
) 

(0
.0

2
1
0
) 

(0
.0

2
4
6
) 

(0
.0

1
5
0
) 

(0
.0

6
4

7
) 

(0
.0

4
9

2
) 

(0
.0

3
7

8
) 

 
 

 
 

 
 

 
 

 
 

P
an

el
 B

: 
 O

u
t 

o
f 

P
o
ck

et
 E

x
p

en
d

it
u

re
s 

S
O

2
 

0
.0

0
0

9
8

4
 

-0
.0

0
5

9
3
 

0
.0

0
4
7
3
 

-0
.0

1
1
0

 
0
.0

1
5
0
 

-0
.0

0
2
4
0

 
-0

.0
5

4
6

*
 

-0
.0

1
3

2
 

0
.0

0
5

5
8
 

(0
.0

1
4

2
) 

(0
.0

1
0

2
) 

(0
.0

0
8
2
8
) 

(0
.0

1
0
7
) 

(0
.0

1
0
2
) 

(0
.0

0
2
4
1
) 

(0
.0

2
8

3
) 

(0
.0

1
7

9
) 

(0
.0

2
0

2
) 

P
M

2
.5
 

0
.0

4
2

8
*

*
 

0
.0

3
3

7
*
 

0
.0

1
1
7
 

0
.0

1
7
1
 

0
.0

1
8
9
 

0
.0

0
6
6

4
 

0
.0

5
5

6
 

-0
.0

0
7

7
2

 
-0

.0
3

1
3

 

(0
.0

2
1

3
) 

(0
.0

1
8

3
) 

(0
.0

1
3
0
) 

(0
.0

1
2
0
) 

(0
.0

1
2
6
) 

(0
.0

0
4
0
7
) 

(0
.0

4
4

2
) 

(0
.0

4
0

6
) 

(0
.0

3
0

3
) 

 
 

 
 

 
 

 
 

 
 

O
b
se

rv
at

io
n

s 
4

8
,6

2
6
 

4
8

,6
2

8
 

4
8
,6

2
8
 

4
8
,6

2
8
 

4
8
,6

2
2
 

4
8
,6

2
8
 

4
8

,6
2

1
 

4
8

,6
2

8
 

4
8

,6
2

8
 

H
o
u
se

h
o
ld

s 
6

,1
3

7
 

6
,1

3
7
 

6
,1

3
7
 

6
,1

3
7
 

6
,1

3
7
 

6
,1

3
7
 

6
,1

3
7
 

6
,1

3
7
 

6
,1

3
7
 

A
m

b
ie

n
t 

p
ar

ti
cu

la
te

 m
at

te
r 

co
n
tr

ib
u
ti

o
n
s 

fr
o

m
 d

is
ta

n
t 

S
O

2
 a

n
d

 N
O

x
 e

m
is

si
o

n
s 

ar
e 

u
se

d
 a

s 
to

 j
o

in
tl

y
 i

n
st

ru
m

e
n
t 

fo
r 

S
O

2
 a

n
d

 P
M

2
.5
 l

ev
el

s.
  

T
h
e 

F
 s

ta
ti

st
ic

 i
s 

o
n
 

th
e 

e
x
cl

u
d

ed
 i

n
st

ru
m

en
ts

 i
s 

4
5

.5
5

 f
o

r 
P

M
2

.5
 a

n
d

 5
0

.2
5

 f
o

r 
S

O
2
. 

 A
ll

 r
e
g
re

ss
io

n
s 

in
cl

u
d

e 
h

o
u
se

h
o

ld
 f

ix
ed

 e
ff

ec
ts

, 
h
o

u
se

h
o

ld
, 

co
-p

o
ll

u
ta

n
t 

a
n
d

 w
ea

th
er

 c
o

n
tr

o
ls

, 

q
u
ar

te
r 

o
f 

y
ea

r 
fi

x
ed

 e
ff

ec
ts

, 
an

d
 r

eg
io

n
-y

ea
r 

fi
x
ed

 e
ff

ec
ts

. 
T

h
e 

d
ep

en
d

en
t 

v
ar

ia
b

le
s 

ar
e 

lo
g

-t
ra

n
sf

o
rm

ed
 e

x
p

en
d

it
u
re

s 
o

n
 t

h
e 

ca
te

g
o

ri
es

 l
is

te
d

 i
n
 c

o
lu

m
n

 

h
ea

d
in

g
s.

  
P

o
ll

u
ti

o
n
 u

n
it

s 
ar

e 
st

an
d

ar
d

 d
ev

ia
ti

o
n
s 

o
f 

m
ea

n
 c

o
n
ce

n
tr

at
io

n
s.

  
H

o
u
se

h
o

ld
 l

ev
el

 p
ro

b
ab

il
it

y
 w

e
ig

h
ts

 a
re

 u
se

d
. 

 S
ta

n
d

ar
d

 e
rr

o
rs

, 
cl

u
st

er
ed

 a
t 

th
e

 

M
S

A
/s

u
rv

e
y
 c

o
h
o

rt
 l

ev
e
l,

 a
re

 i
n
cl

u
d

ed
 i

n
 p

ar
en

th
e
se

s.
 *

*
*
 p

<
0

.0
1

, 
*
*
 p

<
0

.0
5

, 
*
 p

<
0

.1
 



48 
 

 

 Table 10: Alternative Specifications 

 Panel A: PM2.5 Sample 

 (1) (2) (3) (4) (5) 

 CRE Tobit LPM CRE Probit LPM IV IHS IV 

SO2 
0.0257*** .01055*** 0.0054*** 0.00408 0.00934 

(0.0088) (0.00231) (0.00196) (0.00519) (0.0223) 

PM2.5 
0.0061 0.00049 0.0011 0.0140** 0.0932*** 

(0.0082) (0.00214) (0.00191) (0.00678) (0.0323) 

Observations 48,628 48,628 48,628 48,628 48,628 

Households 6137 6137 6137 6137 6137 

 Panel B: PM10 Sample 

 (1) (2) (3)   

 CRE Tobit LPM CRE Probit   

SO2 
0.0229*** 0.0065*** 0.0047***   

(0.0065) (0.0021) (0.0015)   

PM10 
-0.0092 -0.0017 -0.0019   

(0.0066) (0.0014) (0.0016)   

Observations 77,579 77,579 77,579   

Households 10,187 10,187 10,187   

The dependent variable is log-transformed total spending on asthma and COPD in column (1), a binary indicator of 

positive spending for columns (2), (3), and (4), and inverse hyperbolic sine transformed total spending in column 

(5).  All regressions include household, co-pollutant and weather controls, quarter of year fixed effects, and region-

year fixed effects.  Columns 2 and 4 include household fixed effects.  Ambient particulate matter contributions from 

distant SO2 and NOx emissions are used as to jointly instrument for SO2 and PM2.5 levels in columns (4) and (5).  

Pollution units are standard deviations of mean concentrations. Household level probability weights are used for (2) 

and (4). Standard errors, clustered by MSA-panel, are included in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 11: Individual Level Estimates 

 (1) 

Full Sample 

(2) 

18-64 

(3) 

<18 & ≥65 

SO2 
0.0124 0.00946 0.0152 

(0.00909) (0.0135) (0.0205) 

PM2.5 
0.0314** 0.0541*** -0.00302 

(0.0138) (0.0196) (0.0254) 

    

Observations 125,668 77,237 48,256 

Individuals 15,896 9,957 6,339 

 
Contributions from distant SO2 and NOx emissions to local predicted particulate matter concentration are used as 

instruments for all regressions.  All regressions include household fixed effects, household, co-pollutant and weather 

controls, quarter of year fixed effects, and region-year fixed effects.  The dependent variables are log-transformed 

expenditures on Asthma and COPD.  Pollution units are standard deviations of mean concentrations.  Individual 

level probability weights are used.  Standard errors, clustered at the MSA/survey cohort level, are included in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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1.11 Appendices 
 

1.11.1 Detailed Exposition of Health-Substitutes Model in the Context of Medical 

Expenditures 

 

In this this generalization we introduce an additional health input d that contributes to health by 

mitigating the impact of pollution.  In contrast to the purchased input with out of pocket price p, this can 

be thought of as avoidance behavior that uses time, which has a shadow cost of w.  With this, the health 

production function is H=h(m,d,a) and the individual’s optimization problem is 

  
,

( , , , ) max , ( , , ) .
m d

V p w a y U y pm wd h m d a     (A.1) 

The solutions to this problem are given by m(p,w,a,y) and d(p,w,a,y), which allows us to express the 

health outcome as 

  ( , , , ), ( , , , ), .H h m p w a y d p w a y a  (A.2) 

Taking the total derivative of (A.2) respect to a while holding H fixed we obtain 

 
( , , , ) ( , , , )

0 .
h m p w a y h d p w a y h

m a d a a

    
  
    

 (A.3) 

To develop a measure of marginal willingness to pay, we differentiate (A.1) with respect to a to obtain  

 

( ) ( ) ( ) ( )

( ) ( )
,

V U m d U h m h d h
p w

a x a a a H m a d a a

U m d
p w

x a a a

                 
                      

      
        

 (A.4) 

where the second equality follows from equation (A.3).  Dividing through by the marginal utility of 

income, we obtain an expression for marginal willingness to pay as 

 
( , , , ) ( , , , )

( ) ,
V a m p w a y d p w a y

MWTP a p w
V y a a a

    
    

    
 (A.5) 

which is analogous to equation (6).  This result illustrates that estimates of the MWTP for air quality that 

only account for medication use will be lower bounds on the true MWTP, because additional value 

accrues from the marginal decrease in costly avoidance behaviors (the last term in the expression).  It also 
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shows that the demand for medical services depends on the shadow price of avoidance behavior w, which 

can manifest as an omitted variable in a regression of medical expenditures on air pollution.   

1.11.2 Additional Pollution Information 

 

Table B1: Pollutant Monitoring by MSA 

Included MSAs 
SO2 

PM10 
PM2.5 O3 NO2 CO 

Akron, OH X X   X 

Atlanta-Sandy Springs-Marietta, GA X X  X X 

Baltimore-Towson, MD X X X X X 

Boston-Cambridge-Quincy, MA-NH X X X X X 

Bridgeport-Stamford-Norwalk, CT X   X X 

Buffalo-Niagara Falls, NY X  X X X 

Charlotte-Gastonia-Concord, NC-SC X X  X X 

Chicago-Naperville-Joliet, IL-IN-WI X X X X X 

Cincinnati-Middletown, OH-KY-IN X X  X X 

Columbus, OH X X   X 

Dallas-Fort Worth-Arlington, TX X X X X X 

Dayton, OH X    X 

Detroit-Warren-Livonia, MI X X  X X 

Hartford-West Hartford-East Hartford, CT X X X X X 

Houston-Sugar Land-Baytown, TX X X X X X 

Jacksonville, FL X X X X X 

Kansas City, MO-KS X X X X X 

Los Angeles-Long Beach-Santa Ana, CA X X X X X 

Louisville/Jefferson County, KY-IN X X  X X 

Memphis, TN-MS-AR X X X X X 

Miami-Fort Lauderdale-Pompano Beach, FL X X X X X 

Milwaukee-Waukesha-West Allis, WI X X  X X 

Minneapolis-St. Paul-Bloomington, MN-WI X X X X X 

New Haven-Milford, CT X   X X 

New York-Northern New Jersey-Long Island, NY-NJ-PA X X X X X 

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD X X X X X 

Phoenix-Mesa-Scottsdale, AZ X X X X X 

Pittsburgh, PA X X X X X 

Providence-New Bedford-Fall River, RI-MA X X X X X 

Richmond, VA X   X X 

Riverside-San Bernardino-Ontario, CA X X X X X 

Rochester, NY X X X  X 

Sacramento--Arden-Arcade--Roseville, CA X X X X X 

San Diego-Carlsbad-San Marcos, CA X X X X X 

San Francisco-Oakland-Fremont, CA X X X X X 

Seattle-Tacoma-Bellevue, WA X X X X X 

St. Louis, MO-IL X X X X X 
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Tampa-St. Petersburg-Clearwater, FL X X X X X 

Washington-Arlington-Alexandria, DC-VA-MD-WV X X X X X 

PM2.5 monitoring begins in 1999.  MSAs without monitoring for SO2, weather covariates, or household expenditure 

data are excluded from this table. 

 

Table B2: Spatial Correlation of Monitor Readings within an MSA 

Pollutant Correlation # of MSAs Monitors per MSA 

SO2 0.652 212 2.75 

PM2.5 0.760 383 2.37 

PM10 0.497 350 3.26 

O3 0.614 332 3.09 

NO2 0.469 142 2.93 

CO 0.461 180 2.97 

The correlation column presents the average of pairwise correlations between monitors within a MSA and quarter.  

Up to 5 monitors per MSA were randomly chosen to create correlation coefficient matrices.  
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1.11.3 Additional Details on the Source-Receptor Instrument  

 

The source-receptor matrix we use to construct our instrument was originally developed in the 

mid-1990s by EPA and its contractors for use in evaluating how source-specific reductions in emissions 

translate into changes in ambient air quality across space.  The dispersion coefficients in the matrix were 

predicted using the Climatological Regional Dispersion Model (CRDM), which translates emissions from 

a specific source to particulate matter concentrations in downwind counties (Abt Associations, 2000; Heo 

et al. 2016, p. 6062).  The original model included 5,905 emission sources across the US, which were 

categorized along four dimensions:  area sources linked to the 3,080 counties in the lower 48 states, and 

low, medium, and high effective stack height sources.  The 565 high stack (>500m) sources were 

included as individual units, while county-level aggregates of low (<250m) and medium (250 to 500m) 

stack sources constituted the remaining 1,887 and 373 sources, respectively.  Each of the 5,905 sources is 

linked to 3,080 receptor counties.   

Dispersion coefficients are available for four pollutants:  directly emitted particulates, sulfur 

dioxide (SO2), nitrous oxides (NOX), and ammonia (NH3).  Each dispersion coefficient measures the 

incremental contribution to average ambient PM2.5 concentration at a specific receptor, from one ton of 

emissions at a specific source.  To construct our instruments we use quarterly emissions data of SO2 and 

NOX obtained from EPA’s Air Markets Program Data (AMPD), which provides data for thousands of 

facility units at a quarterly frequency.  Since the matrix was originally designed for use with National 

Emissions Inventory (NEI) data, steps were taken to match the newer AMPD information to the matrix.  

Among the 565 tall stack units, we were able to directly match 496 facility units (88 percent).  Using 

additional information from the NEI, we obtained physical stack characteristics for a subset of the 

additional non-matched units.  For these, we develop a county/stack height measure and use it to group 

stacks above 250 meters into the medium stack group.7  All other units observed in the AMPD are 

                                                           
7 Effective stack height (ESH) is a function of ground elevation, physical stack dimensions, stack gas velocity and 

temperature, wind speed, and ambient air temperature.  For our matching we use ground elevation plus physical 
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assumed to be short.  Short stack transfer coefficients are generally smaller than medium stack 

coefficients because emissions are carried further at higher altitudes.  Our matching process therefore 

ensures a conservative approach in which sources will generally have a transfer coefficient smaller than 

or equal to what was intended, when the source-receptor matrix was created.  With these manipulations, 

we are able to use 4,489 sources of SO2 and NOX in our calculations.  We use the matrix operation shown 

in equation (14) to aggregate the distant source contributions to a particular receptor county, and then 

average this across all counties within an MSA to create the final instrument.  Specifically, for our main 

models, if a source is within 50 km of the population centroid of its receptor county we set its transfer 

coefficient to zero, so that nearby emission sources do not contribute to the final measure.  

Figure C1 gives sample output from the source-receptor. For purposes of illustration, SO2 

emissions from a single facility, Clifty Creek Power Plant in southern Indiana, are used as inputs in the 

model. Counties with darker shades of blue receive larger PM2.5 deposits from the power plant. The white 

circle surrounding Clifty Creek includes all counties whose population centroid is within 50 km of the 

facility. The figure illustrates that SO2 emissions in southern Indiana have a measureable impact on 

ambient PM2.5 concentrations as far away as New York and South Carolina. 

It is important to note that the CRDM model, and the source-receptor matrix derived from it, does 

not represent the current state of the art in atmospheric dispersion modeling, and so it is no longer a 

preferred method for predicting ambient pollution changes in response to specific emission reductions 

(see Heo et al., 2016, for a recent discussion of competing approaches and CRDM’s limitations).  For our 

more modest objective, however, it is a good choice:  we only need the predictions from the model to be 

correlated with local pollution concentrations.  As such, our static linking of emissions from a non-

exhaustive subset of distant sources to county predictions can constitute a poor level prediction, while still 

serving as a valid instrument.   

                                                           
stack height to proxy for ESH.  This is an admittedly crude approximation that omits plume rise, but it provides a 

lower bound on the true ESH, which leads to conservative transfer coefficients when constructing the distant source 

instrument. 
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Figure: Ambient PM2.5 Contributions from Clifty Creek Power Plant SO2 Emissions 
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1.11.4 Additional IV Results 

 

First stage IV estimates 

Table R1 presents the first stage of the jointly estimated IV regression from Table 5, Column 1. 

SO2 and NOx Emissions are the distant source excluded instruments. The coefficients imply that a one 

standard deviation increase in the distant SO2 emission instrument increases local PM2.5 concentrations by 

148 percent. The instrument values are relatively small with much variability, which explains the large 

magnitude of this coefficient. Interestingly, the NOx instrument, which measures contributions to local 

PM2.5 levels from distant NOx emissions, is a stronger predictor for SO2 concentrations than the distant 

SO2 emissions instrument.  

Table R1: First Stage Estimation Results 

 (1) 

PM2.5 

(2) 

SO2 

SO2 Emissions 
1.479*** -0.211 

(0.268) (0.238) 

NOx Emissions 
-0.258 1.585*** 

(0.255) (0.240) 

O3 
0.245*** -0.200*** 

(0.059) (0.061) 

NO2 
0.461*** 0.173 

(0.121) (0.119) 

CO 
0.483*** -0.076 

(0.118) (0.088) 

Observations 48,626 48,626 

Households 6,137 6,137 

 
OLS estimator with log-transformed total spending on asthma and COPD as dependent variable. Pollution units, 

including those of the instruments, are standard deviations of mean concentrations. Both regressions include 

household fixed effects, household, weather controls, quarter of year fixed effects, and region-year fixed effects.  

Household level probability weights are used.  Standard errors, clustered at the MSA/survey cohort level, are 

included in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Ozone 

Column 1 of Table R2 presents results from an IV regression where O3 is over-identified using the two 

distant source instruments.  In this specification, we find a statistically significant effect of 7.4 percent 

from a one standard deviation increase in ozone concentrations.  SO2 again is found to have a positive and 

significant sign. Column 2 attempts to jointly instrument for O3 and PM2.5, but the instruments are very 

weak in this setting and lead to very imprecise coefficient estimates.  The third column in the table jointly 

instruments for O3 and SO2, and results in estimates similar to those in column 1.  Our main results 

suggest that PM2.5 has the largest impact on medical expenditures, and SO2 may again be serving as a 

proxy for this in Table R2.  Because we are not able to estimate particulate matter jointly with O3 in our 

setting, our main results in this paper do not focus on the effect of O3.  However, the results shown here 

do give some evidence of this effect and motivate future research on it. 

Table R2: Using Distant Source Instruments to Identify 

Ozone Effect 

 (1) (2) (3) 

Pollutant O3  

Instrumented 

O3 & PM2.5 

Instrumented 

O3 & SO2 

Instrumented 

O3 
0.0740** 0.445 0.0815** 

(0.0345) (0.938) (0.0355) 

PM2.5 
-0.0170 -0.313 -0.0181 

(0.0133) (0.753) (0.0136) 

SO2 

0.0559*** 0.136 0.0393** 

(0.0117) (0.204) (0.0176) 

    

First Stage  

F-Stat 

O3  

20.21 

O3  

0.40 

PM2.5 

0.31 

O3  

29.22 

SO2 

74.13 

    

Observations 48,626 48,626 48,626 

Households 6,137 6,137 6,137 

 
Contributions from distant SO2 and NOx emissions to local predicted particulate matter concentration are used as 

instruments for all regressions.  All regressions include household fixed effects, household, co-pollutant and weather 

controls, quarter of year fixed effects, and region-year fixed effects.  The dependent variables are log-transformed 

expenditures on Asthma and COPD.  Pollution units are standard deviations of mean concentrations.  Household 

level probability weights are used.  Standard errors, clustered at the MSA/survey cohort level, are included in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Chapter 2: Using Residential Sorting Behavior to Better Understand 

the Relationship between Urban Greenspace and Health 
 

2.1 Introduction 
 

The high percentage of Americans who classify as overweight or obese continues to raise 

public health concerns in the United States. Obesity rates have steadily increased over the past 

two decades, with recent estimates indicating that 69 percent of adults in the U.S. are 

overweight, and 35 percent are obese (Expert Panel Report, 2014). Though the trend has started 

to level off in recent years, the high rates may have long term health consequences. Clinical 

evidence suggests that obesity increases an individual’s risk of morbidity from a wide range of 

conditions including hypertension, heart disease, and diabetes. Finkelstein et al. (2009) estimate 

that obese individuals incur $1,429 more in medical expenses annually than normal weight 

individuals. This translates to $147 billion dollars in additional expenditures in the United States, 

or 9.1 percent of total spending. Further, costs of obesity may include decreased worker 

productivity and other morbidity costs beyond those captured by medical expenditures. 

Due to the high costs of obesity, understanding its underlying causes is important for 

designing policies to address it. While genetic differences explain why some individuals are 

more likely to gain weight than others, these differences do not explain the recent trends in 

obesity rates. At its core, obesity is a product of too much caloric intake relative to caloric 

expenditure. Potential underlying causes of this caloric gap include changes in relative food 

prices that encourage more food consumption, occupational changes from labor intensive jobs in 

manufacturing to jobs in the service or technology sectors, and built environment changes that 

discourage physical activity (Rosin 2008).  



60 
 

Even though decreasing caloric intake is the best way to manage weight (Expert Panel 

Report, 2014), a recent wave of research in public health finds associations between the 

proximity of an individual to built environment characteristics related to physical activity, which 

I will refer to broadly as greenspace, and obesity. Since physical activity has health benefits 

beyond weight loss, this literature relates greenspace to a broad range of health outcomes. Access 

to public parks is often the environmental characteristic of interest, but greenspace can also 

include other measures such as local tree coverage. Studies have found correlations between 

greenspace and obesity rates, cardiovascular illness, stress, depression, anxiety, and self-reported 

health (Lee and Maheswaran 2010; Beyer et al. 2014). Though the evidence specific to park-

obesity associations has generally been weak or mixed (Coombes et al. 2010, Potestio et al. 

2009), a stronger relationship is often found between parks and physical activity measures. 

There are several hypothesized causal pathways that link greenspace to health outcomes. 

Close proximity to a park reduces the cost of utilizing it and may encourage individuals to 

engage in more healthy activities, such as walking, running, or playing sports. Even if the park is 

not used for vigorous exercise, walking to and from the park alone may constitute an activity 

increase. Over time, this increase in physical activity can lead to health improvements. Further, 

greenspace may be negatively correlated with other environmental “bads”, such as localized air 

pollution (McPherson et al. 1994). Finally, it is possible that natural scenery is intrinsically good 

for mental health and offers a refuge from otherwise stressful urban environments.  

My study addresses one of the biggest empirical issues prevalent in this literature: people 

sort themselves into neighborhoods based on the characteristics of those neighborhoods and their 

personal preferences. Much of the association between parks and health outcomes or physical 

activity measures likely comes from the fact that people who are physically active will choose to 
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live in neighborhoods with amenities that cater to active recreation. There is strong evidence that 

housing prices implicitly include the values of local amenities, such as air pollution and open 

space (Klaiber and Phaneuf 2010; Bayer, Keohane, and Timmins 2009). These studies yield 

insight into how much people are willing to pay for different levels of an amenity. In the current 

setting, greenspace valuations may vary by individual preferences, which will impact residential 

location choices. This is the key mechanism through which heterogeneous preferences may lead 

to observed associations between health characteristics and local greenspace. For instance, a 

physically fit person may have preferences that induce them to seek out amenities that support 

their healthy lifestyle. This would lead to estimates which overstate the effect of greenspace on 

health. Alternatively, if unfit individuals seek out healthy amenities in order to improve their 

own health, then sorting will bias results in the opposite way. 

To address this concern, some authors have implemented within person estimators to 

control for individual preferences that are constant over time. If residential sorting is based on 

unchanging unobserved characteristics, then a within person estimator resolves the issue. Using a 

first difference estimator, Eid et al. (2008) find no significant relationship between obesity status 

and urban sprawl. Boone-Heinonen et al. (2010) apply an individual fixed effects estimator to 

data on built environment characteristics and physical activity rates. They find a small but 

positive and significant impact of private recreation facilities (e.g. private gym or athletic club), 

but no effect from other characteristics including public park facilities, street connectivity, and 

landscape diversity. In addition, Baum and Chou (2015) implement a fixed effects estimator and 

find that urbanization impacts obesity. These studies provide more reliable results of 

health/environment relationships, but they do not account for sorting based on time-varying 

unobservables. 
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Other studies use instrumental variables (IV) to address the endogeneity issue. 

Courtemanche and Carden (2011) use an instrument based on Walmart store location decisions 

to explore how the spread of Walmart stores impacts obesity rates. They find that an additional 

Walmart in a community increases an individual’s probability of obesity by 2.3 percent, an effect 

that operates through gaining access to cheaper food. Similarly, Dunn (2010), explores how 

access to fast food impacts obesity. Using the number of interstate exits to instrument for fast 

food restaurants, Dunn finds evidence of a positive effect in counties with medium population 

density. Also using an IV strategy, Zhao and Kaestner (2010) find that urban sprawl contributed 

to 13 percent of the recent increase in obesity rates in the U.S. Finally, multiple papers have used 

IV estimators when studying the impact of the built environment on travel behaviors (Boarnet 

and Sarmiento 1998, Khattak and Rodriguez 2005).   

I use data from the National Longitudinal Study of Adolescent to Adult Health (Add 

Health) to estimate the relationship between parks and obesity in a more comprehensive way. 

My study utilizes both fixed effects and IV to identify the impact of parks on obesity, which 

allows me to compare the impact of both strategies in an empirical setting. Add Health follows 

students from grades 7-12 into young adulthood and combines data on both person-level 

characteristics and detailed neighborhood features, including the number of parks in proximity to 

a person’s home. For a given residential address, park counts within 1 km do not change much 

over time, so my estimates rely on spatial variability in built environment characteristics. 

Because I use individual fixed effects to control for unobserved heterogeneity, I restrict my 

sample to individuals that move between survey waves to ensure sufficient within-person 

variability in neighborhood attributes. While this sample restriction invokes selection concerns, 

this is less of a problem in my setting, because most children move away from home in the years 
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following high school graduation. 

To address time-varying unobserved variables, I use logic from the residential sorting 

literature to select valid instruments in my setting. In particular, I use neighborhood 

characteristics that are likely to be correlated with parks, but unrelated to health outcomes, 

conditional on other covariates. Including person fixed effects decreases the magnitude of the 

estimates when compared to pooled OLS, but the IV strategy more than compensates for this 

reduction. In my preferred specification, I find that one additional park within 1 km reduces 

residents’ BMI by 1.25 percent.  

This study provides one of the most comprehensive examinations of the relationship 

between urban greenspace and health to date. I identify and address additional difficulties for 

causal inference in this setting. This paper provides new evidence of the benefits of built 

environment amenities and can inform public policy that addresses current health challenges in 

the United States. 

 

2.2 Data 
 

My data comes from Add Health, which combines data on person-level characteristics 

with detailed neighborhood features. Add Health follows a cohort from grades 7-12 into early 

adulthood, beginning with a nationally representative sample of this age group in the first wave 

of the survey. Adolescents undergo a number of significant life transitions during this period, so 

time-varying unobservables are of particular concern for this population. I focus on Waves 1 

(1994-95) and 3 (2001-02) of the survey, because they include comprehensive neighborhood 

amenity characteristics. These characteristics come from a number of sources, including 

government and proprietary data sets, and were merged with person-level survey data before 
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being released for use. Geographic data is not explicit, but masked identifiers down to the 

Census block group level are observed by the researcher. Because of this, I do not know where 

the survey participants live, but I do know if two participants live in the same census block 

group, tract, county, or state. Sampling in Wave 1 is clustered on school systems, but participants 

are relatively dispersed by Wave 3. Specifically, the subsample of participants that move 

between waves live in 972 distinct census tracts (in 138 counties) in Wave 1, and 5062 census 

tracts (in 876 counties) by Wave 3. Change in residential address between survey waves is 

identified by geocoded residential addresses. If the distance between addresses is less than one 

quarter of a mile, this change is not thought to be significant and is coded in the data as though 

the individual did not move. Approximately 79 percent of participants change residence between 

these two interview periods, and 70 percent live independently (no longer with parents) by Wave 

3. Conditional on moving, mean distance moved is 169.2 miles, while median distance moved is 

only 8.1 miles.  Participants who change residence by Wave 3 are of particular interest because 

moving ensures sufficient variation in environmental characteristics, which tend not to change 

much over time. Concerns about movers being a selected sample are in part alleviated by the fact 

that most individuals move away from home during this period of their life, and are therefore 

fairly representative of this age group. 

A measure of Body Mass Index (BMI) will be the main health outcome utilized in my 

empirical analysis. BMI is a function of height and weight, and serves as a proxy for obesity. 

This is not a perfect health measure, as it does not take body fat percentage into account, but it is 

widely used in the literature and the best measure available in the data. A number of individual 

level demographic variables are available in addition to the health measures. Table 1 presents 

summary statistics for these variables, including education level, marriage status, and if the 
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respondent has children. By Wave 3, participants are aged between 18 and 27. Around 21 

percent are obese (classified as having a BMI of 30 or greater), over 20 percent are married, and 

27 percent are enrolled as full time students. 

Most residential locations are identified by geocoded address or GPS measurement, so 

contextual variables in the data are precisely measured. Neighborhood characteristics come from 

outside sources and do not rely on respondent recall or estimates, and they are merged at the 

census block group level or the exact residential address. For example, information on median 

housing value and housing unit density are known by block group. Other variables, such as 

number of parks, are measured as counts within a 1 kilometer street network or Euclidean 

distance of an individual’s residence. The network distance best represents how far an individual 

must travel to access a park and offers the best measure of access cost, so it is used when 

available. Previous work has found the strongest association between built environment features 

and physical activity within 1-3 km buffers (Boone-Heinonen 2010), so I follow this in my 

preferred specification.  These measures are also available at 5 and 8 km distances, and using 

alternative measures does not qualitatively impact my results. Additional neighborhood variables 

are summarized in Table 2. The alpha index measures street connectivity, which proxies for the 

walkability of a neighborhood. Higher values indicate higher connectivity. The mean fractal 

dimension index (MFDI) serves as a second land use control. Values near one are indicative of 

an urban environment, while higher values are associated with more natural settings. These two 

variables control for urban sprawl/urbanization, which is known to be associated with obesity. 

Further, I control for economic, weather, additional urbanicity, and health variables that may 

impact BMI and/or how people interact with parks. 

If parks are heterogeneous in terms of quality, a simple park count may not be the best 



66 
 

measure of the amenities offered. To address this, I use additional park measures that may be 

more indicative of quality or accessibility. These include categories of parks or facilities 

associated with physical activity that are grouped based on primary Standard Industrial 

Classification (SIC) codes, which implies they have some sort of commercial operations. For 

example, I compare the effect of parks that require a membership, like a private country club, to 

public parks without fees or other entry restrictions. Definitions and examples of these 

alternative park definitions can be found in Table 3. 

Table 4 presents summary statistics by obesity status and income indicators. Columns 1 

and 2 compare park counts for individuals living in block groups with housing values below and 

above the median in my sample. Low housing value neighborhoods have fewer overall, 

membership, outdoor, and public parks. However, there are significantly more YMCA facilities 

in these neighborhoods, and the difference in means for the membership category is not 

significantly different from zero. The lack of significance for this category may indicate that 

private membership facilities, which are not public goods, are not reflected in nearby housing 

prices. Still, this generally supports the idea that parks are positive amenities whose value is 

reflected in housing prices. An obesity comparison yields the expected results, in that obese 

individuals live near fewer parks across all types.  

 

2.3 Empirical Strategy 
 

2.3.1 Neighborhood Choice 

 

To better understand the difficulties in estimating the causal impact of built environment 

features on health outcomes, it is useful to detail how neighborhood decisions are made in a 
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discrete choice framework. A neighborhood can be thought of as a bundled good containing 

multiple quality attributes. Since individuals only choose one neighborhood location, they do not 

choose the level of each attribute separately; they must choose from the bundles available to 

them. Given J available alternatives, individuals choose the neighborhood that maximizes their 

utility. The utility individual i receives from choosing location j can be written as 

  , , ,ij ij ii j jU V X N    (1) 

where indirect utility V is a function of person-level characteristics X and neighborhood 

characteristics N. The term 
ij

 can be thought of as unobserved (to the econometrician) 

heterogeneity, and it includes structural or neighborhood characteristics omitted from N as well 

as unobserved characteristics that impact choices such as personal preferences. and  are 

parameters that link observed characteristics to utility outcomes.  In the empirical model, I 

parameterize V as follows: 

  
K L

k

ij j kl jk il ij

l

V NN X        (2) 

with interactions between the individual and neighborhood variables. The econometrician does 

not observe 
ij

, but makes an assumption about the distribution from which it is drawn in order 

to operationalize the model. The parameters in (2) can be estimated using a multinomial logit 

model, which assumes the error term to be distributed Type 1 Extreme Value. Because 

estimation relies on differences in utilities, the X variables are not included separately from their 

interaction terms. These interaction terms are of central interest in the discrete choice exercise. 

They yield information on how valuations of neighborhood characteristics vary based on 

observed heterogeneity. For example, if the coefficient on the interaction between number of 

parks and obesity status is negative, then an obese individual receives less utility from a park 
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than a non-obese individual. If this is true, then an obese individual will be relatively less likely 

to choose a neighborhood with many parks, driving a sorting process that results in spatial 

correlations between parks and obesity. 

From this set up, it is clear that person level characteristics play an important role in 

neighborhood choice, and the level of amenities in a person’s chosen neighborhood are not 

independent of their observed characteristics and unobserved preferences. This choice 

mechanism causes inference difficulties when assessing causal relationships between built 

environment features and health outcomes, something that is discussed in more detail in the next 

section. 

  

2.3.2 Built Environment Impact on Health 

 

To be clear about the empirical challenges faced when estimating the relationship 

between neighborhood characteristics and health outcomes, consider estimating the health 

equation 

                                            0 1 2 3i i i i iHealth Parks N X         ,                                      (3)  

where N includes other neighborhood characteristics and X is a vector of person-level controls. I 

am interested in the effect of an additional park on health, but estimates will be biased if the error 

term contains unobservables that impact both the level of parks near one’s residence and health. 

More precisely, bias occurs if the error term can be written as 

 i i ic                                                                      (4)                                                  

and 𝐸[𝑐𝑖|𝑝𝑎𝑟𝑘𝑠𝑖 , 𝑁𝑖, 𝑋𝑖] ≠ 0. This will be the case if unobservable preferences for healthy 

lifestyles determine both the number of parks near one’s chosen residence and level of fitness. 



69 
 

 

Within-Person Estimator 

With panel data, the issue outlined above can be resolved. The estimating equation 

becomes 

1 2 3i it it it i itHealth Parks N X c                                              (5) 

and the unobserved heterogeneity 𝑐𝑖 can be removed through a first difference transformation or 

by including individual fixed effects. However, if the error term in (5) contains a time varying 

component 𝑑𝑖𝑡 such that 𝐸[𝑑𝑖𝑡|𝑝𝑎𝑟𝑘𝑠𝑖𝑡, 𝑁𝑖𝑡, 𝑋𝑖𝑡, 𝑐𝑖] ≠ 0, a within-person estimator will not 

yield consistent results. 

 

Instrumental Variables Estimator 

If an appropriate instrument is available, then an IV strategy will allow for time-varying 

unobserved variables that are correlated with parks. Some examples of using this approach to 

address endogeneity caused by residential sorting come from the transportation literature. 

Boarnet and Sarmiento (1998) estimate how land use influences transportation behavior. They 

use neighborhood racial composition and age of the housing stock as instruments for land-use 

characteristics, such as population density and street connectivity. Validity of the IV strategy 

requires unobserved preferences for the instruments, which are also taken into account by the 

individual when choosing a residential location, to be unrelated to preferences for the land use 

variables. For instance, in the aforementioned study, preferences for racial composition must be 

unrelated to preferences for population density. 

I propose a novel instrumental variables strategy using information from housing 

markets. The general idea is that greenspace will be correlated with other neighborhood 
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amenities and housing characteristics that are plausibly unrelated to health. For instance, houses 

located near parks may also have more square footage or be located in better school districts. The 

data set includes a number of characteristics that may work well as instruments. First, I use 

median housing value in the respondent’s block group. An increase in neighborhood quality will 

raise both demand for that location and the price of housing units there. In equilibrium, the value 

of parks, as well as unobserved neighborhood amenities, will be incorporated in median housing 

price. Through this mechanism, housing prices will be correlated with parks and also contain 

information on the unobserved quality of a neighborhood. Next, I use number of schools within 1 

km. Schools may be associated with positive amenities such as safety or social cohesion, and 

they are often located adjacent to parks.  Finally, I use number of housing units per square mile 

as an instrument. This serves as a measure of lot size, a positive characteristic. This variable may 

be higher in more suburban block groups, which may attract higher BMI residents, but 

controlling for land use characteristics in N should help alleviate these concerns. The Add Health 

data contains many health-related variables that will help absorb variation in my instruments that 

may be related to health outcomes.  

Despite my careful controls, there may be channels through which an instrument may 

impact health apart from its relationship with parks. To address this concern, I use attributes 

from other block groups in the same county as an alternative set of instruments. The reasoning 

for these new instruments is similar to that presented in Bayer and Timmons (2007). When 

making a residential location decision, individuals consider all available alternatives in the 

market and choose a location that maximizes their utility conditional on their preferences and 

budget constraint. Demand for a location may also influence the neighborhood attributes 

themselves. For example, if many people have preferences for living near city centers, then 



71 
 

housing density and prices will be higher in these areas. More schools may be built in these 

neighborhoods to serve demand. They will also tend to have higher population densities, which 

could be seen as a negative amenity. Bayer and Timmons (2007) focus on this congestion effect 

in their paper. Housing market equilibriums result from this complex interplay between supply 

and demand, and it is therefore reasonable to assume that certain neighborhood characteristics 

will be a function of available amenities in other neighborhoods in the same market. However, 

the attributes of other neighborhoods are unlikely to have a direct impact on health.   

I propose using instruments Z for greenspace in the following specification: 

First Stage:  

0 1 2 3i i i i iParks Z N X                                                   (6) 

 

Second Stage: 

0 1 2 3i i i i iParkHealth Ns X                                              (7) 

  

The success of this IV strategy depends on two main requirements: (a) that Z is correlated with 

parks, and (b) that Z does not relate to health except through its association with controls in N. 

The first condition should be satisfied due to the nature of housing market equilibriums, and is 

verified in my analysis. The second requirement relies on sufficiently controlling for health-

related characteristics and preferences. As demonstrated section 3.1, the residential sorting 

process implies that neighborhood amenities will be related to unobserved preferences. 

Requirement (b) can alternatively be satisfied under certain preference separability assumptions. 

This is reasonable if, for example, the unobserved determinants of choosing to live near a school 

are very different from the reasons an individual chooses to live near a park.  
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2.4 Results 
 

2.4.1 Preliminary Evidence: Discrete Choice Estimates 

 

To investigate how person-level characteristics influence neighborhood amenity 

preferences, I estimate a multinomial logit model of specification (2). In Wave 3 of the data, 

participants are spread over hundreds of different cities in the United States, and neighborhood 

characteristics are only observed if a survey participant chooses to live there. This creates 

difficulties when selecting a choice set. For this exercise, I choose to restrict the sample to the 

metropolitan area with the most participants in the data, which provides a relatively complete set 

of choices. Each observed location represents an available choice, and I assume the set of 

choices observed in the data were the only alternatives available. 

Neighborhood characteristics include number of parks, schools, median housing value, 

housing unit density, diet resources, and measures of street connectivity. Variables in X include 

BMI measured prior to the move, and Wave 3 (post-move) education, marriage status, number of 

children, and income. Table 5 presents estimated coefficients of the neighborhood variables and 

their interactions. The interaction term between parks and BMI is marginally significant, 

indicating that individuals with higher BMIs receive relatively lower utility from being located 

near parks. Higher incomes groups are more likely to locate near parks, suggesting that parks are 

a positive amenity, though the main effect is negative and insignificant. Interestingly, the 

coefficient on BMI interacted with median value is also significant. This could indicate that 

higher BMI individuals dedicate less of their income on housing, or are more price sensitive with 

respect to housing. Alternatively, this could indicate that BMI is partially serving for some other 

unobserved determinant of housing choices. In a similar way, more highly educated people are 
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found to choose more expensive housing. The income variable in Add Health relies on self-

reporting, which may mean it is a noisy or biased measure of actual wealth, and other variables 

such as BMI and education are picking up its effect.  

The results of this exercise illustrate the potential importance of unobserved preferences 

in residential location decisions. The significant coefficient on the parks and BMI interaction 

term is consistent with sorting behavior driving observed correlations between the two. However, 

this does not rule out a causal or biological relationship. Sorting may explain only a small 

portion of the association, or, as previously noted, BMI may be picking up the effect of 

alternative unobserved variable in this setting. The fact that the utility of schools and housing 

density is not found to vary with BMI supports the validity of the instruments described in 

section 3.2. However, a cause for concern is that utility from housing values does significantly 

vary on BMI. 

Still, the magnitude of the interaction term coefficient is relatively small, and it may be 

unreliable for the same reasons mentioned for the parks and BMI interaction term. 

 

 

2.4.2 Reduced Form Estimates 

 

I first offer some preliminary evidence of this relationship between greenspace and 

health. Although I observe each individual twice in the data, I first treat all observations as 

independent and estimate a pooled OLS regression, the results of which are presented in the first 

column of Table 6. As hypothesized, an increase in number of parks within one kilometers an 

individual’s residence is found to have a small but significant association with reduced BMI. My 

log-linear specification implies that one additional park decreases BMI by 0.36 percent.  Though 
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it should not be interpreted as causal, finding a significant relationship here is interesting in 

itself, given the mixed results from previous studies that have attempted to find direct 

associations between parks and BMI. Being married, having children, and higher education 

levels are also positively correlated with BMI, while being a full time student is associated with a 

significantly lower BMI.  Column 2 in this table regresses number of parks in wave 3 of the 

survey on number of parks in wave 1 of the survey. Even though I restrict my sample to 

individuals who move between these two survey ways, there is still a strong positive association 

between the numbers of parks near an individual over time. This suggests that individuals move 

to neighborhoods with characteristics similar to those where they lived previously, a reminder 

that these characteristics are not randomly distributed. Further, higher BMIs in Wave 1 are 

associated with fewer parks in Wave 3, justifying the concern that sorting is driving observed 

park/health relationships. Somewhat surprisingly, participants with children in the third wave are 

less likely to live near parks. This could be due to budget constraints, as raising children is 

expensive and parks are positive amenities that are reflected in higher housing values. In column 

3 I regress log-transformed Wave 3 BMI on Wave 3 parks and Wave 1 BMI. Unsurprisingly, I 

find that BMI is highly persistent over time. However, even after controlling for previous BMI, 

the number of parks is still contemporaneously correlated with BMI. This initial evidence could 

suggest that, although sorting on health characteristics does occur, it may not fully explain 

correlations between parks and BMI.  

 

2.4.3 Main Results 

 

Comparing how estimates vary across specifications gives a more nuanced understanding 

of the factors that contribute to observed associations between greenspace and health. In column 
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1 of Table 7, I estimate a panel model that includes individual fixed effects. This approach 

accounts for individual level unobserved characteristics that are not changing over time. To the 

extent that sorting behavior is explained by these characteristics, fixed effects estimates are more 

representative of the causal relationship between parks and BMI. Similar to previous findings, 

the significance of the parks coefficients disappears in this setting. This result presents more 

evidence that sorting is driving the observed associations, and it implies that living near a park 

has no discernible impact on obesity.  

Though fixed effects estimates control for unobservables that do not change over time, 

time-varying variables that are left unaccounted for may still bias results. This is of particular 

concern in my setting, as subjects move from adolescence into young adulthood. This is a period 

of immense change for many individuals, and it is reasonable that health attitudes or health-

related behaviors may be changing during this transitional period. To address this concern, I 

implement the instrumental variables strategy described above. Columns 2 and 3 of Table 7 

instrument for parks using the following instruments: median house value, housing unit density, 

and number of schools within 1 km. In all of the IV models, parks has a significant and negative 

impact on BMI. Consistent with the difference observed between the pooled OLS and Fixed 

Effects estimates, inclusion of individual fixed effects in column 3 leads to a smaller estimated 

coefficient than in column 2. This pattern is consistent with negative bias from unobserved time-

constant variables, but the opposite-signed bias from time-varying unobservables. The latter may 

result from higher BMI individuals seeking out physical activity amenities in order to improve 

their fitness. Similar to Eid et al. (2008), I find no significant effect from land-use controls when 

fixed effects are included. 
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2.4.4 Robustness 

 

Even after including health controls, there may be hypothesized channels through which 

each individual instrument impacts health. However, since my three instruments measure 

dissimilar amenities, there is not likely to be a common mechanism that influences BMI. 

Appendix Table A3, columns 3-5, shows results from the Fixed Effects IV model when each 

instrument is used separately. The striking similarity of results across instruments helps alleviate 

concerns that the instruments fail the required exclusion restriction. As a formal test, I use 

multiple instruments to run tests of overidentifying restrictions. As reported in Table 7, in each 

IV specification I fail to reject the null hypothesis that the instruments are valid. First stage F-

statistics are also reported, and full first and second stage are presented in the appendix. 

The final column in Table 7 uses my alternative set of instruments. Instead of using own 

location attributes to instrument for parks, I use the mean level of attributes in other block groups 

in the same county. That is, I use leave-one-out averages of block group median home price, 

housing unit density, and school counts. The coefficient estimate in column 4 is negative and 

significant, though somewhat smaller in magnitude than in column 3, which uses the same Fixed 

Effects IV specification. This is strong evidence that my results are not being driven by invalid 

instruments, since it is unlikely that amenities in other neighborhoods will have a direct impact 

on BMI. 

A direct way in which parks may impact health is through encouraging physical activity. 

Increased physical activity can lower BMI, but this benefit may take months or years to fully 

accrue. For this reason, one would not expect number of parks in a neighborhood to have a 

measurable effect on BMI for individuals who have recently moved. In Wave I of the survey, 

participants are asked what age they moved to their current residence, so I only identify the move 
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date at an annual level. However, in Wave III of the survey, I observe the year and month of the 

move. Because of this, I use only use the latter round of the survey when investigating the impact 

of parks on recent movers. In column 1 of Table 8, I estimate an IV regression similar to the one 

in column 2 of Table 7, but only on the Wave III cross section. The result is very similar; one 

additional park is found to decrease BMI by about 2.4 percent. In column 2 of Table 8, I include 

a term that interacts number of parks with recent mover status.  A participant is labeled a recent 

mover if they moved to their current address within one month of their interview date. 283 

individuals in the sample meet this criteria. To implement the IV estimator, I interact my 

instruments with recent mover status and use the resulting variables as additional instruments. 

Column 2 presents the results of this estimation. The coefficient on the interaction term is 

slightly larger, but opposite in sign, than that of the main effect. This indicates that, for recent 

movers, the effect of parks is close to zero. This aligns well with the hypothesis that the health 

benefits take time to accrue, and it supports the causal interpretation of my results. 

The results from Table 7 use a count of all parks as the key independent variable. 

However, parks may vary widely in quality, accessibility, and amenities offered, so being more 

specific about park type gives a more nuanced understanding of the mechanisms through which 

parks impact health. Table 9 show results using alternative park definitions with the Fixed 

Effects IV strategy. All categories have negative and significant coefficients on the park 

measure. The coefficient on Membership facilities has the lowest magnitude. Since these types 

of parks have the highest barriers to entry, this result is consistent with the idea that increasing 

park access will increase use and therefore maximize health benefits. This may also be indicative 

of how these parks are used, since the impact of a private golf course on BMI likely differs 

significantly from a neighborhood park with a walking path or sports fields. The magnitude of 
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the estimates for the public and outdoor park categories are similar to the estimates in column 3 

of Table 7. Having a YMCA within 1 km of your residence is found to decrease BMI by over 4 

percent. This large effect may relate to the types of physical activity amenities, such as 

swimming pools and gym equipment, often offered at a YMCA. These results suggest that the 

intensity of physical activities associated with a park facility matters for weight loss.  

Column 1 of Table 10 uses number of parks between 1 and 3 km from the participant’s 

residence as the dependent variable. Parks in this outer perimeter are still found to have a 

significant impact on BMI, but the coefficient magnitude is substantially smaller than that of a 

park within 1 km. This supports the idea that proximity to a park influences its use and resulting 

health benefits. I next explore two measures of park access that don’t explicitly rely on the count 

of nearby parks. Using the Euclidean distance to the nearest park, I find that as this distance 

rises, so does BMI. This corroborates the cost-of-access story and suggests that longer travel 

distances discourage the use of parks. In column 3, park area is also found to have an impact on 

BMI, though the coefficient is only weakly significant. There are multiple ways to interpret the 

impact of park area. First, similar to the minimum distance finding, more park area within a 1 km 

radius means that the distance needed to reach a park will be lower on average. Second, larger 

parks may allow for types of physical activity, such as running or hiking, that a small park 

cannot accommodate. It is likely that the health benefits from a park come not only from walking 

to access it, but also from physical activity that occurs once there.  

Small parks are likely more common in dense urban areas, where open space is scarcer. If 

parks are smaller but more frequent in these areas, one concern is that a basic count of parks is 

partially capturing the health benefits of living in a very walkable neighborhood. Finding a 

significant effect from park area, and controlling for urbanicity and street connectivity measures, 
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helps alleviate this concern. Still, this issue warrants further investigation. Wave 3 of the survey 

includes additional data on food resources, which are not directly associated with physical 

activity. Interestingly, living near a restaurant could impact BMI in multiple ways: (a) by 

encouraging increased walking to the location or (b) by increasing caloric consumption because 

of easier food access. Estimates of the impact of food resources are presented in Table 11. Since 

these new variables are only available for Wave 3 of the survey, I present IV estimates on this 

cross section. For sake of comparison, column 1 estimates the effect of parks using just this 

subset of the data. Column 2 similarly instruments for parks, but includes a count of all food 

resources as a control. By including food resources, I can better control for urbanicity factors that 

are not captured by my other covariates, such as if the individual lives near a strip mall. The 

coefficient on parks remains significant and increases by half of a percentage point, which 

suggests that unobserved urbanicity is not driving the effect on parks. Next, I use the same set of 

instruments to measure the effect of food resources on BMI. One might expect a fast food 

restaurant to increase BMI, while a health food store may lower BMI. Surprisingly, I find that 

both fast food restaurants and health food stores decrease BMI. This finding could mean that 

living near either food resource encourages enough walking to offset the effect of increased 

consumption, or that the count of food resources is serving as a proxy for urbanicity or 

walkability. To address this, I specify the fast and health food resources as a percentage of all 

food resources available. This highlights the fact that the mix, not just count, of available food 

resources is important. In columns 4 and 6, I find that a larger share of fast food restaurants has 

no impact on BMI, while larger health food shares have a large negative impact on BMI. The last 

two columns in Table 11 extend this exercise to YMCAs, which were found to have the largest 

impact on BMI. As expected, a higher share of the resource associated with relatively higher 
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physical activity intensity is found to negatively impact BMI. This again demonstrates that the 

effects found for physical activity amenities are not entirely driven by their association with 

urban density. 

Next, I investigate how climate influences park use. In places with relatively harsh 

winters, outdoor parks can only be utilized during part of the year. Theoretically, this should 

dampen the impact the park has on health. Columns 1 and 2 of Table 12 compare the effect of 

outdoor facilities in locations with January temperatures below and above the sample median. I 

find significant and negative effects on both subsamples, but, consistent with my hypothesis, the 

magnitude of the coefficient is almost 8 times larger in the warmer climates. As a further 

robustness check, I carry out the same comparison for the YMCA category. These facilities are 

more likely to have indoor physical activity amenities that can be used year round regardless of 

climate. The warmer climate coefficient in column 4 is large, but not statistically different from 

zero. I do find a significant effect for the colder climate subgroup. It is possible that people living 

in these climates must rely more heavily on indoor facilities, thus explaining why I only find a 

statistically significant effect for this group.  

 

2.5 Conclusion 
 

Using panel data with rich information on residential location choices, I estimate the 

relationship between greenspace amenities and health. I rely on an understanding of residential 

sorting behavior to find valid instruments for neighborhood amenity levels in order to address a 

standard endogeneity problem. My findings show that time-variant unobserved variables bias 

downward the estimated effect of access to greenspace on health. This implies that simply 

adding fixed effects in a panel setting may not be sufficient for identification.  
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OLS regressions on the pooled sample show a negative association between parks and 

BMI. Although this cannot be interpreted as a causal, finding a significant relationship in the 

cross section is promising, as previous cross-section studies have struggled to find direct 

associations between parks and BMI. Including individual fixed effects reduces the magnitude 

and significance of this finding. However, when jointly utilizing a fixed effects and instrumental 

variable estimation strategy, my preferred specification, I find that the addition of a generic park 

to a neighborhood reduces BMI by over 1 percent.  

The policy implications of this finding depend on the costs of constructing and 

maintaining a park relative to the monetized health benefits of BMI reductions. A back of the 

envelope benefits calculation illuminates this trade off. A 3 km radius of a residential address is 

close to the geographic size of the average block in the sample, and I find that one additional 

park within 3 km decreases obesity rates by one third of a percent. On average, just over 2000 

people live in the block groups in my sample, so this reduction equates to about 6.5 fewer obese 

individuals. If each obese individual incurs $1,429 in additional healthcare spending annually, 

then the monetized benefit of adding a park is $9,377 annually. Although this is a crude estimate, 

it demonstrates that health benefits alone likely cannot justify the costs of constructing and 

operating a park. However, my results suggest a much larger effect of health clubs, such as a 

YMCA, on BMI. Subsidizing gym memberships may be a more effective strategy if obesity 

reductions are the central policy objective. 
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2.7 Tables 
 

Table 1: Wave 3 Person-Level Characteristics 

Variable Individuals Mean Std. Dev. Min Max 

      

BMI 9093 26.167 6.151 12.293 66.130 

Obese 9093 0.216 0.412 0 1 

Education 9093 13.199 2.033 6 22 

Married 9093 0.209 0.406 0 1 

Children 9093 0.431 0.761 0 9 

Full Time 

Student 

9093 

0.274 0.446 0 1 

Age 9093 22.070 1.762 18 27 

Statistics based on subsample of movers. Obese defined by having a BMI of 30 or greater. 
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Table 2: Summary Statistics of Neighborhood Characteristics 

Variable Definition Obs Mean Std. Dev. Min Max 

Park Measures 

Park Count 1k Within 1 km 

of residencea 

17239 0.911 1.425 0.000 16.000 

Park Count 1-

3k 

Between 1-3 

km of 

residencea 

17239 4.812 6.428 0.000 54.000 

Membership Within 1 kmb 17239 0.294 1.066 0.000 34.000 

Outdoor Within 1 kmb 17239 0.145 0.512 0.000 15.000 

Public Within 1 kmb 17239 0.142 0.484 0.000 11.000 

YMCA Within 1 kmb 17239 0.050 0.293 0.000 7.000 

Instruments 

Median Value Median House 

Valuec (BG) in 

$10,000s  

14667 11.313 8.996 0.000 100.000 

Unit Density Housing Units 

per sq. kmc 

(BG) 

17232 598.038 2003.490 0.000 56482.500 

Schools Within 1 kmb 17239 6.966 12.763 0.000 200.400 

Geographic/Economic 

Area Sq. kmc (BG) 17239 26.501 107.052 0.012 4816.599 

Alpha Street 

Connectivitya      

(1 km) 

17239 0.314 0.638 -8.000 10.000 

MFDI Landscape 

Diversityd 

17239 1.071 0.028 1.004 1.182 

MHI Median 

Household 

Incomeb (BG) 

17239 39094.950 20161.530 0.000 200001.000 

Unemployment Rate for >16 

populatione 

(BG) 

17239 0.075 0.070 0.000 0.955 

COLI Cost of Living 

Indexf 

17239 1.083 0.219 0.850 2.370 

Health 

Birthweight Low birth 

weight 

proportiona (C) 

17239 0.076 0.017 0.036 0.144 

Medicaid Spending per 

beneficiarya 

(S) 

17239 3650.383 1281.579 441.714 7725.138 

Mortality Per 1,000a (C) 17239 8.336 2.015 1.488 18.338 

Infant Mortality White, Per 

10,000a (C) 

17239 55.668 57.618 0.000 240.000 
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Adult Arrests Per 100,000g 

(C) 

17239 714.260 394.695 0.000 9403.547 

Juvinile Arrests Per 100,000g 

(C)  

17239 271.920 162.807 0.000 2310.586 

Weather 

Precipitation Mean total 

rainfall, Julyh 

17239 3.371 2.057 0.000 9.110 

Sun Mean sunshine 

total hours, 

Annualh 

17239 2785.888 412.815 1488.000 4015.000 

Summer Temp Mean daily 

max temp, 

Julyh 

17239 86.996 6.415 63.800 108.700 

Winter Temp Mean daily 

min temp, 

Januaryh 

17239 28.119 12.406 -9.000 65.000 

Snowfall Mean total 

snowfall, 

Annualh 

17239 17.167 20.812 0.000 86.900 

BG indicates measure at Block Group level, C at the County level, and S at the State level. 

Weather norms come from the nearest weather station with non-missing data. Statistics based 

on subsample of movers. Data origin: a)  ESRI StreetMap Pro; b) Dun and Bradstreet; c) U.S. 

Census; d) National land cover dataset; e) U.S. Bureau of Labor Statistics; f) American 

Chamber of Commerce Research Association; g) Uniform Crime Reporting data; h) Climate 

Atlas of the United States 

 

 

 

 

Table 3 : Additional Park Measures 

Park Type Definition Example 

Membership Require a membership Country club, boating club, 

health club 

Outdoor Are “outdoor” in nature. Campgrounds, ski slope, golf 

course, riding stable 

Public Free, public access Tennis courts, community 

center, recreation center, public 

beach 

YMCA Non-profit aimed at improving 

community health and well-being 

YMCA, YWCA 

Categories based on Dun & Bradstreet primary Standard Industrial Classification. There is 

potential for overlap between categories. For example, a private golf course would be included 

in both the Membership and Outdoor categories. 
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Table 4: Wave 3 Parks by  Income and Obesity Status 

 (1) (2) (3) (4) 

 Low Value High Value Non-Obese Obese 

     

Park Count 0.686 1.227 1.007 0.772 

Membership 0.387 0.409 0.434 0.267 

Outdoor 0.179 0.229 0.220 0.149 

Public 0.168 0.196 0.192 0.147 

YMCA 0.075 0.0566 0.070 0.050 

Observations 4,546 4,540 7,122 1,964 
Movers subsample. Park measures are counts within 1 km of residence in Wave 3. 

High value indicates greater than the median housing value ($96,300, block group 

level) in the sample. All value comparison means statistically different at the 5 

percent level except for the membership category. For Obese comparison, YMCA 

means statistically different at 5 percent level, all other categories significant at 1 

percent level. 

 

 

 

 

 

 

 

 

Table 5: Discrete Choice Estimates 

 Main Effect  ×BMI ×Education ×Married ×Children ×Income 

       

Parks -0.0857 -0.0127* 0.0232 -0.0014 0.0187 0.0296** 

Schools -0.0138 -0.0012 0.0033 -0.0351* 0.0040 0.0011 

Median Value -0.02445 -0.0021** 0.0055*** -0.0046 -0.0081 -0.0003 

Unit Density 0.0652 0.0037 0.0002 -0.07134 -0.1433*** -0.0301* 

Diet Resources -0.0143 0.0002 0.0000 0.0117** 0.0044* 0.0010 

Parks, Schools, and Dietary Resources measured as counts within 1 km of residence. Median home value, at 

the block group level, is in $10,000s. Housing unit density is measured in 1,000s of units per sq. km. 

Several street connectivity measures were included in estimation but their coefficients are omitted from the 

table due to lack of significance. 
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Table 6: Preliminary Evidence 

 (1) (2) (3) 

 Log(BMI) Parks Wave 3 Log(BMI) Wave 3 

    

Parks  -0.00359**   

 (0.00161)   

Parks Wave 1  0.227***  

  (0.0195)  

Parks Wave 3   -0.00306*** 

   (0.000999) 

BMI Wave 1  -0.00971*** 0.0366*** 

  (0.00361) (0.000448) 

Full Time Student -0.0551*** 0.00343 0.00128 

 (0.00681) (0.0451) (0.00352) 

Children 0.0187*** -0.0391** 0.00499* 

 (0.00543) (0.0152) (0.00263) 

Education 0.00889*** 0.0513*** -0.00245*** 

 (0.00120) (0.00952) (0.000802) 

Married 0.0301*** -0.153*** 0.0385*** 

 (0.00795) (0.0340) (0.00422) 

Constant 2.899*** 12.72*** 2.375*** 

 (0.183) (1.348) (0.125) 

    

Weather Controls yes yes yes 

Health Controls yes yes yes 

Time F.E. yes no no 

    

Observations 16,191 6,797 8,867 

R-squared 0.148 0.229 0.565 

Movers sample. OLS estimates, column titles are dependent variables. Robust 

standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 7: Comparison of Fixed Effects and Instrumental Variable Approaches 

 (1) (2) (3) (4) 

 FE Pooled IV FE IV FE IV 

     

Park Count 1 km -0.000184 -0.0239*** -0.0125** -0.00784* 

 (0.00161) (0.00536) (0.00529) (0.00451) 

     

F-Stat  50.78 14.79 33.37 

Hansen J Stat (p-val)  0.5854 0.9159 0.9094 

Observations 16,191 13,768 10,016 13,548 

R-squared 0.511 0.133 0.525 0.502 

Number of ID 8,949  5,008 6,774 

Movers sample. Log-transformed BMI is the dependent variable. Park count measured as 

number of parks within 1 km Euclidean distance of residence. Median housing value, housing 

unit density, and school count of own location used as instruments for columns 2 and 3. 

Average median housing value, housing unit density, and school count of other locations in 

same county used as instruments for columns 4. Robust standard errors in parentheses  

*** p<0.01, ** p<0.05, * p<0.1 

 

 

Table 8: Impact of Parks by Residence Length 

 (1) (2) 

 WIII Sample 

IV 

Recent Mover 

Interaction 

   

Park Count 1k -0.0242*** -0.0258*** 

 (0.00665) (0.00694) 

Parks X Recent Move  0.0299** 

  (0.0126) 

Parks F-Stat 34.73 19.52 

Interaction F-Stat  6.19 

Hansen J Stat (p-val) 0.9201 0.9919 

Observations 8,542 8,542 

Movers sample. Recent Move indicates participant has 

moved within 1 month of being surveyed. Log-transformed 

BMI is the dependent variable. Median housing value, 

housing unit density, and school count of own location used 

as instruments for park count. In column 2, interactions of 

these instruments with recent mover status as additional 

instruments. Robust standard errors in parentheses. *** 

p<0.01, ** p<0.05, * p<0.1 
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Table 9: Alternative Park Categories 

 (1) (2) (3) (4) 

 Membership Outdoor Public YMCA 

     

Park Measure -0.00466** -0.0161** -0.0173** -0.0414** 

 (0.00217) (0.00754) (0.00729) (0.0200) 

     

F-Stat 77.19 23.26 48.54 7.17 

Hansen J Stat (p-val) 0.4123 0.3974 0.6956 0.5461 

Observations 10,016 10,016 10,016 10,016 

Number of ID 5,008 5,008 5,008 5,008 

Movers sample. Membership, Outdoor, Public, and YMCA counts within 1 km network 

distance of residence. Median housing value, housing unit density, and school count of own 

location used as instruments for facility count. Robust standard errors in parentheses.  

*** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

 Table 10: Alternative Park Measures 

 (1) (2) (3) 

 Parks ∈ (1,3] 
km 

Minimum 

Distance 

Total Area 

    

Park Measure -0.00212** 0.0226** -0.284* 

 (0.000871) (0.0104) (0.172) 

    

F-Stat 27.41 11.57 3.38 

Hansen J Stat (p-val) 0.8722 0.5597 0.4914 

Observations 10,016 5,946 10,016 

R-squared 0.526 0.494 0.469 

Number of ID 5,008 2,973 5,008 

Movers sample. Log-transformed BMI is the dependent 

variable. Minimum distance indicates distance to nearest park. 

Total area includes are of all parks within 1 km of residence. 

Median housing value, housing unit density, and school count 

of own location used as instruments for the park measure. 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, 

* p<0.1 
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Table 12: Climate’s Influence on Park Utilization 

 (1) (2) (3) (4) 

 Cold Outdoor Hot Outdoor Cold YMCA Hot YMCA 

     

Park Count 1 km -0.0113* -0.0862** -0.0303* -0.167 

 (0.00672) (0.0397) (0.0179) (0.109) 

     

Observations 4,498 4,874 4,498 4,874 

R-squared 0.553 0.481 0.552 0.495 

Number of ID 2,249 2,437 2,249 2,437 

Log-transformed BMI is the dependent variable. Movers sample. Cold defined as having 

January minimum temperature below sample median (29 degrees Fahrenheit). Median 

housing value, housing unit density, and school count of own location used as instruments 

for park count.  Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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2.8 Appendix 

 

Table A1: Full Results 

 (1) (2) (3) 

 FE Pooled IV FE IV 

    

Park Count 1 km -0.000184 -0.0239*** -0.0125** 

 (0.00121) (0.00536) (0.00529) 

Full Time Student 0.00257 -0.0522*** 0.00487 

 (0.00549) (0.00693) (0.00642) 

Children 0.00915*** 0.0170*** 0.0106*** 

 (0.00332) (0.00535) (0.00394) 

Precipitation 0.00218 -0.00421** 0.000487 

 (0.00222) (0.00192) (0.00281) 

Sun 4.06e-06 -5.98e-07 4.88e-06 

 (9.46e-06) (7.68e-06) (1.14e-05) 

Summer Temp 0.000632 0.000798 0.000163 

 (0.000437) (0.000493) (0.000521) 

Winter Temp -0.00177*** 0.000198 -0.00149** 

 (0.000466) (0.000417) (0.000592) 

Snowfall -0.000351 0.000110 -0.000336 

 (0.000229) (0.000211) (0.000285) 

Alpha 0.00102 0.00367 0.00149 

 (0.00212) (0.00380) (0.00314) 

Median Income 4.57e-08 -5.78e-07*** -2.75e-08 

 (1.00e-07) (1.27e-07) (1.23e-07) 

Education 0.00383*** 0.00743*** 0.00537*** 

 (0.00126) (0.00132) (0.00151) 

Married 0.0371*** 0.0259*** 0.0288*** 

 (0.00593) (0.00813) (0.00712) 

MFDI -0.0436 -0.368* -0.00676 

 (0.132) (0.193) (0.160) 

COLI 0.0151 0.00453 -0.00569 

 (0.00973) (0.0175) (0.0181) 

Birthweight 0.158 0.195 0.190 

 (0.184) (0.191) (0.232) 

Unemployment 0.0146 0.131*** 0.0241 

 (0.0272) (0.0370) (0.0363) 

Medicaid -2.97e-06 2.23e-06 -6.61e-06* 

 (3.07e-06) (3.35e-06) (3.74e-06) 

Mortality 0.00112 0.00165 0.00115 

 (0.00127) (0.00139) (0.00161) 

Infant mortality -6.05e-05 -3.10e-05 -7.32e-05 

 (7.93e-05) (0.000140) (0.000107) 

Adult Arrests 6.07e-06 2.26e-05** 8.95e-06 
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 (7.68e-06) (1.04e-05) (8.98e-06) 

Juvenile Arrests -1.43e-05 -1.81e-05 -4.90e-06 

 (1.74e-05) (2.38e-05) (2.09e-05) 

Time 0.114*** 0.154*** 0.116*** 

 (0.0118) (0.0182) (0.0150) 

Constant 3.053*** 3.310***  

 (0.146) (0.214)  

    

Observations 16,191 13,768 10,016 

R-squared 0.511 0.134 0.523 

Number of ID 8,949  5,008 

Movers sample. Log-transformed BMI is the dependent variable. Median 

housing value, housing unit density, and school count of own location used 

as instruments for columns 2 and 3. Robust standard errors in parentheses  

*** p<0.01, ** p<0.05, * p<0.1 

 

 

 

Table A2: First Stage Results 

 (1) 

 Park Count 

  

Median Housing value 0.108* 

 (.065) 

Housing Unit Density 0.041 

 (0.044) 

Schools 0.0231*** 

 (0.00485) 

Full time student -0.129* 

 (0.0782) 

Children 0.0389 

 (0.0413) 

Precipitation -0.150*** 

 (0.0313) 

Sun 4.10e-05 

 (0.000152) 

Summer Temp 0.000265 

 (0.00727) 

Winter Temp 0.0285*** 

 (0.00652) 

Snowfall 0.0128*** 

 (0.00301) 

Alpha 1 km 0.0408** 

 (0.0162) 
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Median Income -7.40e-06*** 

 (2.02e-06) 

Education 0.0427** 

 (0.0167) 

Married -0.0676 

 (0.0632) 

MFDI -5.276*** 

 (1.399) 

COLI 0.272 

 (0.210) 

Birthweight 7.087*** 

 (2.194) 

Unemployment -0.312 

 (0.606) 

Medicaid -1.76e-05 

 (4.44e-05) 

Mortality -0.0353** 

 (0.0174) 

Infant mortality 0.000537 

 (0.000943) 

Adult Arrests 0.000257** 

 (0.000102) 

Juvenile Arrests -0.000214 

 (0.000212) 

Time 0.302** 

 (0.148) 

Constant 4.645*** 

 (1.770) 

  

Observations 13,985 

Number of ID 8,813 

R-squared 0.140 

First stage results for the specification in 

Column 3 of Table 6. Housing unit 

density in 1,000s of units per sq. km. 

Median housing value is in $10,000s. 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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 Table A3: Alternate IV Specifications 

 (1) (2) (3) (4) (5) 

 Obesity  Log(BMI) Value Density Schools 

      

Park Count 1k -0.0215* -0.0125** -0.0143 -0.0141*** -0.0112** 

 (0.0119) (0.00529) (0.0215) (0.00463) (0.00449) 

      

F-stat 13.79 14.79 6.06 24.50 87.83 

Observations 10,016 10,016 10,022 14,478 14,484 

R-squared 0.143 0.525 0.520 0.499 0.503 

Number of ID 5,008 5,008 5,011 7,239 7,242 

Dependent variable is obesity status in column 1 and log-transformed BMI in columns 2-5. Median 

housing value used as instrument in column 3, housing unit density used as instrument in column 4, 

schools used as instrument in column 5, and all three are used in columns 1 and 2. Robust standard 

errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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Chapter 3: Responding to Environmental Risk: The Micro-

Determinants of Defensive Behaviors 
 

 

3.1 Introduction 
 

Damages from air pollution take many forms, including worsened health outcomes, 

increases in premature mortality, and costs related to living with chronic conditions. Government 

agencies regulate environmental pollutants, but this regulation does not fully protect the public 

from harm. Individuals compensate by managing their own exposure levels to pollution, though 

these defensive actions also have associated costs which should be accounted for when crafting 

optimal environmental policy.  This paper explores the micro-determinants of the decision to 

engage in defensive behaviors when facing environmental degradation. 

Defensive behavior can take a variety of forms. Common strategies are spending less 

time outdoors, where exposure rates are higher, or wearing protective gear such as particulate-

filtering masks. Longer term avoidance behaviors can include investing in high quality air filters 

or purifiers to increase the differential between outdoor and indoor levels of pollution, or moving 

to an area that is known to have better average air quality. Further, some medications can be 

taken to offset potential damage from pollution exposure. For water pollution, common 

avoidance behaviors include using water treatment devices such as filters or consuming bottled 

water rather than tap water. This paper will use the terms “defensive behavior” and “avoidance 

behavior” almost interchangeably, but there is a distinction. “Avoidance behavior” will reference 

actions taken to limit exposure to a pollutant, while “defensive behavior” will apply generally to 

actions aimed at mitigating damage caused by pollution. In this sense, the former is a subset of 

the latter. 
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Individuals become aware of environmental risk in a number of ways. For air pollution, 

the government creates an air quality index (AQI) that is distributed through local media on poor 

air quality days. People may seek out further information about general air and water pollution 

levels where they live through a variety of online resources. Further, experience with certain 

diseases, such as being asthmatic, may prompt an individual to be more knowledgeable about 

certain causes and irritants of the disease, including pollution exposure. 

In this study, I use data from the National Health and Nutrition Examination Survey 

(NHANES), which asks respondents about their participation in a range of avoidance behaviors. 

I estimate how a wide range of personal characteristics influence these behaviors, controlling for 

environmental factors that may influence these decisions. This paper adds to the current literature 

in a number of ways. Previous work, discussed in more detail in the next section, has 

demonstrated the importance of accounting for defensive behavior when measuring the health 

costs of pollution. Since these behaviors respond to pollution and improve health, not controlling 

for these behaviors will lead to underestimates of the relationship between ambient pollution 

levels and health outcomes. Thus, better understanding the extent of avoidance behaviors will 

inform future studies that wish to estimate these relationships. Further, avoidance behaviors 

themselves are costly, and should be included when considering the total welfare costs of 

pollution. This study provides additional evidence that people engage in protective behaviors, 

and unlike previous studies, it is able to identify which types of behaviors are more prevalent. 

Further, it provides a more comprehensive set of personal characteristics that may influence 

avoidance behavior. Understanding which groups are more likely to engage in avoidance 

behaviors, and their motivations for doing so, will help us better understand a piece of the costs 

of pollution and which groups bear a disproportionate burden of these costs. 
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3.2 Background 
 

A health production framework, introduced in Grossman’s seminal 1972 paper, offers a 

precise way to think about the demand for defensive behaviors. In this model, avoidance 

behaviors are costly actions that improve one’s health stock. The cost of avoidance behavior can 

take many forms. For commodities, like air filters and medication, costs come from the ticket 

price and associated time costs (visiting a doctor, filling a prescription, etc.). For behaviors like 

cancelling outdoor activities, the cost depends on the substitutability of indoor activities. For 

elderly individuals, a walk through the mall may be a close substitute for walking outdoors in a 

park, so the cost of making that leisure time trade-off may be small. The costs could be larger, 

however, for cancelling a planned group sports activity or a trip to the zoo. The optimal level of 

avoidance behavior depends on its price, how it contributes to health, i.e. how efficient it is at 

reducing exposure or protecting respiratory health, and how it impacts other direct utility inputs 

such as leisure time.  

The costs of air pollution extend beyond just those associated with defensive behaviors. 

At some point, the marginal benefit of engaging in these behaviors will be surpassed by their 

costs, and individuals will suffer from the untreated health consequences of pollution exposure. 

Further, decreased health will impact worker productivity and increase sick days. At the extreme, 

medical technologies may not exist to fully alleviate damage caused by pollution, leading to 

premature mortality. A number of papers investigate how defensive expenditures relate to true 

willingness to pay (WTP) to reduce pollution levels (Courant and Porter 1981, Bockstael and 

McConnell 1983, Harrington and Portney 1987, Bartik 1988). Under reasonable assumptions on 

the structure of utility and health production functions, this literature generally finds that 
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defensive expenditures form a lower bound on WTP.  Many empirical studies attempt to measure 

costs associated with pollution. Gerking and Stanley (1986) find a WTP of about $24 to reduce 

outdoor ozone exposure by 30 percent. Dickie and Gerking (1991) find that individuals living in 

high ozone areas are WTP $170 annually to prevent spikes in ozone, and they note that this 

estimate is 2-4 times larger than costs associated with medical expenditures alone. According to 

Dickie (2005), parents are WTP $100-150 to avoid one illness induced school day lost. Further, 

Blomquist et al. 2011 estimates the annual value of asthma control to be from $1700-4000. With 

respect to water quality, Jakus et al. (1997) find that contaminated reservoirs, which prompt 

fishers to choose new sites or reduce the number of fishing trips taken, result in personal 

economic losses of $47 per season in East Tennessee. Finally, Graff Zivin et al. (2011) find that 

costs of avoidance behavior related to contaminated tap water were roughly $60 million in 2005. 

The scope of these studies varies widely, and these estimates are generally lower bounds on the 

true costs of pollution. Though other costs of pollution, such as premature mortality increases, 

are clearly important, this paper focuses on avoidance behavior, which is often ignored when 

assessing relationships between ambient pollution levels and observed health outcomes. 

Recent work in Economics has verified the fact that people engage in avoidance 

behaviors. Smith et al. (1995) find that people invest in structural modifications to prevent radon 

exposure. Other studies find changes in fishing habits and purchases of canned fish products 

after fish consumption advisories (May and Burger 1996, Jakus et al. 1997, Jakus et al. 1998, 

Shimshack et al. 2007). Graff Zivin et al. (2011) find increases in bottled water purchases as a 

result of tap water violations. Berger et al. (1987) and Sun et al. (2017) show that purchases of 

PM2.5 filtering masks and air filters/purifiers increase in response to air pollution warnings. 

Additional studies have found a response in outdoor activities on high pollution days (Bresnahan 
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et al. 1997, Graff Zivin and Neidell 2009, Janke 2014). Though these papers often document 

some heterogeneity in responses, my setting is ideal for comprehensively investigating which 

types of individuals have higher propensities of engaging in avoidance behaviors. 

Studies repeatedly find differences in defensive actions between susceptible, or 

vulnerable, groups and non-susceptible groups (Mullahy 1999, Wu 2003, Shimshack et al. 2007, 

Graff Zivin and Neidell 2009, Neidell 2009, Graff Zivin et al. 2011). Pollution advisories often 

target specific groups, such as children, the elderly, or people with pre-existing chronic 

conditions. One way in which the Environmental Protection Agency (EPA) attempts to inform 

the public of changes in environmental quality is through the reporting of an Air Quality Index 

(AQI). The AQI presents an easily interpretable level of air quality ranging from “healthy” to 

“hazardous”.  An AQI is calculated for each of 5 criteria pollutants: ozone (O3), particulate 

matter (PM2.5 or PM10), carbon monoxide (CO), nitrogen dioxide (NO2), and sulfur dioxide 

(SO2). Often only the highest these AQIs is reported as the relevant air quality metric. AQIs at 

certain levels are targeted to sensitive groups. For example, an O3 AQI above 100 is said to be 

unhealthy for people with lung disease, children and the elderly, and people who are active 

outdoors. These types of individuals are most susceptible to the negative health effects of air 

pollution, and therefore have the most to gain by engaging in defensive behaviors to reduce their 

exposure level. 

From a health production perspective, susceptible subpopulations have different health 

technologies, so their marginal change in health with respect to a change in pollution is relatively 

higher than for the non-susceptible group. Alternatively, vulnerable groups may be more likely 

to be aware of changing environmental conditions and its health impacts, and this information 

differential could result in wider response gaps. The fact that education is sometimes found to be 
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positively correlated with defensive behaviors further supports this information argument 

(Bresnahan et al. 1997, Wu 2003). Shimshack et al. (2007) find that educated individuals 

respond more strongly to advisories, but only if they are part of a targeted group. Information 

may also affect valuations for improvements in environmental quality. Krupnick and Cropper 

(1992) find that having relatives with a history of respiratory disease increases an individual’s 

WTP to prevent chronic bronchitis. For some types of defensive behaviors, like preventive 

medical procedures, higher participation rates by unhealthy groups may simply be a function of 

them coming into more frequent contact with the healthcare system (Mullahy 1999, Wu 2003). 

For example, unhealthy individuals may be more likely to get a flu shot during a previously 

planned doctor appointment, decreasing the time costs of receiving the shot. In this case, the 

decision to receive preventive care may be determined more by convenience than by being a 

member of a targeted vulnerable group. Further, since WTP for environmental improvement is a 

function of income, I expect wealthier individuals to generally engage in more avoidance 

behaviors, especially those for which the time costs are minimal, such as purchasing air filters or 

water treatment devices.  Several studies provide evidence of this income effect. Krupnick and 

Cropper (1992) find that WTP to avoid chronic bronchitis increases with income.  Additional 

studies find that consumption of protective goods increases with income (Smith et al. 1995, Zivin 

et al. 2011, Sun et al. 2017). 

Time preferences and costs are other likely predictors of avoidance behavior. For 

behaviors that have a non-negligible time component, the value of time should be taken into 

consideration. Often wage is used to proxy for this, indicating that high income individuals will 

have higher costs associated with the defensive behavior. Thus, if high wage individuals have to 

take time off work make a doctor’s appointment, they will be less likely to seek out a preventive 
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procedure. However, if the procedure lowers the probability of getting sick and missing more 

work time later, higher wages increase the probability of engaging in defensive behaviors. This 

trade-off highlights the potential importance of time preferences in predicting healthy behaviors. 

Courtemanche et al. (2014) looks at how time preferences impact obesity, and they find that 

impatient individuals are more likely to gain weight when food prices drop. In other words, 

people with high discount rates are willing to trade-off short run benefits with longer run health 

risks. In another paper, Courtemanche and Carden (2011) find a significant impact of access to 

cheap food on obesity levels. Time preferences also have implications for how people manage 

their respiratory health. Two common forms of asthma medication can be categorized as (a) 

rescue inhalers, which are taken in response to an asthma attack to lessen its severity, and (b) 

long-acting inhalers, which are prescribed to be taken daily in order to lower the probability of 

an asthma attack occurring. In the language of Ehrlich and Becker (1972), taking these types of 

medications can be thought of as self-insurance and self-protection, respectively. If long-acting 

inhalers are used preventively, then higher discount rates may be associated with lower rates of 

usage. However, Deschenes et al. (2016) and Williams and Phaneuf (2017) find long-acting 

inhalers to be more responsive to changes in air pollution, consistent with evidence from the 

health literature that these types of medications are used in a reactive rather than preventive 

manner (Stempel et al. 2005).  

Some characteristics will impact initial air pollution exposure rates. People employed in 

industries like construction and agriculture spend more time outdoors and cannot easily 

substitute away from outdoor activities. People who engage in more active outdoor recreation 

also face higher rates of exposure. For this group, work constraints do not restrict their ability to 

substitute away from outdoor activities, but doing so may be more costly than for someone that 
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prefers indoor leisure time activities. Occupation and leisure time choices may also reflect 

underlying risk preferences. Anderson and Mellor (2008) find risk aversion to be negatively 

correlated with unhealthy behavior, including smoking and heavy drinking, and health outcomes 

including obesity.  

A simple health production framework assumes individuals have perfect knowledge of 

their health technology, i.e. they know how much health benefit they will receive from a 

marginal increase in defensive behavior. In the real world, information is incomplete, leaving 

open the possibility that individuals engage in too much or too little defensive behavior. 

Shimshack et al. (2007) find that some groups who are not at risk still change their consumption 

habits. If these individuals receive no health benefit from reducing consumption, then the welfare 

benefits of a consumption advisory are diminished by this unintended response. Risk averse 

individuals may engage in defensive behaviors even if they are uncertain about the associated 

health consequences. On the other hand, some groups may fail to respond to an advisory because 

of overconfidence in their own knowledge and experience or mistrust of the information source 

(May and Burger 1996, Busch 2009). Other factors, such as anxiety about knowing one’s true 

health risks, may lower the probability of preventive procedures including cancer screenings 

(Wu 2003).  

Other behaviors are more altruistic in nature, aimed at generating public environmental 

benefits rather than private health benefits. Advisories from the ‘Spare the Air” program in the 

San Francisco Bay area encourage increased use of public transportation and ride-sharing on 

high ozone days. Cutter and Neidell (2009) find that total traffic is reduced by 2.5-3.5% on days 

when advisories are issued. Although the individual health gains from this type of behavior is 

minimal, people may derive “warm glow” utility from helping others. Still, Owen et al. (2012) 
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find evidence that people tend to overestimate the public environmental benefit from their 

actions. Interestingly, if people were better informed about the marginal environmental benefits 

from behaviors such as recycling and energy conservation, they may actually be less likely to 

engage in them. 

Although decisions to engage in defensive behaviors are complex and depend on a 

multitude of factors, several trends emerge from this review of the literature. First, vulnerable or 

targeted groups, such as children, the elderly, or those with preexisting conditions, are more 

likely to engage in defensive behaviors. Second, more educated and/or more informed 

individuals are more prone to take these actions. Finally, males, or people with higher risk 

tolerance, are less likely to engage in such behaviors. In this paper, I use survey responses about 

a variety of defensive behaviors to comprehensively study their determining factors and 

motivations, and I investigate how these factors compare across different types of defensive 

actions.  

 

3.3 Data 
 

3.3.1 Publicly Available Data 

 

Variables for the main analysis come from the 2007-2008 and 2009-2010 waves of the 

National Health and Nutrition Examination Survey (NHANES).  NHANES uses a nationally 

representative sample of individuals and contains health and demographic information, some of 

which is summarized in Table 1. My baseline estimates include information on 11,337 unique 

individuals. Not all variables are asked to all participants in both survey periods, so the addition 

of some covariates significantly reduces the sample size. I will treat such regressions as 
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robustness checks and focus the analysis on the larger sample. Demographic variables include 

age, racial minority status, sex, and education. Education level is grouped into one of five 

categories: (1) less than 9th grade, (2) some high school, (3) high school graduate or GED 

equivalent, (4) some college, or (5) college graduate. Education may also serve as a proxy for 

being informed about air pollution or how effectively one can protect against it.  

Health variables include indicators of insurance, respiratory health, blood lead levels, and 

obesity. An individual is considered asthmatic if they report having an asthma event in the past 

year. A second measure of respiratory health, spirometry, comes from the examination portion of 

the NHANES. Spirometry is constructed as the ratio of forced expiratory volume (FEV) in the 

first second of the spirometry test to forced vital capacity (FVC), a measure of lung capacity. 

Lower values of spirometry indicate lower expiratory air flow and worse respiratory health. This 

measure is frequently used to diagnose asthma and chronic obstructive pulmonary disease 

(COPD). Blood lead levels, measured in micrograms per deciliter (ug/dL) come from the 

laboratory section of the NHANES. Major sources of lead contamination are lead paint and lead 

pipes, both of which are more common in older houses. Housing age is defined on a 6 point 

scale, with (1) being the youngest (built after 1990) and (6) being the oldest (built before 1940). 

Well water is an indicator variable that equals one if the source of tap water is a private or public 

well, which may impact the amount of lead found in tap water. 

Leisure time activities are summarized in the active hours and inactive hours variables. 

These indicate the average number of hours spent on active (biking, jogging, playing sports, etc.) 

and inactive (playing video games, watching television, etc.) in a typical week. For active 

recreation, participants are asked how many days per week and how many minutes each day they 

spend on these activities. For inactive recreation, they are asked how many minutes are spent on 
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the activity in a typical day. I use these responses to create weekly measures, in hours, to 

compare active and inactive activity levels. Because of the level of detail requested, recall bias 

may be of particular concern for these variables, but they should still be a good signal for recent 

activity levels. Healthy diet records respondents’ perceptions of the healthiness of their diet, 

from (1) excellent to (5) poor. Smoker equals one if the participant has consumes at least 100 

cigarettes in his lifetime, which also yields evidence of health preferences and tolerance for risk.  

Economic variables include hours worked, family income, savings, and an indicator of the 

physical intensity of work. Annual family income is binned into twelve categories, with higher 

numbers indicating higher incomes. These categories range from (1) less than $5,000 to (12) 

greater than $100,000. Family savings are divided into 7 categories, ranging from (1) less than 

$500 to (7) greater than $5,000. The variable Savings/Income roughly describes how much 

savings a family has relative to monthly earnings. This savings ratio variable may also serve as a 

proxy for risk/time preferences. More risk averse people may save more in case of emergency 

events, while people with higher discount rates will tend to save less. Vigorous Work equals one 

if a person’s job requires vigorous physical activity, which might also influence active leisure 

choices outside of work.  

Several additional variables reveal if the participant engages in risky behaviors. The 

variable condom describes how frequently a condom is used during intercourse, (1) being 

“never” and (5) indicating “always”. Getting a Hepatitis A vaccine is a preventive health 

behavior which demonstrates concern about potential negative health outcomes. The last two 

variables in Table 1 indicate whether or not the individuals have used various illegal drugs 

recreationally. For some sensitive questions, the eligible sample is restricted by age. For 

instance, condom use is only asked to the 20-59 age group. Further, some variables have a high 
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number of missing values even among the eligible sample. This could be due to refusal to answer 

or not knowing/having the answer ready. Results that include these additional variables come 

from estimation on smaller sample sizes and should be interpreted with caution in case the 

missing values are not randomly distributed. 

Although other years are available, I restrict my sample to the 2007-2010 NHANES 

because these waves of the survey ask about a range of defensive behaviors. In particular, the 

survey asks, “During the past 12 months, when you thought or were informed air quality was 

bad, did you do anything differently?” Follow up questions ask the respondents how they 

changed their behavior, including: wearing a mask, spending less time outdoors, avoiding roads 

that have heavy traffic, doing less strenuous activities, taking medication, closing windows in 

your house, driving your car less, canceling outdoor activities, exercising indoors instead of 

outdoors, using buses, trains, or subways, changing air filter/air cleaner, and other. I have 

grouped the types of avoidance behavior into four categories.  Change is just a measure of if the 

participant made any changes in response to being informed about poor air quality. Expenditure 

includes the set of responses that directly require spending money: buying a mask, medication, or 

new air filter. Outdoors indicates some change in outdoor activities: spending less time outdoors, 

cancelling outdoor activities, and exercising indoors instead of outdoors.  Altruism indicates a 

response that is geared towards lowering one’s own contribution to the pollution problem: 

driving your car less and switching to public transportation. Finally, another question asks 

participants if they use some sort of water treatment device for their tap water at home. Water 

treatment devices can include Brita filters, charcoal filters, water softeners, aerators, and reverse 

osmosis technology.  This serves as a defense against water, rather than air, pollution, and allows 
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me to compare defensive behaviors across different types of environmental risk. Table 2 lists the 

number of individuals that engage in each type of behavior. 

 

3.3.2 Restricted Access Data 

 

In the public-use NHANES data files, I am not able to identify an individual’s residential 

location. Other variables not included in NHANES may be important for explaining the 

microeconomic determinants of defensive behaviors. For this reason, I use restricted date-of-

interview and geographic data accessed through a Federal Statistical Research Data Center to 

merge additional information on air quality, weather, and unemployment at the county level. 

Pollution data comes from the U.S. EPA and measures the severity of air pollution in a county 

over the past year. The EPA collects data on air pollutants that are known to impact human 

health, including ozone, particulate matter, sulfur dioxide, nitrogen dioxide, and carbon 

monoxide. A daily index value is created that indicates if the measured level of the pollutant is 

good, unhealthy for sensitive groups, unhealthy, or very unhealthy. The highest daily index 

among all the pollutants measured in a county becomes the air quality index (AQI) ascribed to 

the county for that particular day. I count the number of days that fall into each of the AQI health 

categories over the year leading up to an individual’s interview date, and these counts are used as 

the measure of air pollution severity associated with a person’s county of residence. Metropolitan 

Statistical Areas with populations over 350,000 are generally required to report daily AQI 

measures to the general public through local media sources (EPA 2006). Since this information 

is distributed at a city-wide basis, there is little benefit of obtaining this variable at a finer degree 

of geographic detail. 

Temperature, precipitation, and humidity data come from the North American Land Data 
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Assimilation System (NLDAS) accessed through the CDC’s WONDER online databases. These 

variables are relevant because they affect the relative value of outdoor recreation activities. For 

example, on very hot days people will not be spending much time outside regardless of the air 

quality on that day. Since the Physical Activity Questionnaire includes questions that reference 

short term (a “typical” day or week) and longer term (past 12 months) activities, both annual and 

monthly weather measures will be utilized. 

Annual county level unemployment rates for 2007-2010 will come from the Bureau of 

Labor Statistics. Similar to Mullahy (1999), I use unemployment rate as an instrumental variable 

for labor market characteristics (hours worked, employment status) to control for unobserved 

characteristics that are both associated with the labor market measure and the decision to engage 

in avoidance behavior. 

Table 3 presents some summary statistics for these variables. Due to the sensitive nature 

of the data, minimum and maximum values are not included. Many counties do not have air 

quality monitoring, so my restricted sample size is reduced to 7,819 individuals. Because of this 

significant data reduction, I primarily use these additional data to check the robustness of my 

results and ensure that important unobservables are not influencing estimated relationships. 

 

3.4 Empirical Strategy 
 

I estimate how individual characteristics influence the decision to engage in defensive 

behaviors. Baseline regressions are of the form 

 1 2 3i i i i iY leisure X environment        



111 
 

where leisure is a measure of active leisure time choices, X are other individual level variables 

including health and insurance status, and environment includes air pollution and weather 

controls for individual i’s residential location. Y is a binary indicator for having engaged in at 

least one avoidance behavior type in the past year, or it can be defined for a given behavior, such 

as spending less time outdoors (Yi =1 if individual i spent less time outdoors because of an air 

quality alert, 0 otherwise). 

3.4.1 Instrumental Variables 

 

The leisure variable indicates the amount of time spent on outdoor leisure activities 

during a typical week. One concern is that this measure will be correlated with unobserved health 

preferences that co-determine both the amount of time spent on healthy leisure choices as well as 

the decision to engage in avoidance behavior. This endogeneity may bias the coefficient estimate 

of 
1  because individuals with high values for health will both spend more time on outdoor 

leisure activities and be more likely to take defensive actions against air pollution exposure. A 

positive estimate of 
1  may therefore be misinterpreted as high outdoor leisure types being more 

likely to engage in avoidance behavior, which is counterintuitive if it is more costly for these 

individuals to substitute away from outdoor activities. 

To address this empirically, I implement an instrumental variables estimator. Valid 

instruments are (a) strongly correlated with the amount of time spent on outdoor leisure in the 

past week, but (b) unrelated to having engaged in avoidance behavior in the past year. 

Instruments come from monthly weather variation. I rely on the timing of the NHANES 

questions to justify the validity of these instruments. Avoidance behavior questions are specific 

to the past year, but recreation questions refer a typical week, so responses will likely refer to 
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activity levels in the past few weeks. Monthly weather deviations from annual averages will 

influence recent recreation decisions but not avoidance behavior decisions. For example, if an 

individual is surveyed in an unusually rainy month, they may have spent relatively little time 

engaged in outdoor activities. Avoidance behavior decisions will depend on precipitation levels 

over the past 12 months, so conditional on controlling for these annual averages, the monthly 

measures will be valid instruments. 

I am also interested in the impact of labor market variables on avoidance behavior 

choices. Workers may engage in more defensive behaviors to reduce the probability of costly 

illnesses that require them to take time off work. Alternatively, since their time is more 

constrained or valuable, workers may be less likely to engage in behaviors that require them to 

alter their leisure time choices. However, the decision to work may be related to unobserved 

leisure, health, and risk preferences. For this reason, I use county level unemployment rate to 

instrument for hours worked. Unemployment rates will influence the probability that an 

individual has a job, but should not be directly related to avoidance behaviors. 

 

3.5 Results 
 

3.5.1 Main Results 

 

Since protecting health is a central reason for engaging in defensive behaviors, I first 

estimate reduced form relationships between avoidance behaviors and health outcomes in the 

data. Columns 1 and 2 of Table 4 present the impact of avoidance behavior, smoking, and 

physical activity on respiratory outcomes. Asthma Year indicates having had an asthma attack in 

the past year, and Spirometry records the outcome of a test of lung functioning, where lower 
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values correspond to lower respiratory health. The results are consistent in for both outcomes: 

change, an indicator for avoidance behavior, and smoker are associated with worse respiratory 

health, while physical activity has the opposite effect. Though avoidance behaviors are aimed at 

improving health, the coefficient on change likely reflects the fact that unhealthy individuals are 

more likely to engage in these behaviors. The coefficient on active hours must be interpreted in a 

similar way; healthier people may engage in more physical activity, physical activity may 

improve respiratory health, or the coefficient reflects a combination of these two effects.  

Column 3 investigates factors that contribute to blood lead levels. Water treatment, a 

defensive behavior, significantly decreases lead levels, while older houses increase levels. An 

indicator for getting tap water from a well has a positive but insignificant effect. In contrast to 

the respiratory outcomes, a selection based on health is unlikely for blood lead levels. An 

important distinction between these two health outcomes is their observability. People with 

asthma know they have respiratory problem, while most people do not observe their level of lead 

exposure. Rather, water treatment is done because of knowledge of potential health risks and for 

non-health reasons. For example, one common water treatment, water softening, is aimed at 

reducing limescale build-up. The coefficient on water treatment could represent a large benefit 

from the subset of treatment options that do decrease lead levels, or it could be driven by an 

unobserved factor related to both lead levels and water treatment decisions. The positive effect of 

housing age is sensible, since older houses are more likely to contain lead pipes or lead-based 

paint. 
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Next, I examine the motivating factors behind defensive behaviors. OLS estimates for 

various defensive behavior types are presented in Table 58. The dependent variables in each 

column come from the binary indicators listed in Table 2. Many of these initial results reinforce 

previous findings in this literature. For responses to air pollution, in columns 1-4, having an 

asthma attack in the past year has the strongest impact on behavior change. Individuals with 

recent asthma experience are about 13 percent more likely to change their behavior in response 

to an air quality warning. Unsurprisingly, this is not true for the water treatment category. 

Education has the most consistent effect across each category, with higher levels of education 

increasing the probability of engaging in defensive behaviors. The determinants of expenditures 

are quite different from the other air pollution behaviors. Asthma year still has a significant 

effect, but it is much smaller than in the outdoors category. Interestingly, expenditures is the only 

air pollution category in which income is statistically significant. This is consistent with previous 

literature that find positive associations between wealth and defensive behaviors, but suggests 

that other types of avoidance behaviors are not as sensitive to income. Still, the magnitude of this 

effect is small; rising into a higher income bracket only increases probability of expenditure by 

0.16 percent. Income is also significant for water treatment, but the magnitude is much larger for 

this category: an increase in income bracket increases likelihood of water treatment by over 2 

percent. 

Racial minorities are found to engage in more air pollution defensive behaviors, but the 

estimated effects are only marginally significant. Contrastingly, minorities are 12 percent less 

likely to have some form of water treatment. Obesity is also only found to have a strong 

                                                           
8 Disaggregated defensive behavior category results are included in the Appendix. 
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relationship in the water treatment category, with obese individuals being 3.7 percent less likely 

to engage in the behavior.  

Excluding expenditures, the determinants of the other air pollution defensive behaviors 

are qualitatively similar. The impact of insurance and active hours is comparable between the 

water treatment and non-expenditure air pollution categories.  For these behavior types, having 

insurance and a higher education level increases the likelihood of participating. These variables 

may be serving as proxies for risk or health preferences. For example, if market insurance 

induces moral hazard, one might instead expect a negative coefficient on insurance status. 

However, unobserved risk aversion or health attitudes may be related to the decision to buy 

health insurance, and their exclusion from the regression may induce the positive insurance 

coefficient. 

The impacts of active hours and hours worked are strongest in the outdoors category. 

Individuals with longer work hours are more time constrained and less flexible in changing or 

delaying planned activities. The expected coefficient sign on active hours is ambiguous. 

Spending more time outdoors results in higher air pollution exposure, so those that frequently 

engage in active recreation may be more likely to engage in avoidance behavior to avoid the 

additional risk. Alternatively, preferences for active outdoor recreation may make substituting 

away from outdoor activities more costly, resulting in a negative coefficient on active hours. As 

in the case of insurance, correlations with unobserved health preferences may result in the 

positive coefficient found in column 2. 

Air quality levels are an important determinant of engaging in air pollution related 

avoidance behaviors. If an individual lives in an area that never experiences air pollution spikes 

and no air quality alerts are issued, then she will be less likely to take defensive action. Further, 
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weather characteristics are an important determinant of recreation choices and may be correlated 

with air quality measures. For these reasons, controlling for pollution and weather characteristics 

may be important for fully understanding avoidance behavior decisions. Using a Federal 

Statistical Research Data Center, I merge air quality, temperature, humidity, and precipitation 

data with the NHANES survey data at the county level. Many counties, particularly in rural 

areas, do not have air quality monitoring, so including the additional controls decreases the 

sample size to 7,819 individuals. For this reason, I treat the models with these controls as 

robustness checks.  For consistency in comparisons, column 1 in Table 6 replicates column 1 

from Table 5, but on the smaller sample.  Columns 2 and 3 of Table 6 include the additional 

pollution and weather controls. A comparison of columns 1 and 2, which both use change as the 

dependent variable, shows that the addition of these controls has little impact on the coefficient 

estimates. The controls themselves generally have insignificant coefficients. The impact of high 

pollution days is positive, but insignificant, in column 2. Precipitation consistently has a 

negative effect but again is insignificant at the 5 percent level. The ex-ante expected signs on the 

weather variables are ambiguous. Worse weather may lower the cost of cancelling outdoor 

activities, therefore increasing the likelihood of avoidance behavior. However, people in areas 

with harsh climates may spend less time on outdoor recreation in general, decreasing the need to 

engage in avoidance behaviors. The dependent variable in column 3 indicates whether or not the 

individual is made aware of a poor air quality day in the past year. Surprisingly, the covariates, 

including number of high pollution days, asthma status, and education, are not predictive of 

being informed of poor air quality. This raises the concern that avoidance behaviors are not 

responding to actual risk levels, resulting in too little or even too much defensive behavior. 
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3.5.2 The Role of Unobserved Preferences 

 

Unobserved health attitudes or risk preferences may confound some of the main result 

estimates. As previously mentioned, active hours variable may be serving as a proxy for health 

attitudes. To separate the impact of active leisure time choices from that of unobserved 

preferences for health, I use an instrumental variables strategy. To operationalize this strategy, I 

find variables that are correlated with active leisure choices but unrelated to engaging in 

avoidance behaviors.  Access to the FSRDC allows me to include instruments that exploiting the 

timing of the interview questions. Air pollution avoidance behavior questions asked in the 

NHANES are in reference to the past year, while recreation questions refer to a “typical” week, 

which will likely reflect recent activity levels. After controlling for annual weather variables, 

monthly weather variables will be correlated with recreation responses but not related to annual 

avoidance behavior choices. For example, if the interview happens during an especially cold or 

rainy month, active leisure hours reported for an individual may be lower than if that same 

individual were interviewed during a dry summer month. However, it is unlikely that this short 

term weather variation will impact defensive behavior choices over the previous year. Table 7 

uses monthly precipitation and humidity to instrument for active leisure hours for engaging in an 

air pollution avoidance behavior. In each column of Table 7, the coefficient on active hours is 

now negative, but insignificant. The instruments in each specification are very weak, so no 

definitive conclusions can be made from this analysis. 

When assessing the impact of labor market variables on avoidance behavior, one must 

consider that the decision to work is not random. Employment choices may be related to 

defensive behaviors in unobserved ways. For this reason, I instrument for hours worked using 

county level unemployment rate. The supply of jobs near one’s residence will influence her 
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probability of being employed, but should be unrelated to individual level unobserved 

determinants of employment decisions. Table 8 presents the results of this exercise. The 

estimated impact of insurance, which is often closely tied to employment status, is now strongly 

significantly in all categories other than expenditure; there is no evidence of a moral hazard 

effect in this context. The sign on hours worked is positive and weakly significant only for the 

expenditure category. This suggests that the main influence of labor market decisions on 

avoidance behavior works through an income channel rather than through leisure time trade-offs, 

though income itself does not have a significant coefficient. 

An alternative strategy to account for time and risk preferences is to use additional proxy 

variables from the NHANES dataset. Many candidate proxy variables have missing values for a 

subset of participants, so including them results in a reduced sample size. Each model in Table 9 

uses change as the binary dependent variable. The models specifications are the same as in the 

first column of Table 5, with additional control variables included. Column 1 includes a measure 

of savings. Families with higher savings may be more risk averse or have lower discount rates. 

The negative sign on this variable is unexpected, since engaging in avoidance behavior is a way 

to reduce the risk of future health problems. 

The specification in column 2 of Table 9 includes additional controls that may indicate 

risk preferences, including an indicator for having a healthy diet, using various illegal drugs, 

receiving a Hepatitis A vaccination, frequency of condom use, and smoker status. The healthy 

diet indicator provides the only significant effect. As expected, the coefficient is negative, which 

proxy for health preferences that would increase the likelihood of engaging in avoidance 

behavior. An alternative explanation in relies on diet and outdoor recreation being substitute for 

improving health. In the data, these variables are negatively correlated, perhaps implying that 
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Individuals with healthy diets feel less need to engage in active recreation for weight 

maintenance. Adding these additional controls greatly reduces the sample size, so column 3 

includes the controls while excluding the savings measure, which adds over 3,000 observations, 

and the results do not change substantially. 

3.6 Conclusion 
 

This study provides a comprehensive evaluation of the micro-determinants of avoidance 

behavior, controlling for weather and pollution levels and accounting for unobserved 

preferences. The analysis in this paper highlights the importance of considering unobserved risk, 

health, and time preferences when interpreting relationships between person-level characteristics 

and the decision to engage in defensive behaviors. The results of instrumental variables estimates 

suggest that hours worked are positively related to some types of avoidance behaviors. This 

illustrates the importance of accounting for endogenous covariates. I find no conclusive results 

when investigating a similar relationship between leisure time choices and avoidance behavior.  

Many of my results are consistent with previous findings. For instance, I find that higher 

education, working fewer hours, having insurance, and asthma status are positively associated 

with avoidance behavior.  A novelty in my approach comes from being able to distinguish 

between types of defensive behaviors. Looking at a multitude of defensive behavior types helps 

identify which ones are more prevalent and therefore contribute more to pollution welfare costs. 

Estimated differences among types are often intuitive; for example, asthma status does not have 

a clear impact on water treatment choices, but is a very strong predictor of air pollution 

avoidance behavior. Income is only found to be related to defensive behaviors that require 

monetary expenditures, such as buying an air or water filter. Because of this, income inequality 
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does not appear to exacerbate pollution exposure inequities for many common avoidance 

behaviors, such as cancelling outdoor activities.  

Defensive behaviors are costly, and this paper provides insights into which groups are 

bearing more of these costs. It also highlights the essential tradeoffs and motivations related to 

engaging in these behaviors. Individuals who value healthy lifestyles must weigh the benefits of 

outdoor exercise against the costs of higher pollution exposure. Elevated pollution levels over the 

long run may discourage active leisure choices, leading to additional health costs. In addition, 

fully understanding behavioral reactions to pollution helps inform future studies that attempt to 

measure dose-response relationships. 
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3.8 Tables 
 

Table 1: Individual Level Health, Demographic, and Economic Summary Statistics 

Variables Obs Mean Std. Dev. Min Max 

Demographic      

Age 11337 46.729 19.468 16 80 

Non-white 11337 0.527 0.499 0 1 

Male 11337 0.494 0.500 0 1 

Education 11337 3.170 1.278 0 5 

Housing      

Age of Home 9279 3.085 1.768 1 6 

Well Water 11337 0.119 0.324 0 1 

Health      

Insurance 11337 0.761 0.427 0 1 

Asthma Year 11337 0.040 0.195 0 1 

Spirometry 8991 0.788 0.086 0.253 1 

Blood Lead (ug/dL) 10752 1.679 1.538 0.18 33.1 

Obese 11337 0.416 0.493 0 1 

Active Hours 11337 2.462 4.762 0 69 

Inactive hours 11310 37.809 23.062 0 140 

Healthy Diet 11333 2.965 0.999 1 5 

Smoker 10244 0.473 0.499 0 1 

Economic      

Hours Worked 11337 20.605 22.596 0 130 

Family Income 11337 6.949 3.287 1 12 

Savings/Income 4974 0.581 0.725 0.083 7 

Vigorous Work 11337 0.184 0.388 0 1 

Risky Behaviors      

Condom 4793 3.383 1.731 1 5 

Hepatitis A Vaccine 11337 0.203 0.402 0 1 

Cocaine, Meth, or 

Heroine  

7632 0.172 0.378 0 1 

Marijuana 6208 0.548 0.498 0 1 

Summary statistics conditional on observations not missing values for the variables included in baseline 

models: Age, Non-white, Male, Education, Insurance, Asthma Year, Obese, Active Hours, Hours Worked, 

Family Income, and Vigorous Work. 
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Table 2: Prevalence of Defensive Behaviors 

Defensive Behavior Description Count Percent 

Air pollution 

Change Changed behavior in anyway 1,344 11.85 

Outdoors  1,053 9.29 

      Time Outdoors Spent less time outdoors 948 8.36 

      Strenuous Did less strenuous activities 161 1.42 

      Cancelled Cancelled outdoor activities 197 1.74 

      Exercise Exercised indoors instead of outdoors 112 0.99 

Expenditure  217 1.91 

      Filter Purchases and air filter/purifier 52 0.46 

      Medication Bought medication 63 0.56 

      Mask Wore a mask 114 1.01 

Altruism  154 1.36 

      Traffic Avoided roads with heavy traffic 85 0.75 

      Car Drove car less 140 1.23 

      Bus Used bus, train, or subway 23 0.20 

Windows Closed windows 327 2.88 

Other  83 0.73 

Water Pollution    

Water Treatment Any household water treatment device 2,903 25.65 

Counts conditional on having non-missing values for controls used in baseline estimates. 

Change indicates having engaged in at least one of the air pollution behaviors.  

 

 

Table 3: Restricted-Access Variable Summary Statistics 

Variable Obs Mean Std. Dev. 

Unhealthy Sensitive Days 7,819 16.71 26.24 
Unhealthy Days 7,819 2.40 6.68 
Very Unhealthy Days 7,819 0.42 1.25 
90th Percentile Temp 7,819 85.92 6.43 
10th Percentile Temp 7,819 45.59 13.07 
Annual Humidity 7,819 89.42 3.92 
Annual Precipitation 7,819 2.52 1.06 
Monthly Humidity 7,819 84.71 4.86 
Monthly Precipitation 7,819 2.58 1.77 
Unemployment Rate 7,819 7.62 2.57 
Counts conditional on having non-missing values for controls used in baseline estimates. Variables 

merged using Federal Statistical Research Data Center. Minimums and Maximums excluded due to 

sensitive nature of the data. 
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Table 4: Defensive Behaviors and Health Outcomes 

 (1) (2) (3) 

 Asthma Year Spirometry Lead 

    

Change 0.0494*** -0.00861***  

 (0.00772) (0.00313)  

Smoker 0.0184*** -0.0368***  

 (0.00359) (0.00229)  

Active Hours -0.000974* 0.000671***  

 (0.000535) (0.000192)  

Water Treatment   -0.105** 

   (0.0406) 

Well Water   0.0711 

   (0.0533) 

Housing Age   0.0785*** 

   (0.0139) 

Constant 0.0232*** 0.796*** 1.267*** 

 (0.00283) (0.00254) (0.0584) 

    

Observations 12,131 9,033 13,213 

R-squared 0.011 0.056 0.013 

Coefficients come from OLS estimates and account for NHANES’ complex 

survey design (primary sampling units, strata, and probability weights). Standard 

errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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Table 5: Impact of Individual-Level Characteristics on Defensive Behaviors 

 (1) (2) (3) (4) (5) 

 Change Outdoors Expenditure Altruism Water Treatment 

      

Active Hours 0.00158 0.00150* -0.000422 0.000415 0.00113 

 (0.000993) (0.000839) (0.000320) (0.000251) (0.00124) 

Asthma Year 0.131*** 0.128*** 0.0497*** 0.0236*** -0.000604 

 (0.0180) (0.0190) (0.0143) (0.00772) (0.0205) 

Age 0.00135*** 0.00139*** 0.000158 6.31e-05 0.000433 

 (0.000240) (0.000198) (0.000100) (5.96e-05) (0.000540) 

Non-White 0.0221* 0.0189* 0.00235 0.00471* -0.120*** 

 (0.0113) (0.0112) (0.00414) (0.00277) (0.0247) 

Male -0.0436*** -0.0507*** 0.00259 -0.00892*** -0.00128 

 (0.00756) (0.00610) (0.00292) (0.00265) (0.00610) 

Education 0.0195*** 0.0145*** 0.00215 0.00609*** 0.0282*** 

 (0.00441) (0.00416) (0.00137) (0.000933) (0.00594) 

Insurance 0.0186* 0.0154* -0.00460 0.00715** 0.0488*** 

 (0.00972) (0.00857) (0.00620) (0.00279) (0.0124) 

Obese 0.0102 0.00718 -0.00248 -1.03e-05 -0.0374*** 

 (0.00673) (0.00579) (0.00379) (0.00227) (0.0132) 

Vigorous Work 0.0168 0.0136 0.00402 0.00619** 0.0144 

 (0.0114) (0.00892) (0.00515) (0.00273) (0.0182) 

Hours Work -0.000409** -0.000436** 3.57e-05 -2.52e-05 -0.000361 

 (0.000180) (0.000161) (7.79e-05) (5.62e-05) (0.000300) 

Income 0.00104 0.00119 0.00156** -0.000570 0.0222*** 

 (0.00165) (0.00132) (0.000757) (0.000388) (0.00336) 

Constant -0.0263 -0.0288 -0.00641 -0.0116** 0.0436 

 (0.0222) (0.0194) (0.00932) (0.00558) (0.0382) 

      

Observations 11,337 11,337 11,337 11,337 12,382 

R-squared 0.025 0.031 0.007 0.008 0.076 

Dependent variables are binary indicators of engaging in each category of defensive behavior. Coefficients come 

from OLS estimates and account for NHANES’ complex survey design (primary sampling units, strata, and 

probability weights). Standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1 
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Table 6: Defensive Behavior Determinants- Weather and 

Pollution Controls 

 (1) (2) (3)  
 

Change Change Informed  
   

  

Active Hours 0.00203 0.00198 0.000136  

(1.4) (1.4) (0.17)  

Asthma year 0.141*** 0.143*** 0.0111  
 

(5.67) (5.83) (0.8)  

Age 0.00172*** 0.00168*** -0.00011  
 

(6.61) (7.07) (-0.64)  

Non-White 0.0227 -0.0086 (0.0017  
 

(1.5) (-0.51) (-0.18)  

Male -0.0489*** -0.0487*** -0.00412  
 

(-5.46) (-5.27) (-0.97)  

Education 0.0213** 0.0204*** 0.000212  
 

(3.49) (4.01) (0.06)  

Insurance 0.0213 0.0284* -0.00589  
 

(1.75) (2.45) (-0.66)  

Obese 0.0138 0.0180* 0.00655  
 

(1.65) (2.16) (1.03)  

Vigorous Work 0.0312* 0.0344* 0.0152  

(2.3) (2.69) (1.8)  

Hours Worked -0.00045 -0.00034 -3.2E-05  

(-2.00) (-1.38) (-0.20)  

Income 0.00117 -0.00023 0.000657  

 (0.68) (-0.14) (0.57)  

Unhealthy 

Sensitive Days 

 
0.0011 -9.7E-05  

 
(1.58) (-0.35)  

90th Pctl Temp 
 

-0.00188 -6.1E-05  
 

(-0.44) (-0.02)  

10th Pctl Temp 
 

0.00212 1.43E-05  
 

(1.71) (0.02)  

Humidity 
 

-0.00167 -0.00028  
  

(-0.41) (-0.07)  

Precipitation 
 

-0.0282 -0.00553  
  

(-1.61) (-0.67)  
   

  

Constant -0.045 0.248 0.999***  
 

(-1.42) (0.87) (6.72)  

     

Observations 7819 7819 7819  

Restricted-access sample. Dependent variables in columns 1  
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and 2 are binary indicators of engaging in each category of 

defensive behavior in response to an air quality warning. 

Dependent variable in column 3 is an indicator of having been 

informed of a poor air quality day. Coefficients come from 

OLS estimates and account for NHANES’ complex survey 

design (primary sampling units, strata, and probability 

weights). T statistics in parentheses. *** p<0.001, ** p<0.01, * 

p<0.05 

 

 

Table 7: Determinants of Defensive Behavior-Instrumental Variable Estimates 

 (1) (2) (3) 

 Change Change Change 

    

Active Hours -0.0827 -0.0293 -0.235 

 (-1.24) (-0.40) (-0.60) 

Asthma Year 0.157*** 0.148*** 0.182 

 (4.15) (5.77) (1.58) 

Age -0.00295 -3.2E-05 -0.0113 

 (-0.78) (-0.01) (-0.52) 

Non-White -0.023 -0.0139 -0.0489 

 (-1.10) (-0.76) (-0.64) 

Male 0.0515 -0.0117 0.232 

 (0.64) (-0.13) (0.5) 

Education 0.0542 0.0329 0.115 

 (1.96) (1.14) (0.73) 

Insurance 0.0743 0.0453 0.157 

 (1.9) (1.21) (0.65) 

Obese -0.0294 0.000492 -0.115 

 (-0.81) (0.01) (-0.50) 

Vigorous Work 0.0828 0.0523 0.17 

 (1.77) (1.13) (0.72) 

Hours Worked -0.00235 -0.00108 -0.00598 

 (-1.39) (-0.60) (-0.63) 

Income 0.00539 0.00185 0.0155 

 (1.04) (0.36) (0.59) 

Unhealthy Sensitive 

Days 

0.00129 0.00117 0.00162 

(1.5) (1.47) (1.09) 

90th Pctl Temp -0.00296 -0.00228 -0.00491 

 (-0.59) (-0.53) (-0.51) 

10th Pctl Temp 0.000788 0.00163 -0.00161 

 (0.42) (0.8) (-0.26) 

Humidity -0.00162 -0.00165 -0.00153 

 (-0.30) (-0.37) (-0.16) 

Precipitation -0.0411 -0.033 -0.0644 

 (-1.78) (-1.69) (-0.99) 

Constant 0.674 0.405 1.442 

 (1.49) (1.03) (0.73) 

    

Observations 7819 7819 7819 
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F-stat 2.29 2.85 1.31 

Over ID p-value 0.006   

Dependent variables is a binary indicator of engaging in any category of 

defensive behavior. Coefficients come from IV estimates, where monthly 

weather variables instrument for active hours, and account for NHANES’ 

complex survey design (primary sampling units, strata, and probability 

weights).In column 1, monthly humidity and precipitation are used as 

instruments, in columns 2 and 3, precipitation alone and humidity alone, 

respectively, are used as instruments. Standard errors in parentheses: *** 

p<0.001, ** p<0.01, * p<0.05 

 

 

 

Table 8: Labor Market Instrumental Variables Estimates with Weather and Pollution 

Controls  

 (1) (2) (3) (4) 
 

Change IV Outdoors IV Expenditure 

IV 

Altruism IV 

     

Active Hours 0.00185 0.000943 0.000888 0.000085  
(0.61) (0.39) (1.07) (0.14) 

Asthma Year 0.143*** 0.145*** 0.0626** 0.0231**  
(5.02) (5.28) (3.14) (2.56) 

Age 0.00161 0.000982 0.000857** 8.32E-05  
(1.16) (0.82) (2.36) (0.33) 

Non-White -0.00824 -0.00506 -0.00189 -0.00163  
(-0.38) (-0.26) (-0.29)  (-0.43) 

Male -0.0467 -0.0361 -0.0165 -0.00813  
(-1.09) (-0.98) (-1.56) (-1.07) 

Education 0.0213 0.0232 -0.00546 0.00605**  
(1.17) (1.45) (-1.17) (2.11) 

Insurance 0.0282** 0.0245** -0.00386 0.00883***  
(2.38) (2.66) (-0.47) (3.43) 

Obese 0.0183* 0.0172* -0.00729 0.0016  
(1.89) (1.83) (-1.40) (0.48) 

Vigorous Work 0.0363 0.0484 -0.0121 0.00831  
(0.91) (1.3) (-1.16) (1.13) 

Income 0.000156 0.00361 -0.00246 -0.00037 

 (0.02) (0.47) (-1.21) (-0.30) 

Hours Worked -0.0006 -0.00289 0.00259* -0.00017  
(-0.11) (-0.59) (1.99) (-0.19) 

Unhealthy Sensitive 

Days 
0.0011 0.00113 0.000355*** -0.00014 

(1.61) (1.64) (2.82) (-1.37) 

90th Pctl Temp -0.00188 -0.00227 -0.00167* 0.00036 
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(-0.43) (-0.53) (-1.94) (0.44) 

10th Pctl Temp 0.0021 0.00182 0.0000908 0.000792***  
(1.39) (1.24) (0.37) (3.06) 

Humidity -0.00163 0.000706 0.00207* -0.00224**  
(-0.37) (0.19) (1.89) (-2.50) 

Precipitation -0.0281 -0.0188 -0.00825** -0.00578  
(-1.55) (-1.06) (-2.66) (-1.61) 

Constant 0.246 0.0795 -0.0609 0.142**  
(0.8) (0.26) (-1.30) (2.22) 

     

Observations 7819 7819 7819 7819 

Restricted-access sample. Dependent variables are binary indicators of engaging in each 

category of defensive behavior. Coefficients come from IV estimates, where 

unemployment rate instruments for hours worked, and account for NHANES’ complex 

survey design (primary sampling units, strata, and probability weights). The F-stat for 

instruments is 43.99. T statistics in parentheses: *** p<0.01, ** p<0.05,   * p<0.1 

 
 

Table 9: Additional Health, Time, and Risk Preference Controls 

 (1) (2) (3) 

    

Active Hours 0.00294* 0.00393** 0.00190 

 (0.00153) (0.00185) (0.00177) 

Asthma Year 0.168*** 0.129*** 0.139*** 

 (0.0323) (0.0468) (0.0360) 

Age 0.00120*** 0.00159** 0.00218*** 

 (0.000300) (0.000729) (0.000493) 

Non-White 0.0160 0.0232 0.0360** 

 (0.0150) (0.0192) (0.0136) 

Male -0.0341*** -0.0177 -0.0315*** 

 (0.00836) (0.0184) (0.0115) 

Education 0.0175*** 0.0165* 0.0129 

 (0.00487) (0.00935) (0.00809) 

Insurance 0.0330*** 0.0408** 0.0181 

 (0.0101) (0.0163) (0.0147) 

Obese 0.00519 0.00900 0.00951 

 (0.0104) (0.0137) (0.0103) 

Vigorous Work 0.0534*** 0.0353** 0.0160 

 (0.0151) (0.0166) (0.0142) 

Hours Worked -0.000556** -0.000842** -0.000614* 

 (0.000260) (0.000360) (0.000326) 

Income -0.00142 -0.00367 0.00189 

 (0.00261) (0.00441) (0.00251) 

Savings Ratio -0.0178*** -0.0383***  

 (0.00612) (0.0118)  

Healthy Diet  -0.0112* -0.0124*** 

  (0.00660) (0.00409) 

Marijuana  -0.0195 0.0159 
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  (0.0183) (0.0106) 

Cocaine, Meth, Heroin  -0.0109 0.0219 

  (0.0232) (0.0152) 

Hepatitis A Vaccine  -0.0262 -0.00453 

  (0.0200) (0.0140) 

Condom  -0.00124 -0.00167 

  (0.00499) (0.00379) 

Smoker  0.0122 -0.0138 

  (0.0215) (0.0171) 

Constant -0.00311 0.0569 -0.00702 

 (0.0209) (0.0517) (0.0365) 

    

Observations 4,974 1,899 4,612 

R-squared 0.038 0.040 0.027 

Restricted-access sample. Dependent variables are binary indicators of engaging in 

each category of defensive behavior. Coefficients in columns 1-3 come from OLS 

estimates. All models account for NHANES’ complex survey design (primary 

sampling units, strata, and probability weights). Standard errors in parentheses: *** 

p<0.01, ** p<0.05, * p<0.1 
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3.9 Appendix 
 

 

Table A1: OLS Full Sample, by Avoidance Behavior Category 

 (3) (4) (5) (6)  
Time Outdoors Strenuous Cancelled Exercise 

     

Active Hours 0.00149* 0.000493* 0.000178 0.00101*** 

 (0.000848) (0.000289) (0.000227) (0.000257) 

Asthma Year 0.121*** 0.0445*** 0.0197* 0.00757 

 (0.0180) (0.0144) (0.0101) (0.00780) 

Age 0.00133*** 0.000330*** 0.000104 6.14e-05 

 (0.000191) (0.000106) (7.25e-05) (6.40e-05) 

Non-White 0.0150 -0.00196 0.00998*** 0.00487* 

 (0.0105) (0.00252) (0.00322) (0.00263) 

Male -0.0497*** -0.00422* -0.00784** -0.00717*** 

 (0.00588) (0.00240) (0.00302) (0.00190) 

Education 0.0126*** 0.00489*** 0.00369*** 0.00459*** 

 (0.00369) (0.00154) (0.00119) (0.00101) 

Insurance 0.0103 0.00261 0.00970*** 0.00442** 

 (0.00826) (0.00203) (0.00214) (0.00189) 

Obese 0.0117* -0.00271 -0.00484 -0.00253 

 (0.00605) (0.00278) (0.00307) (0.00196) 

Vigorous Work 0.0103 0.00276 0.00707 0.000261 

 (0.00792) (0.00269) (0.00475) (0.00310) 

Hours Work -0.000451*** -0.000128* -0.000115 7.96e-07 

 (0.000141) (6.70e-05) (6.91e-05) (4.91e-05) 

Income 0.000871 0.000503 0.000621 0.000370 

 (0.00121) (0.000501) (0.000501) (0.000360) 

Constant -0.0214 -0.0205** -0.0118 -0.0147*** 

 (0.0167) (0.00968) (0.00823) (0.00450) 

     

Observations 11,337 11,337 11,337 11,337 

R-squared 0.031 0.013 0.007 0.008 

Dependent variables are binary indicators of engaging in each category of defensive behavior, listed 

in Table 2. Coefficients come from OLS estimates and account for NHANES’ complex survey 

design (primary sampling units, strata, and probability weights). Standard errors in parentheses: 

 *** p<0.01, ** p<0.05, * p<0.1 
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Table A2 

 (2) (3) (4) (6) 

 Air Filter Medication Mask Traffic 

     

Active Hours -3.75e-05 -3.39e-05 -0.000336 0.000159 

 (0.000148) (0.000120) (0.000224) (0.000138) 

Asthma Year -0.000588 0.0305*** 0.0218* 0.0188*** 

 (0.00462) (0.0102) (0.0121) (0.00645) 

Age -3.78e-05 0.000135*** 7.75e-05 0.000143*** 

 (5.02e-05) (4.36e-05) (7.03e-05) (3.35e-05) 

Non-White -0.00251 0.00111 0.00389 0.00744*** 

 (0.00166) (0.00116) (0.00369) (0.00170) 

Male 0.00101 -0.00294** 0.00374 -0.00248 

 (0.00160) (0.00130) (0.00228) (0.00200) 

Education 0.000579 0.00161*** 4.00e-05 0.00227*** 

 (0.000695) (0.000583) (0.00132) (0.000737) 

Insurance -0.000908 -0.00256 -0.000661 0.00104 

 (0.00226) (0.00239) (0.00401) (0.00208) 

Obese 0.000243 0.000522 -0.00329 0.000658 

 (0.00210) (0.00157) (0.00244) (0.00207) 

Vigorous Work -0.00266 0.00215 0.00482 0.00206 

 (0.00221) (0.00204) (0.00443) (0.00150) 

Hours Work -3.76e-05 -4.99e-05 0.000119* 8.68e-06 

 (2.94e-05) (3.10e-05) (6.07e-05) (4.22e-05) 

Income 0.000348 2.18e-05 0.00117** 6.46e-05 

 (0.000320) (0.000233) (0.000472) (0.000292) 

Constant 0.00500 -0.00445 -0.00708 -0.0122*** 

 (0.00469) (0.00330) (0.00732) (0.00337) 

     

Observations 11,337 11,337 11,337 11,337 

R-squared 0.001 0.010 0.005 0.005 

Dependent variables are binary indicators of engaging in each category of defensive behavior, 

listed in Table 2. Coefficients come from OLS estimates and account for NHANES’ complex 

survey design (primary sampling units, strata, and probability weights). Standard errors in 

parentheses: *** p<0.01, ** p<0.05, * p<0.1 
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Table A3 

 (1) (2) (3) (4) 

 Car Bus Windows Other 

     

Active Hours 0.000291 0.000186* 0.000102 0.000231 

 (0.000253) (9.91e-05) (0.000425) (0.000159) 

Asthma Year 0.0233*** 0.000378 0.0182* 0.00767** 

 (0.00732) (0.00140) (0.0100) (0.00297) 

Age 6.49e-05 9.39e-06 0.000435*** 7.90e-05** 

 (5.31e-05) (1.93e-05) (0.000117) (3.27e-05) 

Non-White 0.00446* 0.00123 0.00818* 0.00322 

 (0.00250) (0.000836) (0.00430) (0.00227) 

Male -0.00958*** 0.000455 -0.0162*** -0.00111 

 (0.00263) (0.000970) (0.00387) (0.00167) 

Education 0.00552*** 0.000710* 0.00595*** 0.00239** 

 (0.000957) (0.000387) (0.00209) (0.000885) 

Insurance 0.00606** 0.000987 0.00642 -0.000674 

 (0.00269) (0.000815) (0.00425) (0.00260) 

Obese 7.21e-05 0.000160 0.00395 0.000564 

 (0.00232) (0.000408) (0.00364) (0.00149) 

Vigorous Work 0.00574** 0.000998 0.00208 0.00106 

 (0.00240) (0.00119) (0.00409) (0.00207) 

Hours Work -1.36e-05 1.96e-06 -0.000157* -6.12e-06 

 (5.34e-05) (1.39e-05) (7.76e-05) (3.93e-05) 

Income -0.000290 -0.000267** 0.000296 -0.000533 

 (0.000385) (0.000118) (0.000752) (0.000319) 

Constant -0.0113** -0.00167 -0.0122 -0.00251 

 (0.00550) (0.00155) (0.0116) (0.00326) 

     

Observations 11,337 11,337 11,337 11,337 

R-squared 0.008 0.002 0.009 0.002 

Dependent variables are binary indicators of engaging in each category of defensive behavior, 

listed in Table 2. Coefficients come from OLS estimates and account for NHANES’ complex 

survey design (primary sampling units, strata, and probability weights). Standard errors in 

parentheses: *** p<0.01, ** p<0.05, * p<0.1 
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