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ABSTRACT 

Among all types of covariates, pretest measures of the outcome have gained special attention in 

the educational and psychological literature. Despite the popularity and emphasis in research 

practice, however, the theoretical justification and the specific role of pretests in making a causal 

inference have not been explicitly discussed. This dissertation is a collection of three papers each 

of which focuses on the specific context of the identification of causal effects using pretests. 

Study 1, “Gain Scores Revisited: A Graphical Models Perspective,” investigates how gain 

scores, defined as the differences between posttest and pretest measures, can be used to adjust for 

confounding bias. One of the main findings is that gain score estimators are robust against the 

unreliability of pretests, bias amplification, and collider bias. Study 2, “Causal Graphical Views 

of Fixed Effects Models,” generalizes the identification results of Study 1 to fixed effects 

models, in which the gain score model is considered as one of several analytic models for 

analyzing pretest-posttest data under fixed effects models. Study 2 argues that, contrary to 

popular belief, the alleged problem of time-invariant covariates is not a limitation of the fixed 

effects approach. Study 3, “Causal Identification Using Difference-in-Differences in Mediation 

Analysis,” discusses how pretests can be used in causal mediation analysis to relax the stringent, 

no unmeasured mediator-outcome confounding assumption. Using real data sets, Study 3 shows 

that the proposed mediation approach can outperform the standard mediation approach in the 

presence of unmeasured mediator-outcome confounding. 
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INTRODUCTION 

The fundamental difficulty in causal inference is that the treatment-outcome relationship can be 

explained not only by the causal relationship between the treatment and the outcome but also by 

alternative spurious associations between them. In order to rule out non-causal explanations and 

to uniquely identify causal effects, researchers frequently collect additional information about 

study units, referred to as covariates. A covariate is any variable, other than the treatment and the 

outcome, that describes units’ characteristics and is recorded before starting the treatment 

(Rosenbaum, 2002). For example, when study units are individuals, subjects’ gender, age, 

education level, or other factors that describe their characteristics can serve as covariates.  

Among all types of covariates, pretest measures of the outcome, simply referred to as 

pretests, have been particularly emphasized by researchers in education and psychology (e.g., 

Campbell & Stanley, 1963; Cook & Steiner, 2010; Hallberg, Cook, Steiner, & Clark, 2016; 

Shadish, Cook, & Campbell, 2002; Wong, Valentine, & Miller-Bains, 2017). Shadish et al. 

(2002) wrote that for causal inference, “no single variable will usually do as well as the pretest” 

(p. 136). Pretest measures are one of the critical elements of quasi-experimental designs 

developed by Campbell and his colleagues (Campbell & Stanley, 1963; Shadish et al., 2002) and 

are found in many educational and psychological studies (Huck & McLean, 1975; Kenny, 1975; 

Weiss, 1972).  

 Despite this enduring emphasis and popularity, however, a formal theory of the role of 

pretests in causal inference has not been explicitly discussed in the literature. Many studies have 

mainly focused on empirical analysis, but the empirical results of the effect of pretests are 

somewhat unclear. Wong et al. (2017) reported in their review of 12 empirical studies that 

although the use of pretests often reduces bias, it does not always eliminate it. Also, Hallberg and 
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her colleagues found that a higher correlation between the pretest and the posttest does not 

ensure more bias-reduction (Hallberg et al., 2016). St.Clair, Cook, and Hallberg (2014) even 

reported that the use of multiple pretests, compared to a single pretest, can increase bias. Without 

a theoretical explanation about the roles and the mechanisms of pretests, these empirical results 

are hard to interpret.  

 Also, many prior studies have almost exclusively focused on only one of the roles that 

pretests can play: bias-removing by conditioning on pretests. For example, individual cases are 

matched on pretests (matching), or pretests are controlled for in regression analysis (lagged 

dependent variable regression). However, “pretests serve many purposes” (Shadish et al., 2002, 

p. 136). Nonetheless, in the literature, it is unclear how and under which conditions pretests play 

different roles, other than being conditioned on, and how the use of pretests can improve the 

quality of causal investigations.  

 This dissertation is a collection of three papers, each of which formalizes the special role 

that pretest measures of the outcome play in different causal contexts. In the remainder of this 

dissertation, each of the three papers is presented in order. Study 1 discusses the gain score 

model, which is well-known in the educational and psychological literature. Importantly, Study 1 

finds and formalizes a unique bias-removing mechanism using pretests, which is fundamentally 

different from the regular bias-removing mechanism in matching or regression analysis. The 

unique mechanism is referred to as the bias-offsetting mechanism. The findings are extended to 

Study 2 where the gain score model is considered as one of several analytic models for analyzing 

data under fixed effects models. The new formalization of fixed effects models helps to clarify 

prevalent misunderstandings about the fixed effects approach. Based on the findings of the bias-

offsetting mechanism, Study 3 develops a novel method to identify causal mediation effects 
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using pretests. No unmeasured mediator-outcome confounding is one of the fundamental 

problems in causal mediation analysis, and this problem can be resolved by relying on the bias-

offsetting mechanisms with pretests. Each study can be viewed as a single complete manuscript 

such that it has its own introduction and discussion. The overarching conclusion of this 

dissertation is presented in the final section.  
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STUDY 1 

GAIN SCORES REVISITED: A GRAPHICAL MODELS PERSPECTIVE 

 

Abstract 

The use of gain scores for identifying causal treatment effects has been frequently avoided 

among social scientists. This paper develops graphical models and graph-based arguments to 

show that gain score methods are a viable strategy to identify causal effects in observational 

studies. Our graphical models reveal that gain score methods use a different bias-removing 

mechanism than matching or covariance adjustments that aim at blocking non-causal association. 

Gain score methods offset, rather than block, the non-causal association relying on the common 

trend assumption. We show that due to the unique mechanism, gain score estimators are robust 

against measurement error in the pretest, bias amplification, and collider bias. We also clarify 

why assessing the common trend assumption becomes intractable when the pretest directly 

affects the treatment assignment. Finally, we discuss the distinct role of pretests in the context of 

Lord’s paradox. 
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INTRODUCTION 

Pretest or baseline measures of the outcome, or simply pretests, have gained much attention in 

the literature in the social sciences (e.g., Campbell & Stanley, 1963; Cook & Steiner, 2010; 

Shadish, Cook, & Campbell, 2002). The corresponding literature as well as empirical evidence 

from meta-analyses suggest that pretest measures are the most important covariates for removing 

confounding bias in observational studies (Cook, Shadish, & Wong, 2008; Hallberg, Cook, 

Steiner, & Clark, 2016; Wong, Valentine, & Miller-Bains, 2017). Such pretests can be used to 

compute and analyze gain scores, also called change or difference scores, which represent the 

differences between the posttest and pretest scores (Allison, 1990; Kenny, 1975; Maris, 1998). 

Nonetheless, gain score methods have long been criticized and frequently avoided by applied 

researchers and methodologists. Campbell and Erlebacher (1970, p. 197) wrote that “gain scores 

are in general such a treacherous quicksand,” and Cronbach and Ferby (1970, p. 80) even 

recommended researchers to “frame their questions in other ways.” This negative view is still 

widespread among researchers even until recently (Smolkowski, 2013; Thomas & Zumbo, 

2012).  

Instead, researchers have preferred covariance adjustments or matching methods that 

control for or match on the pretest (or a corresponding propensity score) in order to estimate the 

causal effect of an intervention (e.g., Imbens & Wooldridge, 2009). We refer to these methods as 

conditioning methods because the causal effects are obtained “conditional” on the pretest (and 

other covariates or the corresponding propensity score). Causal identification using conditioning 

methods relies on the unconfoundedness assumption, also called strong ignorability or 

conditional independence assumption (Imbens, 2004; Rosenbaum & Rubin, 1983). Meeting the 

unconfoundedness assumption requires that researchers know all the confounding covariates and 
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measure them reliably (Steiner, Cook, & Shadish, 2011). Since this is rarely the case, the use of 

conditioning methods in observational studies frequently results in biased effect estimates.  

We argue that gain score methods are a viable alternative to identify causal effects when 

the unconfoundedness assumption is violated. Although the causal assumption underlying gain 

score methods, the common trend assumption, might not be fully met either, gain score 

estimators have at least three advantages over conditioning estimators (e.g., matching or 

covariance adjustment estimators): They are immune to (i) unreliability of the pretest, (ii) bias 

amplification, and (iii) collider bias. Especially, gain score estimators’ robustness to bias 

amplification and collider bias has never been discussed in the literature despite the longstanding 

discussions about gain scores, particularly in the context of Lord’s paradox (Lord, 1967). As we 

will graphically show, these comparative advantages originate from the different bias-removing 

mechanisms of gain score and conditioning estimators. While conditioning methods remove bias 

via blocking non-causal association, gain score methods remove bias via offsetting non-causal 

association by differencing rather than conditioning.  

We use graphical models to discuss the identification strategy of gain scores and their 

advantages in identifying causal effects. Graphical models are a visual representation of the 

structural causal model of the presumed data-generating process for the data at hand. This 

approach has been developed in computer sciences (Pearl, 1988) and epidemiology (Robins, 

1987), and it is now becoming more popular also in the social sciences (e.g., Elwert, 2013; 

Morgan & Winship, 2015; Steiner, Kim, Hall, & Su, 2017). The use of graphical models has two 

major advantages over algebraic formulations in the discussion of causal identification. First, 

graphical models allow us to discuss causal assumptions and bias-removing mechanisms in an 

intuitively appealing but nonetheless formal rigorous way. With graphs and graph-based 
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arguments, we can literally see the common trend assumption and the bias-offsetting mechanism 

of gain score methods. Second, graphical representations of subject-matter theory provide an 

indispensable tool in practice for assessing the common trend assumption’s plausibility. This 

enables researchers to better defend (or reject) the rather abstract common trend assumption.  

In this article, we consider a nonrandomized two-group pretest-posttest design, where the 

outcomes of the treatment and control group are measured at two points in time, before and after 

the intervention. Given the pretest measure, researchers have two main choices to identify and 

estimate the treatment effect. They can use conditioning methods like matching or covariance 

adjustments, or gain score methods—the classic setting of Lord’s paradox (Lord, 1967). To ease 

exposition, we restrict our discussion to linear data-generating models with constant effects 

across all units (extensions to nonlinear or nonparametric settings is a topic for future research). 

In discussing gain score and conditioning estimators, we focus our attention exclusively on bias 

and do not discuss any efficiency or significance testing issue. This does not mean that efficiency 

and testing can be ignored in practice, but our major aim here is to guide researchers in choosing 

an identification and estimation strategy that results in the least possible bias.1  

The article is organized as follows. In the next section, we provide a brief introduction to 

graphical models for observational studies and gain scores, and discuss the assumptions and 

mechanisms necessary for identifying causal treatment effects. In the following section, we 

highlight the three advantages of gain score estimators over conditioning estimators. The section 

is followed by an in-depth discussion of the common trend assumption. We discuss scenarios 

and conditions under which the assumption is not met or is hard to assess. We conclude with a 

discussion of the distinct role of pretests in observational studies.  

                                                 
1 Van Breukelen (2006) discussed efficiency issues of gain score estimators.  
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GRAPHICAL MODELS PERSPECTIVES ON OBSERVATIONAL STUDIES AND GAIN SCORES 

Graphical Models for Observational Studies 

It is well known that causal inference with observational data is challenging because the 

treatment and control groups are frequently not comparable at baseline (Shadish et al., 2002). In 

the absence of randomly assigned treatment and control conditions, the observed group 

difference in the outcome reflects not only potential causal effects but also spurious associations 

due to confounding (i.e., differential selection of units into the treatment and control groups). 

However, if researchers succeed to reliably measure a set of covariates that meets the 

unconfoundedness assumption, then the causal effect is identified and can be correctly estimated 

via matching or covariance adjustments (provided technical assumptions for matching and 

covariance adjustment, e.g., correct specification of the functional form).  

The above rationale can be visualized by causal graphical models. They facilitate our 

intuitive understanding without sacrificing formal rigor. Consider an example where we are 

interested in evaluating the effect of participating in a summer math camp (Z) on students’ math 

achievement (Y). Assume that participation in the math camp was not randomized, instead 

students or their parents decided whether to enroll or not. Further assume that we know, from 

subject-matter theory and empirical investigations, that students’ true but latent math ability (A) 

is the sole confounding variable that affects both treatment Z and outcome Y. Figure 1.1A shows 

the corresponding graphical model consisting of three nodes and three arrows. The nodes 

represent the variables and the arrows the causal relationships between the nodes. For instance, 

the arrow A → Z indicates that students’ math ability causally affects participation in the math 

camp (e.g., high ability students might more likely enroll the camp than low ability students). 

Since math ability A also affects math achievement Y (A → Y), A is referred to as a confounding 
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variable or confounder because A confounds the relationship between treatment Z and outcome 

Y. Since A is unmeasured, its node is vacant; observed nodes are filled. It is important to note 

that the causal graph describes how the data were actually generated, regardless of whether a 

variable has been measured. Thus, a graphical model is a graphical representation of the 

presumed data-generating process, and it typically contains all observed but also unobserved 

variables that directly or indirectly affect both treatment and outcome.  

Given the graphical model in Figure 1.1A, we see that treatment Z and outcome Y are 

connected or associated via two different paths2:  

(i) Z → Y; 

(ii) Z  A → Y. 

The first path represents the causal relationship of interest while the second path represents a 

non-causal relationship between Z and Y. Both paths are naturally open and thus transmit 

                                                 
2 A path is a sequence of adjacent nodes without visiting a node more than once. The directions 

of the arrows do not matter.  

FIGURE 1.1. Graphs for observational studies. (A) Graph for an observational study without 

pretest. (B) Graph for an observational study with pretest.   

(A)                                                                          (B) 
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association. The paths are “naturally” (i.e., without any other conditioning) open because they do 

not contain a collider (Elwert & Winship, 2014; Pearl, Glymour, & Jewell, 2016). A collider is a 

node at which two arrows from its adjacent nodes collide (e.g., C in A → C  B is a collider 

variable). A path with a collider does not transmit association without any other conditioning 

because any association terminates at the collider node, that is, the path is naturally blocked. 

Therefore, the overall association between Z and Y is a mixture of the causal and non-causal 

associations. Unless the non-causal association via path (ii) is stripped out, the observed 

marginal association between Z and Y does not correspond to the causal relationship between Z 

and Y only via path (i).  

The naturally open non-causal paths can be blocked by conditioning on any middle node 

in the paths unless it is a collider. Since A is the sole middle node and not a collider on path (ii), 

conditioning on A via matching or regression blocks the transmission of non-causal association. 

Conditional on A, the association between Z and Y is then only determined by the causal 

association transmitted via path (i), Z → Y. Thus, the causal effect is identified conditional on A. 

Pearl (1993) developed a simple graphical criterion, the backdoor criterion, to test whether a set 

of observed variables is sufficient to identify causal effects via conditioning. The backdoor 

criterion states that causal effects are identified if all non-causal (or backdoor) paths can be 

blocked. For our graph in Figure 1.1A, however, the non-causal path Z  A → Y cannot be 

blocked because the ability A is latent (a vacant node) and thus unavailable for conditioning. 

Thus, the causal effect of attending the math camp on math scores is not identifiable via 

matching or covariance adjustments.  

Although the confounder A is unmeasured, researchers may have a pretest measure of the 

outcome that may serve as a proxy for A. For example, one may measure students’ math 
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achievement before the math camp starts. Let P denote such a pretest measure. Then, both pretest 

and posttest are likely affected by students’ math ability. Figure 1.1B shows the graph with the 

added pretest: A affects both P and Y, but Z does not affect P (because P is measured before Z). 

Since P is measured (filled node), we can condition on it (e.g., matching on P or regressing Y on 

Z and P). However, conditioning on P does still not identify the causal effect because P is not a 

middle node on the non-causal path Z  A → Y and thus cannot block the path. Due to the 

pretest’s correlation with ability, conditioning on P may reduce the confounding bias but it 

cannot eliminate all the bias. As the graphical model in Figure 1.1B demonstrates, conditioning 

on a pretest measure is hardly sufficient to identify causal effects in observational studies.  

 

Graphical Models for Gain Scores 

In the presence of unmeasured confounding, gain score methods can be an alternative 

strategy to identify causal effects. Gain score methods first require computing the gain score: 

PYG −= . In Figure 1.2A, the gain score G is added as a new node to the graph. Since G is 

determined by both Y and P, we add two arrows: P → G and Y → G. Moreover, since the gain 

score is computed as a linear combination of P and Y with fixed coefficients of 1−  and 1+ , 

respectively, we also add the corresponding structural coefficients to the graph in Figure 1.2A 

(see Pearl, 2016, for a similar graphical representation of gain scores; also, Shahar & Shahar, 

2012). Assuming linear relationships and constant effects, we now label all arrows with Greek 

letters, which represent the unknown structural coefficients of the underlying data-generating 

process. For example,   on the causal path Z → Y represents the constant causal effect of Z on 

Y.  
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Gain score methods investigate the causal effect of Z on the gain score G rather than the 

original outcome Y. That is, instead of Y, we regress G on Z or, equivalently, compare the group 

mean difference in the gain score G using a two-sample t-test. Since the causal effect of Z on G 

FIGURE 1.2. Graphs for gain scores. (A) Simple gain score graph. (B) Graph showing how 

the independent measurement error e affects the pretest. (C) Graph with two confounders 

where the pretest is only affected by confounder A. (D) Graph with a common measurement 

error that affects both the pretest and posttest. 

(A)                                                                          (B) 

(C)                                                                          (D) 



  13 

 

is the mediated effect via the causal path Z → Y → G, the effect is given by the product of the 

two path coefficients:  =+ )1( , which is identical to the causal effect of Z on Y.3   

However, with regard to the causal relationship between Z and G in Figure 1.2A, we now 

have three non-causal paths:  

(i) Z  A → P → G; 

(ii) Z  A → Y → G; 

(iii) Z → Y  A → P → G. 

Since the non-causal paths (i) and (ii) are naturally open (they do not contain any collider 

variable), they transmit associations and confound the relation between Z and G. In contrast, path 

(iii) is naturally blocked by the collider Y and thus does not transmit any association. According 

to the backdoor criterion, the causal effect of Z on G is identified when the two open non-causal 

paths (i) and (ii) are blocked. Although conditioning on both P and Y would block the non-causal 

paths (note that A is unmeasured),4 conditioning on Y would also block the causal path Z → Y → 

G.  Since the causal path must remain unblocked, conditioning on both P and Y is not a viable 

identification strategy.  

 Gain score methods eliminate the confounding bias by offsetting rather than blocking the 

non-causal associations. The association transmitted via the non-causal path (i) can be quantified 

                                                 
3 The path-tracing computation of effects was developed by Wright (1921). For more 

information about Wright’s path-tracing rules, see Pearl (2013).  
4 In fact, conditioning on Y opens the path (iii) because Y is a collider on the path. But, additional 

conditioning on P blocks the path and thus the path (iii) does not transmit any association, 

conditional on Y and P.  
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by the product of the three structural path coefficients on the path: 11 )1(  −=− .5 

Analogously, we can quantify the associations via the other non-causal paths:  

(i) Z  A → P → G,  1− ; 

(ii) Z  A → Y → G,  2+ ; 

(iii) Z → Y  A → P → G,  0. 

Note that the path (iii) transmits no association because this path is naturally blocked by the 

collider Y. If the sum of all the non-causal associations is zero,  

0)( 1212 =−=−  , 

the non-causal associations offset each other, and all the confounding bias is eliminated. Because 

  is assumed to be nonzero,6 the confounding bias cancels out if the unmeasured math ability A 

affects the pretest math score P and the posttest math score Y to the same extent, 21  = . This 

equality condition is frequently referred to as the common trend (Lechner, 2011) or time-

invariant confounding assumption. If the common trend assumption holds, the relation between 

the treatment and the gain score is free of any confounding and the overall association between Z 

and G is solely due to the causal effect of Z on G. Importantly, the bias-removing mechanism of 

offsetting confounding bias does not require any conditioning to block non-causal paths. 

Therefore, the causal effect can be identified by gain score methods despite the presence of 

unmeasured confounders (i.e., violation of the unconfoundedness).  

                                                 
5 To be precise, the product should be multiplied by the variance of the “root” node of the path, 

such that )(1 AVar− . Throughout this paper, we assume that unmeasured confounders (i.e., 

vacant nodes) such as A, have a unit-variance, 1)( =AVar .  
6 If 0= , we would have no arrow A → Z, implying that A is not a confounder.  
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It is interesting to investigate what happens if we were to condition on the pretest P in a 

gain score analysis, for instance, regressing G on Z and P. As the gain score graph directly 

reveals, conditioning on P blocks the non-causal path (i) Z  A → P → G while the non-causal 

path (ii) Z  A → Y → G remains open. This results in losing the bias offsetting effect of gain 

score methods and we have the same bias as in a standard matching or covariance adjustment 

with respect to Y (Allison, 1990; Jamieson, 2004; Kenny, 1975; Laird, 1983; Lechner, 2011). 

This is so because the association transmitted via the remaining open path (ii) Z  A → Y → G 

is identical to the non-causal association via Z  A → Y. Thus, conditioning on the pretest in a 

gain score analysis does not use the unique bias-removing mechanism of the gain score methods 

but turns the analysis into standard conditioning methods.  

 

ADVANTAGES OF GAIN SCORE ESTIMATORS 

Unreliability of Pretest 

In practice, pretests are often contaminated with random measurement error. To highlight 

the impact of measurement error on both conditioning and gain score estimators, we now 

explicitly add an independent error term e to the graph in Figure 1.2B (by convention, such 

random disturbance terms are usually omitted from graphs). The new structural parameter 1  

represents the impact of the measurement error e on the pretest P (e → P).  

Given the graph, conditioning on P will eliminate more bias if P closely resembles A, 

which is the case whenever measurement error is very small. However, as measurement error e 

increases, P becomes a poorer proxy for A, resulting in more bias in conditioning estimators. 

This intuition is confirmed if we consider the regression of Y on Z and P and express the 
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expectation of Z’s partial regression coefficient, |YZ Pb , in terms of the structural parameters in the 

graph in Figure 1.2B (for derivations of all estimator formulae in Study 1, see Appendix A): 

 2
| 2

(1 )

( )
YZ P

r
b

Var Z r






−
= +

−
, (1.1)  

where r denotes the reliability of P, 
2

1

2

1

2

1





+
=r .7 The regression estimator consists of the true 

causal effect ( ) and an additive bias term. The bias term shows that the regression coefficient 

varies with the impact of the measurement error, 1 . For example, if measurement error is large 

(i.e., || 1  is large in comparison to || 1 ), the reliability r decreases and the bias term 

)1(2 r−  increases. That is, )1( r− % of the confounding bias induced by A (i.e., 2 ) is 

remaining. In addition, the remaining bias is amplified by the factor  
rZVar 2)(

1

−
 (we discuss 

bias amplification in the next section). If the pretest is measured without error (i.e., 01 =  and 

1=r ), then the partial regression estimator is unbiased, |YZ Pb = . Thus, measurement error 

attenuates the bias-removing potential of the pretest (see Aiken & West, 1991; Steiner et al., 

2011).  

In contrast to conditioning estimators, gain score estimators are insensitive to 

measurement error in the pretest (Maris, 1998). This is so because the association transmitted via 

the non-causal path Z  A → P → G does not involve 1 . According to the path-tracing rule, the 

association along the path is simply given by the product of the three path coefficients of  , 1 , 

                                                 
7 Note that we assume 1)()( == eVarAVar .  
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and 1− . In regressing the gain score G on the treatment indicator Z, we can write the expectation 

of the gain score estimator, GZb , in terms of structural parameters  ,  , 1 , and 2 :  

 
)(

)( 12

ZVar
bGZ




−
+= . (1.2) 

The formula clearly shows that the gain score estimator is not a function of 1  (or the reliability 

r), revealing its insensitivity to measurement error in the pretest.8 Suppose that the math pretest 

is a highly unreliable measure of students’ true math ability. In this case, conditioning methods 

are not able to remove all the bias. Depending on the unreliability, only a minor fraction of the 

bias might be removed. However, gain score methods’ accuracy is unaffected by the 

measurement error. As long as the common trend assumption holds, 21  = , they identify the 

causal effect without any bias.   

 

Bias Amplification  

Steiner and Kim (2016) showed that any remaining bias in conditioning estimators is 

amplified (also see Pearl, 2010, 2011). Bias amplification is a phenomenon that occurs with 

conditioning methods whenever the conditioning covariates (a) fail to remove the entire bias and 

(b) causally determine treatment selection. The denominator in the bias term of Equation (1.1) 

contains the amplification factor 
rZVar 2)(

1

−
, which is always greater than the factor without 

conditioning on P, 
)(

1

ZVar
. Thus, bias left due to the pretest’s unreliability is strongly amplified 

because of conditioning on P, which results in the subtraction of r2  in the denominator. 

                                                 
8 However, the gain score estimator’s variance will be affected by the unreliability in P.  
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However, this does not occur with gain scores estimators in Equation (1.2). The denominator of 

the bias term does not have the subtraction of r2 .  

 To better see this, consider two unobserved confounders A and S as depicted by the 

graph in Figure 1.2C. The new variable S is a confounder of the causal relation between Z and Y 

because S simultaneously affects the treatment and outcome. Since the relations S → Z and S → 

Y are described by the structural parameters s and s , respectively, the confounding bias 

induced by S is given by ss . The graph also shows that the pretest P is affected by A while 

unaffected by S, indicating that P can serve as a proxy for A but not for S. Here, conditioning on 

P does not eliminate any bias induced by the confounder S, on the contrary, it amplifies the bias 

due to S.  

Given the graph in Figure 1.2C, the expected partial regression coefficient |YZ Pb  (i.e., 

conditioning estimator) is  

 2
| 2 2

(1 )

( ) ( )

S S
YZ P

r
b

Var Z r Var Z r

 


 

−
= + +

− −
. (1.3) 

The first bias term represents, as already discussed, the remaining bias due to P’s unreliability 

with respect to A, while the second bias term shows the hidden bias due to S, ss , which is 

amplified by the factor  
rZVar 2)(

1

−
. In order to see that bias amplification only occurs if we 

condition on the pretest P, compare Equation (1.3) to the expected regression estimator without 

conditioning on P (i.e., regression of Y on Z):  

 
)()(

2

ZVarZVar
b SS

YZ


 ++= . (1.4) 
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It becomes clear that, without conditioning on P, the hidden biases due to A and S are not 

amplified because r2  is not subtracted from Var(Z) in the denominators.   

Simply speaking, since bias amplification is a phenomenon that only occurs if one 

conditions on covariates, gain score estimators are immune to bias amplification (provided one 

does not condition on any other covariates9). Regressing G on Z, the expectation of the gain 

score estimator is given by  

 
)()(

)( 12

ZVarZVar
b SS

GZ


 +

−
+= . (1.5) 

Note that the third term, the bias due to S (i.e., )(/ ZVarSS ), is identical to the third term in 

Equation (1.4), which is the bias in the unadjusted effect estimate of Z on Y. Therefore, although 

gain score methods do not eliminate the bias due to S, at least they do not amplify the bias as in 

the use of conditioning methods.  

 

Collider Bias 

Since pretest and posttest are typically measured with the same or a very similar 

instrument (e.g., same or same type of test or questionnaire items, or interviewers) in the same or 

a similar setting (e.g., lab or classroom, lab personnel or teachers), the error terms of the pretest 

and posttest are very likely correlated. Zimmerman and Williams (1982) wrote, “correlated 

errors [between pretests and posttests] are probably the rule rather than the exception in pretest-

posttest measurements” (p. 153, emphasis added). The graph in Figure 1.2D represents such a 

                                                 
9 It is possible that one conditions on covariates (other than pretests) in a gain score analysis. 

This may be desirable because the common trend assumption can be met only after conditioning 

on some covariates. Although this strategy may introduce bias amplification in gain score 

estimators, in this paper we consider a basic form of gain score estimators, which does not 

require any other conditioning.  
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correlated error structure. The exogenous variable E represents a common source of the 

correlated measurement errors, that is, E simultaneously affects the pretest and posttest with 

structural parameters 1  and 2  for the causal relations E → P and E → Y, respectively.  

Given the data-generating model in Figure 1.2D, conditioning methods now face the 

issue of collider bias. Compared to the graph in Figure 1.2A, where error terms are independent, 

the correlated error structure in Figure 1.2D creates an additional non-causal path between Z and 

Y:  

Z  A → P  E → Y. 

Since this path contains the collider P, it is naturally blocked at the collider node P. However, 

once we condition on P, the path becomes unblocked and starts transmitting spurious association 

(Ding & Miratrix, 2015; Elwert & Winship, 2014). This spurious association between Z and Y is 

referred to as the collider bias. Thus, with correlated errors, conditioning estimators are biased 

due the unreliable measurement of A but also the collider bias due to conditioning on the collider 

P.  

When it comes to gain score methods, the graph in Figure 1.2D reveals that the correlated 

error structure via E creates three additional non-causal paths between Z and G:  

(i) Z  A → P  E → Y → G; 

(ii) Z  A → Y  E → P → G; 

(iii) Z → Y  E → P → G. 

However, gain score methods are robust against collider bias because all new non-causal paths 

via E are naturally blocked either at P or Y because one of them is always a collider on the path. 

Thus, no non-causal association is transmitted through these three non-causal paths. Since gain 
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score methods condition neither on P nor on Y, the non-causal paths remain naturally blocked 

such that collider bias is not an issue for gain score estimators.  

 This can also be seen from algebraic expressions of the conditioning and gain score 

estimators. According to the data-generating model in Figure 1.2D, the expectation of the 

conditioning estimator is given by  

 2 1 1 2
| 2 2

(1 )

( ) { ( ) } ( )
YZ P

r
b

Var Z r Var Z r Var P

   


 

−
= + −

− −
. (1.6) 

Compared to Equation (1.1), the correlated error structure results in an additional subtractive bias 

term—the collider bias. This new bias term corresponds to the unblocked collider path Z  A → 

P  E → Y, given by the product of the four structural path coefficients of the path:  , 1 , 1 , 

and 2 .  

In comparison to conditioning methods, gain score methods are unaffected by collider 

bias. The expectation of the gain score estimator for the graph in Figure 1.2D is indeed identical 

to Equation (1.2). Therefore, although a common cause E is responsible for the correlated error 

structure, such a dependence does not affect the gain score estimators.  

 

THE COMMON TREND ASSUMPTION UNDER EXTENDED DATA-GENERATING MODELS 

When Pretest Affects Treatment 

The common trend assumption means that time trends of the repeated measures (i.e., 

pretest and posttest) do not differ between the treatment and control groups in the absence of the 

treatment effect. Given the previous data-generating models (except for Figures 1.1A and 1.2C), 

the common trend assumption is equivalent to the requirement that the impacts of the 

unmeasured confounder A on P and Y are identical, 21  = . However, whether or not the 
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equality establishes the common trend assumptions strongly depends on the actual data-

generating model. The models thus far assumed that the pretest P has no causal effect on 

treatment Z and posttest Y. This might often be unrealistic in practice. For example, the math 

pretest score may be known to students and their parents before they decide whether to attend the 

math camp or not. Then, parents of students with a low pretest score may encourage their 

children to take the camp, that is, the pretest causally affects the treatment selection (P → Z).  

The graph in Figure 1.3A describes this scenario. The graph has four naturally open non-

causal paths between Z and G with the following transmitted associations:  

(i) Z  A → P → G,  1− ; 

(ii) Z  A → Y → G,  2+ ; 

(iii) Z  P → G,  )(1 PVar− ; 

(iv) Z  P  A → Y → G,  211 + . 

Note that P is a “root” node of path (iii). To obtain an unbiased estimate of the causal effect 

using gain score methods, the sum of the four non-causal associations must be zero,  

0)}({)( 21112 =−+− PVar .  

One obvious case that meets this condition is 21  =  and )(21 PVar= . While the former 

equality, 21  = , is easy to conceptualize (i.e., math ability affects both pretest and posttest 

math achievements to the same extent), the substantive meaning of the latter equality, 

)(21 PVar= , is hard to understand. Algebraically, if the variance of the pretest’s error term is 

)()( 121  −−=eVar , then )(21 PVar=  is met, but we do not see any subject-matter 



  23 

 

rationale why the pretest’s error term should adhere to this restriction.10 Thus, given the data- 

generating model in Figure 1.3A, it is generally hard to assess whether the common trend 

assumption for gain score methods actually holds.  

 It is worth noting that the association via the non-causal path (iii) above depends on the 

variance of the pretest, ( )Var P , which implies that measurement error in the pretest now affects 

the gain score estimator. Thus, the robustness of gain score methods to the unreliability of the 

pretest no longer holds when the pretest measure directly affects the treatment as in Figure 1.3A.  

 

When Pretest Affects Posttest 

The graph in Figure 1.3B describes a situation where the pretest causally affects the 

posttest (P → Y). Such a situation occurs if the pretest scores are unknown prior to camp 

enrollment, but after students and parents learn about the pretest score, it may stimulate students’ 

                                                 
10 One interpretable case is when the pretest is perfectly measured without any measurement 

error. Given )()( 1 eAVarPVar +=  , where e is the random measurement error of P, 

)(21 PVar=  is identical to 0)()( 121 =+− eVar . Thus, given 21  = , 0)( =eVar  

satisfies the equation. However, this perfect measurement rarely happens in practice.  

FIGURE 1.3. Graphs where the pretest directly affects (A) the treatment or (B) the posttest.   

(A)                                                                          (B) 
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motivation or parents’ engagement to organize private tutoring, for instance. With respect to the 

gain score G, we have three naturally open non-causal paths and corresponding associations:  

(i) Z  A → P → G,  1− ; 

(ii) Z  A → Y → G,  2+ ; 

(iii) Z  A → P → Y → G,  21+ . 

In order to identify the causal effect, the common trend assumption requires that  

0)}1({ 212 =−+  . 

Given 0 , the equality holds when 2121  += . Note that 212  +  represents the total 

effect of A on Y (except for the effect via Z): the direct effect of A on Y (A → Y) plus the 

mediated effect (A → P → Y). Thus, the common trend assumption requires that the impact of A 

on P is the same as the total impact of A on Y (again, not via Z). This requirement is indeed 

interpretable.  

 Generally, gain score methods are not recommended when the pretest directly affects the 

treatment or the posttest (Allison, 1990; Maris, 1998; also see Imai & Kim, 2017, for a similar 

advice for fixed effects models). Here, we demonstrated the difference between the two 

situations. When the pretest directly affects the treatment (P → Z), the common trend assumption 

is hardly justifiable, and gain score estimators become sensitive to the unreliability of the pretest. 

In contrast, when the pretest directly affects the posttest (P → Y), the common trend assumption 

might still be defendable and gain score estimators remain unaffected by the unreliability in P.  
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DISCUSSION  

The widespread reservations about gain scores are partly due to the lack of understanding about 

how gain score methods actually remove bias. A few methodological articles argued that gain 

score methods can be effective for causal inference with observational studies (e.g., Allison, 

1990; Maris, 1998; Van Breukelen, 2006). However, most of these articles rely exclusively on 

algebra, which is not easily accessible to many applied researchers. This paper revisited the topic 

with a graphical models approach. Our graphical representations visualize the process of how 

gain score methods identify causal effects. We imposed causal contexts and interpretations on 

the common trend assumption such that researchers can more easily communicate and evaluate 

the assumption in their studies. For example, we clarified why assessing the common trend 

assumption becomes intractable when the pretest directly affects the treatment assignment. We 

also showed that gain score estimators are robust against the unreliability of pretests, bias 

amplification and collider bias—issues that may strongly affect conditioning estimators.  

 Of course, gain score methods do not always work and not necessarily remove more bias 

than conditioning methods like regression or matching adjustments. It is possible that 

conditioning on the pretest yields less biased or even unbiased effect estimates while gain score 

estimators might be seriously biased. The message of this paper is that researchers need subject-

matter knowledge about the data-generating process to select an appropriate method. Without 

strong subject-matter knowledge, an informed choice of an identification strategy and 

corresponding estimator is impossible. This is why this difficulty has been called a “paradox,” as 

in Lord’s (1967) paradox. We do not even know which method might perform better “on 

average” in practice. However, if some subject-matter knowledge is available, graphical models 

are a useful tool to incorporate such knowledge into causal investigations. The graphs then help 
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us in assessing which identification strategy has the best chances to work and why other 

strategies might not work. As they help in clarifying missing data problems (Thoemmes & 

Mohan, 2015) and quasi-experimental designs (Steiner et al., 2017), graphical models also help 

in understanding gain score methods and Lord’s paradox.   

This paper suggests a distinct role of pretests in observational studies. Although the 

literature has emphasized the importance of pretests (Cook & Steiner, 2010; Shadish et al., 

2002), it has been unclear what a good pretest is. Our comparison of gain score and conditioning 

estimators revealed that different methods exploit different characteristics of the pretests. For 

conditioning estimators, a good pretest serves as good proxy of the unmeasured confounders, that 

is, the pretest and the unobserved confounders should be nearly perfectly associated. For gain 

score estimators, however, a good pretest is affected by the unobserved confounders to nearly the 

same extent as the posttest. When planning an observational study, researchers need to assess 

whether it is easier to closely meet the unconfoundedness or the common trend assumption with 

the pretest measure in their studies. If they think that the pretest may be a good proxy for all 

unobserved confounders, then they need to put considerable efforts into the reliable measurement 

of a single or multiple pretests and no correlated errors between the repeated measures. In 

contrast, if researchers believe that the unobserved confounders affect the pretest and posttest to 

almost the same extent, a reliable measurement and independent error of the pretest are less 

important. Instead, researchers might put more effort into using the same instrument at the 

pretest and posttest, or into an adequate calibrating or equating of scores from different 

instruments.  

 Finally, the graphical discussion of gain scores in this paper is a first step in developing 

graphical models for a broader class of methods including fixed effects models and comparative 
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interrupted time series designs. They belong to the same class of methods as gain score methods 

because they rely on the bias offsetting mechanism of differencing instead of the bias-blocking 

mechanism of conditioning methods like matching or covariance adjustments. This distinction 

(conditioning methods vs. differencing methods) has not been clearly made in the previous 

literature. For example, it is not rare to find a comparative interrupted time series design with 

additional controlling for or matching on multiple pretests (e.g., St.Clair, Cook, & Hallberg, 

2014; Wong, Valentine, & Miller-Bains, 2017; also see Abadie, Diamond, & Hainmueller, 2010, 

for synthetic control methods). Our graphs show that conditioning on the pretest when using a 

gain score, the regression model automatically turns into standard covariance adjustment, which 

then relies on the unconfoundedness rather than the common trend assumption. More research is 

needed to reveal similarities but also differences among those methods.  
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STUDY 2 

CAUSAL GRAPHICAL VIEWS OF FIXED EFFECTS MODELS 

 

Abstract 

Fixed effects models, which have been developed in econometrics, are less well-known to 

applied psychological researchers. Using linear structural equation modeling, this paper 

introduces causal graphical views of fixed effects models and explains how they can be used to 

identify causal effects in observational studies. To formalize fixed effects models, we distinguish 

between data-generating models and analytic models. Identification of causal effects from data 

generated under fixed effects models can be achieved through several analytic models, including 

the gain score model, the deviation score model, or the dummy variable regression model. Our 

graphical representations, which merge data-generating models and analytic models, visualize 

the causal identification assumption of the fixed effects approach and the bias-removing 

mechanisms. Based on the proposed graphs and graph-based arguments, we also discuss some 

prevalent misunderstandings about the fixed effects approach. We argue that, although the 

alleged inability to control for time-invariant covariates might be a limitation of the dummy 

variable regression model, it is definitely not a limitation of the fixed effects approach itself. 

Also, by developing graphical representations for the random effects approach, we show why the 

approach necessarily results in biased effect estimates in observational studies.
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INTRODUCTION 

Finding causation from data is the key of psychological sciences. Traditionally, psychologists 

have preferred experimentation as a method for causal inference (Darley, 2001). Looking at the 

history of psychology, one finds many creative ideas that allow psychologists to investigate 

complex and invisible psychological phenomena in well-controlled lab settings (e.g., Leon 

Festinger’s experiment regarding cognitive dissonance; Festinger & Carlsmith, 1959). Although 

such controlled experiments improve internal validity of a study, they may decrease external 

validity because a real-life setting is almost always different from a controlled lab setting (Cook 

& Campbell, 1979). A group of psychologists has developed and advanced a methodological 

framework called quasi-experimentation that can complement traditional experimentation 

(Shadish, Cook, & Campbell, 2002). The proposed quasi-experimental designs and methods 

provide psychologists with a methodological approach for investigating causation from non-

experimental or observational data. Researchers from fields outside psychology, such as 

economics, sociology, epidemiology, and statistics, have also developed their own methods for 

causal inference, especially using observational data. Some of the methods overlap (e.g., 

matching, regression discontinuity), but there are some methods that are not well-known but are 

potentially useful in psychological studies.  

Fixed effects models are one such method. This approach is very popular in other social 

sciences including economics, political science, and sociology, especially in studies using 

longitudinal or panel data, but it has been less used in psychology. The fixed effects approach 

has gained increasing attention because it allows for the identification of causal effects even in 

the presence of unmeasured confounding (Allison, 2009; Gunasekara, Richardson, Carter, & 

Blakely, 2014). This is attractive because in observational studies, it is very likely that the 
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measured covariates do not capture all confounding. As such, one may consider using the fixed 

effects approach as an alternative to matching or any similar approaches which identify causal 

effects by conditioning on, or controlling for, the measured covariates. Of course, the fixed 

effects approach is not a silver bullet. It requires its own identification assumption and relies on 

unique bias-removing mechanisms. As the assumption and the mechanisms substantially differ 

from those of usual quasi-experimental designs and methods in psychology, it is important to 

understand how the fixed effects approach works so as to properly apply the approach to real 

psychological questions.  

Unfortunately, the current literature on fixed effects models is not easily accessible to 

applied researchers, especially in psychology. This is because it is mostly in econometrics or 

statistics literature where discussions about fixed effects models occur. Introductory 

econometrics textbooks discuss fixed effects models, but they rely on complex algebraic 

expressions, following their convention; also, causal frameworks (e.g., potential outcomes or 

causal graphical models) have not been explicitly employed in many textbooks (e.g., Hsiao, 2003; 

Wooldridge, 2010, 2012). Recently, Sobel (2012) and Imai and Kim (2017) have explained how 

the fixed effects approach can be used to identify causal effects, but their intended audience is 

statisticians or econometricians, and their papers are formalized in a mathematically intensive 

way. Currently, fixed effects models remain alien to many applied psychologists.  

The purpose of this paper is to introduce fixed effects models to applied psychologists 

using a language with which many of them are familiar. We explain the key causal identification 

features of the fixed effects approach using linear structural equation modeling (SEM). The 

linear SEM is one of the most popular research methods among social scientists, including 

psychologists, that has been used to describe the causal and statistical relationships among 
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variables (Bollen & Pearl, 2013; Rohrer, 2018). By substituting the conventional algebraic 

formulation with the corresponding causal graphs (consisting of nodes and arrows) based on the 

linear SEM, we provide intuitive explanations about how the fixed effects approach can identify 

causal effects in observational studies. More precisely, our graphical representations, merging 

data-generating models and analytic models, show how each of the analytic models, such as the 

gain score model and the deviation score model, differently eliminates the unmeasured 

confounding bias that exists in the data under fixed effects models. In accordance with the 

distinction between data-generating and analytic models, hereafter we selectively use the term 

“fixed effects models” to indicate the data-generating models, and we use the term “the fixed 

effects approach” to indicate the analytic models or methods used for obtaining causal effects 

from data.  

In addition, based on the proposed graphs and graph-based arguments, we revisit and 

clarify some prevalent misunderstandings or potentially misleading knowledge about the fixed 

effects approach. We explain that the alleged problem of dealing with time-invariant covariates 

(e.g., Baltagi, 2001; Clark & Linzer, 2015; Wooldridge, 2010, 2012) may be a limitation of the 

dummy variable regression model, which is just one of the analytic models, but other analytic 

models can easily control for such covariates and correct bias. We also develop graphical 

representations for the random effects approach and show that, because of its unique analytic 

feature (i.e., imperfect bias-offsetting), the approach necessarily results in biased effect estimates 

in observational studies.  

We begin the rest of this paper with a brief introduction to the conventional algebraic 

formalization of fixed effects models. This formalization, which is common within the 

econometrics literature, then will be translated into graphical models. As we will show, graphical 
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models are a powerful tool to formalize causal identification. In this paper, our concern is how 

the fixed effects approach identifies causal effects from data under fixed effects models, and we 

do not discuss any issues regarding standard errors of estimators (i.e., efficiency).  

 

CONVENTIONAL ALGEBRAIC FORMALIZATION OF FIXED EFFECTS MODELS 

Throughout this paper, we restrict our discussion to a simple pretest-posttest design or two-

period panel data where the outcomes are measured at two points in time. Also, we consider that 

no one is exposed to the treatment in the first period. The key features of fixed effects models 

and the approach can be well understood using this simple design and data. But, the principles 

we present can be extended to more general cases. For example, see Appendix B for a case 

where the treatment regime is flexible enough that subjects may receive the treatment at any 

period of time.  

 

Data-Generating Model 

A fixed effect is a unit-specific effect that affects the outcome and that does not change 

over time or across cohorts. Although, in principle, it is possible that a fixed effect is invariant 

across cohorts at a particular point in time (e.g., Ashenfelter & Krueger, 1994; they used twins to 

deal with family-fixed effects; also see Turkheimer & Harden, 2014), a fixed effect is typically 

found with a time dimension as is exhibited in longitudinal or panel data. In many econometric 

textbooks, the basic form of fixed effects models where covariates are not considered is 

expressed as follows (e.g., Wooldridge, 2010, 2012):  

 it it i itY A  = + + , (2.1) 
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where i denotes the unit of the analysis (e.g., individuals) and t denotes the time index, 

{1 , 2 }t before after = = . Among the variables, the outcome itY , the treatment itA , and the 

idiosyncratic error (i.e., random noise) it  are all time-varying because they take the time index t. 

For example, 1iY  represents unit i’s outcome at 1=t , and 2i  represents the idiosyncratic error 

the unit experiences at 2t = . In contrast, i  does not take the time index, and this is the unit-

specific fixed effect with respect to time. The fixed effect is assumed to be correlated with the 

treatment, ( , ) 0it iCov A   , which is a typical assumption in observational studies. Otherwise, if 

they are uncorrelated with each other, it means that the treatment A is unconfounded as in 

randomized controlled trials; in our later discussion regarding random effects models, we 

consider this case further.  

The meaning of Equation (2.1) is easy to understand when we split it by each time index. 

In a typical pretest-posttest design where no one is exposed to the treatment at 1t = , Equation 

(2.1) is expressed as  

 1 1 1 1i i i i i iY A    = + + = + , (2.2) 

because 1 0iA =  for every unit i. Hereafter, for simplicity of notation, we may drop the unit 

subscript i if no confusion is likely. Equation (2.2) means that the pre-intervention measure 1Y , 

which is often referred to as the pretest (Shadish, Cook, & Campbell, 2002), is determined by (i) 

the unit-specific fixed effect   and (ii) the idiosyncratic error 1  occurred at 1=t . Similarly, 

when 2=t , Equation (2.1) is given by  

 2 2 2i i i iY A  = + + . (2.3) 



34 

 

Equation (2.3) means that the post-intervention measure 2Y  is determined by (i) the same fixed 

effect  , (ii) the idiosyncratic error 2  occurred at 2=t , and additionally, (iii) the effect of the 

treatment 2A  implemented at 2t = . The impact of the treatment 2A  on the post-intervention 

measure 2Y , which is  , is the causal effect we are interested in.  

 

The Problem of Causal Identification Under Fixed Effects Models 

 Identification of causal effects from the data generated by fixed effects models, described 

in Equations (2.1), (2.2), and (2.3), is rather challenging. Usual regression or matching methods 

fail to identify causal effects. Let’s consider a naïve method that simply regresses the post-

intervention measure 2Y  on the treatment indicator 2A . Fitting the regression model of 

2 2
ˆ
i iY a bA= + , where a and b are, respectively, the intercept and the slope of the regression model, 

the population regression coefficient for 2A  is given by  

 

2 2 2 2 2

2 2

2

2

( , ) ( , )

( ) ( )

( , )
.

( )

Cov Y A Cov A A
b

Var A Var A

Cov A

Var A

  




+ +
= =

= +

 (2.4) 

The second bias term does not disappear because, as we discussed, the covariance or correlation 

between the fixed effect and the treatment is not generally zero in observational studies. Thus, 

we see that the naïve effect estimate of 2A  on 2Y  is biased.  

 Alternatively, one may consider using the pretest 1Y  as a control variable in the 

regression model. This is sometimes called a lagged dependent variable approach (Wooldridge, 

2010). The lagged regression model has the form of 2 2 1
ˆ
i i iY a bA cY= + +  and aims to estimate   
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by the partial regression coefficient b after controlling for 1Y . Unfortunately, in general, this does 

not produce unbiased effect estimates, either. The population partial regression coefficient of 2A  

in the lagged regression model is given by  

 
 2 1

2

2 1 2

( , ) ( ) ( )

( ) ( ) ( , )

Cov A Var Y Var
b

Var A Var Y Cov A

 




−
= +

−
. (2.5) 

See Appendix C for the derivation of the formula. As 2( , ) 0Cov A   and 1( ) ( )Var Y Var  , the 

bias term in Equation (2.5) does not vanish even though the pretest 1Y  is controlled for. Note that 

the variance equality holds only when 1( ) 0Var  = , implying no idiosyncratic or random error at 

1t = . This is very unlikely to happen in practice.  

 

  

FIGURE 2.1. Graphical representations for fixed effects models. (A) Variables occurred at 

 are represented. (B) Pre-intervention measure  is added to graph (A).  

(A)                                                                          (B) 
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GRAPHICAL REPRESENTATIONS FOR FIXED EFFECTS MODELS  

Data-Generating Model 

 Although the literature on fixed effects models almost exclusively focuses on the 

algebraic formulation of data-generating models as exhibited in the previous section, graphical 

models or directed acyclic graphs (DAGs) in the linear SEM framework can also represent fixed 

effects models (e.g., Bollen & Brand, 2010; also see Imai & Kim, 2017). In Figure 2.1A, we 

present a graph that describes how the treatment and the outcome, at 2=t , are generated in 

observational studies. The graph represents that (i) the variable 2A  is causally determined by an 

unmeasured (indicated by vacant node) U and an omitted idiosyncratic error, and (ii) the variable 

2Y  is causally determined by both U and 2A  and by its own, also omitted, idiosyncratic error.1 

Using the path coefficients on the arrows, the linear structural model depicting the causal process 

that generates 2Y  is given by 

 2 2 2i i i iY A U  = + + , (2.6) 

where 2  is the omitted idiosyncratic error at 2t = . Let’s compare Equation (2.6) with Equation 

(2.3), 2 2 2i i i iY A  = + + . The fixed effect   is equivalent to the product of the parameter   and 

the unmeasured confounding factor U, i iU = . Thus, the fixed effect in the econometrics 

literature can be viewed as a combined entity of an unmeasured confounding factor and its 

impact on the outcome. This is the key insight in developing our graphical representations for 

fixed effects models. Imai and Kim (2016) suggested different graphical representations for fixed 

effects models by allowing for a separate node for the fixed effect  . In the rest of this paper, we 

                                                 
1 In graphical representations, idiosyncratic or random errors are typically omitted.  
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will show that our graphical representations provide a more intuitive understanding about the 

fixed effects approach.  

 If the pretest 1Y  is generated with the same fixed effect ( i iU = ) but with a different 

idiosyncratic error at 1t = , the linear structural model for it is given by  

 1 1i i iY U = + , (2.7) 

which corresponds to Equation (2.2). In Figure 2.1B, we describe this causal process of 1Y  by 

merging it with the previous graph in Figure 2.1A. The implication of fixed effects models is 

clear from the merged graph in Figure 2.1B. The repeated measures 1Y  and 2Y  are affected by 

the same confounder (U) to the same extent (  ). We propose this graph as a graphical model 

that describes the data-generating process of fixed effects models, corresponding to Equation 

(2.1).  

 For our later discussion, it is worthwhile to further discuss two characteristics of the data-

generating model depicted in Figure 2.1B. First, the model can be understood as a constrained or 

restricted model of a more general observational data model. One may imagine a model where 

the impacts of U on 1Y  and 2Y  are different. But, then this model would not belong to fixed 

effects models because there is no fixed effect (with respect to time) in this model; the effect is 

changing. Thus, the data-generating process by Equation (2.1) and Figure 2.1B has a stringent 

constraint or assumption regarding the equality of the impacts of U on the repeated measures 1Y  

and 2Y . This has been referred to as the common (or parallel) trend assumption in the difference-

in-differences literature (Lechner, 2011) and as the fixed effects assumption in the fixed effects 

models literature (Bell & Jones, 2015).  
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Second, such a strong constraint or assumption notwithstanding, usual methods such as 

the regular regression or matching methods still cannot identify the causal effect   from the 

fixed effects model in Figure 2.1B. We already discussed this challenge by algebraically deriving 

Equations (2.4) and (2.5) where the bias terms do not vanish. But this result is directly found by 

using a simple and intuitive graphical criterion called the backdoor criterion (Pearl, 2009; Pearl, 

Glymour, & Jewell, 2016). In Figure 2.1B, the backdoor or non-causal path 2A   U → 2Y  

remains open i) when no variables are conditioned on, which corresponds to Equation (2.4), and 

ii) even when  1Y  is conditioned on, which corresponding to Equation (2.5). Unless all non-causal 

paths between the treatment and the outcome are blocked, the causal effect cannot be identified 

(see Rohrer, 2018, for an accessible introduction to graphical models and rules; she also provides 

many examples from psychological research).  

 

Analytic Models for Fixed Effects Models 

Despite the open backdoor path 2A   U → 2Y  in Figure 2.1B, one may identify the 

causal effect   if special analytic models or methods are applied to the data. In the econometrics 

literature, three methods are suggested: i) first differencing, ii) time demeaning, and iii) dummy 

variable regression (Wooldridge, 2010, 2012). The key features of those methods can be 

intuitively understood with graphical representations. As we will show below, the bias-removing 

mechanism of those analytic models creates another non-causal path(s) and offsets the existing 

non-causal path instead of blocking it.  
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Gain Score Model 

We shall refer to the first differencing or first difference model in the econometrics 

literature as the gain score model, which would be more familiar to many psychologists. In 

Figure 2.2A, we describe the analytic model of the gain score model. In this graph, dashed 

arrows are used to distinguish the gain score model from the data-generating model which is 

represented by solid arrows. We use this arrow representation system to emphasize the fact that 

data-generating models cannot be altered by researchers (because they are generated by nature) 

whereas analytic models can be altered by researchers (because they are generated by 

researchers). Only appropriate analytic models that have been thoughtfully selected by 

researchers with substantial knowledge about the data-generating model allow us to identify 

causal effects from observational data.  

FIGURE 2.2. Graphical representations, merging fixed effects data-generating models 

(Figure 2.1B) and analytic models. A gain score model (A) and a deviation score model (B) 

are added and represented by dashed arrows.  

(A)                                                                          (B) 
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When applying the gain score model, one first computes the gain score G by subtracting 

1Y  from 
2Y :  

 2 1i i iG Y Y= − . (2.8) 

The added structure using dashed arrows in Figure 2.2A represents Equation (2.8). As this 

variable G is created by researchers, the path coefficients on the dashed arrows 1Y G→  and 

2Y G→  are exactly known as 1−  and 1+ , respectively. In contrast, the path coefficients on the 

solid arrows remain unspecified, that is, we do not know what the values would be for the 

parameters  ,  , and  . However, the gain score model helps in identifying the unknown 

causal parameter  . This identification procedure using graphs is suggested by Study 1 of this 

dissertation. Once G is computed, one investigates the effect of 2A  on the gain score G, not the 

original outcome 
2Y , for example, by regressing G on 2A . In Figure 2.2A, the following three 

paths remain open between 2A  and G:  

i) 2A  → 2Y  → G;  

ii) 2A   U → 1Y  → G;  

iii) 2A   U → 2Y  → G.  

By the path-tracing rules (Wright, 1921; also see Pearl, 2013), the association transmitted via 

each path is easily computed. The product of the path coefficients along the path is multiplied by 

the variance of the “root” variable of the path. A root variable is a variable in the path that does 

not have any incoming arrows. For example, the root variable in path (i) is 2A , and the root 
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variable in both path (ii) and path (iii) is U. Thus, each association via each of the paths above is 

respectively given by  

i) 2 2( 1) ( ) ( )Var A Var A  +  = ;  

ii) ( 1) ( ) ( )Var U Var U    −  = − ; 

iii) ( 1) ( ) ( )Var U Var U    +  = . 

The total association or the covariance between 2A  and G is the sum of the three partial 

associations. It is simply 2( )Var A   because the second and the third associations offset each 

other, ( ) ( ) 0Var U Var U − = . From the graph, this can be understood that another non-

causal path, path (ii), is created using the pretest 1Y , and this new path offsets the original non-

causal path, path (iii). Fitting the regression model of 2
ˆ

i iG a bA= + , the population regression 

coefficient of 2A  is given by  

 2 2

2 2

( , ) ( )

( ) ( )

Cov A G Var A
b

Var A Var A


= = = . (2.9) 

Thus, the causal effect   is identified by the gain score model. For more detailed explanations of 

the gain score model, including its advantages over the ANCOVA model, see Study 1 of this 

dissertation.  

 

Deviation Score Model 

The gain score model, which is popular in the psychological literature is just one of the 

analytic models that researchers can choose for analyzing the data under fixed effects models. 

An alternative that is less known in the psychological literature but is very popular in the 
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econometrics literature (Wooldridge, 2010, 2012) is the time demeaning, which we shall refer to 

as the deviation score model, following Allison (1994). True to its name, this model uses a 

deviation score instead of a gain score. A deviation score is defined as the difference between the 

posttest and the average of the repeated measures. In a simple pretest-posttest design, where only 

one pretest exists, we first compute the average m of the pretest 
1Y  and posttest 

2Y  for each unit i:  

 
2

21 ii

i

YY
m

+
= . (2.10) 

Then, we compute the deviation score D: 

 iii mYD −= 2 . (2.11) 

Finally, we investigate the treatment effect on the deviation score.  

 Figure 2.2B visualizes how the deviation score model can be added (dashed arrows) and 

be used to eliminate the unmeasured confounding bias from the same data-generating model in 

Figure 2.2A. First, as in Equation (2.10), the average node m is depicted as a common outcome 

of the pretest 1Y  and the outcome 
2Y , 21 YmY → . Again, we know the exact functional form of 

the mean computation, so the path coefficients on the two arrows, mY →1  and mY →2 , are 

1
2

+ . The deviation score node D is determined from the outcome 
2Y  and the average m, such 

that we have the corresponding arrows pointing into D, mDY →2 . Again, from Equation 

(2.11), we know that the path coefficients of DY →2  and Dm→  are 1+  and 1− , respectively. 

Excepting causal paths between 2A  and D, all the open non-causal paths, together with the 

corresponding transmitted associations, are given by  

i) 2A   U → 2Y  → D,  ( )Var U  ; 
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ii) 2A   U → 
2Y  → m → D,  ( )

2
Var U


− ;  

iii) 2A   U → 
1Y  → m → D,  ( )

2
Var U


− .  

Thus, the sum of all the three non-causal associations becomes zero, and the effect of 2A  on D is 

no longer confounded by U (or correctly adjusted for the bias due to U).   

However, unlike in the gain score model, the effect of 2A  on D does not exactly 

correspond to the effect of 2A  on 
2Y . In Figure 2.2B, the causal effect of 2A  on D is transmitted 

via the following two causal paths:  

i) 2A  → 
2Y  → D,  2( )Var A  ; 

ii) 2A  → 
2Y  → m → D,  2( )

2

Var A 
− .  

The sum of the two associations is then 2( )

2

Var A 
, which is half of the causal association 

between 2A  on G in the gain score model, 2( )Var A  . Thus, fitting the regression model of 

2
ˆ

i iD a bA= + , the population regression coefficient of 2A  is given by  

 2

2

( , )

( ) 2

Cov A D
b

Var A


= = . (2.12) 

Therefore, in order to recover the original causal quantity, the total effect of 2A  on D needs to be 

multiplied by two.2 In fact, this is why many econometrics textbooks explain that independent 

                                                 
2 Although we do not discuss it in this paper, if the repeated outcomes are measured at three 

points in time such that one may have one more prior measure 
0Y  before 

1Y  and 
2Y , then the 
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variables also need to be time demeaned, just like the repeated outcome measures (Wooldridge, 

2010, 2012). We see that such time demeaning procedures are required for different purposes. 

The time demeaning of the pretest and posttest outcome measures is necessary to offset the 

confounding bias while the time demeaning of independent variables, especially the treatment 

variable, is necessary to recover the original causal quantity.  

  

Dummy Variable Regression 

A computationally identical way of using the deviation score model is to use dummy 

variable regression (Allison, 1994; Lockwood & McCaffrey, 2007; Wooldridge, 2010, 2012). 

Instead of manually computing the deviation score, one may include individual dummy variables, 

indicating each i, into a pooled regression model such as, 

 ˆ
it it i i tY bA c ID dT= + + , (2.13) 

where iID  is the set of individual dummy variables and tT  is the time indicator (i.e., 1 0T = , 

2 1T = ). Note that the intercept a in the regression model is absorbed into the dummies as a 

reference. Then, the regression coefficient b is numerically identical to the deviation score 

estimator, that is, the regression coefficient in Equation (2.12) × 2. Because of this equivalence, 

the deviation score estimator is sometimes referred to as the dummy variable estimator 

(Wooldridge, 2010). In our opinion, however, it is beneficial to distinguish between these two 

                                                                                                                                                             

computation slightly changes. First, the average m is computed by 
0 1 2( ) / 3i i i im Y Y Y= + + , and 

then the deviation score estimator from the regression of D (i.e., iii mYD −= 2 ) on 2A  should be 

multiplied by 3
2

. Drawing graphs and checking out all causal paths will easily verify this 

procedure.  
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analytic models or methods because they differ greatly in dealing with time-invariant covariates.3 

We will discuss this issue in more detail in the next section. Unfortunately, it is hard to 

graphically represent how the dummy variable regression model eliminates the unmeasured 

confounding bias, at least in an intuitively understandable way such as through the gain score 

and deviation score models depicted in Figure 2.2. So, we do not provide any graphical 

representation for the dummy variable regression model. One might consider that the dummy 

variable regression model internally creates the deviation score structure as depicted in Figure 

2.2B, but the use of the individual dummies results in an important difference from the deviation 

score model.  

  

ISSUES ON THE FIXED EFFECTS APPROACH 

Controlling for Time-Invariant Covariates 

 A well-known alleged limitation of the fixed effects approach is that it cannot include, 

and thus cannot properly control for, time-invariant covariates (Allison, 2009; Bell & Jones, 

2015; Clark & Linzer, 2015; Greene, 2011; Gunasekara et al., 2014; Halaby, 2004; Hsiao, 2003; 

Plümper & Troeger, 2007). For example, Wooldridge (2010) claims that “[w]hen analyzing 

individuals, factors such as gender or race cannot be included in [the fixed effects approach]” (p. 

301). This alleged limitation is often contrasted with the fact that the random effects approach 

can include time-invariant covariates and is used as a justification for preferring the random 

effects approach over the fixed effects approach (e.g., Huber & Stephens, 2000; Nielsen & 

Alderson, 1995). In contrast, researchers who advocate for the fixed effects approach claim that 

                                                 
3 Another difference is that they exploit different degrees of freedom. In the literature, some 

researchers claim that the use of dummy variable regression is desirable because it produces the 

correct standard errors (e.g., Allison, 2009; Wooldridge, 2010, 2012).  
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if the interest is not directly on the time-invariant covariates (because they are just control 

variables), the inability to estimate coefficients for the covariates is not a problem (Allison, 2009; 

Wooldridge, 2010). In what follows, we argue that the inability to control for time-invariant 

covariates is definitely not a limitation of the fixed effects approach. The inability might be a 

limitation of dummy variable regression, which is one of the analytic models for the fixed effects 

approach, but other analytic models (e.g., the gain score or deviation score model) can easily 

include and control for time-invariant covariates. Furthermore, we provide simple methods to 

control for time-invariant covariates in the dummy variable regression framework.  

 

Time-Invariant Covariates Whose Impacts Are Time-Varying 

 Let us first consider how we could describe a time-invariant covariate such as gender or 

race within the graphical representations we have thus far considered. In Figure 2.3A, we add a 

covariate S, which is independent of U. Although U remains unmeasured (i.e., a vacant node), S 

FIGURE 2.3. Graphical representations with time-invariant covariate S. (A) Data-generating 

model. (B) Analytic model of the gain score model with the data-generating model (A).  

(A)                                                                          (B) 
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is measured (i.e., a filled node) and affects the treatment 2A , the pretest 1Y , and the posttest 2Y . 

This S is a time-invariant covariate because the factor itself (for example, subjects’ gender or 

race) does not change over time. At first glance, the time-invariant covariate S seems to not be a 

special variable but rather just a regular confounding variable. However, when it comes to the 

fixed effects approach, the key is in whether its impacts on the two measures 1Y  and 2Y  differ or 

not. Depending on the equality, we can classify S into either: i) a time-invariant covariate whose 

impact is time-invariant (if 1 2 = ) or ii) a time-invariant covariate whose impact is time-

varying (if 1 2  ). The former equality is a strong constraint, and the latter is more general. For 

example, although gender itself does not often change over time, the gender gap in income (i.e., 

the impact of gender on income) typically increases (or decreases) over time in many societies.  

 The necessity of including and controlling for time-invariant covariates in the fixed 

effects approach depends on the impacts of the covariates on the repeated outcome measures. If a 

time-invariant covariate belongs to the time-invariant covariate whose impact is time-invariant, 

then, as Allison (2009) has argued, it is not necessary to control for the covariate because the 

bias-removing mechanism by offsetting already takes it into account. In Figure 2.3B, we 

represent the gain score model (dashed arrows) with the time-invariant covariate S (but the 

offsetting principle also holds with the deviation score model). In this graph, the open non-causal 

paths between the treatment 2A  and the gain score G, together with their corresponding 

associations, are given by,  

i) 2A  ← U → 1Y  → G,  ( ) UVar U  − ; 

ii) 2A  ← U → 2Y  → G,  ( ) UVar U   ; 
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iii) 2A  ← S → 1Y  → G,  1( ) UVar S  − ; 

iv) 2A  ← S → 2Y  → G,  2( ) UVar S   . 

In addition to path (i) and path (ii) offsetting each other, path (iii) and path (iv) also offset each 

other if the equality 1 2 =  holds, meaning that S is a time-invariant covariate whose impact is 

time-invariant.  

However, if S is a time-invariant covariate whose impact is time-varying, which implies 

1 2  , the offsetting between path (iii) and path (iv) is not perfect and the resulting treatment 

effect estimate becomes biased, 2 1( ) ( ) 0UVar S   −  . Instead of relying on such imperfect 

offsetting, one may directly condition on S (because S is observed) to block the two non-causal 

paths via S, that is, path (iii) and path (iv). Then, the gain score model or the deviation score 

model allows for identification of the causal effect  , despite 1 2  . Contrary to the popular 

belief, this direct conditioning on S is straightforward. For example, after computing a gain score 

by 2 1G Y Y= − , or a deviation score by 1 2
2

2

Y Y
D Y

+ 
= − 

 
, one simply regresses the gain score G 

(or D) on the treatment 2A  and the time-invariant covariate S.  

  Unfortunately, most of the literature on fixed effects models and the approach has not 

explicitly discussed whether a time-invariant covariate’s impact on the repeated measures is 

time-invariant or time-varying (e.g., Allison, 2009; Clark & Linzer, 2015; Plümper & Troeger, 

2007; Wooldridge, 2010; but see Halaby, 2004, as an exception). If the impact is time-invariant, 

the bias due to the omission of the covariate does not create any bias with the fixed effects 

approach. However, if the impact is time-varying, the bias cannot be removed by the offsetting 

mechanism alone, but it can be removed by directly blocking the non-causal paths. The graphical 
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representations in Figure 2.3 help to make explicit the difference between a time-invariant 

covariate itself (i.e., a node) and its time-varying or time-invariant impacts on the repeated 

measures (i.e., arrows).  

 

Controlling for Time-Invariant Covariates Using Dummy Variable Regression 

 However, it is true that, unlike the gain score or deviation score model, the dummy 

variable regression model cannot directly control for time-invariant covariates because individual 

dummies are perfectly collinear with time-invariant covariates (Allison, 2009; Wooldridge, 

2010). Once the dummy variable iID  is included in the pooled regression model, the time-

invariant covariate cannot be included in the same pooled regression model regardless of its 

impacts on the repeated outcome measures. Probably, this is the source of the prevalent 

misleading belief that the fixed effects approach cannot include and control for any time-

invariant covariates. However, dummy variable regression is just one of the several analytic 

models for identifying and estimating causal effects from fixed effects models, and other analytic 

models easily control for such covariates. Therefore, the inability to include and control for time-

invariant covariates is not a limitation of the fixed effects approach itself.  

 Some researchers have tried to develop a way to resolve this inability in the dummy 

variable regression framework. Plümper and Troeger (2007, 2011) have proposed a method 

called the fixed effects vector decomposition (FEVD). This consists of three stages. Given the 

data depicted in Figure 2.3A, in the first stage, one runs a regular dummy variable regression that 

cannot include S: ˆ
it it i i tY bA c ID dT= + + . In the second stage, the obtained unit-specific effect ic  

from the first stage is regressed on the time-invariant covariate S: î ic a bS= + . Finally, in the 



50 

 

third stage, the residualized unit-specific effect ic  from the second stage, which has partialled out 

the impact of S (i.e., the residuals in the second regression model), plays the role of the 

individual dummy variables in the pooled regression model where the covariate S is included: 

ˆ
it it i t iY a bA cc dT eS= + + + + . Note that the lower-case c denotes the regression coefficient for the 

residualized unit-specific effects ic . Also, the intercept a appears because the dummy variables 

iID  are replaced with the univariate ic . From this final regression model, one has the regression 

coefficient for S (i.e., the coefficient e), which cannot be obtained from the regular dummy 

variable regression model in the first stage.  

The problem, however, as Greene (2011) has claimed and as Plümper and Troeger (2011) 

have agreed, is that the treatment effect estimate, which is the coefficient for itA  from the third 

stage, is indeed identical to the coefficient for itA  from the regular dummy variable regression 

model in the first stage. This means that the treatment effect estimate is still biased. In short, the 

FEVD is a way to somehow include time-invariant covariates in the dummy variable regression 

model, but it cannot really control for them to correct the bias in treatment effect estimates. The 

so-called hybrid method that uses group-mean centering for the treatment variable in the random 

effects framework (Allison, 2009) is the same in that it cannot correct the bias by including the 

time-invariant covariates. Although the obtained coefficients for the time-invariant covariates by 

the FEVD or the hybrid models might be useful in some contexts, they do not help to correct the 

bias in the treatment effect estimate. This is a severe limitation with respect to making a causal 

inference about the treatment effect of interest.  

 Indeed, there are simple ways to help researchers truly control for time-invariant 

covariates in the dummy variable regression framework. Results that are numerically equivalent 
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to the gain score and the deviation score models that control for time-invariant covariates are 

obtained from a two-stage method that we shall refer to as the dummy variable regression with 

the residualized treatment. In the first stage, one regresses the treatment 2A  on the time-invariant 

covariate S: 2
ˆ

iA a bS= + . In the second stage, the residual 2A  from the first regression, in which 

the impact of S is partialled out, is used to construct the treatment variable in a pooled dummy 

variable regression model: ˆ
it it i i tY bA c ID dT= + + , instead of the original treatment vector itA . 

Then, the regression coefficient for the residualized treatment itA  is numerically equivalent to 

the gain score and the deviation score estimators, in which the bias due to S is corrected.4 

Similarly, one may use matching. After matching the treatment and control cases on the values 

of the time-invariant covariates, the matched data sets can be used to run the regular dummy 

variable regression model.  

 

Illustration 

 In order to demonstrate the effects of controlling for the time-invariant covariate S, we 

perform a simulation study. Based on the causal structure in Figure 2.3A, we generate data as 

follows:  

                                                 
4 This is true for two-period data that we are considering in this paper. If the time points are more 

than two, the gain score estimator and the deviation score estimator are generally different 

(Wooldridge, 2010). Graphical representations also help in clarifying this difference, but in this 

paper, we do not extend and discuss this so that we can retain our focus on the basic two-period 

data. Note that even with more than two time points, the deviation score estimator is equivalent 

to the dummy variable regression estimator if S is not included in the deviation score model 

because these estimators are numerically identical without S.  
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where A , 1 , and 2  are idiosyncratic error terms of each corresponding variable, following the 

standard normal distribution.5 Note that we make the covariate S only affect 2Y ; we do not make 

it affect 1Y . This highlights that the impact of S is obviously time-varying (i.e., 1 0 =  but 2 1 = ). 

We generate 1,000 cases, and in each generated data set, we apply the analytic models and 

strategies previously described. The estimated treatment effects from each of those methods are 

saved and are averaged over 1,000 repetitions of data-generation. Finally, these expected 

treatment effects are compared with the true causal effect  , which is set to .3 in the simulation.  

 The simulation results are summarized in Figure 2.4. The averages of the point estimates 

by different fixed effects methods are represented by hollow circles, and the corresponding plus 

or minus one standard deviations of the point estimates are represented by vertical lines through 

the circles. First, without controlling for the time-invariant covariate S, the three basic analytic 

models—the gain score model (“Gain”), the deviation score model (“Devi”), and the dummy  

variable regression model (“Dummy”)—produce biased effect estimates. However, if S is 

controlled for, through the gain score model (“Gain + S”) and the deviation score model (“Devi 

                                                 
5 Strictly speaking, the data-generating model in Equation (2.14) is not a linear system and thus 

differs from the linear graph in Figure 2.3A. This is because in Equation (2.14) we consider that 

the treatment 2A  and the time-invariant covariate S are binary. In many causal inference studies, 

the treatment is binary (treatment group vs. control group) and many time-invariant covariates 

such as gender and race are binary or discrete rather than continuous. As this consideration does 

not affect our main arguments in the paper, we consider a more realistic simulation scenario that 

might differ, in a strict sense, from the linear graph in Figure 2.3A. Note that, however, Equation 

(2.14) reflects the conditional independence structures, implied by the graph in Figure 2.3A.  
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+ S”), the two estimators are unbiased. In contrast, due to the perfect collinearity, the dummy 

variable regression model cannot include S in the model, therefore, it is still biased (“Dummy + 

S”). Plümper and Troeger’s (2007) fixed effects vector decomposition (“FEVD”) and Allison’s 

(2009) hybrid model (“Hybrid”) also cannot correct the treatment effect estimates, although they 

somehow include S in the modified dummy variable regression models and provide the 

coefficients for S.6 However, if the treatment is residualized (“Resid + Dummy”) or cases are 

matched on S before running the dummy variable regression (“Match + Dummy”), the modified 

dummy variable regression models return unbiased effect estimates.7  

 

Comparison with the Random Effects Approach 

 The comparison between the fixed effects and the random effects approaches has been 

widely discussed in the literature (Allison, 2009; Bell & Jones, 2015; Bollen & Brand, 2010; 

Clark & Linzer, 2015; Halaby, 2004; Lockwood & McCaffrey, 2007; Wooldridge, 2010, 2012). 

Although each method has its own advantages and disadvantages, it is not difficult to find in the 

literature strong exclusive preferences for either the fixed effects or the random effects approach. 

Allison (1994) claims, “the change-score estimator [i.e., the fixed effects approach] is nearly 

always preferable [to the random effects approach] for estimating the effects of events with 

nonexperimental data” (p. 181, emphasis added). In contrast, Gelman and Hill (2007) have 

                                                 
6 Although both methods allow for the inclusion of S, the coefficients for S from the two methods 

are different. In the simulation, the coefficient for S by the FEVD method was .464 while the 

coefficient by the hybrid model was .198. The interpretation of these two coefficients are rather 

vague in terms of causal inference.  
7 As S is binary in the simulation, we use exact matching for “Match + Dummy.” We split the 

total sample into two, based on the values of S, and run the separate dummy variable regression 

models using each sample. The final effect estimate is obtained by the weighted average of the 

two separate treatment effects (weighted by the frequency of S).  
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written, “[o]ur advice (elaborated upon in the rest of this book) is always use multilevel 

modeling (‘random effects’)” (p. 246, emphasis and parentheses in original).  

 Here, we focus on the bias-removing mechanism using the basic random effects approach, 

specifically, the random intercepts models. Although it is well documented algebraically that 

using the random effects approach results in biased effect estimates if the unit-fixed effects are 

FIGURE 2.4. Remaining bias by different analytic models for a fixed effects model where S is 

present. Gain = Simple gain score; Devi = Simple deviation score; Dummy = Dummy variable 

regression; Gain + S = Gain score controlling for S; Devi + S = Deviation score controlling 

for S; Dummy + S = Dummy variable regression controlling for S; FEVD = Fixed effects 

vector decomposition (Plümper & Troeger, 2007); Hybrid = Hybrid model (Allison, 2009); 

Resid + Dummy = Dummy variable regression with the residualized treatment, partialling out 

S; Match + Dummy = Dummy variable regression with the matched sample on S.  
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correlated with the treatment (Lockwood & McCaffrey, 2007; Woodridge, 2010), the literature 

has not explicitly investigated the corresponding graphical representations and the causal 

interpretation of the random effects approach. As we will show, graphical representations help us 

in understanding how the random effects approach removes confounding bias and why it is 

inherently limited to being used for causal identification in observational studies.  

 

Imperfect Bias-Offsetting by the Random Effects Approach 

In Figure 2.5A, we present the graphical representation of the bias-removing mechanism 

of the random effects approach. Given the basic two-period data under the fixed effects model in 

Figure 2.1B, the analytic structure of the random effects approach is represented by dashed 

arrows. The added structure is indeed identical to the structure of the deviation score model (see 

Figure 2.2B), but the path coefficients on the two arrows, 1Y w→  and 2Y w→ , are different 

such that, instead of 1
2

+ , they are 
2

+ . The parameter   is what has become known in the 

multilevel literature as the reliability, which produces the so-called shrinkage estimator 

(Raudenbush & Bryk, 2002). Multilevel researchers conceive that the observed average of the 

repeated measures 1Y  and 2Y  for each i consist of two parts: i’s true unknown score and random 

error. Thus, the parameter   quantifies “the ratio of the true score […] variance, relative to the 

observed score or total variance of the sample mean” (Raudenbush & Bryk, 2002, p. 46). Note 

that in the graph, we refer to the average node as w instead of m, and we refer to the resulting 

deviation score node, computed by 2Y w− , as qD (denoting the quasi-deviation score) instead of 

D. Wooldridge (2010) clarified this computation procedure of random effects estimators (see 

also Lockwood & McCaffrey, 2007), and referred to it as quasi-time demeaning. Remember that 
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the time demeaning model in the econometrics literature is what we here refer to as the deviation 

score model.  

 In Figure 2.5A, the open non-causal paths between the treatment 2A  and the quasi-

deviation score qD, together with the corresponding associations, are given by  

i) 2A   U → 2Y  → qD,  ( )Var U  ; 

ii) 2A   U → 2Y  → w → qD,  ( )
2

Var U


− ;  

iii) 2A   U → 2Y  → w → qD,  ( )
2

Var U


− .  

However, note that the sum of all the three non-causal associations, ( ) (1 )Var U  − , does not 

equal zero unless the reliability becomes one ( 1 = ). This is why the random effects approach, 

unlike the fixed effects approach, have a fundamental limitation in eliminating confounding bias 

by offsetting. As the random effects approach exploits the shrinkage estimator, which is a 

weighted average of the observed sample means (by i) and the grand mean (across i) by the 

reliability  , the bias-offsetting mechanism is inherently imperfect even when the impacts of U 

on 1Y  and 2Y  are identical.  

 

Comparison of Two Approaches in Experimental and Non-Experimental Studies 

 Despite the imperfect bias-offsetting by the random effects approach, Bell and Jones 

(2015) have claimed that “[i]f the assumptions made by RE [i.e., random effects] models are 

correct, RE would be the preferred choice because of its greater flexibility and generalizability, 

and its ability to model context […]” (p. 134). Graphical representations also help in clarifying 
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the conditions under which the random effects approach does not make any bias and thus may be 

preferable over the fixed effects approach due to other benefits mentioned by Bell and Jones. As 

previously considered, in the basic fixed effects model in Equation (2.1), it it i itY A  = + + , we 

FIGURE 2.5. Graphical representations, (A) adding the random effects model structure 

(dashed arrows) to the data in Figure 2.1B, (B) adding the random effects model structure to 

RCT data, (C) adding the fixed and random effects model structures to observational data, 

and (D) adding the random effects model structure to the data in Figure 2.3A, where time-

invariant covariate S is present.  

(A)                                                                          (B) 

(C)                                                                          (D) 
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assume that the fixed effect is correlated with the treatment, ( , ) 0it iCov A   . This assumption is 

encoded in the graphs as the arrow U → 2A  because i iU = . If this covariance is zero, 

implying that the treatment is independent of the fixed effect, then the random effects approach 

does not result in any bias (Allison, 1994; Lockwood & McCaffrey, 2007; Halaby, 2004; 

Wooldridge, 2010). This assumption ( , ) 0it iCov A  =  is occasionally referred to as the random 

effects assumption (Bell & Jones, 2015).  

 In Figure 2.5B, we describe the random effects assumption by deleting the arrow U → 

2A . If this is the data-generating model, then the random effects estimators are unbiased. This is 

simply because there are no open non-causal paths between 2A  and qD. The only open paths are 

the following two causal paths  

i) 2A  → 2Y  → qD,  2( )Var A  ; 

ii) 2A  → 2Y  → w → qD,  2( )

2

Var A 
− . 

The sum of the two paths is 
2

2
( )

2
Var A




− 
 
 

 and, as for the deviation score estimators, in order 

to recover the original causal quantity, one should multiply this quantity by 2
(2 )−

 in a two-

period panel data. This graph-based argument verifies that under the random effects assumption, 

( , ) 0it iCov A  = , the random effects approach can result in unbiased effect estimates.  

 In fact, the graph in Figure 2.5B, especially the structure with the solid arrows, is the 

data-generating model for randomized controlled trials (RCTs), where the treatment variable is 

not confounded by other unmeasured variables (Steiner, Kim, Hall, & Su, 2017). This 
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assumption, or equivalently the independence assumption conditional on other measured 

covariates (i.e., unconfoundedness; Imbens & Rubin, 2015), is one of the strongest assumptions 

for making a causal inference using observational data. If this assumption holds, then the random 

effects approach as well the fixed effects approach and even a naïve approach (e.g., simply 

regressing the outcome on the treatment without any other conditioning variables), all result in 

unbiased effect estimates because the treatment-outcome relationship is unconfounded in RCT 

data. This can be verified in the graph by the absence of the open non-causal paths between the 

treatment and the outcome variables. Particularly, with RCT data, the key constraint for being a 

fixed effects model—the equal impacts of U on 1Y  and 2Y , (i.e., the common trend or fixed 

effects assumption)—is not even required in order to apply the fixed effects approach. Notice 

that in Figure 2.5B, we use the different parameters 1   and 2  for the arrows U  → 1Y  and U  

→ 2Y , respectively, indicating 1 2  . Even with this data-generating model where the key 

assumption is not met, the fixed effects estimators would be unbiased because there are no non-

causal paths between the treatment 2A  and the deviation score D.  

 Now consider a general observational study where the treatment is confounded by U and 

the impacts of U on 1Y  and 2Y  are different, 1 2  . This is plausible case in many 

observational studies in practice. The data-generating model is presented in Figure 2.5C by solid 

arrows. With this kind of data, one might wonder which analytic approach (i.e., random effects 

vs. fixed effects) would be preferred. In Figure 2.5C, the two analytic options are displayed 

together in the graphical representation. Depending on which is selected, different path 

coefficients are specified, and the confounding bias will be differently offset. Note that, due to 

1 2  , the fixed effects approach (more exactly, the deviation score model) cannot eliminate 
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all the bias. The random effects approach also retains some amount of bias because it inherently 

uses the imperfect offsetting mechanism. In this case, it is never clear which approach would 

result in less bias and thus which one should be generally preferred. With this observational data 

in Figure 2.3C, even the Hausman test (Hausman, 1978) does not help us choose one approach. 

Although the fixed effects estimator and the random effects estimator would differ, this does not 

indicate that the fixed effects approach should be preferred (Clark & Linzer, 2015). This is 

because the key assumption 1 2 =  for being a fixed effect model does not hold with this type 

of general observational data. In this case, depending on the specific values for the two 

parameters, it is possible that random effects estimators are much less biased than fixed effects 

estimators.  

  

Illustration 

 One might wonder whether our graphical representations for the random effects approach 

in Figure 2.5 correctly represent what happens in the random effects estimation. We refer 

interested readers to Wooldridge (2010) or Lockwood and McCaffrey (2007) for the algebraic 

derivation. Here, we provide numerical evidence to support this derivation. Using the same data-

generating model in Equation (2.14), we apply two random intercepts models to the simulated 

data. Two random effects models are different depending on whether or not the time-invariant 

covariate S is controlled for:  
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where S is controlled for in Equation (2.16). The two models first specify the individual time 

trends by the level-1 models and then investigate the treatment group difference in the slopes 

( 1  ) by the level-2 models. The coefficient 11  is the random effects estimator of interest. To 

specify the models, we use the function lmer in the R-package lme4 (Bates, Maechler, Bolker, & 

Walker, 2015). In each analysis, we extract the reliability   and use it to compute the quasi-

deviation score and apply two quasi-deviation score models, again depending on whether or not 

the time-invariant covariate S is controlled for. The graphical representation for the quasi-

deviation model controlling for S is described in Figure 2.5D. Once the quasi-deviation score is 

computed, we regress it on the treatment 2A  and the time-invariant covariate S.  

 The results are summarized in Table 2.1. From the simulation (1,000 times of data-

generating processes), the random effects estimator when S is not controlled for, as in Equation 

(2.15), is 1.23. Using the obtained reliability   in each analysis, we compute the quasi-deviation 

score estimator and compare it with the random effects estimator. The two estimators are 

numerically identical and we present the results up to seven decimal places as presented in the 

row labeled “No controlling for S” in Table 2.1. This numerical equivalence between the random 

TABLE 2.1.  

Comparison between random effects estimators and quasi-deviation score estimators 

 
Random effects 

estimators 

Reliability 

   

Quasi-deviation score 

estimators 

No controlling for S 1.2270515 0.5667732 1.2270515 

Controlling for S 0.9437824 0.6145112 0.9437824 
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effects estimator and the quasi-deviation score estimator still holds when S is controlled for (the 

“Controlling for S” row). The results support the validity of our graphical representations, 

interpreting the random effects estimation as using the quasi-deviation score model.  

 

DISCUSSION 

In this paper, we develop graphical representations for the fixed effects approach that can be 

useful for psychological studies. The key causal identification process of the approach is clearly 

explained through linear structure models and corresponding graphical models. Unlike the usual 

methods such as regular regression or matching that aim to block the non-causal path(s) between 

the treatment and the outcome, the fixed effects approach (including the gain score model, the 

deviation score model, and the dummy variable regression model) creates another non-causal 

path(s) and tries to offset the original non-causal path(s). This unique bias-removing mechanism 

requires its own identification assumption (i.e., the common trend or fixed effects assumption) 

that is different from the assumption for the regular regression or matching (i.e., 

unconfoundedness). Importantly, we show that, contrary to the widespread belief, the inability to 

control for time-invariant covariates is definitely not a limitation of the fixed effects approach. It 

may be a limitation of the standard dummy variable regression model, but we also provide 

simple remedies so that the covariates can be controlled by using the residualized treatment or 

matching.  

 Revealing the underlying causal structures helps in resolving the prevalent 

misunderstanding and confusion about the fixed effects and other related approaches. At first 

glance, the gain score model and the fixed effects approach seem to be two separate methods. 

But, once they are represented by graphs, the strong resemblance and relationship become 
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apparent. The gain score model, which is popular but nonetheless has long been criticized within 

the psychological literature (e.g., Campbell & Erlebacher, 1970; Cronbach & Ferby, 1970), can 

be understood as one of the several analytic models that identifies causal effects from the data 

generated by fixed effects models. Note that the gain score model is indeed a difference-in-

differences (DiD) model. It is interesting that the problem of time-invariant covariates has been a 

long-standing puzzle in the literature about fixed effects approach (Beck, 2011; Bell & Jones, 

2015; Breusch, Ward, Nguyen, & Kompas, 2011a, 2011b; Greene, 2011; Plümper & Troeger, 

2007, 2011) while the same problem has not occurred in the literature about DiD. Rather, using 

matching to control for pre-intervention covariates before running a DiD model is a common 

approach (e.g., Stuart et al., 2014; Wichman & Ferraro, 2017). If the DiD part (i.e., the gain 

score model) is replaced with the dummy variable regression model, the resulting approach 

becomes our proposed dummy variable regression using the matched data that allows for 

controlling for time-invariant covariates in the dummy variable regression framework.  

Probably, the most important implication of this paper for researchers and analysts 

studying causal inferences is the importance of having strong substantive knowledge about the 

data-generating process. This structure was represented by solid arrows in our graphs. Given this 

knowledge, researchers can carefully consider possible analytic models—model structures which 

were represented by dashed arrows in our graphs. An analytic model will eliminate bias within a 

given data set, but with other sets of data, it may completely fail to eliminate bias and even 

become severely misleading. There is no generally superior analytic method or model regardless 

of how the data were generated. For example, the popular random effects approach cannot 
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eliminate all confounding bias if the treatment is associated with the fixed effects.8 This claim is 

not new (see Allison, 1994, 2009; Wooldridge, 2010, 2012), but our graphs make this point 

explicit. From our graphs (e.g., Figures 2.2B and 2.5A), one can easily see why random effects 

estimators are biased (imperfect offsetting) while fixed effects estimators are unbiased (perfect 

offsetting). Although we do not discuss this in the current paper, it is possible that the gain score 

model eliminates all the bias but the deviation score model leaves bias (and vice versa). Strong 

knowledge about the data-generating process will guide researchers to choose the best analytic 

method or model. Graphical models will significantly facilitate this decision-making process.  

 

                                                 
8 All the random effect estimators in Table 2.1 are much greater than the true causal effect, 

which was set to .3 in the simulation.  
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STUDY 3 

CAUSAL IDENTIFICATION USING DIFFERENCE-IN-DIFFERENCES  

IN MEDIATION ANALYSIS 

 

Abstract 

Causal identification of direct and indirect effects requires a stringent, no unmeasured mediator-

outcome confounding assumption even when the treatment is randomized. We develop a 

difference-in-differences in mediation analysis (DiDiM) approach by extending the standard 

difference-in-differences to the mediation context. This extension allows causal identification of 

direct and indirect effects in the presence of mediator-outcome confounding. The unique bias-

removing mechanism of the proposed approach is highlighted by showing that this approach may 

even identify direct effects when it is impossible to identify either total or indirect effects 

because the treatment is not randomized. Although this approach requires its own strong 

identification assumption, we also propose a method to adjust the DiDiM estimators for the bias 

due to the violation of the key assumption. We apply these methods to real data sets and show 

that the DiDiM and the adjusted DiDiM methods substantially mitigate the mediator-outcome 

confounding bias and outperform the standard mediation methods.  
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INTRODUCTION 

As in many scientific fields, identifying causal mechanisms is crucial for educational research. 

This is so not only because of theory development but also because of practical interest; for 

example, for policy evaluation. Without understanding the process of an educational 

intervention, it is difficult to properly evaluate a given policy (Caro, 2015; Kaplan, 2009). For 

instance, although an education accountability act, such as the No Child Left Behind (NCLB) or 

the Race to the Top, may increase student achievement in some subjects (Dee & Jacob, 2011; 

Wong, Cook, & Steiner, 2009), it is unclear what mechanisms lead to such results. These results 

may be due to teachers’ and school administers’ positive efforts, as (implicitly) intended by 

policymakers, or due to educators’ undesirable reactions under pressure such as teaching to the 

test, excluding low-achieving students from testing, and even test-score manipulation (Nichols & 

Berliner, 2005). Obviously, if much of the policy’s effect is made by such undesirable processes 

or mechanisms, the policy should be re-evaluated despite the overall positive effect.  

Causal mediation analysis aims to uncover such underlying causal mechanisms between 

treatment (e.g., NCLB) and outcome (e.g., achievement score). The standard approach to causal 

mediation defines causal mechanisms as direct and indirect effects (Imai, Keele, & Yamamoto, 

2010b). Identifying causal mechanisms, then, involves discerning how to decompose the total 

effect of the treatment into the direct effect and the indirect effect, depending on whether the 

effect is mediated by an intermediate variable between treatment and outcome, called a mediator 

(e.g., test-score manipulation). Since Baron and Kenny’s (1986) influential work (also Judd & 

Kenny, 1981), many statistical approaches for decomposing total effects into direct and indirect 

effects have been developed, elaborated, and extended (e.g., Glynn, 2012; Hayes, 2009; 
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MacKinnon, 2008; MacKinnon, Lockwood, Hoffman, West, & Sheets, 2002; Preacher & Hayes, 

2008; Preacher, Rucker, & Hayes, 2007).  

Importantly, with the recent development of causal frameworks such as potential 

outcomes and graphical causal models, causal interpretation and identification of mediation 

effects have been substantially improved (e.g., Imai, Keele, & Tingley, 2010a; Imai et al., 2010b; 

Pearl, 2014; VanderWeele, 2015). Currently, conditions under which causal direct and indirect 

effects can be identified from observed data are well documented in the literature (Imai et al., 

2010a, 2010b; Pearl, 2014; Ten Have & Joffe, 2010; VanderWeele, 2010, 2015). In order to 

identify such effects, there is no unmeasured confounding of: i) the treatment-outcome, ii) the 

treatment-mediator, and iii) the mediator-outcome relationships.1 Among these, the third 

assumption in particular has remained “the fundamental difficulty in the causal mediation 

analysis” (Imai et al., 2010a, p. 310). This is because this assumption (i.e., no unmeasured 

mediator-outcome confounding) is still in doubt even in randomized controlled trials (RCTs), 

which are often considered the gold standard of causal inference (the other two confounding 

assumptions would hold in RCTs).  

In this paper, we develop a new approach to causal mediation analysis that allows for 

identification of mediation effects in the presence of unmeasured mediator-outcome 

confounding. We do this by extending the standard difference-in-differences method to the 

mediation context. We clarify the conditions under which the proposed difference-in-differences 

in mediation analysis (DiDiM) approach identifies causal mediation effects. Interestingly, even 

                                                 
1 Another assumption is that there is no unmeasured or even measured variable that is affected 

by the treatment and that confounds the mediator and the outcome (VanderWeele, 2010, 2015). 

In this paper, we consider that this assumption is met and focus on the unmeasured mediator-

outcome confounding assumption.  
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when the treatment is not randomized, it is possible that the DiDiM identifies causal direct 

effects but not total nor indirect effects. After formalizing the key identifying assumption, we 

also develop a method to adjust DiDiM estimators for the violation of this assumption. These 

methods will be applied to real data sets, and we show evidence that the DiDiM and the adjusted 

DiDiM methods substantially mitigate the unmeasured mediator-outcome confounding bias. 

Before proceeding to our solution, we will first describe in more detail the problem of 

unmeasured mediator-outcome confounding.  

 

THE PROBLEM OF MEDIATOR-OUTCOME CONFOUNDING 

Understanding Unmeasured Mediator-Outcome Confounding 

Unmeasured mediator-outcome confounding is one of the major challenges in causal 

mediation analysis (Imai et al., 2010a; Small, 2012; VanderWeele, 2010). This is illustrated in 

Figure 3.1A. The graph describes a causal system where the treatment A causally affects the 

outcome Y, and part of the effect is mediated by the mediator M. We consider that the treatment 

is binary and randomized, and for ease of exposition, the mediator and outcome variables are 

continuous.2 The randomization of A is encoded in the graph as the absence of incoming arrows 

into A; that is, there are no confounding variables that affect the treatment A. Graphically, 

intervening on a variable (e.g., randomizing) cuts off all incoming arrows into the intervened 

variable (Pearl, 1993, 2009). However, randomizing the treatment alone does not eliminate any 

potential confounding between the mediator and the outcome. In Figure 3.1A, the variable U, 

                                                 
2 Viewing the mediator and outcome as continuous will significantly simplify the algebra. But, 

the basic principles we present in the paper can be extended to cases of discrete mediators and 

outcomes.  
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which is unmeasured (denoted by vacant nodes throughout this paper), affects the mediator M 

and the outcome Y and thus creates a non-causal association between them.  

Identifying the total effect of A on Y is not affected by this unmeasured mediator-outcome 

confounding. In the graph, this is easily verified by the backdoor criterion (Pearl, 2009). There 

are no open backdoor paths, containing an arrow into A, between A and Y. More precisely, we 

find three paths between A and Y in Figure 3.1A:  

(i) A → Y; 

(ii) A → M → Y; 

(iii) A → M ← U → Y. 

Path (i) is the direct causal path, and path (ii) is the indirect causal path via M. We are interested 

in both of these causal paths. Path (iii) is a non-causal path, which is related to the mediator-

outcome confounding, but, it remains blocked at the collider M (unless conditioning on M; see 

Elwert & Winship, 2014; Pearl, Glymour, & Jewell, 2016). Therefore, this third non-causal path 

does not hinder us from identifying the total effect of A on Y, which is transmitted via two causal 

direct and indirect paths. For more explanations of (un)blocking paths and the formal principle 

called d-separation, see Pearl (2009) or Pearl et al. (2016).  

 However, the mediator-outcome confounding does hinder causal identification of 

mediation effects. To decompose the total effect into the direct and indirect effects, one needs to 

condition on the mediator M so as to isolate the direct path (i) from the indirect path (ii). 

Conditioning on M blocks indirect causal path (ii), and this is what researchers intend to do so in 

mediation analysis. However, this also generates an unfortunate consequence. The third non-

causal path is then open because the collider M is conditioned on. This means path (iii) starts 

FIGURE 3.1. Basic causal mediation structures in randomized experimental studies. (A) 

Unmeasured mediator-outcome confounding variable U is present. (B) Pretest measure P is 

added to graph (A).  

 

(A)                                                                     (B)                                                 
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transmitting a spurious association between A and Y. As a result, what researchers observe after 

they have conditioned on M is not only due to the direct causal path (i) but also due to the non-

causal path (iii). This means the direct effect of A on Y, transmitted only via the direct path (i), is 

not generally identified from data by simply conditioning on the mediator.  

 This graphical intuition about mediator-outcome confounding is verified algebraically. 

For ease of exposition and without loss of generality, in this paper we assume that all 

unmeasured variables (vacant nodes), including omitted random disturbances, have unit-

variances, thus, in Figure 3.1A, ( ) 1Var U = . Each Greek letter lying on the arrows represents the 

constant path coefficients that do not change across units, implying that we consider linear 

systems. In the graph, the effect of the treatment A on the outcome Y is direct (A → Y:  ) and 

indirect via the mediator M (A → M → Y:   ), and the total effect is simply the sum of the 

direct and indirect effects,  + . To identify the total effect, one regresses Y on A (or compares 

the group means in the outcome using a t-test). The population regression coefficient for A is 

then 

 
( , )

( )
YA

Cov Y A
b

Var A
 = = + , (3.1) 

by applying Wright’s (1921) path-tracing rules (see Pearl, 2013, for details) or simple algebra.3 

So, the regression coefficient exactly corresponds to the true total effect. However, if one 

controls for M such as by regressing Y on A and M, the population partial regression coefficient 

for A is given by  

 
2|

)()( 




AVarMVar
b YM

MYA
−

−= , (3.2) 

                                                 
3 See Appendix D for derivations of all regression estimator formulae hereafter. 
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which differs from the true direct effect  . The second term of Equation (3.2) represents the 

spurious association transmitted via the third non-causal path, A → M ← U → Y, which is 

opened due to conditioning on M. This correspondence can be seen from the fact that the 

numerator of the bias term consists of the product of  , M , and Y ; each of which is the path 

coefficient along path (iii).4 The denominator 
2( ) ( )Var M Var A − , or a scaling factor, which 

occurs due to partialling out the variations among regressors, is not directly depicted in graphs. 

Equation (3.2) verifies that what we observe after conditioning on M is a mixture of the 

associations via path (i) and path (iii). If U is not a confounding variable such that 0M Y  = , 

then Equation (3.2) reduces to |YA Mb = , implying that one identifies the direct effect simply by 

conditioning on M. However, if there is any unmeasured confounding variable between M and Y, 

the regression coefficient, aimed at identifying the direct effect of A on Y, is always biased.  

 

Dealing with the Mediator-Outcome Confounding 

Standard mediation approaches collect covariates in order to capture the unmeasured 

mediator-outcome confounding and try to deconfound the mediator-outcome relationship by 

conditioning on the covariates (see sequential ignorability in Imai et al., 2010b). “[I]f we are 

interested in mediation analysis, then we must control for mediator-outcome confounders” 

(VanderWeele, 2016, p. 21, emphasis added). This covariate adjustment, however, is 

problematic, as in causal identification of total effects, because we cannot guarantee that 

                                                 
4 It is interesting to note the role of   in the formula. In Equation (3.2), as the absolute value of 

  increases, the bias term is strongly amplified. This is similar to what Pearl (2010) referred to 

as bias amplification (also see Steiner & Kim, 2016). Equation (3.2) shows that the bias 

amplification also occurs in the mediation context.  
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measured covariates will cover all the unmeasured confounding variables. In practice, there is 

almost always remaining unmeasured confounding between the mediator and the outcome. 

Moreover, it is possible that controlling for covariates even increases the bias in total effect 

estimates (Myers et al., 2011; Pearl, 2010, 2011; Steiner & Kim, 2016), and this may also occur 

in mediation analysis.  

Let us focus on a single covariate, which also will be used later in a different way for our 

new approach. Probably, the best single covariate for covariate adjustment is the pretest measure 

of the outcome, simply referred to as pretest (Cook & Steiner, 2010; Shadish, Cook, & 

Campbell, 2002). In general, such a pretest is considered as a proxy of the unmeasured 

confounding variable, and we depict the pretest P as a variable that is affected by U in Figure 

3.1B. However, in general, this pretest cannot eliminate all the mediator-outcome confounding 

bias due to U. Graphically, this is straightforward because the pretest P does not sit on the 

confounding or backdoor path between M and Y. Conditioning on P cannot fully block the path 

and establish the necessary conditional independence for deconfounding the relationship between 

M and Y.  

This also can be verified using algebra. Regressing Y on A, M, and, additionally, P (a 

method that also controls for the proxy of unmeasured confounding), the population partial 

regression coefficient for A is given by  

 | 2 2

(1 )

( ) ( )

M Y
YA MP

M

b
Var M Var A

  


  

−
= −

− −
, (3.3) 

where 

2

21

P

P





=

+
. This   can be interpreted as the pretest’s reliability in terms of the 

unmeasured confounding variable U shared with Y. Note that the omitted random disturbance of 
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P has unit-variance, so the total variance of P is 
2( ) 1 PVar P = + . If the reliability is exactly one, 

implying that P is a “perfect” proxy of U, then the bias term in Equation (3.3) goes away, and the 

regression coefficient becomes the unbiased estimate of the direct effect  . However, in general, 

with any realistic ranges of the reliability, the regression coefficient is always, to some extent, 

biased. The consequence of controlling for many covariates can be also understood with the 

concept of reliability. If a set of covariates helps to increase the overall reliability (in terms of U), 

it may reduce some of the mediator-outcome confounding bias. Nonetheless, it likely contains 

some amount of bias because the reliability will never be perfect in real-world situations even if 

hundreds of covariates are collected. Also, note that in Equation (3.3), the reliability   plays a 

role in amplifying the bias term by reducing the magnitude of the denominator (i.e., the 

subtractive term 
2

M − ). This suggests that the increase of the reliability, which can occur 

through the inclusion of as many covariates as possible, may not always help to decrease the 

overall unmeasured mediator-outcome confounding bias.  

 Although this covariate adjustment is the most popular method in practice, and will be 

later compared with our DiDiM approach, it is worth discussing two other recently proposed 

approaches to circumvent the problem of unmeasured mediator-outcome confounding.5 This will 

highlight the difference between the DiDiM and other approaches and will clarify the conditions 

under which each method would be applicable in practice.  

                                                 
5 Another approach we do not discuss here is sensitivity analysis, probing the range of possible 

mediation effects along with the degree of the violation of the unmeasured mediator-outcome 

confounding (e.g., Ding & VanderWeele, 2016; Imai et al, 2010a, 2010b; VanderWeele, 2010). 

Strictly speaking, this useful method does not help us directly identify causal mediation effects in 

the presence of unmeasured mediator-outcome confounding.  
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First, Dunn and Bentall (2007), Ten Have et al., (2007), and Small (2012) have proposed 

and elaborated an instrumental variables approach. The original purpose of using instrumental 

variables was to avoid unmeasured treatment-outcome confounding in cross-sectional or non-

mediation studies, and the similar rationale would also hold for unmeasured mediator-outcome 

confounding in mediation studies. They consider a baseline covariate that interacts with the 

randomized treatment on the mediator. This interaction is then used as a conditional instrumental 

variable, conditional on the treatment and the covariate, with respect to the mediator-outcome 

relationship. Using two-stage least squares, one first regresses the mediator M on the treatment 

A, the baseline covariate X, and the interaction between them (i.e., cross-product term AX). In the 

second stage, one regresses the outcome Y on the treatment A, the covariate X, and the predicted 

mediator M̂  from the first stage regression. Dunn and Bentall (2007) and Ten Have et al. (2007) 

showed that this strategy identifies unbiased mediation effects even in the presence of 

unmeasured mediator-outcome confounding. They assumed that the effect of the mediator on the 

outcome and the direct treatment effect on the outcome are constant across units, but Small 

(2012) slightly relaxed the restriction by making a weaker conditional independence assumption.  

The problem with this instrumental variables approach is the same as the problem with 

the standard instrumental variables approach; it is challenging to find a proper instrumental 

variable, that is, an interacted covariate, that satisfies the required assumptions. First, the 

presence of the interaction between the treatment A and the baseline covariate X on the mediator 

M is the first-stage assumption, which requires that instrumental variables be strongly associated 

with the treatment (in our context, the mediator M). If the association, that is, the impact of the 

interaction, is weak, the resulting so-called weak-instruments can lead to large variance 

estimates. Second, the instrumental variables approach also requires the absence of the pairwise 
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interactions between the treatment, the mediator, and the baseline covariate on the outcome. This 

is related to the exclusion restriction assumption. If this strong absence of interactions is not met, 

the interaction term AX can be associated with the outcome Y not via the mediator M (conditional 

on A and X), therefore, the resulting mediation estimators are biased.  

Second, He, Wu, Zhang, and Geng (2016) have recently proposed an approach relying on 

the different nonlinearity degree of the mediator and outcome equations. Their approach requires 

that the degree of equation nonlinearity for the treatment-mediator be higher than that for the 

treatment-outcome. For example, the functional form of the mediator M follows a quadratic 

model with respect to A, such as 2

1 2 MM A A U e = + + + , while the functional form of the 

outcome Y follows a linear model with respect to A and M, such as 
1 2 YY M A U e = + + + , 

where U is the unmeasured mediator-outcome confounding variable and 
Me  and 

Ye  are the 

random disturbances of each.  

As the conditional expectation of Y on A is expressed with 
1 2[ | ] [ | ]E Y a E M a a = + , by 

comparing the conditional expectations at different treatment levels, one derives the following 

equation:  

 

1 2 1 2 1 2

1

2

1 1 1

[ | ] [ | ] [ | ] [ | ]

[ | ] [ | ] [ | ] [ | ]k k k k k k

E M a E M a a a E Y a E Y a

E M a E M a a a E Y a E Y a




− − −

− − −   
    

=    
    − − −   

, (3.4) 

where 
1, , ka a  are k distinct values of the treatment A. If the ( 1) 2k −   matrix in the left-hand 

side has full column rank and thus is invertible, the parameters 
1  and 

2  are identifiable 

because two conditional expectation vectors are observed. He et al. (2016) extend this approach 

to more general cases of nonlinear outcome models and also propose an idea that may relax the 

nonlinearity assumption using instrumental variables.  
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 The use of this approach, however, may be limited in practice because in many causal 

studies, researchers have two values in the treatment variable, indicating treatment and control 

group memberships. In this case, the ( 1) 2k −   matrix in Equation (3.4) is not invertible so that 

we cannot identify the parameters 
1  and 

2  (He et al., 2016). At least three distinct values are 

required for the identification. Depending on what the given research questions are, this may 

hold, but this type of requirement is definitely not a good fit for many causal inference questions 

in the literature.  

 In sum, even in RCTs, unmeasured mediator-outcome confounding prevents us from 

identifying causal mediation effects. By using other variables such as pretest measures of the 

outcome or instrumental variables for the mediator, one may try to circumvent the problem. 

However, the unreliability of the pretest is unavoidable and good instrumental variables are rare 

in practice. Also, researchers often compare two treatment groups, so some mathematical 

techniques for solving equations might not be applicable. In the next section, we present an 

alternative to these mediation approaches by using difference-in-differences.  
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CAUSAL MEDIATION ANALYSIS USING DIFFERENCE-IN-DIFFERENCES 

“Difference-in-Differences in Mediation Analysis” in Experimental Studies 

 Graphically speaking, the difficulty of unmeasured mediator-outcome confounding is that 

by conditioning on the mediator M, we open the non-causal path A → M ← U → Y in the graphs 

in Figure 3.1, which then become mixed and confused with the direct causal path A → Y. If 

opening the non-causal path is inevitable, one solution can be trying to offset the opened non-

causal path by creating another equivalent non-causal path. Study 1 and Study 2 of this 

dissertation have shown that the underlying bias-removing mechanism of the standard 

difference-in-differences (i.e., gain score methods) and the fixed effects approach is bias-

offsetting by creating another non-causal path(s). In Figure 3.2, we add a variable D called the 

difference score (or the gain or change score), which is calculated by D Y P= − . The dashed 

arrows represent relationships that were created by researchers, as opposed to by nature, through 

the implementation of a specific analytic model. Solid arrows represent causal relationships 

created by nature, implying they cannot be altered by researchers.  

 Given the graph, again assuming linear systems, the direct effect of A on Y,  , is 

identifiable despite U, if Y P =  holds. This equality states that the unmeasured mediator-

outcome confounder U directly affects the primary outcome Y and its pretest P to the same 

extent. We shall refer to this equality as the equivalent mediator-outcome confounding 

assumption. Under this assumption, one can correctly identify the direct causal effect. Note that 

conditioning on M will still create the collider bias, that is, the path A → M ← U → Y or the bias 

term in Equation (3.2). But, the pretest plays a role in neutralizing this collider bias or path. In 

the graph, conditioning on M leaves the following paths open between A and D (not Y):  
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(i) A → Y → D; 

(ii) A → M ← U → Y → D; 

(iii) A → M ← U → P → D. 

Path (i) corresponds to the direct effect   because the last causal link of the relationship Y → D 

of the path is indeed an identity transformation. The product of structural path coefficients of the 

path is  =+ )1( . Path (ii) corresponds to the original unmeasured mediator-outcome 

confounding, which was A → M ← U → Y (without D) in Figure 3.1A. Again, these two paths 

are equivalent because the link Y → D is an identity transformation. However, note that by using 

the difference score D, we open another non-causal path—path (iii). But, path (ii) and path (iii) 

offset each other if Y P = . This is because the products of path coefficients of each of the two 

paths are identical in terms of magnitude but have different signs because of the link P → D, 

where the path coefficient is 1− . That is, the mediator-outcome confounding bias occurs due to 

FIGURE 3.2. Causal structure merging data-generating model (solid arrows) and analytic 

model (dashed arrows) using difference-in-differences in mediation analysis (DiDiM). 
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conditioning on the mediator, but we create an equivalent confounding bias by using the pretest, 

and finally difference out all the biases.  

 This is algebraically verified. Let’s regress the difference score D on the treatment A and 

the mediator M. The population partial regression coefficient of A is given by 

 | 2

( )

( ) ( )

M Y P
DA Mb

Var M Var A

  




−
= −

−
. (3.5) 

Again, it consists of the true direct effect and a bias term, but the bias term disappears if the 

equivalent mediator-outcome confounding assumption holds ( Y P = ). Note that the numerator 

of the second term of Equation (3.5) can be re-written as M Y M P   − . The former YM  

corresponds to the product of path coefficients of path (ii), and the latter M P −  corresponds to 

that of path (iii) and they cancel each other out—again, the denominator or scaling factor is not 

represented by graphs.  

 We emphasize the different role of pretest measures in the DiDiM approach. Standard 

mediation analysis views the pretest as a proxy of the unmeasured mediator-outcome 

confounding variable and tries to reduce the confounding bias relying on the resemblance 

between the pretest and the confounding variable, expressed with the reliability in Equation 

(3.3). In contrast, the DiDiM views the pretest as a counterfactual outcome if the direct and 

indirect causal impacts of the treatment would have not been given. The DiDiM uses this pretest 

to quantify the extent of the confounding bias. In fact, these conflicting views on the role of 

pretests are what Lord (1967) raised earlier and what are now known as Lord’s paradox (i.e., 

gain score method vs. ANCOVA). We extend Lord’s setup to the mediation context for resolving 

the unmeasured mediator-outcome confounding problem. The basic features of the gain score 

method (or the difference-in-differences or fixed effects models) can also be applied to the 
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DiDiM. For example, DiDiM estimators hold the same three advantages as gain score estimators 

insofar as both estimators are robust against i) the unreliability of the pretest, ii) bias 

amplification, and iii) collider bias due to correlated error terms of P and Y (see Study 1 of this 

dissertation). All three threats will distort the standard mediation estimators which simply control 

for the mediator and the pretest. Below, we identify another advantage of DiDiM estimators 

which has never been discussed in the literature.  

 

“Difference-in-Differences in Mediation Analysis” in Non-Experimental Studies 

 In order to focus on unmeasured mediator-outcome confounding, so far, we have 

assumed that the treatment assignment was randomized and thus both no treatment-mediator and 

no treatment-outcome confounding assumptions hold. Randomizing the treatment or, 

equivalently, establishing the conditional independence assumption with respect to the treatment 

conditional on some pre-treatment covariates (i.e., the first ignorability of the sequential 

ignorability assumption; see Imai et al, 2010b) is a basic requirement for causal identification of 

mediation effects. If the treatment itself is confounded (with the mediator or outcome), causal 

mediation effects are not generally identified regardless of the unmeasured mediator-outcome 

confounding.   

  However, this rationale only holds with the standard mediation approach. Interestingly, 

the DiDiM approach allows us to identify direct effects even though the treatment is not 

randomized and thus we cannot identify total effects and indirect effects. In Figure 3.3, we allow 

the arrow U → A, implying that the unmeasured variable U confounds not only the mediator-

outcome relationship (M ← U → Y) but also the treatment-mediator (A ← U → M) and the 
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treatment-outcome (A ← U → Y) relationships.6 According to the conventional criterion, we 

cannot identify the total effect but also cannot decompose the effect into the direct and indirect 

effects because all three confounding assumptions—assumptions about treatment-outcome, 

treatment-mediator, and mediator-outcome relationships—are violated. However, the DiDiM 

allows for the identification of the direct effect   even in this case. In Figure 3.3, conditional on 

M, all the open paths between A and D are  

                                                 
6 Strictly speaking, allowing the arrow U → A changes the structure in Figure 3.3 to a nonlinear 

system when A is binary. Then, the parameter A , and any analytic formulae including it such as 

Equation (3.6), may be misleading. Although it is possible to derive a closed-form solution for 

the direct effect estimate from the structure in Figure 3.3 when A is binary, the resulting formula 

will be complicated without adding any substantive changes. In fact, whether the relationship 

between U and A is linear or nonlinear does not affect the mechanism of the DiDiM method. Any 

association via the relationship will be offset anyway. For ease of exposition, here we shall treat 

the parameter A  as any other parameters in this linear system. Readers interested in this issue as 

well as the possible accurate formulae for binary treatment may refer to Ding and Miratrix 

(2015) or Steiner and Kim (2016).  

FIGURE 3.3. Causal structure merging data-generating model (solid arrows) and analytic 

model (dashed arrows) using difference-in-differences in mediation analysis (DiDiM) when 

the treatment A is not randomized (U → A is added to Figure 3.2). 
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(i) A → Y → D; 

(ii) A → M ← U → Y → D; 

(iii) A → M ← U → P → D; 

(iv) A ← U → Y → D; 

(v) A ← U → P → D.  

Note that path (i) corresponds to the causal direct effect while the other four paths are non-causal 

and represent confounding. If the equivalent mediator-outcome confounding assumption, 

Y P = , holds, then not only path (ii) and path (iii) but also path (iv) and path (v) offset each 

other; therefore, the direct effect of A on D (A → Y → D), which equals the direct effect of A on 

Y (A → Y), can be identified using DiDiM. In fact, the offsetting of path (iv) and path (v) is what 

happens in the standard difference-in-differences method or gain score method, in which no 

mediators appear (Study 1 and Study 2 of this dissertation).  

 This can be algebraically shown. Given the graph in Figure 3.3, the population partial 

regression coefficient for A of the regression model of D on A and M is given by  
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− +

 (3.6) 

The second subtractive term in Equation (3.6), analogous to the bias term in Equation (3.5), 

corresponds to the offset of path (ii) and path (iii) because the product of path coefficients of 

path (ii) is M Y   and that of path (iii) is M P − . The third additive term corresponds to the 

offset of path (iv) and path (v) because the product of path coefficients of path (iv) is A Y   and 
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that of path (v) is A P − . Under Y P = , both bias terms become zero and the partial regression 

coefficient becomes the causal direct effect  .  

 Nonetheless, neither the standard mediation approach nor the DiDiM approach identify 

total effects or indirect effects. The reason why the DiDiM fails to identify total effects in 

particular is due to the non-causal path, A ← U → M → Y → D, which cannot be offset under 

Y P = . This is an intriguing case where one may identify causal direct effects even though he 

or she cannot identify total effects and indirect effects. This case, which has never been 

discussed in the mediation literature, happens because of the unique bias-removing mechanism 

of the DiDiM approach, and thus this case highlights the fundamental difference between the 

standard mediation approach and the DiDiM approach.  

 Our intention here is not to say that the DiDiM is always able to eliminate all types of 

confounding biases and thus does not require any confounding assumptions (at least, to identify 

direct effects). In fact, it is easy to present a case where the DiDiM cannot eliminate treatment-

mediator or treatment-outcome confounding and thus fails to identify causal direct effects when 

the treatment is not randomized. For example, if there is an unmeasured confounder between the 

treatment and outcome that is independent of the unmeasured mediator-outcome confounding 

variable (e.g., U in Figure 3.3), then the treatment-outcome confounding bias cannot be 

eliminated. Nonetheless, in observational studies, the DiDiM approach may help to eliminate 

some of the treatment-outcome confounding bias if the source of the confounding is correlated 

with the unmeasured mediator-outcome confounding variables. In this study’s illustration, we 

will show empirical evidence that the DiDiM outperforms the standard mediation analyses 

especially when the treatment is not randomized.  
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ADJUSTING “DIFFERENCE-IN-DIFFERENCES IN MEDIATION ANALYSIS” ESTIMATORS 

The key assumption for causal identification using DiDiM is the equivalent mediator-outcome 

confounding, expressed with Y P = . If this is violated, the resulting DiDiM estimators will be 

biased. However, in practice, justifying this assumption is challenging. Basically, it requires that 

the pretest and the outcome should be measured on the same scale (Sofer, Richardson, Colicino, 

Schwartz, & Tchetgen Tchetgen, 2016). Advanced measurement techniques using item response 

theory for test equating, scaling, or calibrating may help to improve this scale-invariance. 

However, even though a test-administer may develop a perfectly equivalent test, subjects 

themselves might change over time and thus the equivalent mediator-outcome confounding 

assumption can be violated. Although we use the DiDiM to relax the no unmeasured 

confounding assumption, it also requires its own assumption, which, in practice, may not be 

easily met either.  

 We present a strategy to adjust DiDiM estimators for the extent of the violation of the 

equivalent mediator-outcome confounding assumption in linear systems. Miao and Tchetgen 

Tchetgen (2018) and Shi, Miao, and Tchetgen Tchetgen (2018) proposed a method, referred to as 

double negative controls, that combines negative outcome controls and negative treatment 

controls to correct an unmeasured treatment-outcome confounding bias in non-mediation studies. 

We use a similar method to correct unmeasured mediator-outcome confounding in the mediation 

context. This method requires an additional variable, which we shall refer to as the compass 

variable.7 In Figure 3.4A, the variable C is affected by the unmeasured mediator-outcome 

                                                 
7 Our compass variables correspond to the negative treatment controls used by Miao and 

Tchetgen Tchetgen (2018) and Shi et al. (2018). While their terminology comes from the 

convention in epidemiology (i.e., negative controls), the term “compass variable” emphasizes its 

specific role for adjusting DiDiM estimators. As in geometric composition, the compass variable 
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confounding variable U. We use this compass variable C in order to quantify the extent of the 

discrepancy between the two parameters Y  and P . One may wonder what the difference 

between the compass variable C and the pretest P is. In Figure 3.4A, both are affected by U but 

one of them is used as a compass while the other is used as a pretest to compute the difference 

score. The difference is illustrated in Figure 3.4B where the compass C is affected by both A and 

M. In this case, C can still serve as a compass variable but cannot be used as a pretest. Thus, 

compass variables require a weaker assumption than pretests. Like pretests, they are associated 

with the pretest and outcome only through the unmeasured mediator-outcome confounding 

variable, but unlike pretests, they may be associated with the treatment and the mediator (see 

Study 1 of this dissertation, for insight into why pretests should not be associated with the 

treatment in non-mediation studies; also Imai & Kim, 2017). Formally, the compass variable 

should be independent of the pretest and the outcome conditional on the unmeasured 

confounding variable, the treatment, and the mediator, ( , ) | , ,C P Y U A M .8 This conditional 

independence holds in Figure 3.4A and also in Figure 3.4B where C is affected by A and M.  

Having a valid compass variable, one specifies two regression models. First, the outcome 

Y is regressed on C, A, and M. The regression coefficient of the compass variable C then 

represents the association transmitted only via the path C ← U → Y (all other paths are blocked 

by conditioning on A and M in the regression model). The source of this association is the 

product of the two path coefficients along with the path, C Y  . Due to conditioning on A and M, 

                                                 

is used, metaphorically, to measure “relative distance” between the compass-pretest association 

and the compass-outcome association although the compass itself has no absolute scale.   
8 Therefore, in principle, the compass variable may causally affect the unmeasured confounding 

variable U, C → U.  
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resulting in partialling out some variation in C, the exact regression coefficient for C will be 

expressed as |YC AM C Yb H = , where H is some multiplicative factor. Second, similarly, the 

pretest P is regressed on C, A, and M. The regression coefficient for C then represents the 

association transmitted via the path C ← U → P, and it is expressed as |PC AM C Pb H = . Note 

that the multiplicative factor H is identical because regressors are the same in both regression 

FIGURE 3.4. Causal structures with the compass variable C. (A) C is added to the graph in 

Figure 1b. (B) Two arrows A → C and M → C are added to (A). (C) Corrected difference 

score cD is added to (A) by .   

(A)                                                                     (B)                                                 

(C)  
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models. Then, the ratio   of the two regression coefficients can quantify the discrepancy 

between Y  and P : 
|

|

YC AM C Y Y

PC AM C P P

b H

b H

  


  
= = = . Any deviation from one indicates the violation 

of the equivalent mediator-outcome confounding assumption.  

The coefficient ratio   is used to compute the corrected difference score cD Y P= − , 

instead of the original difference score D Y P= − . This analytic model is represented in Figure 

3.4C using dashed arrows. The open paths between A and cD conditional on M are  

(i) A → Y → cD; 

(ii) A → M ← U → Y → cD; 

(iii) A → M ← U → P → cD. 

Note that the association transmitted via path (iii) is no longer the same as that in Figure 3.2 

because the final link P → cD is not ( 1) −  but rather ( ) − . The exact association via path (iii) 

can be expressed as ( )M PH   − , where H   denotes some multiplicative factor. As the 

association via path (ii) will be a form of ( 1)M Y H   + , the sum of the two associations via 

path (ii) and path (iii) becomes zero: 

( ) ( 1) 0M P M Y M Y M YH H H H            − +  + = − + = , despite Y P  . Thus, path (ii) 

and path (iii) offset each other, and the overall association between A and cD is only via path (i), 

which represents the causal direct effect of A on Y because ( 1)  + = .  

 In practice as instrumental variables, finding proper compass variables that satisfy the 

conditional independence ( , ) | , ,C P Y U A M  might be challenging. Also, the adjustment using 

the coefficient ratio   may be highly sensitive to a slight difference between two parameters Y  
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and P . More research is needed to further develop the adjustment of DiDiM using compass 

variables. In the illustration section that follows, we will provide positive empirical evidence to 

support such correction.  

 

ILLUSTRATION 

Benchmarks for Mediation Effects from Real Data 

We illustrate the DiDiM approach using real data sets. Although it has a much stronger 

implication for practice, using real data, instead of simulated data, has one severe disadvantage: 

A valid benchmark is typically unknown to researchers. In our context, this means that we do not 

know the true (in)direct effects in real data sets that will be compared with the estimated effects 

by the proposed approach to evaluate its performance. To circumvent this challenge, we have 

developed a strategy that is useful for our illustration as well as potentially useful for other 

mediation studies. We shall refer to this as a parallel-outcome design. Consider a study where a 

treatment is randomized, and it affects two outcomes that cannot causally affect each other. For 

example, when a student takes his or her final exams in multiple subjects, the final score of one 

subject, for example, the math score, cannot causally affect the final score for the other subject, 

for example, the reading score (and vice versa). This is because the two scores are measured 

almost at the same time (same day or same week), and the scores, which are frozen into the 

answer sheets once submitted, are not typically known to students until all the exams are 

completed. Although in practice this may occasionally be violated, we believe such no causal 

relationships between two parallel outcome measures likely hold in many regular evaluation 

settings—especially, in the data sets we discuss below.  
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 In Figure 3.5, we describe the causal structure of a parallel-outcome design where two 

outcomes Y1 and Y2 do not causally affect each other but they are affected by the treatment A 

and the unmeasured common cause U. In the graph, we view one outcome, for example, Y1, as a 

pseudo-mediator. For example, the reading score is a mediator, and the math score is a primary 

outcome. As we rule out any causal relationship between the two scores, the reading score is a 

mediator that does not convey any treatment effect via itself. This means that the true indirect or 

mediated effect via the reading score (i.e., pseudo-mediator) must be zero; consequently, the true 

total effect must equal the true direct effect. Note that the two outcomes can be and, indeed, 

likely are correlated, as represented by the path Y1 ← U → Y2. For example, the math score and 

the reading score are correlated because of a student’s ability, socioeconomic status, test anxiety, 

etc. All these factors are the source that creates the mediator-outcome confounding bias, with 

respect to the pseudo-mediator. In Figure 3.5, simply conditioning on Y1 opens the non-causal or 

collider path,  

FIGURE 3.5. Causal structure of a parallel-outcome design. Two outcomes Y1 and Y2 do not 

causally affect each other but are affected by the treatment A and their unmeasured common 

cause U.  
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A → Y1 ← U → Y2, 

and thus, will produce a non-zero indirect effect estimate. However, if a mediation approach 

does not suffer from the mediator-outcome confounding bias or at least substantially mitigate 

this bias, the estimated indirect effect of A on Y2 via Y1 should be close to zero, and 

equivalently, the estimated direct effect of A on Y2 should be close to the total effect of A on Y2 

under the parallel-outcome design.  

   

Shadish, Clark, and Steiner’s (2008) RCT and Non-RCT Data Sets9 

Shadish, Clark, and Steiner (2008) investigated the effect of taking a math training 

session (compared to a vocabulary training session) on two outcomes, math and vocabulary 

scores (also their pretest scores that were measured before the training session). In their lab 

setting, it is implausible that any of the two scores determines the other score, because 30 

vocabulary items and 20 math items are provided to subjects on a single test. We believe that the 

data-generating structure of Shadish et al.’s (2008) data fits the parallel-outcome design depicted 

in Figure 3.5. Therefore, we certainly know that the causal indirect effect of the math training on 

the math score (outcome) via the vocabulary score (pseudo-mediator) is zero. Since the outcome 

and the pseudo-mediator are parallel, we can switch them such that we also know that the causal 

indirect effect of the math training on the vocabulary score (outcome) via the math score 

(pseudo-mediator) is zero.  

Furthermore, one of the design features used by Shadish et al. (2008) allows us to 

investigate how the DiDiM can eliminate confounding bias in a non-experimental setting. In 

                                                 
9 We thank M. H. Clark for providing access to the data sets for the illustration.  
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their study, Shadish et al. (2008) constructed two data sets, RCT data and non-RCT data, by 

randomly assigning subjects to either data condition. The subjects who were assigned to the RCT 

data condition (n = 235) were further randomly assigned to either a math (n = 119) or vocabulary 

(n = 116) training session while those who were assigned to the non-RCT data condition (n = 

210) self-selected their training session (n = 79 for math training; n = 131 for vocabulary 

training). Although the treatment is not randomized in the non-RCT data condition, the true 

causal effects can be inferred from the effects in the RCT data in this within-study comparison 

(Cook, Shadish, & Wong, 2008). Therefore, we know that in the non-RCT data condition, the 

causal indirect effect of the math training on the math (or vocabulary) score via the vocabulary 

(or math) score is also zero.  

Using Shadish et al.’s (2008) data sets, we create four analysis conditions: 2 (data 

condition: RCT vs. non-RCT) × 2 (outcome-mediator combination: math-vocabulary vs. 

vocabulary-math). In each analysis condition, we estimate the causal direct effect of the math 

training using four different methods: i) controlling for M, ii) controlling for M & P, iii) DiDiM, 

and iv) adjusted DiDiM. The first two methods are the standard mediation approach—simply 

controlling for the mediator with or without the pretest. The last two methods are our proposed 

approach—the simple DiDiM and its correction using a compass variable. Subjects’ ACT or 

SAT college admission score is used as our compass variable (subjects were undergraduate 

students) because we believe that the conditional independence ( , ) | , ,C P Y U A M  likely holds 

with ACT scores.10   

                                                 
10 Our rationale was that since ACT scores were measured before subjects entered college, it 

would be less likely that they are directly associated with both math and vocabulary outcomes 

not via the mediator-outcome confounding variable (e.g., U in Figure 3.5). Of course, this is our 

subjective judgement and may be incorrect. However, in the analyses, we observed the 
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Results 

 Table 3.1 summarizes the results. Let us first focus on the condition of the math outcome 

(mediator: vocabulary) in the left column of Table 3.1. In RCT data, controlling for the pseudo-

mediator (i.e., “Controlling for M”) estimates the direct treatment effect as 6.14 even though the 

benchmark direct effect is 4.11. Thus, the standard method overestimates the direct effect 

because of unmeasured mediator-outcome confounding. This overestimation is indeed expected. 

The math training (A) negatively affects the pseudo-mediator (Y1), vocabulary score, because the 

                                                 

correction that using ACT scores substantially improves the causal mediation estimation using 

DiDiM.  

TABLE 3.1.  

Estimated direct effects of the math training session on the math and vocabulary scores via each 

of the pseudo-mediators 

 Outcome = Math; 

Pseudo-Mediator = Vocabulary 

Outcome = Vocabulary; 

Pseudo-mediator = Math 

 Coef Bootstrap 95% CI Coef Bootstrap 95% CI 

Direct Effect (benchmark) 
 

4.11 [3.28, 4.93] −8.28 [−9.01, −7.50] 

  1. RCT data     

     Controlling for M 6.14 [4.90, 7.33] −9.10 [−9.97, −8.15] 

     Controlling for M & P 5.49 [4.20, 6.67] −8.81 [−9.65, −7.89] 

     DiDiM 4.11 [2.65, 5.63] −8.19 [−9.56, −6.97] 

     Adjusted DiDiM 
 

3.70 [1.61, 5.33] −8.66 [−9.60, −7.70] 

  2. Non-RCT data     

     Controlling for M 7.60 [6.21, 9.00] −10.22 [−11.21, −9.23] 

     Controlling for M & P 5.83 [4.51, 7.24] −9.03 [−10.01, −8.08] 

     DiDiM 4.71 [3.53, 5.99] −6.83 [−8.21, −5.41] 

     Adjusted DiDiM 3.75 [1.88, 5.42] −8.60 [−9.65, −7.53] 

Note. The bench mark direct effects are obtained from the RCT data, controlling for both math 

and vocabulary pretest scores.  
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control condition is taking the vocabulary training session, and the two outcomes Y1 and Y2 are 

likely positively correlated with each other. Therefore,  

sgn( ) sgn( ) sgn( ) 0A Y1 U Y2 A Y1 Y1 U Y2→  → = →   →  . 

But, as this path becomes open due to conditioning on the collider, the sign of the overall 

association via this collider path is reversed in linear systems. Therefore, the overall mediator-

outcome confounding bias via the path becomes positive, resulting in an overestimation of the 

direct effect. This overestimated direct effect decreases to 5.49 if one additionally controls for 

the pretest of the math outcome (i.e., “Controlling for M & P”), but it continues to suffer from 

the bias because it is still far greater than the benchmark 4.11. However, the DiDiM method 

corrects this overestimation. The point estimate by the DiDiM is 4.11, which is very close to the 

benchmark (indeed, they are identical up to two decimal points). We also apply the correction 

method using the compass variable, ACT scores (i.e., “Adjusted DiDiM”). It slightly 

underestimates the direct effect as 3.70, but it is still close to the benchmark (4.11) and is 

obviously far less biased than the estimates by two standard mediation methods.  

 In non-RCT data, we found that the four different methods have the same relative bias-

removing potential. See the bottom of Table 3.1 in the same math outcome column. The method 

“Controlling for M” makes more bias in the non-RCT data condition than it does in the RCT data 

condition because the treatment is not randomized. In addition to the mediator-outcome 

confounding bias, the treatment-mediator and the treatment-outcome confounding biases 

contribute to making the largest biased estimate: 7.60. Although the additional controlling for the 

pretest reduces the bias to 5.83, it remains greater than the two DiDiM methods—the unadjusted 

(4.71) and adjusted (3.75) ones. Precisely, in the non-RCT data condition, the adjusted DiDiM 
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produced the least biased estimate (the benchmark is 4.11). All the results are summarized and 

displayed in Figure 3.6, where squares represent the RCT data results and triangles represent the 

non-RCT data results. Overall, the standard mediation methods, “Controlling for M” and 

“Controlling for M & P,” make more bias than the two DiDiM methods. The correction of the 

DiDiM using a compass variable was especially effective in eliminating confounding bias when 

the treatment was not randomized.  

 The results of switching the mediator and the outcome, that is, the vocabulary outcome 

condition (mediator: math), are presented in the right column of Table 3.1 and in Figure 3.7. 

Overall, the bias pattern was similar to the extent that the two standard mediation methods, 

FIGURE 3.6. Remaining bias in direct effects estimates of the treatment on math score 

(mediator: vocabulary score) by four mediation analysis methods. Triangles represent the 

results using non-RCT data, while squares represent the results using RCT data.   
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simply controlling for the mediator with or without the pretest, make more bias than the two 

DiDiM methods. We shall not repeat the similar results but focus on one intriguing pattern we 

found. The unadjusted or simple DiDiM estimate using the non-RCT data was −6.83, which 

overestimates the true direct effect of −8.28. As we briefly discussed before, this misleading 

result suggests that the DiDiM may fail to eliminate all confounding bias when the treatment is 

not randomized, possibly because of an uncorrelated treatment-outcome confounding variable. 

However, interestingly, the adjusted DiDiM using the compass variable corrected this substantial 

bias and produced a far less biased effect estimate, one that was especially lower than the 

standard method of “Controlling for M & P” with the RCT data. This suggests that the use of a 

FIGURE 3.7. Remaining bias in direct effects estimates of the treatment on vocabulary score 

(mediator: math score) by four mediation analysis methods. Triangles represent the results 

using non-RCT data, while squares represent the results using RCT data.   
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compass variable may also correct not only the mediator-outcome confounding but also the 

treatment-outcome confounding. But, this is a single empirical finding, and more research is 

needed to clarify the role of compass variables in adjusting DiDiM estimators in observational 

studies.  

 

DISCUSSION 

In this paper, we proposed a new mediation approach to circumvent the unmeasured mediator-

outcome confounding problem. The key idea of our methods is the use of difference-in-

differences to offset such confounding. With a proper pretest that establishes the equivalent 

mediator-outcome confounding assumption, we can eliminate the bias and identify mediation 

effects even though we do not measure all confounding variables. In the illustration, we provided 

empirical evidence to support the use of the DiDiM approach. If the assumption is severely 

violated or the treatment is not randomized, one may consider applying the correction method 

using compass variables. Again, we provided empirical evidence to support the use of this kind 

of correction.  

Implementing the proposed approaches, the DiDiM and its correction, does not require 

any special software or skills, so practitioners can easily apply these methods to their mediational 

research questions if a pretest measure of the outcome is available. Without extra cost, they can 

explore how the results of the standard mediation methods and the DiDiM methods differ and 

evaluate which causal assumption (either no mediator-outcome confounding or equivalent 

mediator-outcome confounding) is more plausible in their studies. This theoretical consideration 

can be facilitated by the use of DiDiM methods, and we believe this will improve causal 
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mediation analysis in practice, which currently almost exclusively relies on the standard methods 

of using covariate adjustment.  

Obviously, the proposed methods need to be further developed and extended. In this 

paper, our discussion is based on linear systems, and we did not reflect the various causal 

mediation effects defined with counterfactual or potential outcomes (e.g., Imai et al., 2010a, 

2010b; Pearl, 2014, VanderWeele, 2010). More than direct and indirect effects, recently causal 

inference researchers have started defining and using controlled direct effects and natural direct 

and indirect effects for causal mediation effects (Pearl, 2001). More investigation is needed to 

understand how and under which assumptions each of these effects can be nonparametrically 

identified by the DiDiM. These assumptions may or may not be similar to the conditions for 

nonparametric identification of controlled direct effects and natural (in)direct effects using the 

standard mediation approach based on covariate adjustment. Finally, the correction method using 

compass variables should be further studied. How the method works in observational studies, 

how to assess a good compass variable, and which design elements allow the secure preservation 

of a compass variable are all questions that should be addressed for the general use of this 

method.  
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CONCLUSION 

This dissertation investigates the role of pretest measures of the outcome in causal inference. 

Pretests can be used to offset not only the treatment-outcome cofounding bias (i.e., Study 1 and 

Study 2) but also the mediator-outcome cofounding bias in mediation analysis (i.e., Study 3). 

The bias-offsetting mechanism is attractive because it allows us to identify causal effects even 

though the confounding variables remain unmeasured and thus it is infeasible to condition on, or 

control for, the variables to block non-causal paths. This is a special role that pretests can 

effectively play but that other regular covariates generally cannot. The key identification 

assumption for the offsetting mechanism, referred to as the common trend or the fixed effects 

assumption in Study 1 and Study 2 and as the equivalent mediator-confounding assumption in 

Study 3, is more plausible with a pretest rather than any other variables.  

 Proposed graphical models in many figures of the three studies are not supplementary 

materials but indeed the main results of this dissertation. This dissertation proposes for the first 

time causal graphical representations for the gain score model, the deviation score model, and the 

random effects approach (i.e., the quasi-deviation score model). In the literature, graphical 

models have been frequently used to describe how data are generated (e.g., Elwert, 2013; 

Morgan & Winship, 2015; Pearl, 2009; Rohrer, 2018; Steiner et al., 2017). As the dissertation 

shows, graphical models can also be used to represent analytic models or methods, and they are 

surprisingly helpful in understanding the power and the limitation of each of the analytic models 

for causal identification. As is seen in Study 3, the graphical representations for the random 

effects approach directly shows why the approach is inherently limited to being used for causal 

identification in non-experimental or observational studies.  



99 

 

 

 The three studies in this dissertation collectively underscore the importance of having 

strong knowledge about data-generating models and analytic models. More precisely, for making 

a causal inference from data, selecting proper analytic models or methods should be guided by 

researchers’ substantive knowledge about the data-generating process. Pretests are an excellent 

example of this point. Although many educational and psychological researchers have implicitly 

agreed that pretests are important, a formal theory of what a good pretest is and how we can use 

it for identifying causal effects (the main theme of this dissertation) has remained unclear in the 

literature. In fact, this is the key to the well-known Lord’s paradox (Lord, 1967) discussed in 

Study 1. With a single pretest measure, two statisticians, each of whom applied a different 

analytic method, reach the opposite conclusions about the treatment effect. Somewhat ironically, 

the solution to the paradox can be given by the client who asked for the statistical consulting 

because he or she (but not the statisticians) knows well how the data were generated. The two 

statisticians should “consult” with the client to judge which conclusion is right. As this 

dissertation shows, graphical models will significantly facilitate the communication between the 

client and the statisticians. 
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APPENDICES 

APPENDIX A: REGRESSION ESTIMATOR FORMULA IN STUDY 1 

The structural causal model corresponding to Figure 1.2D is given by AA = , ZAZ  += , 

YEAZY  +++= 22 , PEAP  ++= 11 , and PYG −= , where A , Z , P , and Y  are 

the mutually independent random disturbance terms (omitted from the graph). Without loss of 

generality, we assume 1)()( == EVarAVar . Then, the partial regression coefficient of Z, |YZ Pb , 

of the regression of Y on Z and P can be written in terms of bivariate correlations as 

| 2
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1 ( )
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SD Y
b

SD Z
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, where AB  is the correlation coefficient between two random 

variables A and B. The correlation coefficients are given by 
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Plugging the population correlations into the formula of |YZ Pb  above, we obtain Equation 

(1.6), 2 1 1 2
| 2 2

(1 )

( ) { ( ) } ( )
YZ P

r
b

Var Z r Var Z r Var P

   


 

−
= + −

− −
, where r is the reliability of the pretest P, 

)(/2

1 PVarr = .  

 Because the structural causal model in Figure 1.2B is a restricted model of the structural 

causal model in Figure 1.2D, we obtain Equation (1.1) by setting 02 = : 
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. Note that the corresponding reliability 
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=r  is obtained by 

setting 0)( =PVar   and treating E as e.  

The structural causal model corresponding to Figure 1.2C is given by AA = , SS = ,  

ZS SAZ  ++= , YS SAZY  +++= 2 , PAP  += 1 , and PYG −= . The correlation 

coefficients, based on this model, are given by 
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Plugging them into | 2
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YZ YP ZP
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, we obtain Equation (1.3) 
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Relying on the same structural causal model, we can also obtain Equations (1.2), (1.4) 

and (1.5). First, Equation (1.4) is the regression coefficient for Z of the regression of Y on Z, YZb . 

Since the coefficient can be written as )(/),( ZVarZYCovbYZ =  and using  

SSZSYS ZVarSASAZCovZYCov  ++=+++++= 22 )(),(),( , 

we obtain 
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 ++= . Similarly, for Equation (1.5), using  
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we obtain the regression coefficient of Z of the regression of G on Z,  

)()(

)( 12

ZVarZVar
b SS

GZ


 +

−
+=  (Equation 5). Since the structural causal model in Figure 1.2A is 

a restricted model of the structural causal model in Figure 1.2C, we obtain Equation (1.2) by 

setting 0=S  and 0=S , that is, 
)(

)( 12

ZVar
bGZ




−
+= .  

 

APPENDIX B: GRAPHICAL REPRESENTATION WITH FLEXIBLE TREATMENT REGIMES 

 

FIGURE A. Graphical representation, combined the data-generating model (solid arrows) and 

the analytical model (dashed arrows), for the case where subjects can receive the treatment at 

both before- and after-stages.  

 

When subjects can experience the treatment at any time index, the graphical representation can 

be extended as in Figure A. Instead of a single treatment variable 2A , two different treatment 

indicators 1A  and 2A , at each time 1t =  and 2t = , are displayed. Note that the treatment effect is 

assumed as being constant across time: Two causal paths 1A  → 1Y  and 2A  → 2Y  are denoted by 

 . In this case, if the common trend assumption 1 2 =  holds, the causal effect can be identified 

even though the confounder U remains unmeasured (a vacant node) by constructing both the 

treatment difference 2 1C A A= −  and the outcome difference (i.e., gain score) 2 1G Y Y= − .  
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 The treatment difference C is associated with the gain score G via the following eight 

paths:  

(1) C  1A   U → 1Y  → G,  1 1 + ; 

(2) C  1A   U → 2Y  → G,  1 2 − ; 

(3)  C  2A   U → 1Y  → G,  2 1 − ; 

(4)  C  2A   U → 2Y  → G,  2 2 + ; 

(5)  C  1A   U → 2A  → 2Y  → G,  1 2  − ; 

(6)  C  2A   U → 1A  → 1Y  → G,  1 2  − ; 

(7)  C  1A  → 1Y  → G,  1( )Var A+ ; 

(8)  C  2A  → 2Y  → G,  2( )Var A+ . 

The sum of the eight partial associations is given by  

 2 1 2 1 1 2 1 2( )( ) ( ) ( ) 2Var A Var A     − − + + − . 

By 1 2 =  (i.e., common trend) and 1 2 1 2( ) ( ) ( ) 2Var C Var A Var A = + − , we see that the covariance 

between C and G is ( , ) ( )Cov C G Var C= . Therefore, the population regression coefficient of C 

of the regression of G on C is identical to the causal effect  :  

( , ) ( )

( ) ( )
GC

Cov C G Var C
b

Var C Var C


= = = . 

 Two things are worthy of mentioning. First, the above bias-offsetting mechanism also 

works when 1 2 =  holds (even though 1 2  ). Indeed, this bias-offsetting relying on the 

equality 1 2 =  has been known as a negative treatment control (instead of a negative outcome 

control) in epidemiology and biomedical research (Lipsitch, Tchetgen Tchetgen, & Cohen, 



116 

 

2010). Our graphical representation reveals the symmetric property of the bias-offsetting 

mechanism between negative treatment controls and negative outcome controls. Second, the 

constant treatment effect is crucial in this approach. If 1A  → 1Y  is denoted by 1  and 2A  → 2Y  

is denoted by 2 , and 1 2  , the resulting the population regression coefficient of C, GCb , does 

not equal either causal effects. In practice, the constant treatment effect across time may be less 

plausible. One way to circumvent this problem, which is popular in many educational and 

psychological research, is to design a study so that no subjects are exposed to the treatment at the 

before-stage. Then, the nodes 1A  and C disappear, and researchers investigate the association 

between 2A  and G. This is what we have considered in this paper.  

 

APPENDIX C: REGRESSION ESTIMATOR FORMULA IN STUDY 2 

The population partial regression coefficient for 2A  of the regression model of 2Y  on 2A  and 1Y  

can be expressed with bivariate correlations:  

2 2 2 1 2 1

2 2 1
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2
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b
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−
= 

−
. 

Given 1 1Y  = +  and 2 2 2Y A  = + + , the bivariate correlations are given by  

2 2
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=
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Plugging the population correlations into the formula of 
2 2 1|Y A Yb  above, we obtain Equation (2.5). 
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APPENDIX D: REGRESSION ESTIMATOR FORMULAS IN STUDY 3 

The structural causal model corresponding to Figure 3.1B is given by AA = , 

M MM A U  = + + , Y YY A M U   = + + + , and P PP U = + , where A , M , P , and Y  

are the mutually independent random disturbance terms (omitted from the graph). Without loss 

of generality, we assume ( ) 1Var U = . From ( , ) ( , )Y YCov Y A Cov A M U A   = + + +  

( ) ( , ) ( ) ( )Var A Cov A M Var A Var A   = + = + , Equation (3.1) directly follows. Note that 

( , ) ( , ) ( )M MCov A M Cov A A M Var A   = + + = .  

The partial regression coefficient for A, |YA Mb , of the regression of Y on A and M can be 

written in terms of bivariate correlations as | 2

( )

1 ( )

YA YM AM
YA M

AM

SD Y
b

SD A

  



−
= 

−
. The correlation 

coefficients are given by 

( ) ( ) /{ ( ) ( )},

( ) /{ ( ) ( )},

{ ( ) ( ) } /{ ( ) ( )}.

YA

AM

YM M Y

Var A SD Y SD A

Var A SD A SD M

Var A Var M SD Y SD M

  

 

    

= +

=

= + +

 

Plugging the population correlations into the formula of |YA Mb  above, we obtain Equation (3.2).  

 For Equation (3.3), it is convenient to specify two simple regressions. First, we regress A 

on P and obtain the residual A  from the regression. Indeed, as ( , ) 0Cov A P = , A A= . Second, we 

regress M on P and obtain the residual M  from the regression. We use | ||YA MP YA MYA M
b b b= = . The 

necessary bivariate correlations among Y, A, and M  are given by  

( ) /{ ( ) ( )},

{ ( ) ( ) ( )} /{ ( ) ( )}.
( )

AM

M P
M Y P Y P MYM

Var A SD A SD M

Var A Var M SD Y SD M
Var P

 

 
         

=

= + + − +
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Plugging the population correlations, together with YA  above, into the formula of 

2|

( )

1 ( )

YA YM AM

YA M

AM

SD Y
b

SD A

  



−
= 

−
, we obtain Equation (3.3).  

 In Figure 3.2, the difference score D is given by D Y P= − . The necessary bivariate 

correlations to compute the partial regression coefficient |DA Mb  are  

( ) ( ) /{ ( ) ( )},

{ ( ) ( ) ( )}/{ ( ) ( )}.

DA

DM M Y P

Var A SD D SD A

Var A Var M SD D SD M

  

     

= +

= + + −
 

Plugging the population correlations, together with AM  above, into the formula of 

| 2

( )

1 ( )

DA DM AM
DA M

AM

SD D
b

SD A

  



−
= 

−
, we obtain Equation (3.5).  

 Given the structural model corresponding to Figure 3.3, the necessary bivariate 

correlations are given by  

{ ( ) ( ) ( )} /{ ( ) ( )},

{ ( ) } /{ ( ) ( )},

{ ( ) ( ) ( )} /{ ( ) ( )}.

DA A M A Y P

AM A M

DM M A M Y P

Var A SD D SD A

Var A SD A SD M

Var A Var M SD D SD M

        

   

        

= + + + −

= +

= + + + −

 

Plugging the population correlations into the formula of |DA Mb  above, we obtain Equation (3.6).  

 


