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3.3 (a) Illustration of the graph and manifold data representations derived from
the SAM simulation shown in Figure 3.2 at HFE = 33kBT,. (b),(c) and (d)
Representative hydrogen bond networks (graphs) and time-averaged density
fields (manifolds) derived from the interfacial water in SAM molecular simula-
tions over different time frames of the same simulation. They also contain the
time-averaged graph EC ⟨χ⟩ and the EC curve created from a filtration of the
associated density field. Each SAM simulation is split into multiple subsets of
a single simulation t ∈ [a, b), for which a corresponding density field EC curve
and time-averaged graph EC is computed. We note the stability of both the
time-averaged graph EC and the EC curve. The density fields and graphs are
visually very different, but the topological measures of the graphs and density
fields are almost identical throughout the simulation. This demonstrates the
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acteristics of molecular simulations. . . . . . . . . . . . . . . . . . . . . . . . . . 64
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density field from the set of SAM simulations. From (a) we see a continuous
change in the EC curve that correlates with the HFE of the given SAM, in (b)
we capture this continuous change and visualize a data structure that corre-
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of predicted versus INDUS derived HFE. The testing data consists of a com-
pletely separate set of SAM simulations not used in model training. For each
simulation EC curves and ⟨χ⟩ are measured. The trained linear model is then
used to predict the HFE for the separate set of SAM simulations. The results
demonstrate a high level of accuracy and low prediction error (RMSE = 2.2
kBT), which is comparable to training set accuracy as expected. Error bars in
both plots represent a single standard deviation from the mean. . . . . . . . . . 67
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3.6 (a) Illustration of the graph and manifold data representations derived from
the acid-catalyzed reaction simulations. (b),(c), and (d) Representative water-
water hydrogen bond networks (graphs) and time-averaged density fields (man-
ifolds) derived from the water in the molecular simulations over different time
frames. They also contain the time-averaged graph EC ⟨χww⟩ and the EC curve
created from a filtration of the water density field. The density fields and
graphs are visually different, but the EC values are similar throughout the
simulation. These results demonstrate the robustness of topological descriptors. 70
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are used as inputs to a linear model. Predictions on the training dataset are
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high accuracy in the prediction of reactivity trends (σ). (b) Testing data parity
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reaction simulations are created for different cosolvents and solutes. From this
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demonstrate a high level of test set accuracy with low prediction error (RMSE
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fructose. The EC curves for THF and DMSO differ from the EC curves of
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4.2 Persistence homology methodology for point clouds: each point cloud is con-
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A B S T R A C T

This dissertation is focused on the introduction, development, and application of topo-
logical and geometrical methods for the analysis of data. Topology and geometry allow
us to view data as a shape and provide us tools to quantify this shape. Abstracting data
as a shape captures intrinsic characteristics of the data that are independent of the en-
vironment and methods used to obtain the data. These representations (e.g., graphs,
manifolds, and point clouds) also provide means for integrating domain knowledge into
data analysis that can strengthen connections between theory and experiment. In this
dissertation, we present a thorough review of applied topology and geometry methods in
chemical engineering through applications on real data-sets such as: molecular dynamics
simulations, dynamical systems, process systems, and soft matter systems.

We first present methods that are centered on the topology of data. We provide deep
mathematical foundation for two particular areas of topological data analysis: the Euler
characteristic and persistence homology. These methods quantify the topological invariants
of a data shape (e.g., holes, connected components, voids). These invariants describe
intrinsic properties of data that are unaffected by continuous transformations of the data
such as translation, rotation, stretching, and bending. We also compare the effectiveness
and interpretability of models that leverage the topology of data with methods that do
not capture it directly (e.g., Fourier transforms).

We then explore methods that exploit the high-dimensional geometry of data. In partic-
ular, we focus on the Riemannian geometry of symmetric, positive-definite (SPD) matrices.
An SPD matrix is a versatile data representation that is commonly used in chemical en-
gineering (e.g., covariance/correlation/Hessian matrices and images). A key observation
that motivates this work is that SPD matrices live on a Riemannian manifold and that
implementing techniques that exploit this basic property can yield significant benefits in
data-centric tasks such as classification and dimensionality reduction.

Finally, we present analysis of other data driven methods, such as (convolutional)
neural networks, and explore how these methods can be used to understand the high-
dimensional structure and patterns found in data. We leverage the pattern identification
power of a pre-trained convolutional neural network (VGG16) for the characterization
of liquid crystal sensor responses. We also explore the high-dimensional structure of
datasets for the catalysis of the water-gas shift reaction. We explore and develop dimen-
sionality reduction methods to understand the structure of the dataset and identify new
catalyst formulations.
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Chapter 1
I N T R O D U C T I O N

In this chapter we present the background, objectives, and motivation of this dissertation.

We discuss some of the widely used data science methods and strategies applied in chem-

ical engineering and our research objectives in addressing some of their computational

and theoretical challenges through topology and geometry. We also summarize the struc-

ture and content of this dissertation. Finally, we introduce some ideas of topology and

geometry in the context of chemical engineering research and motivate their application

through a connection found between physics, topology, and geometry.

1.1 Current Practices in Data Science & Chemical Engineering

The focus of this dissertation is primarily on data representation and pre-processing,

which is a critical aspect of effective data analysis [5]. The representation (mathematical

abstraction) of data can simplify the models needed for data analysis and can provide a

way for domain knowledge to be incorporated. This section reviews many of the common

practices for data representation in Chemical engineering and how they are used for data

analysis.

For example, data from a multivariate time series can be represented in many ways as

shown in Figure 1.1. A commonly applied method is to compute the covariances between

each individual time series and construct a covariance matrix. In the context of chemical
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(a)
(b) (c)

Figure 1.1: Illustration of different representations of a multi-variate time series dataset
(a). (b) A covariance matrix representation of the multi-variate time series data in (a).
The covariance matrix encodes the covariance relationships between variables xi(t), xj(t)
and the variance of the individual variables xi(t). (c) A graphical representation of the
covariance matrix. A fully connected graph is constructed and the weights of the edges of
the graph are equal to the covariance between each variable. For clarity we only label the
edges at the outside of the network, but in the data representation all edges are weighted
(see chapter 2 for further detail).

engineering these covariance matrix representations are used in the analysis of data for

the control and monitoring of process systems [6, 7, 8, 9, 10]. They are also used in

understanding chemical systems through entropy, the dynamics of fluid systems, and in

spectroscopy [11, 12, 13, 14].

Analysis of these matrices is often paired with a dimensionality reduction method:

Principal Component Analysis (PCA). PCA is a combination of singular value decom-

position of a covariance matrix and a projection of data onto the leading eigenvectors

[15, 16]. This method is extensively used in this dissertation and explored in detail in

chapter 7. PCA has been used in many areas of chemical engineering. In particular it has

been used for the analysis and dimensionality reduction of process data [17, 18, 19, 20].

PCA is also applied in the analysis of point cloud data, where data such as individual

experiments are represented as points in high-dimensional space or the 3-D positions

of molecules in a protein [21, 22]. The structure and shape of these spaces can be un-

derstood through PCA, which has been used extensively in areas such as experimental

design [23, 24] and molecular dynamics simulation [25, 26, 27, 28]. However, PCA does

not account for the connectivity of these structures, missing important information encod-
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ing potential interactions between data points (e.g., molecules, atoms) [29].

Covariance matrices can also be represented through graphical structures as shown in

Figure 1.1. The nodes of the graph represent the individual measured variables. We con-

struct edges between every node of the graph (i.e., a fully connected graph) and weight

each edge of the graph with the covariance value between the corresponding variables.

Thus, we obtain what is known as an edge weighted graph that captures the information

encoded within the covariance matrix. Graphs have been used extensively in chemical en-

gineering research. They are used directly to represent complex networks [30, 31, 32, 33],

molecules [34, 35, 36, 31], or are constructed to represent more abstract ideas such as re-

lationships between constraining variables in optimization [37, 38]. More recently graphs

have been used as a representation for machine learning based tools such as graphical

neural networks (GNN’s) [39, 40, 41, 42]. Information can be extracted from graphs in

various ways, most common are methods that focus on summarizing the topology of

graphs through metrics such as modularity, connectivity, etc [43, 44, 45]. These methods

can work well in quantifying a graph structure, but can oversimplify the graphs topology

resulting in a loss of information needed to distinguish complex graphs [46].

(a)
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Figure 1.2: Different representations of an image (a). (b) A matrix encoding of an image.
Each element of the matrix corresponds to the pixel location and intensity within the
image. (c) Manifold representation of an image. The image is lifted from 2-dimensional
space (e.g., a flat plane), and embedded in 3-dimensional space. Here, the third dimension
corresponds with the intensity of the pixel at a given location in the image.

Another commonly analyzed form of data in chemical engineering research is that of

images (Figure 1.2). Images are often represented as matrices, making them amenable to
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the previously discussed methods. They are also open to more advanced signal process-

ing and machine learning methods such as Fourier transforms and convolutional neural

networks (CNNs) due to the spatial organization of the image. Images have become

increasingly popular in chemical engineering because they are able to capture more in-

formation than simple statistical summaries or individual time series. Signal processing

methods, such as Fourier transforms, attempt to extract global structure from an image

through a decomposition of the image into independent basis functions or patterns [47].

For example, the Fourier transform has been applied extensively in spectroscropy [48, 49].

It has also been used in the analysis of process systems data where processes are moni-

tored through video/IR imaging [50, 51] and in the analysis of biomedical data [52, 53].

CNNs work on a similar principal, but leverage convolutions as their method of local

pattern extraction and perform recursive reductions of the data (e.g., poolings) to extract

global patterns [54]. CNNs are covered in greater detail in chapter 6. CNNs provide a

method for quantifying complex patterns and structures from data by learning the char-

acteristics of an image that distinguish one class of images (e.g., cats) from another class

(e.g., dogs). CNNs are becoming increasingly utilized in chemical engineering research.

They have been used in the analysis of complex patterns formed by soft matter systems

(e.g., liquid crystals) [55, 56]. They are leveraged in the analysis of hyperspectral imaging

and spectroscopy data [57, 55, 58, 59]. They are also applied in the analysis of molecular

simulations, and in process fault identification [60, 61, 62, 63]. These methods are often

highly accurate and can capture complex patterns/structures in data, but are notoriously

difficult to interpret. Another method for summarizing the statistical characteristics of

images are spatial correlation functions (e.g., 2-point correlation function) [64]. These

functions attempt to summarize the relationships between spatial distance and image

(pixel) values. These functions have direct connections to physics and thermodynamics,

and are commonly used in the analysis of molecular simulations and for characterizing

heterogeneous materials [65, 66, 67, 68, 69]. These methods provide efficient statistical de-

scriptors of data, but do not directly capture topological information (e.g., connectivity)
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[70].

We can also interpret images as manifolds with an associated function as shown in

Figure 1.2. Manifolds formalize the idea that data can lie in a space that is not governed

by Euclidean geometry (i.e., the space is not linear) [10]. Manifolds are covered in de-

tail in chapter 5. Manifold representations of data allow us to capture this non-linear

behavior without attempting to constrain or project the data to a linear space. The most

prominent example of this methodology is found in the diffusion map method [71]. Here

data is assumed to lie in some nonlinear space, and diffusion is simulated in this space in

an attempt to reconstruct the non-linear manifold of the data. These methods have been

used in chemical engineering data for tasks such as identifying reaction coordinates in

dynamical systems and the analysis of molecular dynamics simulations [72, 73, 74, 75]. If

the structure of a data manifold is known a priori, it can also be used in tasks such as op-

timization or system identification where an objective function or solution is constrained

to a specified manifold [76, 77, 78, 79].

1.2 Research Objectives

Optimal data representations provide a way to maximize the information and domain

knowledge encoded while minimizing the amount of computational resources needed to

process and analyze data. A commonality between many of the analysis methods pre-

sented in section 1.1 is that they neglect the topology and geometry of the data. Topology

and geometry provide simple and efficient characterizations of data, especially data that

is represented as a topological object or shape such as graphs, manifolds, or point clouds

which we demonstrate in this dissertation. The objective of this dissertation is to pro-

vide researchers with tools and methods from topological and geometrical data analysis

(TGDA) and motivate their use through applications to real-world datasets (Figure 1.3).

We focus our applications on a broad range of chemical engineering research areas

such as soft matter systems, molecular simulations, process systems, spatio-temporal dy-
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Figure 1.3: Graphical overview of the topological and geometrical data analysis (TGDA)
ideas and methodologies presented in this disseration. The goal of TGDA is to identify
simple and efficient data representations that capture the physically meaningful charac-
teristics of data which can be integrated in data analysis tasks such as classification and
dimensionality reduction.

namical systems, among others. In addition, we completely outline the theoretical and

computational aspects of the presented topological and geometrical methods, along with

implemented code to reproduce all results in this dissertation.

1.3 Thesis Overview

This dissertation is broken up into three parts. Part I is composed of chapters 2 to 4 and

discusses the mathematical foundations and applications of topology based methods for

data analysis: the Euler characteristic and persistent homology. Part II contains chapter

5 and covers geometric data analysis methods with a focus on the Riemannian geometry

of symmetric, positive-definite matrices (e.g., covariance/correlation matrices). Part III

provides a study of data patterns and structure through data driven methods such as

(convolutional) neural networks and sparse principal component analysis (chapter 6 and

chapter 7). We summarize each chapter below.
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In Chapter 2 we study a specific tool known as the Euler characteristic (EC). The EC

is a general, low-dimensional, and interpretable descriptor of topological spaces defined

by data objects. We review the mathematical foundations of the EC and highlight its

connections with statistics, linear algebra, field theory, and graph theory. We discuss

advantages offered by the use of the EC in the characterization of complex datasets; to do

so, we illustrate its use in different applications of interest in chemical engineering such

as process monitoring, flow cytometry, and microscopy. We show that the EC provides

a descriptor that effectively reduces complex datasets and that this reduction facilitates

tasks such as visualization, regression, classification, and clustering.

Chapter 3 builds upon the work in chapter 2 and provides an in-depth analysis of

multiple molecular dynamics (MD) simulation datasets. We show that the Euler charac-

teristic (EC) provides an effective topological descriptor that facilitates MD analysis. We

demonstrate the benefits of the proposed approach through case studies that aim to un-

derstand and predict the hydrophobicity of self-assembled monolayers and the reactivity

of complex solvent environments

In Chapter 4 we introduce a field of research known as Topological Data Analysis

(TDA). TDA represents datasets as geometric and topological objects and provides dimen-

sionality reduction techniques that project such objects onto low-dimensional descriptors

through algebraic topology. The key properties of these descriptors (also known as topo-

logical features) are that they provide multiscale information and that they are stable

under perturbations (e.g., noise, translation, and rotation). We also review the key math-

ematical concepts and methods of TDA and present different applications in chemical

engineering.

Chapter 5 explores the use of tools from Riemannian geometry for the analysis of

symmetric positive definite (SPD) matrices. An SPD matrix is a versatile data representa-

tion that is commonly used in chemical engineering (e.g., covariance/correlation/Hessian

matrices and images) and powerful techniques are available for its analysis (e.g., principal

component analysis). This work is motivated by the geometry of SPD matrices which live
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on a Riemannian manifold. Techniques that exploit the geometry of this manifold can

yield significant benefits in data-centric tasks. We demonstrate this via case studies that

conduct anomaly detection in the context of process monitoring and image analysis, and

an analysis of the spatio-temporal behavior of atmospheric pollutants.

In Chapter 6 we explore a data driven pattern extraction method: convolutional neural

networks. Here, we perform a convolutional neural network (CNN) analysis of optical

responses of liquid crystals (LCs) when exposed to different chemical environments. Our

aim is to identify informative features that can be used to construct automated LC-based

chemical sensors and shed some light on the underlying phenomenon that governs and

distinguishes LC responses. Our analysis reveals that patterns extracted through the first

and second layers of a pre-trained convolutional neural network (VGG16) are sufficient

to achieve a perfect classification accuracy of the sensors. We also explore the physical

meaning of the extracted patterns and identify color and texture as leading factors in

distinguishing LC-based chemical sensor responses.

Finally, in Chapter 7 we present a machine learning framework to explore the pre-

dictability limits of catalytic activity from experimental descriptor data (which charac-

terizes catalyst formulations and reaction conditions). We explore the high-dimensional

geometry and structure of this dataset through principal component analysis (PCA) and

sparse PCA and leverage artificial neural networks to predict reactivity. Furthermore, we

propose a constrained-PCA optimization formulation that identifies new experimental

points while filtering out regions in the experimental space due to constraints on tech-

nology, economics, and expert knowledge. This allows us to navigate the experimental

space in a more targeted manner.

1.4 Motivation: Connecting Physics, Topology, and Geometry

Data analysis in engineering and the physical sciences differentiates itself from data anal-

ysis in other fields primarily due to the need for physical interpretability of the analysis
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results. Therefore, we motivate the research presented in this dissertation through a

powerful connection between physics, topology, and geometry, formed through the theo-

rem of 20
th century mathematician Hugo Hadwiger known as Hadwiger’s Theorem [80].

The theorem provides a means for expressing valuations (e.g., Hamiltonians, energies)

of physical systems through the systems geometry and topology [81]. We explore this

theorem through a study of the 2-D Ising model [82]. The Ising model, developed in

1920 by Wilhelm Lenz and Ernst Ising, is a simple thermodynamic model of ferromag-

netism [83]. The Ising model provides a way to understand the thermodynamic behavior

of phase transitions such as symmetry breaking and critical points [82, 84]. In this sec-

tion we define a direct geometric and topological connection to the 2-dimensional Ising

model and understand how topology and geometry can be used to represent the model’s

thermodynamics.

1.4.1 A Geometric Ising Model

We first introduce the original Ising model and propose a geometric interpretation that

allows us to study the physical behavior of the model through Hadwiger’s theorem.

(a) Lattice Ising Model (b) Geometric Ising Model

Figure 1.4: A comparison of the original Ising model representation (a) and the proposed
geometric Ising model representation (b). In the geometric representation positive spin
lattice sites are represented by the presence of a square, closed, convex polytope (area
= 1) that is centered on the corresponding lattice site. If the spin is negative the square
polytope is removed from that lattice point. This representation provides a direct corre-
spondence between the lattice Ising model and the proposed geometric Ising model.

The Ising model consists of discrete variables that represent atomic spin. These vari-
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ables σi can be in one of two states σi ∈ {+1,−1}. For the 2-dimensional Ising model,

these variables are encoded in a square lattice Λ which consists of a set of evenly spaced

points xi ∈ Z2 with distance between adjacent points equal to unity. An illustrative ex-

ample of this model is found in Figure 1.4. Here, each site is represented with a + or

- to illustrate the spin state. For a given lattice and set of spin states, we define a spin

configuration as:

σ := (σi)xi∈Λ (1.1)

The Ising model also describes an energy function, known as a Hamiltonian, that char-

acterizes the total potential and kinetic energy of a given spin configuration σ. The Hamil-

tonian is given as:

H(σ) := (−h)∑
i

σi + (−J) ∑
⟨i,j⟩

σiσj (1.2)

where the notation ⟨i, j⟩ indicates that positions xi, xj are nearest neighbors on the lat-

tice. J represents the spin-spin interaction of adjacent sites, and h represents the influence

of an external magnetic field. The summation over all adjacent lattice sites weighted by J

represents the energy associated with interactions between spins, a positive J represents

a ferromagnetic system where spins favor alignment. A negative J value represents the

opposite. The value h represents the strength of an external magnetic field, where a pos-

itive h value shifts the overall spin state to be positive, and vice versa with a negative h

value.

We have defined the Ising model along with a Hamiltonian that describes the energy

of a given spin state. We now propose a different abstraction of the Ising model that

represents the model as a set of square areas si in a grid si ∈ S, rather than points on a

lattice. An illustration of this concept is found in Figure 1.4. Each grid point represents a
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unit area square with width and height equal to unity. The grid is formed such that the

centroid of each square on the grid is equal to a point xi ∈ Λ. We also extend our binary

spin function to this geometric model by considering the grid as a collection of convex

polytopes (i.e., filled squares), where a convex square polytope (area = 1) is centered over

a lattice point xi ∈ Λ if the spin of the corresponding lattice site is +1. If the spin of

the site is -1, we remove the polytope from that position and consider it an empty space.

Thus, for a given lattice Λ and spin configuration σ we obtain a collection of square

polytopes. Through this abstraction we can now apply the theorem of Hugo Hadwiger

and understand the connections between the geometry and topology of this collection of

polytopes and the energy of the Hamiltonian.

1.4.2 Hadwiger’s Theorem

Hadwiger’s theorem is focused on collections of closed and bounded convex sets Ki ∈

Kn, where i = 1, 2, ..., N, N is the total number of sets in the collection, and Kn is the

collection of all compact convex sets in Rn (e.g., a collection of convex square polytopes

in our geometric Ising model). A given configuration of these convex sets is denoted

as KN =
N⋃

i=1
Ki. Hadwiger’s theorem states that if there exists a continuous, rigid motion

invariant, and additive valuation f : KN → R, then this valuation can be represented

as a weighted sum of the intrinsic volumes (also known as Minkowski functionals) of the

configuration KN [85].

A valuation is defined as a mapping f : Kn → R such that f (∅) → 0 and for every set

S, T ∈ Kn that satisfies S ∪ T ∈ Kn we have that the valuation is additive if:

f (S ∪ T) = f (S) + f (T)− f (S ∩ T) (1.3)

Furthermore, Hadwiger’s theorem requires that the valuation of the configuration is

rigid motion invariant, and continuous. Rigid motion invariance means that the valuation of
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a configuration f (KN) → R is independent of the configuration’s position and orientation

in space. If we consider G to be the group of rigid translational and rotational motions

(i.e., the group of Euclidean isometries), such as the set of orthogonal matrices M :=

{M, MTM = I} where I is the identify matrix, we have that:

f (gKN) = f (KN) (1.4)

where g ∈ G. Finally, we have that the valuation must be continuous. This means

that given a configuration K ∈ Kn and a sequence of configurations Km such that the

sequence Km → K as m → ∞ we have that the valuation:

f (Km) → f (K) (1.5)

In other words, an approximation of a configuration will reflect an approximation in

the valuation. This is especially important when we are considering, for example, image

datasets where pixels (convex squares) are used to approximate more complex objects

captured in an image. Illustrations of each of these concepts can be found in Figure 1.5.

If a valuation f : KN → R is additive, continuous, and ridig motion invariant, then

Hadwiger’s theorem states that this valuation can be expressed as the weighted sum of

the intrinsic volumes of KN [86]. Intrinsic volumes (i.e., quermassintegrales, curvature

integrals, Minkowski functionals) are concepts from integral geometry and are defined

as integrals of curvature over a surface [81]. There are d + 1 intrinsic volumes for a d-

dimensional surface [81]. Thus, in the case of our geometric 2-dimensional Ising model,

we will obtain 3 intrinsic volumes, which we denote M0, M1, and M2. A rigorous defini-

tion of these concepts can be found in the following references [81, 87, 86, 88]. Fortunately,

for objects of 3 or less dimensions, these intrinsic volumes have a direct relationship to

common geometric and topological quantities. The relationships to these quantities for a
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(a) Additivity

(b) Rigid motion invariance

(c) Continuity

Figure 1.5: Illustration of the three valuation f : KN → R requirements for Hadwiger’s
theorem: (a) additivity, (b) rigid motion invariance, and (c) continuity. If these require-
ments are met, the valuation can be represented as a weighted summation of the intrinsic
volumes of the configuration KN .

Table 1.1: Intrinsic volumes and their geometric and topological quantities.

Intrinsic Volume Mi Geometric/Topological Quantity

M0(KN) = A(KN) 2-dimensional area A of KN

M1(KN) = U(KN) Boundary length (perimeter) U of KN

M2(KN) = χ(KN) Euler Characteristic χ of KN

2-dimensional collection KN ⊂ R2 can be found in Table 1.1 [70].

M0 of a collection KN ⊂ R2 is the area, M1 is the boundary length (perimeter) of KN ,

and the final intrinsic volume M2 is the Euler characteristic χ of KN . The M0 and M1

intrinsic volumes are geometric characteristics of the collection, where the third volume

M2 is a topological characteristic. The two geometric intrinsic volumes M0 and M1 are

simple to interpret. The third intrinsic volume M2, representing the Euler characteristic

χ of KN , is a topological descriptor of the shape formed by KN . The Euler characteristic

for our 2-dimensional shape KN is an alternating sum of the number of 0-dimensional

topological bases (known as connected components) and the number of 1-dimensional

topological bases (known as holes):

χ = # Connected Components − # Holes = β0 − β1 (1.6)
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where the rank of the first basis is known as the 0-th Betti number β0 ∈ Z+, and the

rank of the second basis is known as the 1-st Betti number β1 ∈ Z+; here, Z+ denotes

the set of all nonnegative integers. These bases represent the topological invariants of the

collection KN , which are the characteristics of the collection that are unchanged when

the collection is continuously deformed (e.g., stretched, twisted, but not cut or torn). The

Euler characteristic is covered in more detail in Chapter 2. We provide an illustration

of the computation of the intrinsic volumes for the geometric Ising model configuration

(shown in Figure 1.4) in Figure 1.6. We note here that we are not considering boundary

conditions for purposes of illustration.

(a) M0 = 11 (Units2) (b) M1 = 11 (Units) (c) M2 = 1 − 1

Figure 1.6: Illustration of the computation of Area (a), Boundary (b), and Euler character-
istic (c) for a given configuration KN ⊂ R2.

Thus, for our 2-dimensional geometric Ising model we have that a configuration KN

with a continuous, additive, rigid motion invariant valuation f : KN → R can be repre-

sented as follows:

f (KN) = c0M0(KN) + c1M1(KN) + c2M2(KN) (1.7)

where c0, c1, c2 ∈ R are constant values.
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1.4.3 Ising Hamiltonian

We can now develop a new Hamiltonian HG : KN → R for the geometric Ising model

that is a valuation defined in terms of a configuration’s geometry and topology through

the results of Hadwiger’s theorem. We follow the convention of the original Ising model

and represent the coefficients with a negative value:

HG(KN) = (−c0)M0(KN)︸ ︷︷ ︸
Covered Area

+ (−c1)M1(KN)︸ ︷︷ ︸
Total Boundary

+ (−c2)M2(KN)︸ ︷︷ ︸
Euler Characteristic

(1.8)

We can compare this newly defined Hamiltonian to the original Hamiltonian for the

Ising model:

H(σ) = (−h)∑
i

σi︸ ︷︷ ︸
External Field

+ (−J) ∑
⟨i,j⟩

σiσj︸ ︷︷ ︸
Spin-Spin Interaction

(1.9)

We find that there are several similarities between the two models. In particular, there

is a direct relationship between the influence of an external field (−h)∑i σi in the H(·)

model and the covered area (−c0)M0(KN) in the HG(·) model. A positive h value will

bias the Ising model to have positive spin and a positive c0 value will bias the model to

have a larger covered area. Vice-versa for negative values in both cases.

There is also a relationship between the energy of spin-spin interactions (−J)∑⟨i,j⟩ σiσj

and the total boundary (perimeter) of the geometric model (−c1)M1(KN). The formation

of a boundary in the geometric model represents the presence of adjacent spin states that

are different, whereas the absence of a boundary represents adjacent spin states that are

identical. This relationship was originally discovered by Rudolph Peierls in his argument

for the spontaneous formation of droplets (defects) in the 2-dimensional Ising model [89].

Here, droplets represent connected areas of a particular spin state. Peierls showed that
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the energy of these droplets (defects) is exactly related to the boundary (perimeter) of the

droplet [90, 91].

We have identified two direct connections between our proposed geometric model

Hamiltonian HG(·) with the original Hamiltonian H(·) proposed by Lenz and Ising.

However, we note that there is no direct consideration for the topology of the spin states

in the original Ising model Hamiltonian, whereas the proposed geometric model clearly

identifies the Euler characteristic as playing an important role in the energy of a given

spin configuration. The influence of (−c2)M2(KN) on the energy of the system is directly

related to the dominant topology of the spin configuration. For example, we conduct

multiple metropolis monte-carlo simulations of this newly proposed Hamiltonian HG(·)

to illustrate some of the interesting configurations that can be formed through the ad-

dition of topological information via the Euler characteristic shown in Figure 1.7. Here,

we explore the energy of a simulation as we adjust the parameter c2 of our Hamiltonian

while keeping the temperature constant and c0, c1 constant and positive. We see that as

the sign and weight of c2 change, the overall topology of the system becomes dominated

with either connected components (c2 is positive, Euler characteristic is positive) or holes

(c2 is negative, Euler characteristic is negative). We also see that the shape of the resulting

plot suggests the presence of a critical point (phase change) associated with the Euler

characteristic.

1.4.4 Concluding Remarks

The behavior exhibited by the model in Figure 1.7 is similar to that of many physical

systems. For example, we can think of the behavior of colloidal systems (e.g. polymers,

surfactants) as being modeled by this form of Hamiltonian. At one extreme (c2 is positive),

the colloidal system would exhibit behavior that maximizes connected components and

minimizes cycles, this would result in the formation of objects such as micelles [92].

The opposite would occur for the other extreme (c2 is negative) this would result in the
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Figure 1.7: Results of the total energy derived from multiple metropolis monte-carlo
simulations of the geometric Ising model using the HG(·) Hamiltonian while varying
the magnitude and sign of the coefficient for the Euler characteristic c2. Final states
for the monte-carlo simulation are also shown. The behavior exhibited by the model is
similar to that of many physical systems (e.g. colloids, polymers). A negative c2 induces
the formation of a single connected network structure with many holes, similar to the
behavior of many gel systems. With a large positive c2 we see the formation of many
connected components, similar to what might be seen in the formation of micelles. The
energy profile also illustrates the presence of a critical point and phase change associated
with the Euler characteristic.
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formation of a single connected network structure with many holes which are found

in gel systems [93]. These geometric and topological descriptors of energy have also

been applied in characterizing the curvature energy of membranes [94], in quantifying

the impact of fluid morphology on capillary condensation [95], and in understanding

the large scale structure of the universe [96]. Thus, topology and geometry provide a

powerful measure of the physical state of a system and its energy through the connections

made by Hadwiger’s theorem. The incorporation of topological and geometric measures

of data, especially in the field of Chemical Engineering, can provide researchers with new

ways to understand the behavior of their systems and uncover relationships and emergent

phenomena that would be otherwise impossible to measure or simulate.
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Part I

T O P O L O G Y
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Chapter 2

T H E E U L E R C H A R A C T E R I S T I C

The content of this chapter is published in [31]

2.1 Introduction

Datasets are mathematical objects (e.g., point clouds, matrices, graphs, images, field/functions)

that have shape [97]. Characterizing the shape (geometrical features) of these objects re-

duces the dimensionality and complexity of the data while minimizing information loss,

but is not always straightforward [98]. Popular tools from statistics, linear algebra, and

signal processing (e.g., moments, correlation functions, singular value decomposition,

convolutions, Fourier analysis) do not directly characterize geometrical features of data

objects; instead, such tools are used to characterize other types of features (e.g., variance

and frequency content).

Topology is a branch of mathematics that provides powerful tools to characterize the

shape of data objects. One such tool is the so-called Euler characteristic (EC); the EC, orig-

inally used for the characterization of polyhedra [99], is now broadly used in scientific

areas such as random fields [100, 101, 102], cosmology [103, 104, 105], material science

[94, 106, 107, 108], thermodynamics [109, 110, 111], and neuro-science [112, 113]. To the

best of our knowledge, the EC has seen limited applications in engineering and of these
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applications most are focused on the characterisation of the permeability of porous media

and modelling geometric states of fluids within porous media [108, 114]. However, a fact

that is often overlooked in this literature is that the EC provides a general descriptor of

different types of topological spaces (this enables the characterization of a much wider

range of data objects). This generality arises from the fact that (i) one can use transfor-

mations to map a data object into another type of object and (ii) the EC has fundamental

connections with statistics, field theory, linear algebra, and graph theory.

In a nutshell, the EC is a descriptor that characterizes geometrical features of a topo-

logical space defined by a data object. This characterization is accomplished by per-

forming a decomposition of the space into a set of independent topological bases. This

decomposition is similar in spirit to an eigen-decomposition of a matrix; here, the matrix

object is decomposed into a set of independent basis vectors. The EC is a scalar integer

quantity that is defined as the alternating sum of the rank of the topological bases. The

EC is often combined with a transformation technique known as filtration to characterize

the geometry of different objects such as matrices, images, fields/functions, and weighted

graphs. This characterization is summarized in the form of what is called an EC curve

which provides a direct approach to quantify the topology of an object.

Topological descriptors such as the EC offer advantages over statistical descriptors

[94]. For instance, statistical descriptors such as Moran’s I, which measures spatial

structure via spatial autocorrelation, or correlation matrices do not directly capture the

global structure of the data (thus limiting the ability to characterize geometrical features)

[115, 116]. High-order statistical descriptors such as 2-point correlation functions, which

have been employed in characterizing the structure of heterogeneous materials, are also

limited at capturing spatial and morphological features of the data (especially if the data

object is irregular) [117, 70]. However, there exists well-developed theory that connects

the EC to the geometry of random fields [101, 102]. Such work establishes that the EC

encodes information of simple statistical descriptors such as means and variances and of

more complex descriptors (e.g., space-time covariances) [100]. These connections between
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topology and statistics are powerful and provide a mechanism to understand the emer-

gence of topological features from physical behavior (e.g., diffusion phenomena). The EC

also connects with concepts from linear algebra and graph theory; for example, a matrix

or an image can be represented as a weighted graph and the geometry of such graph can

be quantified using the EC (a graph is a 2D polyhedron). Establishing these connections

is important because data objects encountered in practice are often complex and require

the combined use of different characterization techniques. For instance, in brain analysis,

one often characterizes a multivariate time series (a collection of time series obtained from

different locations in the brain) by constructing a correlation matrix. The topology of this

matrix is then reduced to an EC curve through a filtration. The EC curve provides a low-

dimensional descriptor that characterizes the spatio-temporal structure of the brain. It is

also important to emphasize that the EC curve is a much simpler topological descriptor

than the so-called persistence diagrams used in most of the topological data analysis (TDA)

literature [97]. Persistent diagrams contain more topological information but are more

difficult to analyze and interpret.

The aim of this chapter is to present an applied perspective on the EC. We briefly

discuss the mathematics of the EC and discuss how to use filtration operations to char-

acterize diverse data objects. This discussion will establish connections with field theory,

graph theory, and linear algebra. We then bring our focus to applying these concepts to

tackle diverse problems arising in science and engineering; in particular, we discuss how

the EC can be used in process monitoring by analyzing correlation structures. We also

apply the EC in the analysis of both 2D spatial and 3D spatio-temporal fields; these data

objects are derived from reaction-diffusion partial differential equations (PDEs), micro-

graphs of liquid crystals, and flow cytometry. In these examples, we show how to use the

EC as a data pre-processing (reduction) step that can facilitate machine learning tasks.

We also provide scripts and datasets to help the interested reader apply these tools.
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2.2 Introduction to the Euler Characteristic

Around 1735, Euler discovered a relationship between the number of vertices, edges, and

faces of a convex polyhedron (which is now known as the EC). The study and generaliza-

tion of this formula, specifically by Cauchy and L’Huilier, is at the origin of topology. The

EC is a scalar integer value that summarizes the shape of a topological space (an object).

A topological space is a set with a structure defined by continuity and connectedness

which also represents the ideas of limits or closeness based on relationships between the

sets of the space rather than a specific distance or metric [118] . Topological spaces are

a central unifying notion that appears in virtually every branch of modern mathematics

(e.g., capture graphs and manifolds). The EC is a topological invariant quantity (e.g.,

does not change with deformations such rotation, streching, bending). For instance, the

topology of a graph is fully defined by its node-edge connectivity (the location of the

nodes and edges is irrelevant); as such, graphs that appear to be visually distinct might

have the same underlying topology (and thus have the same EC value). In this chapter,

we will introduce the EC from the perspective of data objects that can be represented

as graphs (a 2D polyhedron) and manifolds (e.g., images and fields/functions). Graphs

and manifolds are special types of topological spaces but, as we will see, these spaces are

sufficient to represent a vast number of data objects encountered in chemical engineering

applications such as the analysis of industrial chemical process sensor data (graph) and

soft material experimental images (manifold) .

We begin with a general definition of the EC (which we denote as χ ∈ Z) for a 2D

manifold (see Figure 2.1). The EC of the manifold is an alternating sum of the number

of 0-dimensional topological bases (known as connected components) and the number of

1-dimensional topological bases (known as holes):

χ = # Connected Components − # Holes = β0 − β1 (2.1)
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(a) Example object (2D shape)

(b) EC of example object (χ)

Figure 2.1: Illustration on how topology can be quantified via the Euler characteristic.
(a) A 2D shape that has two connected components and three holes. (b) The EC is an
alternating sum of the number of connected components and holes and thus χ = −1.

There are only two sets of topological bases (connected components and holes) that

describe a 2D object. The rank of the first basis is known as the 0-th Betti number β0 ∈ Z+,

while the rank of the second basis is known as the 1-st Betti number β1 ∈ Z+; here, Z+

denotes the set of all nonnegative integers. The relationship between the number of

topological bases and dimensions holds for n-dimensional shapes; as such, the EC of an

(n + 1)-dimensional shape is given by:

χ =
n

∑
i=0

(−1)iβi (2.2)

To simplify our notation, we will use the generalized topological representation of

the Betti numbers βn ∈ Z+; here, the n-th Betti number βn is the number of unique n-

dimensional topological bases for a given shape [100].

2.3 EC for Graphs

A graph object G(V, E) is a 2D topological space (a 2D polyhedron). The EC of this object

is given by:

χ = |V| − |E| = β0 − β1 (2.3)

where |V| ∈ Z+ is the number of graph vertices (nodes) and |E| ∈ Z+ is the number
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of graph edges. We define v(e), v′(e) ∈ V as the support nodes of edge e ∈ E. One can

show that |V| − |E| equals the number of connected components of the graph (β0) minus

the number of holes (cycles) of the graph (β1) [119].

One can use the EC to characterize edge-weighted graphs G(V, E, wE), where each edge

e ∈ E has an associated scalar weight wE(e) ∈ R. Similarly, one can use the EC to charac-

terize node-weighted graphs G(V, E, wV), where each node v ∈ V has an associated scalar

weight wV(v) ∈ R. This characterization is done via a process known as a filtration which

leads to the creation of a topological descriptor known as an EC curve. The ability to

deal with weighted graphs enables analysis of data objects that are represented as dis-

crete fields, such as matrices and images. For example, a correlation matrix (a square and

symmetric matrix) can be represented as an edge-weighted graph in which the nodes are

the random variables, the edges are the connections between variables, and the weights

are the degrees of correlation between pairs of random variables (Figure 2.2). A grayscale

image can be represented as a node-weighted graph in which the nodes are pixel loca-

tions, the weights are the intensity of the pixels, and the edges connect adjacent pixels

to form a grid (Figure 2.3). A 2D discrete field (e.g., obtained from a discretized PDE)

can also be represented as a node-weighted graph; here, the nodes are locations in the

discretization mesh and the weights are values of a variable of interest at such locations

(e.g., temperature). It is important to emphasize that graphs are topological spaces that

do not live in a Euclidean space; as such, the location of the nodes and edges is irrelevant

(topology is fully dictated by the node-edge connectivity). Thus, the EC and associated

EC curve are focused on the global topology of the graph during a filtration, and not on

specific connectivity information (e.g. the number of edges connected to node x) which

it does not track.

To characterize the topology of an edge-weighted graph G(V, E, wE), we perform a

filtration of the graph by eliminating edges that have weights less than or equal to a

certain threshold wE(e) ≤ ℓ (with ℓ ∈ R). Filtration gives a graph that is sparser than the

original graph and that has an associated EC value. We can repeat the filtering process



26

by progressively increasing the threshold value ℓ and with this obtain new graphs and

associated EC values. One stops the process once the threshold reaches the largest weight

in the original graph G(V, E, wE); this gives the original graph itself and and its associated

EC value. To formalize the filtration process, we define the following filtration function (see

Figure 2.2).

Definition 2.3.1. Graph Edge Filtration Function ( fE): For an undirected edge-weighted

graph G := G(V, E, wE) ∈ G with scalar edge weight values {wE(e) ∈ R : e ∈ E} the

filtration function fE : G → R is defined such that fE(G) = maxe∈E wE(e). The pre-image

f−1
E (ℓ), with ℓ ∈ R, is given by the graph Gℓ := G(V, Eℓ, wEℓ

) where Eℓ = {e ∈ E :

wE(e) ≤ ℓ}.

The pre-image of the filtration function is used to create a set of nested graphs; this is

done by defining a sequence of increasing thresholds ℓ1 < ℓ2 < ... < ℓm with associated

graphs:

Gℓ1 ⊆ Gℓ2 ⊆ ... ⊆ Gℓm ⊆ G (2.4)

Here, we note that Gℓm = G if ℓm = maxe∈E wE(e) (the last graph in the filtration is

the original graph). We also re-emphasize that the density of the graph (its number of

edges) increases with the threshold value; specifically, Gℓ1 is the graph with lowest density

(highest sparsity) and Gℓm is the graph of highest density (lowest sparsity).

We can define a similar filtration for node-weighted graphs; here, nodes are fil-

tered/eliminated based on their weight values. The filtration function for this object (see

Figure 2.3) can be defined as follows.

Definition 2.3.2. Graph Node Filtration Function ( fV): For an undirected node-weighted

graph G := G(V, E, wV) ∈ G with scalar node weight values {wV(v) ∈ R : v ∈ V} the

filtration function fV : G → R is defined such that fV(G) = maxv∈V wV(v). The pre-image

f−1
V (ℓ) is given by the graph Gℓ := G(Vℓ, Eℓ, wVℓ

) where Vℓ = {v ∈ V : wV(v) ≤ ℓ} and

Eℓ = {e ∈ E : v(e), v′(e) ∈ Vℓ}.
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As in the edge-weighted case, the pre-image of the node filtration function is used to

create a set of nested graphs:

Gℓ1 ⊆ Gℓ2 ⊆ ... ⊆ Gℓm ⊆ G (2.5)

Here, we highlight that node filtration has the effect of eliminating both nodes and edges;

in other words, if a node is eliminated, we also eliminate its supported edges. We again

note that Gℓm = G if ℓm = maxv∈V wV(v) (the last graph in the filtration is the original

graph).

For each graph Gℓ in the node or edge filtration process, we compute and record

its EC value χℓ . This information is used to construct the so-called EC curve, which

contains the pairs (ℓ, χℓ). The EC curve thus provides a topological descriptor for edge-

or node-weighted graphs. Furthermore, it is important to note that the edge and/or node

weights are a critical component of this analysis as this is what allows for the filtration to

be performed. Without this information only a single EC value can be computed which is

ineffective at distinguishing graphs with different topologies if they have the same ratio

of nodes and edges.

2.4 EC for Manifolds

The EC can also be used for characterizing the geometry of topological spaces known as

manifolds [120, 121, 122]. Specifically, we consider an n-dimensional manifold M that is

defined by a chart (X, f ), where X ⊆ Rn is an open subset of M (a Euclidean space) and

the field/function f : X → R is a homeomorphism (a one-to-one, onto, and continuous

mapping with an inverse mapping that is also continuous). In simple terms, the manifolds

of interest involve an n-dimensional continuous domain X and field f : X → R. We will

say that field f is n-dimensional if X ⊆ Rn and we say that this field is embedded in an

(n + 1)-dimensional manifold (because the dimension of the chart (X, f ) is n + 1). For
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(a) Edge weighted graph filtration.
(b) EC Curve for the graph filtration.

Figure 2.2: (a) Filtration of a correlation matrix, which is represented as an edge-weighted
graph. The random variables are treated as nodes, and the correlation between the vari-
ables are treated as edge weights wE(e). As the level set of the filtration function fE
increases in value, edges that are below the given threshold are added into the result-
ing graph f−1

E , revealing the topology of the correlation matrix over multiple correlation
thresholds. (b) Resulting EC curve for the filtration of the edge-weighted graph in (a).

(a) Filtration of node-weighted graph (image). (b) EC Curve for the graph filtration.

Figure 2.3: (a) Filtration of a simple grayscale image, which is represented as a node-
weighted graph, with the graph node filtration function fV . (b) Resulting EC curve for
the filtration of the grayscale image in (a).
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instance, in Figure 2.4, we show a 1-dimensional (1D) field/function f : X → R with

domain X ⊆ R; this field is embedded in a 2D manifold M defined by the chart (X, f ).

In our 1D field example, the horizontal coordinate of the chart is X and the vertical

coordinate is f . A 1D field arise, for instance, as the solution of an ordinary differential

equation (e.g., the domain is defined by a time coordinate). Another example of a 1D

field is the probability density function of a univariate random variable. Similarly, a

2D field f : X → R with X ⊆ R2 is embedded in a 3D manifold M (given by a 3D

chart). Formalizing these definitions is important in characterizing the topology of fields.

Higher dimensional fields arise, for instance, as solutions of PDEs (e.g., the domain is

defined by space-time coordinates) or can be probability density functions of mutivariate

random variables. These high-dimensional fields often have complex topology and are

notoriously difficult to analyze/characterize.

The chart (X, f ) is also often referred to as the graph of field f . For n = 2 (2D), the

chart (X, f ) is analogous to the concept of a node-weighted graph G(V, E, wV) arising

in graph theory, in the sense that the domain X captures spatial locations (the nodes

V) and the function f captures values at the spatial locations (the node weights wV).

This analogy becomes clearer when the domain X is a 2D box and G(V, E, wV) has a

mesh topology; here, the mesh can be seen as a discrete approximation of the continuous

domain X. Mesh topologies arise in images, matrices, and discretized PDEs. We will

define the chart associated with a given manifold using the notation G(X, f ) and we will

refer to this as a field graph. This definition introduces some abuse of notation (analogous

to G(V, E, wV)) but we do this in order to emphasize connections between field graphs

and node-weighted graphs. This will facilitate the explanation of the concept of filtration

in a field context. We also emphasize that the concept of a field graph generalizes to

arbitrarily high dimensions (while a graph is inherently a 2D object). We also emphasize

that a graph does not live in a Euclidean space (while X does). The fact that X is a

Euclidean space indicates that there is a notion of order.

A filtration can be applied to continuous fields in the same way that it is applied to
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node-weighted graphs (discrete case); however, this now requires a filtration function that

is defined over continuous domains. We can define a filtration function via superlevel sets

of the field [123].

Definition 2.4.1. Superlevel Set: Given a manifold M with field f : X → R and domain

X ⊆ Rn, the superlevel set Xℓ at a threshold ℓ ∈ R is defined as:

Xℓ = {x ∈ X : f (x) ≥ ℓ}. (2.6)

The super level set is has an associated field graph Gℓ := G(Xℓ, fℓ) with fℓ defined over

Xℓ.

The field graph Gℓ = (Xℓ, fℓ) contains all points of the manifold M that have a function

value greater than or equal to ℓ (it is a filtration of the manifold). Similar to the node-

weighted graph case, the filtration creates a nested set of field graphs which are obtained

by defining a sequence of decreasing filtration values ℓ1 > ℓ2 > ... > ℓm with associated

field graphs:

Gℓ1 ⊆ Gℓ2 ⊆ ... ⊆ Gℓm ⊆ G (2.7)

Here, the field graphs are sparser with larger threshold values; we also have that Gℓm =

G(X, f ) (the original graph) if ℓm = minx∈X f (x). For each superlevel set we obtain the

field graph Gℓ and we compute and record its EC value χℓ (e.g., we determine the number

of connected components and number of holes). This information is used to construct an

EC curve, which contains the pairs (ℓ, χℓ).

It is important to highlight that the EC curve provides a topological descriptor for

a general n-dimensional field. The types of topological bases change with dimension;

for instance, for a 1D field (e.g., a temporal field) we only have connected components

(χ = β0) while for a 2D field (e.g., a space-time field) we have connected components and

holes (χ = β0 − β1). It is also often convenient to track the evolution of the individual

Betti numbers through the filtration; in other words, we keep track of the pairs (ℓ, βℓ).
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In Figure 2.4, we present multiple superlevel sets of a 1D field and the corresponding

EC curve. Since this is a 1D field, the EC of a given superlevel set only involves the num-

ber of connected components. Filtration captures topology by revealing a local maximum

(connected component is formed) or a local minimum (two components are connected);

thus, the EC compactly encodes information about the critical points of the field and their

relations with respect to the function shape, which are the topologically interesting char-

acteristics of a continuous function or field. The critical points of fields are key because they

define their topological features.

(a) Superlevel set filtration (b) EC curve

Figure 2.4: (a) Superlevel set filtration of a 1D field (embedded in a 2D manifold). The
horizontal lines represent the thresholds of the filtration and these cut through the 2D
field graph. The topology of the graphs Gℓ captures the critical points of the field. When
a local maximum is passed, a new connected component is formed (β0 increases). When
a local minimum is passed, two separate components are joined into one component (β0
decreases). (b) Resulting EC curve for the filtration of the function in (a). The EC curve
captures the location of critical points in the function and their relationships via the shape
of the function.

Superlevel set filtration is generalizable and extends to higher dimensional fields.

Such fields appear in scientific areas such as geophysics [124, 125, 126], climatology

[126, 127], astrophysics [128], and medical imaging [129, 130, 131, 132]. Fields can be

used to represent many important data objects such as images (2D fields embedded in

a 3D manifold), volumes (3D fields embedded in a 4D manifold), and spatio-temporal

fields obtained from PDEs (4D fields embedded in a 5D manifold). Theoretical connec-

tions between integral geometry, statistics, and topology have shown that the EC provides
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a general descriptor to characterize the behavior of these complex data objects, such as

identifying higher order statistical characteristics of these data objects (e.g. statistics of

derivatives of the data) or capturing global properties of the data, such as the magnitude

and frequency of spatial or temporal flucturations, without the need for assumptions such

as isotropy or stationarity [133, 100].

(a) Superlevel set filtration (b) EC curve

Figure 2.5: (a) Superlevel set filtration of a 2D field (embedded in a 3D manifold). The
plane represents the threshold of the filtration and this cuts through the 3D field graph.
As the filtration threshold is passed from top to bottom, the EC of the resulting field
graph Gℓ is computed. (b) The EC curve constructed from the filtration of the field. The
2D fields capture the evolution of the topology of the varying superlevel sets during the
filtration (note emergence of connected components and holes).

The filtration of a high-dimensional field is analogous to that used in the 1D case. The

difference is the number and nature of the topological features captured in higher dimen-

sions. For instance, for a 2D field (embedded in a 3D manifold), we capture both con-

nected components and holes. Specifically, the threshold is a 2D plane that cuts through

the 3D graph. When the plane passes through a local maximum we have that connected

components are formed, when it passes a saddle point components are joined to form

holes, and when a local minimum is passed holes are filled. This reveals that filtration

captures incidence of different types of critical points in the field (its topological features)

and this information is summarized in the EC curve. This process is illustrated in Figure

2.5; here, we see that the EC curve contains a single minimum and a single maximum.



33

Figure 2.6: Connected components (β0) and holes (β1) that make up the EC curve for
the 2D field in Figure 2.5. The structure of the EC curve is a direct reflection of the
changing topology of the superlevel sets during the filtration. The local maxima of the
field represent connected components (β0) which are eventually joined via saddle points
to form holes (β1) that are filled in once local minima of the field are passed by the
filtration.

The reason for this structure is revealed when we visualize the individual topological

bases for our 2D field (see Figure 2.6). Here, we see two distinct areas of the filtration,

the first is dominated by connected components (β0) which causes the maximum and the

second is dominated by holes (β1) which causes the minimum. These topologically dis-

tinct components of the filtration represent the presence of local maxima (high β0 values)

and saddle points/local minima (high β1 values) in the 2D field. Betti numbers reveal

differences in the topology of a data object at varying thresholds and have been used in

analysis that is complementary to the EC itself [104]. Specifically, analyzing individual

Betti numbers can provide additional insight into the appearance/disappearance of spe-

cific topological features throughout the filtration process. This approach is at the core of

the so-called persistence diagrams (which summarize the appearance/disappearance of

topological features). Persistent diagrams, while more informative, are difficult to inter-

pret and analyze primarily because the diagram is constructed from an unordered set of

intervals which are not amenable to statistical computations (e.g. means and variances)
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[134, 135]. For this reason, it is difficult to analyze persistence diagrams directly or to use

them as a data preprocessing step for further analysis in statistical and machine learning

methods without further transformation.

2.5 Case Studies

In this section, we illustrate how to use the EC to characterize diverse datasets arising

in applications of interest to chemical and biological engineers . All scripts and data

needed to reproduce the results can be found here https://github.com/zavalab/ML/

tree/master/ECpaper.

2.5.1 Brain and Process Monitoring

One is often interested in characterizing the topology of graphs (such as those arising

in brain networks or process networks) as a way to identify abnormal behavior. As an

example, we might want to relate the topological structure of the functional connections

of brains at different stages of development (adult vs. child) or to identify diseases. Here,

we illustrate how to do this using a real dataset taken from the work of Richardson and

co-workers available in OpenNeuro (ds000228) [136]. We then show how to use this same

approach to identify faults in chemical processes.

In the brain dataset, adults and children watch a short film and the activity in different

regions of the brain are measured with functional magnetic resonance imaging (fMRI).

Here, the signal in each region i = 1, ..., n is a univariate random variable Yi and we

denote the collection of signals as the multivariate random vector Y = (Y1, ..., Yn). We

denote the observation of the signals at time t = 1, ..., m as Y(t) ∈ Rn. This dataset

is thus a multivariate time series; the series is used to construct a functional network,

which is given by the sample inverse covariance matrix Cov[Y]−1 ∈ Rn×n (also known as

precision matrix). This procedure is summarized in Figure 2.7. The precision matrix is

represented as an edge-weighted graph G(V, E, wE); here, vertices represent the different

https://github.com/zavalab/ML/tree/master/ECpaper
https://github.com/zavalab/ML/tree/master/ECpaper
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(a) Multivariate time series (b) Precision matrix (c) Functional network

Figure 2.7: (a) Brain signals measured during an fMRI study of a developed brain while
watching a film. The signals measure brain activity in different regions of the brain. (b)
The precision matrix constructed from the brain signals. (c) Functional network represen-
tation of the precision matrix. The width of the edges represent the strength of the partial
correlation between the different regions of the brain.

regions of the brain and edge weights w(e) ∈ [0, 1] represent the absolute value of the

partial correlation between different regions. From Figure 2.7, we can see that these

functional networks have a complex structure, making them difficult to characterize.

We perform a filtration in order to characterize the precision matrix of different brains.

This filtration gives an EC curve for each brain that is used to understand topological

differences between developed and underdeveloped brains (see Figure 2.8). Here, we

can see that there is a perceptible difference between the average EC curves for different

brain types. This illustrates the effectiveness of the EC curve in identifying structural

differences in complex functional networks [137, 138]. Intuitively, a developed brain has

a more widespread correlation structure, and thus the EC curve decays more slowly.

Interestingly, the brain monitoring problem is analogous (from a mathematical view-

point) to the problem of chemical process monitoring. This is because, fundamentally,

any multivariate time series can be represented as a precision matrix. In brain monitor-

ing methods, such as fMRI, the goal is to identify differences in brain activity that may be

a result of genetic defects, disease, or different stimuli. In chemical process monitoring,

we seek to identify the presence of faults, disturbances, or problems in equipment oper-

ation. Brain monitoring typically uses observations on electrical signals, blood flow, or

oxygen levels; in a chemical processes we use observations on temperatures, pressures,
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(a) Brain signal time series. (b) EC curve from precision matrix filtration.

Figure 2.8: (a) A representation of the filtration process showing the addition of new edges
as the level set of correlation is increased. The addition of the edges reduces the number
of connected components (β0) and increases the number of cycles (β1). (b) Comparison
of the average EC curves for the brain functional networks of individuals with developed
and underdeveloped brains while watching a film. The difference between the two curves
demonstrates that the EC, along with the associated filtration, can be an effective tool in
differentiating complex networks .

and flows (see Figure 2.9). To highlight this analogy, we provide a fault detection case

study for the Tennessee Eastman process dataset [4]. This dataset contains a simulation

of a chemical process that is monitored using 52 variables (Figure 2.9). The goal is to use

time series for such variables to identify faulty behavior. The variables monitored by the

different sensors of a chemical process (in different locations) are Yi, i = 1, 2, ..., n and the

observations are Y(t) ∈ Rn for t = 1, ..., m. As in the brain example, this multivariate time

series is used to construct the precision matrix Cov[Y]−1 ∈ Rn×n. We again represent

this matrix as an edge-weighted graph G(V, E, wE) and use filtration to determine its EC

curve. We compute EC curves for precision matrices obtained from different multivariate

time series (containing different types of faults).

The Tennessee Eastman dataset contains multiple simulations of the chemical process;

here, some simulations contain faults and others do not. For each simulation, we con-

struct an edge-weighted graph from the precision matrix and leverage the EC curve to

identify whether or not the given process is experiencing a fault based upon the topo-
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(a) Brain functional network filtration. (b) Chemical process schematic.

Figure 2.9: (a) Representation of the brain and the different area signals obtained during
fMRI. The edges represent interactions between the regions of the brain computed via the
precision matrix. (b) A simplified representation of the Tennessee Eastman process. The
process is monitored using temperature sensors (TS), pressure sensors (PS), flow sensors
(FS) and level sensors (LS) distributed in different regions. While the context of the two
systems are vastly different, the type of data produced (i.e. multivariate time series) are
identical. This suggests that methods used in the analysis of brain functional networks
for the detection of disease can be directly applied to chemical process systems to detect
faults or process issues.
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logical structure induced by the correlations between the process variables (Figure 2.10).

Figure 2.11 shows examples of the precision matrices derived from process simulations

that either contain or do not contain faults, demonstrating that the identification of faults

from the precision matrix is not a trivial task.

(a) Process sensor time series.
(b) Precision matrix. (c) Functional network.

Figure 2.10: (a) Process sensor measurements during the operation of the Tennesee East-
man process system simulation. The measurements represent the output of the various
temperature, pressure, flow, and level indicators during the simulation. (b) The precision
matrix constructed from the process sensor measurements in (a). This precision matrix
is then used to construct an EC filtration. (c) Simplified graphical representation of the
precision matrix derived from the process sensor measurements.

Figure 2.11: Visualization of multiple precision matrices derived from chemical process
simulations with and without faults. Distinguishing these matrices is difficult, demon-
strating the inherent complexity in identifying faults in a process with the precision ma-
trix alone.

Figure 2.12 demonstrates that there is a quantifiable difference between the process
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operating with no faults, and the process operating with faults. We also note that there

is a separation into two groups within the faulty systems. The two groups of faults deal

with with either feed temperature and reactor faults, or feed composition and condenser

faults. The reason for this separation is of interest and will be explored in future work.

This demonstrates that the EC can be used to detect faults based purely on the topolog-

ical structure of the precision matrix. Note that this is a method that accounts for the

space-time relationships of the entire process (all-at-once) and does not require statistical

assumptions on the data (e.g., independence of observations). The simplicity of (2.3) also

ensures that the EC can be rapidly calculated via the number of edges and vertices of a

graph. The computation of the EC and the associated EC curve requires a simple thresh-

olding operation (to obtain the number of nodes and edges in the filtered graph) and

a few addition and subtraction operations (to sum the number of edges and nodes and

compute the EC value) at each point in the filtration, because of this the method scales

well with large networks as the required computations are simple and efficient.

(a) Chemical process network filtration.
(b) EC curves from a network filtration.

Figure 2.12: (a) Representation of the filtration process showing the addition of new
edges as the level set threshold for correlation is increased. (b) Comparison of the EC
curves for the Tennesee Eastman process under faults and no faults. There is also a
notable separation of the faults into two groups, one which represents faults primarily
associated with feed temperatures or reactor conditions, and the other associated with
feed composition changes or condenser faults.
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2.5.2 Spatio-Temporal Data Analysis

We now use the EC to characterize the spatio-temporal behavior of fields for a reaction

diffusion system. Here, the fields are solutions of a PDE model with different diffusion

(D ∈ R) and reaction (R ∈ R) coefficients. The coefficients can be manipulated to generate

fields with different topological features, which capture different mechanistic behavior

(e.g., reaction-limited or diffusion-limited). The model is described by the coupled PDEs:

∂u(x, t)
∂t

= D
(

∂2u(x, t)
∂x2

1
+

∂2u(x, t)
∂x2

2

)
+ R(v(x, t)− u(x, t)) (2.8a)

∂v(x, t)
∂t

= D
(

∂2v(x, t)
∂x2

1
+

∂2v(x, t)
∂x2

2

)
+ R(u(x, t)− v(x, t)) (2.8b)

Here, u(x, t) : Dx × Dt → R and v(x, t) : Dx × Dt → R represent the concentrations

for the reactants over space and time. The spatial domain is continuous and given by

Dx := [0, n]× [0, n] ⊂ R2; the temporal domain is Dt := [0, T] ⊂ R. We thus have that

u(x, t) and v(x, t) are 3D fields (embedded in a 4D manifold). Here, we hypothesize that

the topological features of these fields are expected to change with the parameter pair

(D, R) (the structure changes with governing mechanism).

An example field generated for a given parameter pair (D, R) is shown in Figure

2.13. Here, we focus on characterizing the topology of u(x, t) for different values of the

parameters. To do so, we generate 30 fields (obtained using different random initial

conditions) for each of the following combinations: (D = 3, R = 0.8), (D = 3, R =

0.4), and (D = 6, R = 0.8). The goal in the analysis of this dataset is to cluster the

realizations into groups that reflect the parameters of the models (e.g., to detect changes

in the underlying mechanism). For each simulation, we represent u(x, t) as a spatio-

temporal field (Figure 2.13). We construct superlevel sets for each spatio-temporal field

and record the EC of the resulting superlevel sets. This process is similar to the examples

shown for the 1D and 2D cases (Figures 2.4 and 2.14); however, the filtration performed
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here can no longer be visualized as a simple plane that slices the field. This highlights

the versatility of using the EC to characterize datasets over high dimensions.

(a) 2D snapshots

(b) 3D space-time field

(c) 2D snapshots

(d) 3D space-time field

Figure 2.13: (a,c) Snapshots obtained during evolution of reaction-diffusion system(2.8a)-
(2.8b) with different parameter sets (D, R). (b,c) Collection of snapshots in 3D space-time
field. It is difficult to distinguish the realizations of the models with different parameter
values, regardless of whether they are viewed via individual snapshots or as 3D space-
time fields.

The average EC curves for the three different parameter settings are presented in

Figure 2.14. Here, it is clear that the EC reveals a change in the topological structure.
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To perform clustering, we represent the EC curve for sample j = 1, ..., n as a vector χj ∈

Rm; the entries of this vector are the EC value of the level set. Each EC vector can be

stacked into a matrix [χ1 χ2 χ3 ... χn]T ∈ Rn×m. We obtain a matrix for each of the

three parameter settings. We apply a singular value decomposition to these matrices and

visualize the data projected onto the two leading principal components. Figure 2.14 shows

the results; note that there is a distinct clustering of the data into three separate groups.

This confirms that the EC curve captures the topological differences of the fields obtained

under different parameter settings. For comparison, we compute the Fourier transform

of the data to obtain the frequency spectrum and project the spectrum to two dimensions

using a singular value decomposition. The results are shown in Figure 2.14; here, we

can see that the frequency spectrum of the data does not contain enough information to

separate the different types of fields. This indicates that the EC contains information that

cannot be captured by the frequency spectrum.

(a) Average ECs (b) SVD of ECs (c) SVD of Fourier spectrum

Figure 2.14: Demonstration of the EC’s ability to capture topological differences induced
by different reaction-diffusion parameters. (a) Average EC curves for the three different
parameter settings. The EC is able to separate the realizations of the reaction-diffusion
system. (b) SVD projection of the EC curves onto their two leading principal components,
revealing a distinct clustering of the different types of space-time fields. (c) SVD projection
of Fourier spectrum of the space-time fields; here, there is no distinct separation between
the different fields.

2.5.3 Image Analysis

We explore the topological characterization of simulated micrographs for liquid crystal

(LC) systems. These micrographs capture their responses to different reactive gaseous
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environments [54, 139]. These LC systems start with homeotropic alignment of a thin film

on a functionalized surface. When the LC system is exposed to an analyte, the analyte

diffuses through the LC film and disrupts the binding between the LC and the surface.

This disruption triggers a reorientation of the LC film and forms complex optical patterns

and textures simulated via random fields. Figure 2.15 provides images (micrographs)

that capture the response of an LC system to a couple of different environments. For this

dataset, we want to characterize the topological differences between the textures of the LC

systems when exposed to the different envrionments and use this information to classify

the datasets. This provides a mechanism to design gas sensors. Such classification tasks

have been recently performed succesfully using convolutional neural networks [54]; these

machine learning models, however, contain an extremely large number of parameters and

are difficult to train.

(a) LC response to environment 1 (b) LC response to environment 2

Figure 2.15: Comparison of the visual response of an LC system to two different gaseous
environments. We can see that there are perceptible differences between the responses,
but these differences are difficult to quantify due to the heterogeneity present. The EC
is able to effectively summarize the topological differences and similarities in the images,
allowing for an accurate separation of the responses.

The micrographs of the LC systems at their endpoint are discrete fields (matrices),

which we represent as node-weighted graphs. The EC curves for such graphs are ob-

tained via filtration. The filtration process seeks to characterize regions of high and low
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intensity in the A* channel. We highlight that one can also think of an image as a discrete

approximation of a continuous 2D field; this emphasizes that the filtration process for a

discrete field is analogous to the filtration process of a node-weighted graph (we perform

filtration over weight values instead of over field values).

The average EC curves for the LC systems exposed to the two gaseous environments

are presented in Figure 2.16. Here, we also show the projection of the EC curves onto the

first two principal components using SVD. We can see that there is a strong separation

between the two datasets. As a comparison, we cluster the micrographs by applying SVD

directly to the images (as opposed to the EC curves) and by computing the Fourier trans-

form of the images, which decomposes an image into a weighted set of spatial frequency

functions. We chose these methods for comparison because they are commonly used in

characterizing image textures [141, 142]. We can see these traditional techniques do not

provide a clear separation (Figure 2.17). Figure 2.18 shows the distribution of the first

principal component of the EC values and compares this with the distribuiton of Moran’s

I values which capture average spatial autocorrelation in the images by computing spatial

autocorrelation in neighborhoods around each pixel in the image and averaging results

over the entire image [143]. It is clear that the ECs provide a sharper separation than

Moran’s I; we conclude that EC is a more effective descriptor. We attribute the limitations

encountered with traditional tools (such as SVD, Fourier, and Moran’s I) to the spatial

heterogeneity of the images (see Figure 2.15) [70].

To further demonstrate the usefulness of the EC; we used the EC curve (a vector)

as an input to a support vector machine (SVM) for classification of the two datasets. We

compare this classification approach against approaches that use SVM with: (i) raw image

as input and (ii) Fourier spectrum as input. Using the EC vector as an input, we were

able to classify the two datasets with 95± 6% accuracy, compared to 66± 7% and 68± 7%

accuracy obtained with raw images and Fourier spectrum. It is particularly remarkable

that, after reducing the images to an EC curve, it is possible to separate the datasets using

a simple (linear) SVM classifier. This highlights how the EC can be used to pre-process
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(a) Average EC for LC system response. (b) PCA of EC curves from LC system re-
sponses.

Figure 2.16: (a) The average EC curve of the LC system responses to the two different
gaseous environments. (b) SVD performed on the EC curves. This highlights that the EC
is able to produce a strong, linear separation of the LC responses.

(a) SVD on images (b) SVD on Fourier spectrum of images

Figure 2.17: SVD of the LC systems responses using (a) the raw image data and (b) the
Fourier spectrum of the images. Under these approaches, there is no obvious separation
of the data.
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(a) Distribution of 1st PC of EC curves (b) Distribution of Moran’s I values

Figure 2.18: (a) Distribution of the 1st principal components for the EC curves. (b) Dis-
tribution of the Moran’s I values. We can see that the ECs provide a sharper separation
than Moran’s I values; as such, ECs are a more informative descriptor of the data.

data and how this can facilitate machine learning tasks. For instance, in this case, it is

not necessary to use a more sophisticated machine learning model (e.g., a convolutional

neural net) to perform image classification.

2.5.4 Point Cloud Analysis

We now shift our focus to the use of the EC to analyze the structure of point clouds (also

known as scatter fields). Here, we consider 2D point clouds that are realizations of a

bivariate random variable. As such, the point clouds emanate from a 2D joint probability

density function .eps). The analysis of the shape of univariate.epss is typically performed

by using summarizing statistics (e.g., moments); analysis in higher dimensions is quite

complicated (no good descriptors exist for multi-dimensional joint.epss) [144]. This limi-

tation is particularly relevant when the.eps has a complex shape (e.g., it is non-Gaussian).

Here, we will see that one can characterize the complex shapes of a multi-variate.eps

by using an EC curve. Moreover, the results that we present highlight that the EC can

be used to characterize.epss in higher dimensions (even if it is not possible to visualize

them).

We use an experimental flow cytometry dataset to illustrate how this can be done.
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The dataset was obtained through the FlowRepository (Repository ID: FR-FCM-ZZC9)

[145]. This dataset is obtained in a study of the kinetics of gene transcription and protein

translation within stimulated human blood mononuclear cells through the quantification

of proteins (CD4 and IFN-γ) and mRNA (CD4 and IFN-γ) [146]. In our study, we focus on

the evolution of the concentration of CD4 mRNA and IFN-γ mRNA in a given cell which

is measured via a flow cytometer. At each time point, a number of cells (∼ 15, 000) are

passed through the flow cytometer; each of these cells provides an observation vector y ∈

R2 (corresponding to CD4 mRNA and IFN-γ mRNA). These observations are typically

visualized as point clouds in a 2D scatter plot. The evolution of the point clouds over time

is shown in Figure 4.39. The goal is to characterize how the shape of the point clouds

evolves over time; for instance, it is clear that the point cloud progressively separates into

two distinct domains.

To characterize the shape of the point clouds, we convert them into a continuous 2D

field by applying smoothing. It is important to note that the point clouds are realizations

of a bivariate random variable (CD4 mRNA and IFN-γ mRNA); as such, one can obtain a

2D histogram for them (by counting the number of points in a bin). The histogram is an

empirical approximation of the joint.eps of CD4 mRNA and IFN-γ mRNA. The continu-

ous 2D field obtained via smoothing is a smooth representation of the 2D histogram. Our

approach provides an alternative to traditional heuristic methods such as gating, which

are difficult to tune as they are highly sensitive to potential noise and outliers in the data

[147].

(a) Time = 0 Minutes. (b) Time = 30 Minutes. (c) Time = 60 Minutes. (d) Time = 90 Minutes.

Figure 2.19: Deformation of a 2D scatter field over time.
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(a) Sample distribution. (b) Density estimate. (c) Density surface.

Figure 2.20: Transforming the point cloud to a field. The raw data (a) is smoothed via a
Gaussian kernel and then the smoothed 2D field (b) is represented in 3D and processed
via a filtration (c).

Figure 2.21: Euclidean distance between the EC curves as a function of time. There is a
continuous evolution of the distance that characterizes the change in topology.

In order to create the 2D fields, we utilize a Gaussian kernel smoothing [148]. Figure

4.40 shows the smoothing of a scatter plot. The 2D field is a projection of a 3D function

(it is embedded in a 3D manifold). This is illustrated in Figure 4.40; as such, we can

characterize the field by using a filtration on the values of the.eps. Our goal is thus to

compute an EC curve for the.eps at different points in time (to analyze how its shape

evolves). To visualize this deformation, we compute the Euclidean norm of the difference
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between EC curve at a time point to that at the initial time. From Figure 4.41, we can

see that the distance exhibits a strong and continuous dependence with time (indicating

that there is a strong change in the shape of the density function). Importantly, this also

suggests that there exists a continuous mapping between the EC and time (the topological

deformation is continuous with respect to time). For instance, one could construct a

dynamical model that predicts the evolution of the shape with time. This indicates that

the EC provides a useful descriptor to monitor the evolution of complex shapes. This

could help, for instance, to detect times at which the change in shape is fastest/slowest.
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Chapter 3

T O P O L O G Y & M O L E C U L A R S I M U L AT I O N

The contents of this chapter are published in [29]

3.1 Introduction

This chapter builds upon the work presented in chapter 2 and explores the application of

topology in the analysis of molecular simulations. The development of advanced molec-

ular dynamics (MD) simulation methods has provided researchers the ability to rapidly

screen for new chemistry, biological interactions, and materials [149, 150, 151]. For ex-

ample, large-scale molecular simulations have been used in the screening of molecular

organic frameworks (MOFs) for hydrogen storage [152]. These techniques are also em-

ployed in the study of soft materials such as proteins and polymers [153, 154, 155], and

in the design of self-assembled colloidal systems [156]. However, the analysis of MD

datasets is challenging due to both their size and complexity; specifically, MD simula-

tions can produce terabytes of data that require computationally efficient and scalable

analysis methods, while the complexity of the data requires methods that are generaliz-

able to a broad range of systems and that are robust to data heterogeneity and noise [157].

Quantification and reduction of molecular simulation data has been traditionally con-
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ducted via order parameters and summarizing statistics such as radial distribution func-

tions and correlation fields, particularly for condensed-phase systems [158]. These de-

scriptors are usually computationally efficient, physically interpretable, and are derived

from principles of physics and statistical mechanics. Moreover, such descriptors usually

correlate to emergent properties of interest and thus can be used to construct predictive

models. However, order parameters are typically designed for particular applications that

meet specific assumptions (e.g., spatial isotropy or crystallinity) and are thus limited in

scope [159, 160, 161, 162].

Another approach for quantifying molecular simulation data consists on using ma-

chine learning (ML) tools such as convolutional neural networks (CNNs) and autoen-

coders to extract informative descriptors from data [163, 164, 165, 166, 167]. ML tools

are versatile in that they require few assumptions on the application and can be used for

processing diverse data formats (e.g., images, tensors, graphs). However, descriptors ex-

tracted using ML tools can be difficult to interpret and training predictive models based

on such descriptors may require large numbers of parameters and large amounts of la-

beled MD data, which can be computationally costly to produce.

In this chapter, we investigate the application of tools from topology for the analysis

of MD simulation data. Topology focuses on characterizing the global structure (e.g.,

connectivity, continuity) of shapes and objects and has been gaining attention in diverse

scientific and engineering fields [168, 31]. In the context of molecular simulations, con-

nectivity and continuity of molecules such as polymers, proteins, and other molecules

have been studied via topology. These topological methods have mostly relied on the

use of applied knot theory, which can quantify the entangled structures of molecules and

use this information to predict thermodynamic bulk properties. These techniques have

also been used for connecting the knotting of molecules with their reactivity and func-

tion (e.g., DNA recombinase enzymes) [169, 170, 171]. In these applications, however,
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the connection between the molecular data object and its topological representation (i.e.,

knots) is limited to specific settings. Recent work has also focused on the application of

persistence homology to molecular simulation data [172, 168]. Persistent homology has

been shown to provide powerful characterizations of the topology and geometry of data

[173, 174, 175, 176, 172, 177]. However, the outputs of these methods (e.g., persistence

diagrams) can be difficult to directly integrate into data analysis and ML tasks without

further transformation (e.g., vectorization and smoothing) and hyperparameter optimiza-

tion [31].

The main goal of this chapter is to demonstrate that topology can be applied to a broad

range of molecular simulation settings. At the core of this approach is the observation that

one can represent data as graphs and manifolds, which are versatile topological objects

that can be efficiently quantified using a topological descriptor known as the Euler Char-

acteristic (EC) [31, 100]. Graph representations for molecular simulation data have been

widely applied and are easy to justify from a physical standpoint [178, 179]. An example

arises in the analysis of non-covalent bonding networks (e.g., hydrogen bonding networks

in water). Here, the individual water molecules can be considered vertices of a graph with

non-covalent bonds (e.g., hydrogen bonds) representing edges between the vertices. Man-

ifold representations for molecular simulations arise when there is a continuous function

describing behavior over a space (or surface) of a simulation. An example of a manifold

representation arises in the analysis of time-averaged spatial density, where density is

computed at each spatial location resulting in a continuous function over the entire sim-

ulation space [31, 168]. Manifolds can be extended to more complex spaces, such as the

surface of a molecule, nanoparticle, polymer, or protein [180]. In these approaches, the

surface is treated as a manifold and physical characteristics (e.g., hydrophobicity, charge,

forces, curvature) represent functions on the manifold. However, graph and manifold

representations of molecular simulation data can be high-dimensional and not directly

amenable to common analysis tasks (e.g. classification, regression, visualization). Thus,
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there is need for simple and computationally efficient methods for reducing and quanti-

fying these topological data representations. This characterization can be accomplished

by performing a decomposition of the space into a set of independent topological bases that

capture basic topological features such as holes, connected components, and voids. The

EC is a scalar integer quantity that is defined as the alternating sum of the rank of these

topological bases of an object. The EC is often combined with a data processing tech-

nique known as filtration, which enables the characterization of more complex topological

objects such as matrices, images, fields/functions, and weighted graphs [31, 138]. The

filtration process gives rise to the so-called EC curve, which is a function that summarizes

how topological features emerge and disappear through the filtration process. Com-

pared to descriptors obtained from persistent homology (e.g., persistence diagrams), the

EC curve provides a quantifiable and easy-to-interpret descriptor of complex data objects.

To illustrate the efficiency and effectiveness of the EC, we provide studies arising in

a couple of complex molecular simulation systems. The first simulation system is the

measurement of hydrophobicity on the surface of 2D self-assembled monolayers (SAMs),

and the second system is the analysis of 3D solvation effects on acid-catalyzed reactions

systems for biomass processing. Previous work suggests that the topology and geome-

try of water plays a critical role in understanding and predicting emergent physical and

chemical properties for both of these systems [181, 182]. Thus, in both examples, we

are focused on quantifying the topological structures and patterns emerging from sol-

vent behavior at the surface of a SAM and around biomass-relevant reactants to quantify

hydrophobicity and reactivity, respectively. We also show that the EC can be used to

quantify different forms of data representations typically used in these types of MD sim-

ulations (hydrogen bond networks and density fields). Specifically, we show that the EC

is a descriptor that correlates strongly with emergent properties and this enables the con-

struction of low-dimensional and effective predictive models that are significantly more

computationally tractable than recently-developed ML models such as CNNs. We show
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that simple regression models that take the EC as input, are able to accurately predict the

hydration free energy of simulated 2D SAMs and the change in reactivity due to solva-

tion effects in acid-catalyzed reaction systems. These studies also illustrate the stability

of the EC in quantifying noisy MD data and the physical intuition that can be gained

through topological analysis. Moreover, we show that the EC can be used to monitor

the dynamic evolution of topology in these MD systems which can be used, for instance,

to determine when a system has achieved a topological steady-state. We also note that

solvent-rich processes (like those studied here) are common in a diverse range systems

analyzed through MD, further supporting the general relevance of these methods. All

code and data needed for reproducing our results are provided.

3.2 Topology of Graphs and Manifolds

To analyze MD simulation data with the EC, we begin by defining graphs and manifolds

in the context of molecular simulation.

A graph is a 2D topological object that consists of an ordered pair G(V, E), where

V represents a set of vertices and E represents a set of paired vertices known as edges.

Edges represent relationships (connectivity) between vertices. A graph representation for

an atomistic simulation of water is shown in Figure 3.1. Here, the water molecules are

represented as vertices and hydrogen bonds between molecules are represented as edges.

This graph (network) representation can be used to understand how water is interacting

both locally and globally, by quantifying specific features, such as the number of cycles

and connected components of the graph. A cycle represents a path that traverses edges

on a graph starting at a particular vertex vj and ending at that same vertex vj. Physical

examples of graph cycles are found in tetramer, pentamer, and hexamer water structures

[183, 184]. A connected component is a subset of a graph C(VC, EC) ⊆ G(V, E) in which

any vertex vi ∈ VC of the subgraph can reach any other vertex vj ∈ VC by traversing
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edges of the subgraph {vi, vj} ∈ EC, and is disconnected from all other subsets of the

graph. In other words, the number of connected components is the number of connected

partitions of a graph. In a hydrogen bonding network for water, connected components

help us understand the physical state of the system; for example, in a condensed (or

crystalline) state, there will be many hydrogen bonds present, reducing the total number

of connected components but increasing the total number of molecules in each connected

component. The opposite would hold true for a system acting as an ideal gas; here, no

bonds are formed and thus each molecule exists as its own connected component. Data

can also be encoded in a graph object (in nodes and edges) using functions f : V → R and

f : E → R. Values attached to nodes or edges are typically called weights or features); as

such, graphs that encode data are also known as weighted graphs.

Manifolds are also versatile topological data representations that can capture con-

tinuous forms of information (e.g., 3D density fields) in high-dimensional spaces. This

contrasts with graph representations, which capture discrete characteristics of a 2D data

object (e.g., number of bonds, molecules, clusters). A manifold M is a topological space

that locally resembles a Euclidean space; this means that the neighborhood of a point

x ∈ U in an n-dimensional manifold (with U ⊆ M) can be mapped to n−dimensional

Euclidean space through a continuous, bijective function. These neighborhoods and as-

sociated mappings are also known as charts. For example, the surface of the Earth is a

2D manifold and we can map the curved surface of the Earth to a flat Euclidean plane

(i.e., a 2D Euclidean space) using a chart in order to measure properties such as distances

or areas. The general nature of manifolds allows them to represent a broad range of

structures, shapes, and complex geometric objects in molecular simulations (e.g., surface

of a protein or a nanoparticle). Manifolds can also have encoded data on them (e.g.,

Earth surface temperature), which is captured using a continuous function f : M → R.

In Figure 3.1, we present a manifold representation for a 2D simulation of water. Here,

the simulation domain (e.g., a 2D plane) is a 2D manifold and we define a continuous

function that captures the time-averaged density of water at each location in the domain.
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Figure 3.1: Graph and manifold representations of a molecular simulation of water. (a)
Snapshot of an atomistic simulation of water (only some molecules are shown). (b)
A graphical representation of the hydrogen bonding network formed between water
molecules within the simulation, and (c) a density field derived from time-averaging
water molecule positions during the simulation. The density field is represented as man-
ifold M, with a continuous function f : M → R that maps each point of the manifold
to a corresponding water density value; visualized here by changes in the height of the
surface. (d,e) Represents the EC χ quantification of the graph and manifold data repre-
sentations. (d) The graph is quantified by subtracting the total number of cycles from the
total number of connected components in the graph (χ = 12 − 2 = 10). (e) The manifold
is quantified through a filtration. At multiple increasing density thresholds ki ∈ R, the
EC χi is computed by subtracting the total number of holes from the total number of
connected components in the filtered manifold x ∈ M : f (x) ≤ ki. We note that filtered
manifolds all originate from the same data object and that the vertical layout is meant to
illustrate the topological changes as the filtration is performed. The paired values {ki, χi}
are used to construct an Euler characteristic curve.
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3.2.1 The Euler Characteristic

We present a brief introduction to the Euler characteristic (EC) in the context of molecular

simulation. A detailed derivation of the EC can be found in Chapter 2. Graph and

manifold representations are able to capture both discrete and continuous information

within a given simulation and their topology can be directly quantified/summarized

using a descriptor known as the Euler characteristic [31]. The EC is denoted as χ ∈ Z

and is mathematically defined as the alternating sum of the rank of topological bases for a

given space known as Betti numbers βi ∈ Z+, where i ∈ Z+ represents the dimensionality

of the topological basis:

χ :=
n

∑
i=0

(−1)iβi (3.1)

Importantly, the topological bases of a space (e.g., connected components, holes,

voids) are preserved under deformations such as stretching, twisting, and bending (are

topological invariants). For any topological space of n-dimensions, there can only exist

topological bases up to that given dimension. For example, a 3D space can only con-

tain β0 (representing connected components) β1 (representing holes and cycles), and β2

(representing voids and cavities) in the space. For example, in Figure 3.1 we represent a

hydrogen bonding network for an atomistic MD simulation of water as a graph. A graph

is a 2D topological space, and thus has a couple of Betti numbers β0 and β1. Figure 3.1

illustrates that, for a simulation snapshot, the number of connected components is 12, the

number of cycles is 2, and thus the EC is χ = 12 − 2 = 10.

3.2.2 Manifold Filtrations

Analysis of data represented as manifolds (or weighted graphs) requires an added pro-

cessing step known as a filtration. A filtration quantifies the topology of sublevel sets of the
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manifold. Given an n-dimensional manifold M and a continuous function f : M → R,

a sublevel set of the manifold is defined as Mki that contains points {x ∈ M : f (x) ≤ ki},

where ki ∈ R represents our filtration threshold. Hence, we can construct nested sublevel

sets at increasing filtration thresholds for the manifold:

Mk1 ⊆ Mk2 ⊆ ... ⊆ Mkn ⊆ M (3.2)

where k1 < k2 < ... < kn represent our filtration thresholds, and M represents the origi-

nal manifold. We can measure/quantify the topology of these nested sublevel sets with

the EC at each filtration threshold {χ1, χ2, ..., χn}. We ultimately obtain an ordered pair of

values {ki, χi}, which characterize the topology of the manifold and its associated func-

tion. An illustration of the filtration process is found in Figure 3.1 for a 2D atomistic

simulation, where time-averaged water density is analyzed over the space of the simula-

tion. We have selected three different filtration values k1 ≤ k2 ≤ k3 corresponding to the

three sublevel sets. Similar to the graph example, we compute the EC by counting the

total number of n-dimensional topological bases (β0, β1 for a 2D manifold). The bottom

most sublevel set at filtration value k1 represents a single connected component, captur-

ing a local minima in the function f , and resulting in χ1 = 1 − 0 = 1. As the filtration

threshold increases to k2, a single connected component remains but four holes (i.e., cy-

cles) are formed indicating the presence of local maxima of the function f , which results

in an EC value of χ2 = 1 − 4 = −3. The final filtration threshold k3 returns the original

manifold, which is a single connected component: χ3 = 1 − 0 = 1 (further filtration of

the space will not change the manifold topology). The filtration of a weighted graph is

conducted in an analogous manner (by eliminating nodes or edges in which the data is

below a certain threshold value). We note that filtration operations are easy to conduct

and are thus scalable.
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3.3 Applications of Topology in MD Simulations

The EC of graphs and manifolds provides a topological descriptor that quantifies com-

plex structures and patterns that arise in MD simulations. The EC can be used to conduct

a wide variety of ML and data analysis tasks such as visualization, clustering, regression,

and classification. Here, we demonstrate that the EC of a molecular system correlate

strongly to emergent physical and chemical characteristics. As such, we show that the

EC can be used as an informative descriptor to predict emergent behavior. Moreover,

we show that such predictions can be conducted using simple linear regression models,

which contrasts with existing approaches based on CNNs.

The first set of simulations studied involve self-assembled monolayers (SAMs); here,

we use the EC to predict the hydration free energy of the 2D SAM surface. The second

set of simulations aims to predict the reactivity of a molecule based on the topology of

a solvent environment composed of water and a cosolvent. These examples were specifi-

cally chosen because they were previously studied using advanced CNNs and thus have

a frame of reference [181, 63]. We also highlight that these molecular systems are solvent-

dominated; as such, their emergent properties are known to be influenced by the spatial

structure and correlations of the solvent environment [185, 186]. This information will be

quantified directly using the EC of graph and manifold representations of such environ-

ments.

Implementation details for both case studies can be found in the Supplementary In-

formation. All code and data needed to reproduce the results can be found in https:

//github.com/zavalab/ML/tree/master/MD_Euler.

https://github.com/zavalab/ML/tree/master/MD_Euler
https://github.com/zavalab/ML/tree/master/MD_Euler
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3.3.1 Hydrophobicity on the Surface of Self-Assembled Monolayers

We study the surfaces of SAMs using an MD simulation dataset obtained from recent

work of Kelkar and co-workers [181]. The SAM structures are built from a planar ar-

ray of alkanethiol ligands with hydroxyl, amine, or amide end groups. Each simulation

consists of a single SAM solvated by bulk water. A simulation snapshot can be found in

Figure 3.2a. A total of 50 different SAMs were created (22 having hydroxyl groups, 14

with amine end groups, and 14 with amide end groups). The partial charges of the end

groups are modulated using a scaling factor that simulates changes in the polarity of the

SAM surface. Additional details on the MD simulation methodology and parameters are

available in [181].

Our goal is to study the topology of water in a thin interfacial layer located at the SAM

surface. To do so, we leverage the topological structures formed by water at the SAM-

water interface to directly predict the hydration free energy (HFE) of the SAM through

linear regression. The HFE is a property that captures surface hydrophobicity behavior

and is key in understanding protein adsorption [187, 188]. A common method for com-

puting the HFE in molecular simulations is indirect umbrella sampling (INDUS). This

method is highly accurate but it is computationally expensive, as it requires sampling of

a low-probability event [189]. The dataset developed in previous work leveraged INDUS

to create a set of SAM simulations with computed HFE values. Such simulations were

used to train and test a CNN that directly predicts HFE from the SAM structure (repre-

sented as a 2D water density field). Here, we instead develop a linear regression model

using the EC of the SAM structure.

To quantify the topology of the SAM structure, we subsample each SAM simula-

tion using non-overlapping sets of 200 simulation time steps. We then compute a time-

averaged EC value for the hydrogen bonding network within the interfacial layer denoted
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as ⟨χ⟩ for each subsample. The presence (or absence) of hydrogen bonds between water

molecules was computed using the Luzar-Chandler criterion [190, 191]. For an inter-

val of simulation time points t ∈ [a, b) where b, a ∈ Z+ and b − a = 200, we compute

the EC value of the hydrogen bonding network χt at each simulation time point. The

time-averaged hydrogen bonding EC value is computed as:

⟨χ⟩ :=
1

(b − a)

b

∑
t=a

χt (3.3)

In other words, ⟨χ⟩ captures the time-average topology of the system. The details out-

lining the practical computation of the EC for these simulations can be found in the

supporting information and code shared in this manuscript.

We also represent the SAM surface as a 2D manifold M and treat the time-averaged

water density at the interfacial layer as a continuous function on the manifold f : M → R

as shown in Figure 3.2. The manifolds are constructed by binning water molecule posi-

tions at the interfacial layer in a 20 × 20 grid, where each grid point accounts for 0.1 nm2

area on the surface of SAM over the period of 200 simulation time steps. The accumulated

bin data is then averaged to obtain a continuous water density function for our surface

manifold M. This representation matches the representation of Kelkar and co-workers

used as input to a CNN to allow for direct model comparison [181]. We performed a

manifold filtration to quantify spatial density fluctuations in water at the SAM surface

with an EC curve. We recall that the EC curve is the set of paired filtration thresholds ki

and EC values χi of the filtered sublevel sets Mki . The filtration thresholds ki represent

water densities given in units of molecules/nm2.

A visualization of the EC curve for a time-averaged water density field derived from

a SAM simulation (HFE = 33kBT) is shown in Figure 3.2. We illustrate the topological
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changes in the manifold as we perform our filtration: M0.05 ⊆ M0.07 ⊆ M0.12 ⊆ M0.20.

We see in the first sublevel set M0.05 that connected components start to form. These are

a direct result of local minima (e.g., areas of low water density) on the SAM surface, and

result in a positive EC value. As the filtration threshold increases, there is an increase

in the number of connected components representing areas of low water density and an

increased EC value (M0.07). As the filtration threshold increases, we begin to pass saddle

points in the density function where individual components merge, resulting in a single

connected component with many holes (representing local maxima of the water density)

and a corresponding negative EC value M0.12. The filtration then reaches a threshold in

which the topology of the sublevel set is equal to the topology of the original manifold

M0.20 = M. In this case, the original manifold M is a single connected component with

an EC value χ = 1. Details on the practical computation of the EC for sublevel sets can

be found in the supporting information and code.

Figure 3.3 illustrates the input for a regression model derived from subsets of a SAM

simulation (HFE = 33kBT as labeled by INDUS). Figure 3.3 also reveals that topological

representations are invariant to different types of deformation of the data [192]. Specifi-

cally, we see that both the hydrogen bond network and water density manifold topology

varies significantly over time, but their corresponding topologies (captured by ⟨χ⟩ and

EC curves) are similar.

Before building a linear regression model that predicts HFE from the SAM structure,

we first determined if there was indeed a relationship between the topology of the SAM

interfacial water structure and the HFE. In Figure 3.4, we find that there is a strong corre-

lation between the topology of the time-averaged water density field at the SAM surface

and its emergent HFE. Specifically, the local minima and maxima (i.e., critical points) of

the density change in both shape and magnitude as the HFE for the SAM is changed.

These topological changes are captured effectively using the EC curve. At low HFE val-

ues (e.g., HFE = 33kBT) we see that there are many critical points with relatively low
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(a)

(b)

Figure 3.2: (a) Interfacial water density field derived from a SAM simulation. The 2D
density field is represented as a manifold M with a continuous function f : M → R that
maps each manifold location to its corresponding water density value visualized here by
color (blue = low, red = high) and surface height. (b) The EC curve obtained from level
set filtration of the density field. The EC curve is created by thresholding the density field
function/manifold, creating multiple nested submanifolds Mki , and then computing the
EC of each submanifold. The EC curve is constructed from the paired values {ki, χi}. We
visualize the corresponding submanifolds as the density threshold increases from k0 = 0
to kn = 0.2.

magnitude; as HFE is increased (e.g., HFE = 100kBT) we see fewer critical points but the

corresponding magnitude of these critical points is increased, which we see is reflected in

the EC curves.

We further highlight the relationship between the SAM topology and the HFE by

performing principal component analysis (PCA) on all 1600 sample EC curves derived

from 40 simulations with precomputed HFE values. The EC curve of each sample is

represented as a vector xj ∈ Rm where m = 20 is our number of filtration thresholds

and the entries of xj are the EC values of the sublevel sets. Each vector is stacked into

a matrix [x1 x2 · · · xn]T ∈ Rn×m. We apply a singular value decomposition to this

matrix and visualize the data projected onto the two leading principal components; these

components capture the low-dimensional structure of the EC and show that this is highly

correlated with the HFE. These results confirm that the topology of the SAM affects the
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(a) Graph and Manifold Representations

(b) t ∈ [0, 200)

(c) t ∈ [200, 400) (d) t ∈ [400, 600)

Figure 3.3: (a) Illustration of the graph and manifold data representations derived from
the SAM simulation shown in Figure 3.2 at HFE = 33kBT,. (b),(c) and (d) Representative
hydrogen bond networks (graphs) and time-averaged density fields (manifolds) derived
from the interfacial water in SAM molecular simulations over different time frames of the
same simulation. They also contain the time-averaged graph EC ⟨χ⟩ and the EC curve
created from a filtration of the associated density field. Each SAM simulation is split into
multiple subsets of a single simulation t ∈ [a, b), for which a corresponding density field
EC curve and time-averaged graph EC is computed. We note the stability of both the
time-averaged graph EC and the EC curve. The density fields and graphs are visually
very different, but the topological measures of the graphs and density fields are almost
identical throughout the simulation. This demonstrates the robustness of these topologi-
cal descriptors in capturing the underlying characteristics of molecular simulations.
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HFE and that such topology can be captured using the EC.

(a)

(b)

Figure 3.4: (a) EC curves for multiple density fields taken from simulations of SAMs with
increasing HFE values. The impact of increased HFE on the SAM interfacial water layer
is directly correlated with changes in the resulting EC curve. (b) Principal Component
Analysis (PCA) is conducted on the EC curves for each density field from the set of SAM
simulations. From (a) we see a continuous change in the EC curve that correlates with
the HFE of the given SAM, in (b) we capture this continuous change and visualize a data
structure that correlates directly with the HFE of the simulations through the first two
principal components.

We next develop a linear regression model by using the water density EC curves and

hydrogen bonding network EC values ⟨χ⟩ as model inputs. The model chosen is a linear

support vector machine (SVM) model taken from the LIBSVM library [193]. We train the

linear model using a set of 40 simulations with precomputed HFE values via the INDUS

method (1600 samples). Once the model has been trained, we test its prediction accuracy

on a completely separate set of 10 SAM simulations (400 subsampled points). Our goal

is to accurately predict the true HFE (computed via INDUS) for this separate set of sim-

ulations. The regression results for both model training and model testing are shown in

Figure 3.5. We see that the linear model is able to predict the HFE for the testing set of

simulations with little error (RMSE = 2.2 kBT). Moreover, we have found that this model

improves substantially the results of a previously-developed 2D CNN (RMSE = 5.8kBT)

for identical training/testing splits [181]. We also note that the computations required
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to both train and predict with the linear model are minimal compared to INDUS and to

machine learning models. We thus conclude that the topological approach can be used

in the analysis of high-throughput simulations or in screening for surfaces with optimal

chemical or physical properties. We also note that the incorporation of both hydrogen

bond network and surface water density are critical in the performance of the model.

We note that the linear prediction model uses topological information obtained from

both graph and manifold representations of the SAM. We have found that, when ei-

ther representation (density field or hydrogen bond network) is used independently for

developing a prediction model, the resulting prediction RMSE values increase. More-

over, we have found that such models lead to severe underprediction of HFE for amide-

dodecanethiol simulations. This may be explained by the tendency for amide end groups

to form substantial hydrogen bonds with other amide end groups rather than water,

which is unique for the surfaces studied [194, 195, 196]. This added complexity is cap-

tured effectively when combining topological information from both graph and manifold

representations and highlights how such representations can provide complementary in-

formation.

3.3.2 Solvent-Mediated Reactivity in Acid-Catalyzed Reactions

We now use the EC for understanding and predicting solvent-mediated reactivity of acid-

catalyzed reactions based on the topology of water and cosolvent mixtures. Previous

work has demonstrated that varying the cosolvent type and concentration in a cosol-

vent/water mixture impacts the relative reactivity of acid-catalyzed reactions for biomass

conversion [182, 63]. Walker and co-workers analyzed the influence of solvation towards

reactivity by studying the structure of water in molecular simulations of a single reac-

tant molecule in different cosolvent/water mixtures (snapshot shown in Figure 3.6). We

demonstrate that the EC can be used to predict the solvent-mediated changes in reac-
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(a) Training. (b) Testing.

Figure 3.5: (a) Training data parity plot of predicted versus INDUS derived HFE. Linear
regression is conducted using the corresponding EC curve and averaged graph EC ⟨χ⟩
as inputs. The training data set is split into two portions, one for model training and the
other for model validation. Predictions on the validation dataset are very accurate and
suggest the linear model can obtain high accuracy in HFE prediction (RMSE = 2.3 kBT).
(b) Testing data parity plot of predicted versus INDUS derived HFE. The testing data
consists of a completely separate set of SAM simulations not used in model training. For
each simulation EC curves and ⟨χ⟩ are measured. The trained linear model is then used
to predict the HFE for the separate set of SAM simulations. The results demonstrate a
high level of accuracy and low prediction error (RMSE = 2.2 kBT), which is comparable
to training set accuracy as expected. Error bars in both plots represent a single standard
deviation from the mean.
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tivity as the concentration and type of cosolvent are varied, a task that previously used

3D CNNs [63]. The organic, polar aprotic cosolvents modeled in this study are diox-

ane (DIO), γ-valerolactone (GVL), tetrahydrofuran (THF), dimethyl sulfoxide (DMSO),

acetonitrile (ACN), and acetone (ACE). Biomass-derived reactants modeled in this study

are ethyl tert-butyl ether (ETBE), tert-butanol (TBA), cellobiose (CEL), glucose (GLU),

levoglucosan (LGA), 1,2-propanediol (PDO), fructose (FRU), and xylitol (XYL); further

details about the dataset can be found in the supporting information and work of Chew

and co-workers [63].

We again represent the MD simulation data as both graphs and manifolds and assess

whether topological descriptors alone can predict solvent-mediated reaction rates (Figure

3.6). We propose this method of analysis because there is an established history of water

enriched structures playing an important role in understanding and predicting reactivity

[197, 182, 198, 199]. These structures can be quantified through the EC and EC filtrations

and used directly in prediction. The simulations contain a single reactant molecule cen-

tered in a 4 nm3 cube surrounded by water and cosolvent in specified weight percentages.

We subsample the 2 ns simulations in sets of 200 picoseconds (i.e. 20 frames) and produce

both graph (hydrogen bonding) and manifold (water density) representations. To under-

stand the topology of the hydrogen bonding networks in the simulations, we consider the

EC for the water-water hydrogen bonding network χww, the cosolvent-reactant hydrogen

bonding network χcr, and the water-reactant hydrogen bonding network (χwr). Hydro-

gen bonds in each case were computed using the Luzar-Chandler criterion. For each of

these networks, we construct a time-averaged EC value for the subsampled simulations

⟨χ⟩. The manifold M for this system is now the entire simulation space (versus the sur-

face of the SAMs described previously), which consists of a 3D cube with a continuous

function f : M → R representing the time-averaged density of water in each simulation

subsample. We ignore the structure of the corresponding cosolvent topology because it is

directly related to the water topology (high density water implies low-density cosolvent).
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We construct our manifold and function representation by placing a 20 × 20 × 20 grid

centered on the reactant molecule. We then accumulate and bin water positions within

each grid point (each representing a 0.2 nm3 volume) over the 200 picoseconds of simu-

lation time. The accumulated data is then averaged over the time frame and represents a

continuous density function over the simulation space. The EC curves in Figure 3.6 look

slightly different to those for our previous 2D system. This system, now in 3D, has a 3rd

Betti number (β2), which quantifies the number of voids/cavities that appear during fil-

tration. These voids are associated with pockets of high water density (e.g., local maxima)

within our 3D manifold and result in a second peak in the EC curve χ = β0 − β1 + β2.

Details for the practical computation of the EC for these 3D manifolds can be found in

the supporting information and code.

Figure 3.6 provides another demonstration of the robustness of these topological

methods. We illustrate the changes in the water density and hydrogen bonding network

⟨χww⟩ during the course of a single MD simulation. Visually, these graphs and manifold

functions appear to be distinct but, when quantified and compared through the EC, they

are almost identical (indicating that they are topologically close). This result is of practical

relevance, because it shows that the EC can be used to monitor the dynamics of topology

(e.g., to determine when the system is undergoing a topological transition or has reached

steady-state). From the ECs of Figure 3.6, for instance, it appears that the system quickly

reaches a topological steady-state and thus the MD simulation can be terminated early to

reduce computational time.

We developed a linear regression model that takes as input the corresponding EC

curves and hydrogen bonding EC values (⟨χww⟩, ⟨χcr⟩, ⟨χwr⟩) and outputs the experi-

mentally determined change in reaction rate σ = log10(korg/kH2O) where korg represents

the reaction rate in a cosolvent/water mixture and kH2O represents the reaction rate in

pure water [182]. We train the linear regression model on a set of 76 cosolvent and

reactant combinations (760 subsampled points) and test our model on a set of 32 differ-

ent reactant and solvent combinations (320 subsampled points), which is the same data
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(a) Graph and Manifold Representations

(b) t ∈ [0, 200)

(c) t ∈ [200, 400) (d) t ∈ [400, 600)

Figure 3.6: (a) Illustration of the graph and manifold data representations derived from
the acid-catalyzed reaction simulations. (b),(c), and (d) Representative water-water hydro-
gen bond networks (graphs) and time-averaged density fields (manifolds) derived from
the water in the molecular simulations over different time frames. They also contain the
time-averaged graph EC ⟨χww⟩ and the EC curve created from a filtration of the water
density field. The density fields and graphs are visually different, but the EC values are
similar throughout the simulation. These results demonstrate the robustness of topologi-
cal descriptors.
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(a) Training Data Regression. (b) Testing Data Regression.
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(c) Structures of reactants and co-solvents.

Figure 3.7: (a) Training data parity plot of predicted versus experimental σ (change in
reaction rate). The EC curve and averaged graph EC values (⟨χww⟩, ⟨χcr⟩, ⟨χwr⟩) are used
as inputs to a linear model. Predictions on the training dataset are accurate (RMSE =
0.39) and suggest a linear model could be used to obtain high accuracy in the prediction
of reactivity trends (σ). (b) Testing data parity plot of predicted versus experimental
σ. An unseen test set of acid-catalyzed reaction simulations are created for different
cosolvents and solutes. From this data, the corresponding EC curve and graph EC values
are computed. The trained linear model is used to predict the experimentally verified
reactivity increase for the separate set of acid-catalyzed reaction simulations. The results
demonstrate a high level of test set accuracy with low prediction error (RMSE = 0.42).
Error bars in both plots represent a single standard deviation from the mean.
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training/testing split used to evaluate the CNN developed in the work of Chew and co-

workers [63]. Figure 5.1 lists the different potential combinations of reactant, cosolvent,

and cosolvent/water ratios that are used in both training and testing. Figure 5.1 also

shows the accuracy of the linear model in both training (RMSE = 0.39) and testing (RMSE

= 0.42), from which we can conclude that the simple linear model is able to accurately

predict the change in reactivity for these chemical systems. We can compare these results

directly to the work of Chew and co-workers, where the authors used 3D CNNs that con-

tain up to ∼172,417 parameters, compared to the 23 parameters used in our linear model.

The topological approach achieves accuracy superior to the trained 3D CNN on the same

testing set (RMSE = 0.48). We also note significant improvements in the computational re-

sources needed for training the models. Our linear model takes approximately 2 minutes

to train (this time includes computation of ECs), while the 3D CNN can take up to 2 hours.

Furthermore, our linear model does not require a search for optimal hyper-parameters

or 3D CNN architecture, further reducing the needed computational resources. These

results highlight the desirable scalability of topological characterizations based on the

EC.

An added benefit of linear models and our topological characterization of MD simula-

tion data is interpretability, which in the physical sciences is often as important as predic-

tion accuracy [200]. Figure 3.8 contains an analysis of simulations of fructose in varying

cosolvent/water mixtures, all at the same cosolvent/water weight ratio (90%/10%). Fig-

ure 3.8 illustrates the differences in water topology that occurs when the chemistry of

the cosolvent is altered. We focus on two particular cosolvents: THF and DMSO. For

fructose, the change in reaction rate is highest when in a DMSO/water mixture (σ = 1.7)

and lowest when in a THF/water mixture (σ = 0.8). We note that this corresponds with

large changes in the topology of the water density. In THF, water is agglomerated in

large clusters near the reactant, which reduces the total number of topological features

in the water density function (e.g., connected component, holes, voids) and dampens the

magnitude of the peaks and valleys in the EC curve, which is consistent with the find-
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Figure 3.8: EC curves for fructose solvated in different cosolvent/water mixtures along
with the representative submanifolds during various points in the filtration. Each of the
EC curves are computed with a 90 wt% cosolvent, 10 wt% water solution. Many of the
simulations (ACN, DIO, GVL) behave similarly from a topological perspective, and each
have a similar impact on the reactivity of fructose. The EC curves for THF and DMSO
differ from the EC curves of the previously mentioned solvents. DMSO interrupts water-
water interactions resulting in a larger number of high and low density areas, which
manifests in an increased number of connected components, holes, and voids in the den-
sity field captured by the EC curve. The opposite occurs with THF where we see fewer,
but larger, clusters of high and low density water; this suggests that THF increases the
interactions between water molecules and causes larger clusters of water to form.
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ings of Chew and co-workers [201]. The sublevel sets at points in the filtration are also

illustrated (Figure 3.8), further confirming this result. The opposite holds true for water

in DMSO, here we see a larger number of high-density and low-density areas on our

manifold increasing the peak and valley magnitude of the EC curve. This indicates that

DMSO is interrupting the interactions between water molecules and reducing the total

amount of water molecules near fructose. This behavior can increase selectivity of the

acid-catalyzed reaction of fructose, where the shielding of subsequent products (e.g., 5-

hydroxymethylfurfural) inhibits the formation of undesired products (e.g., levulinic acid)

as shown in the findings by Mushrif and co-workers [197].
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Chapter 4

T O P O L O G I C A L D ATA A N A LY S I S & P E R S I S T E N C E H O M O L O G Y

The contents of this chapter is published in [97]

4.1 Introduction

This chapter provides a rigorous introduction to, and example applications of, some of

the advanced data analysis methods from the field of Topological Data Analysis. Sta-

tistical and signal processing techniques are the dominant paradigms used to analyze

data. Unfortunately, these techniques provide limited capabilities to analyze certain types

of datasets. Some interesting examples that highlight this limitation are the Anscombe

quartet and the Datasaurus dozen datasets [202, 203]. These datasets are visually distinct

but they have the same descriptive statistics (e.g., mean, standard deviation and correlation).

An illustration of this issue is provided in Figure 4.1; here, the two datasets have the

same mean and standard deviation along both dimensions and have the same correlation

between dimensions. However, it is clear that these datasets define objects with different

geometric features (shape).

The recent application of algebraic and computational topology to data science has

led to the development of a new field known as Topological Data Analysis (TDA) [204].

TDA techniques are based on the observation that data (e.g., a set of points in a Euclidean
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space) can be interpreted as elements of a geometric object. As the name suggests, TDA

utilizes techniques from computational topology to quantify the shape of data [205]. Fun-

damentally, topology studies geometric and spatial relations that persist (are stable) in the

face of continuous deformations of an object (e.g., stretching, twisting, and bending).This

perspective brings a number of advantages over other data analysis techniques [204, 192]:

• Topology studies data in a manner that is independent of the chosen coordinates.

• Topology studies data in a way that minimizes sensitivity to the choice of metric.

• Topology generalizes known graph theory techniques to high-dimensional spaces.

• Topology is robust to large quantities of noise.

The main focus of this chapter is a technique in the field of TDA known as persistence

homology [206, 207]. The goal of persistent homology is to identify and quantify topologi-

cally dominant features within the data in the form of basic (low-dimensional) topological

features such as connected components, holes, voids, and their generalizations. This in-

formation can then be used by statistical and machine learning techniques to perform

regression, classification, hypothesis testing, and clustering tasks [208, 209, 210, 211, 212,

213]. The TDA methodology is summarized in Figure 4.2. It is important to empha-

size that TDA is a dimensionality reduction technique that maps data from its original

high-dimensional space to a low-dimensional space that it is easier to understand and

visualize. This is similar in spirit to principal component analysis (PCA), which is a

statistical technique that projects data into a low dimensional space by extracting latent

variables (principal components) that contain maximum information in terms of variance.

TDA has been used in different scientific and engineering domains. In the medical

imaging field, persistent homology has been used in studying brain dendrograms [214]

and in identifying brain networks in children with ADHD and autism [113]. In ma-

terial science, these techniques have been used to characterize complex craze formations

[215], to analyze hierarchical structures in glasses [216], and in materials informatics [217].
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Figure 4.1: Datasets with the same mean along the x1, x2 dimensions (zero), the same
standard deviation along both dimensions (1/2) and the same correlation between di-
mensions (zero). While the statistical descriptor values (i.e., first and second moments of
a 2D Gaussian ellipse) are identical, the geometric objects that they define are different.

They have also been used in high throughput screening of nanoporous materials, such

as zeolites [175]. TDA has been used in the analysis of dynamical systems and time se-

ries [218, 219] to study gene expression [220] and the dynamics of Kolmogorov flows and

Raleigh-Bernard convection [221]. TDA has also been used in the analysis of time-varying

functional networks [222]. In chemistry and biochemistry, persistent homology has been

used to characterize protein structure, flexibility, and folding [223]; as well as a metric for

understanding membrane fusion [224], and used to predict fullerene stability [225].

In this chapter, we provide a concise summary of relevant concepts and computational

methods of TDA from the perspective of chemical engineering applications. We show

how to apply persistent homology techniques to analyze datasets described by point

clouds and functions in high dimensions and we discuss fundamental stability results of

topological features in the face of perturbations. We present multiple case studies with

complex synthetic and real experimental datasets to demonstrate the benefits of TDA.

Specifically, we show that TDA extracts informative features from complex datasets that

correlate strongly with emerging features of practical interest. For instance, we show

that the topological features of a 3D solvent environment explains reactivity in such an

environment and that topological features of liquid crystals explain composition of its

environment. These two results are presented for the first time in this chapter. Moreover,

we show how to characterize topological features of scatter fields from flow cytometry
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experiments. Our work seeks to open new research directions and applications of TDA

in chemical engineering.

4.2 TDA Basics

The first part of this chapter develops the mathematical basis for TDA (see Sections 4.3-

4.5) while the second part explores the application of TDA to different chemical engineer-

ing problems. We develop this section as a simplified overview of TDA in order to equip

the reader with the knowledge necessary to immediately review TDA applications of in-

terest. The focus of TDA is to capture and record the evolution of the topology of a dataset

at different scales which is measured through a filtration (see Section 4.5). Figure 4.2 is

an example of applying TDA to two simple point clouds. On point clouds, a filtration is

done by expanding balls of radius (ϵ) around each data point, and connecting those points

for which the given balls overlap. This changes the topology of the data representation

as the expansion proceeds, resulting in the appearance and disappearance of topological

features such as connected components (represented by H0) and holes (represented by

H1). A similar filtration can also be constructed on continous functions (see Section 4.5.3)

or on discrete representations of continuous functions such as images (see Section 4.5.4).

Regardless of how the filtration is performed, the time of appearance (birth) and the time

of disappearance (death) of the topological features during the filtration constructs the

persistence diagram. The persistence diagram is a scatter plot for which the x axis is birth

and the y axis is death. All topological features that appear and disappear during the

filtration are recorded as points with coordinates x = birth and y = death and persistence

(y− x) within their representative group (e.g., H0, H1). This scatter plot encodes (reduces)

the high-dimensional structure of the dataset during the filtration and can be vectorized

(see Section 4.5.2) for use in statistical and machine learning models and methods.
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Figure 4.2: Persistence homology methodology for point clouds: each point cloud is
converted into a geometric object via a filtration where the topology is measured at each
point in the filtration. At certain points in the filtration topological features, such as
the holes above, appear and are eventually filled. The ϵ value at the appearance and
disappearance of these features are recorded as birth and death in the filtration. The
birth and death of the topological features are represented as points in a persistence
diagram, with x=birth and y=death and persistence defined as (y − x). The persistence
diagram encodes the topological evolution of the data during the filtration and can be
used directly to separate point clouds of different shape and cluster those of similar
shape. In this illustration we create a representative classification plot that demonstrates
the separation of example point clouds based upon the persistence of the largest and
second largest (which is zero in some cases) hole(s) that appear and disappear during the
filtration.

4.3 Fundamental Concepts of TDA

We discuss fundamental concepts and computational methods of TDA. We first introduce

the notion of simplicial and cubical complexes, which are the basic geometric constructs

used to represent data objects. The representation of data objects as a simplicial or cubical

complex enables the use of methods from simplicial and cubical homology to quantify the

shape of the data in terms of connectedness and topologically important features [226,

227]. In the following discussion, we use R to denote the set of real numbers and Z to

denote the set of integer numbers..
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Figure 4.3: Examples of k-dimensional simplices for k = 0, 1, 2, 3. A simplex is a general-
ization of a triangle in high dimensions. 0 simplices are vertices (points), 1-simplices are
edges, 2-simplices are triangles, and 3-simplices are tetrahedra.

4.3.1 Simplicies and Simplicial Complexes

A simplex is a generalization of a triangle from 2D to other dimensions (e.g., a tetrahedra

is a 3-dimensional simplex). Simplices spanning dimension k = 0 to dimension k = 3 are

shown in Figure 4.3. The formal definition of a simplex is as follows.

Definition 4.3.1. k-simplex: A k-simplex is a convex hull spanned by k+1 affinely inde-

pendent points v ∈ Rm and is denoted as:

σ = [v0, v2, ..., vk] (4.1)

Some interesting properties of simplices are:

1. An m-face of simplex σ is the convex hull of any of its nonempty subsets.

2. The m-face is a simplex.

3. A 0-face is a vertex.

4. A 1-face is an edge.

A simplicial complex (denoted as K) is obtained by connecting (glueing) simplices, as

shown in Figure 4.4a. We denote the dimension of a given simplex or simplicial complex

as dim(·).

Definition 4.3.2. Simplicial Complex: A simplicial complex K ⊂ Rm is a collection of

simplices that satisfies the following properties:
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1. Every face of an elemnt of K is also in K

2. A nonempty intersection of simplices σ1, σ2 ∈ K is a face of σ1 and σ2

3. The dimension of K is the highest dimension of its simplices: dim(K) = max(dim(σ) :

σ ∈ K)

A simplicial complex is used to represent the topological characteristics of objects.

One example of this is found in finite element analysis where simplicial complexes (also

known as triangulations) are used to represent domains over which partial differential

equations are solved [228]. In Figure 4.4b we represent a geometric object (a ring) as a

simplicial complex. We see that the central hole of the ring, which is its main topological

feature, is preserved in its representation as the simplicial complex. These objects are thus

said to be homotopy equivalent (represented by the notation ≃). Homotopy equivalence

identifies spaces which can be deformed continuously into one another without cutting

or tearing (e.g., via stretching) [229]. The flexibility of simplicial complexes allows us to

create a homotopically equivalent representation of any shape encountered in practice.

As we will see, algebraic calculations can be applied to simplicial complexes to quantify

the features of the original object [226].

a

b c

d

e

(a)

≃

(b)

Figure 4.4: (a) A simplicial 2-complex created by connecting a 2-simplex (a triangle) and
multiple 1-simplices (edges). This simplicial complex contains one hole. (b) A geometric
object (a ring) and its simplicial complex representation using 2-simplices. Both shapes
contain an empty hole and are homotopy equivalent.
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a

b c
(a) Simplex represented by ordered set {a, b, c}

a

b c
(b) Simplex represented by ordered set {b, a, c}

Figure 4.5: Possible orientations of a 2-simplex.

4.3.2 Simplicial Homology

Simplicial homology provides computational techniques to study topological spaces that

are represented as simplicial complexes. We make some basic definitions that are neces-

sary to explain the working principles of these techniques.

Definition 4.3.3. Simplex Orientation: The orientation of a k-simplex is given by the

ordering of the vertices in the simplex [v1, v2, ..., vk+1]. Two orderings can define the same

orientation if and only if they differ by an even permutation; thus, there are only two

allowable orientations of a simplex.

An example of the possible orientations of a 2-simplex is shown in Figure 4.5. We can

see that only two orientations are possible for this simplex. Here, each oriented simplex

is equal to the negative of the simplex with opposite orientation; mathematically, this is

stated as [a, b, c] = −[b, a, c].

a

b c

(a) 1-Complex (K1)

a b c

(b) 1-Complex (K2)

Figure 4.6: Examples of 1-simplicial complexes with the same number of vertices; K1
contains a hole while K2 does not.
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a

b c

Figure 4.7: Visualization of the boundary operation (∂2) applied to a 2-simplex. The
boundary operator maps the 2-simplex onto its bounding 1-simplices. The [a, c] simplex
is inverted to retain lexicographical ordering.

4.3.3 Cycles, Holes, and Homology Groups

In simplicial homology, we want to identify cycles in a given object and we want to know

whether a given cycle is bounding a collection of higher dimensional simplices (if it does

not, then the cycles is a hole). An example of this concept is presented in Figure 4.6; we

see that complex K1 is a cycle that bounds an empty space which constitutes a hole, while

the complex K2 represents a line with no holes. We now proceed to explore concepts that

will allow us to systematically identify the presence of holes and cycles.

A simplicial k-chain on a complex K is used in the identification of holes in a simplicial

complex, and is defined as follows.

Definition 4.3.4. Simplicial k-chains: A k-chain is a finite weighted sum defined on all

k-simplicies within a complex K:
N

∑
i=1

ciσi (4.2)

where ci ∈ Z and N is the number of k-dimensional simplices. The set of k-chains on K

is written as Ck. Typically, the coefficients are given by ci ∈ {−1, 0, 1} and we recall that

a value of −1 inverts the simplex.

The boundary operator is a linear operator that maps the k-chains of a complex to its

boundaries. The boundaries are the associated (k − 1)-chains that make up the higher

dimensional k-chain. A visualization of the boundary operator is presented in Figure 4.7.

Definition 4.3.5. Boundary Operator: For a set of k-chains (denoted as Ck) we define the
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boundary operator ∂ as the mapping:

∂ : Ck → Ck−1 (4.3)

The boundary operation on a general simplex σ with vertices [v0, v2, ..., vk] is shown in

(4.4), where the vertex v̂i is removed from the set of vertices in the summation. The

boundary operation on a k-simplex maps the simplex to a summation of its k − 1 faces.

∂([v0, v1, ..., vk) =
k+1

∑
i=0

(−1)i[v0, ..., v̂i, ..., vk] (4.4)

We use the short-hand notation ∂(Ck) = ∂k to represent a boundary operation. We

show an example for a complex K with dim(K) = k in (4.5); here, we see that the bound-

ary operator is a mapping from the chains of a higher dimension to chains of lower

dimension within the simplicial complex. We also note that the k-chain for dimensions

greater than k and less than 0 are zero and that the boundary maps ∂k+1 and ∂0 are zero

maps.

0
∂k+1−−→ Ck(K)

∂k−→ Ck−1(K)
∂k−1−−→ ...

∂1−→ C0(K)
∂0−→ 0 (4.5)

As an example, we apply the boundary operator to the simplicial chains in the com-

plexes in Figure 4.6. We note that these complexes are built from sets of 1-simplices; thus,

when we apply the boundary operator ∂1, we obtain a set of vertices (0-simplices). The

result of the operation on complex K1 is found in 4.6, where we invert the orientation of

the [a, c] boundary in order to retain lexicographical ordering:

∂1(K1) = ∂([a, b]) + ∂([b, c])− ∂([a, c]) = (a − b) + (b − c)− (a − c) = 0 (4.6)

and the operation on the 1-chain in the complex K2 is:

∂1(K2) = ∂([a, b]) + ∂([b, c]) = (a − b) + (b − c) = a − c (4.7)
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This example illustrates how simplicial homology uses basic boundary operations to

identify cycles in a complex. We can see that the cycle formed by K1 is mapped to zero.

In simplicial homology, a cycle is defined as a chain that is mapped to the null space or

kernel of the boundary operator (denoted as ker(∂)) and which is zero. With these basic

definitions, we can now formally define cycles and boundaries.

Definition 4.3.6. Cycles: The k-dimensional cycles are given by:

Zk = ker(∂k) (4.8)

where ker(∂k) is the kernel of the operator ∂k.

Definition 4.3.7. Boundaries: The boundaries are given by:

Bk = im(∂k+1) (4.9)

where im(∂k+1) is the image of the operator ∂k+1.

In summary, the information contained in Zk gives us the cycles of dimension k within

a given complex and the information in Bk tells us whether or not a cycle is the boundary

of a collection of higher dimensional simplices. It is also important to note that Bk is a

subgroup of Zk. Also, if a cycle is not a boundary, then it is known as a hole. We can

summarize this information for any complex by defining the k-homology group Hk and

the Betti number βk. In simple terms, the Hk group contains the unique k-holes within a

complex and βk counts the number of unique k-holes in a complex.

Definition 4.3.8. k-Homology Group: The k-homology group Hk is given by the quotient

group:

Hk = Zk/Bk. (4.10)

We illustrate Hk in Figure 4.8; here, we have two simplicial representations z and b,

where z is a cycle that does not bound a higher dimensional simplex (we have z ∈ Z1 and
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z /∈ B1) while b does bound a higher dimensional simplex (we have b ∈ B1 and b ∈ Z1

as B1 ⊆ Z1). We can also see that both z and z + b contain the same hole and thus they

are homologically equivalent (their difference is a boundary). The homology group Hk

formally defines this concept and states that, if a cycle z1 = z2 + Bk and z1, z2 ∈ Zk, then

the two cycles are equivalent z1 ≃ z2 and are not independent elements of the group (Hk).

This logic prevents counting the same topological feature multiple times.

(a) (b)

Figure 4.8: An illustration of the homology group H1. (a) z represents a cycle z ∈ Z1 that
is not a boundary (z /∈ B1), whereas b ∈ Z1 is a cycle that bounds a 2-simplex (b ∈ B1).
(b) The cycle z is homotopy equivalent to z + b (z ≃ z + b) and should not be counted as
a separate hole.

Before we can formally define Betti numbers, we must define the rank of a group.

Definition 4.3.9. Group Rank: We define the rank(Z) of a group Z as:

rank(Z) = min{|Y| : Y ⊆ Z, ⟨Y⟩ = Z} (4.11)

where |Y| represents the cardinality of set Y and ⟨Y⟩ represents the subgroup of Z gener-

ated by element of Y.

We will see that the rank of a group is analogous to the notion of the rank of a

matrix (or to the dimension of a vector space). Specifically, it identifies the number of

independent basis elements (known as generators) of a group. With this in mind, we

define the kth-Betti number as follows.

Definition 4.3.10. kth-Betti Number: The kth-Betti number βk is the rank of Hk and is
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given by:

βk = rank(Hk) = rank(Zk)− rank(Bk) (4.12)

We illustrate these concepts using the complex K1 presented in Figure 4.6. This com-

plex presents a hole; performing the necessary computations to obtain Z1 and B1 for K1

we find the that:

Z1(K1) = {(a, b) + (b, c)− (a, c)} (4.13a)

B1(K1) = {0} (4.13b)

We now perform the quotient operation to obtain H1 and β1 for K1:

H1(K1) = {(a, b) + (b, c)− (a, c)}/{0} = {(a, b) + (b, c)− (a, c)} (4.14a)

β1(K1) = rank({(a, b) + (b, c)− (a, c)}) = 1 (4.14b)

We see that the H1 group identifies the 1-dimensional holes within the complex, and

β1 counts the number of 1-dimensional holes in the complex. The same is true for all

other dimensions k ≥ 0 as long as dim(K) ≥ k because Hk = 0 for all k > dim(K).

This concept becomes familiar when viewed from the perspective of linear algebra and

matrices. One can consider the Hk group similar to the basis vectors for a given matrix,

where in this case Hk defines the topological basis for a given shape and the Betti numbers

(βk) correspond to the rank of this bases and can be seen as the total number of unique

topological features. The main difference is that for a given shape there can be multiple

sets of topological bases for each dimension of the shape. The goal of TDA is to identify

and compare the topological bases for each shape, similar to how one might compare the

structure of matrices based upon their basis vectors and corresponding rank.
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The 0th Homology Group (H0)

The 0th homology group H0 plays an important role in topological analysis. H0 is the

measure of the number of connected components in a complex. A component (or subcomplex)

is defined as follows.

Definition 4.3.11. Subcomplex: A subcomplex is a subset S of a complex K such that S

is also a complex.

Definition 4.3.12. Connected complex: A complex is connected if there exists a path

made of 1-simplices from any vertex of the complex to any other vertex.

The group H0 describes how many disconnected subcomplexes S there are within

a given complex K. A simple example is shown in Figure 4.9; here, we note that the

first complex K3 has two disjoint subcomplexes, and the second complex K4 has a single

connected component. The calculations for K3 are given by:

H0(K3) = {a, b, c, d}/{(a − b), (c − d)} (4.15a)

β0(K3) = 2 (4.15b)

and for K3 are:

H0(K4) = {a, b, c, d}/{(a − b), (b − c), (c − d)} (4.16a)

β0(K4) = 1. (4.16b)

4.4 Computational Methods for TDA

Now that we have developed a basic understanding of simplicial homology, we can begin

to streamline computations through the tools of numerical linear algebra. In order to

simplify our discussion, we will define a new k-chain where the coefficients ci ∈ Z2
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a
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(a) 1-complex K3

a

b

c

d

(b) 1-complex K4

Figure 4.9: Example complexes with different number of connected components. K3 has
two connected components and K4 has a single connected component.

where Z2 is the set of binaries {0, 1} (rather than ci ∈ Z), for which 1 + 1 = 0. With

this new definition, we can remove the need for defining an orientation on a simplicial

complex. In (4.17a)-(4.17c), we see that computational results are the same as those for

the example provided in (4.6).

C1(K1) = [a, b] + [b, c] + [a, c] (4.17a)

∂1(K1) = ∂([a, b]) + ∂([b, c]) + ∂([a, c]) = (a + b) + (b + c) + (a + c) (4.17b)

∂1(K1) = (1 + 1)a + (1 + 1)b + (1 + 1)c = 0 + 0 + 0 = 0 (4.17c)

We can now couple the newly defined k-chain with the boundary operator to create

what is known as a boundary matrix B ∈ Zn×m
2 where n represents the simplices of di-

mension (k − 1) in K and m represents the simplices of dimension k in K. The boundary

matrix is built based on the following rules:

• The face of a simplex precedes the simplex in column (row) index.

• An entry of one is placed in position (j, i) if σi is a face of σj, otherwise it is zero.

• If two simplices are of the same dimension, lexicographic ordering is used (i.e.,

[a, b] < [a, c] < [b, c]).

For example, we take complex in Figure 4.4a and compute the H1 group. We show

matrix B for ∂0 in Table 4.1, for ∂1 in Table 4.2, and for ∂2 in Table 4.3. Again, the boundary
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matrix associated with ∂1 is mapping the 1-simplices of the complex to its boundaries and

similarly for ∂2.

∂0 [a] [b] [c] [d] [e]
[0] 0 0 0 0 0

Table 4.1: Boundary matrix B0 for ∂0 of complex in Figure 4.4a

∂1 [a,b] [a,c] [a,d] [b,c] [b,d] [d,e]
[a] 1 1 1 0 0 0

[b] 1 0 0 1 1 0

[c] 0 1 0 1 0 0

[d] 0 0 1 0 1 1

[e] 0 0 0 0 0 1

Table 4.2: Boundary matrix B1 for ∂1 of complex in Figure 4.4a

∂2 [a,b,c]
[a,b] 1

[a,c] 1

[b,c] 1

[b,d] 0

[d,e] 0

Table 4.3: Boundary matrix B2 for ∂2 of complex in Figure 4.4a

In order to compute rank(Zj) and rank(Bj) and the number of k-holes in the complex

(the Betti number βk), we must first reduce the matrices to a canonical form known as the

Smith normal form (SNF).

Definition 4.4.1. Smith Normal Form: A matrix M ∈ Zn×m
2 is in Smith normal form if it is

diagonal and if it can be obtained by multiplying M by invertible matrices S ∈ Zn×n
2 and

T ∈ Zm×m
2 as MSNF = SMT.

The reduced matrix B1SNF is shown in Table 4.4 and B2SNF is shown in Table 4.5. The

∂0 matrix cannot be further reduced and thus it is not shown. The SNF matrices contain

all the information required to find rank(Zk) and rank(Bk) for k ∈ {1, 2}:
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rank(Zk) = m − rank(B(k)SNF
) (4.18a)

rank(Bk) = rank(B(k+1)SNF
) (4.18b)

These simple calculations show us that rank(Z1) = 2 and rank(B1) = 1. From this we

can see that the number of 1-holes in our complex is β1 = rank(Z1)− rank(B1) = 1, as

expected.

∂1 [a,b] [a,c] [a,d] [b,c] [b,d] [d,e]
[a] 1 0 0 0 0 0

[b] 0 1 0 0 0 0

[c] 0 0 1 0 0 0

[d] 0 0 0 0 0 1

[e] 0 0 0 0 0 0

Table 4.4: Reduced boundary matrix B1SNF for ∂1 of the simplicial complex in Figure 4.4a.
We note that the matrix is not diagonal in order to retain lexicoraphical ordering, but can
be easily made diagonal.

∂2 [a,b,c]
[a,b] 1

[a,c] 0

[b,c] 0

[b,d] 0

[d,e] 0

Table 4.5: Reduced boundary matrix B2SNF for ∂2 of the simplicial complex in Figure 4.4a.

4.5 Persistent Homology

Persistent homology is a methodology originally proposed by Edelsbrunner, Letscher,

and Zomorodian and further developed by many others for extracting and quantifying

topological information from data [230]. This methodology is discussed in detail in [231,

232, 233, 204, 234, 206]. The homology of data provides deep insight into the structure of

the data and quantification capabilities of their geometric features [206, 234].
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Figure 4.10: A cover of points xi ∈ X is defined by a set of balls B(xi, ϵ) expanded around
each point.

4.5.1 Building Simplicial Complexes from Data

Direct computation of the homology of an arbitrary set defined by the space X ⊂ Rn is a

complex task. To simplify this task, we leverage simplicial homology; here, we identify a

simplicial complex K such that its homology is the same or similar to that of X . We can

define such a complex K by creating a geometric object known as the cover (U ) of X .

Definition 4.5.1. Cover: U = {Ui}i∈I is a cover of a metric space X if X ⊆ ⋃
i∈I

Ui.

If we define our metric space (X ) to be a finite set of points in Rn, then we can imagine

each set Ui to be a ball {B(xi, ϵ) : xi ∈ X , ϵ ∈ R+} centered around each point xi ∈ X ,

where ϵ is the ball’s radius. An example of such a cover is presented in Figure 4.10. We

now utilize this cover to develop a simplicial complex, known as a Čech complex.

Definition 4.5.2. Čech Complex: The Čech Complex (Č) is a simplicial complex built

from k-simplicies that are the non-empty intersection of k+1 sets of a cover U .

A Čech complex is also known as the “nerve" of the cover U .

Definition 4.5.3. Nerve: The nerve of collection U = ∪i∈I{Ui} is the simplicial complex

with vertices I and k-simplices built from {i0, i1, ..., ik} if and only if Ui0 ∩ Ui1 ∩ ... ∩ Uik ̸=

∅.

By using the so-called “Nerve Theorem" construction, we can build a simplicial com-

plex K for space X = ∪i∈I{Ui}. Under certain assumptions, the simplicial complex K and
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the space X are homotopy equivalent [235, 236]. With this, we can apply the calculations

and analysis of simplicial homology directly to our data. However, there is one caveat

that is important to note, which is the selection of the distance ϵ. An example of the the

nerve of a dataset with varying levels of ϵ is shown in Figure 4.11. We can see that, as we

adjust ϵ of the cover U , we obtain different Čech complexes, each with a different homol-

ogy. We want to ensure that the homology captures the most interesting features of the

data. In the complex shown in Figure 4.11, these features are the two clusters of points;

here, one cluster forms a loop and the other does not. It is easy to see in this example

what range of ϵ values would be most effective at capturing this information. However,

if our dataset is of much higher dimension, finding the correct ϵ is much more difficult.

Consequently, we characterize the dataset for multiple values of ϵ. This information is

captured by a filtered simplicial complex [204].

Figure 4.11: Filtration of points xi ∈ X by a set of balls B(xi, ϵ) with expanding ϵ. As
ϵ is increased the topology of the Čech complex evolves and this introduces holes and
higher dimensional simplices. This filtration builds a filtered simplicial complex (Kϵ=0 ⊂
Kϵ=0.1 ⊂ Kϵ=0.5 ⊂ Kϵ=1).

Definition 4.5.4. Filtered Simplicial Complex: A filtered simplicial complex K ∈ Rm is a

simplicial complex for which there is a series of nested simplicial subcomplexes Kϵ ∈ Rm

such that:

Kϵ0 ⊂ Kϵ1 ⊂ ... ⊂ Kϵn (4.19)

where ϵ0 < ϵ1 < · · · < ϵn.

Referring back to the example in which we define the cover U as a set of balls B(xi, ϵ)

of radius ϵ, we can view the filtered complex as the set of nerve complexes that are formed
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as we expand ϵ. Figure 4.11 demonstrates that the filtration of nerve complexes Kϵ=0.1 ⊂

Kϵ=0.3 ⊂ Kϵ=0.5 ⊂ Kϵ=1. Note that the interesting features of the data (the two clusters

and one loop) are present in the homology of the subcomplexes and persist during a large

portion of the filtration. The main goal of this analysis is to identify persistence intervals in

the complex filtered by ϵ. Given a topological feature present in a filtration, we identify

the value of ϵ where the feature is born (appears) and dies (disappears).

Definition 4.5.5. Birth: For a filtered complex K and subcomplexes Ki,Kj where i < j. A

topological feature x ∈ Hp(Kj) is born at j if x /∈ Hp(Ki).

Definition 4.5.6. Death: For a filtered complex K and subcomplexes Ki,Kj where i < j.

A topological feature x ∈ Hp(Ki) dies at j if x /∈ Hp(Kj). A feature will also die if the

feature merges with a feature born earlier in the filtration, this is known as the elder rule.

Definition 4.5.7. Persistence Interval: For a given topological feature x with birth point

i and death point j, the persistence interval (Int) for the feature is given by:

Int = [i, j) : i, j ∈ R̄ (4.20)

If j = ∞ then the component does not die during the filtration (persists forever).

With a filtration we are identifying the appearance and disappearance of topologically

interesting features in our dataset. The filtered complex in Figure 4.11 demonstrates this

concept. We can see that the hole in the dataset is born at ϵ = 0.5 and is completely filled

in at ϵ = 1, persisting for a majority of the filtration. We can also see that the individual

points (at ϵ = 0) become two connected components at ϵ = 0.5 and then become a single

component a ϵ = 1. Thus, the longest persistence intervals in both H1 and H0 capture the

defining topological characteristics of the filtered complex.
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4.5.2 Persistence Diagrams

The information about topological features contained within a filtered complex is sum-

marized into what is known as a persistence diagram (PD) [230]. This can be computed

via an extension of the matrix methods presented in Section 4.4 [205]. The PD is a visual

method that represents the birth (x) and death (y) of topological features as a set of points

in R2. The persistence diagram associated with the filtration in Figure 4.11 is shown in

Figure 4.12. This diagram represents the birth and death of the features of the H0 and H1

homology groups for the filtered complex. The persistence interval associated with each

feature is the vertical line segment between the persitence point and the diagonal. This

information allows for a direct visual understanding of the topology of the dataset.

Figure 4.12: Filtration of points xi ∈ X by a set of balls B(xi, ϵ) with expanding ϵ and
its corresponding persistence diagram. The PD records the ϵ value at which topological
features are born and the ϵ value of their death during the filtration. For example, the
cycle born at ϵ = 3 (x = 3) dies at ϵ = 5 (y = 5) when it is filled in, with a total persistence
of 5 − 3 = 2, which is seen in the PD.

An important property of PDs is that they can be vectorized to enable quantification

and these vectors can be used to perform tasks such as regression, classification, or clus-

tering. For instance, one can apply PCA to the vectorized PDs to identify clusters defined

by different topological features.
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Definition 4.5.8. Vectorization: A persistence diagram PDXi of a dataset Xi is vectorized

by mapping the PDXi to a vector
−→
PDXi ∈ Rq.

There are multiple ways to vectorize a PD, the most widely used mappings are the

persistence landscape [210, 208] and the persistence image [212] (we will focus on the latter).

The persistence image is a smoothed representation of the points (x, y) in a persistence

diagram (x, y) ∈ PD. Typically, the smoothing is done by applying a Gaussian kernel

(with mean u and variance σ2) to each of the points {x, y} ∈ PD:

ϕ(x, y) =
1

2πσ2 exp−
(x − ux)2 + (y − uy)2

σ2 (4.21)

Definition 4.5.9. Persistence Surface: The persistence surface is a scalar mapping ρ : R2 →

R with weighting function w : R2 → R and is defined as:

ρ(PD) = ∑
u∈PD

w(u)ϕ(u) (4.22)

A persistence image is the discretization of the persistence surface.

Definition 4.5.10. Persistence Image: For a given PD, a persistence image of size n by m is

a collection of pixels supported in a rectangle R = [a, b]× [c, d]. The (i, j) pixel pi,j, is the

area [a + i−1
n (b − a), a + i

n (b − a)]× [c + j−1
m (d − c), c + j

m (d − c)].

−→ρ [i, j] =
∫∫

pi,j

ρdxdy (4.23)

The ultimate goal of vectorization methods is to create a stable representation of the

PD.

Definition 4.5.11. Stability: A vector representation
−→
PDXi of a persistence diagram PDXi

is said to be stable if small perturbations in PDXi (represented as PD′
Xi

) results in a

bounded change in
−→
PD′

Xi
.
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Mathematically, we establish the stability property as:

dist(
−→
PDXi ,

−→
PD′

Xi
) ≤ L · dist(PDXi , PD′

Xi
) (4.24)

where dist(·, ·) represents a distance metric and L represents a scalar constant. The

distance between PDs is commonly measured using the Wasserstein distance or the bottle-

neck distance. Whereas the distance between the vectorized PDs (
−→
PD) can be expressed in terms

of lp norms.

Definition 4.5.12. Wasserstein distance: The pth-Wasserstein distance between persistence

diagrams PD1 and PD2 is defined as:

dWp(PD1, PD2) =

(
inf

γ
∑

x∈PD1

∥x − γ(x)∥p
∞

)1/p

(4.25)

where γ ranges over all possible bijections from PD1 to PD2. By convention, we add an

infinite number of points in the diagonal to allow for bijections between PD’s containing

difference numbers of points.

Definition 4.5.13. Bottleneck distance: The bottleneck distance between persistence dia-

grams, PD1 and PD2, is defined as:

dB(PD1, PD2) = inf
γ

sup
x
∥x − γ(x)∥∞ (4.26)

where γ ranges over all possible bijections from PD1 to PD2 with the same consider-

ations made in the Wasserstein distance definition.

Notably, it has been proven that persistence landscapes and persistence images are sta-

ble under the appropriate distances [210, 208, 212]. Intuitively, stability indicates that

topology changes in a continuous manner under perturbations. This makes them excel-

lent representations of PD and amenable to use in diverse tasks such as regression and

classification.
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Figure 4.13: Morse filtration of a function f : R → R. Consider a sublevel set f−1(−∞, b)
for increasing values of b. The topology of these sublevel sets changes at the critical
points of f . As b increases the value of the sublevel set, the persistence diagram records
the topological changes in the function.

4.5.3 Topology of Continuous Functions

In the previous sections we focus on understanding the topology of datasets that are

made of point clouds. We now discuss how to quantify the topology of continuous

functions. An example of this type of object is the scalar function shown Figure 4.13.

Topologically, the interesting features of this function are its critical points (min and max

points). In order to characterize these critical points we utilize a new form of filtration

known as a Morse filtration or sublevel set filtration [237]. The Morse filtration is derived

from ideas of Morse theory, which is the study of the topology of manifolds through

differential functions and the analysis of the critical points of these functions [238]. Here,

we consider the graph of a continuous function as a differentiable manifold [123].

Definition 4.5.14. Level Set: Given a differentiable manifold M and function f : M → R,

the level set Ma at a point a is defined as the pre-image:

Ma = f−1(a) = {x ∈ M : f (x) = a}. (4.27)

The level set contains all points of the manifold that have the same function value. In
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order to create a filtration, we use a sublevel set defined below.

Definition 4.5.15. Sublevel Set: A sublevel set M(a,b), where a, b ∈ R̄ and a = −∞ is

defined as:

M(−∞,b) = {x ∈ M : f (x) ≤ b}. (4.28)

As we pass through the Morse filtration and build the sublevel set of the function, we

are creating a well-defined filtered complex. The topology of the function will change

as the filtration passes through critical points in the manifold [237]. These topological

changes are quantified in a persistence diagram which is subsequently vectorized for

analysis. An example of this type of filtration and the corresponding persistence diagram

are shown in Figure 4.13. The Morse filtration is a good choice for functions that are

continuous or that can be approximated as piece-wise linear functions (e.g., a time series).

The method can be expanded to k-dimensional functions [239]. This makes it a powerful

approach to characterize complex surfaces (landscapes) that have many minima/maxima.

We demonstrate this technique on 2D and 3D functions.

Stability of Persistence Diagrams for Functions

Persistence diagrams of real valued functions are also stable representations of data. The

following Theorem 1, established by Cohen-Steiner and co-workers, highlights this result

[234].

Theorem 1. Given real valued functions f , g with finitely many critical points and their corre-

sponding persistence diagrams PD f , PDg, we have that:

dB(PD f , PDg) ≤ ∥ f − g∥∞ (4.29)

where ∥·∥∞ represents the l∞ distance between two functions f , g : X → R:

∥ f − g∥∞ = sup{∥ f (x)− g(x)∥ : x ∈ X}. (4.30)
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An illustration of the stability of persistence diagrams is shown in Figure 4.14. Here,

we can see that the persistence diagram of the two functions are similar. The presence of

the strong critical points, with large persistence, are well captured in both diagrams. We

can also see that the persistence diagram captures the structure of the weak critical points

(arising from noise), which have short persistence.

Figure 4.14: Filtration of functions f (x) and f̂ (x). The strong critical points of both
functions are captured in the persistence diagram analysis while the weak critical points
(arising from noise) remain close to the diagonal as they have minimal persistence.

(a)

(b)

Figure 4.15: (a) Representations of the elementary k-cubes of dimension 0 to dimension
3. (b) A 2-cubical complex that contains a 2-cube, along with a hole created by 1-cubes.

4.5.4 Cubical Complexes and Images

We briefly discuss cubical complexes and cubical homology as these are important in

understanding data over rectangular domains such as images (represented by pixels in 2D

or voxels in 3D) and are used primarily in Morse filtrations [240, 241]. Cubical homology
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is similar to simplicial homology but uses different basis shapes. This highlights the fact

that one can choose different basis shapes in topological analysis. The basis shapes for

cubical complexes are k-cubes (hypercubes) or elementary cubes built from sides of equal

length. In Figure A.1 we show k-cubes of dimension 0 through 3. An example cubical

complex is found in Figure 4.15b.

Filtered cubical complexes can be developed from data and we can perform persis-

tence homology calculations on them, similar to filtered simplicial complexes. An impor-

tant application of cubical analysis is the analysis of images. An image can be viewed as

a 2D surface embedded in three dimensions where two dimensions are the coordinates

of each pixel, and the third dimension is the scalar value associated with each pixel (e.g.,

intensity). We can also view an image as an approximation of a continuous object over

which a Morse filtration can be performed. We demonstrate the concept of filtration on

the image in Figure 4.16a. We filter through the level sets of this image and develop the

filtered complex through the sublevel set. This filtration is demonstrated in Figure 4.16b,

where C f≤1 ⊆ C f≤3 ⊆ C f≤5. The persistence diagram is then represented in Figure 4.17.

The PD is able to capture the dominant topological features of our image such as the

presence of the two critical points in the image and the fact that there is only a single con-

nected component. The persistence diagram generated from a cubical complex filtration

and a simplicial complex filtration have the same properties and can be vectorized in the

same way. Thus, we can extend our analysis from discrete point data to that of images or

other high-dimensional continuous objects.

4.5.5 Inverse Analysis

The algorithm to compute persistence homology allows us, for each point in a persistence

diagram, to identify representative features in the filtration. The intuition behind this

idea is presented in Figure 4.18. However, before we discuss this procedure along with

an appropriate post-processing step, a few issues need to be clarified. The persistence
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(a) (b)

Figure 4.16: (a) Representation of an image; the values within each pixel represent inten-
sity. (b) The representative filtration on the image itself and the corresponding sublevel
sets.

Figure 4.17: Persistence diagram for the filtration of the image in Figure 4.16a. The PD
reveals the structure of the image,which changes at the critical points of the image (i.e.,
f = 3 and f = 5.)
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Figure 4.18: Inverse mapping of the features of persistence diagram to the features dataset
in Figure 4.12. The features of interest are picked up within the persistence diagram;
In this case they are the highly persistent hole and connected component. The inverse
mapping for the selected point in one dimensional persistence identifies the dominant
loop in the dataset and the inverse mapping for the selected point in zero dimensional
persistence identifies the two most distinct clusters of the data.

algorithm will provide a set of cycles that generate a persistent homology group. However,

it will not necessarily be the set that is close to what we may call geometrically optimal

generators. A similar problem can occur when identifying an optimal basis for a vector

space. For example, let us consider the R2 space and various possible bases for this space

presented below.

B1 =

{1

0

 ,

0

1

}, B2 =

{1

1

 ,

 0

10

}, B3 =

{123

21

 ,

2121

1243

}.

B1, B2 and B3 are all valid basis of R2 and they can be mapped to each other via

multiplication by a non-singular matrix. Yet, only B1 can be called geometrically optimal as

it the natural representation of the space.

We now illustrate, with a simple example, how this issue manifests itself when select-

ing a basis for a persistent homology group. The cubical complex presented in Figure 4.19

contains two holes (h1, h2). Cycles g1 and g2 surrounding h1 and h2 are generators (they

form a basis) for the first homology group of this shape. They are the optimal geometric

representation of these holes. Let Gb1 be the basis made up of these two cycles. The
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second basis Gb2 contains cycles g′1 and g′2. They are a perturbed version of cycles g1 and

g2, as g1 ≃ g′1 and g2 ≃ g′2, but are not geometrically optimal.

Lastly, let us consider a basis Gb3. It generates the first homology group of our shape,

but it is a non-optimal basis for the holes because there is no unique correspondence be-

tween cycles and holes. Gb3 and Gb1 can be transformed into each other by multiplication

of a nonsingular matrix (change of basis).

Figure 4.19: A representation of a cubical complex with two holes. (left) Cycles g1 and
g2 are an optimal representation of holes (h1, h2) as they trace each hole. Cycles g′1 and
g′2 also represent these holes, but are not geometrically optimal. (right) Another set of
generators for the holes (h1, h2) that are not optimal as they represent linear combinations
of the cycles g1 and g2.

Gb1 =

g1 0

0 g2

 , Gb2 =

g1′ 0

0 g2′

 , Gb3 =

g1 0

g2 2g2


The persistent homology algorithm may return non-optimal bases, like Gb3. There is

not much that can be done to fix this issue in general. However, there is a way of finding

the most optimal generators within their homology class. This will allow, for instance,

to simplify Gb2 into Gb1. In order to address the problem of non-optimal generators,

we construct an integer optimization problem to obtain the sparsest representation of a

given generator. We begin this optimization with the representative cycle c obtained from

the persistence algorithm and identify the sparsest chain of simplices from the homology

class of c. For example, in Figure 4.18, we wish to identify the basis (generator) for



105

the persistent cycle identified in green. We construct a simplified representation for the

dataset in Figure 4.18 where Kϵ represents the associated simplicial complexes with the

specified level of filtration. Because we know the cycle is born at ϵ = 3 and dies at ϵ = 5

we only focus on the portion of the filtration up to the level ϵ = 5. Given the simplices

below that filtration level, we wish to identify the sparsest set of 1-simplices z = ∑i σi,

where σi ∈ K, that is homologous to the generator c. We denote ||z||0 as the cardinality

of z.

With this information, we construct an integer optimization formulation, found in

4.31, where we seek to identify the sparsest set of simplices z ∈ Kϵ<5 that is homologous

to the cycle c obtained from persistent homology computations. In Figure 4.20 we identify

multiple cycles (z1, z2 ∈ Kϵ<5), and note that z1 = z because ||z1||0 < ||z2||0.

z = argmin ||z||0, subject to z ≃ c (4.31)

Figure 4.20: A representation of potential simplicial complexes that are homotopy equiv-
alent (≃) to the filtration complex (K). The complex z1 contains the fewest number of
1-simplices, thus is the optimal representation of the cycle contained in Kϵ<5.

Inverse analysis can be used to understand dominant features that drive classification

and regression results. For instance, the defining characteristics of a given class within a

dataset can be identified via the weights of regression/classification models in the space

of PDs. These defining characteristics can then be mapped back to the original data set

which can be used to gain physical understanding of differences between datasets. Ap-

plications of these methods in material science are found in [217, 216, 215]. Here, inverse

analysis is used to identify fracture or degradation sites in materials and to identify pore
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configurations in granular crystallization.

4.6 Case Studies

We now proceed to demonstrate how these methods can be applied to different types of

datasets. To do so, we use a couple of illustrative examples and real datasets derived

from soft materials and molecular dynamics simulations. All the calculations presented

were conducted in Python [242] using the TDA package GUDHI [243]. All scripts and

data needed to reproduce these results can be found in https://github.com/zavalab/

ML/tree/master/TDApaper.

4.6.1 Topology of Point Clouds

We illustrate how to use TDA to analyze point clouds; specifically, we seek to extract topo-

logical features from the data to perform binary classification of point clouds. The clouds

used here are collections of points in two dimensions x1, x2 (for visualization purposes).

In actual applications, one can conduct analysis on a point cloud of any dimension. We

represent each cloud as Xi where each cloud can belong to two different types of classes

(Class 1 or Class 2). Our goal is to take each point cloud Xi as an input, project this data

to their respective H1 persistence diagram PDXi through an epsilon ball filtration (i.e., ex-

tract the topological features), vectorize the PDs (
−→
PDXi ∈ Rq), and perform classification

of the cloud based on the vectorized topological features.

The point cloud classes are shown in Figure 4.21 and the H1 PDs are found in Figure

4.22. Note how the point clouds of Class 1 define a simple object (ellipse) while those

of Class 2 define a more complex object (overlapping ellipses). We can see that the per-

sistence diagrams are visually distinct; specifically, point clouds of Class 2 have features

that persist over a longer range of the filtration.

We utilize the persistence image method to vectorize the PDs. We apply principal

component analysis (PCA) to the vectorized PDs to verify if there is a separation between

https://github.com/zavalab/ML/tree/master/TDApaper
https://github.com/zavalab/ML/tree/master/TDApaper
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Class 1 and Class 2. We emphasize that the PCA projection is not applied to the original

datasets Xi but to the transformed datasets
−→
PDXi obtained from TDA. The PCA projec-

tion on first and second principal components is shown in Figure 4.22c. This shows an

obvious separation between Class 1 and Class 2, which means that the topological fea-

tures extracted from the data (contained in H1) are informative. This also suggests that

a simple linear classifier using vectorized PDs as features should work well. To test this

hypothesis, we apply a linear support vector machine (SVM) classifier using the
−→
PDXi as

features; we find that we can perfectly classify the datasets (we use a 5-fold cross validation

scheme). This again indicates that the topological features extracted with TDA are highly

informative.

An advantage of utilizing a linear classifier is the ability to extract which features are

the ones driving classification. Specifically, the magnitude of the weights of the SVM

classifier w ∈ Rq can be directly associated with the importance of each feature of the

vectorized PDs [54]. Weights with a large negative value are characteristic of point clouds

in Class 1 and weights with a large positive value are characteristic of point clouds in

Class 2. A visualization of the weights is shown in Figure 4.23a. From this representa-

tion, we can see that Class 1 is characterized by 1-D holes that are born and die in the

early stages of the filtration suggesting a higher number of small radius holes. Class 2 is

characterized by 1-D holes that persist over multiple stages of the filtration, suggesting

the presence of holes with large radius. These results highlight how one can exploit topo-

logical information obtained with TDA to perform statistical (PCA) or machine learning

tasks (SVM classification).

Work conducted in [244] has led to the development a set of techniques that are use-

ful in the interpretation of PDs. These techniques allow for the identification of volume-

optimal cycles, which are cycles that correspond to the sparsest representation of the topo-

logical features identified in a PD. This technique has been implemented in the Homcloud

software, which can be used to identify the 1D holes that are responsible for differences

between the classes. Inverse analysis identifies features of the data corresponding to areas
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(a) Sample point cloud of Class 1. (b) Sample point cloud of Class 2.

Figure 4.21: Types of point clouds analyzed using epsilon ball filtration.

(a) (b) (c)

Figure 4.22: Persistence diagrams for Class 1 and Class 2 point clouds and the corre-
sponding PCA analysis on the set of persistence images created from Class 1 and Class
2. (a) H1 persistence diagram for Class 1. (b) H1 persistence diagram for Class 2. (c)
Principal components of persistence images for Class 1 and Class 2 datasets. It is clear
that there is separation of the persistence diagrams.
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Figure 4.23: Masks highlight the areas of the PD that are important in distinguishing Class
1 from Class 2. We perform inverse analysis on these areas to visualize what features of
the original data distinguishing classes. (a) Weights from SVM classification in the space
of PDs. The areas of the diagram that distinguish Class 2 are in red and the areas of the
diagram that distinguish Class 1 are in blue. (b) PD mask for Class 1. (c) PD mask for
Class 2.
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(a) Inverse H1 analysis for Class 1. (b) Inverse H1 analysis for Class 2.

Figure 4.24: Inverse analysis based on classification weights for Class 1 and Class 2. The
analysis reveals that the classifier is separating the classes based on the presence of large
cycles in Class 2 and the larger number of smaller cycles in Class 1.

of the PD associated with the masks found in Figure 4.23. The inverse analysis for a sam-

ple of Class 1 and Class 2 is shown in Figure 4.24. For Class 2 we see larger separation

between points and larger holes that persist for a longer period of the filtration. In Class

1 we see that the separation between points is smaller, resulting in smaller loops that are

formed early and die quickly.

4.6.2 Topology of Time-Series and Phase-Planes

Persistence homology has seen applications in the area of time series analysis [218, 245,

246, 247, 248]. A simple example of the application of persistence homology is the analysis

of the topology of phase-planes generated by a dynamical system. An example for two

state variables f1, f2 is shown in Figure 4.25. The phase plane for functions f1 and f2 is

created by plotting the two functions against each other (Figure 4.25b). The phase plane

for this periodic system defines an ellipse, which is easy to characterize (e.g., in terms of

its axes). We can add complexity to the topology of the phase plane by perturbing the

dynamical system. For example, by adding a perturbation, we change the phase-plane to

that shown in Figure 4.26. The topology of the new plane cannot be fully characterized

using simple ellipsoids.

The analysis of the phase plane topology through an epsilon ball filtration allows us to

differentiate the dynamics of the perturbed and unperturbed systems. We compare their
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PDs in Figure 4.27 and 4.28; the unperturbed system contains a single highly persistent

cycle while the perturbed system contains four cycles that are less persistent.

(a) Time series for functions f1 and f2. (b) Phase plane for functions f1 and f2

Figure 4.25: Phase plane for periodic orbit with two states. The plane is represented as
cloud points from the edge of an ellipse and is ideal for a geometric analysis.

(a) Timer series for functions f ′1 and f ′2. (b) Phase plane for functions f ′1 and f ′2

Figure 4.26: Phase plane for perturbed periodic orbit with two states. The geometry of
the plane can no longer be represented as an ellipse, but still represents a sampling from
a more complex geometric object.

(a) Phase plane of functions f1 and f2 (b) Persistence Diagram of the phase plane.

Figure 4.27: PD for the phase plane reflects the presence of a single, persistent loop in the
diagram. The persistence diagram captures the important geometric aspects of the data.

We can also use persistent homology within a sliding windowing method to detect when
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(a) Phase plane of functions f ′1 and f ′2 (b) Persistence diagram of the phase plane.

Figure 4.28: PD for the phase plane reflects the presence of four loops. The persistence
diagram captures the important geometric aspects of the phase plane without having to
fit a complex geometric model to the data.

a change has occurred in the dynamics of a system (e.g., for fault detection). This concept

is illustrated in Figure 4.29 where we only show 4 windows for illustrative purposes; here

we can see that the first, second, and fourth windows have similar topology while the

third window has a different topology. We compare the PDs of each window in Figure

4.29; the PDs clearly reveal that the phase plane of the third window is different. This

example demonstrates that the geometry of time series are highly informative and can

capture the behavior of the system with minimal information. The small windows used

in this example immediately demonstrate the cyclic/periodic nature of the time series

and show a large difference in shape when a perturbation occurs. Many current methods

require a large amount of information to model the given system via statistics or machine

learning methods [249, 250, 251].

Another common perturbation of a system is noise; an important observation here is

that noise usually has the effect of introducing local effects to a trajectory but does not

distort the overall topology of the trajectory. This is illustrated in Figure 4.30, where we

can see that the ellipse shape of the phase plane is retained. In other words, the topology

of the phase plane is stable in the presence of noisy perturbations. In a real system, one

may wish to characterize whether noise-free and noisy systems exhibit similar dynamics.

One way to do this is to perform persistent homology calculations on both phase planes

and to compare the resulting PDs. We show the results of this analysis in Figure 4.31; the
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Figure 4.29: Sliding window method applied to time series. The first, second, and fourth
windows have phase planes with similar topologies while the third window has an obvi-
ous shift (which introduces a change in the topology of its plane). This change in topology
is captured by the persistence diagrams.
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PDs reveal that both phase planes contain a persistent cycle (which indicates that they

have phase planes with similar topologies). Features created by noise are shown at the

bottom of the diagonal (these features have short persistence). These results demonstrate

the stability of PDs [252], which is an important concept in TDA. These results also high-

light that TDA is a powerful tool for the classification of time series [245], identification of

periodic orbits and shifts [219], and for change point detection [253]. The paper of Perea

[247] provides an excellent overview of TDA in signal processing.

(a) Time series with added Gaussian noise. (b) Phase plane representation.

Figure 4.30: Phase plane for noisy f1 and f2 shows a similar topology to the noiseless
counterparts.

(a) PD for functions f1 and f2
(b) PD for functions f1 and f2 with added noise

Figure 4.31: Persistence diagrams for noisy and noiseless functions. Note that the domi-
nant feature (cycle) persists.

4.6.3 Topology of 2D Scalar Fields

In this example we use TDA to analyze the topology of 2D scalar fields over a discrete

n by n domain U. We generate data by applying propagating a random field {ui,j :
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ui,j ∈ U (0, 1)} using the dynamic 2D diffusion equation (4.32) and we obtain the final

steady-state field. We generate fields with different textures by using different diffusion

coefficients D and independent, random initializations. The resulting fields are used as

the datasets; illustrative examples for different diffusion coefficients are shown in Figure

4.32. Here, the blue color are points of small intensity (small values of ui,j) while the

red color are points of high intensity. We see that small coefficients generate textures

that are more granular while large coefficients generate smoother textures. Our goal is

to characterize the geometry of the fields to investigate if their underlying structure can

be correlated to the diffusion coefficient. In our analysis, we represent the scalar field as

a function (in 3D), as shown in Figure 4.33. This functional representation of the field

reveals that low and high intensity points define critical points of the function. This

also reveals that the field has complex topological features (many critical points with no

obvious patterns are present).

u(n+1)
i,j − u(n)

i,j

∆t
= D

u(n)
i+1,j − 2u(n)

i,j + u(n)
i−1,j

(∆x)2 +
u(n)

i,j+1 − 2u(n)
i,j + u(n)

i,j−1

(∆y)2

 (4.32)

Figure 4.32: Samples from 2D scalar fields with their corresponding diffusion coefficient
(D) value, where red represents high intensity values and blue represents small intensity
values.

To illustrate the benefits of using TDA against other techniques, we investigate whether

the structure of the dataset can be revealed by direct application of PCA [254] and diffu-

sion maps [71]. This is a simple, naive comparison but will demonstrate that the datasets

have nontrivial structure. The projection of the data onto the first two principal compo-
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Figure 4.33: 3D-functional representation of a scatter field with diffusion coefficient D =
0.6. The function is treated as a cubical complex and the filtration is performed over the
scalar value.

nents is shown in Figure 4.34a. Here, we highlight the points based on the associated

diffusion coefficient. We also apply the diffusion maps, which is a nonlinear dimension-

ality reduction technique, and we obtain similar results (see Figure 4.34b). From these

results we see that the features extracted by PCA and diffusion maps do not correlate to

the diffusion coefficient.

(a) Dominant principal components from PCA. (b) Dominant features from diffusion map.

Figure 4.34: Dimensionality reduction for the 2D dimensional scalar fields using PCA and
diffusion maps.

We now apply TDA to the 3D field functions and extract persistence diagrams. Ex-

ample persistence diagrams for H0 and H1 are shown in Figure 4.35. We see that there is
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Figure 4.35: Evolution of PDs with the diffusion coefficient. A dependence of the topology
with the diffusion coefficient emerges.

Figure 4.36: PCA performed on the PD for two-dimensional scalar fields. This reveals
that the geometry of the dataset is directly related to the diffusion coefficient.
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a visual shift in the PDs as we increase the diffusion coefficient. This seems to indicate

that the PDs vary continuously with the diffusion coefficient. To verify this, we vectorize

the PDs and apply PCA to the vectorized diagrams. The projection of the vectorized PDs

onto the dominant principal components is shown in Figure 4.36. It is clear that there

is a continuous dependence of the PD on the diffusion coefficient (it forms a continu-

ous manifold). This result provides another demonstration of the stability of persistence

diagrams and on how topology varies continuously under perturbations. Specifically, sta-

bility indicates that small changes in a given function ( f , g) results in bounded changes in

the associated persistence diagrams (PD f , PDg). Thus, because our perturbations to each

function are based on changes in D, we can guarantee that the distance between PDs is

bounded by the size in the perturbation in the diffusion coefficient (i.e., the distance is

not arbitrary).

4.6.4 Topology of Images

We now illustrate how to use TDA to analyze images. Specifically, we analyze the optical

response of liquid crystal sensors to air contaminants, in particular dimethyl methylphos-

phonate (DMMP) [54, 255]. We analyze the spatial response of a sensor in the presence

of DMMP and in the presence of humid nitrogen (nitrogen + water), which we will re-

fer to as water. The sensor responds to both DMMP and water, but there are subtle

spatial differences in the optical response of the sensor to these different environments.

The working principle of these sensors relies on a change in orientation of liquid crystal

molecules in a film when exposed to an air contaminant (analyte). The change in orienta-

tion results in optical fields with different spatial and color features (see Figure 4.37). We

use TDA to investigate if the topological features of these patterns present a dependence

on the air environment. Such information can be used to design sensors (i.e., we can

calibrate the sensor by correlating the optical response to the presence of DMMP).

Each optical micrograph is an image, taken from the endpoint of the sensor response,
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Figure 4.37: Optical patterns for a liquid crystal sensor when exposed to DMMP or water.
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Figure 4.38: (a) Areas corresponding to optimal weights from linear SVM classification.
The areas of the PD that distinguish DMMP are shown in red and the ones that distin-
guish water are shown in blue. Inverse analysis based on SVM weights for (b) DMMP
and (c) water responses. Note that the camera artifact in (c) has no highlighted areas,
demonstrating that the extracted features are physically relevant.

with three channels (Red, Green, and Blue). We project these three channels onto a single

grayscale channel by computing the total intensity of each pixel in the image. The conver-

sion of the image to a single channel allows us to treat the image as a cubical complex over

which we can perform a simple Morse filtration (level sets defined in terms of intensity,

as done in the previous diffusion field example). A grayscale image was used to simplify

the computations; however, more complicated approaches could be taken to deal with the

three color channels. In order to understand the important of the information contained

in the Morse filtration analysis, we apply a linear SVM to the vectorized persistence dia-

grams associated to our images. We find that the topological features of the images gives

us a classification accuracy of 85 ± 2% (for a dataset of more than 1,000 images). In order

to identify the characteristic features for the responses at high and low concentration, we

utilize the classification weights of the linear SVM model. The classification weights are
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visualized in Figure 4.38. We apply a masking method to identify the portions of the

persistence diagram that are critical for defining whether a response pattern is a result of

high or low concentration. We can use these masked areas to identify the features of the

images that separate the high concentration patterns from the low concentration patterns.

To visualize the geometric differences between the patterns associated with DMMP and

water, we again utilize the Homcloud software to perform the inverse analysis via volume

optimal cycles. Here, we focus on inverse analysis for the H1 homology group. The results

of this analysis for a couple of sample images is found in Figure 4.38. Inverse analysis re-

veals that, when the sensors are exposed to water, the pattern exhibits many small distinct

clusters; in contrast, when the sensor is exposed to DMMP, there are few large clusters.

This shows how inverse analysis allows us to pinpoint topological features of the image

that drive classification. The ability to classify as well as extract meaningful information

from the topology of the images provides an important advantage over machine learning

methods. The work of Smith, Cao, and co-workers demonstrate that machine learning

models can be used to classify the responses of these sensors with higher accuracy, but

provide minimal interpretability. Interpretability is needed to understand the physics

of these sensors which can improve the sensitivity, and broaden the applicability, of the

sensors [54, 56].

4.6.5 Topology of Probability Density Functions

The analysis of the shape of probability density functions is typically done using sum-

marizing statistics (e.g., moments such as skewness and kurtosis) or through parametric

techniques (fitting a parametric model such as a Gaussian mixture to the data) [144].

These models are powerful in their simplicity but might not be flexible enough to capture

complex features of density functions (particularly in high dimensions). In this example

we explore the shape of complex density functions by using topological techniques. We

use an experimental flow cytometry dataset to illustrate how this can be done. The flow
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cytometry dataset was obtained through the FlowRepository [256] (Repository ID: FR-

FCM-ZZC9). This dataset represents a temporal study of the kinetics of gene transcrip-

tion and protein translation within stimulated human blood mononuclear cells through

the quantification of proteins (CD4 and IFN-γ) and mRNA (CD4 and IFN-γ) [146]. In our

study, we focus on the evolution of the concentration of CD4 mRNA and IFN-γ mRNA

in a given cell which is measured via a flow cytometer. At each time point in the study, a

number of cells (∼ 15, 000) are passed through the flow cytometer, each one of these cells

provides a vector of scalar values x ∈ Rn corresponding to each measurable variable. In

this case we set n = 2 as we are only utilizing the scalar values that represent the mea-

sure of both CD4 mRNA and IFN-γ mRNA, samples of these distributions are found in

Figure 4.39. From this we obtain a 2D scatter field. We have restricted ourselves to two

dimensions for illustrative purposes, but this same analysis can be conducted for a point

cloud of higher dimensions, accounting for all variables measured by a flow cytometer.

The goal in this analysis is to use TDA to quantify the temporal evolution of the shape

of the scatter field during the kinetic response of human blood mononuclear cells during

stimulation. This approach provides an alternative to traditional parametric or heuristic

methods such as gating, which are difficult to tune as they are highly sensitive to po-

tential noise and outliers in the data. The gate selection may also require complicated

multivariate mixture models to identify the correct gating values [147].

(a) Time = 0 Minutes (b) Time = 30 Minutes (c) Time = 60 Minutes (d) Time = 90 Minutes

Figure 4.39: Deformation of a 2D scatter field over time.

In order to analyze the topology of the scatter fields, we utilize Gaussian kernel

smoothing [148]. The work of [257] demonstrates that provided a large enough sample,

the homology of the Gaussian kernel density estimate derived from a sample is equivalent
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(a) Sample Distribution. (b) Gaussian Density Estimate (c) Persistence Diagram

Figure 4.40: Processing of the flow cytometry scatter field. The raw data is first smoothed
via a Gaussian kernel and then the smoothed diagram is processed via a Morse filtration.

(a)
(b)

Figure 4.41: (a) Scatter field as a probability density function in 3D; Morse filtration is
performed using level sets of the probability density. (b) Wasserstein distance between
the persistence diagrams as a function of time. There is a clear continuous evolution of
the Wasserstein distance that characterizes the change in topology.
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to the homology of the true density. Figure 4.40 shows the Gaussian kernel smoothing of

a flow cytometry scatter plot. An example persistence diagram for the function is shown

in Figure 4.40. As in the case of the diffusion example, in 3D we can represent the scatter

field as a continuous function (in this case a probability density function). This proba-

bility density function (Figure 4.41a) can be analyzed using Morse filtration. Our goal in

this analysis is to quantify the time evolution of the probability density functions during

stimulation. Our strategy consists of computing the Wasserstein distance (wd) between

the persistence diagram of a given time point to the persistence diagram of the sample

at time zero [258]. Specifically, given flow cytometry samples X1, X2 and the time zero

sample X0 as well as their corresponding persistence diagrams PD1, PD2, PD0 and time

points T0 ≤ T1 ≤ T2, we observe that:

wd(PD1, PD0) ≤ wd(PD2, PD0) (4.33)

From Figure 4.41b, we can see that the distance exhibits a strong dependence on time.

This suggests that there exists a continuous mapping between the persistent diagram and

time (the topological deformation is continuous with respect to time). This again reveals

the continuity of the persistence diagrams (of topology) to perturbations. These results

highlight how topological data analysis provides a quantifiable approach to characterize

complex probability density functions and their evolution over time.

4.6.6 Topology of 3D Fields

We now illustrate how to use TDA to analyze the topology induced by 3D point clouds.

Specifically, we study datsets generated by molecular dynamics (MD) simulations [259,

182]. The dataset under study analyzes the influence of the 3D liquid-phase environment

formed by molecules of a solvent, co-solvent, and a reactant on reactivity [259]. The

reactivity is quantified via a kinetic solvent parameter σ that is obtained from experiments.

Experiments suggest that reactivity is influenced by hydrophilicity of the solvent. The



123

main hypothesis is that, as the solvent concentration is increased, the water in the system

is concentrated around the solvent molecule, and that molecules with high hydrophilicity

are able to take advantage of this effect. In order to study this hypothesis, molecular

dynamics computations were performed in [259]. The data output of an MD simulation

has both spatial and temporal dimensions. Each simulation gives atomic positions Xt ∈

RM×3 (M is the number of species) at multiple times t (measured in nanoseconds). In

our analysis, we utilize a 3D point cloud of water molecule positions that result from a

time average of 100 nanoseconds. An example of this point cloud (visualized as a field)

is provided in Figure 4.42. Each density field is labeled with a reactivity σ obtained from

experiments. Recent work by Chew and co-workers has analyzed the 3D density by using

3D convolutional neural networks (CNNs) and has shown that the features extracted from

the CNN are strongly correlated to reactivity [259]. CNNs are highly effective tools but

require a large number of parameters (∼160,000 in this case) and are difficult to interpret.

Our goal is to study if the topology of the 3D density can be characterized in a more

straightforward manner and to explore whether topology changes in correlation with

reactivity.

Figure 4.42: Visualization of 3D water density field generated by MD simulation.

To perform our analysis, we treat the 3D point cloud as a continuous field (function).

Here, we perform a Morse filtration and treat the data as a 3D cubical complex (a voxel).
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(a) Density Level Set of 0.01 (b) Density Level Set of 0.02 (c) Density Level Set of 0.03

Figure 4.43: Slices of 3D water density field as filtration proceeds for different density
values. The filtration reveals the presence of voids in the data associated with high con-
centrations of water molecules.

(a) PCA analysis (b) SVM Regression

Figure 4.44: (a) PCA analysis on persistence diagrams for MD simulations. The analysis
reveals strong dependence of reactivity σ. (b) Regression plot for SVM with a radial basis
function. The predictions over 5-fold cross validation yield an MSE of 0.07 ± 0.003.
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The filtration will be done by exploring levels sets for the water density. Note that this is

a filtration in a higher dimension that our previous examples for the diffusion field and

for liquid crystal sensors. The main focus of this approach is to capture the clustering

of water near hydrophilic molecules, and the lack of clustering near non-hydrophilic

molecules. We visualize the water density filtration in Figure 4.43 via a 2-dimensional

slice. We can see that voids in the data are generated as we increase the filtration value.

The voids represent areas of high water density which is precisely what we wish to

quantify. From these filtrations, we produce persistence diagrams focused on H2 (since

this homology group quantifies these voids). The persistent diagrams are then vectorized

via the persistence image and we use PCA reduction to visualize them (see Figure 4.44a).

We use SVM regression with a radial basis kernel to predict reactivity as a function of the

persistence diagrams (see Figure 4.44b).

The PCA projection reveals that there is strong dependence of the reactivity on the

topology. This suggests that the information gained via persistent homology extracts

informative features of the 3D field that explain reactivity. This also suggests that a

simple regression method (as opposed to a complex neural network) would be effective

at predicting the reactivity. In order to test this hypothesis, the experimental dataset

with 70 points is split into train/test sets with 49/21, points to build the SVM regression

model. A 5-fold cross validation is performed to estimate the performance of the SVM

regression. We found that this model captures the trend of reactivity well; moreover, this

simple model yields a mean square error of 0.07 ± .003 (Figure 4.44). These results are

relevant because they indicate that it is possible to predict experimental reactivity directly

from MD simulations.
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G E O M E T RY
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Chapter 5

R I E M A N N I A N G E O M E T RY

The contents of this chapter are published in [10]

5.1 Introduction

The assumption that data lies in a Euclidean space is pervasive throughout science and

engineering and is the basis of diverse data analysis techniques used in these domains.

Making this blanket assumption, however, is not always appropriate and can affect the

accuracy/interpretability of such techniques or even break fundamental physical laws.

Recognizing that data can live in spaces that are governed by non-Euclidean geometry

is critical to appropriately representing, manipulating, and analyzing certain data objects.

A simple example of this arises when computing travel paths between a couple of points

that are located on the surface of the Earth; when computing the distance between such

points, the elliptic geometry of the Earth surface must be taken into consideration. If Eu-

clidean geometry is assumed, travel paths between antipodal locations (e.g., United States

and China) can require traversing the Earth (not physically-realizable paths).

Elliptic geometry is a non-Euclidean geometry in which one of the postulates of Eu-
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cliean geometry (sum of interior angles of a triangle is equal to 180
o) no longer holds,

because of the presence of positive curvature in a surface [260]. Elliptic geometry was

first proposed by Bernhard Riemann in the 19th century, and he further developed these

ideas into the field that is now known as Riemannian geometry [261].

An important example in which assuming Euclidean geometry can lead to spuri-

ous results is in the analysis of symmetric positive definite (SPD) matrices (e.g., covari-

ance/correlation matrices). SPD matrices lie on a high-dimensional space which is gov-

erned by Riemannian geometry (known as a Riemannian manifold) [262]. Standard tech-

niques for the analysis of SPD matrices (e.g., PCA or basic matrix norms) do not take this

property into consideration and can lead to misleading results. For instance, computing

the distance between SPD matrices in Euclidean geometry (e.g., via the Frobenius norm)

ignores the fact that such matrices live on a Riemannian manifold, and this can yield

misleading results [263, 264, 265]. Specifically, the so-called swelling effect can occur when

applying operations in Euclidean geometry to SPD matrices [264]. This effect introduces

spurious results by inflating the determinants of SPD matrices and can also distort the

results of commonly used methods [265]. Computing interpolations and averages of SPD

matrices, which is key in understanding physical systems (e.g. Brownian motion), can

also break physical conservation laws if performed under Euclidean geometry [266].

In this chapter, we focus our attention on the use of techniques from Riemannian ge-

ometry for the analysis of data objects that can be represented as SPD matrices. An SPD

matrix is a simple but versatile data representation that is widely used in multivariate

analysis techniques such as PCA [267, 268, 269]. SPD representations are also used in pro-

cess control, monitoring, and anomaly detection [270, 271, 272, 273, 274, 31], in the study

of functional brain networks [275, 276, 277, 278, 31], in object detection [279, 280, 281],

in biomedical image analysis [266, 282], in the analysis of Laplacian matrices in graph

theory, and in the analysis of Hessian matrices in optimization [283]. In applications such
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as image analysis, an SPD representation can be obtained by applying transformations

to a raw data object (e.g., smoothing via kernel functions and/or combination of image

features). The defining feature of an SPD matrix is that all its eigenvalues are real and pos-

itive. In the context of optimization, it is well-known that an SPD Hessian matrix defines

positive curvature of a multi-dimensional quadratic function and is key in defining the

geometry of objective and constraint functions (e.g., convex or non-convex). In the context

of statistics, it is well-known that an SPD covariance matrix defines a multi-dimensional

ellipsoid (a surface with positive curvature) and that the level sets of a multivariate Gaus-

sian probability density function are ellipsoids.

This chapter provides a practical introduction to the Riemannian geometry of SPD

matrices and demonstrates applications of interest to the process systems engineering

community. Specifically, we illustrate the benefits of exploiting the Riemannian geometry

of SPD matrices and discuss how these tools can be incorporated into common dimen-

sionality reduction and classification workflows. We also provide example applications

of interest in science and engineering. The first application focuses on analysis of covari-

ance matrices derived from multivariate time series, which is a common task in process

monitoring. Our application focuses on the so-called Tennessee Eastman Process (TEP)

[4]. The TEP is a process where anomalies/faults are systematically introduced which

shifts the relationships between the measured variables. Covariance matrices encode

these changing relationships and are then used to predict what type of anomaly the pro-

cess is experiencing. The second application is in defect/anomaly detection of textiles

taken from the MVTEC AD dataset [1]. Here, grayscale images of textiles are represented

as covariance matrices by characterizing the relationships between the original image and

multiple transformations of the image (e.g., smoothing with different kernels). The im-

age transformations emphasize different features of the original image (e.g., edges and

fibers). Subsequently, when an anomaly/defect is introduced (e.g., a cut or discoloration

of the textile) these relationships will change, impacting the covariance matrix and allow-
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ing us to detect anomalies. This type of analysis can also be applied to other relevant

image/field datasets such as those arising in microscopy and flow cytometry [31, 168].

All data and scripts needed to conduct such analyses is provided as open-source code

in https://github.com/zavalab/ML/tree/master/RiemannianSPD. With this, we aim to

provide a concise and easy introduction to non-experts to the field of Riemannian geom-

etry.

5.2 Riemannian Manifolds

The key observation driving this work is that SPD matrices lie on a Riemannian manifold;

we thus begin our discussion by characterizing such manifolds. In this section, we aim to

provide an intuitive understanding of manifolds and equip the reader with knowledge of

their key properties.

An n-dimensional manifold is a topological space (a space where closeness and con-

nectedness are defined but not directly measurable) that locally resembles an n-dimensional

Euclidean space. Specifically, an n-dimensional manifold M is a set where every point

p ∈ M has an open neighborhood U ⊂ M (known as a chart) that can be mapped to

an open set of n-dimensional Euclidean space V ⊂ Rn via a one-to-one, onto, and con-

tinuous mapping f : U → V (i.e., a homeomorphism). The set of charts whose union

covers the manifold is known as an atlas
⋃n

i=1 Ui = M. The chart/atlas nomenclature is

derived from navigation along the surface of the Earth (a 2D manifold); here, charts are

flat (Euclidean) maps of the Earth that are collected in an atlas.

In Figure 5.1 we illustrate multiple topological spaces embedded in a 3D Euclidean

space. The spiked (b) and smooth (c) hollow spheres are examples of 2D manifolds.

The space in (a) represents a couple of cones that intersect at a single point and is not

manifold; this is because a neighborhood drawn around the intersecting point will look

https://github.com/zavalab/ML/tree/master/RiemannianSPD
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like a smaller version of the intersecting cones, which cannot be mapped to 2D Euclidean

space through a homeomorphism.

(a) Non-Manifold (b) Non-Differentiable Mani-
fold (c) Differentiable Manifold

Figure 5.1: (a) Space composed of a couple of cones intersecting at a single point. This
is a non-manifold space because any neighborhood formed around the intersecting point
is not homeomorphic to 2D Euclidean space (the neighborhood is a smaller version of
the two intersecting cones). (b) Represents a 2D manifold (all points and associated
neighborhoods can be mapped to 2D Euclidean space) but is not a differentiable manifold
because of the cusps occurring at the edges of the manifold (differential is not defined
everywhere). (c) A smooth sphere is a 2D manifold that is also differentiable (curves on
the surface can be differentiated everywhere).

Manifolds can also be endowed with geometric structure; for our analysis, we are par-

ticularly interested in whether or not a given manifold is differentiable. In simple terms, a

differentiable manifold is a manifold for which calculus (e.g., computing derivatives and

integrals) can be performed on the charts that make up the manifold atlas [284]. This

also means that curves on the surface of the manifold can be analyzed from a geometric

perspective using calculus. A curve is defined as a continuous function γ : [a, b] → M

mapping the interval [a, b] ∈ R to the manifold M. We will not cover the specific mathe-

matical requirements that make a manifold differentiable in general, but refer interested

readers to the following reference for details [284]. Examples of a differentiable and non-

differentiable manifold are shown in Figure 5.1. We can see that the spiked sphere in

(b) has multiple cusps where a derivative cannot be defined for a curve, making it non-

differentiable. For the smooth sphere in (c), a derivative can be taken anywhere, allowing

for more complex operations/transformations to be performed on the manifold [285].

We now restrict our attention to a special class of manifolds known as Riemannian
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manifolds. A Riemannian manifold is a differentiable manifold equipped with a defined

tangent space at each point in the manifold p ∈ M, denoted as Tp M [262]. The tangent

space is the set of tangent vectors of all curves passing through point p ∈ M. The tangent

space Tp M is a vector (linear) space that is of the same dimension as the manifold itself.

An illustration of a tangent space is shown in Figure 5.2 for a smooth sphere (a 2D

Riemannian manifold). For a Riemannian manifold, the tangent space Tp M is equipped

with an inner product gp : Tp M × Tp M → R, along with a norm metric | · |p : Tp M → R

defined by |v|p =
√

gp(v, v) for any vector v ∈ Tp M. These properties allow us to define

the length of a curve on the manifold surface. A differentiable curve γ : [a, b] → M assigns

to each t ∈ (a, b) a tangent vector γ′(t) ∈ Tγ(t)M; thus, to obtain the length of the curve

L(γ), we integrate the norm of the tangent vectors along the curve (i.e., arc length):

L(γ) :=
∫ b

a
|γ′(t)|γ(t) dt (5.1)

In our analysis, we are primarily interested in measuring the shortest curve between

a couple points on the manifold (known as a geodesic). Given a couple of points on a

Riemannian manifold p, q ∈ M and the set of all curves γ : [a, b] → M such that γ(a) = p

and γ(b) = q, the geodesic γ̄ is the curve with the shortest total length L(γ̄):

L(γ̄) := inf{L(γ) | γ : [a, b] → M, with γ(a) = p, γ(b) = q} (5.2)

An illustration of the geodesic between a couple of points on the smooth sphere is

shown in Figure 5.2. Geodesics are a powerful tool for quantifying the relationship be-

tween points on a manifold surface and can be used to compute summarizing statistics

for points on the surface (such as means and variances) [285].

There are direct relationships between the tangent space of a Riemannian manifold

and geodesics, such as the exponential map and the logarithmic map. For a tangent vector

v ∈ Tp M constructed at point p ∈ M, there exists a unique geodesic γ : [0, 1] → M such

that γ(0) = p and γ′(0) = v. The vector v ∈ Tp M is mapped to the endpoint of the
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(a) (b)

Figure 5.2: (a) Illustration of a Riemannian manifold (M) and the associated tangent
space at a point p ∈ M. (b) Illustration of a geodesic γ(t) constructed between two points
p, q ∈ M, along with the associated tangent space vector v ∈ Tp M. The exponential map
(expp(v) : v → q) and the logarithmic map (logp(q) : q → v) are also shown.

geodesic γ(1) ∈ M through the exponential map (see Figure 5.2):

expp(v) = γ(1). (5.3)

The inverse of the exponential map is the logarithmic map, which maps the point γ(1)

in the neighborhood of p ∈ M to a vector in the tangent space v ∈ Tp M (see Figure 5.2):

logp(γ(1)) = v (5.4)

These functions provide a mapping from the surface of the manifold to the tangent

space of a given point. The tangent space, which is a (linear) vector space, can be analyzed

using standard techniques designed for Euclidean spaces (e.g., classification, regression,

and dimensionality reduction) while properly capturing the relationships between points

defined by the geometry of the manifold (e.g., geodesics). For instance, we can use these

constructs to analyze and operate on the space of SPD matrices, as we discuss next.
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5.3 Riemannian Geometry of SPD Matrices

This section will provide the mathematical background needed to understand the geom-

etry of the space defined by SPD matrices. We first introduce the needed notation and

define the properties of different matrix spaces that are used in our analysis. We then

demonstrate how the properties of these matrix spaces can be used to quantify the geom-

etry and structure of the space defined by SPD matrices. The main message is that SPD

matrices lie on a Riemannian manifold and that important computations (e.g., matrix

operations, summarizing statistics, classification, regression, and dimensionality reduc-

tion) can be performed by respecting the geometry of this manifold by conducting these

on the tangent space; respecting such properties can lead to important improvements in

efficiency and interpretability.

5.3.1 Matrix Spaces, Properties, and Notation

We define spaces and properties of matrices that reflect the structure of SPD matrices. We

denote S(n) := {S ∈ M(n), S = ST} as the set of symmetric n × n matrices in the space

of square, real matrices M(n) and the set P(n) := {P ∈ S(n), uTPu > 0, ∀ u ∈ Rn} as

the set of all n × n SPD matrices.

We also define the exponential and logarithmic mappings used in our analysis. The

matrix exponential exp(P), where P ∈ S(n), is defined as:

exp(P) := U diag(exp(λ1), ..., exp(λn)) UT (5.5)

where U represents the matrix of eigenvectors of P and λ1 > ... > λn represent the

eigenvalues of P (also denoted as λi(P)). We also define the inverse operation; the matrix

logarithm log(P) as:
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log(P) := U diag(log(λ1), ..., log(λn)) UT. (5.6)

The following properties should also be considered in the analysis [286]:

• ∀ P ∈ P(n) we have that det(P) > 0

• ∀ P ∈ P(n) we have that P−1 ∈ P(n)

• ∀ P ∈ P(n) we have that log(P) ∈ S(n)

• ∀ S ∈ S(n) we have that exp(S) ∈ P(n)

We also define the Frobenius inner product for matrices A and B as:

⟨A, B⟩F := Tr(ATB), (5.7)

where Tr(·) represents the matrix trace operator. The Frobenius norm for a matrix A is:

||A||F =
√

Tr(ATA) =

√
n

∑
i=1

λi(A). (5.8)

5.3.2 Manifold of SPD Matrices

To understand the Riemannian geometry of the space of SPD Matrices (P(n)), we first

need to construct a Riemannian metric, which will allow us to compute distances and

other relationships between points on a manifold. The metric we consider for Rieman-

nian manifolds is known as the Affine Invariant Riemannian Metric (AIRM); a detailed

derivation of the metric is found in the work of Bhatia [287]. We aim to provide an intu-

itive understanding of this metric, and its meaning.

Given SPD matrices A ∈ P(n) and B ∈ P(n), we construct a geodesic γ(t) : [0, 1] →

P(n) parameterized as:
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γ(t) = exp
(
(1 − t) · log(A) + t · log(B)

)
(5.9)

where we have log maps P(n) → S(n) and exp maps S(n) → P(n). Here, we are

using the n × n identity matrix I ∈ P(n) as our tangent space basis. Informally, we are

mapping our matrices from our SPD manifold P(n) to the tangent vector space S(n) via

the logarithmic map, constructing a line between these points in the tangent space, and

then projecting the constructed line back to the manifold via the exponential map. This is

guaranteed to be the shortest length path between the points in P(n). The corresponding

geodesic distance between matrices A and B is given by:

dg(A, B) := ||log(A)− log(B)||F. (5.10)

Here, note that we are simply projecting the matrices from the Riemannian manifold

to the tangent vector space prior to measuring their distance using the Frobenius norm

[287]. However, an important consideration must be made when using the n × n identity

matrix I as the tangent space basis. In many applications, the data may lie within a par-

ticular neighborhood that is far from I on the manifold. Thus, projections to the tangent

space TI M can result in distortions of the data [285]. Intuitively, one can think of this as

similar to an analysis of a projection of the Earth surface onto a plane tangent to the 0’

latitude and 0’ longitude point (as many maps are represented). In this projection, land-

masses near the edge of the projection are highly distorted, whereas points near (0’,0’)

have almost no distortion. Thus, our aim is to identify a distance with respect to a tangent

space defined by the matrices of concern. This distance can be constructed using a critical

property of this Riemannian manifold and metric: congruence invariance.

Congruence invariance states that, for any n × n invertible matrix X and matrices
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A, B ∈ P(n):

dg(XTAX, XTBX) = dg(A, B) (5.11)

We thus have that linear transformations of the given matrices do not impact the

geodesic distance on the manifold. This property allows us to redefine the geodesic

distance as:

dg(A, B) = dg(I, A−1/2BA−1/2) (5.12a)

= ||log(I)− log(A−1/2BA−1/2)||F (5.12b)

= ||log(A−1/2BA−1/2)||F (5.12c)

=

( n

∑
i=1

log2λi(A−1B)
)1/2

(5.12d)

where I is the n × n identity matrix, A = A1/2A1/2, and λi(A−1B) are the eigenvalues of

A−1B.

We can simplify the geodesic distance further; we have that the geodesic between

matrices I and A−1/2BA−1/2 is:

γ0(t) = exp
(
log(A−1/2BA−1/2)t

)
= (A−1/2BA−1/2)t (5.13)

We can then leverage congruence invariance to shift this geodesic to our matrices of

interest as:

γ(t) = A1/2(γ0(t)
)
A1/2 = A1/2(A−1/2BA−1/2)tA1/2 (5.14)
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where γ(0) = A and γ(1) = B, which provides a geodesic that is independent of

the tangent space basis. Essentially, we are leveraging congruence invariance to translate

our points to a neighborhood of I, which allows us to compute distances with minimal

distortion, and then translate the points back through these linear transformations. We

can apply this same logic to the exponential map (and the logarithmic map); for matrices

A, B ∈ P(n) and TB ∈ TA M where TA M ⊂ S(n):

B = expA(TB) = A1/2exp(A−1/2TBA−1/2)A1/2 (5.15)

TB = logA(B) = A1/2log(A−1/2BA−1/2)A1/2 (5.16)

Here, we are mapping the matrix B ∈ P(n) to the tangent space vector TB ∈ TA M

which is centered at A ∈ P(n) via logA(B) and inversely through expA(B). Thus, with

these newly defined geodesics and mappings, we are able to compute relationships be-

tween SPD matrices with minimal distortions in the tangent space. However, when given

a large dataset with multiple SPD matrices, the choice of a tangent space basis may not

be immediately clear. In this case, the geometric mean of the matrices on the manifold is

typically identified and used as reference point.

5.3.3 SPD Matrix Means and Tangent Spaces

In the analysis of a set of SPD matrices, we often need to identify a center point on the SPD

manifold that will minimize the distortion of all geometric relationships between the ma-

trices of the dataset when mapped to the tangent space. This matrix is the (Riemannian)

geometric mean of the matrices [288]. For a set of SPD matrices Ai, the geometric mean

(see Figure 5.3) is the matrix Ā that minimizes the sum of squared geodesic distances to



139

all other matrices in the set:

Ā := argmin
M

n

∑
i=1

||log(M−1/2AiM−1/2)||F (5.17)

We can see that the geometric mean is obtained by solving a matrix optimization

problem. For the SPD manifold this problem is geodesically convex (similar to Euclidean

convexity) [289]. This optimization problem can be solved by using classical optimization

algorithms that have been adapted to geometric setting (e.g., gradient descent) [289]. A

detailed review on these approaches can be found in the work by Absil, Mahony, and

Sepulchre [289].

(a) Geometric mean. (b) Tangent space projection.

Figure 5.3: (a) Illustration of the geometric mean Ā of a set of matrices {A1, A2, A3, A4} ∈
P(n). The geometric mean represents a point on the manifold that minimizes the geodesic
to all other matrices in the set. (b) Representation of the tangent space TĀ M at the ge-
ometric mean. The set of matrices Ai are projected (through the logarithmic map) onto
this tangent space with minimal geometric distortion TAi ∈ TĀ M.

Given a set of SPD matrices Ai and a geometric mean Ā, we can construct a tangent

space at the geometric mean TĀ M, and project the SPD matrices onto the tangent space

TAi = logĀ(Ai), as shown in Figure 5.3. The matrices are now represented in a vector

(linear) space that reflects the geometry of the SPD manifold. Projecting the data into a

vector space allows us to apply common matrix analysis methods such as PCA.
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Figure 5.4: Simplified illustration of the Tennessee Eastman Process (TEP) and resulting
multivariate time series sensor data. Process sensors measure values such as temperature,
pressure, flow, and level. From the multivariate time series data it is difficult to distin-
guish whether there is a fault occurring, or what type of fault may be occurring. Thus, a
simplified and informative representation of the data is needed to be able to distinguish
when the process is behaving normally or is experiencing a particular fault.

5.4 Case Study - Process Monitoring

We focus on data obtained from a simulated industrial process known as the Tennessee

Eastman Process (TEP) [4]. This dataset is a widely used benchmark dataset for testing

and comparing various anomaly (i.e. fault) detection methods [290, 291, 19]. Figure 5.4

provides a high-level illustration of the process along with the multivariate time series

data that is produced by the sensors monitoring the process. The process has a total of

52 measurements, 41 are process variables, 11 are manipulated variables. There are 20

different potential faults, which are defined in Table 5.1 (for further details see Appendix

A in [4]). Our aim is to use geometric methods to detect and classify the presence and

type of fault using only the multivariate sensor data.

The difficulty in distinguishing potential faults in the TEP is illustrated in Figure 5.4,

where multivariate time series sensor signals for the 52 monitored variables are shown

for the TEP without faults, and in the presence of fault 7 (step change in the component

"C" header pressure) and fault 12 (random variation in the condenser cooling water inlet).

The complexity of the multivariate process dynamics and of the number of sensor mea-
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Table 5.1: Types of Faults for Tennessee Eastman Process [4].

Fault ID Fault Name Type

Fault 1 A/C feed ratio, B composition constant (stream 4) Step
Fault 2 B composition, A/C ratio constant (stream 4) Step
Fault 3 D feed temperature (stream 2) Step
Fault 4 Reactor cooling water inlet temperature Step
Fault 5 Condenser cooling water inlet temperature Step
Fault 6 A feed loss (stream 1) Step
Fault 7 C header pressure loss - reduced availability (stream 4) Step
Fault 8 A, B, C feed composition (stream 4) Random variation
Fault 9 D feed temperature (stream 2) Random variation
Fault 10 C feed temperature (stream 4) Random variation
Fault 11 Reactor cooling water inlet temperature Random variation
Fault 12 Condenser cooling water inlet temperature Random variation
Fault 13 Reaction kinetics Slow drift
Fault 14 Reactor cooling water valve Sticking
Fault 15 Condenser cooling water valve Sticking

Fault 16-20 Unknown Unknown

surements make it difficult to reliably identify if a fault is occurring and to distinguish

between fault types. Our method focuses on simplifying the data by quantifying the rela-

tionships between the 52 measured variables through covariance matrices and leveraging

the geometry of the covariance matrices to detect and distinguish faults in the TEP.

5.4.1 Data Pre-Processing

To begin our analysis of the TEP, we must first pre-process the TEP data into multiple

covariance matrices. To accomplish this, we represent each of the 52 measured variables

as a univariate random variable xi where i = 1, 2, ..., 52 and we denote the collection of

signals as a multivariate random vector X = (x1, ..., xn) where n = 52. We denote the

observations of each signal at time t = 1, 2, .., m as xi(t) ∈ Rm. We use this representation

to construct the sample covariance matrix for the process data P ∈ P(n) as:
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(a) Covariance matrices. (b) Geometric mean. (c) Tangent space projection.

Figure 5.5: Representation of the data pre-processing workflow for the geometric analysis
of the TEP data. (a) Covariance matrices are constructed from the sensor data multivariate
time series forming a set of SPD matrices (Pi ∈ P(n)). (b) The geometric mean of the ma-
trices (P̄ ∈ P(n)) is identified as the point that minimizes the squared geodesic distance
to all other points. (c) All derived covariance matrices are mapped to the tangent space
TP̄ M through the logarithmic mapping. This maps the matrices into a vector space that
reflects the manifold geometry. The mapped data can then be analyzed with commonly
defined dimensionality reduction and classification/regression methods.

P :=
1

m − 1
XXT (5.18)

The TEP dataset consists of multiple separate simulations of the process, both with

and without faults. Thus, for each simulation we construct a sample covariance matrix Pi.

Our goal is to pair each simulation sample covariance matrix with the fault occurring in

the simulation. Figure 5.5 provides examples of the sample covariance matrices that are

constructed from simulations containing no faults, fault 7, and fault 12. We note that there

are no obvious differences between the covariance matrices that would identify a given

fault. These covariance matrices lie on the SPD manifold, and can be integrated into our

geometric framework. An illustration of this computational workflow is found in Figure

5.5. We compute the geometric mean P̄ for our set of covariance matrices Pi ∈ P(n), the

matrices are then projected to the tangent space TP̄ M centered at the geometric mean via

the logarithmic mapping TPi = logP̄(Pi). The data is now projected into a vector space

that retains the geometric characteristics of the SPD matrices with minimal distortion, and

can be integrated in dimensionality reduction and classification algorithms to perform
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analysis.

5.4.2 Principal Geodesic Analysis

Mapping the process data covariance matrices to the tangent space provides an avenue

for the application of common dimensionality reduction techniques. Here, we apply PCA

to the matrices mapped to the tangent (vector) space. PCA applied on the tangent space

of the SPD manifold is commonly known as Principal Geodesic Analysis (PGA), as it

identifies the geodesics that capture the most variance in the data [292]. An example

comparison of PGA versus PCA (directly on the covariance matrices) is presented in Fig-

ure 5.6. The simulations with no faults are colored in red and the faulty simulations

are represented by different grayscale values. We can see that using only the first two

components in PGA, we are able to perfectly separate the faulty and non-faulty simula-

tions; on the other hand, when applying PCA directly on the covariance matrices we can

see that there is significant overlap between the faulty and non-faulty simulations. The

comparison of these projections demonstrates that capturing the geometry of the Rieman-

nian manifold in the analysis of covariance matrices can improve the performance with

minimal added complexity.

This improvement in separation of the data through the geometric approach is due

in part to the congruence invariance of our defined metric on the Riemannian manifold.

As previously stated, congruence invariance means that any n × n invertable matrix X

applied to a set of covariance matrices Pi ∈ P(n) does not impact the geodesic distance

between the two matrices:

dg(XTPiX, XTPjX) = dg(Pi, Pj) (5.19)

Operations such as re-scaling and normalization, which can be represented alge-

braically as invertable square matrices, have no impact on the geodesic distance between
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the matrices [293]. Therefore, there is no need to select specific scaling or normalization

strategies when applying our geometry based analysis of the data (e.g., PGA). However,

this is not true when ignoring the data geometry, making methods such as PCA sus-

ceptible to the chosen framework (or lack of) for normalization/scaling. We perform no

scaling prior to PCA in this case to ensure a direct comparison between PCA and PGA.

(a) Principal component analysis. (b) Principal geodesic analysis.

Figure 5.6: Comparison of PCA applied to the raw covariance matrices and PCA applied
to data mapped onto the tangent space (PGA). The red points represent the simulations
where no fault is occurring and the grayscale points represent simulations with different
faults. (a) PCA on the raw covariance matrices shows minimal separation in the data;
faultless simulations are overlapped with faulty simulations. (b) PCA performed in the
tangent space provides perfect separation between the faulty and faultless simulations,
and also shows clustering of the faulty systems into separate groups. This demonstrates
that simple considerations for the geometry of the data can yield improved results.

5.4.3 Classification and Clustering Results

PGA analysis of the covariance matrices also reveals that there is definite clustering of the

data with respect to the different fault types within the TEP dataset. This suggests that

classification of the different fault types can be done directly using the tangent space of the

SPD manifold. To investigate this we use a simple linear (ridge) classifier. We compare the

prediction accuracy of the linear classifier using coefficients of the tangent space projected

matrices versus the coefficients of the non-transformed covariance matrices as input. In

the analysis, we perform a simple train-test split of the data, where 30% of the data
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is used for testing and 70% of the data is use for training. Figure 5.7 illustrates the

dramatic increase in accuracy when the model incorporates geometric information, which

is reflected in the normalized confusion matrices. Here, a value x ∈ [0, 1] on the diagonal

indicates an accuracy of x ∗ 100% when classifying a particular fault. All values in the

off diagonal (e.g., row i, column j, where i ̸= j) represent the percentage of covariance

matrices associated with fault i that have been incorrectly labeled as experiencing fault

j. When the SPD manifold is accounted for via the tangent space projection, there is

perfect classification of the data (with the exception of faults 3, 4, 9 and 15). When the

manifold geometry is ignored, there are few instances where high classification accuracy

is achieved. The faults 3, 4, 9 and 15 have been shown in prior work to be difficult to

classify [291]. We also note that these faults are only misclassified within their group

(are never classified as having no fault), which suggests that there is limited quantifiable

difference in the covariance matrices for these faults. The inclusion of more information

around these particular faults may correct this issue and further increase accuracy.

(a) Classification raw covariance matrices. (b) Classification in tangent space (TP̄ M).

Figure 5.7: Comparison of linear classification on the raw covariance matrices versus
matrices mapped to the tangent space TP̄ M. (a) Classification of the covariance matrices
without regard for the data geometry results in poor classification accuracy. (b) Simple
mapping of the data to the appropriate tangent space provides a dramatic improvement
in classification accuracy.
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5.5 Case Study - Image Analysis

Another important application of covariance matrices is in the analysis of images [294,

295, 296]. Here, we focus on an analysis of real images from textile manufacturing that

contain non-defective and defective woven textiles taken. The images were obtained from

the public MVTEC AD dataset [1]. Example images of non-defective and defective tex-

tiles are found in Figure 5.8. Our goal is to classify textiles using a linear classifier and

Riemannian geometry.

(a) Normal textiles. (b) Defective textiles.

Figure 5.8: Example images from the woven textile dataset [1]. (a) Representative sample
of woven textiles with no defects. (b) Representative sample of woven textiles that are
considered defective.

5.5.1 Data Pre-Processing

Covariance matrices are useful data representations for images because they are invariant

to translations and rotations [279]. These matrices can also be used to combine multiple

image features that can be quantified through filters and kernel methods [297]. Here,

we select nine image features, as shown in Figure 5.9. We implement both the Frangi

and Hessian filters, which are designed to detect edges and fiber structures of the woven

textures [298]. We apply these filters to the image; multiple transformed images that

are smoothed through a Gaussian filter of varying strength are shown in Figure 5.9. We
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use Gaussian filters to emphasize features of different scale within the image [299]. This

yields nine total feature images (including the original image), which we use to construct

a sample covariance matrix. We do this by taking each feature image (which we treat as

a 64 × 64 matrix) and vectorizing each image xi ∈ Rm, where i = 1, 2, ..., 9 and m = 4096.

Each feature image can therefore be represented as a realization of a multivariate random

vector X = [x1, x2, ..., x9]. We use this observation to construct a sample covariance matrix

P ∈ P(n) (see Figure 5.9) where n = 9:

P :=
1

m − 1
XXT. (5.20)

The covariance matrices are SPD, and can be directly integrated into our geometric

analysis framework.

Figure 5.9: Workflow for the construction of an image covariance matrix. (left) Image
filters and transformations emphasize specific characteristics of an image. Gaussian fil-
ters emphasize features of different scale within an image, and the Frangi and Hessian
filters capture important fiber and edge features of an image. (right) The covariance be-
tween each image representation can be computed and used to form a covariance matrix.
Importantly, the covariance matrix representation is invariant to transformations such as
rotation and translation which are present in the textile images.



148

5.5.2 Classification Results

We first apply PGA to the image covariance matrices (see Figure 5.10). PGA reveals a dis-

tinct clustering and separation of the data with only two components. The PGA suggests

that a simple classifier can be used to separate the defective and non-defective textile

samples (after projecting to the tangent space). Thus, we construct a simple linear sup-

port vector machine classifier, which we train with 70% of the image data and test our

trained model on the remaining 30% of the data. The covariance representation of the

images provides a simple characterization of the data and its various features, while also

imbuing the data with the inherent geometry of SPD matrices. This results in the trained

model being able to separate the defective and non-defective samples in the testing data

with 92% accuracy. We also compare our PGA analysis of the covariance matrix repre-

sentation to PCA applied to the raw image data in Figure 5.10. The PCA analysis reveals

almost no separation of the data, and results in poor classification accuracy when used as

input to a linear SVM (50 % accuracy). This is likely due to sensitivity of the analysis on

the raw images to rotations and translations of the textiles.

(a) PGA on covariance matrices. (b) PCA on raw images.

Figure 5.10: (a) PGA of the covariance matrices derived from the set of woven textile
images. The analysis reveals clustering of the data into groups representing the defective
and non-defective textiles. A simple linear SVM classifier is able to separate the defective
and non-defective textile images with 92% accuracy. (b) PCA analysis of the raw images;
without the covariance matrix representation and considerations for the data geometry,
we see there is almost no separation in the data.
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5.6 Case Study - Atmospheric Data Analysis

We explore the benefits of using Riemannian geometry in the analysis of multi-site, multi-

pollutant atmospheric monitoring data. Our approach uses covariance matrices to encode

spatio-temporal variability and correlations of multiple pollutants at different sites and

times. A key property of the covariance matrix representation is that it lies on a Rieman-

nian manifold and one can exploit this property to facilitate dimensionality reduction,

outlier detection, and spatial interpolation. We demonstrate the benefits of this approach

by analyzing real atmospheric data collected from monitoring stations in Beijing, China.

Air pollution damages human health and impacts the environment (e.g., climate

change) [300, 301, 302]. A key factor in developing pollution mitigation policies, tech-

nological solutions, and improving public awareness, is the monitoring and modeling

of atmospheric pollutant behavior [303]. Air pollution is traditionally measured within

distributed monitoring stations. These stations provide accurate measurements of multi-

ple atmospheric pollutants (e.g., O3, NOx, PM 2.5) at high temporal resolution. Histori-

cally, air pollution research and policy has focused on the control of individual pollutants

due to the complexities that arise in the analysis, modeling, and interpretation of multi-

pollutant data [304]. However, the need for air quality management tools and methods

that integrate multi-pollutant data has been recognized by government agencies, such as

the Environmental Protection Agency (EPA) [304, 305, 306, 307]. Furthermore, the dy-

namic relationships between different pollutants encoded in multi-pollutant time series

data can provide insight into the chemical and physical interactions between pollutants.

For example, chemical interactions between NOx and O3 can be captured by observing

temporal correlations between their atmospheric concentrations. For instance, a positive

correlation between NOx and O3 is commonly present due to the formation of O3 through

the photolysis of NO2 [308]. Whereas a negative correlation suggests the depression of

O3 concentration due to NOx titration.

We apply the introduced methods in an analysis of multi-pollutant data taken from
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34 air quality monitoring sites in Beijing, China [309]. The data is made available through

the Beijing Municpal Monitoring Center (bjmemc.com.cn). For each site we record hourly

concentrations of six atmospheric pollutants: CO, NO2, O3,PM10, PM2.5 and SO2. For

each of the 34 sites we obtain a stochastic multivariate time series. We can compute the

pairwise covariance between each of the time series and construct a covariance matrix

for each site. Our analysis is focused on quantifying and understanding the spatial and

temporal behavior of these covariance matrices through dimensionality reduction and

spatial interpolation. Figure 5.11 illustrates the basic workflow used in pre-processing

the atmospheric data and the subsequent analysis on the Riemannian SPD manifold.

Figure 5.11: Illustration of the workflow used in the pre-processing and analysis of at-
mospheric data measured at multiple locations with Beijing, China. Multivariate mea-
surements of six atmospheric pollutants: CO, NO2, O3,PM10, PM2.5 and SO2 are taken
over time at each monitoring site. These multivariate time series can be represented as
covariance matrices, which are SPD for this dataset. The covariance matrices can then be
analyzed through Riemannian geometry and geodesic distances.

5.6.1 Dimensionality Reduction

We first analyse the multi-pollutant data collected during weekdays, weekends, and holi-

days for each of the 34 sites. For each site we obtain 3 covariance matrices, one represent-

ing dynamics observed during the weekday, one during the weekend, and a final during

holidays. We can then perform the proposed Riemannian geometric method for the data

http://www.bjmemc.com.cn/
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(a) Geodesic PCA (b) Euclidean PCA

Figure 5.12: A comparison of dimensionality reduction methods for the multi-pollutant
covariance matrices derived from holiday, weekend, and weekday data across the 34 sites
in Beijing, China. (a) Principal component analysis of covariance matrices that have been
mapped to the tangent space at the geometric mean TP̄P . (b) Principal component analy-
sis where the covariance matrices have been assumed to be governed by Euclidean geom-
etry. The geodesic PCA method is able to capture distinct separation between pollutant
dynamics on weekdays, weekends, and holidays. The Euclidean PCA method is domi-
nated by outliers and is impacted by the scale of the variables, and does not show clear
separation between the three sample groups.

by first identifying the geometric mean of the matrices P̄, and then mapping the data from

the Riemannian manifold P(n) to the tangent space at the geometric mean TP̄P through

the logarithmic map logP̄(·). Our matrices are now in a (linear) vector space, and can

be analysed through principal component analysis (PCA). Here, each mapped covariance

matrix TPi ∈ TP̄P can be can be vectorized TPi := vec(TPi) ∈ Rn2
, where n2 = 36. We can

then construct a matrix M =
[

TT
P1

, TT
P2

, ..., TT
Pj

]T
∈ Rj×36, where j = 32 ∗ 3. The matrix M

contains the 3 transformed covariance matrices for each of the 32 sites. We then perform

a singular value decomposition of the matrix M and project the data onto the leading

eigenvectors. The results of this analysis for the first two leading eigenvectors is found in

Figure 5.12a. We compare these results to a similar analysis that assumes the covariance

matrices are governed by Euclidean, rather than Riemannian, geometry. In this second

approach we perform the same type of the analysis, but do not project the covariance

matrices to the tangent space at the geometric mean. The results of this Euclidean based

approach are found in Figure 5.12b.

The output of PCA that considers the Riemannian geometry of the covariance matrices
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provides a much clearer result that demonstrates clustering of the behavior of the sites

into weekday, weekend, and holiday groupings. The Euclidean method does not capture

this same information and is distorted by the presence of potential outliers in the data.

One of the reasons for this distortion is the need for normalization or scaling of the data

prior to PCA. This is not a challenge for the Riemannian approach due to a powerful

property known as congruence invariance. Congruence invariance means that any n × n

invertable matrix X applied to a set of covariance matrices Pi ∈ P(n) does not impact the

geodesic distance between the two matrices:

dg(XTPiX, XTPjX) = dg(Pi, Pj) (5.21)

Operations such as re-scaling and normalization, which can be represented alge-

braically as invertable square matrices, have no impact on the geodesic distance between

the matrices [293]. Therefore, there is no need to select specific scaling or normalization

strategies when applying our geometry based analysis of the data, it is done naturally

through the geometry of the manifold. However, this is not true when ignoring the data

geometry, making Euclidean methods susceptible to the chosen framework (or lack of)

for normalization/scaling. We perform no scaling prior to PCA in this case to ensure a

direct comparison between the Riemannian geometric and Euclidean methods.

We illustrate another application of dimensionality reduction in the analysis of multi-

site, rather than multi-pollutant, dynamics. Here, we measure the dynamics of NO2 at

each site over the entire year. For a given site we obtain a univariate stochastic time series

xi ∈ Rm, where i = 1, 2, ..., 34 and m = 24 ∗ 365 because NO2 is measured in hourly

intervals. For each site i we split the time series data into subsets xh
i ∈ Rp where p = 365

and h = 1, 2, ..., 24. We take each subset and form a multi-variate time series matrix

Xh = [xh
1 , xh

2 , ..., x34h] for each hour of the day h = 1, 2, ..., 24. We can then construct a
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(a) Geodesic PCA
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(b) Coefficients of the leading eigenvector

Figure 5.13: An analysis of the behavior of NO2 across multiple sites during each hour of
the day. (a) Illustration of the clearly cyclic behavior of NO2 dynamics observed during
each hour of the day across the different Beijing sites. (b) An analysis of the coefficients
of the first eigenvector of PCA. We find that certain sites have a large influence on the
behavior of NO2 dynamics during the day (positive coefficients - red color) and sites that
have a larger influence during the night (negative coefficients - blue color)

covariance matrix from this data as:

Ph :=
1

365 − 1
XXT. (5.22)

which results in a total of 24 covariance matrices of shape Ph
i ∈ Rn2

, where n = 34.

We follow the same procedure as the previous example. The results of the Riemannian

Geometric analysis are found in Figure 5.13. Using the Riemannian geometric approach,

we see a data structure that indicates a clear cyclic behavior in NO2 dynamics through-

out the day. We can also understand what sites are impacting the dynamics of NO2 by

observing the values of the eigenvectors associated with each principal component. We

visualize this in Figure 5.13 where we color each of the 34 sites with the coefficients of the

leading eigenvector associated with the variance of each site (i.e. the diagonal values of

each covariance matrix). From this analysis we can see which sites have a larger influence

on the behavior of NO2 dynamics during the day (positive coefficients - red color) and

those that have a larger influence during the night (negative coefficients - blue color).
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5.6.2 Spatial Interpolation

Consideration for the Riemannian geometry of covariance matrices is crucial when per-

forming spatial interpolation of covariance matrix values [310]. As shown previously in

Figure 5.11, interpolation between matrices with an assumption of Euclidean geometry

can result in matrices that do not lie on the covariance matrix manifold P(n). Whereas

interpolation through geodesics provides assurance that the resulting interpolated matrix

will lie on the Riemannian manifold [310]. Euclidean interpolation of covariance matrices

can also introduce a swelling effect on the interpolated matrices [264, 10]. The swelling

effect causes an increase in the generalized variance (i.e., determinant) of the interpolated

covariance matrices. This introduces a spurious increase in the variance of the atmo-

spheric pollutant data dynamics creating results that are not physically consistent. An

example of this effect is shown in Figure 5.14. Here, we compare the generalized variance

(i.e., determinant) of matrices from Euclidean and geodesic interpolation between two

sample covariance matrices from our dataset. From Figure 5.14 we see the swelling of the

data variance with the Euclidean interpolation method, given by the function:

PE(t) := P1(1 − t) + P2(t) (5.23)

where t ∈ [0, 1] and PE(0) = Pi, PE(1) = Pj. At t = 0.85 the generalized variance

of the interpolated matrix is double that of either the sample covariance matrices, falsely

indicating the presence of a pollution source or new pollutant interactions. This is not the

case with the geodesic interpolation which reflects a natural evolution of the generalized

variance between the two samples, given by the function:

PG(t) := P1/2
1

(
P−1/2

1 P2P−1/2
1

)t
P1/2

1 (5.24)
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Figure 5.14: Visualization of the swelling effect. We compare the Euclidean and geodesic
interpolations between covariance matrices labeled Sample 1 and Sample 2. If Euclidean
geometry is assumed, the interpolated matrices have inflated generalized variance (i.e.,
determinants) that is almost double that of either Sample 1 or Sample 2. In a spatial inter-
polation method (e.g., Kriging) this will result in a false increase in variance, potentially
indicating sources of pollution that are non-existent. However, If interpolation is done
along a geodesic there is no swelling and the generalized variance evolves in a way that
is natural to the data.

where t ∈ [0, 1], PG(0) = P1, PG(1) = P2, and Pi = P1/2
i P1/2

i .

Another aspect of spatial interpolation methods is the modelling of spatial depen-

dence between observed data points. This is often modeled through the use of the em-

pirical variogram [311]. Given a set of k ∈ Z+ sample covariance matrices Pi ∈ P(n)

measured at k spatial locations si ∈ R2 we compute the squared distance between each

sample covariance matrix and the spatial lag distance between each location ||si − sj||2.

This information is spatially binned and averaged. For the geodesic method we compute

the empirical variogram as:

γ̂(h ± δ)G :=
1

2|N(h ± δ)| ∑
(si ,sj)∈N(h±δ)

||log(Pi)− log(Pj)||F (5.25)

where h, δ ∈ R represents the spatial lag bin center and width, N(h ± δ) := {(si, sj) :

||si − sj||2 ∈ h ± δ}, and |N(h ± δ)| ∈ Z represents number of elements contained in
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Figure 5.15: Empirical variograms constructed using geodesic and Euclidean distances
during the weekdays of January to March. The variogram constructed using geodesic
distances γ̂(h ± δ)G reveals an exponential behavior, whereas the Euclidean variogram
shows almost no structure. The incorporation of the manifold geometry into the analysis
of spatial depence can reveal information that is missed if Euclidean geometry is assumed.

N(h ± δ). For the Euclidean method the empirical variogram is given as:

γ̂(h ± δ)E :=
1

2|N(h ± δ)| ∑
(si ,sj)∈N(h±δ)

||Pi − Pj||F (5.26)

We compare the empirical variogram for the Euclidean and geodesic methods con-

structed from the Beijing data observed during weekdays in the months of January to

March. The empirical variograms γ̂(h ± δ)G, γ̂(h ± δ)E are found in Figure 5.15. The

variogram constructed with the geodesic distance reveals a clear exponential behavior,

whereas the variogram constructed with a Euclidean distance does not show a clear be-

havior that fits known variogram models [312]. The incorporation of the Riemannian

manifold geometry can reveal spatial relationships between the covariance matrices that

are missed when Euclidean geometry is assumed.
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Part III

D ATA D R I V E N M E T H O D S F O R PAT T E R N A N D S T R U C T U R E

A N A LY S I S
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Chapter 6

C O N V O L U T I O N A L N E U R A L N E T W O R K S & L I Q U I D C RY S TA L

S E N S O R S

The contents of this chapter are published in [54]

6.1 Introduction

This chapter focuses on the application of a data driven method, the convolutional neural

network, for pattern and structure quantification in data. We apply these methods in

the analysis of liquid crystal sensor data. Liquid crystals (LCs) provide a versatile plat-

form for sensing of air contaminants (chemical sensing) [255, 313] and for sensing of heat

transfer and shear stress (mechanical sensing) [314]. In the context of chemical sensing,

LC sensors can be designed to change their orientational ordering and optical birefrin-

gence upon exposure of the LC to a certain targeted chemical environment. For instance,

an LC sensor can be prepared by supporting a thin LC film (thickness of micrometers)

on a chemically functionalized surface. Typically, the molecules within the LC film (the

mesogen) bind to the surface and assume a homeotropic (perpendicular) orientation that

provides an initial optical signal. Subsequent exposure of the LC film to an analyte leads

to diffusive transport of the analyte through the LC phase and displacement of the meso-

gen at the surface, triggering rich space-time optical responses (Figure 6.1). The response
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time of the spatial-average brightness of the optical signal has been shown to be strongly

correlated to the differential binding energy between the analyte and mesogen to the

surface. The physicochemical principles of LC chemical sensors are explained in detail

elsewhere[255].

Figure 6.1: Working design principles of a liquid crystal chemical sensor.

A primary challenge for the development of LC sensors (as in other sensing technolo-

gies) is their potential sensitivity to interfering chemical species. For instance, LC sensors

designed for detection of dimethyl methylphosphonate (DMMP), CH3PO(OCH3)2, might

exhibit similar optical responses when exposed to humid nitrogen [315]. Moreover, LC

responses can also be slow, as these require diffusion of the air contaminant through the

LC film and displacement of the mesogen at the surface. Sluggish responses limit the

applicability of the LC sensor (e.g., when detecting highly toxic chemicals). These issues

are illustrated in the experimental responses shown in Figure 6.2. Although the selectiv-

ity of LC sensors can be optimized by chemical design to largely eliminate the effects of

humidity, a natural step is to determine whether or not one can unravel hidden patterns in

the optical responses that can help discern between chemical species. The identification of

such patterns can also help reduce detection times and simplify the design of LC sensors.

Machine learning techniques are actively being used for pattern recognition in di-

verse branches of science and engineering. Specifically, convolutional neural networks
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(CNNs) have been used for brain tumor and skin lesion classification [316, 317]. The

goal of a classification strategy is to separate different images by using numerical features

(descriptors) that characterize such images. Features are projections of the original im-

age into an information space that seek to best summarize/describe an image (features

are characteristic patterns of the image). Certain features can be strongly correlated to

physical phenomena that govern a system; for instance, image features such as textures

are often correlated to structural properties of materials [318]. Interestingly, informative

features that capture multi-scale spatial patterns can be extracted from CNNs that have

been pre-trained using generic images (that are not directly related with the application

at hand). Such features can then be used in an external classification engine such as a

fully connected network, logistic regression, or support vector machine. For instance, in

the work of [317], the pre-trained CNN Alexnet [319] was used to classify skin lesions.

In the work of [320], textures extracted from the pre-trained CNN VGG16 [321] are used to

predict material properties. The principle behind the exploitation of pre-trained CNNs is

known as transfer learning [322].

Cao and coworkers recently used Alexnet to characterize optical LC responses (as

grayscale images) and demonstrated that spatial features of the LC response can be used

to discern the chemical environment [323]. Specifically, the authors demonstrated that

spatial features extracted from the deep layers of AlexNet can be used to achieve classi-

fication accuracy levels of 99%. Notably, they also observed that snapshots taken within

three seconds of exposing the LC are sufficient to classify the environment (either DMMP

or humid nitrogen). Unfortunately, reaching such high levels of accuracy required an

extremely large number of features (on the order of thousands), which resulted in com-

putational issues and clouded the physical interpretability of the dominant features. In

particular, features extracted from deep CNN layers, while informative, are difficult to

interpret.

In this chapter, we extend the results of Cao and coworkers by analyzing LC response

features extracted from VGG16, which is a CNN that embeds a smaller set of convolutional
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filters than Alexnet. Moreover, in the current study, we use RGB (color) images directly

(in previous work grayscale images were used). Our findings demonstrate that features

extracted from the first and second convolutional layers of VGG16 allow for a perfect clas-

sification accuracy for the same dataset studied by Cao and co-workers, while reducing

the number of features to approximately one hundred. We demonstrate that the number

of features can be further reduced to ten via recursive feature elimination with minimal

losses in sensor accuracy. This feature reduction procedure reveals that complex spatial

color patterns are developed within seconds in the LC response, which leads us to hy-

pothesize that differences in spontaneous fluctuations in LC tilt orientation (angle) play

a key role in sensor selectivity and responsiveness. Our analysis also reveals that hue

distributions provide an effective set of features to characterize LC responses.

Figure 6.2: Optical responses of liquid crystals under gaseous N2-water (30% relative
humidity) and N2-DMMP (10 PPM) environments. LCs were deposited into microwells
with a diameter of 3mm to enable high-throughput data collection. LC responses were
recorded at room temprature.
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6.2 Methods
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Figure 6.3: Sketch of experimental system used for collecting LC response data.

6.2.1 Experimental Methods

We recorded six videos that show the response of LCs to DMMP-N2 at 10 ppm (the length

of each video ranges from 4 - 13 minutes) and six videos that show the response of LCs

to water-N2 (the length of each video ranges from 7 - 30 minutes). The experimental

system is sketched in Figure 6.3. Each video tracks the dynamic evolution of multiple

independent micro-wells (the total number of micro-wells recorded was 391). We cap-

tured a frame (micrograph) from each video every 3.3 seconds. We split each frame into

several images, each containing a single micro-well at a specific time. The total number

of micro-well images (snaptshots) generated was 75,081 and each image is resized to 60

x 60 pixels (see Figure 6.2 for some example micrographs). The experimental procedure

followed to obtain the LC response data was the following:

• Formation of thin films of LC supported on metal-salt-decorated surfaces: 50 µL of 10mM

aluminum perchlorate salts in ethanolic solution were deposited by spin-coating
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(3000 rpm for 30s) onto the glass surfaces at the bottom of the polymeric micro-wells.

Next, 2 µL of 5CB (4-cyano-4’-pentylbiphenyl) were deposited into the polymeric

micro-wells [324] with a depth of 5 µm using a micropipette. The excess LC was

removed from the array by wicking into a microcapillary.

• Optical characterization of LC films: The optical appearance of the LC was character-

ized by using an Olympus BX-60 polarizing light microscope in transmission mode

(Olympus, Japan). Conoscopic imaging of the LC films was performed by inserting

a Bertran lens into the optical path of a polarized-light microscope to confrim the

homeotropic orientation [325].

• Ordering transitions induced by DMMP and humid N2: The LC-filled micro-wells were

exposed to a stream of dry N2 containing DMMP (10 ppmv) within a flow cell [326]

with glass windows that permitted characterization of the optical appearance of the

LC using a polarized optical microscope. The gas containing DMMP was delivered

to the flow cell at 300 mL/min by using a rotameter (Aalborg Instruments and

Control, Orangeburg, NY). For experiments performed to evaluate the response of

the LCs to water vapor, nitrogen containing 30% relative humidity was delivered

to the flow cell at 300 mL/min with the same rotameter (we call these mixture N2-

Water). The optical appearance of the LC film was recorded using an Olympus

camera (Olympus C2040Zoom, Melville, NY) and WinTV software (Hauppauge,

NY).

6.2.2 Computational Methods

In this section, we summarize the machine learning methods used to analyze optical mi-

crographs of LCs. We focus on classifying whether an LC sensor has been exposed to

DMMP or humid air (we call this water, for convenience). In other words, our framework

is focused on binary classification. We use the same dataset reported by Cao and cowork-

ers [323] but focus on patterns developed within the first 30 seconds of the LC response.
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Details regarding the experimental system and data preparation methods can be found

in [323].

In summary, the dataset analyzed was obtained from six videos that show the re-

sponse of LCs to a gaseous stream of N2 containing 10 ppm DMMP and six videos that

show the response of LCs to a gaseous stream of N2 containing 30% relative humidity

(both at room temperature). Each video tracks the dynamic evolution of multiple inde-

pendent microwells (the total number of microwells recorded was 391). We captured a

frame (a micrograph) from each video every 3.3 seconds. We split each frame into sev-

eral images, each containing a single microwell at a specific time. The total number of

microwell snapshots generated was 75,081 (the dataset analyzed is extensive).

Examples of snapshot sequences collected during the microwell responses are pre-

sented in Figure 6.2. Our machine learning analysis treats snapshots as time-independent;

this type of analysis is more challenging than analysis of time-dependent sequences and

it is more desirable from a sensor design perspective because we want to detect a con-

taminant by ignoring its response history. Specifically, our aim is to show that machine

learning techniques can detect a contaminant by just looking at a snapshot at any time

(by exploiting the spatial pattern of the response).

Classification

In an ideal setting in which an image can be characterized using highly informative

features, classification can be performed using a linear hyperplane, where the dimension

of the hyperplane is equal to the number of features minus one. For instance, if an image

can be characterized using two features, the hyperplane will be a line. This hyperplane

provides a decision boundary under which every image on one side is considered a

member of one class and every image on the opposite side is considered a member of the

contrasting class. In most settings, these classes are provided a numerical label of +1 or

-1. In our setting, water is considered the +1 class and DMMP is considered the -1 class.

The classification engine used for the LC dataset is a linear support vector machine
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(LSVM), which is trained using image features extracted from the CNN VGG16. An illus-

tration of the LSVM method is presented in Figure 6.4. LSVM is a classification method

that builds a linear decision boundary between observations. This is done by finding a hy-

perplane that maximizes the margin between the set of closest images to the hyperplane

(known as the support vectors) and the hyperplane itself. The hyperplane is a weighted

linear combination of all the CNN features representing each observation. The magni-

tude of each feature weight represents its relative importance (a proxy for information

content); in other words, a feature that is highly informative (explains differences in the

images well) will tend to have a large weight while a non-informative feature will tend

to have a small weight. The images that are closest to the margin are the most difficult to

classify (difficult to distinguish) while the ones that are farthest away from the margin can

be easily classified (easy to distinguish). The support vectors are the images that define

the separation boundary.

Figure 6.4: Illustration of a linear support vector machine.

The identification of relevant features can be achieved by penalizing the l1 norm of the

weights of the LSVM classifier. This penalization term seeks to sparsify the weight vector

(have few nonzero entries). Consequently, a penalized LSVM classifier is tasked with not

only finding a separating hyperplane that best classifies the images but is also required to

do so with a minimal number of features (this set of features are interpreted as the ones
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that provide most information). The mathematical formulation of the LSVM problem is:

min
w0,w

n

∑
i=1

[
1 − yi

(
w0 +

q

∑
j=1

wjxi

)]
+ λ||w||1 (6.1)

Here, n is the number of images (observations), m is the image feature dimension,

w ∈ Rm represents the feature weights, xi ∈ Rm are the features of observation i, yi ∈

{−1,+1} represents the label for observation i, and λ ∈ R+ is a hyperparameter for the

penalization of the l1 norm [327]. The solution of problem (6.1) is often called the training

phase and the images used for its solution are often called the training set. Once the

classifier has been trained, one uses the optimal hyperplane weights w∗ identified in the

training phase to predict the label of a new image that is not in the original training set.

The new images are known as the test (validation) dataset. This process is repeated five

times, each time with a new training and validation set (five-fold validation). This allows

for a robust testing of the effectiveness of the classification model on the entire dataset.

Feature Extraction

In order to train the LSVM classifier, we first need to identify features that best explain

each image. Cao and coworkers previously used Alexnet to conduct feature extraction

from LC micrographs. Alexnet is a CNN that has been pre-trained using the Imagenet

database [328]. This database is a collection of millions of images that contains over

1,000 categories. The original goal of Alexnet was to work as a classifier [319]; however,

one can also use features extracted by Alexnet to train an external classifier such as an

LSVM (transfer learning). This approach avoids re-training the CNN, which can be highly

computationally expensive. Cao and co-workers demonstrated that the transfer learning

approach can be effectively used to classify optical micrograps of LCs using LSVM; their

analysis, however, used over 5,000 features to explain each micrograph. Moreover, in their

approach, the micrographs were transformed into grayscale images; as we will see, this

transformation leads to significant losses of information and hides physical LC behavior.
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In this work, we consider a different pre-trained CNN that we hypothesize may be

better suited to our given application. We sought to merge our understanding of working

principles of CNNs with our knowledge of physical behavior of LCs. A primary consid-

eration is the length scale that characterizes the LC reponse. Specifically, we know that

nematic ordering and interfacial interactions within LCs give rise to optical patterns of

orientation on the micrometer-scale; because of this, the patterns created by the LCs need

to be captured with a small observation lense. Moreover, the interference colors created

by the LCs are an indicator of their tilt angles (orientation) and thus the CNN selected

should be trained using RGB images directly (as opposed to grayscale images). A CNN

that fits these requirements is VGG16, which has been pre-trained by the visual geometry

group at Oxford [321]. The VGG16 CNN has been trained on the Imagenet database. The

structure and optimal weight values for the trained VGG16 network are freely available

through the Keras software and are what is used during feature extraction [329]. VGG16

utilizes the smallest possible convolutional filter size (3x3), which should be best for cap-

turing small-scale structural patterns in images. Moreover, VGG16 is a much shallower

CNN than AlexNet and thus its features are easier to interpret. A simplified representa-

tion of the VGG16 architecture is shown in Figure 6.5.

The basic idea behind feature extraction using a CNN such as VGG16 is to reduce a

given input image into a small set of numerical values that can be used to best summa-

rize and classify the image. Each image is represented by a set of input channels, each

expressed as a two-dimensional pixel field (a matrix). The input channels are typically the

red, green, and blue (RGB) channels of an image. Image reduction is performed through

a sequence of matrix convolution operations in which spatial information is extracted from

the image using filters (matrices with specific patterns). Subsequent convolutions com-

press this image to the point where a decision (e.g., classification or regression) can be

made, which is represented by the decision block in Figure 6.5. More details on this

procedure can be found in [321].

A convolution is a manipulation of an image matrix with a filter matrix. Specifically,
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a convolution is the process of finding the extent to which a given pattern (defined by a

convolutional filter) is present within a neighborhood of an image (and repeating the pro-

cess by spanning all neighborhoods of the image). In other words, the convolution seeks

to identify to what extent a specific spatial morphology and/or correlation structure (de-

fined by the filter matrix) is present in the image. An example of applying a convolution

filter to an image is illustrated in Figure 6.7. Convolutional filters provide a quantifiable

approach for identifying multiple spatial structures within a given neighborhood (differ-

ent filters identify different types of patterns). The larger the value of the filter output,

the more similar the given neighborhood is to the pattern that the filter is attempting to

find. Optimal filter matrices that best classify a set of images ( optimal patterns) can be

found by training the CNN directly on the dataset. Specifically, the training process aims

to compute the entries of the filter matrices that best separate the images). Matrices are

high-dimensional objects and, as such, training a CNN involves a highly computationally

expensive procedure. Filters extracted from training over a given set, however, can also

be reused to seek for similar patterns in a different dataset. In other words, pre-trained

filters ( pre-identified spatial patterns) can be used on a different image set with the sole

purpose of obtaining feature information. While the filters are not optimal for the new

dataset, this procedure is often effective at detecting general patterns in images and the

obtained feature information can be used in an external classifier such as LSVM.

In the example provided in Figure 6.7, we see that the convolutional filter is seeking

to match the neighborhood to a cross pattern and thus the top neighborhood has a higher

output (perfect match) than the lower output (imperfect match). In the CNN, the match-

ing is applied to every pixel in the image, and thus there is a convolution value for every

pixel neighborhood (resulting in a matrix of filter outputs). In our approach, the entire set

of outputs for each filter are averaged and utilized as a feature for the LSVM classification.

This is done in order to ensure that the features are spatially-invariant. Spatial invariance

allows for images that are not of a uniform size or perfectly centered to be treated as

similar as possible. This practice also forces the classifier to seek meaningful and general-
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izable features associated with the sensors rather than arbitrary features based upon the

location of the sensor in the given frame (thus leading to more consistency in the results).

Figure 6.5: Schematic of VGG16 architecture.

The next decision to be made is what feature information should be extracted from

VGG16. The VGG16 network has been trained to classify highly complex images and the

deepest layers have been carefully tuned to differentiate such images. The early layers

of the network, however, are the most general and are easier to interpret (they are less

evolved). Accordingly, in our approach, we use the outputs of the first and second convo-

lutional blocks to inform features for LSVM classification. Feature extraction is conducted

by feeding a given image into VGG16. We modified the network so that the only output

it provides is information extracted from the first and second convolutional blocks. This

information is extracted in the form of convolutional filter activations via convolutions.

In summary, the CNN used here provides a number of features equal to the number of

convolutional filters used for each image. In our case, the total number of features reaches

192 (64 for the first block and 128 for the second block). Note that the number of features

increases with the depth of the layer, which precisely reinforces our desire to focus on

the first layers. A visual representation of this process for the first and second convo-

lutional blocks is provided in Figure 6.6. Feature extraction and network modification

were performed using Keras [329] and Tensorflow [330]. The VGG16 network and trained

weights are made available in the Keras software, which allows for easy manipulation of

the VGG16 network so that this process may be completed for any number of image sets.

With the extraction of the features from the first two layers of the VGG16 network, analysis

of the classification may be conducted.
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Figure 6.6: Schematic of feature extraction and classification framework (E(·) represents
spatial average).

Figure 6.7: Illustration of the application of a convolution filter to a neighborhood of two
different images.

6.3 Results and Discussion

We now describe our findings when applying CNN techniques to analyze LC micro-

graphs. All scripts and data needed to reproduce the results are available in https:

//github.com/zavalab/ML/tree/master/LC_CNN_Color.

6.3.1 Classification and Feature Reduction

Our ML framework using VGG16 features and LSVM was able to classify water and DMMP

micrographs with 100% accuracy. Notably, these results were obtained for micrographs

https://github.com/zavalab/ML/tree/master/LC_CNN_Color
https://github.com/zavalab/ML/tree/master/LC_CNN_Color
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collected within 30 seconds of exposing the LCs to the chemical environments. This result

was achieved when using all of the 128 features of the second convolutional layer. Table

6.1 reports the results for a five-fold cross-validation; here, we can see that an accuracy of

98% is obtained when we use the 64 features of the first convolutional layer. These results

indicate that LC features developed early in the sensor response are highly informative and

sufficient to discriminate among chemical environments.

From Table 6.1 we also see that it is possible to drastically reduce the feature set (this

is done by selecting the features with the largest LSVM weights) while retaining a high

accuracy level of 90-93%. The fact that we can obtain such high levels of accuracy with a

reduced feature set can be attributed to the fact that the VGG16 network was pre-trained

using highly complex images, which suggests that many of the features extracted may

be redundant or unnecessary (i.e., optical LC micrographs are simpler images than those

use in generic databases such as ImageNet). In Table 6.2 we observe that the performance

of the classifier is independent of the time at which the samples are collected. This re-

inforces our observation that differences in LC features develop early in the response and they

seem to persist. Our results achieve a reduction in the number of required features re-

ported in previous work by two orders of magnitude. This reduction facilitates the physical

interpretation of the LC features.

Layer Features Accuracy Std.Dev.

2
nd Conv. 128 100 % ± 0 %

2
nd Conv. 10 93 % ± 2 %

1
st Conv. 64 98 % ± 1 %

1
st Conv. 10 90 % ± 3 %

Table 6.1: Five-fold cross validation of SVM classification using VGG16 features.



172

Time 2nd Conv. Std.Dev. 1st Conv Std.Dev.

3 seconds 100 % ± 0 % 96 % ± 2 %

6 Seconds 100 % ± 0 % 95 % ± 2 %

9 Seconds 100 % ± 0 % 94 % ± 2 %

12 Seconds 100 % ± 0 % 96 % ± 1 %

15 Seconds 100 % ± 0 % 94 % ± 2 %

18 Seconds 100 % ± 0 % 95 % ± 1 %

21 Seconds 100 % ± 0 % 95 % ± 2 %

24 Seconds 100 % ± 0 % 96 % ± 2 %

27 Seconds 100 % ± 0 % 96 % ± 2 %

Table 6.2: Five-fold cross validation of select time SVM classification using VGG16 features.

To validate the classification results of our ML framework, we compared our results

against the classification achieved with principal component analysis (PCA). Here, we use

PCA to project the 128 dimensional feature space of the second layer into two dimensions

[331]. The results of the projection are visualized in Figure 6.8. The clustering and sepa-

ration of the water and DMMP features indicates that there exist perceptible differences

in the CNN features of water and DMMP. These PCA results indicate that the features

extracted from the CNN are indeed highly informative but the existence of a significant

overlapping region also highlights that an accurate classification between micrographs

requires more than two features.

The highly classification accuracy achieved, while having high importance from a sen-

sor design stand-point, is not the only goal of our analysis. Specifically, we are interested

in assigning physical interpretation of the extracted features. To do so, we analyzed the

features extracted from the first convolutional layer of VGG16 (visualized in Figure 6.6).

These features are basic, highly informative, and do not depend on previous layers of

convolution. Consequently, the features of the first layer are generalizable and more suit-
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Figure 6.8: Classification using principal component analysis of VGG16 features.

able for physical analysis. We also recall that the features extracted from the first layer

of VGG16 are the average outputs of 64 different filters. The LSVM hyperplane feature

weights (shown in Table 6.3) help us identify which of these 64 filters are most dominant.

Here, we see that Filter 8, 4, 52, and 38 are the most dominant ones.

Filter Number Filter Weight Percent Filter Association
Filter 8 16.8 % Water
Filter 4 16.5% Water
Filter 52 14.3% DMMP
Filter 38 14.2% DMMP
Filter 17 12.3% Water
Filter 18 9.3% DMMP
Filter 6 8.0% DMMP
Filter 37 5.0% Water
Filter 43 3.6% Water
Filter 10 0.1% DMMP

Table 6.3: Optimal LSVM weight vector obtained from training set (using ten features
from first CNN layer).
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6.3.2 Maximally Activating Textures

To obtain some insight into the spatial patterns (textures) that the most dominant VGG16

filters (identified in Table 6.3) are capturing, we generated synthetic textures and identi-

fied the ones that maximized the average output for the different filters. This was done by

feeding white noise images into VGG16 and modifying the image to maximize the output

of each filter. We refer to these textures as the maximally activating textures. A visu-

alization of this process is seen in Figure 6.9. Visualizations of the top five maximally

activating textures for water are presented in Figure 6.10 and for DMMP are presented in

Figure 6.11. Here, we also show the activation fields on the input image associated with

each filter. Two important aspects to consider when evaluating maximally activating tex-

tures are color and the texture (spatial pattern). The hue color is of particular interest in

the analysis of LCs as different hues are a result of different orientations of the :Cs within

the film [325, 332] (assuming that the LC film thickness is relatively uniform). Moreover,

hue covers a spectrum of color, so it is preferred over RGB channels. In other words, a hue

value captures the three values of RGB associated to a color. The maximally activating

textures in Figures 6.11 and 6.10, reveal that DMMP and water have a distinct set of hues.

From this observation, we conclude that hue plays an important role in characterizing both

water and DMMP responses.

6.3.3 Hue Analysis

In order to understand the importance of hue in the characterization of the DMMP and

water responses, we developed a simple (but interpretable) feature set for each image.

Specifically, we analyzed the normalized distribution of the image hues. This distribution,

which is split into 100 bins, captures the distribution of hue within each sample image

(the distribution of color). Each image is then represented as a 100-dimensional H vector

in which each element hi represents the probability (frequency) of finding a pixel in a

given point of the hue spectrum.
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Figure 6.9: Finding maximally activating textures. To find the spatial pattern that is being
maximized by a given filter, we feed different synthetic patterns and identify the one that
maximizes the output.

An example hue distribution for water and DMMP are shown in Figure 6.12, along

with their cumulative distribution functions (CDFs) in 6.13. From the hue distributions

we see that the intensity peak at a hue value of 65 (yellow to orange) is much stronger

for DMMP than for water. The CDF comparison reveals that DMMP exhibits no activity

in the hue range of 20-60 (blue to yellow), while water does. The CDFs also indicate

that water micrographs have a more homogeneous coverage of the hue spectrum (reflected as a

smoother CDF curve) while DMMP micrographs have a more heterogenous coverage of

the hue spectrum.

We used LSVM and hue distribution information to understand the efficacy of using

hue in differentiating a water and DMMP responses. In Table 6.4 we can see that an

accuracy of nearly 88% can be achieved by using hue distributions of the images alone.

These results reveal that hue (color) is an informative feature for classification. Moreover,

this result suggests that water and DMMP contain different hue distributions, which is

most likely a result of differing LC orientations within the sensor film. Moreover, our
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Figure 6.10: Maximally activating textures (top) and activations (bottom) for top water
filters.

Figure 6.11: Maximally activating textures (top) and activations (bottom) for top DMMP
filters.

results suggest that differences in color develop early in the response. These results make

sense because the optical properties of liquid crystals are known to be highly sensitive

to stimuli. The lower classification accuracy obtained with hue distributions (compared

with CNN features) are attributed to the fact that hue distributions do not capture spatial

pattern (correlation) information (while CNN features do).
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Figure 6.12: Hue distributions for representative water (top) and DMMP (bottom) micro-
graphs.
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Figure 6.13: Comparison of the hue cumulative distributions for water and DMMP.

Feature Type Features Accuracy Std.Dev.

Hue Distribution 100 88 % ± 8 %

Table 6.4: Five-fold cross validation of LSVM classification using hue distribution.
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Layer Features (Grayscale) Accuracy Std.Dev.

2
nd Conv. 128 94 % ± 2 %

2
nd Conv. 10 75 % ± 3 %

1
st Conv. 64 87 % ± 3 %

1
st Conv. 10 83 % ± 3 %

Table 6.5: Five-fold cross validation of LSVM classification using grayscale VGG16 features.

6.3.4 Grayscale Analysis

To understand the information content that can be attributed to color and to pure spatial

patterns, we used VGG16 feature information extracted from grayscale images (ignoring

color). From this analysis, we found that the classification accuracy was reduced by 6-12%.

This further supports the observation that color is an important source of information but

also that the spatial patterns found within the filters cannot be ignored. In order to

analyze the grayscale patterns, we created a single texture that is a linear combination

of the maximally activating textures. The linear combination was created by using the

hyperplane weights obtained with LSVM. The linear combination is shown in (6.2) and

the coefficients are taken from Table 6.3. The linear combinations of the grayscale patterns

for DMMP and water are shown in Figure 6.14.

DMMP Texture = Filter 52

(
0.143

Total Weight = 0.459

)
+ Filter 38

(
0.142
0.459

)
+ Filter 18

(
0.093
.459

)
+ ...

Water Texture = Filter 8

(
0.168

Total Weight = 0.541

)
+ Filter 4

(
0.165
0.541

)
+ Filter 17

(
0.123
.541

)
+ ...

(6.2)
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Figure 6.14: Textures for water (top) and DMMP (bottom). Textures are linear combina-
tions of maximally activating filters.

The representative textures for both DMMP and water are used to summarize and

understand differences in spatial patterns. The water texture posses a larger spatial

correlation between the light and dark pixels, while the DMMP texture appears more

randomized. We confirmed this observation quantitatively by analyzing the spatial auto-

correlation of the textures. This is done by using Moran’s I coefficient, which is a measure

of global spatial autocorrelation, and is given by:

Moran’s I =
N

∑i ∑j wij

∑i ∑j wij(xi − x̄)(xj − x̄)

∑i(xi − x̄)2 (6.3)

Here, N represents the size of the neighborhood being analyzed, xi represents the in-

tensity of pixel i, x̄ represents the average intensity in neighborhood N, and wij represents

the inverse distance weighting matrix in neighborhood N.

Texture Moran’s I P Analysis
Water 0.54 P < 0.00001

DMMP 0.40 P < 0.00001

Table 6.6: Global Moran’s I coefficient values.

The Moran’s I coefficients reveal that both DMMP and water patterns have positive

spatial autocorrelation with high confidence (Table 6.6) but that autocorrelation in water

is of longer range. This result may be further validated by calculating the local Moran’s
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I coefficient values for every pixel in the image in a 3x3 pixel neighborhood. The result-

ing correlation fields, shown in Figure 6.15, indicate that the DMMP texture has higher

variance and that areas of both positive and negative autocorrelation are clustered. For

the water texture, on the other hand, we see a more uniform autocorrelation and with

higher overall magnitude (confirming the observations obtained with the global Moran’s

I coefficient).

Our analysis indicates that VGG16 is capable of unraveling spatial patterns that result

from exposure of the LC sensor to either DMMP or water. Moreover, we conclude that

perceptible changes in spatial patterns are sufficient for the LSVM to discern between

two chemical environments with high accuracy. We hypothesize that the differences in

correlation length of the LC textures detected by VGG16 with DMMP and water reflect

differences in the anchoring energy of the LC on the surface of the sensor. Specifically,

a high anchoring energy will suppress LC orientational fluctuations and lead to a small

correlation length. This result suggests that one key influence of water on the LC is to

lower the anchoring energy at the metal salt-coated surface used in the LC sensor. The

result also suggests that macroscopic orientational transitions may not be necessary in or-

der to detect targeted chemical species using LCs, but that characterization of fluctuations

in orientation by using VGG16 may be a useful future strategy to explore in experiments.

Overall, analysis of both the grayscale spatial patterns and hues provide new insight

into possible physical mechanisms that underlie the ability of VGG16 to differentiate the re-

sponse of the LC sensors to water and DMMP. Moreover, an additional important finding

of our study is that perceptible changes in both color and spatial patterns can be detected

with VGG16 within seconds of exposure of the LC film to the chemical environments (a

thin bright ring is only perceptible by human vision early in the response).
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Figure 6.15: Local Moran’s I analysis for water (top) and DMMP (bottom).
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Chapter 7

H I G H - D I M E N S I O N A L D ATA A N A LY S I S - C ATA LY S I S

The contents of this chapter are published in [23]

7.1 Introduction

Machine learning (ML) provides a powerful set of techniques that facilitates the anal-

ysis of the high-dimensional structure of data sets and the construction of predictive

models from such data sets [333]. ML techniques have been recently utilized in a wide

variety of catalysis applications; an excellent review is provided in [334]. For instance,

ML techniques have been used to uncover likely reaction mechanisms and to accelerate

screening of different catalyst formulations. For instance, in [335], ML techniques are

used to construct surrogate density functional theory (DFT) models that enable accel-

erated predictions of adsorption energies based on group additivity fingerprints and to

identify rate limiting steps. A similar method is demonstrated for identifying electrocat-

alysts for CO2 reduction and H2 evolution. Here, active learning is used for identifying

candidate active surfaces [336]. Surrogate DFT models have also been used to accelerate

the search of new compounds and crystal structures with promising catalytic properties

[337]. Artificial neural networks (ANN) are used in [338] to develop predictive models

that use first-principles ab initio data on adsorption energies and electronic fingerprints
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of idealized bimetallic surfaces as descriptors to predict surface reactivity of metal alloys.

It is shown that complex nonlinear interactions of adsorbates on multimetallics can be

captured by the ANN model.

In this chapter, we present a ML framework to explore the predictability limits of

catalytic activity from different sources of experimental descriptor data that character-

ize catalyst formulations and reaction conditions. Our framework uses ANNs to fuse

experimental descriptor data to construct predictive models. The framework also uses

principal component analysis (PCA) and sparse PCA to identify experimental points and

descriptors that contain large amounts of information and that have strongest impact on

prediction accuracy of the ANN. Specifically, PCA is used to project the physical exper-

imental design space into an information space and this allows us to identify regions

under which the ANN predictions are likely to be more accurate. We also propose a

constrained-PCA formulation that identifies experiments in different regions of the in-

formation space while factoring in constraints from of physical, economical, and expert

nature. We illustrate that the framework can be used to uncover catalyst formulations and

operating conditions that can help improve the predictive accuracy of the ANN model.

The ML modeling approach proposed contrasts with classical approaches such as

microkinetic modeling (in which mechanistic insights are used to predict kinetic behav-

ior). These classical approaches have been widely applied to the water-gas shift reaction

(WGSR) [339, 340, 341, 342] and provide deep and generalizable insights that can inform

decisions on reactor design, reaction conditions, and support/promoter selection. How-

ever, these models are limited in the types of information that they can incorporate and

need to be adjusted for different reaction settings (e.g., different catalyst formulations). As

a result, these modeling approaches are time-consuming. Scaling relations and Brønsted-

Evans-Polanyi relations have been developed to address some of these limitations [343]

but these are only effective within limited interpolation ranges. ML models can capture

more general ranges and nonlinear behavior and are also more flexible in the information

that they can incorporate but these models do not provide mechanistic insight and are
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less generalizable. The primary goal of a ML framework is thus not to replace classi-

cal methods but instead help analyze large experimental data sets and with this unravel

non-obvious trends that ultimately help develop mechanistic insights and models [344].

The proposed ML framework is applied to a comprehensive data set for the low-

temperature WGSR, which is one of the most widely studied reactions in the literature

and for which vast amounts of experimental data are available. Our framework analyzes

2,228 experimental data points reported in the literature in over a decade [345]. We also

propose a comprenhensive set of 27 descriptors that characterize catalyst formulations

and reaction conditons in experiments reported. The reaction rate is used as a decriptor

of catalytic activity and we trained ANNs to predict activity using the experimental de-

scriptor data. We show that ANNs can effectively fuse comprehensive sets of descriptor

data (that would be difficult to incorporate in classical kinetic models). Moreover, we

find that accurate predictions can be obtained with only 30% of the data points available.

However, our analysis also reveals that the ANN model will be of limited use for predict-

ing activity for new catalyst formulations (not contained in the existing experimental data

set). PCA analysis reveals that this is because catalyst formulations and reaction condi-

tions explored in the literature are highly clustered in narrow regions of the information

space. Specifically, we find that nearly 90% of available experimental information arises

from changes in the reaction conditions (only 10% arises from changes in formulations).

PCA analysis also reveals that traditional descriptors for catalyst formulations do not

provide much information to the ANN model. These results suggest that predictability

limitations can be addressed with more systematic data collection procedures that explic-

itly quantify information content of experimental points. Moreover, results suggest that

new sources of descriptors (as those obtained from DFT calculations for catalyst screening

and characterization) are needed [346, 347, 348].
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7.2 Data Collection and Preparation Methods

The data set collected by Odabasi and co-workers was used as the basis of this work

[345]. Each experimental data point is characterized by a set of descriptors for the catalyst

formulation and for the reaction conditions. In our framework, we propose a set of 27

descriptors (see Tables 7.1 and 7.2). The logarithm of the reaction rate (denoted as k)

was used as a measure of catalytic activity. The primary metals, support, and promoters

considered in the data set are summarized in Table 7.4. The entire data set studied can be

found in the supplementary material.

Descriptor Name Range Units
Loading - Weight Percent (Primary Metal) 0.1 to 39.8 Weight %
Binding Energy of Carbon (Primary Metal) -6.46 to -3.06 eV
First Ionization Energy (Promoter) 0 to 13.58 eV
Electronegativity (Promoter) 0 to 1.91

Covalent Radius (Promoter) 0 to 2.44 Angstroms
(Z) Ionic Radius (Promoter) 0 to 1.522 1/pm
Lowest Oxidation State (Promoter) -4 to 2

Highest Oxidation State (Promoter) 0 to 7

Redox Potential (Promoter) -3.04 to 0.3 Eo (V)
MW (Promoter) 0 to 186.21

Loading - Weight Percent (Promoter) 0 to 78.7 Weight %
Redox Potential (Support) -3.8 to 0.8570 Eo (V)
First Ionization Energy (Support Metal) 0.5344 to 0.7865 kJ/mol/1000

Electronegativity (Support) 1.10 to 1.90

Highest Oxidation State (Support) 3 to 7

Lowest Oxidation State (Support) -4 to 1

Molecular Weight (Support Element) 26.98 to 232.04

Molecular Weight (Entire Support) 56.07 to 325.82

Table 7.1: Descriptors for catalyst formulations

The original data set reported in [345] contains 4,360 experimental points. This set

was filtered such that only reaction mechanisms and pathways of the low-temperature

WGSR are explored (different mechanisms and pathways arise at high temperatures).

The data set was further filtered by removing experimental points with a thermodynamic

driver β outside the range [0,0.8] or points in which the thermodynamic driver cannot
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Descriptor Name Range Units
Calcination Time 0 to 10 hours
Calcination Temperature 25 to 650

oC
Reaction Temperature 423.15 to 623.15 K
H2 feed 0 to 60 volume %
H2O feed 2 to 60 volume %
CO2 feed 0 to 15 volume %
CO feed 0.2 to 12 volume %
Time on Stream 0 to 5808 min
F/W 0.028 to 173 mLtotal/minute/mg cat

Table 7.2: Descriptors for reaction conditions

be computed. Experimental points that use zeolite, hydroxyapatite, activated carbon,

and mixed supports were removed because these supports are difficult to characterize

based on descriptors reported in the literature (i.e., advanced first-principles descriptors

are needed for this). Experimental points that use CH4 and O2 co-feeds in the reaction

conditions were also removed. These data filtering steps resulted in a data set comprising

2,228 points. Table 7.3 summarizes the criteria and points removed from the original

set. The filtered data was standardized using a z-score transformation. This form of

standardization ensures that descriptors have zero mean and that their covariance values

are comparable. Standarization also ensures that the use of different measurement units

does not impact dimensionality reduction analysis and facilitates training of predictive

ANN models [349].
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Criterion Removed Points Remaining Points
Original Data – 4360

Zeolite Support 66 4294

Hydroxyapatite Support 58 4236

Activated Carbon Support 25 4211

YSZ Promoter 21 4190

CH4 Co-feed 223 3967

O2 Co-feed 32 3935

β > 0.8 265 3670

β < 0 66 3604

β not computable 176 3428

Temperature (oC) < 150 118 3310

Temperature (oC) > 350 440 2870

Mixed Supports 642 2228

Table 7.3: Summary of data filtering steps

Catalyst Material Variations

Primary Metal Au, Cu, Pt, Pd, Ir , Rh , Ru

Promoter Li, Na, K, Rb, Cs, Mg, Ca

Sr, Y, La, Ce, Nd, Sm, Gd

Ho, Er, Tm, Yb, Ti, Zr, V

Cr, Mn, Re, Fe, Co, Ni , Zn

Support Al2O3, MgO, CeO2, TiO2, MnO3, Y2O3, Tb4O7

HfO2, La2O3, Co3O4, ThO2, SiO2, Fe2O3, Sm2O3

Gd2O3, Yb2O3, CaO, ZrO2

Table 7.4: Primal metals, support, and promoter considered in WGSR data set.

7.3 Computational Methods

It is important to highlight that the experimental descriptor space for the WGSR is high-

dimensional. In particular, discretizing each of the 27 descriptor dimensions in 3 points

results in a total of 327 = 7.6 × 1012 possible experimental points. As a result, it is im-

possible to explore the entire space and thus systematic techniques are needed to explore
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such space efficiently. In this section we describe the elements of a machine learning

framework that seeks to enable this. The framework includes a principal component

analysis (PCA) component to project the descriptor space into a low-dimensional infor-

mation space, a neural network component to predict catalytic activity from descriptor

data, and a constrained-PCA component to identify experimental points in information-

rich regions while filtering out regions that are unreachable due to economic, physical, or

technical reasons (provided by an expert user). A scheme of the proposed framework is

presented in Figure 7.1.

Figure 7.1: Scheme of machine learning framework for prediction of catalytic activity.

7.3.1 Principal Component Analysis

Principal component analysis (PCA) is a popular technique that is used to reduce the

dimensionality of experimental data sets while retaining as much as information present

in the data as possible [350]. PCA can be interpreted as a procedure that transforms
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data from an original (physical) space into an information content space. This is done

by rotating a given data point from its original space into the new space in which direc-

tions of variance (information) are decoupled. The directions are known as the principal

components and correspond to the eigenvectors of the covariance matrix for the experi-

mental data set. The eigenvalues associated with the eigenvectors provide a measure of

information content in each principal component.

To explain the basic principles of PCA, we consider a experimental data set matrix

X ∈ Rn×p with n rows (experimental points) and p columns (descriptors). We denote the

i-th data point (row) of X as xi ∈ Rp for i = 1, ..., n. Each of these points is a descriptor

vector that lies in the experimental data space X that represents the entire set of possible

experimental points. The first principal component Pi,1 ∈ R associated with experimental

data point xi is defined as the linear combination of the elements of xi with coefficient

vector v1 ∈ Rp and takes the form Pi,1 = vT
1 xi. PCA seeks to find a eigenvector v1 of

unit length such that the variance of the first principal components Pi,1, i = 1, ..., n is

maximized. Recognizing that the covariance matrix Σ ∈ Rp×p of the data points xi is

Σ = XTX, we have that vT
1 Σv1 is the variance of Pi,1. Consequently, finding the coefficient

vector v1 that maximizes the variance subject to ∥v1∥2 = 1 yields the largest eigenvalue of

Σ (denoted by λ1) and the associated eigenvector v1. The next eigenvector v2 is found by

maximizing the variance of the second principal component Pi,2, subject to the constraint

that the eigenvector is orthogonal to v1 (i.e., vT
1 v2 = 0). This reveals that the maximum

variance is the second largest eigenvalue λ2 and v2 is the corresponding eigenvector.

Orthogonality ensures that the first principal component is uncorrelated from the second

component. This process is repeated to obtain p eigenvectors vj, j = 1, ..., p that generate

p principal components for each data point xi. The principal component information is

collected in a matrix P ∈ Rn×p and the eigenvectors in a matrix V ∈ Rp×p. We denote each

row of principal components (corresponding to experimental point xi) as pi. The principal

component vector pi is a point that lies in an information space (that we denote as P).

The covariance matrix can also be expressed as an expansion of the form Σ = ∑
p
j=1 λjvjvT

j .
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Typically, most information of Σ is contained in the first few largest eigenvalues. This is

often visualized using an spectral graph, which shows the cumulative sum of the largest

eigenvalues.

Principal components are descriptors in the information space that are linear combi-

nations of descriptors in the physical experimental space. The coefficients of such linear

combinations are given by the eigenvectors. Principal components are obtained by pro-

jecting a data point from the physical space X into an information space P by using

the projection matrix V. Understanding this synergy between physical and information

spaces is important because it allows us to quantify the information content of experi-

mental data points and of different descritors. For instance, experimental points that are

far apart in the physical space might in fact be close in the information space (and thus

provide a similar amount of information). This can occur, for instance, if the experimen-

tal points are highly correlated. Similarly, experimental points that are close together

in the physical space might in fact be far apart in the larger information space if they

are uncorrelated. These types of insights cannot be directly obtained from inspection

of the experimental data because of its dimensionality and because of the presence of

complex multivariable interactions. PCA thus provides a powerful tool for understand-

ing the underlying structure of a high-dimensional experimental data set that can inform

the selection of experiments and descriptors. Carlson and co-workers provide a detailed

overview on the application of PCA to experimental design [351].

The interpretation of eigenvectors obtained in PCA is complicated by the fact that the

principal components are functions of the entire set of descriptors (the eigenvectors are

dense). Sparse PCA is a method that attempts to address this issue by generating sparse

eigenvectors (containing only a few nonzero entries). Sparsification allows for a sharper

separation of the most relevant descriptors and thus enhances interpretability. Diverse

sparse PCA approaches have been explored in the literature [352, 353, 354]. Here, we use

the sparse regression approach proposed in [352]. Under this approach, the i-th column
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of the sparse eigenvector matrix V̂ (denoted by V̂i) is given by:

V̂i =
v̂i

||v̂i||
(7.1)

where v̂i ∈ Rp is the solution vector of the optimization problem:

v̂i = argmin
v

||pi − Xv||22 + κ2||v||22 + κ1||v||1. (7.2)

Here, v̂i is the sparse eigenvector that best matches the i-th column of the principal com-

ponent matrix P. Sparsification of the eigenvector is induced by adding ℓ1 and ℓ2 penalties

to the regression problem (with corresponding positive weights κ1 and κ2). The sparse

eigenvectors are used to construct the sparse matrix V̂, which is a sparse approximation

of V. Consequently, the variance contained in the sparse eigenvectors is less than that

contained in the original dense eigenvector (but the interpretation of the sparse counter-

parts is enhanced). The optimization formulation (7.2) is known as the elastic net and

was solved using the LARS-EN algorithm [355]. The SpaSM toolbox [356] was utilized for

obtaining the sparse PCs.

7.3.2 Neural Network Model

The proposed model is an ANN that seeks to predict catalyst activity (reaction rate) as

a function of the descriptors for catalyst formulations and reaction conditions. We use

this model to assess the predictability limits of reaction rates and the impact of different

experiments and descriptor information on prediction accuracy. The ANN computes the

prediction mapping X → ŷ and we defined the associated prediction error as ϵ = y − ŷ.

Here, y ∈ Rn is an output vector containing the experimental reaction rates corresponding

to the input experiment matrix X and ŷ ∈ Rn is an output vector containing the associated

predicted rates.

ANNs are complex networks composed of simple processing elements (called neu-
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rons) operating on local data and communicating with other elements [357]. The ANN

structure chosen in this work to analyze the WGSR data set is a multi-layer feedforward

neural network. These types of ANNs are made up of layers of neurons, the first layer

of neurons is the input to the ANN and the last layer is the output of the ANN. The sig-

nals emanating from our layer are fixed and mapped to another function using activation

functions. The parameters that capture the mixing of signals between layers and the pa-

rameters of the activation functions are determined by solving a nonconvex optimization

problem that seeks to minimize the mean squared errors (MSEs) of the predicted out-

puts. ANNs are a powerful tool to construct predictive models because they can capture

complex multivariable and nonlinear relationships between descriptors by mixing signals

across multiple layers. This ability is clearly stated in the work of Cybenko et al. [358], in

which it is shown that any continuous function of real variables can be approximated by

an ANN.

PCA can aid the development of predictive ANN models because it will reveal areas

that are sparse or dense in information and with this reveal regions under which we can

trust the model predictions. To capture this, we split the information space P into high-

information (densely covered) space PH and low-information (sparsely covered) space

PL. These spaces are associated to the dual goals of the predictive model (exploitation

and exploration). In a high-information space, the model can be trusted more and it

can thus be exploited to identify new catalyst formulations or reactions conditions that

will maximize activity. In a low-information space, the model is less trusted and thus

one needs to explore this space using new experiments to reinforce the model. PCA

can also reveal descriptors that contain high information or low information because

PCA will reveal descriptors that are strongly correlated (e.g., a descriptor that is a linear

combination of other descriptors).
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7.3.3 Constrained-PCA

PCA provides a bridge between physical and information spaces that can be used to guide

experiments. Here, we propose an optimization formulation that seeks to identify new

experimental conditions that achieve a desired target in the information space while fac-

toring in constraints in the physical space of technical or economic nature (imposed by an

expert).

Having a projection matrix V (or V̂) obtained from PCA (or sparse PCA) for a given

experimental data set, we can use such matrix to project an experimental point from the

physical space mathcalX to the information space P . Our objective is to use the projection

matrix to determine a new experimental point x such that its associated principal compo-

nents p = Vx reach a desired target point in the information space p̄. The target point p̄

can be selected in the high-information space PH to conduct exploitation (e.g., find a cata-

lyst formulation and reaction conditions that improves activity) or in the low-information

space PL to conduct exploitation (e.g., find a catalyst formulation and reaction conditions

that seeks to improve the predictive accuracy of the ANN model).

As we search for an experiment that reaches the target p̄, we also seek to restrict the

experimental conditions to lie withing a range of the form xL ≤ x ≤ xU . Moreover, we

can impose general constraints; for instance, we can seek that the experiment is such that

its cost cTx does not exceed a certain derived value c̄ (e.g., cTx ≤ c̄). Here, c ∈ Rp is a

cost coefficient vector that captures the individual cost of given descriptors (e.g., higher

temperature requires higher energy and some metals are more expensive than others).

The constraints can be expressed in general form as Mx ≤ r, where M is a coefficient

matrix and r is a coefficient vector. Constraints can also be used to express combinations

of catalyst formulations and reaction conditions that are not compatible (e.g., a certain

metal might only be compatible with certainty supports or promoters). Constraints thus

help an expert express logic and convey prior knowledge that helps filter out large regions

of the experimental space. This can help navigate this space in a more scalable manner
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(which is extremely high-dimensional).

In summary, the new experiment x is found by solving the constrained-PCA problem:

min
x

∥p − p̄∥ (7.3a)

s.t. p = Vx (7.3b)

Mx ≤ r. (7.3c)

Here, ∥ · ∥ is a a suitable norm. In summary, the above formulation seeks to find an

experiment x that lies in a desired information region and while satisfying the constraints.

7.4 Results and Analysis

In this section we use the proposed ML framework to analyze predictability of catalytic

activity for the WGSR data set.

7.4.1 PCA and Sparse PCA

Application of PCA to the WGSR data set reveals that the first principal component con-

tains 30% of the total variance, the second component contains 15%, and that 90% of

the variance is contained in the first ten components. This is illustrated in the spectral

graph presented in Figure 7.2. This reveals that the experimental input matrix X can be

compressed by a factor of three and thus there is a significant amount of redundancy in

the data. This is seen in Figure 7.3, where we present the projection of the experimental

data into the information space (we only show the first two principal components). This

reveals highly clustered experimental points along linear planes in the information space.

We have found that experimental points along such planes result from variations of re-

action conditions (temperatures and flow rates). This can be more clearly seen in Figure

7.4a, where we categorize the data points by temperature. From this we can conclude
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that a handful of variations in temperature conditions are actually needed to cover the

information space (e.g., the extremes of the temperature ranges in each cluster) and the

rest are redundant (provide little information). These results also seem to suggest that

more information is obtained by varying the catalyst formulation compared to varying

the reaction conditions. To confirm this observation, we conducted PCA using only de-

scriptor data for the catalyst formulation (descriptors listed in Table 7.1). In other words,

we eliminated all descriptors associated with reaction conditions. Figure 7.5 shows that,

by doing so, the overall structure of the data is preserved. This indicates that variations of

reaction conditions do not provide significant information. This is an issue because a very

large fraction of the data available in the literature (nearly 90%) arises from changes in

the reaction conditions (while the rest 10% varies the catalyst formulation). In fact, there

are only 187 unique catalyst formulations (combinations of primary metals, promoters,

and supports) in the experimental data set.
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Figure 7.2: Spectral graph of WGSR data set

The experimental data points are categorized in terms of the primary metal of the

catalyst formulation in Figure 7.3a(b). Here, we can see that platinum experiments span

a much wider region of the information space. The data points are categorized in terms
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Figure 7.3: PCA projection of WGSR data set into information space
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Figure 7.4: PCA projection of WGSR data set (categorized by temperature).

of catalysts with and without promoters in Figure 7.3b. Here, it is clear that there is a

separation in the information space. This indicates that certain regions in the information

space might not be accessible with (or without) the use of a promoter. In other words,

without the use of a promoter, it will not be technically possible to design an experiment

that accesses the top-right region in the information space. This highlights that there

exist technical constraints that limit the exploration of the information space and the

predictability of the model.

Figure 7.5 reveals that high clustering is also observed when changing the catalyst

formulations (suggesting that the different formulations explored in the data set do not
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provide much information). Figure 7.7b shows that the split between catalyst formula-

tions with and without promoters is still present without the features in Table 7.1. We

thus conclude that large areas in the information space have not been explored in the

literature. Novel and more informative catalyst formulations are thus needed.

PCA analysis also reveals interesting outliers in the experimental data set. In par-

ticular, Figure 7.6 shows that a separate cluster of experimental points associated with

Au(CeO2) and Pt(CeO2) catalysts exists. These catalysts are efficient for the low-temperature

WGSR and utilize a rather unique reaction mechanism [359].
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(b) PCs categorized by promoter

Figure 7.5: PCA projection of WGSR data set (using only catalyst descriptors).

Dense and sparse eigenvectors for the WGSR data set are presented in Table 7.5. We

found that the sparse eigenvector of the first principal component contains descriptors

related to the promoter, while the sparse eigenvector for the second component contains

descriptors related to the support and the primary metal. This indicates that the promoter

descriptors are more informative than those of the primary metal and of the support.

This makes sense, since the data sets only contain two descriptors for the primary metal

(binding energy and loading weight percent) while they contain nine descriptors for the

promoter. In other words, the promoter is better characterized. The sparse principal

components also indicate that certain descriptors of the primary metal (loading weight

percent), of the promoter (e.g., charge low, redox potential), and of the support (e.g.,
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Figure 7.6: Location of Au(CeO2) and Pt(CeO2) clusters.
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Figure 7.7: Sparse PCA projection of WGSR data set.
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Descriptor Sparse PC 1 Sparse PC 2 Dense PC 1 Dense PC 2

Binding Energy of Carbon (Primary Metal) 0 .1 -.1 -.1
Loading - Weight Percent (Primary Metal) 0 0 -0.1 -.03

MW (Promoter) 0.2 0 0.3 -0.2
First Ionization Energy (Promoter) 0.5 0 0.3 -0.2
Covalent Radius (Promoter) 0.4 0 0.3 -0.2
Charge Low (Promoter) 0 0 -.1 0.03

Charge High (Promoter) 0.5 0 0.3 -0.2
(Z) Ionic Radius (Promoter) 0.3 0 0.3 -0.2
Electronegativity (Promoter) 0.5 0 0.3 -0.2
Redox Potential (Promoter) 0 0 -0.2 0.1
Loading - Weight Percent (Promoter) 0 0 0.1 -0.2
Molecular Weight (Entire Support) 0 0.4 -0.3 -0.3
Molecular Weight (Support Metal) -0.1 0.3 -0.3 -0.2
First Ionization Energy (Support) 0 -0.5 0.2 0.4
Redox Potential (Support) 0 -0.4 0.2 0.36

Highest Oxidation State (Support) 0 0.4 -0.3 -0.3
Lowest Oxidation State (Support) 0 0 -0.1 0.2
Electronegativity (Support) 0 -0.4 0.3 0.3

Table 7.5: Sparse and dense PCA eigenvectors. Zeros represent exclusion, and pos-
tive/negative values represent the influence of the feature on the direction of the Principal
Component.
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lowest oxidation state) are not informative (they have an eigenvector entry of zero).

Sparse PCA results also indicate that the separation in the descriptors is sharp (few

descriptors appearing in the first principal component appear in the second component

and viceversa). These results contrast with those obtained with standard (dense) PCA,

where we note that all descriptors appear in the first and second descriptors. We can thus

see that the sparse PCA results are easier to interpret.
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Figure 7.8: Separation of Au(CeO2) and Pt(CeO2) data sets using sparse PCA.

Figure 7.7 illustrates that the sparse PCA information space is also not well explored

and also reveals that a clear separation between catalysts with and without promoter

exist. Figure 7.8 demonstrates a clear separation between experiments that use Au(CeO2)

and Pt(CeO2) catalysts. We thus conclude that sparse PCA maintains the structure of the

information space of standard PCA (but a sharper separation in obtained).

7.4.2 Neural Network Predictions

The structure of the ANN utilized for the WGSR is depicted in Figure 7.9. The ANN

structure used in this work has two hidden layers (one with six nodes and the other with

two nodes). The 27 experimental descriptors are used as inputs and the only output is the
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reaction rate. This optimized structure was identified by assessing the prediction accuracy

for different structures. We use the mean squared error (MSE) of the reaction rate as a

measure of prediction accuracy of the ANN. Having a fixed optimized ANN structure,

five ANNs were trained simultaneously on a randomly selected portion of the WGSR

data set. Five ANNs were trained simultaneously in order to overcome entrapment in

local minima and overfitting. The trained ANNs were then used to predict the reaction

rate for 425 randomly selected experiments.
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Figure 7.9: Structure of neural network used for the prediction of catalytic activity.

A learning curve for the ANN is presented in Figure 7.10. Here, it is shown that the

accuracy of the ANN settles after using 30% of the data points for training (chosen ran-

domly). This indicates that the ANN is indeed quite effective at capturing relationships

between the multiple descriptors to predict catalytic activity. Figure 7.11 presents a re-

gression plot for the ANN trained with only 30% percent of the available data for training.

We can see that the ANN exhibits high accuracy over the entire span of the space covered

by the experimental data.

7.4.3 Selection of Formulations using ANNs

We propose a couple of experiments to demonstrate the practical application of a trained

ANN. The first experiment is to select a set of primary metals, supports, and promoters
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Figure 7.10: Learning curve for neural network for WGSR data set.
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Figure 7.11: Regression plot for neural network for WGSR data set (30% of data set used
for training).

that provides the highest reaction rate at different temperatures. In this case, we focus on

formulations that are already present within the data set. The ANN has been provided

information for different catalyst formulations and predicts the reaction rate log(k) from

which we identify the top predicted performers. The primary metal, support, and pro-

moters are found in Table 7.6. The top performers identified with the ANN and the true

top performers are found in Table 7.7. In both cases, the network is able to identify the

top formulations. In Table 7.8 we present the predicted log(k) for the top formulations

against the true log(k). We observe that the ANN is able to capture overall trends on

catalyst performance (key to select suitable formulations) but the actual predicted values

for log(k) show some significant errors.
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Catalyst Material Variations

Primary Metal Au, Cu, Pt, Pd, Rh , Ru, Ir

Promoter Na, Cr, Ni, Y, Sr, La, Ce, Nd, Re

Support Al2O3, SiO2, TiO2,MnO3, Fe2O3, ZrO2, CeO2,HfO2

Table 7.6: Primary metals, supports, and promoter considered in ANN experimental data
set.

Temp (K) Rank ANN (Prime,Sup,Prom) Experimental (Prime,Sup,Prom)

473.15 1 Pt, CeO2, (None) Pt, CeO2, (None)

473.15 2 Au, CeO2, (None) Au, CeO2, (None)

473.15 3 Pt, ZrO2, (None) Au, ZrO2, (None)

623.15 1 Pt, CeO2, (None) Pt, CeO2, (None)

623.15 2 Pt, ZrO2, (None) Au, CeO2, (None)

623.15 3 Au, CeO2, (None) Pt, ZrO2, (None)

Table 7.7: Prediction results for first ANN experiment (formulation selection).

Temperature (K) Rank Predicted log(k) True log(k)

473.15 1 2.67 1.24

473.15 2 0.57 1.21

473.15 3 0.56 0.599

623.15 1 3.056 2.91

623.15 2 2.84 2.03

623.15 3 2.46 2.81

Table 7.8: Prediction results for first ANN experiment (reaction rate).

A second computational experiment was conducted to identify effective promoters for

Au supported on CeO2 that are not contained within the current data set. The selected

promoters are found in Table 7.9. The trained ANN was provided different primary metal,
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promoter, and support formulations at a given set of reaction conditions (T = 473K)

to predict log(k) and with this identify the top promoters. The top three promoters

identified are shown in Table 7.10 along with their predicted log(k). Interestingly, none

of these suggested promoters are contained in the current data set and do not seem to

have been explored in the literature. Consequently, these would be interesting candidates

to explore experimentally.

Catalyst Material Variations

Primary Metal Au

Promoter Li, Na, K, Rb, Cs, Mg, Ca, Sr, Y, La, Ce, Nd, Sm, Gd

Ho, Er, Tm, Yb, Ti, Zr, V, Cr, Mn, Re, Fe, Co, Ni , Zn

Support CeO2

Table 7.9: Primary metals, supports, and promoter considered in ANN experimental data
set.

Temperature (K) Promoter Predicted log(k)

473.15 Li 5.56

473.15 Na 4.49

473.15 Mg 4.42

Table 7.10: Results for second ANN experiment (promoter selection).

7.4.4 Neural Network Analysis

In order to understand the impact of individual descriptors on the prediction accuracy of the

model, we conducted a leave-one-out analysis. Here, the ANN was trained using 50% of

the data but a given descriptor was omitted each time. This procedure was repeated five

times for each omitted descriptor to ensure consistency in the ANN predictions. Tables

7.11 and 7.12 summarize the results. Here, we recall that the best MSE value obtained is

0.14 (using the entire set of descriptors). The analysis reveals that temperature is the most
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important descriptor (removing this descriptor increases the MSE by 128%). Temperature

is followed by the flow per gram of catalyst and the volumetric percentages of H2, CO,

and H2O along with the binding energy of carbon and the loading of the primary metal.

Calcination time and temperature are important because they impact physical structure,

pore volume, and surface area. We also found that descriptors for promoters and and

support metals have the least impact on the MSE. We note, however, that these low-impact

descriptors cannot be removed from the data set (as they collectively embed information).

To highlight this point, we trained the ANN without using the descriptors shown in Table

7.12. From Table 7.13 we see that the MSE increases by 135%. From Figure 7.12 we can

see that prediction accuracy is decreased (compare against Figure 7.11, obtained with the

entire set of descriptors).

Descriptor left out MSE
Temperature (K) 0.32

CO2 feed volume % 0.19

Loading - Weight Percent (primary metal) 0.19

Binding Energy of Carbon (primary metal) 0.17

Calcination Time (hours) 0.16

Calcination Temperature (Co) 0.16

H2 feed volume % 0.16

H2O feed volume % 0.16

F/W (mLtotal/minute/mg Catalyst) 0.16

Table 7.11: Leave-one-out analysis (descriptors with highest impact on MSE).

Exploration of the information space obtained with PCA can be used to anticipate and

analyze the prediction performance of the ANN. For example, our previous PCA analysis

reveals that data points corresponding to Au-Cerium(Oxide) and Pt-Cerium(Oxide) form

a well-defined and isolated clusters in the information space (see Figure 7.13a). When the

ANN is trained without these points, predictability is significantly affected (see Figure

7.13b). This is because the space under which the ANN has been trained is not well

covered (and thus requires significant extrapolation). This indicates that ANN is not

fully capable of predicting activity across catalyst formulations. This point is reinforced

in Figure 7.14, which shows that the prediction accuracy when descriptors for different
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Descriptor left out MSE
CO feed volume % 0.15

Time on Stream (min) 0.14

First Ionization Energy (Promoter) 0.14

Electronegativity (Promoter) 0.14

Covalent Radius (Promoter) 0.14

(Z) Ionic Radius (Promoter) 0.14

Charge Low (Promoter) 0.14

Charge High (Promoter) 0.14

Redox Potential (Promoter) 0.14

MW (Promoter) 0.14

Loading - Weight Percent (Promoter) 0.14

Redox Potential (Support) 0.14

First Ionization Energy (Support Metal) 0.14

Electronegativity (Support) 0.14

Highest Oxidation State (Support) 0.14

Lowest Oxidation State (Support) 0.14

Molecular Weight (Support Metal) 0.14

Molecular Weight (Whole Support) 0.14

Table 7.12: Leave-one-out analysis (descriptors with lowest impact on MSE).

Descriptors Included MSE
Table 7.11, 7.2, and 7.12 (Base Case) 0.14

Table 7.11 and 7.2 0.33

Table 7.13: Impact of sets of descriptors on prediction accuracy.
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Figure 7.12: Prediction accuracy without descriptors of Table 7.12.

primary metals have been excluded from the training data set. In particular, the MSE

increases by at least one order of magnitude. These results also reinforce the observation

that descriptors of primary metals have a strong impact on prediction accuracy.
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(a) Au(CeO2) and Pt(CeO2) points in informa-
tion space.
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(b) Regression plot for Au(CeO2) and Pt(CeO2)
points.

Figure 7.13: Impact of removing Au(CeO2) and Pt(CeO2) data from training on prediction
accuracy.
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Figure 7.14: Mean squared errors of predictions upon removal of different primary metal
data points.

From our analysis we conclude that WGSR data reported in the literature covers a

wide range of experimental conditions but such data in fact has limited information con-

tent. In particular, we have seen that many data points cover only small portions in the

information space. PCA analysis can be utilized to select experiments that better cover

the information space. In particular, loading information can be used to identify a new

descriptor vector that targets a specific point in the information space. This can poten-

tially lead to the discovery of new catalysts and novel reaction mechanisms. It is also

possible, however, that certain regions of the information space are not reachable due to

physical or technical reasons. In the next section we discuss an approach to identify such

points.

We also conclude that information content of experimental data reported in the lit-

erature needs to be enriched with additional (first-principles) descriptors. In particular,

descriptor data currently reported can effectively predict variations in reaction conditions

but cannot fully anticipate activity for formulations that are not included in the train-

ing set. In other words, the ANN has limited extrapolation capabilities. As a result,

the ANN is of limited used when searching for new catalyst formulations. Descriptors

from DFT can be used to enrich information and enable prediction accross formulations.

Promising results are reported in [346, 347, 348]. In particular, Greeley and co-workers
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[346] utilize DFT to develop search criteria for new catalysts for the hydrogen evolution

reaction. Descriptors are used to characterize phenomena such as catalyst segregation

and island formation. Ras and co-workers. The work in [348] uses descriptors such as

adsorptive gaps and molecular adsorptive volumes. Goeltl and co-workers [347] explored

structural descriptors, such as stability of the active site, the center of mass of the unoccu-

pied orbitals, and the energetic center of d orbitals, to understand adsorption strength to

transition metal sites. The combination of PCA, ANNs, and experimental/DFT descriptor

data can enable more powerful predictive capabilities.

7.4.5 Constrained-PCA

The constrained-PCA formulation is used to provide insight into the unexplored space

associated with possible catalyst formulations and reaction conditions. Figure 7.15 pro-

vides a visualization of all possible catalyst formulation combinations for primary metals,

promoters, and supports in the information space and contrasts this to the explored space

currently reported in the literature. All combinations found are reported in supplemen-

tary information. Clearly, there exist many formulations that have not been reported in

the literature. This may be due to technical infeasibility or simply lack of time and budget.

To further illustrate the capabilities provided by the constrained-PCA framework, we

seek a catalyst formulation that is close to the Au(CeO2) and Pt(CeO2) formulations in

the information space but that is also less expensive. Our framework reveals that a catalyst

that achieves this consists of a Cu primary metal, a Co promoter, and CeO2 support.

Figure 7.16 shows the target point p̄ in the information space and the most cost effective

catalyst formulation that is close to it. Interestingly, the catalyst formulation suggested

by constrained-PCA is not included in the WGSR data set studied here. However, work

conducted by Li and co-workers [360] report that a Cu(CeO2) catalyst retains high WGS

activity up to 600
◦C, similar to that achieved by Au(CeO2) and Pt(CeO2) catalysts.

We have also found that another cost effective catalyst that is close to the target in
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Figure 7.15: Full span of information space identified by constrained-PCA and space
explored in the literature.

the information space is one that uses Y2O3 as support. This formulation is again not

included in the WGSR data set studied here but work by Yusheng and co-workers [361]

explored the addition of Y to Cu(CeO2) catalysts and suggest that the addition of Y may

facilitate the formation of oxygen vacancies on the Ce support. These results illustrate

how a ML framework can help navigate the information space in a more effective manner.
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Figure 7.16: Identification of Cu(CeO2) catalyst formulation using constrained-PCA.
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Part IV

F I N A L T H O U G H T S
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Chapter 8

C O N C L U S I O N S A N D F U T U R E D I R E C T I O N S

The incorporation of topology, geometry and other data driven methods in the quantifi-

cation of the shape of data yields data representations that are simple to compute, stable,

and physically interepretable. We have also shown that characterizations of data that

account for the topology and geometry of data can both simplify the models needed for

data analysis while also improving the effectiveness of many tasks such as classification,

regression, and dimensionality reduction. The objective of this dissertation has been to

provide scientists and engineers a rigorous introduction to the mathematics of applied

geometry and topology, supply software and tools to implement these ideas, and to illus-

trate motivating applications of these methods on real-world datasets. We now conclude

this dissertation by summarizing the key findings/contributions made through the work

presented in Chapters 2 - 7.

8.1 Contributions

The Euler Characteristic

In Chapter 2 we define and apply the the Euler characteristic (EC) which is a powerful

tool for the characterization of complex data objects such as point clouds, graphs, matri-

ces, images, and functions/fields. The EC summarizes the topological characteristics of
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such data objects. We have demonstrated that the EC can be used in a wide variety of

applications through creative data transformations (e.g., point clouds to fields and multi-

variate time series to correlation matrices). We have also shown that the EC provides an

effective descriptor and can be used as a pre-processing step that simplifies visualization,

clustering, and classification tasks.

The Topology of Molecular Simulations

In Chapter 3 we expand upon the application of the topological methods in Chapter 2 to

molecular simulations. Manifold and graph representations of molecular simulation data

provide a flexible avenue for capturing both discrete and continuous information sources.

In this chapter, we analyze the topology associated with simulations of self-assembled

monolayers and acid-catalyzed reaction systems. We characterize these topological rep-

resentations with the Euler characteristic curve. We show that this method results in

improvements in computational efficiency, generalizability, and simplicity which can be

leveraged to reduce the complexity of models needed for analysis of molecular simula-

tion data (e.g., 3D convolutional neural networks are reduced to linear regression mod-

els). These improvements also reduce the reliance on large labeled datasets, which are

needed for ML model training, and provide physical intuition. This provides opportuni-

ties to improve the information gained from the analysis of high-throughput or large-scale

simulation data, which can be used in screening for new materials and chemistry or in

optimizing physical and chemical characteristics of existing systems.

Topological Data Analysis and Persistence Homology

Chapter 4 introduces the area of Topological Data Analysis (TDA) and a particular method

known as persistence homology. Topological data analysis (TDA) provides a set of pow-

erful methods and tools for understanding the underlying topology and geometry of

data. These techniques represent data such as point clouds and functions, as geometric

objects and explores these objects in terms of basic geometric and topological features.

We show that TDA offers a number of important theoretical properties (such as stability),

offers flexibility to extract features from different types of data, and how these extracted
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features can be exploited using statistical and machine learning techniques.

Riemannian Geometry

Chapter 5 presents an introduction to concepts of Riemannian geometry for symmetric

positive definite (SPD) matrices and shows how these concepts can be used in applications

of interest to chemical engineers. Specifically, we discussed approaches to capture the

geometry of the SPD manifold (a Riemannian manifold) in dimensionality reduction and

classification tasks. Through a couple of case studies, we demonstrated that capturing

such geometry can lead to significant improvements in accuracy and interpretability

Convolutional Neural Networks and Liquid Crystals

Chapter 6 explores convolutional neural networks as a data driven method for pattern

and structure quantification. We developed a machine learning framework to obtain high

classification accuracies for optical micrographs of LC-based sensors. The features used

for classification are outputs of the convolutional filters over a given image, which were

extracted from the first and second layers of the VGG16 network. these features were

analyzed through the creation of a linear combination that represented LC responses to

various environments. Analysis of these spatial patterns indicates that the liquid crystal

sensor response has perceptible differences in spatial correlation and hue (color).

High-Dimensional Structure of Catalysis Datasets

In Chapter 7 we review and develop dimensionality reduction methods such as principal

component analysis (PCA) and sparse PCA to characterize the high-dimensional structure

of a large experimental database. We presented a data driven framework to explore

the predictability limits of catalytic activity based on experimental descriptor data that

characterizes catalyst formulations and reaction conditions. The framework is applied

to a comprehensive data set for the water–gas shift reaction which comprises descriptor

data for diverse catalyst formulations and reaction conditions. We also demonstrate that

the use of dimensionality reduction techniques, such as PCA, can allow for a deeper

understanding of large catalysis datasets and can also provide a method for identification

of new and unique catalyst formulations via constrained-PCA.
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8.2 Future Research Directions

This section focuses on areas of future research at the intersection of topology, geome-

try, and chemical engineering. Our future research will provide concise, interpretable, and

scalable characterizations of data that can be integrated in machine learning and statistical

analysis tasks (e.g., classification and principal component analysis). The aim of this fu-

ture research is to identify unifying and rigorous principles to elucidate a wide range of

phenomena through topology, geometry, and data science.

Topology and Geometry of Complex Materials

A grand challenge in characterizing and designing functional soft materials (e.g., poly-

mers, proteins) is the topological and chemical complexity of the resulting macromolecules.

The resulting material properties, such as large-scale morphologies or aggregation dy-

namics, are difficult to understand using collective variables derived from domain exper-

tise. TGDA provides a direct approach for the analysis of these complex morphologies

and aggregations. For example, in a collaboration with Prof. Emanuela Del Gado (George-

town) we are beginning to characterize colloidal gel structures through topology and

geometry [93]. Figure 8.1 presents an analysis of the topology of gel simulations at vary-

ing volume fractions through the Euler characteristic. TGDA is used to pre-process the

data and principal component analysis (PCA) is used to reduce the data dimensional-

ity. We identify a low-dimensional, continuous data manifold that provides connections

between the gel structure and the volume fraction. This research will seek to form fun-

damental connections between the microscale properties of functional materials and their

macroscale behavior. The ability to effectively quantify macroscale structure through

TGDA will provide useful first-principles connections across time and length scales in

these complex materials, aiding our experimental collaborators in understanding, de-

signing, and optimizing new state-of-the-art materials.
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(a) EC curve of different gel structures (b) PCA of EC curves

Figure 8.1: TGDA coupled with simple dimensionality reduction techniques (e.g., PCA) can be
used to understand the complex geometry and topology of self assembled colloidal systems such
as gels. Here, we see that there is a continuous relationship between the topology of a gel and its
volume fraction.

Spatio-Temporal Analysis.

Spatio-temporal datasets are found in a wide range of engineering research areas such as

fluid dynamics, molecular simulation, thermodynamics, materials science, biology, and

many others. Spatio-temporal data, produced through experiments and simulations, en-

codes a large amount of useful information about the properties of these systems. How-

ever, extracting this information is incredibly difficult due to the myriad of challenges

associated with spatio-temporal data, such as the high-dimensionality and heterogeneity

of the data (i.e., behavior in space differs from behavior in time) [100]. Due to these com-

plexities, spatio-temporal data is often averaged over space or time in order to simplify

the needed analysis, resulting in information loss. TGDA is able to tackle data that is

heterogeneous and high-dimensional without restrictive assumptions such as stationarity

or isotropy [168, 31]. For example, in collaboration with the group of Prof. Michael Gra-

ham (UW - Madison) we have begun exploring the topology of chaotic, spatio-temporal

dynamical systems like the Kuramoto-Sivashinsky (KS) equation found in Figure 8.2.

TGDA is leveraged to simplify realizations of the KS equation, yielding an optimal low-

dimensional representation of the resulting data. The structure of this low-dimensional

manifold aids in the identification of laminar and turbulent behavior in the data. In a
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collaboration with Prof. Nicholas Abbott we characterize the space-time evolution of the

optical response of a liquid crystal (LC) sensor after exposure to an analyte (Figure 8.2).

The characterization yields a clarified, low-dimensional representation of the response,

distilling the information encoded in the spatio-temporal dynamics of the LC system and

helping distinguish responses to different analytes. Our research in this area will focus on

expanding the role of TGDA in spatio-temporal data analysis through the development

and advancement of TGDA methods, and will aid our collaborators in understanding the

spatio-temporal behavior of their studied systems while extracting physically meaningful

information from these complex datasets.

(a) TGDA of the Kuramoto-Sivashinsky equation. (b) TGDA of LC response.

Figure 8.2: TGDA coupled with simple dimensionality reduction techniques (e.g., PCA)
can be used to elucidate and summarize complex dynamics found in spatio-temporal
datasets.

Figure 8.3: Multi-omics data can be represented as a high-dimensional simplicial complex.

Topology of High-Order Network Structures.
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Graph-based abstractions of data have found a broad set of applications ranging from

optimization to chemical and biological networks [30]. These representations encode in-

teractions between variables that can be useful for the analysis of complex systems (e.g.,

large biological networks). For example, in collaboration with Prof. Sean Palecek (UW-

Madison), we are exploring multi-omics data for pluripotent stem cells and how this

information can be used to predict differentiation of cardiomyocytes. In the analysis of

multi-omics data, the integration of biological network structure is crucial, because it

establishes relationships between variables that reflect cell biology. Unfortunately, graph-

based representations are restricted to pairwise interactions between variables and cannot

capture higher-order relationship which are found in these biological networks (e.g., pro-

teins A, B, and C must be expressed before D can be expressed). Abstractions such as

simplicial complexes and hypergraphs can more readily encode these higher-order in-

teractions and can be be quantified through TGDA [362]. The collaboration with Prof.

Palecek is focused on integrating multi-omics data with simplicial complexes and hyper-

graph structures (Figure 8.3). TGDA and higher order networks have also found a large

number of applications in understanding, diagnosing, and treating cancer which we will

build upon. For example, TGDA has been applied to identify genetic alterations in cancer,

for predicting treatment responses, and in tumor segmentation [363, 364]. Importantly,

these high-order structures are not limited to biological networks, these also exist in chem-

ical reaction networks, supply chains, industrial chemical processes, electrical grids, and

many other systems [365]. The focus of this research will be to exploit these high-order

topological representations in modeling chemical and biological systems, while leverag-

ing TGDA for their analysis.

Connecting Physics, Statistics, Topology, and Geometry.

Current TGDA methods provide a large collection of topological and geometrical descrip-

tors for complex systems and datasets. The ability to confirm topological differences or

similarities is key in many applications; unfortunately, many of the descriptors available
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Figure 8.4: Representations of monolayer-protected gold nanoparticles from the work of
Chew and co-workers [2, 3].

are not directly amenable for such tasks. To address this issue, we will leverage theoret-

ical connections between topology, geometry, and statistics through Random Field Theory

(RFT) [101]. Random fields are a generalization of stochastic processes to higher dimen-

sions and the topology of their statistics can be characterized using TGDA. For example,

in a collaboration with Prof. Reid Van Lehn (UW-Madison), we are exploring the prop-

erties of monolayer-protected gold nanoparticles through TGDA (Figure 8.4) [2, 3]. In this

research, we are seeking to understand the behavior of these nanoparticles in various en-

vironments and how they interact with complex molecules (e.g., proteins). An important

aspect of this research is to determine statistically-significant differences in how systems

interact with various environments [2]. Here, we will apply ideas from TGDA to com-

pare both the structure of the nanoparticles and their interactions with an environment

(e.g., fluctuations at the water-nanoparticle interface) and adapt ideas from RFT to iden-

tify statistically significant differences between the nanoparticles based on their TGDA

descriptors. Our broader research goal will be focused on consolidating connections be-

tween random field theory, statistics, topology, and geometry; establishing TGDA as a

viable method for data analysis in the engineering community.
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Appendix A

S U P P L E M E N TA RY I N F O R M AT I O N

This appendix presents supplementary information from select sections of this disserta-

tion.

A.1 Topology & Molecular Simulation

A.1.1 Molecular dynamics simulation details

All molecular dynamics (MD) trajectories analyzed in this work were previously gen-

erated and released publically. Data for the simulations of self-assembled monolayers

(SAMs) were taken from [181] and data for the simulations of mixed-solvent environ-

ments were taken from [63]. Complete methodological details on the generation of these

data sets are included in the source publications; here, we briefly summarize key details

on the simulation procedures.

A.1.2 Shared MD Parameters

For both data sets, classical MD simulations were performed with a leapfrog integrator

with a 2-fs timestep using the Gromacs 2016 simulation package [366]. Ligands (in the

SAM systems) and reactants/cosolvents (in the mixed-solvent systems) were modeled
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using the CGenFF/CHARMM36 force fields [367, 368]. Verlet lists were generated using

a 1.2 nm neighbor list cutoff. Van der Waals interactions were modeled with a Lennard-

Jones potential that was smoothly shifted to zero between 1.0 nm and 1.2 nm. Electrostatic

interactions were calculated using the smooth Particle Mesh Ewald method with a short-

range cutoff of 1.2 nm, grid spacing of 0.12 nm, and fourth-order interpolation. Bonds

were constrained using the LINCS algorithm. Details on the conversion of MD trajectory

output to hydrogen bond networks and density fields are included in the main text. To

create hydrogen bond networks, hydrogen bonds between species were defined using

standard Luzar-Chandler criteria as implemented in gmx hbond [190].

Simulations of Self-Assembled Monolayers

Previously generated MD trajectories for 50 SAMs (40 for training, 10 for testing) were

obtained from the data set published in Ref. [181]. Each idealized SAM consisted of 64

alkanethiol ligands with either a hydroxyl (22 SAMs), amine (14 SAMs), or amide (14

SAMs) end group and with a backbone containing either 11, 12, or 13 methylene groups

for the hydroxyl, amide, and amine end groups respectively. The partial charges of all

ligand end group atoms were multiplied by a scaling factor, k, between 0 (most hydropho-

bic) to 1 (most hydrophilic) for each of the end groups. Each SAM was constructed by

positioning the 64 ligands in the x-y plane to mimic self-assembly onto a gold (111) lat-

tice with a grafting density of 21.6 Å2/ligand [369]. Ligands were oriented with the end

groups pointing in the positive z-direction. A 5-nm thick water layer was placed above

the SAM and a 3-nm thick buffering vacuum layer was then added above the top of the

water layer. Harmonic restraints with a spring constant of 50,000 kJ/mol/nm2 were ap-

plied to the sulfur atoms to hold the SAM in place (gold atoms were not included). Water

was modeled using the TIP4P/2005 water model. NVT production simulations were per-

formed for 40 ns with configurations output every 1 ps. The temperature was maintained

at 300 K using a velocity-rescale thermostat with a time constant of 0.1 ps. SAMs were

labeled with hydration free energies (HFEs) computed using indirect umbrella sampling
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(INDUS). All INDUS calculations used a 2.0×2.0×0.3 nm3 cavity positioned with its base

on a constant water density isosurface. INDUS simulations were performed using GRO-

MACS 2016 patched with the PLUMED plugin (version 2.5.1) using the same runtime

parameters as the unbiased simulations [189, 370]. Each system was equilibrated for 5

ns, then NVT INDUS simulations were performed using ≈13 windows per SAM. Each

window was simulated for 5 ns, with the first 2 ns discarded as equilibration. Additional

details are included in Ref. [181].

Simulations of Mixed-Solvent Environments

Previously generated MD trajectories for 108 reactant-solvent combinations (76 for train-

ing, 32 for testing) were obtained from the data set published in Ref. [63]. The initial

simulation box dimensions were set to (6 nm)3 in all simulations, and water and cosol-

vent molecules were added in the desired proportions. Water was modeled using the

Single Point Charge/Extended (SPC/E) model. The solvent system was equilibrated in

a NPT simulation for 5 ns at T = 300 K and P = 1 bar with a velocity-rescale thermostat

and Berendsen barostat. A single reactant molecule was added to the system and equi-

librated with the same barostat and thermostat for 500 ps. NPT production simulations

were then performed at the reaction temperature and P = 1 bar using a Nose-Hoover ther-

mostat and Parrinello-Rahman barostat. All thermostats used a 1.0 ps time constant and

all barostats used a 5.0 ps time constant with an isothermal compressibility of 5.0 × 10−5

bar−1. Simulations used to generate the data in this work were performed for 2 ns with

configurations output every 10 ps.

A.1.3 Euler Characteristic Computation - Hydrogen Bonding Networks

Hydrogen bonding networks can be represented as graphs G(V, E), with vertices v ∈ V

and edges {vi, vj} ∈ E. Vertices represent individual molecules (vi) in the simulation, and

edges represent the presence of hydrogen bonds between two molecules {vi, vj}. A graph
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is a two dimensional object. Thus, the Euler characteristic (EC) for a graph is given by the

following equation:

χ := β0 − β1 (A.1)

where β0 represents the number of connected components of the graph, and β1 rep-

resents the number of cycles in the graph. Fortunately, the EC can also be computed for

graphs using the following equation:

χ = β0 − β1 = |V| − |E| (A.2)

where |V| represents the number of vertices in a graph G(V, E) and |E| represents the

number of edges [371]. Thus, the computation of the EC for a given graphical represen-

tation of molecular simulation data is done by summing the total number of molecules

within the simulation, and subtracting the total number of hydrogen bonds. This compu-

tation is illustrated in our supplementary code.

A.1.4 Euler Characteristic Computation - Water Density Manifolds

We construct water density manifolds directly from simulation data by averaging parti-

cle positions over a period of time within the simulation. From a computational stand-

point, these manifolds are represented as 2-dimensional histograms in the Self-Assembled

Monolayer (SAM) simulations and as 3-dimensional histograms in the acid-catalyzed re-

action simulations. We focus on water particle positions during each of these simulations.

Water particle positions are determined by the center-of-mass of the water molecule. In

the SAM simulations the 2-dimensional histogram represents a 20 × 20 grid that covers

the SAM surface interfacing with bulk water. Each grid point represents an area of 0.1
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nm2 on the SAM surface. For each simulation snapshot t we count the number of water

molecules with centers of mass within each grid point nt
i,j. We compute the time averaged

water density value within each grid point (ρi,j) over 200 snapshots as follows:

ρi,j =
1
N

200

∑
t=1

nt
i,j (A.3)

where N represents the total number of water molecules accumulated over all bins in

the 200 snapshots. Each point of the 2D grid is assigned a value ρi,j which now represents

a density field.

In order to perform a filtration and ultimately obtain an EC curve for this density field,

we must first represent it as a cubical complex. A cubical complex is a set composed of

n-dimensional cubes. In this work we are focused on vertices (0-dimensional), edges (1-

dimensional), faces (2-dimensional) and cells (3-dimensional). Examples of these objects

are found in Figure A.1. We note that all cubes of (n > 0)-dimension are built from lower-

dimensional cubes (e.g., a face has four edges and each edge is supported at both ends

by vertices).

(a) Vertex (b) Edge

(c) Face (d) Cell

Figure A.1: Cubes of dimension 0 (vertex) to 3 (cell). These cubes can be combined to
represent larger objects such as a density field histogram.

To perform a topological analysis of this density field we represent the field as a

20 × 20 grid of faces, where each face has an associated density value (similar to pixels in

an image). The field is now a cubical complex built from 0, 1, and 2-dimensional cubes

which can be quantified through the EC. We then construct a filtration where we treat the

cubical complex as our manifold M, and the density values assigned to each face as our



227

function f : M → R. Through our filtration we can obtain sublevel sets Ml containing

all faces with density value ρi,j ≤ l where l ∈ R. There are two main ways to compute

the EC for this cubical complex, the first leverages algebraic topology and computes the

boundaries (i.e., cycles) within a cubical complex that are empty (e.g., they form a hole).

Details of this method are intensive and require background in algebraic topology. This

method is completely outlined, along with all supporting information, in our previous

work [168]. Another, simpler method for this 2-dimensional cubical complex is similar

to the graph example. We treat the cubical complex as a 2-dimensional polytope with

vertices V, edges E, and faces F. From this, we can compute the EC as follows:

χ = β0 − β1 = |V| − |E|+ |F| (A.4)

Where |V| represents the number of vertices, |E| represents the number of edges, and

|F| represents the number of faces [80]. Thus, at each point in our filtration we can simply

count the number of vertices, edges, and faces, within the resulting sublevel sets Ml and

obtain the EC (χ) directly. An example of this process is illustrated in Figure A.2 for a

simple 3 × 3 density field represented as a cubical complex.

(a) χ(M1) = 10 − 11 + 3 = 2 (b) χ(M3) = 16 − 24 + 8 = 0 (c) χ(M5) = 16 − 24 + 9 = 1

Figure A.2: Example filtration of a density field represented as a 2-dimensional cubical
complex. At each sublevel set Ml we can compute the EC directly through the alternating
sum of the number of vertices, edges, and faces.

We can follow the natural extension of this logic for our 3-dimensional density fields.

These fields are constructed in the same way as our 2-dimensional density fields (e.g.,
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counting and averaging particle positions within grid points), but with the primary differ-

ence being our field now has a third dimension. We segment our 3-dimensional volume

into a 20 × 20 × 20 grid with each grid point representing a cell with 0.2 nm3 volume.

We compute a density value at each grid point ρi,j,k over 200 simulation snapshots t as

follows:

ρi,j,k =
1
N

200

∑
t=1

nt
i,j,k (A.5)

where N represents the total number of water molecules accumulated over all bins

in 20 snapshots. We can then represent this as a 3-dimensional cubical complex with

associated density function. We treat the complex as a 3-dimensional polytope to compute

the EC values during a filtration. The EC computation for a 3-dimensional polytope,

where |V| represents the number of vertices, |E| represents the number of edges, |F|

represents the number of faces, and |C| represents the number of cells, is as follows [80]:

χ = β0 − β1 + β2 = |V| − |E|+ |F| − |C| (A.6)

These computations can be made for our data representations directly and are used to

construct the associated EC curves in our topological analysis of multiple MD simulations.

This is outlined in the main text and demonstrated in the supporting code, in which we

leverage the GUDHI (Geometry Understanding in Higher Dimensions) software [243].
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