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abstract

The thesis consists of research in mixed integer linear programming with applications
to scheduling and matrix completion. We first study the problem of scheduling drilling
and fracturing of pads in the development of an unconventional oil field. We propose a
novel MILP formulation for solving this scheduling problem which considers capacity,
operational, precedence, and interference constraints. We also propose a formulation that
uses more decision variables, but which provides a stronger linear programming relaxation.
Due to the large problem size, solving the full MILP model for instances with many pads
and a large number of time periods is intractable. Thus, we also derive a MILP-based
rolling horizon framework that solves a sequence of limited horizon, coarser-scale MILP
instances in a rolling forward fashion to obtain a solution to the full horizon problem on the
daily time scale. We benchmark this approach against a baseline scheduling algorithm that
approximates current practice of scheduling pads in the order of discounted production
profit with limited lookahead. Our results show that our proposed MILP-based rolling
horizon approach can improve the net present value of a field by 4-6%.

Next, we present new integer programming approaches to matrix completion problems,
both in the real field and in the finite field GF(2). First, we study an integer programming
approach for subspace clustering with missing data problem in real field with an assump-
tion that underlying data comes from a union of subspaces. Subspace clustering with
missing data is the task of identifying clusters of vectors belonging to the same subspace
in a partially observed data matrix whose columns are assumed to lie in a union of K
subspaces. We propose a novel mixed-integer linear programming solution framework
(MISS-DSG) for this problem that is based on dynamically determining a set of candidate
subspaces and optimally assigning data points to the closest selected subspace. MISS-DSG
handles a large number of candidate subspaces through its use of Benders decomposition
and dynamically generates new candidate subspaces through its use of column generation.
We cast the subspace generation problem as a nonlinear, nonconvex optimization problem
and propose a gradient-based approximate solution approach. The model has the advan-
tage of integrating the subspace generation and clustering in a single, unified optimization
framework without requiring any hyperparameter tuning when number of subspaces and
subspaces dimensions are known. Our computational results reveal that the proposed
method can achieve higher clustering accuracy than state-of-the-art methods when data is
of high-rank, the percentage of missing data is high, or subspaces are close to each other.

We next discuss binary matrix completion methods in GF(2) where the arithmetic is
done with respect to modulo-2 operations. We give integer linear programming formula-



xi

tions for matrix factorization and completion in GF(2). We first derive formulations making
use of McCormick envelopes for the product of two binary variables: a base formulation
using a general integer variable and an extended formulation using ideas from disjunctive
programming and parity polytopes. The latter formulation characterizes the convex hull of
the dot product of two vectors in an extended space. We then derive a novel formulation
based on a new class of valid inequalities that also characterizes the convex hull of the
dot product in the original space of variables. Our computational results reveal that the
proposed formulation results in smaller branch-and-bound trees. Furthermore, we also
derive additional classes of valid inequalities linking dot products between two matrix
elements.
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1 introduction

1.1 Overview and motivation
Mixed-integer linear programming (MILP) is a class of optimization problem where the
goal is to minimize or maximize a linear objective function adhering to a set of linear
constraints in presence of continuous and discrete variables. Mixed integer linear program-
ming solvers over the last 3 decades have shown tremendous progress. CPLEX version
11.0 released in 2008 was 29530× faster than version 1.2 released in 1991. Gurobi released
version 1.1 in 2009 which had similar computational performance to CPLEX version 11.0

[17]. Gurobi version 10.0 released in 2022 is now 75× faster compared to the version
1.1 [53]. These speedups are a combined result of many new heuristic methods, local
branching, classes of new or improved cutting planes, primal heuristics, node selection,
efficient preprocessing, and parallelization [62]. Along with the efficient solvers, most large
scale mixed integer optimization problems are solved efficiently by exploiting the problem
structure to design problem specific decomposition methods. Due to these speedups,
irrespective of the fact that integer programming is NP-hard, integer programming has
been used in practice in a diverse set of problems such as scheduling [104], supply chain
design [98], telecommunication network [64], grid scheduling [86], and many others.

This progress in MILP has changed the perception that MILP is computationally in-
tractable and cannot be used to solve machine learning problems. Recently, integer pro-
gramming has been in various machine learning applications such as neural network
pruning [20], binary neural networks [5], and interpretable matrix completion [15]. More-
over MILP in certain cases (e.g. clustering and classification) might allow one to solve the
resulting optimization problem with an exact objective instead of a convex surrogate or
a heuristic objective, the approach used in conventional machine learning algorithms to
solve large problems quickly [28]. Hence, for the problems for which runtime is not an
issue, formulating optimization problem as a MIP can prove to be beneficial. Consequently,
MILP based models have also found applications in interpretable as well as bias correction
(fairness) in machine learning [103, 69, 15].

As noted above, along with the progress in commercial solvers, research in mixed integer
programming has shown that additional performance gains are often attained by adding
problem specific cuts, doing careful model formulation, and using decomposition methods
[60]. In this thesis, we explore methods for solving large scale MIPs for scheduling and
matrix completion problems, and design algorithms which exploit the underlying structure
of the specific MILP problem. We next discuss motivation for the selected problems which
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is followed by review of necessary mathematical definitions.
Drill scheduling: The first problem we focus on is an engineering problem related to

scheduling in unconventional oil field development. Shale oil is a type of unconventional
oil found in shale formations that must be hydraulically fractured to extract the oil. Shale oil
production in the U.S. has risen from 0.5 million barrels per day to 6.5 million barrels per day
between 2008 and 2018, accounting to about 61% of total U.S. crude oil in 2018 production
[115]. The rapid rise of shale oil production can be attributed to innovative advancements
in horizontal drilling, hydraulic fracturing, and other well stimulation technologies [90].
These advanced production technologies require high level of investments and thus the
strategic development of an oil field is important for the profitability of the fields. There is
significant literature on conventional oil and gas infrastructure planning and development,
e.g., [111, 59, 78, 50, 27] but the literature on unconventional oil and gas planning and
development is more limited. We study the problem of scheduling drilling and fracturing
of wells in the development of an unconventional oil field. This scheduling problem is
related to the flexible flow shop scheduling problem, which has been proven to beNP -Hard
[49, 52, 121]. Unfortunately, the methods for flexible flow shop scheduling problem cannot
be directly applied to our problem due to the pad to pad interactions in unconventional oil
field development. We propose two new MILP formulations for determining a schedule
for drilling and fracturing pads and also propose a formulation that uses more decision
variables, but which provides a stronger linear programming relaxation. Due to the large
problem size, solving the full MILP model for instances with many pads and a large number
of time periods is intractable. Thus, we also derive a MILP-based rolling horizon framework
that solves a sequence of limited horizon, coarser-scale MILP instances in a rolling forward
fashion to obtain a solution to the full horizon problem on the daily time scale.

Subspace clustering with missing data in R: We next study integer programming
approaches to matrix completion problem where the elements of the matrix are either real
numbers (in Chapter 3) or binary values (in Chapter 4). Low-rank matrix completion
problem in R has been well studied in literature [26, 25, 24, 7, 102, 96, 89]. Our focus in
Chapter 3 is on the union of subspace model where different columns in the data matrix
X lie in one of the K subspaces This is a reasonable model whenever the data vectors are
generated as a linear combination of a small number of factors, often referred to as principal
component vectors [9]. When data matrix X is partially observed (XΩ), this problem is
referred as subspace clustering with missing data (SCMD) problem. This problem has found
numerous applications in computer vision [71, 124, 112, 101], recommendation systems
[100], image processing [55], and systems theory [117].

State-of-the-art methods for SCMD [122, 8, 68] do not perform well when data is of
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high-rank, the percentage of missing data is large, or subspaces are close to each other.
The integer programming methods proposed for subspaces clustering problem with no
missing data mostly rely on other algebraic and geometric methods for efficient generation
of candidate subspace and use integer programming only to select best subspaces from
the candidate pool [70, 72, 56]. The assignment of points to selected subspaces is similar
to the facility location problem where the goal is to select which facilities to open, and to
assign each customer to one of the open facilities. In the SCMD problem, subspaces play
the role of facilities, and vectors play the role of customers. The proposed MILP based
methods for SCMD are unable to handle a large number of candidate subspaces and do
not fully exploit the capabilities of mixed integer linear programming tools. We bridge this
gap by proposing MISS-DSG : Mixed Integer Subspace Selector with Dynamic Subspace
Generation. MISS-DSG handles a large number of candidate subspace through its use of
Benders decomposition and dynamically generates new candidate subspaces through its
use of column generation.

Low-rank matrix factorization and union of subspace model in F2: We then transition
to the binary setting where additions and multiplications are with respect to the finite field
F2, which follows modulo-2 arithmetic. The problem of reconstructing X from a partially
observed matrix XΩ with its entries in R has been extensively studied [89]. However, the
problem has received less attention in the case of finite fields. Nonetheless, reconstructing
X and factorizing X into binary matrices (X = UV ) has important applications in network
and index coding, independent component analysis, social networks, market-based data,
DNA transcription profiles, and others [76, 66]. For the binary setting with arithmetic
defined over F2, we consider both matrix factorization and completion models. Matrix
factorization and completion in F2 are known to be NP-hard [54]. Due to its relationship
to the linear index coding problem, heuristic methods have been proposed in the network
coding literature over the last few years [11, 40, 58]. Excluding the work of Saunderson
et al. [106], irrespective of the underlying combinatorial and discrete nature of the problem,
no linear or integer programming based methods have been studied. Saunderson et al.
[106] proposed a LP-based heuristic algorithm. Unfortunately, this relaxation is quite weak,
keeping only a small set of linear inequalities valid for the original integer program. We
bridge this gap by studying integer programming methods for matrix factorization and
completion in F2.

We next review important concepts from linear programming, polyhedral theory, integer
programming, and linear algebra that are relevant to this thesis.
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1.2 Mathematical background
Let c ∈ Rn1 , d ∈ Rn2 , A ∈ Rn1×m, B ∈ Rn2×m, b ∈ Rm. A general mixed-integer linear
program can then be formulated as follows:

min cTx+ dTy (MILP)

Ax+By = b

x ∈ Rn1 , y ∈ Zn2

If n1 = 0, i.e., no continuous variables, the above program reduces to pure integer program,
and if n2 = 0, i.e., no integer variables, then it reduces to a linear program (LP). The set S
of feasible solutions to this mixed-integer linear program is called a mixed integer linear set.
We refer to the set of feasible solutions to above program as S and convex hull of feasible
solutions as conv(S). conv(S) is a polyhedron and solving above MILP is equivalent to

min cTx+ dTy

(x, y) ∈ conv(S)

1.2.1 Polyhedra theory

Definition 1.1 (Affine independence). Points x1, x2, . . . , xd ∈ Rn are affinely independent
if there does not exist λ ∈ Rd such that

d∑
i=1

λi = 1,
d∑
i=1

λixi = 0

Definition 1.2 (Dimension of a set). Given a nonempty set X ∈ Rn, the dimension of X
dim(X) is the largest integer d such that there exists x1, x2, . . . , xd+1 ∈ X which are affinely
independent.

Definition 1.3 (Halfspace). A hyperplane in Rn is defined as the set of point satisfying
ax ≤ b for some a ∈ Rn, b ∈ R.

Definition 1.4 (Polyhedron). A polyhedron P in Rn is defined as the intersection of finitely
many halfspaces. In other words, P := {x : Ax ≤ b}, A ∈ Rm×n, b ∈ Rm. A bounded
polyhedron is called polytope.
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Definition 1.5 (Convex hull). Convex hull of set S is

conv(S) = {
p∑
i=1

λixi : i ∈ N, xi ∈ S ∀i ∈ [k], λ ∈ Rk
+,

p∑
i=1

λi = 1}

Definition 1.6 (Valid inequality). An inequality α>x ≤ β is valid for a set X ⊂ Rn if
α>y ≤ β for any y ∈ X .

Definition 1.7 (Face). Set F ⊆ Rn is called a face of polyhedron P := {x ∈ Rn : Ax ≤ b} if
there exists α ∈ Rn, β ∈ R such that α>x ≤ β is valid for P and

F = P ∩ {x ∈ Rn : αx = β}.

A nonempty face F of P is called a facet if and only if dim(F )=dim(P )-1.

Definition 1.8 (Projections). The orthogonal projection of set S ⊂ Rn1+n2 onto the linear
subspace Rn1 is πx(S) := {x ∈ Rn1 : ∃z ∈ Rn2 s.t. (x, z) ∈ S}.

1.2.2 Lifting valid inequalities

We let B := {x ∈ {0, 1}n : Ax ≤ b} be a binary set and C ⊆ [n] be the index set. We next
present some important results related to lifting valid inequalities for the binary set S.

Definition 1.9 (Lifting). For a binary setB, index setC, and a valid inequality
∑

j∈C αjxj ≤
β for conv(B) ∩ {x ∈ Rn : xj = 0, j /∈ C}, an inequality

∑
j∈[n] αjxj ≤ β is called a lifting of∑

j∈C αjxj ≤ β if it is valid for conv(B).

We next state a useful result for lifting from [30].

Proposition 1.10 (Proposition 7.2, Conforti et al. [30]). Consider a set B ⊆ {0, 1}n such that
B ∩ {x : xn = 1} 6= ∅, and let

∑n−1
i=1 αixi ≤ β be a valid inequality for B ∩ {x : xn = 0}. Then

αn := β −max

{
n−1∑
i=1

αixi : x ∈ B, xn = 1

}
is the largest coefficient such that

∑n−1
i=1 αixi + αnxn ≤ β is valid for B.

Furthermore, if
∑n−1

i=1 αixi ≤ β defines a d-dimensional face of conv(B)∩ {xn = 0}, then∑n
i=1 αixi ≤ β defines a face of conv(B) of dimension at least d+ 1.

We also note that Proposition 1.10 can be extended to the case when
∑n−1

i=1 αixi ≤ β is a
valid inequality for B ∩ {x : xn = 1} by introducing a new variable x′n = 1− xn, and then∑n−1

i=1 αixi ≤ β is a valid inequality for B ∩ {x : x′n = 0}.
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Sequential lifting [30] We next discuss sequential lifting which is a procedure to lift a facet-
defining inequality

∑
j∈C αjxj ≤ β of conv(B) ∩ {x : xj = 0, j /∈ C} into a facet-defining

inequality
∑n

j=1 αjxj ≤ β of conv(B)

Choose an ordering j1, . . . , j` of the indices in [n]\C. Let C0 = C and Ch = Ch−1 ∪ {jh}
for h = 1, . . . , `. For h = 1 up to h = `, compute

αjh := β −max

 ∑
j∈Ch−1

αjxj : x ∈ B, xj = 0, j ∈ [n]\Ch, xjh = 1

 .

By Proposition 1.10, the inequality
∑n

j=1 αjxj ≤ β obtained this way is facet-defining
for conv(B).

1.2.3 Algorithms for solving MILPs

Branch-and-bound method lies at the heart of modern integer programming solvers. Branch
and bound solution methodology is based on optimizing the objective function on different
partitions of the feasible set S . Branching involves creating these partitions by performing
linear disjunctions. For bounding the optimal value, although there are several procedures,
the most common is to form the linear programming relaxation.

Obtaining good bounds on MILPs can aid branch and bound procedure. These bounds
are obtained by efficient polyhedral approximations of conv(S). If convex hull, conv(S),
of solution set S is characterized exactly, then MILP reduces to a linear program and no
branching is needed. The difficulty of course lies in characterizing conv(S). Nonetheless,
close approximations to conv(S) can lead to smaller branch and bound trees.

Tightening continuous relaxing of MILPs

To solve a MILP, one typically starts with an approximation to conv(S) (e.g., LP relaxation).
The continuous approximation obtained by relaxing the integrality constraints, barring
some special cases, is often weak. Additional polyhedral information can help to augment
this approximation dynamically. Cutting plane and column generation methods have
proven to be powerful techniques for achieving this feat. Both cutting plane and column
generation alternate between computing bound information by solving a “master problem”
and improving the approximation to conv(S) by solving a “subproblem”.

Cutting plane Cutting plane methods generate half-spaces that contain conv(S) but not
the linear relaxation. These halfspaces are commonly referred to as valid inequalities
and are added iteratively to the current approximation of conv(S). Valid inequalities are
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generated by solving a subproblem, referred to as separation problem, which uses the primal
solution information as an input. A typical workflow for a pure cutting plane approach
without branching is as follows:

1. Solve the LP relaxation of MILP by relaxing the integrality constraints

2. If LP relaxation is infeasible or unbounded, STOP. MILP is also infeasible or un-
bounded.

3. If not, let (x, y) be an optimal solution the LP relaxation.

• If (x, y) ∈ S, STOP. (x, y) is an optimal solution.

• If (x, y) /∈ S , solve the separation problem using (x, y) as an input. Add generated
valid inequality to the LP relaxation and go to step 1.

In often cases, cutting plane procedure is employed within branch-and-bound method to
to improve the bounds found via the LP relaxation.

Column generation Column generation technique is an iterative procedure applied to
linear programs with exponential number of variables. Column generation starts by solv-
ing restricted master problem (RMP), in which only few variables (columns in constraint
coefficient matrix) are considered. New columns with negative reduced costs are generated
iteratively and added to the RMP by solving a subproblem referred to as pricing subprob-
lem. Column generation can also be thought of as dynamically generating the extreme
points and adding them to the current approximation to conv(S) to generate an improved
approximation.

Cutting plane methods shrink the current polyhedron approximation of conv(S) by
adding cuts while column generation expands the current approximation by adding new
extreme points. Cutting plane uses primal information to generate new valid inequalities
to improve approximation to conv(S) while column generation uses dual information
to improve the approximation to conv(S). Thus, the two methods have a primal dual
correspondence, and are equivalent, i.e., cutting plane in primal space is equivalent to
column generation in dual space.

1.2.4 Disjunction of polytopes

Consider a disjunctive feasible set S = ∪Ki=1Pk where Pk = {Akx ≤ bk, 0 ≤ x ≤ uk} is
a polytope in Rd. In other words, the feasible solutions lie in the union of two or more
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polytopes. This can be modeled using binary variable zk ∈ {0, 1} indicating whether x is in
the kth polytope, and creating k copies of variables x ∈ Rd as follows.∑

k∈[K]

xk = x

Akxk ≤ bkzk ∀k ∈ [K]

0 ≤ xk ≤ ukzk ∀k ∈ [K]∑
k∈[K]

zk = 1

z ∈{0, 1}K

It is known that LP relaxation of the above formulation is the convex hull of the feasible set
S [6].

1.2.5 Binary quadratic program (BQP)

Consider a binary quadratic program of the following kind:

min
∑
i

∑
j

cijyiyj + d>o y (BQP)∑
i

∑
j

aijyiyj + d>c y = b ∀c ∈ C

y ∈ {0, 1}n

Here C denotes the set of constraints and do and dc are n−dimensional vectors. Non-
convexity in BQP arises from integrality restrictions as well as bilinear terms yiyj . Mc-
Cormick envelopes are used to do an exact linearization of the BQP as we discuss next
[84, 77].

McCormick relaxation We denote the McCormick envelope of (x, y) ∈ [0, 1] as the poly-
tope

MC(x, y, z) = {(x, y, z) ∈ [0, 1]3 : z ≥ x+ y − 1, z ≤ x, z ≤ y}.

If x, y ∈ {0, 1}, then MC(x, y, z) only contains the point xy ∈ {0, 1} corresponding to the
product of x and y.
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1.2.6 Linear algebra

Definition 1.11 (Field). A field is a set F with two binary operations called addition and
multiplication defined on it. The addition and multiplication of two elements a, b ∈ F will be
denoted by a+ b and ab respectively, and since binary operations are defined on F, a+ b, ab

are in F for any a, b ∈ F. A field F must satisfy the following axioms:

a) a+ b = b+ a

b) (a+ b) + c = a+ (b+ c)

c) ab = ba

d) a(bc) = (ab)c

e) a(b+ c) = ab+ ac

f) F contains additive identity 0 such that
a+ 0 = a and multiplicative identity 1

distinct from 0 such that 1a = a ∀a ∈ F.

g) For all a ∈ F, there is −a ∈ F such that
a+ (−a) = 0.

h) For all a 6= 0 in F, there is an element
a−1 such that aa−1 = 1.

Definition 1.12 (Vector space). Let F be a field and V a set. Consider a binary operation
on V called addition which assigns to each pair of elements u and v of V , a unique sum
u+ v ∈ V . Consider a second operation, called scalar multiplication, which assigns to any
k ∈ F and any u ∈ V , a unique scalar multiple ku ∈ V . The set V with the binary operations
addition and scalar multiplication is a vector space if the following axioms are satisfied:

a) u+ v = v + u

b) u+ (v + w) = (u+ v) + w

c) There is an additive identity 0 ∈ V such
that u+ 0 = u for all u ∈ V .

d) For all u ∈ V there is −u ∈ V such that
u+ (−u) = 0.

e) 1u = u

f) For all k, l ∈ F and u ∈ V , (kl)u =

k(l(u)).

g) For all k ∈ F, k(u+ v) = ku+ kv.

h) For all k, l ∈ F and u ∈ V , (k + l)u =

ku+ lu.

Definition 1.13 (Linearly independent). A set of vectors {v1, v2, . . . , vn} from a vector space
V is said to be linearly independent if the vector equation

a1v1 + a2v2 + · · ·+ anvn = 0

has only the trivial solution a1 = a2 = · · · = an = 0.
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Definition 1.14 (Basis). A basis B = {v1, v2, . . . , vn} of a vector space V over a field F is a
linearly independent subset of V that spans V , i.e., for every vector v ∈ V , one can choose
a1, a2, . . . , an ∈ F such that v = a1v2 + a2v2 + · · ·+ anvn.

Definition 1.15 (Subspace). A subset W of a vector space V is called a subspace of V if
W is itself a vector space under the addition and scalar multiplication defined on V . The
dimension of a nonzero subspace H is the number of vectors in any basis for H .

Definition 1.16 (Subspaces associated with matrices). Let A ∈ Fd×n where F is a field.

• The column space ofA, denoted by C(A), is the span of the columns ofA. In other words,
we treat the columns of A as vectors in Fd and take all possible linear combinations
of these vectors to form the span. So C(A) is a subspace of Fd.

• The row space of A, denoted byR(A) is given by C(AT ). SoR(A), is a subspace of Fn.

Definition 1.17 (Rank). Given a d × n matrix X , rank of X is the maximum number of
linearly independent column vectors in X and is denoted as rank (X) = r.

Theorem 1.18. The rank of a matrix X is the dimension of its row and column spaces.

In this work, we use dimension of the subspace and rank of the corresponding basis
matrix interchangeably.

Definition 1.19 (Galois Field). A Galois Field or a finite field is a field in which there exists
finitely many elements. The Galois field is denoted as Fnp where p is called characteristic
of the field (p is always a prime number) and pn is the order of the field. For example, F3

2

contains 8 elements:
F3

2 = (001, 010, 011, 100, 101, 110, 111)

Finite fields of order 2n are called binary fields and follow modulo-2 arithmetics which
coincides with logical XOR for addition and logical AND for multiplication , i.e., 1⊕ 1 =

0, 1⊕ 0 = 1, 0⊕ 0 = 0 and 0⊗ 1 = 0, 0⊗ 0 = 0, 1⊗ 1 = 1 We use ⊕ to denote addition over
Fn2 and ⊗ to denote multiplication over Fn2 . We denote Galois Field of characteristic 2 as F2.

1.3 Contribution and roadmap
In Chapter 2, we study the problem of scheduling drilling and fracturing of wells in the
development of an unconventional oil field. A key challenge in scheduling these operations
is the presence of conflicts between different operations. A conflict refers to the restriction
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that when a pad (collection of wells) is being fractured, it is not allowed to perform drilling
or production on any pads within a specified neighborhood of that pad. We propose a
new MILP formulation for determining a schedule for drilling and fracturing pads in an
unconventional oil field which considers capacity, operational, precedence, and interference
constraints. We also propose a formulation that uses more decision variables, but which
provides a stronger linear programming relaxation. Due to the large problem size, solving
the full MILP model for instances with many pads and a large number of time periods is
intractable. Thus, we also derive a MILP-based rolling horizon framework that solves a
sequence of limited horizon, coarser-scale MILP instances in a rolling forward fashion to
obtain a solution to the full horizon problem on the daily time scale.

In Chapter 3, we study an integer programming approach for subspace clustering with
missing data. Subspace clustering with missing data (SCMD) is the task of identifying clus-
ters of vectors belonging to the same subspace in a partially observed data matrix whose
columns are assumed to lie in a union of K subspaces. We propose a novel mixed-integer
linear programming (MILP) solution framework for this problem that is based on dynami-
cally determining a set of candidate subspaces and optimally assigning data points to the
closest selected subspace. A key challenge in this approach is identifying, in a rigorous
manner, a suitable set of candidate subspaces to include in the formulation. We cast this
subspace generation problem as a nonlinear, nonconvex optimization problem and propose
a gradient-based approximate solution approach. Our framework can readily accommo-
date a huge number of candidate subspaces through its use of Benders decomposition to
solve the linear programming (LP) relaxation of the MILP. The model has the advantage
of integrating the subspace generation and clustering in a single, unified optimization
framework.

In Chapter 4, we again focus on matrix completion problem but now in the binary
setting. We consider low-rank matrix factorization and completion over F2. Given a binary
matrix X observed on indices Ω, we consider the rank r factorization model where the goal
is to find binary matrices U and V such that the error on observed entries

∑
(ij)∈Ω |Xij −

Zij| is minimized while ensuring Z = U ⊗ V . We first derive formulations making use
of McCormick envelopes for the product of two binary variables: a base formulation
using a general integer variable and an extended formulation using ideas from disjunctive
programming and parity polytopes. The latter formulation characterizes the convex hull of
the dot product of two vectors in an extended space. We then derive a novel formulation
based on a new class of valid inequalities that also characterizes the convex hull of the
dot product of two vectors in the original space of variables. Furthermore, we derive new
classes of valid inequalities linking dot products of two matrix elements.
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2 mixed-integer linear programming for scheduling
unconventional oil field development

2.1 Introduction
We propose a novel MILP formulation for determining a schedule for drilling and fracturing
partial pads in an unconventional oil field. Our main contribution is a MILP-based rolling
horizon framework that solves a sequence of limited horizon, coarser-scale MILP instances
in a rolling forward fashion to obtain a solution to the full horizon problem on the daily
time scale.

Unconvention oil field development

Shale oil, a type of unconventional oil, is light crude oil contained in petroleum-bearing
formations of low permeability sandstone. The defining characteristic is that the rock is not
sufficiently permeable to allow oil to flow out from merely drilling a hole into the formation.
However, creating fissures in the rock by injecting water (along with sand and some other
chemicals) at high pressure through the formation helps oil to seep back through the cracks
and be extracted [41].

The Green River Formation, which covers parts of Colorado, Utah, and Wyoming, has
the largest known oil shale deposits in the world, holding about 4.285 trillion barrels of
oil. With a threshold of 15 gallons per ton of shale, the prospective oil shale represents a
165-year supply of oil for the United States. This estimate is with respect to the present U.S.
demand for petroleum products which is about 20 million barrels per day [13]. Shale oil
production in the U.S. has risen from 0.5 million barrels per day to 6.5 million barrels per
day between 2008 and 2018. The U.S. Energy Information Administration (EIA) estimates
that in 2018, production from shale oil resources accounted to about 61% of total U.S. crude
oil production [115]. The rapid rise of shale oil production can be attributed to innovative
advancements in horizontal drilling, hydraulic fracturing, and other well stimulation
technologies [90]. These advanced production technologies involved in shale oil extraction
require high level of investments and thus the strategic development of an oil field is
important for the profitability of such fields.

The life cycle of a typical shale oil well starts with drilling the vertical part of the well
which is followed by horizontal drilling. The next step in the well development process is
hydraulic fracturing (fracturing, for short) which consists of pumping a mixture of water,
sand, and chemicals to stimulate the rock to allow oil and gas to escape through the rock.
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After fracturing is completed, a cleaning crew cleans out and turns the well online, after
which the well begins producing oil.

The field can be represented by a collection of partial pads P as shown in Figure
2.1. A partial pad p ∈ P is a piece of land containing a number of wells. In this work,
following common practice, we assume all wells in a partial pad are first drilled sequentially
(by a single drilling crew) and then fractured sequentially (by a single fracturing crew).
Thus, for scheduling purposes we treat all the wells on a partial pad p as a single entity.
We use the term partial pad in this chapter to refer to any number of wells that should
be drilled sequentially and then fractured sequentially. In this way, we differ from the
conventional definition of a pad — a temporary drilling site — which can hold several
dozen wells. Clearly, not all wells of such large pads (sometimes referred to as “mega
pads”) should be drilled or fractured sequentially. However, when development planners
lay out large pads, they typically arrange the wells in rows that are drilled sequentially.
The main reason why sequential drilling and fracturing is done is efficiency gains: for
drilling, these include “skidding” or “walking” of the rig; for fracturing, these include
“zipper-frac” (shortening drilling and fracturing durations, respectively). Additionally, if
well operations are carried out sequentially, rig mobilization and demobilization costs are
reduced. In practice, development planners therefore typically do not consider drilling or
fracturing wells individually, but in groups — which, in this paper, we refer to as partial
pads [118]. Since mobilization costs are controlled by the policy of drilling and fracturing
all wells within a partial pad together, we do not otherwise consider the mobilization and
demobilization costs of the drilling rigs/fracturing crews trips to and from the partial pads
in our model.

Literature survey

A key challenge in scheduling operations in unconventional oil field development is the
presence of conflicts between different operations. A conflict refers to the restriction that
when a partial pad is being fractured, it is not allowed to perform drilling or production
on any partial pads within a specified neighborhood of that partial pad. There are very
few papers in the literature that consider such conflicts. An important exception is the
work of Ondeck et al. [91], who provide an optimization framework for selecting and
developing gas wells on a single partial pad. Their model considers conflicts between wells
within the partial pad in addition to other detailed considerations such as the possibility to
curtail gas production and the expenses involved in mobilizing development resources. In
contrast, we focus on the scheduling of development operations at the field level, using a
model that incorporates fewer details of the individual well development, but which can
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be used to schedule development activities of multiple drilling and fracturing crews over
the development of the entire unconventional field. Our model is targeted to be used by
development planners, so we assume that strategic decisions concerning how many wells
to be drilled and fractured in a single visit of a crew have been made a priori.. We employ a
partial pad-level aggregation and integrate the model into a rolling horizon framework.

There is significant literature on conventional oil and gas infrastructure planning and de-
velopment, e.g., [111, 59, 78, 50, 27]. The literature on unconventional oil and gas planning
and development is more limited. In recent years, some work has been done to determine
an optimal structure of a shale gas network. Cafaro and Grossmann [22] determined the
most profitable supply chain design by using a branch-refine-optimize (BRO) strategy to
solve a mixed-integer nonlinear programming (MINLP) formulation. Knudsen and Foss
[61] proposed a formulation to solve the scheduling of multi-well shut-ins. Arredondo-
Ramirez et al. [4] proposed a method for determining a superstructure with potential
wells, gas treatment plants, and distribution networks. Drouven and Grossmann [36]
also presented a superstructure capturing the tree structure of gas gathering systems.
They solved a nonconvex MINLP to consider spatial gas quality variations within multi-
ple delivery node gathering systems. Another important aspect of field development is
scheduling of different operations. Iyer et al. [59] discussed a discrete-time MILP model
for conventional offshore oil field infrastructure development and used a decomposition
approach to solve larger instances. Cafaro et al. [21] and Drouven and Grossmann [35]
introduced optimization frameworks to plan shale gas well refracture treatments of a single
well under uncertainty. Rahmanifard and Plaksina [99] optimized the well placement in a
shale gas reservoir and compared the performance of different heuristics for maximizing
well production.

The scheduling problem is related to the flexible flow shop scheduling problem, which
has been proven to be NP -Hard [49, 52, 121]. Flexible flow shop scheduling has been
intensively studied in many industries [74]. Gupta [52] considered a two-stage scheduling
problem in which a set of jobs is given, each of which has to undergo two processes in
sequence. There are a set of identical resources available to do each of the two processes.
The well development scheduling problem has a similar structure, where the wells are the
jobs, the first process is drilling, the second process is fracturing, and the resources are
the drilling and fracturing crews. Our model extends the flexible flow shop scheduling
model by considering the conflicts between these processes (i.e., it is not allowed to drill or
produce while fracturing a nearby well). Because of this additional important complication,
methods for flexible flow shop scheduling cannot be directly applied to our problem.

The rolling horizon approach has been applied in a variety of applications where a
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MILP is solved over a smaller number of periods in successive iterations. Some recent
work using the rolling horizon approach in various applications are [83, 107, 105, 109]. A
unique feature of our rolling horizon strategy is that in addition to solving a sequence of
problems with a limited lookahead, the problems we solve have a coarser time-scale than
the time-scale of the solution we produce.

Contributions

We propose a novel MILP formulation for determining a schedule for drilling and fracturing
partial pads in an unconventional oil field which considers capacity, operational, precedence,
and interference constraints. We also propose a formulation that uses more decision
variables, but which provides a stronger linear programming relaxation. Our results
show that this larger formulation can improve solution times by 25-70% on instances with
relatively few time periods in the planning horizon, but is not advantageous for instances
with more time periods. Due to the large problem size, solving the full MILP model for
instances with many partial pads and a large number of time periods is intractable. Thus,
we also derive a MILP-based rolling horizon framework that solves a sequence of limited
horizon, coarser-scale MILP instances in a rolling forward fashion to obtain a solution to
the full horizon problem on the daily time scale. We benchmark this approach against a
baseline scheduling algorithm that approximates current practice, where partial pads are
scheduled in the order of their discounted production profit with limited lookahead to
avoid conflicts. Our results show that our proposed MILP-based rolling horizon approach
can improve net present value of a field by 4-6%. Considering that large fields such as in
the Permean basin are estimated to have billions of barrels of oil [42, 43], improvements in
this range can be very economically significant. While we focus on oil field development,
our results may also be useful for planning shale gas field development, which follows a
similar development process.

This chapter is organized as follows. We provide a detailed description of the problem,
our MILP formulation, and its use within a rolling horizon framework in Section 2.2. We
provide the alternative, larger MILP formulation in Section 2.2.4, and also discuss how
the strength of the formulation can be obtained without adding additional variables by
using a cutting plane algorithm. In Section 2.4, we present results of a computational
study in which we compare the different MILP formulations, study the effects of period
length and lookahead window in the rolling horizon approach, and quantify the value of
our MILP-based rolling horizon approach by benchmarking against a baseline scheduling
algorithm.
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Wells

Partial pads

Figure 2.1: Diagrammatic view of partial pads and wells in a shale oil field.

2.2 Problem description and solution approach

2.2.1 Problem statement

We consider an oil field that has a collection of partial pads P to be developed as shown
in Figure 2.1. A partial pad p ∈ P is a piece of land containing a number of wells. The
first step in developing a partial pad p ∈ P is drilling, which takes τ̂ dp days. The second
step is fracturing which takes τ̂ fp days. Note that we use (ˆ) to denote the time durations of
parameters in days. For example, τ̂ dp denotes drilling in days whereas in section 2.2.3 we
will use τ dp to represent the approximate number of periods to drill partial pad p for a given
coarser time discretization. Drilling and fracturing operations have a fixed cost cdp and cfp

associated with them, which are assumed to be charged at the beginning of the operation.
An important assumption of our model is that we know how many wells are to be operated
upon in a single visit by a crew. The collection of wells which are to be processed in a single
crew visit is treated as a partial pad in the model. The final steps in the development of
a partial pad are cleaning and turning in line operations, but as these are typically done
after fracturing without delay and they cause no conflicts with other operations, we do not
consider them in our model.

A fixed number of drilling (nd) and fracturing (nf) crews are available, so that at any
point in time at most nd partial pads can be in the process of drilling and at most nf partial
pads can be in the process of fracturing. At most one drilling crew or fracturing crew can be
assigned to a partial pad. Moreover, each partial pad p is drilled and fractured in a single
visit of drilling and fracturing crew respectively, without interruption. A partial pad p

starts producing oil after fracturing is complete. The amount of oil produced from a partial
pad in a period depends on the amount of time since the partial pad began fracturing, and
is specified by a production curve α̂p, where α̂pk represents the amount of oil production
from partial pad p during day k after fracturing was started. Since production cannot occur



17

while a partial pad is being fractured and cleaned the production curve is zero for the
initial periods until fracturing and cleaning are complete, then increases to the partial pad’s
actual initial production level, and typically decreases over time after that. The production
curve of a partial pad is obtained by summing the production curves of the individual
wells on the partial pad.

For two partial pads within some distance threshold, fracturing one partial pad and
drilling/producing the other cannot occur concurrently, for one of the following reasons:

• For simultaneous fracturing and drilling, the main reasons are either operational — a
rig drilling one row of wells is physically blocking another row of wells to be fractured
— or concerning Safety, Health and Environment (SH&E).

• For simultaneous fracturing and producing, the main reasons are so-called parent-
child fracture interferences. Operators have observed fracture interferences between
existing production wells (parent wells) and newly fractured wells (child wells), and
these typically have a negative impact on the production from both the parent and
child wells [82].

For each partial pad p ∈ P the setNp ⊆ P represents the neighboring partial pads for which
production and drilling are prohibited when partial pad p is being fractured. Although it
is not necessary for our model, we assume the neighborhoods are symmetric so that p ∈ Nq

if and only if q ∈ Np for p, q ∈ P . If a partial pad that has completed fracturing is shut
down due to fracturing at a neighboring well, we assume that the production profile of the
partial pad still progresses to the next time period. Since the production rate curves are
decreasing, when production resumes it will be at a lower rate. We let P oil denote the net
revenue (price less processing costs) per barrel of oil and assume it is known and fixed for
the entire time horizon of the field development process. The problem is to determine the
drilling and fracturing start time of each partial pad in the field in order to maximize the net
present value (NPV) of net revenues obtained from the field over its production horizon,
where NPV is calculated using an annual discount rate of iA. We let iD = 365

√
iA + 1 − 1

denote the equivalent daily discount rate.

Illustrative example

We consider a field consisting of 20 partial pads with three drilling crews and one fracturing
crew. The partial pads are distributed on a rectangular grid with three rows and seven
columns as shown in Figure 2.2. In this example, the neighbors of a partial pad p consist
of the pads lying immediate adjacent to p horizontally or vertically. The drilling duration
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Partial pad
Nbd. Pads

P1
P2 P3 P4 P5 P6

P7

P8
P9 P10 P11 P12 P13

P14

P15
P16 P17 P18 P19 P20

Figure 2.2: Layout of partial pads in the illustrative example. The neighbors of partial pads
P8, P11, and P7 are illustrated with dashed arrows.

of partial pads is between 40 and 210 days and the fracturing duration is between 14
and 42 days. A sample schedule for this instance is shown in Figure 2.3. Day 0 in this
schedule is set as Jan 1, 2019. The schedule demonstrated here is generated using a baseline
scheduling algorithm (Algorithm 2) which is discussed in Section 2.4.3. We see that on
every day, there are no more than three drilling and one fracturing operations happening
in parallel. The order of operations on each partial pad is drilling, followed by fracturing,
and then production. We also observe that fracturing a partial pad leads to a shut down
in the production of neighboring partial pads (shown as gaps in the production bars).
For instance, production on P2 is halted when P1 is fractured. Another observation is
that sometimes a crew may need to idle due to interference constraints. For instance, a
drilling crew becomes free after drilling at P2 is completed. However, drilling at P1 isn’t
initiated right away. P2 is first fractured after which drilling at P1 begins. This is because
P1 and P2 lie in the same neighborhood and hence they cannot be drilled and fractured
simultaneously. Schedules which have higher NPV tend to limit the number of production
shutdowns due to fracturing conflicts, limit idling of resources, and begin production of
high volume wells earlier.

2.2.2 Coarse-time discretization

We formulate the pad drilling and fracturing scheduling problem as a MILP problem using
a discrete-time model consisting of a set of time periods T := {0, 1, . . . , |T |}. In order to
obtain a more compact model, we assume a period consists of D days. For a pad p which
takes τ̂ dp days to drill, we approximate its drilling time in periods, τ dp , by rounding τ̂ dp /D
to the nearest integer. Similarly, the fracturing duration in periods, τ fp , is approximated
by rounding τ̂ fp /D to the nearest integer. The parameter D provides a trade-off between
model accuracy and complexity. A larger value of D leads to a problem with a shorter time
horizon which is hence more compact, but also leads to more inaccuracy due to rounding.
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Figure 2.3: Sample schedule for the illustrative example, obtained from the baseline schedul-
ing algorithm. The NPV of this schedule is $5.499*109.

Given the annual discount rate iA, the periodic discount rate i is given by the formula

i =
N
√
iA + 1− 1,

where N represent the number of periods in a year.
For a pad p ∈ P , the amount of oil produced in the tth period after fracturing was

complete is computed as

αpt =

(t+1)D−1∑
k=tD

α̂pk. (2.1)

If a pad begins production during the planning horizon, then our model needs to account
for all production of the pad from the end of the planning horizon until the pad no longer
produces. To do so, for each pad p ∈ P and 0 ≤ t ≤ |T | − τ fp , we define βpt to be the
discounted total revenue from oil produced beyond the planning horizon if fracturing of
pad p begins at time period t, where the revenue is discounted to period |T |. Specifically,
βpt is computed as

βpt = P oil

TMAXp∑
k=|T |−(t+τfp )

(1 + i)−kαpk. (2.2)
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The oil that is produced within the planning horizon is accounted for differently because of
the possibility of production shut downs due to fracturing operations at neighboring pads,
and this is why βpt must be calculated separately for each possible fracturing start time t.

The notation used in our problem definition is summarized in Table 2.1.

Parameter Description Units
P Set of pads -
Np Neighboring pads of p -
D Length of a period days
τ̂ d Drilling duration days
τ d Rounded drilling duration Periods
τ̂ f Fracturing duration days
τ f Rounded fracturing duration periods
cd Drilling cost $
cf Fracturing cost $
nd Number of drilling crews -
nf Number of fracturing crews -
α̂pk Pad production on kth day since fracturing began barrels
αpt Pad production on tth period since fracturing began barrels
iA Annual discount rate 1/year
i Periodic discount rate 1/period
iD Daily discount rate 1/day
P oil Net revenue from a barrel of oil $/barrel

Table 2.1: A summary of parameters used in Chapter 2

2.2.3 MILP formulation

The decision variables in the MILP model are as follows:

• xpt : Binary variable that takes the value 1 if drilling at pad p ∈ P starts at the
beginning of time period t ∈ T , 0 otherwise.

• ypt: Binary variable that takes the value 1 if fracturing at pad p ∈ P starts at the
beginning of time period t ∈ T , 0 otherwise.

• xpt: Binary variable that takes the value 1 if drilling for pad p ∈ P has been completed
before the beginning of time period t ∈ T , 0 otherwise.

• ypt: Binary variable that takes the value 1 if fracturing for pad p ∈ P has been
completed before the beginning of time period t ∈ T , 0 otherwise.

• wpt: Binary variable that takes the value 1 if pad p ∈ P is in production mode in
period t ∈ T , 0 otherwise.
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• vpt: Amount of oil produced from pad p ∈ P during period t ∈ T .

The objective is to maximize net present value (NPV) of net revenue:

NPV =
∑
t∈T

∑
p∈P

[
(1 + i)−t

(
P oilvpt − cdpxpt − cfpypt

)
+ (1 + i)−tβptypt

]
. (2.3)

Note that the first term is discounted using the period discount rate i since the expression
P oilvpt− cdpxpt− cfpypt represents the net revenue in period t. The term βptypt is discounted t
periods since the computation of βpt discounts the revenues of oil from beyond the planning
horizon to time period t.

Next, we introduce the constraints in the model.
Relationship Constraints: The first set of constraints relates the decision variables for

determining when drilling starts for a pad to the decision variables that indicate whether
or not drilling has been completed:

xpt = 0, ∀p ∈ P, t = 0, 1, . . . , τ dp − 1, (2.4a)

xpt = xp,t−1 + xp,t−τdp , ∀p ∈ P, t = τ dp , τ
d
p + 1, .., |T |. (2.4b)

Equations (2.4a) record the fact that for each pad p ∈ P it is not possible to have completed
drilling within the first τ dp − 1 periods. Equations (2.4b) are equivalent to the equations

xpt =

t−τdp∑
k=0

xpk, ∀p ∈ P, t = τ dp , τ
d
p + 1, . . . , |T |, (2.5)

and thus correctly capture the relationship that drilling at a pad p is complete if and only
if drilling was started at time period t − τ dp or earlier. Note that we use (2.4b) in our
formulation rather than (2.5) because the number of constraints is the same, and the set
of constraints (2.4b) has significantly fewer nonzero coefficients. The constraints (2.4b)
also imply the equation

∑|T |
t=0 xpt = xp|T | ≤ 1, which thus enforces the condition that each

pad is drilled at most once. Observe that the model allows a pad p to not be selected for
drilling at all (i.e., xp|T | = 0). This is necessary because, as we discuss in Section 2.3, for
large-scale instances the formulation will be used within a rolling horizon framework in
which the problem is solved over a limited lookahead horizon. Due to the limited length
of the lookahead horizon it may not be feasible to drill all the wells within the horizon.

A similar set of constraints relates the decision variables for determining when fracturing
starts for a pad to the decision variables that indicate whether or not fracturing has been
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completed:

ypt = 0, ∀p ∈ P, t = 0, 1, . . . , τ fp − 1, (2.6a)

ypt = yp,t−1 + yp,t−τfp , ∀p ∈ P, t = τ fp , τ
f
p + 1, .., |T |. (2.6b)

Capacity Constraints: The following constraints ensure that the number of pads being
simultaneously drilled or fractured doesn’t exceed the number of drilling or fracturing
crews available at any period [63]:

∑
p∈P

t∑
k=(t−τdp +1)+

xpk ≤ nd, ∀t ∈ T, (2.7)

∑
p∈P

t∑
k=(t−τfp +1)+

ypk ≤ nf , ∀t ∈ T. (2.8)

Here we use the notation (z)+ = max{0, z} for any integer z. Note that a pad p ∈ P is being
drilled at time t if drilling has begun in one of the periods τ dp before t, thus the expression
on the left-hand side of (2.7) computes the number of pads being drilled at time t, and
similarly for fracturing in (2.8).

Precedence Constraints: We next consider constraints that enforce that drilling must
be done before fracturing. Specifically, the following constraints ensure that if drilling for a
pad p ∈ P has not yet been completed by a time t, then fracturing cannot be completed by
time t+ τ fp :

yp,t+τfp ≤ xpt, ∀p ∈ P, t = 0, 1, . . . , |T | − τ fp . (2.9)

Similarly, production can occur only after a pad has completed fracturing. The following
constraint therefore enforces that if fracturing is not yet complete on a pad p ∈ P by time
period t, then time period t cannot be a production period:

wpt ≤ ypt, ∀p ∈ P, t ∈ T. (2.10)

Vicinity Constraints: For each pad p and time period t, if any pad q ∈ Np is being
fractured at time t, then p cannot be in the process of drilling during that period, nor can it
be producing during that period:

wpt +
t∑

k=(t−τdp +1)+

xpk ≤ 1−
t∑

k=(t−τfq +1)+

yqk, ∀p ∈ P, q ∈ Np, t ∈ T. (2.11)
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Oil Production Constraints: The volume of oil that can be produced from pad p in
time period t (vpt) is bounded above based on the production curve and when fracturing
of the pad began:

vpt ≤
t−τfp∑
k=0

αp,t−kypk, ∀p ∈ P, t = τ fp , τ
f
p + 1, . . . , |T |. (2.12)

If ypk = 0 for all k ≤ t− τ fp , then fracturing is not yet complete by time t and hence (2.12)
correctly records that no production can occur in period t. Otherwise, if ypk = 1 for some
k ≤ t − τ fp , then (2.12) bounds the production to not exceed αp,t−k, which is the limit in
period t since in this case fracturing began t− k periods before period t.

In addition, the production amount from a pad must be zero if the pad is shut down
due to fracturing at a neighboring pad. A shut down of pad p in time period t due to
fracturing in a neighboring pad will cause wpt = 0 due to constraints (2.11). Thus the
following constraint then ensures that the volume produced from pad p in period t is zero
if shut down occurs:

vpt ≤ ᾱpwpt, ∀p ∈ P, t ∈ T, (2.13)

where ᾱp is an upper bound on the maximum possible production from pad p in a period
(e.g., ᾱp = max{αpk : k ≥ 0}).

Note that when wpt = 1 for a pad p ∈ P in a time period t ∈ T , the production amount
vpt will be exactly equal to the expression in the right-hand side of (2.12) due to the objective
function. We must use inequality in the constraint (2.12) in order to allow vpt = 0 in the
case that wpt = 0.

For our model, the inequalities (2.12) and (2.13) imply that after the shut-down of a pad,
production resumes at the level it would have been if the shutdown had never occurred.
This assumption is motivated by computational experience with an earlier version of this
model. Specifically, in an earlier version of this work, we approximated the production
curve α̂p as a piecewise linear function. Using the binary variables that represent the
breakpoints of the piecewise linear function, we could model the impact of shutdowns in
more detail, and we could introduce discount factors that represented the level at which a
well resumes production after a shutdown. Agreeing with the findings of Crafton and Noe
[32], our data indicated that shutdowns are generally harmful and consequently should be
avoided in early well/pad production where the production curve is steep. The results of
our optimization runs showed the same, as good solutions avoided shutdowns shortly after
starting pad operations. Comparing the higher-fidelity models with the one presented here,
we noted that the computational cost of the higher-fidelity model could not be justified,
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as we would typically obtain the same optimal solution using the lower-fidelity model
presented in this chapter. We therefore decided to model production using the assumption
that the production rate resumes at the level it would have been if shutdown did not occur.

Strengthening constraints: Since drilling must be done before fracturing, and a pad
cannot be producing until fracturing is complete we add the following constraints that
prohibits a pad from having more than one operation (drilling, fracturing, or producing)
occuring at any time period t:

wpt +
t∑

k=t−τdp +1

xpk +
t∑

k=t−τfp +1

ypk ≤ 1, ∀p ∈ P, t = τ dp , τ
d
p + 1, ..., |T |. (2.14)

Note that for binary feasible solutions (2.14) is implied by the constraints (2.5), (2.6), (2.9),
and (2.10). However, (2.14) is not implied for fractional solutions, and we find that adding
it provides minor improvement in the linear programming relaxation of the formulation.

In summary, the MILP formulation is to maximize the objective (2.3), subject to the
constraints (2.4), (2.6) - (2.14), and with binary restrictions on the decision variables
xpt, ypt, xpt, ypt, wpt for p ∈ P, t ∈ T , and non-negativity on the oil production variables,
vpt ≥ 0 for p ∈ P, t ∈ T . We refer to this formulation as MILP1.

2.2.4 Alternative MILP formulation

In this section we present an alternative MILP formulation and demonstrate that the LP
relaxation of this formulation is at least as strong as the LP relaxation of MILP1 presented
in Section 2.2.3. We refer to this alternative formulation as MILP-EF, as it can be considered
to be an extended formulation since it uses more decision variables.

For each pad p ∈ P , we introduce a new set of binary decision variable zpkt for τ fp ≤ t ≤
|T | and for k ≤ t− τ fp , where zpkt = 1 if pad p begins fracturing in period k and is producing
in period t (wpt = 1), and zpkt = 0 otherwise.

The first set of new constraints in the MILP-EF formulation relates the new zpkt variables
to thewpt variables, enforcing the logic that ifwpt = 0 for a period t, then all the zpkt variables
for k ≤ t− τ fp must also be zero:

t−τfp∑
k=0

zpkt ≤ wpt, ∀p ∈ P, t = τ fp , . . . , |T |. (2.15)

This enforces the desired logic when wpt = 0, and when wpt = 1, this simply states the
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redundant constraint that fracturing for pad p can be started at most once in periods 0 to
t− τ fp .

The next relationship constraint we add enforces the condition that if a pad p does not
have fracturing start in a period k (ypk = 0), then all of the zpkt variables for t ≥ k+ τ fp must
be zero:

zpkt ≤ ypk, ∀p ∈ P, k = 0, . . . , t− τ fp , t = τ fp , . . . , |T |. (2.16)

Finally, we can replace the constraints that specify the upper bounds of volume produced
in each period (inequalities (2.12) and (2.13)) with the following constraints:

t−τfp∑
k=0

αp,t−kzpkt = vpt, ∀p ∈ P, t ∈ T, (2.17)

where by convention for t < τ fp the left-hand side sum is zero and thus for such t the
constraints simply enforce the condition that no production can occur until after fracturing
is complete. For t ≥ τ fp , the production amount in period t is set to zero when wpt = 0, since
in this case zpkt = 0 for all k ≤ t by (2.15). On the other hand, when wpt = 1, the variables
zpkt will be equal to ypk for all k ≤ t − τ fp in an optimal solution since this is allowed by
(2.16) and because the objective is improved by increasing vpt. Thus, if fracturing begins in
some period k′ ≤ t− τ fp , then we will have zpk′t = ypk′ = 1, and so the production amount
in period t will be set to vpt = αp,t−k′ , which is the correct amount given that fracturing
began k′ periods earlier.

In summary, the new formulation MILP-EF maximizes the objective (2.3), subject to
the constraints (2.4), (2.6) - (2.11), (2.14), and (2.15) -(2.17).

Lemma 2.1. The LP relaxation upper bound of MILP-EF is not larger than the LP relaxation upper
bound of formulation MILP1.

Proof. We show that if (x, x, y, y, v, w, z) is a feasible solution to the LP relaxation of MILP-
EF, then (x, x, y, y, v, w) is a feasible solution to the LP relaxation of MILP1. This proves the
claim since the objective functions in the two models are the same.

Thus, let (x, x, y, y, v, w, z) be a feasible solution to the LP relaxation of MILP-EF. We
only need to verify that this solution satisfies (2.12) and (2.13), since all other constraints
in MILP1 are included in MILP-EF. First, for each p ∈ P and t ≥ τ fp we obtain

vpt =

t−τfp∑
k=0

αp,t−kzpkt ≤
t−τfp∑
k=0

αp,t−kypk
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where the equality follows from (2.17) and the inequality follows from (2.16), and hence
the solution satisfies (2.12).

Next, for each p ∈ P and t ≥ τ fp we obtain

vpt =

t−τfp∑
k=0

αp,t−kzpkt ≤
t−τfp∑
k=0

ᾱpzpkt ≤ ᾱpypt

where the first equality follows from (2.17), the first inequality follows because αp,t−k ≤ ᾱp,
and the second inequality follows from (2.15). For t < τ fp (2.17) implies vpt = 0. Thus, in
either case this verifies that the solution satisfies (2.13).

2.2.5 Valid inequalities in the original variable space

The number of decision variables and constraints in MILP-EF grows quadratically with the
number of time periods |T |, and thus for problems with many time periods it may be time-
consuming to even solve the LP relaxation of this model. We thus discuss how the strength
of this formulation can be obtained in the space of variables of the original model MILP1
by adding valid inequalities as cuts to the LP relaxation. One possible implementation of
this would be to add these valid inequalities at the initial LP relaxation before starting the
branch-and-bound process for solving MILP1.

Cut separating linear program. Given a (partial) solution (ŷ, v̂, ŵ) of the LP relaxation of
MILP1, we can determine if there is a solution to the LP relaxation of formulation MILP-EF
by solving a small linear program for each p ∈ P to determine if there are values for the
variables ztkp that satisfy constraints (2.15) -(2.17) for this pad p. Specifically, for each pad
p ∈ P we solve the linear program:

min
∑
k∈T

γt (2.18a)

s.t.

t−τfp∑
k=0

αp,t−kztk + γt = v̂pt, ∀t ∈ T, (2.18b)

t−τfp∑
k=0

ztk ≤ ŵpt, ∀t = τ fp , . . . , |T |, (2.18c)

0 ≤ ztk ≤ ŷpt, ∀k = 0, . . . , t− τ fp , t = τ fp , . . . , |T |, (2.18d)

γt ≥ 0, ∀t ∈ T. (2.18e)



27

Given ŵpt, ŷpt, and v̂pt ≥ 0, (2.18) is feasible because one can set all ztk variables equal zero
and γt = v̂pt for all t ∈ T . This LP is also trivially bounded, and hence it has an optimal
solution. The optimal value of (2.18) is zero if and only if there exist values of zptk for
k = 0, . . . , t− τ fp , t = τ fp , . . . , |T | that satisfy the pad p constraints of MILP-EF. Thus, such
an extended solution for pad p exists if and only if the dual objective value of every feasible
dual solution of (2.18) is less than or equal to zero.

Let π, ρ, and θ be the dual variables associated with constraints (2.18b), (2.18c), and
(2.18d), respectively, and let π̂, ρ̂, θ̂ be an optimal dual solution. Observe that the dual
objective is to maximize

∑
t∈T

πtv̂pt +

|T |∑
t=τfp

ρtŵpt +

|T |∑
t=τfp

ŷpt

t−τfp∑
k=0

θtk.

Thus, if the optimal value of (2.18) is zero for every p ∈ P , then there exist values of the
zptk variables such that appending these values to the partial solution (ŷ, v̂, ŵ) of the LP
relaxation of MILP1 is feasible to MILP-EF. On the other hand, if the optimal value of (2.18)
is positive for some p ∈ P , the following inequality is implied by the constraints of MILP-EF,
and hence by correctness of that formulation, is valid for formulation MILP-1, i.e., it does
not cut off any integer feasible solutions:

∑
t∈T

π̂tvpt +

|T |∑
t=τfp

ρ̂twpt +

|T |∑
t=τfp

ypt

t−τfp∑
k=0

θ̂tk ≤ 0. (2.19)

Moreover, this inequality is violated by the current LP relaxation solution (ŷ, v̂, ŵ). Thus,
adding this inequality to the LP relaxation of MILP1 and then re-solving has the potential
to improve the LP relaxation value. This process can be repeated in a simple cutting plane
algorithm in which in each iteration LP relaxation of MILP1 with cuts added is solved.
Using the LP relaxed solution of MILP1, the cut separating linear programs (2.18) are
solved for each p ∈ P , and then cuts of the form (2.19) are added to MILP1 when violated.
If the process continues until no more violated cuts are found, the resulting LP relaxation
value will be equal to the LP relaxation value of MILP-EF.

Cut validation. Validity of the inequality (2.19) requires that the dual solution (π̂, ρ̂, θ̂)

used to construct it be a feasible dual solution. When solving a linear program in practice,
the solution given may be slightly infeasible (within numerical tolerances). Using such a
solution has the potential to lead to an invalid cut. To ensure validity of the cut (2.19), we
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propose to modify the (potentially infeasible) solution returned by the LP solver to make
it feasible as follows.

The feasible region to the dual linear program of (2.18) is given by the inequalities

αp,t−kπt + ρt + θtk ≤ 0, ∀k = 0, . . . , t− τ fp , t = τ fp , . . . , |T |, (2.20a)

πt ≤ 1, ∀t ∈ T, (2.20b)

ρt ≤ 0, ∀t = τ fp , . . . , |T |, (2.20c)

θkt ≤ 0, ∀k = 0, . . . , t− τ fp , t = τ fp , . . . , |T |. (2.20d)

Given an “approximately” feasible dual solution (π̂, ρ̂, θ̂), we propose to adjust it to a
guaranteed feasible solution (π, ρ, θ) using the following formulae:

πt = min{π̂t, 1}, ∀t ∈ T,

ρt = min{ρ̂t, 0}, ∀t = τ fp , . . . , |T |,

θtk = min{0,−(αp,t−kπt + ρt)}, ∀k = 0, . . . , t− τ fp , t = τ fp , . . . , |T |.

2.3 Rolling horizon implementation
We next present a rolling horizon approach which is designed to obtain solutions for the
problem for significantly larger instances. The basic idea with a rolling horizon framework
is to solve a model over a limited planning horizon, fix the initial decisions, then move
the window of the planning horizon forward in time and repeat. We let ζ = |T |D be
the number of days in the planning horizon of the optimization model. In addition to
limiting the planning horizon, we also use time periods of length D days to limit the size
of the MILP formulation being solved at each step. However, the rolling forward is done
at the daily level, so that in the end the algorithm produces a schedule that is feasible to
the problem using a daily time discretization. Figure 2.4 illustrates the basic idea of the
approach.

The details of the MILP-based rolling horizon approach are given in Algorithm 1. The
status of each pad is maintained throughout the algorithm, which is initialized as ‘idle’.
The status of a pad is updated to ‘drilling’ when it is in the process of drilling, and changes
to ‘drilled’ after drilling is complete. When fracturing begins the status is updated to
’fracturing’ and finally it is updated to ‘fractured’ when that is complete, after which all
operations for the pad are done. The number of available drilling and fracturing crews at
the current day is updated in the variables Ad and Af , respectively. At the beginning of
processing each day, we first check to see if there are any free drilling crews and pads that
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need to be drilled, or there are any free fracturing crews and pads that need to be fractured.
If so, the limited horizon, aggregate time-period MILP model is solved (line 6). In this
MILP, the decision variables for any drilling or fracturing operations currently in progress
are fixed to require them to begin in the initial time period, and their durations are adjusted
according to the remaining duration of these operations. After solving the MILP, the pads
that are assigned to begin drilling in the first period of the model horizon are stored in
Mdrill

t , and likewise the pads that are assigned to begin fracturing in the first period of
the MILP model are stored in M fracture

t . Then, for each pad p ∈Mdrill
t we first check to see

if starting drilling on pad p is feasible with respect to conflicts between pads currently
being fractured in its neighborhood, and if it is feasible we update the pad status, store its
start day in drillstart[p], and update the number of available drilling crews (line 12). The
conflict check is necessary because the MILP formulation uses aggregate time periods, and
so could potentially miss conflicts when creating the schedule at the daily basis. A similar
process is performed for assigning fracturing operations for each pad p ∈M fracture

t . At the
end of processing each day, we determine whether any pads with status of ‘drilling’ or
‘fracturing’ will complete that process at the end of the day, and if so, update their status
and the number of drilling or fracturing crews available. For pads that have status ‘drilling’
or ‘fracturing’ and which are not completing that operation on that day, we update the
remaining time of these operations in terms of the number of periods. We ensure that
drilling or fracturing duration is at least one period to prevent rounding down the duration
to zero periods. Finally, we check the termination condition of the algorithm, which occurs
when all pads have status ‘fractured’, indicating that all drilling and fracturing operations
have been scheduled.

Time(daily)

Rolling 1 Rolling 2

MILP Horizon (ζ days)

MILP Horizon (ζ days)

Crew becomes available

Figure 2.4: Illustration of the rolling horizon approach. The limited horizon MILP model is
re-solved whenever a crew becomes free, which is checked at the daily level.
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Algorithm 1: MILP based rolling horizon algorithm
1 status[p]← ‘idle’ for all p ∈ P ;
2 Ad ← nd, Af ← nf ;
3 for t = 0, 1, 2, . . . do
4 Determine if there is possibility to assign an operation to start in time t;
5 if (Ad > 0 and ∃ p s.t. status[p]=‘idle’) or (Af > 0 and ∃ p s.t. status[p]=‘drilled’)
6 Solve the MILP model for next |T | periods (ζ days) ;
7 Mdrill

t ← set of pads p ∈ P which MILP solution assigns to drill in period 0;
8 M fracture

t ← set of pads p ∈ P which MILP solution assigns to fracture in
period 0;

9 for p ∈M drill
t do

10 Check for interference;
11 if @q ∈ Np s.t. status[q]=‘fracturing’ and Ad > 0
12 drillstart[p]← t, Ad ← Ad − 1, status[p]←‘drilling’ ;

13 for p ∈M fracture
t do

14 Check for interference;
15 if @q ∈ Np s.t. status[q]=‘drilling’ and Af > 0
16 frac start[p]← t, Af ← Af − 1, status[p]←‘fracturing’;
17 Update the completed operations and remaining duration for the pads under operation;
18 for p ∈ P s.t. status[p]=‘drilling’ do
19 if t =drillstart[p]+τ̂ dp
20 Ad ← Ad + 1, status[p]←‘drilled’;
21 else
22 τ dp ← max

(
round

( τ̂dp−(t−drillstart[p])

D

)
, 1
)

;

23 for p ∈ P s.t. status[p]=‘fracturing’ do
24 if t =fracstart[p]+τ̂ fp
25 Af ← Af + 1, status[p]←‘fractured’;
26 else
27 τ fp ← max

(
round

( τ̂fp−(t−fracstart[p])

D

)
, 1
)

;

28 Exit if all pads have been fractured and ready to produce;
29 if status[p]=‘fractured’ for all p ∈ P
30 break;
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2.4 Computational study
We next report results from a computational study in which we compare the performance
of the two proposed MILP formulations, MILP1 and MILP-EF, investigate the effect of
the period length and lookahead window parameters of the MILP-based rolling horizon
approach, and compare the solutions obtained with the proposed MILP-based rolling
horizon approach to those obtained by a baseline scheduling algorithm that mimics current
practice.

2.4.1 Test instances

We randomly generated test instances for our experiments using parameter ranges adopted
from [21], [36] , [23], and [91]. Each instance consists of a set of pads which we assume
lie on a regular grid of length L and width W . We define pads to be neighbors of each
other if they are immediately adjacent vertically or horizontally in the grid. The data for
each pad is determined by first randomly choosing how many wells are on the pad, which
we generate uniformly as an integer between one and six. We then randomly generate
characteristics of each well on the pad and determine the pad data based on the wells. The
characteristics of the wells are generated according to the distributions given in Table 2.2.
For a pad p ∈ P , this yields a set of wellsWp that are on that pad. We then determine
the pad parameters from the wells on the pad as follows: τ̂ dp =

∑
w∈Wp

τ̂ dw, τ̂ fp =
∑

w∈Wp
τ̂ fw,

TMAXp = max{TMAXw : w ∈ Wp}, cdp =
∑

w∈Wp
cdw, cfp =

∑
w∈Wp

cfw. For each well w, we
follow [3] and model the oil production rate function of the well using an exponential
decline curve

λw(s) = Mwe
−aws, (2.21)

where s ≥ 0 represents the time (in days) from when production begins. The daily
production curve parameters for each pad p and day t ≥ 0 are then computed as

αpt =

0 t < τ̂ fp∑
w∈Wp

∫ t−τ̂fp +1

t−τ̂fp
λw(s)ds t ≥ τ̂ fp .

We use an annual discount rate of iA = 0.12 and set P oil = $60 per barrel.

2.4.2 Comparison of MILP formulations

We first investigate the performance of formulations MILP1 and MILP-EF proposed in
Sections 2.2.3 and 2.2.4, respectively. For each instance, we compare the computational
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Parameter Description Value Units
τ̂ dw Time to drill the well Normal, µ = 30, σ = 10 days

TMAXw Life of a well 40 years
τ̂ fw Time to fracture the well Normal, µ = 7, σ = 2 days
cdw Cost to drill the well 1.5 + .003τ̂ dp MM$
cfw Cost to fracture the well 3.5 + .01τ̂ dp MM$
Mw Initial production rate of well Uniform(400, 3300) Barrels/day
aw Decay rate constant for well Uniform(.0003-0.0007) 1/day

Table 2.2: Well-specific instance parameters.

Inst. Pads ζ (Periods) ζ (Days) Period len. nd,nf

I-10-67 10 67 1000 15 days 3,1
I-10-71 10 71 500 7 days 5,2
I-15-20 15 20 600 30 days 3,1
I-20-20 20 20 900 45 days 3,1

Table 2.3: Characteristics of instances used to compare MILP1 and MILP-EF.

time and nodes explored to reach optimality or a desired optimality gap. We used Gurobi
8.1.1 as the MILP solver. Additionally we set a time limit of 15000s (250 min) for these
experiments. These experiments were performed on a 2.8 GHz Quad-Core Intel Core i7
with 16 GB RAM.

The characteristics of the test instances used in this study are presented in Table 2.3.
For each instance size (row in Table 2.3) we generated five random instances with those
characteristics. We solve instances I-10-67, I-10-71, and I-15-20 to the gap of 0.01%. For the
larger instance I-20-20 we solve to optimality gap 1%.

We report the gap of LP relaxation from the optimal value (LP gap), solution time, and
nodes explored in the tree to reach the specified optimality gap for the two formulations
on each test instance in Table 2.4. We can see that on an average the number of nodes
explored to reach a solution of desired optimal tolerance is fewer by a factor in the range
of 1.2-3.6 when using MILP-EF as compared to MILP1. This is a consequence of the
better LP relaxation of MILP-EF, which is also demonstrated by the smaller LP relaxation
relaxation gap. When considering solution time, we observe that although we explore
fewer nodes with MILP-EF in instances I-10-67 and I-10-71, the solution times using MILP1
are significantly smaller. On the other hand, the solution times are smaller for MILP-EF on
instances I-15-20 and I-20-20. This also includes an instance I-20-20-C where MILP1 reached
the time limit of 15000s while formulation MILP-EF was solved to the 1% optimality gap
in 3805 seconds. The difference in solution time behavior can be explained by the size of
the model, and in particular the number of periods. Instances I-10-67 and I-10-71 have 67
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and 71 periods, respectively, and hence the formulation MILP-EF, which has size growing
quadratically in the number of periods, gets very large. We conclude that for instances
with a small number of time periods (e.g., ≤ 20) MILP-EF formulation is preferred, but for
instances with more time periods formulation MILP1 may be preferred.

Our primary interest in this work is to demonstrate the impact of the use of the MILP
formulations within the rolling horizon framework for generating high-quality solutions
on larger instances, which we investigate in the next two subsections. Thus, we did not com-
putationally test the approach of using cutting planes to obtain the strength of formulation
MILP-EF in the space of the formulation MILP1.

Inst. Opt. sol LP gap(%) IP time (sec.) # Nodes
x(109) MILP1 MILP-EF MILP1 MILP-EF MILP1 MILP-EF

I-10-67-A 2.841 3.72 2.66 571 708 11069 5112
I-10-67-B 3.309 3.98 2.94 415 980 8720 6039
I-10-67-C 3.536 3.35 2.43 416 548 6133 2295
I-10-67-D 3.240 4.60 3.32 1894 1704 39220 10508
I-10-67-E 2.727 3.26 2.21 157 393 2692 1909

Avg. 3.78 2.71 690.6 866.6 13566.8 5172.6
I-10-71-A 2.311 4.23 2.79 496 760 11446 6391
I-10-71-B 2.694 3.45 2.50 214 418 7910 4432
I-10-71-C 2.400 3.87 2.56 459 1152 12028 8497
I-10-71-D 2.591 3.37 2.39 433 1465 7706 9522
I-10-71-E 2.527 8.52 7.18 321 1234 10248 9771

Avg. 4.69 3.48 384.6 1005.8 9867.6 7722.6
I-15-20-A 3.517 3.61 2.63 135 83 18460 7244
I-15-20-B 3.338 3.16 1.66 138 84 22370 9774
I-15-20-C 4.189 2.86 1.99 57 38 15956 4795
I-15-20-D 3.804 4.38 3.23 164 87 32282 12616
I-15-20-E 4.179 3.72 2.47 119 144 29538 30647

Avg. 3.55 2.40 122.6 87.2 23721.2 13015.7
I-20-20-A 5.255 6.14 3.87 2294 742 276358 54933
I-20-20-B 5.501 5.40 3.12 326 101 39010 8472
I-20-20-C 6.042 6.24 4.16 15000 3805 1511503 346964
I-20-20-D 5.697 5.91 3.41 566 207 65531 20499
I-20-20-E 5.194 5.89 3.57 2395 1782 205097 158152

Avg. 5.92 3.63 4116.2 1327.4 419499.8 117804

Table 2.4: Comparison of formulations MILP1 and MILP-EF.
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2.4.3 Baseline scheduling algorithm

We next turn our attention to the use of the MILP-based rolling horizon approach for
generating solutions to instances that are too large to solve to optimality. To provide
context for the quality of the solutions generated on these instances, we present the baseline
scheduling algorithm, which to the best of our knowledge closely mimics current scheduling
practice. The idea behind the baseline scheduling algorithm is to develop pads with the
highest discounted revenue first, in order to obtain the revenue from the highest value
pads earlier, which is beneficial due to the discounting used in the NPV calculation. Thus,
we rank the pads on the basis of their discounted total revenue, which is computed in
(2.2) as βp,|T |−τfp . The operations are then scheduled by prioritizing the pads with highest
discounted volume production first, while ensuring that we don’t violate any precedence,
capacity, operational and conflict constraints.

The details of the baseline scheduling algorithm are given in Algorithm 2. We create a
drill-queue of the pads, ordered highest to lowest by discounted revenue. Pads are added
to the fracture-queue (line 20) after their drilling operation is initiated. Note that the
order in the two queues may be different as drilling operations may not always start in the
preferred order. This happens when there are delays arising from the conflicts i.e. drilling
initiation on the pad next in queue can be delayed if a neighborhood pad is being fractured.
In the algorithm each pad is initialized with the ‘idle’ status. We update the status of
each pad as it goes through different stages of the development cycle, i.e., {‘idle’, ‘drilling’,
‘drilled’, ‘fracturing’, ‘fractured’ }. The variables Ad and Af keep track of the number of
free drilling and fracturing crews available at each point in time. Ad and Af are initialized
with nd and nf as all crews are free at t = 0. Similarly, the variables µd[p] and µf [p] are used
to keep track of the remaining drilling and fracturing duration of each pad p. These are
initialized with the actual drilling and fracturing duration (τ̂ d[p] and τ̂ f [p]). Algorithm 2
proceeds by considering each day in the planning horizon in sequence. For each day, we
first assign fracturing operations (lines 6-14) and then drilling operations (lines 15-24) to
start that day. Fracturing is prioritized over drilling in case there is a conflict between either
starting drilling or fracturing on two neighboring pads. Fracturing is prioritized because
once it is complete the pad can begin production and revenue is generated. Fracturing
operations are initiated in preference order of the fracture-queue. Fracturing is initiated
at the next pad in the queue if there is a free fracturing crew, drilling is complete, and
initiating fracturing on the given pad doesn’t violate any interference constraints (lines
11-13). If all these conditions hold true, fracturing is started and we store the fracturing
start day for the pad in ‘fracstart’, reduce the number of fracturing crews available (Af) by
one, remove the pad from the fracture queue, and update the status of pad to ‘fracturing’
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(line 12). If a pad is not assigned for fracturing, but a fracturing crew is still available,
the next pad in the queue is considered, and so on until either the full queue has been
checked or there are no available fracturing crews. Drilling operations are initiated in a
similar way (lines 15-24). However, when initiating drilling operations we check additional
conditions in order to avoid creating conflicts with upcoming fracturing operations (line
20). In particular, we check each neighboring pad q to see if it is currently being fractured
(status[p]=‘fracturing’) or is ready to be fractured(status[q]=‘drilled’). We also check
for the possibility of fracturing on pad q getting delayed because of initating drilling on
pad p in the neighborhood in current period i.e. pad q, currently being drilled, may begin
fracturing before the drilling operation on pad p under consideration would be completed
To perform this check, we define the values ‘earlieststart[q]’ for q ∈ P as follows:

earlieststart[q] =


0, if status[q] = ‘fracturing’ or status[q] = ‘drilled’,

+∞, if status[p] = ‘idle’ or status[q] = ‘fractured’,∑i
j=1 µ

f [qj]/n
f , if q = qi ∈ fracture-queue = [q1, q2, . . . , qk].

At the end of processing each day, we determine whether any pads with status of ‘drilling’
or ‘fracturing’ will complete that process at the end of the day, and if so update their status
and the number of drilling and fracturing crews available. For pads with status ‘drilling’
or ‘fracturing’ and which are not completing that day, we update the remaining time of
these operations (lines 25-39).

2.4.4 Parameter study for MILP-based rolling horizon approach

We next study the effect of the period length (D) and lookahead horizon (ζ) parameters
in the MILP-based rolling horizon framework. Intuitively, one would expect to obtain the
best solutions using a very large lookahead horizon ζ and small period length (daily).
However, since the MILP becomes larger and more difficult to solve as the number of
periods increases, it is necessary to impose a time limit when solving the MILP, and thus
use the best solution found within the time limit. If the number of periods is too large,
then the solution obtained within the time limit may be significantly suboptimal (or maybe
even no solution could be found) leading to poor performance. Thus, we conduct a study
to determine values of D and ζ that lead to the best solutions.

The number of periods used in the instances in this study is relatively large (usually
more than 20), and hence following the guidelines in Section 2.4.2 we use formulation
MILP1 to solve the instances in this study. We set an optimality gap tolerance of 2% and a
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Algorithm 2: Baseline Scheduling Algorithm
1 drill-queue← Ordered list of pads based on βp|T | ; fracture-queue=[ ] ;
2 status[p]← ‘idle’ for all p ∈ P ;
3 Ad ← nd, Af ← nf ;
4 µd[p]← τ̂ d[p], µf [p]← τ̂ f [p] for all p ∈ P ;
5 for t=0,1,2... do
6 Assign fracturing operation;
7 for p in fracture-queue do
8 if Af = 0
9 break;

10 if @q ∈ Np s.t. status[q]=‘drilling’
11 fracstart[p]← t, Af ← Af − 1, fracture-queue.remove(p), status[p]←

‘fracturing’;
12 Assign drilling operation;
13 for p in drill-queue do
14 if Ad = 0
15 break;
16 if @q ∈ Np s.t. earliestfrac[q]< τ̂ dp
17 drillstart[p]← t, Ad ← Ad − 1, drill-queue.remove(p),

status[p]←‘drilling’;
18 fracture-queue.append(p);
19 Update the completed operations and remaining duration for the pads under operation;
20 for p in P s.t. status[p]=‘drilling’ do
21 if drillstart[p]+τ̂ dp = t
22 Ad ← Ad + 1, status[p]←‘drilled’;
23 else
24 µd[p]← µd[p]− 1;

25 for p in P s.t. status[p]=‘fracturing’ do
26 if fracstart[p]+τ̂ fp = t
27 Af ← Af + 1, status[p]←‘fractured’;
28 else
29 µf [p]← µf [p]− 1;
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time limit of 1000s for each solution of the limited-horizon MILP model and use the best
solution obtained by the solver when it terminates. As before, we used Gurobi 8.1.1 as the
MILP solver. These experiments were obtained on a machine having two 3.2 GHz Intel
Xeon CPUs with 4GB RAM. We set the number of threads in Gurobi to four.

For this study, we consider two different instances of moderate size given in Tables
2.5 and 2.6. When varying the lookahead horizon parameter ζ, we consider different
possibilities based on the fraction of the time it would take to develop all the pads in the
instance. We refer to our estimate of this time as γ, which is calculated as:

γ = 1.3 ∗ [

∑
p∈P τ̂

d
p

nd
+

∑
p∈P τ̂

f
p

nf
].

Here, the factor 1.3 is used to account for possible idling of drilling or fracturing crews
due to conflict constraints. Note that, although instance I55 (Table 2.6) has only slightly
more pads to be developed than I45 (Table 2.5), the estimated total planning horizon γ is
significantly longer because in I55 (Table 2.6) there are fewer drilling and fracturing crews.

The results of these experiments are reported in Tables 2.7 and 2.8. In our case study
we use D = 15, 30, and 45 days for period length and use lookahead windows of 20%,
40%, 60%, and 80% of the entire planning horizon (γ). For each combination of period
length (D) and lookahead horizon (ζ), we report the percent improvement in NPV of the
rolling horizon solution over the solution obtained by the baseline scheduling algorithm
(negative percentage indicates the solution was worse than that obtained from the baseline
scheduling algorithm). We also report the fraction of the limited-horizon MILP instances
for which the time limit was reached before the desired optimality gap of 2% was reached
(Time-lim. frac.) and the average ending optimality gap of the limited-horizon MILP
instances (Mean opt. gap).

Parameter Value
Pads 45

Crews(Drill, Fracture) 6,2
Length of Horizon (γ) 1350 days

Table 2.5: Instance I45 description.

Parameter Value
Pads 55

Crews(Drill, Fracture) 3,1
Length of Horizon (γ) 2700 days

Table 2.6: Instance I55 description.
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Period
len.

(D)

Lookahead
horizon(ζ)

|T | Imprv.(%) Time-
lim.

frac.

Mean opt.
gap(%)

15 0.2 γ 18 3.35 0.00 1.17
15 0.4 γ 36 4.04 0.34 1.80
15 0.6 γ 54 3.59 0.36 2.63
15 0.8 γ 72 3.73 0.39 2.25
30 0.2 γ 9 3.13 0.00 1.05
30 0.4 γ 18 3.41 0.00 1.59
30 0.6 γ 27 3.77 0.28 1.81
30 0.8 γ 36 4.04 0.27 1.85
45 0.2 γ 6 -1.80 0.00 1.18
45 0.4 γ 12 1.14 0.00 1.65
45 0.6 γ 18 1.16 0.38 2.14
45 0.8 γ 24 1.80 0.42 2.28

Table 2.7: Results of MILP-based rolling horizon algorithm on instance I45. NPV of baseline
scheduling algorithm solution=$1.4293 ∗ 1010.

Period
len.

(D)

Lookahead
horizon (ζ)

|T | Imprv.(%) Time-
lim.

frac.

Mean opt.
gap(%)

15 0.2 γ 36 5.21 0.00 1.48
15 0.4 γ 72 5.30 0.16 1.79
15 0.6 γ 108 5.24 0.45 2.29
15 0.8 γ 144 5.19 0.44 18.13
30 0.2 γ 18 2.78 0.00 1.47
30 0.4 γ 36 4.97 0.03 1.68
30 0.6 γ 54 5.10 0.30 1.81
30 0.8 γ 72 5.22 0.29 1.95
45 0.2 γ 12 2.61 0.00 0.90
45 0.4 γ 24 3.56 0.00 1.63
45 0.6 γ 36 3.15 0.34 1.89
45 0.8 γ 48 3.54 0.37 2.20

Table 2.8: Results of MILP-based rolling horizon algorithm on instance I55. NPV of baseline
scheduling algorithm solution=$1.7721 ∗ 1010.

The results in Tables 2.7 and 2.8 confirm that using a longer lookahead horizon usually
yields better solutions, and that this holds for each period length D. On the other hand,
while there is generally a significant improvement when lookahead is increased from 0.2γ to
0.4γ, there is little to no improvement obtained by increasing beyond that. In both instances,
for the shortest period length, D = 15, we observed that the quality of the rolling horizon
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solution was actually smaller for the larger lookahead horizons. This can be explained by
looking at the fraction of instances that were terminated due to the time limit and the mean
optimality gap of the limited-horizon MILP problems in these instances. In particular,
a significant fraction of these problems were terminated due to the time limit, and their
average optimality gap was relatively large, indicating that the solutions obtained may
have been significantly suboptimal.

Next we discuss the effect of period length on the quality of the solutions obtained. We
observe from Tables 2.7 and 2.8 that when the period length D is 45 days, the quality of the
solutions obtained is significantly lower than when using D = 15 or D = 30. Using D = 15

tends to provide the best solutions, although the difference in the solutions obtained using
D = 15 and D = 30 is small provided the lookahead horizon is 0.4γ or larger.

Thus, in these experiments we found that a lookahead window of 0.4γ and period
length of either D = 15 or D = 30 yields the best results overall. We emphasize, however,
that because the solution of the MILP problems was stopped after a time limit, the values
of these parameters that yield the best solutions are dependent on the time limit used,
as well as the MILP solver and computational environment used. In addition, when
using the MILP-based rolling horizon algorithm in practice, it is only necessary to solve a
single limited-horizon MILP instance whenever a drilling or fracturing crew completes
an operation and becomes available. Given that in real time there may be several weeks
between such events, a significantly longer time limit could potentially be used for solving
these instances, thus enabling use of a longer lookahead window and smaller period length.

To give some insight, we show a visual comparison between performance of the rolling
horizon and baseline scheduling approaches using the instance I-45. Figure 2.5 shows the
lost production of oil because a pad had to be shutdown during production. It is clear from
Figure 2.5 that the amount of production lost when using the rolling horizon approach is
less than the amount lost in the solution obtained from the baseline scheduling algorithm.
In Figure 2.6 we show periodic and cumulative production for the instance. It is clear from
Figure 2.6a that the rolling horizon approach yields higher production in the initial periods
compared to the baseline scheduling algorithm. This leads to higher NPV. Moreover, we
also observe from Figure 2.6b that the cumulative production curve obtained by the rolling
horizon approach is always above that obtained by the baseline scheduling algorithm.

2.4.5 Estimating optimality loss of the rolling horizon approach

Our proposed rolling horizon framework allows solving scheduling instances over time-
frames significantly longer than can be solved using a single MILP formulation over the
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(a) Rolling Horizon (b) Baseline Scheduling Algorithm

Figure 2.5: Lost production of oil from the field for I45 (D = 30, |T | = 18).

(a) Perioidic oil production (b) Cumulative oil production with time

Figure 2.6: Output comparsion of the baseline heuristic with the rolling horizon approach
for I45 (D = 30, |T | = 18).

whole time horizon. However, this approach is not guaranteed to find an optimal solution.
In this section, we attempt to quantify the suboptimality of solutions obtained using the
MILP+Rolling Horizon (RH) framework. We do this by comparing the solutions obtained
when solved to optimality using the MILP1 formulation against solutions obtained in our
RH framework on instances that are small enough to be solved over the full planning
horizon. In particular, we consider instances in which the base time period is longer than a
day (we use 7 and 15 days), so that when implementing our RH framework, we force the
solves to “roll forward” the horizon only in units of full periods, rather than days.

The characteristics of the test instances used in this study are given in Table 2.9. For
each instance type, we randomly generate five instances (A,B,C,D,E). The experiments are
performed in the same computational environment as Section 2.4.4. For this experiment,
we solve instances of MILP1 with no time limit and an optimality gap of 0.01%, and a
time limit is set to 1000s for each call to the model in the rolling horizon implementation.
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For MILP1, we solve the model with its lookahead window as the full time horizon (γ
Periods-MILP1 in Table 2.9), and in MILP+Rolling Horizon we solve the model with a
lookahead window of ζ = 0.6γ (Periods-RH in Table 2.9).

Inst. Pads γ Periods-MILP1 ζ Periods-RH Period len. nd, nf

I-10-67 10 67 41 15 days 3,1
I-10-71 10 71 43 7 days 5,2
I-14-100 14 100 60 7 days 3,1

Table 2.9: Characteristics of instances used to compare MILP1 and MILP+Rolling Horizon
(RH).

The results comparing revenue obtained in the instances used in this study are reported
in Table 2.10. As expected, the MILP1 revenue is always higher than the Rolling Hori-
zon(RH) revenue, as MILP1 generates the best possible schedule. However, the difference
in quality of solution between the two approaches is modest, averaging 0.14%, 0.70%, and
1.23%, respectively for the three instance types in the study. Thus we conclude that with a
sufficiently long lookahead time-horizon, the RH framework can deliver solutions that are
nearly optimal.

MILP1 RH(ζ = 0.6γ) Diff (%) RH(ζ = 0.4γ) Diff (%)
I-10-67-A 3.1842 3.1840 0.00 3.1840 0.00
I-10-67-B 3.6630 3.6540 0.24 3.6259 1.01
I-10-67-C 3.8951 3.8951 0.00 3.8661 0.74
I-10-67-D 3.6306 3.6302 0.01 3.6116 0.05
I-10-67-E 3.0771 3.0715 0.18 3.0382 1.26
I-10-71-A 2.6967 2.6928 0.14 2.6209 2.81
I-10-71-B 3.1104 3.0876 0.73 2.9382 5.53
I-10-71-C 2.7644 2.7634 0.04 2.7029 2.22
I-10-71-D 2.8204 2.8154 0.18 2.7828 1.33
I-10-71-E 2.9471 2.8753 2.43 2.6217 11.04

I-14-100-A 3.5768 3.5385 1.07 3.4483 3.59
I-14-100-B 4.2950 4.2491 1.06 4.2369 1.35
I-14-100-C 4.9629 4.7934 3.40 4.6991 5.31
I-14-100-D 4.6553 4.6408 0.31 4.2651 8.38
I-14-100-E 3.9600 3.9458 0.35 3.8361 3.12

Table 2.10: Revenue(x109) comparison of MILP+Rolling Horizon Framework with MILP1
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Instance Pads nd, nf γ (days)
I-80-160 80 6,2 2400
I-90-100 90 9,3 1500
I-100-170 100 6,2 2550
I-110-180 110 6,2 2700

Table 2.11: Large-scale instance data.

Instance Baseline NPV ($) Roll. Imprv.(%) Time-lim. frac. Mean opt. gap(%)
I-80-160 2.7339 ∗ 1010 5.13 0.47 2.45
I-90-100 3.0461 ∗ 1010 5.01 0.19 1.79
I-100-170 3.3928 ∗ 1010 4.47 0.59 2.70
I-110-180 3.7399 ∗ 1010 6.54 0.59 8.38

Table 2.12: Improvement using MILP-based rolling horizon framework.

2.4.6 Large-scale instances

We finally test our rolling horizon framework on larger-scale instances using the parameters
D = 15 and ζ = 0.4γ, as suggested in Section 2.4.4. The instances we use for this study
are described in Table 2.11. We report the baseline scheduling algorithm NPV and the
improvement obtained by the MILP-based rolling horizon algorithm in Table 2.12. As
in Tables 2.7 and 2.8, we also report the fraction of MILP instances for which the time
limit was reached and the mean optimality gaps of the MILP instances. The results in
Table 2.12 demonstrate that the solutions obtained using our MILP-based rolling horizon
algorithm consistently have significantly higher NPV than those obtained with the baseline
scheduling algorithm. For these large-scale instances, a 5% improvement in performance
translates to roughly $1.5B.

2.5 Conclusion and future work
In this chapter we presented a novel MILP-based rolling horizon algorithm to schedule
drilling and fracturing operations in an unconventional oil field development while consid-
ering the interaction effects between various pads. We provided two MILP formulations for
the limited horizon MILP solved as part of this approach. The second formulation provides
better LP relaxation bounds, which translates to shorter solution times for instances with
a small number of time periods, but for larger instances the first formulation was found
to be more effective. A key feature of the rolling horizon approach we propose is that it
yields a solution at the daily time-scale, while solving a sequence of coarser time-scale
MILP problems. An empirical study demonstrated that the approach can be used to plan
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development of fields with more than 100 pads, and the solutions obtained have 4-6%
higher NPV than solutions obtained with a baseline scheduling algorithm that mimics
current practice.

Our work assumed all data, including the drilling and fracturing durations, are deter-
ministic. In reality, these are estimated via forecasts that may have significant errors. The
rolling horizon framework we propose can naturally be applied in this setting, by using
the updated state of the system, and updated estimates of the durations, whenever a new
limited-horizon MILP is solved. However, an interesting direction for future work is to
investigate the use of a stochastic or robust optimization formulation of the scheduling
problem within the rolling horizon framework to see if this may yield improved solutions.
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3 integer programming approach to subspace clustering
with missing data

3.1 Introduction
In this chapter, we propose a novel mixed-integer linear programming (MILP) solution
framework for the subspace clustering with missing data problem. Our key contribution
is a MILP-based framework which uses column-generation approach for identifying can-
didate subspaces combined and Benders decomposition approach for solving the linear
programming relaxation of the formulation. The proposed framework is also capable of
self-determining the number of subspaces and their dimensions.

Subspace clustering with missing data

Given a partially observed data matrix XΩ ∈ Rd×n, where Ω is the set of observed indices of
matrix X , subspace clustering with missing data (SCMD) is the task of identifying clusters of
vectors belonging to the same subspace. Column vectors, X1, X2, . . . , Xn of X are assumed
to lie on or near a union of low-dimensional subspaces

⋃K
i=1 Si, where each of the subspaces

Si is of dimension ri < d and there a total of K subspaces.
If the clustering of points is known, then the data matrix can be completed using well-

known methods for low-rank matrix completion (LRMC) [26, 25, 24, 7, 102, 96, 89]. The
SCMD problem has applications in modern machine learning in many areas such as image
classification [71, 124], motion segmentation [112, 101], and recommendation systems
[100].

Literature survey

Non MILP methods Subspace clustering was first studied for fully-observed data (Ω =

{(ij) : ∀i ∈ [d], j ∈ [n]}), see [1] for a review of subspace clustering methods with fully-
observed data. Most of the methods for subspace clustering with missing data have been
extended from the methods initially proposed for fully-observed data. The tightest known
conditions for union of subspaces identifiability with missing data have been established
by Pimentel-Alarcón and Nowak [94] where the authors show that for ambient dimension
d and low dimensional subspaces of rank r, O(rd) columns per subspace are both necessary
and sufficient.

The most celebrated and dominant approach in subspace clustering algorithms is
based on the self-expressiveness property, originally proposed for fully-observed data by
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Elhamifar and Vidal [39]. Self-expressive methods learn a sparse representation of the
data by solving an optimization problem of the following kind:

C∗ = arg min ‖X −XC‖2
F + λρ(C) s.t. diag(C) = 0. (3.1)

Self-expressive methods have been studied extensively for different choices of ρ(·), e.g.,
`1, `2, and nuclear norm [39, 79, 80, 125, 81, 37, 92, 123, 119]. Cij can be interpreted as the
link between points i and j. The segmentation is obtained by applying spectral clustering
on graph G with adjacent matrix A = |C|+ |C|T which uses k-means on eigenvectors of
Laplacian of G [88].

Self-expressive methods for subspace clustering have been extended to the case of
missing data. Let Ωj denotes the set of observed dimensions of vector j ∈ [n] and IΩ ∈
{0, 1}d×n be the indicator matrix of observed entries such that [IΩ]ij = 1 if (i, j) ∈ Ω, and 0

otherwise. Let ◦ denote the Hadamard product. Yang et al. [122] proposed to zero-fill the
missing entries in X to get XZF and then solve (3.1) while restricting the loss to observed
entries, i.e.,

XZF =

Xij, if (i, j) ∈ Ω, i.e., Xij is observed

0, if (i, j) /∈ Ω, i.e., Xij is not observed
(3.2)

C∗ = arg min ‖IΩ ◦ (XZF −XZFC)‖2
F + λρ(C) s.t. diag(C) = 0. (3.3)

Tsakiris and Vidal [113] and Charles et al. [29] studied the theoretical conditions under
which solution to (3.3) is subspace preserving, i.e., each data point is only connected to
points lying in the same subspace. Self-expressive methods have trouble correctly clustering
when the percentage of missing data is high, the matrix is high-rank, or when subspaces
are close to each other.

There exists another family of methods where subspace estimation and assignment
is done alternatively. Yang et al. [122] proposed to apply a matrix completion algorithm
to recover the missing entries in X and then solve (3.1). This approach is likely to fail as
soon as the data matrix is high-rank, i.e.,

∑K
i=1 ri ≈ d. Lane et al. [68] proposed to repeat-

edly alternate between subspace clustering and group wise low-rank matrix completion
(gLRMC). Balzano et al. [8] use GROUSE [7] for subspace estimation and assign each point
to the orthogonally closest subspace. They use probabilistic farther insertion for initializ-
ing K subspaces. In all alternating methods, subspace estimation process is often faulty
when an estimated cluster has points from multiple subspaces. In an extensive empirical
evaluation of existing SCMD algorithms, Lane et al. [68] concluded that zero-filled elastic
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net subspace clustering method [123] when alternated with low-rank matrix completion
showed the overall best performance. This method is referred to as Alt-PZF-EnSC+gLRMC.
A disadvantage of Alt-PZF-EnSC+gLRMC is that it requires setting two regularization
hyperparameters.

Some methods instead of alternating between subspace estimation and assignment,
pose these two problems in a joint optimization framework, often resulting in complex,
nonconvex problems [75, 38, 44]. Matrix factorization approaches have also been adopted
to SCMD [93, 95]. Both of these methods require an estimate of the subspace dimension
which might not be known beforehand in several cases. Empirical experiments in [68]
showed that these methods are outperformed by the alternating methods in terms of
clustering error.

MILP based methods Mixed integer linear programming (MILP) based methods have
not been studied for SCMD. They have been studied for fully observed data but even for
that case, the proposed methods do not fully exploit the capabilities of mixed integer linear
programming tools. Lazic et al. [70] were the first to propose an integer programming based
method for subspace clustering called Facility Location for Subspace Segmentation (FLoSS).
FLoSS generates the candidate subspaces by random sampling and then formulates the
subspace clustering problem as an integer program where the goal is to minimize the
orthogonal distances of data points to candidate subspaces such that it selects K subspaces,
and assigns each vector to a selected subspace. Lee and Cheong [72] extended the FLoSS
model to Minimal Basis FLoSS, referred to as MB-FLoSS whose subspace hypothesis
generation strategy is based on finding the minimal basis subspace representation for the
data matrix and relies on Low Rank Representation (LRR)[79].

Hu et al. [56] proposed the concept of constrained subspace model. They integrated
facility-based model with manifold and spatial regularity constraints to develop a con-
strained subspace modeling framework. It is worth noting that in their experiments, the
number of candidate subspaces is small (≤ 50). The method becomes inefficient when the
number of candidate subspaces is higher, and the approach heavily relies on the efficiency
of initial candidate subspaces generated for which they use over segmentation in LRR [79].
In particular, with the help of over segmentation, they deliberate generate more number of
subspaces than ground truth (e.g, 2×K) with LRR, and then use integer programming to
select K of them.

None of the above facility-location based approaches account for the missing data
or scale to instances with a large number of candidate subspaces. Moreover, all of the
approaches require that candidate subspaces are explicitly enumerated as an input to the
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model, and either rely on random sampling or on other subspace clustering algorithms
for generating candidate subspaces. Hence, these methods are incapable of correcting
themselves based on the clustering quality.

Contributions

We propose a novel mixed-integer linear programming (MILP) solution framework for the
SCMD problem that is based on dynamically determining a set of candidate subspaces and
optimally assigning data points to the closest selected subspace. We refer to our method as
MISS-DSG : Mixed Integer Subspace Selector with Dynamic Subspace Generation. A key
challenge in this approach is identifying, in a rigorous manner, a suitable set of candidate
subspaces to include in the formulation. We cast this subspace generation problem as a
nonlinear, nonconvex optimization problem and propose a gradient-based approximate
solution approach. MISS-DSG can then identify new candidate subspaces dynamically
through the use of column generation. Our framework can readily accommodate a huge
number of candidate subspaces through its use of Benders decomposition to solve the
linear programming (LP) relaxation of the MILP. The model has the advantage of integrat-
ing the subspace generation and clustering in a single, unified optimization framework
without requiring any hyperparameter tuning when number of subspaces and subspaces
dimensions are known. Our computational results reveal that the proposed method can
achieve higher clustering accuracy than state-of-the-art methods when data is of high-rank,
the percentage of missing data is high, or subspaces are close to each other. Casting SCMD
as an integer program offers several other advantages. The formulation can easily be
extended to incorporate prior information about the data, such as vectors lying in the same
or different subspaces and bounds on number of subspaces.

3.2 Integer programming formulations
We observe a real-valued data matrix XΩ ∈ Rd×n whose columns are concentrated near
a union of K subspaces with dimensions r1, r2, . . . , rK . In Section 3.2.1, we assume that
subspaces dimension r1, . . . , rK are known. We relax this assumption in Section 3.2.2 and
let the model self-determine the subspaces dimensions with the help of a regularized
objective. Data matrix X is low-rank when

∑K
k=1 rk � min{d, n} and full-rank when∑K

k=1 rk ≈ min{d, n}. For an integer T , we denote [T ] := {1, 2, . . . , T}, data vector j as Xj ,
and data corresponding to a subset of vectors in S ⊆ [n] with X(S), i.e., X(S) = {Xj :

j ∈ S}. The goal of subspace clustering with missing data (SCMD) is to identify the K
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subspaces together with assignment of data points to subspaces. This consequently leads
to a clustering of points and a method for estimating missing entries of X .

Our approach is based on iteratively building a (potentially very-large) collection of
candidate subspaces. Integer programming is employed to simultaneously select the best
set of K candidate subspaces and assign each column of X to its closest selected subspace.
For each candidate subspace t ∈ [T ], we let Ut ∈ Rd×rt be a basis for its column subspace.
Here rt denotes the dimension of subspace t. We define the distance of vector Xj, j ∈ [n] to
a candidate subspace t ∈ [T ] with djt, its squared residual distance on the observed entries:

djt := min
v∈Rr

{ ∑
i:(i,j)∈Ω

(Xij − (Utv)i)
2
}
. (3.4)

An advantage of (3.4) is that it has a closed-form solution in terms of a simple projection
operator [8]. In particular, let UΩ,j denote the restriction of the subspace U to the rows
observed in column j, and define the projection operator PUΩ,j

:= UΩ,j(U
T
Ω,jUΩ,j)

−1UT
Ω,j .

Then the squared residual djt can be obtained as

djt = ‖XΩ,j − P(Ut)Ω,j
(XΩ,j)‖2

2. (3.5)

For fully-observed data, this is a natural choice for cost function since its value is zero if
vector j lies exactly on candidate subspace t. However, with missing data, the choice of
cost function becomes less clear since zero residual on observed entries for djt does not
necessarily imply that vector j lies perfectly on subspace t. Balzano et al. [8] showed that
for a given fully observed vector Xj ∈ Rd, if

‖Xj − PU0(Xj)‖ < ‖Xj − PUt(Xj)‖ ∀t ∈ [T ]\{0}, (3.6)

then with high probability (1− 4(K − 1)δ), for the same data vector Xj but now partially
observed, if |XΩ,j| ≥ 8

3
dmaxt6=0

(
(maxi∈[d] ‖PUt(ei)‖2

2) log(2rt
δ

)
)
, then

‖XΩ,j − P(U0)Ω,j
(XΩ,j)‖ < ‖XΩ,j − P(Ut)Ω,j

(XΩ,j)‖ ∀t ∈ [T ]\{0}. (3.7)

Here δ > 0 is a confidence parameter and ei is the ith canonical basis vector. This implies
that with high probability, subspace assignment based on (3.6) is the same as the one
based on (3.7). We refer reader to [8] for more details. We assume that this property
holds throughout in this paper. We also point out that a different cost model could also be
incorporated into our framework.

Next, we first describe a model based on selecting K subspaces from a given collection
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of [T ] subspaces for both known and unknown subspaces dimensions in Section 3.2.1 and
3.2.2 respectively. Next, in Section 3.3.1, we discuss how to solve the proposed model for
a fixed set of subspaces using Benders decomposition. This allows to solve the model
efficiently for large n and T . In Section 3.3.2, we discuss how to generate new candidate
subspaces dynamically with a column generation approach. We finally discuss our unified
framework MISS-DSG in Section 3.3.3.

Let xjt ∈ {0, 1},∀j ∈ [n], t ∈ [T ] be a binary assignment variable that takes value 1 if
vector j is assigned to subspace t, and zt ∈ {0, 1},∀t ∈ [T ] be a binary selection variable that
indicates whether subspace t is selected. The assignment of points to selected subspaces
is similar to the facility location problem where the goal is to select which facilities to
open, and to assign each customer to one of the open facilities. In our SCMD formulation,
subspaces play the role of facilities, and vectors play the role of customers. We point
out that the integer-programming methods proposed in literature also have the similar
facility-location based structure [70, 72, 56]. However, our model has some key differences:

1. We account for missing data while existing integer-programming approaches restrict
to fully observed data.

2. Our framework generates subspaces dynamically while existing approaches are
heavily dependent on initialization.

3. Our framework is capable of handling a larger number of candidate subspaces than
existing methods through the use of Benders decomposition.

For improved readability, we first discuss the formulation for the simpler case in Section
3.2.1 where subspaces dimensions are assumed to be equal, i.e., r1 = r2, . . . , rk = r, and
r is known beforehand. We then relax this assumption in Section 3.2.2 where subspaces
dimensions can be different, and are not known in advance. Moreover, this formulation
does not require the number of subspaces to be known either.

3.2.1 Known subspaces dimension

Given T candidate subspaces each of dimension r, we formulate the SCMD problem as an
integer program. Our complete integer programming formulation for the known subspaces
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dimension case is the following [70, 56]:

min
x∈{0,1}n×T ,z∈{0,1}T

∑
t∈[T ]

∑
j∈[n]

djtxjt (3.8a, MILP)

∑
t∈[T ]

xjt = 1, ∀j ∈ [n] (3.8b)

xjt ≤ zt, ∀j ∈ [n], t ∈ [T ] (3.8c)∑
t∈[T ]

zt = K. (3.8d)

The objective (3.8a) ensures that the model looks for the least cost assignment of vectors
and subspaces. Constraint set (3.8b) ensures that each vector is assigned to exactly one
subspace, and constraints (3.8c) enforce that a vector is assigned to only a selected subspace.
Constraint (3.8d) ensures that exactly K subspaces are selected. The major caveat in (3.8)
compared to the models proposed in [70, 56] is that the distance metric djt in (3.8) is based
on partial assignment cost (3.5).

3.2.2 Unknown subspaces dimension

A common occurrence in SCMD problems is that the number of subspaces and their
dimension are unknown. In such cases, an inherent problem with model (3.8) is that there
can be multiple subspaces that can fit a give set of data. For instance, consider an instance
where the true rank of underlying subspaces is unknown. In this case, one might recover
subspaces of rank higher than the ground truth since higher rank subspaces can have lower
residuals, hence leading to an incorrect model selection. In such cases, we also need to
account for complexity measure of a candidate subspace t in (3.8). We propose making use
of the effective dimension (ED) to get the best union of subspaces fit in such cases. Huang
et al. [57] defined effective dimension for X and a union of subspace models S = ∪Kk=1Sk

as follows.

ED(X,S) =
1

n

K∑
k=1

rk(d− rk) +
1

n

K∑
k=1

nkrk (3.9)

First term in definition of ED in (3.9), rk(d− rk) is the complexity of Ut given by the total
number of real numbers needed to specify a k dimensional subspace Sk in Rd. Second term
of (3.9), nkrk is the total number of real numbers needed to specify the rk coordinates of
the nk sample points in the subspace Sk.
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We penalize the ED term in our objective as follows:

min
x∈{0,1}n×T ,z∈{0,1}T

∑
t∈[T ]

∑
j∈[n]

djtxjt +
λ

n

∑
t∈T

(
rt(d− rt)zt +

∑
j∈[n]

rtxjt

)
(3.10a)

∑
t∈[T ]

xjt = 1, ∀j ∈ [n] (3.10b)

xjt ≤ zt, ∀j ∈ [n], t ∈ [T ] (3.10c)∑
t∈[T ]

zt = K. (3.10d)

Formulation (3.10) can handle subspaces of multiple dimensions and choose the best union
of subspaces model by self-determining dimensions of subspaces. Constraint (3.10d) is
included but can be removed if K is unknown. An important consideration in model (3.10)
is the choice of regularization parameter λ which accounts for the trade-off between lower
assignment cost and complexity of selected subspaces. A smaller value of λwould promote
model (3.10) to select higher complexity subspaces (basis with higher dimensions rt) while
a larger value of λ would promote model to select lower complexity subspaces (basis with
lower dimensions rt). We discuss this in more detail in Section 3.5.5. Note that (3.8) is a
special case of (3.10) with λ = 0.

3.3 Decomposition algorithm
In this section, we discuss how to efficiently solve formulation (3.10) without explicitly
enumerating every possible candidate subspace. We generate new candidate subspaces
dynamically based using column generation. We also discuss a Benders decomposition
approach to handle a large number of candidate subspaces in (3.10).

The formulation (3.10) is solved via the well-known branch-and-bound method which
relies on solving a sequence of (branch-constrained) LP relaxations. The LP relaxation
of (3.10) is the problem created by replacing the integrality conditions zt, xjt ∈ {0, 1} with
simple bound constraints zt, xjt ∈ [0, 1]. The optimal solution value of the LP relaxation
provides a lower bound on the optimal solution to (3.10). The optimal dual variables of
the LP relaxation also provide a systematic mechanism for dynamically generating new
candidate subspaces—a vital component of our solution framework. Because the number
of candidate subspaces T and the number of points n may be quite large, solving the LP
relaxation is a computational challenge. There has been recent significant work on solving
large-scale facility location problems by exploiting their problem structure, and we can
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leverage these advances in our own solution approach [45]. In Section 3.3.1, we discuss a
problem-specific implementation of the Benders decomposition method for the solution of
the LP relaxation to (3.10). Section 3.3.2 describes how to dynamically generate improved
candidate subspaces.

3.3.1 Row generation

Benders decomposition is a well-known technique to solve large LP problems that have
special structure [14]. It has been applied to large-scale facility locations by Fischetti
et al. [45], and our SCMD formulation (3.10) has the same structure. We apply a similar
reformulation to model proposed in (3.10). The first step in the decomposition approach
is a reformulation that eliminates the xjt variables and adds a set of continuous variables
wj representing the assignment cost for vector j ∈ [n]. The resulting reformulation of the
LP relaxation of (3.10) is

min
w∈Rn,z∈[0,1]T

∑
j∈[n]

wj +
λ

n

∑
t∈T

rt(d− rt)zt (3.11a)

wj ≥ Φj(z), ∀j ∈ [n] (3.11b)∑
t∈[T ]

zt = K. (3.11c)

The function Φj(·) gives the minimum assignment cost for the vector j ∈ [n] to a
collection of subspaces parameterized by the variables z ∈ [0, 1]T . Note that the components
of z may take fractional value. Specifically, for each z ∈ [0, 1]T and j ∈ [n], Φj(z) is calculated
by the following Benders subproblem:

Φj(ẑ) = min
x

{∑
t∈[T ]

(djt +
λ

n
rt)xt :

∑
t∈[T ]

xt = 1, 0 ≤ xt ≤ ẑt,∀t ∈ [T ]
}
. (3.12)

The function Φj(·) is piecewise-linear and convex, and Benders decomposition works by
dynamically building up a lower-bounding approximation to Φj(·). For the ease of notation,
we refer to cjt = djt + λ

n
rt. The optimization problem (3.12) used to evaluate Φj(ẑ) has a

closed-form solution. Moreover, its evaluation also gives sufficient information from which
to create a lower-bounding approximation. Let {σj1, . . . , σ

j
T} be a permutation of {1, . . . , T}

satisfying cjσj
1
≤ cjσj

2
≤ · · · ≤ cjσj

T
, and let t∗j := min{t :

∑t
s=1 ẑσj

s
≥ 1} be the critical index.

In other words, critical index is index of the costliest subspace to which any portion of vector
j is assigned. As described in [45], the Benders cut that can be used to lower-approximate
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the function Φj(·) is

wj +

t∗j−1∑
i=1

(cjσj
t∗
j

− cjσj
i
)zσj

i
≥ cjσj

t∗
j

. (3.13)

These inequalities are accumulated iteratively. Let pj denote the number of Benders cuts
included in the model at the current stage in the algorithm for each j ∈ [n]. Let t∗ji denote
the critical index for vector j ∈ [n] associated with Benders cut i ∈ [pj], and let c∗ji = cjσj

t∗
ji

denote the critical cost for the jth vector in cut i ∈ [pj]. The Benders master problem is then

min
w,z

∑
j∈[n]

wj +
λ

n

∑
t∈[T ]

rt(d− rt)zt (3.14a)

wj +

t∗ji−1∑
`=1

(c∗ji − cjσi
`
)zσj

`
≥ c∗ji, ∀j ∈ [n], i ∈ [pj], (3.14b, αji)∑

t∈[T ]

zt = K, (3.14c, β)

0 ≤ zt ≤ 1, ∀t ∈ [T ]. (3.14d, µt)

Here α, β and µ are dual variables corresponding to the respective constraints, and will
play an important role in the column generation process described in Section 3.3.2. For
T > K, LP (3.14) is feasible and bounded, and hence an optimal solution (ŵ, ẑ) exists.
The subproblem (3.12) is solved to evaluate Φj(ẑ) for each j ∈ [n], and to generate new
Benders cuts (3.13). If Φj(ẑ) = ŵj , then the generated inequality does not improve the
approximation to Φj(·), and the cut is not added to (3.14). The Benders procedure stops
when no new cuts are added. At this point, the LP relaxation of (3.8) is solved.

3.3.2 Column generation

In our discussion to this point, we have assumed that we are given T candidate subspaces.
Key to our approach is a column generation method for dynamically identifying new sub-
spaces that have the potential to improve the solution to (3.10). Column generation is a
classical method for solving large-scale LP [48] that also has seen significant use in solving
MILP problems [12].

The key idea behind column generation is to create an auxiliary problem, called the
pricing problem, whose solution identifies if there is an additional variable (candidate
subspace), that, when added to the LP (3.14), could improve its solution value. The
formulation of the pricing problem follows naturally from LP duality theory. If the reduced
cost of a column (subspace variable) is negative, then, by increasing the value of that
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variable from its nominal value of zero, the objective value of the LP may decrease. Thus,
we should seek columns (subspaces) with negative reduced cost. If all columns have
non-negative reduced cost, the current solution of the LP with the set [T ] of candidate
subspaces is optimal and no new candidate subspaces need to be included in [T ].

Given the optimal dual variables (α̂, β̂) to the solution of (3.14), the reduced cost of a
column/subspace variable zt is given by the formula

λ

n
rt(d− rt)−

∑
j∈[n]

∑
i∈[pj ]

α̂ji max{c∗ji − cjt, 0} − β̂. (3.15)

The max operator in (3.15) appears from the fact that for subspace t and data vector j ∈ [n],
(c∗ji − cjt)zt is considered in summation in constraint (3.14b), only if cjt is smaller than the
critical cost c∗ji.

Recall (3.4), that describes the assignment cost as a function of the basis matrix

cjt := hj(Ut) := min
v∈Rr

{ ∑
i:(i,j)∈Ω

(Xij − (Utv)i)
2
}

+
λ

n
r. (3.16)

Thus, to obtain a column of minimum reduced cost, we can solve the following pricing
problem to identify the subspace basis matrix:

min
U
g(U) = min

λ

n
∗ r(d− r)−

∑
j∈[n]

∑
i∈[pj ]

αji max{c∗ji − hj(U), 0} (3.17)

Here r denotes dimension of the basis U . We next point out that problem (3.17) is not a
convex optimization problem, and hence even for a fixed subspace dimension r, it is difficult
to solve to provable global optimality. We find locally minimal solutions to (3.17) with
a gradient-based approach. To handle different dimensions, in each iteration of column
generation, we solve (3.17) for rU ∈ {1, 2, . . . , rmax}where rmax is an upper bound on the
subspace dimension and is provided as an input parameter to the model.

Gradient-based approach for pricing problem. We solve pricing problem (3.17) for
r ∈ {1, 2, . . . , rmax} with U ∈ Rd×r. Observe that If hj(U) 6= c∗ji ∀j ∈ [n], i ∈ [pj], then the
function g(U) is differentiable. The partial derivative of g(·) with respect to matrix element
Uab evaluated at current iterate Û is given by

∂g(Û)

∂Uab
= −

∑
j∈[n]

∑
i∈[pj ]:

c∗ji−hj(Û)>0

2αji
∑
`∈Ωj

(X`j − û>` v̂j)v̂jb ∀a ∈ [d], b ∈ [r]. (3.18)
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With condition c∗ji − hj(Û) > 0, we implicitly use a subgradient of 0 at points of non-
differentiability. Here û` represents `th row of basis Û and v̂j is the minimizer in (3.16) for

Ut = Û . We denote∇g(U) =


∂g(U)
∂U11

. . . ∂g(U)
∂U1r... ... ...

∂g(U)
∂Ud1

. . . ∂g(U)
∂Udr

.

Algorithm 3: Locally solving pricing problem for fixed subspace dimension
Data: XΩ

Input: U0 ∈ Rd×r, maxIt=500, ε = 0.001 ; /* initial subspace */

1 m = 0, Û = U0,U = {} ; /* iteration count */

2 while m<maxIt and ‖∇g(Û)‖ > ε
3 for j = 1, 2, . . . , n do
4 v̂j = (Û>Ω,jÛΩ,j)

−1ÛΩ,j(Xj)Ω;
5 cjm = ‖(Xj)Ω − ÛΩ,j v̂j‖2

2;
6 end
7 Calculate∇g(Û) using (3.18) ; /* Requires Û , v̂j ∀j ∈ [n] */
8 Calculate g̃ using (3.19) ;
9 γ ← min(0.1, ĝ−g(Û)

‖∇g(Û)‖2F
) ; /* Polyak step size */

10 Û ← Û − γ∇g(Û) ; /* move in negtaive gradient direction */
11 m← m+ 1;
12 U ← U ∪ Û
13 end

Output: Subspaces basis U

We outline our gradient-based approach for locally solving pricing problem (3.17) for a
fixed subspace dimension r in Algorithm 3. Given that we use a gradient-based approach to
the nonconvex problem (3.17), we solve the pricing problem multiple times with different
random choices of U0 to identify different locally-optimal solutions. For fully-observed
data, r+ 1 vectors per subspace are necessary and sufficient for subspace clustering. Hence,
we randomly sample N(> r + 1) vectors from costliest M vectors in current LP solution
of (3.14). We let M > N in order to add randomness in initialization and let M = 5rmax

and N = 2r. This choice helps to select a subset of vectors with high residuals in current
solution and initialize gradient descent algorithm with a best-fit subspace on that subset of
vectors. Then, we use a fast low-rank matrix completion algorithm, e.g. GROUSE [7], to
find the basis U0 for a best-fit subspace for the sampled vectors. This U0 is provided as an
input to the Algorithm 3 (line 3).

To calculate gradient using equation (3.18), we first need to project each vector on
observed entries (XΩ,j) to Û . The corresponding projection matrix (Û>Ω,jÛΩ,j)

−1ÛΩ,j is



56

unique to each vector since each vector j is observed on a different subset of dimensions, i.e.
Ωj ⊆ {1, 2, . . . , d}. Thus, each iteration of gradient descent requires calculating n projection
operators (lines 3-6 in Algorithm 3). We then calculate gradient in line 7.

An important choice to converge to local optima in gradient based iterative methods is
the choice of step size. In recent works, adaptive methods have become wide-spread and
have proved to beneficial. We use the Polyak step size [97]. Exact Polyak step requires
optimal value of objective function. Since optimal value g∗ is unknown, we approximate it
with g̃ (in line 8) as follows

g̃ ≈ λ

n
r(d− r)−

∑
j∈[n]

∑
i∈[pj ]:

c∗ji−hj(Û)>0

αjic
∗
ji. (3.19)

This choice of g̃ is reasonable since the perfect union of subspaces model for XΩ would
imply zero residuals i.e., cjt = hj(Ut) = 0 in (3.17).

Polyak step size is then calculated as γ ← g̃−g(Û)

‖∇g‖22
. To avoid step size getting too large

when ‖∇(g)‖ becomes small, we set γ ← min(0.1, g̃−g(Û)

‖∇g‖22
) (line 9) . Empirical experiments

show that this choice of step size works well and converges faster than a decaying step size.
We discuss this in more detail in Section 3.4.3.

With gradient and step size information at hand, we finally take a gradient step (line 10).
We terminate gradient descent when gradient becomes too small (‖∇(g)‖ < 0.001) or we
reach the maximum number of allowed iterations (500 in our case). We store all the iterates
generated during gradient descent approach (line 12) since each iterate is a potential
candidate subspace to be added to master problem (3.14). Of all the columns generated,
only those with negative reduced cost as calculated in (3.15) are added to the master
problem (3.14).

3.3.3 MISS-DSG: Mixed Integer Subspace Selector with Dynamic
Subspace Generation

We now have all the tools to develop a unified MILP framework, MISS-DSG, for SCMD
problem that integrates the use of Benders decomposition and column generation. We first
point out that we generate new columns (zt variables) only at root node in branch-and-
bound search tree. We describe MISS-DSG framework in Algorithm 4. We initialize the
algorithm with m randomly generated subspaces for each possible low-dimension (line 1)
to initialize model (3.14). We then solve the master LP relaxation (3.14) in line 9, and
generate Benders cuts for each j ∈ [n] (lines 10-14). Observe that if Φj(ẑ) = ŵj , then the
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Algorithm 4: Mixed Integer Subspace Selector with Dynamic Subspace Generation
Data: XΩ

Input: max rank rmax, min and max # of multi-starts: ηmin, ηmax, max # iterations
imax

Output: Clusters K, dimensions rk ∀k ∈ {1, 2, . . . , K}, Segmentation of [n] in K
clusters: Sk

1 Initialize MILP model (3.10) with [T ] as m random subspaces of rank
ri ∀i ∈ {1, 2, . . . , rmax} ;

2 Calculate cjt ∀j ∈ [n], t ∈ [T ] ;
3 root node continue← True, generate cuts← True, it← 0;
4 while root node continue and it < imax

5 root node continue← False ; /* switched back on if new columns
found */

6 it← it +1;
// generate Benders cuts

7 while generate cuts
8 generate cuts← False ;
9 solve master LP relaxation (3.14) to obtain (ŵ, ẑ);

10 for j = 1, 2, . . . , n do
11 if ŵj < Φj(ẑ)
12 Add Benders cuts of the form (3.13) to master (3.14);
13 generate cuts← True

14 end
15 end

// generate new columns
16 for r = 1, . . . , rmax do
17 for η = 1, . . . , ηmax do
18 U0 ← BFS on randomly sampled 2r vectors from 5rmax vectors with

largest ŵj ;
19 U ←Solve pricing problem using Algorithm 3 to generate candidate

subspaces ;
20 [T ′]←Negative reduced cost columns in U if [T ′] 6= ∅
21 [T ]← [T ] ∪ [T ′] ; /* Add new zt, t ∈ [T ′] variables */
22 if η > ηmin

23 root node continue← True;
24 break ; /* New columns found and minimum

multi-starts done */
25 end
26 end
27 if root node continue
28 remove all Benders cuts from (3.14) ; /* invalid due to new zt

vars */
29 end
30 x̂jt, ẑt ← Solve MILP model (3.11) with zt ∈ {0, 1}T , give a callback routine for

Benders cuts ;
31 return {St = {j ∈ [n] : x̂jt = 1}, Ut,∀t ∈ [T ] s.t. ẑt = 1} ;
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generated inequality does not improve the approximation to Φj(·), and the cut is not added
to (3.14) (line 11). We repeat this until no violated cuts are found.

We next proceed to generate new columns (lines 16-26) by solving the pricing prob-
lem (3.17) in order to look for negative reduced cost columns. We solve pricing problem
for every possible dimension r ∈ {1, 2, . . . , rmax} (line 16). For each dimension r, we do
multi-start (line 17) and locally solve the pricing problem (3.17) using Algorithm 3 and
store all generated iterates in U (line 19). The negative reduced cost columns in U (lines 20-
20), are added to the master LP (line 21). We put lower and upper bound on number of
multi-starts, ηmin and ηmax respectively. We perform a minimum of ηmin multi-starts and
proceed to next dimension if negative reduced cost columns are found (lines 22-24). We
perform a maximum of ηmax multi-starts to look for negative reduced cost columns and
proceed to next dimension after that. In our experiments, we use ηmin = 5 and ηmax = 15.

If new columns are found in column generation process, we delete existing Benders
cuts since they become invalid due to new zt variables (line 28), and return to the process
of generating Benders cuts. We repeat cut generation (lines 7-15) and column generation
(lines 16-26) as long as we are able to generate new columns or till we reach the maximum
iteration limit, imax which we set to be 15.

If we fail to find a negative reduced cost column or reach maximum allowed iterations,
we exit the root node loop and pass the updated MILP model with the new columns
and cuts included to a MILP solver (line 30). We use Gurobi 8.1 as our MILP solver.
Within the MILP branch-and-cut framework, master solution (ŵ, ẑ) is generated by primal
heuristics or when current-node solutions happens to be integral. We need to check the
solution validity before letting the solver update the incumbent. To handle this, we pass a
lazy constraint callback that certificates validity of current integral solution (ŵ, ẑ).
In particular, whenever an integer solution is found during the branch-and-bound tree,
lazy constraint callback is invoked and it either returns one or more valid cuts
that prevents the current incumbent update or certifies the validity of current solution
(ŵ, ẑ). Finally, we use the optimal MILP solution to determine the selected subspaces and
mapping of each vector to a selected subspace (line 31). In particular, we select subspaces
t ∈ [T ] such that ẑt = 1. Each vector is naturally assigned to it’s closest subspaces among
the selected subspaces.

3.4 Algorithmic choices
In this section, we justify various algorithmic choices through empirical experiments.
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3.4.1 Experimental setup

For our experiments, we use Gurobi 8.1 as the MILP solver. Additionally, we set a time
limit of 5000s for each MISS-DSG run. The computational study is conducted on a cluster
of 4 core machines with a RAM of 16GB with Xeon X5690 CPU running at 3.46GHz. We use
Python for running all the experiments reported in this paper. In this Section, we consider
randomly generated instances, similar to [68]. We construct K random subspaces with
bases Uk ∈ Rd×rk ,∀k ∈ [K] by sampling entries from a standard Gaussian distribution. We
then generate n different data vectors. Each data vector j ∈ [n] is sampled from one of the
K subspaces, i.e., Xj = Ukvj for a random k ∈ [K] and vj ∈ Rrk is sampled from a standard
Gaussian. After generating data matrix X , we uniformly at random drop a percentage f of
the entries in X .

3.4.2 Impact of Benders decomposition

MISS-DSG requires solving LP relaxation repeatedly as new columns are added at the root
node. Benders decomposition gives a significant speedup in the time required to solve the
LP. To demonstrate, we compare solution times for solving LP relaxation with and without
use of Benders decomposition. We generate the identical set of subspaces ([T ]) for both the
formulations and solve the resulting LP relaxations. In particular, without Benders refer
to directly solving LP relaxation of (3.8) while with Benders refers to solving (3.14). We
point out that for λ = 0 (3.14) is equivalent to (3.8).

We first consider the effect of number of subspaces (|T |) in Table 3.1. All results
reported in Tables 3.1 and 3.2 are averaged over five different random trials. We fix d =

30, n = 200, K = 6, f = 0, rk = 3 ∀k ∈ [K] and vary |T |. As |T | increases from 100 to
4000, the LP relaxation time for (3.8) grows from 1.2s to 1380.3s. On the other hand, with
Benders approach (3.14), the LP relaxation time grows from 0.1s to 3.1s only. Thus, Benders
approach give a speed up of 5× for |T | = 100 and 460× for |T | = 5000.

We next fix d = 30, K = 6, f = 0, |T | = 500, rk = 3 ∀k ∈ [K] and vary n as shown in
Table 3.2. We observe a similar behavior as before. In particular, Benders approach gives
a speed up of 15× for n = 100 and 255× for n = 1200. Since MISS-DSG requires solving
the LP relaxation iteratively whenever a new column is identified, Benders decomposition
gives a significant boost in computational performance specially when n ∗ |T | is large.
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Table 3.1: Effect of number of subspaces
|T | on LP relaxation time (s) for d =
30, n = 200, K = 6, f = 0, rk = 3 ∀k ∈ [K]

|T | Without Benders With Benders
100 0.5 0.1
500 3.2 0.3
1000 48.2 1.6
2000 729.8 2.8
4000 1380.3 3.1

Table 3.2: Effect of number of vectors n
on LP relaxation time (s) for d = 30, K =
6, f = 0, |T | = 500, rk = 3 ∀k ∈ [K]

n Without Benders With Benders
100 7.4 0.5
200 3.2 0.3
400 109.5 0.8
600 617.6 2.1
1200 1147.3 4.5

Figure 3.1: Comparison of Polyak step size with decay step size for same starting point

3.4.3 Why Polyak step size?

For the pricing problem (3.17), we can approximate the optimal value of function by
letting the assignment cost for new subspace to be 0, i.e., perfect subspace recovery. With
an estimate of the optimal value of function at hand, we can now use Polyak step size
[97]. A major advantage of Polyak step size is that it is adaptive in nature and does not
require tuning the initial step size, often required in constant or diminishing step size rules.
Moreover, empirical experiments indicate that the problem converges to local solution in
fewer iterations compared to the standard diminishing approaches. We consider a test
instance with d = 20, n = 200, K = 5, f = 35%, rk = 4 ∀k = 1, . . . , 4. We let number of
subspaces and their rank to be an input to the model, and hence we do not consider the
regularization term in (3.15), i.e., we let λ = 0. We compare convergence rate for Algorithm
3 with Polyak and decaying step size ( α0

iter) where iter is the iteration number as shown in
Figure 3.1. We plot reduced cost (−β − g) (3.15) on y-axis and iteration number on x-axis.
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Figure 3.2: Algorithm 3 converges to different local solutions for different starting points

For decaying step size, we consider initial step size α0 ∈ {0.001, 0.01, 0.1, 1}. We observe
that Polyak step size leads to the fastest convergence. Moreover, since Polyak approach does
not require training the initial learning rate, we find it computationally more economical
over the decaying step size approach. The performance of this one instance is indicative of
the general behavior.

3.4.4 Why multi-start?

We next discuss the importance of doing multi-start for solving the pricing problem (3.17).
We consider the same instance as discussed in Section 3.4.3 and solve the pricing problem
for different initialization points. As shown in Figure 3.2, we observe that three different
choices lead to three different local solutions. Hence, multi-starting can help the algorithm
from getting stuck at a bad local minima (which might have positive reduced cost) and
identify subspaces with negative reduced cost.

3.4.5 Value of solving pricing problem

A major drawback in existing approaches which try to recover the underlying subspaces
basis has been over reliance on good initialization [8, 72, 56]. We demonstrate that MISS-
DSG is robust to initialization and recovers underlying subspaces accurately even with
random initialization. We let rk = r ∀k ∈ [K] and assume that both K and r are known,
and thus we fix λ = 0 in Algorithm 4. We demonstrate evolution of clustering quality with
addition of new columns generated from solving pricing problem in Figure 3.3. We consider
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Figure 3.3: Evolution of clustering in MISS-DSG. Clustering error on the left and assignment
cost (log-scale) on the right. Solid lines represent fully-observed data and dotted lines
represent f = 60% missing data.

randomly generated instances similar to Section 3.4.3 and initialize MISS-DSG with 500
randomly sampled subspaces from Gr(r, d). We consider fully observed data (f = 0) and
f = 60% missing data case for three different instances, (d = 30, n = 200, K = 6, r = 3),
(d = 30, n = 300, K = 6, r = 3), and (d = 40, n = 400, K = 8, r = 4), as shown in Figure 3.3.
We report clustering error and assignment cost (

∑
j∈[n] wj) against root node iteration in

Figure 3.3. By root node iteration, we refer to an iteration of generating new candidate
subspaces and Benders cut, i.e., the outer-most loop in Algorithm 4. To avoid stalling,
we allow at most 15 root node iterations. We first point out that although assignment
cost is a non-increasing function of root node iteration clustering error is not. The goal of
Algorithm 4 is to generate subspaces with lower assignment cost and hence addition of
new columns can only improve the objective value of (3.14). It is possible that addition of
new columns reduces the assignment cost but marginally increases the clustering error.
However, as Algorithm 4 progresses and pricing problem is solved subsequently, the
generated subspaces stabilize and get closer to the ground truth. Hence clustering error
has a downward trend as shown in Figure 3.3. We also highlight that for fully-observed
instances, clustering error reduces from ≈ 60% to ≈ 0% and assignment cost reduces from
≈ 104 to ≈ 100. Similarly, for instances with 60% missing data, clustering error reduces
from ≈ 75% to ≈ 10% and assignment cost reduces from ≈ 104 to ≈ 102. Thus, adding new
columns by solving pricing problem improves the clustering quality significantly. We next
observe that all three instances converge faster for fully observed data than for missing
data. This is expected since fully-observed instances carry more information about the
underlying subspace model and hence even local solutions to the pricing problem converge
to the subspaces close to ground truth faster. The assignment cost which is < 100 for
fully observed data while ≈ 102 for 60% missing data indicates that Algorithm 4 recovered
ground truth subspaces almost perfectly in fully-observed data case but not in high-missing
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data case. We point out that there are two possible reasons for getting non-zero assignment
costs for noiseless data in our model: a) we solve the pricing problem (3.17) locally, and
b) we generate new-columns only at the root node. However, for practical purposes,
irrespective of these two challenges, Algorithm 4 recovers high quality clustering which is
competitive with state-of-the-art methods.

3.5 Computational Results
In this section, we evaluate the performance of MISS-DSG against various SCMD methods
from the literature. In our experiments, we use Python as the programming language and
Gurobi 8.1 as the MILP solver. Additionally, we set a time limit of 5000s for each MISS-DSG
run. These experiments were performed on a cluster of 4 core 16 GB machines with Xeon
X5690 CPU running at 3.46GHz.

3.5.1 Synthetic dataset

The difficulty of SCMD depends on several factors such as the arrangement of subspaces,
the separation between subspaces, the total rank of the data, and the percentage of the
missing data. For an extensive comparison, in addition to the random instances discussed
in Section 3.4.1, we also consider two types of semi-random subspace arrangements :
independent and disjoint. Semi-random instances allow us to control the separation between
the subspaces which is measured by the affinity. Separation plays a crucial role in recovery
of the subspaces for independent and disjoint case.

Two independent subspaces: We consider two independent subspaces1 with affinity
between them being controlled by an angle parameter θ ∈ [0, π

2
]. Small values of θ indicate

low affinity between the subspaces, and hence the clustering task gets more challenging
[108]. Similar to [1], we generate the two independent subspaces as follows:

U1 =
(Ir

0r

)
, U2 =

(cos(θ)Ir
sin(θ)Ir

)
Here r1 = r2 = r, Ir denotes identity matrix of size r× r, and 0r denotes zero matrix of size
r × r. Of the total n data points, we create n

2
data points from each of the two subspaces.

We first randomly create data points within each of the 2r-dimensional subspaces and then
transfer them to the d-dimensional space. Let X̂1 and X̂2 denote data points generated

1A collection of subspaces S1, . . . , Sc is said to be independent if
∑c

i=1dim(Si)=dim(∪ci=1Si).
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from each subspace within 2r-dimensional space. X̂1 is created from U1 as X̂1 = U1 ∗W
where W ∈ Rr×n

2 and each entry of W is sampled from Gaussian distribution, N (0, 1).
X̂2 is created similarly. Data points from dimension 2r are then transferred to ambient
dimension d by multiplying with a randomly generated orthonormal basis P ∈ Rd×2r as
Xi = P × X̂i ∀i = 1, 2. This orthonormal projection preserves the affinity between two
subspaces from 2r-dimensional space to d-dimensional space.

Three disjoint subspaces: For disjoint synthetic subspaces2, we generate n
3

vectors from
each of the subspaces. The three initial subspaces are constructed as [1]:

U1 =
(Ir

0r

)
, U2 =

(cos(θ)Ir
sin(θ)Ir

)
, U3 =

(− cos(θ)Ir
− sin(θ)Ir

)
Rest of the construction is identical to the independent case.

Random subspaces: Clustering on independent and disjoint subspaces (for high affinity)
is less difficult than clustering on intersecting subspaces3. This is the most general subspace
arrangement with no assumption on the subspaces, and any two subspaces can have a
nontrivial intersection. One should observe that data points belonging to the intersection of
two subspaces lead to non-unique membership assignments. Two distinct two-dimensional
planes in three dimensions is an example of intersecting subspaces [1]. These random
instances are generated in the similar manner as describe in Section 3.4. After generating
data matrixX with either of the methods above, we uniformly at random drop a percentage
f of the entries of the matrix X yielding the set of observed entries Ω.

3.5.2 Metrics

We compare performance of all the methods in terms of both clustering error and comple-
tion error defined as follows:

• Clustering Error: Let {G1, G2, . . . , GK} be the ground truth clusters where Gk ⊆
[n] ∀k ∈ [K] and similarly {P1, P2, . . . , PK′} be the predicted clusters. We get the best
matching between predicted and true clusters by solving an assignment problem.
Note that we also allow for the case when number of predicted and true clusters
are different, i.e., K 6= K ′. We let M be the set of all possible assignments i.e.,

2A collection of subspaces S1, . . . , Sc is said to be disjoint if dim(Si) + dim(Sj) = dim(Si ∪ Sj) and
Si ∩ Sj = {0} ∀i 6= j). Note that independent subspaces are disjoint but the converse is not always true.

3A collection of subspaces S1, S2, . . . , Sc is intersecting if 1 ≤ dim(Si ∩ Sj) < min{dim(Si),dim(Sj)} for
some i 6= j.
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M = {(Pk′ , Gk) ∀k ∈ [1, . . . , K], k′ ∈ [1, . . . , K ′]}. We denote cost of matching M =

(Pk′ , Gk) ∈ M with cM which indicates the number of disagreements between the
two clusters in M, i.e., cM = |Pk′4Gk|. Solving the following model then gives the
optimal matching:

min
y∈{0,1}|M|

∑
M∈M

cMyM (3.20a)∑
M∈M:Gk∈M

yM ≤ 1 ∀k ∈ [K] (3.20b)∑
M∈M:Pk′∈M

yM ≤ 1 ∀k′ ∈ [K ′] (3.20c)

∑
M∈M

yM = min{K,K ′} (3.20d)

Objective (3.20a) minimizes the disagreements in the matching, constraints (3.20b)
and (3.20c) ensure that each cluster in {G1, G2, . . . , GK} is mapped to at most one
cluster in {P1, P2, . . . , PK}, and vice-versa. Constraint (3.20d) forces the model to do
the maximum number of assignments possible. Once we get the optimal matching
(ŷ), we can calculate the clustering error as follows:

Clustering error = 100×
∑

M∈M cM ŷM

2n

Note that we divide by 2 since every vector when mismatched is penalized twice.
In particular, if vector j ∈ [n] is mismatched, then it penalized in matching (Pk, Gk),
when j ∈ Pk, j /∈ Gk and also in matching (Pi, Gi) such that j /∈ Pi, j ∈ Gi and i 6= k.

• Completion Error: Let Ωc denotes the set of missing indices and IΩc be the projection
operator restricted to Ωc. We define completion error to be the relative Frobenius
distance between true and recovered unobserved entries as follows:

Completion error = ‖IΩc ◦ (X̂ −XGT )‖F/‖IΩc ◦ (XGT )‖F

Here X̂ refers to completed matrix and XGT refers to the ground truth matrix. Once
we recover the clusters, we perform low-rank matrix completion on the data corre-
sponding to each cluster separately using GROUSE [7] if the rank is known and SVT
[24] if the rank is unknown.
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3.5.3 Comparison against other MIP approaches

We benchmark MISS-DSG against the following integer programming based facility-
location methods proposed in the literature. These methods were proposed for the fully
observed data case. We do the natural extensions to account for missing data as follows:

• FLoSS [70]: FLoSS was the first work to formulate subspace clustering problem as
facility location problem. The candidate subspaces in FLoSS are initialized from the
data by randomly selecting r-tuples of linearly independent points, with 2 ≤ r < d.
Data corresponding to r-tuple defines a linear subspace of dimension (r − 1). The
corresponding basis for fully-observed data is obtained by performing SVD on the
sampled points to get the best fit subspace U . Assignment cost of vector to subspace
is similar to (3.5). We do the extension to partially observed data by using the same
cost model as ours, i.e., residual on observed entries (3.5). To handle missing data
in subspace generation process, we perform LRMC using GROUSE on each tuple of
sampled points to get the best fit subspace. However, instead of sampling r vectors,
we sample 2r vectors since LRMC is likely to fail with r vectors. We then solve
model (3.8) with [T ] consisting of all the subspaces generated with the above strategy.
We refer this algorithm as MIP-RANDOM.

We point out that authors in [70] do not specify the number of candidate subspaces
(|T |) to construct. Since the candidate subspace generation process is random, MIP-
RANDOM also serves as a good benchmark for MISS-DSG to demonstrate the value
of solving pricing problem in generating new subspaces over generating subspaces
randomly. Thus, we consider a high number of candidate subspaces, |T | = 5000, in
MIP-RANDOM whereas we initialize MISS-DSG with only 300 subspaces.

• MB-FLoSS [72]: MB-FLoSS is similar to FloSS with a major difference in the candi-
date subspaces generation strategy. Instead of doing random sampling, candidate
subspace are generated by solving the following optimization problem:

C∗ = arg min
C

‖C‖2,1 + γ‖E‖1,2 s.t. X = XC + E. (3.21)

Here C is the coefficient matrix with ‖C‖2,1 =
∑d

i=1

√∑n
j=1(Cij)2 and E is the error

matrix with ‖E‖1,2 =
∑n

j=1

√∑d
i=1(Eij)2. To extend this to the missing data case,

we zero-fill the missing entries when solving (3.21) to get C∗. Lee and Cheong [72]
solve this constrained convex program (3.21) using Alternating Direction Multiplier
Method (ADMM) as in [79]. We point out that optimization problem (3.21) is
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similar to (3.1). However, the motivation in (3.21) is to seek the minimal basis
representation, whereas in (3.1), the joint sparsity regularization was introduced to
ensure connectivity in the similarity graph generated by encouraging data points
from the same subspace to use common representative points. Lee and Cheong [72]
instead of ensuring connectivity, perform over-segmentation onC∗. In particular, each
column j of C∗ represents the coefficients of other data points required to represent
the data vector j. With an estimate of subspace dimension r at hand, data point
j needs at most r other points for representation, and therefore only top r largest
absolute value coefficients in each column are retained to form a candidate subspace.
For fully-observed data, one can do SVD to get a candidate subspace. For missing
data case, we perform LRMC using GROUSE to get the best fit subspace which is
then used a a candidate subspace. The number of candidate subspaces generated is
therefore the number of unique subspace proposed by all the data points.

• BB-LRR [56]: BB-LRR also proposed a facility-location type MIP approach but with
a different assignment cost function and subspace generation process. BB-LRR gener-
ates candidate subspaces by over-segmentation in LRR [79]. They set the number of
clusters larger than the ground truth in spectral clustering step, eg K + 3 instead of
K. For assignment cost function, instead of using the the residual distance directly
(djt as in (3.5)), they use the following normalized distance (d′jt) by introducing
rank-dependent noise level i.e,

d′jt =
djt

2σ2
(rj)

+ lnσ(rj)

where σ(rj) is estimated in the following way: first the standard deviation of each
candidate subspace is estimated according to the supported points, and then for each
subspace rank, the median of the K minimal deviations is selected as the estimated
noise level. We point out that the authors also suggest a randomized local method
for subspace generation but we don’t benchmark against it for two reasons: a) this
subspace generation process is very similar to FLoSS discussed above, and b) LRR
generated subspaces outperformed randomized local models in [56]. We extend this
algorithm to missing-data case by zero-filling the missing data during LRR step and
doing LRMC with GROUSE for each cluster when generating a candidate subspace.

We point out that existing MIP-based methods either use randomly sampled subspaces or
rely on generating subspaces with self-expressive methods, and are incapable of correcting
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Figure 3.4: Performance comparison for different MIP-based methods as a function of
subspace angles for two independent subspaces . Parameters are d = 20, n = 200, K = 2,
and r1 = r2 = 2

(a) Clustering error

(b) Completion error

themselves based on the current clustering quality. We next compare the performance of
MIP-based methods on independent and randomly sampled instances.

Independent subspaces: We fix parameters d = 20, n = 200, and ri = 2 ∀ i = 1, 2. We
vary θ between 0.1(≈ 6◦) and 1.4(≈ 80◦). For each value of θ, we consider 10 random trials
for each setting. We let missing data percentage f ∈ {20, 40, 60}, and report clustering and
completion errors in Figure 3.4. For our method, we consider both a random initialization
(referred to as MISS-DSG) and an initialization with LRR similar to [56] (referred to as
MISS-DSG-LRR). Existing facility location methods give similar performance for all three
missing data cases as shown in Figure 3.4a. Higher value of θ implies that subspaces
have low-affinity and hence clustering task is easier. We observe that the perfect recovery
threshold in terms of clustering error for existing MIP-based methods is θ = 0.5 for f = 20%,
θ = 1.2 for f = 40%, and θ > 1.4 for f = 60%. Thus, existing MIP-based methods fail
when subspaces are in close affinity or there is a high amount of missing data while MISS-



69

DSG still gives low clustering errors in the same regime. We observe a similar trend in
completion error as shown in Figure 3.4b. For f = 60% missing data case, we observe that
completion errors increases with increase in θ while one expects it to decrease. Candidate
subspace generation strategy in existing MIP-based methods use self-expressiveness and
low rank matrix completion, both of which fail in presence of high missing data. LRMC
step for calculating completion error can often be faulty when estimated cluster has points
from multiple subspaces, translating to arbitrary recovery of missing entries and hence high
completion errors. We also point out that MISS-DSG added new columns between 800-4000
in these instances while MIP-RANDOM had 5000 candidate subspaces. Clearly, MISS-DSG
outperforms MIP-RANDOM, thus showing the value of solving pricing problem (3.17) in
generating new candidate subspaces. We also highlight that BB-LRR and MISS-DSG-LRR
are initialized with the same set of initial subspaces. MISS-DSG-LRR outperforms BB-LRR
by a significant margin, demonstrating that solving pricing problem (3.17) generates better
candidate subspaces than LRR method.

Random subspaces: We now consider randomly generated subspaces to study the effect
of missing data and ratio of ambient dimension to total rank (d/

∑K
i=1 ri). We fix d =

20, n = 240, K = 6, ri = r = 2 ∀i = 1, . . . , K, and vary missing data between 0 to 65% as
shown in Figure 3.5a. The reported results are averaged over 10 random trials. We observe
that MIP-RANDOM gives the lowest clustering error among existing MIP methods but
it is outperformed by MISS-DSG in high missing data regime. BB-LRR and MB-FLOSS
methods give low clustering errors (< 10%) for f < 30% and deteriorate significantly
as missing data is further increased. MISS-DSG with random or LRR initialization gives
perfect clustering for f < 60%. We report completion errors for these instances in Table 3.3.
MISS-DSG recovers the missing data with no reconstruction error for f up to 50% while
other MIP-based methods give high reconstruction errors for f > 20%.

We next study the effect of total rank of the data matrix on clustering error. We generate
a variety of instances with n/K ≈ 40, f = 60%, and vary d,K, r to get d/Kr ∈ [1, 4]. Lower
ratio implies that matrix is high-rank, thus making the clustering task more difficult. Due
to a high amount of missing data, we observe high clustering errors in all the existing MIP-
based methods. As matrix rank gets smaller relative to the ambient dimension, clustering
task becomes easier and hence the clustering error improves as shown in Figure 3.5b. MISS-
DSG recovers perfect clustering when ratio is > 2 and between 0− 10% for ratio ∈ [1, 2] as
shown in Figure 3.5b. We observe that in high-rank and high missing data regime, low
clustering error does not imply low completion errors. This is because low-rank matrix
completion methods often fail in high-rank high missing data regime, leading to high
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Figure 3.5: Performance comparison for different MIP-based methods on randomly sampled
subspaces

(a) Effect of missing data on clustering error

(b) Effect of d/Kr on clustering error

completion errors, as shown in Table 3.4 for MISS-DSG for ratio ∈ [1, 1.7].

3.5.4 Comparison against state-of-the-art methods

We now benchmark MISS-DSG against the following methods from the literature:

• EWZF-SSC: This is a natural extension of sparse subspace clustering to the case of
missing data [122]. In particular, Yang et al. [122] proposed solving (3.1) with ‖ · ‖1

regularization as follows:

C∗ = arg minλ‖IΩ ◦ (XZF −XZFC)‖2
F + ‖C‖1 s.t. diag(C) = 0 (3.22)

Coefficient matrix C∗ is then processed by the spectral clustering algorithm in order
to obtain data segmentation as discussed in Section 3.1. This method was found
superior to the other methods proposed in [122] for SCMD.
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Table 3.3: Average completion error (%) for random instances in Figure 3.5a

f BB-LRR MIP-RANDOM MB-FLoSS MISS-DSG MISS-DSG-LRR
10 28.3 2.9 0.0 0.0 0.0
20 43.6 14.5 0.6 0.0 0.0
30 116.9 43.7 17.1 0.0 0.0
40 126.2 104.3 80.7 0.0 0.0
50 237.8 198.1 173.0 0.1 6.7
55 267.4 259.7 257.7 35.2 12.7
60 324.0 311.4 295.5 41.9 43.0
65 368.7 361.3 338.5 114.5 154.4

Table 3.4: Average completion error (%) for random instances in Figure 3.5b

d/Kr BB-LRR MIP-RANDOM MB-FLoSS MISS-DSG MISS-DSG-LRR
1.1 428.3 437.8 399.9 102.1 142.5
1.2 382.6 400.4 368.7 150.6 67.5
1.4 351.1 364.5 355.4 41.3 43.0
1.7 324.0 311.4 295.5 43.0 41.9
2.0 286.4 297.7 296.1 42.4 64.7
2.5 223.4 226.4 225.8 33.1 31.6
3.3 140.5 187.3 165.4 2.8 1.6
3.8 124.8 146.5 131.0 2.7 1.8

• Alt-PZF-EnSC+gLRMC: In a review article on SCMD by Lane et al. [68], alternating
between elastic-net subspace clustering [123] and group low-rank matrix completion
[75] was found to be the state-of-the-art method. PZF is similar to EWZF and restricts
error reduction on observed entries. The algorithm solves the following problem to
get coefficient matrix C∗ which is then processed by the spectral clustering algorithm
to get data segmentation:

C∗ = arg minλ‖IΩ ◦ (XZF −XZFC)‖2
F + ζ‖C‖1 + (1− ζ)‖C‖2

F (3.23)

diag(C) = 0, C ∈ Rn×n

where 0 < ζ < 1. The clusters obtained by spectral clustering algorithm are then
processed group-wise by a low-rank matrix completion algorithm, e.g. SVT[24], to
fill the missing entries and get X̂ . In next iterations, XZF in (3.23) is replaced by X̂ ,
and algorithm alternates between clustering and completion for the given number of
iterations.

• k-GROUSE: Balzano et al. [8] proposed an extension of well known K-Subspaces
algorithm [19, 114] to the case of missing data. The proposed algorithm is an al-
ternating heuristic: starting with some initial subspaces, vectors are clustered by
subspace assignment based on the same metric as (3.5). Given a cluster of vectors,
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Table 3.5: Parameter choices for state-of-the-art methods for SCMD

Method Parameter

EWZF-SSC [122] λ = α
maxi6=j ‖(XZF )TΩj

(XZF )Ωj
)‖ij

α ∈ {5, 20, 50, 100, 200, 320}
k-GROUSE [8] -

Alt-PZF-EnSC+gLRMC [68] λ and α similar to EWZF-SSC
ζ ∈ {0.5, 0.7, 0.9}

matrix completion with Grassmannian Rank-One Subspace Estimation, GROUSE [7],
is performed to get a subspace estimate, and then vectors are reassigned, and the
process repeated until convergence. The algorithm stops when the clusters remain
unchanged in successive iterations or the algorithm reaches the maximum allowed
iterations

Since both MISS-DSG and MISS-DSG-LRR gave similar performance on the considered
instances, we report only MISS-DSG-LRR when benchmarking against state-of-the-art
methods. The best parameter configurations are selected based on the average comple-
tion error on a hold out set. As noted by [68], this approach translates more easily into
practice compared to the more common approach in literature where parameter with least
classification error is selected. Being an unsupervised learning task, no true cluster labels
are available in practice. However, one can always hold out some observed entries as
a validation set. In our experiments, we hold out 25% of the data in validation set for
parameter selection. We report parameter choices for different algorithms in Table 3.5.

Independent subspaces: We keep the same experimental setting for independent sub-
spaces as in Section 3.5.3. We report these results in Figure 3.6. As expected, EWZF-SSC
fails when percentage of the missing data is high or subspaces are close to each other (small
θ). MISS-DSG-LRR and k-GROUSE give the lowest clustering errors. Both of these algo-
rithms give similar performance with MISS-DSG-LRR doing slightly better than k-GROUSE
for f = 60%. A similar trend is observed in completion errors as shown in Figure 3.6b.

Disjoint subspaces: We fix parameters d = 20, n = 200, and rk = 2 ∀ k ∈ {1, 2, 3}. We
vary θ between 0.2 (≈ 12◦) and 1.2 (≈ 68◦). For each value of θ, we consider 10 random
trials. We let missing data percentage f ∈ {20, 40, 60}. All methods are provided the true
number of subspaces K and the true dimension of subspaces. We report these results
in Figure 3.7. We see a significant drop in performance when compared to independent
subspaces for all algorithms but MISS-DSG-LRR. EWZF-SSC and Alt-PZF-EnSC+gLRMC
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Figure 3.6: Performance comparison against state-of-the-art as a function of subspace angles
for two independent subspaces. Parameters are d = 20, n = 200, K = 2, and r1 = r2 = 2

(a) Clustering error

(b) Completion error

give high clustering errors when any pair of subspaces are close to each other (small θ)
or there is high amount of missing data, and are outperformed by both k-GROUSE and
MISS-DSG-LRR. Performance of k-GROUSE deteriorates in low-affinity and high missing
data regime. MISS-DSG-LRR is the only algorithm which gives perfect recovery of clusters,
in terms of low clustering errors as well as low completion errors, in low-affinity and high
missing data regime.

Random subspaces: We now consider randomly generated subspaces to study the effect
of missing data and ratio of ambient dimension to total rank (d/

∑K
i=1 ri). We fix d = 20, n =

240, K = 6, ri = r = 2 ∀i = 1, . . . , K, and vary missing data between 0 to 65% as shown in
Figure 3.8a. We observe that EWZF-SSC and Alt-PZF-EnSC+gLRMC exhibit significantly
high clustering errors for f > 30%. k-GROUSE follows a similar trend with high clustering
error for f > 50%. In the high-missing data regime (40-65%), only MISS-DSG -LRR yields
the smallest clustering error. Completion error follows a similar trend with both EWZF-SSC
and Alt-PZF-EnSC+gLRMC giving high reconstruction error for f > 30% as shown in
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Figure 3.7: Performance comparison against state-of-the-art as a function of subspace angles
for three disjoint subspaces. Parameters are d = 20, n = 200, K = 3, and r1 = r2 = r3 = 2

(a) Clustering error

(b) Completion error

Table 3.6. MISS-DSG-LRR gives lower completion error than k-GROUSE for f > 50% while
both give no completion error for f < 50%. Again ,high completion errors for MISS-DSG
even after getting the right clusters for f ∈ {60, 65} is attributed to the fact that low-rank
matrix completion fails in that regime.

We next study the effect of total rank (
∑K

i=1 ri) with respect to the ambient dimension d
on clustering error. We consider the same instances as we did in Section 3.5.3 for randomly
sampled subspaces and vary d/Kr ∈ [1, 4] as shown in Figure 3.8b. Since self-expressive
methods do not perform well with high missing data (f = 60%), we find that both EWZF-
SSC and Alt-PZF-EnSC+gLRMC give high clustering errors in all cases. Performance of
all algorithms improve as we move from high-rank to low-rank regime. In the high rank
ratio regime, (1 < d/Kr < 2), only MISS-DSG-LRR gives near perfect classification while
k-GROUSE gives errors between 5− 25%. Since we have high missing data, we observe
that when matrix is nearly full-rank (d/Kr < 2), all methods give high completion errors
including MISS-DSG-LRR which has small clustering errors as shown in Table 3.7. This is
due to the fact that low-rank matrix completion fails in such a setting.
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Figure 3.8: Performance comparison against state-of-the-art methods on a variety of syn-
thetic instances

(a) Effect of missing data on clustering error

(b) Effect of d/Kr on clustering error

3.5.5 Choice of penalty parameter in MISS-DSG

If we know number of subspaces (K) and their underlying dimension ri ∀i = 1, . . . , K, then
we can directly solve (3.10) with (λ) = 0. In many cases, we do not have that information
and the choice of penalty parameter becomes crucial. A small value of λ would encourage
model to use higher complexity union of subspaces model, U = {U1, U2, . . . , UK′}. This
could either mean subspaces being selected of higher dimension than ground truth and/or
selecting larger number of subspaces than ground truth, i.e., K ′ > K . Similarly, a large
value of λ would encourage model to use lower complexity union of subspace model, i.e.,
subspaces being selected of lower dimension than ground truth and/or selecting fewer
subspaces than ground truth,K ′ < K. To investigate this more, we fix d = 30, n = 300, K =

6, r = rk = 3 ∀k ∈ [K], and vary f ∈ {10, 30, 50}. We consider three different cases for
MISS-DSG:
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Table 3.6: Average completion error (%) for random instances in Figure 3.8a

f EWZF-SSC Alt-PZF-EnSC+gLRMC k-GROUSE MISS-DSG-LRR
10 0.1 0.1 0.0 0.0
20 0.2 0.0 0.0 0.0
30 11.4 12.0 0.0 0.0
40 41.1 34.1 0.0 0.0
50 109.1 73.5 0.1 0.1
55 169.9 124.6 38.0 12.7
60 210.0 175.6 71.0 43.0
65 231.5 226.7 188.4 154.4

Table 3.7: Average completion error (%) for random instances in Figure 3.8b

d/Kr EWZF-SSC Alt-PZF-EnSC+gLRMC k-GROUSE MISS-DSG-LRR
1.1 275.6 235.5 225.6 142.5
1.2 253.1 234.8 238.2 67.5
1.4 238.1 200.6 143.4 43.0
1.7 210.0 175.6 71.0 41.9
2.0 174.1 137.8 46.2 64.7
2.5 143.0 117.7 45.1 31.6
3.3 106.4 90.9 1.4 1.6
3.8 60.1 52.2 0.0 1.8

• K known, r unknown: In this case, we do not provide MISS-DSG with information on
dimension of underlying subspaces. Instead, we use rmax = 2 ∗ r = 6 in Algorithm 4.
Thus our model considers subspaces of dimension ∈ {1, 2, 3, 4, 5, 6}. However, we
assume that we know number of subspaces (K), and thus we keep constraint (3.14c).

• K unknown, r known: In this case, we assume that we know dimension of underlying
subspaces. Hence, MISS-DSG considers subspaces only of dimension 3. Since we
don’t know number of subspaces (K), we remove constraint (3.14c) from our model,
and let MISS-DSG self-determine the number of subspaces.

• K unknown, r unknown: Now we consider the case when we don’t know dimensions
as well as number of underlying subspaces. We again use rmax = 2 ∗ r = 6 in
Algorithm 4, and hence MISS-DSG considers subspaces of dimension∈ {1, 2, 3, 4, 5, 6}.
Similar to previous case, we don’t know K and hence constraint (3.14c) is removed
from the model. Thus, MISS-DSG has freedom in selecting number of subspaces as
well as their dimensions.

We report the effect of λ on clustering error in Figure 3.9 for all three cases discussed
above. We observe that MISS-DSG gives low clustering errors for a wide range of λ values
when either K or r is known (Figures 3.9a, 3.9b). The performance is marginally better
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with knowledge on dimensions of subspaces than number of subspaces. Extremely high
values of λ lead to high clustering errors in all cases since model is forced to either select
fewer subspaces or select subspaces of lower dimension than ground truth. For λ = 104,
MISS-DSG selected subspaces of dimension 1. Similarly, for extremely small values of λ,
MISS-DSG selects higher complexity subspaces, i.e., subspaces of dimension higher than
ground truth if r is not known or higher number of subspaces than ground truth if K is
unknown. We also point out that choice of λ can also vary with percentage of missing data,
f . We now consider the case when we do not know both r and K as shown in Figure 3.9c.
We observe that MISS-DSG gives low clustering error only for a narrow range of λ. This
behavior is expected since the model has high degree of freedom. There are multiple union
of subspace models which might give low assignment cost (

∑
j∈[n] wj) but have a different

complexity than ground truth. Hence, choice of λ is critical in this case, and thus MISS-DSG
gives low clustering error only for a narrow range of λ.
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Figure 3.9: Effect of λ (x axis, log scale) on clustering error

(a) K known, r unknown

(b) K unknown, r known

(c) K unknown, r unknown
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3.5.6 Hopkins155 data experiments

Motion segmentation has been a standard dataset in the literature for benchmarking
performance of SCMD algorithms. Motion segmentation refers to the task of identifying
multiple spatiotemporal regions corresponding to different rigid-body motions in a video
sequence. We consider Hopkins155 motion segmentation dataset [112] and demonstrate
the competitive performance of MISS-DSG. We evaluate different methods on the Hopkins
155 data set which contains 155 video sequences with 2 or 3 moving objects. In each
sequence, objects moving along different trajectories and all the trajectories associated
with a single rigid motion live in a 3-dimensional affine subspace [39]. To simulate high
rank case, similar to [122], we subsample trajectories with six frames (equally spread)
to simulate a high-rank data matrix. We handle affine subspaces in our framework by
considering an affine subspace of dimension r in Rd as a linear subspace of dimension r+ 1

in Rd+1. Hence, we set rmax = 4 in our model. Since we do not have information on exact
dimension of the underlying subspaces, we let our model self-determine it. However, for a
fair comparison with other models, we do provide the number of subspaces as input to the
model. We consider two variants of our methods: MISS-DSG with random initialization
referred to as MISS-DSG in Table 3.8 and MISS-DSG with initialization from Alt-PZF-
EnSC+gLRMC referred to as MISS-DSG-A in Table 3.8. For MISS-DSG-A, we let λ = 0.1

in our algorithm. For state-of-the-art methods, we choose the best hyperparameter as
discussed in Section 3.5.4.

We report average clustering error over 155 sequences for each method for different
missing data percentage in Table 3.8. We observe that EWZF-SSC and k-GROUSE give
similar performance with errors between 15− 25% as missing data percentage is increased
from 10% to 50%. MISS-DSG gives error between 18− 20% for all values of missing data
and is outperformed by Alt-PZF-EnSC+gLRMC in all cases. However, we observed that
initializing MISS-DSG with Alt-PZF-EnSC+gLRMC generated clusters (referred to as
MISS-DSG-A) offered a great advantage. With this initialization, MISS-DSG-A was able to
improve upon Alt-PZF-EnSC+gLRMC and gave errors between 5− 13.9%.

Table 3.8: Performance comparison on Hopkins 155 dataset with # frames=6

f EWZF-SSC k-GROUSE Alt-PZF-EnSC+gLRMC MISS-DSG-A MISS-DSG
10 17.4 15.7 11.7 5.3 19.4
20 19.7 19.2 11.1 5.8 18.4
30 20.1 20.2 10.9 6.5 20.2
40 20.2 21.5 12.6 9.7 19.1
50 23.4 25.1 15.4 13.9 21.7
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3.5.7 Computational times

We now discuss the computational performance of MISS-DSG. We first point out that most
existing methods in literature were found to be faster than MISS-DSG. Hence, we only
discuss computational times of existing methods briefly and give a detailed breakup of
solution time for MISS-DSG.

We first discuss the computational times of existing MILP methods. MB-FLoSS and
BB-LRR are significantly faster than MISS-DSG and MIP-RANDOM. Both BB-LRR and
MB-FLoSS generate a small number of candidate subspaces using LRR and thus, solving
the resulting MIP model is cheap (< 2 minutes for synthetic instances considered in this
chapter). In fact, most of the time is spent in generating clusters using LRR. For MIP-
RANDOM, we sample 5000 subspaces by performing LRMC on each sampled cluster
of vectors. This alone took between 4 − 25 minutes on average for synthetic instances
considered in this work. The subspace generation time varies based on the amount of
missing data since LRMC also becomes expensive in presence of high-missing data. Due to
a large number of candidate subspaces, solving MILP model is also computationally more
expensive than BB-LRR and MB-FLOSS, and took between 2− 10 minutes.

EWZF-SSC on the considered synthetic instances was found to be computationally
efficient and took a maximum of 2 minutes. k-GROUSE which does not require any
parameter tuning took a maximum of 12 minutes. Alt-PZF-EnSC+gLRMC which combines
SSC with LRMC is relatively expensive than these two methods with computational time
varying between 3−120 minutes. This also includes the parameter training time considered
in Table 3.5. For Alt-PZF-EnSC+gLRMC, we had a total of 18 choices for parameters
tuning. For a single parameter choice, Alt-PZF-EnSC+gLRMC gives similar computational
efficiency as k-GROUSE.

MISS-DSG took between 3− 75 minutes for the synthetic instances depending on the
hardness of the instance. In particular, high missing data regime and high-rank matrix led
to higher computational times. Compared to random instances, independent and disjoint
instances were significantly faster and took a maximum of 5 minutes. We give a detailed
breakdown of the computation time spent in each component of the MILP approach in
Table 3.9. We also report number of Benders cuts generated at root node and during
branching. Number of new columns added in Algorithm 4 are also reported. We observe
that as missing data increases, total solution time also increases. Similarly, an increase in
number of subspaces leads to increase in computational time. This is due to the fact that a
higher number of columns generation iterations are performed on harder instances which
results in more time being spent on solving the pricing problem. This consecutively leads
to calculating more djt coefficients and regenerating new Benders cuts as new columns
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Table 3.9: Detailed computational times for MILP for randomly generated instances

# New cols # Benders cuts Total time (s) Time (s)
Root node Branching Root node Benders Gradient Residuals calculation MIP

(Alg. 4) (Alg. 4, lines 7-15) (Alg. 3, line 7) (Alg. 4, line 2+Alg. 3, line 3) (Alg. 4, line 30)

d = 20,n = 240,K = 6, r = 2

f=10 5727 6416 907 193.2 17.7 60.5 76.2 33.8
f=20 6464 7025 1031 698.8 53.3 198.3 289.6 143.6
f=40 9956 8145 870 1074.8 83.4 295.4 437.6 237.2
f=65 21744 10701 996 2661.9 287.6 759.4 902.7 663.9

d ∈ {20,30},n = 40K, f = 60, r = 2

d=20, K=3, r=2 9086 2081 381 354.2 21.3 113.5 131.6 82.0
d=30, K=4, r=2 13798 5275 608 628.7 42.6 187.4 244.8 131.5
d=20, K=5, r=2 16117 6182 592 853.7 78.6 262.3 320.2 176.9
d=20, K=7, r=2 19765 10788 870 1606.0 146.4 463.3 599.6 365.1
d=20, K=9, r=2 23281 19377 2240 4929.4 541.0 1240.0 1242.1 1811.4

are added, leading to higher computational cost. We observe from Table 3.9 that a large
proportion of time (≈ 70%) is spent on calculating the gradient (∇g) and computing djt
coefficients. In particular, around 25-30% of the time is spent on solving the pricing problem
and about 40% on computing the djt coefficients. Both of these operations can be done
in highly parallel fashion. Thus, while we did not pursue a parallel implementation, we
expect significant speedups are possible. Overall, these results indicate that the MISS-DSG
framework is feasible for moderate size data and competitive with Alt-PZF-EnSC+gLRMC,
but is best suited for applications where one desires accuracy over speed, e.g., predicting
gene-disease association [87].

3.6 Conclusions and future directions
We proposed a novel MILP framework MISS-DSG for the subspace clustering with missing
data and showed its effectiveness relative to other state-of-the-art methods, especially in
certain instance regimes. MISS-DSG offers several other potential advantages for SCMD. It
gives the user flexibility to use a different function for cost of assignment between vector and
subspace. If we know a good set of potential low dimensional subspaces, our framework
can take advantage of this by including these subspaces in the initial formulation. MISS-
DSG is also capable of self-determining the number of subspaces and their dimensions,
and can also easily be extended to include side constraints, e.g., ensuring that a given set
of points does (or does not) lie in the same cluster. MISS-DSG is computationally more
expensive than the other clustering algorithms but a parallel implementation can offer
significant speedups. A possible future direction is to generalize this framework to a union
of models (e.g, clustering mixture of Gaussian models) instead of limiting to a union of
linear subspaces.
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4 integer programming approaches to binary matrix
completion

4.1 Introduction
In Chapter 3, we focused on the union of subspaces model in Rd which has applications in
various machine learning and computer vision applications. However, in many applications
data is categorical (binary) rather than continuous. With binary data, it becomes useful to
explore matrix completion and the union of subspace models in the case when the matrix
data is binary.

In this chapter, we derive integer programming formulations for matrix factorization and
completion inF2, the finite field of 2 elements. We first derive a natural integer programming
formulation that uses general integer variables to model the parity conditions of arithmetic
in F2. We then derive different formulations that use only binary decision variables. Our
key contributions are a new class of inequalities to model the dot product (for a single
matrix element), and showing that these inequalities characterize the convex hull of dot
product of two vectors in F2. Furthermore, we derive new classes of valid inequalities
linking dot products of two different matrix elements.

Matrix factorization and completion over F2

Low-rank matrix factorization is a classical problem where the goal is to approximate a
given matrix X of size d× n as the product of two matrices U of size d× r and V of size
r × n such that X ≈ UV . Columns of U are interpreted as the factors or basis vectors of
the low-dimensional subspace of rank r, and each column of V contains the combination
coefficients [33]. Based on the application, different restrictions are often imposed on factor
matrices U, V , e.g., orthogonality [51], non-negativity [73], and others. The problem is
well studied when matrices are defined over R, where low-rank approximation can be
efficiently solved via the Singular Value Decomposition [116].

Our focus is on finding a rank r approximation of binary data matrix X ∈ {0, 1}d×n.
In particular, we seek to find matrices U and V such that X ≈ UV with U ∈ {0, 1}d×r

and V ∈ {0, 1}r×n. The motivation for binary restriction is that in many machine learning
applications, e.g., classification, recommendation systems, community detection, cryptog-
raphy, and others, involve data with binary values, and discovering their latent structure
is often useful [34]. In addition to the restriction on factor matrices U and V , one can
also change the underlying arithmetic to arrive at different decompositions [34]. In this
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chapter, we focus on the case when multiplication of U and V is defined with respect to
F2 model as X = U ⊗ V . The finite field F2 consists of two elements: 0 and 1, and follows
modulo-2 arithmetic. The dot product of two binary vectors u, v in F2 model is defined as
uTv := ⊕

i
uivi, where⊕ denotes modulo-2 addition. Note that the dot product over F2 is not

an inner product and does not induce a norm: there exists a 6= 0 such that aTa = 0 over F2,
and hence no singular value decomposition (SVD) exists for matrices defined over F2 [33].

In matrix completion over F2, we are given a partially observed binary data matrix XΩ,
where Ω is the set of observed indices of the matrix X . Columns of X are assumed to lie in
a subspace of dimension r � min{d, n}, and the goal is to fill in the missing entries. Matrix
factorization is a popular approach for matrix completion, since X is hypothesized to be of
low rank r, and hence can be decomposed as product of two smaller matrices, U ∈ {0, 1}d×r

and V ∈ {0, 1}r×n. Thus, the goal of matrix completion is to find two binary matrices
U ∈ {0, 1}d×r and V ∈ {0, 1}r×n such that the error on observed entries

∑
(ij)∈Ω

|Xij − Zij| is

minimized, where Z = U ⊗ V .

Notation

We use⊕ to denote addition in F2 and⊗ to denote multiplication in F2. We use⊗ to denote
dot product of two vectors in F2 as well as the product of two matrices in F2. We let ei
denote a r−dimensional vector of all 0′s with 1 at ith position and 0 denote a r−dimensional
vector of all 0′s. For an integer m ∈ Z+, we use notation [m] to denote the set {1, 2, . . . ,m}.
For a vector c ∈ Rr and set S ⊆ [r], the notation cS = a represents cl = a ∀ l ∈ S, and c(S)

represents the sum
∑
l∈S

cl.

Literature survey on low-rank binary matrix completion

We first note that using classical methods, such as SVD, to attain a low-rank factorization
of a binary matrix X is unlikely to yield binary matrices U and V . Furthermore, simply
imposing binary constraints on matrices U and V is insufficient either since the standard
integer product would result in non-binary values as shown in an example below:

U =

[
1 0

1 1

]
, V =

[
1 0

1 0

]
, Z = UV =

[
1 0

2 0

]
.

Ruling out the standard integer product, there are two natural formulations depending
on the definition of the vector dot product. One formulation uses Boolean arithmetic where
the product of the binary matrices U and V is computed by interpreting 0s as false and 1s
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as true, using logical disjunction (∨) in place of addition, and using logical conjunction (∧)

in place of multiplication. The Boolean matrix product is then

Z = U ◦ V ⇐⇒ zij =
∨
k∈[r]

(uik ∧ vkj).

Over the last decade, there has been continuous interest in Boolean matrix factorization.
We refer reader to [85] for a recent survey on Boolean matrix factorization. Recently, integer
programming based methods for Boolean matrix factorization and completion have also
been explored [65, 85].

A second formulation is based on the Galois field F2 which follows modulo-2 arithmetic.
Our focus in this chapter is on F2 model for two reasons. First, the F2 model is less studied in
the literature than the Boolean model. The underlying combinatorial and discrete nature of
the problem naturally calls for integer programming based methods capable of exploiting
the inherent problem structure. However, such a method is lacking for F2. And second,
Boolean algebra does not define a field, and hence there is no notion of a linear space,
making F2 a natural choice for union of subspace model for binary data for future studies.

The problem of reconstructing X when X is partially observed (XΩ) and elements of
X lie in R has been extensively studied [89]. The problem has received less attention for
finite fields. Nonetheless, reconstructing X from XΩ and factoring X into binary matrices
has applications in network and index coding, independent component analysis, social
networks, market-based data clustering, DNA transcription profiles, and others [76, 66].
We next give a brief literature review of applications and algorithms for matrix factorization
and completion in F2 both of which are known to be NP-hard [54].

Index coding is the study of coding schemes to broadcast multiple messages to receivers
that may have different side information [16]. A server holds a set of messages that it
wishes to broadcast over a noiseless channel to a set of receivers. Each receiver is interested
in one of the messages and has side-information comprising some subset of the other
messages [18]. Index coding has important engineering applications such as satellite
communication, content broadcasting, distributed caching, device-to-device relaying, and
interference management [2].

With a linear encoding scheme, all encoding operations are linear over a finite field. In
a breakthrough paper, Bar-Yossef et al. [11] showed the equivalence between linear index
coding and rank minimization over a finite field. Following this, a number of heuristic
methods in the index coding literature were developed. Esfahanizadeh et al. [40] proposed
a matrix completion algorithm for the linear index coding problem. In their algorithm,
the complete sub-matrix of highest rank is identified using a heuristic scheme which is
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then expanded using row and column projections such that the possible completions
of an incomplete row or column are in the span of the complete sub-matrix. Tan et al.
[110] studied the rank minimization problem where, instead of entries, random linear
combinations of the entries are observed. They give various information-theoretic bounds
on the number of measurements necessary for low-rank matrix recovery.

Dan et al. [33] considered the problem of rank r binary matrix factorization from the
lens of column subset selection (CSS), in which one low rank matrix must be formed by r
columns of the data matrix. They provided a tight upper bound on the approximation ratio
of CSS for binary matrices over F2. Wicker et al. [120] provided a heuristic factorization
algorithm where they construct rank-1 factor matrices iteratively with one of the matrix
being forced to use rows from the data matrix X , something similar to CSS, but instead
applied on rows.

Fomin et al. [47] and Ban et al. [10] independently defined a polynomial-time approxi-
mation scheme for low-rank approximation of binary matrices over F2 as well as in Boolean
algebra. They analyzed the approximation algorithm for the generalized clustering algo-
rithm which encompassed low-rank approximation over F2 and like Dan et al. [33] assumed
that the matrix is fully observed. Both Fomin et al. [47] and Ban et al. [10] provided factor-
ization algorithms for the best rank r approximation over F2 with (1 + ε)-approximations.
As pointed out by Fomin et al. [46], the algorithms developed in [47, 10] are good for
theoretical analysis but rather impractical due to tremendous running times. Kumar et al.
[66] then gave the fastest known bicriteria constant-factor approximation algorithm for the
rank r factorization over F2 when the matrix is fully observed.

The work most closely related to ours is of Saunderson et al. [106] who proposed a
linear programming based algorithm for matrix completion over F2. They infer linear
relations among the rows and columns of XΩ, and construct collections of parity check sets
for rows (H1) and columns (H2). The collections of parity checks are then used to construct
row and column bases. For S ⊆ [d], eS ∈ Fd2 is the vector supported on S, i.e. [eS]i = 1 if
and only if i ∈ S and 0 otherwise. They construct H1 by ensuring apparent consistency, i.e,{

Y ∈ F2
d×n : YΩ = XΩ, e

T
S1
⊗X = 0 ∀ S1 ∈ H1

}
6= ∅.

In other words, they consider a subset of rows that sum to 0 and then use this information
to construct a basis whose columns span {eSi

: Si ∈ H1}⊥. H2 is constructed similarly. They
established conditions on X and Ω when the collections of parity checks are consistent.
After generating H1 and H2 in polynomial time, their proposed algorithms selects subsets
of H1 and H2. They formulate this subset selection problem as a combinatorial optimization
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problem with the objective of maximizing the number of parity checks kept and solved the
LP relaxation of the same. Unfortunately, the proposed algorithm is not exact.

Although there have been some theoretical advances on matrix factorization over F2,
practical algorithms are still lacking. Some heuristic approaches have been proposed for
factorization in recent years as discussed above but an exact algorithm is yet to be developed.
Moreover, excluding the approximation algorithm of [106], irrespective of the underlying
combinatorial and discrete nature of the problem, no linear or integer programming based
methods have been studied. The factorization problem in F2 with missing data has not
been studied either.

Contributions

We derive integer linear programming formulations for the matrix factorization and com-
pletion models over F2. We first derive formulations making use of McCormick envelopes
for product of two binary variables: a base formulation using an integer variable and an
extended formulation using ideas from disjunctive programming and parity polytopes.
The latter formulation characterizes the convex hull of the dot product of two vectors in
an extended space. We then derive a novel formulation based on a new class of valid
inequalities that also characterizes the convex hull of the dot product of two vectors in
the original space of variables. Furthermore, we derive new classes of valid inequalities
linking dot products between two matrix elements.

4.2 MILP for matrix factorization in F2

We wish to model Z = U ⊗ V in F2, where U and V are matrices to be determined with
elements denoted by uik, vkj ∀i ∈ [d], j ∈ [n], k ∈ [r]. We let zij denote the dot product of ui
and vj in F2, i.e, zij = ui ⊗ vj . Consecutively, Z = U ⊗ V . Let Ω ⊆ [d]× [n] denote the set
of observed indices of binary matrix X . The goal is to find binary matrices U and V such
that the error on observed entries

∑
(i,j)∈Ω

|Xij−Zij| is minimized while ensuring Z = U ⊗V .

When X is fully-observed, the objective minimizes the error on all entries of X , and for an
incomplete X with missing entries, the objective minimizes error on the observed entries.
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We wish to solve the following optimization problem:

min
∑

(i,j)∈Ω

[
Xij(1− zij) + (1−Xij)zij

]
(4.1a)

zij = ⊕
k∈[r]

(uikvkj) ∀i ∈ [d], j ∈ [n], (4.1b)

u ∈ {0, 1}d×r, v ∈ {0, 1}r×n. (4.1c)

It is easy to see that the objective of formulation (4.1) is the same as
∑

(i,j)∈Ω

|Xij − Zij|. We

point out that constraint (4.1b) in formulation (4.1) is the key constraint that encodes
the F2 arithmetic. Since constraint (4.1b) is the same for each (i, j) pair, we construct the
integer linear programming by modeling the constraint (4.1b) for a fixed (i, j), which is
then repeated for all (i, j) ∈ [d]× [n] .

We let yijk denote the product of uik and vkj , i.e., yijk = uikvkj . Then, zij can equivalently
be written as zij = ⊕

k∈[r]
yijk. We let yij ∈ {0, 1}r denote the vector [yij1, yij2, . . . , yijr].

For each (i, j) ∈ [d]× [n], we define the set Iij to denote the dot product of ui, vj in F2,
set Pij to denote addition in F2, and the setMI

ij to denote scalar product. Specifically, we
define the following three sets.

Definition 4.1. Iij := {(ui, vj, zij) ∈ {0, 1}r × {0, 1}r × {0, 1} | zij = ⊕
k∈[r]

uikvkj}

Definition 4.2. Pij := {(ui, vj, yij, zij) ∈ Rr × Rr × {0, 1}r × {0, 1} | zij = ⊕
k∈[r]

yijk}

Definition 4.3. MI
ij := {(ui, vj, yij, zij) ∈ {0, 1}r × {0, 1}r × {0, 1}r × R | yijk = uikvkj ∀k ∈

[r]}
It is well known that constraint yijk = uikvkj in the definition ofMI

ij is interchangeable
with the McCormick envelope linear constraints: yijk ≤ uik, yijk ≤ vkj , and yijk ≥ uik+vkj−1

[84].

With these definitions, the optimization problem (4.1) can be re-written as follows:

min
∑

(i,j)∈Ω

[
Xij(1− zij) + (1−Xij)zij

]
(4.2a)

(ui, vj, zij) ∈ Iij ∀i ∈ [d], j ∈ [n]. (4.2b)

Since sets Iij,Pij , andMI
ij are defined for all (i, j) ∈ [d]× [n], for ease of notation, we drop
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the subscript (ij) and define sets I,P , andMI as follows:

I := {(u, v, z) ∈ {0, 1}r × {0, 1}r × {0, 1} | z = ⊕
k∈[r]

ukvk}, (4.3a)

P := {(u, v, y, z) ∈ Rr × Rr × {0, 1}r × {0, 1} | z = ⊕
k∈[r]

yk}, (4.3b)

MI := {(u, v, y, z) ∈ {0, 1}r × {0, 1}r × {0, 1}r × R | yk = ukvk ∀k ∈ [r].} (4.3c)

Lemma 4.4. The set I is the projection of the intersection of the sets P andMI , i.e.,

I = proju,v,z(P ∩MI).

Proof. The proof follows by substituting yk with ukvk in the intersection of P andMI

as follows:

proju,v,z(P ∩MI) = proju,v,z({(u, v, y, z) ∈ {0, 1}3r+1 | z = ⊕
k∈[r]

yk, yk = ukvk ∀k ∈ [r]})

= {(u, v, z) ∈ {0, 1}2r+1 | z = ⊕
k∈[r]

ukvk} = I. �

Using Lemma 4.4, we can then rewrite the optimization problem (4.2) as follows:

min
∑

(i,j)∈Ω

[
Xij(1− zij) + (1−Xij)zij

]
(4.4a)

(ui, vj, yij, zij) ∈MI
ij ∩ Pij ∀i ∈ [d], j ∈ [n]. (4.4b)

Proposition 4.5. The set conv(I) is full-dimensional, i.e., dim(conv(I))=2r + 1.

Proof. We construct 2r + 2 affinely independent points (u, v, z) in I:
(0,0, 0), (e1,0, 0), (e2,0, 0), . . . , (er,0, 0), (0, e1, 0), (0, e2, 0), . . . , (0, er, 0), (e1, e1, 1). This im-
plies that dimension of conv(I) is 2r + 2− 1. �

We next present three different integer programming formulation for matrix factor-
ization over F2. In Section 4.2.1 and 4.2.2, we derive integer programming formulations
using the optimization problem (4.4), i.e., we model sets MI

ij and Pij separately, and
the resulting formulation is in an extended space of (u, v, y, z) variables in dimension
3r + 1. In Section 4.2.3, we derive an integer programming formulation using optimization
problem (4.2), i.e., we model Iij directly, and hence the formulation is in space of (u, v, z)

variables in dimension 2r + 1.
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4.2.1 Formulation I: McCormick with general integer variable

We model the factorization problem as a quadratically constrained program and model the
modulo-2 addition logic for F2 by introducing a new auxiliary variable:

min
∑

(i,j)∈Ω

[
Xij(1− zij) + (1−Xij)zij

]
(4.5a)

yijk = uikvkj ∀i ∈ [d], j ∈ [n], k ∈ [r] (4.5b)∑
k∈[r]

yijk − zij − 2tij = 0 ∀i ∈ [d], j ∈ [n] (4.5c)

u ∈ {0, 1}d×r, v ∈ {0, 1}r×n, z ∈ {0, 1}d×r, t ∈ Zd×n+ . (4.5d)

If
∑

k∈[r] yijk = 2m for some m ∈ Z+, then the only feasible solution to satisfy (4.5c) is
zij = 0, t = m. If

∑
k∈[r] yijk = 2m + 1 for some m ∈ Z+, then the only feasible solution

to satisfy (4.5c) is zij = 1, t = m. Hence, constraint (4.5c) is able to model addition in F2.
Constraints (4.5b) can equivalently be replaced with McCormick envelope representation
ofMI

ij yielding the following integer linear programming formulation:

min
∑

(i,j)∈Ω

[
Xij(1− zij) + (1−Xij)zij

]
(4.6a, Formulation I)

yijk ≥ uik + vkj − 1, yijk ≤ uik, yijk ≤ vkj ∀i ∈ [d], j ∈ [n], k ∈ [r] (4.6b)∑
k∈[r]

yijk − zij − 2tij = 0 ∀i ∈ [d], j ∈ [n] (4.6c)

u ∈ {0, 1}d×r, v ∈ {0, 1}r×n, z ∈ {0, 1}d×n, t ∈ Zd×n+ . (4.6d)

4.2.2 Formulation II: McCormick with parity polytopes disjunction

Our second formulation is derived by constructing an extended formulation of the parity
set Pij for each (i, j) ∈ [d]× [n]. We use ideas of odd and even parity polytopes, along with
disjunctive programming. The parity polytope is the convex hull of all 0−1 vectors with an
even number of ones [67]. A closely-related polytope is the convex hull of all 0− 1 vectors
with an odd number of ones. We refer to the two polytopes as P even and P odd :

P even = conv{y ∈ {0, 1}r :
r∑

k=1

yk is even }

P odd = conv{y ∈ {0, 1}r :
r∑

k=1

yk is odd }.
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We present a compact formulation in extended space, called the switching formulation,
for P even and P odd. We state the switching formulation directly which characterizes the
convex hull, and refer reader to [67] for more details. We introduce wj ∈ R variables
for j ∈ {s, t} ∪ {[r] × {L,R}}, i.e., w ∈ R2r+2. The compact formulation for P even in the
extended space is as follows:

P even
s :=

{
(y, w) ∈ [0, 1]r × R2r+2 |ws − wt ≥ 1 (4.7a)

w1,R − ws − y1 ≥ −1 (4.7b)

w1,L − ws + y1 ≥ 0 (4.7c)

wk+1,L − wk,R − yk+1 ≥ −1 ∀k ∈ [r − 1] (4.7d)

wk+1,R − wk,R + yk+1 ≥ 0 ∀k ∈ [r − 1] (4.7e)

wk+1,R − wk,L − yk+1 ≥ −1 ∀k ∈ [r − 1] (4.7f)

wk+1,L − wk,L + yk+1 ≥ 0 ∀k ∈ [r − 1] (4.7g)

wt − wn,R ≥ 0
}
. (4.7h)

The switching formulation P odd
s for P odd is identical to P even

s with the constraint (4.7h)
being replaced with wt − wn,L ≥ 0.

The disjunction of P odd and P even can be used to model addition in F2. In particular, for
each (i, j) ∈ [d]× [n], we require zij to take a value of 1 if

∑
k∈[r] yijk is odd and 0 if

∑
k∈[r] yijk

is even. In other words, either yij ∈ P odd or yij ∈ P even. For each (i, j) ∈ [d]× [n], we define
variables yoij ∈ {0, 1}r such that yoij ∈ P odd if zij = 1, and similarly we define yeij ∈ {0, 1}r

such that yeij ∈ P even if zij = 0. We now enforce the constraints yijk = yoijk + yeijk, yoijk ≤ zij ,
and yeijk ≤ 1− zij for all k ∈ [r]. The latter constraints imply that if zij = 1, then yij = yoij ,
and hence yij ∈ P odd. Similarly, if zij = 0, then yij = yeij , and hence yij ∈ P even.

For each matrix element (i, j) ∈ [d] × [n], we define the set DIij to be the set of points
satisfying the disjunction of polytopes P odd and P even. Since zij already indicates which
set among P even and P odd is selected, we don’t need an auxiliary binary variable to model
the disjunction between membership in the odd or even parity polytope. We use the
switching formulations P odd

s and P even
s to represent odd and even parity polytopes. For
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ease of notation, we drop index (ij), and define DI as follows:

DI =
{

(wo, we, y, yo, ye, z) ∈ R2r+2 × R2r+2×{0, 1}r × {0, 1}r × {0, 1}r × {0, 1} |

wos − wot ≥ z (4.8a)

wo1,R − wos − yo1 ≥ −z (4.8b)

wo1,L − wos + yo1 ≥ 0 (4.8c)

wok+1,L − wok,R − yok+1 ≥ −z ∀k ∈ [r − 1] (4.8d)

wok+1,R − wok,R + yok+1 ≥ 0 ∀k ∈ [r − 1] (4.8e)

wok+1,R − wok,L − yok+1 ≥ −z ∀k ∈ [r − 1] (4.8f)

wok+1,L − wok,L + yok+1 ≥ 0 ∀k ∈ [r − 1] (4.8g)

wot − won,L ≥ 0 (4.8h)

wes − wet ≥ 1− z (4.8i)

we1,R − wes − ye1 ≥ −(1− z) (4.8j)

we1,L − wes + ye1 ≥ 0 (4.8k)

wek+1,L − wek,R − yek+1 ≥ −(1− z) ∀k ∈ [r − 1] (4.8l)

wek+1,R − wek,R + yok+1 ≥ 0 ∀k ∈ [r − 1] (4.8m)

wek+1,R − wek,L − yek+1 ≥ −(1− z) ∀k ∈ [r − 1] (4.8n)

wek+1,L − wek,L + yek+1 ≥ 0 ∀k ∈ [r − 1] (4.8o)

wet − wen,R ≥ 0 (4.8p)

yk = yok + yek ∀k ∈ [r] (4.8q)

yok ≤ z ∀k ∈ [r] (4.8r)

yek ≤ 1− z ∀k ∈ [r]
}
. (4.8s)

Constraints (4.8a)-(4.8h) correspond to P odd and constraints (4.8i)-(4.8p) correspond to
P even. Constraints (4.8q)-(4.8s) ensure that y = yo and ye = 0 if z = 1, i.e., P odd

s constraints
are active, and similarly y = ye and yok = 0 if z = 0, i.e., P even

s constraints are active. We
refer to the LP relaxation of DI as D.

Theorem 4.6. The convex hull of parity set P is the set of (y, z) for which there exist vectors
(wo, we, yo, ye) such that (wo, we, y, yo, ye, z) ∈ D, i.e., conv(projy,z P) = projy,z D.

Proof. This follows from the theorem of Balas [6, 31] since P even and P odd are non-empty
polytopes. �
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We now use the idea of the disjunctive formulation and parity polytopes to replace
constraint (4.6b) in Formulation I (4.6) to get the following formulation:

min
∑

(i,j)∈Ω

[
Xij(1− zij) + (1−Xij)zij

]
(4.9a, Formulation II)

yijk ≥ uik + vkj − 1, yijk ≤ uik, yijk ≤ vkj ∀i ∈ [d], j ∈ [n], k ∈ [r] (4.9b)

(yij, y
o
ij, y

e
ij, zij) ∈ DIij ∀i ∈ [d], j ∈ [n]. (4.9c)

The LP relaxation of Formulation II characterizes the convex hull for parity sum of each
matrix element in lifted space as we show in Theorem 4.7. We first define set D′ as follows.

D′ := {(u, v, y, z) ∈ Rr × Rr × [0, 1]r × [0, 1] | (y, z) ∈ projy,z D} (4.10)

Theorem 4.7. The convex hull of intersection of sets P andMI is D′ ∩M, i.e.,

conv(P ∩MI) = D′ ∩M.

The proof of Theorem 4.7 is based on the following intermediate results.

Lemma 4.8. For P andMI , conv(P ∩MI) = conv(P) ∩ conv(MI)

Proof. conv(P ∩MI) ⊆ conv(P)∩conv(MI) trivially since conv(P ∩MI) is the smallest
convex set containing all the points in P ∩MI , it must be a subset of conv(P) and conv(MI)

individually.
If (û, v̂, ŷ, ẑ) ∈ conv(P) ∩ conv(MI), then (û, v̂, ŷ, ẑ) =

∑
i λi(u, v, y, ẑ)i such that 1>λ =

1, λ ≥ 0, and (u, v, y, ẑ)i ∈ MI ∀i. Similarly (û, v̂, ŷ, ẑ) =
∑

j µj(û, v̂, y, z)j such that 1>µ =
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1, µ ≥ 0 where (û, v̂, y, z)j ∈ P ∀j. Substituting û =
∑

i λiui and v̂ =
∑

i λivi,

(û, v̂, ŷ, ẑ) =
∑
j

µj(û, v̂, y, z)j

=
∑
j

µj(û, v̂, yj, zj)

=
∑
j

µj

(∑
i

λiui,
∑
i

λivi, yj, zj

)
=
∑
j

µj

(∑
i

λiui,
∑
i

λivi,
∑
i

λiyj,
∑
i

λizj

)
=
∑
j

µj

(∑
i

λi(ui, vi, yj, zj)
)

=
∑
j

∑
i

µjλi(ui, vi, yj, zj)

=
∑
i,j

γi,j(u, v, y, z)ij,

where γij = λiµj and (u, v, y, z)ij = (ui, vi, yj, zj). We observe that γi,j = λiµj ≥ 0,∑
i,j

γi,j =
∑
i,j

λiµj =
∑
i

λi
∑
j

µj =
∑
i

λi.1 = 1,

and since (u, v, y, z)i,j ∈MI ∩ P ∀(i, j), it follows that (û, v̂, ŷ, ẑ) ∈ conv(P ∩MI). �

We relaxMI using the McCormick relaxation as follows [84]:

M = {(u, v, y, z) ∈ [0, 1]3r × R : yk ≤ uk, yk ≤ vk, yk ≥ uk + vk − 1 ∀k ∈ [r]}. (4.11)

We next show thatM characterizes conv(MI).

Proposition 4.9. McCormick LP relaxationM ofMI , characterizes convex hull ofM, i.e.,M =

conv (MI).

Proof. Follows from [84] since there is no interaction between product variable in
different terms.

Proof of Theorem 4.7 From Lemma 4.8, conv(P ∩MI) = conv(P) ∩ conv(MI). Using
Theorem 4.4 and definition of D′ in equation (4.10), conv(P) = D′. The result then follows
by using conv(MI) =M from Proposition 4.9.
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4.2.3 Formulation III: McCormick-free compact formulation

In the previous section, we characterized the convex hull of the set I in an extended space
of (u, v, y, z) variables using parity polytopes, disjunctive formulations, and the McCormick
relaxation. We now characterize the convex hull of I directly in the space (u, v, z) variables.
We first define set T to be the set of tri-partitions on [r], i.e.,

T := {S ⊆ [r], Q ⊆ [r], T ⊆ [r] | S ∪Q ∪ T = [r], S ∩Q = ∅, S ∩ T = ∅, Q ∩ T = ∅}.

For each matrix element (i, j) ∈ [d] × [n], we define the set F Iij to be the set of points
satisfying the new inequalities we propose along with the bound constraints. For ease of
notation, we drop the index (ij), and define F I as follows:

F I =
{

(u, v, z) ∈ {0, 1}r × {0, 1}r × {0, 1} |

z +
∑
k∈S

(uk + vk)−
∑
k∈Q

uk −
∑
k∈T

vk ≤ 2|S| ∀(S,Q, T ) ∈ T , |S| even (4.12a)

− z +
∑
k∈S

(uk + vk)−
∑
k∈Q

uk −
∑
k∈T

vk ≤ 2|S| − 1 ∀(S,Q, T ) ∈ T , |S| odd
}
. (4.12b)

We refer to the LP relaxation of F I as F and to inequalities (4.12a), (4.12b) as SQT inequal-
ities. We next show in Theorem 4.10 that the proposed inequalities correctly encode matrix
multiplication in F2.

Theorem 4.10. For vectors û ∈ {0, 1}r, v̂ ∈ {0, 1}r, ẑ ∈ {0, 1}, (û, v̂, ẑ) ∈ F I if and only if
ẑ = ⊕

k∈[r]
ûkv̂k.

Proof. We first show that if ẑ = ⊕
k∈[r]

ûkv̂k, then (û, v̂, ẑ) ∈ F I . For a given û, v̂, let

M1(û, v̂) = {k : ûk = v̂k = 1}

M2(û, v̂) = {k : ûk = 0}

M3(û, v̂) = {k : v̂k = 0}.

• If |M1| is odd, then
∑

k∈[r] ûkv̂k = 2m+ 1 for some m ∈ Z+, and ẑ = ⊕
k∈[r]

ûkv̂k = 1. To

show (û, v̂, ẑ) ∈ F I , we need to show that (û, v̂, ẑ) does not violate constraints (4.12a)
or (4.12b). For constraint (4.12a), we maximize left-hand-side of the constraint after
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moving 2|S| on the left, i.e.,

p∗ = max
(S,Q,T )∈T :|S| is even

{ẑ +
∑
k∈S

(ûk + v̂k − 2)−
∑
k∈Q

ûk −
∑
k∈T

v̂k}.

Let (Ŝ, Q̂, T̂ ) be the optimal solution to the above optimization problem. We claim
that Ŝ = M1 \ {l} for some l ∈M1, Q̂ = M2 ∪ {l}, and T̂ = M3 is the optimal solution.
The objective value corresponding to above solution is p̂ = ẑ +

∑
M1\{l}(ûk + v̂k −

2) −
∑

M2∪{l} ûk −
∑

M3
v̂k = 1 + 0 − 1 − 0 = 0. We claim that there is no feasible

(S,Q, T ) ∈ T with |S| even of higher objective value. For contradiction, assume there
exists (S ′, Q′, T ′) ∈ T with |S ′| even of objective value p′ > 0.

We first observe that
∑

Q′ ûk +
∑

T ′ v̂k ≥ 1. This follows from the fact that |M1| is odd
and |S ′| is even resulting in |M1∩{Q′∪T ′}| ≥ 1. Since ûk = v̂k = 1 ∀k ∈M1, it follows
that

∑
Q′ ûk +

∑
T ′ v̂k ≥ 1. We next observe that

∑
k∈S′(ûk + v̂k − 2) ≤ 0 since (û, v̂)

are binary vectors. Since ẑ = 1, it follows that p′ ≤ 0, a contradiction. Hence, p̂ = 0 is
the optimal value which implies that constraint (4.12a) are satisfied.

For constraint (4.12b), we maximize left-hand-side of the constraint after moving
2|S| on the left, i.e.,

p∗ = max
(S,Q,T )∈T :|S| is odd

{−ẑ +
∑
k∈S

(ûk + v̂k − 2)−
∑
k∈Q

ûk −
∑
k∈T

v̂k}

≤ −ẑ.

The above follows from the fact that (û, v̂) are binary vectors, and hence (ûk+ v̂k−2) ≤
0, −ûk ≤ 0, and −v̂k ≤ 0. Since ẑ = 1, p∗ ≤ −ẑ = −1, and hence constraints (4.12b)
are satisfied.

• If |M1| is even, then
∑

k∈[r] ûkv̂k = 2m for some m ∈ Z+, and ẑ = ⊕
k∈[r]

ûkv̂k =

0. To show (û, v̂, ẑ) ∈ F I , we need to show that (û, v̂, ẑ) does not violate con-
straints (4.12a)or (4.12b). For constraint (4.12a), we maximize left-hand-side of
the constraint after moving 2|S| on the left, i.e.,

p∗ = max
(S,Q,T )∈T :|S| is even

{ẑ +
∑
k∈S

(ûk + v̂k − 2)−
∑
k∈Q

ûk −
∑
k∈T

v̂k}

≤ ẑ.

The above follows from the fact that (û, v̂) are binary vectors, and hence (ûk+ v̂k−2) ≤
0, −ûk ≤ 0, and −v̂k ≤ 0. Since ẑ = 0, p∗ ≤ ẑ = 0, and hence constraints (4.12a) are
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satisfied.

For constraint (4.12b), we maximize left-hand-side of the constraint after moving
2|S| on the left, i.e.,

p∗ = max
(S,Q,T )∈T :|S| is odd

{−ẑ +
∑
k∈S

(ûk + v̂k − 2)−
∑
k∈Q

ûk −
∑
k∈T

v̂k}.

Let (Ŝ, Q̂, T̂ ) be the optimal solution to the above optimization problem. We first
consider the case whenM1 6= ∅. We claim that Ŝ = M1\{l} for some l ∈M1, Q̂ = M2∪
{l}, and T̂ = M3 is the optimal solution. The objective value corresponding to above
solution is p̂ = −ẑ+

∑
M1\{l}(ûk+ v̂k−2)−

∑
M2∪{l} ûk−

∑
M3
v̂k = −0+0−1−0 = −1.

We claim that there is no feasible (S,Q, T ) ∈ T with |S| even of higher objective value.
For contradiction, assume there exists (S ′, Q′, T ′) ∈ T with |S ′| even of objective value
p′ > −1.

We first observe that
∑

Q′ ûk +
∑

T ′ v̂k ≥ 1. This follows from the fact that |M1| is even
and |S ′| is odd resulting in |M1 ∩{Q′ ∪T ′}| ≥ 1. Since ûk = v̂k = 1 ∀k ∈M1, it follows
that

∑
Q′ ûk +

∑
T ′ v̂k ≥ 1. We next observe that

∑
k∈S′(ûk + v̂k − 2) ≤ 0 since (û, v̂)

are binary vectors. Since ẑ = 0, it follows that p′ ≤ −1, a contradiction. Hence, p̂ = −1

is the optimal value which implies that constraints (4.12b) are satisfied.

IfM1 = ∅, we claim that
∑

S(ûk+v̂k−2) ≤ −1 for all odd |S|. This follows from the fact
that M1 = ∅ implying that @k such that ûk = v̂k = 1 implying that ûk + v̂k ≤ 1 ∀k ∈ [r],
and the claim follows. Using this and the fact that ûk ≤ 0, v̂k ≤ 0, it follows that
p∗ ≤ −1, and hence constraints (4.12b) are satisfied.

We have thus shown that (û, v̂, ẑ) ∈ F I for all (û, v̂, ẑ) ∈ {0, 1}2r+1 if ẑ = ⊕
k∈[r]

ûkv̂k.

We next show that for (û, v̂, ẑ) ∈ {0, 1}2r+1, if ẑ 6= ⊕
k∈[r]

ûkv̂k, then (û, v̂, ẑ) /∈ F I .

• Let |M1| be even and ẑ = 1. Then, ẑ 6= ⊕
k∈[r]

ûkv̂k. We show that this point is violated

by one of the inequalities in the F I . For contradiction, assume there is no inequality
that violates the point (û, v̂, ẑ). Since |M1| is even, consider constraint (4.12a) and let
S = M1, Q = M2, T = M3. Then,

ẑ +
∑
k∈S

(ûk + v̂k)−
∑
k∈Q

ûk −
∑
k∈T

v̂k ≤ 2|S|

1 +
∑
M1

(1 + 1)−
∑
M2

0−
∑
M3

0 ≤ 2|M1|

1 + 2|M1| ≤ 2|M1|,



97

which is a contradiction.

• Let |M1| be odd and ẑ = 0. Then, ẑ 6= ⊕
k∈[r]

ûkv̂k. We show that this point is violated

by one of the inequalities in the F I . For contradiction, assume there is no inequality
that violates the point (û, v̂, ẑ). Since |M1| is odd, consider constraint (4.12b) and let
S = M1, Q = M2, T = M3. Then,

−ẑ +
∑
k∈S

(ûk + v̂k)−
∑
k∈Q

ûk −
∑
k∈T

v̂k ≤ 2|S| − 1

0 +
∑
M1

(1 + 1)−
∑
M2

0−
∑
M3

0 ≤ 2|M1| − 1

2|M1| ≤ 2|M1| − 1,

which is a contradiction.

We have thus shown that for all (û, v̂, ẑ) ∈ {0, 1}2r+1 if ẑ 6= ⊕
k∈[r]

ûkv̂k, then (û, v̂, ẑ) /∈ F I . �

We also state the following corollary which follows immediately from Theorem 4.10.

Corollary 4.11. For binary vector u, v ∈ {0, 1}r, z ∈ {0, 1}, all inequalities in the description of
F I are necessary to model z = u⊗ v.

We next provide a valid integer programming formulation for matrix completion (4.2)
problem set I using set F I as follows.

min
∑

(i,j)∈Ω

[
Xij(1− zij) + (1−Xij)zij

]
(4.13a, Formulation III)

(ui, vj, zij) ∈ F Iij ∀i ∈ [d], j ∈ [n] (4.13b)

We next show that the LP relaxation of F I characterizes the convex hull of I.

Theorem 4.12. LP relaxation of F I characterizes the convex hull of I, i.e.,

conv(I) = {(u, v, z) ∈ [0, 1]r × [0, 1]r × [0, 1] : (4.12a), (4.12b)}.

Proof. We prove the result by showing that optimizing any arbitrary linear objective
function over the LP relaxation yields an optimal integer solution. We show this by con-
structing an integer primal feasible solution and then proving it is optimal by constructing
a feasible solution to the dual problem with matching objective function value.
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Thus, let (c, d, f) be the coefficients of arbitrary objective function and consider the
primal linear program P:

p∗ = max
u,v,z

cTu+ dTv + fz (4.14a, P)

z +
∑
S

(uk + vk)−
∑
Q

uk −
∑
T

vk ≤ 2|S| ∀(S,Q, T ) ∈ T : |S| is even

(4.14b, πSQT )

−z +
∑
S

(uk + vk)−
∑
Q

uk −
∑
T

vk ≤ 2|S| − 1 ∀(S,Q, T ) ∈ T : |S| is odd

(4.14c, πSQT )

uk ≤ 1 ∀k ∈ [r] (4.14d, µk)

vk ≤ 1 ∀k ∈ [r] (4.14e, ηk)

z ≤ 1 (4.14f, γ)

u, v, z ≥ 0,

and its dual D

d∗ = min
π,γ,µ,η

2
∑
SQT

|S|πSQT −
∑

SQT :Sodd

πSQT + 1Tµ+ 1Tη + γ (4.15a, D)∑
SQT :S3k

πSQT −
∑

SQT :Q3k

πSQT + µk ≥ ck ∀k ∈ [r] (4.15b, uk)∑
SQT :S3k

πSQT −
∑

SQT :T3k

πSQT + ηk ≥ dk ∀k ∈ [r] (4.15c, vk)∑
SQT :S is even

πSQT −
∑

S:S is odd

πSQT + γ ≥ f (4.15d, z)

π, γ, µ, η ≥ 0.

Without loss of generality, we let f = +1.
Let C+ = {k : ck ≥ 0} and D+ = {k : dk ≥ 0}. Similarly, define C− and D−.
We initialize primal and dual solutions as follows:

– ûC+ = 1, ûC− = 0, v̂D+ = 1, v̂D− = 0, and ẑ = 1 if |C+ ∩D+| is odd and 0 otherwise.

– µ̂C+ = cC+ , µ̂C− = 0, η̂D+ = dD+ , η̂D− = 0, γ̂ = f = 1 if |C+ ∩ D+| is odd, and 0

otherwise. π̂ = 0

We now consider the following two cases based on whether |C+ ∩D+| is odd or even, and
construct integer primal feasible and dual feasible solutions with the same objective values.
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1. |C+ ∩D+| is odd: Observe that (û, v̂, ẑ) satisfies F2 arithmetic ensuring primal feasi-
bility with objective value p̂ = c(C+) + d(D+) + 1.
We next check dual feasibility. Constraints (4.15b) are satisfied since π̂ = 0, re-
ducing constraints (4.15b) to µ̂k ≥ ck, which are satisfied by construction of µ̂.
Constraints (4.15c) are similarly satisfied, and constraint (4.15d) is satisfied since
γ̂ = f = 1. The dual objective evaluates to d̂ = 1T µ̂ + 1T η̂ + γ̂ = c(C+) + d(D+) + 1,
which is the same as p̂.

2. |C+ ∩D+| is even: We define ∆∗ as

∆∗ = min{min{min{ck, dk} :k ∈ C+ ∩D+}, (4.16)

min{−dk : k ∈ C+ ∩D−},

min{−ck : k ∈ C− ∩D+},

min{−ck − dk : k ∈ C− ∩D−},

1}, (4.17)

and observe that ∆∗ ∈ [0, 1]. If ∆∗ < 1, we make the following changes in our primal
solution: We first make ẑ = 1. Let k∗ denotes the arg mink corresponding to ∆∗. If
k∗ ∈ C+ ∩ D+, we either update ûk∗ = 0 or v̂k∗ = 0 based on whether ∆∗ = ck∗

or ∆∗ = dk∗ . If ∆∗ = ck∗ = dk∗ , we only update ûk∗ = 0. If k∗ ∈ C+ ∩ D−, we
update v̂k∗ = 1, and similarly if k∗ ∈ C+ ∩D−, we update ûk∗ = 1. We update both
ûk∗ = v̂k∗ = 1 if k∗ ∈ C− ∩D−.

If ∆∗ = 1, we make no changes in our primal solution.

The above updates ensure F2 feasibility in (û, v̂, ẑ), and hence the primal solution is
feasible with objective value p̂ = c(C+) + d(D+) + 1−∆∗.

We next define c′, d′ as follows:

c′ = min{−ck : k ∈ C− ∩D−} d′ = min{−dk : k ∈ C− ∩D−}

We now construct dual feasible solution. We first update µ̂, η̂, γ̂ as follows:

µ̂k =


ck if k ∈ C+ ∩D−

ck −∆∗ if k ∈ C+ ∩D+

0 o.w.

, ηk =


dk if k ∈ C− ∩D+

dk −∆∗ if k ∈ C+ ∩D+

0 o.w.

, γ̂ = 1−∆∗

(4.18)
We update π̂ based on whether c′ + d′ ≥ ∆∗ or c′ + d′ < ∆∗.
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(a) c′ + d′ ≥ ∆∗ : We do the following update in π̂:

π̂S′Q′T ′ = c′ where S ′ = C+ ∩D+, Q′ = C−, T ′ = C+ ∩D− (4.19)

π̂S′Q′′T ′′ = ∆∗ −min{c′,∆∗}where S ′ = C+ ∩D+, Q′′ = C− ∩D+, T ′′ = D−

We let all the remaining π̂SQT to 0. Observe that π̂S′Q′T ′ + π̂S′Q′′T ′′ = ∆∗, π̂S′Q′T ′ ≤
−ck ∀k ∈ C− ∩D−, and π̂S′Q′′T ′′ ≤ −dk ∀k ∈ C− ∩D−.
We now show that the dual assignment in (4.18), (4.19) is feasible with objective
value d̂ = p̂.
Constraints (4.15b):

– If k ∈ C+ ∩D+, then k ∈ S ′, and constraints (4.15b) can be simplified to π̂S′Q′T ′ +
π̂S′Q′′T ′′ + µ̂k = ∆∗ + (ck −∆∗) ≥ ck, and are clearly satisfied.

– If k ∈ C− ∩D+, then k ∈ Q′ ∩ Q′′, and constraints (4.15b) can be simplified to
−π̂S′Q′T ′ − π̂S′Q′′T ′′ = −∆∗ ≥ ck. The later follows from the definition of ∆∗.

– If k ∈ C+ ∩ D−, then k ∈ T ′ ∩ T ′′, and constraints (4.15b) can be simplified to
µ̂k ≥ ck and are satisfied since µ̂k = ck ∀k ∈ C+ ∩D−.

– If k ∈ C− ∩ D− then k ∈ Q′ \ Q′′ and constraints (4.15b) can be simplified to
−π̂S′Q′T ′ ≥ ck and are satisfied by construction of π̂S′Q′T ′ .

Constraints (4.15c) are satisfied by a similar argument as above.
Constraints (4.15d) reduces to π̂S′Q′T ′ + π̂S′Q′′T ′′ + γ̂ = ∆∗ + 1−∆∗ ≥ 1, and is clearly
satisfied.
We next observe that (µ̂, η̂, γ̂, π̂) ≥ 0 by construction.
Dual objective value d̂ is

d̂ =2
∑
SQT

|S|π̂SQT −
∑

SQT :Sodd

π̂SQT + 1T µ̂+ 1T η̂ + γ̂

= 2|S ′|(π̂S′Q′T ′ + π̂S′Q′′T ′′) + (c(C+)−
∑
S′

∆∗) + (d(D+)−
∑
S′

∆∗) + (1−∆∗)

= 2|S ′|∆∗ + c(C+) + d(D+)− 2
∑
S

∆∗ + 1−∆∗

= c(C+) + d(D+) + 1−∆∗,

which is the same as p̂.

(b) c′ + d′ < ∆∗ : We let ρ = ∆∗ − c′ − d′, and α = arg min{−ck : k ∈ C− ∩ D−}. Then
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c′ = cα. Let σ1, σ2, . . . , σp be an ordering of C− ∩D− \ {α} such that

d′ = −dσ1 ≤ −dσ2 ≤ · · · − dσp .

We first observe that α 6= σ1, if not then ∆∗ > c′ + d′ = −cα − dα, but by definition of
∆∗, ∆∗ ≤ −cα − dα. This implies that C− ∩D− \ {α} is not empty.
Let l∗ = maxj∈[p]{j | −dσj + dσ1 < ρ}.
We now do the following updates in π̂:

π̂S′Q′T ′ = c′ where S ′ = C+ ∩D+, Q′ = C−, T ′ = C+ ∩D− (4.20)

π̂S′Q′′T ′′ = d′ where S ′ = C+ ∩D+, Q′′ = C− ∩D+, T ′′ = D−

WithS ′ = C+∩D+, we letQj+1 = C−∩D+∪{σ1, σ2, . . . , σj}, Tj+1 = D−\{σ1, σ2, . . . , σj},
we now update following dual variables π̂1, . . . , π̂l∗+1.

π̂j+1 = π̂S′Qj+1Tj+1
= −dσj+1

+ dσj , ∀j = 0, l∗ − 1 (4.21a)

π̂l∗+1 =π̂S′Ql∗+1Tl∗+1
= ρ− (−dσl∗ + dσ1) (4.21b)

By construction in (4.21),
∑l∗+1

j=1 π̂j = ρ. This also implies 1>π̂ = ∆∗.
We now show that this dual assignment in (4.20),(4.21) is feasible with objective
value d̂ = p̂.
Constraints (4.15b):

– If k ∈ C+ ∩D+, then k ∈ S ′, and constraints (4.15b) can be simplified to π̂S′Q′T ′ +
π̂S′Q′′T ′′ +

∑l∗+1
j=1 π̂S′QjTj + µ̂k = ∆∗ + (ck −∆∗) ≥ ck, and are clearly satisfied.

– If k ∈ C− ∩ D+, then k ∈ Q′ ∩ Q′′, and constraints (4.15b) can be simplified
to −π̂S′Q′T ′ − π̂S′Q′′T ′′ −

∑l∗+1
j=1 π̂S′QjTj = −∆∗ ≥ ck. The later follows from the

definition of ∆∗.
– If k ∈ C+ ∩ D−, then k ∈ T ′ ∩ T ′′, and constraints (4.15b) can be simplified to
µ̂k ≥ ck and are satisfied since µ̂k = ck ∀k ∈ C+ ∩D−.

– If k = α, then k ∈ Q′ \ Q′′, and left-hand-side of constraints (4.15b) can be
simplified to −

∑
Q3k π̂SQT = −c′ ≥ ck. The inequality follows by the definition

of c′.
– If k ∈ C−∩D− \{α} = {σ1, σ2, . . . , σp}, then k = σl for some l ∈ {1, 2, . . . , p}, and
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further observe that k ∈ Q′ \Q′′. Constraints (4.15b) can be simplified to

−
∑
Q3k

π̂SQT = −π̂S′Q′T ′ −
l∗+1∑

j=1:Qj3k

π̂S′QjTj

= −c′ −
p+1∑
j=l+1

π̂S′QjTj

= −c′ − ρ+
l∑

j=1

π̂S′QjTj

≥ −c′ − ρ+ (−dσl + dσ1)

≥ cσl = ck

The last inequality follows because −cσl − dσl ≥ ∆∗ = c′ + d′ + ρ by definition of
∆∗ and using d′ = −dσ1 .

Constraints (4.15c):

– If k ∈ C+ ∩ D+, then constraints (4.15c) are valid by a similar argument as
constraints (4.15b).

– If k ∈ C+ ∩ D−, then k ∈ T ′ ∩ T ′′ and constraints (4.15c) can be simplified to
−π̂S′Q′T ′− π̂S′Q′′T ′′−

∑l∗+1
j=1 π̂S′QjTj = −∆∗ ≥ dk. The later follows by the definition

of ∆∗.
– If k ∈ C− ∩D+, then k ∈ Q′ ∩ Q′′, and constraints (4.15b) can be simplified to
η̂k ≥ dk and are satisfied since η̂k = dk ∀k ∈ C− ∩D+.

– If k = α, then k ∈ T ′′ \ T ′ and k ∈ Tj ∀j ∈ [l∗ + 1], and left-hand-side of
constraints (4.15c) can be simplified to−

∑
T3k π̂SQT = π̂S′Q′′T ′′ −

∑l∗+1
j=1 π̂S′QjTj =

−d′ − ρ ≥ dα. The later follows because −cα − dα ≥ ∆∗ = c′ + d′ + ρ and using
c′ = −cα.

– If k ∈ C−∩D− \{α} = {σ1, σ2, . . . , σp}, then k = σl for some l ∈ {1, 2, . . . , p}, and
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k ∈ T ′′ \ T ′. Left-hand-side of constraints (4.15c) an be simplified to

−
∑
T3k

π̂SQT = −π̂S′Q′′T ′′ −
l∗+1∑

j=1:Tj3k

π̂S′QjTj

= −d′ −
l∑

j=1

π̂S′QjTj

= −d′ − (−dσl + dσ1)

= −d′ − (−dσl − d′)

= dσl = dk

Constraint (4.15d) reduce to 1>π̂ + γ̂ = ∆∗ + 1−∆∗ ≥ 1, and is clearly satisfied.
Dual objective d̂ = c(C+) + d(D+) + 1−∆∗ and follows a similar argument as for case
(a).

We have thus shown that for any given objective, (P) admits a feasible integral solution
(û, v̂, ẑ) having value c(C+) + d(D+) + 1−∆∗ and (D) admits a feasible solution (π̂, γ̂, µ̂, η̂)

with a value d̂ = p̂. �

4.3 Insights into SQT inequalities
In this section, we provide some insights in the novel SQT inequalities (4.12a), (4.12b)
proposed in Section 4.2.3. In Section 4.3.1, we discuss how to derive SQT inequalities via
lifting from a lower dimensional face of conv(I). We then discuss linear-time separation of
SQT inequalities in Section 4.3.2.

4.3.1 Deriving SQT inequalities via lifting

In this section, we show that the inequalities (4.12a), (4.12b) proposed in Section 4.2.3, can
be derived via lifting. In particular, for some i ∈ [r], we let (S,Q, T ) be a partition of [r] \ i,
γ = ⊕

k∈[r]\{i}
ukvk, and derive facet-defining inequalities for the polytope conv(I ∩ FSQT )

where FSQT is defined as follows:

FSQT = {(u, v, z) ∈ {0, 1}2r+1 : uk = vk = 1 ∀k ∈ S, uk = 0 ∀k ∈ Q, vk = 0, ∀k ∈ T}.
(4.22)

We then lift the derived inequalities to obtain facet-defining inequalities for conv(I),
which coincidentally are identical to (4.12a),(4.12b). The motivation for doing this is to
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follow a similar strategy to derive valid inequalities for conv(Iij ∩ Ii′j) for i 6= i′ as we
discuss later in Section 4.4.1.

We rewrite the F2 vector dot product between u, v as follows:

z = u⊗ v = uivi ⊕ γ.

We now consider two different cases based on whether |S| is even or odd.

• |S| is even: In this case, γ = 0. The inequality z ≥ ui + vi − 1 is facet defining
for conv(I ∩ FSQT ). This is easy to observe since I ∩ FSQT is the same as I with
r = 1. Hence, by Proposition 4.5, for r = 1, dimension of polyhedron conv(FSQT ∩ I)

is 3, and dimension of face F = conv(FSQT ∩ I) ∩ {z = ui + vi − 1} is 2 since
(1, 0, 0), (0, 1, 0), (1, 1, 1) are affinely independent points on F .

We can now sequentially lift this inequality for variables fixed in S,Q, T to obtain
a facet defining inequality for conv(I) (Prop. 7.2, [30]). In particular, we lift the
following inequality.

ui + vi − z +
∑
k∈S

αk(1− uk) +
∑
k∈S

βk(1− vk) +
∑
Q

αkuk +
∑
T

βkvk ≤ 1

Here α, β are the lifting coefficients for uk, vk variables for k ∈ [r] \ {i}.

– Let S = {1, 2, . . . , |S|}. Lifting uk in this order,

α1 = 1−max{ui + vi − z | (u, v, z) ∈ I, u1 = 0, uS\{1} = vS = 1, uQ = vT = 0}

= −1

α2 = 1−max{ui + vi − z − (1− u1) | (u, v, z) ∈ I, u2 = 0, uS\{1,2} = vS = 1,

uQ = vT = 0}

= −1

...

α|S| = 1−max{ui + vi − z −
|S|−1∑
k=1

(1− uk) | (u, v, z) ∈ I, u|S| = 0, vS = 1,

uQ = vT = 0}

= −1.
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We now lift vk for k ∈ S,

β1 = 1−max{ui + vi − z −
∑
k∈S

(1− uk) | (u, v, z) ∈ I, v1 = 0, vS\{1} = 1,

uQ = 0, vT = 0}

= −1

β2 = 1−max{ui + vi − z −
∑
k∈S

(1− uk)− (1− v1) | (u, v, z) ∈ I, v2 = 0,

vS\{1,2} = 1, uQ = 0, vT = 0}

= −1

...

β|S| = 1−max{ui + vi − z −
∑
k∈S

(1− uk)−
|S|−1∑
k=1

(1− vk) | (u, v, z) ∈ I, v|S| = 0,

uQ = vT = 0}

= −1

– Let Q = {1, 2, . . . , |Q|}. Lifting uk in this order,

α1 = 1−max{ui + vi − z −
∑
k∈S

(2− uk − vk) | (u, v, z) ∈ I, u1 = 1,

uQ\{1} = vT = 0}

= −1

α2 = 1−max{ui + vi − z −
∑
k∈S

(2− uk − vk)− u1 | (u, v, z) ∈ I, u2 = 1,

uQ\{1,2} = vT = 0}

= −1

...

α|Q| = 1−max{ui + vi − z −
∑
k∈S

(2− uk − vk)−
|Q|−1∑
k=1

uk | (u, v, z) ∈ I, u|S| = 1,

vT = 0}

= −1

– Lifting in T follows a similar argument and βk = −1 ∀k ∈ T .
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The lifted inequality is then as follows:

ui + vi − z −
∑
k∈S

(1− uk)−
∑
k∈S

(1− vk)−
∑
Q

uk −
∑
T

vk ≤ 1.

Let S ← S ∪ {i}, with |S| now becoming odd, the inequality can then be rewritten as

2− z −
∑
k∈S

(1− uk)−
∑
k∈S

(1− vk)−
∑
Q

uk −
∑
T

vk ≤ 1,

− z +
∑
k∈S

(uk + vk)−
∑
Q

uk −
∑
T

vk ≤ 2|S| − 1,

which is the same as (4.12b).

• |S| is odd: In this case, γ = 1, and facet defining inequality for conv(I ∩ FSQT ) is
z ≤ 2− ui − vi. Lifting this inequality follows an identical procedure to the previous
case and gives inequalities of the form (4.12a).

Conjecture 4.13. (i) Lifting coefficients for variables fixed in set S = {k | uk = vk = 1},
Q = {k | uk = 0}, and T = {k | vk = 1} for inequality z ≥ ui + vi − 1 are order
independent.

(ii) Lifting coefficients for variables fixed in set S = {k | uk = vk = 1}, Q = {k | uk = 0}, and
T = {k | vk = 1} for inequality z ≤ 2− ui − vi are order independent.

4.3.2 Separating SQT inequalities

We now discuss a separation strategy for the SQT inequalities (4.12) proposed in Sec-
tion 4.2.3. In particular, given a point (û, v̂, ẑ), we want to check if an inequality of
type (4.12a) or (4.12b) is violated at (û, v̂, ẑ). We first formulate the separation problem as
an integer program and then provide a closed-form for its solution.

We define decision variables αk ∈ {0, 1} to be 1 if k ∈ S, βk ∈ {0, 1} to be 1 if k ∈ Q, and
γk ∈ {0, 1} to be 1 if k ∈ T , and 0 otherwise ∀k ∈ {1, 2, . . . , r}. Note that |S| =

∑
k∈[r] αk

We can now formulate the separation problem for (4.12a) as follows:
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max
r∑

k=1

[
(ûk + v̂k)αk − ûkβk − v̂kγk − 2αk

]
(4.23a)

αk + βk + γk = 1 ∀k ∈ [r] (4.23b)∑
k∈[r]

αk = 2t (4.23c)

α, β, γ ∈ {0, 1}r, t ∈ Z+. (4.23d)

Eliminating γk, we can alternatively write the above integer program as,

max
r∑

k=1

[
(ûk + 2v̂k − 2)αk + (v̂k − ûk)βk − v̂k

]
(4.24a)

αk + βk ≤ 1 ∀k ∈ [r] (4.24b)∑
k∈[r]

αk = 2t (4.24c)

α, β ∈ {0, 1}r, t ∈ Z+. (4.24d)

A similar integer program can be constructed for separating (4.12b) by replacing con-
straint (4.23c) with

∑
k∈[r] αk = 2t+ 1.

We next discuss a closed form solution for the above integer program. We let ck1 = ûk +

2v̂k− 2, ck2 = (v̂k− ûk), and ck3 = −v̂k for k ∈ [r]. We then use Algorithm 5 to find a partition
of [r]. In Algorithm 5, we first greedily assign each k ∈ [r] so as to maximize the objective
value of partition. If resulting Ŝ has even cardinality, we are done. If not, we modify set Ŝ
by choosing the best option between expanding Ŝ, i.e., adding an element to Ŝ or shrinking
Ŝ, i.e., removing an element from Ŝ. For the generated partition from Algorithm 5, we
then check if c1(Ŝ) + c2(Q̂) + c3(T̂ ) > −ẑ. If yes, we have found a violated inequality of
type (4.12a). An identical procedure is used to separate odd SQT inequality (4.12b).

Theorem 4.14 shows that Algorithm 5 is exact.

Theorem 4.14. The objective value of partition (Ŝ, Q̂, T̂ ) constructed using Algorithm 5, i.e.,
c1(Ŝ) + c2(Q̂) + c3(T̂ ) is the same as the optimal value of integer program 4.24.

Proof. Let (S∗, Q∗, T ∗) be the solution to the integer program (4.24) with optimal
value c∗. We let e denote the element that is swapped if |Ŝ| is odd at the end of line 10 in
Algorithm 5.

We first claim that if k /∈ S∗ ∩ Ŝ, then either k ∈ Q̂ ∩Q∗ or k ∈ T̂ ∩ T ∗, or there exists
another solution (S ′, Q′, T ′) of value c∗ such that k ∈ Q′ ∩ Q̂ or k ∈ T ′ ∩ T̂ . Assume ck2 6= ck3



108

Algorithm 5: Linear time separation for even SQT inequalities
Input: Vectors c1, c2, c3

Output: Partition of [r] in sets Ŝ, Q̂, T̂ such that |Ŝ| is even and
(Ŝ, Q̂, T̂ ) = arg min

(SQT )∈T
c1(S) + c2(Q) + c3(T )

1 Ŝ = ∅, Q̂ = ∅, T̂ = ∅;
2 for k ∈ [r] do
3 if ck1 ≥ ck2 and ck1 ≥ ck3
4 Ŝ ← Ŝ ∪ {k} ;
5 else if ck2 ≥ ck1 and ck2 ≥ ck3
6 Q̂← Q̂ ∪ {k};
7 else
8 T̂ ← T̂ ∪ {k};
9 end

10 end
11 if |Ŝ| not even
12 cke = max

{
max
k∈Q
{ck1 − ck2},max

k∈T
{ck1 − ck3}

}
; /* Expand Ŝ */

13 cks = max
{

max
k∈S
{−ck1 + ck2},max

k∈S
{−ck1 + ck3}

}
; /* Shrink Ŝ */

14 if cke ≥ cks
15 Ŝ ← Ŝ ∪ {ke}, Q̂← Q̂ \ {ke} if −ck2 ≥ −ck3 else T̂ ← T̂ \ {ke};
16 else
17 Ŝ ← Ŝ \ {ks}, Q̂← Q̂ ∪ {ks} if ck2 ≥ ck3 else T̂ ← T̂ ∪ {ks};
18 end
19 end
20 return Ŝ, Q̂, T̂

and for contradiction, let k ∈ Q̂, k /∈ Q∗. Then, by construction ck2 ≥ ck3 ∀k ∈ Q̂, and if k /∈ Q∗,
one can improve the optimal value c∗ by moving k from T ∗ toQ∗. Similarly, if k ∈ Q∗, k /∈ Q̂,
then by construction of Q̂ and T̂ , ck3 > ck2 . Thus, one can improve c∗ by moving k from Q∗ to
T ∗. In both cases, we assumed c∗ to be the optimal value, a contradiction. If ck2 6= ck3, then
c∗ is unaffected by whether k ∈ Q∗ or k ∈ T ∗, and hence one can construct Q′ such that
k ∈ Q̂ ∩Q′. A similar argument follows for sets T̂ and T ∗.

We next claim that if k ∈ Ŝ, k /∈ S∗, then either there exist another optimal solution
(S ′, Q′, T ′) of value c∗ such that k ∈ S ′ ∩ Ŝ or (S∗, Q∗, T ∗) is not optimal.

If k ∈ Ŝ \ S∗ and k 6= e, then ck1 ≥ max{ck2, ck3}. Since |Ŝ|, |S|∗ are even, at least one of
the following is true: (i) ∃k1 6= k, k1 ∈ Ŝ, k1 /∈ S∗, (ii) ∃k2 6= k, k2 ∈ S∗, k2 /∈ S. Case (i)
results in two elements k, k1 ∈ Ŝ \ S∗ such that ck1 + ck1

1 ≥ max{ck2, ck3} + max{ck1
2 , c

k1
3 } by

the construction of Ŝ. If the inequality holds, then it implies that c∗ is not optimal since one
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could improve c∗ by moving k, k1 to S∗ from Q∗ ∪ T ∗. If the equality holds, one can move
k, k1 to S∗ without decreasing c∗, and construct a new solution (S ′, Q′, T ′) with k ∈ Ŝ ∩ S ′.
In case (ii), since k2 /∈ Ŝ, it follows that ck2

1 ≤ max{ck2
2 , c

k2
3 } by construction. This implies

that moving k from Q∗ ∪ T ∗ to S∗ and k2 from S∗ to Q∗ ∪ T ∗ should either increase c∗ or
keep it the same. If c∗ increases, then (S∗, Q∗, T ∗) was not optimal, a contradiction. If c∗

stays the same, we constructed a new solution (S ′, Q′, T ′) of the value as c∗ with k ∈ Ŝ ∩ S ′.
If k ∈ Ŝ \ S∗ and k = e, for |S∗| to be even, at least one of the following is true:(i)

∃k1 6= e, k1 ∈ Ŝ, k1 /∈ S∗, (ii) ∃k2 6= e, k2 ∈ S∗, k2 /∈ S. In case (i), since e ∈ Ŝ, optimality
of e in Algorithm 5 implies that max{−ck1

1 + ck1
2 ,−ck1

1 + ck1
3 } ≤ max{ce1 − ce2, c

e
1 − ce3}, or

equivalently, ck1
1 + ce1 ≥ max{ck1

2 , c
k1
3 } + max{ce2, ce3}. Similar to k 6= e argument, it then

follows that either (S∗, Q∗, T ∗) is not optimal or one can construct a new solution S ′, Q′, T ′ of
value c∗ such that e ∈ Ŝ∩S ′. In case (ii), since k2 /∈ Ŝ, optimality of e in Algorithm 5 implies
that max{ck2

1 − ck2
2 , c

k2
1 − ck2

3 } ≤ max{ce1 − ce2, ce1 − ce3}, or equivalently ce1 + max{ck2
2 , c

k2
3 } ≥

max{ce2, ce3}+ ck2
1 . This implies that moving e from Q∗ ∪ T ∗ to S∗ and k2 from S∗ to Q∗ ∪ T ∗

should either increase c∗ or keep it the same. Similar to k 6= e argument, it then follows
that either (S∗, Q∗, T ∗) is not optimal or one can construct a new solution S ′, Q′, T ′ of value
c∗ such that e ∈ Ŝ ∩ S ′.

We next claim that if k ∈ S∗, k /∈ Ŝ, then either there exist another optimal solution
(S ′, Q′, T ′) of value c∗ such that k /∈ Ŝ ∪ S ′ or (S∗, Q∗, T ∗) is not optimal. Argument for
k ∈ S∗ \ Ŝ is analogous to k ∈ Ŝ \ S∗.

This completes the proof since we have shown that either (S∗, Q∗, T ∗) is not optimal or
one can construct a new solution (S ′, Q′, T ′) of the same value as c∗ such that S ′ = Ŝ, Q′ =

Q̂, T ′ = T̂ . �

4.4 Valid inequalities for the SQT formulation
In Section 4.2, we derived three formulations by formulating vector dot product for each
row of U and V . In other words, we modeled the set Iij ∀i ∈ [d], j ∈ [n]. In this Section,
we choose i, i′ ∈ [d], i 6= i′, and j ∈ [n], and propose valid inequalities for conv(Iij ∩ Ii′j) =

conv({(ui, ui′ , vj, zij, zı′j) ∈ {0, 1}3r+2 | zij = ui ⊗ vj, zi′j = ui′ ⊗ vj}). We first present the
inequalities in Section 4.4.1, discuss their derivations in Section 4.4.2, and discuss separation
strategies in Section 4.4.3- 4.4.4.
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4.4.1 Valid inequalities

For ease of notation, we refer to ui as u, ui′ as w, zij as zu, and zi′j as zw. We further let
Iuw = Iij ∩ Ii′j . Then,

Iuw =
{

(u,w, v, zu, zw) ∈ {0, 1}3r+2 | zu = u⊗ v, zw = w ⊗ v
}
. (4.25)

Let [r′] = [r] \ {i, j} for some i, j ∈ [r], Ru = ⊕
[r′]
ukvk, and Rw = ⊕

[r′]
wkvk. We next write

system of equations corresponding to Iuw as follows:

zu = uivi ⊕ujvj ⊕Ru (4.26a)

zw = wivi⊕wjvj ⊕Rw. (4.26b)

Theorem 4.15 (Family 1). Let (U,U c), (W,W c), and (V, V c) be three bi-partitions of [r′] =

[r] \ {i, j} for some i, j ∈ [r], i 6= j such that U c ∩W c ∩ V c = ∅.

(i) If |U ∩ V | is even and |W ∩ V | is even , then following is a valid inequality for conv(Iuw):

(1− wj) + vi +
∑
U∩V

(1− uk) +
∑
Uc∩V

uk +
∑
W∩V

(1− wk) +
∑
W c∩V

wk+∑
(U∪W )∩V

(1− vk) +
∑

(U∪W )∩V c

vk + (1− zu) + zw ≥ 1. (4.27, F ee
1 )

(ii) If |U ∩ V | is even and |W ∩ V | is odd , then following is a valid inequality for conv(Iuw):

(1− wj) + vi +
∑
U∩V

(1− uk) +
∑
Uc∩V

uk +
∑
W∩V

(1− wk) +
∑
W c∩V

wk+∑
(U∪W )∩V

(1− vk) +
∑

(U∪W )∩V c

vk + (1− zu) + (1− zw) ≥ 1. (4.28, F eo
1 )

(iii) If |U ∩ V | is odd and |W ∩ V | is even , then following is a valid inequality for conv(Iuw):

(1− wj) + vi +
∑
U∩V

(1− uk) +
∑
Uc∩V

uk +
∑
W∩V

(1− wk) +
∑
W c∩V

wk+∑
(U∪W )∩V

(1− vk) +
∑

(U∪W )∩V c

vk + zu + zw ≥ 1. (4.29, F oe
1 )
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(iv) If |U ∩ V | is odd and |W ∩ V | is odd , then following is a valid inequality for conv(Iuw):

(1− wj) + vi +
∑
U∩V

(1− uk) +
∑
Uc∩V

uk +
∑
W∩V

(1− wk) +
∑
W c∩V

wk+∑
(U∪W )∩V

(1− vk) +
∑

(U∪W )∩V c

vk + zu + (1− zw) ≥ 1. (4.30, F oo
1 )

Proof. We show validity for part (i).Validity proofs for parts (ii)-(iv) are analogous. We
prove the validity by showing that if a point violates (4.27) , then it is infeasible to (4.26).
The inequality (4.27) is violated if and only if its left-hand-side = 0, i.e.,
wj = 1, vi = 0, uU∩V = 1, uUc∩V = 0, wW∩V = 1, wW c∩V = 0, v(U∪W )∩V = 1, v(U∪W )∩V c =

0, zu = 1, zw = 0. We rewrite (4.26) by expanding Ru, Rw and substituting the above
assignments as follows:

1

��zu = ui
0

��vi ⊕ujvj ⊕
U∩V

1
��uk

1

��vk ⊕
Uc∩V

0
��ukvk ⊕

U∩V c
uk

0

��vk ⊕
Uc∩W∩V c

uk
0

��vk ⊕
Uc∩W c∩V c

ukvk

0
��zw = wi

0

��vi⊕
1

��wjvj ⊕W∩V
1

��wk
1

��vk ⊕
W c∩V

0

��wkvk ⊕
W∩V c

wk
0

��vk ⊕
U∩W c∩V c

wk
0

��vk ⊕
Uc∩W c∩V c

wkvk.

Equivalently,

1 = ujvj ⊕ (|U ∩ V | mod 2) ⊕
Uc∩W c∩V c

ukvk

0 = vj ⊕ (|W ∩ V | mod 2) ⊕
Uc∩W c∩V c

wkvk.

Since |U ∩ V | and |W ∩ V | are both even, and U c ∩W c ∩ V c = ∅, the system reduces to

1 = uj vj

0 = vj.

Hence no feasible point to (4.26) violates the inequality (4.27). �

In the following theorem, we use the standard notation U4W = U ∪W \ (U ∩W ) for
the symmetric difference of sets.

Theorem 4.16 (Family 2). Let (U,U c), (W,W c), and (V, V c) be three bi-partitions of [r′] =

[r] \ {i, j} for some i, j ∈ [r], i 6= j such that U c ∩W c ∩ V c = ∅ and U ∩W ∩ V c = ∅.
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(i) If |U ∩ V | is even and |W ∩ V | is even , then following is a valid inequality for conv(Iuw):

(1− ui) + (1− uj) + (1− wi) + (1− wj) +
∑
U∩V

(1− uk) +
∑
Uc∩V

uk +
∑
W∩V

(1− wk)+∑
W c∩V

wk +
∑

(U4W )∩V

(1− vk) +
∑

(U4W )∩V c

vk + (1− zu) + zw ≥ 1. (4.31, F 2
ee)

(ii) If |U ∩ V | is even and |W ∩ V | is odd , then following is a valid inequality for conv(Iuw):

(1− ui) + (1− uj) + (1− wi) + (1− wj) +
∑
U∩V

(1− uk) +
∑
Uc∩V

uk +
∑
W∩V

(1− wk)+∑
W c∩V

wk +
∑

(U4W )∩V

(1− vk) +
∑

(U4W )∩V c

vk + (1− zu) + (1− zw) ≥ 1. (4.32, F 2
eo)

(iii) If |U ∩ V | is odd and |W ∩ V | is even , then following is a valid inequality for conv(Iuw):

(1− ui) + (1− uj) + (1− wi) + (1− wj) +
∑
U∩V

(1− uk) +
∑
Uc∩V

uk +
∑
W∩V

(1− wk)+∑
W c∩V

wk +
∑

(U4W )∩V

(1− vk) +
∑

(U4W )∩V c

vk + zu + zw ≥ 1. (4.33, F 2
oe)

(iv) If |U ∩ V | is odd and |W ∩ V | is odd , then following is a valid inequality for conv(Iuw):

(1− ui) + (1− uj) + (1− wi) + (1− wj) +
∑
U∩V

(1− uk) +
∑
Uc∩V

uk +
∑
W∩V

(1− wk)+∑
W c∩V

wk +
∑

(U4W )∩V

(1− vk) +
∑

(U4W )∩V c

vk + zu + (1− zw) ≥ 1. (4.34, F 2
oo)

Proof. We show validity for part (i). Validity proofs for parts (ii)-(iv) are analogous.
We prove validity by showing that if a point violates (4.31), then it is infeasible to (4.26).
The inequality (4.31) is violated if and only if its left-hand-side = 0, i.e.,
ui = 1, uj = 1, wi = 1, wj = 1, uU∩V = 1, uUc∩V = 0, wW∩V = 1, wW c∩V = 0, v(U4W )∩V =

1, v(U4W )∩V c = 0, zu = 1, zw = 0.
We rewrite (4.26) by expanding Ru, Rw and substituting the above assignments as

follows:

1

��zu =
1

��uivi ⊕
1

��ujvj ⊕
U∩W∩V

1
��ukvk ⊕

U∩W c∩V

1
��uk

1

��vk ⊕
Uc∩V

0
��ukvk ⊕

U∩W∩V c
ukvk ⊕

U∩W c∩V c
uk

0

��vk ⊕
Uc∩W∩V c

uk
0

��vk ⊕
Uc∩W c∩V c

ukvk

0
��zw =

1
��wivi⊕

1

��wjvj ⊕
U∩W∩V

1

��wkvk ⊕
Uc∩W∩V

1

��wk
1

��vk ⊕
W c∩V

0

��wkvk ⊕
U∩W∩V c

wkvk ⊕
Uc∩W∩V c

wk
0

��vk ⊕
U∩W c∩V c

wk
0

��vk ⊕
Uc∩W c∩V c

wkvk.
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Equivalently,

1 = vi ⊕ vj ⊕
U∩W∩V

vk ⊕ (|U ∩W c ∩ V | mod 2) ⊕
U∩W∩V c

ukvk ⊕
Uc∩W c∩V c

ukvk

0 = vi ⊕ vj ⊕
U∩W∩V

vk ⊕ (|U c ∩W ∩ V | mod 2) ⊕
U∩W∩V c

ukvk ⊕
Uc∩W c∩V c

ukvk.

We first point out that |U ∩W c ∩ V | mod 2 = |U c ∩W ∩ V | mod 2 = |U ∩W ∩ V | mod 2.
This is because U ∩W c ∩ V = (U \ (U ∩W )) ∩ V = (U ∩ V ) \ (U ∩W ∩ V ). Since U ∩ V is
even, |U ∩ V | mod 2 = 0, and |U ∩W c ∩ V | mod 2 = |U ∩W ∩ V | mod 2. Set U c ∩W ∩ V
follows an identical argument. The above system of equations can then be equivalently
written as:

1 = vi ⊕ vj ⊕
U∩W∩V

vk ⊕ (|U ∩W ∩ V | mod 2) ⊕
U∩W∩V c

ukvk ⊕
Uc∩W c∩V c

ukvk

0 = vi ⊕ vj ⊕
U∩W∩V

vk ⊕ (|U ∩W ∩ V | mod 2) ⊕
U∩W∩V c

ukvk ⊕
Uc∩W c∩V c

ukvk.

Since U ∩W ∩ V c and U c ∩W c ∩ V c are empty sets, the above system of equations is
infeasible. Hence, no feasible point to (4.26) violates inequality (4.31). �

Theorem 4.17 (Family 3). Let (U,U c), (W,W c), and (V, V c) be three bi-partitions of [r′] =

[r] \ {i, j} for some i, j ∈ [r], i 6= j such that U c ∩W c ∩ V c = ∅ and U ∩ V c = ∅.

(i) If |U ∩ V | is even and |W ∩ V | is even , then following is a valid inequality for conv(Iuw):

(1− ui) + (1− uj) + vi + vj +
∑
U∩V

(1− uk) +
∑
Uc∩V

uk + 2
∑
W∩V

(1− wk) + 2
∑
W c∩V

wk+∑
U∩V

(1− vk) + 2
∑

Uc∩W∩V

(1− vk) + 2
∑

Uc∩W∩V c

vk + zu + 2(1− zw) ≥ 2. (4.35, F ee
3 )

(ii) If |U ∩ V | is even and |W ∩ V | is odd, then following is a valid inequality for conv(Iuw):

(1− ui) + (1− uj) + vi + vj +
∑
U∩V

(1− uk) +
∑
Uc∩V

uk + 2
∑
W∩V

(1− wk) + 2
∑
W c∩V

wk+∑
U∩V

(1− vk) + 2
∑

Uc∩W∩V

(1− vk) + 2
∑

Uc∩W∩V c

vk + zu + 2zw ≥ 2. (4.36, F eo
3 )
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(iii) If |U ∩ V | is odd and |W ∩ V | is even, then following is a valid inequality for conv(Iuw):

(1− ui) + (1− uj) + vi + vj +
∑
U∩V

(1− uk) +
∑
Uc∩V

uk + 2
∑
W∩V

(1− wk) + 2
∑
W c∩V

wk+∑
U∩V

(1− vk) + 2
∑

Uc∩W∩V

(1− vk) + 2
∑

Uc∩W∩V c

vk + (1− zu) + 2(1− zw) ≥ 2.

(4.37, F oe
3 )

(iv) If |U ∩ V | is odd and |W ∩ V | is odd, then following is a valid inequality for conv(Iuw):

(1− ui) + (1− uj) + vi + vj +
∑
U∩V

(1− uk) +
∑
Uc∩V

uk + 2
∑
W∩V

(1− wk) + 2
∑
W c∩V

wk+∑
U∩V

(1− vk) + 2
∑

Uc∩W∩V

(1− vk) + 2
∑

Uc∩W∩V c

vk + (1− zu) + 2zw ≥ 2. (4.38, F oo
3 )

Proof. We show validity for part (i). Validity proofs for parts (ii)-(iv) are analogous.
We prove validity by showing that if a point violates inequality (4.35), then it is infeasible
to (4.26). The above inequality (4.35) is violated if and only if its left-hand-side ∈ {0, 1}.

• Left-hand-side= 0: We need to fix all variable with negative coefficients to 1 and
with positive coefficients to 0, i.e., ui = 1, uj = 1, vi = 0, vj = 0, uU∩V = 1, uUc∩V =

0, wW∩V = 1, wW c∩V = 0, vU∩V = 1, vU∩V c = 0, vUc∩W∩V = 1, vUc∩W∩V c = 0, zu =

0, zw = 1. We rewrite (4.26) by expanding Ru, Rw, and substituting the above assign-
ments as follows:

0

��zu =
1

��ui
0

��vi ⊕
1

��uj
0

��
vj ⊕

U∩V

1
��uk

1

��vk ⊕
Uc∩V

0
��ukvk ⊕

U∩V c
ukvk ⊕

Uc∩W∩V c
uk

0

��vk ⊕
Uc∩W c∩V c

ukvk

1
��zw = wi

0

��vi⊕wj
0

��
vj ⊕

W∩V

1

��wk
1

��vk ⊕
W c∩V

0

��wkvk ⊕
U∩V c

wkvk ⊕
Uc∩W∩V c

wk
0

��vk ⊕
Uc∩W c∩V c

wkvk.

Equivalently,

0 = (|U ∩ V | mod 2) ⊕
U∩V c

ukvk ⊕
Uc∩W c∩V c

ukvk

1 = (|W ∩ V | mod 2) ⊕
U∩V c

wkvk ⊕
Uc∩W c∩V c

wkvk.

The above is infeasible since both |U ∩ V | and |W ∩ V | are even, and U ∩ V c and
U c ∩W c ∩ V c are empty by construction.

• Left-hand-side= 1: For left-hand-side to be 1, all variables with a coefficient of +2

and −2 need to be 0, i.e., wW∩V = 1, wW c∩V = 0, vUc∩W∩V = 1, vUc∩W∩V c = 0, zw = 1.
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The inequality then reduces to

(1− ui) + (1− uj) + vi + vj +
∑
U∩V

(1− uk) +
∑
Uc∩V

uk +
∑
U∩V

(1− vk) + zu ≥ 2, (4.39)

and the system of equations (4.26) reduces to

zu = uivi ⊕ujvj ⊕
U∩V

ukvk ⊕
Uc∩W∩V

uk
1

��vk ⊕
Uc∩W c∩V

ukvk ⊕
U∩V c

ukvk ⊕
Uc∩W∩V c

uk
0

��vk ⊕
Uc∩W c∩V c

ukvk

1
��zw = wivi⊕wjvj ⊕

U∩W∩V

1

��wkvk ⊕
Uc∩W∩V

1

��wk
1

��vk ⊕
W c∩V

0

��wkvk ⊕
U∩V c

wkvk ⊕
Uc∩W∩V c

wk
0

��vk ⊕
Uc∩W c∩V c

wkvk.

Equivalently,

zu = uivi ⊕ujvj ⊕
U∩V

ukvk ⊕
Uc∩W∩V

uk ⊕
Uc∩W c∩V

ukvk ⊕
U∩V c

ukvk ⊕
Uc∩W c∩V c

ukvk (4.40a)

1 = wivi⊕wjvj ⊕ (|U c ∩W ∩ V | mod 2) ⊕
U∩W∩V

vk ⊕
U∩V c

wkvk ⊕
Uc∩W c∩V c

wkvk.

(4.40b)

Left-hand-side is 1 if all but one variable with a coefficient of +1 takes a value of 0

or if all but one variable with a coefficient of −1 takes a value of 1. We first make
left-hand-side to be 0 by fixing all the variables with a coefficient of +1 to 0 and
variables with a coefficient of −1 to 1. We then flip one variable at a time to make
left-hand-side 1 and analyze the resulting system for feasibility. Fixing ui = 1, uj =

1, vi = 0, vj = 0, uU∩V = 1, uUc∩V = 0, vU∩V = 1, zu = 0, and using the fact that U ∩ V c

and U c ∩W c ∩ V c are ∅, above system of equations (4.40) reduces to

0

��zu =
1

��ui
0

��vi ⊕
1

��uj
0

��
vj ⊕

U∩V

1
��uk

1

��vk ⊕
Uc∩W∩V

0
��uk ⊕

Uc∩W c∩V

0
��ukvk (4.41a)

1 = wi
0

��vi ⊕ wj
0

��
vj ⊕ (|U c ∩W ∩ V | mod 2) ⊕

U∩W∩V

1

��vk. (4.41b)

Currently, the above system is identical to the system in previous case (left-hand-
side= 0). We now try to change the value of exactly one variable to make left-
hand-side as 1 for (4.39). Observe that the first equation (4.41a) is currently feasible
(|U ∩ V | is even) while second (4.41b) is not since |(U c ∩W ∩ V ) ∪ (U ∩W ∩ V )| =
|W ∩ V | is even resulting in RHS for (4.41b) to be 0. Clearly, only flipping one
variable in {ui, uj, uU∩V , uUc∩V }will not fix infeasibility since that change is restricted
to (4.41a) and has no effect on (4.41b). The remaining variables are vk variables
for k ∈ {i, j, U ∩W ∩ V }. Changing value of either of these variables will fix the
infeasibility for (4.41b) but will make (4.41a) infeasible, thus leaving the system still
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infeasible.

We have thus shown that no feasible point to system of equations (4.26) violates inequal-
ity (4.35). �

Theorem 4.18 (Family 4). Let (U,U c), (W,W c), and (V, V c) be three bi-partitions of [r′] =

[r] \ {i, j} for some i, j ∈ [r], i 6= j such that U c ∩W c ∩ V c = ∅ and U ∩ V c = ∅.

(i) If |U ∩ V | is even and|W ∩ V | is even , then following is a valid inequality for conv(Iuw):

(1−ui)+(1−uj)+2(1−wi)+(1−vi)+vj +
∑
U∩V

(1−uk)+
∑
Uc∩V

uk +2
∑
W∩V

(1−wk)+

2
∑
W c∩V

wk +
∑
U∩V

(1− vk) + 2
∑

Uc∩W∩V

(1− vk) + 2
∑

Uc∩W∩V c

vk + (1− zu) + 2zw ≥ 2.

(4.42, F ee
4 )

(ii) If |U ∩ V | is even and |W ∩ V | is odd, then following is a valid inequality for conv(Iuw):

(1−ui)+(1−uj)+2(1−wi)+(1−vi)+vj +
∑
U∩V

(1−uk)+
∑
Uc∩V

uk +2
∑
W∩V

(1−wk)+

2
∑
W c∩V

wk +
∑
U∩V

(1− vk) + 2
∑

Uc∩W∩V

(1− vk) + 2
∑

Uc∩W∩V c

vk + (1− zu) + 2(1− zw) ≥ 2.

(4.43, F eo
4 )

(iii) If |U ∩ V | is odd and |W ∩ V | is even, then following is a valid inequality for conv(Iuw):

(1−ui)+(1−uj)+2(1−wi)+(1−vi)+vj +
∑
U∩V

(1−uk)+
∑
Uc∩V

uk +2
∑
W∩V

(1−wk)+

2
∑
W c∩V

wk +
∑
U∩V

(1− vk) + 2
∑

Uc∩W∩V

(1− vk) + 2
∑

Uc∩W∩V c

vk + zu + 2zw ≥ 2.

(4.44, F oe
4 )

(iv) If |U ∩ V | is odd and |W ∩ V | is odd, then following is a valid inequality for conv(Iuw):

(1−ui)+(1−uj)+2(1−wi)+(1−vi)+vj +
∑
U∩V

(1−uk)+
∑
Uc∩V

uk +2
∑
W∩V

(1−wk)+

2
∑
W c∩V

wk +
∑
U∩V

(1− vk) + 2
∑

Uc∩W∩V

(1− vk) + 2
∑

Uc∩W∩V c

vk + zu + 2(1− zw) ≥ 2.

(4.45, F oo
4 )
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Proof. We show validity for part (i). Validity proofs for parts (ii)-(iv) are analogous.
We prove validity by showing that if a point violates (4.42), then it is infeasible to (4.26).
The above inequality (4.42) is violated if and only if left-hand-side∈ {0, 1}.

• Left-hand-side= 0: Left-hand-side is 0 if we fix all variable with negative coefficients
to 1 and with positive coefficients to 0 in (4.42), i.e, ui = 1, uj = 1, wi = 1, vi = 1, vj =

0, uU∩V = 1, uUc∩V = 0, wW∩V = 1, wW c∩V = 0, vU∩V = 1, vUc∩W∩V = 1, vUc∩W∩V c =

0, zu = 1, zw = 0.

We rewrite (4.26) by expanding Ru, Rw, and substituting the above assignments as
follows:

1

��zu =
1

��ui
1

��vi ⊕
1

��uj
0

��
vj ⊕

U∩V

1
��uk

1

��vk ⊕
Uc∩V

0
��ukvk ⊕

U∩V c
ukvk ⊕

Uc∩W∩V c
uk

0

��vk ⊕
Uc∩W c∩V c

ukvk

0
��zw =

1
��wi

1

��vi⊕wj
0

��
vj ⊕

W∩V

1

��wk
1

��vk ⊕
W c∩V

0

��wkvk ⊕
U∩V c

wkvk ⊕
Uc∩W∩V c

wk
0

��vk ⊕
Uc∩W c∩V c

wkvk.

Equivalently,

1 = 1 ⊕(|U ∩ V | mod 2) ⊕
U∩V c

ukvk ⊕
Uc∩W c∩V c

ukvk

0 = 1⊕(|W ∩ V | mod 2) ⊕
U∩V c

wkvk ⊕
Uc∩W c∩V c

wkvk.

The above system of equations is infeasible since both |U ∩ V | and |W ∩ V | are even,
and U ∩ V c and U c ∩W c ∩ V c are empty by construction.

• Left-hand-side= 1: For left-hand-side to be 1, all variables with a coefficient of +2 and
−2 need to be 0, i.e.,wW∩V = 1, wW c∩V = 0, vUc∩W∩V = 1, vUc∩W∩V c = 0, zu = 0, zw = 1.
The inequality (4.42) then reduces to

(1−ui)+(1−uj)+(1−vi)+vj+
∑
U∩V

(1−uk)+
∑
Uc∩V

uk+
∑
U∩V

(1−vk)+(1−zu) ≥ 2, (4.46)

and the system of equations (4.26) reduces to

zu = uivi ⊕ujvj ⊕
U∩V

ukvk ⊕
Uc∩W∩V

uk
1

��vk ⊕
Uc∩W c∩V

ukvk ⊕
U∩V c

ukvk ⊕
Uc∩W∩V c

uk
0

��vk ⊕
Uc∩W c∩V c

ukvk

0
��zw =

1
��wivi⊕wjvj ⊕

Uc∩W∩V

1

��wk
1

��vk ⊕
U∩W∩V

1

��wkvk ⊕
W c∩V

0

��wkvk ⊕
Uc∩W∩V c

wk
0

��vk ⊕
U∩V c

wkvk ⊕
Uc∩W c∩V c

wkvk.

Using the fact that U ∩ V c and U c ∩W c ∩ V c are empty, we equivalently write the
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above system as

zu = ui vi ⊕ ujvj ⊕
U∩V

ukvk ⊕
Uc∩W∩V

uk ⊕
Uc∩W c∩V

ukvk (4.47a)

0 = vi ⊕ wjvj ⊕ (|U c ∩W ∩ V | mod 2) ⊕
U∩W∩V

vk. (4.47b)

Left-hand-side of inequality (4.46) is 1 if all but one variable with a coefficient of
+1 takes a value of 0 or if all but one variable with a coefficient of −1 takes a value
of 1. We first make left-hand-side 0 by fixing all the variables with a coefficient of
+1 to 0 and variables with a coefficient of −1 to 1. We then change one variable
at a time to make left-hand-side 1 and analyze the system for feasibility. Fixing
ui = 1, uj = 1, vi = 1, vj = 0, uU∩V = 1, uUc∩V = 0, vU∩V = 1, zu = 1, above system of
equations (4.47) reduces to

1

��zu =
1

��ui
1

��vi ⊕
1

��uj
0

��
vj ⊕

U∩V

1
��uk

1

��vk ⊕
Uc∩V

0
��ukvk (4.48a)

0 =
1

��vi ⊕ wj
0

��
vj ⊕ (|U c ∩W ∩ V | mod 2) ⊕

U∩W∩V

1

��vk. (4.48b)

Currently, the above system (4.48) is identical to the system in previous case (left-
hand-side= 0). We now change the value for exactly one variable to make left-hand-
side as 1 for (4.46). Observe that the first equation (4.48a) is currently feasible (|U∩V |
is even) while second (4.48b) is not since |(U c ∩W ∩ V ) ∪ (U ∩W ∩ V )| = |W ∩ V |
is even resulting in RHS for (4.48b) to be 1. Clearly, only changing value of one
variable in {ui, uj, uU∩V , uUc∩V }will not fix infeasibility since that change is restricted
to (4.48a) and has no effect on (4.48b). The remaining variables are vk variables for
k ∈ {i, j, U ∩W ∩ V }. Flipping either of these will fix the infeasibility for (4.48b) but
will make (4.48a) infeasible, thus leaving the system still infeasible.

We have thus shown that no feasible point to system of equations (4.26) violates inequal-
ity (4.42). �

4.4.2 Derivation of valid inequalities

While the validity of the inequalities proposed in Section 4.4.1 is established in that section,
the proofs do not give insight into how the inequalities were derived. Thus, in this section
we describe how we derived these families of inequalities. We use the same notation as
in Section 4.4.1 and refer to rows of the matrix U as u ∈ {0, 1}r and w ∈ {0, 1}r, and the
corresponding z variables as zu and zw.
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We next make a note on dim(conv(Iuw)).

Proposition 4.19. dim(conv(Iuw))=3r + 2

We construct 3r + 3 affinely independent points (u,w, v, zu, zw) in Iu ∩ Iw:
u

w

v

zu

zw

 =


0> e>1 e>2 . . . e>r 0> 0> . . .0> 0> 0> . . .0> e>1 0>

0> 0> 0> . . . 0> e>1 e>2 . . . e
>
r 0> 0> . . .0> 0> e>1

0> 0> 0> . . . 0> 0> 0> . . .0> e>1 e>2 . . . e
>
r e>1 e>1

0 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 1 0

0 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0 1


Each column of the above matrix represents an affinely independent point. This implies

that dimension of conv(Iuw) is 3r + 3− 1. �

Let (U,U c),(W,W c), and (V, V c) be three bi-partitions of [r′], i.e., U ∩ U c = ∅, U ∪ U c =

[r] \ {i, j}, and similarly for the other two pairs (W,W c) and (V, V c). We then fix the
following variables:

uk = 1 ∀k ∈ U, uk = 0 ∀k ∈ U c (4.49a)

wk = 1 ∀k ∈ W, wk = 0 ∀k ∈ W c, (4.49b)

vk = 1 ∀k ∈ V, vk = 1 ∀k ∈ V c (4.49c)

Let |U ∩V | and |W ∩V | be even resulting inRu = 0 andRw = 0. Note thatRu, and similarly
Rw, can equivalently be written in the following manner using sets U,U c,W,W c, V, and V c.

Ru = ⊕
U∩V

ukvk ⊕
Uc∩V

ukvk ⊕
U∩V c

ukvk ⊕
Uc∩V c

ukvk

Each of the above sets above can be further decomposed with respect toW . In particular,
we can write U ∩ V as (U ∩W ∩ V ) ∪ (U ∩W c ∩ V ), and similarly for the other sets.

We show derivations of inequalities with |U∩V | and |W ∩V | even in Theorems 4.15-4.18.
Derivations for inequalities based on other permutations of |U ∩ V |, |W ∩ V | ∈ {odd, even}
are analogous.

We let I ′uw = Iuw ∩ {(u,w, v, zu, zw)|Ru = 0, Rw = 0}. The dimension of I ′uw is 8 by
Proposition 4.19. This follows because r = 2 after fixing Ru and Rw to 0.

1. Family 1: Consider the following inequality.

(1− wj) + vi + (1− zu) + zw ≥ 1 (4.50)
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It is easy to see that this is a valid inequality for I ′uw since it is only violated when
left-hand-side is 0, i.e., wj = 1, vi = 0, zu = 1, zw = 0. Fixing these in (4.26) results in
the following system which is clearly infeasible:

1

��zu = ui
0

��vi ⊕ ujvj
0

��zw = wi
0

��vi ⊕
1

��wjvj.

We next show that inequality (4.50) is facet defining for conv(I ′uw). The dimension
of face F = conv(I ′uw) ∩ {(1 − wj) + vi + (1 − zu) + zw = 1} is 7. We show this by
constructing 8 affinely independent points (ui, uj, wi, wj, vi vj, zu, zw) on F as follows:

(0, 1, 0, 1, 0, 1, 1, 1), (0, 1, 1, 1, 0, 1, 1, 1),

(1, 1, 0, 1, 0, 1, 1, 1), (0, 0, 0, 1, 1, 1, 1, 0),

(0, 0, 0, 1, 0, 0, 0, 0), (0, 1, 0, 1, 0, 0, 0, 0),

(0, 0, 0, 1, 1, 0, 1, 0), (0, 1, 0, 0, 0, 1, 1, 0).

We now sequentially lift the inequality (4.50) to obtain a facet defining inequality for
conv(Iuw). In particular, we lift the following inequality:

(1− wj) + vi + (1− zu) + zw +
∑
k∈U

αk(1− uk) +
∑
k∈Uc

αkuk+∑
k∈W

βk(1− wk) +
∑
k∈W c

βkwk +
∑
k∈V

γk(1− vk) +
∑
k∈V c

γkvk ≥ 1. (4.52)

We lift the inequality sequentially in the following order: U ∩W ∩V, U ∩W c ∩V, U c ∩
W ∩ V, U c ∩W c ∩ V, U ∩W ∩ V c, U c ∩W ∩ V c, U ∩W c ∩ V c, U c ∩W c ∩ V c. For each
set, we first lift u variables, then w variables, and finally v variables.

- Set U ∩W ∩ V = {1, 2, . . . , l, l + 1, . . . , |U ∩W ∩ V |}:

αl+1 = 1−max
{

1− wj + vi + 1− zu + zw +
l∑

k=1

(1− uk) | (u,w, v, z) ∈ Iuw,

ul+1 = 0, uU\[l+1] = wW = vV = 1, uUc = wW c = vV c = 0
}

= 1,
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βl+1 = 1−max
{

1− wj + vi + 1− zu + zw +
∑

U∩W∩V

(1− uk) +
l∑

k=1

(1− wk) |

(u,w, v, z) ∈ Iuw, wl+1 = 0, uU\U∩W∩V = wW\[l+1] = vV = 1,

uUc = wW c = vV c = 0
}

= 1,

γl+1 = 1−max
{

1− wj + vi + 1− zu + zw +
∑

U∩W∩V

(1− uk + 1− wk)

+
l∑

k=1

(1− vk) | (u,w, v, z) ∈ Iuw, vl+1 = 0, uU\U∩W∩V = 1,

wW\U∩W∩V = vV \[l] = 1, uUc = wW c = vV c = 0
}

= 1.

- Set U ∩W c ∩ V = {1, 2, . . . , l, l + 1, . . . , |U ∩W c ∩ V |}:

αl+1 = 1−max
{

1− wj + vi + 1− zu + zw +
∑

U∩W∩V

(1− uk + 1− wk + 1− vk)+

l∑
k=1

(1− uk) | (u,w, v, z) ∈ Iuw, ul+1 = 0, uU\U∩W∩V \[l+1] = 1,

wW\U∩W∩V = vV \U∩W∩V = 1, uUc = wW c = vV c = 0
}

= 1,

βl+1 = 1−max
{

1− wj + vi + 1− zu + zw +
∑

U∩W∩V

(1− uk + 1− wk + 1− vk)+

∑
U∩W c∩V

(1− uk) +
l∑

k=1

wk | (u,w, v, z) ∈ Iuw, wl+1 = 1,

uU\U∩V = 1, wW\U∩W∩V = vV \U∩W∩V = 1, uUc = 0,

wW c\[l+1] = vV c = 0
}

= 1,

γl+1 = 1−max
{

1− wj + vi + 1− zu + zw +
∑

U∩W∩V

(1− uk + 1− wk + 1− vk)+

∑
U∩W c∩V

(1− uk + wk) +
l∑

k=1

(1− vk) | (u,w, v, z) ∈ Iuw, vl+1 = 0,

uU\U∩V = 1, wW\U∩W∩V = vV \U∩W∩V \[l+1] = 1,
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uUc = wW c\U∩W c∩V = vV c = 0
}

= 1

- Set U c ∩W ∩ V = {1, 2, . . . , l, l + 1, . . . , |U c ∩W ∩ V |}

αl+1 = 1−max
{

1− wj + vi + 1− zu + zw +
∑

U∩W∩V

(3− uk − wk − vk)+

∑
U∩W c∩V

(2− uk + wk − vk) +
l∑

k=1

uk | (u,w, v, z) ∈ Iuw,

ul+1 = 1, uU\U∩V = 1, wW\U∩W∩V = vV \U∩V = 1,

uUc\[l+1] = wW c\U∩W c∩V = vV c = 0
}

= 1

βl+1 = 1−max
{

1− wj + vi + 1− zu + zw +
∑

U∩W∩V

(3− uk − wk − vk)+∑
U∩W c∩V

(2− uk + wk − vk) +
∑

Uc∩W∩V

uk +
∑

[l]

(1− wk) |

(u,w, v, z) ∈ Iuw, wl+1 = 0, uU\U∩V = 1, wW\U∩W∩V \[l+1] = 1,

vV \U∩V = 1, uUc\Uc∩W∩V = wW c\U∩W c∩V = vV c = 0
}

= 1

γl+1 = 1−max
{

1− wj + vi + 1− zu + zw +
∑

U∩W∩V

(3− uk − wk − vk)+∑
U∩W c∩V

(2− uk + wk − vk) +
∑

Uc∩W∩V

(1 + uk − wk)+∑
[l]

(1− vk) | (u,w, v, z) ∈ Iuw, vl+1 = 0, uU\U∩V = 1,

wW\W∩V = 1, vV \U∩V \[l+1] = 1, uUc\Uc∩W∩V = 0,

wW c\U∩W c∩V = vV c = 0
}

= 1

- Set U c ∩W c ∩ V = {1, 2, . . . , l, l + 1, . . . , |U c ∩W c ∩ V |}

αl+1 = 1−max
{

1− wj + vi + 1− zu + zw +
∑

U∩W∩V

(3− uk − wk − vk)+
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∑
U∩W c∩V

(2− uk + wk − vk) +
∑

Uc∩W∩V

(2 + uk − wk − vk)+∑
[l]

uk | (u,w, v, z) ∈ Iuw, ul+1 = 1, uU\U∩V = 1, wW\W∩V = 1,

vV \(U∪W )∩V = 1, uUc\Uc∩W∩V \[l+1] = wW c\U∩W c∩V = vV c = 0
}

= 1

βl+1 = 1−max
{

1− wj + vi + 1− zu + zw +
∑

U∩W∩V

(3− uk − wk − vk)+∑
U∩W c∩V

(2− uk + wk − vk) +
∑

Uc∩W∩V

(2 + uk − wk − vk)+∑
Uc∩W c∩V

uk +
∑

[l]

wk | (u,w, v, z) ∈ Iuw, wl+1 = 1, uU\U∩V = 1,

wW\W∩V = 1, vV \(U∪W )∩V = 1, uUc\Uc∩V = 0

wW c\U∩W c∩V \[l+1] = 0, vV c = 0
}

= 1

γl+1 = 1−max
{

1− wj + vi + 1− zu + zw +
∑

U∩W∩V

(3− uk − wk − vk)+∑
U∩W c∩V

(2− uk + wk − vk) +
∑

Uc∩W∩V

(2 + uk − wk − vk)+∑
Uc∩W c∩V

(uk + wk) | (u,w, v, z) ∈ Iuw, vl+1 = 0, uU\U∩V = 1,

wW\W∩V = 1, vV \[l+1]\(U∪W )∩V = 1, uUc\Uc∩V = 0

wW c\W c∩V = 0, vV c = 0
}

= 0

- Set U ∩W ∩ V c = {1, 2, . . . , l, l + 1, . . . , |U ∩W ∩ V c|}

αl+1 = 1−max
{

1− wj + vi + 1− zu + zw +
∑

U∩W∩V

(3− uk − wk − vk)+∑
U∩W c∩V

(2− uk + wk − vk) +
∑

Uc∩W∩V

(2 + uk − wk − vk)+∑
Uc∩W c∩V

(uk + wk) | (u,w, v, z) ∈ Iuw, ul+1 = 0,

uU\U∩V \[l+1] = 1, wW\W∩V = 1, uUc\Uc∩V = wW c\W c∩V = 0,

vV c = 0
}
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= 0

βl+1 = 1−max
{

1− wj + vi + 1− zu + zw +
∑

U∩W∩V

(3− uk − wk − vk)+∑
U∩W c∩V

(2− uk + wk − vk) +
∑

Uc∩W∩V

(2 + uk − wk − vk)+∑
Uc∩W c∩V

(uk + wk) | (u,w, v, z) ∈ Iuw, wl+1 = 0,

uU∩V c\U∩W∩V c = 1, wW\W∩V \[l+1] = 1, uUc\Uc∩V = 0,

wW c\W c∩V = 0, vV c = 0
}

= 0

γl+1 = 1−max
{

1− wj + vi + 1− zu + zw +
∑

U∩W∩V

(3− uk − wk − vk)+∑
U∩W c∩V

(2− uk + wk − vk) +
∑

Uc∩W∩V

(2 + uk − wk − vk)+

∑
Uc∩W c∩V

(uk + wk) +
l∑

k=1

vk | (u,w, v, z) ∈ Iuw, vl+1 = 1,

uU∩V c\U∩W∩V c = 1, wW∩V c\U∩W∩V c = 1, uUc\Uc∩V = 0,

wW c\W c∩V = 0, vV c\[l+1] = 0
}

= 1

- Set U ∩W c ∩ V c = {1, 2, . . . , l, l + 1, . . . , |U ∩W c ∩ V c|}

αl+1 = 1−max
{

1− wj + vi + 1− zu + zw +
∑

U∩W∩V

(3− uk − wk − vk)+∑
U∩W c∩V

(2− uk + wk − vk) +
∑

Uc∩W∩V

(2 + uk − wk − vk)+∑
Uc∩W c∩V

(uk + wk) +
∑

U∩W∩V c

vk | (u,w, v, z) ∈ Iuw, ul+1 = 0,

uU∩W c∩V c\[l+1] = 1, wUc∩W∩V c = 1, uUc∩V c = 0,

wW c∩V c = 0, vV c\U∩W∩V c = 0
}

= 0

βl+1 = 1−max
{

1− wj + vi + 1− zu + zw +
∑

U∩W∩V

(3− uk − wk − vk)+∑
U∩W c∩V

(2− uk + wk − vk) +
∑

Uc∩W∩V

(2 + uk − wk − vk)+
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∑
Uc∩W c∩V

(uk + wk) +
∑

U∩W∩V c

vk | (u,w, v, z) ∈ Iuw, wl+1 = 1,

wUc∩W∩V c = 1, uUc∩V c = 0, wW c∩V c\[l+1] = 0, vV c\U∩W∩V c = 0
}

= 0

γl+1 = 1−max
{

1− wj + vi + 1− zu + zw +
∑

U∩W∩V

(3− uk − wk − vk)+∑
U∩W c∩V

(2− uk + wk − vk) +
∑

Uc∩W∩V

(2 + uk − wk − vk)+

∑
Uc∩W c∩V

(uk + wk) +
∑

U∩W∩V c

vk +
l∑

k=1

vk | (u,w, v, z) ∈ Iuw,

vl+1 = 1, wUc∩W∩V c = 1, uUc∩V c = 0, wW c∩V c\U∩W c∩V c = 0,

vV c\U∩W∩V c\[l+1] = 0
}

= 1

- Set U c ∩W ∩ V c = {1, 2, . . . , l, l + 1, . . . , |U c ∩W ∩ V c|}

αl+1 = 1−max
{

1− wj + vi + 1− zu + zw +
∑

U∩W∩V

(3− uk − wk − vk)+∑
U∩W c∩V

(2− uk + wk − vk) +
∑

Uc∩W∩V

(2 + uk − wk − vk)+∑
Uc∩W c∩V

(uk + wk) +
∑

U∩W∩V c

vk +
∑

U∩W c∩V c

vk |

(u,w, v, z) ∈ Iuw, ul+1 = 1, wUc∩W∩V c = 1, uUc∩V c\[l+1] = 0,

wUc∩W c∩V c = 0, vV c\U∩V c = 0
}

= 0

βl+1 = 1−max
{

1− wj + vi + 1− zu + zw +
∑

U∩W∩V

(3− uk − wk − vk)+∑
U∩W c∩V

(2− uk + wk − vk) +
∑

Uc∩W∩V

(2 + uk − wk − vk)+∑
Uc∩W c∩V

(uk + wk) +
∑

U∩W∩V c

vk +
∑

U∩W c∩V c

vk |

(u,w, v, z) ∈ Iuw, wl+1 = 0, wUc∩W∩V c\[l+1] = 1,

uUc∩W c∩V c = 0, wUc∩W c∩V c = 0, vUc∩V c = 0
}

= 0
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γl+1 = 1−max
{

1− wj + vi + 1− zu + zw +
∑

U∩W∩V

(3− uk − wk − vk)+∑
U∩W c∩V

(2− uk + wk − vk) +
∑

Uc∩W∩V

(2 + uk − wk − vk)+

∑
Uc∩W c∩V

(uk + wk) +
∑

U∩W∩V c

vk +
∑

U∩W c∩V c

vk +
l∑

k=1

vk |

(u,w, v, z) ∈ Iuw, vl+1 = 1,

uUc∩W c∩V c = 0, wUc∩W c∩V c = 0, vUc∩V c\[l+1] = 0
}

= 1

- Set U c ∩W c ∩ V c = {1, 2, . . . , l, l + 1, . . . , |U c ∩W c ∩ V c|}

αl+1 = 1−max
{

1− wj + vi + 1− zu + zw +
∑

U∩W∩V

(3− uk − wk − vk)+∑
U∩W c∩V

(2− uk + wk − vk) +
∑

Uc∩W∩V

(2 + uk − wk − vk)+∑
Uc∩W c∩V

(uk + wk) +
∑

(U∪W )∩V c

vk |

(u,w, v, z) ∈ Iuw, ul+1 = 1,

uUc∩W c∩V c\[l+1] = 0, wUc∩W c∩V c = 0, vUc∩W c∩V c = 0
}

= 0

βl+1 = 1−max
{

1− wj + vi + 1− zu + zw +
∑

U∩W∩V

(3− uk − wk − vk)+∑
U∩W c∩V

(2− uk + wk − vk) +
∑

Uc∩W∩V

(2 + uk − wk − vk)+∑
Uc∩W c∩V

(uk + wk) +
∑

(U∪W )∩V c

vk |

(u,w, v, z) ∈ Iuw, wl+1 = 1,

wUc∩W c∩V c\[l+1] = 0, vUc∩W c∩V c = 0
}

= 0

γl+1 = 1−max
{

1− wj + vi + 1− zu + zw +
∑

U∩W∩V

(3− uk − wk − vk)+∑
U∩W c∩V

(2− uk + wk − vk) +
∑

Uc∩W∩V

(2 + uk − wk − vk)+
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∑
Uc∩W c∩V

(uk + wk) +
∑

(U∪W )∩V c

vk |

(u,w, v, z) ∈ Iuw, vl+1 = 1,

vUc∩W c∩V c\[l+1] = 0
}

= 0

We summarize the lifting coefficients obtained via sequential lifting as follows:

αk = 1, βk = 1, γk = 1 ∀k ∈ U ∩W ∩ V, U ∩W c ∩ V, U c ∩W ∩ V

αk = 1, βk = 1, γk = 0 ∀k ∈ U c ∩W c ∩ V

αk = 0, βk = 0, γk = 1 ∀k ∈ U ∩W ∩ V c, U c ∩W ∩ V c, U ∩W c ∩ V c

αk = 0, βk = 0, γk = 0 ∀k ∈ U c ∩W c ∩ V c.

Assuming U c ∩W c ∩ V c = ∅ results in inequality (4.27).

2. Family 2: Consider the following inequality.

(1− ui) + (1− uj) + (1− wi) + (1− wj) + (1− zu) + zw ≥ 1. (4.53)

It is easy to see that this is a valid inequality for I ′uw since it is only violated when
left-hand-side is 0, i.e., ui = 1, uj = 1, wi = 1, wj = 1, zu = 1, zw = 0. Fixing these
in (4.26) results in the following system which is clearly infeasible:

1

��zu =
1

��uivi ⊕
1

��ujvj

0
��zw =

1
��wivi ⊕

1

��wjvj.

We next show that inequality (4.53) is facet defining for conv(I ′uw). The dimension of
face F = conv(I ′uw)∩{(1−ui) + (1−uj) + (1−wi) + (1−wj) + (1− zu) + zw = 1} is 7.

Similar to the previous case, we construct 8 points (ui, uj, wi, wj, vi vj, zu, zw) on F

which are affinely independent as follows:

(1, 1, 1, 1, 0, 1, 1, 1), (1, 1, 1, 1, 1, 0, 1, 1),

(1, 1, 1, 1, 0, 0, 0, 0), (1, 1, 1, 1, 1, 1, 0, 0),

(1, 1, 1, 0, 0, 1, 1, 0), (1, 1, 0, 1, 1, 0, 1, 0),

(1, 0, 1, 1, 1, 1, 1, 0), (0, 1, 1, 1, 1, 1, 1, 0).
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We now sequentially lift the inequality (4.53) to obtain a facet defining inequality for
conv(Iuw). In particular, we lift the following inequality:

(1−ui) + (1−uj) + (1−wi) + (1−wj) + (1− zu) + zw +
∑
k∈U

αk(1−uk) +
∑
k∈Uc

αkuk+∑
k∈W

βk(1− wk) +
∑
k∈W c

βkwk +
∑
k∈V

γk(1− vk) +
∑
k∈V c

γkvk ≥ 1. (4.55)

Sequential lifting, similar to Family 1, gives the following coefficients:

αk = 1, βk = 1, γk = 0 ∀k ∈ U ∩W ∩ V, U c ∩W c ∩ V

αk = 1, βk = 1, γk = 1 ∀k ∈ U ∩W c ∩ V, U c ∩W ∩ V

αk = 0, βk = 0, γk = 1 ∀k ∈ U ∩W c ∩ V c, U c ∩W ∩ V c

αk = 0, βk = 0, γk = 0 ∀k ∈ U ∩W ∩ V c, U c ∩W c ∩ V c.

Assuming U ∩W ∩ V c, U c ∩W c ∩ V c = ∅ results in inequality (4.31).

3. Family 3: Consider the following inequality.

(1− ui) + (1− uj) + vi + vj + zu + 2(1− zw) ≥ 2. (4.56)

It is easy to see that this is a valid inequality for I ′uw since it is only violated when left-
hand-side ∈ {0, 1}. Left-hand-side is 0 if ui = 1, uj = 1, vi = 0, vj = 0, zu = 0, zw = 1.
Fixing these in (4.26) results in the following system which is clearly infeasible:

0

��zu =
1

��ui
0

��vi ⊕
1

��uj
0

��
vj

1
��zw = wi

0

��vi ⊕ wj
0

��
vj.

Left-hand-side is 1 if exactly one of the above fixed variables except zw switches.
Switching ui, uj to 0 does not fix infeasibility since the second equation in the above
system still remains infeasible. Switching a vi or vj variable to 1 fixes infeasibility for
the second equation but makes the first infeasible, thus leave the entire system still
infeasible. We next show that inequality (4.56) is facet defining for conv(I ′uw). The
dimension of face F = conv(I ′uw)∩ {(1− ui) + (1− uj) + vi + vj + zu + 2(1− zw) = 2}
is 7. Similar to the previous case, we construct 8 points (ui, uj, wi, wj, vi vj, zu, zw) on



129

F which are affinely independent as follows:

(1, 1, 0, 0, 0, 0, 0, 0), (1, 0, 0, 1, 0, 1, 0, 1),

(1, 1, 0, 1, 0, 0, 0, 0), (1, 1, 1, 0, 1, 0, 1, 1),

(1, 1, 1, 0, 0, 0, 0, 0), (1, 1, 0, 1, 0, 1, 1, 1),

(0, 1, 1, 0, 1, 0, 0, 1), (1, 1, 1, 0, 1, 1, 0, 1).

We now sequentially lift the inequality (4.56) to obtain a facet defining inequality for
conv(Iuw). In particular, we lift the following inequality:

(1− ui) + (1− uj) + vi + vj + zu + 2(1− zw) +
∑
k∈U

αk(1− uk) +
∑
k∈Uc

αkuk+∑
k∈W

βk(1− wk) +
∑
k∈W c

βkwk +
∑
k∈V

γk(1− vk) +
∑
k∈V c

γkvk ≥ 2. (4.58)

Sequential lifting, similar to Family 1, gives the following coefficients:

αk = 1, βk = 2, γk = 1 ∀k ∈ U ∩W ∩ V

αk = 1, βk = 2, γk = 1 ∀k ∈ U ∩W c ∩ V

αk = 1, βk = 2, γk = 2 ∀k ∈ U c ∩W ∩ V

αk = 1, βk = 2, γk = 0 ∀k ∈ U c ∩W c ∩ V

αk = 0, βk = 0, γk = 2 ∀k ∈ U c ∩W ∩ V c

αk = 0, βk = 0, γk = 1 ∀k ∈ U ∩ V c

αk = 0, βk = 0, γk = 0 ∀k ∈ U c ∩W c ∩ V c.

Assuming U ∩ V c, U c ∩W c ∩ V c = ∅ results in inequality (4.35).

4. Family 4: Consider the following inequality:

(1− ui) + (1− uj) + 2(1− wi) + (1− vi) + vj + (1− zu) + 2zw ≥ 2. (4.59)

It is easy to see that this is a valid inequality for I ′uw since it is only violated when
left-hand-side ∈ {0, 1}. Left-hand-side is 0 if ui = 1, uj = 1, wi = 1, vi = 1, vj =

0, zu = 1, zw = 0. Fixing these in (4.26) results in the following system which is
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clearly infeasible:

1

��zu =
1

��ui
1

��vi ⊕
1

��uj
0

��
vj

0
��zw =

1
��wi

1

��vi ⊕ wj
0

��
vj.

Left-hand-side is 1 if exactly one of the above fixed variables exceptwi, zw switches.
Switching ui, uj to 0 does not fix infeasibility since the second equation in the above
system still remains infeasible. Switching a vi to 1 or vj variable to 0 fixes infeasibility
for the second equation but makes the first infeasible, thus leave the entire system
still infeasible. The dimension of face F = conv(I ′uw) ∩ {(1 − ui) + (1 − uj) + 2(1 −
wi) + (1− vi) + vj + (1− zu) + 2zw = 2} is 7. Similar to the previous case, we construct
8 points (ui, uj, wi, wj, vi vj, zu, zw) on F which are affinely independent as follows:

(1, 1, 1, 0, 1, 0, 1, 1), (1, 0, 1, 1, 1, 1, 1, 0),

(1, 1, 1, 1, 1, 0, 1, 1) (1, 1, 1, 0, 0, 0, 0, 0),

(1, 1, 0, 0, 1, 0, 1, 0) (1, 1, 1, 0, 1, 1, 0, 0),

(0, 1, 1, 1, 1, 1, 1, 0) (0, 1, 1, 0, 1, 0, 0, 0),

We now sequentially lift the inequality (4.59) to obtain a facet defining inequality for
conv(Iuw). In particular, we lift the following inequality:

(1−ui)+(1−uj)+2(1−wi)+(1−vi)+vj+(1−zu)+2zw+
∑
k∈U

αk(1−uk)+
∑
k∈Uc

αkuk+∑
k∈W

βk(1− wk) +
∑
k∈W c

βkwk +
∑
k∈V

γk(1− vk) +
∑
k∈V c

γkvk ≥ 2. (4.61)

Sequential lifting, similar to Family 1, gives the following coefficients:

αk = 1, βk = 2, γk = 1 ∀k ∈ U ∩W ∩ V

αk = 1, βk = 2, γk = 1 ∀k ∈ U ∩W c ∩ V

αk = 1, βk = 2, γk = 2 ∀k ∈ U c ∩W ∩ V

αk = 1, βk = 2, γk = 0 ∀k ∈ U c ∩W c ∩ V

αk = 0, βk = 0, γk = 2 ∀k ∈ U c ∩W ∩ V c

αk = 0, βk = 0, γk = 1 ∀k ∈ U ∩ V c

αk = 0, βk = 0, γk = 0 ∀k ∈ U c ∩W c ∩ V c.
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Assuming U ∩ V c, U c ∩W c ∩ V c = ∅ results in inequality (4.42).

Conjecture 4.20. Lifting coefficients in sequential lifting of inequalities (4.50), (4.53) (4.56), (4.59)
are order independent.

Separating valid inequalities

We now discuss separation procedure for the inequalities proposed in Section 4.4.1. In
particular, given a fractional solution (û, v̂, ẑ) to the compact formulation (4.13), we discuss
methods that can determine if the solution is violated by any of the inequalities proposed
in Section 4.4.1. We use the same notation as in Section 4.4.1 and refer to two rows of
matrix Û as û, ŵ, column of V̂ as v̂, and corresponding ẑ as ẑu and ẑw. We discuss exact
separation which involves solving a small integer program in Section 4.4.3 and a heuristic
cut separation strategy in Section 4.4.4. We point out that there are O(d2n+ dn2) choices
for choosing (û, ŵ, v̂) pairs since one could either choose two rows of U and one column of
V or one row of U and two columns of V . For each of these choices, we next discuss how
to determine if there is a violated inequality for a given partial solution (û, ŵ, v̂, ẑu, ẑw).

In exact separation, we let indices (i, j) be part of the partition, i.e., we generate at most
one valid inequality of each family for a given (û, ŵ, v̂). On the other hand, in heuristic
separation strategy, we iterate over all (i, j) pairs which can lead to O(r2) inequalities in
worst case.

4.4.3 Exact Separation

In order to separate a valid inequality, we minimize left-hand-side for a given (û, ŵ, v̂, ẑu, ẑw)

for each of the inequalities proposed in Section 4.4.1. We observe that to minimize left-hand-
side each of the valid inequalities proposed in Theorems 4.15-4.18, we need to partition
set [r] in 7 different sets, say S = (S1, S2, . . . , S7). We use sets S1 and S2 to map to i and j

respectively, and constrain them to be singletons. We always map S3 to U ∩W ∩ V , S4 to
U ∩W c ∩ V , and S5 to U c ∩W ∩ V . Mapping of sets S6 and S7 varies for each family and
will be described later. Since each family has different coefficients for partitioning, we next
define a general integer program for partitioning [r] while ensuring that two of the sets
are singletons, to identify i and j, and also enforcing necessary cardinality constraints. We
let c = [c1, c2, . . . , c7] where cj ∈ Rr ∀j = 1, . . . , 7. We define the coefficients corresponding
to each family in Table 4.1. We further let α = 1 if we require |U ∩ V | to be odd and 0

otherwise. Similarly, we let β = 1 if we require |W ∩ V | to be odd and 0 otherwise.
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Family 1 Family 2 Family 3 Family 4
(i) c1 v̂ 2− û− ŵ 1− û+ v̂ 4− û− 2ŵ − v̂
(j) c2 1− ŵ 2− û− ŵ 1− û+ v̂ 1− û+ v̂

(U ∩W ∩ V ) c3 3− û− ŵ − v̂ 2− û− ŵ 4− û− 2ŵ − v̂ 4− û− 2ŵ − v̂
(U ∩W c ∩ V ) c4 2− û− v̂ + ŵ 2− û+ ŵ − v̂ 2− û+ 2ŵ − v̂ 2− û+ 2ŵ − v̂
(U c ∩W ∩ V ) c5 2 + û− ŵ − v̂ 2 + û− ŵ − v̂ 4 + û− 2ŵ − 2v̂ 4 + û− 2ŵ − 2v̂

- c6 û+ ŵ û+ ŵ û+ 2ŵ û+ 2ŵ,
- c7 v̂ v̂ 2v̂ 2v̂

Table 4.1: Coefficient calculation for valid inequalities exact separation

For a given c ∈ Rr×7, α ∈ {0, 1}, β ∈ {0, 1}, the following integer program partitions
set [r] in 7 sets such that S1 and S2 are singleton, (|S3 ∪ S4|) mod 2 = α, and |S3 ∪ S5|
mod 2 = β. We let θlj be a binary variable which takes a value of 1 if index l ∈ [r] is assigned
to set Sj ∀j = 1, . . . , 7. We also let θj denote [θ1

j , θ
2
j , . . . , θ

r
j ].

p̂(α, β, c) = min c>1 θ1 + c>2 θ2 + c>3 θ3 + c>4 θ4 + c>5 θ5 + c>6 θ6 + c>7 θ7 (4.62a)∑
l∈[r]

θl1 = 1 (4.62b)

∑
l∈[r]

θl2 = 1 (4.62c)

7∑
j=1

θlj = 1 ∀l ∈ [r] (4.62d)∑
l∈[r]

[θl3 + θl4]− 2t = α (4.62e)

∑
l∈[r]

[θl3 + θl5]− 2t′ = β (4.62f)

θ ∈ {0, 1}r×7, t ∈ Z+, t′ ∈ Z+ (4.62g)

Constraint (4.62c) enforces that |S1| = 1, constraint (4.62d) enforces that |S2| = 1, and
constraint (4.62e) enforces that each index k ∈ [r] is assigned to exactly one set Sj . Con-
straints (4.62e), (4.62f) ensure that (|S3 ∪S4|) mod 2 = α and |S3 ∪S5| mod 2 = β respec-
tively.

We use solution θ̂ to construct partition Ŝ . In particular, Ŝj = {k | θ̂kj = 1} ∀j = 3, . . . , 7.
We further let Ŝ1 = {s1} and Ŝ2 = {s2} since S1 and S2 are singletons.

1. Family 1: For a given partial solution (û, ŵ, v̂, ẑu, ẑw), we determine if there are indices
i, j ∈ [r] and sets U,U c,W,W c, V, V c such that U ∪ U c = W ∪ W c = V ∪ V c =
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[r] \ {i, j}, U c ∩W c ∩ V c = ∅, and the corresponding Family 1 inequality violates the
partial solution (û, ŵ, v̂, ẑu, ẑw).

To separate Family 1, we solve the integer program (4.62) for parameters (α, β) ∈
{(0, 0), (0, 1), (1, 0), (1, 1)} with c = [c1, c2, c3, c4, c5, c6, c7] where cl ∀l ∈ {1, 2, . . . 7}
corresponds to Family 1 in Table 4.1.

The solution to integer program (4.62) can be mapped to i, j and sets of interest
U,U c,W,W c, V, V c as follows.

i = s1, j = s2, U ∩W ∩ V = Ŝ3, U ∩W c ∩ V = Ŝ4 (4.63)

U c ∩W ∩ V = Ŝ5, U
c ∩W c ∩ V = Ŝ6, (U ∪W ) ∩ V c = Ŝ7

• α = 0, β = 0: If p̂(0, 0, c) + (1 − ẑu) + ẑw < 1, then we have found a violated
inequality of type (4.27) for the i, j, U, U c,W,W c, V, V c constructed in (4.63).

• α = 0, β = 1: If p̂(0, 1, c) + (1− ẑu) + 1− ẑw < 1, then we have found a violated
inequality of type (4.28) for the i, j, U, U c,W,W c, V, V c constructed in (4.63).

• α = 1, β = 0: If p̂(1, 0, c) + ẑu + ẑw < 1, then we have found a violated inequality
of type (4.29) for the i, j, U, U c,W,W c, V, V c constructed in (4.63).

• α = 1, β = 1: If p̂(1, 1, c) + ẑu + (1 − ẑw) < 1, then we have found a violated
inequality of type (4.30) for the i, j, U, U c,W,W c, V, V c constructed in (4.63).

2. Family 2: For a given partial solution (û, ŵ, v̂, ẑu, ẑw), we determine if there are indices
i, j ∈ [r] and sets U,U c,W,W c, V, V c such that U ∪ U c = W ∪ W c = V ∪ V c =

[r] \ {i, j}, U c ∩ W c ∩ V c = ∅, U ∩ W ∩ V c = ∅, and the corresponding Family 2
inequality violates the partial solution (û, ŵ, v̂, ẑu, ẑw). To separate Family 2, we solve
the integer program (4.62) for parameters (α, β) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} with
with c = [c1, c2, c3, c4, c5, c6, c7] where cl ∀l ∈ {1, 2, . . . 7} corresponds to Family 2 in
Table 4.1. The solution to integer program (4.62) can be mapped to i, j and sets of
interest U,U c,W,W c, V, V c as follows.

i = s1, j = s2, U ∩W ∩ V = Ŝ3, U ∩W c ∩ V = Ŝ4 (4.64)

U c ∩W ∩ V = Ŝ5, U
c ∩W c ∩ V = Ŝ6, (U4W ) ∩ V c = Ŝ7

• α = 0, β = 0: If p̂(0, 0, c) + (1 − ẑu) + ẑw < 1, then we have found a violated
inequality of type (4.31) for the i, j, U, U c,W,W c, V, V c constructed in (4.64).

• α = 0, β = 1: If p̂(0, 1, c) + (1− ẑu) + 1− ẑw < 1, then we have found a violated
inequality of type (4.32) for the i, j, U, U c,W,W c, V, V c constructed in (4.64).
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• α = 1, β = 0: If p̂(1, 0, c) + ẑu + ẑw < 1, then we have found a violated inequality
of type (4.33) for the i, j, U, U c,W,W c, V, V c constructed in (4.64).

• α = 1, β = 1: If p̂(1, 1, c) + ẑu + (1 − ẑw) < 1, then we have found a violated
inequality of type (4.34) for the i, j, U, U c,W,W c, V, V c constructed in (4.64).

3. Family 3: For a given partial solution (û, ŵ, v̂, ẑu, ẑw), we determine if there are indices
i, j ∈ [r] and sets U,U c,W,W c, V, V c such that U ∪ U c = W ∪ W c = V ∪ V c =

[r] \ {i, j}, U c ∩W c ∩ V c = ∅, U ∩ V c = ∅, and the corresponding Family 3 inequality
violates the partial solution (û, ŵ, v̂, ẑu, ẑw). To separate Family 3, we solve the integer
program (4.62) for parameters (α, β) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} with with c =

[c1, c2, c3, c4, c5, c6, c7] where cl ∀l ∈ {1, 2, . . . 7} corresponds to Family 3 in Table 4.1.
The solution to integer program (4.62) can be mapped to i, j and sets of interest
U,U c,W,W c, V, V c as follows.

i = s1, j = s2, U ∩W ∩ V = Ŝ3, U ∩W c ∩ V = Ŝ4 (4.65)

U c ∩W ∩ V = Ŝ5, U
c ∩W c ∩ V = Ŝ6, U

c ∩W ∩ V c = Ŝ7

• α = 0, β = 0: If p̂(0, 0, c) + ẑu + 2(1 − ẑw) < 2, then we have found a violated
inequality of type (4.35) for the i, j, U, U c,W,W c, V, V c constructed in (4.65).

• α = 0, β = 1: If p̂(0, 1, c)+ ẑu+2ẑw < 2, then we have found a violated inequality
of type (4.36) for the i, j, U, U c,W,W c, V, V c constructed in (4.65).

• α = 1, β = 0: If p̂(1, 0, c) + 1− ẑu + 2(1− ẑw) < 2, then we have found a violated
inequality of type (4.37) for the i, j, U, U c,W,W c, V, V c constructed in (4.65).

• α = 1, β = 1: If p̂(1, 1, c) + 1 − ẑu + 2ẑw < 2, then we have found a violated
inequality of type (4.38) for the i, j, U, U c,W,W c, V, V c constructed in (4.65).

4. Family 4: For a given partial solution (û, ŵ, v̂, ẑu, ẑw), we determine if there are indices
i, j ∈ [r] and sets U,U c,W,W c, V, V c such that U ∪ U c = W ∪ W c = V ∪ V c =

[r] \ {i, j}, U c ∩ W c ∩ V c = ∅, U ∩ V c = ∅, and the corresponding Family 4 in-
equality violates the partial solution (û, ŵ, v̂, ẑu, ẑw). To separate Family 4, we solve
the integer program (4.62) for parameters (α, β) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} with
c = [c1, c2, c3, c4, c5, c6, c7] where cl ∀l ∈ {1, 2, . . . 7} corresponds to Family 4 in Ta-
ble 4.1. The solution to integer program (4.62) can be mapped to i, j and sets of
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interest U,U c,W,W c, V, V c as follows.

i = s1, j = s2, U ∩W ∩ V = Ŝ3, U ∩W c ∩ V = Ŝ4 (4.66)

U c ∩W ∩ V = Ŝ5, U
c ∩W c ∩ V = Ŝ6, U

c ∩W ∩ V c = Ŝ7

• α = 0, β = 0: If p̂(0, 0, c) + ẑu + 2(1 − ẑw) < 2, then we have found a violated
inequality of type (4.35) for the i, j, U, U c,W,W c, V, V c constructed in (4.66).

• α = 0, β = 1: If p̂(0, 1, c)+ ẑu+2ẑw < 2, then we have found a violated inequality
of type (4.36) for the i, j, U, U c,W,W c, V, V c constructed in (4.66).

• α = 1, β = 0: If p̂(1, 0, c) + 1− ẑu + 2(1− ẑw) < 2, then we have found a violated
inequality of type (4.37) for the i, j, U, U c,W,W c, V, V c constructed in (4.66).

• α = 1, β = 1: If p̂(1, 1, c) + 1 − ẑu + 2ẑw < 2, then we have found a violated
inequality of type (4.38) for the i, j, U, U c,W,W c, V, V c constructed in (4.66).

4.4.4 Heuristic Separation

We now discuss an approach to generate a valid inequality for each (i, j) ∈ [r]× [r], i 6= j

for a given (û, ŵ, v̂, ẑu, ẑw) pair, i.e., we fix (i, j) and then find a violated inequality. We
let r′ = r − 2 and [r′] = [r] \ {i, j}. To find a violated inequality after fixing (i, j), we
minimize left-hand-side for each of the valid inequalities proposed in Theorems 4.15-4.18,
and observe that the minimization problem reduces to partitioning set [r′] in 5 different
sets, say S = (S1, S2, . . . , S5).

Let c = [c1, c2, . . . , c5] where cj ∈ Rr′ ∀j = 1, . . . , 5. Let θlj be a binary variable which
takes a value of 1 if index l ∈ [r′] is assigned to set Sj ∀j = 1, . . . , 5. We also let θj denote
[θ1
j , θ

2
j , . . . , θ

r′
j ].

min c>1 θ1 + c>2 θ2 + c>3 θ3 + c>4 θ4 + c>5 θ5 (4.67a)
5∑
j=1

θlj = 1 ∀l ∈ [r′] (4.67b)

θ ∈ {0, 1}r′×5 (4.67c)
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It is easy to see that above problem has a closed form solution as shown in Algorithm 6.
Algorithm 6: Subroutine for heuristic separation of valid inequalities

Input: Vectors c1, c2, c3, c4, c5 and indices i, j
Output: Partition of [r] \ {i, j} in sets S1, S2, S3, S4, S5

1 [r′] = [r] \ {i, j};
2 Sl = {} ∀l ∈ {1, 2, . . . 5};
3 for k ∈ [r′] do
4 l∗ = arg min{clk ∀l ∈ {1, 2, . . . , 5}};

/* Break tie by letting l∗ be the smallest index */

5 Sl∗ ← Sl∗ ∪ {k};
6 end
7 return Ŝ = (S1, S2, S3, S5, S5)

Algorithm 7: 1-swap heuristic
Input: Candidate set (S) , target set (T ), cost coefficients c
Output: S ′ and T ′

1 cs = c[S] ; /* r dimensional vector */

2 cT = c[T ] ; /* r dimensional vector */

3 k1 = arg min{−cS[k] + cT [k] ∀k ∈ S} ; /* Move element from S to T */

4 c1 = −cS[k1] + cT [k1];
5 k2 = arg min{cS[k]− cT [k] ∀k ∈ T} ; /* Move element from T to S */

6 c2 = cS[k2]− cT [k1];
7 if c1 ≤ c2

8 S ′ ← S \ {k1}, T ′ ← T ∪ {k1} ; /* Expanding T is cheaper */

9 else
10 S ′ ← S ∪ {k2}, T ′ ← T \ {k2} ; /* Shrinking T is cheaper */

11 end
12 return S ′, T ′;

We further define two more subroutines in Algorithm 8 to change cardinality of sets
U ∩ V and W ∩ V .

We let α = 0 if |U ∩ V | is even and α = 1 if |U ∩ V | is odd. Similarly, we let β = 0 if
|W ∩ V | is even and β = 1 if W ∩ V is odd.

1. Family 1: For all i, j ∈ [r], i 6= j, we generate a partition of [r′] = [r] \ {i, j} using
Algorithm 6 for c = [c1, c2, c3, c4, c5] where cl ∀l ∈ {1, 2, . . . 5} corresponds to Family 1
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Algorithm 8: Procedure for changing cardinality of U ∩ V and W ∩ V
procedure change UV(c, U c ∩W c ∩ V, V c, U ∩W c ∩ V )

Invoke 1-swap heuristic Alg. 7 for S = (U c ∩W c ∩ V ) ∪ V c, T = U ∩W c ∩ V

procedure change WV(c, U c ∩W c ∩ V, V c, U c ∩W ∩ V )
Invoke 1-swap heuristic Alg. 7 for S = (U c ∩W c ∩ V ) ∪ V c, T = U c ∩W ∩ V

procedure change UWV(c, U c ∩W c ∩ V, V c, U c ∩W ∩ V )
Invoke 1-swap heuristic Alg. 7 for S = (U c ∩W c ∩ V ) ∪ V c, T = U ∩W c ∩ V
Update current partition
Invoke 1-swap heuristic Alg. 7 for S = (U c ∩W c ∩ V ) ∪ V c, T = U c ∩W ∩ V

Desired config.
(α, β) (0, 0) (0, 1) (1, 0) (1, 1)

C
ur

re
nt

co
nfi

g.

(0, 0) - CHANGE WV CHANGE UV CHANGE UWV
(0, 1) CHANGE WV - CHANGE UWV CHANGE UV
(1, 0) CHANGE UV CHANGE UWV - CHANGE WV
(1, 1) CHANGE UWV CHANGE UV CHANGE WV -

Table 4.2: Swapping procedure to invoke from Algorithm 8 to transition from current (α, β)
configuration to desired (α, β) configuration.

Family 1 Family 2 Family 3 Family 4
c1 3− û− ŵ − v̂ 2− û− ŵ 4− û− 2ŵ − v̂ 4− û− 2ŵ − v̂
c2 2− û− v̂ + ŵ 2− û+ ŵ − v̂ 2− û+ 2ŵ − v̂ 2− û+ 2ŵ − v̂
c3 2 + û− ŵ − v̂ 2 + û− ŵ − v̂ 4 + û− 2ŵ − 2v̂ 4 + û− 2ŵ − 2v̂
c4 û+ ŵ û+ ŵ û+ 2ŵ û+ 2ŵ,
c5 v̂ v̂ 2v̂ 2v̂

Table 4.3: Coefficient calculation for valid inequalities separation heuristic
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in Table 4.3. We map the output Ŝ to our sets of interest as follows:

U ∩W ∩ V = Ŝ1, U ∩W c ∩ V = Ŝ2, U
c ∩W ∩ V = Ŝ3, (4.68)

U c ∩W c ∩ V = Ŝ4, (U ∪W ) ∩ V c = Ŝ5

Let’s first consider the case when output from Algorithm 6 has both |U ∩ V | and
|W ∩ V | as even.

(i) If c(Ŝ)+ v̂i+(1−ŵj)+1− ẑu+ ẑw+ < 1, then we have found a violated inequality
of type (4.27).

(ii) To find a violated inequality of type (4.28), we invoke CHANGE WV procedure
from Algorithm 8 as suggested in Table 4.2. Let Ŝ ′ be the new partition after
the swap. If c(Ŝ ′) + v̂i + (1− ŵj) + 1− ẑu + 1− ẑw < 1, then we have found a
violated inequality of type (4.28).

(iii) To find a violated inequality of type (4.29), we invoke CHANGE UV procedure
from Algorithm 8 as suggested in Table 4.2. Let Ŝ ′ be the new partition after
the swap. If c(Ŝ ′) + v̂i + (1− ŵj) + ẑu + ẑw < 1, then we have found a violated
inequality of type (4.29).

(iv) To find a violated inequality of type (4.30), we invoke CHANGE UWV proce-
dure from Algorithm 8 as suggested in Table 4.2. Let Ŝ ′ be the new partition
after the swap. If c(Ŝ ′) + v̂i + (1− ŵj) + ẑu + 1− ẑw < 1, then we have found a
violated inequality of type (4.30).

Similar procedure is repeated for the cases when output from Algorithm 6 has |U ∩
V |, |W ∩ V | ∈ { odd, even } by invoking the necessary CHANGE procedures using
Table 4.2.

2. Family 2: For all i, j ∈ [r], i 6= j, we generate a partition of [r′] = [r] \ {i, j} using
Algorithm 6 for c = [c1, c2, c3, c4, c5] where cl ∀l ∈ {1, 2, . . . 5} corresponds to Family 2
in Table 4.3. We map the output Ŝ to our sets of interest as follows:

U ∩W ∩ V = Ŝ1, U ∩W c ∩ V = Ŝ2 (4.69)

U c ∩W ∩ V = Ŝ3, U
c ∩W c ∩ V = Ŝ4, (U4W ) ∩ V c = Ŝ5

Let’s first consider the case when output from Algorithm 6 has both |U ∩ V | and
|W ∩ V | as even.



139

(i) If c(Ŝ) + (2− ûi − ŵi) + (2− ûj − ŵj) + 1− ẑu + ẑw < 1, then we have found a
violated inequality of type (4.31).

(ii) To find a violated inequality of type (4.32), we invoke CHANGE WV procedure
from Algorithm 8 as suggested in Table 4.2. Let Ŝ ′ be the new partition after
the swap. If c(Ŝ ′) + (2− ûi − ŵi) + (2− ûj − ŵj) + 1− ẑu + 1− ẑw < 1, then we
have found a violated inequality of type (4.32).

(iii) To find a violated inequality of type (4.33), we invoke CHANGE UV procedure
from Algorithm 8 as suggested in Table 4.2. Let Ŝ ′ be the new partition after
the swap. If c(Ŝ ′) + (2− ûi − ŵi) + (2− ûj − ŵj) + ẑu + ẑw < 1, then we have
found a violated inequality of type (4.33).

(iv) To find a violated inequality of type (4.34), we invoke CHANGE UWV proce-
dure from Algorithm 8 as suggested in Table 4.2. Let Ŝ ′ be the new partition
after the swap. If c(Ŝ ′) + (2− ûi − ŵi) + (2− ûj − ŵj) + ẑu + 1− ẑw < 1, then
we have found a violated inequality of type (4.34).

Similar procedure is repeated for the cases when output from Algorithm 6 has |U ∩
V |, |W ∩ V | ∈ { odd, even } by invoking the necessary CHANGE procedures using
Table 4.2.

3. Family 3: For all i, j ∈ [r], i 6= j, we generate a partition of [r′] = [r] \ {i, j} using
Algorithm 6 for c = [c1, c2, c3, c4, c5] where cl ∀l ∈ {1, 2, . . . 5} corresponds to Family 3
in Table 4.3. We map the output Ŝ to our sets of interest as follows:

U ∩W ∩ V = Ŝ1, U ∩W c ∩ V = Ŝ2 (4.70)

U c ∩W ∩ V = Ŝ3, U
c ∩W c ∩ V = Ŝ4, U

c ∩W ∩ V c = Ŝ5

Let’s first consider the case when output from Algorithm 6 has both |U ∩ V | and
|W ∩ V | as even.

(i) If c(Ŝ) + (1− ûi + v̂i) + (1− ûj + ŵj) + ẑu + 2(1− ẑw) < 2, then we have found
a violated inequality of type (4.35).

(ii) To find a violated inequality of type (4.36), we invoke CHANGE WV procedure
from Algorithm 8 as suggested in Table 4.2. Let Ŝ ′ be the new partition after
the swap. If c(Ŝ) + (1− ûi + v̂i) + (1− ûj + ŵj) + ẑu + 2ẑw < 2, then we have
found a violated inequality of type (4.36).

(iii) To find a violated inequality of type (4.37), we invoke CHANGE UV procedure
from Algorithm 8 as suggested in Table 4.2. Let Ŝ ′ be the new partition after
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the swap. If c(Ŝ) + (1− ûi + v̂i) + (1− ûj + ŵj) + 1− ẑu + 2(1− ẑw) < 2, then
we have found a violated inequality of type (4.37).

(iv) To find a violated inequality of type (4.38), we invoke CHANGE UWV proce-
dure from Algorithm 8 as suggested in Table 4.2. Let Ŝ ′ be the new partition
after the swap. If c(Ŝ) + (1− ûi + v̂i) + (1− ûj + ŵj) + 1− ẑu + 2ẑw < 2, then
we have found a violated inequality of type (4.38).

Similar procedure is repeated for the cases when output from Algorithm 6 has |U ∩
V |, |W ∩ V | ∈ { odd, even } by invoking the necessary CHANGE procedures using
Table 4.2.

4. Family 4: For all i, j ∈ [r], i 6= j, we generate a partition of [r′] = [r] \ {i, j} using
Algorithm 6 for c = [c1, c2, c3, c4, c5] where cl ∀l ∈ {1, 2, . . . 5} corresponds to Family 4
in Table 4.3. We map the output Ŝ to our sets of interest as follows:

U ∩W ∩ V = Ŝ1, U ∩W c ∩ V = Ŝ1 (4.71)

U c ∩W ∩ V = Ŝ3, U
c ∩W c ∩ V = Ŝ4, U

c ∩W ∩ V c = Ŝ5

Let’s first consider the case when output from Algorithm 6 has both |U ∩ V | and
|W ∩ V | as even.

(i) If c(Ŝ) + (1− ûi + v̂i) + (1− ûj + ŵj) + ẑu + 2(1− ẑw) < 2, then we have found
a violated inequality of type (4.42).

(ii) To find a violated inequality of type (4.36), we invoke CHANGE WV procedure
from Algorithm 8 as suggested in Table 4.2. Let Ŝ ′ be the new partition after
the swap. If c(Ŝ) + (1− ûi + v̂i) + (1− ûj + ŵj) + ẑu + 2ẑw < 2, then we have
found a violated inequality of type (4.43).

(iii) To find a violated inequality of type (4.37), we invoke CHANGE UV procedure
from Algorithm 8 as suggested in Table 4.2. Let Ŝ ′ be the new partition after
the swap. If c(Ŝ) + (1− ûi + v̂i) + (1− ûj + ŵj) + 1− ẑu + 2(1− ẑw) < 2, then
we have found a violated inequality of type (4.44).

(iv) To find a violated inequality of type (4.38), we invoke CHANGE UWV proce-
dure from Algorithm 8 as suggested in Table 4.2. Let Ŝ ′ be the new partition
after the swap. If c(Ŝ) + (1− ûi + v̂i) + (1− ûj + ŵj) + 1− ẑu + 2ẑw < 2, then
we have found a violated inequality of type (4.45).
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Similar procedure is repeated for the cases when output from Algorithm 6 has |U ∩
V |, |W ∩ V | ∈ { odd, even } by invoking the necessary CHANGE procedures using
Table 4.2.

4.5 Computational Study
In this section we compare the formulations proposed in Section 4.2. In addition, we also
study the performance of valid inequalities proposed in Section 4.4.1. In particular, we
compare the following formulation:

1. Base formulation: Formulation I (4.6)

2. Disjunctive formulation: Formulation II (4.9)

3. SQT formulation: Formulation III (4.13)

4. SQT formulation with valid inequalities proposed in Section 4.4.1. We consider
exact separation proposed in Section 4.4.3 as well as the heuristic separation strategy
proposed in Section 4.4.4. We separate the proposed inequalities only at root node in
both the cases.

4.5.1 Experimental Setup

We implement the proposed formulations in Python and use Gurobi 10.0 as the integer
programming solver. We set a time limit of 7200s for each formulation. The reported
experiments were performed on a cluster of 6 core 16 GB machines with Xeon X5690
CPU running at 3.46GHz. We test our models on synthetically generated datasets. We
generate a basis matrix U by sampling each entry Uik for all (i, k) ∈ [d]× [r] from a Bernoulli
distribution with probability P (Uik = 1) = 0.5. Similarly, we generate each entry Vkj for
all (k, j) ∈ [r]× [n] from a Bernoulli distribution with probability P (Vkj = 1) = 0.5. For a
column vector Vj of V , if the resulting vector Xj = UVj is repeated, we resample all entries
for the vector Vj . Thus, we do not allow identical column vectors in the data matrix X .
After generating the data matrix X , we uniformly at random drop a percentage f of the
entries in X . We generate matrices with d ∈ {6, 8, 10}, n ∈ {8, 10, 15}, r ∈ {4, 5, 6, 7}, f ∈
{0, 10, 20, 30}. We refer to r as the true rank or the underlying rank with which data matrix
X was generated. We use rf to denote the rank of decomposition model we fit. For a given
rank r of the data matrix X , we fit the decomposition model with rf ∈ {r − 2, r − 1, r}.
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Table 4.4: Summary of the solved instances

rf # instances # instances with zero error on observed entries
2 59 0
3 100 0
4 105 82

4.5.2 Metrics

We compare the proposed formulations on the following metrics:

• Number of nodes explored in branch-and-bound.

• Time taken in branch-and-bound. Here we do not include time spent in generating
valid inequalities at root node.

• Solution time. Here we compare the total solution time for each of the formulations
including the cut separation time.

4.5.3 Comparison of Formulations

We report a summary of the number of instances solved in Table 4.4. We first note that for
rf ∈ {2, 3}, none of the instances resulted in zero error on observed entries. However, for
rf = 4, 82 of the total 105 instances resulted in 0 error on observed entries. This observation
will be useful in analyzing the results we discuss next.

We compare the number of nodes explored in branch-and-bound algorithm for each
of the formulations. We plot the cumulative number of instances solved (y-axis) against
the number of nodes explored in branch-and-bound (x-axis) as shown in Figure 4.1. The
arithmetic mean of number of nodes explored for each method (µ) is calculated based
on the instances which were solved to optimality by all the methods in the given time
limit. We also report the number of cuts added at root node as well as the time spent in cut
generation and branch-and-bound algorithm in Table 4.5.

We first point out that heuristic cut separation strategy can potentially find more cuts
than the exact separation strategy. This is because for a given pair of two rows from matrix
Û and one column from matrix V̂ (or vice-versa), with exact cut separation strategy, we
solve an integer program to find the most violated cut without iterating over all (i, j) ⊆
[r]× [r], i 6= j. However, with heuristic cut separation strategy, we iterate over all ((i, j)),
thus potentially adding more cuts than the exact strategy.
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Figure 4.1: Node count comparison for different formulations, µ denotes the arithmetic
mean of instances solved to optimality within the time limit.

(a) rf = 2 (b) rf = 3

(c) rf = 4 with non-zero error (d) rf = 4 with zero error

For rf = 2, as shown in Figure 4.1a, we observe that the SQT formulation takes fewer
nodes than Base as well as Disjunctive formulation by a factor 2.84 and 1.16 respectively.
Adding valid inequalities at the root node further decreases the node count for SQT for-
mulation by factor of 1.82 with an exact separation strategy and by a factor of 2.18 with
a heuristic separation strategy. Thus, separating valid inequalities at root node resulted
in smaller branch-and-bound trees than the SQT formulation. We observe marginally
better performance with heuristic cut separations strategy compared to exact strategy.
The average number of cuts added at root node for rf = 2, across all the 59 instances is
397.80 with exact strategy and 519.27 with heuristic strategy, as reported in Table 4.5, We
also observe that time spent in branch-and-bound is relatively small (< 10s) for all the
instances with SQT formulation performing the best with an average time of 2.36s. There
is non-trivial amount of time spent in cut separation since we haven’t done a sophisticated
implementation for cut separation strategy for either of the methods.
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Table 4.5: Average computational times and cut generation summary of instances solved to
optimality within the time limit.

rf Method # cuts added Time in finding cuts (s) B&B time (s) Nodes
Non-zero error on observed entries

2 Base - - 9.78 16665.05
2 Disjunctive - - 3.89 6826.39
2 SQT - - 2.36 5854.46
2 SQT+ValidIEQ+Exact 397.80 18.77 5.30 3224.34
2 SQT+ValidIEQ+Heur 519.27 7.92 4.70 2687.36
3 Base - - 316.41 875488.23
3 Disjunctive - - 373.38 348246.99
3 SQT - - 104.13 163952.23
3 SQT+ValidIEQ+Exact 925.17 500.05 104.12 142166.99
3 SQT+ValidIEQ+Heur 6819.97 502.19 223.26 160214.66
4 Base - - 297.49 328988.81
4 Disjunctive - - 1756.68 465902.69
4 SQT - - 303.75 150906.50
4 SQT+ValidIEQ+Exact 1386.88 1097.94 1367.96 546799.19
4 SQT+ValidIEQ+Heur 3149.25 799.52 1037.64 313037.88

Zero error on observed entries
4 Base - - 0.59 370.54
4 Disjunctive - - 5.96 497.02
4 SQT - - 0.30 6.30
4 SQT+ValidIEQ+Exact 4151.66 2092.49 0.46 10.30
4 SQT+ValidIEQ+Heur 8879.82 1690.41 0.53 3.98

For rf = 3, we observe similar performance of the Base and Disjunctive formulations
when compared to the SQT formulation. Cut separation marginally reduced the number of
nodes explored but is not as effective as in the case of rf = 2. In particular, the exact strategy
reduced number of nodes by 1.13 and heuristic strategy by 1.02 when compared to the SQT
formulation. We also highlight that on an average, only 925.17 cuts were added by the exact
cut separation strategy and adding cuts did not affect the time spent in branch-and-bound
compared to the SQT formulation. On the other hand, the heuristic strategy added 6819.97

cuts and yet performed worse than the exact strategy in nodes explored. Moreover, adding
more cuts also resulted in increasing the time spent in branch-and-bound by a factor of 2.
In this case, cuts added with the exact strategy were more effective than the cuts generated
by heuristic strategy, as one might expect.

For rf = 4, we consider two separate cases based on whether the error on observed
entries is non-zero (23 of the considered 105 instances), or the error is zero (82 of the
considered 105 instances). We first point out that there is a high-variance in the number
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of nodes explored for the non-zero error case compared to the zero-error case. This can
be attributed to the fact that the objective function has a trivial lower bound of 0. When
Gurobi’s primal heuristics discover a feasible solution with 0 objective, the branch-and-
bound process terminates. Notably, for instances where the error on observed entries is zero,
we observed that Gurobi’s primal heuristics were highly efficient in quickly identifying
such solutions.

We also observe that for the non-zero error case, the SQT formulation is no longer faster
than Base formulation. The number of constraints in SQT formulation areO(3r), increasing
exponentially with r, and hence the linear programs solved during branch-and-bound
require longer computational times.

We next observe that for both the cases, adding cuts did not result in smaller branch-
and-bound trees. We anticipate that the cuts added for rf ∈ {2, 3} proved to more effective
than rf = 4 because the valid inequalities were originally derived for a rank 2 system
which were then lifted. We next observe from Figure 4.1d and Table 4.5 that when error on
observed entries is 0, all formulations resulted in significantly smaller branch-and-bound
trees than previous cases. The SQT based formulations have an average of< 10 nodes while
Base and Disjunctive formulations have averages of 370.54 and 497.02 nodes respectively.
Moreover, all formulations except the Disjunctive formulation took < 1s on an average. As
one can observe from Table 4.5, a significant amount of time is still spent on finding valid
inequalities at root node.

Although, the new proposed inequalities in Section 4.4.1 can reduce number of nodes
in some cases, the additional new cuts do not improve solution times of SQT formulation
on these test instances. The SQT formulation outperforms the disjunctive formulation in
terms of the number of nodes explored and solution times. However, as rf increases, owing
to the large number of inequalities in SQT formulation (O(3rf )), the performance of the
SQT formulation does not exceed that of the base formulation in terms of solution times.

4.6 Conclusion and future directions
In this chapter, we proposed three different formulations for matrix factorization and
completion in F2. We first derived two McCormick based formulations where we first used
a general integer variable to model parity sum and then used ideas of parity polytopes and
disjunctive programming to model the parity sum. We then proposed a novel class of SQT
inequalities which characterized the convex hull of the dot product in F2 and provided a
formulation in the original space of variables. A disadvantage of the SQT formulation is
that we need O(3r) inequalities for a valid formulation and hence it might not scale well
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with r. We thus discussed a linear-time separations strategy for the inequalities. We then
derived new classes of inequalities linking two rows of U and discussed an exact as well as
heuristic separation strategy.

One possible future direction for this work is to model parity setP = {(y, z) ∈ {0, 1}r+1 |
z = ⊕

k∈[r]
y} by introducing variables tk ∀k ∈ [r] and imposing constraints that tk ≥ tk+1 and

1>t =1>y. Variable z can then be modeled as

z =
∑

k:k is odd

tk −
∑

k:k is even

tk.

Another interesting direction to explore would be to see if there is a compact extended
formulation for conv(I) which is linear in number of variables and constraints, and does not
make use of disjunction of the parity polytopes. Since it exists for parity polytopes (switch-
ing formulation in [67]), it would be interesting to see if there is a similar formulation for
convex hull of dot product in F2.
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5 conclusions and future directions

In this thesis, we developed mixed-integer programming based methods for problems in
scheduling and matrix completion.

In Chapter 2, we studied the problem of scheduling drilling and fracturing of wells in
the development of an unconventional oil field. We presented a novel MILP-based rolling
horizon algorithm to schedule drilling and fracturing operations in an unconventional
oil field development while considering the interaction effects between various pads. We
provided two MILP formulations for the limited horizon MILP solved as part of this
approach. The second formulation provides better LP relaxation bounds, which translates
to shorter solution times for instances with a small number of time periods, but for larger
instances the first formulation was found to be more effective. A key feature of the rolling
horizon approach we propose is that it yields a solution at the daily time-scale, while
solving a sequence of coarser time-scale MILP problems. An empirical study demonstrated
that the approach can be used to plan development of fields with more than 100 pads,
and the solutions obtained have 4-6% higher NPV than solutions obtained with a baseline
scheduling algorithm that mimics current practice.

Our work assumed all data, including the drilling and fracturing durations, are deter-
ministic. In reality, these are estimated via forecasts that may have significant errors. The
rolling horizon framework we propose can naturally be applied in this setting, by using
the updated state of the system, and updated estimates of the durations, whenever a new
limited-horizon MILP is solved. However, an interesting direction for future work is to
investigate the use of a stochastic or robust optimization formulation of the scheduling
problem within the rolling horizon framework to see if this may yield improved solutions.

In Chapter 3, we studied an integer programming approach for subspace clustering
with missing data. Subspace clustering with missing data (SCMD) is the task of identifying
clusters of vectors belonging to the same subspace in a partially observed data matrix
whose columns are assumed to lie in a union of K subspaces. We proposed a novel mixed-
integer linear programming (MILP) solution framework for this problem that is based
on dynamically determining a set of candidate subspaces and optimally assigning data
points to the closest selected subspace. A key challenge in this approach is identifying, in a
rigorous manner, a suitable set of candidate subspaces to include in the formulation. We
cast this subspace generation problem as a nonlinear, nonconvex optimization problem
and propose a gradient-based approximate solution approach. The proposed framework
readily accommodates a huge number of candidate subspaces through its use of Benders
decomposition to solve the linear programming (LP) relaxation of the MILP. The model
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has the advantage of integrating the subspace generation and clustering in a single, unified
optimization framework.

MISS-DSG is computationally more expensive than the other clustering algorithms but
a parallel implementation can offer significant speedups. A possible future direction is
to generalize this framework to a union of models (e.g, clustering mixture of Gaussian
models) instead of limiting to a union of linear subspaces.

In Chapter 4, we studied matrix factorization and completion over F2 and proposed
three different integer programming formulations. We first derived two McCormick based
formulations where we first used a general integer variable to model parity sum and then
used ideas of parity polytopes and disjunctive programming to model the parity sum.
We then proposed a novel class of SQT inequalities which characterized the convex hull
of the dot product in F2 and provided a formulation in the original space of variables.
A disadvantage of the SQT formulation is that we need O(3r) inequalities for a valid
formulation and hence it might not scale well with r. We thus discussed a linear-time
separations strategy for the inequalities. We then derived new classes of inequalities linking
two rows of U and discussed an exact as well as heuristic separation strategy.

One possible future direction for this work is to model parity setP = {(y, z) ∈ {0, 1}r+1 |
z = ⊕

k∈[r]
y} by introducing variables tk ∀k ∈ [r] and imposing constraints that tk ≥ tk+1 and

1>t =1>y. Variable z can then be modeled as

z =
∑

k:k is odd

tk −
∑

k:k is even

tk.

Another interesting direction to explore would be to see if there is a compact extended
formulation for conv(I) which is linear in number of variables and constraints, and does
not make use of disjunction of the parity polytopes. Another fascinating direction of
research would be to advance methods for subspace clustering over F2 by building upon
the algorithms proposed in Chapters 3 and 4.
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[45] Fischetti, Matteo, Ivana Ljubić, and Markus Sinnl. 2017. Redesigning benders de-
composition for large-scale facility location. Management Science 63(7):2146–2162.

[46] Fomin, Fedor, Fahad Panolan, Anurag Patil, and Adil Tanveer. 2022. Boolean and
Fp-matrix factorization: From theory to practice.

[47] Fomin, Fedor V., Petr A. Golovach, Daniel Lokshtanov, Fahad Panolan, and Saket
Saurabh. 2018. Approximation Schemes for Low-Rank Binary Matrix Approximation
Problems. .

[48] Ford, L. R., and D. R. Fulkerson. 1958. A suggested computation for maximal multi-
commodity network flows. Management Science 5(1):97–101. .

[49] Garey, M.R. 1979. Computers and intractability: A guide to the theory of NP-
completeness. Freeman, NewYork.

[50] Goel, V., and I.E. Grossmann. 2004. A stochastic programming approach to planning
of offshore gas field developments under uncertainty in reserves. Computers and
chemical engineering 28(8):1409–1429.

[51] Golub, Gene H., and Charles F. Van Loan. 1996. Matrix computations.

[52] Gupta, J.N. 1988. Two-stage, hybrid flowshop scheduling problem. Journal of Opera-
tional Research Society 39(4):359–364.

[53] Gurobi Optimization. 2022. Gurobi 10.0. https://www.gurobi.com/whats-new-
gurobi-10-0/.

[54] Harvey, Nicholas J. A., David R. Karger, and Sergey Yekhanin. 2006. The complexity
of matrix completion. In Proceedings of the seventeenth annual ACM-SIAM symposium
on Discrete algorithm - SODA ’06, 1103–1111. Miami, Florida: ACM Press.

[55] Hong, Wei, John Wright, Kun Huang, and Yi Ma. 2006. Multiscale Hybrid Linear
Models for Lossy Image Representation. IEEE Transactions on Image Processing 15(12):
3655–3671.

[56] Hu, H., J. Feng, and J. Zhou. 2015. Exploiting unsupervised and supervised con-
straints for subspace clustering. IEEE Transactions on Pattern Analysis and Machine
Intelligence 37(8):1542–1557.



153

[57] Huang, Kun, Yi Ma, and R. Vidal. 2004. Minimum effective dimension for mixtures
of subspaces: a robust gpca algorithm and its applications. In Proceedings of the
2004 ieee computer society conference on computer vision and pattern recognition, 2004.
cvpr 2004., vol. 2, II–II.

[58] Huang, Xiao, and Salim El Rouayheb. 2015. Index coding and network coding via
rank minimization. In 2015 IEEE Information Theory Workshop - Fall (ITW), 14–18.
Jeju Island, South Korea: IEEE.

[59] Iyer, R. R., I. E. Grossmann, S. Vasantharajan, and A. S. Cullick. 1998. Optimal plan-
ning and scheduling of offshore oil field infrastructure investment and operations.
Industrial and Engineering Chemistry Researchl 37:1380–1397.

[60] Klotz, Ed, and Alexandra M. Newman. 2013. Practical guidelines for solving difficult
mixed integer linear programs. Surveys in Operations Research and Management Science
18(1):18–32.

[61] Knudsen, B.R., and B. Foss. 2013. Shut-in based production optimization of shale-gas
systems. Computers and Chemical Engineering 58:54–67.

[62] Koch, Thorsten, Timo Berthold, Jaap Pedersen, and Charlie Vanaret. 2022. Progress
in mathematical programming solvers from 2001 to 2020. EURO Journal on Compu-
tational Optimization 10:100031.

[63] Kondili, E., C.C. Pantelidas, and R.W.H. Sargent. 1993. A general algorithm for short-
term scheduling of batch operations, milp formulation. Computers and Chemical
Engineering 17:211–227.

[64] Koster, Arie M. C. A., Manuel Kutschka, and Christian Raack. 2010. Towards robust
network design using integer linear programming techniques. In 6th EURO-NGI
Conference on Next Generation Internet, 1–8.

[65] Kovacs, Reka A., Oktay Gunluk, and Raphael A. Hauser. 2021. Binary Matrix Fac-
torisation via Column Generation. Proceedings of the AAAI Conference on Artificial
Intelligence 35(5):3823–3831.

[66] Kumar, Ravi, Rina Panigrahy, Ali Rahimi, and David Woodruff. 2019. Faster Al-
gorithms for Binary Matrix Factorization. In Proceedings of the 36th International
Conference on Machine Learning, 3551–3559. PMLR.

[67] Lancia, Giuseppe, and Paolo Serafini. 2018. Compact Extended Linear Programming
Models. EURO Advanced Tutorials on Operational Research, Cham: Springer Inter-
national Publishing.

[68] Lane, Connor, Ron Boger, Chong You, Manolis Tsakiris, Benjamin Haeffele, and
Rene Vidal. 2019. Classifying and comparing approaches to subspace clustering
with missing data. In Proceedings of the ieee/cvf international conference on computer
vision (iccv) workshops.



154

[69] Lawless, Connor, and Oktay Günlük. 2020. Fair and interpretable decision rules for
binary classification. In NeurIPS Workshop.

[70] Lazic, Nevena, Inmar Givoni, Brendan Frey, and Parham Aarabi. 2009. Floss: Facil-
ity location for subspace segmentation. In 2009 ieee 12th international conference on
computer vision, 825–832.

[71] Lecun, Y., L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning applied
to document recognition. Proceedings of the IEEE 86(11):2278–2324.

[72] Lee, C., and L. Cheong. 2013. Minimal basis facility location for subspace segmen-
tation. In 2013 ieee international conference on computer vision (iccv), 1585–1592. Los
Alamitos, CA, USA: IEEE Computer Society.

[73] Lee, Daniel D., and H. Sebastian Seung. 1999. Learning the parts of objects by
non-negative matrix factorization. Nature 401(6755):788–791.

[74] Lee, T.S., and Y.T. Loong. 2019. A review of scheduling problem and resolution meth-
ods in flexible flow shop. International Journal of Industrial Engineering Computations
10:67–88.

[75] Li, C., and R. Vidal. 2016. A structured sparse plus structured low-rank framework
for subspace clustering and completion. IEEE Transactions on Signal Processing 64(24):
6557–6570.

[76] Li, Tao. 2005. A general model for clustering binary data. In Proceedings of the eleventh
ACM SIGKDD international conference on Knowledge discovery in data mining, 188–197.

[77] Liberti, Leo, Sonia Cafieri, and Fabien Tarissan. 2009. Reformulations in Mathe-
matical Programming: A Computational Approach. In Foundations of Computational
Intelligence Volume 3: Global Optimization, ed. Ajith Abraham, Aboul-Ella Hassanien,
Patrick Siarry, and Andries Engelbrecht, 153–234. Studies in Computational Intelli-
gence, Berlin, Heidelberg: Springer.

[78] Lin, X., and A.F. Christodoulos. 2003. A novel continuous-time modeling and
optimization framework for well platform planning problems. Optimization and
Engineering 4:65–95.

[79] Liu, Guangcan, Zhouchen Lin, and Yong Yu. 2010. Robust subspace segmenta-
tion by low-rank representation. In Proceedings of the 27th international conference on
international conference on machine learning, 663–670. ICML’10, Madison, WI, USA:
Omnipress.

[80] Lu, Can-Yi, Hai Min, Zhong-Qiu Zhao, Lin Zhu, De-Shuang Huang, and Shuicheng
Yan. 2012. Robust and efficient subspace segmentation via least squares regression.
In Computer vision – eccv 2012, ed. Andrew Fitzgibbon, Svetlana Lazebnik, Pietro
Perona, Yoichi Sato, and Cordelia Schmid, 347–360. Berlin, Heidelberg: Springer
Berlin Heidelberg.



155

[81] Lu, Canyi, Jiashi Feng, Zhouchen Lin, and Shuicheng Yan. 2013. Correlation adaptive
subspace segmentation by trace lasso. In 2013 ieee international conference on computer
vision, 1345–1352.

[82] Manchanda, R., P. Bhardwaj, J. Hwang, and M. Sharma. 2018. Parent-child fracture
interference: Explanation and mitigation of child well underperformance. SPE
Annual Technical Conference and Exhibition,Society of Petroleum Engineers.

[83] Marquant, J. F., R. Evins, and J. Carmeliet. 2015. Reducing computation time with a
rolling horizon approach applied to a milp formulation of multiple urban energy
hub system. ICCS 2015 International Conference On Computational Science 2137–2146.

[84] McCormick, Garth P. 1976. Computability of global solutions to factorable nonconvex
programs: Part I — Convex underestimating problems. Mathematical Programming
10(1):147–175.

[85] Miettinen, Pauli, and Stefan Neumann. 2021. Recent developments in Boolean
matrix factorization. In Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, 4922–4928. IJCAI’20, Yokohama, Yokohama, Japan.

[86] Morais, Hugo, Péter Kádár, Pedro Faria, Zita A. Vale, and H. M. Khodr. 2010. Optimal
scheduling of a renewable micro-grid in an isolated load area using mixed-integer
linear programming. Renewable Energy 35(1):151–156.

[87] Natarajan, Nagarajan, and Inderjit Dhillon. 2014. Inductive matrix completion for
predicting gene-disease associations. Bioinformatics (Oxford, England) 30:i60–i68.

[88] Ng, Andrew Y., Michael I. Jordan, and Yair Weiss. 2001. On spectral clustering:
Analysis and an algorithm. In Advances in neural information processing systems, 849–
856. MIT Press.

[89] Nguyen, Luong Trung, Junhan Kim, and Byonghyo Shim. 2019. Low-rank matrix
completion: A contemporary survey. IEEE Access 7:94215–94237.

[90] Office of Fossil Energy. 2013. Natural gas from shale. U.S. Department of Energy.

[91] Ondeck, A., M. Drouven, N. Blandino, and I.E. Grossmann. 2019. Multi-operational
planning of shale gas pad development. Computers and Chemical Engineering 126:
83–101.

[92] Panagakis, Yannis, and Constantine Kotropoulos. 2014. Elastic net subspace clus-
tering applied to pop/rock music structure analysis. Pattern Recognition Letters 38:
46–53.

[93] Pimentel, D., R. Nowak, and L. Balzano. 2014. On the sample complexity of subspace
clustering with missing data. In 2014 ieee workshop on statistical signal processing (ssp),
280–283.

[94] Pimentel-Alarcón, Daniel L., and R. Nowak. 2016. The information-theoretic require-
ments of subspace clustering with missing data. In Icml.



156

[95] Pimentel-Alarcón, D., L. Balzano, R. Marcia, R. Nowak, and R. Willett. 2016. Group-
sparse subspace clustering with missing data. In 2016 ieee statistical signal processing
workshop (ssp), 1–5.

[96] Pimentel-Alarcón, Daniel L., Nigel Boston, and Robert D. Nowak. 2015. A charac-
terization of deterministic sampling patterns for low-rank matrix completion. In
2015 53rd annual allerton conference on communication, control, and computing (allerton),
1075–1082.

[97] Polyak, Boris. 1987. Introduction to optimization. Optimization Software, Inc.

[98] Pourhejazy, Pourya, and Oh Kyoung Kwon. 2016. The New Generation of Operations
Research Methods in Supply Chain Optimization: A Review. Sustainability 8(10):
1033.

[99] Rahmanifard, H., and T. Plaksina. 2018. Application of fast analytical approach
and ai optimization techniques to hydraulic fracture stage placement in shale gas
reservoirs. Journal of Natural Gas Science and Engineering 52:367–378.

[100] Ramlatchan, Andy, Mengyun Yang, Quan Liu, Min Li, Jianxin Wang, and Yaohang
Li. 2018. A survey of matrix completion methods for recommendation systems. Big
Data Mining and Analytics 1:308–323.

[101] Rao, Shankar, Roberto Tron, René Vidal, and Lei Yu. 2010. Motion segmentation in
the presence of outlying, incomplete, or corrupted trajectories. IEEE transactions on
pattern analysis and machine intelligence 32:1832–45.

[102] Recht, Benjamin. 2011. A simpler approach to matrix completion. J. Mach. Learn.
Res. 12(null):3413–3430.

[103] Rudin, Cynthia, Chaofan Chen, Zhi Chen, Haiyang Huang, Lesia Semenova, and
Chudi Zhong. 2022. Interpretable machine learning: Fundamental principles and 10
grand challenges. Statistics Surveys 16:1–85.

[104] Ryan, David M., and Brian A. Foster. 1981. An integer programming approach to
scheduling. Computer scheduling of public transport urban passenger vehicle and crew
scheduling 269–280.

[105] Samà, M., A. D’Ariano, and D. Pacciarelli. 2013. Rolling horizon approach for aircraft
scheduling in the terminal control area of busy airports. Procedia-Social and Behavioral
Sciences 80:531–552.

[106] Saunderson, James, Maryam Fazel, and Babak Hassibi. 2016. Simple algorithms
and guarantees for low rank matrix completion over F2. In 2016 IEEE International
Symposium on Information Theory (ISIT), 86–90.

[107] Silvente, J., G. M. Kopanos, E. N. Pistikopoulos, and A. Espuna. 2015. A rolling
horizon optimization framework for the simultaneous energy supply and demand
planning in microgrids. Applied Energy 155:485–501.



157

[108] Soltanolkotabi, Mahdi, and Emmanuel J. Candés. 2012. A geometric analysis of
subspace clustering with outliers. The Annals of Statistics 40(4):2195–2238.

[109] Spratt, B., and E. Kozan. 2018. An integrated rolling horizon approach to increase
operating theatre efficiency. .

[110] Tan, Vincent Y. F., Laura Balzano, and Stark C. Draper. 2012. Rank Minimization
Over Finite Fields: Fundamental Limits and Coding-Theoretic Interpretations. IEEE
Transactions on Information Theory 58(4):2018–2039.

[111] Tarhan, B., I.E. Grossmann, and V. Goel. 2009. Stochastic programming approach
for the planning of offshore oil or gas field infrastructure under decision-dependent
uncertainty. Industrial and Engineering Chemistry Research 48(6):3078–3097.

[112] Tron, Roberto, and Rene Vidal. 2007. A benchmark for the comparison of 3-d
motion segmentation algorithms. In 2007 ieee conference on computer vision and pattern
recognition, 1–8.

[113] Tsakiris, Manolis, and Rene Vidal. 2018. Theoretical analysis of sparse subspace
clustering with missing entries. In Proceedings of the 35th international conference on
machine learning, ed. Jennifer Dy and Andreas Krause, vol. 80 of Proceedings of Machine
Learning Research, 4975–4984. Stockholmsmässan, Stockholm Sweden: PMLR.

[114] Tseng, P. 2000. Nearest q-flat to m points. Journal of Optimization Theory and Applica-
tions 105(1):249–252.

[115] U.S. Energy Information Administration EIA . 2019. Tight oil development will
continue to drive future U.S. crude oil production. Today in Energy.

[116] Van Loan, Charles F., and G. Golub. 1996. Matrix computations (Johns Hopkins
studies in mathematical sciences). Matrix Computations.

[117] Vidal, R., S. Soatto, Yi Ma, and S. Sastry. 2003. An algebraic geometric approach
to the identification of a class of linear hybrid systems. In 42nd IEEE International
Conference on Decision and Control (IEEE Cat. No.03CH37475), vol. 1, 167–172 Vol.1.

[118] Wang, H. 2016. Numerical investigation of fracture spacing and sequencing effects
on multiple hydraulic fracture interference and coalescence in brittle and ductile
reservoir rocks. Engineering Fracture Mechanics 157:107–124.

[119] Wang, Yu-Xiang, Huan Xu, and Chenlei Leng. 2019. Provable subspace clustering:
When lrr meets ssc. IEEE Transactions on Information Theory 65(9):5406–5432.

[120] Wicker, Jörg, Yan Cathy Hua, Rayner Rebello, and Bernhard Pfahringer. 2019. XOR-
Based Boolean Matrix Decomposition. In 2019 IEEE International Conference on Data
Mining (ICDM), 638–647.

[121] Xie, J., and X. Wang. 2005. Complexity and algorithms for two-stage flexible flowshop
scheduling with availability constraints. Computers and Mathematics with Applications
50(10-12):1629–1638.



158

[122] Yang, Congyuan, Daniel Robinson, and Rene Vidal. 2015. Sparse subspace clustering
with missing entries. In Proceedings of the 32nd international conference on machine
learning, ed. Francis Bach and David Blei, vol. 37 of Proceedings of Machine Learning
Research, 2463–2472. Lille, France: PMLR.

[123] You, Chong, Chun-Guang Li, Daniel P. Robinson, and René Vidal. 2016. Oracle
based active set algorithm for scalable elastic net subspace clustering. In 2016 ieee
conference on computer vision and pattern recognition (cvpr), 3928–3937.

[124] Zapata, E. L., J. Gonzalez-Mora, F. De la Torre, N. Guil, and R. Murthi. 2007. Bilinear
active appearance models. In 2007 11th ieee international conference on computer vision,
1–8. Los Alamitos, CA, USA: IEEE Computer Society.

[125] Zhuang, Liansheng, Haoyuan Gao, Zhouchen Lin, Yi Ma, Xin Zhang, and Nenghai
Yu. 2012. Non-negative low rank and sparse graph for semi-supervised learning. In
2012 ieee conference on computer vision and pattern recognition, 2328–2335.


	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Overview and motivation
	Mathematical background
	Polyhedra theory
	Lifting valid inequalities
	Algorithms for solving MILPs
	Disjunction of polytopes
	Binary quadratic program (BQP)
	Linear algebra

	Contribution and roadmap

	Mixed-Integer Linear Programming for Scheduling Unconventional Oil Field Development
	Introduction
	Problem description and solution approach
	Problem statement
	Coarse-time discretization
	MILP formulation
	Alternative MILP formulation
	Valid inequalities in the original variable space

	Rolling horizon implementation
	Computational study
	Test instances
	Comparison of MILP formulations
	Baseline scheduling algorithm
	Parameter study for MILP-based rolling horizon approach
	Estimating optimality loss of the rolling horizon approach
	Large-scale instances

	Conclusion and future work

	Integer Programming Approach to Subspace Clustering with Missing Data
	Introduction
	Integer programming formulations
	Known subspaces dimension 
	Unknown subspaces dimension

	Decomposition algorithm
	Row generation
	Column generation
	MISS-DSG: Mixed Integer Subspace Selector with Dynamic Subspace Generation

	Algorithmic choices
	Experimental setup
	Impact of Benders decomposition
	Why Polyak step size?
	Why multi-start?
	Value of solving pricing problem

	Computational Results
	Synthetic dataset
	Metrics
	Comparison against other MIP approaches
	Comparison against state-of-the-art methods
	Choice of penalty parameter in MISS-DSG 
	Hopkins155 data experiments
	Computational times

	Conclusions and future directions

	Integer Programming Approaches to Binary Matrix Completion
	Introduction
	MILP for matrix factorization in F2
	Formulation i: McCormick with general integer variable
	Formulation ii: McCormick with parity polytopes disjunction
	Formulation iii: McCormick-free compact formulation

	Insights into SQT inequalities
	Deriving SQT inequalities via lifting
	Separating SQT inequalities

	Valid inequalities for the SQT formulation
	Valid inequalities
	Derivation of valid inequalities 
	Exact Separation
	Heuristic Separation

	Computational Study
	Experimental Setup
	Metrics
	Comparison of Formulations

	Conclusion and future directions

	Conclusions and Future Directions
	References

